WorldWideScience

Sample records for tunable optical filters

  1. Tunable electro-optic filter stack

    Science.gov (United States)

    Fontecchio, Adam K.; Shriyan, Sameet K.; Bellingham, Alyssa

    2017-09-05

    A holographic polymer dispersed liquid crystal (HPDLC) tunable filter exhibits switching times of no more than 20 microseconds. The HPDLC tunable filter can be utilized in a variety of applications. An HPDLC tunable filter stack can be utilized in a hyperspectral imaging system capable of spectrally multiplexing hyperspectral imaging data acquired while the hyperspectral imaging system is airborne. HPDLC tunable filter stacks can be utilized in high speed switchable optical shielding systems, for example as a coating for a visor or an aircraft canopy. These HPDLC tunable filter stacks can be fabricated using a spin coating apparatus and associated fabrication methods.

  2. Electro-optical tunable birefringent filter

    Science.gov (United States)

    Levinton, Fred M [Princeton, NJ

    2012-01-31

    An electrically tunable Lyot type filter is a Lyot that include one or more filter elements. Each filter element may have a planar, solid crystal comprised of a material that exhibits birefringence and is electro-optically active. Transparent electrodes may be coated on each face of the crystal. An input linear light polarizer may be located on one side of the crystal and oriented at 45 degrees to the optical axis of the birefringent crystal. An output linear light polarizer may be located on the other side of the crystal and oriented at -45 degrees with respect to the optical axis of the birefringent crystal. When an electric voltage is applied between the electrodes, the retardation of the crystal changes and so does the spectral transmission of the optical filter.

  3. Tunable thin-film optical filters for hyperspectral microscopy

    Science.gov (United States)

    Favreau, Peter F.; Rich, Thomas C.; Prabhat, Prashant; Leavesley, Silas J.

    2013-02-01

    Hyperspectral imaging was originally developed for use in remote sensing applications. More recently, it has been applied to biological imaging systems, such as fluorescence microscopes. The ability to distinguish molecules based on spectral differences has been especially advantageous for identifying fluorophores in highly autofluorescent tissues. A key component of hyperspectral imaging systems is wavelength filtering. Each filtering technology used for hyperspectral imaging has corresponding advantages and disadvantages. Recently, a new optical filtering technology has been developed that uses multi-layered thin-film optical filters that can be rotated, with respect to incident light, to control the center wavelength of the pass-band. Compared to the majority of tunable filter technologies, these filters have superior optical performance including greater than 90% transmission, steep spectral edges and high out-of-band blocking. Hence, tunable thin-film optical filters present optical characteristics that may make them well-suited for many biological spectral imaging applications. An array of tunable thin-film filters was implemented on an inverted fluorescence microscope (TE 2000, Nikon Instruments) to cover the full visible wavelength range. Images of a previously published model, GFP-expressing endothelial cells in the lung, were acquired using a charge-coupled device camera (Rolera EM-C2, Q-Imaging). This model sample presents fluorescently-labeled cells in a highly autofluorescent environment. Linear unmixing of hyperspectral images indicates that thin-film tunable filters provide equivalent spectral discrimination to our previous acousto-optic tunable filter-based approach, with increased signal-to-noise characteristics. Hence, tunable multi-layered thin film optical filters may provide greatly improved spectral filtering characteristics and therefore enable wider acceptance of hyperspectral widefield microscopy.

  4. An optical tunable filter array based on LCOS phase grating

    Science.gov (United States)

    Feng, Dong; Wan, Zhujun; Chen, Xu; Yan, Shijia; Luo, Zhixiang

    2018-01-01

    This paper reports an optical tunable filter array (TFA) based on a LCOS (liquid crystal on silicon) chip. The input broadband optical beam is first dispersed by a bulk grating and then incident on the LCOS chip. The LCOS chip is phase-only modulated and constructed as a dynamic reflective phase grating. The phase modulation is adjusted to meet the Littrow angle for a specified passband wavelength and thus the optical beam corresponding to this wavelength is steered to the output. The input/output optical beams are coupled to optical fibers with a dual-fiber collimator. Four dualfiber collimators are vertically aligned as the inputs/outputs and the pixels of the LCOS chip are vertically allocated as four independent zones. Thus the device can act as a 4-channel TFA, which is assembled and functionally demonstrated.

  5. Polarization-Insensitive Tunable Optical Filters based on Liquid Crystal Polarization Gratings

    Science.gov (United States)

    Nicolescu, Elena

    Tunable optical filters are widely used for a variety of applications including spectroscopy, optical communication networks, remote sensing, and biomedical imaging and diagnostics. All of these application areas can greatly benefit from improvements in the key characteristics of the tunable optical filters embedded in them. Some of these key parameters include peak transmittance, bandwidth, tuning range, and transition width. In recent years research efforts have also focused on miniaturizing tunable optical filters into physically small packages for compact portable spectroscopy and hyperspectral imaging applications such as real-time medical diagnostics and defense applications. However, it is important that miniaturization not have a detrimental effect on filter performance. The overarching theme of this dissertation is to explore novel configurations of Polarization Gratings (PGs) as simple, low-cost, polarization-insensitive alternatives to conventional optical filtering technologies for applications including hyperspectral imaging and telecommunications. We approach this goal from several directions with a combination of theory and experimental demonstration leading to, in our opinion, a significant contribution to the field. We present three classes of tunable optical filters, the first of which is an angle-filtering scheme where the stop-band wavelengths are redirected off axis and the passband is transmitted on-axis. This is achieved using a stacked configuration of polarization gratings of various thicknesses. To improve this class of filter, we also introduce a novel optical element, the Bilayer Polarization Grating, exhibiting unique optical properties and demonstrating complex anchoring conditions with high quality. The second class of optical filter is analogous to a Lyot filter, utilizing stacks of static or tunable waveplates sandwiched with polarizing elements. However, we introduce a new configuration using PGs and static waveplates to replace

  6. Tunable orbital angular momentum mode filter based on optical geometric transformation.

    Science.gov (United States)

    Huang, Hao; Ren, Yongxiong; Xie, Guodong; Yan, Yan; Yue, Yang; Ahmed, Nisar; Lavery, Martin P J; Padgett, Miles J; Dolinar, Sam; Tur, Moshe; Willner, Alan E

    2014-03-15

    We present a tunable mode filter for spatially multiplexed laser beams carrying orbital angular momentum (OAM). The filter comprises an optical geometric transformation-based OAM mode sorter and a spatial light modulator (SLM). The programmable SLM can selectively control the passing/blocking of each input OAM beam. We experimentally demonstrate tunable filtering of one or multiple OAM modes from four multiplexed input OAM modes with vortex charge of ℓ=-9, -4, +4, and +9. The measured output power suppression ratio of the propagated modes to the blocked modes exceeds 14.5 dB.

  7. Acousto-Optic Tunable Filter Hyperspectral Microscope Imaging Method for Characterizing Spectra from Foodborne Pathogens.

    Science.gov (United States)

    Hyperspectral microscope imaging (HMI) method, which provides both spatial and spectral characteristics of samples, can be effective for foodborne pathogen detection. The acousto-optic tunable filter (AOTF)-based HMI method can be used to characterize spectral properties of biofilms formed by Salmon...

  8. Magneto-Optic Fiber Gratings Useful for Dynamic Dispersion Management and Tunable Comb Filtering

    International Nuclear Information System (INIS)

    Bao-Jian, Wu; Xin, Lu; Kun, Qiu

    2010-01-01

    Intelligent control of dispersion management and tunable comb filtering in optical network applications can be performed by using magneto-optic fiber Bragg gratings (MFBGs). When a nonuniform magnetic field is applied to the MFBG with a constant grating period, the resulting grating response is equivalent to that of a conventional chirped grating. Under a linearly nonuniform magnetic field along the grating, a linear dispersion is achieved in the grating bandgap and the maximal dispersion slope can come to 1260 ps/nm 2 for a 10-mm-long fiber grating at 1550 nm window. Similarly, a Gaussian-apodizing sampled MFBG is also useful for magnetically tunable comb filtering, with potential application to clock recovery from return-to-zero optical signals and optical carrier tracking. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  9. Electro-optic tunable multi-channel filter in two-dimensional ferroelectric photonic crystals

    International Nuclear Information System (INIS)

    Fu, Yulan; Zhang, Jiaxiang; Hu, Xiaoyong; Gong, Qihuang

    2010-01-01

    An electro-optic tunable multi-channel filter is presented, which is based on a two-dimensional ferroelectric photonic crystal made of barium titanate. The filtering properties of the photonic crystal filter can be tuned by an applied voltage or by adjusting the structural parameters. The channel shifts about 30 nm under excitation of an applied voltage of 54.8 V. The influences of the structural disorders caused by the perturbations in the radius or the position of air holes on the filtering properties are also analyzed

  10. Chromatic aberrations correction for imaging spectrometer based on acousto-optic tunable filter with two transducers.

    Science.gov (United States)

    Zhao, Huijie; Wang, Ziye; Jia, Guorui; Zhang, Ying; Xu, Zefu

    2017-10-02

    The acousto-optic tunable filter (AOTF) with wide wavelength range and high spectral resolution has long crystal and two transducers. A longer crystal length leads to a bigger chromatic focal shift and the double-transducer arrangement induces angular mutation in diffracted beam, which increase difficulty in longitudinal and lateral chromatic aberration correction respectively. In this study, the two chromatic aberrations are analyzed quantitatively based on an AOTF optical model and a novel catadioptric dual-path configuration is proposed to correct both the chromatic aberrations. The test results exhibit effectiveness of the optical configuration for this type of AOTF-based imaging spectrometer.

  11. Tunable all-optical photonic crystal channel drop filter for DWDM systems

    Science.gov (United States)

    Habibiyan, H.; Ghafoori-Fard, H.; Rostami, A.

    2009-06-01

    In this paper we propose a tunable channel drop filter in a two-dimensional photonic crystal, based on coupled-cavity waveguides with alternating small and large defects and an electromagnetically induced transparency phenomenon. By utilizing this phenomenon a narrower linewidth is obtained and also the frequency of the dropped signal becomes tunable. Simulation results show that the proposed filter is suitable for dense wavelength-division multiplexing (DWDM) systems with 0.8 nm channel spacing. Using this novel component, two ultrasmall eight-channel double-sided and single-sided demultiplexers are introduced. The properties of these devices are investigated using the finite-difference time-domain method. For the single-sided device, transmission loss is 1.5 ± 0.5 dB, the cross-talk level between adjacent channels is better than -18 dB and the average 3 dB optical passband is 0.36 nm. Using planar silicon-on-insulator technology, the physical area for the single-sided component is 700 µm2 and for the double-sided component is 575 µm2. To the best of our knowledge, these are the smallest all-optical demultiplexers with this spectral resolution reported to date. Malfunction of the proposed device due to fabrication errors is modeled and its tunable characteristic is demonstrated.

  12. Spectral shaping of an all-fiber torsional acousto-optic tunable filter.

    Science.gov (United States)

    Ko, Jeakwon; Lee, Kwang Jo; Kim, Byoung Yoon

    2014-12-20

    Spectral shaping of an all-fiber torsional acousto-optic (AO) tunable filter is studied. The technique is based on the axial modulation of AO coupling strength along a highly birefringent optical fiber, which is achieved by tailoring the outer diameter of the fiber along its propagation axis. Two kinds of filter spectral shaping schemes-Gaussian apodization and matched filtering with triple resonance peaks-are proposed and numerically investigated under realistic experimental conditions: at the 50-cm-long AO interaction length of the fiber and at half of the original fiber diameter as the minimum thickness of the tailored fiber section. The results show that the highest peak of sidelobe spectra in filter transmission is suppressed from 11.64% to 0.54% via Gaussian modulation of the AO coupling coefficient (κ). Matched filtering with triple resonance peaks operating with a single radio frequency signal is also achieved by cosine modulation of κ, of which the modulation period determines the spectral distance between two satellite peaks located in both wings of the main resonance peak. The splitting of two satellite peaks in the filter spectra reaches 48.2 nm while the modulation period varies from 7.7 to 50 cm. The overall peak power of two satellite resonances is calculated to be 22% of the main resonance power. The results confirm the validity and practicality of our approach, and we predict robust and stable operation of the designed all-fiber torsional AO filters.

  13. Tunable and reconfigurable microwave filter by use of a Bragg-grating-based acousto-optic superlattice modulator.

    Science.gov (United States)

    Delgado-Pinar, M; Mora, J; Díez, A; Andrés, M V; Ortega, B; Capmany, J

    2005-01-01

    We present an all-optical novel configuration for implementing multitap transversal filters by use of a broadband source sliced by fiber Bragg grating arrays generated by propagating an acoustic wave along a strong uniform fiber Bragg grating. The tunability and reconfigurability of the microwave filter are demonstrated.

  14. Spectral characterization in deep UV of an improved imaging KDP acousto-optic tunable filter

    International Nuclear Information System (INIS)

    Gupta, Neelam; Voloshinov, Vitaly

    2014-01-01

    Recently, we developed a number of high quality noncollinear acousto-optic tunable filter (AOTF) cells in different birefringent materials with UV imaging capability. Cells based on a single crystal of KDP (potassium dihydrophosphate) had the best transmission efficiency and the optical throughput needed to acquire high quality spectral images at wavelengths above 220 nm. One of the main limitations of these imaging filters was their small angular aperture in air, limited to about 1.0°. In this paper, we describe an improved imaging KDP AOTF operating from the deep UV to the visible region of the spectrum. The linear and angular apertures of the new filter are 10 × 10 mm 2 and 1.8°, respectively. The spectral tuning range is 205–430 nm with a 60 cm −1 spectral resolution. We describe the filter and present experimental results on imaging using both a broadband source and a number of light emitting diodes (LEDs) in the UV, and include the measured spectra of these LEDs obtained with a collinear SiO 2 filter-based spectrometer operating above 255 nm. (paper)

  15. Double tungsten coil atomic absorption spectrometer based on an acousto-optic tunable filter

    International Nuclear Information System (INIS)

    Jora, M.Z.; Nóbrega, J.A.; Rohwedder, J.J.R.; Pasquini, C.

    2015-01-01

    An atomic absorption spectrometer based on a quartz acousto-optic tunable filter (AOTF) monochromator operating in the 271–453 nm range, is described. The instrument was tailored to study the formation and evolution of electrothermal atomic cloud induced either by one or two tungsten coils. The spectrometer also includes a fast response programmable photomultiplier module for data acquisition, and a power supply capable of driving two parallel tungsten coils independently. The atomization cell herein described was manufactured in PTFE and presents a new design with reduced size. Synchronization between the instant of power delivering to start the atomization process and the detection was achieved, allowing for monitoring the atomization and thermal events synchronously and in real time. Absorption signals can be sampled at a rate of a few milliseconds, compatible with the fast phenomena that occur with electrothermal metallic atomizers. The instrument performance was preliminarily evaluated by monitoring the absorption of radiation of atomic clouds produced by standard solutions containing chromium or lead. Its quantitative performance was evaluated by using Cr aqueous solutions, resulting in detection limits as low as 0.24 μg L −1 , and a relative standard deviation of 3%. - Highlights: • The use of an Acousto-Optic Tunable Filter (AOTF) as monochromator element in WC AAS is presented for the first time. • The system includes the possibility of using one or two parallel coils. • We propose a new atomization cell design, manufactured on PTFE with reduced size. • The temperature of the coils and the atomic clouds of Pb and Cr were observed synchronously with high temporal resolution

  16. An acousto-optic tunable filter enhanced CO{sub 2} lidar atmospheric monitor

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, L.H.; Suhre, D.R.; Mani, S.S. [and others

    1996-12-31

    The atmospheric monitor conceptual design is based on a pulsed CO{sub 2} laser. The narrow laser lines provide high spectral selectivity in the 9-11 {mu}m region, within the 8-14 {mu}m ``fingerprint`` region where most large molecules have unique spectral absorption signatures. Laser power has been chosen so that topological objects, e.g., trees or buildings, as far as 4 km can be used as backreflectors, but the laser intensity is sufficiently low that the laser beam is eye-safe. Time-of-flight measurements give the distance to the topological reflector. The lidar system is augmented with an acousto-optic tunable filter (AOTF) which measures the thermal emission spectra from 3 to 14 {mu}m with a 3 cm{sup -1} passband. Sensitivity to narrow emission lines is enhanced by derivative spectroscopy in which the passband of the AOTF is dithered via the rf drive. Path-averaged concentrations are determined from the emission intensity and laser- determined range.

  17. An acousto-optic tunable filter enhanced CO2 lidar atmospheric monitor

    International Nuclear Information System (INIS)

    Taylor, L.H.; Suhre, D.R.; Mani, S.S.

    1996-01-01

    The atmospheric monitor conceptual design is based on a pulsed CO 2 laser. The narrow laser lines provide high spectral selectivity in the 9-11 μm region, within the 8-14 μm ''fingerprint'' region where most large molecules have unique spectral absorption signatures. Laser power has been chosen so that topological objects, e.g., trees or buildings, as far as 4 km can be used as backreflectors, but the laser intensity is sufficiently low that the laser beam is eye-safe. Time-of-flight measurements give the distance to the topological reflector. The lidar system is augmented with an acousto-optic tunable filter (AOTF) which measures the thermal emission spectra from 3 to 14 μm with a 3 cm -1 passband. Sensitivity to narrow emission lines is enhanced by derivative spectroscopy in which the passband of the AOTF is dithered via the rf drive. Path-averaged concentrations are determined from the emission intensity and laser- determined range

  18. Novel tunable optical filter employing a fiber loop mirror for synthesis applications in WDM

    OpenAIRE

    Vázquez García, María Carmen; Vargas Palma, Salvador Elías; Sánchez-Pena, José Manuel

    2001-01-01

    A novel optical filter employing a fiber loop mirror within an amplified ring resonator is presented. The fiber loop mirror allows tuning by changing the coupling factor of a coupler. The device can be used as a building block to synthesize optical filters, as previously reported, saving components. Publicado

  19. Hyper-spectral modulation fluorescent imaging using double acousto-optical tunable filter based on TeO2-crystals

    International Nuclear Information System (INIS)

    Zaytsev, Kirill I; Perchik, Alexey V; Chernomyrdin, Nikita V; Yurchenko, Stanislav O; Kudrin, Konstantin G; Reshetov, Igor V

    2015-01-01

    We have proposed a method for hyper-spectral fluorescent imaging based on acousto-optical filtering. The object of interest was pumped using ultraviolet radiation of mercury lamp equipped with monochromatic excitation filter with the window of transparency centered at 365 nm. Double TeO 2 -based acousto-optical filter, tunable in range from 430 to 780 nm and having 2 nm bandwidth of spectral transparency, was used in order to detect quasimonochromatic images of object fluorescence. Modulating of ultraviolet pump intensity was used in order to reduce an impact of non-fluorescent background on the sample fluorescent imaging. The technique for signal-to-noise ratio improvement, based on fluorescence intensity estimation via digital processing of modulated video sequence of fluorescent object, was introduced. We have implemented the proposed technique for the test sample studying and we have discussed its possible applications

  20. In-plane deeply-etched optical MEMS notch filter with high-speed tunability

    International Nuclear Information System (INIS)

    Sabry, Yasser M; Eltagoury, Yomna M; Shebl, Ahmed; Khalil, Diaa; Soliman, Mostafa; Sadek, Mohamed

    2015-01-01

    Notch filters are used in spectroscopy, multi-photon microscopy, fluorescence instrumentation, optical sensors and other life science applications. One type of notch filter is based on a fiber-coupled Fabry–Pérot cavity, which is formed by a reflector (external mirror) facing a dielectric-coated end of an optical fiber. Tailoring this kind of optical filter for different applications is possible because the external mirror has fewer mechanical and optical constraints. In this paper we present optical modeling and implementation of a fiber-coupled Fabry–Pérot filter based on dielectric-coated optical fiber inserted into a micromachined fiber groove facing a metallized micromirror, which is driven by a high-speed MEMS actuator. The optical MEMS chip is fabricated using deep reactive ion etching (DRIE) technology on a silicon on insulator wafer, where the optical axis is parallel to the substrate (in-plane) and the optical/mechanical components are self-aligned by the photolithographic process. The DRIE etching depth is 150 μm, chosen to increase the micromirror optical throughput and improving the out-of-plane stiffness of the MEMS actuator. The MEMS actuator type is closing-gap, while its quality factor is almost doubled by slotting the fixed plate. A low-finesse Fabry–Pérot interferometer is formed by the metallized surface of the micromirror and a cleaved end of a standard single-mode fiber, for characterization of the MEMS actuator stroke and resonance frequency. The actuator achieves a travel distance of 800 nm at a resonance frequency of 89.9 kHz. The notch filter characteristics were measured using an optical spectrum analyzer, and the filter exhibits a free spectral range up to 100 nm and a notch rejection ratio up to 20 dB around a wavelength of 1300 nm. The presented device provides batch processing and low-cost production of the filter. (paper)

  1. Tunable Multiband Microwave Photonic Filters

    Directory of Open Access Journals (Sweden)

    Mable P. Fok

    2017-11-01

    Full Text Available The increasing demand for multifunctional devices, the use of cognitive wireless technology to solve the frequency resource shortage problem, as well as the capabilities and operational flexibility necessary to meet ever-changing environment result in an urgent need of multiband wireless communications. Spectral filter is an essential part of any communication systems, and in the case of multiband wireless communications, tunable multiband RF filters are required for channel selection, noise/interference removal, and RF signal processing. Unfortunately, it is difficult for RF electronics to achieve both tunable and multiband spectral filtering. Recent advancements of microwave photonics have proven itself to be a promising candidate to solve various challenges in RF electronics including spectral filtering, however, the development of multiband microwave photonic filtering still faces lots of difficulties, due to the limited scalability and tunability of existing microwave photonic schemes. In this review paper, we first discuss the challenges that were facing by multiband microwave photonic filter, then we review recent techniques that have been developed to tackle the challenge and lead to promising developments of tunable microwave photonic multiband filters. The successful design and implementation of tunable microwave photonic multiband filter facilitate the vision of dynamic multiband wireless communications and radio frequency signal processing for commercial, defense, and civilian applications.

  2. [Testing method research for key performance indicator of imaging acousto-optic tunable filter (AOTF)].

    Science.gov (United States)

    Hu, Shan-Zhou; Chen, Fen-Fei; Zeng, Li-Bo; Wu, Qiong-Shui

    2013-01-01

    Imaging AOTF is an important optical filter component for new spectral imaging instruments developed in recent years. The principle of imaging AOTF component was demonstrated, and a set of testing methods for some key performances were studied, such as diffraction efficiency, wavelength shift with temperature, homogeneity in space for diffraction efficiency, imaging shift, etc.

  3. Digitally tunable dual wavelength emission from semiconductor ring lasers with filtered optical feedback

    International Nuclear Information System (INIS)

    Khoder, Mulham; Verschaffelt, Guy; Nguimdo, Romain Modeste; Danckaert, Jan; Leijtens, Xaveer; Bolk, Jeroen

    2013-01-01

    We report on a novel integrated approach to obtain dual wavelength emission from a semiconductor laser based on on-chip filtered optical feedback. Using this approach, we show experiments and numerical simulations of dual wavelength emission of a semiconductor ring laser. The filtered optical feedback is realized on-chip by employing two arrayed waveguide gratings to split/recombine light into different wavelength channels. Semiconductor optical amplifiers are placed in the feedback loop in order to control the feedback strength of each wavelength channel independently. By tuning the current injected into each of the amplifiers, we can effectively cancel the gain difference between the wavelength channels due to fabrication and material dichroism, thus resulting in stable dual wavelength emission. We also explore the accuracy needed in the operational parameters to maintain this dual wavelength emission. (letter)

  4. Error Measurements in an Acousto-Optic Tunable Filter Fiber Bragg Grating Sensor System

    Science.gov (United States)

    1994-05-01

    for an ideal AOTF, at 833 and 838 nm using a TeO2 crystal ............................ 33 Figure 3.12. Frequency characteristics of Equation (3.43...multiple channels in an AOTF requires the presence of multiple RF frequencies to establish the complex grating. Since the crystal used in the AOTF ( TeO2 ) is...in germano- silicate glass . This index modulation, Bragg grating, acts as an optical band rejection filter for those wavelengths that meet the Bragg

  5. Tunable micro-optics

    CERN Document Server

    Duppé, Claudia

    2015-01-01

    Presenting state-of-the-art research into the dynamic field of tunable micro-optics, this is the first book to provide a comprehensive survey covering a varied range of topics including novel materials, actuation concepts and new imaging systems in optics. Internationally renowned researchers present a diverse range of chapters on cutting-edge materials, devices and subsystems, including soft matter, artificial muscles, tunable lenses and apertures, photonic crystals, and complete tunable imagers. Special contributions also provide in-depth treatment of micro-optical characterisation, scanners, and the use of natural eye models as inspiration for new concepts in advanced optics. With applications extending from medical diagnosis to fibre telecommunications, Tunable Micro-optics equips readers with a solid understanding of the broader technical context through its interdisciplinary approach to the realisation of new types of optical systems. This is an essential resource for engineers in industry and academia,...

  6. A rapid excitation-emission matrix fluorometer utilizing supercontinuum white light and acousto-optic tunable filters

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenbo [Imaging Unit, Integrative Oncology Department, BC Cancer Agency Research Center, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3 (Canada); Department of Dermatology and Skin Science, University of British Columbia, 835 West 10th Avenue, Vancouver, British Columbia V5Z 4E8 (Canada); Department of Biomedical Engineering, University of British Columbia, KAIS 5500, 2332 Main Mall, Vancouver, British Columbia V6T 1Z4 (Canada); Wu, Zhenguo; Zhao, Jianhua; Lui, Harvey; Zeng, Haishan, E-mail: hzeng@bccrc.ca [Imaging Unit, Integrative Oncology Department, BC Cancer Agency Research Center, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3 (Canada); Department of Dermatology and Skin Science, University of British Columbia, 835 West 10th Avenue, Vancouver, British Columbia V5Z 4E8 (Canada)

    2016-06-15

    Scanning speed and coupling efficiency of excitation light to optic fibres are two major technical challenges that limit the potential of fluorescence excitation-emission matrix (EEM) spectrometer for on-line applications and in vivo studies. In this paper, a novel EEM system, utilizing a supercontinuum white light source and acousto-optic tunable filters (AOTFs), was introduced and evaluated. The supercontinuum white light, generated by pumping a nonlinear photonic crystal fiber with an 800 nm femtosecond laser, was efficiently coupled into a bifurcated optic fiber bundle. High speed EEM spectral scanning was achieved using AOTFs both for selecting excitation wavelength and scanning emission spectra. Using calibration lamps (neon and mercury argon), wavelength deviations were determined to vary from 0.18 nm to −0.70 nm within the spectral range of 500–850 nm. Spectral bandwidth for filtered excitation light broadened by twofold compared to that measured with monochromatic light between 650 nm and 750 nm. The EEM spectra for methanol solutions of laser dyes were successfully acquired with this rapid fluorometer using an integration time of 5 s.

  7. A rapid excitation-emission matrix fluorometer utilizing supercontinuum white light and acousto-optic tunable filters

    International Nuclear Information System (INIS)

    Wang, Wenbo; Wu, Zhenguo; Zhao, Jianhua; Lui, Harvey; Zeng, Haishan

    2016-01-01

    Scanning speed and coupling efficiency of excitation light to optic fibres are two major technical challenges that limit the potential of fluorescence excitation-emission matrix (EEM) spectrometer for on-line applications and in vivo studies. In this paper, a novel EEM system, utilizing a supercontinuum white light source and acousto-optic tunable filters (AOTFs), was introduced and evaluated. The supercontinuum white light, generated by pumping a nonlinear photonic crystal fiber with an 800 nm femtosecond laser, was efficiently coupled into a bifurcated optic fiber bundle. High speed EEM spectral scanning was achieved using AOTFs both for selecting excitation wavelength and scanning emission spectra. Using calibration lamps (neon and mercury argon), wavelength deviations were determined to vary from 0.18 nm to −0.70 nm within the spectral range of 500–850 nm. Spectral bandwidth for filtered excitation light broadened by twofold compared to that measured with monochromatic light between 650 nm and 750 nm. The EEM spectra for methanol solutions of laser dyes were successfully acquired with this rapid fluorometer using an integration time of 5 s.

  8. Tunable laser optics

    CERN Document Server

    Duarte, FJ

    2015-01-01

    This Second Edition of a bestselling book describes the optics and optical principles needed to build lasers. It also highlights the optics instrumentation necessary to characterize laser emissions and focuses on laser-based optical instrumentation. The book emphasizes practical and utilitarian aspects of relevant optics including the essential theory. This revised, expanded, and improved edition contains new material on tunable lasers and discusses relevant topics in quantum optics.

  9. Optical Filter Assembly for Interplanetary Optical Communications

    Science.gov (United States)

    Chen, Yijiang; Hemmati, Hamid

    2013-01-01

    Ground-based, narrow-band, high throughput optical filters are required for optical links from deep space. We report on the development of a tunable filter assembly that operates at telecommunication window of 1550 nanometers. Low insertion loss of 0.5 decibels and bandwidth of 90 picometers over a 2000 nanometers operational range of detectors has been achieved.

  10. Wet/dry film thickness measurement of paint by absorption spectroscopy with acousto-optic tunable filter spectrometer

    Science.gov (United States)

    Sinha, Pranay G.; Xiong, Xiangchun; Jin, Feng; Trivedi, Sudhir; Prasad, Narashima S.

    2005-08-01

    Controlling/monitoring the thickness of applied paint in real time is important to many situations including painting ship and submarine hulls in dry docks for maintaining health of ships and submarines against the harshness of the sea, in automobile and aerospace industries, and in a variety of other industries as a control sensor that plays significant role in product quality, process control, and cost control. Insufficient thickness results to inadequate protection while overspray leads to waste and pollution of the environment. A rugged instrumentation for the real time non-contact accurate measurement of wet and dry paint film thickness measurement will be immensely valuable. As paint is applied with several layers of the same or different type, thickness of each newly sprayed wet layer is of most interest, but measurement on dry paint is also useful. In this study, we use acousto-optic tunable filter-based near infrared spectrometer to obtain the absorption spectrum of layers of paint sprayed on sand blasted steel surface and thus measure the thickness of coating under both wet and dry situations. NIR spectra are obtained from 1100 to 2300 nm on four sample of different thickness of paint up to 127 micron. Partial least squares model built with the spectra shows good correlation with standard error of prediction within ~ 0.7 micron. Results indicate that the spectra also respond to the amount of organic solvent in the wet paint and can be used to monitor the degree of dryness of the paint in real time.

  11. Tunable negative-tap photonic microwave filter based on a cladding-mode coupler and an optically injected laser of large detuning.

    Science.gov (United States)

    Chan, Sze-Chun; Liu, Qing; Wang, Zhu; Chiang, Kin Seng

    2011-06-20

    A tunable negative-tap photonic microwave filter using a cladding-mode coupler together with optical injection locking of large wavelength detuning is demonstrated. Continuous and precise tunability of the filter is realized by physically sliding a pair of bare fibers inside the cladding-mode coupler. Signal inversion for the negative tap is achieved by optical injection locking of a single-mode semiconductor laser. To couple light into and out of the cladding-mode coupler, a pair of matching long-period fiber gratings is employed. The large bandwidth of the gratings requires injection locking of an exceptionally large wavelength detuning that has never been demonstrated before. Experimentally, injection locking with wavelength detuning as large as 27 nm was achieved, which corresponded to locking the 36-th side mode. Microwave filtering with a free-spectral range tunable from 88.6 MHz to 1.57 GHz and a notch depth larger than 35 dB was obtained.

  12. Rugged Low Temperature Actuators for Tunable Fabry Perot Optical Filters, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Why are rugged, low temperature actuator materials important? By themselves, they are useless; however, when fabricated into thin films and integrated into optical...

  13. A Microwave Tunable Bandpass Filter for Liquid Crystal Applications

    Science.gov (United States)

    Cao, Weiping; Jiang, Di; Liu, Yupeng; Yang, Yuanwang; Gan, Baichuan

    2017-07-01

    In this paper, a novel microwave continuously tunable band-pass filter, based on nematic liquid crystals (LCs), is proposed. It uses liquid crystal (LC) as the electro-optic material to mainly realize frequency shift at microwave band by changing the dielectric anisotropy, when applying the bias voltage. According to simulation results, it achieves 840 MHz offset. Comparing to the existing tunable filter, it has many advantages, such as continuously tunable, miniaturization, low processing costs, low tuning voltage, etc. Thus, it has shown great potentials in frequency domain and practical applications in modern communication.

  14. Demonstration of tunable microwave photonic notch filters using slow and fast light effects in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Sales, Salvador; Mørk, Jesper

    2009-01-01

    We introduce a novel scheme based on slow and fast light effects in semiconductor optical amplifiers, to implement a microwave photonic notch filter with ~100% fractional tuning range at a microwave frequency of 30 GHz....

  15. Highly Tunable Narrow Bandpass MEMS Filter

    KAUST Repository

    Hafiz, Md Abdullah Al

    2017-07-07

    We demonstrate a proof-of-concept highly tunable narrow bandpass filter based on electrothermally and electrostatically actuated microelectromechanical-system (MEMS) resonators. The device consists of two mechanically uncoupled clamped-clamped arch resonators, designed such that their resonance frequencies are independently tuned to obtain the desired narrow passband. Through the electrothermal and electrostatic actuation, the stiffness of the structures is highly tunable. We experimentally demonstrate significant percentage tuning (~125%) of the filter center frequency by varying the applied electrothermal voltages to the resonating structures, while maintaining a narrow passband of 550 ± 50 Hz, a stopband rejection of >17 dB, and a passband ripple ≤ 2.5 dB. An analytical model based on the Euler-Bernoulli beam theory is used to confirm the behavior of the filter, and the origin of the high tunability using electrothermal actuation is discussed.

  16. Moiré volume Bragg grating filter with tunable bandwidth.

    Science.gov (United States)

    Mokhov, Sergiy; Ott, Daniel; Divliansky, Ivan; Zeldovich, Boris; Glebov, Leonid

    2014-08-25

    We propose a monolithic large-aperture narrowband optical filter based on a moiré volume Bragg grating formed by two sequentially recorded gratings with slightly different resonant wavelengths. Such recording creates a spatial modulation of refractive index with a slowly varying sinusoidal envelope. By cutting a specimen at a small angle, to a thickness of one-period of this envelope, the longitudinal envelope profile will shift from a sine profile to a cosine profile across the face of the device. The transmission peak of the filter has a tunable bandwidth while remaining at a fixed resonant wavelength by a transversal shift of incidence position. Analytical expressions for the tunable bandwidth of such a filter are calculated and experimental data from a filter operating at 1064 nm with bandwidth range 30-90 pm is demonstrated.

  17. Hybrid Micro-Electro-Mechanical Tunable Filter

    Science.gov (United States)

    2007-09-01

    and polymer hybrid actuator and applications as a tunable filter in telecom and in IR chemical detector,” in Micromachining and Microfabrication...consistently achieved. At this temperature, SU8 - SU-8 bonding withstood subsequent processing steps, resulting in a 57% bond yield and an overall 30

  18. The visible to the near infrared narrow band acousto-optic tunable filter and the hyperspectral microscopic imaging on biomedicine study

    International Nuclear Information System (INIS)

    Zhang, Chunguang; Wang, Hao; Huang, Junfeng; Gao, Qiang

    2014-01-01

    Based on the parallel tangents momentum-matching condition, a narrow band noncollinear acousto-optic tunable filter (AOTF) using a single TeO 2 crystal is designed with the consideration of the birefringence and the rotatory property of the material. An effective setup is established to evaluate the performance of the designed AOTF. The experimental observed spectrum pattern of the diffracted light is nearly the same with the theoretical result. The measured tuning relationship between the diffracted central optical wavelength and acoustic frequency is in accordance with the theoretical prospect. The optical bandwidth of the diffracted light is as narrow as 1.88 nm when the central wavelength is 556.75 nm. The high spectral resolution is significant in practical applications of imaging AOTF. Additionally, the AOTF based hyperspectral microscopic imaging system is established. The stability and the image resolution of the designed narrow band AOTF are satisfying. Finally, the study of the biologic samples indicates the feasibility of our system on biomedicine. (paper)

  19. Compact microstrip bandpass filter with tunable notch

    DEFF Research Database (Denmark)

    Christensen, Silas; Zhurbenko, Vitaliy; Johansen, Tom Keinicke

    2014-01-01

    Two different designs combining a bandpass and a notch filter are developed to operate in the receiving band from 350–470 MHz. The bandpass filter is designed from a simple structure, by use of only four short circuited stubs and a half wavelength transmission line connecting the stubs. The tunable...... notch filter ensures an attenuation level of 19.3 dB to 27.3 dB in the frequency range from 360–480 MHz. The measured passband ripple of the combined filter is less than 0.5 dB, while the insertion loss for the simplest design is less than 1.7 dB only 10 MHz from the notch frequency. Even though...... the wavelength on the selected substrate (εr = 3.55) is approximately 45 cm, the outer dimensions of the final filter only measure 10×10 cm2....

  20. Tunable Microwave Filter Design Using Thin-Film Ferroelectric Varactors

    Science.gov (United States)

    Haridasan, Vrinda

    Military, space, and consumer-based communication markets alike are moving towards multi-functional, multi-mode, and portable transceiver units. Ferroelectric-based tunable filter designs in RF front-ends are a relatively new area of research that provides a potential solution to support wideband and compact transceiver units. This work presents design methodologies developed to optimize a tunable filter design for system-level integration, and to improve the performance of a ferroelectric-based tunable bandpass filter. An investigative approach to find the origins of high insertion loss exhibited by these filters is also undertaken. A system-aware design guideline and figure of merit for ferroelectric-based tunable band- pass filters is developed. The guideline does not constrain the filter bandwidth as long as it falls within the range of the analog bandwidth of a system's analog to digital converter. A figure of merit (FOM) that optimizes filter design for a specific application is presented. It considers the worst-case filter performance parameters and a tuning sensitivity term that captures the relation between frequency tunability and the underlying material tunability. A non-tunable parasitic fringe capacitance associated with ferroelectric-based planar capacitors is confirmed by simulated and measured results. The fringe capacitance is an appreciable proportion of the tunable capacitance at frequencies of X-band and higher. As ferroelectric-based tunable capac- itors form tunable resonators in the filter design, a proportionally higher fringe capacitance reduces the capacitance tunability which in turn reduces the frequency tunability of the filter. Methods to reduce the fringe capacitance can thus increase frequency tunability or indirectly reduce the filter insertion-loss by trading off the increased tunability achieved to lower loss. A new two-pole tunable filter topology with high frequency tunability (> 30%), steep filter skirts, wide stopband

  1. Noise filtering in a multi-channel system using a tunable liquid crystal photonic bandgap fiber

    DEFF Research Database (Denmark)

    Petersen, Martin Nordal; Scolari, Lara; Tokle, Torger

    2008-01-01

    This paper reports on the first application of a liquid crystal infiltrated photonic bandgap fiber used as a tunable filter in an optical transmission system. The device allows low-cost amplified spontaneous emission (ASE) noise filtering and gain equalization with low insertion loss and broad...... tunability. System experiments show that the use of this filter increases for times the distance over which the optical signal-to-noise ratio (OSNR) is sufficient for error-free transmission with respect to the case in which no filtering is used....

  2. Tunable radio-frequency photonic filter based on an actively mode-locked fiber laser.

    Science.gov (United States)

    Ortigosa-Blanch, A; Mora, J; Capmany, J; Ortega, B; Pastor, D

    2006-03-15

    We propose the use of an actively mode-locked fiber laser as a multitap optical source for a microwave photonic filter. The fiber laser provides multiple optical taps with an optical frequency separation equal to the external driving radio-frequency signal of the laser that governs its repetition rate. All the optical taps show equal polarization and an overall Gaussian apodization, which reduces the sidelobes. We demonstrate continuous tunability of the filter by changing the external driving radio-frequency signal of the laser, which shows good fine tunability in the operating range of the laser from 5 to 10 GHz.

  3. A low-loss, continuously tunable microwave notch filter

    DEFF Research Database (Denmark)

    Acar, Öncel; Johansen, Tom Keinicke; Zhurbenko, Vitaliy

    2016-01-01

    The development in high-end microwave transceiver systems toward the software defined radio has brought about the need for tunable frontend filters. Although the problem is being tackled by the microwave community, there still appears to be an unmet demand for practical tunable filter technologies...

  4. Design of multi-wavelength tunable filter based on Lithium Niobate

    Science.gov (United States)

    Zhang, Ailing; Yao, Yuan; Zhang, Yue; Song, Hongyun

    2018-05-01

    A multi-wavelength tunable filter is designed. It consists of multiple waveguides among multiple waveguide gratings. A pair of electrodes were placed on both sides of each waveguide. The tunable filter uses the electro-optic effect of Lithium Niobate to tune the phase caused by each waveguide. Consequently, the wavelength and wavelength spacing of the filter are tuned by changing external voltages added on the electrode pairs. The tunable property of the filter is analyzed by phase matching condition and transfer-matrix method. Numerical results show that not only multiple wavelengths with narrow bandwidth are tuned with nearly equal spacing by synchronously changing the voltages added on all electrode pairs, but also the number of wavelengths is determined by the number of phase shifts caused by electrode pairs. Furthermore, due to the electro-optic effect of Lithium Niobate, the tuning speed of the filter can reach the order of ns.

  5. Study on the structure of bridge surface of the micro Fabry-Perot cavity tunable filter

    International Nuclear Information System (INIS)

    Meng Qinghua; Luo Huan; Bao Shiwei; Zhou Yifan; Chen Sihai

    2011-01-01

    Micro Fabry-Perot cavity tunable filters are widely applied in the area of Pushbroom Hyperspectral imaging, DWDM optical communication system and self-adaptive optics. With small volume, lower consumption and cost, the Micro Fabry-Perot cavity tunable filter can realize superior response speed, large spectral range, high definition and high reliability. By deposition metal membrane on silicon chip by MEMS technology, the micro Fabry-Perot cavity has been achieved, which is actuated by electrostatic force and can realize the function of an optical filter. In this paper, the micro-bridge structure of the micro Fabry-Perot cavity tunable filter has been studied. Finite element analysis software COMSOL Multiphysics has been adopted to design the structure of the micro-bridge of the micro filter. In order to simulate the working mechanism of the micro Fabry-Perot cavity and study the electrical and mechanical characteristics of the micro tunable filter,the static and dynamic characteriastics are analyzed, such as stress, displacement, transient response, etc. The corresponding parameters of the structure are considered as well by optimizition the filter's sustain structure.

  6. Tunable complex-valued multi-tap microwave photonic filter based on single silicon-on-insulator microring resonator.

    Science.gov (United States)

    Lloret, Juan; Sancho, Juan; Pu, Minhao; Gasulla, Ivana; Yvind, Kresten; Sales, Salvador; Capmany, José

    2011-06-20

    A complex-valued multi-tap tunable microwave photonic filter based on single silicon-on-insulator microring resonator is presented. The degree of tunability of the approach involving two, three and four taps is theoretical and experimentally characterized, respectively. The constraints of exploiting the optical phase transfer function of a microring resonator aiming at implementing complex-valued multi-tap filtering schemes are also reported. The trade-off between the degree of tunability without changing the free spectral range and the number of taps is studied in-depth. Different window based scenarios are evaluated for improving the filter performance in terms of the side-lobe level.

  7. Bandwidth tunable microwave photonic filter based on digital and analog modulation

    Science.gov (United States)

    Zhang, Qi; Zhang, Jie; Li, Qiang; Wang, Yubing; Sun, Xian; Dong, Wei; Zhang, Xindong

    2018-05-01

    A bandwidth tunable microwave photonic filter based on digital and analog modulation is proposed and experimentally demonstrated. The digital modulation is used to broaden the effective gain spectrum and the analog modulation is to get optical lines. By changing the symbol rate of data pattern, the bandwidth is tunable from 50 MHz to 700 MHz. The interval of optical lines is set according to the bandwidth of gain spectrum which is related to the symbol rate. Several times of bandwidth increase are achieved compared to a single analog modulation and the selectivity of the response is increased by 3.7 dB compared to a single digital modulation.

  8. Microwave photonic filters using low-cost sources featuring tunability, reconfigurability and negative coefficients.

    Science.gov (United States)

    Capmany, José; Mora, José; Ortega, Beatriz; Pastor, Daniel

    2005-03-07

    We propose and experimentally demonstrate two configurations of photonic filters for the processing of microwave signals featuring tunability, reconfigurability and negative coefficients based on the use of low cost optical sources. The first option is a low power configuration based on spectral slicing of a broadband source. The second is a high power configuration based on fixed lasers. Tunability, reconfigurability and negative coefficients are achieved by means of a MEMS cross-connect, a variable optical attenuator array and simple 2x2 switches respectively.

  9. Integrated all optical transmodulator circuits with non-linear gain elements and tunable optical fibers

    NARCIS (Netherlands)

    Kuindersma, P.I.; Leijtens, X.J.M.; Zantvoort, van J.H.C.; Waardt, de H.

    2012-01-01

    We characterize integrated InP circuits for high speed ‘all-optical’ signal processing. Single chip circuits act as optical transistors. Transmodulation is performed by non-linear gain sections. Integrated tunable filters give signal equalization in time domain.

  10. Imaging spectrometer using a liquid crystal tunable filter

    Science.gov (United States)

    Chrien, Thomas G.; Chovit, Christopher; Miller, Peter J.

    1993-09-01

    A demonstration imaging spectrometer using a liquid crystal tunable filter (LCTF) was built and tested on a hot air balloon platform. The LCTF is a tunable polarization interference or Lyot filter. The LCTF enables a small, light weight, low power, band sequential imaging spectrometer design. An overview of the prototype system is given along with a description of balloon experiment results. System model performance predictions are given for a future LCTF based imaging spectrometer design. System design considerations of LCTF imaging spectrometers are discussed.

  11. Fully tunable 360° microwave photonic phase shifter based on a single semiconductor optical amplifier.

    Science.gov (United States)

    Sancho, Juan; Lloret, Juan; Gasulla, Ivana; Sales, Salvador; Capmany, José

    2011-08-29

    A fully tunable microwave photonic phase shifter involving a single semiconductor optical amplifier (SOA) is proposed and demonstrated. 360° microwave phase shift has been achieved by tuning the carrier wavelength and the optical input power injected in an SOA while properly profiting from the dispersion feature of a conveniently designed notch filter. It is shown that the optical filter can be advantageously employed to switch between positive and negative microwave phase shifts. Numerical calculations corroborate the experimental results showing an excellent agreement.

  12. Tunable filter imaging of high-redshift quasar fields

    NARCIS (Netherlands)

    Swinbank, J.; Baker, J.; Barr, J.; Hook, I.; Bland-Hawthorn, J.

    2012-01-01

    We have used the Taurus Tunable Filter to search for Lyα emitters in the fields of three high-redshift quasars: two at z∼ 2.2 (MRC B1256−243 and MRC B2158−206) and one at z∼ 4.5 (BR B0019−1522). Our observations had a field of view of around 35 arcmin2, and reached AB magnitudes of ∼21 (MRC

  13. Two-dimensional grating guided-mode resonance tunable filter.

    Science.gov (United States)

    Kuo, Wen-Kai; Hsu, Che-Jung

    2017-11-27

    A two-dimensional (2D) grating guided-mode resonance (GMR) tunable filter is experimentally demonstrated using a low-cost two-step nanoimprinting technology with a one-dimensional (1D) grating polydimethylsiloxane mold. For the first nanoimprinting, we precisely control the UV LED irradiation dosage and demold the device when the UV glue is partially cured and the 1D grating mold is then rotated by three different angles, 30°, 60°, and 90°, for the second nanoimprinting to obtain 2D grating structures with different crossing angles. A high-refractive-index film ZnO is then coated on the surface of the grating structure to form the GMR filter devices. The simulation and experimental results demonstrate that the passband central wavelength of the filter can be tuned by rotating the device to change azimuth angle of the incident light. We compare these three 2D GMR filters with differential crossing angles and find that the filter device with a crossing angle of 60° exhibits the best performance. The tunable range of its central wavelength is 668-742 nm when the azimuth angle varies from 30° to 90°.

  14. Tunable 'optical activity' in electrorheological fluids

    International Nuclear Information System (INIS)

    Zhao, Q.; Zhao, X.P.

    2005-01-01

    The 'optical activity' of adjustable periodic structure material (SiO 2 and pentaerythrital electrorheological (ER) fluids) is firstly investigated using two kinds of setup. It is found that the rotation angles can be tuned by the external electric field and weight concentrations, and the sign of the rotation angle is negative, so, the used ER fluids are defined as the left-handed optically active substances under the application of electric field. The laser diffraction patterns are also observed in the ER fluids, which indicates the formation of alignment. It is thought that the symmetry breaking of structure induced by applied electric field is the origin of the 'optical activity' in the ER fluids. The electrically tunable 'optical activity' will find innovative applications in displays, optical devices and other fields

  15. Tunable optical absorption in silicene molecules

    KAUST Repository

    Mokkath, Junais Habeeb; Schwingenschlö gl, Udo

    2016-01-01

    Two-dimensional materials with a tunable band gap that covers a wide range of the solar spectrum hold great promise for sunlight harvesting. For this reason, we investigate the structural, electronic, and optical properties of silicene molecules using time dependent density functional theory. We address the influence of the molecular size, buckling, and charge state as well as that of a dielectric environment. Unlike planar graphene molecules, silicene molecules prefer to form low-buckled structures with strong visible to ultraviolet optical response. We also identify molecular plasmons.

  16. Tunable optical absorption in silicene molecules

    KAUST Repository

    Mokkath, Junais Habeeb

    2016-07-13

    Two-dimensional materials with a tunable band gap that covers a wide range of the solar spectrum hold great promise for sunlight harvesting. For this reason, we investigate the structural, electronic, and optical properties of silicene molecules using time dependent density functional theory. We address the influence of the molecular size, buckling, and charge state as well as that of a dielectric environment. Unlike planar graphene molecules, silicene molecules prefer to form low-buckled structures with strong visible to ultraviolet optical response. We also identify molecular plasmons.

  17. Tunable bandpass filter based on photonic crystal fiber filled with multiple liquid crystals

    DEFF Research Database (Denmark)

    Scolari, Lara; Tartarini, G.; Borelli, E.

    2007-01-01

    A tunable bandpass filter based on a photonic crystal fiber filled with two different liquid crystals is demonstrated. 130 nm bandwidth tunability is achieved by tuning the temperature from 30degC to 90degC.......A tunable bandpass filter based on a photonic crystal fiber filled with two different liquid crystals is demonstrated. 130 nm bandwidth tunability is achieved by tuning the temperature from 30degC to 90degC....

  18. Tunable plasmonic filter with circular metal–insulator– metal ring ...

    Indian Academy of Sciences (India)

    The mechanism based on circular ring resonators with narrow gaps may provide a novel method for designing all-optical integrated components in optical communication and computing. Keywords. Metal–insulator–metal waveguide; surface plasmon; optical filters; ring resonator. PACS Nos 42.79.−e; 73.20.Mf; 78.20.Bh. 1.

  19. Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering.

    Science.gov (United States)

    Sagues, Mikel; García Olcina, Raimundo; Loayssa, Alayn; Sales, Salvador; Capmany, José

    2008-01-07

    We propose a novel scheme to implement tunable multi-tap complex coefficient filters based on optical single sideband modulation and narrow band optical filtering. A four tap filter is experimentally demonstrated to highlight the enhanced tuning performance provided by complex coefficients. Optical processing is performed by the use of a cascade of four phase-shifted fiber Bragg gratings specifically fabricated for this purpose.

  20. Soliton filtering from a supercontinuum: a tunable femtosecond pulse source

    Energy Technology Data Exchange (ETDEWEB)

    Licea-Rodriguez, Jacob; Rangel-Rojo, Raul [Centro de Investigacion CientIfica y de Educacion Superior de Ensenada, Apartado Postal 2732, Ensenada B.C., 22860 (Mexico); Garay-Palmett, Karina, E-mail: rrangel@cicese.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, Mexico DF. 04510 (Mexico)

    2011-01-01

    In this article we report experimental results related with the generation of a supercontinuum in a microstructured fiber, from which the soliton with the longest wavelength is filtered out of the continuum and is used to construct a tunable ultrashort pulses source by varying the pump power. Pulses of an 80 fs duration (FWHM) from a Ti:sapphire oscillator were input into a 2 m long fiber to generate the continuum. The duration of the solitons at the fiber output was preserved by using a zero dispersion filtering system, which selected the longest wavelength soliton, while avoiding temporal spreading of the solitons. We present a complete characterization of the filtered pulses that are continuously tunable in the 850-1100 nm range. We also show that the experimental results have a qualitative agreement with theory. An important property of the proposed near-infrared pulsed source is that the soliton pulse energies obtained after filtering are large enough for applications in nonlinear microscopy.

  1. Faraday anomalous dispersion optical filters

    Science.gov (United States)

    Shay, T. M.; Yin, B.; Alvarez, L. S.

    1993-01-01

    The effect of Faraday anomalous dispersion optical filters on infrared and blue transitions of some alkali atoms is calculated. A composite system is designed to further increase the background noise rejection. The measured results of the solar background rejection and image quality through the filter are presented. The results show that the filter may provide high transmission and high background noise rejection with excellent image quality.

  2. Novel trimming technique for tunable HTS microstrip filters

    Energy Technology Data Exchange (ETDEWEB)

    Sekiya, N. [Department of Electrical Engineering, Yamanashi University, Nakagawa-Sekiya Laboratory, 4-3-11 Takeda, Kofu 400-8511 (Japan)], E-mail: nsekiya@yamanashi.ac.jp; Nakagawa, Y. [Department of Electrical Engineering, Yamanashi University, Nakagawa-Sekiya Laboratory, 4-3-11 Takeda, Kofu 400-8511 (Japan); Saito, A.; Ohshima, S. [Yamagata University, 4-3-16 Johnan, Yonezawa 992-8510 (Japan)

    2008-09-15

    We have developed a method using additional electric pads for trimming tunable high-temperature superconducting (HTS) microstrip filters. These filters are generally tuned by adjusting the gap between a dielectric floating plate above the filter. When the floating plate approached the filter, the center frequency was shifted to a lower frequency. However, the insertion loss increases due to variation in the external quality factors varying from the design parameter. The external quality factors are usually controlled by adjusting the length of the input/output (I/O) coupled-line elements and the gap between the elements and the resonator. In our method, additional electric pads are distributed at the open-end of the I/O coupled-line elements of a 3-pole hairpin bandpass filter to enable adjustment of the external quality factors so as to reduce insertion loss. The electric pads consist of line-and-space patterns. They are eclectically connected to the coupled-line elements to adjust the line length and gap width and thereby control the external quality factors. An electromagnetic simulator was used for the design and analysis. The simulation results showed that the additional electric pads are effective in improving the insertion loss of the HTS bandpass filter after tuning.

  3. Novel trimming technique for tunable HTS microstrip filters

    International Nuclear Information System (INIS)

    Sekiya, N.; Nakagawa, Y.; Saito, A.; Ohshima, S.

    2008-01-01

    We have developed a method using additional electric pads for trimming tunable high-temperature superconducting (HTS) microstrip filters. These filters are generally tuned by adjusting the gap between a dielectric floating plate above the filter. When the floating plate approached the filter, the center frequency was shifted to a lower frequency. However, the insertion loss increases due to variation in the external quality factors varying from the design parameter. The external quality factors are usually controlled by adjusting the length of the input/output (I/O) coupled-line elements and the gap between the elements and the resonator. In our method, additional electric pads are distributed at the open-end of the I/O coupled-line elements of a 3-pole hairpin bandpass filter to enable adjustment of the external quality factors so as to reduce insertion loss. The electric pads consist of line-and-space patterns. They are eclectically connected to the coupled-line elements to adjust the line length and gap width and thereby control the external quality factors. An electromagnetic simulator was used for the design and analysis. The simulation results showed that the additional electric pads are effective in improving the insertion loss of the HTS bandpass filter after tuning

  4. Electrically tunable solid-state silicon nanopore ion filter

    Directory of Open Access Journals (Sweden)

    Gracheva Maria

    2006-01-01

    Full Text Available AbstractWe show that a nanopore in a silicon membrane connected to a voltage source can be used as an electrically tunable ion filter. By applying a voltage between the heavily doped semiconductor and the electrolyte, it is possible to invert the ion population inside the nanopore and vary the conductance for both cations and anions in order to achieve selective conduction of ions even in the presence of significant surface charges in the membrane. Our model based on the solution of the Poisson equation and linear transport theory indicates that in narrow nanopores substantial gain can be achieved by controlling electrically the width of the charge double layer.

  5. Tunable and reconfigurable multi-tap microwave photonic filter based on dynamic Brillouin gratings in fibers.

    Science.gov (United States)

    Sancho, J; Primerov, N; Chin, S; Antman, Y; Zadok, A; Sales, S; Thévenaz, L

    2012-03-12

    We propose and experimentally demonstrate new architectures to realize multi-tap microwave photonic filters, based on the generation of a single or multiple dynamic Brillouin gratings in polarization maintaining fibers. The spectral range and selectivity of the proposed periodic filters is extensively tunable, simply by reconfiguring the positions and the number of dynamic gratings along the fiber respectively. In this paper, we present a complete analysis of three different configurations comprising a microwave photonic filter implementation: a simple notch-type Mach-Zehnder approach with a single movable dynamic grating, a multi-tap performance based on multiple dynamic gratings and finally a stationary grating configuration based on the phase modulation of two counter-propagating optical waves by a common pseudo-random bit sequence (PRBS).

  6. Design of narrow band photonic filter with compact MEMS for tunable resonant wavelength ranging 100 nm

    Directory of Open Access Journals (Sweden)

    Guanquan Liang

    2011-12-01

    Full Text Available A prototype of planar silicon photonic structure is designed and simulated to provide narrow resonant line-width (∼2 nm in a wide photonic band gap (∼210 nm with broad tunable resonant wavelength range (∼100 nm around the optical communication wavelength 1550 nm. This prototype is based on the combination of two modified basic photonic structures, i.e. a split tapered photonic crystal micro-cavity embedded in a photonic wire waveguide, and a slot waveguide with narrowed slabs. This prototype is then further integrated with a MEMS (microelectromechanical systems based electrostatic comb actuator to achieve “coarse tune” and “fine tune” at the same time for wide range and narrow-band filtering and modulating. It also provides a wide range tunability to achieve the designed resonance even fabrication imperfection occurs.

  7. Development, characterization, and modeling of a tunable filter camera

    Science.gov (United States)

    Sartor, Mark Alan

    1999-10-01

    This paper describes the development, characterization, and modeling of a Tunable Filter Camera (TFC). The TFC is a new multispectral instrument with electronically tuned spectral filtering and low-light-level sensitivity. It represents a hybrid between hyperspectral and multispectral imaging spectrometers that incorporates advantages from each, addressing issues such as complexity, cost, lack of sensitivity, and adaptability. These capabilities allow the TFC to be applied to low- altitude video surveillance for real-time spectral and spatial target detection and image exploitation. Described herein are the theory and principles of operation for the TFC, which includes a liquid crystal tunable filter, an intensified CCD, and a custom apochromatic lens. The results of proof-of-concept testing, and characterization of two prototype cameras are included, along with a summary of the design analyses for the development of a multiple-channel system. A significant result of this effort was the creation of a system-level model, which was used to facilitate development and predict performance. It includes models for the liquid crystal tunable filter and intensified CCD. Such modeling was necessary in the design of the system and is useful for evaluation of the system in remote-sensing applications. Also presented are characterization data from component testing, which included quantitative results for linearity, signal to noise ratio (SNR), linearity, and radiometric response. These data were used to help refine and validate the model. For a pre-defined source, the spatial and spectral response, and the noise of the camera, system can now be predicted. The innovation that sets this development apart is the fact that this instrument has been designed for integrated, multi-channel operation for the express purpose of real-time detection/identification in low- light-level conditions. Many of the requirements for the TFC were derived from this mission. In order to provide

  8. Tunable dual-wavelength filter and its group delay dispersion in domain-engineered lithium niobate

    Directory of Open Access Journals (Sweden)

    Guang-hao Shao

    2016-12-01

    Full Text Available A tunable dual-wavelength filter is experimentally demonstrated in domain-engineered lithium niobate. Application of an electric field on the y-surfaces of the sample results in the optical axes rotating clockwise and anticlockwise, which makes selective polarization rotation. The quasi phase-matching wavelengths could be adjusted through suitable domain design. A unique dual valley spectrum is obtained in a periodically poled lithium niobate structure with a central defect if the sample is placed between two parallel polarizers. The expected bandwidth could be varied from ∼1 nm to ∼40 nm. Moreover, both the spectral response and group delay dispersion could be engineered.

  9. Optical microwave filter based on spectral slicing by use of arrayed waveguide gratings.

    Science.gov (United States)

    Pastor, Daniel; Ortega, Beatriz; Capmany, José; Sales, Salvador; Martinez, Alfonso; Muñoz, Pascual

    2003-10-01

    We have experimentally demonstrated a new optical signal processor based on the use of arrayed waveguide gratings. The structure exploits the concept of spectral slicing combined with the use of an optical dispersive medium. The approach presents increased flexibility from previous slicing-based structures in terms of tunability, reconfiguration, and apodization of the samples or coefficients of the transversal optical filter.

  10. Optically controlled tunable dispersion compensators based on pumped fiber gratings.

    Science.gov (United States)

    Shu, Xuewen; Sugden, Kate; Bennion, Ian

    2011-08-01

    We demonstrate optically tunable dispersion compensators based on pumping fiber Bragg gratings made in Er/Yb codoped fiber. The tunable dispersion for a chirped grating and also a uniform-period grating was successfully demonstrated in the experiment. The dispersion of the chirped grating was tuned from 900 to 1990 ps/nm and also from -600 to -950 ps/nm in the experiment. © 2011 Optical Society of America

  11. Tunable multichannel filter in photonic crystal heterostructure containing permeability-negative materials

    International Nuclear Information System (INIS)

    Hu Xiaoyong; Liu Zheng; Gong Qihuang

    2008-01-01

    A tunable multichannel filter is demonstrated theoretically based on a one-dimensional photonic crystal heterostructure containing permeability-negative material. The filtering properties of the photonic crystal filter, including the channel number and frequency, can be tuned by adjusting the structure parameters or by a pump laser. The angular response of the photonic crystal filter and the influences of the losses on the filtering properties are also analyzed

  12. Tunable multichannel filter in photonic crystal heterostructure containing permeability-negative materials

    Energy Technology Data Exchange (ETDEWEB)

    Hu Xiaoyong [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)], E-mail: xiaoyonghu@pku.edu.cn; Liu Zheng [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Gong Qihuang [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)], E-mail: qhgong@pku.edu.cn

    2008-01-14

    A tunable multichannel filter is demonstrated theoretically based on a one-dimensional photonic crystal heterostructure containing permeability-negative material. The filtering properties of the photonic crystal filter, including the channel number and frequency, can be tuned by adjusting the structure parameters or by a pump laser. The angular response of the photonic crystal filter and the influences of the losses on the filtering properties are also analyzed.

  13. Liquid lens with double tunable surfaces for large power tunability and improved optical performance

    International Nuclear Information System (INIS)

    Li, Lei; Wang, Qiong-Hua; Jiang, Wei

    2011-01-01

    In this paper we propose a liquid lens with two tunable interfaces formed by two kinds of immiscible liquids. The proposed liquid lens uses liquid pressure to change the shape of the interfaces. It can provide a large tunable range of optical power and improved optical performance. By applying suitable liquids the gravity effect can also be negligible. To prove the principles, a liquid lens with 7 mm aperture was fabricated. The optical performance indicates that the proposed liquid lens can provide a large tunable range of both positive and negative powers even using liquids with small differences in refractive indices. The resolution is better than 50 lp mm −1 under white light environment. The spherical aberration and coma are also largely reduced. The proposed liquid lens can also provide the optical designer with the freedom to choose the combination of liquids to reduce or even correct aberrations

  14. Tunable polarisation-maintaining filter based on liquid crystal photonic bandgap fibre

    DEFF Research Database (Denmark)

    Scolari, Lara; Olausson, Christina Bjarnal Thulin; Weirich, Johannes

    2008-01-01

    A tunable and polarisation-maintaining all-in-fibre filter based on a liquid crystal photonic bandgap fibre is demonstrated. Its polarisation extinction ratio reaches 14 dB at 1550 nm wavelength. Its spectral tunability range spans over 250 nm in the temperature range 30–70°C. The measured...

  15. Polarization independent polymer waveguide tunable receivers incorporating a micro-optic circulator

    Science.gov (United States)

    Wu, Xiaoping; Park, Tae-Hyun; Park, Su-Hyun; Seo, Jun-Kyu; Oh, Min-Cheol

    2018-06-01

    In order to simplify the receiver configuration in a wavelength division multiplexed optical fiber network, compact wavelength tunable filters have long been expected to be used as channel selectors. Bragg reflector inherently has the most suitable reflection spectrum for filtering a single wavelength from the densely multiplexed wavelength signal. Polymer has high thermo-optic coefficient and good thermal insulation property compared to the other optical waveguide materials such as silicon and silica materials. This can be used to broadly tune the reflection spectrum of Bragg reflector using a simple micro-heater. In this work, a micro-optic circulator component and a polymeric Bragg reflector device are assembled to produce a small form factor tunable receiver. Compared to the integrated-optical versions, the micro-optics are based on well-developed manufacturing processes and can achieve competitive production yields. The device exhibits high reflectivity with a flat top passband, and a polarization dependence of 0.06 nm achieved by virtue of the low birefringence of LFR polymer, which make a significant contribution to the implementation of polarization independent tunable receiver. The wavelength tuning range of 40 nm is demonstrated by using a bottom located heater with a groove for heat isolation.

  16. Bandwidth Controllable Tunable Filter for Hyper-/Multi-Spectral Imager, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I proposal introduces a fast speed bandwidth controllable tunable filter for hyper-/multi-spectral (HS/MS) imagers. It dynamically passes a variable...

  17. One-Dimensional Tunable Photonic-Crystal IR Filter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — MetroLaser proposes to design and develop an innovative narrowband tunable IR filter based on the properties of a one-dimensional photonic crystal structure with a...

  18. One-Dimensional Tunable Photonic-Crystal IR Filter, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — MetroLaser proposes to design and develop an innovative narrowband tunable IR filter based on the properties of a one-dimensional photonic crystal structure with a...

  19. Widely Tunable 4th Order Switched Gm -C Band-Pass Filter Based on N-Path Filters

    NARCIS (Netherlands)

    Darvishi, M.; van der Zee, Ronan A.R.; Klumperink, Eric A.M.; Nauta, Bram

    2012-01-01

    Abstract—A widely tunable 4th order BPF based on the subtraction of two 2nd order 4-path passive-mixer filters with slightly different center frequencies is proposed. The center frequency of each 4-path filter is slightly shifted relative to its clock frequency (one upward and the other one

  20. Pyrolytic Graphite as a Tunable Second order Neutron Filter

    International Nuclear Information System (INIS)

    Adib, M.

    2009-01-01

    A study has been carried out on the neutron transmission through pyrolytic graphite (PG) crystals in order to check its applicability as an efficient tunable second order neutron filter. The neutron transmission have been calculated as a function of neutron wavelengths in the range from 0.01 nm up to 0.7 nm at various PG mosaic spread, thickness and orientation of its c-axis with respect to the beam direction The Computer package Graphite has been used to provide the required calculation. It was shown that highly aligned (10 FWHM on mosaic spread) PG crystal ∼2 cm thick, may be tuned for optimum scattering of 2 second order neutrons within some favorable wavelength intervals in the range between 0.112 and 0.425 nm by adjusting the crystal in an appropriate orientation. .However, a less quality and thinner PG was found to almost eliminate 2 second order neutrons at only tuned values of wavelength corresponding to the poison of the triple intersection points of the curves (hkl) ± and (00l)

  1. UV Bandpass Optical Filter for Microspectometers

    NARCIS (Netherlands)

    Correia, J.H.; Emadi, A.R.; Wolffenbuttel, R.F.

    2006-01-01

    This paper describes the design and modeling of a UV bandpass optical filter for microspectrometers. The materials used for fabricating the multilayer UV filter are: silicon dioxide (SiO2), titanium dioxide (TiO2) and yttrium oxide (Y2O3). The optical filter shows a bandpass response wavelength in

  2. Plasmonic Gold Nanorod Dispersions with Electrical and Optical Tunability

    Science.gov (United States)

    Grabowski, Christopher; Mahoney, Clare; Park, Kyoungweon; Jawaid, Ali; White, Timothy; Vaia, Richard

    The transmissive, absorptive, electrical, and thermal properties of plasmonic gold nanorods (NRs) have led to their employment in a broad range of applications. These electro-optical properties - governed by their size, shape, and composition - are widely and precisely tunable during synthesis. Gold NRs show promise for large scale optical elements as they have been demonstrated to align faster than liquid crystal films (μs) at low fields (1 V/ μm). Successfully dispersing a high volume fraction of gold NRs requires a strategy to control particle-particle separation and thus avoid aggregation. Herein, we discuss the role of theta temperature and the ability to swell or collapse the chains of polymer-grafted gold NRs to alter the interaction potential between particles. UV-Vis spectroscopy, scattering, and electrical susceptibility characterization methods were employed to determine nanoparticle dispersion along with the degree of gold NR alignment. The development of new agile photonic materials, controllable with both light and electric fields, will help address emerging needs in laser hardening (agile filters) and variable transmission visors.

  3. High Selectivity Dual-Band Bandpass Filter with Tunable Lower Passband

    Directory of Open Access Journals (Sweden)

    Wei-Qiang Pan

    2015-01-01

    Full Text Available This paper presents a novel method to design dual-band bandpass filters with tunable lower passband and fixed upper passband. It utilizes a trimode resonator with three controllable resonant modes. Discriminating coupling is used to suppress the unwanted mode to avoid the interference. Varactors are utilized to realize tunable responses. The bandwidth of the two bands can be controlled individually. Transmission zeros are generated near the passband edges, resulting in high selectivity. For demonstration, a tunable bandpass filter is implemented. Good agreement between the prediction and measurement validates the proposed method.

  4. Tunable Channel Drop Filter in a Two-Dimensional Photonic Crystal Modulated by a Nematic Liquid Crystal

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Photonic crystals (PCs have many potential applications because of their ability to control light-wave propagation and because PC-based waveguides may be integrated into optical circuits. We propose a novel tunable PC channel drop filter based on nematic liquid crystals and investigate its properties numerically by using the finite-difference time-domain (FDTD method. The refractive indices of liquid crystals can be actively modulated after infiltrating nematic liquid crystals into the microcavity in PC waveguides with square lattices. Then we can control light propagation in a PC waveguide. We analyze the Q -factors and resonance frequencies of a tunable PC channel drop filter by considering various indices modulation of liquid crystals. The novel component can be used as wavelength division multiplexing in photonic integrated circuits.

  5. Tunable double-channel filter based on two-dimensional ferroelectric photonic crystals

    International Nuclear Information System (INIS)

    Jiang, Ping; Ding, Chengyuan; Hu, Xiaoyong; Gong, Qihuang

    2007-01-01

    A tunable double-channel filter is presented, which is based on a two-dimensional nonlinear ferroelectric photonic crystal made of cerium doped barium titanate. The filtering properties of the photonic crystal filter can be tuned by adjusting the defect structure or by a pump light. The influences of the structure disorders caused by the perturbations in the radius or the position of air holes on the filtering properties are also analyzed

  6. Tunable double-channel filter based on two-dimensional ferroelectric photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Ping [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Ding, Chengyuan [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Hu, Xiaoyong [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)]. E-mail: xiaoyonghu@pku.edu.cn; Gong, Qihuang [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)]. E-mail: qhgong@pku.edu.cn

    2007-04-02

    A tunable double-channel filter is presented, which is based on a two-dimensional nonlinear ferroelectric photonic crystal made of cerium doped barium titanate. The filtering properties of the photonic crystal filter can be tuned by adjusting the defect structure or by a pump light. The influences of the structure disorders caused by the perturbations in the radius or the position of air holes on the filtering properties are also analyzed.

  7. Tunable photonic bandgap fiber based devices for optical networks

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Scolari, Lara; Rottwitt, Karsten

    2005-01-01

    In future all optical networks one of the enabling technologies is tunable elements including reconfigurable routers, switches etc. Thus, the development of a technology platform that allows construction of tuning components is critical. Lately, microstructured optical fibers, filled with liquid......, for example a liquid crystal that changes optical properties when subjected to, for example, an optical or an electrical field. The utilization of these two basic properties allows design of tunable optical devices for optical networks. In this work, we focus on applications of such devices and discuss recent...... crystals, have proven to be a candidate for such a platform. Microstructured optical fibers offer unique wave-guiding properties that are strongly related to the design of the air holes in the cladding of the fiber. These wave-guiding properties may be altered by filling the air holes with a material...

  8. Tunable first-order resistorless all-pass filter with low output impedance.

    Science.gov (United States)

    Beg, Parveen

    2014-01-01

    This paper presents a voltage mode cascadable single active element tunable first-order all-pass filter with a single passive component. The active element used to realise the filter is a new building block termed as differential difference dual-X current conveyor with a buffered output (DD-DXCCII). The filter is thus realized with the help of a DD-DXCCII, a capacitor, and a MOS transistor. By exploiting the low output impedance, a higher order filter is also realized. Nonideal and parasitic study is also carried out on the realised filters. The proposed DD-DXCCII filters are simulated using TSMC the 0.25 µm technology.

  9. Wavelength-tunable thulium-doped fiber laser by employing a self-made Fabry-Perot filter

    Science.gov (United States)

    Wang, Y. P.; Ju, Y. L.; Wu, C. T.; Liu, W.; Yang, C.

    2017-06-01

    In this demonstration, we proposed a novel wavelength-tunable thulium-doped fiber laser (TDFL) with a self-made Fabry-Perot (F-P) filter. When the F-P filter was not inserted, the maximum output power of 11.1 W was achieved when the pump power was 70.2 W. The corresponding optical-to-optical conversion efficiency was 15.8% and the slope efficiency was 22.1%. When the F-P filter was inserted, the output wavelength could be tuned from 1952.9 to 1934.9 nm with the change of cavity length of F-P filter which was fixed on a piezoelectric ceramic transducer (PZT) controlled by the voltage applied to it. The full width at half maximum (FWHM) was no more than 0.19 nm. Furthermore, the wavelength fluctuations of the tunable fiber laser were kept within  ±0.2 nm.

  10. A Continuously Tunable Erbium-Doped Fibre Laser Using Tunable Fibre Bragg Gratings and Optical Circulator

    International Nuclear Information System (INIS)

    Peng, Liu; Feng-Ping, Yan; Jian, Li; Lin, Wang; Ti-Gang, Ning; Tao-Rong, Gong; Shui-Sheng, Jian

    2008-01-01

    A continuously tunable erbium-doped fibre laser (TEDFL) based on tunable fibre Bragger grating (TFBG) and a three-port optical circulator (OC) is proposed and demonstrated. The OC acts as a 100%-reflective mirror. A strain-induced uniform fibre Bragger grating (FBG) which functions as a partial-reflecting mirror is implemented in the linear cavity. By applying axial strain onto the TFBG, a continuously tunable lasing output can be realized. The wavelength tuning range covers approximately 7.00nm in C band (from 1543.6161 to 1550.3307nm). The side mode suppression ratio (SMSR) is better than 50 dB, and the 3 dB bandwidth of the laser is less than 0.01 nm. Moreover, an array waveguide grating (AWG) is inserted into the cavity for wavelength preselecting, and a 50 km transmission experiment was performed using our TEDFL at a 10Gb/s modulation rate

  11. Tunable microwave photonic filter free from baseband and carrier suppression effect not requiring single sideband modulation using a Mach-Zenhder configuration.

    Science.gov (United States)

    Mora, José; Ortigosa-Blanch, Arturo; Pastor, Daniel; Capmany, José

    2006-08-21

    We present a full theoretical and experimental analysis of a novel all-optical microwave photonic filter combining a mode-locked fiber laser and a Mach-Zenhder structure in cascade to a 2x1 electro-optic modulator. The filter is free from the carrier suppression effect and thus it does not require single sideband modulation. Positive and negative coefficients are obtained inherently in the system and the tunability is achieved by controlling the optical path difference of the Mach-Zenhder structure.

  12. A planar and tunable bandpass filter on a ferrite substrate with integrated windings

    KAUST Repository

    Arabi, Eyad A.

    2015-05-01

    Tunable Filters that are based on ferrite materials are often biased by external magnets or coils which are large and bulky. In this work a completely planar, CPW-based bandpass filter is presented with integrated windings. Due to these windings the size of the filter is only 26mm × 34mm × 0.38mm which is orders of magnitude smaller than the traditional designs with external windings. The filter is realized by electroplating of Copper over seed layers of Titanium and Gold over a YIG substrate. The fabricated filter achieves a tunability of 3.4% without any external magnets or coils. A good insertion loss of 2.3 dBs and rejection greater than 50 dBs have been obtained. To the best of the authors knowledge, this design is the first ferrite-based design that is completely planar and self-biased.

  13. Tunable optical assembly with vibration dampening

    Science.gov (United States)

    Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)

    2009-01-01

    An optical assembly is formed by one or more piezoelectric fiber composite actuators having one or more optical fibers coupled thereto. The optical fiber(s) experiences strain when actuation voltage is applied to the actuator(s). Light passing through the optical fiber(s) is wavelength tuned by adjusting the actuation voltage.

  14. Widely tunable microwave photonic notch filter based on slow and fast light effects

    DEFF Research Database (Denmark)

    Xue, Weiqi; Sales, Salvador; Mørk, Jesper

    2009-01-01

    A continuously tunable microwave photonic notch filter at around 30 GHz is experimentally demonstrated and 100% fractional tuning over 360 range is achieved without changing the shape of the spectral response. The tuning mechanism is based on the use of slow and fast light effects in semiconducto...

  15. All-optical tunable photonic crystal cavity

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Ou, Haiyan

    2010-01-01

    We demonstrate an ultra-small photonic crystal cavity with two resonant modes. An all-optical tuning operation based on the free-carrier plasma effect is, for the first time, realized utilizing a continuous wave light source. The termo-optical effect is minimized by isoproponal infiltration...

  16. Graphene-based tunable terahertz filter with rectangular ring ...

    Indian Academy of Sciences (India)

    A plasmonic band-pass filter based on graphene rectangular ring resonator with double narrow gaps is proposed and numerically investigated by finite-difference time-domain (FDTD) simulations. For the filter with or without gaps, the resonant frequencies can be effectively adjusted by changing the width of the graphene ...

  17. Graphene-based tunable terahertz filter with rectangular ring ...

    Indian Academy of Sciences (India)

    WEI SU

    2017-08-16

    Aug 16, 2017 ... Abstract. A plasmonic band-pass filter based on graphene rectangular ring resonator with double narrow gaps is proposed and numerically investigated by finite-difference time-domain (FDTD) simulations. For the filter with or without gaps, the resonant frequencies can be effectively adjusted by changing ...

  18. Ion irradiation effects on lithium niobate etalons for tunable spectral filters

    Science.gov (United States)

    Garranzo, D.; Ibarmia, S.; Alvarez-Herrero, A.; Olivares, J.; Crespillo, M.; Díaz, M.

    2017-11-01

    Solar Orbiter is a mission dedicated to solar and heliospheric physics. It was selected as the first mediumclass mission of ESA's Cosmic Vision 2015-2025 Programme. Solar Orbiter will be used to examine how the Sun creates and controls the heliosphere, the vast bubble of charged particles blown by the solar wind into the interstellar medium. One of the scientific payload elements of Solar Orbiter is the Polarimetric and Helioseismic Imager (PHI). The PHI instrument consists of two telescopes, a High Resolution Telescope (HRT) that will image a fraction of the solar disk at a resolution reaching {150 km at perihelion, and a Full Disk Telescope (FDT) to image the full solar disk during all phases of the orbit. PHI is a diffraction limited, wavelength tunable, quasi-monochromatic, polarisation sensitive imager. These capabilities are needed to infer the magnetic field and line-of-sight (LOS) velocity of the region targeted by the spacecraft. For the spectral analysis, PHI will use an order-sorting filter to isolate a bandpass of the order of 100 mÅ . The FilterGraph (FG) contains an etalon in single pass configuration as tunable spectral filter located inside a temperature stabilized oven. This filter will be made by means of a z-cut LiNbO3 crystal (about 300 microns thick) and multilayer coatings including a conductive one in order to apply a high voltage (up to 5 kV) and induce the required electric field to tune the filter. Solar Orbiter observing mission around the Sun will expose the PHI instrument to extreme radiation conditions, mainly dominated by solar high-energy particles released during severe solar events (protons with energies typically ranging from few keV up to several GeV) and the continuous isotropic background flux of galactic cosmic rays (heavy ions, from Z=1 to Z=92). The main concerns are whether the cumulated radiation damage can degrade the functionality of the filter or, in the worst case, the impact of a single highly ionizing particle

  19. Tunable First-Order Resistorless All-Pass Filter with Low Output Impedance

    Directory of Open Access Journals (Sweden)

    Parveen Beg

    2014-01-01

    Full Text Available This paper presents a voltage mode cascadable single active element tunable first-order all-pass filter with a single passive component. The active element used to realise the filter is a new building block termed as differential difference dual-X current conveyor with a buffered output (DD-DXCCII. The filter is thus realized with the help of a DD-DXCCII, a capacitor, and a MOS transistor. By exploiting the low output impedance, a higher order filter is also realized. Nonideal and parasitic study is also carried out on the realised filters. The proposed DD-DXCCII filters are simulated using TSMC the 0.25 µm technology.

  20. Tunable THz notch filter with a single groove inside parallel-plate waveguides.

    Science.gov (United States)

    Lee, Eui Su; Jeon, Tae-In

    2012-12-31

    A single groove in a parallel-plate waveguide (PPWG) has been applied to a tunable terahertz (THz) notch filter with a transverse-electromagnetic (TEM) mode. When the air gap between the metal plates of the PPWG is controlled from 60 to 240 μm using a motor controlled translation stage or a piezo-actuator, the resonant frequency of the notch filter is changed from 1.75 up to 0.62 THz, respectively. Therefore, the measured tunable sensitivity of the notch filter increases to 6.28 GHz/μm. The measured resonant frequencies were found to be in good agreement with the calculation using an effective groove depth. Using a finite-difference time-domain (FDTD) simulation, we also demonstrate that the sensitivity of a THz microfluidic sensor can be increased via a small air gap, a narrow groove width, and a deep groove depth.

  1. Theoretical study on the ultra-narrow bandwidth tunable atomic filter with electromagnetically induced transparency

    Science.gov (United States)

    Liu, Yang; Li, Shu-qing; Feng, Zhong-ying; Liu, Xiao-fei; Gao, Jin-yue

    2016-12-01

    To obtain the weak signal light detection from the high background noise, we present a theoretical study on the ultra-narrow bandwidth tunable atomic filter with electromagnetically induced transparency. In a three-level Λ -type atomic system in the rubidium D1 line, the bandwidth of the EIT atomic filter is narrowed to ~6.5 \\text{MHz} . And the single peak transmission of the filter can be up to 86% . Moreover, the transmission wavelength can be tuned by changing the coupling light frequency. This theoretical scheme can also be applied to other alkali atomic systems.

  2. Experimental demonstration of a ferroelectric liquid crystal tunable filter for fast demodulation of FBG sensors

    Science.gov (United States)

    Mathews, Sunish; Semenova, Yuliya; Rajan, Ginu; Farrell, Gerald

    2009-05-01

    A discretely tunable Surface-Stabilized Ferroelectric Liquid Crystal based Lyot Filter, with tuning speeds in the order of microseconds, is demonstrated experimentally as a channel dropper for the demodulation of multiple Fibre Bragg Grating sensors. The 3-stage Lyot Filter designed and experimentally verified can be used together with the high-speed ratiometric wavelength measurement system employing a fibre bend loss edge filter. Such systems can be used for the demodulation of distributed Fibre Bragg Grating sensors employed in applications such as structural monitoring, industrial sensing and haptic telerobotic surgical systems.

  3. Resonator memories and optical novelty filters

    Science.gov (United States)

    Anderson, Dana Z.; Erle, Marie C.

    Optical resonators having holographic elements are potential candidates for storing information that can be accessed through content addressable or associative recall. Closely related to the resonator memory is the optical novelty filter, which can detect the differences between a test object and a set of reference objects. We discuss implementations of these devices using continuous optical media such as photorefractive materials. The discussion is framed in the context of neural network models. There are both formal and qualitative similarities between the resonator memory and optical novelty filter and network models. Mode competition arises in the theory of the resonator memory, much as it does in some network models. We show that the role of the phenomena of "daydreaming" in the real-time programmable optical resonator is very much akin to the role of "unlearning" in neural network memories. The theory of programming the real-time memory for a single mode is given in detail. This leads to a discussion of the optical novelty filter. Experimental results for the resonator memory, the real-time programmable memory, and the optical tracking novelty filter are reviewed. We also point to several issues that need to be addressed in order to implement more formal models of neural networks.

  4. Tunable complex-valued multi-tap microwave photonic filter based on single silicon-oninsulator microring resonator

    DEFF Research Database (Denmark)

    Lloret, Juan; Sancho, Juan; Pu, Minhao

    2011-01-01

    A complex-valued multi-tap tunable microwave photonic filter based on single silicon-on-insulator microring resonator is presented. The degree of tunability of the approach involving two, three and four taps is theoretical and experimentally characterized, respectively. The constraints of exploit...

  5. Tunable optical setup with high flexibility for spectrally resolved coherent anti-Stokes Raman scattering microscopy

    International Nuclear Information System (INIS)

    Bergner, G; Akimov, D; Bartelt, H; Dietzek, B; Popp, J; Schlücker, S

    2011-01-01

    A simplified setup for coherent anti-Stokes Raman scattering (CARS) microscopy is introduced, which allows for recording CARS images with 30 cm -1 excitation bandwidth for probing Raman bands between 500 and 900 cm -1 with minimal requirements for alignment. The experimental arrangement is based on electronic switching between CARS images recorded at different Raman resonances by combining a photonic crystal fiber (PCF) as broadband light source and an acousto-optical programmable dispersive filter (AOPDF) as tunable wavelength filter. Such spatial light modulator enables selection of a narrow-band spectrum to yield high vibrational contrast and hence chemical contrast in the resultant CARS images. Furthermore, an experimental approach to reconstruct spectral information from CARS image contrast is introduced

  6. Low-loss tunable all-in-fiber filter for Raman spectroscopy

    DEFF Research Database (Denmark)

    Brunetti, Anna Chiara; Scolari, Lara; Lund-Hansen, Toke

    2011-01-01

    We show a novel in-line Rayleigh-rejection filter for Raman spectroscopy, based on a solid-core Photonic Crystal Fiber (PCF) filled with a high-index material. The device is low-loss and thermally tunable, and allows for a strong attenuation of the Rayleigh line at 532nm and the transmission...... of the Raman lines in a broad wavenumber range....

  7. A Coupled Resonator for Highly Tunable and Amplified Mixer/Filter

    KAUST Repository

    Ilyas, Saad; Jaber, Nizar; Younis, Mohammad I.

    2017-01-01

    We present an H-shaped resonator made of two clamped-clamped microbeams mechanically coupled at the middle with a strong coupler to achieve, in a single device, mechanical amplification of the response signal, filtering, and frequency conversion simultaneously. Using mechanical amplification combined with combination resonances generated from a mixed-frequency excitation, a wideband tunable filter, and a simultaneous frequency up and down convertors at multiple bands is demonstrated. The proposed coupled structure, when combined with the easy-to-implement technique of frequency mixing, is promising for applications in an RF chain.

  8. A Tunable Low Noise Active Bandpass Filter Using a Noise Canceling Technique

    OpenAIRE

    Soltani, N.

    2016-01-01

    A monolithic tunable low noise active bandpass filter is presented in this study. Biasing voltages can control the center frequency and quality factor. By keeping the gain constant, the center frequency shift is 300 MHz. The quality factor can range from 90 to 290 at the center frequency. By using a noise cancelling circuit, noise is kept lower than 2.8 dB. The proposed filter is designed using MMIC technology with a center frequency of 2.4 GHz and a power consumption of 180 mW. ED02AH techno...

  9. A Tunable Low Noise Active Bandpass Filter Using a Noise Canceling Technique

    Directory of Open Access Journals (Sweden)

    N. Soltani

    2016-12-01

    Full Text Available A monolithic tunable low noise active bandpass filter is presented in this study. Biasing voltages can control the center frequency and quality factor. By keeping the gain constant, the center frequency shift is 300 MHz. The quality factor can range from 90 to 290 at the center frequency. By using a noise cancelling circuit, noise is kept lower than 2.8 dB. The proposed filter is designed using MMIC technology with a center frequency of 2.4 GHz and a power consumption of 180 mW. ED02AH technology is used to simulate the circuit elements.

  10. A Coupled Resonator for Highly Tunable and Amplified Mixer/Filter

    KAUST Repository

    Ilyas, Saad

    2017-04-25

    We present an H-shaped resonator made of two clamped-clamped microbeams mechanically coupled at the middle with a strong coupler to achieve, in a single device, mechanical amplification of the response signal, filtering, and frequency conversion simultaneously. Using mechanical amplification combined with combination resonances generated from a mixed-frequency excitation, a wideband tunable filter, and a simultaneous frequency up and down convertors at multiple bands is demonstrated. The proposed coupled structure, when combined with the easy-to-implement technique of frequency mixing, is promising for applications in an RF chain.

  11. Wavelength-tunable laser based on nonlinear dispersive-wave generation in a tapered optical waveguide

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a method and a wavelength tunable laser comprising a first laser source configured to emit a first optical pulse having a pump wavelength, the first optical pulse being emitted in a first longitudinal direction. Furthermore, the wavelength tunable laser comprises...... a waveguide extending in the first longitudinal direction, the waveguide having longitudinally varying phase matching conditions, the waveguide being configured to generate a second optical pulse with a centre wavelength upon receiving the first optical pulse, wherein the wavelength tunable laser...... is configured to tune the centre wavelength of the second optical pulse by varying at least one pulse property of the first optical pulse....

  12. On Applicability of Tunable Filter Bank Based Feature for Ear Biometrics: A Study from Constrained to Unconstrained.

    Science.gov (United States)

    Chowdhury, Debbrota Paul; Bakshi, Sambit; Guo, Guodong; Sa, Pankaj Kumar

    2017-11-27

    In this paper, an overall framework has been presented for person verification using ear biometric which uses tunable filter bank as local feature extractor. The tunable filter bank, based on a half-band polynomial of 14th order, extracts distinct features from ear images maintaining its frequency selectivity property. To advocate the applicability of tunable filter bank on ear biometrics, recognition test has been performed on available constrained databases like AMI, WPUT, IITD and unconstrained database like UERC. Experiments have been conducted applying tunable filter based feature extractor on subparts of the ear. Empirical experiments have been conducted with four and six subdivisions of the ear image. Analyzing the experimental results, it has been found that tunable filter moderately succeeds to distinguish ear features at par with the state-of-the-art features used for ear recognition. Accuracies of 70.58%, 67.01%, 81.98%, and 57.75% have been achieved on AMI, WPUT, IITD, and UERC databases through considering Canberra Distance as underlying measure of separation. The performances indicate that tunable filter is a candidate for recognizing human from ear images.

  13. A tunable Fabry-Perot filter (λ/18) based on all-dielectric metamaterials

    Science.gov (United States)

    Ao, Tianhong; Xu, Xiangdong; Gu, Yu; Jiang, Yadong; Li, Xinrong; Lian, Yuxiang; Wang, Fu

    2018-05-01

    A tunable Fabry-Perot filter composed of two separated all-dielectric metamaterials is proposed and numerically investigated. Different from metallic metamaterials reflectors, the all-dielectric metamaterials are constructed by high-permittivity TiO2 cylinder arrays and exhibit high reflection in a broadband of 2.49-3.08 THz. The high reflection is attributed to the first and second Mie resonances, by which the all-dielectric metamaterials can serve as reflectors in the Fabry-Perot filter. Both the results from phase analysis method and CST simulations reveal that the resonant frequency of the as-proposed filter appears at 2.78 THz, responding to a cavity with λ/18 wavelength thickness. Particularly, the resonant frequency can be adjusted by changing the cavity thickness. This work provides a feasible approach to design low-loss terahertz filters with a thin air cavity.

  14. Meta-structure and tunable optical device including the same

    Science.gov (United States)

    Han, Seunghoon; Papadakis, Georgia Theano; Atwater, Harry

    2017-12-26

    A meta-structure and a tunable optical device including the same are provided. The meta-structure includes a plurality of metal layers spaced apart from one another, an active layer spaced apart from the plurality of metal layers and having a carrier concentration that is tuned according to an electric signal applied to the active layer and the plurality of metal layers, and a plurality of dielectric layers spaced apart from one another and each having one surface contacting a metal layer among the plurality of metal layers and another surface contacting the active layer.

  15. A tunable continuous wave (CW) and short-pulse optical source for THz brain imaging applications

    International Nuclear Information System (INIS)

    Bakopoulos, P; Karanasiou, I; Zakynthinos, P; Uzunoglu, N; Avramopoulos, H; Pleros, N

    2009-01-01

    We demonstrate recent advances toward the development of a novel 2D THz imaging system for brain imaging applications both at the macroscopic and at the bimolecular level. A frequency-synthesized THz source based on difference frequency generation between optical wavelengths is presented, utilizing supercontinuum generation in a highly nonlinear optical fiber with subsequent spectral carving by means of a fiber Fabry–Perot filter. Experimental results confirm the successful generation of THz radiation in the range of 0.2–2 THz, verifying the enhanced frequency tunability properties of the proposed system. Finally, the roadmap toward capturing functional brain information by exploiting THz imaging technologies is discussed, outlining the unique advantages offered by THz frequencies and their complementarity with existing brain imaging techniques

  16. Planar Spontaneous Raman-Scattering Spectroscopy for Reacting Jet-Flow Diagnostics Using Lyot-Ehman Tunable Filter

    Science.gov (United States)

    Sharaborin, D. K.; Markovich, D. M.; Dulin, V. M.

    2018-01-01

    The spatial-density distribution in burning a premixed methane-air swirling turbulent jet has been studied by measuring the intensity of the Stokes branch of spontaneous Raman scattering for vibrational-rotational transitions in nitrogen. An optical system comprising a Nd:YAG laser and the liquid-crystalline Lyot-Ehman tunable filter has been created and tested by measuring the temperature and density fields in a cone-shaped laminar flame. It has been established that the difference of data obtained using the Stokes component of Raman scattering in nitrogen and its ratio to the anti-Stokes component does not exceed 5% in a temperature range from 300 to 1800 K.

  17. Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yijun [Institute of Optoelectronic Technology, Department of Electronic Engineering, Xiamen University, Xiamen 361005 (China); Institute of Electromagnetics and Acoustics, Department of Electronic Science, Xiamen University, Xiamen 361005 (China); Zhu, Jinfeng, E-mail: nanoantenna@hotmail.com [Institute of Electromagnetics and Acoustics, Department of Electronic Science, Xiamen University, Xiamen 361005 (China); Liu, Qing Huo [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States)

    2015-01-26

    Enhancement and manipulation of light absorption in graphene is a significant issue for applications of graphene-based optoelectronic devices. In order to achieve this purpose in the visible region, we demonstrate a design of a graphene optical absorber inspired by metal-dielectric-metal metamaterial for perfect absorption of electromagnetic waves. The optical absorbance ratios of single and three atomic layer graphene are enhanced up to 37.5% and 64.8%, respectively. The graphene absorber shows polarization-dependence and tolerates a wide range of incident angles. Furthermore, the peak position and bandwidth of graphene absorption spectra are tunable in a wide wavelength range through a specific structural configuration. These results imply that graphene in combination with plasmonic perfect absorbers have a promising potential for developing advanced nanophotonic devices.

  18. Fully reconfigurable 2x2 optical cross-connect using tunable wavelength switching modules

    DEFF Research Database (Denmark)

    Liu, Fenghai; Zheng, Xueyan; Pedersen, Rune Johan Skullerud

    2001-01-01

    A modular tunable wavelength switching module is proposed and used to construct 2x2 fully reconfigurable optical cross-connects. Large size optical switch is avoided in the OXC and it is easy to upgrade to more wavelength channels.......A modular tunable wavelength switching module is proposed and used to construct 2x2 fully reconfigurable optical cross-connects. Large size optical switch is avoided in the OXC and it is easy to upgrade to more wavelength channels....

  19. Tunable output-frequency filter algorithm for imaging through scattering media under LED illumination

    Science.gov (United States)

    Zhou, Meiling; Singh, Alok Kumar; Pedrini, Giancarlo; Osten, Wolfgang; Min, Junwei; Yao, Baoli

    2018-03-01

    We present a tunable output-frequency filter (TOF) algorithm to reconstruct the object from noisy experimental data under low-power partially coherent illumination, such as LED, when imaging through scattering media. In the iterative algorithm, we employ Gaussian functions with different filter windows at different stages of iteration process to reduce corruption from experimental noise to search for a global minimum in the reconstruction. In comparison with the conventional iterative phase retrieval algorithm, we demonstrate that the proposed TOF algorithm achieves consistent and reliable reconstruction in the presence of experimental noise. Moreover, the spatial resolution and distinctive features are retained in the reconstruction since the filter is applied only to the region outside the object. The feasibility of the proposed method is proved by experimental results.

  20. Tunable bandpass filter based on partially magnetized ferrite LTCC with embedded windings for SoP applications

    KAUST Repository

    Arabi, Eyad A.

    2015-01-01

    Tunable filters that are based on ferrite materials often require large and bulky electromagnets. In this work, we present a tunable filter in the Ku-band, which is realized in multilayer ferrite LTCC substrate with embedded bias windings, thus negating the need of a large electromagnet. Also, because of the embedded windings, the bias fields are not lost at the air-substrate interface and therefore the field and current requirements are reduced by an order of magnitude as compared to the previously reported filters. A simulation strategy that uses full permeability tensor with arbitrarily directed magnetic fields has been used to model the filter on a partially magnetized ferrite substrate. Special attention has also been paid to approximate the non-uniform magneto-static fields produced by the embedded windings. The complete design is implemented in 10 layers of ferrite LTCC, making it the first magnetically tunable filter with embedded windings and extremely small size [(5 × 5 × 1.1)mm3]. The filter demonstrates a measured tunability of 4% and an insertion loss of 2.3 dB. With the small form factor, embedded windings, and low bias requirements, the design is highly suitable for compact and tunable SoP applications.

  1. Dynamically tunable optical bottles from an optical fiber

    DEFF Research Database (Denmark)

    Chen, Yuhao; Yan, Lu; Rishøj, Lars Søgaard

    2012-01-01

    Optical fibers have long been used to impose spatial coherence to shape free-space optical beams. Recent work has shown that one can use higher order fiber modes to create more exotic beam profiles. We experimentally generate optical bottles from Talbot imaging in the coherent superposition of two...... fiber modes excited with long period gratings, and obtain a 28 μm × 6 μm bottle with controlled contrast up to 10.13 dB. Our geometry allows for phase tuning of one mode with respect to the other, which enables us to dynamically move the bottle in free space....

  2. Experimental demonstration of software defined data center optical networks with Tbps end-to-end tunability

    Science.gov (United States)

    Zhao, Yongli; Zhang, Jie; Ji, Yuefeng; Li, Hui; Wang, Huitao; Ge, Chao

    2015-10-01

    The end-to-end tunability is important to provision elastic channel for the burst traffic of data center optical networks. Then, how to complete the end-to-end tunability based on elastic optical networks? Software defined networking (SDN) based end-to-end tunability solution is proposed for software defined data center optical networks, and the protocol extension and implementation procedure are designed accordingly. For the first time, the flexible grid all optical networks with Tbps end-to-end tunable transport and switch system have been online demonstrated for data center interconnection, which are controlled by OpenDayLight (ODL) based controller. The performance of the end-to-end tunable transport and switch system has been evaluated with wavelength number tuning, bit rate tuning, and transmit power tuning procedure.

  3. Tunable M-channel filter based on Thue-Morse heterostructures containing meta materials

    Directory of Open Access Journals (Sweden)

    H Pashaei Adl

    2015-01-01

    Full Text Available In this paper the tunable M-channel filters based on Thue-Morse heterostructures consisting of single -negative materials has been studied. The results showed that the number of resonance modes inside the zero- gap increases as the number of heterogenous interface, M, increases. The number of resonance modes inside the zero- gap is equal to that of heterogenous interface M, and it can be used as M channels filter. This result provides a feasible method to adjust the channel number of multiple-channel filters. When losses are involved, the results showed that the electric fields of the resonance modes decay largely with the increase of the number of heterogenous interface and damping factors. Besides, the relationship between the quality factor of multiple-channel filters and the number of heterogenous interface M is linear, and the quality factor of multiple-channel filters decreases with the increase of the damping factor. These results provide feasible methods to adjust the quality factor of multiple-channel filters

  4. Temperature control and measurement with tunable femtosecond optical tweezers

    Science.gov (United States)

    Mondal, Dipankar; Goswami, Debabrata

    2016-09-01

    We present the effects of wavelength dependent temperature rise in a femtosecond optical tweezers. Our experiments involve the femtosecond trapping laser tunable from 740-820 nm at low power 25 mW to cause heating in the trapped volume within a homogeneous solution of sub micro-molar concentration of IR dye. The 780 nm high repetition rate laser acts as a resonant excitation source which helps to create the local heating effortlessly within the trapping volume. We have used both position autocorrelation and equipartion theorem to evaluate temperature at different wavelength having different absorption coefficient. Fixing the pulse width in the temporal domain gives constant bandwidth at spatial domain, which makes our system behave as a tunable temperature rise device with high precision. This observation leads us to calculate temperature as well as viscosity within the vicinity of the trapping zone. A mutual energy transfer occurs between the trapped bead and solvents that leads to transfer the thermal energy of solvents into the kinetic energy of the trap bead and vice-versa. Thus hot solvated molecules resulting from resonant and near resonant excitation of trapping wavelength can continuously dissipate heat to the trapped bead which will be reflected on frequency spectrum of Brownian noise exhibited by the bead. Temperature rise near the trapping zone can significantly change the viscosity of the medium. We observe temperature rise profile according to its Gaussian shaped absorption spectrum with different wavelength.

  5. Optical filter based on Fabry-Perot structure using a suspension of goethite nanoparticles as electro-optic material

    Science.gov (United States)

    Abbas, Samir; Dupont, Laurent; Dozov, Ivan; Davidson, Patrick; Chanéac, Corinne

    2018-02-01

    We have investigated the feasibility of optical tunable filters based on a Fabry-Perot etalon that uses a suspension of goethite (α-FeOOH) nanorods as electro-optic material for application in optical telecommunications in the near IR range. These synthetic nanoparticles have a high optical anisotropy that give rise to a very strong Kerr effect in their colloidal suspensions. Currently, these particles are dispersed in aqueous solvent, with pH2 to ensure the colloidal electrostatic stability. However, the high conductivity of these suspensions requires using high-frequency electric fields (f > 1 MHz), which brings about a high power consumption of the driver. To decrease the field frequency, we have changed the solvent to ethylene glycol which has a lower electrical conductivity than the aqueous solvent. We have built a Fabry-Perot cell, filled with this colloidal suspension in the isotropic phase, and showed that a phase shift of 14 nm can be obtained in a field of 3V/μm. Therefore, the device can operate as a tunable filter. A key advantage of this filter is that it is, by principle, completely insensitive to the polarization of the input light. However, several technological issues still need to be solved, such as ionic contamination of the suspension from the blocking layers, and dielectrophoretic and thermal effects.

  6. Optically Tunable Magnetoresistance Effect: From Mechanism to Novel Device Application.

    Science.gov (United States)

    Liu, Pan; Lin, Xiaoyang; Xu, Yong; Zhang, Boyu; Si, Zhizhong; Cao, Kaihua; Wei, Jiaqi; Zhao, Weisheng

    2017-12-28

    The magnetoresistance effect in sandwiched structure describes the appreciable magnetoresistance effect of a device with a stacking of two ferromagnetic layers separated by a non-magnetic layer (i.e., a sandwiched structure). The development of this effect has led to the revolution of memory applications during the past decades. In this review, we revisited the magnetoresistance effect and the interlayer exchange coupling (IEC) effect in magnetic sandwiched structures with a spacer layer of non-magnetic metal, semiconductor or organic thin film. We then discussed the optical modulation of this effect via different methods. Finally, we discuss various applications of these effects and present a perspective to realize ultralow-power, high-speed data writing and inter-chip connection based on this tunable magnetoresistance effect.

  7. Tunable Optical Properties of Metal Nanoparticle Sol-Gel Composites

    Science.gov (United States)

    Smith, David D.; Snow, Lanee A.; Sibille, Laurent; Ignont, Erica

    2001-01-01

    We demonstrate that the linear and non-linear optical properties of sol-gels containing metal nanoparticles are highly tunable with porosity. Moreover, we extend the technique of immersion spectroscopy to inhomogeneous hosts, such as aerogels, and determine rigorous bounds for the average fractional composition of each component, i.e., the porosity of the aerogel, or equivalently, for these materials, the catalytic dispersion. Sol-gels containing noble metal nanoparticles were fabricated and a significant blue-shift in the surface plasmon resonance (SPR) was observed upon formation of an aerogel, as a result of the decrease in the dielectric constant of the matrix upon supercritical extraction of the solvent. However, as a result of chemical interface damping and aggregation this blue-shift does not strictly obey standard effective medium theories. Mitigation of these complications is achieved by avoiding the use of alcohol and by annealing the samples in a reducing atmosphere.

  8. Simultaneous wavelength and orbital angular momentum demultiplexing using tunable MEMS-based Fabry-Perot filter

    DEFF Research Database (Denmark)

    Lyubopytov, Vladimir; Porfirev, Alexey P.; Gurbatov, Stanislav O.

    2017-01-01

    In this paper, we experimentally demonstrate simultaneous wavelength and orbital angular momentum (OAM) multiplexing/demultiplexing of 10 Gbit/s data streams using a new on-chip micro-component-tunable MEMS-based Fabry-Perot filter integrated with a spiral phase plate. In the experiment, two......, maximum power penalties at the HD-FEC BER threshold relative to the 0.8 nm wavelength spacing read 0.83, 0.84 and 1.15 dB when multiplexing a Gaussian beam and OAM beams of 1st, 2nd and 3rd orders respectively. The novelty and impact of the proposed filter design is in providing practical, integrable...

  9. Ultra-high tunable liquid crystal-plasmonic photonic crystal fiber polarization filter.

    Science.gov (United States)

    Hameed, Mohamed Farhat O; Heikal, A M; Younis, B M; Abdelrazzak, Maher; Obayya, S S A

    2015-03-23

    A novel ultra-high tunable photonic crystal fiber (PCF) polarization filter is proposed and analyzed using finite element method. The suggested design has a central hole infiltrated with a nematic liquid crystal (NLC) that offers high tunability with temperature and external electric field. Moreover, the PCF is selectively filled with metal wires into cladding air holes. Results show that the resonance losses and wavelengths are different in x and y polarized directions depending on the rotation angle φ of the NLC. The reported filter of compact device length 0.5 mm can achieve 600 dB / cm resonance losses at φ = 90° for x-polarized mode at communication wavelength of 1300 mm with low losses of 0.00751 dB / cm for y-polarized mode. However, resonance losses of 157.71 dB / cm at φ = 0° can be achieved for y-polarized mode at the same wavelength with low losses of 0.092 dB / cm for x-polarized mode.

  10. FILTER-INDUCED BIAS IN Lyα EMITTER SURVEYS: A COMPARISON BETWEEN STANDARD AND TUNABLE FILTERS. GRAN TELESCOPIO CANARIAS PRELIMINARY RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    De Diego, J. A.; De Leo, M. A. [Instituto de Astronomía, Universidad Nacional Autónoma de México Avenida Universidad 3000, Ciudad Universitaria, C.P. 04510, Distrito Federal (Mexico); Cepa, J.; Bongiovanni, A. [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Verdugo, T. [Centro de Investigaciones de Astronomía (CIDA), Apartado Postal 264, Mérida 5101-A (Venezuela, Bolivarian Republic of); Sánchez-Portal, M. [Herschel Science Centre (HSC), European Space Agency Centre (ESAC)/INSA, Villanueva de la Cañada, Madrid (Spain); González-Serrano, J. I., E-mail: jdo@astro.unam.mx [Instituto de Física de Cantabria (CSIC-Universidad de Cantabria), E-39005 Santander (Spain)

    2013-10-01

    Lyα emitter (LAE) surveys have successfully used the excess in a narrowband filter compared to a nearby broadband image to find candidates. However, the odd spectral energy distribution (SED) of LAEs combined with the instrumental profile has important effects on the properties of the candidate samples extracted from these surveys. We investigate the effect of the bandpass width and the transmission profile of the narrowband filters used for extracting LAE candidates at redshifts z ≅ 6.5 through Monte Carlo simulations, and we present pilot observations to test the performance of tunable filters to find LAEs and other emission-line candidates. We compare the samples obtained using a narrow ideal rectangular filter, the Subaru NB921 narrowband filter, and sweeping across a wavelength range using the ultra-narrow-band tunable filters of the instrument OSIRIS, installed at the 10.4 m Gran Telescopio Canarias. We use this instrument for extracting LAE candidates from a small set of real observations. Broadband data from the Subaru, Hubble Space Telescope, and Spitzer databases were used for fitting SEDs to calculate photometric redshifts and to identify interlopers. Narrowband surveys are very efficient in finding LAEs in large sky areas, but the samples obtained are not evenly distributed in redshift along the filter bandpass, and the number of LAEs with equivalent widths <60 Å can be underestimated. These biased results do not appear in samples obtained using ultra-narrow-band tunable filters. However, the field size of tunable filters is restricted because of the variation of the effective wavelength across the image. Thus, narrowband and ultra-narrow-band surveys are complementary strategies to investigate high-redshift LAEs.

  11. FILTER-INDUCED BIAS IN Lyα EMITTER SURVEYS: A COMPARISON BETWEEN STANDARD AND TUNABLE FILTERS. GRAN TELESCOPIO CANARIAS PRELIMINARY RESULTS

    International Nuclear Information System (INIS)

    De Diego, J. A.; De Leo, M. A.; Cepa, J.; Bongiovanni, A.; Verdugo, T.; Sánchez-Portal, M.; González-Serrano, J. I.

    2013-01-01

    Lyα emitter (LAE) surveys have successfully used the excess in a narrowband filter compared to a nearby broadband image to find candidates. However, the odd spectral energy distribution (SED) of LAEs combined with the instrumental profile has important effects on the properties of the candidate samples extracted from these surveys. We investigate the effect of the bandpass width and the transmission profile of the narrowband filters used for extracting LAE candidates at redshifts z ≅ 6.5 through Monte Carlo simulations, and we present pilot observations to test the performance of tunable filters to find LAEs and other emission-line candidates. We compare the samples obtained using a narrow ideal rectangular filter, the Subaru NB921 narrowband filter, and sweeping across a wavelength range using the ultra-narrow-band tunable filters of the instrument OSIRIS, installed at the 10.4 m Gran Telescopio Canarias. We use this instrument for extracting LAE candidates from a small set of real observations. Broadband data from the Subaru, Hubble Space Telescope, and Spitzer databases were used for fitting SEDs to calculate photometric redshifts and to identify interlopers. Narrowband surveys are very efficient in finding LAEs in large sky areas, but the samples obtained are not evenly distributed in redshift along the filter bandpass, and the number of LAEs with equivalent widths <60 Å can be underestimated. These biased results do not appear in samples obtained using ultra-narrow-band tunable filters. However, the field size of tunable filters is restricted because of the variation of the effective wavelength across the image. Thus, narrowband and ultra-narrow-band surveys are complementary strategies to investigate high-redshift LAEs

  12. Tunable Optical True-Time Delay Devices Would Exploit EIT

    Science.gov (United States)

    Kulikov, Igor; DiDomenico, Leo; Lee, Hwang

    2004-01-01

    Tunable optical true-time delay devices that would exploit electromagnetically induced transparency (EIT) have been proposed. Relative to prior true-time delay devices (for example, devices based on ferroelectric and ferromagnetic materials) and electronically controlled phase shifters, the proposed devices would offer much greater bandwidths. In a typical envisioned application, an optical pulse would be modulated with an ultra-wideband radio-frequency (RF) signal that would convey the information that one seeks to communicate, and it would be required to couple differently delayed replicas of the RF signal to the radiating elements of a phased-array antenna. One or more of the proposed devices would be used to impose the delays and/or generate the delayed replicas of the RF-modulated optical pulse. The beam radiated or received by the antenna would be steered by use of a microprocessor-based control system that would adjust operational parameters of the devices to tune the delays to the required values. EIT is a nonlinear quantum optical interference effect that enables the propagation of light through an initially opaque medium. A suitable medium must have, among other properties, three quantum states (see Figure 1): an excited state (state 3), an upper ground state (state 2), and a lower ground state (state 1). These three states must form a closed system that exhibits no decays to other states in the presence of either or both of two laser beams: (1) a probe beam having the wavelength corresponding to the photon energy equal to the energy difference between states 3 and 1; and (2) a coupling beam having the wavelength corresponding to the photon energy equal to the energy difference between states 3 and 2. The probe beam is the one that is pulsed and modulated with an RF signal.

  13. Retinal blood vessel extraction using tunable bandpass filter and fuzzy conditional entropy.

    Science.gov (United States)

    Sil Kar, Sudeshna; Maity, Santi P

    2016-09-01

    Extraction of blood vessels on retinal images plays a significant role for screening of different opthalmologic diseases. However, accurate extraction of the entire and individual type of vessel silhouette from the noisy images with poorly illuminated background is a complicated task. To this aim, an integrated system design platform is suggested in this work for vessel extraction using a sequential bandpass filter followed by fuzzy conditional entropy maximization on matched filter response. At first noise is eliminated from the image under consideration through curvelet based denoising. To include the fine details and the relatively less thick vessel structures, the image is passed through a bank of sequential bandpass filter structure optimized for contrast enhancement. Fuzzy conditional entropy on matched filter response is then maximized to find the set of multiple optimal thresholds to extract the different types of vessel silhouettes from the background. Differential Evolution algorithm is used to determine the optimal gain in bandpass filter and the combination of the fuzzy parameters. Using the multiple thresholds, retinal image is classified as the thick, the medium and the thin vessels including neovascularization. Performance evaluated on different publicly available retinal image databases shows that the proposed method is very efficient in identifying the diverse types of vessels. Proposed method is also efficient in extracting the abnormal and the thin blood vessels in pathological retinal images. The average values of true positive rate, false positive rate and accuracy offered by the method is 76.32%, 1.99% and 96.28%, respectively for the DRIVE database and 72.82%, 2.6% and 96.16%, respectively for the STARE database. Simulation results demonstrate that the proposed method outperforms the existing methods in detecting the various types of vessels and the neovascularization structures. The combination of curvelet transform and tunable bandpass

  14. Virtual experiment of optical spatial filtering in Matlab environment

    Science.gov (United States)

    Ji, Yunjing; Wang, Chunyong; Song, Yang; Lai, Jiancheng; Wang, Qinghua; Qi, Jing; Shen, Zhonghua

    2017-08-01

    The principle of spatial filtering experiment has been introduced, and the computer simulation platform with graphical user interface (GUI) has been made out in Matlab environment. Using it various filtering processes for different input image or different filtering purpose will be completed accurately, and filtering effect can be observed clearly with adjusting experimental parameters. The physical nature of the optical spatial filtering can be showed vividly, and so experimental teaching effect will be promoted.

  15. A High-Power Low-Loss Continuously Tunable Bandpass Filter With Transversely Biased Ferrite-Loaded Coaxial Resonators

    DEFF Research Database (Denmark)

    Acar, Öncel; Johansen, Tom Keinicke; Zhurbenko, Vitaliy

    2015-01-01

    This paper presents a technology for high-power lowlosscontinuously tunable RF filters demonstrated by the exampleof a two-pole coupled-resonator filter. The resonators are shortenedcoaxial cavities loaded with ferrite inserts, where an externallyapplied transverse dc magnetic bias controls the c...... is observed to be 53.1 dBm at aninput fundamental tone level of 2 43 dBm....

  16. Broadband microwave photonic fully tunable filter using a single heterogeneously integrated III-V/SOI-microdisk-based phase shifter.

    Science.gov (United States)

    Lloret, Juan; Morthier, Geert; Ramos, Francisco; Sales, Salvador; Van Thourhout, Dries; Spuesens, Thijs; Olivier, Nicolas; Fédéli, Jean-Marc; Capmany, José

    2012-05-07

    A broadband microwave photonic phase shifter based on a single III-V microdisk resonator heterogeneously integrated on and coupled to a nanophotonic silicon-on-insulator waveguide is reported. The phase shift tunability is accomplished by modifying the effective index through carrier injection. A comprehensive semi-analytical model aiming at predicting its behavior is formulated and confirmed by measurements. Quasi-linear and continuously tunable 2π phase shifts at radiofrequencies greater than 18 GHz are experimentally demonstrated. The phase shifter performance is also evaluated when used as a key element in tunable filtering schemes. Distortion-free and wideband filtering responses with a tuning range of ~100% over the free spectral range are obtained.

  17. A wavelength-tunable fiber laser using a novel filter based on a compound interference effect

    Science.gov (United States)

    Zou, Hui; Lou, Shuqin; Su, Wei; Han, Bolin; Shen, Xiao

    2015-01-01

    A wavelength-tunable erbium-doped fiber laser is proposed and experimentally demonstrated by using a novel filter which is formed from a 2  ×  2 3 dB multimode coupler incorporating a segment of polarization maintaining fiber (PMF). By using the filter with 2.1 m lengths of PMF in a ring fiber laser, a stable single wavelength lasing is obtained experimentally. Its 3 dB bandwidth is less than 0.0147 nm and the side mode suppression ratio (SMSR) is higher than 58.91 dB. Experimental results demonstrate that mode competition can be effectively suppressed and the SMSR can be improved due to the compound interference effect aroused by the novel filter. Meanwhile the stability of the output lasing can be enhanced. By appropriately adjusting the polarization controllers (PCs), the output lasing wavelength can be tuned from 1563.51 to 1568.21 nm. This fiber laser has the advantage of a simple structure and stable operation at room temperature.

  18. Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Lu Hua; Liu Xueming; Wang Guoxi; Mao Dong

    2012-01-01

    We have proposed a novel type of bandpass plasmonic filter consisting of metal–insulator–metal bus waveguides coupled with a series of side-coupled cavities and stub waveguides. The theoretical modeling demonstrates that our waveguide-resonator system performs a plasmonic analogue of electromagnetically induced transparency (EIT) in atomic systems, as is confirmed by numerical experiments. The plasmonic EIT-like response enables the realization of nanoscale bandpass filters with multiple channels. Additionally, the operating wavelengths and bandwidths of our filters can be efficiently tuned by adjusting the geometric parameters such as the lengths of stub waveguides and the coupling distances between the cavities and stub waveguides. The ultracompact configurations contribute to the achievement of wavelength division multiplexing systems for optical computing and communications in highly integrated optical circuits. (paper)

  19. Tunable Bandgap and Optical Properties of Black Phosphorene Nanotubes

    Directory of Open Access Journals (Sweden)

    Chunmei Li

    2018-02-01

    Full Text Available Black phosphorus (BP, a new two-dimensional material, has been the focus of scientists’ attention. BP nanotubes have potential in the field of optoelectronics due to their low-dimensional effects. In this work, the bending strain energy, electronic structure, and optical properties of BP nanotubes were investigated by using the first-principles method based on density functional theory. The results show that these properties are closely related to the rolling direction and radius of the BP nanotube. All the calculated BP nanotube properties show direct bandgaps, and the BP nanotubes with the same rolling direction express a monotone increasing trend in the value of bandgap with a decrease in radius, which is a stacking effect of the compression strain on the inner atoms and the tension strain on the outer atoms. The bending strain energy of the zigzag phosphorene nanotubes (zPNTs is higher than that of armchair phosphorene nanotubes (aPNT with the same radius of curvature due to the anisotropy of the BP’s structure. The imaginary part of the dielectric function, the absorption range, reflectivity, and the imaginary part of the refractive index of aPNTs have a wider range than those of zPNTs, with higher values overall. As a result, tunable BP nanotubes are suitable for optoelectronic devices, such as lasers and diodes, which function in the infrared and ultra-violet regions, and for solar cells and photocatalysis.

  20. Strain induced tunable wavelength filters based on flexible polymer waveguide Bragg reflector.

    Science.gov (United States)

    Kim, Kyung-Jo; Seo, Jun-Kyu; Oh, Min-Cheol

    2008-02-04

    A tunable wavelength filter is demonstrated by imposing a strain on a polymeric Bragg reflection waveguide fabricated on a flexible substrate. The highly elastic property of flexible polymer device enables much wider tuning than the silica fiber. To produce a uniform grating pattern on a flexible plastic substrate, a post lift-off process along with an absorbing layer is incorporated. The flexible Bragg reflector shows narrow bandwidth, which is convincing the uniformity of the grating structure fabricated on plastic film. By stretching the flexible polymer device, the Bragg reflection wavelength is tuned continuously up to 45 nm for the maximum strain of 31,690 muepsilon, which is determined by the elastic expansion limit of waveguide polymer. From the linear wavelength shift proportional to the strain, the photoelastic coefficient of the ZPU polymer is found.

  1. Miniaturized and Ferrite Based Tunable Bandpass Filters in LCP and LTCC Technologies for SoP Applications

    KAUST Repository

    Arabi, Eyad A.

    2015-04-01

    Wireless systems with emerging applications are leaning towards small size, light-weight and low cost. Another trend for these wireless devices is that new applications and functionalities are being added without increasing the size of the device. To accomplish this, individual components must be miniaturized and the system should be designed to maximize the integration of the individual components. The high level of 3D integration feasible in system on package design (SoP) concept can fulfill the latter requirement. Bandpass filters are important components on all wireless systems to reject the unwanted signals and reduce interference. Being mostly implemented with passive and distributed components, bandpass filters take considerable space in a wireless system. Moreover, with emerging bands and multiple applications encompassed in a single device, many bandpass filters are required. The miniaturization related to bandpass filters can be approached by three main ways: (1) at the component level through the miniaturization of individual bandpass filters, (2) at the system level through the use of tunable filters to reduce the overall number of filters, and (3) at the system level through the high level of integration in a 3D SoP platform. In this work we have focused on all three aspects of miniaturization of band pass filters mentioned above. In the first part of this work, a low frequency (1.5 GHz global positioning system (GPS) band) filter implemented through 3D lumped components in two leading SoP technologies, namely low temperature co-fired ceramic (LTCC) and the liquid crystal polymers (LCP) is demonstrated. The miniaturized filter is based on a second order topology, which has been modified to improve the selectivity and out-of-band rejection without increasing the size. Moreover, for the case of LCP, the filter is realized in an ultra-thin stack up comprising four metallization layers with an overall thickness of only 100 _m. Due to its ultra

  2. Research on tunable multiwavelength fiber lasers with two-section birefringence fibers and a nonlinear optical loop

    Science.gov (United States)

    Chen, Jiao; Tong, Zhengrong; Zhang, Weihua; Xue, Lifang; Pan, Honggang

    2018-05-01

    Two types of tunable multiwavelength fiber lasers based on two-section polarization maintaining fibers (PMFs) cascaded/in parallel and nonlinear optical loop are proposed and experimentally demonstrated. Two-section cascaded PMFs and two polarization controllers (PCs) form the two-stage Lyot filter, which can generate comb spectrum to achieve multiwavelength output. When two sections of PMFs are in parallel, PCs in two paths are adjusted to change the beam’s polarization to suppress the light of one branch, and then the light of the other branch passes through the cavity. Additionally, a nonlinear optical loop acts as an intensity-dependent component, which can suppress the mode competition to maintain a stable output of multiwavelength lasing. The nonlinear optical loop is made by a 3 dB coupler, a PC3, and a 200 m high nonlinear fiber. Two types of tunable multiwavelength fiber lasers can achieve tuning of the channel space and the number of lasing wavelengths by adjusting PC1 and PC2. The channel space of the multiwavelengh laser can be tuned at nearly 0.4, 0.68, and 0.92 nm. Meanwhile, the spectral range of multiwavelength lasing can be controlled by PC3 in the nonlinear optical loop, and the tuning range of two multiwavelength lasers is about 2.28 and 1.45 nm, respectively.

  3. Frequency and time domain analysis of an external cavity laser with strong filtered optical feedback

    DEFF Research Database (Denmark)

    Detoma, Enrico; Tromborg, Bjarne; Montrosset, Ivo

    The stability properties of an external cavity laser with strong grating-filtered optical feedback to an anti-reflection coated facet are studied with a general frequency domain model. The model takes into account non-linear effects like four wave mixing and gain compression. A small......-signal analysis in the frequency domain allows a calculation of the range of operation without mode hopping around the grating reflectivity peak. This region should be as large as possible for proper operation of the tunable laser source. The analysis shows this stabilizing effect of mode coupling and gain...

  4. Characterisation of optical filters for broadband UVA radiometer

    Science.gov (United States)

    Alves, Luciana C.; Coelho, Carla T.; Corrêa, Jaqueline S. P. M.; Menegotto, Thiago; Ferreira da Silva, Thiago; Aparecida de Souza, Muriel; Melo da Silva, Elisama; Simões de Lima, Maurício; Dornelles de Alvarenga, Ana Paula

    2016-07-01

    Optical filters were characterized in order to know its suitability for use in broadband UVA radiometer head for spectral irradiance measurements. The spectral transmittance, the angular dependence and the spatial uniformity of the spectral transmittance of the UVA optical filters were investigated. The temperature dependence of the transmittance was also studied.

  5. Thermal, optical, and electrical engineering of an innovative tunable white LED light engine

    Science.gov (United States)

    Trivellin, Nicola; Meneghini, Matteo; Ferretti, Marco; Barbisan, Diego; Dal Lago, Matteo; Meneghesso, Gaudenzio; Zanoni, Enrico

    2014-02-01

    Color temperature, intensity and blue spectrum of the light affects the ganglion receptors in human brain stimulating the human nervous system. With this work we review different methods for obtaining tunable light emission spectra and propose an innovative white LED lighting system. By an in depth study of the thermal, electrical and optical characteristics of GaN and GaP based compound semiconductors for optoelectronics a specific tunable spectra has been designed. The proposed tunable white LED system is able to achieve high CRI (above 95) in a large CCT range (3000 - 5000K).

  6. Tunable Laser Development for In-flight Fiber Optic Based Structural Health Monitoring Systems

    Science.gov (United States)

    Richards, Lance; Parker, Allen; Chan, Patrick

    2014-01-01

    The objective of this task is to investigate, develop, and demonstrate a low-cost swept lasing light source for NASA DFRC's fiber optics sensing system (FOSS) to perform structural health monitoring on current and future aerospace vehicles. This is the regular update of the Tunable Laser Development for In-flight Fiber Optic Based Structural Health Monitoring Systems website.

  7. Electronically tunable femtosecond all-fiber optical parametric oscillator for multi-photon microscopy

    Science.gov (United States)

    Hellwig, Tim; Brinkmann, Maximilian; Fallnich, Carsten

    2018-02-01

    We present a femtosecond fiber-based optical parametric oscillator (FOPO) for multiphoton microscopy with wavelength tuning by electronic repetition rate tuning in combination with a dispersive filter in the FOPO cavity. The all-spliced, all-fiber FOPO cavity is based on polarization-maintaining fibers and a broadband output coupler, allowing to get access to the resonant signal pulses as well as the idler pulses simultaneously. The system was pumped by a gain-switched fiber-coupled laser diode emitting pulses at a central wavelength of 1030 nm and an electronically tunable repetition frequency of about 2 MHz. The pump pulses were amplified in an Ytterbium fiber amplifier system with a pulse duration after amplification of 13 ps. Tuning of the idler (1140 nm - 1300 nm) and signal wavelengths (850 nm - 940 nm) was achieved by changing the repetition frequency of the pump laser by about 4 kHz. The generated signal pulses reached a pulse energy of up to 9.2 nJ at 920 nm and were spectrally broadened to about 6 nm in the FOPO by a combination of self-phase and cross-phase modulation. We showed external compression of the idler pulses at 920 nm to about 430 fs and appleid them to two-photon excitation microscopy with green fluorescent dyes. The presented system constitutes an important step towards a fully fiber-integrated all-electronically tunable and, thereby, programmable light source and already embodies a versatile and flexible light source for applications, e.g., for smart microscopy.

  8. Tunable all-optical plasmonic rectifier in nanoscale metal-insulator-metal waveguides.

    Science.gov (United States)

    Xu, Yi; Wang, Xiaomeng; Deng, Haidong; Guo, Kangxian

    2014-10-15

    We propose a tunable all-optical plasmonic rectifier based on the nonlinear Fano resonance in a metal-insulator-metal plasmonic waveguide and cavities coupling system. We develop a theoretical model based on the temporal coupled-mode theory to study the device physics of the nanoscale rectifier. We further demonstrate via the finite difference time domain numerical experiment that our idea can be realized in a plasmonic system with an ultracompact size of ~120×800  nm². The tunable plasmonic rectifier could facilitate the all-optical signal processing in nanoscale.

  9. Advanced Optical Processing of Microwave Signals

    Directory of Open Access Journals (Sweden)

    Miguel V. Andrés

    2005-06-01

    Full Text Available The authors present a review on the recent approaches proposed to implement transversal RF filters. Different tunable transversal filters consisting of wavelength tunable optical taps and those employing the tunability of dispersive devices are presented showing their high-performance characteristics. A comprehensive review of the fundamentals and a discussion on the main limitation of these structures are also included.

  10. Tunable dual-channel filter based on the photonic crystal with air defects.

    Science.gov (United States)

    Zhao, Xiaodan; Yang, Yibiao; Wen, Jianhua; Chen, Zhihui; Zhang, Mingda; Fei, Hongming; Hao, Yuying

    2017-07-01

    We propose a tuning filter containing two channels by inserting a defect layer (Air/Si/Air/Si/Air) into a one-dimensional photonic crystal of Si/SiO 2 , which is on the symmetry of the defect. Two transmission peaks (1528.98 and 1564.74 nm) appear in the optical communication S-band and C-band, and the transmittance of these two channels is up to 100%. In addition, this design realizes multi-channel filtering to process large dynamic range or multiple independent signals in the near-infrared band by changing the structure. The tuning range will be enlarged, and the channels can be moved in this range through the easy control of air thickness and incident angle.

  11. Chip design of a 5.8-GHz fractional-N frequency synthesizer with a tunable Gm−C loop filter

    International Nuclear Information System (INIS)

    Huang Jhin-Fang; Lai Wen-Cheng; Shin Chun-Wei; Hsu Chien-Ming; Liu Ron-Yi

    2012-01-01

    This paper proposes a novel G m −C loop filter instead of a conventional passive loop filter used in a phase-locked loop. The innovative advantage of the proposed architecture is tunable loop filter bandwidth and hence the process variations of passive elements of resistance R and capacitance C can be overcome and the chip area is greatly reduced. Furthermore, the MASH 1-1-1 sigma-delta (ΣΔ) modulator is adopted for performing the fractional division number and hence improves the phase noise as well. Measured results show that the locked phase noise is −114.1 dBc/Hz with lower G m −C bandwidth and −111.7 dBm/C with higher G m −C bandwidth at 1 MHz offset from carrier of 5.68 GHz. Including pads and built-in G m −C filter, the chip area of the proposed frequency synthesizer is 1.06 mm 2 . The output power is −8.69 dBm at 5.68 GHz and consumes 56 mW with an off-chip buffer from 1.8-V supply voltage. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  12. Tunable optical analog to electromagnetically induced transparency in graphene-ring resonators system.

    Science.gov (United States)

    Wang, Yonghua; Xue, Chenyang; Zhang, Zengxing; Zheng, Hua; Zhang, Wendong; Yan, Shubin

    2016-12-12

    The analogue of electromagnetically induced transparency in optical ways has shown great potential in optical delay and quantum-information technology due to its flexible design and easy implementation. The chief drawback for these devices is the bad tunability. Here we demonstrate a tunable optical transparency system formed by graphene-silicon microrings which could control the transparent window by electro-optical means. The device consists of cascaded coupled ring resonators and a graphene/graphene capacitor which integrated on one of the rings. By tuning the Fermi level of the graphene sheets, we can modulate the round-trip ring loss so that the transparency window can be dynamically tuned. The results provide a new method for the manipulation and transmission of light in highly integrated optical circuits and quantum information storage devices.

  13. Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibers

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Wei, Lei; Alkeskjold, Thomas Tanggaard

    2009-01-01

    We demonstrate the photonic bandgap effect and the thermal tunability of bandgaps in microstructured polymer optical fibers infiltrated with liquid crystal. Two liquid crystals with opposite sign of the temperature gradient of the ordinary refractive index (E7 and MDA-00- 1444) are used to demons......We demonstrate the photonic bandgap effect and the thermal tunability of bandgaps in microstructured polymer optical fibers infiltrated with liquid crystal. Two liquid crystals with opposite sign of the temperature gradient of the ordinary refractive index (E7 and MDA-00- 1444) are used...... to demonstrate that both signs of the thermal tunability of the bandgaps are possible. The useful bandgaps are ultimately bounded to the visible range by the transparency window of the polymer....

  14. A Bio-Realistic Analog CMOS Cochlea Filter With High Tunability and Ultra-Steep Roll-Off.

    Science.gov (United States)

    Wang, Shiwei; Koickal, Thomas Jacob; Hamilton, Alister; Cheung, Rebecca; Smith, Leslie S

    2015-06-01

    This paper presents the design and experimental results of a cochlea filter in analog very large scale integration (VLSI) which highly resembles physiologically measured response of the mammalian cochlea. The filter consists of three specialized sub-filter stages which respectively provide passive response in low frequencies, actively tunable response in mid-band frequencies and ultra-steep roll-off at transition frequencies from pass-band to stop-band. The sub-filters are implemented in balanced ladder topology using floating active inductors. Measured results from the fabricated chip show that wide range of mid-band tuning including gain tuning of over 20 dB, Q factor tuning from 2 to 19 as well as the bio-realistic center frequency shift are achieved by adjusting only one circuit parameter. Besides, the filter has an ultra-steep roll-off reaching over 300 dB/dec. By changing biasing currents, the filter can be configured to operate with center frequencies from 31 Hz to 8 kHz. The filter is 9th order, consumes 59.5 ∼ 90.0 μW power and occupies 0.9 mm2 chip area. A parallel bank of the proposed filter can be used as the front-end in hearing prosthesis devices, speech processors as well as other bio-inspired auditory systems owing to its bio-realistic behavior, low power consumption and small size.

  15. Electronically Tunable Current Controlled Current Conveyor Transconductance Amplifier-Based Mixed-Mode Biquadratic Filter with Resistorless and Grounded Capacitors

    Directory of Open Access Journals (Sweden)

    Hua-Pin Chen

    2017-03-01

    Full Text Available A new electronically tunable mixed-mode biquadratic filter with three current controlled current conveyor transconductance amplifiers (CCCCTAs and two grounded capacitors is proposed. With current input, the filter can realise lowpass (LP, bandpass (BP, highpass (HP, bandstop (BS and allpass (AP responses in current mode and LP, BP and HP responses in transimpedance mode. With voltage input, the filter can realise LP, BP, HP, BS and AP responses in voltage and transadmittance modes. Other attractive features of the mixed-mode biquadratic filter are (1 the use of two grounded capacitors, which is ideal for integrated circuit implementation; (2 orthogonal control of the quality factor (Q and resonance angular frequency (ωo for easy electronic tenability; (3 low input impedance and high output impedance for current signals; (4 high input impedance for voltage signal; (5 avoidance of need for component-matching conditions; (6 resistorless and electronically tunable structure; (7 low active and passive sensitivities; and (8 independent control of the voltage transfer gains without affecting the parameters ωo and Q.

  16. Tunable all-optical devices based on liquid-filled photonic crystal fibers

    DEFF Research Database (Denmark)

    Rosberg, Christian Romer; Bennet, Francis; Neshev, Dragomir N.

    of discrete and nonlinear light propagation in extended two-dimensional periodic systems. We experimentally demonstrate strongly tunable beam diffraction in a triangular waveguide array created by infiltration of a high index liquid into the cladding holes of a standard PCF, and employ the thermal...... high-precision fabrication procedures, and provides high tunability and nonlinearity at moderate laser powers while taking advantage of a compact experimental setup. The increasingly broad range of PCF structures available could stimulate further efforts in applying them in discrete nonlinear optics...

  17. An optical technique to measure the frequency and mode emission of tunable lasers

    International Nuclear Information System (INIS)

    Marchetti, S.; Simili, R.

    1988-01-01

    To use mode tunable lasers it is necessary to measure the laser frequency and the mode emission. This problem is very important when waveguide lasers are used. Normally this information is obtained by a heterodyne technique, but there are some difficulties to perform this method in a large electrical noise environment, when pulsed of radiofrequency lasers are used. This laser information was obtained by using an alternative low-cost optical system. With this apparatus the cavity pulling was measured and an upper limit for the linewidth of a radiofrequency, high pressure, line and mode-tunable, CO 2 laser was roughly estimated

  18. Tunability of the FBG group delay through acousto-optic modulation

    Science.gov (United States)

    Marques, Carlos A. F.; Oliveira, Roberson A.; Pohl, Alexandre A. P.; Nogueira, Rogério N.

    2013-03-01

    A new method for fine control of the group delay of a fiber Bragg grating (FBG) is presented. It is based on an acoustic wave applied to the fiber. The standing acoustic wave imposes a periodic chirp to the uniform FBG. Tunability is obtained through adjustment of the intensity and/or frequency of the acoustic wave. A fast switching time of ∼17 μs was achieved. The experimental results were verified by theoretical simulation showing a good agreement between them. It can be used for different applications such as tunable narrow dispersion compensator for independent coarse wavelength division multiplexing (CWDM) channels or optical delay lines.

  19. All-optical clock recovery of NRZ-DPSK signals using optical resonator-type filters

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Seoane, Jorge; Ji, Hua

    2009-01-01

    It is shown how introducing a limited rise time to the driving signal enables all-optical clock recovery of NRZ-DPSK signals generated using a phase modulator. A Fabry-Perot filter is used to generate the optical clock.......It is shown how introducing a limited rise time to the driving signal enables all-optical clock recovery of NRZ-DPSK signals generated using a phase modulator. A Fabry-Perot filter is used to generate the optical clock....

  20. A bias-tunable electron-spin filter based on a two-dimensional electron gas modulated by ferromagnetic-Schottky metal stripes

    Energy Technology Data Exchange (ETDEWEB)

    Lu Jianduo, E-mail: l_j316@163.co [Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan 430081 (China); Li Yunbao; Yun Meijuan [Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan 430081 (China); Zheng Wei [Key Laboratory of Dynamic Geodesy, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077 (China)

    2011-03-28

    We investigate the effect of the bias in an electron-spin filter based on a two-dimensional electron gas modulated by ferromagnetic-Schottky metal stripes. The numerical results show that the electron transmission and the conductance as well as the spin polarization are strongly dependent on the bias applied to the device. - Research highlights: We propose a bias-tunable electron-spin filter. The transmission and the conductance depend on the bias and the electron energy. The spin polarization depends on the bias and the electron energy. The results are helpful for making new types of bias-tunable spin filters.

  1. Characterization of tunable light source by optical parametric oscillator for high resolution spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J. W. [Ewha Womens Univ., Seoul (Korea); Rhee, B. G. [Sejong Univ., Seoul (Korea); Park, S. W. [Yonsei Univ., Seoul (Korea); Noh, J. W. [Inha Univ., Incheon (Korea)

    1998-04-01

    A tunable light source is developed by the optical parametric oscillator, which is very useful for a high resolution spectroscopy. The electronic structure of molecules and atoms can be examined by a proper coherent light source. Optical parametric oscillator provides light sources stable and widely tunable. In this work, the characteristics of the parametric optical generation are examined in the LiNbO{sub 3}. The theoretical analysis as well as the experimental measurement is performed. The pump laser is a second harmonic of Nd:YAG laser, and the parametric gain is measured. The characteristics of singly resonant oscillator and doubly resonant oscillator is studied as a function of temperature. It is found that 1mole% MgO:LiNbO{sub 3} crystal provides the tunability from 0.6{mu}m to 3.0{mu}m wavelength. Both the critical and noncritical phase matching are studied. The optical damage occurring in a congruent LiNbO{sub 3} crystal was not observed in 1mole% MgO:LiNbO{sub 3} crystal, opening a possibility for a high power optical parametric oscillation generation. The current work can be extended to an experiment employing the fundamental Nd:YAG as pump to provide a coherent light source for the study of molecular vibrations. 28 refs., 14 figs., 3 tabs. (Author)

  2. Remote optically-tunable transimpedance amplifiers for quantum well diodes

    Energy Technology Data Exchange (ETDEWEB)

    Carraresi, L.; Landi, G.; Rocchi, S.; Vignoli, V

    1999-08-01

    In a previous paper we discussed the advantages in using linear optical transmission systems based on quantum well diodes in modern high energy physics experiments. In this paper, after a short summary of the quantum well theory, the electronics section of the above optical transmission system is presented. In particular the basic configuration of a transimpedance amplifier and the arrangement of an optical remote control system for the amplifier gain and bandwidth tuning are discussed.

  3. Remote optically-tunable transimpedance amplifiers for quantum well diodes

    International Nuclear Information System (INIS)

    Carraresi, L.; Landi, G.; Rocchi, S.; Vignoli, V.

    1999-01-01

    In a previous paper we discussed the advantages in using linear optical transmission systems based on quantum well diodes in modern high energy physics experiments. In this paper, after a short summary of the quantum well theory, the electronics section of the above optical transmission system is presented. In particular the basic configuration of a transimpedance amplifier and the arrangement of an optical remote control system for the amplifier gain and bandwidth tuning are discussed

  4. Optical Pumping of the Electronic and Nuclear Spin of Single Charge-Tunable Quantum Dots

    Science.gov (United States)

    Bracker, A. S.; Stinaff, E. A.; Gammon, D.; Ware, M. E.; Tischler, J. G.; Shabaev, A.; Efros, Al. L.; Park, D.; Gershoni, D.; Korenev, V. L.; Merkulov, I. A.

    2005-02-01

    We present a comprehensive examination of optical pumping of spins in individual GaAs quantum dots as we change the net charge from positive to neutral to negative with a charge-tunable heterostructure. Negative photoluminescence polarization memory is enhanced by optical pumping of ground state electron spins, which we prove with the first measurements of the Hanle effect on an individual quantum dot. We use the Overhauser effect in a high longitudinal magnetic field to demonstrate efficient optical pumping of nuclear spins for all three charge states of the quantum dot.

  5. Optical Protection Filters for Harmful Laser Beams and UV Radiation

    Science.gov (United States)

    Azim M., Osama A.

    2007-02-01

    Due to the rapid growth of radiation protection applications in various devices and instruments, it is essential to use suitable filters for eye protection of the personal working in the radiation field. Different protection filters were produced to protect from four laser beam wavelengths (at 532nm, 632.8nm, 694nm and 1064nm) and block three UV bands (UVA, UVB, and UVC). The design structure of the required dielectric multilayer filters used optical thin film technology. The computer analyses of the multilayer filter formulas were prepared using Macleod Software for the production filter processes. The deposition technique was achieved on optical substrates (Glass BK-7 and Infrasil 301) by dielectric material combinations including Dralo (mixture of oxides TiO2/Al2O3), and Lima (mixture of oxides SiO2/Al2O3); deposition by an electron beam gun. The output transmittance curves for both theoretical and experimental values of all filters are presented. To validate the suitability for use in a `real world', rather than laboratory test application, full environmental assessment was also carried out. These filters exhibited high endurance after exposing them to the durability tests (adhesion, abrasion resistance and humidity) according to military standards MIL-C-675C and MIL-C-48497A.

  6. Optical Protection Filters for Harmful Laser Beams and UV Radiation

    International Nuclear Information System (INIS)

    Azim M, Osama A.

    2007-01-01

    Due to the rapid growth of radiation protection applications in various devices and instruments, it is essential to use suitable filters for eye protection of the personal working in the radiation field. Different protection filters were produced to protect from four laser beam wavelengths (at 532nm, 632.8nm, 694nm and 1064nm) and block three UV bands (UVA, UVB, and UVC). The design structure of the required dielectric multilayer filters used optical thin film technology. The computer analyses of the multilayer filter formulas were prepared using Macleod Software for the production filter processes. The deposition technique was achieved on optical substrates (Glass BK-7 and Infrasil 301) by dielectric material combinations including Dralo (mixture of oxides TiO2/Al2O3), and Lima (mixture of oxides SiO2/Al2O3); deposition by an electron beam gun. The output transmittance curves for both theoretical and experimental values of all filters are presented. To validate the suitability for use in a 'real world', rather than laboratory test application, full environmental assessment was also carried out. These filters exhibited high endurance after exposing them to the durability tests (adhesion, abrasion resistance and humidity) according to military standards MIL-C-675C and MIL-C-48497A

  7. Versatile tunable current-mode universal biquadratic filter using MO-DVCCs and MOSFET-based electronic resistors.

    Science.gov (United States)

    Chen, Hua-Pin

    2014-01-01

    This paper presents a versatile tunable current-mode universal biquadratic filter with four-input and three-output employing only two multioutput differential voltage current conveyors (MO-DVCCs), two grounded capacitors, and a well-known method for replacement of three grounded resistors by MOSFET-based electronic resistors. The proposed configuration exhibits high-output impedance which is important for easy cascading in the current-mode operations. The proposed circuit can be used as either a two-input three-output circuit or a three-input single-output circuit. In the operation of two-input three-output circuit, the bandpass, highpass, and bandreject filtering responses can be realized simultaneously while the allpass filtering response can be easily obtained by connecting appropriated output current directly without using additional stages. In the operation of three-input single-output circuit, all five generic filtering functions can be easily realized by selecting different three-input current signals. The filter permits orthogonal controllability of the quality factor and resonance angular frequency, and no inverting-type input current signals are imposed. All the passive and active sensitivities are low. Postlayout simulations were carried out to verify the functionality of the design.

  8. Versatile Tunable Current-Mode Universal Biquadratic Filter Using MO-DVCCs and MOSFET-Based Electronic Resistors

    Directory of Open Access Journals (Sweden)

    Hua-Pin Chen

    2014-01-01

    Full Text Available This paper presents a versatile tunable current-mode universal biquadratic filter with four-input and three-output employing only two multioutput differential voltage current conveyors (MO-DVCCs, two grounded capacitors, and a well-known method for replacement of three grounded resistors by MOSFET-based electronic resistors. The proposed configuration exhibits high-output impedance which is important for easy cascading in the current-mode operations. The proposed circuit can be used as either a two-input three-output circuit or a three-input single-output circuit. In the operation of two-input three-output circuit, the bandpass, highpass, and bandreject filtering responses can be realized simultaneously while the allpass filtering response can be easily obtained by connecting appropriated output current directly without using additional stages. In the operation of three-input single-output circuit, all five generic filtering functions can be easily realized by selecting different three-input current signals. The filter permits orthogonal controllability of the quality factor and resonance angular frequency, and no inverting-type input current signals are imposed. All the passive and active sensitivities are low. Postlayout simulations were carried out to verify the functionality of the design.

  9. Tunable and switchable all-fiber comb filter using a PBS-based two-stage cascaded Mach-Zehnder interferometer

    Science.gov (United States)

    Luo, Zhi-Chao; Luo, Ai-Ping; Xu, Wen-Cheng

    2011-08-01

    We propose and demonstrate a novel tunable and switchable all-fiber comb filter by employing a polarization beam splitter (PBS)-based two-stage cascaded Mach-Zehnder (M-Z) interferometer. The proposed comb filter consists of a rotatable polarizer, a fiber PBS, a non-3-dB coupler and a 3-dB coupler. By simply adjusting the polarization state of the input light, the dual-function of channel spacing tunable and wavelength switchable (interleaving) operations can be efficiently obtained. The theoretical analysis is verified by the experimental results. A comb filter with both the channel spacing tunable from 0.18 nm to 0.36 nm and the wavelength switchable functions is experimentally demonstrated.

  10. Optical filtering in directly modulated/detected OOFDM systems.

    Science.gov (United States)

    Sánchez, C; Ortega, B; Wei, J L; Capmany, J

    2013-12-16

    This work presents a theoretical investigation on the performance of directly modulated/detected (DM/DD) optical orthogonal frequency division multiplexed (OOFDM) systems subject to optical filtering. The impact of both linear and nonlinear distortion effects are taken into account to calculate the effective signal-to-noise ratio of each subcarrier. These results are then employed to optimize the design parameters of two simple optical filtering structures: a Mach Zehnder interferometer and a uniform fiber Bragg grating, leading to a significant optical power budget improvement given by 3.3 and 3dB, respectively. These can be further increased to 5.5 and 4.2dB respectively when balanced detection configurations are employed. We find as well that this improvement is highly dependent on the clipping ratio.

  11. Magnetic Nanoparticle-Assisted Tunable Optical Patterns from Spherical Cholesteric Liquid Crystal Bragg Reflectors

    OpenAIRE

    Lin, Yali; Yang, Yujie; Shan, Yuwei; Gong, Lingli; Chen, Jingzhi; Li, Sensen; Chen, Lujian

    2017-01-01

    Cholesteric liquid crystals (CLCs) exhibit selective Bragg reflections of circularly polarized (CP) light owing to their spontaneous self-assembly abilities into periodic helical structures. Photonic cross-communication patterns could be generated toward potential security applications by spherical cholesteric liquid crystal (CLC) structures. To endow these optical patterns with tunability, we fabricated spherical CLC Bragg reflectors in the shape of microshells by glass-capillary microfluidi...

  12. Compact Liquid Crystal Based Tunable Band-Stop Filter with an Ultra-Wide Stopband by Using Wave Interference Technique

    Directory of Open Access Journals (Sweden)

    Longzhu Cai

    2017-01-01

    Full Text Available A wave interference filtering section that consists of three stubs of different lengths, each with an individual stopband of its own central frequency, is reported here for the design of band-stop filters (BSFs with ultra-wide and sharp stopbands as well as large attenuation characteristics. The superposition of the individual stopbands provides the coverage over an ultra-wide frequency range. Equations and guidelines are presented for the application of a new wave interference technique to adjust the rejection level and width of its stopband. Based on that, an electrically tunable ultra-wide stopband BSF using a liquid crystal (LC material for ultra-wideband (UWB applications is designed. Careful treatment of the bent stubs, including impedance matching of the main microstrip line and bent stubs together with that of the SMA connectors and impedance adaptors, was carried out for the compactness and minimum insertion and reflection losses. The experimental results of the fabricated device agree very well with that of the simulation. The centre rejection frequency as measured can be tuned between 4.434 and 4.814 GHz when a biased voltage of 0–20 Vrms is used. The 3 dB and 25 dB stopband bandwidths were 4.86 GHz and 2.51 GHz, respectively, which are larger than that of other recently reported LC based tunable BSFs.

  13. Tunable light source for fiber optic lighting applications

    Science.gov (United States)

    Narendran, Nadarajah; Bierman, Andrew; Finney, Mark J.; Edwards, Ian K.

    1997-09-01

    This paper examines the possibility of tuning the lamp spectrum to compensate for color distortions in fiber optic lighting systems. Because most optical fibers have strong absorption in the blue and red wavelength regions, white light entering and propagating down an optical fiber suffers varied amounts of attenuation as a function of wavelength. As a result, the light exiting the optical fiber has a greenish tint that the lighting design community considers undesirable in interior lighting applications. HID lamps are commonly used for the light source in this industry. Certain classes of HID lamps tend to shift in color when their operating position or the input voltage to the lamp is changed. An experimental study is being conducted to characterize the color shift properties of a small HID lamp as a function of tilt and input voltage. The study also examines the possibility of exploiting this color shift to compensate for the color distortions caused by optical fibers. The details of the experiment and the results are presented in this manuscript.

  14. Optical supervised filtering technique based on Hopfield neural network

    Science.gov (United States)

    Bal, Abdullah

    2004-11-01

    Hopfield neural network is commonly preferred for optimization problems. In image segmentation, conventional Hopfield neural networks (HNN) are formulated as a cost-function-minimization problem to perform gray level thresholding on the image histogram or the pixels' gray levels arranged in a one-dimensional array [R. Sammouda, N. Niki, H. Nishitani, Pattern Rec. 30 (1997) 921-927; K.S. Cheng, J.S. Lin, C.W. Mao, IEEE Trans. Med. Imag. 15 (1996) 560-567; C. Chang, P. Chung, Image and Vision comp. 19 (2001) 669-678]. In this paper, a new high speed supervised filtering technique is proposed for image feature extraction and enhancement problems by modifying the conventional HNN. The essential improvement in this technique is to use 2D convolution operation instead of weight-matrix multiplication. Thereby, neural network based a new filtering technique has been obtained that is required just 3 × 3 sized filter mask matrix instead of large size weight coefficient matrix. Optical implementation of the proposed filtering technique is executed easily using the joint transform correlator. The requirement of non-negative data for optical implementation is provided by bias technique to convert the bipolar data to non-negative data. Simulation results of the proposed optical supervised filtering technique are reported for various feature extraction problems such as edge detection, corner detection, horizontal and vertical line extraction, and fingerprint enhancement.

  15. Thermally controlled femtosecond pulse shaping using metasurface based optical filters

    Science.gov (United States)

    Rahimi, Eesa; Şendur, Kürşat

    2018-02-01

    Shaping of the temporal distribution of the ultrashort pulses, compensation of pulse deformations due to phase shift in transmission and amplification are of interest in various optical applications. To address these problems, in this study, we have demonstrated an ultra-thin reconfigurable localized surface plasmon (LSP) band-stop optical filter driven by insulator-metal phase transition of vanadium dioxide. A Joule heating mechanism is proposed to control the thermal phase transition of the material. The resulting permittivity variation of vanadium dioxide tailors spectral response of the transmitted pulse from the stack. Depending on how the pulse's spectrum is located with respect to the resonance of the band-stop filter, the thin film stack can dynamically compress/expand the output pulse span up to 20% or shift its phase up to 360°. Multi-stacked filters have shown the ability to dynamically compensate input carrier frequency shifts and pulse span variations besides their higher span expansion rates.

  16. Application of velocity filtering to optical-flow passive ranging

    Science.gov (United States)

    Barniv, Yair

    1992-01-01

    The performance of the velocity filtering method as applied to optical-flow passive ranging under real-world conditions is evaluated. The theory of the 3-D Fourier transform as applied to constant-speed moving points is reviewed, and the space-domain shift-and-add algorithm is derived from the general 3-D matched filtering formulation. The constant-speed algorithm is then modified to fit the actual speed encountered in the optical flow application, and the passband of that filter is found in terms of depth (sensor/object distance) so as to cover any given range of depths. Two algorithmic solutions for the problems associated with pixel interpolation and object expansion are developed, and experimental results are presented.

  17. Signal filtering algorithm for depth-selective diffuse optical topography

    International Nuclear Information System (INIS)

    Fujii, M; Nakayama, K

    2009-01-01

    A compact filtered backprojection algorithm that suppresses the undesirable effects of skin circulation for near-infrared diffuse optical topography is proposed. Our approach centers around a depth-selective filtering algorithm that uses an inverse problem technique and extracts target signals from observation data contaminated by noise from a shallow region. The filtering algorithm is reduced to a compact matrix and is therefore easily incorporated into a real-time system. To demonstrate the validity of this method, we developed a demonstration prototype for depth-selective diffuse optical topography and performed both computer simulations and phantom experiments. The results show that the proposed method significantly suppresses the noise from the shallow region with a minimal degradation of the target signal.

  18. Variable Delay With Directly-Modulated R-SOA and Optical Filters for Adaptive Antenna Radio-Fiber Access

    DEFF Research Database (Denmark)

    Prince, Kamau; Presi, Marco; Chiuchiarelli, Andrea

    2009-01-01

    types of signals defined in IEEE 802.16 (WiMAX) standard for wireless networks: a 90 Mbps single-carrier signal (64-QAM at 2.4 GHz) and a 78 Mbps multitone orthogonal frequency-division multiple access (OFDMA) signal. The power budget of this configuration supports a 4-element antenna array....... on a directly-modulated reflective emiconductor amplifier (R-SOA) and exploits the interplay between transmission-line dispersion and tunable optical filtering to achieve flexible true time delay, with $2pi$ beam steering at the different antennas. The system was characterized, then successfully tested with two...

  19. Thermally and optically tunable lasing properties from dye-doped holographic polymer dispersed liquid crystal in capillaries

    Science.gov (United States)

    Chen, Maozhou; Dai, Haitao; Wang, Dongshuo; Yang, Yue; Luo, Dan; Zhang, Xiaodong; Liu, Changlong

    2018-03-01

    In this paper, we investigated tunable lasing properties from the dye-doped holographic polymer dispersed liquid crystal (HPDLC) gratings in capillaries with thermal and optical manners. The thermally tunable range of the lasing from the dye-doped HPDLC reached 8.60 nm with the temperature ranging from 23 °C to 50 °C. The optically tunable laser emission was achieved by doping azo-dye in HPDLC. The transition of azo-dye from trans- to cis-state could induce the reorientation of LC molecules after UV light irradiation, which resulted in the variation of refractive index contrast of LC-rich/polymer-rich layer in HPDLC. Experimentally, the emission wavelength of lasing showed a blueshift (about 2 nm) coupled with decreasing output intensities. The tunable laser based on HPDLC may enable more applications in laser displays, optical communication, biosensors, etc.

  20. Performance analysis of a low power low noise tunable band pass filter for multiband RF front end

    International Nuclear Information System (INIS)

    Manjula, J.; Malarvizhi, S.

    2014-01-01

    This paper presents a low power tunable active inductor and RF band pass filter suitable for multiband RF front end circuits. The active inductor circuit uses the PMOS cascode structure as the negative transconductor of a gyrator to reduce the noise voltage. Also, this structure provides possible negative resistance to reduce the inductor loss with wide inductive bandwidth and high resonance frequency. The RF band pass filter is realized using the proposed active inductor with suitable input and output buffer stages. The tuning of the center frequency for multiband operation is achieved through the controllable current source. The designed active inductor and RF band pass filter are simulated in 180 nm and 45 nm CMOS process using the Synopsys HSPICE simulation tool and their performances are compared. The parameters, such as resonance frequency, tuning capability, noise and power dissipation, are analyzed for these CMOS technologies and discussed. The design of a third order band pass filter using an active inductor is also presented. (semiconductor integrated circuits)

  1. Graphene-based fine-tunable optical delay line for optical beamforming in phased-array antennas.

    Science.gov (United States)

    Tatoli, Teresa; Conteduca, Donato; Dell'Olio, Francesco; Ciminelli, Caterina; Armenise, Mario N

    2016-06-01

    The design of an integrated graphene-based fine-tunable optical delay line on silicon nitride for optical beamforming in phased-array antennas is reported. A high value of the optical delay time (τg=920  ps) together with a compact footprint (4.15  mm2) and optical loss graphene-based Mach-Zehnder interferometer switches and two vertically stacked microring resonators between which a graphene capacitor is placed. The tuning range is obtained by varying the value of the voltage applied to the graphene electrodes, which controls the optical path of the light propagation and therefore the delay time. The graphene provides a faster reconfigurable time and low values of energy dissipation. Such significant advantages, together with a negligible beam-squint effect, allow us to overcome the limitations of conventional RF beamformers. A highly efficient fine-tunable optical delay line for the beamsteering of 20 radiating elements up to ±20° in the azimuth direction of a tile in a phased-array antenna of an X-band synthetic aperture radar has been designed.

  2. Optical parameters of the tunable Bragg reflectors in squid.

    Science.gov (United States)

    Ghoshal, Amitabh; Demartini, Daniel G; Eck, Elizabeth; Morse, Daniel E

    2013-08-06

    Cephalopods (e.g. octopus, squid and cuttlefish) dynamically tune the colour and brightness of their skin for camouflage and communication using specialized skin cells called iridocytes. We use high-resolution microspectrophotometry to investigate individual tunable Bragg structures (consisting of alternating reflectin protein-containing, high-refractive index lamellae and low-refractive index inter-lamellar spaces) in live and chemically fixed iridocytes of the California market squid, Doryteuthis opalescens. This subcellular, single-stack microspectrophotometry allows for spectral normalization, permitting use of a transfer-matrix model of Bragg reflectance to calculate all the parameters of the Bragg stack-the refractive indices, dimensions and numbers of the lamellae and inter-lamellar spaces. Results of the fitting analyses show that eight or nine pairs of low- and high-index layers typically contribute to the observed reflectivity in live cells, whereas six or seven pairs of low- and high-index layers typically contribute to the reflectivity in chemically fixed cells. The reflectin-containing, high-index lamellae of live cells have a refractive index proportional to the peak reflectivity, with an average of 1.405 ± 0.012 and a maximum around 1.44, while the reflectin-containing lamellae in fixed tissue have a refractive index of 1.413 ± 0.015 suggesting a slight increase of refractive index in the process of fixation. As expected, incremental changes in refractive index contribute to the greatest incremental changes in reflectivity for those Bragg stacks with the most layers. The excursions in dimensions required to tune the measured reflected wavelength from 675 (red) to 425 nm (blue) are a decrease from ca 150 to 80 nm for the high-index lamellae and from ca 120 to 50 nm for the low-index inter-lamellar spaces. Fixation-induced dimensional changes also are quantified, leading us to suggest that further microspectrophotometric analyses of this iridocyte

  3. Electrically tunable coherent optical absorption in graphene with ion gel.

    Science.gov (United States)

    Thareja, Vrinda; Kang, Ju-Hyung; Yuan, Hongtao; Milaninia, Kaveh M; Hwang, Harold Y; Cui, Yi; Kik, Pieter G; Brongersma, Mark L

    2015-03-11

    We demonstrate electrical control over coherent optical absorption in a graphene-based Salisbury screen consisting of a single layer of graphene placed in close proximity to a gold back reflector. The screen was designed to enhance light absorption at a target wavelength of 3.2 μm by using a 600 nm-thick, nonabsorbing silica spacer layer. An ionic gel layer placed on top of the screen was used to electrically gate the charge density in the graphene layer. Spectroscopic reflectance measurements were performed in situ as a function of gate bias. The changes in the reflectance spectra were analyzed using a Fresnel based transfer matrix model in which graphene was treated as an infinitesimally thin sheet with a conductivity given by the Kubo formula. The analysis reveals that a careful choice of the ionic gel layer thickness can lead to optical absorption enhancements of up to 5.5 times for the Salisbury screen compared to a suspended sheet of graphene. In addition to these absorption enhancements, we demonstrate very large electrically induced changes in the optical absorption of graphene of ∼3.3% per volt, the highest attained so far in a device that features an atomically thick active layer. This is attributable in part to the more effective gating achieved with the ion gel over the conventional dielectric back gates and partially by achieving a desirable coherent absorption effect linked to the presence of the thin ion gel that boosts the absorption by 40%.

  4. Optimized chaotic Brillouin dynamic grating with filtered optical feedback.

    Science.gov (United States)

    Zhang, Jianzhong; Li, Zhuping; Wu, Yuan; Zhang, Mingjiang; Liu, Yi; Li, Mengwen

    2018-01-16

    Chaotic Brillouin dynamic gratings (BDGs) have special advantages such as the creation of single, permanent and localized BDG. However, the periodic signals induced by conventional optical feedback (COF) in chaotic semiconductor lasers can lead to the generation of spurious BDGs, which will limit the application of chaotic BDGs. In this paper, filtered optical feedback (FOF) is proposed to eliminate spurious BDGs. By controlling the spectral width of the optical filter and its detuning from the laser frequency, semiconductor lasers with FOF operate in the suppression region of the time-delay signature, and chaotic outputs serving as pump waves are then utilized to generate the chaotic BDG in a polarization maintaining fiber. Through comparative analysis of the COF and FOF schemes, it has been demonstrated that spurious BDGs are effectively eliminated and that the reflection characterization of the chaotic BDG is improved. The influence of FOF on the reflection and gain spectra of the chaotic BDG is analyzed as well.

  5. Mid infra-red hyper-spectral imaging with bright super continuum source and fast acousto-optic tuneable filter for cytological applications

    International Nuclear Information System (INIS)

    Farries, Mark; Ward, Jon; Valle, Stefano; Stephens, Gary; Moselund, Peter; Van der Zanden, Koen; Napier, Bruce

    2015-01-01

    Mid-IR imaging spectroscopy has the potential to offer an effective tool for early cancer diagnosis. Current development of bright super-continuum sources, narrow band acousto-optic tunable filters and fast cameras have made feasible a system that can be used for fast diagnosis of cancer in vivo at point of care. The performance of a proto system that has been developed under the Minerva project is described. (paper)

  6. Ultrafast all-optical clock recovery based on phase-only linear optical filtering

    DEFF Research Database (Denmark)

    Maram, Reza; Kong, Deming; Galili, Michael

    2014-01-01

    We report on a novel technique for all-optical clock recovery from RZ OOK data based on phase-only filtering, significantly enhancing the recovered clock quality and energy-efficiency compared to the use of a Fabry-Perot filter....

  7. Tunable Optical Tweezers for Wavelength-dependent Measurements

    Science.gov (United States)

    2012-04-23

    have been studied in an optical levitation scheme over short laser wavelength ranges20 and for dye-loaded di- electric particles.21 In the first case...M. Block, IEEE J. Sel. Top. Quantum Electron. 2, 1066 (1996). 7K. Dholakia, W. M. Lee, L. Paterson, M. P. MacDonald, I. Andreev, P. Mthunzi, C. T. A...Brown, R. F. Marchington, and A. C. Riches, IEEE J. Sel. Top. Quantum Electron. 13, 1646 (2007). 8K. Dholakia, M. P. MacDonald, P. Zemanek, and T

  8. Tunable optical frequency comb enabled scalable and cost-effective multiuser orthogonal frequency-division multiple access passive optical network with source-free optical network units.

    Science.gov (United States)

    Chen, Chen; Zhang, Chongfu; Liu, Deming; Qiu, Kun; Liu, Shuang

    2012-10-01

    We propose and experimentally demonstrate a multiuser orthogonal frequency-division multiple access passive optical network (OFDMA-PON) with source-free optical network units (ONUs), enabled by tunable optical frequency comb generation technology. By cascading a phase modulator (PM) and an intensity modulator and dynamically controlling the peak-to-peak voltage of a PM driven signal, a tunable optical frequency comb source can be generated. It is utilized to assist the configuration of a multiple source-free ONUs enhanced OFDMA-PON where simultaneous and interference-free multiuser upstream transmission over a single wavelength can be efficiently supported. The proposed multiuser OFDMA-PON is scalable and cost effective, and its feasibility is successfully verified by experiment.

  9. A high-transmission liquid-crystal Fabry-Perot infrared filter for electrically tunable spectral imaging detection

    Science.gov (United States)

    Liu, Zhonglun; Xin, Zhaowei; Long, Huabao; Wei, Dong; Dai, Wanwan; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng

    2018-02-01

    Previous studies have presented the usefulness of typical liquid-crystal Fabry-Perot (LC-FP) infrared filters for spectral imaging detection. Yet, their infrared transmission performances still remain to improve or even rise. In this paper, we propose a new type of electrically tunable LC-FP infrared filter to solve the problem above. The key component of the device is a FP resonant cavity composed of two parallel plane mirrors, in which the zinc selenide (ZnSe) materials with a very high transmittance in the mid-long-wavelength infrared regions are used as the electrode substrates and a layer of nano-aluminum (Al) film, which is directly contacted with liquid-crystal materials, is chosen to make high reflective mirrors as well as the electrodes. Particularly, it should be noted that the directional layer made up of ployimide (PI) used previously is removed. The experiment results indicate that the filter can reduce the absorption of infrared wave remarkably, and thus highlight a road to effectively improve the infrared transmittance ability.

  10. The Design of Polymer Planar Optical Triplexer with MMI Filter and Directional Coupler

    Directory of Open Access Journals (Sweden)

    V. Jerabek

    2013-12-01

    Full Text Available Optical bidirectional WDM transceiver is a key component of the Passive Optical Network of the Fiber to the Home topology. Essential parts of such transceivers are filters that combine multiplexing and demultiplexing function of optical signal (triplexing filters. In this paper we report about a design of a new planar optical multi-wavelength selective system triplexing filter, which combines a multimode interference filter with directional coupler based on the epoxy polymer SU-8 on Si/SiO2 substrate. The optical triplexing filter was designed using the Beam Propagation Method. The aim of this project was to optimize the triplexing filter optical parameters and to minimize the planar optical wavelength selective system dimensions. The multimode interference filter was used for separation of downstream optical signal in designed optoelectronic integrated WDM transceiver. The directional coupler was used for adding of upstream optical signal.

  11. A Differential 4-Path Highly Linear Widely Tunable On-Chip Band-Pass Filter

    NARCIS (Netherlands)

    Ghaffari, A.; Klumperink, Eric A.M.; Nauta, Bram

    2010-01-01

    Abstract A passive switched capacitor RF band-pass filter with clock controlled center frequency is realized in 65nm CMOS. An off-chip transformer which acts as a balun, improves filter-Q and realizes impedance matching. The differential architecture reduces clock-leakage and suppresses selectivity

  12. All-optical OFDM demultiplexing by spectral magnification and optical band-pass filtering

    DEFF Research Database (Denmark)

    Palushani, Evarist; Mulvad, Hans Christian Hansen; Kong, Deming

    2013-01-01

    We propose spectral magnification of optical-OFDM super-channels using time-lenses, enabling reduced inter-carrier-interference in subcarrier detection by simple band-pass filtering. A demonstration on an emulated 100 Gbit/s DPSK optical-OFDM channel shows improved sensitivities after 4-times spe...

  13. Ion-optical properties of Wien's filters with inhomogeneous fields

    International Nuclear Information System (INIS)

    Golikov, Yu.K.; Matyshev, A.A.; Solov'ev, K.V.

    1991-01-01

    Common conditions of beam stigmatic focusing in the Wien filters with direct axial trajectory in arbitrary two-dimensional inhomogeneous crossed electrical magnetic fields are obtained. Coefficients for geometrical aberrations of the second order of the crossed field system, characterized by stigmatic focusing properties, are found. Possibility of synthesis on the basis of the developed field system theory with required ion-optical properties is shown

  14. Tunable band gap and optical properties of surface functionalized Sc2C monolayer

    International Nuclear Information System (INIS)

    Wang Shun; Du Yu-Lei; Liao Wen-He

    2017-01-01

    Using the density functional theory, we have investigated the electronic and optical properties of two-dimensional Sc 2 C monolayer with OH, F, or O chemical groups. The electronic structures reveal that the functionalized Sc 2 C monolayers are semiconductors with a band gap of 0.44–1.55 eV. The band gap dependent optical parameters, like dielectric function, absorption coefficients, reflectivity, loss function, and refraction index were also calculated for photon energy up to 20 eV. At the low-energy region, each optical parameter shifts to red, and the peak increases obviously with the increase of the energy gap. Consequently, Sc 2 C monolayer with a tunable band gap by changing the type of surface chemical groups is a promising 2D material for optoelectronic devices. (paper)

  15. Tunable High Harmonic Generation driven by a Visible Optical Parametric Amplifier

    Directory of Open Access Journals (Sweden)

    Keathley P.

    2013-03-01

    Full Text Available We studied high-harmonic generation (HHG in Ar, Ne and He gas jets using a broadly tunable, high-energy optical parametric amplifier (OPA in the visible wavelength range. We optimized the noncollinear OPA to deliver tunable, femtosecond pulses with 200-500 μJ energy at 1-kHz repetition rate with excellent spatiotemporal properties, suitable for HHG experiments. By tuning the central wavelength of the OPA while keeping energy, duration and beam size constant, we experimentally studied the scaling law of conversion efficiency and cut-off energy with the driver wavelength in argon and helium respectively. Our measurements show a λ−5.9±0.9 wavelength dependence of the conversion efficiency and a λ1.7±0.2 dependence of the HHG cut-off photon energy over the full visible range in agreement with previous experiments of near- and mid-IR wavelengths. By tuning the central wavelength of the driver source and changing the gas, the high order harmonic spectra in the extreme ultraviolet cover the full range of photon energy between ~25 eV and ~100 eV. Due to the high coherence intrinsic in HHG, as well as the broad and continuous tunability in the extreme UV range, a high energy, high repetition rate version of this source might be an ideal seed for free electron lasers.

  16. Sub–100-nm metafluorophores with digitally tunable optical properties self-assembled from DNA

    Science.gov (United States)

    Woehrstein, Johannes B.; Strauss, Maximilian T.; Ong, Luvena L.; Wei, Bryan; Zhang, David Y.; Jungmann, Ralf; Yin, Peng

    2017-01-01

    Fluorescence microscopy allows specific target detection down to the level of single molecules and has become an enabling tool in biological research. To transduce the biological information to an imageable signal, we have developed a variety of fluorescent probes, such as organic dyes or fluorescent proteins with different colors. Despite their success, a limitation on constructing small fluorescent probes is the lack of a general framework to achieve precise and programmable control of critical optical properties, such as color and brightness. To address this challenge, we introduce metafluorophores, which are constructed as DNA nanostructure–based fluorescent probes with digitally tunable optical properties. Each metafluorophore is composed of multiple organic fluorophores, organized in a spatially controlled fashion in a compact sub–100-nm architecture using a DNA nanostructure scaffold. Using DNA origami with a size of 90 × 60 nm2, substantially smaller than the optical diffraction limit, we constructed small fluorescent probes with digitally tunable brightness, color, and photostability and demonstrated a palette of 124 virtual colors. Using these probes as fluorescent barcodes, we implemented an assay for multiplexed quantification of nucleic acids. Additionally, we demonstrated the triggered in situ self-assembly of fluorescent DNA nanostructures with prescribed brightness upon initial hybridization to a nucleic acid target. PMID:28691083

  17. CW seeded optical parametric amplifier providing wavelength and pulse duration tunable nearly transform limited pulses.

    Science.gov (United States)

    Hädrich, S; Gottschall, T; Rothhardt, J; Limpert, J; Tünnermann, A

    2010-02-01

    An optical parametric amplifier that delivers nearly transform limited pulses is presented. The center wavelength of these pulses can be tuned between 993 nm and 1070 nm and, at the same time, the pulse duration is varied between 206 fs and 650 fs. At the shortest pulse duration the pulse energy was increased up to 7.2 microJ at 50 kHz repetition rate. Variation of the wavelength is achieved by applying a tunable cw seed while the pulse duration can be varied via altering the pump pulse duration. This scheme offers superior flexibility and scaling possibilities.

  18. Wide wavelength range tunable one-dimensional silicon nitride nano-grating guided mode resonance filter based on azimuthal rotation

    Directory of Open Access Journals (Sweden)

    Ryoji Yukino

    2017-01-01

    Full Text Available We describe wavelength tuning in a one dimensional (1D silicon nitride nano-grating guided mode resonance (GMR structure under conical mounting configuration of the device. When the GMR structure is rotated about the axis perpendicular to the surface of the device (azimuthal rotation for light incident at oblique angles, the conditions for resonance are different than for conventional GMR structures under classical mounting. These resonance conditions enable tuning of the GMR peak position over a wide range of wavelengths. We experimental demonstrate tuning over a range of 375 nm between 500 nm˜875 nm. We present a theoretical model to explain the resonance conditions observed in our experiments and predict the peak positions with show excellent agreement with experiments. Our method for tuning wavelengths is simpler and more efficient than conventional procedures that employ variations in the design parameters of structures or conical mounting of two-dimensional (2D GMR structures and enables a single 1D GMR device to function as a high efficiency wavelength filter over a wide range of wavelengths. We expect tunable filters based on this technique to be applicable in a wide range of fields including astronomy and biomedical imaging.

  19. Design and fabrication of bandwidth tunable HTS transmit filter using {pi}-shaped waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Sekiya, N., E-mail: nsekiya@yamanashi.ac.j [Department of Electrical Engineering, Yamanashi University, Nakagawa-Sekiya Laboratory, 4-3-11 Takeda, Kofu 400-8511 (Japan); Harada, H.; Nakagawa, Y. [Department of Electrical Engineering, Yamanashi University, Nakagawa-Sekiya Laboratory, 4-3-11 Takeda, Kofu 400-8511 (Japan); Ono, S.; Ohshima, S. [Yamagata University, 4-3-16 Johnan, Yonezawa 992-8510 (Japan)

    2010-11-01

    We have developed a method for tuning the bandwidth of a high-temperature superconducting (HTS) microstrip filter. Several {pi}-shaped waveguides are placed between the resonators, and the bandwidth is tuned in discrete steps by changing the switch states of the waveguides, which changes the coupling coefficient between the resonators. The filter contains 3-pole half-wavelength straight-line resonators and two {pi}-shaped waveguides for bandwidth tuning. It also has several electrical pads distributed around the feed lines for trimming after tuning. The filter was fabricated by depositing YBa{sub 2}Cu{sub 3}O{sub 7} thin film on an MgO substrate and has a measured center frequency of 5.17 GHz and bandwidth of 220 MHz. Use of the {pi}-shaped waveguides to adjust the coupling coefficients and the electrical pads to adjust the external quality factors resulted in 80-MHz bandwidth tuning without increased insertion loss.

  20. Protection of Passive Optical Networks by Using Ring Topology and Tunable Splitters

    Directory of Open Access Journals (Sweden)

    Pavel Lafata

    2013-01-01

    Full Text Available This article proposes an innovative method for protecting of passive optical networks (PONs, especially the central optical unit – optical line termination (OLT. PON networks are typically used in modern high-speed access networks, but there are also several specific applications, such as in business, army or science sector, which require a complex protection and backup system against failures and malfunctions. A standard tree or star topologies, which are usually used for PON networks, are significantly vulnerable mainly against the malfunctions and failures of OLT unit or feeder optical cable. The method proposed in this paper is focused on forming PON network with ring topology using passive optical splitters. The main idea is based on the possibility of placing both OLT units (primary and secondary on the opposite sides of the ring, which can potentially increase the resistance of network. This method is described in the article and scenarios and calculations using symmetric or tunable asymmetric passive optical splitters are included as well.

  1. Separation and Concentration without Clogging Using a High-Throughput Tunable Filter

    Science.gov (United States)

    Mossige, E. J.; Jensen, A.; Mielnik, M. M.

    2018-05-01

    We present a detailed experimental study of a hydrodynamic filtration microchip and show how chip performance can be tuned and clogging avoided by adjusting the flow rates. We demonstrate concentration and separation of microspheres at throughputs as high as 29 ml /min and with 96% pureness. Results of streakline visualizations show that the thickness of a tunable filtration layer dictates the cutoff size and that two different concentration mechanisms exist. Particles larger than pores are concentrated by low-velocity rolling over the filtration pillars, while particles smaller than pores are concentrated by lateral drift across the filtration layer. Results of microscopic particle image velocimetry and particle-tracking velocimetry show that the degree of lateral migration can be quantified by the slip velocity between the particle and the surrounding fluid. Finally, by utilizing differences in inertia and separation mode, we demonstrate size-based separation of particles in a mixture.

  2. Thermally controlled femtosecond pulse shaping using metasurface based optical filters

    Directory of Open Access Journals (Sweden)

    Rahimi Eesa

    2018-02-01

    Full Text Available Shaping of the temporal distribution of the ultrashort pulses, compensation of pulse deformations due to phase shift in transmission and amplification are of interest in various optical applications. To address these problems, in this study, we have demonstrated an ultra-thin reconfigurable localized surface plasmon (LSP band-stop optical filter driven by insulator-metal phase transition of vanadium dioxide. A Joule heating mechanism is proposed to control the thermal phase transition of the material. The resulting permittivity variation of vanadium dioxide tailors spectral response of the transmitted pulse from the stack. Depending on how the pulse’s spectrum is located with respect to the resonance of the band-stop filter, the thin film stack can dynamically compress/expand the output pulse span up to 20% or shift its phase up to 360°. Multi-stacked filters have shown the ability to dynamically compensate input carrier frequency shifts and pulse span variations besides their higher span expansion rates.

  3. Ring-shaped active mode-locked tunable laser using quantum-dot semiconductor optical amplifier

    Science.gov (United States)

    Zhang, Mingxiao; Wang, Yongjun; Liu, Xinyu

    2018-03-01

    In this paper, a lot of simulations has been done for ring-shaped active mode-locked lasers with quantum-dot semiconductor optical amplifier (QD-SOA). Based on the simulation model of QD-SOA, we discussed about the influence towards mode-locked waveform frequency and pulse caused by QD-SOA maximum mode peak gain, active layer loss coefficient, bias current, incident light pulse, fiber nonlinear coefficient. In the meantime, we also take the tunable performance of the laser into consideration. Results showed QD-SOA a better performance than original semiconductor optical amplifier (SOA) in recovery time, line width, and nonlinear coefficients, which makes it possible to output a locked-mode impulse that has a higher impulse power, narrower impulse width as well as the phase is more easily controlled. After a lot of simulations, this laser can realize a 20GHz better locked-mode output pulse after 200 loops, where the power is above 17.5mW, impulse width is less than 2.7ps, moreover, the tunable wavelength range is between 1540nm-1580nm.

  4. Highly Stable Wideband Microwave Extraction by Synchronizing Widely Tunable Optoelectronic Oscillator with Optical Frequency Comb

    Science.gov (United States)

    Hou, D.; Xie, X. P.; Zhang, Y. L.; Wu, J. T.; Chen, Z. Y.; Zhao, J. Y.

    2013-12-01

    Optical frequency combs (OFCs), based on mode-locked lasers (MLLs), have attracted considerable attention in many fields over recent years. Among the applications of OFCs, one of the most challenging works is the extraction of a highly stable microwave with low phase noise. Many synchronisation schemes have been exploited to synchronise an electronic oscillator with the pulse train from a MLL, helping to extract an ultra-stable microwave. Here, we demonstrate novel wideband microwave extraction from a stable OFC by synchronising a single widely tunable optoelectronic oscillator (OEO) with an OFC at different harmonic frequencies, using an optical phase detection technique. The tunable range of the proposed microwave extraction extends from 2 GHz to 4 GHz, and in a long-term synchronisation experiment over 12 hours, the proposed synchronisation scheme provided a rms timing drift of 18 fs and frequency instabilities at 1.2 × 10-15/1 s and 2.2 × 10-18/10000 s.

  5. A broadly tunable autocorrelator for ultra-short, ultra-high power infrared optical pulses

    Energy Technology Data Exchange (ETDEWEB)

    Szarmes, E.B.; Madey, J.M.J. [Duke Univ., Durham, NC (United States)

    1995-12-31

    We describe the design of a crossed-beam, optical autocorrelator that uses an uncoated, birefringent beamsplitter to split a linearly polarized incident pulse into two orthogonally polarized pulses, and a Type II, SHG crystal to generate the intensity autocorrelation function. The uncoated beamsplitter accommodates extremely broad tunability while precluding any temporal distortion of ultrashort optical pulses at the dielectric interface, and the specific design provides efficient operation between 1 {mu}m and 4 {mu}m. Furthermore, the use of Type II SHG completely eliminates any single-beam doubling, so the autocorrelator can be operated at very shallow crossed-beam angles without generating a background pedestal. The autocorrelator has been constructed and installed in the Mark III laboratory at Duke University as a broadband diagnostic for ongoing compression experiments on the chirped-pulse FEL.

  6. Tunable femtosecond laser in the visible range with an intracavity frequency-doubled optical parametric oscillator

    International Nuclear Information System (INIS)

    Zhu Jiang-Feng; Xu Liang; Lin Qing-Feng; Zhong Xin; Han Hai-Nian; Wei Zhi-Yi

    2013-01-01

    We demonstrated experimentally a synchronously pumped intracavity frequency-doubled femtosecond optical parametric oscillator (OPO) using a periodically-poled lithium niobate (PPLN) as the nonlinear material in combination with a lithium triborate (LBO) as the doubling crystal. A Kerr-lens-mode-locked (KLM) Ti:sapphire oscillator at the wavelength of 790 nm was used as the pump source, which was capable of generating pulses with a duration as short as 117 fs. A tunable femtosecond laser covering the 624–672 nm range was realized by conveniently adjusting the OPO cavity length. A maximum average output power of 260 mW in the visible range was obtained at the pump power of 2.2 W, with a typical pulse duration of 205 fs assuming a sech 2 pulse profile. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  7. Electrically tunable Brillouin fiber laser based on a metal-coated single-mode optical fiber

    Directory of Open Access Journals (Sweden)

    S.M. Popov

    Full Text Available We explore tunability of the Brillouin fiber laser employing Joule heating. For this purpose, 10-m-length of a metal-coated single-mode optical cavity fiber has been directly included into an electrical circuit, like a conductor wire. With the current up to ∼3.5 A the laser tuning is demonstrated over a spectrum range of ∼400 MHz. The observed laser line broadening up to ∼2 MHz is explained by frequency drift and mode-hoping in the laser caused by thermal noise. Keywords: Brillouin fiber laser, Metal-coated optical fiber, Laser tuning, Fiber sensors

  8. Investigation of optical pump on dielectric tunability in PZT/PT thin film by THz spectroscopy.

    Science.gov (United States)

    Ji, Jie; Luo, Chunya; Rao, Yunkun; Ling, Furi; Yao, Jianquan

    2016-07-11

    The dielectric spectra of single-layer PbTiO3 (PT), single-layer PbZrxTi1-xO3 (PZT) and multilayer PZT/PT thin films under an external optical field were investigated at room temperature by time-domain terahertz (THz) spectroscopy. Results showed that the real part of permittivity increased upon application of an external optical field, which could be interpreted as hardening of the soft mode and increasing of the damping coefficient and oscillator strength. Furthermore, the central mode was observed in the three films. Among the dielectric property of the three thin films studied, the tunability of the PZT/PT superlattice was the largest.

  9. Band-gap tunable dielectric elastomer filter for low frequency noise

    Science.gov (United States)

    Jia, Kun; Wang, Mian; Lu, Tongqing; Zhang, Jinhua; Wang, Tiejun

    2016-05-01

    In the last decades, diverse materials and technologies for sound insulation have been widely applied in engineering. However, suppressing the noise radiation at low frequency still remains a challenge. In this work, a novel membrane-type smart filter, consisting of a pre-stretched dielectric elastomer membrane with two compliant electrodes coated on the both sides, is presented to control the low frequency noise. Since the stiffness of membrane dominates its acoustic properties, sound transmission band-gap of the membrane filter can be tuned by adjusting the voltage applied to the membrane. The impedance tube experiments have been carried out to measure the sound transmission loss (STL) of the filters with different electrodes, membrane thickness and pre-stretch conditions. The experimental results show that the center frequency of sound transmission band-gap mainly depends on the stress in the dielectric elastomer, and a large band-gap shift (more than 60 Hz) can be achieved by tuning the voltage applied to the 85 mm diameter VHB4910 specimen with pre-stretch {λ }0=3. Based on the experimental results and the assumption that applied electric field is independent of the membrane behavior, 3D finite element analysis has also been conducted to calculate the membrane stress variation. The sound filter proposed herein may provide a promising facility to control low frequency noise source with tonal characteristics.

  10. Design of bandwidth tunable HTS filter using H-shaped waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Y. [Department of Electrical Engineering, University of Yamanashi, Nakagawa-Sekiya Laboratory, 4-3-11 Takeda, Kofu 400-8511 (Japan); Sekiya, N., E-mail: nsekiya@yamanashi.ac.j [Department of Electrical Engineering, University of Yamanashi, Nakagawa-Sekiya Laboratory, 4-3-11 Takeda, Kofu 400-8511 (Japan); Nakagawa, Y. [Department of Electrical Engineering, University of Yamanashi, Nakagawa-Sekiya Laboratory, 4-3-11 Takeda, Kofu 400-8511 (Japan); Ohshima, S. [Yamagata University, 4-3-16 Johnan, Yonezawa 992-8510 (Japan)

    2009-10-15

    We have developed a bandwidth tuning method for use in high-temperature superconducting (HTS) microstrip filters. Several H-shaped waveguides are placed between the resonators, and the bandwidth is adjusted by changing the switch states of the waveguides. The coupling coefficients between the resonators are controlled by switching the connection or isolation of the center gaps of the waveguides so as to tune the bandwidth. The effects of using this method were evaluated by simulation using a filter composed of 3-pole half-wavelength straight-line resonators with an H-shaped waveguide between each pair and additional electric pads for post-tuning trimming. The filter was designed to have a center frequency of 5 GHz and a bandwidth of 100 MHz by using an electromagnetic simulator based on the moment method. The simulation showed that bandwidth tuning of 150 MHz can be obtained by using H-shaped waveguides to adjust the coupling coefficients. It also showed that using additional electric pads around the feed lines, which was previously shown to be useful for trimming to improve insertion loss after center-frequency tuning, is also useful for bandwidth tuning.

  11. 640 Gbit/s Optical Packet Switching using a Novel In-Band Optical Notch-Filter Labeling Scheme

    DEFF Research Database (Denmark)

    Medhin, Ashenafi Kiros; Galili, Michael; Oxenløwe, Leif Katsuo

    2014-01-01

    Optical packet switching of 640 Gbit/s data packets is reported using an in-band optical labeling technique based on notch-filtering of the data spectrum and extracting the label using a bandpass filter. BER 10􀀀9 is achieved.......Optical packet switching of 640 Gbit/s data packets is reported using an in-band optical labeling technique based on notch-filtering of the data spectrum and extracting the label using a bandpass filter. BER 10􀀀9 is achieved....

  12. Numerical optimization of quasi-optical mode converter for frequency step-tunable gyrotron

    International Nuclear Information System (INIS)

    Drumm, O.

    2002-08-01

    This work concentrates on the design of a quasi-optical mode converter for a frequency step-tunable gyrotron. Special attention is paid to the optimization of the conversion and forming of the exited wave of different frequencies inside the resonator. The investigations were part of the HGF-strategy-fonds-project ''Optimization of Tokamak Operation with controlled ECRH-Deposition''. In the resonator of the gyrotron modes can be exited at frequencies between 105 and 140 GHz. With the designed converter the desired field distribution at the output window for all frequencies will be approximately obtained. The newly gained knowledge and invented synthesis methods are applied to this practical example and verified. In this work, the waveguide antenna and the mirror system of the quasi-optical mode converter are presented separately from each other. At the beginning the synthesis of the aperture antenna for a frequency step-tunable design of the Vlasov-type as well as the Denisov-type is considered. As a conclusion of the investigation, the important parameters for the design of all antennas are summarized and the frequency behavior is compared. In the second part of this work new broadband design methods for the synthesis of the mirror surface are presented. These mirrors make an optimal wave forming for all frequencies equally possible. Therefore new quality criteria are introduced for the broadband evaluation of the mirror. Afterwards the surface is varied until the criteria reach an optimum. For the numerical optimization, in this work the gradient method and the extended Katsenelenbaum-Semenov algorithm are invented and applied. The efficient realization of the described algorithms on a computer is the significant point. The theoretical background of the presented methods for the synthesis of a mirror system is based on the general solution of the Helmholtz equation. Due to this, these methods can be utilized in other fields outside the microwave applications in

  13. 640 Gbit/s RZ-to-NRZ format conversion based on optical phase filtering

    DEFF Research Database (Denmark)

    Maram, Reza; Kong, Deming; Galili, Michael

    2014-01-01

    We propose a novel approach for all optical RZ-to-NRZ conversion based on optical phase filtering. The proposed concept is experimentally validated through format conversion of a 640 Gbit/s coherent RZ signal to NRZ signal using a simple phase filter implemented by a commercial optical waveshaper....

  14. Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7 μm wavelength region

    NARCIS (Netherlands)

    Tilma, B.W.; Jiao, Y.; Kotani, J.; Smalbrugge, B.; Ambrosius, H.P.M.M.; Thijs, P.J.A.; Leijtens, X.J.M.; Nötzel, R.; Smit, M.K.; Bente, E.A.J.M.

    2012-01-01

    In this paper we present the design and characterization of a monolithically integrated tunable laser for optical coherence tomography in medicine. This laser is the first monolithic photonic integrated circuit containing quantum-dot amplifiers, phase modulators and passive components. We

  15. Scalable In-Band Optical Notch-Filter Labeling for Ultrahigh Bit Rate Optical Packet Switching

    DEFF Research Database (Denmark)

    Medhin, Ashenafi Kiros; Galili, Michael; Oxenløwe, Leif Katsuo

    2014-01-01

    We propose a scalable in-band optical notch-filter labeling scheme for optical packet switching of high-bit-rate data packets. A detailed characterization of the notch-filter labeling scheme and its effect on the quality of the data packet is carried out in simulation and verified by experimental...... demonstrations. The scheme is able to generate more than 91 different labels that can be applied to 640-Gb/s optical time division multiplexed packets causing an eye opening penalty of $1.2-dB. Experimental demonstration shows that up to 256 packets can be uniquely labeled by employing up to eight notch filters...... with only 0.9-dB power penalty to achieve BER of 1E-9. Using the proposed labeling scheme, optical packet switching of 640 Gb/s data packets is experimentally demonstrated in which two data packets are labeled by making none and one spectral hole using a notch filter and are switched using a LiNbO$_3...

  16. Tunable ultra-broadband polarization filter based on three-core resonance of the fluid-infiltrated and gold-coated photonic crystal fiber

    Science.gov (United States)

    Liu, Yingchao; Chen, Hailiang; Ma, Mingjian; Zhang, Wenxun; Wang, Yujun; Li, Shuguang

    2018-03-01

    We propose a tunable ultra-broadband polarization filter based on three-core resonance of the fluid-infiltrated and gold-coated high birefringent photonic crystal fiber (HB-PCF). Gold film was applied to the inner walls of two cladding air holes and surface plasmon polaritons were generated on its surface. The two gold-coated cladding air holes acted as two defective cores. As the phase matching condition was satisfied, light transmitted in the fiber core and coupled to the two defective cores. The three-core PCF supported three super modes in two orthogonal polarization directions. The coupling characteristics among these modes were investigated using the finite-element method. We found that the coupling wavelengths and strength between these guided modes can be tuned by altering the structural parameters of the designed HB-PCF, such as the size of the voids, thickness of the gold-films and liquid infilling pattern. Under the optimized structural parameters, a tunable broadband polarization filter was realized. For one liquid infilling pattern, we obtained a broadband polarization filter which filtered out the light in y-polarization direction at the wavelength of 1550 nm. For another liquid infilling pattern, we filtered out light in the x-polarization direction at the wavelength of 1310 nm. Our studies on the designed HB-PCF made contributions to the further devising of tunable broadband polarization filters, which are extensively used in telecommunication and sensor systems. Project supported by the National Natural Science Foundation of China (Grant Nos. 61505175 and 61475134) and the Natural Science Foundation of Hebei Province (Grant Nos. F2017203110 and F2017203193).

  17. Tunable electronic, electrical and optical properties of graphene oxide sheets by ion irradiation

    Science.gov (United States)

    Jayalakshmi, G.; Saravanan, K.; Panigrahi, B. K.; Sundaravel, B.; Gupta, Mukul

    2018-05-01

    The tunable electronic, electrical and optical properties of graphene oxide (GO) sheets were investigated using a controlled reduction by 500 keV Ar+-ion irradiation. The carbon to oxygen ratio of the GO sheets upon the ion beam reduction has been estimated using resonant Rutherford backscattering spectrometry analyses and its effect on the electrical and optical properties of GO sheets has been studied using sheet resistance measurements and photoluminescence (PL) measurements. The restoration of sp 2-hybridized carbon atoms within the sp 3 matrix is found to be increases with increasing the Ar+-ion fluences as evident from Fourier transform infrared, and x-ray absorption near-edge structure measurements. The decrease in the number of disorder-induced local density of states (LDOSs) within the π-π* gap upon the reduction causes the shifting of PL emission from near infra-red to blue region and decreases the sheet resistance. The improved electrical and optical properties of GO sheets were correlated to the decrease in the number of LDOSs within the π-π* gap. Our experimental investigations suggest ion beam irradiation is one of an effective approaches to reduce GO to RGO and to tailor its electronic, electrical and optical properties.

  18. Characterization of PDMS samples with variation of its synthesis parameters for tunable optics applications

    Science.gov (United States)

    Marquez-Garcia, Josimar; Cruz-Félix, Angel S.; Santiago-Alvarado, Agustin; González-García, Jorge

    2017-09-01

    Nowadays the elastomer known as polydimethylsiloxane (PDMS, Sylgard 184), due to its physical properties, low cost and easy handle, have become a frequently used material for the elaboration of optical components such as: variable focal length liquid lenses, optical waveguides, solid elastic lenses, etc. In recent years, we have been working in the characterization of this material for applications in visual sciences; in this work, we describe the elaboration of PDMSmade samples, also, we present physical and optical properties of the samples by varying its synthesis parameters such as base: curing agent ratio, and both, curing time and temperature. In the case of mechanical properties, tensile and compression tests were carried out through a universal testing machine to obtain the respective stress-strain curves, and to obtain information regarding its optical properties, UV-vis spectroscopy is applied to the samples to obtain transmittance and absorbance curves. Index of refraction variation was obtained through an Abbe refractometer. Results from the characterization will determine the proper synthesis parameters for the elaboration of tunable refractive surfaces for potential applications in robotics.

  19. Optically tunable spin-exchange energy at donor:acceptor interfaces in organic solar cells

    International Nuclear Information System (INIS)

    Li, Mingxing; Wang, Hongfeng; He, Lei; Zang, Huidong; Xu, Hengxing; Hu, Bin

    2014-01-01

    Spin-exchange energy is a critical parameter in controlling spin-dependent optic, electronic, and magnetic properties in organic materials. This article reports optically tunable spin-exchange energy by studying the line-shape characteristics in magnetic field effect of photocurrent developed from intermolecular charge-transfer states based on donor:acceptor (P3HT:PCBM) system. Specifically, we divide magnetic field effect of photocurrent into hyperfine (at low field   10 mT) regimes. We observe that increasing photoexcitation intensity can lead to a significant line-shape narrowing in magnetic field effect of photocurrent occurring at the spin-exchange regime. We analyze that the line-shape characteristics is essentially determined by the changing rate of magnetic field-dependent singlet/triplet ratio when a magnetic field perturbs the singlet-triplet transition through spin mixing. Based on our analysis, the line-shape narrowing results indicate that the spin-exchange energy at D:A interfaces can be optically changed by changing photoexcitation intensity through the interactions between intermolecular charge-transfer states. Therefore, our experimental results demonstrate an optical approach to change the spin-exchange energy through the interactions between intermolecular charge-transfer states at donor:acceptor interface in organic materials.

  20. Gate-tunable valley-spin filtering in silicene with magnetic barrier

    Energy Technology Data Exchange (ETDEWEB)

    Wu, X. Q., E-mail: xianqiangzhe@126.com [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Meng, H. [School of Physics and Telecommunication Engineering, Shanxi University of Technology, Hanzhong 723001 (China)

    2015-05-28

    We theoretically study the valley- and spin-resolved scattering through magnetic barrier in a one layer thick silicene, using the mode-matching method for the Dirac equation. We show that the spin-valley filtering effect can be achieved and can also be tuned completely through both a top and bottom gate. Moreover, when reversing the sign of the staggered potential, we find the direction of the valley polarization is switched while the direction of spin polarization is unchanged. These results can provide some meaningful information to design valley valve residing on silicene.

  1. Tunable optical coherence tomography in the infrared range using visible photons

    Science.gov (United States)

    Paterova, Anna V.; Yang, Hongzhi; An, Chengwu; Kalashnikov, Dmitry A.; Krivitsky, Leonid A.

    2018-04-01

    Optical coherence tomography (OCT) is an appealing technique for bio-imaging, medicine, and material analysis. For many applications, OCT in mid- and far-infrared (IR) leads to significantly more accurate results. Reported mid-IR OCT systems require light sources and photodetectors which operate in mid-IR range. These devices are expensive and need cryogenic cooling. Here, we report a proof-of-concept demonstration of a wavelength tunable IR OCT technique with detection of only visible range photons. Our method is based on the nonlinear interference of frequency correlated photon pairs. The nonlinear crystal, introduced in the Michelson-type interferometer, generates photon pairs with one photon in the visible and another in the IR range. The intensity of detected visible photons depends on the phase and loss of IR photons, which interact with the sample under study. This enables us to characterize sample properties and perform imaging in the IR range by detecting visible photons. The technique possesses broad wavelength tunability and yields a fair axial and lateral resolution, which can be tailored to the specific application. The work contributes to the development of versatile 3D imaging and material characterization systems working in a broad range of IR wavelengths, which do not require the use of IR-range light sources and photodetectors.

  2. Integration of BST varactors with surface acoustic wave device by film transfer technology for tunable RF filters

    International Nuclear Information System (INIS)

    Hirano, Hideki; Tanaka, Shuji; Kimura, Tetsuya; Koutsaroff, Ivoyl P; Kadota, Michio; Hashimoto, Ken-ya; Esashi, Masayoshi

    2013-01-01

    This paper presents a film transfer process to integrate barium strontium titanate (BST) metal–insulator–metal (MIM) structures with surface acoustic wave (SAW) devices on a lithium niobate (LN) substrate. A high-quality BST film grown on a Si substrate above 650 °C was patterned into the MIM structures, and transferred to a LN substrate below 130 °C by Ar-plasma-activated Au–Au bonding and the Si lost wafer process. Simple test SAW devices with the transferred BST variable capacitors (VCs) were fabricated and characterized. The resonance frequency of a one-port SAW resonator with the VC connected in series changed from 999 to 1018 MHz, when a dc bias voltage of 3 V was applied to the VC. Although the observed frequency tuning range was smaller than expected due to the degradation of BST in the process, the experimental result demonstrated that a tunable SAW filter with the transferred BST VCs was feasible. (paper)

  3. Optimization of thermochromic VO2-based structures with tunable thermal emissivity

    International Nuclear Information System (INIS)

    Li Voti, R.; Larciprete, M.C.; Leahu, G.L.; Bertolotti, M.; Sibilia, C.

    2013-01-01

    In this paper we design and simulate VO 2 /metal multilayers to obtain a large tunability of the thermal emissivity of IR filters in the typical MWIR window of many infrared cameras. The multilayer structure is optimized to realise a low-emissivity filter at high temperatures useful for military purposes. The values of tunability found for VO 2 /metal multilayers are larger than the value for a single thick layer of VO 2 . Innovative SiO 2 /VO 2 synthetic opals are also investigated to enhance the optical tunability by combining the properties of a 3D periodic structure and the specific optical properties of vanadium dioxide.

  4. Self-Calibrating High Resolution Tunable Filter for Remote Gas Sensing Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a compact, robust, optically-based sensor for local and remote sensing of oxygen (O2) at 1.26 µm, carbon dioxide (CO2) at 1.56 µm and other...

  5. Tunable optical nonreciprocity and a phonon-photon router in an optomechanical system with coupled mechanical and optical modes

    Science.gov (United States)

    Li, Guolong; Xiao, Xiao; Li, Yong; Wang, Xiaoguang

    2018-02-01

    We propose a multimode optomechanical system to realize tunable optical nonreciprocity that has the prospect of making an optical diode for information technology. The proposed model consists of two subsystems, each of which contains two optical cavities, injected with a classical field and a quantum signal via a 50:50 beam splitter, and a mechanical oscillator, coupled to both cavities via optomechanical coupling. Meanwhile two cavities and an oscillator in a subsystem are respectively coupled to their corresponding cavities and an oscillator in the other subsystem. Our scheme yields nonreciprocal effects at different frequencies with opposite directions, but each effective linear optomechanical coupling can be controlled by an independent classical one-frequency pump. With this setup one is able to apply quantum states with large fluctuations, which extends the scope of applicable quantum states, and exploit the independence of paths. Moreover, the optimal frequencies for nonreciprocal effects can be controlled by adjusting the relevant parameters. We also exhibit the path switching of two directions, from a mechanical input to two optical output channels, via tuning the signal frequency. In experiment, the considered scheme can be tuned to reach small damping rates of the oscillators relative to those of the cavities, which is more practical and requires less power than in previous schemes.

  6. Demultiplexing of OTDM-DPSK signals based on a single semiconductor optical amplifier and optical filtering

    DEFF Research Database (Denmark)

    Xu, Jing; Ding, Yunhong; Peucheret, Christophe

    2011-01-01

    We propose and demonstrate the use of a single semiconductor optical amplifier (SOA) and optical filtering to time demultiplex tributaries from an optical time division multiplexing-differential phase shift keying (OTDM-DPSK) signal. The scheme takes advantage of the fact that phase variations...... added to the target channel by cross-phase modulation from the control signal are effectively subtracted in the differential demodulation scheme employed for DPSK signals. Demultiplexing from 80 to 40 Gbit=s is demonstrated with moderate power penalty using an SOA with recovery time twice as long...

  7. The effect of self-heating on the performance of a tunable filter with embedded windings in a ferrite LTCC package

    KAUST Repository

    Arabi, Eyad A.; Shamim, Atif

    2015-01-01

    Traditionally, ferrite-based tunable filters are biased by large and bulky electromagnets, which require high currents to overcome the dissipated fields at the air interface between the electromagnet and the ferrite substrate. This problem has been solved by implementing the windings inside the package using ferrite low-temperature co-fired ceramic (LTCC). However, these embedded windings, which are densely packed, generate heat that affects the characteristics of the ferrite material. In this paper, we investigated the heat effects due to embedded windings in ferrite LTCC filters. We also incorporated the heating effects into an electromagnetic simulation model and achieved a good agreement between the simulations and the measurements. We found that increasing the temperature of the filter module from 0 °C to 190 °C by external heating causes the center frequency of the filter to shift by about 1 GHz. Alternatively, when a dc current is passed through the bias windings, heat is generated in the windings to a temperature of 250 °C measured at 260 mA of current. This heat causes the tunability of the filter to increase by more than 2%. © 2015 IEEE.

  8. The effect of self-heating on the performance of a tunable filter with embedded windings in a ferrite LTCC package

    KAUST Repository

    Arabi, Eyad A.

    2015-03-01

    Traditionally, ferrite-based tunable filters are biased by large and bulky electromagnets, which require high currents to overcome the dissipated fields at the air interface between the electromagnet and the ferrite substrate. This problem has been solved by implementing the windings inside the package using ferrite low-temperature co-fired ceramic (LTCC). However, these embedded windings, which are densely packed, generate heat that affects the characteristics of the ferrite material. In this paper, we investigated the heat effects due to embedded windings in ferrite LTCC filters. We also incorporated the heating effects into an electromagnetic simulation model and achieved a good agreement between the simulations and the measurements. We found that increasing the temperature of the filter module from 0 °C to 190 °C by external heating causes the center frequency of the filter to shift by about 1 GHz. Alternatively, when a dc current is passed through the bias windings, heat is generated in the windings to a temperature of 250 °C measured at 260 mA of current. This heat causes the tunability of the filter to increase by more than 2%. © 2015 IEEE.

  9. Analysis of the selected optical parameters of filters protecting against hazardous infrared radiation

    OpenAIRE

    Gralewicz, Grzegorz; Owczarek, Grzegorz

    2016-01-01

    The paper analyses the selected optical parameters of protective optic filters used for protection of the eyes against hazardous radiation within the visible (VIS) and near infrared (NIR) spectrum range. The indexes characterizing transmission and reflection of optic radiation incident on the filter are compared. As it follows from the completed analysis, the newly developed interference filters provide more effective blocking of infrared radiation in comparison with the currently used protec...

  10. Polarization-independent rapidly tunable optical add-drop multiplexer utilizing non-polarizing beam splitters in Ti:LiNbO3

    Science.gov (United States)

    Shin, Yong-Wook; Sung, Won Ju; Eknoyan, O.; Madsen, C. K.; Taylor, H. F.

    2012-04-01

    A polarization-independent four-port wavelength-tunable optical add drop multiplexer (OADM) that utilizes non-polarizing relaxed beam splitters has been analyzed and demonstrated in Ti:LiNbO3 at the 1530 nm wavelength regime. The design utilizes an asymmetric interferometer configuration with strain induced index grating for polarization coupling along its arms that are shifted in position relative to each other. Experimental results of the filter response agree with theoretical predictions. Electrooptic tuning over a range of 15.7 nm at a rate of 0.08 nm/V has been measured. A temporal response < 46 ns to a 20 V step change in tuning voltage has been demonstrated. Fiber-to-fiber insertion loss is ~ 6.5 dB.

  11. Polarization field gradient effects in inhomogeneous metal-ferroelectric bilayers: Optical response and band gap tunability

    Energy Technology Data Exchange (ETDEWEB)

    Vivas C, H., E-mail: hvivasc@unal.edu.co [Grupo de las Propiedades Opticas de los Materiales (POM), Departamento de Fisica, Universidad Nacional de Colombia, Sede Manizales, A.A. 127 (Colombia); Vargas-Hernandez, C. [Grupo de las Propiedades Opticas de los Materiales (POM), Departamento de Fisica, Universidad Nacional de Colombia, Sede Manizales, A.A. 127 (Colombia)

    2012-06-15

    Optical constants, reflectivity response and direct band gap energy (E{sub g}{sup d}) were calculated and simulated by developing an electrodynamic-based model for a three medium system, namely vacuum/ferroelectric film/metallic substrate. Depolarization effects due to the contact between the metallic substrate and the FE film, as well as the spatially dependent profile of the dielectric susceptibility {epsilon}(z) enter into the formalism by adapting the phenomenological Landau-Ginzburg-Devonshire theory (LGD). Absorption coefficient is obtained from the Lambert-Beer-Bouguer (LBB) approximation and the direct band gap energy as a function of the characteristic length is calculated by using the general Tauc power law. Numerical simulations lead to range of values for tunable E{sub g}{sup d} from 2.6 to 2.8 eV for characteristic lengths up to 30% the thickness of the film, in concordance with recent reports.

  12. Design and optical analyses of an arrayed microfluidic tunable prism panel for enhancing solar energy collection

    International Nuclear Information System (INIS)

    Narasimhan, Vinayak; Jiang, Dongyue; Park, Sung-Yong

    2016-01-01

    Highlights: • We present an arrayed tunable prism panel enabling wide tracking and high solar concentration. • A microfluidic technology allows a low-cost, lightweight and precise solar tracking system. • Our prism panel enables high solar concentration up to 2032× factor. • Various liquid prism configurations (stacked prism arrays) and optical materials are considered. • Their impacts on solar beam steering, reflection losses and beam concentration are studied. - Abstract: We present the design and optical analyses of an arrayed microfluidic tunable prism panel that enables wide solar tracking and high solar concentration while minimizing energy loss. Each of the liquid prism modules is implemented by a microfluidic (i.e. non-mechanical) technology based on electrowetting for adaptive solar beam steering. Therefore the proposed platform offers a low-cost, lightweight and precise solar tracking system while obviating the need for bulky and heavy mechanical moving parts essentially required for a conventional motor-driven solar tracker. In this paper, various liquid prism configurations in terms of design (single, double, triple and quad-stacked prism arrays) as well as optical materials are considered and their impact on optical performance aspects such as solar beam steering, reflection losses and beam concentration is studied. Our system is able to achieve a wide solar tracking covering the whole-day movement of the Sun and a reflection loss below 4.4% with a Rayleigh’s film for a quad-stacked prism configuration. Furthermore, an arrayed prism panel is proposed to increase the aperture area and thus allows for the collection of large amounts of sunlight. Our simulation study based on the optical design software, ZEMAX, indicates that the prism panel is capable of high solar concentration up to 2032× factor even without conventional solar tracking devices. We also deal with dispersion characteristics of the materials and their corresponding effect on

  13. A Study on Millimetre-Wave Tunable Bandpass Filter Based on Polymer Cap Deflection

    Directory of Open Access Journals (Sweden)

    Paul-Alain Rolland

    2012-01-01

    Full Text Available This paper presents a new tuning mechanism for millimetre-wave BPF based on deflection of the BCB membrane of BCB packaging cap. A 3-pole parallel-coupled microstrip filter operating at 60 GHz is first implemented on 30 µm-thick BCB polymer substrate and then BCB-capped through our new anti-adhesion layer assisted wafer-level transfer technique. Gold electrodes are fabricated on top of the BCB cap for DC actuation. The implemented BCB capped BPF showed the tuning range of 1.49 GHz from 63.36 GHz to 64.85 GHz with the associated insertion losses of −9.7 dB and −9.4 dB and the return losses better than −11 dB over the tuning range.

  14. Light-enabled reversible self-assembly and tunable optical properties of stable hairy nanoparticles

    Science.gov (United States)

    Chen, Yihuang; Wang, Zewei; He, Yanjie; Yoon, Young Jun; Jung, Jaehan; Zhang, Guangzhao; Lin, Zhiqun

    2018-02-01

    The ability to dynamically organize functional nanoparticles (NPs) via the use of environmental triggers (temperature, pH, light, or solvent polarity) opens up important perspectives for rapid and convenient construction of a rich variety of complex assemblies and materials with new structures and functionalities. Here, we report an unconventional strategy for crafting stable hairy NPs with light-enabled reversible and reliable self-assembly and tunable optical properties. Central to our strategy is to judiciously design amphiphilic star-like diblock copolymers comprising inner hydrophilic blocks and outer hydrophobic photoresponsive blocks as nanoreactors to direct the synthesis of monodisperse plasmonic NPs intimately and permanently capped with photoresponsive polymers. The size and shape of hairy NPs can be precisely tailored by modulating the length of inner hydrophilic block of star-like diblock copolymers. The perpetual anchoring of photoresponsive polymers on the NP surface renders the attractive feature of self-assembly and disassembly of NPs on demand using light of different wavelengths, as revealed by tunable surface plasmon resonance absorption of NPs and the reversible transformation of NPs between their dispersed and aggregated states. The dye encapsulation/release studies manifested that such photoresponsive NPs may be exploited as smart guest molecule nanocarriers. By extension, the star-like block copolymer strategy enables the crafting of a family of stable stimuli-responsive NPs (e.g., temperature- or pH-sensitive polymer-capped magnetic, ferroelectric, upconversion, or semiconducting NPs) and their assemblies for fundamental research in self-assembly and crystallization kinetics of NPs as well as potential applications in optics, optoelectronics, magnetic technologies, sensory materials and devices, catalysis, nanotechnology, and biotechnology.

  15. Tunable and broadband microwave frequency combs based on a semiconductor laser with incoherent optical feedback

    International Nuclear Information System (INIS)

    Zhao Mao-Rong; Wu Zheng-Mao; Deng Tao; Zhou Zhen-Li; Xia Guang-Qiong

    2015-01-01

    Based on a semiconductor laser (SL) with incoherent optical feedback, a novel all-optical scheme for generating tunable and broadband microwave frequency combs (MFCs) is proposed and investigated numerically. The results show that, under suitable operation parameters, the SL with incoherent optical feedback can be driven to operate at a regular pulsing state, and the generated MFCs have bandwidths broader than 40 GHz within a 10 dB amplitude variation. For a fixed bias current, the line spacing (or repetition frequency) of the MFCs can be easily tuned by varying the feedback delay time and the feedback strength, and the tuning range of the line spacing increases with the increase in the bias current. The linewidth of the MFCs is sensitive to the variation of the feedback delay time and the feedback strength, and a linewidth of tens of KHz can be achieved through finely adjusting the feedback delay time and the feedback strength. In addition, mappings of amplitude variation, repetition frequency, and linewidth of MFCs in the parameter space of the feedback delay time and the feedback strength are presented. (paper)

  16. Multilayered phantoms with tunable optical properties for a better understanding of light/tissue interactions

    Science.gov (United States)

    Roig, Blandine; Koenig, Anne; Perraut, François; Piot, Olivier; Vignoud, Séverine; Lavaud, Jonathan; Manfait, Michel; Dinten, Jean-Marc

    2015-03-01

    Light/tissue interactions, like diffuse reflectance, endogenous fluorescence and Raman scattering, are a powerful means for providing skin diagnosis. Instrument calibration is an important step. We thus developed multilayered phantoms for calibration of optical systems. These phantoms mimic the optical properties of biological tissues such as skin. Our final objective is to better understand light/tissue interactions especially in the case of confocal Raman spectroscopy. The phantom preparation procedure is described, including the employed method to obtain a stratified object. PDMS was chosen as the bulk material. TiO2 was used as light scattering agent. Dye and ink were adopted to mimic, respectively, oxy-hemoglobin and melanin absorption spectra. By varying the amount of the incorporated components, we created a material with tunable optical properties. Monolayer and multilayered phantoms were designed to allow several characterization methods. Among them, we can name: X-ray tomography for structural information; Diffuse Reflectance Spectroscopy (DRS) with a homemade fibered bundle system for optical characterization; and Raman depth profiling with a commercial confocal Raman microscope for structural information and for our final objective. For each technique, the obtained results are presented and correlated when possible. A few words are said on our final objective. Raman depth profiles of the multilayered phantoms are distorted by elastic scattering. The signal attenuation through each single layer is directly dependent on its own scattering property. Therefore, determining the optical properties, obtained here with DRS, is crucial to properly correct Raman depth profiles. Thus, it would be permitted to consider quantitative studies on skin for drug permeation follow-up or hydration assessment, for instance.

  17. Selection of unstable patterns and control of optical turbulence by Fourier plane filtering

    DEFF Research Database (Denmark)

    Mamaev, A.V.; Saffman, M.

    1998-01-01

    We report on selection and stabilization of transverse optical patterns in a feedback mirror experiment. Amplitude filtering in the Fourier plane is used to select otherwise unstable spatial patterns. Optical turbulence observed for nonlinearities far above the pattern formation threshold...

  18. Finding trap stiffness of optical tweezers using digital filters.

    Science.gov (United States)

    Almendarez-Rangel, Pedro; Morales-Cruzado, Beatriz; Sarmiento-Gómez, Erick; Pérez-Gutiérrez, Francisco G

    2018-02-01

    Obtaining trap stiffness and calibration of the position detection system is the basis of a force measurement using optical tweezers. Both calibration quantities can be calculated using several experimental methods available in the literature. In most cases, stiffness determination and detection system calibration are performed separately, often requiring procedures in very different conditions, and thus confidence of calibration methods is not assured due to possible changes in the environment. In this work, a new method to simultaneously obtain both the detection system calibration and trap stiffness is presented. The method is based on the calculation of the power spectral density of positions through digital filters to obtain the harmonic contributions of the position signal. This method has the advantage of calculating both trap stiffness and photodetector calibration factor from the same dataset in situ. It also provides a direct method to avoid unwanted frequencies that could greatly affect calibration procedure, such as electric noise, for example.

  19. Semi-analytical model of filtering effects in microwave phase shifters based on semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Chen, Yaohui; Xue, Weiqi; Öhman, Filip

    2008-01-01

    We present a model to interpret enhanced microwave phase shifts based on filter assisted slow and fast light effects in semiconductor optical amplifiers. The model also demonstrates the spectral phase impact of input optical signals.......We present a model to interpret enhanced microwave phase shifts based on filter assisted slow and fast light effects in semiconductor optical amplifiers. The model also demonstrates the spectral phase impact of input optical signals....

  20. Cost-Effective Brillouin Optical Time-Domain Analysis Sensor Using a Single Optical Source and Passive Optical Filtering

    Directory of Open Access Journals (Sweden)

    H. Iribas

    2016-01-01

    Full Text Available We present a simplified configuration for distributed Brillouin optical time-domain analysis sensors that aims to reduce the cost of the sensor by reducing the number of components required for the generation of the two optical waves involved in the sensing process. The technique is based on obtaining the pump and probe waves by passive optical filtering of the spectral components generated in a single optical source that is driven by a pulsed RF signal. The optical source is a compact laser with integrated electroabsorption modulator and the optical filters are based on fiber Bragg gratings. Proof-of-concept experiments demonstrate 1 m spatial resolution over a 20 km sensing fiber with a 0.9 MHz precision in the measurement of the Brillouin frequency shift, a performance similar to that of much more complex setups. Furthermore, we discuss the factors limiting the sensor performance, which are basically related to residual spectral components in the filtering process.

  1. Fabrication of Au/graphene oxide/Ag sandwich structure thin film and its tunable energetics and tailorable optical properties

    Directory of Open Access Journals (Sweden)

    Ruijin Hong

    2017-01-01

    Full Text Available Au/graphene oxide/Ag sandwich structure thin film was fabricated. The effects of graphene oxide (GO and bimetal on the structure and optical properties of metal silver films were investigated by X-ray diffraction (XRD, optical absorption, and Raman intensity measurements, respectively. Compared to silver thin film, Au/graphene oxide/Ag sandwich structure composite thin films were observed with wider optical absorption peak and enhanced absorption intensity. The Raman signal for Rhodamine B molecules based on the Au/graphene oxide/Ag sandwich nanostructure substrate were obviously enhanced due to the bimetal layer and GO layer with tunable absorption intensity and fluorescence quenching effects.

  2. Magnetic Nanoparticle-Assisted Tunable Optical Patterns from Spherical Cholesteric Liquid Crystal Bragg Reflectors

    Directory of Open Access Journals (Sweden)

    Yali Lin

    2017-11-01

    Full Text Available Cholesteric liquid crystals (CLCs exhibit selective Bragg reflections of circularly polarized (CP light owing to their spontaneous self-assembly abilities into periodic helical structures. Photonic cross-communication patterns could be generated toward potential security applications by spherical cholesteric liquid crystal (CLC structures. To endow these optical patterns with tunability, we fabricated spherical CLC Bragg reflectors in the shape of microshells by glass-capillary microfluidics. Water-soluble magnetofluid with Fe3O4 nanoparticles incorporated in the inner aqueous core of CLC shells is responsible for the non-invasive transportable capability. With the aid of an external magnetic field, the reflection interactions between neighboring microshells and microdroplets were identified by varying the mutual distance in a group of magnetically transportable and unmovable spherical CLC structures. The temperature-dependent optical reflection patterns were investigated in close-packed hexagonal arrangements of seven CLC microdroplets and microshells with inverse helicity handedness. Moreover, we demonstrated that the magnetic field-assisted assembly of microshells array into geometric figures of uppercase English letters “L” and “C” was successfully achieved. We hope that these findings can provide good application prospects for security pattern designs.

  3. Magnetic Nanoparticle-Assisted Tunable Optical Patterns from Spherical Cholesteric Liquid Crystal Bragg Reflectors.

    Science.gov (United States)

    Lin, Yali; Yang, Yujie; Shan, Yuwei; Gong, Lingli; Chen, Jingzhi; Li, Sensen; Chen, Lujian

    2017-11-08

    Cholesteric liquid crystals (CLCs) exhibit selective Bragg reflections of circularly polarized (CP) light owing to their spontaneous self-assembly abilities into periodic helical structures. Photonic cross-communication patterns could be generated toward potential security applications by spherical cholesteric liquid crystal (CLC) structures. To endow these optical patterns with tunability, we fabricated spherical CLC Bragg reflectors in the shape of microshells by glass-capillary microfluidics. Water-soluble magnetofluid with Fe₃O₄ nanoparticles incorporated in the inner aqueous core of CLC shells is responsible for the non-invasive transportable capability. With the aid of an external magnetic field, the reflection interactions between neighboring microshells and microdroplets were identified by varying the mutual distance in a group of magnetically transportable and unmovable spherical CLC structures. The temperature-dependent optical reflection patterns were investigated in close-packed hexagonal arrangements of seven CLC microdroplets and microshells with inverse helicity handedness. Moreover, we demonstrated that the magnetic field-assisted assembly of microshells array into geometric figures of uppercase English letters "L" and "C" was successfully achieved. We hope that these findings can provide good application prospects for security pattern designs.

  4. Optical and electrical properties of structured multilayer with tunable transparency rate

    International Nuclear Information System (INIS)

    Bou, Adrien; Torchio, Philippe; Barakel, Damien; Guillou, Aurélie; Thoulon, Pierre-Yves; Ricci, Marc; Ayachi, Boubakeur

    2015-01-01

    An experimental study has been carried out on structured multilayer with tunable transparency rate. In this paper, we present the optical and electrical characterization of an oxide | metal | oxide structured electrode manufactured by e-beam deposition and patterned by a lift-off process. The obtained samples are made of grids with different geometrical parameters that lead to varying surface coverage rate on glass. The electrical and optical parameters of SnO x |Ag|SnO x grids are investigated to determine the efficiency, sustainability and limitations of such structures. A linear relationship between the transmittance of the electrodes and the increase of the surface coverage rate is obtained. Coupled to an optimization process, we are able to define a high transparency in a chosen spectral range. Electrical results show a relative stability of the resistivity from 2.9   ×   10   −  4  Ω.cm for an as-grown electrode to 5.6   ×   10   −  4  Ω.cm for a structured electrode with a surface coverage rate of 59%. (paper)

  5. Tunable optical response at the plasmon-polariton frequency in dielectric-graphene-metamaterial systems

    Science.gov (United States)

    Calvo-Velasco, D. M.; Porras-Montenegro, N.

    2018-04-01

    By using the scattering matrix formalism, it is studied the optical properties of one dimensional photonic crystals made of multiple layers of dielectric and uniaxial anisotropic single negative electric metamaterial with Drude type responses, with inclusions of graphene in between the dielectric-dielectric interfaces (DGMPC). The transmission spectra for transverse electric (TE) and magnetic (TM) polarization are presented as a function of the incidence angle, the graphene chemical potential, and the metamaterial plasma frequencies. It is found for the TM polarization the tunability of the DGMPC optical response with the graphene chemical potential, which can be observed by means of transmission or reflexion bands around the metamaterial plasmon-polariton frequency, with bandwidths depending on both the incidence angle and the metamaterial plasma frequency. Also, the transmission band is observed when losses in the metamaterial slabs are considered for finite systems. The conditions for the appearance of these bands are shown analytically. We consider this work contributes to open new possibilities to the design of photonic devices with DGMPCs.

  6. Tunable Diode Laser Atomic Absorption Spectroscopy for Detection of Potassium under Optically Thick Conditions.

    Science.gov (United States)

    Qu, Zhechao; Steinvall, Erik; Ghorbani, Ramin; Schmidt, Florian M

    2016-04-05

    Potassium (K) is an important element related to ash and fine-particle formation in biomass combustion processes. In situ measurements of gaseous atomic potassium, K(g), using robust optical absorption techniques can provide valuable insight into the K chemistry. However, for typical parts per billion K(g) concentrations in biomass flames and reactor gases, the product of atomic line strength and absorption path length can give rise to such high absorbance that the sample becomes opaque around the transition line center. We present a tunable diode laser atomic absorption spectroscopy (TDLAAS) methodology that enables accurate, calibration-free species quantification even under optically thick conditions, given that Beer-Lambert's law is valid. Analyte concentration and collisional line shape broadening are simultaneously determined by a least-squares fit of simulated to measured absorption profiles. Method validation measurements of K(g) concentrations in saturated potassium hydroxide vapor in the temperature range 950-1200 K showed excellent agreement with equilibrium calculations, and a dynamic range from 40 pptv cm to 40 ppmv cm. The applicability of the compact TDLAAS sensor is demonstrated by real-time detection of K(g) concentrations close to biomass pellets during atmospheric combustion in a laboratory reactor.

  7. Modified-hybrid optical neural network filter for multiple object recognition within cluttered scenes

    Science.gov (United States)

    Kypraios, Ioannis; Young, Rupert C. D.; Chatwin, Chris R.

    2009-08-01

    Motivated by the non-linear interpolation and generalization abilities of the hybrid optical neural network filter between the reference and non-reference images of the true-class object we designed the modifiedhybrid optical neural network filter. We applied an optical mask to the hybrid optical neural network's filter input. The mask was built with the constant weight connections of a randomly chosen image included in the training set. The resulted design of the modified-hybrid optical neural network filter is optimized for performing best in cluttered scenes of the true-class object. Due to the shift invariance properties inherited by its correlator unit the filter can accommodate multiple objects of the same class to be detected within an input cluttered image. Additionally, the architecture of the neural network unit of the general hybrid optical neural network filter allows the recognition of multiple objects of different classes within the input cluttered image by modifying the output layer of the unit. We test the modified-hybrid optical neural network filter for multiple objects of the same and of different classes' recognition within cluttered input images and video sequences of cluttered scenes. The filter is shown to exhibit with a single pass over the input data simultaneously out-of-plane rotation, shift invariance and good clutter tolerance. It is able to successfully detect and classify correctly the true-class objects within background clutter for which there has been no previous training.

  8. Tunable and switchable dual-wavelength single polarization narrow linewidth SLM erbium-doped fiber laser based on a PM-CMFBG filter.

    Science.gov (United States)

    Yin, Bin; Feng, Suchun; Liu, Zhibo; Bai, Yunlong; Jian, Shuisheng

    2014-09-22

    A tunable and switchable dual-wavelength single polarization narrow linewidth single-longitudinal-mode (SLM) erbium-doped fiber (EDF) ring laser based on polarization-maintaining chirped moiré fiber Bragg grating (PM-CMFBG) filter is proposed and demonstrated. For the first time as we know, the CMFBG inscribed on the PM fiber is applied for the wavelength-tunable and-switchable dual-wavelength laser. The PM-CMFBG filter with ultra-narrow transmission band (0.1 pm) and a uniform polarization-maintaining fiber Bragg grating (PM-FBG) are used to select the laser longitudinal mode. The stable single polarization SLM operation is guaranteed by the PM-CMFBG filter and polarization controller. A tuning range of about 0.25 nm with about 0.075 nm step is achieved by stretching the uniform PM-FBG. Meanwhile, the linewidth of the fiber laser for each wavelength is approximate 6.5 and 7.1 kHz with a 20 dB linewidth, which indicates the laser linewidth is approximate 325 Hz and 355 Hz FWHM.

  9. Near-diffraction-limited and low-haze electro-optical tunable liquid crystal lens with floating electrodes.

    Science.gov (United States)

    Li, Liwei; Bryant, Doug; Van Heugten, Tony; Bos, Philip J

    2013-04-08

    A near-diffraction-limited, low-haze and tunable liquid crystal (LC) lens is presented. Building on an understanding of the key factors that have limited the performance of lenses based on liquid crystals, we show a simple design whose optical quality is similar to a high quality glass lens. It uses 'floating' electrodes to provide a smooth, controllable applied potential profile across the aperture to manage the phase profile.

  10. Mode-routed fiber-optic add-drop filter

    Science.gov (United States)

    Moslehi, Behzad (Inventor); Black, Richard James (Inventor); Shaw, Herbert John (Inventor)

    2000-01-01

    New elements mode-converting two-mode grating and mode-filtering two-mode coupler are disclosed and used as elements in a system for communications, add-drop filtering, and strain sensing. Methods of fabrication for these new two-mode gratings and mode-filtering two-mode couplers are also disclosed.

  11. Improvement of chirped pulse contrast using electro-optic birefringence scanning filter method

    International Nuclear Information System (INIS)

    Zeng Shuguang; Wang Xianglin; Wang Qishan; Zhang Bin; Sun Nianchun; Wang Fei

    2013-01-01

    A method using scanning filter to improve the contrast of chirped pulse is proposed, and the principle of this method is analyzed. The scanning filter is compared with the existing pulse-picking technique and nonlinear filtering technique. The scanning filter is a temporal gate that is independent on the intensity of the pulses, but on the instantaneous wavelengths of light. Taking the electro-optic birefringence scanning filter as an example, the application of scanning filter methods is illustrated. Based on numerical simulation and experimental research, it is found that the electro-optic birefringence scanning filter can eliminate a prepulse which is several hundred picoseconds before the main pulse, and the main pulse can maintain a high transmissivity. (authors)

  12. Composition and optical properties tunability of hydrogenated silicon carbonitride thin films deposited by reactive magnetron sputtering

    Science.gov (United States)

    Bachar, A.; Bousquet, A.; Mehdi, H.; Monier, G.; Robert-Goumet, C.; Thomas, L.; Belmahi, M.; Goullet, A.; Sauvage, T.; Tomasella, E.

    2018-06-01

    Radiofrequency reactive magnetron sputtering was used to deposit hydrogenated amorphous silicon carbonitride (a-SiCxNy:H) at 400 °C by sputtering a silicon target under CH4 and N2 reactive gas mixture. Rutherford backscattering spectrometry revealed that the change of reactive gases flow rate (the ratio R = FN2/(FN2+FCH4)) induced a smooth chemical composition tunability from a silicon carbide-like film for R = 0 to a silicon nitride-like one at R = 1 with a large area of silicon carbonitrides between the two regions. The deconvolution of Fourier Transform InfraRed and X-ray photoelectron spectroscopy spectrum highlighted a shift of the chemical environment of the deposited films corresponding to the changes seen by RBS. The consequence of these observations is that a control of refractive index in the range of [1.9-2.5] at λ = 633 nm and optical bandgap in the range [2 eV-3.8 eV] have been obtained which induces that these coatings can be used as antireflective coatings in silicon photovoltaic cells.

  13. Optical filter finesses enhancement based on nested coupled cavities and active medium

    Science.gov (United States)

    Adib, George A.; Sabry, Yasser M.; Khalil, Diaa

    2016-04-01

    Optical filters with relatively large FSR and narrow linewidth are simultaneously needed for different applications. The ratio between the FSR and the 3-dB linewidth is given by finesse of the filter, which is solely determined by the different energy loss mechanisms limited by the technology advancement. In this work, we present a novel coupled-cavity configuration embedding an optical filter and a gain medium; allowing an overall finesse enhancement and simultaneous FSR and 3-dB linewidth engineering beyond the technological limits of the filter fabrication method. The configuration consists of two resonators. An active ring resonator comprises an optical gain medium and a passive resonator. In one configuration, the optical filter is the passive resonator itself. In a second configuration, the passive resonator is another ring resonator that embeds the optical filter. The presented configurations using a semiconductor optical amplifier are applied one time to a mechanically Fabry-Perot filter in the first presented configuration; and a second time to a fiber ring filter in the second presented configuration. The mechanical filter has an original 3-dB linewidth of 1nm and an FSR that is larger than 100nm while the enhanced linewidth is about 0.3nm. The fiber ring filter length is 4 m and directional coupler ratios of 90/10corresponding to a 3-dBlinewidth of about 4MHz and an FSR of 47 MHz. The enhanced 3- dBlinewidth of the overall filter configuration is 200kHz, demonstrating finesse enhancement up to20 times the original finesse of the filter.

  14. Tunable Polymer Fiber Bragg Grating (FBG) Inscription: Fabrication of Dual-FBG Temperature Compensated Polymer Optical Fiber Strain Sensors

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Stefani, Alessio; Bang, Ole

    2012-01-01

    We demonstrate stable wavelength tunable inscription of polymer optical fiber Bragg gratings (FBGs). By straining the fiber during FBG inscription, we linearly tune the center wavelength over 7 nm with less than 1% strain. Above 1% strain, the tuning curve saturates and we show a maximum tuning...... of 12 nm with 2.25% strain. We use this inscription method to fabricate a dual-FBG strain sensor in a poly (methyl methacrylate) single-mode microstructured polymer optical fiber and demonstrate temperature compensated strain sensing around 850 nm....

  15. Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals

    International Nuclear Information System (INIS)

    Hao Qingzhen; Zhao Yanhui; Juluri, Bala Krishna; Kiraly, Brian; Huang, Tony Jun; Liou, Justin; Khoo, Iam Choon

    2011-01-01

    Frequency-addressed tunable transmission is demonstrated in optically thin metallic nanohole arrays embedded in dual-frequency liquid crystals (DFLCs). The optical properties of the composite system are characterized by the transmission spectra of the nanoholes, and a prominent transmission peak is shown to originate from the resonance of localized surface plasmons at the edges of the nanoholes. An ∼17 nm shift in the transmission peak is observed between the two alignment configurations of the liquid crystals. This DFLC-based active plasmonic system demonstrates excellent frequency-dependent switching behavior and could be useful in future nanophotonic applications.

  16. Dataset on electro-optically tunable smart-supercapacitors based on oxygen-excess nanograin tungsten oxide thin film

    Directory of Open Access Journals (Sweden)

    Akbar I. Inamdar

    2017-10-01

    Full Text Available The dataset presented here is related to the research article entitled “Highly Efficient Electro-optically Tunable Smart-supercapacitors Using an Oxygen-excess Nanograin Tungsten Oxide Thin Film” (Akbar et al., 2017 [9] where we have presented a nanograin WO3 film as a bifunctional electrode for smart supercapacitor devices. In this article we provide additional information concerning nanograin tungsten oxide thin films such as atomic force microscopy, Raman spectroscopy, and X-ray diffraction spectroscopy. Moreover, their electrochemical properties such as cyclic voltammetry, electrochemical supercapacitor properties, and electrochromic properties including coloration efficiency, optical modulation and electrochemical impedance spectroscopy are presented.

  17. Tunable UV Filters

    Science.gov (United States)

    Bruner, Marilyn E. (Principal Investigator); Rosenberg, William A.

    1996-01-01

    This report describes an investigation intended to determine the practical short wavelength limit for Fabry-Perot etalons operating in the far ultraviolet. This portion of the investigation includes a design study of multilayer dielectric reflector coatings that would be required by such an etalon. Results of the study indicate that etalons may be made to operate at wavelengths as short as 121 nm.

  18. Analysis of silicon on insulator (SOI) optical microring add-drop filter based on waveguide intersections

    Science.gov (United States)

    Kaźmierczak, Andrzej; Bogaerts, Wim; Van Thourhout, Dries; Drouard, Emmanuel; Rojo-Romeo, Pedro; Giannone, Domenico; Gaffiot, Frederic

    2008-04-01

    We present a compact passive optical add-drop filter which incorporates two microring resonators and a waveguide intersection in silicon-on-insulator (SOI) technology. Such a filter is a key element for designing simple layouts of highly integrated complex optical networks-on-chip. The filter occupies an area smaller than 10μm×10μm and exhibits relatively high quality factors (up to 4000) and efficient signal dropping capabilities. In the present work, the influence of filter parameters such as the microring-resonators radii and the coupling section shape are analyzed theoretically and experimentally

  19. Micro-Mechanical Voltage Tunable Fabry-Perot Filters Formed in (111) Silicon. Degree awarded by Colorado Univ., Boulder, CO

    Science.gov (United States)

    Patterson, James D.

    1997-01-01

    The MEMS (Micro-Electro-Mechanical-Systems) technology is quickly evolving as a viable means to combine micro-mechanical and micro-optical elements on the same chip. One MEMS technology that has recently gained attention by the research community is the micro-mechanical Fabry-Perot optical filter. A MEMS based Fabry-Perot consists of a vertically integrated structure composed of two mirrors separated by an air gap. Wavelength tuning is achieved by applying a bias between the two mirrors resulting in an attractive electrostatic force which pulls the mirrors closer. In this work, we present a new micro-mechanical Fabry-Perot structure which is simple to fabricate and is integratable with low cost silicon photodetectors and transistors. The structure consists of a movable gold coated oxide cantilever for the top mirror and a stationary Au/Ni plated silicon bottom mirror. The fabrication process is single mask level, self aligned, and requires only one grown or deposited layer. Undercutting of the oxide cantilever is carried out by a combination of RIE and anisotropic KOH etching of the (111) silicon substrate. Metallization of the mirrors is provided by thermal evaporation and electroplating. The optical and electrical characteristics of the fabricated devices were studied and show promissing results. A wavelength shift of 120nm with 53V applied bias was demonstrated by one device geometry using 6.27 micrometer air gap. The finesse of the structure was 2.4. Modulation bandwidths ranging from 91KHz to greater than 920KHz were also observed. Theoretical calculations show that if mirror reflectivity, smoothness, and parallelism are improved, a finesse of 30 is attainable. The predictions also suggest that a reduction of the air gap to 1 micrometer results in an increased wavelength tuning range of 175 nm with a CMOS compatible 4.75V.

  20. Tunable single-polarization single-longitudinal-mode erbium-doped fiber ring laser employing a CMFBG filter and saturable absorber

    Science.gov (United States)

    Feng, Suchun; Lu, Shaohua; Peng, Wanjing; Li, Qi; Feng, Ting; Jian, Shuisheng

    2013-04-01

    A tunable single-polarization single-longitudinal-mode (SLM) erbium-doped fiber ring laser is proposed and demonstrated. For the first time as we know, a chirped moiré fiber Bragg grating (CMFBG) filter with ultra-narrow transmission band and a uniform fiber Bragg grating (UFBG) are used to select the laser longitudinal mode. The stable SLM operation of the fiber laser is guaranteed by the combination of the CMFBG filter and 3 m unpumped erbium-doped fiber acting as a saturable absorber. The single polarization operation of the fiber laser is obtained by using an inline broadband polarizer. A tuning range of about 0.7 nm with about 0.1 nm step is achieved by stretching the uniform FBG.

  1. Electrodeless-discharge-vapor-lamp-based Faraday anomalous-dispersion optical filter.

    Science.gov (United States)

    Sun, Qinqing; Zhuang, Wei; Liu, Zhiwen; Chen, Jingbiao

    2011-12-01

    We report an excited-state Faraday anomalous-dispersion optical filter operating on the rubidium 5P(3/2)-5D(5/2) transition (775.9 nm in vacuum) without the use of a pump laser. An electrodeless discharge vapor lamp is employed to replace the Rb vapor cell in a traditional Faraday anomalous-dispersion optical filter system. Atoms can be excited by power rather than a complex frequency-locked pump laser. A proof-of-concept experimental demonstration with a maximum transmission of 1.9% and a filter bandwidth of 650 MHz is presented. © 2011 Optical Society of America

  2. Investigation of Wide-FSR SOI Optical Filters Operating in C and L Bands

    Directory of Open Access Journals (Sweden)

    V. M. N. Passaro

    2012-06-01

    Full Text Available In this paper we present the investigation of optical filters based on triple ring resonator architectures in silicon-on-insulator technology. The generalized approach based on Mason’s rule and delay line signal processing has been implemented for modeling optical filters in Z-domain. A numerical investigation based on the coefficient map has been adopted for designing optical add-drop multiplexers with wide free spectral ranges, as large as 12 THz (~ 96 nm. Low crosstalk, of the order of -20 dB, has been numerically demonstrated in overall transmittances of optimized filters.

  3. Full-field particle velocimetry with a photorefractive optical novelty filter

    International Nuclear Information System (INIS)

    Woerdemann, Mike; Holtmann, Frank; Denz, Cornelia

    2008-01-01

    We utilize the finite time constant of a photorefractive optical novelty filter microscope to access full-field velocity information of fluid flows on microscopic scales. In contrast to conventional methods such as particle image velocimetry and particle tracking velocimetry, not only image acquisition of the tracer particle field but also evaluation of tracer particle velocities is done all-optically by the novelty filter. We investigate the velocity dependent parameters of two-beam coupling based optical novelty filters and demonstrate calibration and application of a photorefractive velocimetry system. Theoretical and practical limits to the range of accessible velocities are discussed

  4. Theoretical model for a background noise limited laser-excited optical filter for doubled Nd lasers

    Science.gov (United States)

    Shay, Thomas M.; Garcia, Daniel F.

    1990-01-01

    A simple theoretical model for the calculation of the dependence of filter quantum efficiency versus laser pump power in an atomic Rb vapor laser-excited optical filter is reported. Calculations for Rb filter transitions that can be used to detect the practical and important frequency-doubled Nd lasers are presented. The results of these calculations show the filter's quantum efficiency versus the laser pump power. The required laser pump powers required range from 2.4 to 60 mW/sq cm of filter aperture.

  5. Optical patterning and dynamics of torons and hopfions in a chiral nematic with photo-tunable equilibrium pitch

    Science.gov (United States)

    Sohn, Hayley; Ackerman, Paul; Smalyukh, Ivan

    Three-dimensional (3D) topological solitons arise in field theories ranging from particle physics to condensed matter and cosmology. They are the 3D counterparts of 2D skyrmions (often called ``baby skyrmions''), which attract a great deal of interest in studies of chiral ferromagnets and enable the emerging field of skyrmionics. In chiral nematic liquid crystals, the stability of such solitons is enhanced by the chiral medium's tendency to twist the director field describing the 3D spatial patterns of molecular alignment. However, their experimental realization, control and detailed studies remain limited. We combine experimental realization and numerical modeling of such light-responsive solitonic structures, including elementary torons and hopfions, in confined chiral nematic liquid crystals with photo-tunable cholesteric pitch. We show that the optical tunability of the pitch allows for using low-intensity light to control the soliton stability, dimensions, spatial patterning and dynamics.

  6. Hiding objects and creating illusions above a carpet filter using a Fourier optics approach.

    Science.gov (United States)

    Wu, Kedi; Wang, Guo Ping

    2010-09-13

    Invisibility carpet cloaks are usually used to hide an object beneath carpet. In this paper we propose and demonstrate a carpet filter to hide objects and create illusions above the filter by using a Fourier optics method. Instead of using transformation optics, we get electromagnetic parameters of the filter by optical transfer functions, which play the role of modulating the propagation of the scattering angular spectrum directly from an object above the filter. By further adding a functional layer onto the filter, we can even camouflage the object so that it appears to be a different object. The analytical results are confirmed by numerical simulations. Our method is completely different from the current coordinate transfer method and may provide another point of view to more clearly understand the mechanism of invisibility cloaks.

  7. Tunable bandpass filter based on partially magnetized ferrite LTCC with embedded windings for SoP applications

    KAUST Repository

    Arabi, Eyad A.; Ghaffar, Farhan A.; Shamim, Atif

    2015-01-01

    to the previously reported filters. A simulation strategy that uses full permeability tensor with arbitrarily directed magnetic fields has been used to model the filter on a partially magnetized ferrite substrate. Special attention has also been paid to approximate

  8. An organic dye-polymer (phenol red-poly (vinyl alcohol)) composite architecture towards tunable -optical and -saturable absorption characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Sreedhar, Sreeja, E-mail: sreejasreedhar83@gmail.com; Muneera, C. I., E-mail: drcimuneera@hotmail.com [Department of Physics, University of Kerala, Kariavattom, Thiruvananthapuram 695581, Kerala (India); Illyaskutty, Navas [Institute for Sensorics and Information Systems (ISIS), Karlsruhe University of Applied Sciences, Moltkestr. 30, D-76133 Karlsruhe (Germany); Sreedhanya, S. [School of Chemical Sciences, M. G. University, Kottayam, Kerala 686560 (India); Philip, Reji [Light and Matter Physics Group, Raman Research Institute, Bangalore 560080 (India)

    2016-05-21

    Herein, we demonstrate that blending an organic dye (guest/filler), with a vinyl polymer (host template), is an inexpensive and simple approach for the fabrication of multifunctional photonic materials which could display an enhancement in the desirable properties of the constituent materials and, at the same time provide novel synergistic properties for the guest-host system. A new guest-host nanocomposite system comprising Phenol Red dye and poly (vinyl alcohol) as guest and host template, respectively, which exhibits tunable optical characteristics and saturable absorption behavior, is introduced. The dependence of local electronic environment provided by the polymer template and the interactions of the polymer molecules with the encapsulated guest molecules on the observed optical/nonlinear absorption behavior is discussed. An understanding of the tunability of the optical/ photophysical processes, with respect to the filler content, as discussed herein could help in the design of improved optical materials for several photonic device applications like organic light emitting diodes and saturable absorbers.

  9. Testbed for Multi-Wavelength Optical Code Division Multiplexing Based on Passive Linear Unitary Filters

    National Research Council Canada - National Science Library

    Yablonovitch, Eli

    2000-01-01

    .... The equipment purchased under this grant has permitted UCLA to purchase a number of broad-band optical components, including especially some unique code division multiplexing filters that permitted...

  10. Tunable error-free optical frequency conversion of a 4ps optical short pulse over 25 nm by four-wave mixing in a polarisation-maintaining optical fibre

    Science.gov (United States)

    Morioka, T.; Kawanishi, S.; Saruwatari, M.

    1994-05-01

    Error-free, tunable optical frequency conversion of a transform-limited 4.0 ps optical pulse signalis demonstrated at 6.3 Gbit/s using four-wave mixing in a polarization-maintaining optical fibre. The process generates 4.0-4.6 ps pulses over a 25nm range with time-bandwidth products of 0.31-0.43 and conversion power penalties of less than 1.5 dB.

  11. Magneto-optical polarization rotation in a ladder-type atomic system for tunable offset locking

    Energy Technology Data Exchange (ETDEWEB)

    Parniak, Michał, E-mail: michal.parniak@fuw.edu.pl; Leszczyński, Adam; Wasilewski, Wojciech [Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw (Poland)

    2016-04-18

    We demonstrate an easily tunable locking scheme for stabilizing frequency-sum of two lasers on a two-photon ladder transition based on polarization rotation in warm rubidium vapors induced by magnetic field and circularly polarized drive field. Unprecedented tunability of the two-photon offset frequency is due to strong splitting and shifting of magnetic states in external field. In our experimental setup, we achieve two-photon detuning of up to 700 MHz.

  12. A pilot study on slit lamp-adapted optical coherence tomography imaging of trabeculectomy filtering blebs.

    NARCIS (Netherlands)

    Theelen, T.; Wesseling, P.; Keunen, J.E.E.; Klevering, B.J.

    2007-01-01

    BACKGROUND: Our study aims to identify anatomical characteristics of glaucoma filtering blebs by means of slit lamp-adapted optical coherence tomography (SL-OCT) and to identify new parameters for the functional prognosis of the filter in the early post-operative period. METHODS: Patients with

  13. Characterization of the bistable wideband optical filter on the basis of nonlinear 2D photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Guryev, I. V., E-mail: guryev@ieee.org; Sukhoivanov, I. A., E-mail: guryev@ieee.org; Andrade Lucio, J. A., E-mail: guryev@ieee.org; Manzano, O. Ibarra, E-mail: guryev@ieee.org; Rodriguez, E. Vargaz, E-mail: guryev@ieee.org; Gonzales, D. Claudio, E-mail: guryev@ieee.org; Chavez, R. I. Mata, E-mail: guryev@ieee.org; Gurieva, N. S., E-mail: guryev@ieee.org [University of Guanajuato, Engineering division (Mexico)

    2014-05-15

    In our work, we investigated the wideband optical filter on the basis of nonlinear photonic crystal. The all-optical flip-flop using ultra-short pulses with duration lower than 200 fs is obtained in such filters. Here we pay special attention to the stability problem of the nonlinear element. To investigate this problem, the temporal response demonstrating the flip-flop have been computed within the certain range of the wavelengths as well as at different input power.

  14. Enhancement of Optical Adaptive Sensing by Using a Dual-Stage Seesaw-Swivel Actuator with a Tunable Vibration Absorber

    Directory of Open Access Journals (Sweden)

    Po-Chien Chou

    2011-05-01

    Full Text Available Technological obstacles to the use of rotary-type swing arm actuators to actuate optical pickup modules in small-form-factor (SFF disk drives stem from a hinge’s skewed actuation, subsequently inducing off-axis aberrations and deteriorating optical quality. This work describes a dual-stage seesaw-swivel actuator for optical pickup actuation. A triple-layered bimorph bender made of piezoelectric materials (PZTs is connected to the suspension of the pickup head, while the tunable vibration absorber (TVA unit is mounted on the seesaw swing arm to offer a balanced force to reduce vibrations in a focusing direction. Both PZT and TVA are designed to satisfy stable focusing operation operational requirements and compensate for the tilt angle or deformation of a disc. Finally, simulation results verify the performance of the dual-stage seesaw-swivel actuator, along with experimental procedures and parametric design optimization confirming the effectiveness of the proposed system.

  15. Widely tunable asymmetric long-period fiber grating with high sensitivity using optical polymer on laser-ablated cladding.

    Science.gov (United States)

    Chen, Nan-Kuang; Hsu, Der-Yi; Chi, Sien

    2007-08-01

    We demonstrate high-efficiency, wideband-tunable, laser-ablated long-period fiber gratings that use an optical polymer overlay. Portions of the fiber cladding are periodically removed by CO(2) laser pulses to induce periodic index changes for coupling the core mode into cladding modes. An optical polymer with a high thermo-optic coefficient with a dispersion distinct from that of silica is used on a deep-ablated cladding structure so that the effective indices of cladding modes become dispersive and the resonant wavelengths can be efficiently tuned. The tuning efficiency can be as high as 15.8 nm/ degrees C, and the tuning range can be wider than 105 nm (1545-1650 nm).

  16. All-optical switching based on a tunable Fano-like resonance in nonlinear ferroelectric photonic crystals

    International Nuclear Information System (INIS)

    Chai, Zhen; Hu, Xiaoyong; Gong, Qihuang

    2013-01-01

    A low-power all-optical switching is presented based on the all-optical tunable Fano-like resonance in a two-dimensional nonlinear ferroelectric photonic crystal made of polycrystalline lithium niobate. An asymmetric Fano-like line shape is achieved in the transmission spectrum by using two cascaded and uncoupled photonic crystal microcavities. The physical mechanism underlying the all-optical switching is attributed to the dynamic shift of the Fano-like resonance peak caused by variations in the dispersion relations of the photonic crystal structure induced by pump light. A large switching efficiency of 61% is reached under excitation of a weak pump light with an intensity as low as 1 MW cm −2 . (paper)

  17. Adaptive oriented PDEs filtering methods based on new controlling speed function for discontinuous optical fringe patterns

    Science.gov (United States)

    Zhou, Qiuling; Tang, Chen; Li, Biyuan; Wang, Linlin; Lei, Zhenkun; Tang, Shuwei

    2018-01-01

    The filtering of discontinuous optical fringe patterns is a challenging problem faced in this area. This paper is concerned with oriented partial differential equations (OPDEs)-based image filtering methods for discontinuous optical fringe patterns. We redefine a new controlling speed function to depend on the orientation coherence. The orientation coherence can be used to distinguish the continuous regions and the discontinuous regions, and can be calculated by utilizing fringe orientation. We introduce the new controlling speed function to the previous OPDEs and propose adaptive OPDEs filtering models. According to our proposed adaptive OPDEs filtering models, the filtering in the continuous and discontinuous regions can be selectively carried out. We demonstrate the performance of the proposed adaptive OPDEs via application to the simulated and experimental fringe patterns, and compare our methods with the previous OPDEs.

  18. Gas refractometry based on an all-fiber spatial optical filter.

    Science.gov (United States)

    Silva, Susana; Coelho, L; André, R M; Frazão, O

    2012-08-15

    A spatial optical filter based on splice misalignment between optical fibers with different diameters is proposed for gas refractometry. The sensing head is formed by a 2 mm long optical fiber with 50 μm diameter that is spliced with a strong misalignment between two single-mode fibers (SMF28) and interrogated in transmission. The misalignment causes a Fabry-Perot behavior along the reduced-size fiber and depending on the lead-out SMF28 position, it is possible to obtain different spectral responses, namely, bandpass or band-rejection filters. It is shown that the spatial filter device is highly sensitive to refractive index changes on a nitrogen environment by means of the gas pressure variation. A maximum sensitivity of -1390 nm/RIU for the bandpass filter was achieved. Both devices have shown similar temperature responses with an average sensitivity of 25.7 pm/°C.

  19. Ultraviolet SO lasers optically pumped by a tunable, line-narrowed KrF laser

    International Nuclear Information System (INIS)

    Stuart, B.C.D.

    1992-06-01

    The feasibility of an ultraviolet energy storage laser based on the long-lived sulfur monoxide A 3 π-χ 3 Σ - electronic transition was investigated, and an ultraviolet laser based on the short-lived SO(B 3 Σ - -χ 3 Σ - ) transition was demonstrated and modeled. Both were optically pumped by a continuously tunable, line-narrowed KrF laser developed for efficient rotationally resolved excitation of SO. SO was produced by both microwave discharge and excimer laser photolysis of the precursor molecules SO 2 and SOCl 2 , with a maximum SO concentration (10 16 cm -3 ) generated by ArF (193 nm) photodissociation of SO 2 . Laser induced fluorescence of SO was used to study the excitation spectroscopy, vibrational branching ratios, lifetimes and deactivation rates. The radiative lifetime of SO(A 3 π 2 ,v' = 5) was measured to be 6.9 μs and that of SO(B,v' = 1) to be 33 ns. Lifetimes in the highly perturbed SO(B,v' = 2) level ranged from 28--90 ns. Measurements and modeling of the excitation saturation fluence as a function of buffer gas pressure determined what fraction of the ground state SO(X) molecules could be excited to SO(A) or SO(B). No evidence of excited state absorption was seen. Lasing on six new ultraviolet SO(B-X) vibrational bands in the range 262--315 nm was demonstrated. SO(B-X) pulse energies of up to 11 μJ were obtained and the gain coefficient was estimated to be 0.1 cm -1 . A multi-level rate equation model of the SO(B-X) excitation and lasing transitions, including collisional rotational mixing, described the dynamics of the lasing and measured output very well. Modeling showed and experiments confirmed that the maximum possible SO laser gain simply corresponded to saturating the excitation of a single rotational level. Collisional coupling of the rotational levels increased the laser output energy

  20. Photonic crystal ring resonator based optical filters for photonic integrated circuits

    International Nuclear Information System (INIS)

    Robinson, S.

    2014-01-01

    In this paper, a two Dimensional (2D) Photonic Crystal Ring Resonator (PCRR) based optical Filters namely Add Drop Filter, Bandpass Filter, and Bandstop Filter are designed for Photonic Integrated Circuits (PICs). The normalized output response of the filters is obtained using 2D Finite Difference Time Domain (FDTD) method and the band diagram of periodic and non-periodic structure is attained by Plane Wave Expansion (PWE) method. The size of the device is minimized from a scale of few tens of millimeters to the order of micrometers. The overall size of the filters is around 11.4 μm × 11.4 μm which is highly suitable of photonic integrated circuits

  1. Spectral and Polarimetric Analysis of Hyperspectral Data Collected by an Acousto-Optic Tunable Filter System

    Science.gov (United States)

    1993-09-23

    dioxide ( TeO2 ) crystal which splits a beam of light entering the sensor into a set of two narrow band, orthogonally polarized images for each...See Figure 3) These laws hold true for Light ry V m .Li t ray , &o r air RefairRefractive lade: a, )’i i .- t 1 V Refractive inaex n’ Glass or

  2. Diffractive centrosymmetric 3D-transmission phase gratings positioned at the image plane of optical systems transform lightlike 4D-WORLD as tunable resonators into spectral metrics...

    Science.gov (United States)

    Lauinger, Norbert

    1999-08-01

    Diffractive 3D phase gratings of spherical scatterers dense in hexagonal packing geometry represent adaptively tunable 4D-spatiotemporal filters with trichromatic resonance in visible spectrum. They are described in the (lambda) - chromatic and the reciprocal (nu) -aspects by reciprocal geometric translations of the lightlike Pythagoras theorem, and by the direction cosine for double cones. The most elementary resonance condition in the lightlike Pythagoras theorem is given by the transformation of the grating constants gx, gy, gz of the hexagonal 3D grating to (lambda) h1h2h3 equals (lambda) 111 with cos (alpha) equals 0.5. Through normalization of the chromaticity in the von Laue-interferences to (lambda) 111, the (nu) (lambda) equals (lambda) h1h2h3/(lambda) 111-factor of phase velocity becomes the crucial resonance factor, the 'regulating device' of the spatiotemporal interaction between 3D grating and light, space and time. In the reciprocal space equal/unequal weights and times in spectral metrics result at positions of interference maxima defined by hyperbolas and circles. A database becomes built up by optical interference for trichromatic image preprocessing, motion detection in vector space, multiple range data analysis, patchwide multiple correlations in the spatial frequency spectrum, etc.

  3. All-optical microscope autofocus based on an electrically tunable lens and a totally internally reflected IR laser.

    Science.gov (United States)

    Bathe-Peters, M; Annibale, P; Lohse, M J

    2018-02-05

    Microscopic imaging at high spatial-temporal resolution over long time scales (minutes to hours) requires rapid and precise stabilization of the microscope focus. Conventional and commercial autofocus systems are largely based on piezoelectric stages or mechanical objective actuators. Objective to sample distance is either measured by image analysis approaches or by hardware modules measuring the intensity of reflected infrared light. We propose here a truly all-optical microscope autofocus taking advantage of an electrically tunable lens and a totally internally reflected infrared probe beam. We implement a feedback-loop based on the lateral position of a totally internally reflected infrared laser on a quadrant photodetector, as an indicator of the relative defocus. We show here how to treat the combined contributions due to mechanical defocus and deformation of the tunable lens. As a result, the sample can be kept in focus without any mechanical movement, at rates up to hundreds of Hertz. The device requires only reflective optics and can be implemented at a fraction of the cost required for a comparable piezo-based actuator.

  4. Broadly tunable, beta-barium-borate-based, pulsed optical parametric oscillators and their potential applications in medicine

    Science.gov (United States)

    Sobey, Mark S.; Clark, Jim; Johnson, Bertram C.

    1995-05-01

    With the recent availability of Beta Barium Borate (BBO) crystals in useful sizes at acceptable market prices, the promise of Optical Parametric Oscillators (OPOs) becoming practical tunable systems is finally being realized. Wavelength coverage from such systems extends from 420 nm to over 2400 nm when pumped in the UV. For medical applications their usage will be limited in the near term to low repetition rates (suitable for selective absorption applications in medicine such as colored tattoo removal or treating vascular lesions. For such high energy devices peak powers necessitate the use of articulating arms for beam delivery. For high repetition rate systems, energy outputs will be in the range of 100 to 500 (mu) J at kHz frequencies (up to 1 W average power). Peak powers are low enough that fiber optic delivery is possible. These systems may find selective absorption applications in ophthalmology.

  5. Elimination of residual amplitude modulation in tunable diode laser wavelength modulation spectroscopy using an optical fiber delay line.

    Science.gov (United States)

    Chakraborty, Arup Lal; Ruxton, Keith; Johnstone, Walter; Lengden, Michael; Duffin, Kevin

    2009-06-08

    A new fiber-optic technique to eliminate residual amplitude modulation in tunable diode laser wavelength modulation spectroscopy is presented. The modulated laser output is split to pass in parallel through the gas measurement cell and an optical fiber delay line, with the modulation frequency / delay chosen to introduce a relative phase shift of pi between them. The two signals are balanced using a variable attenuator and recombined through a fiber coupler. In the absence of gas, the direct laser intensity modulation cancels, thereby eliminating the high background. The presence of gas induces a concentration-dependent imbalance at the coupler's output from which the absolute absorption profile is directly recovered with high accuracy using 1f detection.

  6. Tunable laser applications

    CERN Document Server

    Duarte, FJ

    2008-01-01

    Introduction F. J. Duarte Spectroscopic Applications of Tunable Optical Parametric Oscillators B. J. Orr, R. T. White, and Y. He Solid-State Dye Lasers Costela, I. García-Moreno, and R. Sastre Tunable Lasers Based on Dye-Doped Polymer Gain Media Incorporating Homogeneous Distributions of Functional Nanoparticles F. J. Duarte and R. O. James Broadly Tunable External-Cavity Semiconductor Lasers F. J. Duarte Tunable Fiber Lasers T. M. Shay and F. J. Duarte Fiber Laser Overview and Medical Applications

  7. Super-resolution pupil filtering for visual performance enhancement using adaptive optics

    Science.gov (United States)

    Zhao, Lina; Dai, Yun; Zhao, Junlei; Zhou, Xiaojun

    2018-05-01

    Ocular aberration correction can significantly improve visual function of the human eye. However, even under ideal aberration correction conditions, pupil diffraction restricts the resolution of retinal images. Pupil filtering is a simple super-resolution (SR) method that can overcome this diffraction barrier. In this study, a 145-element piezoelectric deformable mirror was used as a pupil phase filter because of its programmability and high fitting accuracy. Continuous phase-only filters were designed based on Zernike polynomial series and fitted through closed-loop adaptive optics. SR results were validated using double-pass point spread function images. Contrast sensitivity was further assessed to verify the SR effect on visual function. An F-test was conducted for nested models to statistically compare different CSFs. These results indicated CSFs for the proposed SR filter were significantly higher than the diffraction correction (p vision optical correction of the human eye.

  8. Cascaded holographic polymer reflection grating filters for optical-code-division multiple-access applications.

    Science.gov (United States)

    Kostuk, Raymond K; Maeda, Wendi; Chen, Chia-Hung; Djordjevic, Ivan; Vasic, Bane

    2005-12-10

    We evaluate the use of edge-illuminated holographic Bragg filters formed in phenanthrenequinone-doped poly(methyl methacrylate) for optical-code-division multiple-access (OCDMA) coding and decoding applications. Experimental cascaded Bragg filters are formed to select two different wavelengths with a fixed distance between the gratings and are directly coupled to a fiber-measurement system. The configuration and tolerances of the cascaded gratings are shown to be practical for time-wavelength OCDMA applications.

  9. Microwave photonic filters with negative coefficients based on phase inversion in an electro-optic modulator.

    Science.gov (United States)

    Capmany, José; Pastor, Daniel; Martinez, Alfonso; Ortega, Beatriz; Sales, Salvador

    2003-08-15

    We report on a novel technical approach to the implementation of photonic rf filters that is based on the pi phase inversion that a rf modulating signal suffers in an electro-optic Mach-Zehnder modulator, which depends on whether the positive or the negative linear slope of the signal's modulation transfer function is employed. Experimental evidence is provided of the implementation of filters with negative coefficients that shows excellent agreement with results predicted by the theory.

  10. Design and manufacture of super-multilayer optical filters based on PARMS technology

    Science.gov (United States)

    Lü, Shaobo; Wang, Ruisheng; Ma, Jing; Jiang, Chao; Mu, Jiali; Zhao, Shuaifeng; Yin, Xiaojun

    2018-04-01

    Three multilayer interference optical filters, including a UV band-pass, a VIS dual-band-pass and a notch filter, were designed by using Ta2O5, Nb2O5, Al2O3 and SiO2 as high- and low-index materials. During the design of the coating process, a hybrid optical monitoring and RATE-controlled layer thickness control scheme was adopted. The coating process was simulated by using the optical monitoring system (OMS) Simulator, and the simulation result indicated that the layer thickness can be controlled within an error of less than ±0.1%. The three filters were manufactured on a plasma-assisted reactive magnetic sputtering (PARMS) coating machine. The measurements indicate that for the UV band-pass filter, the peak transmittance is higher than 95% and the blocking density is better than OD6 in the 300-1100 nm region, whereas for the dual-band-pass filter, the center wavelength positioning accuracy of the two passbands are less than ±2 nm, the peak transmittance is higher than 95% and blocking density is better than OD6 in the 300-950 nm region. Finally, for the notch filter, the minimum transmittance rates are >90% and >94% in the visible and near infrared, respectively, and the blocking density is better than OD5.5 at 808 nm.

  11. Passband switchable microwave photonic multiband filter

    Science.gov (United States)

    Ge, Jia; Fok, Mable P.

    2015-01-01

    A reconfigurable microwave photonic (MWP) multiband filter with selectable and switchable passbands is proposed and experimentally demonstrated, with a maximum of 12 simultaneous passbands evenly distributed from 0 to 10 GHz. The scheme is based on the generation of tunable optical comb lines using a two-stage Lyot loop filter, such that various filter tap spacings and spectral combinations are obtained for the configuration of the MWP filter. Through polarization state adjustment inside the Lyot loop filter, an optical frequency comb with 12 different comb spacings is achieved, which corresponds to a MWP filter with 12 selectable passbands. Center frequencies of the filter passbands are switchable, while the number of simultaneous passbands is tunable from 1 to 12. Furthermore, the MWP multiband filter can either work as an all-block, single-band or multiband filter with various passband combinations, which provide exceptional operation flexibility. All the passbands have over 30 dB sidelobe suppression and 3-dB bandwidth of 200 MHz, providing good filter selectivity. PMID:26521693

  12. Optimizing detection filters for single-grain optical dating of quartz

    International Nuclear Information System (INIS)

    Ballarini, M.; Wallinga, J.; Duller, G.A.T.; Brouwer, J.C.; Bos, A.J.J.; Van Eijk, C.W.E.

    2005-01-01

    We investigate the use of different optical detection filters for single-grain optically stimulated luminescence (OSL) measurements of quartz samples with a Riso TL/OSL single-grain reader. We selected three filter combinations that considerably improve the light detection efficiency when compared with the 7.5 mm U340 filters that are routinely used. These are the UG1+BG4 filter combination, the 2 mm UG1 and the 2.5 mm U340 filters, which allow a greater transmission in the quartz emission band. This leads to two benefits: (1) more grains can be accepted for equivalent dose analysis, and (2) OSL responses on individual grains are determined with a greater precision. While these three alternative filter combinations perform equally well if compared to each other, we suggest the 2.5 mm thick Hoya U340 to be the filter of choice as it allows the use of blue-diode and IR-diode stimulation sources for bleaching purposes and feldspar detection

  13. Crosstalk elimination in the detection of dual-beam optical tweezers by spatial filtering

    International Nuclear Information System (INIS)

    Ott, Dino; Oddershede, Lene B.; Reihani, S. Nader S.

    2014-01-01

    In dual-beam optical tweezers, the accuracy of position and force measurements is often compromised by crosstalk between the two detected signals, this crosstalk leading to systematic and significant errors on the measured forces and distances. This is true both for dual-beam optical traps where the splitting of the two traps is done by polarization optics and for dual optical traps constructed by other methods, e.g., holographic tweezers. If the two traps are orthogonally polarized, most often crosstalk is minimized by inserting polarization optics in front of the detector; however, this method is not perfect because of the de-polarization of the trapping beam introduced by the required high numerical aperture optics. Here we present a simple and easy-to-implement method to efficiently eliminate crosstalk. The method is based on spatial filtering by simply inserting a pinhole at the correct position and is highly compatible with standard back focal plane photodiode based detection of position and force. Our spatial filtering method reduces crosstalk up to five times better than polarization filtering alone. The effectiveness is dependent on pinhole size and distance between the traps and is here quantified experimentally and reproduced by theoretical modeling. The method here proposed will improve the accuracy of force-distance measurements, e.g., of single molecules, performed by dual-beam optical traps and hence give much more scientific value for the experimental efforts

  14. Tunable All-Optical Wavelength Conversion Based on Cascaded SHG/DFG in a Ti:PPLN Waveguide Using a Single CW Control Laser

    DEFF Research Database (Denmark)

    Hu, Hao; Nouroozi, Rahman; Wang, Wenrui

    2012-01-01

    Tunable all-optical wavelength conversion (AOWC) of a 40-Gb/s RZ-OOK data signal based on cascaded second-harmonic generation (SHG) and difference-frequency generation (DFG) in a Ti:PPLN waveguide is demonstrated. Error-free performances with negligible power penalty are achieved for the wavelength...

  15. Tunable Fiber Bragg Grating Ring Lasers using Macro Fiber Composite Actuators

    Science.gov (United States)

    Geddis, Demetris L.; Allison, Sidney G.; Shams, Qamar A.

    2006-01-01

    The research reported herein includes the fabrication of a tunable optical fiber Bragg grating (FBG) fiber ring laser (FRL)1 from commercially available components as a high-speed alternative tunable laser source for NASA Langley s optical frequency domain reflectometer (OFDR) interrogator, which reads low reflectivity FBG sensors. A Macro-Fiber Composite (MFC) actuator invented at NASA Langley Research Center (LaRC) was selected to tune the laser. MFC actuators use a piezoelectric sheet cut into uniaxially aligned rectangular piezo-fibers surrounded by a polymer matrix and incorporate interdigitated electrodes to deliver electric fields along the length of the piezo-fibers. This configuration enables MFC actuators to produce displacements larger than the original uncut piezoelectric sheet. The FBG filter was sandwiched between two MFC actuators, and when strained, produced approximately 3.62 nm of wavelength shift in the FRL when biasing the MFC actuators from 500 V to 2000 V. This tunability range is comparable to that of other tunable lasers and is adequate for interrogating FBG sensors using OFDR technology. Three different FRL configurations were studied. Configuration A examined the importance of erbium-doped fiber length and output coupling. Configuration B demonstrated the importance of the FBG filter. Configuration C added an output coupler to increase the output power and to isolate the filter. Only configuration C was tuned because it offered the best optical power output of the three configurations. Use of Plastic Optical Fiber (POF) FBG s holds promise for enhanced tunability in future research.

  16. An efficient method for the creation of tunable optical line traps via control of gradient and scattering forces.

    Science.gov (United States)

    Tietjen, Gregory T; Kong, Yupeng; Parthasarathy, Raghuveer

    2008-07-07

    Interparticle interaction energies and other useful physical characteristics can be extracted from the statistical properties of the motion of particles confined by an optical line trap. In practice, however, the potential energy landscape, U(x), imposed by the line provides an extra, and in general unknown, influence on particle dynamics. We describe a new class of line traps in which both the optical gradient and scattering forces acting on a trapped particle are designed to be linear functions of the line coordinate and in which their magnitude can be counterbalanced to yield a flat U(x). These traps are formed using approximate solutions to general relations concerning non-conservative optical forces that have been the subject of recent investigations [Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, Phys. Rev. Lett. 100, 013602-4 (2008).]. We implement the lines using holographic optical trapping and measure the forces acting on silica microspheres, demonstrating the tunability of the confining potential energy landscape. Furthermore, we show that our approach efficiently directs available laser power to the trap, in contrast to other methods.

  17. Generation of tunable chain of three-dimensional optical bottle beams via focused multi-ring hollow Gaussian beam.

    Science.gov (United States)

    Philip, Geo M; Viswanathan, Nirmal K

    2010-11-01

    We report here the generation of a chain of three-dimensional (3-D) optical bottle beams by focusing a π-phase shifted multi-ring hollow Gaussian beam (HGB) using a lens with spherical aberration. The rings of the HGB of suitable radial (k(r)) and axial (k(z)) wave vectors are generated using a double-negative axicon chemically etched in the optical fiber tips. Moving the lens position with respect to the fiber tip results in variation of the semi-angle of the cones of wave vectors of the HGBs and their diameter, using which we demonstrate tunability in the size and the periodicity of the 3-D optical bottle beams over a wide range, from micrometers to millimeters. The propagation characteristics of the beams resulting from focusing of single- and multi-ring HGBs and resulting in a quasi-non-diffracting beam and a chain of 3-D optical bottle beams, respectively, are simulated using only the input beam parameters and are found to agree well with experimental results.

  18. High-energy, tunable, mid-infrared, picosecond optical parametric generation in CdSiP2

    Science.gov (United States)

    Chaitanya Kumar, S.; Jelínek, M.; Baudisch, M.; Zawilski, K. T.; Schunemann, P. G.; Kubecek, V.; Biegert, J.; Ebrahim-Zadeh, M.

    2012-06-01

    We report a tunable, high-energy, single-pass, optical parametric generator (OPG) based on the new nonlinear material, cadmium silicon phosphide, CdSiP2. The OPG is pumped by a laboratory designed cavity-dumped passively mode-locked, diode-pumped, Nd:YAG oscillator, providing 25 μJ pulses in 20 ps at 5 Hz. The pump energy is further boosted by a flashlamp-pumped Nd:YAG amplifier to 2.5 mJ. The OPG is temperature tunable over 1263-1286 nm (23 nm) in the signal and 6153-6731 nm (578 nm) in the idler, corresponding to a total tuning range of 601 nm. Using the single-pass OPG configuration, we have generated signal energy as high as 636 μJ at 1283 nm, together with an idler energy of 33 μJ at 6234 nm, for 2.1 mJ of input pump energy. The signal pulses generated from the OPG have a Gaussian pulse duration of 24 ps and an FWHM spectral bandwidth of 10.4 nm at central wavelength of 1276 nm. The corresponding idler spectrum has an FWHM bandwidth of 140 nm centered at 6404 nm.

  19. Ultra Fast Optical Sectioning: Signal preserving filtering and surface reconstruction

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Poel, Mike van der; Larsen, Rasmus

    2011-01-01

    a signal preserving ltering of the data set is done. The remaining data are used for a smooth surface re- construction creating very plausible surfaces. The data used in our work comes from a newly developed hand held 3D scanner. The scanner is an Ultra Fast Optical Sectioning scanner, which is able...

  20. Miniaturized and Ferrite Based Tunable Bandpass Filters in LCP and LTCC Technologies for SoP Applications

    KAUST Repository

    Arabi, Eyad A.

    2015-01-01

    , namely low temperature co-fired ceramic (LTCC) and the liquid crystal polymers (LCP) is demonstrated. The miniaturized filter is based on a second order topology, which has been modified to improve the selectivity and out-of-band rejection without

  1. All-optical OFDM demultiplexing by spectral magnification and band-pass filtering.

    Science.gov (United States)

    Palushani, E; Mulvad, H C Hansen; Kong, D; Guan, P; Galili, M; Oxenløwe, L K

    2014-01-13

    We propose a simple OFDM receiver allowing for the use of standard WDM receivers to receive spectrally advanced OFDM signals. We propose to spectrally magnify the optical-OFDM super-channels using a spectral telescope consisting of two time-lenses, which enables reduced inter-carrier-interference in subcarrier detection by simple band-pass filtering. A demonstration on an emulated 100 Gbit/s DPSK optical-OFDM channel shows improved sensitivities after 4-times spectral magnification.

  2. All-optical differential equation solver with constant-coefficient tunable based on a single microring resonator.

    Science.gov (United States)

    Yang, Ting; Dong, Jianji; Lu, Liangjun; Zhou, Linjie; Zheng, Aoling; Zhang, Xinliang; Chen, Jianping

    2014-07-04

    Photonic integrated circuits for photonic computing open up the possibility for the realization of ultrahigh-speed and ultra wide-band signal processing with compact size and low power consumption. Differential equations model and govern fundamental physical phenomena and engineering systems in virtually any field of science and engineering, such as temperature diffusion processes, physical problems of motion subject to acceleration inputs and frictional forces, and the response of different resistor-capacitor circuits, etc. In this study, we experimentally demonstrate a feasible integrated scheme to solve first-order linear ordinary differential equation with constant-coefficient tunable based on a single silicon microring resonator. Besides, we analyze the impact of the chirp and pulse-width of input signals on the computing deviation. This device can be compatible with the electronic technology (typically complementary metal-oxide semiconductor technology), which may motivate the development of integrated photonic circuits for optical computing.

  3. Broadband and tunable optical parametric generator for remote detection of gas molecules in the short and mid-infrared.

    Science.gov (United States)

    Lambert-Girard, Simon; Allard, Martin; Piché, Michel; Babin, François

    2015-04-01

    The development of a novel broadband and tunable optical parametric generator (OPG) is presented. The OPG properties are studied numerically and experimentally in order to optimize the generator's use in a broadband spectroscopic LIDAR operating in the short and mid-infrared. This paper discusses trade-offs to be made on the properties of the pump, crystal, and seeding signal in order to optimize the pulse spectral density and divergence while enabling energy scaling. A seed with a large spectral bandwidth is shown to enhance the pulse-to-pulse stability and optimize the pulse spectral density. A numerical model shows excellent agreement with output power measurements; the model predicts that a pump having a large number of longitudinal modes improves conversion efficiency and pulse stability.

  4. Electrically tunable whispering gallery mode microresonator based on a grapefruit-microstructured optical fiber infiltrated with nematic liquid crystals.

    Science.gov (United States)

    Yang, Chengkun; Zhang, Hao; Liu, Bo; Lin, Shiwei; Li, Yuetao; Liu, Haifeng

    2017-08-01

    An electrically tunable whispering gallery mode (WGM) microresonator based on an HF-etched microstructured optical fiber (MOF) infiltrated with nematic liquid crystals (NLCs) is proposed and experimentally demonstrated. Experimental results indicate that as the peak-to-peak voltage of the applied AC electric field increases from 160 to 220 V, WGM resonance peaks gradually move toward a shorter wavelength region by 0.527 nm with a wavelength sensitivity up to 0.01  nm/V for a TM1691 mode, and the Q-factor for each WGM resonance peak rapidly decreases with the increment of applied electric voltage. The proposed electrically controlled WGM tuning scheme shows a linear resonance wavelength shift with good spectral reversibility, which makes it a promising candidate to serve as an integrated functional photonic device in practical use and in related fundamental scientific studies.

  5. Experimental investigation of an optical water filter for Photovoltaic/Thermal conversion module

    International Nuclear Information System (INIS)

    Al-Shohani, Wisam A.M.; Sabouri, Aydin; Al-Dadah, Raya; Mahmoud, Saad; Butt, Haider

    2016-01-01

    Highlights: • New design of Photovoltaic/Thermal system is proposed. • Using the optical water layer as a spectrum splitter is tested experimentally. • Optical rig is developed to study the optical performance of water layer. • Energy conversion under different water layer thicknesses is determined. - Abstract: This paper presents an experimental investigation of a novel optical water filter used for Photovoltaic/Thermal and Concentrating Photovoltaic/Thermal modules. A water layer is used as a spectrum splitter of solar radiation placed above the photovoltaic cells and as a thermal working fluid simultaneously. The water layer absorbs the ultraviolet and part of infrared, which are not used by the photovoltaic, but transmits the visible and some of infrared to the solar cell surface which are used by the photovoltaic. In this work, the transmittance of the optical water filter was measured for different water thicknesses (1, 2, 3, 4, and 5 cm) and radiation wavelength ranging from 0.35 to 1 μm. Results show that there is a significant effect of the water layer thickness on the transmittance of the spectra where the transmittance decreases as the water layer increases. Moreover, energy conversion rate of photovoltaic with the optical water filter at different water layer thicknesses has been determined.

  6. A new method of equalizing the optical power by a liquid crystal-based tunable encoder/decoder in SAC-OCDMA PON

    Science.gov (United States)

    Chen, He; Qiao, Yang; Zhao, Yanbin; Liu, Yang; Liu, Meilin; Liu, Lijun; Zhou, Bilei

    2015-11-01

    A new method of equalizing the optical power is proposed to enhance the performance in the SAC OCDMA PON. The method is to use a tunable liquid crystal-based tunable encoder for further development by voltage controlling individually, so it is achieved in one device for encoding and power equalization, the experimental results show that the system BER and eye diagram are greatly improved. Since the method does not use additional devices in the condition, the system are lower complexity and cost-effective.

  7. Fiber Bragg grating interrogation using wavelength modulated tunable distributed feedback lasers and a fiber-optic Mach-Zehnder interferometer.

    Science.gov (United States)

    Roy, Anirban; Chakraborty, Arup Lal; Jha, Chandan Kumar

    2017-04-20

    This paper demonstrates a technique of high-resolution interrogation of two fiber Bragg gratings (FBGs) with flat-topped reflection spectra centered on 1649.55 nm and 1530.182 nm with narrow line width tunable semiconductor lasers emitting at 1651.93 nm and 1531.52 nm, respectively. The spectral shift of the reflection spectrum in response to temperature and strain is accurately measured with a fiber-optic Mach-Zehnder interferometer that has a free spectral range of 0.0523 GHz and a broadband photodetector. Laser wavelength modulation and harmonic detection techniques are used to transform the gentle edges of the flat-topped FBG into prominent leading and trailing peaks that are up to five times narrower than the FBG spectrum. Either of these peaks can be used to accurately measure spectral shifts of the FBG reflection spectrum with a resolution down to a value of 0.47 pm. A digital signal processing board is used to measure the temperature-induced spectral shifts over the range of 30°C-80°C and strain-induced spectral shifts from 0  μϵ to 12,000  μϵ. The shift is linear in both cases with a temperature sensitivity of 12.8 pm/°C and strain sensitivity of 0.12  pm/μϵ. The distinctive feature of this technique is that it does not use an optical spectrum analyzer at any stage of its design or operation. It can be readily extended to all types of tunable diode lasers and is ideally suited for compact field instruments and for biomedical applications in stroke rehabilitation monitoring.

  8. Demonstration of a tunable two-frequency projected fringe pattern with acousto-optic deflectors

    International Nuclear Information System (INIS)

    Dupont, S.; Kastelik, J. C.

    2008-01-01

    We report on a fringe projector for three-dimensional shape measurement. The developed instrument is able to project a two-frequency fringe pattern, each frequency is independently controlled by electronics. Moreover, each phase of the two fringe patterns is also independently adjusted. The projection system is based on the use of a pair of custom large bandwidth (40 MHz) and high efficiency (60%) TeO 2 deflectors. The developed instrument offers the combined advantages of a static two-frequency fringe projector and of a tunable single frequency fringe projector

  9. External modes in quantum dot light emitting diode with filtered optical feedback

    International Nuclear Information System (INIS)

    Al Husseini, Hussein B.; Al Naimee, Kais A.; Al-Khursan, Amin H.; Khedir, Ali. H.

    2016-01-01

    This research reports a theoretical investigation on the role of filtered optical feedback (FOF) in the quantum dot light emitting diode (QD-LED). The underlying dynamics is affected by a sidle node, which returns to an elliptical shape when the wetting layer (WL) is neglected. Both filter width and time delay change the appearance of different dynamics (chaotic and mixed mode oscillations, MMOs). The results agree with the experimental observations. Here, the fixed point analysis for QDs was done for the first time. For QD-LED with FOF, the system transits from the coherence collapse case in conventional optical feedback to a coherent case with a filtered mode in FOF. It was found that the WL washes out the modes which is an unexpected result. This may attributed to the longer capture time of WL compared with that between QD states. Thus, WL reduces the chaotic behavior.

  10. Numerical investigation of a tunable band-pass plasmonic filter with a hollow-core ring resonator

    Science.gov (United States)

    Setayesh, Amir; Mirnaziry, S. Reza; Sadegh Abrishamian, Mohammad

    2011-03-01

    In this study, a compact nanoscale plasmonic filter which consists of two metal-insulator-metal (MIM) waveguides coupled to each other by a rectangular ring resonator is presented and investigated numerically. The propagating modes of surface plasmon polaritons (SPPs) are studied in this structure. By replacing a portion of the ring core with air, while the outer dimensions of the structure are kept constant, we illustrate the possibility of the redshift of resonant wavelengths in order to tune the resonance modes. This feature is useful for integrated circuits in which we have limitations on the outer dimensions of the filter structure and it is not possible to enlarge the dimension of the ring resonator to reach longer resonant wavelengths. The corresponding results are illustrated by the 2D finite-difference time-domain (FDTD) method. The proposed structure has potential applications in plasmonic integrated circuits and can be simply fabricated.

  11. Numerical investigation of a tunable band-pass plasmonic filter with a hollow-core ring resonator

    International Nuclear Information System (INIS)

    Setayesh, Amir; Mirnaziry, S Reza; Abrishamian, Mohammad Sadegh

    2011-01-01

    In this study, a compact nanoscale plasmonic filter which consists of two metal–insulator–metal (MIM) waveguides coupled to each other by a rectangular ring resonator is presented and investigated numerically. The propagating modes of surface plasmon polaritons (SPPs) are studied in this structure. By replacing a portion of the ring core with air, while the outer dimensions of the structure are kept constant, we illustrate the possibility of the redshift of resonant wavelengths in order to tune the resonance modes. This feature is useful for integrated circuits in which we have limitations on the outer dimensions of the filter structure and it is not possible to enlarge the dimension of the ring resonator to reach longer resonant wavelengths. The corresponding results are illustrated by the 2D finite-difference time-domain (FDTD) method. The proposed structure has potential applications in plasmonic integrated circuits and can be simply fabricated

  12. UCN gravity spectrometry using neutron interference filters for fundamental investigations in neutron optics

    CERN Document Server

    Bondarenko, I V; Cimmino, A; Geltenbort, P; Frank, A I; Hoghoj, P; Klein, A G; Masalovich, S V; Nosov, V G

    2000-01-01

    A Gravity Spectrometer for ultra-cold neutrons (UCN) using neutron interference filters has been designed and tested. An energy resolution of the order of 6.5 neV was obtained which is good enough for performing a number of neutron-optical experiments proposed in an earlier paper. Experimental tests of the UCN dispersion law are currently in progress.

  13. Vapour HF release of airgap-based UV-visible optical filters

    NARCIS (Netherlands)

    Ghaderi, M.; Ayerden, N.P.; De Graaf, G.; Wolffenbuttel, R.F.

    2015-01-01

    The design and CMOS-compatible fabrication of airgap-based optical filters in a surface micromachining process with sacrificial release using thevapour phase is presented. An airgap-dielectric layer combination offers a higher refractive index contrast, as compared to the conventional

  14. UCN gravity spectrometry using neutron interference filters for fundamental investigations in neutron optics

    International Nuclear Information System (INIS)

    Bondarenko, I.V.; Balashov, S.N.; Cimmino, A.; Geltenbort, P.; Frank, A.I.; Hoghoj, P.; Klein, A.G.; Masalovich, S.V.; Nosov, V.G.

    2000-01-01

    A Gravity Spectrometer for ultra-cold neutrons (UCN) using neutron interference filters has been designed and tested. An energy resolution of the order of 6.5 neV was obtained which is good enough for performing a number of neutron-optical experiments proposed in an earlier paper. Experimental tests of the UCN dispersion law are currently in progress

  15. Weighted finite impulse response filter for chromatic dispersion equalization in coherent optical fiber communication systems

    Science.gov (United States)

    Zeng, Ziyi; Yang, Aiying; Guo, Peng; Feng, Lihui

    2018-01-01

    Time-domain CD equalization using finite impulse response (FIR) filter is now a common approach for coherent optical fiber communication systems. The complex weights of FIR taps are calculated from a truncated impulse response of the CD transfer function, and the modulus of the complex weights is constant. In our work, we take the limited bandwidth of a single channel signal into account and propose weighted FIRs to improve the performance of CD equalization. The key in weighted FIR filters is the selection and optimization of weighted functions. In order to present the performance of different types of weighted FIR filters, a square-root raised cosine FIR (SRRC-FIR) and a Gaussian FIR (GS-FIR) are investigated. The optimization of square-root raised cosine FIR and Gaussian FIR are made in term of the bit rate error (BER) of QPSK and 16QAM coherent detection signal. The results demonstrate that the optimized parameters of the weighted filters are independent of the modulation format, symbol rate and the length of transmission fiber. With the optimized weighted FIRs, the BER of CD equalization signal is decreased significantly. Although this paper has investigated two types of weighted FIR filters, i.e. SRRC-FIR filter and GS-FIR filter, the principle of weighted FIR can also be extended to other symmetric functions super Gaussian function, hyperbolic secant function and etc.

  16. All-optically tunable waveform synthesis by a silicon nanowaveguide ring resonator coupled with a photonic-crystal fiber frequency shifter

    KAUST Repository

    Savvin, Aleksandr D.

    2011-03-01

    A silicon nanowaveguide ring resonator is combined with a photonic-crystal fiber (PCF) frequency shifter to demonstrate an all-optically tunable synthesis of ultrashort pulse trains, modulated by ultrafast photoinduced free-carrier generation in the silicon resonator. Pump-probe measurements performed with a 50-fs, 625-nm second-harmonic output of a Cr:forsterite laser, used as a carrier-injecting pump, and a 1.50-1.56-μm frequency-tunable 100-fs soliton output of a photonic-crystal fiber, serving as a probe, resolve tunable ultrafast oscillatory features in the silicon nanowaveguide resonator response. © 2010 Elsevier B.V. All rights reserved.

  17. All-optically tunable waveform synthesis by a silicon nanowaveguide ring resonator coupled with a photonic-crystal fiber frequency shifter

    KAUST Repository

    Savvin, Aleksandr D.; Melnikov, Vasily; Fedotov, Il'ya V.; Fedotov, Andrei B.; Perova, Tatiana S.; Zheltikov, Aleksei M.

    2011-01-01

    A silicon nanowaveguide ring resonator is combined with a photonic-crystal fiber (PCF) frequency shifter to demonstrate an all-optically tunable synthesis of ultrashort pulse trains, modulated by ultrafast photoinduced free-carrier generation in the silicon resonator. Pump-probe measurements performed with a 50-fs, 625-nm second-harmonic output of a Cr:forsterite laser, used as a carrier-injecting pump, and a 1.50-1.56-μm frequency-tunable 100-fs soliton output of a photonic-crystal fiber, serving as a probe, resolve tunable ultrafast oscillatory features in the silicon nanowaveguide resonator response. © 2010 Elsevier B.V. All rights reserved.

  18. Nonlinear optical behaviour of absorbing CdSxSe1-x interference filters

    International Nuclear Information System (INIS)

    Ferencz, K.; Szipoecs, R.

    1988-01-01

    First experimental results of nonlinear, thin film interference filter wedges with mixed CdS x Se 1-x as spacer material at the 633 nm wavelength of He-Ne laser are reported. Optical bistability is observed with less than 7.5 mW of optical power in single-cavity structures. The change in refractive index is found to be positive which is in accordance with the thermal mechanism of nonlinearity. Producing a double-cavity structure a device is obtained which works as an optical astable multivibrator having periodical change of transmission as the function of time. (author)

  19. Rectangular optical filter based on high-order silicon microring resonators

    Science.gov (United States)

    Bao, Jia-qi; Yu, Kan; Wang, Li-jun; Yin, Juan-juan

    2017-07-01

    The rectangular optical filter is one of the most important optical switching components in the dense wavelength division multiplexing (DWDM) fiber-optic communication system and the intelligent optical network. The integrated highorder silicon microring resonator (MRR) is one of the best candidates to achieve rectangular filtering spectrum response. In general, the spectrum response rectangular degree of the single MRR is very low, so it cannot be used in the DWDM system. Using the high-order MRRs, the bandwidth of flat-top pass band, the out-of-band rejection degree and the roll-off coefficient of the edge will be improved obviously. In this paper, a rectangular optical filter based on highorder MRRs with uniform couplers is presented and demonstrated. Using 15 coupled race-track MRRs with 10 μm in radius, the 3 dB flat-top pass band of 2 nm, the out-of-band rejection ratio of 30 dB and the rising and falling edges of 48 dB/nm can be realized successfully.

  20. Rectangular optical filter based on high-order silicon microring resonators

    Institute of Scientific and Technical Information of China (English)

    BAO Jia-qi; YU Kan; WANG Li-jun; YIN Juan-juan

    2017-01-01

    The rectangular optical filter is one of the most important optical switching components in the dense wavelength division multiplexing (DWDM) fiber-optic communication system and the intelligent optical network.The integrated highorder silicon microring resonator (MRR) is one of the best candidates to achieve rectangular filtering spectrum response.In general,the spectrum response rectangular degree of the single MRR is very low,so it cannot be used in the DWDM system.Using the high-order MRRs,the bandwidth of flat-top pass band,the out-of-band rejection degree and the roll-off coefficient of the edge will be improved obviously.In this paper,a rectangular optical filter based on highorder MRRs with uniform couplers is presented and demonstrated.Using 15 coupled race-track MRRs with 10 μm in radius,the 3 dB flat-top pass band of 2 nm,the out-of-band rejection ratio of 30 dB and the rising and falling edges of 48 dB/nm can be realized successfully.

  1. Effects of fixture rotation on coating uniformity for high-performance optical filter fabrication

    Science.gov (United States)

    Rubin, Binyamin; George, Jason; Singhal, Riju

    2018-04-01

    Coating uniformity is critical in fabricating high-performance optical filters by various vacuum deposition methods. Simple and planetary rotation systems with shadow masks are used to achieve the required uniformity [J. B. Oliver and D. Talbot, Appl. Optics 45, 13, 3097 (2006); O. Lyngnes, K. Kraus, A. Ode and T. Erguder, in `Method for Designing Coating Thickness Uniformity Shadow Masks for Deposition Systems with a Planetary Fixture', 2014 Technical Conference Proceedings, Optical Coatings, August 13, 2014, DOI: 10.14332/svc14.proc.1817.]. In this work, we discuss the effect of rotation pattern and speed on thickness uniformity in an ion beam sputter deposition system. Numerical modeling is used to determine statistical distribution of random thickness errors in coating layers. The relationship between thickness tolerance and production yield are simulated theoretically and demonstrated experimentally. Production yields for different optical filters produced in an ion beam deposition system with planetary rotation are presented. Single-wavelength and broadband optical monitoring systems were used for endpoint monitoring during filter deposition. Limitations of thickness tolerances that can be achieved in systems with planetary rotation are shown. Paths for improving production yield in an ion beam deposition system are described.

  2. Flat-Passband 3 × 3 Interleaving Filter Designed With Optical Directional Couplers in Lattice Structure

    Science.gov (United States)

    Wang, Qi Jie; Zhang, Ying; Soh, Yeng Chai

    2005-12-01

    This paper presents a novel lattice optical delay-line circuit using 3 × 3 directional couplers to implement three-port optical interleaving filters. It is shown that the proposed circuit can deliver three channels of 2pi/3 phase-shifted interleaving transmission spectra if the coupling ratios of the last two directional couplers are selected appropriately. The other performance requirements of an optical interleaver can be achieved by designing the remaining part of the lattice circuit. A recursive synthesis design algorithm is developed to calculate the design parameters of the lattice circuit that will yield the desired filter response. As illustrative examples, interleavers with maximally flat-top passband transmission and with given transmission performance on passband ripples and passband bandwidth, respectively, are designed to verify the effectiveness of the proposed design scheme.

  3. Tunable ultra-wideband terahertz filter based on three-dimensional arrays of H-shaped plasmonic crystals

    International Nuclear Information System (INIS)

    Yuan Cai; Xu Shi-Lin; Yao Jian-Quan; Zhao Xiao-Lei; Cao Xiao-Long; Wu Liang

    2014-01-01

    A face-to-face system of double-layer three-dimensional arrays of H-shaped plasmonic crystals is proposed, and its transmission and filtering properties are investigated in the terahertz regime. Simulation results show that our design has excellent filtering properties. It has an ultra-wide bandgap and passband with steep band-edges, and the transmittance of the passband and the forbidden band are very close to 1 and 0, respectively. As the distance between the two face-to-face plates increases, the resonance frequency exhibits a gradual blueshift from 0.88 THz to 1.30 THz. Therefore, we can dynamically control the bandwidths of bandgap and passband by adding a piezoelectric ceramic plate between the two crystal plates. Furthermore, the dispersion relations of modes and electric field distributions are presented to analyze the generation mechanisms of bandgaps and to explain the location of bandgaps and the frequency shift phenomenon. Due to the fact that our design can provide many resonant modes, the bandwidth of the bandgaps can be greatly broadened. This paper can serve as a valuable reference for the design of terahertz functional devices and three-dimensional terahertz metamaterials. (interdisciplinary physics and related areas of science and technology)

  4. Performance of an optical filter for the XMM focal plane CCD camera EPIC

    Science.gov (United States)

    Stephan, Karl-Heinz; Reppin, C.; Hirschinger, M.; Maier, H. J.; Frischke, D.; Fuchs, Detlef; Mueller, Peter; Guertler, Peter

    1996-10-01

    We have been developing optical filters for ESA's x-ray astronomy project XMM (x-ray multi mirror mission). Specific CCDs will be used as detectors in the focal plane on board the observatory. Since these detectors are sensitive from the x-ray to the NIR (near infrared) spectral range, x-ray observations require optical filters, which combine a high transparency for photon energies in the soft x-ray region and a high opacity for UV (ultraviolet) and VIS (visible) radiation as well. With respect to the mission goal in orbit three types of flight model filters are designed having different spectral transmittance functions. We report on one of these types, a so-called 'thick' filter, which has been realized within the EQM (electrical qualification model)- phase of the project. The filter features a cut-off in the EUV (extreme ultraviolet) spectral range and suppresses radiation below 10 eV photon energy by more than 8 orders of magnitude. It has an effective aperture of 73 mm without any support structure. A 0.35 micrometer thick polypropylene carrier foil is coated with metallic films of Al and Sn. The manufacturing process, the qualification measurements and the environmental tests are described, and the resulting performance data is presented.

  5. Heating of large format filters in sub-mm and fir space optics

    Science.gov (United States)

    Baccichet, N.; Savini, G.

    2017-11-01

    Most FIR and sub-mm space borne observatories use polymer-based quasi-optical elements like filters and lenses, due to their high transparency and low absorption in such wavelength ranges. Nevertheless, data from those missions have proven that thermal imbalances in the instrument (not caused by filters) can complicate the data analysis. Consequently, for future, higher precision instrumentation, further investigation is required on any thermal imbalances embedded in such polymer-based filters. Particularly, in this paper the heating of polymers when operating at cryogenic temperature in space will be studied. Such phenomenon is an important aspect of their functioning since the transient emission of unwanted thermal radiation may affect the scientific measurements. To assess this effect, a computer model was developed for polypropylene based filters and PTFE-based coatings. Specifically, a theoretical model of their thermal properties was created and used into a multi-physics simulation that accounts for conductive and radiative heating effects of large optical elements, the geometry of which was suggested by the large format array instruments designed for future space missions. It was found that in the simulated conditions, the filters temperature was characterized by a time-dependent behaviour, modulated by a small scale fluctuation. Moreover, it was noticed that thermalization was reached only when a low power input was present.

  6. Tunable long-distance light transportation along Au nanoparticle chains: promising for optical interconnect

    Science.gov (United States)

    Lin, Z.; Li, X. D.; Chen, T. P.

    2014-10-01

    Tunable light resonance transportation along a single long Au hemisphere nanoparticles (NPs) chain was studied. The realistic experimentally determined gold dielectric function was used for the simulation of Au localized surface plasmon polariton (LSPPs) effect. The resonance light energy with minimized attenuation and its bandwidth were quantitatively analyzed by inducing the effective mass which was observed to increase only with the length of Au NPs between the source and the test point. The geometric ratio g/ r of NP size and gap were investigated at 5 µm far of NPs with different gaps from 0 to 70 nm. Strongest resonance can be achieved with g/ r = 1.2 by the factor of 1.5 than the connected NPs. This resonance mode falls in the wavelength λ = 555 nm (green light), which is exactly the maximum sensitivity of a light-adapted eye of human beings.

  7. Wide range optofluidically tunable multimode interference fiber laser

    International Nuclear Information System (INIS)

    Antonio-Lopez, J E; LiKamWa, P; Sanchez-Mondragon, J J; May-Arrioja, D A

    2014-01-01

    An optofluidically tunable fiber laser based on multimode interference (MMI) effects with a wide tuning range is proposed and demonstrated. The tunable mechanism is based on an MMI fiber filter fabricated using a special fiber known as no-core fiber, which is a multimode fiber (MMF) without cladding. Therefore, when the MMI filter is covered by liquid the optical properties of the no-core fiber are modified, which allow us to tune the peak wavelength response of the MMI filter. Rather than applying the liquid on the entire no-core fiber, we change the liquid level along the no-core fiber, which provides a highly linear tuning response. In addition, by selecting the adequate refractive index of the liquid we can also choose the tuning range. We demonstrate the versatility of the optofluidically tunable MMI filter by wavelength tuning two different gain media, erbium doped fiber and a semiconductor optical amplifier, achieving tuning ranges of 55 and 90 nm respectively. In both cases, we achieve side-mode suppression ratios (SMSR) better than 50 dBm with output power variations of less than 0.76 dBm over the whole tuning range. (paper)

  8. Experimental study of the use of multiband acousto-optic filters for spectral encoding / decoding the optical signals

    International Nuclear Information System (INIS)

    Proklov, V V; Byshevski-Konopko, O A; Filatov, A L; Lugovskoi, A V; Pisarevsky, Yu V

    2016-01-01

    A prototype of the acousto-optic (AO) decoder of optical signals is created on the base of the multiband AO filter. The joint work of the decoder with the developed previously AO coder has been verified experimentally. The main qualitative and quantitate characteristics of the spectral coding and decoding by Walsh sequences of the industrial LED radiation in the near infrared range are investigated. It is shown, that in the proposed data transmission system realization Signal-to-Interference Ratio (SIR) is not less than 13 dB. (paper)

  9. Photonic filtering of microwave signals in the frequency range of 0.01-20 GHz using a Fabry-Perot filter

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo-Rodriguez, G; Zaldivar-Huerta, I E [Instituto Nacional de Astrofisica, Optica y Electronica (INAOE). Sta. Maria Tonantzintla, Pue. Mexico (Mexico); GarcIa-Juarez, A [Depto. de Investigacion en Fisica, Universidad de Sonora (UNISON) Hermosillo, Son. Mexico (Mexico); Rodriguez-Asomoza, J [Depto. de Ingenieria Electronica, Universidad de las Americas-Puebla (UDLA). San Andres Cholula, Pue. Mexico (Mexico); Larger, L; Courjal, N [Laboratoire d' Optique P. M. Duffieux, UMR 6603 CNRS, Institut des Microtechiques de Franche-Comte, FRW 0067, UFR Sciences et Techniques, Universite de Franche-Comte (UFC), Besancon cedex (France)

    2011-01-01

    We demonstrate experimentally the efficiency of tuning of a photonic filter in the frequency range of 0.01 to 20 GHz. The presented work combines the use of a multimode optical source associated with a dispersive optical fiber to obtain the filtering effect. Tunability effect is achieved by the use of a Fabry-Perot filter that allows altering the spectral characteristics of the optical source. Experimental results are validated by means of numerical simulations. The scheme here proposed has a potential application in the field of optical telecommunications.

  10. The Influence of Optical Filtering on the Noise Performance of Microwave Photonic Phase Shifters Based on SOAs

    DEFF Research Database (Denmark)

    Lloret, Juan; Ramos, Francisco; Xue, Weiqi

    2011-01-01

    Different optical filtering scenarios involving microwave photonic phase shifters based on semiconductor optical amplifiers are investigated numerically as well as experimentally with respect to noise performance. Investigations on the role of the modulation depth and number of elements in cascad...... shifting stages are also carried out. Suppression of the noise level by more than 5 dB has been achieved in schemes based on band-pass optical filtering when three phase shifting stages are cascaded....

  11. Zero-crossing detection algorithm for arrays of optical spatial filtering velocimetry sensors

    DEFF Research Database (Denmark)

    Jakobsen, Michael Linde; Pedersen, Finn; Hanson, Steen Grüner

    2008-01-01

    This paper presents a zero-crossing detection algorithm for arrays of compact low-cost optical sensors based on spatial filtering for measuring fluctuations in angular velocity of rotating solid structures. The algorithm is applicable for signals with moderate signal-to-noise ratios, and delivers...... repeating the same measurement error for each revolution of the target, and to gain high performance measurement of angular velocity. The traditional zero-crossing detection is extended by 1) inserting an appropriate band-pass filter before the zero-crossing detection, 2) measuring time periods between zero...

  12. Final Report on LDRD project 130784 : functional brain imaging by tunable multi-spectral Event-Related Optical Signal (EROS).

    Energy Technology Data Exchange (ETDEWEB)

    Speed, Ann Elizabeth; Spahn, Olga Blum; Hsu, Alan Yuan-Chun

    2009-09-01

    Functional brain imaging is of great interest for understanding correlations between specific cognitive processes and underlying neural activity. This understanding can provide the foundation for developing enhanced human-machine interfaces, decision aides, and enhanced cognition at the physiological level. The functional near infrared spectroscopy (fNIRS) based event-related optical signal (EROS) technique can provide direct, high-fidelity measures of temporal and spatial characteristics of neural networks underlying cognitive behavior. However, current EROS systems are hampered by poor signal-to-noise-ratio (SNR) and depth of measure, limiting areas of the brain and associated cognitive processes that can be investigated. We propose to investigate a flexible, tunable, multi-spectral fNIRS EROS system which will provide up to 10x greater SNR as well as improved spatial and temporal resolution through significant improvements in electronics, optoelectronics and optics, as well as contribute to the physiological foundation of higher-order cognitive processes and provide the technical foundation for miniaturized portable neuroimaging systems.

  13. Design of doubly focusing, tunable (5 to 30 keV), wide-bandpass optics made from layered synthetic microstructures

    International Nuclear Information System (INIS)

    Bilderback, D.H.; Lairson, B.M.; Barbee, T.W. Jr.; Ice, G.E.; Sparks, C.J. Jr.

    1982-01-01

    Layered Synthetic Microstructures (LSMs) show great promise as focusing, high-throughput, hard x-ray monochromators. Experimental reflectivity vs. energy curves have been obtained on carbon-tungsten and carbon-molybdenum LSMs of up to 260 layers in thickness. Reflectivities for three flat LSMs with different bandpasses were 70% with δE/E = 5.4%, 66% with δE/E = 1.4%, and 19% with δE/E = 0.6%. A new generation of variable bandwidth optics using two successive LSMs is proposed. The first element will be an LSM deposited on a substrate that can be water cooled as it intercepts direct radiation from a storage ring. It can be bent for vertical focusing. The bandpass can be adjusted by choosing interchangeable first elements from an assortment of LSM's with different bandpasses (for example, δE/E = 0.005, 0.01, 0.02, 0.05, 0.1). The second LSM will consist of a multilayered structure with a 10% bandpass built onto a flexible substrate that can be bent for sagittal focusing. The result will be double focusing optics with an adjustable energy bandpass that are tunable from 5 to 30 keV

  14. Optical Properties of Sol-Gel Nb2O5 Films with Tunable Porosity for Sensing Applications

    Directory of Open Access Journals (Sweden)

    Rosen Georgiev

    2015-01-01

    Full Text Available Thin Nb2O5 films with tunable porosity are deposited by the sol-gel and evaporation induced self-assembly methods using organic template Pluronic PE6100 with different molar fractions with respect to NbCl5 used as a precursor for synthesis of Nb sol. Surface morphology and structure of the films are studied by Transmission Electron Microscopy and Selected Area Electron Diffraction. The optical characterization of the films is carried out through reflectance spectra measurements of the films deposited on silicon substrates and theoretical modeling in order to obtain refractive index, extinction coefficient, and thickness of the films. The overall porosity of the films and the amount of adsorbed acetone vapors in the pores are quantified by means of Bruggeman effective medium approximation using already determined optical constants. The sensing properties of the samples are studied by measuring both the reflectance spectra and room-temperature photoluminescence spectra prior to and after exposure to acetone vapors and liquid, respectively. The potential of using the studied mesoporous Nb2O5 films for chemooptical sensing is demonstrated and discussed.

  15. All-optical VPN utilizing DSP-based digital orthogonal filters access for PONs

    Science.gov (United States)

    Zhang, Xiaoling; Zhang, Chongfu; Chen, Chen; Jin, Wei; Qiu, Kun

    2018-04-01

    Utilizing digital filtering-enabled signal multiplexing and de-multiplexing, a cost-effective all-optical virtual private network (VPN) system is proposed, for the first time to our best knowledge, in digital filter multiple access passive optical networks (DFMA-PONs). Based on the DFMA technology, the proposed system can be easily designed to meet the requirements of next generation network's flexibility, elasticity, adaptability and compatibility. Through dynamic digital filter allocation and recycling, the proposed all-optical VPN system can provide dynamic establishments and cancellations of multiple VPN communications with arbitrary traffic volumes. More importantly, due to the employment of DFMA technology, the system is not limited to a fixed signal format and different signal formats such as pulse amplitude modulation (PAM), quadrature amplitude modulation (QAM) and orthogonal frequency division multiplexing (OFDM) can be used. Moreover, one transceiver is sufficient to simultaneously transmit upstream (US)/VPN data to optical line terminal (OLT) or other VPN optical network units (ONUs), thus leading to great reduction in network constructions and operation expenditures. The proposed all-optical VPN system is demonstrated with the transceiver incorporating the formats of QAM and OFDM, which can be made transparent to downstream (DS), US and VPN communications. The bit error rates (BERs) of DS, US and VPN for OFDM signals are below the forward-error-correction (FEC) limit of 3 . 8 × 10-3 when the received optical powers are about -16.8 dBm, -14.5 dBm and -15.7 dBm, respectively.

  16. Block matching 3D random noise filtering for absorption optical projection tomography

    International Nuclear Information System (INIS)

    Fumene Feruglio, P; Vinegoni, C; Weissleder, R; Gros, J; Sbarbati, A

    2010-01-01

    Absorption and emission optical projection tomography (OPT), alternatively referred to as optical computed tomography (optical-CT) and optical-emission computed tomography (optical-ECT), are recently developed three-dimensional imaging techniques with value for developmental biology and ex vivo gene expression studies. The techniques' principles are similar to the ones used for x-ray computed tomography and are based on the approximation of negligible light scattering in optically cleared samples. The optical clearing is achieved by a chemical procedure which aims at substituting the cellular fluids within the sample with a cell membranes' index matching solution. Once cleared the sample presents very low scattering and is then illuminated with a light collimated beam whose intensity is captured in transillumination mode by a CCD camera. Different projection images of the sample are subsequently obtained over a 360 0 full rotation, and a standard backprojection algorithm can be used in a similar fashion as for x-ray tomography in order to obtain absorption maps. Because not all biological samples present significant absorption contrast, it is not always possible to obtain projections with a good signal-to-noise ratio, a condition necessary to achieve high-quality tomographic reconstructions. Such is the case for example, for early stage's embryos. In this work we demonstrate how, through the use of a random noise removal algorithm, the image quality of the reconstructions can be considerably improved even when the noise is strongly present in the acquired projections. Specifically, we implemented a block matching 3D (BM3D) filter applying it separately on each acquired transillumination projection before performing a complete three-dimensional tomographical reconstruction. To test the efficiency of the adopted filtering scheme, a phantom and a real biological sample were processed. In both cases, the BM3D filter led to a signal-to-noise ratio increment of over 30 d

  17. Aperiodic nanoplasmonic devices for directional colour filtering and sensing.

    Science.gov (United States)

    Davis, Matthew S; Zhu, Wenqi; Xu, Ting; Lee, Jay K; Lezec, Henri J; Agrawal, Amit

    2017-11-07

    Exploiting the wave-nature of light in its simplest form, periodic architectures have enabled a panoply of tunable optical devices with the ability to perform useful functions such as filtering, spectroscopy, and multiplexing. Here, we remove the constraint of structural periodicity to enhance, simultaneously, the performance and functionality of passive plasmonic devices operating at optical frequencies. By using a physically intuitive, first-order interference model of plasmon-light interactions, we demonstrate a simple and efficient route towards designing devices with flexible, multi-spectral optical response, fundamentally not achievable using periodic architectures. Leveraging this approach, we experimentally implement ultra-compact directional light-filters and colour-sorters exhibiting angle- or spectrally-tunable optical responses with high contrast, and low spectral or spatial crosstalk. Expanding the potential of aperiodic systems to implement tailored spectral and angular responses, these results hint at promising applications in solar-energy harvesting, optical signal multiplexing, and integrated sensing.

  18. Energy Conservation in Optical Fibers With Distributed Brick-Walls Filters

    Science.gov (United States)

    Garcia, Javier; Ghozlan, Hassan; Kramer, Gerhard

    2018-05-01

    A band-pass filtering scheme is proposed to mitigate spectral broadening and channel coupling in the Nonlinear Schr\\"odinger (NLS) fiber optic channel. The scheme is modeled by modifying the NLS Equation to include an attenuation profile with multiple brick-wall filters centered at different frequencies. It is shown that this brick-walls profile conserves the total in-band energy of the launch signal. Furthermore, energy fluctuations between the filtered channels are characterized, and conditions on the channel spacings are derived that ensure energy conservation in each channel. The maximum spectral efficiency of such a system is derived, and a constructive rule for achieving it using Sidon sequences is provided.

  19. Rapid antibiotic efficacy screening with aluminum oxide nanoporous membrane filter-chip and optical detection system.

    Science.gov (United States)

    Tsou, Pei-Hsiang; Sreenivasappa, Harini; Hong, Sungmin; Yasuike, Masayuki; Miyamoto, Hiroshi; Nakano, Keiyo; Misawa, Takeyuki; Kameoka, Jun

    2010-09-15

    We have developed a filter-chip and optical detection system for rapid antibiotic efficacy screening. The filter-chip consisted of a 1-mL reservoir and an anodic aluminum oxide (AAO) nanoporous membrane. Sample solution with liquid growth media, bacteria, and antibiotics was incubated in the reservoir for a specific period of time. The number of live bacteria on the surface of membrane was counted after the incubation with antibiotics and filtration. Using this biosensing system, we have demonstrated a 1-h antibiotic screening for patients' clinical samples, significantly faster than the conventional antibiotic susceptibility tests that typically take more than 24h. This rapid screening nature makes the filter-chip and detection system ideal for tailoring antibiotic treatment to individual patients by reducing the microbial antibiotic resistance, and improving the survival rate for patients suffering from postoperative infections. Published by Elsevier B.V.

  20. Visible light communication using DC-biased optical filter bank multi-carrier modulation

    KAUST Repository

    Chen, Rui

    2018-03-19

    Filter bank multicarrier (FBMC) has become a promising candidate to replace conventional orthogonal frequency-division multiplexing (OFDM) scheme in 5G technology due to its better spectral confinement which results in a reduced inter-channel interference (ICI). However, the viability of using FBMC in visible light communication has not been verified. In this work we present the first experimental validation of the DC-biased optical filter bank multicarrier (DCO-FBMC) modulation scheme over a free-space optical channel. Under different receiving powers, up to three times bit error rate performance improvement has been achieved using DCO-FBMC with different overlapping factors compared to that of conventional DCO-OFDM.

  1. Visible light communication using DC-biased optical filter bank multi-carrier modulation

    KAUST Repository

    Chen, Rui; Park, Kihong; Shen, Chao; Ng, Tien Khee; Ooi, Boon S.; Alouini, Mohamed-Slim

    2018-01-01

    Filter bank multicarrier (FBMC) has become a promising candidate to replace conventional orthogonal frequency-division multiplexing (OFDM) scheme in 5G technology due to its better spectral confinement which results in a reduced inter-channel interference (ICI). However, the viability of using FBMC in visible light communication has not been verified. In this work we present the first experimental validation of the DC-biased optical filter bank multicarrier (DCO-FBMC) modulation scheme over a free-space optical channel. Under different receiving powers, up to three times bit error rate performance improvement has been achieved using DCO-FBMC with different overlapping factors compared to that of conventional DCO-OFDM.

  2. All-optical universal logic gates on nonlinear multimode interference coupler using tunable input intensity

    Science.gov (United States)

    Tajaldini, Mehdi; Jafri, Mohd Zubir Mat

    2015-04-01

    The theory of Nonlinear Modal Propagation Analysis Method (NMPA) have shown significant features of nonlinear multimode interference (MMI) coupler with compact dimension and when launched near the threshold of nonlinearity. Moreover, NMPA have the potential to allow studying the nonlinear MMI based the modal interference to explorer the phenomenon that what happen due to the natural of multimode region. Proposal of all-optical switch based NMPA has approved its capability to achieving the all-optical gates. All-optical gates have attracted increasing attention due to their practical utility in all-optical signal processing networks and systems. Nonlinear multimode interference devices could apply as universal all-optical gates due to significant features that NMPA introduce them. In this Paper, we present a novel Ultra-compact MMI coupler based on NMPA method in low intensity compared to last reports either as a novel design method and potential application for optical NAND, NOR as universal gates on single structure for Boolean logic signal processing devices and optimize their application via studding the contrast ratio between ON and OFF as a function of output width. We have applied NMPA for several applications so that the miniaturization in low nonlinear intensities is their main purpose.

  3. On the possibility of developing incoherent fibre-optic data transmission systems based on signal spectral coding with matched acousto-optical filters

    International Nuclear Information System (INIS)

    Proklov, Valerii V; Byshevski-Konopko, O A; Grigorievski, V I

    2013-01-01

    The scheme is suggested for developing the optical communication line based on the principle of code division of multiple access with matched acousto-optical filters and a 16-bit long Walsh sequence. Results of modelling show that such a line can operate if adjacent spectral lines are separated by at least double the Rayleigh criterion. (optical information transmission)

  4. High Time-Resolution 640-Gb/s Clock Recovery Using Time-Domain Optical Fourier Transformation and Narrowband Optical Filter

    DEFF Research Database (Denmark)

    Guan, P.; Mulvad, Hans Christian Hansen; Kasai, K.

    2010-01-01

    We present a novel scheme for subharmonic clock recovery from an optical time-division-multiplexing signal using time-domain optical Fourier transformation and a narrowband optical filter. High-resolution 640-Gb/s clock recovery is successfully demonstrated with no pattern dependence. The clock...

  5. Integrated Wavelength-Tunable Light Source for Optical Gas Sensing Systems

    Directory of Open Access Journals (Sweden)

    Bin Li

    2015-01-01

    Full Text Available A compact instrument consisting of a distributed feedback laser (DFB at 1.65 μm was developed as a light source for gas sensing systems using tunable diode laser absorption spectroscopy (TDLAS technique. The wavelength of laser is tuned by adjusting the laser working temperature and injection current, which are performed by self-developed temperature controller and current modulator respectively. Stability test shows the fluctuation of the laser temperature is within the range of ±0.02°C. For gas detection experiments, the wavelength is tuned around the gas absorption line by adjusting laser temperature and is then shifted periodically to scan across the absorption line by the laser current modulator, which generates a 10 Hz saw wave signal. In addition, the current modulator is able to generate sine wave signal for gas sensing systems using wavelength modulation spectroscopy (WMS technique involving extraction of harmonic signals. The spectrum test proves good stability that the spectrum was measured 6 times every 10 minutes at the constant temperature and current condition. This standalone instrument can be applied as a light source for detection systems of different gases by integrating lasers at corresponding wavelength.

  6. Optical Interference Coatings Design Contest 2007: triple bandpass filter and nonpolarizing beam splitter.

    Science.gov (United States)

    Tilsch, Markus; Hendrix, Karen

    2008-05-01

    A triple bandpass filter (28 solutions received) and a nonpolarizing beam splitter (23 solutions received) were the subjects of the design contest held in conjunction with the 2007 Optical Interference Coatings topical meeting of the Optical Society of America. Fifteen designers participated using a wide spectrum of design approaches and optimization strategies to create the submissions. The results differ significantly, but all meet the contest requirements. Fabien Lemarchand wins both contests by submitting the thinnest (6254 nm) triple bandpass design and the widest (61.7 nm) nonpolarizing beam-splitter design. Michael Trubetskov is in second place, followed by Vladimir Pervak in both contests. The submitted designs are described and evaluated.

  7. Real-time Kalman filter: Cooling of an optically levitated nanoparticle

    Science.gov (United States)

    Setter, Ashley; Toroš, Marko; Ralph, Jason F.; Ulbricht, Hendrik

    2018-03-01

    We demonstrate that a Kalman filter applied to estimate the position of an optically levitated nanoparticle, and operated in real-time within a field programmable gate array, is sufficient to perform closed-loop parametric feedback cooling of the center-of-mass motion to sub-Kelvin temperatures. The translational center-of-mass motion along the optical axis of the trapped nanoparticle has been cooled by 3 orders of magnitude, from a temperature of 300 K to a temperature of 162 ±15 mK.

  8. Real-time Kalman filter: cooling of an optically levitated nanoparticle

    OpenAIRE

    Setter, Ashley; Toros, Marko; Ralph, Jason; Ulbricht, Hendrik

    2018-01-01

    We demonstrate that a Kalman filter applied to estimate the position of an optically levitated nanoparticle, and operated in real-time within a Field Programmable Gate Array (FPGA), is sufficient to perform closed-loop parametric feedback cooling of the centre of mass motion to sub-Kelvin temperatures. The translational centre of mass motion along the optical axis of the trapped nanoparticle has been cooled by three orders of magnitude, from a temperature of 300K to a temperature of 162 +/- 1...

  9. Fibre Optic Notch Filter For The Antiproton Decelerator Stochastic Cooling System

    CERN Document Server

    Simmonds, Max Vincent John

    2016-01-01

    The project scope included reverse engineering, upgrading, and recovering the operational conditions of an existing fibre optic notch filter. Once operational, tests were to be preformed to confirm the performance of the temperature stabilisation. The end goal is to use said notch filter in the Antiproton Decelerator (AD) facility at CERN to help aid antimatter research. The notch filter was successfully reverse engineered and then documented. Changes were made in order to increase performance and reliability, and also allow easy integration into the AD. An additional phase was added whereby the notch filter was to be controller via a touchscreen computer, situated next to the filter, allowing engineers to set-up each of the electronic devices used. While one of the devices (Motorised Delay Line) can be controlled by the touchscreen computer, the other two cannot.Due to time constraints and difficulties with the Beckhoff TwincatII programming language, the USB devices were not able to be controlled via the To...

  10. All-optically tunable EIT-like dielectric metasurfaces hybridized with thin phase change material layers

    Science.gov (United States)

    Petronijevic, Emilija; Sibilia, Concita

    2017-05-01

    Electromagnetically induced transparency (EIT), a pump-induced narrow transparency window within the absorption region of a probe, had offered new perspectives in slow-light control in atomic physics. For applications in nanophotonics, the implementation on chip-scaled devices has later been obtained by mimicking this effect by metallic metamaterials. High losses in visible and near infrared range of metal-based metamaterialls have recently opened a new field of all-dielectric metamaterials; a proper configuration of high refractive index dielectric nanoresonators can mimick this effect without losses to get high Q, slow-light response. The next step would be the ability to tune their optical response, and in this work we investigate thin layers of phase change materials (PCM) for all-optical control of EIT-like all-dielectric metamaterials. PCM can be nonvolatively and reversibly switched between two stable phases that differ in optical properties by applying a visible laser pulse. The device is based on Si nanoresonators covered by a thin layer of PCM GeTe; optical and transient thermal simulations have been done to find and optimize the fabrication parameters and switching parameters such as the intensity and duration of the pulse. We have found that the EIT-like response can be switched on and off by applying the 532nm laser pulse to change the phase of the upper GeTe layer. We strongly believe that such approach could open new perspectives in all-optically controlled slow-light metamaterials.

  11. Free space broad-bandwidth tunable laser diode based on Littman configuration for 3D profile measurement

    Science.gov (United States)

    Shirazi, Muhammad Faizan; Kim, Pilun; Jeon, Mansik; Kim, Chang-Seok; Kim, Jeehyun

    2018-05-01

    We developed a tunable laser diode for an optical coherence tomography system that can perform three-dimensional profile measurement using an area scanning technique. The tunable laser diode is designed using an Eagleyard tunable laser diode with a galvano filter. The Littman free space configuration is used to demonstrate laser operation. The line- and bandwidths of this source are 0.27 nm (∼110 GHz) and 43 nm, respectively, at the center wavelength of 860 nm. The output power is 20 mW at an operating current of 150 mA. A step height target is imaged using a wide-area scanning system to show the measurement accuracy of the proposed tunable laser diode. A TEM grid is also imaged to measure the topography and thickness of the sample by proposed tunable laser diode.

  12. Optical sectioning for optical scanning holography using phase-space filtering with Wigner distribution functions.

    Science.gov (United States)

    Kim, Hwi; Min, Sung-Wook; Lee, Byoungho; Poon, Ting-Chung

    2008-07-01

    We propose a novel optical sectioning method for optical scanning holography, which is performed in phase space by using Wigner distribution functions together with the fractional Fourier transform. The principle of phase-space optical sectioning for one-dimensional signals, such as slit objects, and two-dimensional signals, such as rectangular objects, is first discussed. Computer simulation results are then presented to substantiate the proposed idea.

  13. Optical properties behavior of three optical filters and a mirror used in the internal optical head of a Raman laser spectrometer after exposed to proton radiation

    Science.gov (United States)

    Guembe, V.; Alvarado, C. G.; Fernández-Rodriguez, M.; Gallego, P.; Belenguer, T.; Díaz, E.

    2017-11-01

    The Raman Laser Spectrometer is one of the ExoMars Pasteur Rover's payload instruments that is devoted to the analytical analysis of the geochemistry content and elemental composition of the observed minerals provided by the Rover through Raman spectroscopy technique. One subsystem of the RLS instrument is the Internal Optical Head unit (IOH), which is responsible for focusing the light coming from the laser onto the mineral under analysis and for collecting the Raman signal emitted by the excited mineral. The IOH is composed by 4 commercial elements for Raman spectroscopy application; 2 optical filters provided by Iridian Spectral Technologies Company and 1 optical filter and 1 mirror provided by Semrock Company. They have been exposed to proton radiation in order to analyze their optical behaviour due to this hostile space condition. The proton irradiation test was performed following the protocol of LINES lab (INTA). The optical properties have been studied through transmittance, reflectance and optical density measurements, the final results and its influence on optical performances are presented.

  14. Multicolor tuning towards single red-emission band of upconversion nanoparticles for tunable optical component and optical/x-ray imaging agents via Ce"3"+ doping

    International Nuclear Information System (INIS)

    Yi, Zhigao; Zeng, Tianmei; Xu, Yaru; Qian, Chao; Liu, Hongrong; Zeng, Songjun; Lu, Wei; Hao, Jianhua

    2015-01-01

    A simple strategy of Ce"3"+ doping is proposed to realize multicolor tuning and predominant red emission in BaLnF_5:Yb"3"+/Ho"3"+ (Ln"3"+ = Gd"3"+, Y"3"+, Yb"3"+) systems. A tunable upconversion (UC) multicolor output from green/yellow to red can be readily achieved in a fixed Yb"3"+/Ho"3"+ composition by doping Ce"3"+, providing an effective route for multicolor tuning widely used for various optical components. Moreover, compared with Ce"3"+-free UC nanoparticles (UCNPs), a remarkable enhancement of the red-to-green (R/G) ratio is observed by doping 30% Ce"3"+, arising from the two largely promoted cross-relaxation (CR) processes between Ce"3"+ and Ho"3"+. UCNPs with pure red emission are selected as in vivo UC bioimaging agents, demonstrating the merits of deep penetration depth, the absence of autofluorescence and high contrast in small animal bioimaging. Moreover, such fluorescence imaging nanoprobes can also be used as contrast agents for three-dimensional (3D) x-ray bioimaging by taking advantage of the high K-edge values and x-ray absorption coefficients of Ba"2"+, Gd"3"+, and Ce"3"+ in our designed nanoprobes. Thus, the simultaneous realization of multicolor output, highly enhanced R/G ratio, and predominant red emission makes the Ce"3"+-doped UCNPs very useful for widespread applications in optical components and bioimaging. (paper)

  15. Multicolor tuning towards single red-emission band of upconversion nanoparticles for tunable optical component and optical/x-ray imaging agents via Ce(3+) doping.

    Science.gov (United States)

    Yi, Zhigao; Zeng, Tianmei; Xu, Yaru; Lu, Wei; Qian, Chao; Liu, Hongrong; Zeng, Songjun; Hao, Jianhua

    2015-09-25

    A simple strategy of Ce(3+) doping is proposed to realize multicolor tuning and predominant red emission in BaLnF5:Yb(3+)/Ho(3+) (Ln(3+) = Gd(3+), Y(3+), Yb(3+)) systems. A tunable upconversion (UC) multicolor output from green/yellow to red can be readily achieved in a fixed Yb(3+)/Ho(3+) composition by doping Ce(3+), providing an effective route for multicolor tuning widely used for various optical components. Moreover, compared with Ce(3+)-free UC nanoparticles (UCNPs), a remarkable enhancement of the red-to-green (R/G) ratio is observed by doping 30% Ce(3+), arising from the two largely promoted cross-relaxation (CR) processes between Ce(3+) and Ho(3+). UCNPs with pure red emission are selected as in vivo UC bioimaging agents, demonstrating the merits of deep penetration depth, the absence of autofluorescence and high contrast in small animal bioimaging. Moreover, such fluorescence imaging nanoprobes can also be used as contrast agents for three-dimensional (3D) x-ray bioimaging by taking advantage of the high K-edge values and x-ray absorption coefficients of Ba(2+), Gd(3+), and Ce(3+) in our designed nanoprobes. Thus, the simultaneous realization of multicolor output, highly enhanced R/G ratio, and predominant red emission makes the Ce(3+)-doped UCNPs very useful for widespread applications in optical components and bioimaging.

  16. A Fiber Optic PD Sensor Using a Balanced Sagnac Interferometer and an EDFA-Based DOP Tunable Fiber Ring Laser

    Science.gov (United States)

    Wang, Lutang; Fang, Nian; Wu, Chunxu; Qin, Haijuan; Huang, Zhaoming

    2014-01-01

    A novel fiber-optic acoustic sensor using an erbium-doped fiber amplifier (EDFA)-based fiber ring laser and a balanced Sagnac interferometer for acoustic sensing of the partial discharge (PD) in power transformers is proposed and demonstrated. As a technical background, an experimental investigation on how the variations of the fiber birefringence affect the sensor performances was carried out, and the results are discussed. The operation principles are described, and the relevant formulas are derived. The analytical results show that an EDFA-based fiber ring laser operating in chaotic mode can provide a degree of polarization (DOP) tunable light beam for effectively suppressing polarization fading noises. The balanced Sagnac interferometer can eliminate command intensity noises and enhance the signal-to-noise ratio (SNR). Furthermore, it inherently operates at the quadrature point of the response curve without any active stabilizations. Several experiments are conducted for evaluating the performances of the sensor system, as well as for investigating the ability of the detection of high-frequency acoustic emission signals. The experimental results demonstrate that the DOP of the laser beam can be continuously tuned from 0.2% to 100%, and the power fluctuation in the whole DOP tuning range is less than 0.05 dBm. A high-frequency response up to 300 kHz is reached, and the high sensing sensitivity for detections of weak corona discharges, as well as partial discharges also is verified. PMID:24824371

  17. Widely-tunable and sensitive optical sensor for multi-species detection in the mid-IR

    KAUST Repository

    Alquaity, Awad

    2017-10-05

    Pulsed cavity ringdown spectroscopy (CRDS) technique was used to develop a novel widely-tunable laser-based sensor for sensitive measurements of ethylene, propene, 1-butene and allene in the mid-IR. The use of an external-cavity quantum cascade laser (EC-QCL) enabled the sensor to cover a wide wavelength range from 10 to 11.1 µm (900 – 1000 cm-1) to detect multiple gases relevant to combustion and environment. The sensor operation was validated in a room-temperature static cell using well-characterized absorption lines of carbon dioxide near 938.69 cm-1 and 974.62 cm-1. Detection limits for ethylene, propene, 1-butene, and allene were measured to be 17, 134, 754 and 378 ppb, respectively, at 296 K and 760 Torr for a single-pass path-length of 70 cm. The excellent sensitivity of the optical sensor enabled it to measure the aforementioned gases at levels smaller than 1% of their recommended exposure limits. To the best of our knowledge, this is one of the first successful applications of the pulsed CRDS technique to measure trace levels of multiple gases in the 10 – 11 µm wavelength region.

  18. Highly crystalline p-PbS thin films with tunable optical and hole transport parameters by chemical bath deposition

    International Nuclear Information System (INIS)

    Bai, Rekha; Kumar, Dinesh; Chaudhary, Sujeet; Pandya, Dinesh K.

    2017-01-01

    Lead sulfide (PbS) thin films, consisting of well faceted (up to 400 nm) cubic-nanocrystals and possessing significantly improved opto-electronic parameters essential for photovoltaic applications, are grown by utilizing chemical bath deposition (CBD) technique with bath concentrations of 10–200 mM. X-ray diffraction (XRD) and Raman studies confirm the highly crystalline and pure phase of PbS. FESEM and HRTEM studies show that all the films possess uniform and compact (111) oriented nanocubic morphology. Bath concentration change provides tunability of nanocube size from 100 to 400 nm and the direct optical band gap from 1.50 to 0.94 eV. The PbS films exhibit p-type semiconducting behavior with hitherto unreported concurrent highest mobility of 29.3 cm"2V"−"1s"−"1 and high carrier concentration of ∼10"1"8 cm"−"3 with the lowest room temperature resistivity of 0.26 Ω–cm. The 25 mM and 10 mM films show significant surface plasmon absorption in 1200–2400 nm range making them suitable as efficient infrared absorbers in excitonic and multi-junction solar cells.

  19. Widely-tunable and sensitive optical sensor for multi-species detection in the mid-IR

    KAUST Repository

    Alquaity, Awad; Alsaif, Bidoor; Farooq, Aamir

    2017-01-01

    Pulsed cavity ringdown spectroscopy (CRDS) technique was used to develop a novel widely-tunable laser-based sensor for sensitive measurements of ethylene, propene, 1-butene and allene in the mid-IR. The use of an external-cavity quantum cascade laser (EC-QCL) enabled the sensor to cover a wide wavelength range from 10 to 11.1 µm (900 – 1000 cm-1) to detect multiple gases relevant to combustion and environment. The sensor operation was validated in a room-temperature static cell using well-characterized absorption lines of carbon dioxide near 938.69 cm-1 and 974.62 cm-1. Detection limits for ethylene, propene, 1-butene, and allene were measured to be 17, 134, 754 and 378 ppb, respectively, at 296 K and 760 Torr for a single-pass path-length of 70 cm. The excellent sensitivity of the optical sensor enabled it to measure the aforementioned gases at levels smaller than 1% of their recommended exposure limits. To the best of our knowledge, this is one of the first successful applications of the pulsed CRDS technique to measure trace levels of multiple gases in the 10 – 11 µm wavelength region.

  20. Tunable optical properties of graphene oxide by tailoring the oxygen functionalities using infrared irradiation

    International Nuclear Information System (INIS)

    Maiti, R; Ray, S K; Midya, A; Narayana, C

    2014-01-01

    The modification of individual oxygen functional groups and the resultant optical properties of a graphene oxide suspension were investigated using a controlled photothermal reduction by infrared irradiation. The evolution of the structural and optical characteristics of GO suspensions was obtained from Raman spectra, x-ray photoelectron spectroscopy, optical absorption, and steady state and time-resolved photoluminescence spectroscopy. The results suggest the gradual restoration of sp 2 clusters within the sp 3 matrix with an increase of the reduction time and power density. The yellow-red emission (∼610 nm) originated from the defect-assisted localized states in GO due to epoxy/hydroxyl (C-O/-OH) functional groups and that of the blue emission (∼500 nm) was ascribed to the carbonyl (C=O)-assisted localized electronic states. With an increase in the reduction time and IR power density, the intensity of the yellow-red emission was found to decrease, with the blue emission being prominent. These experimental findings open up a new dimension for controlling the optical absorption and emission properties of graphene oxide by tailoring the oxygen functional groups, which may lead to the potential application of graphene-based optoelectronic devices. (paper)

  1. Identification and tunable optical coherent control of transition-metal spins in silicon carbide

    NARCIS (Netherlands)

    Bosma, Tom; Lof, Gerrit J. J.; Gilardoni, Carmem M.; Zwier, Olger V.; Hendriks, Freddie; Ellison, Alexandre; Magnusson, Björn; Gällström, Andreas; Ivanov, Ivan G.; Son, N. T.; Havenith, Remco W. A.; Wal, Caspar H. van der

    2018-01-01

    Color centers in wide-bandgap semiconductors are attractive systems for quantum technologies since they can combine long-coherent electronic spin and bright optical properties. Several suitable centers have been identified, most famously the nitrogen-vacancy defect in diamond. However, integration

  2. Rapidly tunable continuous-wave optical parametric oscillator pumped by a fiber laser

    NARCIS (Netherlands)

    Klein, M.E.; Gross, P.; Boller, Klaus J.; Auerbach, M.; Wessels, P.; Fallnich, C.

    2003-01-01

    We report on rapid, all-electronically controlled wavelength tuning of a continuous-wave (cw) optical parametric oscillator (OPO) pumped by an ytterbium fiber laser. The OPO is singly resonant for the signal wave and consists of a 40-mm-long periodically poled lithium niobate crystal in a

  3. Ultra-narrow bandpass filters for long range optical telecommunications at 1064nm and 1550nm, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Ultra-narrow bandpass filters with high off-band rejection are needed to maximize signal to noise for free space communications. Omega Optical is developing NIR...

  4. Design of smart optical sensor using polyvinyl alcohol/Fluorescein sodium salt: Laser filters and optical limiting effect

    Science.gov (United States)

    Yahia, I. S.; Bouzidi, A.; Zahran, H. Y.; Jilani, W.; AlFaify, S.; Algarni, H.; Guermazi, H.

    2018-03-01

    Pure poly (vinyl alcohol) (PVA) and PVA doped Fluorescein-Sodium salt (FSS/PVA composite films) have synthesized on wide scale laser optical filters. The investigated polymeric composite films have been characterized using several methods. The XRD patterns exhibit a decrease of the average crystalline size and an increase of the internal strain, which explained the imperfection and distortion in the prepared films. The optical characterizations showed a decrease in the transmission of the incident light for different samples, which may be explained to the layer formed by intermolecular hydrogen bonding between the PVA matrix and the FSS particles. The FSS/PVA polymeric composite films are being a completely blocking in the UV-Vis light at the range between 190 and 560 nm, agreement with the optical limiting effect, which makes the composite films suitable for CUT-OFF laser filters applications. The decrease in its, directly and indirectly, allowed transition band gaps were controlled by the added FSS dyes molecules. The variation of the exponent frequency (s) of the power law for FSS/PVA polymeric composite films has been characterized to improve the hopping conduction mechanism in the materials. The dielectric permittivity (e‧) and dielectric loss (e'') have been decreased with increasing the applied frequency, and the incorporated FSS molecules due to the DC electric conductivity can cause the decreases of the polarization of the as-prepared films over the studied ranges.

  5. Yb-fiber-pumped mid-infrared picosecond optical parametric oscillator tunable across 6.2-6.7 µm

    Science.gov (United States)

    Kumar, S. Chaitanya; Casals, J. Canals; Parsa, S.; Zawilski, K. T.; Schunemann, P. G.; Ebrahim-Zadeh, M.

    2018-06-01

    We report a high-average-power picosecond optical parametric oscillator (OPO) tunable in the mid-infrared (mid-IR) based on CdSiP2 synchronously pumped by an Yb-fiber laser at 80 MHz repetition rate. Successful operation of this high-repetition-rate singly-resonant picosecond OPO has been enabled by the improved CSP crystal quality over a long interaction length. The OPO can be tuned across 1264-1284 nm in the near-IR signal and 6205-6724 nm in the mid-IR idler by temperature tuning the CSP crystal over 39-134 °C. By deploying a 5% output coupler for the resonant signal, we have extracted up to 44 mW of average power in the near-IR and up to 95 mW of non-resonant idler power at 6205 nm at 6.3% total conversion efficiency, with > 50 mW over > 55% of the mid-IR tuning range. We have investigated temperature-tuning characteristics of the OPO and compared the data with the theoretical calculations using the recent Sellmeier and thermo-optic coefficients for CdSiP2. The signal pulses from the OPO exhibit a Gaussian pulse duration of 19 ps centered at 1284 nm. We have also studied the output power stability of the OPO, resulting in a passive stability better than 1.9% rms for the near-IR signal and 2.4% rms for the mid-IR idler, measured over > 17 h, with both beams in high spatial quality.

  6. Bit-rate-transparent optical RZ-to-NRZ format conversion based on linear spectral phase filtering

    DEFF Research Database (Denmark)

    Maram, Reza; Da Ros, Francesco; Guan, Pengyu

    2017-01-01

    We propose a novel and strikingly simple design for all-optical bit-rate-transparent RZ-to-NRZ conversion based on optical phase filtering. The proposed concept is experimentally validated through format conversion of a 640 Gbit/s coherent RZ signal to NRZ signal.......We propose a novel and strikingly simple design for all-optical bit-rate-transparent RZ-to-NRZ conversion based on optical phase filtering. The proposed concept is experimentally validated through format conversion of a 640 Gbit/s coherent RZ signal to NRZ signal....

  7. Optical filtering and luminescence property of some molybdates prepared by combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, P. J., E-mail: yadav.pooja75@yahoo.in [Department of Electronics, RTM Nagpur University, Nagpur (India); Joshi, C. P. [Physics Department, RCOEM, Nagpur (India); Moharil, S. V., E-mail: svmoharil@yahoo.com [Physics Department, RTM Nagpur University, Nagpur (India)

    2014-10-15

    As an important class of lanthanide inorganic compounds, rare earth ions doped molybdates have gained much attention due to their attractive luminescence and structural properties, supporting various promising applications as phosphor materials in the fields such as white light-emitting diodes, optical fibers, biolabel, lasers, and so on. The molybdate family has promising trivalent cation conducting properties and most of the optical properties result from electron transitions of the 4f shell, which are greatly affected by the composition and structures of rare-earth compounds. In this paper we report the molybdate CaMoO{sub 4}:Eu{sup 3+} for red SSL and Bi{sub 1.4}Y{sub 0.6}MoO{sub 6}, Y{sub 6}MoO{sub 12} for optical filtering, prepared by one step combustion synthesis.

  8. Flexible transparent aerogels as window retrofitting films and optical elements with tunable birefringence

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qingkun; Frazier, Allister W.; Zhao, Xinpeng; De La Cruz, Joshua A.; Hess, Andrew J.; Yang, Ronggui; Smalyukh, Ivan I.

    2018-06-01

    Experimental realization of optically transparent, mechanically robust and flexible aerogels has been a longstanding challenge, which limits their practical applications in energy-saving devices, such as thermally insulating films for enhancing energy efficiency of windows. The poor transparency precluded even hypothetical consideration of the possibility of birefringent aerogels. We develop birefringent and optically isotropic aerogels that combine properties of thermal super-insulation, mechanical robustness and flexibility, and transparency to visible-spectrum light. This unusual combination of physical properties is achieved by combining liquid crystalline self-organization of cellulose nanofibers with polysiloxane cross-linking and control of the nanoscale porosity to form hybrid organic-inorganic mesostructured aerogels. Potential applications of these inexpensive materials range from single pane window retrofitting to smart fabrics.

  9. Shape-controlled synthesis of organolead halide perovskite nanocrystals and their tunable optical absorption

    International Nuclear Information System (INIS)

    Chen, Zhenhua; Tang, Yongbing; Huang, Xing; Lee, Chun-Sing; Li, Hui; Ho, Derek

    2014-01-01

    Hybrid organolead halide perovskites (CH 3 NH 3 PbI 3 ) with polymorphic structures have been successfully synthesized by controlling their solubility in solvents with different polarities. Crystal formation stages of the perovskites have been demonstrated for the first time. Shape changes of such perovskites are accompanied by transition in their crystal structures and variation of optical properties. Herein, a new trigonal phase for CH 3 NH 3 PbI 3 has been observed with a rod-like morphology. Photoemission study indicates a significant red shift in the perovskite nanoparticles, compared to that of the rod-like nanocrystals. This solvent-controlled formation of polymorphic phases provide an additional approach for controlling the optical properties of CH 3 NH 3 PbI 3 for various optoelectronic applications. (papers)

  10. An Optical Biosensing Strategy Based on Selective Light Absorption and Wavelength Filtering from Chromogenic Reaction

    Directory of Open Access Journals (Sweden)

    Hyeong Jin Chun

    2018-03-01

    Full Text Available To overcome the time and space constraints in disease diagnosis via the biosensing approach, we developed a new signal-transducing strategy that can be applied to colorimetric optical biosensors. Our study is focused on implementation of a signal transduction technology that can directly translate the color intensity signals—that require complicated optical equipment for the analysis—into signals that can be easily counted with the naked eye. Based on the selective light absorption and wavelength-filtering principles, our new optical signaling transducer was built from a common computer monitor and a smartphone. In this signal transducer, the liquid crystal display (LCD panel of the computer monitor served as a light source and a signal guide generator. In addition, the smartphone was used as an optical receiver and signal display. As a biorecognition layer, a transparent and soft material-based biosensing channel was employed generating blue output via a target-specific bienzymatic chromogenic reaction. Using graphics editor software, we displayed the optical signal guide patterns containing multiple polygons (a triangle, circle, pentagon, heptagon, and 3/4 circle, each associated with a specified color ratio on the LCD monitor panel. During observation of signal guide patterns displayed on the LCD monitor panel using a smartphone camera via the target analyte-loaded biosensing channel as a color-filtering layer, the number of observed polygons changed according to the concentration of the target analyte via the spectral correlation between absorbance changes in a solution of the biosensing channel and color emission properties of each type of polygon. By simple counting of the changes in the number of polygons registered by the smartphone camera, we could efficiently measure the concentration of a target analyte in a sample without complicated and expensive optical instruments. In a demonstration test on glucose as a model analyte, we

  11. An Optical Biosensing Strategy Based on Selective Light Absorption and Wavelength Filtering from Chromogenic Reaction.

    Science.gov (United States)

    Chun, Hyeong Jin; Han, Yong Duk; Park, Yoo Min; Kim, Ka Ram; Lee, Seok Jae; Yoon, Hyun C

    2018-03-06

    To overcome the time and space constraints in disease diagnosis via the biosensing approach, we developed a new signal-transducing strategy that can be applied to colorimetric optical biosensors. Our study is focused on implementation of a signal transduction technology that can directly translate the color intensity signals-that require complicated optical equipment for the analysis-into signals that can be easily counted with the naked eye. Based on the selective light absorption and wavelength-filtering principles, our new optical signaling transducer was built from a common computer monitor and a smartphone. In this signal transducer, the liquid crystal display (LCD) panel of the computer monitor served as a light source and a signal guide generator. In addition, the smartphone was used as an optical receiver and signal display. As a biorecognition layer, a transparent and soft material-based biosensing channel was employed generating blue output via a target-specific bienzymatic chromogenic reaction. Using graphics editor software, we displayed the optical signal guide patterns containing multiple polygons (a triangle, circle, pentagon, heptagon, and 3/4 circle, each associated with a specified color ratio) on the LCD monitor panel. During observation of signal guide patterns displayed on the LCD monitor panel using a smartphone camera via the target analyte-loaded biosensing channel as a color-filtering layer, the number of observed polygons changed according to the concentration of the target analyte via the spectral correlation between absorbance changes in a solution of the biosensing channel and color emission properties of each type of polygon. By simple counting of the changes in the number of polygons registered by the smartphone camera, we could efficiently measure the concentration of a target analyte in a sample without complicated and expensive optical instruments. In a demonstration test on glucose as a model analyte, we could easily measure the

  12. Tunable plasmonic toroidal terahertz metamodulator

    Science.gov (United States)

    Gerislioglu, Burak; Ahmadivand, Arash; Pala, Nezih

    2018-04-01

    Optical modulators are essential and strategic parts of micro- and nanophotonic circuits to encode electro-optical signals in the optical domain. Here, by using arrays of multipixel toroidal plasmonic terahertz (THz) metamolecules, we developed a functional plasmonic metamodulator with high efficiency and tunability. Technically, the dynamic toroidal dipole induces nonradiating charge-current arrangements leading to have an exquisite role in defining the inherent spectral features of various materials. By categorizing in a different family of multipoles far from the traditional electromagnetic multipoles, the toroidal dipole corresponds to poloidal currents flowing on the surface of a closed-loop torus. Utilizing the sensitivity of the optically driven toroidal momentum to the incident THz beam power and by employing both numerical tools and experimental analysis, we systematically studied the spectral response of the proposed THz plasmonic metadevice. In this Rapid Communication, we uncover a correlation between the existence and the excitation of the toroidal response and the incident beam power. This mechanism is employed to develop THz toroidal metamodulators with a strong potential to be employed for practical advanced and next-generation communication, filtering, and routing applications.

  13. Modeling astronomical adaptive optics performance with temporally filtered Wiener reconstruction of slope data

    Science.gov (United States)

    Correia, Carlos M.; Bond, Charlotte Z.; Sauvage, Jean-François; Fusco, Thierry; Conan, Rodolphe; Wizinowich, Peter L.

    2017-10-01

    We build on a long-standing tradition in astronomical adaptive optics (AO) of specifying performance metrics and error budgets using linear systems modeling in the spatial-frequency domain. Our goal is to provide a comprehensive tool for the calculation of error budgets in terms of residual temporally filtered phase power spectral densities and variances. In addition, the fast simulation of AO-corrected point spread functions (PSFs) provided by this method can be used as inputs for simulations of science observations with next-generation instruments and telescopes, in particular to predict post-coronagraphic contrast improvements for planet finder systems. We extend the previous results and propose the synthesis of a distributed Kalman filter to mitigate both aniso-servo-lag and aliasing errors whilst minimizing the overall residual variance. We discuss applications to (i) analytic AO-corrected PSF modeling in the spatial-frequency domain, (ii) post-coronagraphic contrast enhancement, (iii) filter optimization for real-time wavefront reconstruction, and (iv) PSF reconstruction from system telemetry. Under perfect knowledge of wind velocities, we show that $\\sim$60 nm rms error reduction can be achieved with the distributed Kalman filter embodying anti- aliasing reconstructors on 10 m class high-order AO systems, leading to contrast improvement factors of up to three orders of magnitude at few ${\\lambda}/D$ separations ($\\sim1-5{\\lambda}/D$) for a 0 magnitude star and reaching close to one order of magnitude for a 12 magnitude star.

  14. Temperature-agile and structure-tunable optical properties of VO2/Ag thin films

    International Nuclear Information System (INIS)

    Zhang, X.R.; Hu, X.; Wang, W.; Zhao, Y.; Reinhardt, K.; Knize, R.J.; Lu, Yalin

    2012-01-01

    By integrating together VO 2 's unique near-room-temperature (RT) semiconductor-metal (S-M) phase transition with a thin silver (Ag) layer's plasmonic properties, VO 2 /Ag multilayers could present a much enhanced optical transmission change when increasing the temperature from RT to over VO 2 's S-M phase-transition temperature. Changing VO 2 and Ag layer thicknesses can also significantly tune their transmission and absorption properties, which could lead to a few useful designs in optoelectronic and energy-saving industries. (orig.)

  15. Tunable nano-wrinkling of chiral surfaces: Structure and diffraction optics

    International Nuclear Information System (INIS)

    Rofouie, P.; Rey, A. D.; Pasini, D.

    2015-01-01

    Periodic surface nano-wrinkling is found throughout biological liquid crystalline materials, such as collagen films, spider silk gland ducts, exoskeleton of beetles, and flower petals. These surface ultrastructures are responsible for structural colors observed in some beetles and plants that can dynamically respond to external conditions, such as humidity and temperature. In this paper, the formation of the surface undulations is investigated through the interaction of anisotropic interfacial tension, swelling through hydration, and capillarity at free surfaces. Focusing on the cellulosic cholesteric liquid crystal (CCLC) material model, the generalized shape equation for anisotropic interfaces using the Cahn-Hoffman capillarity vector and the Rapini-Papoular anchoring energy are applied to analyze periodic nano-wrinkling in plant-based plywood free surfaces with water-induced cholesteric pitch gradients. Scaling is used to derive the explicit relations between the undulations’ amplitude expressed as a function of the anchoring strength and the spatially varying pitch. The optical responses of the periodic nano-structured surfaces are studied through finite difference time domain simulations indicating that CCLC surfaces with spatially varying pitch reflect light in a wavelength higher than that of a CCLC’s surface with constant pitch. This structural color change is controlled by the pitch gradient through hydration. All these findings provide a foundation to understand structural color phenomena in nature and for the design of optical sensor devices

  16. Tunable nano-wrinkling of chiral surfaces: Structure and diffraction optics

    Energy Technology Data Exchange (ETDEWEB)

    Rofouie, P.; Rey, A. D., E-mail: alejandro.rey@mail.mcgill.ca [Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 2B2 (Canada); Pasini, D. [Department of Mechanical Engineering, McGill University, 817 Sherbrook West, Montreal, Quebec H3A 0C3 (Canada)

    2015-09-21

    Periodic surface nano-wrinkling is found throughout biological liquid crystalline materials, such as collagen films, spider silk gland ducts, exoskeleton of beetles, and flower petals. These surface ultrastructures are responsible for structural colors observed in some beetles and plants that can dynamically respond to external conditions, such as humidity and temperature. In this paper, the formation of the surface undulations is investigated through the interaction of anisotropic interfacial tension, swelling through hydration, and capillarity at free surfaces. Focusing on the cellulosic cholesteric liquid crystal (CCLC) material model, the generalized shape equation for anisotropic interfaces using the Cahn-Hoffman capillarity vector and the Rapini-Papoular anchoring energy are applied to analyze periodic nano-wrinkling in plant-based plywood free surfaces with water-induced cholesteric pitch gradients. Scaling is used to derive the explicit relations between the undulations’ amplitude expressed as a function of the anchoring strength and the spatially varying pitch. The optical responses of the periodic nano-structured surfaces are studied through finite difference time domain simulations indicating that CCLC surfaces with spatially varying pitch reflect light in a wavelength higher than that of a CCLC’s surface with constant pitch. This structural color change is controlled by the pitch gradient through hydration. All these findings provide a foundation to understand structural color phenomena in nature and for the design of optical sensor devices.

  17. Gate-tunable gigantic changes in lattice parameters and optical properties in VO2

    Science.gov (United States)

    Nakano, Masaki; Okuyama, Daisuke; Shibuya, Keisuke; Ogawa, Naoki; Hatano, Takafumi; Kawasaki, Masashi; Arima, Taka-Hisa; Iwasa, Yoshihiro; Tokura, Yoshinori

    2014-03-01

    The field-effect transistor provides an electrical switching function of current flowing through a channel surface by external gate voltage (VG). We recently reported that an electric-double-layer transistor (EDLT) based on vanadium dioxide (VO2) enables electrical switching of the metal-insulator phase transition, where the low-temperature insulating state can be completely switched to the metallic state by application of VG. Here we demonstrate that VO2-EDLT enables electrical switching of lattice parameters and optical properties as well as electrical current. We performed in-situ x-ray diffraction and optical transmission spectroscopy measurements, and found that the c-axis length and the infrared transmittance of VO2 can be significantly modulated by more than 1% and 40%, respectively, by application of VG. We emphasize that these distinguished features originate from the electric-field induced bulk phase transition available with VO2-EDLT. This work was supported by the Japan Society for the Promotion of Science (JSPS) through its ``Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program).''

  18. Three-ring filters increase the effective NA up to 1.46 in optical sectioning fluorescence microscopy

    International Nuclear Information System (INIS)

    Martinez-Corral, M; Ibanez-Lopez, C; Caballero, M T; Munoz-Escriva, L; Saavedra, G

    2003-01-01

    Single-photon fluorescence confocal microscopy techniques can be combined with the use of specific binary filters in order to increase their optical sectioning capability. We present a novel class of axially super-resolving binary pupil filters specially designed to reach this aim. These filters let us to obtain a relevant compression of the z-response together with the reduction of the photo-bleaching effect typically inherent to apodization techniques. The fact of joining both the three-ring filters we propose in the illumination path, and the confocal detection gives rise to an important effective increase of lenses of effective numerical aperture

  19. Optical single sideband modulation radio over fiber system by using a fiber-Bragg-grating-based acousto-optic filter

    Science.gov (United States)

    Gao, Song; Pei, Li; Li, Zhuoxuan; Liu, Chao; Wang, Yiqun; Weng, Sijun

    2013-03-01

    An optical single sideband (OSSB) modulation radio over a fiber system, by using an acousto-optic filter (AOF), is proposed and demonstrated. In the AOF, a uniform fiber Bragg grating is etched and modulated by an axially propagating acoustic wave. Due to the acousto-optic superlattice modulation, two secondary reflection peaks, centered on the primary reflection peak, are generated. In the scheme, an optical double-sideband signal passes though the AOF to realize OSSB modulation. Because the reflect depth of the primary peak is much deeper than those of the secondary peaks, the carrier experiences higher attenuation than the upper sideband, which means the carrier-to-sideband ratio (CSR) can be optimized at the same time. We demonstrate this scheme via simulations, and successfully reduce the CSR from 9.73 to 2.9 dB. As a result, the receiving sensitivity improved from -23.43 to -31.18 dBm at BER of 10-9 with 30 km long SMF.

  20. Silica-on-silicon optical couplers and coupler based optical filters

    DEFF Research Database (Denmark)

    Leick, Lasse

    2002-01-01

    is not an adequate description of the waveguides. A simple application for an optical couplers is as a 980/1550 nm mulitmplexer for erbium doped wavguide amplifiers. A numerical analysis shows that a directional coupler has acceptable specifications, whereas a mulit mode interference coupler does not. The wavelength......This work concerns modeling and chracterization of non ampligying silica-on-silicon optical components for wavelength division mulitplexed networks. Emphasis is placed on optical couplers and how they can be used as building blocks for devices with a larger complexity. It has been investigated how...... to construct wavelength flattened and process tolerant couplers. A thorough comparison between directional couplers, multi mode interference couplers and interferometer-based couplers has been performed. Numerically all these architectures have the ability to obtain similar wavelength-flatness, but the multi...

  1. APPLIED OPTICS. Voltage-tunable circular photogalvanic effect in silicon nanowires.

    Science.gov (United States)

    Dhara, Sajal; Mele, Eugene J; Agarwal, Ritesh

    2015-08-14

    Electronic bands in crystals can support nontrivial topological textures arising from spin-orbit interactions, but purely orbital mechanisms can realize closely related dynamics without breaking spin degeneracies, opening up applications in materials containing only light elements. One such application is the circular photogalvanic effect (CPGE), which is the generation of photocurrents whose magnitude and polarity depend on the chirality of optical excitation. We show that the CPGE can arise from interband transitions at the metal contacts to silicon nanowires, where inversion symmetry is locally broken by an electric field. Bias voltage that modulates this field further controls the sign and magnitude of the CPGE. The generation of chirality-dependent photocurrents in silicon with a purely orbital-based mechanism will enable new functionalities in silicon that can be integrated with conventional electronics. Copyright © 2015, American Association for the Advancement of Science.

  2. Scalable nanofabrication of U-shaped nanowire resonators with tunable optical magnetism.

    Science.gov (United States)

    Zhou, Fan; Wang, Chen; Dong, Biqin; Chen, Xiangfan; Zhang, Zhen; Sun, Cheng

    2016-03-21

    Split ring resonators have been studied extensively in reconstituting the diminishing magnetism at high electromagnetic frequencies in nature. However, breakdown in the linear scaling of artificial magnetism is found to occur at the near-infrared frequency mainly due to the increasing contribution of self-inductance while reducing dimensions of the resonators. Although alternative designs have enabled artificial magnetism at optical frequencies, their sophisticated configurations and fabrication procedures do not lend themselves to easy implementation. Here, we report scalable nanofabrication of U-shaped nanowire resonators (UNWRs) using the high-throughput nanotransfer printing method. By providing ample area for conducting oscillating electric current, UNWRs overcome the saturation of the geometric scaling of the artificial magnetism. We experimentally demonstrated coarse and fine tuning of LC resonances over a wide wavelength range from 748 nm to 1600 nm. The added flexibility in transferring to other substrates makes UNWR a versatile building block for creating functional metamaterials in three dimensions.

  3. Mobile Phone Ratiometric Imaging Enables Highly Sensitive Fluorescence Lateral Flow Immunoassays without External Optical Filters.

    Science.gov (United States)

    Shah, Kamal G; Singh, Vidhi; Kauffman, Peter C; Abe, Koji; Yager, Paul

    2018-05-14

    Paper-based diagnostic tests based on the lateral flow immunoassay concept promise low-cost, point-of-care detection of infectious diseases, but such assays suffer from poor limits of detection. One factor that contributes to poor analytical performance is a reliance on low-contrast chromophoric optical labels such as gold nanoparticles. Previous attempts to improve the sensitivity of paper-based diagnostics include replacing chromophoric labels with enzymes, fluorophores, or phosphors at the expense of increased fluidic complexity or the need for device readers with costly optoelectronics. Several groups, including our own, have proposed mobile phones as suitable point-of-care readers due to their low cost, ease of use, and ubiquity. However, extant mobile phone fluorescence readers require costly optical filters and were typically validated with only one camera sensor module, which is inappropriate for potential point-of-care use. In response, we propose to couple low-cost ultraviolet light-emitting diodes with long Stokes-shift quantum dots to enable ratiometric mobile phone fluorescence measurements without optical filters. Ratiometric imaging with unmodified smartphone cameras improves the contrast and attenuates the impact of excitation intensity variability by 15×. Practical application was shown with a lateral flow immunoassay for influenza A with nucleoproteins spiked into simulated nasal matrix. Limits of detection of 1.5 and 2.6 fmol were attained on two mobile phones, which are comparable to a gel imager (1.9 fmol), 10× better than imaging gold nanoparticles on a scanner (18 fmol), and >2 orders of magnitude better than gold nanoparticle-labeled assays imaged with mobile phones. Use of the proposed filter-free mobile phone imaging scheme is a first step toward enabling a new generation of highly sensitive, point-of-care fluorescence assays.

  4. Active control of long-period fiber-grating-based filters made in erbium-doped optical fibers

    Czech Academy of Sciences Publication Activity Database

    Slavík, Radan; Kulishov, M.

    2007-01-01

    Roč. 32, č. 7 (2007), s. 757-759 ISSN 0146-9592 R&D Projects: GA AV ČR(CZ) KJB200670601; GA ČR(CZ) GA102/07/0999 Institutional research plan: CEZ:AV0Z20670512 Keywords : optical fibre filters Subject RIV: BH - Optics , Masers, Lasers Impact factor: 3.711, year: 2007

  5. OPTICAL CROSS-CORRELATION FILTERS: AN ECONOMICAL APPROACH FOR IDENTIFYING SNe Ia AND ESTIMATING THEIR REDSHIFTS

    International Nuclear Information System (INIS)

    Scolnic, Daniel M.; Riess, Adam G.; Huber, Mark E.; Rest, Armin; Stubbs, Christoper W.; Tonry, John L.

    2009-01-01

    Large photometric surveys of transient phenomena, such as Panoramic Survey Telescope and Rapid Response System and Large Synoptic Survey Telescope, will locate thousands to millions of Type Ia supernova (SN Ia) candidates per year, a rate prohibitive for acquiring spectroscopy to determine each candidate's type and redshift. In response, we have developed an economical approach to identifying SNe Ia and their redshifts using an uncommon type of optical filter which has multiple, discontinuous passbands on a single substrate. Observation of a supernova through a specially designed pair of these 'cross-correlation filters' measures the approximate amplitude and phase of the cross-correlation between the spectrum and a SN Ia template, a quantity typically used to determine the redshift and type of a high-redshift SN Ia. Simulating the use of these filters, we obtain a sample of SNe Ia which is ∼98% pure with individual redshifts measured to σ z = 0.01 precision. The advantages of this approach over standard broadband photometric methods are that it is insensitive to reddening, independent of the color data used for subsequent distance determinations which reduce selection or interpretation bias, and because it makes use of the spectral features its reliability is greater. A great advantage over long-slit spectroscopy comes from increased throughput, enhanced multiplexing, and reduced setup time resulting in a net gain in speed of up to ∼30 times. This approach is also insensitive to host galaxy contamination. Prototype filters were built and successfully used on Magellan with LDSS-3 to characterize three SuperNova Legacy Survey candidates. We discuss how these filters can provide critical information for the upcoming photometric supernova surveys.

  6. Tunable CsPbBr3/Cs4PbBr6 phase transformation and their optical spectroscopic properties.

    Science.gov (United States)

    Chen, Xiao; Chen, Daqin; Li, Junni; Fang, Gaoliang; Sheng, Hongchao; Zhong, Jiasong

    2018-04-24

    As a novel type of promising materials, metal halide perovskites are a rising star in the field of optoelectronics. On this basis, a new frontier of zero-dimensional perovskite-related Cs4PbBr6 with bright green emission and high stability has attracted an enormous amount of attention, even though its photoluminescence still requires to clarification. Herein, the controllable phase transformation between three-dimensional CsPbBr3 and zero-dimensional Cs4PbBr6 is easily achieved in a facile ligand-assisted supersaturated recrystallization synthesis procedure via tuning the amount of surfactants, and their unique optical properties are investigated and compared in detail. Both Cs4PbBr6 and CsPbBr3 produce remarkably intense green luminescence with quantum yields up to 45% and 80%, respectively; however, significantly different emitting behaviors are observed. The fluorescence lifetime of Cs4PbBr6 is much longer than that of CsPbBr3, and photo-blinking is easily detected in the Cs4PbBr6 product, proving that the zero-dimensional Cs4PbBr6 is indeed a highly luminescent perovskite-related material. Additionally, for the first time, tunable emissions over the visible-light spectral region are demonstrated to be achievable via halogen composition modulations in the Cs4PbX6 (X = Cl, Br, I) samples. Our study brings a simple method for the phase control of CsPbBr3/Cs4PbBr6 and demonstrates the intrinsic luminescence nature of the zero-dimensional perovskite-related Cs4PbX6 products.

  7. An optical modulation format generation scheme based on spectral filtering and frequency-to-time mapping

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ai-ling; ZHANG Yue; SONG Hong-yun; YAO Yuan; PAN Hong-gang

    2018-01-01

    An optical modulation format generation scheme based on spectral filtering and frequency-to-time mapping is experimentally demonstrated.Many modulation formats with continuously adjustable duty radio and bit rate can be formed by changing the dispersion of dispersion element and the bandwidth of shaped spectrum in this scheme.In the experiment,non-return-to-zero (NRZ) signal with bit rate of 29.41 Gbit/s and 1/2 duty ratio return-to-zero (RZ) signal with bit rate of 13.51 Gbit/s are obtained.The maximum bit rate of modulation format signal is also analyzed.

  8. On-chip optical filter comprising Fabri-Perot resonator structure and spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seunghoon; Horie, Yu; Faraon, Andrei; Arbabi, Amir

    2018-04-10

    An on-chip optical filter having Fabri-Perot resonators and a spectrometer may include a first sub-wavelength grating (SWG) reflecting layer and a second SWG reflecting layer facing each other. A plurality of Fabri-Perot resonators are formed by the first SWG reflecting layer and the second SWG reflecting layer facing each other. Each of the Fabri-Perot resonators may transmit light corresponding to a resonance wavelength of the Fabri-Perot resonator. The resonance wavelengths of the Fabri-Perot resonators may be determined according to duty cycles of grating patterns.

  9. Synchronous optical packet switch architecture with tunable single and multi-channels wavelength converters

    Science.gov (United States)

    Hamza, Haitham S.; Adel, Reham

    2017-07-01

    In this paper, we propose a bufferless synchronous optical packet switch (OPS) architecture named the Limited-range wavelength conversion with Dynamic Pump-wavelength Selection (LDPS) architecture. LDPS is equipped with a dedicated limited-range wavelength converters (LRWCs, and a shared pool of parametric wavelength converters (PWCs) with dynamic pump-wavelength selection (DPS). The adoption of hybrid conversion types in the proposed architecture aims at improving the packet loss rate (PLR) compared to conventional architecture with single conversion types, while reducing (or at least maintaining) the conversion distance (d) of used wavelength converters. Packet contention in the proposed architecture is resolved using the first available algorithm (FAA) and the dynamic pump-wavelength selection algorithm (DPSA). The performance of the proposed architecture is compared to two well-known conventional architectures; namely, the LRWC architecture that uses dedicated LRWCS for each input wavelength, and the DPS architecture that uses a shared pool of dynamic pump-wavelength converters (PWCs). Simulation results show that, for the same value of d, the new architecture reduces the PLR compared to the LRWC architecture by up to 40 % and 99.7 % for traffic loads, 0.5 and 1; respectively. In addition, for d = 1 , the new architecture reduces the PLR compared to the DPS architecture by up to 10 % and 99.3 % for traffic loads, 0.5 and 1; respectively.

  10. Enhanced and tunable optical quantum efficiencies from plasmon bandwidth engineering in bimetallic CoAg nanoparticles

    Directory of Open Access Journals (Sweden)

    A. Malasi

    2016-10-01

    Full Text Available Plasmonic nanoparticles are amongst the most effective ways to resonantly couple optical energy into and out of nanometer sized volumes. However, controlling and/or tuning the transfer of this incident energy to the surrounding near and far field is one of the most interesting challenges in this area. Due to the dielectric properties of metallic silver (Ag, its nanoparticles have amongst the highest radiative quantum efficiencies (η, i.e., the ability to radiatively transfer the incident energy to the surrounding. Here we report the discovery that bimetallic nanoparticles of Ag made with immiscible and plasmonically weak Co metal can show comparable and/or even higher η values. The enhancement is a result of the narrowing of the plasmon bandwidth from these bimetal systems. The phenomenological explanation of this effect based on the dipolar approximation points to the reduction in radiative losses within the Ag nanoparticles when in contact with cobalt. This is also supported by a model of coupling between poor and good conductors based on the surface to volume ratio. This study presents a new type of bandwidth engineering, one based on using bimetal nanostructures, to tune and/or enhance the quality factor and quantum efficiency for near and far-field plasmonic applications.

  11. Transient radiation effects in D.O.I. optical materials: Schott filter glass

    International Nuclear Information System (INIS)

    Simmons-Potter, K.

    1998-07-01

    Department of Energy and Defense Programs systems are becoming increasingly reliant on the use of optical technologies that must perform under a range of ionizing radiation environments. In particular, the radiation response of materials under consideration for applications in direct optical initiation (D.O.I.) schemes must be well characterized. In this report, transient radiation effects observed in Schott filter glass S-7010 are characterized. Under gamma exposure with 2 MeV photons in a 20--30 nsec pulse, the authors observe strong initial induced fluorescence in the red region of the spectrum followed by significant induced absorption over the same spectral region. Peak induced absorption coefficients of 0.113 cm -1 and 0.088 cm -1 were calculated at 800 nm and 660 nm respectively

  12. High-transmission excited-state Faraday anomalous dispersion optical filter edge filter based on a Halbach cylinder magnetic-field configuration.

    Science.gov (United States)

    Rudolf, Andreas; Walther, Thomas

    2012-11-01

    We report on the realization of an excited-state Faraday anomalous dispersion optical filter (ESFADOF) edge filter based on the 5P(3/2)→8D(5/2) transition in rubidium. A maximum transmission of 81% has been achieved. This high transmission is only possible by utilizing a special configuration of magnetic fields taken from accelerator physics to provide a strong homogeneous magnetic field of approximately 6000 G across the vapor cell. The two resulting steep transmission edges are separated by more than 13 GHz, enabling its application in remote sensing.

  13. Add/drop filters based on SiC technology for optical interconnects

    International Nuclear Information System (INIS)

    Vieira, M; Vieira, M A; Louro, P; Fantoni, A; Silva, V

    2014-01-01

    In this paper we demonstrate an add/drop filter based on SiC technology. Tailoring of the channel bandwidth and wavelength is experimentally demonstrated. The concept is extended to implement a 1 by 4 wavelength division multiplexer with channel separation in the visible range. The device consists of a p-i'(a-SiC:H)-n/p-i(a-Si:H)-n heterostructure. Several monochromatic pulsed lights, separately or in a polychromatic mixture illuminated the device. Independent tuning of each channel is performed by steady state violet bias superimposed either from the front and back sides. Results show that, front background enhances the light-to-dark sensitivity of the long and medium wavelength channels and quench strongly the others. Back violet background has the opposite behaviour. This nonlinearity provides the possibility for selective removal or addition of wavelengths. An optoelectronic model is presented and explains the light filtering properties of the add/drop filter, under different optical bias conditions

  14. Offline estimation of decay time for an optical cavity with a low pass filter cavity model.

    Science.gov (United States)

    Kallapur, Abhijit G; Boyson, Toby K; Petersen, Ian R; Harb, Charles C

    2012-08-01

    This Letter presents offline estimation results for the decay-time constant for an experimental Fabry-Perot optical cavity for cavity ring-down spectroscopy (CRDS). The cavity dynamics are modeled in terms of a low pass filter (LPF) with unity DC gain. This model is used by an extended Kalman filter (EKF) along with the recorded light intensity at the output of the cavity in order to estimate the decay-time constant. The estimation results using the LPF cavity model are compared to those obtained using the quadrature model for the cavity presented in previous work by Kallapur et al. The estimation process derived using the LPF model comprises two states as opposed to three states in the quadrature model. When considering the EKF, this means propagating two states and a (2×2) covariance matrix using the LPF model, as opposed to propagating three states and a (3×3) covariance matrix using the quadrature model. This gives the former model a computational advantage over the latter and leads to faster execution times for the corresponding EKF. It is shown in this Letter that the LPF model for the cavity with two filter states is computationally more efficient, converges faster, and is hence a more suitable method than the three-state quadrature model presented in previous work for real-time estimation of the decay-time constant for the cavity.

  15. Tunable, continuous-wave, ultraviolet source based on intracavity sum-frequency-generation in an optical parametric oscillator using BiB₃O₆.

    Science.gov (United States)

    Devi, Kavita; Kumar, S Chaitanya; Ebrahim-Zadeh, M

    2013-10-21

    We report a continuous-wave (cw) source of tunable radiation across 333-345 nm in the ultraviolet (UV) using bismuth triborate, BiB₃O₆ (BIBO) as the nonlinear gain material. The source is based on internal sum-frequency-generation (SFG) in a cw singly-resonant optical parametric oscillator (OPO) pumped at 532 nm. The compact tunable source employs a 30-mm-long MgO:sPPLT crystal as the OPO gain medium and a 5-mm-long BIBO crystal for intracavity SFG of the signal and pump, providing up to 21.6 mW of UV power at 339.7 nm, with >15 mW over 64% of the SFG tuning range. The cw OPO is also tunable across 1158-1312 nm in the idler, delivering as much as 1.7 W at 1247 nm, with >1W over 65% of the tuning range. The UV output at maximum power exhibits passive power stability better than 3.4% rms and frequency stability of 193 GHz over more than one minute.

  16. Rapid calibrated high-resolution hyperspectral imaging using tunable laser source

    Science.gov (United States)

    Nguyen, Lam K.; Margalith, Eli

    2009-05-01

    We present a novel hyperspectral imaging technique based on tunable laser technology. By replacing the broadband source and tunable filters of a typical NIR imaging instrument, several advantages are realized, including: high spectral resolution, highly variable field-of-views, fast scan-rates, high signal-to-noise ratio, and the ability to use optical fiber for efficient and flexible sample illumination. With this technique, high-resolution, calibrated hyperspectral images over the NIR range can be acquired in seconds. The performance of system features will be demonstrated on two example applications: detecting melamine contamination in wheat gluten and separating bovine protein from wheat protein in cattle feed.

  17. Ship detection for high resolution optical imagery with adaptive target filter

    Science.gov (United States)

    Ju, Hongbin

    2015-10-01

    Ship detection is important due to both its civil and military use. In this paper, we propose a novel ship detection method, Adaptive Target Filter (ATF), for high resolution optical imagery. The proposed framework can be grouped into two stages, where in the first stage, a test image is densely divided into different detection windows and each window is transformed to a feature vector in its feature space. The Histograms of Oriented Gradients (HOG) is accumulated as a basic feature descriptor. In the second stage, the proposed ATF highlights all the ship regions and suppresses the undesired backgrounds adaptively. Each detection window is assigned a score, which represents the degree of the window belonging to a certain ship category. The ATF can be adaptively obtained by the weighted Logistic Regression (WLR) according to the distribution of backgrounds and targets of the input image. The main innovation of our method is that we only need to collect positive training samples to build the filter, while the negative training samples are adaptively generated by the input image. This is different to other classification method such as Support Vector Machine (SVM) and Logistic Regression (LR), which need to collect both positive and negative training samples. The experimental result on 1-m high resolution optical images shows the proposed method achieves a desired ship detection performance with higher quality and robustness than other methods, e.g., SVM and LR.

  18. Kalman filter-based EM-optical sensor fusion for needle deflection estimation.

    Science.gov (United States)

    Jiang, Baichuan; Gao, Wenpeng; Kacher, Daniel; Nevo, Erez; Fetics, Barry; Lee, Thomas C; Jayender, Jagadeesan

    2018-04-01

    In many clinical procedures such as cryoablation that involves needle insertion, accurate placement of the needle's tip at the desired target is the major issue for optimizing the treatment and minimizing damage to the neighboring anatomy. However, due to the interaction force between the needle and tissue, considerable error in intraoperative tracking of the needle tip can be observed as needle deflects. In this paper, measurements data from an optical sensor at the needle base and a magnetic resonance (MR) gradient field-driven electromagnetic (EM) sensor placed 10 cm from the needle tip are used within a model-integrated Kalman filter-based sensor fusion scheme. Bending model-based estimations and EM-based direct estimation are used as the measurement vectors in the Kalman filter, thus establishing an online estimation approach. Static tip bending experiments show that the fusion method can reduce the mean error of the tip position estimation from 29.23 mm of the optical sensor-based approach to 3.15 mm of the fusion-based approach and from 39.96 to 6.90 mm, at the MRI isocenter and the MRI entrance, respectively. This work established a novel sensor fusion scheme that incorporates model information, which enables real-time tracking of needle deflection with MRI compatibility, in a free-hand operating setup.

  19. Results from the Fourth WMO Filter Radiometer Comparison for aerosol optical depth measurements

    Science.gov (United States)

    Kazadzis, Stelios; Kouremeti, Natalia; Diémoz, Henri; Gröbner, Julian; Forgan, Bruce W.; Campanelli, Monica; Estellés, Victor; Lantz, Kathleen; Michalsky, Joseph; Carlund, Thomas; Cuevas, Emilio; Toledano, Carlos; Becker, Ralf; Nyeki, Stephan; Kosmopoulos, Panagiotis G.; Tatsiankou, Viktar; Vuilleumier, Laurent; Denn, Frederick M.; Ohkawara, Nozomu; Ijima, Osamu; Goloub, Philippe; Raptis, Panagiotis I.; Milner, Michael; Behrens, Klaus; Barreto, Africa; Martucci, Giovanni; Hall, Emiel; Wendell, James; Fabbri, Bryan E.; Wehrli, Christoph

    2018-03-01

    This study presents the results of the Fourth Filter Radiometer Comparison that was held in Davos, Switzerland, between 28 September and 16 October 2015. Thirty filter radiometers and spectroradiometers from 12 countries participated including reference instruments from global aerosol networks. The absolute differences of all instruments compared to the reference have been based on the World Meteorological Organization (WMO) criterion defined as follows: 95% of the measured data has to be within 0.005 ± 0.001/m (where m is the air mass). At least 24 out of 29 instruments achieved this goal at both 500 and 865 nm, while 12 out of 17 and 13 out of 21 achieved this at 368 and 412 nm, respectively. While searching for sources of differences among different instruments, it was found that all individual differences linked to Rayleigh, NO2, ozone, water vapor calculations and related optical depths and air mass calculations were smaller than 0.01 in aerosol optical depth (AOD) at 500 and 865 nm. Different cloud-detecting algorithms used have been compared. Ångström exponent calculations showed relatively large differences among different instruments, partly because of the high calculation uncertainty of this parameter in low AOD conditions. The overall low deviations of these AOD results and the high accuracy of reference aerosol network instruments demonstrated a promising framework to achieve homogeneity, compatibility and harmonization among the different spectral AOD networks in the near future.

  20. Realisation and optical engineering of linear variable bandpass filters in nanoporous anodic alumina photonic crystals.

    Science.gov (United States)

    Sukarno; Law, Cheryl Suwen; Santos, Abel

    2017-06-08

    We present the first realisation of linear variable bandpass filters in nanoporous anodic alumina (NAA-LVBPFs) photonic crystal structures. NAA gradient-index filters (NAA-GIFs) are produced by sinusoidal pulse anodisation and used as photonic crystal platforms to generate NAA-LVBPFs. The anodisation period of NAA-GIFs is modified from 650 to 850 s to systematically tune the characteristic photonic stopband of these photonic crystals across the UV-visible-NIR spectrum. Then, the nanoporous structure of NAA-GIFs is gradually widened along the surface under controlled conditions by wet chemical etching using a dip coating approach aiming to create NAA-LVBPFs with finely engineered optical properties. We demonstrate that the characteristic photonic stopband and the iridescent interferometric colour displayed by these photonic crystals can be tuned with precision across the surface of NAA-LVBPFs by adjusting the fabrication and etching conditions. Here, we envisage for the first time the combination of the anodisation period and etching conditions as a cost-competitive, facile, and versatile nanofabrication approach that enables the generation of a broad range of unique LVBPFs covering the spectral regions. These photonic crystal structures open new opportunities for multiple applications, including adaptive optics, hyperspectral imaging, fluorescence diagnostics, spectroscopy, and sensing.

  1. An optical method for characterizing carbon content in ceramic pot filters.

    Science.gov (United States)

    Goodwin, J Y; Elmore, A C; Salvinelli, C; Reidmeyer, Mary R

    2017-08-01

    Ceramic pot filter (CPF) technology is a relatively common means of household water treatment in developing areas, and performance characteristics of CPFs have been characterized using production CPFs, experimental CPFs fabricated in research laboratories, and ceramic disks intended to be CPF surrogates. There is evidence that CPF manufacturers do not always fire their products according to best practices and the result is incomplete combustion of the pore forming material and the creation of a carbon core in the final CPFs. Researchers seldom acknowledge the existence of potential existence of carbon cores, and at least one CPF producer has postulated that the carbon may be beneficial in terms of final water quality because of the presence of activated carbon in consumer filters marketed in the Western world. An initial step in characterizing the presence and impact of carbon cores is the characterization of those cores. An optical method which may be more viable to producers relative to off-site laboratory analysis of carbon content has been developed and verified. The use of the optical method is demonstrated via preliminary disinfection and flowrate studies, and the results of these studies indicate that the method may be of use in studying production kiln operation.

  2. Demonstration of a mid-infrared NO molecular Faraday optical filter.

    Science.gov (United States)

    Wu, Kuijun; Feng, Yutao; Li, Juan; Yu, Guangbao; Liu, Linmei; Xiong, Yuanhui; Li, Faquan

    2017-12-11

    A molecular Faraday optical filter (MFOF) working in the mid-infrared region is realized for the first time. NO molecule was used as the working material of the MFOF for potential applications in atmospheric remote sensing and combustion diagnosis. We develop a complete theory to describe the performance of MFOF by taking both Zeeman absorption and Faraday rotation into account. We also record the Faraday rotation transmission (FRT) signal using a quantum cascade laser over the range of 1,820 cm -1 to 1,922 cm -1 and calibrate it by using a 101.6 mm long solid germanium etalon with a free spectral range of 0.012 cm -1 . Good agreement between the simulation results and experimental data is achieved. The NO-MFOF's transmission characteristics as a function of magnetic field and pressure are studied in detail. Both Comb-like FRT spectrum and single branch transmission spectrum are obtained by changing the magnetic field. The diversity of FRT spectrum expands the range of potential applications in infrared optical remote sensing. This filtering method can also be extended to the lines of other paramagnetic molecules.

  3. Controlling the unstable emission of a semiconductor laser subject to conventional optical feedback with a filtered feedback branch.

    Science.gov (United States)

    Ermakov, I V; Tronciu, V Z; Colet, Pere; Mirasso, Claudio R

    2009-05-25

    We show the advantages of controlling the unstable dynamics of a semiconductor laser subject to conventional optical feedback by means of a second filtered feedback branch. We give an overview of the analytical solutions of the double cavity feedback and show numerically that the region of stabilization is much larger when using a second branch with filtered feedback than when using a conventional feedback one.

  4. Controlling the unstable emission of a semiconductor laser subject to conventional optical feedback with a filtered feedback branch

    OpenAIRE

    Ermakov, Ilya; Tronciu, Vasile; Colet, Pere; Mirasso, Claudio R.

    2009-01-01

    We show the advantages of controlling the unstable dynamics of a semiconductor laser subject to conventional optical feedback by means of a second filtered feedback branch. We give an overview of the analytical solutions of the double cavity feedback and show numerically that the region of stabilization is much larger when using a second branch with filtered feedback than when using a conventional feedback one.

  5. Reducing uncertainties associated with filter-based optical measurements of light absorbing carbon particles with chemical information

    Science.gov (United States)

    Engström, J. E.; Leck, C.

    2011-08-01

    The presented filter-based optical method for determination of soot (light absorbing carbon or Black Carbon, BC) can be implemented in the field under primitive conditions and at low cost. This enables researchers with small economical means to perform monitoring at remote locations, especially in the Asia where it is much needed. One concern when applying filter-based optical measurements of BC is that they suffer from systematic errors due to the light scattering of non-absorbing particles co-deposited on the filter, such as inorganic salts and mineral dust. In addition to an optical correction of the non-absorbing material this study provides a protocol for correction of light scattering based on the chemical quantification of the material, which is a novelty. A newly designed photometer was implemented to measure light transmission on particle accumulating filters, which includes an additional sensor recording backscattered light. The choice of polycarbonate membrane filters avoided high chemical blank values and reduced errors associated with length of the light path through the filter. Two protocols for corrections were applied to aerosol samples collected at the Maldives Climate Observatory Hanimaadhoo during episodes with either continentally influenced air from the Indian/Arabian subcontinents (winter season) or pristine air from the Southern Indian Ocean (summer monsoon). The two ways of correction (optical and chemical) lowered the particle light absorption of BC by 63 to 61 %, respectively, for data from the Arabian Sea sourced group, resulting in median BC absorption coefficients of 4.2 and 3.5 Mm-1. Corresponding values for the South Indian Ocean data were 69 and 97 % (0.38 and 0.02 Mm-1). A comparison with other studies in the area indicated an overestimation of their BC levels, by up to two orders of magnitude. This raises the necessity for chemical correction protocols on optical filter-based determinations of BC, before even the sign on the

  6. Development of GUI Temperature Monitoring System based on Thin-Film Optical Filter

    Directory of Open Access Journals (Sweden)

    Hilal Adnan Fadhil

    2017-08-01

    Full Text Available Fiber optic sensors have progressed rapidly in recent year as because it has many advantages over other types of sensors in terms of freedom from electromagnetic radiation, wide bandwidth, economy, can withstand high temperature and under harsh environment. Due to those reason a thermo sensor based on fiber optic which utilizes a thin-film optical band-pass filter has been developed. However, the proposed system has advantages over the fiber Bragg grating sensor which can observe the temperature in small area and low transmission loss. The simulation software is used to design a Graphical User Interface (GUI. The GUI system allows the user to monitor the condition and the status of the current temperature. The monitoring system presented in this paper is divided into three basic sub-systems which are retrieve the real-time data system, displaying out the data system, and warning system. This GUI system used to collect the data and process the data for displaying the current data and further checking as a history data has been keep. The values obtained of thermo sensor are measured as 30°C till 330°C and the wavelength values are between 1552.93nm till 1557.25nm

  7. Single-resolution and multiresolution extended-Kalman-filter-based reconstruction approaches to optical refraction tomography.

    Science.gov (United States)

    Naik, Naren; Vasu, R M; Ananthasayanam, M R

    2010-02-20

    The problem of reconstruction of a refractive-index distribution (RID) in optical refraction tomography (ORT) with optical path-length difference (OPD) data is solved using two adaptive-estimation-based extended-Kalman-filter (EKF) approaches. First, a basic single-resolution EKF (SR-EKF) is applied to a state variable model describing the tomographic process, to estimate the RID of an optically transparent refracting object from noisy OPD data. The initialization of the biases and covariances corresponding to the state and measurement noise is discussed. The state and measurement noise biases and covariances are adaptively estimated. An EKF is then applied to the wavelet-transformed state variable model to yield a wavelet-based multiresolution EKF (MR-EKF) solution approach. To numerically validate the adaptive EKF approaches, we evaluate them with benchmark studies of standard stationary cases, where comparative results with commonly used efficient deterministic approaches can be obtained. Detailed reconstruction studies for the SR-EKF and two versions of the MR-EKF (with Haar and Daubechies-4 wavelets) compare well with those obtained from a typically used variant of the (deterministic) algebraic reconstruction technique, the average correction per projection method, thus establishing the capability of the EKF for ORT. To the best of our knowledge, the present work contains unique reconstruction studies encompassing the use of EKF for ORT in single-resolution and multiresolution formulations, and also in the use of adaptive estimation of the EKF's noise covariances.

  8. Spectral Filtering Criteria for U-Band Test Light for In-Service Line Monitoring in Optical Fiber Networks

    Science.gov (United States)

    Honda, Nazuki; Izumita, Hisashi; Nakamura, Minoru

    2006-06-01

    In the fiber-to-the-home era, thousands of optical fibers will have to be accommodated in the central offices of optical access networks. To reduce maintenance costs and improve the service reliability of optical fiber networks, the authors must develop an optical fiber line testing system with a function for in-service line monitoring that uses a test light with a wavelength different from the communication light wavelength. To monitor an in-service line in an optical network, the effective rejection ratio of the test light must be taken into account. This ratio depends on the spectrum of the test light from the optical time-domain reflectometer and the rejection band of the filter in front of the optical network unit. The dependence of the effective rejection ratio as a function of the sideband suppression ratio (SBSR) and of the ratio of the rejection band to the bandwidth of the sideband noise d/D is clarified. When d/D =0.1 and the target effective rejection ratio of the filter is -40 dB, the SBSR and the filter loss of the termination cable must be -70 and -43 dB, respectively, or the SBSR must be -80 dB. When d/D service line monitoring for a 10-Gb/s transmission using a 1650-nm test light with an SBSR of -80 dB is also demonstrated.

  9. 1×4 Optical packet switching of variable length 640 Gbit/s data packets using in-band optical notch-filter labeling

    DEFF Research Database (Denmark)

    Medhin, Ashenafi Kiros; Kamchevska, Valerija; Galili, Michael

    2014-01-01

    We experimentally perform 1×4 optical packet switching of variable length 640 Gbit/s OTDM data packets using in-band notch-filter labeling with only 2.7-dB penalty. Up to 8 notches are employed to demonstrate scalability of the labeling scheme to 1×256 switching operation.......We experimentally perform 1×4 optical packet switching of variable length 640 Gbit/s OTDM data packets using in-band notch-filter labeling with only 2.7-dB penalty. Up to 8 notches are employed to demonstrate scalability of the labeling scheme to 1×256 switching operation....

  10. Coherent optical transients observed in rubidium atomic line filtered Doppler velocimetry experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fajardo, Mario E., E-mail: mario.fajardo@eglin.af.mil; Molek, Christopher D.; Vesely, Annamaria L. [Air Force Research Laboratory, Munitions Directorate, Ordnance Division, Energetic Materials Branch, AFRL/RWME, 2306 Perimeter Road, Eglin AFB, Florida 32542-5910 (United States)

    2015-10-14

    We report the first successful results from our novel Rubidium Atomic Line Filtered (RALF) Doppler velocimetry apparatus, along with unanticipated oscillatory signals due to coherent optical transients generated within pure Rb vapor cells. RALF is a high-velocity and high-acceleration extension of the well-known Doppler Global Velocimetry (DGV) technique for constructing multi-dimensional flow velocity vector maps in aerodynamics experiments [H. Komine, U.S. Patent No. 4,919,536 (24 April 1990)]. RALF exploits the frequency dependence of pressure-broadened Rb atom optical absorptions in a heated Rb/N{sub 2} gas cell to encode the Doppler shift of reflected near-resonant (λ{sub 0} ≈ 780.24 nm) laser light onto the intensity transmitted by the cell. The present RALF apparatus combines fiber optic and free-space components and was built to determine suitable operating conditions and performance parameters for the Rb/N{sub 2} gas cells. It yields single-spot velocities of thin laser-driven-flyer test surfaces and incorporates a simultaneous Photonic Doppler Velocimetry (PDV) channel [Strand et al., Rev. Sci. Instrum. 77, 083108 (2006)] for validation of the RALF results, which we demonstrate here over the v = 0 to 1 km/s range. Both RALF and DGV presume the vapor cells to be simple Beer's Law optical absorbers, so we were quite surprised to observe oscillatory signals in experiments employing low pressure pure Rb vapor cells. We interpret these oscillations as interference between the Doppler shifted reflected light and the Free Induction Decay (FID) coherent optical transient produced within the pure Rb cells at the original laser frequency; this is confirmed by direct comparison of the PDV and FID signals. We attribute the different behaviors of the Rb/N{sub 2} vs. Rb gas cells to efficient dephasing of the atomic/optical coherences by Rb-N{sub 2} collisions. The minimum necessary N{sub 2} buffer gas density ≈0.3 amagat translates into a

  11. Speckle reduction process based on digital filtering and wavelet compounding in optical coherence tomography for dermatology

    Science.gov (United States)

    Gómez Valverde, Juan J.; Ortuño, Juan E.; Guerra, Pedro; Hermann, Boris; Zabihian, Behrooz; Rubio-Guivernau, José L.; Santos, Andrés.; Drexler, Wolfgang; Ledesma-Carbayo, Maria J.

    2015-07-01

    Optical Coherence Tomography (OCT) has shown a great potential as a complementary imaging tool in the diagnosis of skin diseases. Speckle noise is the most prominent artifact present in OCT images and could limit the interpretation and detection capabilities. In this work we propose a new speckle reduction process and compare it with various denoising filters with high edge-preserving potential, using several sets of dermatological OCT B-scans. To validate the performance we used a custom-designed spectral domain OCT and two different data set groups. The first group consisted in five datasets of a single B-scan captured N times (with N<20), the second were five 3D volumes of 25 Bscans. As quality metrics we used signal to noise (SNR), contrast to noise (CNR) and equivalent number of looks (ENL) ratios. Our results show that a process based on a combination of a 2D enhanced sigma digital filter and a wavelet compounding method achieves the best results in terms of the improvement of the quality metrics. In the first group of individual B-scans we achieved improvements in SNR, CNR and ENL of 16.87 dB, 2.19 and 328 respectively; for the 3D volume datasets the improvements were 15.65 dB, 3.44 and 1148. Our results suggest that the proposed enhancement process may significantly reduce speckle, increasing SNR, CNR and ENL and reducing the number of extra acquisitions of the same frame.

  12. Spectral phase shift and residual angular dispersion of an accousto-optic programme dispersive filter

    International Nuclear Information System (INIS)

    Boerzsoenyi, A.; Meroe, M.

    2010-01-01

    Complete text of publication follows. There is an increasing demand for active and precise dispersion control of ultrashort laser pulses. In chirped pulse amplification (CPA) laser systems, the dispersion of the optical elements of the laser has to be compensated at least to the fourth order to obtain high temporal contrast compressed pulses. Nowadays the most convenient device for active and programmable control of spectral phase and amplitude of broadband laser pulses is the acousto-optic programmable dispersive filter (AOPDF), claimed to be able to adjust the spectral phase up to the fourth order. Although it has been widely used, surprisingly enough there has been only a single, low resolution measurement reported on the accuracy of the induced spectral phase shift of the device. In our paper we report on the first systematic experiment aiming at the precise characterization of an AOPDF device. In the experiment the spectral phase shift of the AOPDF device was measured by spectrally and spatially resolved interferometry, which is especially powerful tool to determine small dispersion values with high accuracy. Besides the spectral phase dispersion, we measured both the propagation direction angular dispersion (PDAD) and the phase front angular dispersion (PhFAD). Although the two quantities are equal for plane waves, there may be noticeable difference for Gaussian pulses. PDAD was determined simply by focusing the beam on the slit of an imaging spectrograph, while PhFAD was measured by the use of an inverted Mach-Zehnder interferometer and an imaging spectrograph. In the measurements, the spectral phase shift and both types of angular dispersion have been recorded upon the systematic change of all the accessible functions of the acousto-optic programmable dispersive filter. The measured values of group delay dispersion (GDD) and third order dispersion (TOD) have been found to agree with the preset values within the error of the measurement (1 fs 2 and 10 fs 3

  13. Combination of highly nonlinear fiber, an optical bandpass filter, and a Fabry-Perot filter to improve the signal-to-noise ratio of a supercontinuum continuous-wave optical source.

    Science.gov (United States)

    Nan, Yinbo; Huo, Li; Lou, Caiyun

    2005-05-20

    We present a theoretical study of a supercontinuum (SC) continuous-wave (cw) optical source generation in highly nonlinear fiber and its noise properties through numerical simulations based on the nonlinear Schrödinger equation. Fluctuations of pump pulses generate substructures between the longitudinal modes that result in the generation of white noise and then in degradation of coherence and in a decrease of the modulation depths and the signal-to-noise ratio (SNR). A scheme for improvement of the SNR of a multiwavelength cw optical source based on a SC by use of the combination of a highly nonlinear fiber (HNLF), an optical bandpass filter, and a Fabry-Perot (FP) filter is presented. Numerical simulations show that the improvement in modulation depth is relative to the HNLF's length, the 3-dB bandwidth of the optical bandpass filter, and the reflection ratio of the FP filter and that the average improvement in modulation depth is 13.7 dB under specified conditions.

  14. Filter arrays

    Science.gov (United States)

    Page, Ralph H.; Doty, Patrick F.

    2017-08-01

    The various technologies presented herein relate to a tiled filter array that can be used in connection with performance of spatial sampling of optical signals. The filter array comprises filter tiles, wherein a first plurality of filter tiles are formed from a first material, the first material being configured such that only photons having wavelengths in a first wavelength band pass therethrough. A second plurality of filter tiles is formed from a second material, the second material being configured such that only photons having wavelengths in a second wavelength band pass therethrough. The first plurality of filter tiles and the second plurality of filter tiles can be interspersed to form the filter array comprising an alternating arrangement of first filter tiles and second filter tiles.

  15. A tunable narrow-line-width multi-wavelength Er-doped fiber laser based on a high birefringence fiber ring mirror and an auto-tracking filter

    Science.gov (United States)

    Jia, Xiu-jie; Liu, Yan-ge; Si, Li-bin; Guo, Zhan-cheng; Fu, Sheng-gui; Kai, Gui-yun; Dong, Xiao-yi

    2008-01-01

    A novel multi-wavelength erbium-doped fiber laser operating in C-band is proposed and successfully demonstrated. The wavelength interval between the wavelengths is about 0.22 nm. The 3 dB bandwidth of the laser is about 0.012 nm, and the output power reaches 4.8 mW. By using a high birefringence fiber ring mirror (HiBi-FLM) and a tunable FBG, the laser realizes switchable and tunable characteristic. The mode hopping can be effectively prevented. Moreover, this laser can improve wavelength stability significantly by taking advantage of an un-pumped Er3+-doped fiber at the standing-wave section. The laser can operate in stable narrow-line-width with single-, dual-wavelength, and unstable triple-wavelength output at room temperature.

  16. Electrostatically Tunable Nanomechanical Shallow Arches

    KAUST Repository

    Kazmi, Syed N. R.

    2017-11-03

    We report an analytical and experimental study on the tunability of in-plane doubly-clamped nanomechanical arches under varied DC bias conditions at room temperature. For this purpose, silicon based shallow arches are fabricated using standard e-beam lithography and surface nanomachining of a highly conductive device layer on a silicon-on-insulator (SOI) wafer. The experimental results show good agreement with the analytical results with a maximum tunability of 108.14% for 180 nm thick arch with a transduction gap of 1 μm between the beam and the driving/sensing electrodes. The high tunability of shallow arches paves the ways for highly tunable band pass filtering applications in high frequency range.

  17. Acousto-Optic Tunable Filter-Based Polarimetric Spectral Sensor With Progressive Algorithm For Material Analysis and Mapping, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The prevalence of off earth landing missions both proposed and undertaken has been steadily increasing. With the proposal of missions, not only to Mars, but also to...

  18. A dynamically-tunable graphene-based fano metasurface

    KAUST Repository

    Amin, Muhammad

    2013-09-01

    A planar graphene metasurface with rectangular holes, which is capable of supporting a dynamically tunable Fano resonance at Terahertz (THz) frequencies, is proposed. The rectangular hole is patterned asymmetrically within the metasurface\\'s unit cell to \\'brighten\\' an originally-dark quadrupolar surface plasmon mode. Fano resonance is achieved via the destructive interference of this mode with a dipolar surface plasmon. The spectral location and line shape of the Fano resonance can be dynamically tuned via a gate voltage applied to the metasurface to change graphene\\'s optical properties. The dynamic tunability of the Fano resonance suggests the applicability of the proposed metasurface in designing THz wave modulators and band-pass filters. © 2013 IEEE.

  19. Novel microwave photonic fractional hilbert transformer using a ring resonator-based optical all-pass filter

    NARCIS (Netherlands)

    Zhuang, L.; Khan, M.R.H.; Beeker, Willem; Beeker, W.P.; Leinse, Arne; Heideman, Rene; Roeloffzen, C.G.H.

    2012-01-01

    We propose and demonstrate a novel wideband microwave photonic fractional Hilbert transformer implemented using a ring resonatorbased optical all-pass filter. The full programmability of the ring resonator allows variable and arbitrary fractional order of the Hilbert transformer. The performance

  20. Duty cycle dependence of a periodically poled LiNbO3-based electro-optic Solc filter.

    Science.gov (United States)

    Rabia, Eyal; Arie, Ady

    2006-01-20

    We demonstrate that the performance of a periodically poled LiNbO3- (PPLN-) based electro-optic Solc filter is dependent on the duty cycle of the crystal. This may limit the performance of the device for applications such as add-drop filtering and switching, owing to the deterioration of the extinction ratio. It is shown that by adding a retarder to the Solc filter it is possible to improve the extinction ratio; thus the dependence of the filter on the duty cycle can be reduced. Using Jones calculus, we analyzed the effect of a variable retarder that can also be rotated on the extinction ratio. We experimentally observed a 6 dB increase in the extinction ratio when we used a half-wavelength retarder.

  1. Gas chromatographic sensing on an optical fiber by mode-filtered light detection.

    Science.gov (United States)

    Bruckner, C A; Synovec, R E

    1996-06-01

    A chemical sensor for gas phase measurements is reported which combines the principles of chemical separation and fiber optic detection. The analyzer incorporates an annular column Chromatographic sensor, constructed by inserting a polymer-clad optical fiber into a silica capillary. Light from a helium-neon laser is launched down the fiber, producing a steady intensity distribution within the fiber, but a low background of scattered light. When sample vapor is introduced to the sensor, and an analyte-rich volume interacts with the polymer cladding, Chromatographic retention is observed simultaneously with a change in the local refractive index of the cladding. An increase in cladding refractive index (RI) causes light to be coupled out of the fiber, with detection at a right-angle to the annular column length to provide optimum S/N ratio. This detection mechanism is called mode-filtered light detection. We report a gas Chromatographic separation on a 3.1 m annular column (320 microm i.d. silica tube, 228 microm o.d. fiber with a 12 microm fluorinated silicone clad) of methane, benzene, butanone and chlorobenzene in 6 min. The annular column length was reduced to 22 cm to function as a sensor, with selected organic vapors exhibiting unique retention times and detection selectivity. The detection selectivity is determined by the analyte RI and the partition coefficient into the cladding. The calculated limit of detection (LOD) for benzene vapor is 0.03% by volume in nitrogen, and several chlorinated species had LOD values less than 1%. For binary mixtures of organic vapors, the detected response appears to be the linear combination of the two organic standards, suggesting that the annular column may be useful as a general approach for designing chemical sensors that incorporate separation and optical detection principles simultaneously.

  2. Characterization Of Improved Binary Phase-Only Filters In A Real-Time Coherent Optical Correlation System

    Science.gov (United States)

    Flannery, D.; Keller, P.; Cartwright, S.; Loomis, J.

    1987-06-01

    Attractive correlation system performance potential is possible using magneto-optic spatial light modulators (SLM) to implement binary phase-only reference filters at high rates, provided the correlation performance of such reduced-information-content filters is adequate for the application. In the case studied here, the desired filter impulse response is a rectangular shape, which cannot be achieved with the usual binary phase-only filter formulation. The correlation application problem is described and techniques for synthesizing improved filter impulse response are considered. A compromise solution involves the cascading of a fixed amplitude-only weighting mask with the binary phase-only SLM. Based on simulations presented, this approach provides improved impulse responses and good correlation performance, while retaining the critical feature of real-time variations of the size, shape, and orientation of the rectangle by electronic programming of the phase pattern in the SLM. Simulations indicate that, for at least one very challenging input scene clutter situation, these filters provide higher correlation signal-to-noise than does "ideal" correlation, i.e. using a perfect rectangle filter response.

  3. Tunable, multiwavelength-swept fiber laser based on nematic liquid crystal device for fiber-optic electric-field sensor

    Science.gov (United States)

    Lee, Hyun Ji; Kim, Sung-Jo; Ko, Myeong Ock; Kim, Jong-Hyun; Jeon, Min Yong

    2018-03-01

    We propose a tunable multiwavelength-swept laser based on a nematic liquid crystal (NLC) Fabry-Perot (FP) etalon, which is embedded in the resonator of a wavelength-swept laser. We achieve the continuous wavelength tuning of the multiwavelength-swept laser by applying the electric field to the NLC FP etalon. The free spectral range of the fabricated NLC FP etalon is approximately 7.9 nm. When the electric field applied to the NLC FP etalon exceeds the threshold value (Fréedericksz threshold voltage), the output of the multiwavelength-swept laser can be tuned continuously. The tuning range of the multiwavelength-swept laser can be achieved at a value greater than 75 nm, which has a considerably wider tunable range than a conventional multiwavelength laser based on an NLC FP etalon. The slope efficiencies in the spectral and temporal domains for the tunable multiwavelength-swept laser are 22.2 nm/(mVrms / μm) and 0.17 ms/(mVrms / μm), respectively in the linear region. Therefore, the developed multiwavelength-swept laser based on the NLC FP etalon can be applied to an electric-field sensor. Because the wavelength measurement and time measurement have a linear relationship, the electric-field sensor can detect a rapid change in the electric-field intensity by measuring the peak change of the pulse in the temporal domain using the NLC FP etalon-based multiwavelength-swept laser.

  4. Tunable, high-repetition-rate, dual-signal-wavelength femtosecond optical parametric oscillator based on BiB3O6

    Science.gov (United States)

    Meng, Xianghao; Wang, Zhaohua; Tian, Wenlong; Fang, Shaobo; Wei, Zhiyi

    2018-01-01

    We have demonstrated a high-repetition-rate tunable femtosecond dual-signal-wavelength optical parametric oscillator (OPO) based on BiB3O6 (BiBO) crystal, synchronously pumped by a frequency-doubled mode-locked Yb:KGW laser. The cavity is simple since no dispersion compensators are used in the cavity. The wavelength range of dual-signal is widely tunable from 710 to 1000 nm. Tuning is accomplished by rotating phase-matching angle of BiBO, and optimizing cavity length and output coupler. Using a 3.75 W pump laser, the maximum average dual-signal output power is 760 mW at 707 and 750 nm, leading to a conversion efficiency of 20.3% not taking into account the idler power. Our experimental results show a non-critical phase-matching configuration pumped by a high peak power laser source. The operation of the dual-signal benefits from the balance of phase matching and group velocity mismatching between the two signals.

  5. Study of the spectral bandwidth of a double-pass acousto-optic system [Invited].

    Science.gov (United States)

    Champagne, Justine; Kastelik, Jean-Claude; Dupont, Samuel; Gazalet, Joseph

    2018-04-01

    Acousto-optic tunable filters are known as efficient instruments for spectral and spatial filtering of light. In this paper, we analyze the bandwidth dependence of a double-pass filter. The interaction geometry chosen allows the simultaneous diffraction of the ordinary and the extraordinary optical modes by a single ultrasonic frequency. We present the main parameters of a custom device (design, optical range, driving frequency) and experimental results concerning the angular deviation of the beams including the effect of optical birefringence. The spectral resolution and the side lobes' significance are discussed. Spectral bandwidth of such a system is analyzed.

  6. Deeply-etched micromirror with vertical slit and metallic coating enabling transmission-type optical MEMS filters

    Science.gov (United States)

    Othman, Muhammad A.; Sabry, Yasser M.; Sadek, Mohamed; Nassar, Ismail M.; Khalil, Diaa A.

    2016-03-01

    In this work we report a novel optical MEMS deeply-etched mirror with metallic coating and vertical slot, where the later allows reflection and transmission by the micromirror. The micromirror as well as fiber grooves are fabricated using deep reactive ion etching technology, where the optical axis is in-plane and the components are self-aligned. The etching depth is 150 μm chosen to improve the micromirror optical throughput. The vertical optical structure is Al metal coated using the shadow mask technique. A fiber-coupled Fabry-Pérot filter is successfully realized using the fabricated structure. Experimental measurements were obtained based on a dielectric-coated optical fiber inserted into a fiber groove facing the slotted micromirror. A versatile performance in terms of the free spectral range and 3-dB bandwidth is achieved.

  7. Logarithmic r-θ mapping for hybrid optical neural network filter for multiple objects recognition within cluttered scenes

    Science.gov (United States)

    Kypraios, Ioannis; Young, Rupert C. D.; Chatwin, Chris R.; Birch, Phil M.

    2009-04-01

    θThe window unit in the design of the complex logarithmic r-θ mapping for hybrid optical neural network filter can allow multiple objects of the same class to be detected within the input image. Additionally, the architecture of the neural network unit of the complex logarithmic r-θ mapping for hybrid optical neural network filter becomes attractive for accommodating the recognition of multiple objects of different classes within the input image by modifying the output layer of the unit. We test the overall filter for multiple objects of the same and of different classes' recognition within cluttered input images and video sequences of cluttered scenes. Logarithmic r-θ mapping for hybrid optical neural network filter is shown to exhibit with a single pass over the input data simultaneously in-plane rotation, out-of-plane rotation, scale, log r-θ map translation and shift invariance, and good clutter tolerance by recognizing correctly the different objects within the cluttered scenes. We record in our results additional extracted information from the cluttered scenes about the objects' relative position, scale and in-plane rotation.

  8. Synthesis of highly integrated optical network based on microdisk-resonator add-drop filters in silicon-on-insulator technology

    Science.gov (United States)

    Kaźmierczak, Andrzej; Dortu, Fabian; Giannone, Domenico; Bogaerts, Wim; Drouard, Emmanuel; Rojo-Romeo, Pedro; Gaffiot, Frederic

    2009-10-01

    We analyze a highly compact optical add-drop filter topology based on a pair of microdisk resonators and a bus waveguide intersection. The filter is further assessed on an integrated optical 4×4 network for optical on-chip communication. The proposed network structure, as compact as 50×50 μm, is fabricated in a CMOS-compatible process on a silicon-on-insulator (SOI) substrate. Finally, the experimental results demonstrate the proper operation of the fabricated devices.

  9. Metal-Mesh Optical Filter Technology for Mid IR, Far IR, and Submillimeter, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovative, high transmission band-pass filter technology proposed here is an improvement in multilayer metal-mesh filter design and manufacture for the far IR...

  10. Reducing uncertainties associated with filter-based optical measurements of light absorbing carbon particles with chemical information

    Directory of Open Access Journals (Sweden)

    J. E. Engström

    2011-08-01

    Full Text Available The presented filter-based optical method for determination of soot (light absorbing carbon or Black Carbon, BC can be implemented in the field under primitive conditions and at low cost. This enables researchers with small economical means to perform monitoring at remote locations, especially in the Asia where it is much needed.

    One concern when applying filter-based optical measurements of BC is that they suffer from systematic errors due to the light scattering of non-absorbing particles co-deposited on the filter, such as inorganic salts and mineral dust. In addition to an optical correction of the non-absorbing material this study provides a protocol for correction of light scattering based on the chemical quantification of the material, which is a novelty. A newly designed photometer was implemented to measure light transmission on particle accumulating filters, which includes an additional sensor recording backscattered light. The choice of polycarbonate membrane filters avoided high chemical blank values and reduced errors associated with length of the light path through the filter.

    Two protocols for corrections were applied to aerosol samples collected at the Maldives Climate Observatory Hanimaadhoo during episodes with either continentally influenced air from the Indian/Arabian subcontinents (winter season or pristine air from the Southern Indian Ocean (summer monsoon. The two ways of correction (optical and chemical lowered the particle light absorption of BC by 63 to 61 %, respectively, for data from the Arabian Sea sourced group, resulting in median BC absorption coefficients of 4.2 and 3.5 Mm−1. Corresponding values for the South Indian Ocean data were 69 and 97 % (0.38 and 0.02 Mm−1. A comparison with other studies in the area indicated an overestimation of their BC levels, by up to two orders of magnitude. This raises the necessity for chemical correction protocols on optical filter

  11. Design of optical switches by illusion optics

    International Nuclear Information System (INIS)

    Shoorian, H R; Abrishamian, M S

    2013-01-01

    In this paper, illusion optics theory is employed to form Bragg gratings in an optical waveguide in order to design an optical switch. By using an illusion device at a certain distance from the waveguide, the effective refractive index of the waveguide is remotely modulated, turning the waveguide into a distributed Bragg reflector (DBR) which blocks the waves at a stop band. By removing the illusion device, the waves propagate through the waveguide again. In addition, this method is used to remotely tune DBR optical properties such as resonant frequency and bandwidth in a wide range, which leads to a tunable filter for optical switching applications. Finally, using an illusion device at a distance, an optical cavity is created by inserting defects remotely in a DBR without any physical damage in the primary device. (paper)

  12. Design of optical switches by illusion optics

    Science.gov (United States)

    Shoorian, H. R.; Abrishamian, M. S.

    2013-05-01

    In this paper, illusion optics theory is employed to form Bragg gratings in an optical waveguide in order to design an optical switch. By using an illusion device at a certain distance from the waveguide, the effective refractive index of the waveguide is remotely modulated, turning the waveguide into a distributed Bragg reflector (DBR) which blocks the waves at a stop band. By removing the illusion device, the waves propagate through the waveguide again. In addition, this method is used to remotely tune DBR optical properties such as resonant frequency and bandwidth in a wide range, which leads to a tunable filter for optical switching applications. Finally, using an illusion device at a distance, an optical cavity is created by inserting defects remotely in a DBR without any physical damage in the primary device.

  13. Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity

    Directory of Open Access Journals (Sweden)

    Xie Yiwei

    2017-12-01

    Full Text Available Integrated optical signal processors have been identified as a powerful engine for optical processing of microwave signals. They enable wideband and stable signal processing operations on miniaturized chips with ultimate control precision. As a promising application, such processors enables photonic implementations of reconfigurable radio frequency (RF filters with wide design flexibility, large bandwidth, and high-frequency selectivity. This is a key technology for photonic-assisted RF front ends that opens a path to overcoming the bandwidth limitation of current digital electronics. Here, the recent progress of integrated optical signal processors for implementing such RF filters is reviewed. We highlight the use of a low-loss, high-index-contrast stoichiometric silicon nitride waveguide which promises to serve as a practical material platform for realizing high-performance optical signal processors and points toward photonic RF filters with digital signal processing (DSP-level flexibility, hundreds-GHz bandwidth, MHz-band frequency selectivity, and full system integration on a chip scale.

  14. Flexible Riser Monitoring Using Hybrid Magnetic/Optical Strain Gage Techniques through RLS Adaptive Filtering

    Directory of Open Access Journals (Sweden)

    Daniel Pipa

    2010-01-01

    Full Text Available Flexible riser is a class of flexible pipes which is used to connect subsea pipelines to floating offshore installations, such as FPSOs (floating production/storage/off-loading unit and SS (semisubmersible platforms, in oil and gas production. Flexible risers are multilayered pipes typically comprising an inner flexible metal carcass surrounded by polymer layers and spiral wound steel ligaments, also referred to as armor wires. Since these armor wires are made of steel, their magnetic properties are sensitive to the stress they are subjected to. By measuring their magnetic properties in a nonintrusive manner, it is possible to compare the stress in the armor wires, thus allowing the identification of damaged ones. However, one encounters several sources of noise when measuring electromagnetic properties contactlessly, such as movement between specimen and probe, and magnetic noise. This paper describes the development of a new technique for automatic monitoring of armor layers of flexible risers. The proposed approach aims to minimize these current uncertainties by combining electromagnetic measurements with optical strain gage data through a recursive least squares (RLSs adaptive filter.

  15. AMA- and RWE- Based Adaptive Kalman Filter for Denoising Fiber Optic Gyroscope Drift Signal.

    Science.gov (United States)

    Yang, Gongliu; Liu, Yuanyuan; Li, Ming; Song, Shunguang

    2015-10-23

    An improved double-factor adaptive Kalman filter called AMA-RWE-DFAKF is proposed to denoise fiber optic gyroscope (FOG) drift signal in both static and dynamic conditions. The first factor is Kalman gain updated by random weighting estimation (RWE) of the covariance matrix of innovation sequence at any time to ensure the lowest noise level of output, but the inertia of KF response increases in dynamic condition. To decrease the inertia, the second factor is the covariance matrix of predicted state vector adjusted by RWE only when discontinuities are detected by adaptive moving average (AMA).The AMA-RWE-DFAKF is applied for denoising FOG static and dynamic signals, its performance is compared with conventional KF (CKF), RWE-based adaptive KF with gain correction (RWE-AKFG), AMA- and RWE- based dual mode adaptive KF (AMA-RWE-DMAKF). Results of Allan variance on static signal and root mean square error (RMSE) on dynamic signal show that this proposed algorithm outperforms all the considered methods in denoising FOG signal.

  16. Long range surface plasmon resonance enhanced electro-optically tunable Goos-Hänchen shift and Imbert-Fedorov shift in ZnSe prism

    Science.gov (United States)

    Goswami, Nabamita; Kar, Aparupa; Saha, Ardhendu

    2014-11-01

    A new theoretical approach towards the tuning of Goos-Hänchen shift and Imbert-Fedorov shift for the reflected light beam is observed, designed and simulated in this paper through electro-optically tunable liquid crystal at an incident wavelength of 1550 nm within the communication window. Here the considered Kretschmann-Raether geometry comprises a ZnSe prism and a liquid crystal layer of E44 between two metal layers of silver, where with the application of electric field from (0-10) V electro-optically tuning of the Goos-Hänchen shift from 64.09 μm to -53.408 μm and the Imbert-Fedorov shift from 122.8 μm to -32.5 μm for a change in refractive index of the liquid crystal layer from 1.52-1.79 are envisaged. This idea expedites the scope of fine tuning in optical switching within the μm ranges.

  17. Research on a high-precision calibration method for tunable lasers

    Science.gov (United States)

    Xiang, Na; Li, Zhengying; Gui, Xin; Wang, Fan; Hou, Yarong; Wang, Honghai

    2018-03-01

    Tunable lasers are widely used in the field of optical fiber sensing, but nonlinear tuning exists even for zero external disturbance and limits the accuracy of the demodulation. In this paper, a high-precision calibration method for tunable lasers is proposed. A comb filter is introduced and the real-time output wavelength and scanning rate of the laser are calibrated by linear fitting several time-frequency reference points obtained from it, while the beat signal generated by the auxiliary interferometer is interpolated and frequency multiplied to find more accurate zero crossing points, with these points being used as wavelength counters to resample the comb signal to correct the nonlinear effect, which ensures that the time-frequency reference points of the comb filter are linear. A stability experiment and a strain sensing experiment verify the calibration precision of this method. The experimental result shows that the stability and wavelength resolution of the FBG demodulation can reach 0.088 pm and 0.030 pm, respectively, using a tunable laser calibrated by the proposed method. We have also compared the demodulation accuracy in the presence or absence of the comb filter, with the result showing that the introduction of the comb filter results to a 15-fold wavelength resolution enhancement.

  18. Frequency-Tunable and Pattern Diversity Antennas for Cognitive Radio Applications

    Directory of Open Access Journals (Sweden)

    A. H. Ramadan

    2014-01-01

    Full Text Available Frequency-tunable microstrip antennas, for cognitive radio applications, are proposed herein. The approach is based on tuning the operating frequency of a bandpass filter that is incorporated into a wideband antenna. The integration of an open loop resonator- (OLR- based adjustable bandpass filter into a wideband antenna to transform it into a tunable filter-antenna is presented. The same technique is employed to design a cognitive radio pattern diversity tunable filter-antenna. A good agreement between the simulated and measured results for the fabricated prototypes is obtained. The radiation characteristics of each designed tunable filter-antenna are included herein.

  19. Micro benchtop optics by bulk silicon micromachining

    Science.gov (United States)

    Lee, Abraham P.; Pocha, Michael D.; McConaghy, Charles F.; Deri, Robert J.

    2000-01-01

    Micromachining of bulk silicon utilizing the parallel etching characteristics of bulk silicon and integrating the parallel etch planes of silicon with silicon wafer bonding and impurity doping, enables the fabrication of on-chip optics with in situ aligned etched grooves for optical fibers, micro-lenses, photodiodes, and laser diodes. Other optical components that can be microfabricated and integrated include semi-transparent beam splitters, micro-optical scanners, pinholes, optical gratings, micro-optical filters, etc. Micromachining of bulk silicon utilizing the parallel etching characteristics thereof can be utilized to develop miniaturization of bio-instrumentation such as wavelength monitoring by fluorescence spectrometers, and other miniaturized optical systems such as Fabry-Perot interferometry for filtering of wavelengths, tunable cavity lasers, micro-holography modules, and wavelength splitters for optical communication systems.

  20. Two-tint pump-probe measurements using a femtosecond laser oscillator and sharp-edged optical filters.

    Science.gov (United States)

    Kang, Kwangu; Koh, Yee Kan; Chiritescu, Catalin; Zheng, Xuan; Cahill, David G

    2008-11-01

    We describe a simple approach for rejecting unwanted scattered light in two types of time-resolved pump-probe measurements, time-domain thermoreflectance (TDTR) and time-resolved incoherent anti-Stokes Raman scattering (TRIARS). Sharp edged optical filters are used to create spectrally distinct pump and probe beams from the broad spectral output of a femtosecond Ti:sapphire laser oscillator. For TDTR, the diffusely scattered pump light is then blocked by a third optical filter. For TRIARS, depolarized scattering created by the pump is shifted in frequency by approximately 250 cm(-1) relative to the polarized scattering created by the probe; therefore, spectral features created by the pump and probe scattering can be easily distinguished.

  1. Real-time optical correlator using computer-generated holographic filter on a liquid crystal light valve

    Science.gov (United States)

    Chao, Tien-Hsin; Yu, Jeffrey

    1990-01-01

    Limitations associated with the binary phase-only filter often used in optical correlators are presently circumvented in the writing of complex-valued data on a gray-scale spatial light modulator through the use of a computer-generated hologram (CGH) algorithm. The CGH encodes complex-valued data into nonnegative real CGH data in such a way that it may be encoded in any of the available gray-scale spatial light modulators. A CdS liquid-crystal light valve is used for the complex-valued CGH encoding; computer simulations and experimental results are compared, and the use of such a CGH filter as the synapse hologram in a holographic optical neural net is discussed.

  2. Optical transmission through aerosol deposits on diffusely reflective filters: a method for measuring the absorbing component of aerosol particles

    International Nuclear Information System (INIS)

    Rosen, H.; Novakov, T.

    1983-01-01

    It is unclear why the backscattered radiation from nonabsorbing particles should not make a significant contribution to the optical attenuation measurement. This is especially true where the absorbing component represents only a very small fraction of the aerosol mass. In this Letter we present a simple theoretical model which accounts for all these observations and points out the critical role of the filter substrate as an almost perfect diffuse reflector in the technique

  3. Design of a thin-plate based tunable high-quality narrow passband filter for elastic transverse waves propagate in metals

    Directory of Open Access Journals (Sweden)

    J. Zhang

    2018-03-01

    Full Text Available For the elastic SV (transverse waves in metals, a high-quality narrow passband filter that consists of aligned parallel thin plates with small gaps is designed. In order to obtain a good performance, the thin plates should be constituted by materials with a smaller mass density and Young’s modulus, such as polymethylmethacrylate (PMMA, compared to the embedded materials in which the elastic SV waves propagate. Both the theoretical model and the full numerical simulation show that the transmission spectrum of the designed filter demonstrates several peaks with flawless transmission within 0 KHz ∼20 KHz frequency range. The peaks can be readily tuned by manipulating the geometrical parameters of the plates. Therefore, the current design works well for both low and high frequencies with a controllable size. Even for low frequencies on the order of kilohertz, the size of this filter can be still limited to the order of centimeters, which significantly benefits the real applications. The investigation also finds that the same filter is valid when using different metals and the reason behind this is explained theoretically. Additionally, the effect of bonding conditions of interfaces between thin plates and the base material is investigated using a spring model.

  4. Design of a thin-plate based tunable high-quality narrow passband filter for elastic transverse waves propagate in metals

    Science.gov (United States)

    Zhang, J.; Zeng, L. H.; Hu, C. L.; Yan, W. S.; Pennec, Yan; Hu, N.

    2018-03-01

    For the elastic SV (transverse) waves in metals, a high-quality narrow passband filter that consists of aligned parallel thin plates with small gaps is designed. In order to obtain a good performance, the thin plates should be constituted by materials with a smaller mass density and Young's modulus, such as polymethylmethacrylate (PMMA), compared to the embedded materials in which the elastic SV waves propagate. Both the theoretical model and the full numerical simulation show that the transmission spectrum of the designed filter demonstrates several peaks with flawless transmission within 0 KHz ˜20 KHz frequency range. The peaks can be readily tuned by manipulating the geometrical parameters of the plates. Therefore, the current design works well for both low and high frequencies with a controllable size. Even for low frequencies on the order of kilohertz, the size of this filter can be still limited to the order of centimeters, which significantly benefits the real applications. The investigation also finds that the same filter is valid when using different metals and the reason behind this is explained theoretically. Additionally, the effect of bonding conditions of interfaces between thin plates and the base material is investigated using a spring model.

  5. Fabrication of Au/graphene oxide/Ag sandwich structure thin film and its tunable energetics and tailorable optical properties

    OpenAIRE

    Ruijin Hong; Jialin Ji; Chunxian Tao; Daohua Zhang; Dawei Zhang

    2017-01-01

    Au/graphene oxide/Ag sandwich structure thin film was fabricated. The effects of graphene oxide (GO) and bimetal on the structure and optical properties of metal silver films were investigated by X-ray diffraction (XRD), optical absorption, and Raman intensity measurements, respectively. Compared to silver thin film, Au/graphene oxide/Ag sandwich structure composite thin films were observed with wider optical absorption peak and enhanced absorption intensity. The Raman signal for Rhodamine B ...

  6. Improving the segmentation for weed recognition applications based on standard RGB cameras using optical filters

    DEFF Research Database (Denmark)

    Stigaard Laursen, Morten; Jørgensen, Rasmus Nyholm; Midtiby, Henrik

    Within precision agriculture we have seen an increase in the utilization of computer vision systems both in academia and in commercial products. Within the agricultural industry computer vision is primarily used for tractor and machine guidance whereas in academia it is commonly used for detecting......-filter following a rectangular function. However the filter in place is selected for best mimicking the spectral sensitivity of the human vision, the cut-off is therefore neither sharp nor blocks completely. In this work we show that by replacing the IR filter with a more carefully selected IR filter matched...

  7. Self-phase modulation enabled, wavelength-tunable ultrafast fiber laser sources: an energy scalable approach.

    Science.gov (United States)

    Liu, Wei; Li, Chen; Zhang, Zhigang; Kärtner, Franz X; Chang, Guoqing

    2016-07-11

    We propose and demonstrate a new approach to implement a wavelength-tunable ultrafast fiber laser source suitable for multiphoton microscopy. We employ fiber-optic nonlinearities to broaden a narrowband optical spectrum generated by an Yb-fiber laser system and then use optical bandpass filters to select the leftmost or rightmost spectral lobes from the broadened spectrum. Detailed numerical modeling shows that self-phase modulation dominates the spectral broadening, self-steepening tends to blue shift the broadened spectrum, and stimulated Raman scattering is minimal. We also find that optical wave breaking caused by fiber dispersion slows down the shift of the leftmost/rightmost spectral lobes and therefore limits the wavelength tuning range of the filtered spectra. We show both numerically and experimentally that shortening the fiber used for spectral broadening while increasing the input pulse energy can overcome this dispersion-induced limitation; as a result, the filtered spectral lobes have higher power, constituting a powerful and practical approach for energy scaling the resulting femtosecond sources. We use two commercially available photonic crystal fibers to verify the simulation results. More specific, use of 20-mm fiber NL-1050-ZERO-2 enables us to implement an Yb-fiber laser based ultrafast source, delivering femtosecond (70-120 fs) pulses tunable from 825 nm to 1210 nm with >1 nJ pulse energy.

  8. Image scale measurement with correlation filters in a volume holographic optical correlator

    Science.gov (United States)

    Zheng, Tianxiang; Cao, Liangcai; He, Qingsheng; Jin, Guofan

    2013-08-01

    A search engine containing various target images or different part of a large scene area is of great use for many applications, including object detection, biometric recognition, and image registration. The input image captured in realtime is compared with all the template images in the search engine. A volume holographic correlator is one type of these search engines. It performs thousands of comparisons among the images at a super high speed, with the correlation task accomplishing mainly in optics. However, the inputted target image always contains scale variation to the filtering template images. At the time, the correlation values cannot properly reflect the similarity of the images. It is essential to estimate and eliminate the scale variation of the inputted target image. There are three domains for performing the scale measurement, as spatial, spectral and time domains. Most methods dealing with the scale factor are based on the spatial or the spectral domains. In this paper, a method with the time domain is proposed to measure the scale factor of the input image. It is called a time-sequential scaled method. The method utilizes the relationship between the scale variation and the correlation value of two images. It sends a few artificially scaled input images to compare with the template images. The correlation value increases and decreases with the increasing of the scale factor at the intervals of 0.8~1 and 1~1.2, respectively. The original scale of the input image can be measured by estimating the largest correlation value through correlating the artificially scaled input image with the template images. The measurement range for the scale can be 0.8~4.8. Scale factor beyond 1.2 is measured by scaling the input image at the factor of 1/2, 1/3 and 1/4, correlating the artificially scaled input image with the template images, and estimating the new corresponding scale factor inside 0.8~1.2.

  9. Large depth of focus dynamic micro integral imaging for optical see-through augmented reality display using a focus-tunable lens.

    Science.gov (United States)

    Shen, Xin; Javidi, Bahram

    2018-03-01

    We have developed a three-dimensional (3D) dynamic integral-imaging (InIm)-system-based optical see-through augmented reality display with enhanced depth range of a 3D augmented image. A focus-tunable lens is adopted in the 3D display unit to relay the elemental images with various positions to the micro lens array. Based on resolution priority integral imaging, multiple lenslet image planes are generated to enhance the depth range of the 3D image. The depth range is further increased by utilizing both the real and virtual 3D imaging fields. The 3D reconstructed image and the real-world scene are overlaid using an optical see-through display for augmented reality. The proposed system can significantly enhance the depth range of a 3D reconstructed image with high image quality in the micro InIm unit. This approach provides enhanced functionality for augmented information and adjusts the vergence-accommodation conflict of a traditional augmented reality display.

  10. Plasmonic coaxial Fabry-Pérot nanocavity color filter

    Science.gov (United States)

    Si, G. Y.; Leong, E. S. P.; Danner, A. J.; Teng, J. H.

    2010-08-01

    Plamonic coaxial structures have drawn considerable attetion recently because of their unique properties. They exhibit different mechanisms of extraordinary optical transmission observed from subwavelength holes and they can support localized Fabry-Pérot plasmon modes. In this work, we experimentally demonstrate color filters based on coaxial structures fabricated in optically thick metallic films. Using nanogaps with different apertures from 160 nm down to only 40 nm, we show varying color outputs when the annular aperture arrays are illuminated with a broadband light source. Effective color-filter function is demonstrated in the optical regime. Different color outputs are observed and optical spectra are measured. In such structures, it is the propagating mode playing an important role rather than the evanescent. Resonances depend strongly on ring apertures, enabling devices with tunability of output colors using simple geometry control.

  11. A Voltage Gain-Controlled Modified CFOA And Its Application in Electronically Tunable Four-Mode All-Pass Filter Design

    OpenAIRE

    Norbert Herencsar; Jaroslav Koton; Abhirup Lahiri; Bilgin Metin; Kamil Vrba

    2012-01-01

    This paper presents a new active building block (ABB) called voltage gain-controlled modified current feedback amplifier (VGC-MCFOA) based on bipolar junction transistor technology. The versatility of the new ABB is demonstrated in new first-order all-pass filter structure design employing single VGC-MCFOA, single grounded capacitor, and three resistors. Introduced circuit provides all four possible transfer functions at the same configuration, namely current-mode, transimpedance-mode, transa...

  12. Observations of vector magnetic fields with a magneto-optic filter

    Science.gov (United States)

    Cacciani, Alessandro; Varsik, John; Zirin, Harold

    1990-01-01

    The use of the magnetooptic filter to observe solar magnetic fields in the potassium line at 7699 A is described. The filter has been used in the Big Bear videomagnetograph since October 23. It gives a high sensitivity and dynamic range for longitudnal magnetic fields and enables measurement of transverse magnetic fields using the sigma component. Examples of the observations are presented.

  13. Tunable Beam Diffraction in Infiltrated Microstructured Fibers

    DEFF Research Database (Denmark)

    Rosberg, Christian Romer; Bennet, Francis H.; Neshev, Dragomir N.

    We experimentally study beam propagation in two dimensional photonic lattices in microstructured optical fibers infiltrated with high index liquids. We demonstrate strongly tunable beam diffraction by dynamically varying the coupling between individual lattice sites.......We experimentally study beam propagation in two dimensional photonic lattices in microstructured optical fibers infiltrated with high index liquids. We demonstrate strongly tunable beam diffraction by dynamically varying the coupling between individual lattice sites....

  14. Tunable on chip optofluidic laser

    DEFF Research Database (Denmark)

    Bakal, Avraham; Vannahme, Christoph; Kristensen, Anders

    2015-01-01

    A chip scale tunable laser in the visible spectral band is realized by generating a periodic droplet array inside a microfluidic channel. Combined with a gain medium within the droplets, the periodic structure provides the optical feedback of the laser. By controlling the pressure applied to two...

  15. Tunable erbium-doped fiber laser based on optical fiber Sagnac interference loop with angle shift spliced polarization maintaining fibers

    Science.gov (United States)

    Ding, Zhenming; Wang, Zhaokun; Zhao, Chunliu; Wang, Dongning

    2018-05-01

    In this paper, we propose and experimentally demonstrate a tunable erbium-doped fiber laser (EDFL) with Sagnac interference loop with 45° angle shift spliced polarization maintaining fibers (PMFs). In the Sagnac loop, two PMFs with similar lengths. The Sagnac loop outputs a relatively complex interference spectrum since two beams transmitted in clockwise and counterclockwise encounter at the 3 dB coupler, interfere, and form two interference combs when the light transmitted in the Sagnac loop. The laser will excite and be stable when two interference lines in these two interference combs overlap together. Then by adjusting the polarization controller, the wide wavelength tuning is realized. Experimental results show that stable single wavelength laser can be realized in the wavelength range of 1585 nm-1604 nm under the pump power 157.1 mW. The side-mode suppression ratio is not less than 53.9 dB. The peak power fluctuation is less than 0.29 dB within 30 min monitor time and the side-mode suppression ratio is great than 57.49 dB when the pump power is to 222.7 mW.

  16. Generation of high-energy sub-20 fs pulses tunable in the 250-310 nm region by frequency doubling of a high-power noncollinear optical parametric amplifier.

    Science.gov (United States)

    Beutler, Marcus; Ghotbi, Masood; Noack, Frank; Brida, Daniele; Manzoni, Cristian; Cerullo, Giulio

    2009-03-15

    We report on the generation of powerful sub-20 fs deep UV pulses with 10 microJ level energy and broadly tunable in the 250-310 nm range. These pulses are produced by frequency doubling a high-power noncollinear optical parametric amplifier and compressed by a pair of MgF2 prisms to an almost transform-limited duration. Our results provide a power scaling by an order of magnitude with respect to previous works.

  17. Fast tunable blazed MEMS grating for external cavity lasers

    Science.gov (United States)

    Tormen, Maurizio; Niedermann, Philippe; Hoogerwerf, Arno; Shea, Herbert; Stanley, Ross

    2017-11-01

    Diffractive MEMS are interesting for a wide range of applications, including displays, scanners or switching elements. Their advantages are compactness, potentially high actuation speed and in the ability to deflect light at large angles. We have designed and fabricated deformable diffractive MEMS grating to be used as tuning elements for external cavity lasers. The resulting device is compact, has wide tunability and a high operating speed. The initial design is a planar grating where the beams are free-standing and attached to each other using leaf springs. Actuation is achieved through two electrostatic comb drives at either end of the grating. To prevent deformation of the free-standing grating, the device is 10 μm thick made from a Silicon on Insulator (SOI) wafer in a single mask process. At 100V a periodicity tuning of 3% has been measured. The first resonant mode of the grating is measured at 13.8 kHz, allowing high speed actuation. This combination of wide tunability and high operating speed represents state of the art in the domain of tunable MEMS filters. In order to improve diffraction efficiency and to expand the usable wavelength range, a blazed version of the deformable MEMS grating has been designed. A key issue is maintaining the mechanical properties of the original device while providing optically smooth blazed beams. Using a process based on anisotropic KOH etching, blazed gratings have been obtained and preliminary characterization is promising.

  18. Multichannel tunable omnidirectional photonic band gaps of 1D ternary photonic crystal containing magnetized cold plasma

    Science.gov (United States)

    Awasthi, Suneet Kumar; Panda, Ranjita; Chauhan, Prashant Kumar; Shiveshwari, Laxmi

    2018-05-01

    By using the transfer matrix method, theoretical investigations have been carried out in the microwave region to study the reflection properties of multichannel tunable omnidirectional photonic bandgaps (OPBGs) based on the magneto-optic Faraday effect. The proposed one dimensional ternary plasma photonic crystal consists of alternate layers of quartz, magnetized cold plasma (MCP), and air. In the absence of an external magnetic field, the proposed structure possesses two OPBGs induced by Bragg scattering and is strongly dependent on the incident angle, the polarization of the incident light, and the lattice constant unlike to the single-negative gap and zero- n ¯ gap. Next, the reflection properties of OPBGs have been made tunable by the application of external magnetic field under right hand and left hand polarization configurations. The results of this manuscript may be utilized for the development of a new kind of tunable omnidirectional band stop filter with ability to completely stop single to multiple bands (called channels) of microwave frequencies in the presence of external static magnetic field under left-hand polarization and right-hand polarization configurations, respectively. Moreover, outcomes of this study open a promising way to design tunable magneto-optical devices, omnidirectional total reflectors, and planar waveguides of high Q microcavities as a result of evanescent fields in the MCP layer to allow propagation of light.

  19. Ratiometric, filter-free optical sensor based on a complementary metal oxide semiconductor buried double junction photodiode.

    Science.gov (United States)

    Yung, Ka Yi; Zhan, Zhiyong; Titus, Albert H; Baker, Gary A; Bright, Frank V

    2015-07-16

    We report a complementary metal oxide semiconductor integrated circuit (CMOS IC) with a buried double junction (BDJ) photodiode that (i) provides a real-time output signal that is related to the intensity ratio at two emission wavelengths and (ii) simultaneously eliminates the need for an optical filter to block Rayleigh scatter. We demonstrate the BDJ platform performance for gaseous NH3 and aqueous pH detection. We also compare the BDJ performance to parallel results obtained by using a slew scanned fluorimeter (SSF). The BDJ results are functionally equivalent to the SSF results without the need for any wavelength filtering or monochromators and the BDJ platform is not prone to errors associated with source intensity fluctuations or sensor signal drift. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Gaussian Filtering with Tapered Oil-Filled Photonic Bandgap Fibers

    DEFF Research Database (Denmark)

    Brunetti, Anna Chiara; Scolari, Lara; Weirich, Johannes

    2008-01-01

    A tunable Gaussian filter based on a tapered oil-filled photonic crystal fiber is demonstrated. The filter is centered at X=1364nm with a bandwidth (FWHM) of 237nm. Tunability is achieved by changing the temperature of the filter. A shift of 210nm of the central wavelength has been observed...

  1. pH-Induced Surface Modification of Atomically Precise Silver Nanoclusters: An Approach for Tunable Optical and Electronic Properties

    KAUST Repository

    AbdulHalim, Lina G.

    2016-10-24

    Noble metal nanoclusters (NCs) play a pivotal role in bridging the gap between molecules and quantum dots. Fundamental understanding of the evolution of the structural, optical, and electronic properties of these materials in various environments is of paramount importance for many applications. Using state-of-the-art spectroscopy, we provide the first decisive experimental evidence that the structural, electronic, and optical properties of Ag-44(MNBA)(30) NCs can now be tailored by controlling the chemical environment. Infrared and photoelectron spectroscopies clearly indicate that there is a dimerization between two adjacent ligands capping the NCs that takes place upon lowering the pH from 13 to 7.

  2. Additive manufacturing of tunable lenses

    Science.gov (United States)

    Schlichting, Katja; Novak, Tobias; Heinrich, Andreas

    2017-02-01

    Individual additive manufacturing of optical systems based on 3D Printing offers varied possibilities in design and usage. In addition to the additive manufacturing procedure, the usage of tunable lenses allows further advantages for intelligent optical systems. Our goal is to bring the advantages of additive manufacturing together with the huge potential of tunable lenses. We produced tunable lenses as a bundle without any further processing steps, like polishing. The lenses were designed and directly printed with a 3D Printer as a package. The design contains the membrane as an optical part as well as the mechanical parts of the lens, like the attachments for the sleeves which contain the oil. The dynamic optical lenses were filled with an oil. The focal length of the lenses changes due to a change of the radius of curvature. This change is caused by changing the pressure in the inside of the lens. In addition to that, we designed lenses with special structures to obtain different areas with an individual optical power. We want to discuss the huge potential of this technology for several applications. Further, an appropriate controlling system is needed. Wéll show the possibilities to control and regulate the optical power of the lenses. The lenses could be used for illumination tasks, and in the future, for individual measurement tasks. The main advantage is the individuality and the possibility to create an individual design which completely fulfills the requirements for any specific application.

  3. An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy

    International Nuclear Information System (INIS)

    Dunsby, C; Lanigan, P M P; McGinty, J; Elson, D S; Requejo-Isidro, J; Munro, I; Galletly, N; McCann, F; Treanor, B; Oenfelt, B; Davis, D M; Neil, M A A; French, P M W

    2004-01-01

    Fluorescence imaging is used widely in microscopy and macroscopic imaging applications for fields ranging from biomedicine to materials science. A critical component for any fluorescence imaging system is the excitation source. Traditionally, wide-field systems use filtered thermal or arc-generated white light sources, while point scanning confocal microscope systems require spatially coherent (point-like) laser sources. Unfortunately, the limited range of visible wavelengths available from conventional laser sources constrains the design and usefulness of fluorescent probes in confocal microscopy. A 'hands-off' laser-like source, electronically tunable across the visible spectrum, would be invaluable for fluorescence imaging and provide new opportunities, e.g. automated excitation fingerprinting and in situ measurement of excitation cross-sections. Yet more information can be obtained using fluorescence lifetime imaging (FLIM), which requires that the light source be pulsed or rapidly modulated. We show how a white light continuum, generated by injecting femtosecond optical radiation into a micro-structured optical fibre, coupled with a simple prism-based tunable filter arrangement, can fulfil all these roles as a continuously electronically tunable (435-1150 nm) visible ultrafast light source in confocal, wide-field and FLIM systems

  4. Widely tunable dispersive wave generation and soliton self-frequency shift in a tellurite microstructured optical fiber pumped near the zero dispersion wavelength

    International Nuclear Information System (INIS)

    Zhang, Lei; Tuan, Tong-Hoang; Liu, Lai; Gao, Wei-Qing; Kawamura, Harutaka; Suzuki, Takenobu; Ohishi, Yasutake

    2015-01-01

    Widely tunable dispersive waves (DW) and Raman solitons are generated in a tellurite microstructured optical fiber (TMOF) by pumping in the anomalous dispersion regime, close to the zero dispersion wavelength (ZDW). The DW can be generated from 1518.3 nm to 1315.5 nm, and the soliton can be shifted from the pump wavelength of 1570 nm to 1828.7 nm, by tuning the average pump power from 3 dBm to 17.5 dBm. After the average pump power is increased to 18.8 dBm, two DW peaks (centered at 1323 nm and 1260 nm) and three soliton peaks (centered at 1762 nm, 1825 nm, and 1896 nm) can be observed simultaneously. When the average pump power is greater than 23.4 dBm, a flat and broadband supercontinuum (SC) can be formed by the combined nonlinear effects of soliton self-frequency shift (SSFS), DW generation, and cross phase modulation (XPM). (paper)

  5. Real-time monitoring of benzene, toluene, and p-xylene in a photoreaction chamber with a tunable mid-infrared laser and ultraviolet differential optical absorption spectroscopy.

    Science.gov (United States)

    Parsons, Matthew T; Sydoryk, Ihor; Lim, Alan; McIntyre, Thomas J; Tulip, John; Jäger, Wolfgang; McDonald, Karen

    2011-02-01

    We describe the implementation of a mid-infrared laser-based trace gas sensor with a photoreaction chamber, used for reproducing chemical transformations of benzene, toluene, and p-xylene (BTX) gases that may occur in the atmosphere. The system performance was assessed in the presence of photoreaction products including aerosol particles. A mid-infrared external cavity quantum cascade laser (EC-QCL)-tunable from 9.41-9.88 μm (1012-1063 cm(-1))-was used to monitor gas phase concentrations of BTX simultaneously and in real time during chemical processing of these compounds with hydroxyl radicals in a photoreaction chamber. Results are compared to concurrent measurements using ultraviolet differential optical absorption spectroscopy (UV DOAS). The EC-QCL based system provides quantitation limits of approximately 200, 200, and 600 parts in 10(9) (ppb) for benzene, toluene, and p-xylene, respectively, which represents a significant improvement over our previous work with this laser system. Correspondingly, we observe the best agreement between the EC-QCL measurements and the UV DOAS measurements with benzene, followed by toluene, then p-xylene. Although BTX gas-detection limits are not as low for the EC-QCL system as for UV DOAS, an unidentified by-product of the photoreactions was observed with the EC-QCL, but not with the UV DOAS system.

  6. Tunability of Open-Shell Character, Charge Asymmetry, and Third-Order Nonlinear Optical Properties of Covalently Linked (Hetero)Phenalenyl Dimers.

    Science.gov (United States)

    Minamida, Yuka; Kishi, Ryohei; Fukuda, Kotaro; Matsui, Hiroshi; Takamuku, Shota; Yamane, Masaki; Tonami, Takayoshi; Nakano, Masayoshi

    2018-02-06

    Tunability of the open-shell character, charge asymmetry, and third-order nonlinear optical (NLO) properties of covalently linked (hetero)phenalenyl dimers are investigated by using the density functional theory method. By changing the molecular species X and substitution position (i, j) for the linker part, a variety of intermonomer distances R and relative alignments between the phenalenyl dimers can be realized from the geometry optimizations, resulting in a wide-range tuning of diradical character y and charge asymmetry. It is found that the static second hyperpolarizabilities along the stacking direction, γ yyyy , are one-order enhanced for phenalenyl dimer systems exhibiting intermediate y, a feature that is in good agreement with the "y-γ correlation". By replacing the central carbon atoms of the phenalenyl rings with a boron or a nitrogen, we have also designed covalently linked heterophenalenyl dimers. The introduction of such a charge asymmetry to the open-shell systems, which leads to closed-shell ionic ground states, is found to further enhance the γ yyyy values of the systems having longer intermonomer distance R with intermediate ionic character, that is, charge asymmetry. The present results demonstrate a promising potential of covalently linked NLO dimers with intermediate open-shell/ionic characters as a new building block of highly efficient NLO systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A Voltage Gain-Controlled Modified CFOA And Its Application in Electronically Tunable Four-Mode All-Pass Filter Design

    Directory of Open Access Journals (Sweden)

    Norbert Herencsar

    2012-07-01

    Full Text Available This paper presents a new active building block (ABB called voltage gain-controlled modified current feedback amplifier (VGC-MCFOA based on bipolar junction transistor technology. The versatility of the new ABB is demonstrated in new first-order all-pass filter structure design employing single VGC-MCFOA, single grounded capacitor, and three resistors. Introduced circuit provides all four possible transfer functions at the same configuration, namely current-mode, transimpedance-mode, transadmittance-mode, and voltage-mode. The pole frequency of the circuit can be easily tuned by means of DC bias currents. The theoretical results are verified by SPICE simulations based on bipolar transistor arrays AT&T ALA400-CBIC-R process parameters.

  8. Observation of phase noise reduction in photonically synthesized sub-THz signals using a passively mode-locked laser diode and highly selective optical filtering

    DEFF Research Database (Denmark)

    Criado, A. R.; Acedo, P.; Carpintero, G.

    2012-01-01

    A Continuous Wave (CW) sub-THz photonic synthesis setup based on a single Passively Mode-Locked Laser Diode (PMLLD) acting as a monolithic Optical Frequency Comb Generator (OFCG) and highly selective optical filtering has been implemented to evaluate the phase noise performance of the generated sub...

  9. Advanced optical correlation and digital methods for pattern matching—50th anniversary of Vander Lugt matched filter

    Science.gov (United States)

    Millán, María S.

    2012-10-01

    On the verge of the 50th anniversary of Vander Lugt’s formulation for pattern matching based on matched filtering and optical correlation, we acknowledge the very intense research activity developed in the field of correlation-based pattern recognition during this period of time. The paper reviews some domains that appeared as emerging fields in the last years of the 20th century and have been developed later on in the 21st century. Such is the case of three-dimensional (3D) object recognition, biometric pattern matching, optical security and hybrid optical-digital processors. 3D object recognition is a challenging case of multidimensional image recognition because of its implications in the recognition of real-world objects independent of their perspective. Biometric recognition is essentially pattern recognition for which the personal identification is based on the authentication of a specific physiological characteristic possessed by the subject (e.g. fingerprint, face, iris, retina, and multifactor combinations). Biometric recognition often appears combined with encryption-decryption processes to secure information. The optical implementations of correlation-based pattern recognition processes still rely on the 4f-correlator, the joint transform correlator, or some of their variants. But the many applications developed in the field have been pushing the systems for a continuous improvement of their architectures and algorithms, thus leading towards merged optical-digital solutions.

  10. Neutron spin filter based on optically polarized sup 3 He in a near-zero magnetic field

    CERN Document Server

    Skoy, V R; Sorokin, V N; Kolachevsky, N N; Sobelman, I I; Sermyagin, A V

    2003-01-01

    A test of polarization of sup 3 He nuclei via spin-exchange collisions with optically pumped rubidium atoms in an extremely low applied magnetic field was carried out. Permalloy magnetic shields were used to prevent a fast relaxation of sup 3 He polarization owing to the inhomogeneity of a surrounding magnetic field. The whole installation was placed at the neutron beam line of the IBR-30 facility, and used as a neutron spin filter. Thus, a prototype of new design of neutron polarizer was introduced. We intend to apply this experience for the full-scale KaTRIn facility to test the time reversal violation in neutron-nuclear reactions.

  11. Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats.

    Science.gov (United States)

    Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2009-03-30

    We propose theoretically and demonstrate experimentally an optical architecture for flexible Ultra-Wideband pulse generation. It is based on an N-tap reconfigurable microwave photonic filter fed by a laser array by using phase inversion in a Mach-Zehnder modulator. Since a large number of positive and negative coefficients can be easily implemented, UWB pulses fitted to the FCC mask requirements can be generated. As an example, a four tap pulse generator is experimentally demonstrated which complies with the FCC regulation. The proposed pulse generator allows different pulse modulation formats since the amplitude, polarity and time delay of generated pulse is controlled.

  12. A measurement of the absolute neutron beam polarization produced by an optically pumped 3He neutron spin filter

    International Nuclear Information System (INIS)

    Rich, D.R.; Bowman, J.D.; Crawford, B.E.; Delheij, P.P.J.; Espy, M.A.; Haseyama, T.; Jones, G.; Keith, C.D.; Knudson, J.; Leuschner, M.B.; Masaike, A.; Masuda, Y.; Matsuda, Y.; Penttilae, S.I.; Pomeroy, V.R.; Smith, D.A.; Snow, W.M.; Szymanski, J.J.; Stephenson, S.L.; Thompson, A.K.; Yuan, V.

    2002-01-01

    The capability of performing accurate absolute measurements of neutron beam polarization opens a number of exciting opportunities in fundamental neutron physics and in neutron scattering. At the LANSCE pulsed neutron source we have measured the neutron beam polarization with an absolute accuracy of 0.3% in the neutron energy range from 40 meV to 10 eV using an optically pumped polarized 3 He spin filter and a relative transmission measurement technique. 3 He was polarized using the Rb spin-exchange method. We describe the measurement technique, present our results, and discuss some of the systematic effects associated with the method

  13. A facile synthesis of C{sub 60}-organosilicon hybrid polymers: Considering their tunable optical properties for spin-on-silicon hardmask materials

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jin-Kyu; Dao, Tung Duy; Kim, Ye-Seul; Jeong, Hyun-Dam, E-mail: hdjeong@chonnam.ac.kr

    2016-09-15

    Organic-inorganic hybrid materials with high refractive index have attracted considerable attention for many optoelectronic applications, including spin-on-type hardmask for ArF lithography (193 nm). In this study, we demonstrate the synthesis of a C{sub 60}-embedded organosilicon hybrid polymer, C{sub 60}-embedded poly-xylene-hexamethyltrisiloxane hybrid (C{sub 60}-PXS), of tunable optical properties. C{sub 60} was covalently bonded to the PXS backbone through Pt-catalyzed hydrosilylation, in which the PXS was formed possibly by unexpected transition metal-catalyzed benzylic C−H silylation and oxygenation of the o-xylene. The C{sub 60}-PXS thin films fabricated using a spin-coating method showed much higher refractive index by 5–22% according to the curing temperatures, than the PXS thin films containing no C{sub 60}. In particular, the C{sub 60}-PXS thin film cured at 350 °C showed the refractive index (n) and extinction coefficient (k) at 193 nm to be 1.61 and 0.29 that are very close to the optimum values for the Si-hardmask. This implies the high applicability of the C{sub 60}-embedded organosilicon hybrid polymer, C{sub 60}-PXS, for the spin-on Si-hardmask in ArF lithography. - Highlights: • A facile synthetic route for C{sub 60}-embedded organosilicon hybrid polymer was presented. • The hybrid polymer showed much higher refractive index than the polymer without C{sub 60}. • The hybrid polymer is highly applicable for Si-hardmask in terms of optical properties. • It is believed that the properties of the hybrid polymer can be further optimized.

  14. Advanced spectral processing of broadband light using acousto-optic devices with arbitrary transmission functions.

    Science.gov (United States)

    Molchanov, Vladimir Ya; Yushkov, Konstantin B

    2014-06-30

    In the paper, we developed a dispersive method for transmission function synthesis of collinear and quasi-collinear acousto-optic tunable filters. General theoretical consideration was performed, and modelling was made for broadband and narrowband signals. Experimental results on spectral shaping of femtosecond laser emission were obtained. Binary spectral encoding of broadband emission was demonstrated.

  15. Non-mechanical optical path switching and its application to dual beam spectroscopy including gas filter correlation radiometry

    Science.gov (United States)

    Sachse, Glen W. (Inventor); Wang, Liang-Guo (Inventor)

    1992-01-01

    A non-mechanical optical switch is developed for alternately switching a monochromatic or quasi-monochromatic light beam along two optical paths. A polarizer polarizes light into a single, e.g., vertical component which is then rapidly modulated into vertical and horizontal components by a polarization modulator. A polarization beam splitter then reflects one of these components along one path and transmits the other along the second path. In the specific application of gas filter correlation radiometry, one path is directed through a vacuum cell and one path is directed through a gas correlation cell containing a desired gas. Reflecting mirrors cause these two paths to intersect at a second polarization beam splitter which reflects one component and transmits the other to recombine them into a polarization modulated beam which can be detected by an appropriate single sensor.

  16. Tunable optical switching in the near-infrared spectral regime by employing plasmonic nanoantennas containing phase change materials.

    Science.gov (United States)

    Savaliya, Priten B; Thomas, Arun; Dua, Rishi; Dhawan, Anuj

    2017-10-02

    We propose the design of switchable plasmonic nanoantennas (SPNs) that can be employed for optical switching in the near-infrared regime. The proposed SPNs consist of nanoantenna structures made up of a plasmonic metal (gold) such that these nanoantennas are filled with a switchable material (vanadium dioxide). We compare the results of these SPNs with inverted SPN structures that consist of gold nanoantenna structures surrounded by a layer of vanadium dioxide (VO 2 ) on their outer surface. These nanoantennas demonstrate switching of electric-field intensity enhancement (EFIE) between two states (On and Off states), which can be induced thermally, optically or electrically. The On and Off states of the nanoantennas correspond to the metallic and semiconductor states, respectively of the VO 2 film inside or around the nanoantennas, as the VO 2 film exhibits phase transition from its semiconductor state to the metallic state upon application of thermal, optical, or electrical energy. We employ finite-difference time-domain (FDTD) simulations to demonstrate switching in the EFIE for four different SPN geometries - nanorod-dipole, bowtie, planar trapezoidal toothed log-periodic, and rod-disk - and compare their near-field distributions for the On and Off states of the SPNs. We also demonstrate that the resonance wavelength of the EFIE spectra gets substantially modified when these SPNs switch between the two states.

  17. Multiple optical code-label processing using multi-wavelength frequency comb generator and multi-port optical spectrum synthesizer.

    Science.gov (United States)

    Moritsuka, Fumi; Wada, Naoya; Sakamoto, Takahide; Kawanishi, Tetsuya; Komai, Yuki; Anzai, Shimako; Izutsu, Masayuki; Kodate, Kashiko

    2007-06-11

    In optical packet switching (OPS) and optical code division multiple access (OCDMA) systems, label generation and processing are key technologies. Recently, several label processors have been proposed and demonstrated. However, in order to recognize N different labels, N separate devices are required. Here, we propose and experimentally demonstrate a large-scale, multiple optical code (OC)-label generation and processing technology based on multi-port, a fully tunable optical spectrum synthesizer (OSS) and a multi-wavelength electro-optic frequency comb generator. The OSS can generate 80 different OC-labels simultaneously and can perform 80-parallel matched filtering. We also demonstrated its application to OCDMA.

  18. Optical properties of Lactuca and Taraxacum seed and fruit coats: Their role as light filters [phytochrome, photoblasty, fiber optics, transmission, spectra

    International Nuclear Information System (INIS)

    Widell, K.-O.; Vogelmann, T.C.

    1985-01-01

    The optical properties of seed and fruit coats were examined from several varieties of light-sensitive achenes. Taraxacum vulgare L. and Lactuca sativa L. cv. Grand Rapids achenes with dark fruit coats and L. sativa cvs Huvudsallat and Issallat with white fruit coats were examined. Transmission spectra varied among the different achenes: white fruit coats of Lactuca acted as neutral density filters between 450 and 780 nm, whereas Taraxacum transmitted 2–36% in this region. The ribbed fruit coat structure greatly affected transmission so that at different locations in the same coat, transmission varied between 20 to 80% at 660 and 730 nm. Fruit coats of Grand Rapids lettuce and Taraxacum transmitted more far-red than red light with T 660 /T 730 ratios of 0.8 and 0.4, respectively. The relationship between the optical properties of fruit coats and light-stimulated germination is discussed. (author)

  19. A High-Speed Optical Diagnostic that uses Interference Filters to Measure Doppler Shifts

    International Nuclear Information System (INIS)

    Paul, S.F.; Cates, C.; Mauel, M.; Maurer, D.; Navratil, G.; Shilov, M.

    2004-01-01

    A high-speed, non-invasive velocity diagnostic has been developed for measuring plasma rotation. The Doppler shift is determined by employing two detectors that view line emission from the identical volume of plasma. Each detector views through an interference filter having a passband that varies linearly with wavelength. One detector views the plasma through a filter whose passband has a negative slope and the second detector views through one with a positive slope. Because each channel views the same volume of plasma, the ratio of the amplitudes is not sensitive to variations in plasma emission. With suitable knowledge of the filter characteristics and the relative gain, the Doppler shift is readily obtained in real time from the ratio of two channels without needing a low throughput spectrometer. The systematic errors--arising from temperature drifts, stability, and frequency response of the detectors and amplifiers, interference filter linearity, and ability to thoroughly homogenize the light from the fiber bundle--can be characterized well enough to obtain velocity data with + or - 1 km/sec with a time resolution of 0.3 msec

  20. Filtered Carrier Phase Estimator for High-Order QAM Optical Systems

    DEFF Research Database (Denmark)

    Rozental, Valery; Kong, Deming; Corcoran, Bill

    2018-01-01

    We investigate, using Monte Carlo simulations, the performance characteristics and limits of a low-complexity filtered carrier phase estimator (F-CPE) in terms of cycle slip occurrences and SNR penalties. In this work, the F-CPE algorithm has been extended to include modulation formats whose oute...

  1. Novel microwave photonic fractional Hilbert transformer using a ring resonator-based optical all-pass filter.

    Science.gov (United States)

    Zhuang, Leimeng; Khan, Muhammad Rezaul; Beeker, Willem; Leinse, Arne; Heideman, René; Roeloffzen, Chris

    2012-11-19

    We propose and demonstrate a novel wideband microwave photonic fractional Hilbert transformer implemented using a ring resonator-based optical all-pass filter. The full programmability of the ring resonator allows variable and arbitrary fractional order of the Hilbert transformer. The performance analysis in both frequency and time domain validates that the proposed implementation provides a good approximation to an ideal fractional Hilbert transformer. This is also experimentally verified by an electrical S21 response characterization performed on a waveguide realization of a ring resonator. The waveguide-based structure allows the proposed Hilbert transformer to be integrated together with other building blocks on a photonic integrated circuit to create various system-level functionalities for on-chip microwave photonic signal processors. As an example, a circuit consisting of a splitter and a ring resonator has been realized which can perform on-chip phase control of microwave signals generated by means of optical heterodyning, and simultaneous generation of in-phase and quadrature microwave signals for a wide frequency range. For these functionalities, this simple and on-chip solution is considered to be practical, particularly when operating together with a dual-frequency laser. To our best knowledge, this is the first-time on-chip demonstration where ring resonators are employed to perform phase control functionalities for optical generation of microwave signals by means of optical heterodyning.

  2. Neural-network-directed alignment of optical systems using the laser-beam spatial filter as an example

    Science.gov (United States)

    Decker, Arthur J.; Krasowski, Michael J.; Weiland, Kenneth E.

    1993-01-01

    This report describes an effort at NASA Lewis Research Center to use artificial neural networks to automate the alignment and control of optical measurement systems. Specifically, it addresses the use of commercially available neural network software and hardware to direct alignments of the common laser-beam-smoothing spatial filter. The report presents a general approach for designing alignment records and combining these into training sets to teach optical alignment functions to neural networks and discusses the use of these training sets to train several types of neural networks. Neural network configurations used include the adaptive resonance network, the back-propagation-trained network, and the counter-propagation network. This work shows that neural networks can be used to produce robust sequencers. These sequencers can learn by example to execute the step-by-step procedures of optical alignment and also can learn adaptively to correct for environmentally induced misalignment. The long-range objective is to use neural networks to automate the alignment and operation of optical measurement systems in remote, harsh, or dangerous aerospace environments. This work also shows that when neural networks are trained by a human operator, training sets should be recorded, training should be executed, and testing should be done in a manner that does not depend on intellectual judgments of the human operator.

  3. Quadrupolar, emission-tunable pi-expanded 1,4-dihydropyrrolo 3,2-b pyrroles - synthesis and optical properties

    DEFF Research Database (Denmark)

    Janiga, A.; Bednarska, D.; Thorsted, B.

    2014-01-01

    elucidated by comparison with simpler tetraaryl-analogues. The strong charge-transfer characteristic of these functional dyes can be illustrated by large Stokes shifts (4100-7100 cm(-1)) for A-D-A architectures. The replacement of phenyl rings at positions 2 and 5 with the arylethynylaryl substituents......The synthesis and optical characterization of six novel heteroaromatic-based chromophores is described. The new dyes present mostly an A-D-A general framework, where A is an electron-deficient aromatic ring and D is an electron-rich pyrrolo[3,2-b] pyrrole moiety, linked via triple bonds...

  4. Generation of continuously tunable, 5-12 {mu}m radiation by difference frequency mixing of output waves of a KTP optical parametric oscillator in a ZnGeP{sub 2} crystal

    Energy Technology Data Exchange (ETDEWEB)

    Haidar, S [Research Institute of Electrical Communication (RIEC), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai-shi 980-8577 (Japan); Miyamoto, K [Research Institute of Electrical Communication (RIEC), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai-shi 980-8577 (Japan); Ito, H [Research Institute of Electrical Communication (RIEC), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai-shi 980-8577 (Japan)

    2004-12-07

    Signal and idlers waves obtained from a Nd : YAG laser pumped KTP optical parametric oscillator (OPO) are difference frequency mixed in a ZnGeP{sub 2} (ZGP) crystal to generate radiation in the mid-infrared. The KTP OPO is operated in the type-II phase matching mode, and the extraordinary and ordinary waves are tunable from 1.76 {mu}m to 2.36 {mu}m and from 2.61 {mu}m to 1.90 {mu}m, respectively. The orthogonally polarized waves are difference frequency mixed in a ZGP crystal to generate mid-IR radiation tunable from 5 to 12 {mu}m.

  5. Tunable Electrical and Optical Characteristics in Monolayer Graphene and Few-Layer MoS2 Heterostructure Devices.

    Science.gov (United States)

    Rathi, Servin; Lee, Inyeal; Lim, Dongsuk; Wang, Jianwei; Ochiai, Yuichi; Aoki, Nobuyuki; Watanabe, Kenji; Taniguchi, Takashi; Lee, Gwan-Hyoung; Yu, Young-Jun; Kim, Philip; Kim, Gil-Ho

    2015-08-12

    Lateral and vertical two-dimensional heterostructure devices, in particular graphene-MoS2, have attracted profound interest as they offer additional functionalities over normal two-dimensional devices. Here, we have carried out electrical and optical characterization of graphene-MoS2 heterostructure. The few-layer MoS2 devices with metal electrode at one end and monolayer graphene electrode at the other end show nonlinearity in drain current with drain voltage sweep due to asymmetrical Schottky barrier height at the contacts and can be modulated with an external gate field. The doping effect of MoS2 on graphene was observed as double Dirac points in the transfer characteristics of the graphene field-effect transistor (FET) with a few-layer MoS2 overlapping the middle part of the channel, whereas the underlapping of graphene have negligible effect on MoS2 FET characteristics, which showed typical n-type behavior. The heterostructure also exhibits a strongest optical response for 520 nm wavelength, which decreases with higher wavelengths. Another distinct feature observed in the heterostructure is the peak in the photocurrent around zero gate voltage. This peak is distinguished from conventional MoS2 FETs, which show a continuous increase in photocurrent with back-gate voltage. These results offer significant insight and further enhance the understanding of the graphene-MoS2 heterostructure.

  6. Optically stabilized Erbium fiber frequency comb with hybrid mode-locking and a broad tunable range of repetition rate.

    Science.gov (United States)

    Yang, Honglei; Wu, Xuejian; Zhang, Hongyuan; Zhao, Shijie; Yang, Lijun; Wei, Haoyun; Li, Yan

    2016-12-01

    We present an optically stabilized Erbium fiber frequency comb with a broad repetition rate tuning range based on a hybrid mode-locked oscillator. We lock two comb modes to narrow-linewidth reference lasers in turn to investigate the best performance of control loops. The control bandwidth of fast and slow piezoelectric transducers reaches 70 kHz, while that of pump current modulation with phase-lead compensation is extended to 32 kHz, exceeding laser intrinsic response. Eventually, simultaneous lock of both loops is realized to totally phase-stabilize the comb, which will facilitate precision dual-comb spectroscopy, laser ranging, and timing distribution. In addition, a 1.8-MHz span of the repetition rate is achieved by an automatic optical delay line that is helpful in manufacturing a secondary comb with a similar repetition rate. The oscillator is housed in a homemade temperature-controlled box with an accuracy of ±0.02  K, which not only keeps high signal-to-noise ratio of the beat notes with reference lasers, but also guarantees self-starting at the same mode-locking every time.

  7. Spin-polarized 3He nuclear targets and metastable 4He atoms by optical pumping with a tunable, Nd:YAP laser

    International Nuclear Information System (INIS)

    Bohler, C.L.; Schearer, L.D.; Leduc, M.; Nacher, P.J.; Zachorowski, L.; Milner, R.G.; McKeown, R.D.; Woodward, C.E.

    1988-01-01

    Several Nd:YAP lasers were constructed which could be broadly tuned in the 1083-nm region which includes the helium 2 3 S-2 3 P transition, using a Lyot filter and thin, uncoated etalons within the laser cavity. 1 W of power could be extracted at 1083 nm through a 1% transmitting output coupler. This laser beam was used to optically pump metastable 4 He and 3 He 2 3 S helium atoms in a weak discharge cell, spin polarizing the metastable ensemble. In a 3 He cell the polarization is transferred to the nuclear spin system. A 3 He target cell at 0.3 Torr was polarized to 52% in a few minutes. We describe the application of this system to the design of polarized targets for experiments in nuclear physics

  8. Highly tunable NEMS shallow arches

    KAUST Repository

    Kazmi, Syed N. R.

    2017-11-30

    We report highly tunable nanoelectromechanical systems NEMS shallow arches under dc excitation voltages. Silicon based in-plane doubly clamped bridges, slightly curved as shallow arches, are fabricated using standard electron beam lithography and surface nanomachining of a highly conductive device layer on a silicon-on-insulator wafer. By designing the structures to have gap to thickness ratio of more than four, the mid-plane stretching of the nano arches is maximized such that an increase in the dc bias voltage will result into continuous increase in the resonance frequency of the resonators to wide ranges. This is confirmed analytically based on a nonlinear beam model. The experimental results are found to be in good agreement with that of the results from developed analytical model. A maximum tunability of 108.14% for a 180 nm thick arch with an initially designed gap of 1 μm between the beam and the driving/sensing electrodes is achieved. Furthermore, a tunable narrow bandpass filter is demonstrated, which opens up opportunities for designing such structures as filtering elements in high frequency ranges.

  9. Wavelength interrogation of fiber Bragg grating sensors based on crossed optical Gaussian filters.

    Science.gov (United States)

    Cheng, Rui; Xia, Li; Zhou, Jiaao; Liu, Deming

    2015-04-15

    Conventional intensity-modulated measurements require to be operated in linear range of filter or interferometric response to ensure a linear detection. Here, we present a wavelength interrogation system for fiber Bragg grating sensors where the linear transition is achieved with crossed Gaussian transmissions. This unique filtering characteristic makes the responses of the two branch detections follow Gaussian functions with the same parameters except for a delay. The substraction of these two delayed Gaussian responses (in dB) ultimately leads to a linear behavior, which is exploited for the sensor wavelength determination. Beside its flexibility and inherently power insensitivity, the proposal also shows a potential of a much wider operational range. Interrogation of a strain-tuned grating was accomplished, with a wide sensitivity tuning range from 2.56 to 8.7 dB/nm achieved.

  10. Single- and multi-pulse femtosecond laser ablation of optical filter materials

    International Nuclear Information System (INIS)

    Krueger, J.; Lenzner, M.; Martin, S.; Lenner, M.; Spielmann, C.; Fiedler, A.; Kautek, W.

    2003-01-01

    Ablation experiments employing Ti:sapphire laser pulses with durations from 30 to 340 fs (centre wavelength 800 nm, repetition rate 1 kHz) were performed in air. Absorbing filters (Schott BG18 and BG36) served as targets. The direct focusing technique was used under single- and multi-pulse irradiation conditions. Ablation threshold fluences were determined from a semi-logarithmic plot of the ablation crater diameter versus laser fluence. The threshold fluence decreases for a shorter pulse duration and an increasing number of pulses. The multi-pulse ablation threshold fluences are similar to those of undoped glass material (∼1 J cm -2 ). That means that the multi-pulse ablation threshold is independent on the doping level of the filters. For more than 100 pulses per spot and all pulse durations applied, the threshold fluence is practically constant. This leads to technically relevant ablation threshold values

  11. 1.7  μm band narrow-linewidth tunable Raman fiber lasers pumped by spectrum-sliced amplified spontaneous emission.

    Science.gov (United States)

    Zhang, Peng; Wu, Di; Du, Quanli; Li, Xiaoyan; Han, Kexuan; Zhang, Lizhong; Wang, Tianshu; Jiang, Huilin

    2017-12-10

    A 1.7 μm band tunable narrow-linewidth Raman fiber laser based on spectrally sliced amplified spontaneous emission (SS-ASE) and multiple filter structures is proposed and experimentally demonstrated. In this scheme, an SS-ASE source is employed as a pump source in order to avoid stimulated Brillouin scattering. The ring configuration includes a 500 m long high nonlinear optical fiber and a 10 km long dispersion shifted fiber as the gain medium. A segment of un-pumped polarization-maintaining erbium-doped fiber is used to modify the shape of the spectrum. Furthermore, a nonlinear polarization rotation scheme is applied as the wavelength selector to generate lasers. A high-finesse ring filter and a ring filter are used to narrow the linewidth of the laser, respectively. We demonstrate tuning capabilities of a single laser over 28 nm between 1652 nm and 1680 nm by adjusting the polarization controller (PC) and tunable filter. The tunable laser has a 0.023 nm effective linewidth with the high-finesse ring filter. The stable multi-wavelength laser operation of up to four wavelengths can be obtained by adjusting the PC carefully when the pump power increases.

  12. Three-State Locally Adaptive Texture Preserving Filter for Radar and Optical Image Processing

    Directory of Open Access Journals (Sweden)

    Jaakko T. Astola

    2005-05-01

    Full Text Available Textural features are one of the most important types of useful information contained in images. In practice, these features are commonly masked by noise. Relatively little attention has been paid to texture preserving properties of noise attenuation methods. This stimulates solving the following tasks: (1 to analyze the texture preservation properties of various filters; and (2 to design image processing methods capable to preserve texture features well and to effectively reduce noise. This paper deals with examining texture feature preserving properties of different filters. The study is performed for a set of texture samples and different noise variances. The locally adaptive three-state schemes are proposed for which texture is considered as a particular class. For “detection” of texture regions, several classifiers are proposed and analyzed. As shown, an appropriate trade-off of the designed filter properties is provided. This is demonstrated quantitatively for artificial test images and is confirmed visually for real-life images.

  13. Enhanced Performance & Functionality of Tunable Delay Lines

    Science.gov (United States)

    2012-08-01

    Based Tunable Optical Delays”, Optics Letters, Vol. 33, Issue 13, pp. 1518-1520 (2008). 2. Louis Christen, Irfan Fazal , Omer F. Yilmaz, Xiaoxia Wu...2008. 3. Omer F. Yilmaz, Louis Christen, Xiaoxia Wu, Scott R. Nuccio, Irfan Fazal , and Alan E. Willner, “Time-Slot-Interchange of 40 Gb/s Variable...F. Yilmaz, S. Khaleghi, L. Christen, I. Fazal , and A. E. Willner, “503 ns, Tunable Optical Delay of 40 Gb/s RZ-OOK using Additional λ-Conversion

  14. Microwave phase shifter with controllable power response based on slow-and fast-light effects in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Sales, Salvador; Capmany, Jose

    2009-01-01

    with the use of spectral filtering to enhance the role of refractive index dynamics. A continuously tunable phase shift of 240° at a microwave frequency of 19 GHz is demonstrated in a cascade of two semiconductor optical amplifiers, while maintaining an rf power change of less than 1.6 dB. The technique...

  15. A narrow linewidth tunable single longitudinal mode Ga-EDF fiber laser

    Science.gov (United States)

    Mohamed Halip, N. H.; Abu Bakar, M. H.; Latif, A. A.; Muhd-Yasin, S. Z.; Zulkifli, M. I.; Mat-Sharif, K. A.; Omar, N. Y. M.; Mansoor, A.; Abdul-Rashid, H. A.; Mahdi, M. A.

    2018-05-01

    A tunable ring cavity single longitudinal mode (SLM) fiber laser incorporating Gallium-Erbium co-doped fiber (Ga-EDF) gain medium and several mode filtration techniques is demonstrated. With Ga-EDF, high emission power was accorded in short fiber length, allowing shorter overall cavity length and wider free spectral range. Tunable bandpass filter, sub-ring structure, and cascaded dissimilar fiber taper were utilized to filter multi-longitudinal modes. Each of the filter mechanism was tested individually within the laser cavity to assess its performance. Once the performance of each filter was obtained, all of them were deployed into the laser system. Ultimately, the 1561.47 nm SLM laser achieved a narrow linewidth laser, optical signal-to-noise ratio, and power fluctuation of 1.19 kHz, 61.52 dB and 0.16 dB, respectively. This work validates the feasibility of Ga-EDF to attain a stable SLM output in simple laser configuration.

  16. Low temperature synthesis, characterization and tunable optical properties of Eu3+, Tb3+ doped CaMoO4 nanoparticles

    International Nuclear Information System (INIS)

    Sharma, K. Gayatri; Singh, Th. Prasanta; Singh, N. Rajmuhon

    2014-01-01

    Highlights: • Red and green nanophosphors of CaMoO 4 :Eu 3+ and Tb 3+ were synthesized via an ethylene glycol route at very low temperature. • The prepared nanoparticles have tetragonal structure. • The luminescence properties of the nanoparticles are also studied extensively. • CIE chromaticity coordinates of the phosphors are also studied. • The blue-green emission of host could be easily tuned to red or green by varying the dopant ion used in the host. - Abstract: CaMoO 4 doped with Eu 3+ and Tb 3+ nanoparticles are obtained using ethylene glycol as the solvent. The synthesis has been carried out at 130 °C temperature. The XRD patterns reveal that all the doped samples are well assigned to the scheelite structure of the CaMoO 4 phase. Upon excitation by ultraviolet radiation, the CaMoO 4 :Eu 3+ , Tb 3+ phosphors show the characteristic emission lines of Eu 3+ and Tb 3+ . For Eu 3+ doped samples, red emission dominates over other transitions and for Tb 3+ doped, green emission is the predominant one. The blue-green emission of the host could be easily tuned to red and green by doping with activator ions. The emission intensity is also dependent on the concentration of the dopant ions. The prepared nanoparticles could find applications in LEDs and other optical devices

  17. Optical ammonia gas sensor based on a porous silicon rugate filter coated with polymer-supported dye.

    Science.gov (United States)

    Shang, Yunling; Wang, Xiaobo; Xu, Erchao; Tong, Changlun; Wu, Jianmin

    2011-01-24

    An ammonia gas sensor chip was prepared by coating an electrochemically-etched porous Si rugate filter with a chitosan film that is crosslinked by glycidoxypropyltrimethoxysilane (GPTMS). The bromothylmol blue (BTB), a pH indicator, was loaded in the film as ammonia-sensing molecules. White light reflected from the porous Si has a narrow bandwidth spectrum with a peak at 610 nm. Monitoring reflective optical intensity at the peak position allows for direct, real-time observation of changes in the concentration of ammonia gas in air samples. The reflective optical intensity decreased linearly with increasing concentrations of ammonia gas over the range of 0-100 ppm. The lowest detection limit was 0.5 ppm for ammonia gas. At optimum conditions, the full response time of the ammonia gas sensor was less than 15s. The sensor chip also exhibited a good long-term stability over 1 year. Therefore, the simple sensor design has potential application in miniaturized optical measurement for online ammonia gas detection. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Fiber optic adaptation of the interference filter photometer SPECTRAN for in-line measurements in PUREX process control

    International Nuclear Information System (INIS)

    Buerck, J.; Kraemer, K.; Koenig, W.

    1990-02-01

    The multicomponent version of the interference filter photometer SPECTRAN was adapted by radiation resistant quartz glass optical fibers to in-line flow cells in the aqueous and organic bypass stream of an uranium laboratory extraction column. A combined photometric/electrolytical conductivity measurement allows this modified process instrument to be used as uranium/plutonium in-line monitor in radioactive process streams. By applying a high performance 100 W quartz halogen lamp and suitable light focussing optics the light intensity, attenuated by coupling losses, could be increased to the desired level even when 1000 μm-single strand fibers (2x18 m) were used to transmit the light. In a series of calibration experiments the U(VI)- and U(IV)-extinction coefficients were determined as a function of nitric acid molarity (for U(VI) also in TBP/kerosene). Furthermore the validity of Lambert-Beer's law was examined for both oxidation states at different optical path lengths and nitric acid/electrolytical conductivity calibration functions between 0-100 g/l U(VI) and 0-4 mol/l HNO 3 were set up. (orig./EF) [de

  19. Advanced optical correlation and digital methods for pattern matching—50th anniversary of Vander Lugt matched filter

    International Nuclear Information System (INIS)

    Millán, María S

    2012-01-01

    On the verge of the 50th anniversary of Vander Lugt’s formulation for pattern matching based on matched filtering and optical correlation, we acknowledge the very intense research activity developed in the field of correlation-based pattern recognition during this period of time. The paper reviews some domains that appeared as emerging fields in the last years of the 20th century and have been developed later on in the 21st century. Such is the case of three-dimensional (3D) object recognition, biometric pattern matching, optical security and hybrid optical–digital processors. 3D object recognition is a challenging case of multidimensional image recognition because of its implications in the recognition of real-world objects independent of their perspective. Biometric recognition is essentially pattern recognition for which the personal identification is based on the authentication of a specific physiological characteristic possessed by the subject (e.g. fingerprint, face, iris, retina, and multifactor combinations). Biometric recognition often appears combined with encryption–decryption processes to secure information. The optical implementations of correlation-based pattern recognition processes still rely on the 4f-correlator, the joint transform correlator, or some of their variants. But the many applications developed in the field have been pushing the systems for a continuous improvement of their architectures and algorithms, thus leading towards merged optical–digital solutions. (review article)

  20. Tunable Nanoplasmonics

    Directory of Open Access Journals (Sweden)

    M. Swillam

    2013-07-01

    Full Text Available In this paper, we present novel mechanisms for tuning and controlling the response of novel plasmonic filter using metal-insulator-metal (MIM configuration. These mechanisms allow for full control on the transmission response from these waveguide based structures. This control can be done electrically or mechanically. The applications and advantages of these novel schemes are discussed in details. Wideband tuning range has been obtained using these schemes.