WorldWideScience

Sample records for tunable laser diode

  1. Stirling-Cycle Cooling For Tunable Diode Laser

    Science.gov (United States)

    Durso, Santo S.; May, Randy D.; Tuchscherer, Matthew A.; Webster, Christopher R.

    1991-01-01

    Miniature Stirling-cycle cooler effective in continously cooling PbSnTe tunable diode laser to stable operating temperature near 80 K. Simplifies laboratory diode-laser spectroscopy and instruments for use aboard aircraft and balloons.

  2. Computer Processing Of Tunable-Diode-Laser Spectra

    Science.gov (United States)

    May, Randy D.

    1991-01-01

    Tunable-diode-laser spectrometer measuring transmission spectrum of gas operates under control of computer, which also processes measurement data. Measurements in three channels processed into spectra. Computer controls current supplied to tunable diode laser, stepping it through small increments of wavelength while processing spectral measurements at each step. Program includes library of routines for general manipulation and plotting of spectra, least-squares fitting of direct-transmission and harmonic-absorption spectra, and deconvolution for determination of laser linewidth and for removal of instrumental broadening of spectral lines.

  3. Electrooptic modulation methods for high sensitivity tunable diode laser spectroscopy

    Science.gov (United States)

    Glenar, David A.; Jennings, Donald E.; Nadler, Shacher

    1990-01-01

    A CdTe phase modulator and low power RF sources have been used with Pb-salt tunable diode lasers operating near 8 microns to generate optical sidebands for high sensitivity absorption spectroscopy. Sweep averaged, first-derivative sample spectra of CH4 were acquired by wideband phase sensitive detection of the electrooptically (EO) generated carrier-sideband beat signal. EO generated beat signals were also used to frequency lock the TDL to spectral lines. This eliminates low frequency diode jitter, and avoids the excess laser linewidth broadening that accompanies TDL current modulation frequency locking methods.

  4. Tunable high-power narrow-linewidth green external-cavity GaN diode laser

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2016-01-01

    A tunable high-power green external-cavity diode laser is demonstrated. Up to 290 mW output power and a 9.2 nm tuning is achieve. This constitutes the highest output power from a tunable green diode laser system.......A tunable high-power green external-cavity diode laser is demonstrated. Up to 290 mW output power and a 9.2 nm tuning is achieve. This constitutes the highest output power from a tunable green diode laser system....

  5. Tunable diode laser spectroscopy as a technique for combustion diagnostics

    International Nuclear Information System (INIS)

    Bolshov, M.A.; Kuritsyn, Yu.A.; Romanovskii, Yu.V.

    2015-01-01

    Tunable diode laser absorption spectroscopy (TDLAS) has become a proven method of rapid gas diagnostics. In the present review an overview of the state of the art of TDL-based sensors and their applications for measurements of temperature, pressure, and species concentrations of gas components in harsh environments is given. In particular, the contemporary tunable diode laser systems, various methods of absorption detection (direct absorption measurements, wavelength modulation based phase sensitive detection), and relevant algorithms for data processing that improve accuracy and accelerate the diagnostics cycle are discussed in detail. The paper demonstrates how the recent developments of these methods and algorithms made it possible to extend the functionality of TDLAS in the tomographic imaging of combustion processes. Some prominent examples of applications of TDL-based sensors in a wide range of practical combustion aggregates, including scramjet engines and facilities, internal combustion engines, pulse detonation combustors, and coal gasifiers, are given in the final part of the review. - Highlights: • Overview of modern TDL-based sensors for combustion • TDL systems, methods of absorption detection and algorithms of data processing • Prominent examples of TDLAS diagnostics of the combustion facilities • Extension of the TDLAS on the tomographic imaging of combustion processes

  6. [Gas pipeline leak detection based on tunable diode laser absorption spectroscopy].

    Science.gov (United States)

    Zhang, Qi-Xing; Wang, Jin-Jun; Liu, Bing-Hai; Cai, Ting-Li; Qiao, Li-Feng; Zhang, Yong-Ming

    2009-08-01

    The principle of tunable diode laser absorption spectroscopy and harmonic detection technique was introduced. An experimental device was developed by point sampling through small multi-reflection gas cell. A specific line near 1 653. 7 nm was targeted for methane measurement using a distributed feedback diode laser as tunable light source. The linearity between the intensity of second harmonic signal and the concentration of methane was determined. The background content of methane in air was measured. The results show that gas sensors using tunable diode lasers provide a high sensitivity and high selectivity method for city gas pipeline leak detection.

  7. Green high-power tunable external-cavity GaN diode laser at 515 nm

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2016-01-01

    A 480 mW green tunable diode laser system is demonstrated for the first time to our knowledge. The laser system is based on a GaN broad-area diode laser and Littrow external-cavity feedback. The green laser system is operated in two modes by switching the polarization direction of the laser beam...... incident on the grating. When the laser beam is p-polarized, an output power of 50 mW with a tunable range of 9.2 nm is achieved. When the laser beam is s-polarized, an output power of 480 mW with a tunable range of 2.1 nm is obtained. This constitutes the highest output power from a tunable green diode...... laser system....

  8. Atomic-resolution measurements with a new tunable diode laser-based interferometer

    DEFF Research Database (Denmark)

    Silver, R.M.; Zou, H.; Gonda, S.

    2004-01-01

    We develop a new implementation of a Michelson interferometer designed to make measurements with an uncertainty of less than 20 pm. This new method uses a tunable diode laser as the light source, with the diode laser wavelength continuously tuned to fix the number of fringes in the measured optical...... laser Michelson interferometer....... path. The diode laser frequency is measured by beating against a reference laser. High-speed, accurate frequency measurements of the beat frequency signal enables the diode laser wavelength to be measured with nominally 20-pm accuracy for the measurements described. The new interferometer design...

  9. MEASUREMENT OF AMMONIA EMISSIONS FROM MECHANICALLY VENTILATED POULTRY HOUSES USING MULTIPATH TUNABLE DIODE LASER SPECTROSCOPY

    Science.gov (United States)

    Ammonia emissions from mechanically ventilated poultry operations are an important environmental concern. Open Path Tunable Diode Laser Absorption Spectroscopy has emerged as a robust real-time method for gas phase measurement of ammonia concentrations in agricultural settings. ...

  10. Compact silicon photonic wavelength-tunable laser diode with ultra-wide wavelength tuning range

    Energy Technology Data Exchange (ETDEWEB)

    Kita, Tomohiro, E-mail: tkita@ecei.tohoku.ac.jp; Tang, Rui; Yamada, Hirohito [Graduate School of Engineering, Tohoku University, 6-6-05 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8579 (Japan)

    2015-03-16

    We present a wavelength-tunable laser diode with a 99-nm-wide wavelength tuning range. It has a compact wavelength-tunable filter with high wavelength selectivity fabricated using silicon photonics technology. The silicon photonic wavelength-tunable filter with wide wavelength tuning range was realized using two ring resonators and an asymmetric Mach-Zehnder interferometer. The wavelength-tunable laser diode fabricated by butt-joining a silicon photonic filter and semiconductor optical amplifier shows stable single-mode operation over a wide wavelength range.

  11. Compact silicon photonic wavelength-tunable laser diode with ultra-wide wavelength tuning range

    International Nuclear Information System (INIS)

    Kita, Tomohiro; Tang, Rui; Yamada, Hirohito

    2015-01-01

    We present a wavelength-tunable laser diode with a 99-nm-wide wavelength tuning range. It has a compact wavelength-tunable filter with high wavelength selectivity fabricated using silicon photonics technology. The silicon photonic wavelength-tunable filter with wide wavelength tuning range was realized using two ring resonators and an asymmetric Mach-Zehnder interferometer. The wavelength-tunable laser diode fabricated by butt-joining a silicon photonic filter and semiconductor optical amplifier shows stable single-mode operation over a wide wavelength range

  12. Noise effects in an optical heterodyne spectrometer using tunable diode lasers

    Science.gov (United States)

    Katzberg, S. J.; Kowitz, H. R.; Rowland, C. W.

    1981-01-01

    A comparison of measured and predicted signal-to-noise ratio is made in an optical heterodyne spectrometer utilizing a tunable diode laser which exhibited excess noise. It is shown that good agreement between predicted and measured signal-to-noise ratios results if excess noise effects due to tunable diode lasers are included in the predictions. The methods used to quantify excess noise and to incorporate their effects into predictions of signal-to-noise ratio are discussed.

  13. Frequency-comb-referenced tunable diode laser spectroscopy and laser stabilization applied to laser cooling.

    Science.gov (United States)

    Fordell, Thomas; Wallin, Anders E; Lindvall, Thomas; Vainio, Markku; Merimaa, Mikko

    2014-11-01

    Laser cooling of trapped atoms and ions in optical clocks demands stable light sources with precisely known absolute frequencies. Since a frequency comb is a vital part of any optical clock, the comb lines can be used for stabilizing tunable, user-friendly diode lasers. Here, a light source for laser cooling of trapped strontium ions is described. The megahertz-level stability and absolute frequency required are realized by stabilizing a distributed-feedback semiconductor laser to a frequency comb. Simple electronics is used to lock and scan the laser across the comb lines, and comb mode number ambiguities are resolved by using a separate, saturated absorption cell that exhibits easily distinguishable hyperfine absorption lines with known frequencies. Due to the simplicity, speed, and wide tuning range it offers, the employed technique could find wider use in precision spectroscopy.

  14. Atomic-resolution measurements with a new tunable diode laser-based interferometer

    DEFF Research Database (Denmark)

    Silver, R.M.; Zou, H.; Gonda, S.

    2004-01-01

    We develop a new implementation of a Michelson interferometer designed to make measurements with an uncertainty of less than 20 pm. This new method uses a tunable diode laser as the light source, with the diode laser wavelength continuously tuned to fix the number of fringes in the measured optical...... path. The diode laser frequency is measured by beating against a reference laser. High-speed, accurate frequency measurements of the beat frequency signal enables the diode laser wavelength to be measured with nominally 20-pm accuracy for the measurements described. The new interferometer design...... is lightweight and is mounted directly on an ultra-high vacuum scanning tunneling microscope capable of atomic resolution. We report the simultaneous acquisition of an atomic resolution image, while the relative lateral displacement of the tip along the sample distance is measured with the new tunable diode...

  15. Compact tunable mid-infrared laser source by difference frequency generation of two diode-lasers

    Science.gov (United States)

    Schade, W.; Blanke, T.; Willer, U.; Rempel, C.

    1996-07-01

    Two continuous-wave single mode diode-lasers (Hitachi HL 7851G and Toshiba TOLD 9150) are applied as signal and pump sources for difference frequency generation (DFG) in an AgGaS2 crystal with a length of 30 mm. For 90° type I phase matching tunable mid-infrared laser radiation around 5 µm is obtained with an output power of up to P DFG = 0.2 µW while the diode lasers are operated with powers of 30 and 50 mW at the center wavelengths 682 and 791 nm, respectively. The performance of the diode-laser-DFG system is shown as the absorption spectrum of CO for the P(28) rotational line around 2023 cm-1 is probed in a 10cm long cell and in the exhaust of an engine.

  16. Free space broad-bandwidth tunable laser diode based on Littman configuration for 3D profile measurement

    Science.gov (United States)

    Shirazi, Muhammad Faizan; Kim, Pilun; Jeon, Mansik; Kim, Chang-Seok; Kim, Jeehyun

    2018-05-01

    We developed a tunable laser diode for an optical coherence tomography system that can perform three-dimensional profile measurement using an area scanning technique. The tunable laser diode is designed using an Eagleyard tunable laser diode with a galvano filter. The Littman free space configuration is used to demonstrate laser operation. The line- and bandwidths of this source are 0.27 nm (∼110 GHz) and 43 nm, respectively, at the center wavelength of 860 nm. The output power is 20 mW at an operating current of 150 mA. A step height target is imaged using a wide-area scanning system to show the measurement accuracy of the proposed tunable laser diode. A TEM grid is also imaged to measure the topography and thickness of the sample by proposed tunable laser diode.

  17. Assessment of Hydrogen Sulfide Minimum Detection Limits of an Open Path Tunable Diode Laser

    Science.gov (United States)

    During June 2007, U.S. EPA conducted a feasibility study to determine whether the EPA OTM 10 measurement approach, also known as radial plume mapping (RPM), was feasible. A Boreal open-path tunable diode laser (OP-TDL) to collect path-integrated hydrogen sulfide measurements alon...

  18. Monitoring Temperature in High Enthalpy Arc-heated Plasma Flows using Tunable Diode Laser Absorption Spectroscopy

    Science.gov (United States)

    Martin, Marcel Nations; Chang, Leyen S.; Jeffries, Jay B.; Hanson, Ronald K.; Nawaz, Anuscheh; Taunk, Jaswinder S.; Driver, David M.; Raiche, George

    2013-01-01

    A tunable diode laser sensor was designed for in situ monitoring of temperature in the arc heater of the NASA Ames IHF arcjet facility (60 MW). An external cavity diode laser was used to generate light at 777.2 nm and laser absorption used to monitor the population of electronically excited oxygen atoms in an air plasma flow. Under the assumption of thermochemical equilibrium, time-resolved temperature measurements were obtained on four lines-of-sight, which enabled evaluation of the temperature uniformity in the plasma column for different arcjet operating conditions.

  19. Tunable high-power narrow-spectrum external-cavity diode laser based on tapered amplifier at 668 nm

    DEFF Research Database (Denmark)

    Chi, Mingjun; Erbert, G.; Sumpf, B.

    2010-01-01

    A 668 nm tunable high-power narrow-spectrum diode laser system based on a tapered semiconductor optical amplifier in external cavity is demonstrated. The laser system is tunable from 659 to 675 nm. As high as 1.38 W output power is obtained at 668.35 nm. The emission spectral bandwidth is less than...

  20. Three Dimensional Speckle Imaging Employing a Frequency-Locked Tunable Diode Laser

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, Bret D.; Bernacki, Bruce E.; Schiffern, John T.; Mendoza, Albert

    2015-09-01

    We describe a high accuracy frequency stepping method for a tunable diode laser to improve a three dimensional (3D) imaging approach based upon interferometric speckle imaging. The approach, modeled after Takeda, exploits tuning an illumination laser in frequency as speckle interferograms of the object (specklegrams) are acquired at each frequency in a Michelson interferometer. The resulting 3D hypercube of specklegrams encode spatial information in the x-y plane of each image with laser tuning arrayed along its z-axis. We present laboratory data of before and after results showing enhanced 3D imaging resulting from precise laser frequency control.

  1. Quasi zero-background tunable diode laser absorption spectroscopy employing a balanced Michelson interferometer.

    Science.gov (United States)

    Guan, Zuguang; Lewander, Märta; Svanberg, Sune

    2008-12-22

    Tunable diode laser spectroscopy (TDLS) normally observes small fractional absorptive reductions in the light flux. We show, that instead a signal increase on a zero background can be obtained. A Michelson interferometer, which is initially balanced out in destructive interference, is perturbed by gas absorption in one of its arms. Both theoretical analysis and experimental demonstration show that the proposed zero-background TDLS can improve the achievable signal-to-noise ratio.

  2. Continuous-wave diode-pumped Yb 3+:LYSO tunable laser

    Science.gov (United States)

    Du, Juan; Liang, Xiaoyan; Xu, Yi; Li, Ruxin; Yan, Chengfeng; Zhao, Guangjun; Su, Liangbi; Xu, Jun; Xu, Zhizhan

    2007-01-01

    A new alloyed crystal, Yb:LYSO, has been grown by the Czochralski method in our institute for the first time, and its effective diode-pumped cw tunable laser action was demonstrated. The alloyed crystal retains excellent laser properties of LSO with reduced growth cost, as well as the favorable growth properties of YSO. With a 5-at.% Yb:LYSO sample, we achieved 2.84 W output power at 1085 nm and a slope efficiency of 63.5%. And its laser wavelength could be tuned over a range broader than 80nm, from 1030nm to 1111 nm. This is the broadest tunable range achieved for Yb:LYSO laser, as far as we know.

  3. Tunable terahertz wave generation through a bimodal laser diode and plasmonic photomixer.

    Science.gov (United States)

    Yang, S-H; Watts, R; Li, X; Wang, N; Cojocaru, V; O'Gorman, J; Barry, L P; Jarrahi, M

    2015-11-30

    We demonstrate a compact, robust, and stable terahertz source based on a novel two section digital distributed feedback laser diode and plasmonic photomixer. Terahertz wave generation is achieved through difference frequency generation by pumping the plasmonic photomixer with two output optical beams of the two section digital distributed feedback laser diode. The laser is designed to offer an adjustable terahertz frequency difference between the emitted wavelengths by varying the applied currents to the laser sections. The plasmonic photomixer is comprised of an ultrafast photoconductor with plasmonic contact electrodes integrated with a logarithmic spiral antenna. We demonstrate terahertz wave generation with 0.15-3 THz frequency tunability, 2 MHz linewidth, and less than 5 MHz frequency stability over 1 minute, at useful power levels for practical imaging and sensing applications.

  4. Performance improvements in temperature reconstructions of 2-D tunable diode laser absorption spectroscopy (TDLAS)

    Science.gov (United States)

    Choi, Doo-Won; Jeon, Min-Gyu; Cho, Gyeong-Rae; Kamimoto, Takahiro; Deguchi, Yoshihiro; Doh, Deog-Hee

    2016-02-01

    Performance improvement was attained in data reconstructions of 2-dimensional tunable diode laser absorption spectroscopy (TDLAS). Multiplicative Algebraic Reconstruction Technique (MART) algorithm was adopted for data reconstruction. The data obtained in an experiment for the measurement of temperature and concentration fields of gas flows were used. The measurement theory is based upon the Beer-Lambert law, and the measurement system consists of a tunable laser, collimators, detectors, and an analyzer. Methane was used as a fuel for combustion with air in the Bunsen-type burner. The data used for the reconstruction are from the optical signals of 8-laser beams passed on a cross-section of the methane flame. The performances of MART algorithm in data reconstruction were validated and compared with those obtained by Algebraic Reconstruction Technique (ART) algorithm.

  5. LASER BIOLOGY AND MEDICINE: Application of tunable diode lasers for a highly sensitive analysis of gaseous biomarkers in exhaled air

    Science.gov (United States)

    Stepanov, E. V.; Milyaev, Varerii A.

    2002-11-01

    The application of tunable diode lasers for a highly sensitive analysis of gaseous biomarkers in exhaled air in biomedical diagnostics is discussed. The principle of operation and the design of a laser analyser for studying the composition of exhaled air are described. The results of detection of gaseous biomarkers in exhaled air, including clinical studies, which demonstrate the diagnostic possibilities of the method, are presented.

  6. Tm:GGAG crystal for 2μm tunable diode-pumped laser

    Science.gov (United States)

    Šulc, Jan; Boháček, Pavel; Němec, Michal; Fibrich, Martin; Jelínková, Helena; Trunda, Bohumil; Havlák, Lubomír.; Jurek, Karel; Nikl, Martin

    2016-04-01

    The spectroscopy properties and wavelength tunability of diode pumped laser based on Tm-doped mixed gadolinium-gallium-aluminium garnet Gd3(GaxAl1-x)5O12 (Tm:GGAG) single crystal were investigated for the first time. The crystal was grown by Czochralski method in a slightly oxidative atmosphere using an iridium crucible. The tested Tm:GGAG sample was cut from the grown crystal boule perpendicularly to growth direction (c-axis). The composition of sample was determined using electron microprobe X-ray elemental analysis. For spectroscopy and laser experiments 3.5mm thick plane-parallel face-polished plate (without AR coatings) with composition Gd2.76Tm0.0736Ga2.67Al2.50O12 (2.67 at.% Tm/Gd) was used. A fiber (core diameter 400 μm, NA= 0.22) coupled laser diode (emission wavelength 786 nm) was used for longitudinal Tm:GGAG pumping. The laser diode was operating in the pulsed regime (10 ms pulse length, 10 Hz repetition rate, maximum power amplitude 18 W). The 145mm long semi-hemispherical laser resonator consisted of a flat pumping mirror (HR @ 1.8- 2.10 μm, HT @ 0.78 μm) and curved (r = 150mm) output coupler with a reflectivity of » 97% @ 1.8- 2.10 µm. The maximum laser output power amplitude 1.14W was obtained at wavelength 2003nm for absorbed pump power amplitude 4.12W. The laser slope efficiency was 37% in respect to absorbed pumping power. Wavelength tuning was accomplished by using 2mm thick MgF2 birefringent filter placed inside the laser resonator at the Brewster angle. The laser was continuously tunable over 180nm in a spectral region from 1856nm to 2036 nm.

  7. Efficient quasi-three-level Nd:YAG laser at 946 nm pumped by a tunable external cavity tapered diode laser

    DEFF Research Database (Denmark)

    Cheng, Haynes Pak Hay; Jensen, Ole Bjarlin; Tidemand-Lichtenberg, Peter

    2010-01-01

    Using a tunable external cavity tapered diode laser (ECDL) pumped quasi-three-level Nd:YAG laser, a fivefold reduction in threshold and twofold increase in slope efficiency is demonstrated when compared to a traditional broad area diode laser pump source. A TEM00 power of 800 mW with 65% slope...

  8. Monolithic wide tunable laser diodes for gas sensing at 2100 nm

    Science.gov (United States)

    Koslowski, Nicolas; Heger, Andreas; Roessner, Karl; Legge, Michael; Koeth, Johannes; Hildebrandt, Lars

    2013-03-01

    Novel monolithic widely tunable laser diodes in the 2.1μm wavelength region based on GaSb / AlGaAsSb are presented. Using the concept of a lateral binary superimposed (BSG) grating structures and multisegment Verniertuning, stable single-mode output is realized at discrete wavelength channels in the 2060 nm - 2140 nm region. A total tuning above 80 nm in six channels is demonstrated. In every wavelength channel, the output wavelength can be tuned by current and temperature. Each wavelength channel offers up to 6 nm of mode hop free tuning, making this novel widely tunable laser highly attractive as a monolithic light source for multiple-gas sensing or liquid detection purposes. The wavelength channels can be arbitrarily placed within the material gain allowing BSG lasers to sweep e.g. over several gas absorption line within 80 nm. Within a wavelength channel, the widely tunable lasers show DFB like spectral performance with average side-mode suppression-ratios above 40 dB, output power of up to 15 mW at 25°C. Also temperature and current tuning coefficients are comparable to those of DFB lasers. This paper will present an overview of laser concept, performance data and applications.

  9. Tunable diode laser absorption sensor for temperature and velocity measurements of O2 in air flows

    Science.gov (United States)

    Philippe, L. C.; Hanson, R. K.

    1991-01-01

    A fast and nonintrusive velocity and temperature diagnostic based on oxygen absorption is presented. The system uses a GaAlAs tunable diode laser, ramped and modulated in wavelength at high frequency. Detection is performed at twice the modulating frequency, leading to second harmonic absorption lineshapes. Velocity is inferred from the wavelength shift of the absorption line center due to the Doppler effect. Temperature is determined by comparing experimental and calculated lineshapes. Capabilities of the technique for studies of transient high-speed flows are demonstrated in shock tube experiments. Good agreement is obtained with predicted temperatures and velocities when pressure-induced shifts are accounted for.

  10. A compact automatic wavemeter for use with tunable infrared diode lasers

    Science.gov (United States)

    Lew, H.; Marmet, N.; Marshall, M. D.; McKellar, A. R. W.; Nichols, G. W.

    1987-01-01

    A laser wavemeter based on a fringe-counting Michelson interferometer is described, and its use with infrared tunable diode laser (TDL) sources is demonstrated. The wavenumber features compact vacuum-tight construction, the use of a vernier technique to ensure integral fringe counts, and the use of an inexpensive home computer circuit board for direct automatic read-out of the TDL wavenumber or wavelength. The design emphasizes compactness and ease of use at some expense in accuracy, which is limited mainly by TDL alignment and wavefront curvature effects. For routine use in the 5- to 10-micron region, the wavemeter is reliable to about 0.03/cm in unfavorable cases, and a factor of ten better ordinarily. With extra care in alignment of the TDL beam, or with a single 'calibration' in a given region, accuracies of 0.001/cm may be obtained (better than 1 part in one million).

  11. Space Launch System Base Heating Test: Tunable Diode Laser Absorption Spectroscopy

    Science.gov (United States)

    Parker, Ron; Carr, Zak; MacLean, Mathew; Dufrene, Aaron; Mehta, Manish

    2016-01-01

    This paper describes the Tunable Diode Laser Absorption Spectroscopy (TDLAS) measurement of several water transitions that were interrogated during a hot-fire testing of the Space Launch Systems (SLS) sub-scale vehicle installed in LENS II. The temperature of the recirculating gas flow over the base plate was found to increase with altitude and is consistent with CFD results. It was also observed that the gas above the base plate has significant velocity along the optical path of the sensor at the higher altitudes. The line-by-line analysis of the H2O absorption features must include the effects of the Doppler shift phenomena particularly at high altitude. The TDLAS experimental measurements and the analysis procedure which incorporates the velocity dependent flow will be described.

  12. Dataset of water activity measurements of alcohol:water solutions using a Tunable Diode Laser.

    Science.gov (United States)

    Allan, Matthew; Mauer, Lisa J

    2017-06-01

    The data presented in this article are related to the research article entitled "RH-temperature phase diagrams of hydrate forming deliquescent crystalline ingredients" (Allan and Mauer, 2017) [1]. The data are water activity measurements of alcohol:water solutions (methanol:water and ethanol:water solutions at varying molar ratios) at different temperatures collected using the Tunable Diode Laser by Decagon Devices. The measured water activities of ethanol:water solutions were correlated to the initial volumetric ratios to produce polynomial equations that can be used to calculate the needed initial volumetric ratios for water activity controlled solutions. The data sets and polynomial equations are provided to enable extended analyses and applications of the data and calculations for generating and using controlled water activity solutions containing alcohol. An example application of these data is described in the research article mentioned above.

  13. [Measurement on gas temperature distribution by tunable diode laser absorption spectroscopy].

    Science.gov (United States)

    Li, Ning; Yan, Jian-hua; Wang, Fei; Chi, Yong; Cen, Ke-fa

    2008-08-01

    The technique of tunable diode laser absorption spectroscopy (TDLAS) can be used for gas temperature distribution measurement by scanning multiple gas absorption lines with a tunable diode laser. The fundamental of gas temperature distribution measurement by TDLAS is introduced in the present paper, and the discretization strategy of equation for gas absorption is also given here. Using constrained linear least-square fitting method, the gas temperature distribution can be calculated with the help of physical constraints under the condition of uniform gas concentration and pressure. Based on the spectral parameters of four CO absorption lines near 6330 cm(-1) from HITRAN database, the model of two-temperature distribution at 300 and 600 K with each path length of 55 cm was set up. The effects of relative measurement error and different path length constraints of temperature bins on the gas temperature distribution measurement results were simulated by constrained linear least-square fitting. The results show that the temperature distribution calculation error increases as the relative measurement error rises. A measurement error of 5% could lead to a maximum relative error of 11%, and an average relative error of 2.2% for calculation result. And the weak physical constraints of path length for temperature bins could increase the calculation result error during the process of constrained linear least-square fitting. By setting up the model of two-temperature distribution with gas cells at room temperature as the cold section and in tube furnace as the hot section, the experiment of gas temperature distribution measurement in lab was carried out. Using four absorption lines of CO near 6330 cm(-1) scanned by VCSEL diode laser, and fitting the background laser intensity without absorption by the cubic polynomial to get the baseline signal, the integrals of spectral absorbance for gas temperature distribution measurement can be calculated. The relative calculation

  14. Diode-pumped Alexandrite laser with passive SESAM Q-switching and wavelength tunability

    Science.gov (United States)

    Parali, Ufuk; Sheng, Xin; Minassian, Ara; Tawy, Goronwy; Sathian, Juna; Thomas, Gabrielle M.; Damzen, Michael J.

    2018-03-01

    We report the first experimental demonstration of a wavelength tunable passively Q-switched red-diode-end pumped Alexandrite laser using a semiconductor saturable absorber mirror (SESAM). We present the results of the study of passive SESAM Q-switching and wavelength-tuning in continuous diode-pumped Alexandrite lasers in both linear cavity and X-cavity configurations. In the linear cavity configuration, pulsed operation up to 27 kHz repetition rate in fundamental TEM00 mode was achieved and maximum average power was 41 mW. The shortest pulse generated was 550 ns (FWHM) and the Q-switched wavelength tuning band spanned was between 740 nm and 755 nm. In the X-cavity configuration, a higher average power up to 73 mW, and obtained with higher pulse energy 6 . 5 μJ at 11.2 kHz repetition rate, in fundamental TEM00 mode with excellent spatial quality M2 < 1 . 1. The Q-switched wavelength tuning band spanned was between 775 nm and 781 nm.

  15. Line-shape study of water vapour by tunable diode laser spectrometer in the 822 832 nm wavelength region

    Science.gov (United States)

    Ray, A.; Bandyopadhyay, A.; Ray, B.; Biswas, D.; Ghosh, P. N.

    2004-11-01

    A near-infrared tunable diode laser absorption spectrometer is set up to measure the air-induced broadening coefficients and the line-strength parameters of water-vapour overtone transitions within the (2,1,1)←(0,0,0) band in the 822 832 nm wavelength region. A Hitachi HL8311 E double hetero-junction structure diode laser is used as a probe. The diode laser controller is home-built and stable within ±10 μA and ±10 mK, respectively. The laser-head mount has a simple design and provides easy access whenever changing of the laser head is required. The diode laser emission wavelength is thermally tuned between 50 °C and 12 °C. Thermal tuning of the diode laser emission wavelength is used to reveal the mode structure of the diode laser and to probe the overtone-band transitions of water vapour within its operating wavelength range. Current tuning of the diode laser is used at a fixed laser temperature to study the transitions one at a time. A balanced detector is used to improve the S/N ratio of the spectrum. A phase sensitive detection technique is followed to obtain the first-derivative spectra of the overtone transitions. The first-derivative spectra have been recorded at different air pressures inside the sample cell while the water-vapour pressure is kept fixed. The first-derivative spectrum is numerically integrated to obtain the original line shape. The original line shape is fitted with a Voigt profile by using a nonlinear least-squares fit program to extract the air-broadening coefficient and the line-strength parameter. The data obtained in our work is compared with the results of the HITRAN database.

  16. Combined tunable diode laser absorption spectroscopy and monochromatic radiation thermometry in ammonium dinitramide-based thruster

    Science.gov (United States)

    Zeng, Hui; Ou, Dongbin; Chen, Lianzhong; Li, Fei; Yu, Xilong

    2018-02-01

    Nonintrusive temperature measurements for a real ammonium dinitramide (ADN)-based thruster by using tunable diode laser absorption spectroscopy and monochromatic radiation thermometry are proposed. The ADN-based thruster represents a promising future space propulsion employing green, nontoxic propellant. Temperature measurements in the chamber enable quantitative thermal analysis for the thruster, providing access to evaluate thermal properties of the thruster and optimize thruster design. A laser-based sensor measures temperature of combustion gas in the chamber, while a monochromatic thermometry system based on thermal radiation is utilized to monitor inner wall temperature in the chamber. Additional temperature measurements of the outer wall temperature are conducted on the injector, catalyst bed, and combustion chamber of the thruster by using thermocouple, respectively. An experimental ADN thruster is redesigned with optimizing catalyst bed length of 14 mm and steady-state firing tests are conducted under various feed pressures over the range from 5 to 12 bar at a typical ignition temperature of 200°C. A threshold of feed pressure higher than 8 bar is required for the thruster's normal operation and upstream movement of the heat release zone is revealed in the combustion chamber out of temperature evolution in the chamber.

  17. Tunable Diode Laser Sensor for Monitoring and Control of Harsh Combustion Environments

    Energy Technology Data Exchange (ETDEWEB)

    VonDrasek, William; Melsio-Pubill, Anna

    2006-05-30

    This work represents the collaborative effort between American Air Liquide and Physical Sciences, Inc. for developing a sensor based on near-IR tunable diode lasers (TDL). The multi-species capability of the sensor for simultaneous monitoring of CO, O2, and H2O concentration as well as gas temperature is ideal for in-situ monitoring on industrial furnaces. The chemical species targeted are fundamental for controlling the combustion space for improved energy efficiency, reduced pollutants, and improved product quality, when coupling the measurement to a combustion control system. Several add-on modules developed provide flexibility in the system configuration for handling different process monitoring applications. For example, the on-Demand Power Control system for the 1.5 ?m laser is used for high particle density exhaust streams where laser transmission is problematic. For long-distance signal collection a fiber optic communication system is used to reduce noise pick-up. Finally, hardened modules to withstand high ambient temperatures, immune to EMF interference, protection from flying debris, and interfaced with pathlength control laser beam shielding probes were developed specifically for EAF process monitoring. Demonstration of these different system configurations was conducted on Charter Steel's reheat furnace, Imco Recycling, Inc. (now Aleris International, Inc.) aluminum reverberatory furnace, and Gerdau Ameristeel's EAF. Measurements on the reheat furnace demonstrated zone monitoring with the measurement performed close to the steel billet. Results from the aluminum furnace showed the benefit of measuring in-situ near the bath. In this case, low-level furnace optimization was performed and demonstrated 5% fuel savings. Monitoring tests on the EAF off-gas demonstrated the level of industrialization of the sensor to survive the harsh EAF environment. Long-term testing on the EAF has been on-going for over 6 months with essentially zero maintenance

  18. Chemical kinetic studies of atmospheric reactions using tunable diode laser spectroscopy

    Science.gov (United States)

    Worsnop, Douglas R.; Nelson, David D.; Zahniser, Mark S.

    1993-01-01

    IR absorption using tunable diode laser spectroscopy provides a sensitive and quantitative detection method for laboratory kinetic studies of atmospheric trace gases. Improvements in multipass cell design, real time signal processing, and computer controlled data acquisition and analysis have extended the applicability of the technique. We have developed several optical systems using off-axis resonator mirror designs which maximize path length while minimizing both the sample volume and the interference fringes inherent in conventional 'White' cells. Computerized signal processing using rapid scan (300 kHz), sweep integration with 100 percent duty cycle allows substantial noise reduction while retaining the advantages of using direct absorption for absolute absorbance measurements and simultaneous detection of multiple species. Peak heights and areas are determined by curve fitting using nonlinear least square methods. We have applied these techniques to measurements of: (1) heterogeneous uptake chemistry of atmospheric trace gases (HCl, H2O2, and N2O5) on aqueous and sulfuric acid droplets; (2) vapor pressure measurements of nitric acid and water over prototypical stratospheric aerosol (nitric acid trihydrate) surfaces; and (3) discharge flow tube kinetic studies of the HO2 radical using isotopic labeling for product channel and mechanistic analysis. Results from each of these areas demonstrate the versatility of TDL absorption spectroscopy for atmospheric chemistry applications.

  19. A method of reducing background fluctuation in tunable diode laser absorption spectroscopy

    Science.gov (United States)

    Yang, Rendi; Dong, Xiaozhou; Bi, Yunfeng; Lv, Tieliang

    2018-03-01

    Optical interference fringe is the main factor that leads to background fluctuation in gas concentration detection based on tunable diode laser absorption spectroscopy. The interference fringes are generated by multiple reflections or scatterings upon optical surfaces in optical path and make the background signal present an approximated sinusoidal oscillation. To reduce the fluctuation of the background, a method that combines dual tone modulation (DTM) with vibration reflector (VR) is proposed in this paper. The combination of DTM and VR can make the unwanted periodic interference fringes to be averaged out and the effectiveness of the method in reducing background fluctuation has been verified by simulation and real experiments in this paper. In the detection system based on the proposed method, the standard deviation (STD) value of the background signal is decreased to 0.0924 parts per million (ppm), which is reduced by a factor of 16 compared with that of wavelength modulation spectroscopy. The STD value of 0.0924 ppm corresponds to the absorption of 4 . 328 × 10-6Hz - 1 / 2 (with effective optical path length of 4 m and integral time of 0.1 s). Moreover, the proposed method presents a better stable performance in reducing background fluctuation in long time experiments.

  20. Tunable Diode Laser Atomic Absorption Spectroscopy for Detection of Potassium under Optically Thick Conditions.

    Science.gov (United States)

    Qu, Zhechao; Steinvall, Erik; Ghorbani, Ramin; Schmidt, Florian M

    2016-04-05

    Potassium (K) is an important element related to ash and fine-particle formation in biomass combustion processes. In situ measurements of gaseous atomic potassium, K(g), using robust optical absorption techniques can provide valuable insight into the K chemistry. However, for typical parts per billion K(g) concentrations in biomass flames and reactor gases, the product of atomic line strength and absorption path length can give rise to such high absorbance that the sample becomes opaque around the transition line center. We present a tunable diode laser atomic absorption spectroscopy (TDLAAS) methodology that enables accurate, calibration-free species quantification even under optically thick conditions, given that Beer-Lambert's law is valid. Analyte concentration and collisional line shape broadening are simultaneously determined by a least-squares fit of simulated to measured absorption profiles. Method validation measurements of K(g) concentrations in saturated potassium hydroxide vapor in the temperature range 950-1200 K showed excellent agreement with equilibrium calculations, and a dynamic range from 40 pptv cm to 40 ppmv cm. The applicability of the compact TDLAAS sensor is demonstrated by real-time detection of K(g) concentrations close to biomass pellets during atmospheric combustion in a laboratory reactor.

  1. Flame monitoring of a model swirl injector using 1D tunable diode laser absorption spectroscopy tomography

    Science.gov (United States)

    Liu, Chang; Cao, Zhang; Li, Fangyan; Lin, Yuzhen; Xu, Lijun

    2017-05-01

    Distributions of temperature and H2O concentration in a swirling flame are critical to evaluate the performance of a gas turbine combustor. In this paper, 1D tunable diode laser absorption spectroscopy tomography (1D-TDLAST) was introduced to monitor swirling flames generated from a model swirl injector by simultaneously reconstructing the rotationally symmetric distributions of temperature and H2O concentration. The optical system was sufficiently simplified by introducing only one fan-beam illumination and a linear detector array of 12 equally-spaced photodetectors. The fan-beam illumination penetrated a cross section of interest in the swirling flame and the transmitted intensities were detected by the detector array. With the transmitted intensities in hand, projections were extracted and employed by a 1D tomographic algorithm to reconstruct the distributions of temperature and H2O concentration. The route of the precessing vortex core generated in the swirling flame can be easily inferred from the reconstructed profiles of temperature and H2O concentration at different heights above the nozzle of the swirl injector.

  2. External cavity cascade diode lasers tunable from 3.05 to 3.25 μm

    Science.gov (United States)

    Wang, Meng; Hosoda, Takashi; Shterengas, Leon; Kipshidze, Gela; Lu, Ming; Stein, Aaron; Belenky, Gregory

    2018-01-01

    The external cavity tunable mid-infrared emitters based on Littrow configuration and utilizing three stages type-I quantum well cascade diode laser gain elements were designed and fabricated. The free-standing coated 7.5-μm-wide ridge waveguide lasers generated more than 30 mW of continuous wave power near 3.25 μm at 20°C when mounted epi-side-up on copper blocks. The external cavity lasers (ECLs) utilized 2-mm-long gain chips with straight ridge design and anti-/neutral-reflection coated facets. The ECLs demonstrated narrow spectrum tunable operation with several milliwatts of output power in spectral region from 3.05 to 3.25 μm corresponding to ˜25 meV of tuning range.

  3. A Compact Tunable Diode Laser Absorption Spectrometer to Monitor CO2 at 2.7 µm Wavelength in Hypersonic Flows

    Directory of Open Access Journals (Sweden)

    Raphäel Vallon

    2010-06-01

    Full Text Available Since the beginning of the Mars planet exploration, the characterization of carbon dioxide hypersonic flows to simulate a spaceship’s Mars atmosphere entry conditions has been an important issue. We have developed a Tunable Diode Laser Absorption Spectrometer with a new room-temperature operating antimony-based distributed feedback laser (DFB diode laser to characterize the velocity, the temperature and the density of such flows. This instrument has been tested during two measurement campaigns in a free piston tunnel cold hypersonic facility and in a high enthalpy arc jet wind tunnel. These tests also demonstrate the feasibility of mid-infrared fiber optics coupling of the spectrometer to a wind tunnel for integrated or local flow characterization with an optical probe placed in the flow.

  4. Artificial absorption creation for more accurate tunable diode laser absorption spectroscopy measurement

    Science.gov (United States)

    Wei, Wei; Chang, Jun; Cao, Lihua; Liu, Yuanyuan; Chen, Xi; Zhu, Cunguang; Qin, Zengguang

    2017-09-01

    A novel strategy for more accurate tunable diode laser absorption spectroscopy (TDLAS) measurement is presented. This method is immune to non-absorption transmission losses, and allows dead zone removal for ultra-low concentration detection, and reference point selection at atmospheric pressure. The method adjusts laser emission and creates artificial absorption peaks according to requirements. By creating an artificial absorption peak next to the real absorption zone, calibration is not necessary. The developed method can be applied to not only wavelength modulation spectroscopy (WMS) but also direct absorption (DA). In WMS, the method does not need two harmonic signals, resulting in higher reliability, better performance, and no electro-optical gain uncertainty. At the same time, non-absorption transmission losses effect is suppressed from 70% to 0.425% with DA and from 70% to 0.225% with WMS method. When the artificial absorption peak coincides with the real one, the dead zone of measurement can be removed to give a lower detection limit, and water vapor still can be detected when concentration is lower than 0.2 ppm in our experiment. Reference point selection uncertainty with the DA method, especially when the signal-to-noise ratio is low and absorption line is broad, can also be facilitated. And the uncertainty of reference point selection is improved from 6% to 0.8% by measuring reference point amplitude. The method is demonstrated and validated by WMS and DA measurements of water vapor (1 atm, 296 K, 1368.597 nm). The measurement results obtained using the new method reveal its promise in TDLAS.

  5. Investigation of neutral and ion dynamics in a HiPIMS plasma by tunable laser diode absorption spectroscopy (TDLAS)

    Science.gov (United States)

    Preissing, Patrick; Hecimovic, Ante; von Keudell, Achim

    2016-09-01

    High power impulse magnetron sputtering (HiPIMS) discharges are known for complex plasma interactions, and complex temporal and spatial dynamics. Spatial and temporal dynamic of argon metastable (Arm), Ti atom (Ti0) and Ti ion (Ti+) density and temperature is studied by an extended tunable diode laser absorption spectroscopy setup (TDLAS) during a HiPIMS pulse. The TDLAS setup used a beam expander in combination with a 6 photo diode array to simultaneously measure spatial (resolution 5 mm) and time resolved absorption profiles of an Arm, Ti0 and Ti+ transition. This in combination with moving the magnetron in axial direction gives a complete 2D map of the density evolution. Temporal resolution of 400 ns was achieved by recording the photo diode signal on the National Instruments card. Final results allowed to investigate temporal evolution of the observed species in the volume between the target and the substrate.

  6. Tunable diode laser measurements of air- and N2-broadened halfwidths in the nu2 band of D2O

    Science.gov (United States)

    Devi, V. M.; Benner, D. C.; Rinsland, C. P.; Smith, M. A. H.

    1986-01-01

    The first experimental measurements of air- and N2-broadened halfwidths of single lines in the nu2 band of D2O were obtained at room temperature, using a semiconductor tunable diode laser operating in the 1250-1340/cm region. The difference observed between air- and N2-broadened halfwidths may be attributed to the different quadrupole moments of the perturbing gas constituents. It is noted that both the airand N2-broadened halfwidths for the two ortho-para doublets are the same, within the present experimental uncertainties.

  7. 5.5nm wavelength-tunable high-power MOPA diode laser system at 971 nm

    Science.gov (United States)

    Tawfieq, Mahmoud; Müller, André; Fricke, Jörg; Della Casa, Pietro; Ressel, Peter; Ginolas, Arnim; Feise, David; Sumpf, Bernd; Tränkle, Günther

    2018-02-01

    In this work, a widely tunable hybrid master oscillator power amplifier (MOPA) diode laser with 6.2 W of output power at 971.8 nm will be presented. The MO is a DBR laser, with a micro heater embedded on top of the DBR grating for wavelength tunability. The emitted light of the MO is collimated and coupled into a tapered amplifier using micro cylindrical lenses, all constructed on a compact 25 mm × 25 mm conduction cooled laser package. The MOPA system emits light with a measured spectral width smaller than 17 pm, limited by the spectrometer, and with a beam propagation factor of M2 1/e2 = 1.3 in the slow axis. The emission is thus nearly diffraction limited with 79% of the total power within the central lobe (4.9 W diffraction limited). The electrically controlled micro-heater provides up to 5.5 nm of wavelength tunability, up to a wavelength of 977.3 nm, while maintaining an output power variation of only +/- 0.16 % for the entire tuning range.

  8. TUNABLE DIODE LASER MEASUREMENTS OF NO2 NEAR 670 NM AND 395 NM. (R823933)

    Science.gov (United States)

    Two single-mode diode lasers were used to record high-resolution absorption spectra of NO2 (dilute in Ar) near 670.2 and 394.5 nm over a range of temperatures (296 to 774 K) and total pressures (2.4 x 10(-2) to 1 atm). A commercial InGaAsP laser was tuned 1.3 cm(-1) at a repetiti...

  9. Continuous-wave generation and tunability of eye-safe resonantly diode-pumped Er:YAG laser

    Science.gov (United States)

    Němec, Michal; Indra, Lukás.; Šulc, Jan; Jelínková, Helena

    2016-03-01

    Laser sources generating radiation in the spectral range from 1.5 to 1.7 μm are very attractive for many applications such as satellite communication, range finding, spectroscopy, and atmospheric sensing. The goal of our research was an investigation of continuous-wave generation and wavelength tuning possibility of diode pumped eye-safe Er:YAG laser emitting radiation around 1645 nm. We used two 0.5 at. % doped Er:YAG active media with lengths of 10 mm and 25 mm (diameter 5 mm). As a pumping source, a fibre-coupled 1452 nm laser-diode was utilized, which giving possibility of the in-band pumping with a small quantum defect and low thermal stress of the active bulk laser material. The 150 mm long resonator was formed by a pump mirror (HT @ 1450 nm, HR @ 1610 - 1660 nm) and output coupler with 96 % reflectivity at 1610 - 1660 nm. For continuous-wave generation, the maximal output powers were 0.7 W and 1 W for 10 mm and 25 mm long laser crystals, respectively. The corresponding slope efficiencies with respect to absorbed pump power for these Er:YAG lasers were 26.5 % and 37.8 %, respectively. The beam spatial structure was close to the fundamental Gaussian mode. A wavelength tunability was realized by a birefringent plate and four local spectral maxima at 1616, 1633, 1645, and 1657 nm were reached. The output characteristics of the designed and realized resonantly diode-pumped eye-safe Er:YAG laser show that this compact system has a potential for usage mainly in spectroscopic fields.

  10. Analysis and demonstration of single-passband response and tuning characteristics in a chirped ladder interferometric filter for a widely tunable laser diode.

    Science.gov (United States)

    Jeong, Seok-Hwan; Matsuo, Shinji; Yoshikuni, Yuzo; Segawa, Toru; Ohiso, Yoshitaka; Suzuki, Hiroyuki

    2005-10-01

    We have designed and demonstrated a chirped ladder-type tunable filter and discussed its potential application for a tunable diode laser. A ladder interferometric filter normally has a periodic passband, which makes it impossible to stabilize laser oscillation frequency. To overcome this drawback, we have designed, fabricated, and characterized a novel chirped tunable ladder filter. We have successfully demonstrated a single-passband response in the fabricated device. Furthermore, a tuning operation of more than 30 nm was achieved by introducing a current injection structure and optimizing electrode lengths at each single-stage ladder interferometer.

  11. Widely Tunable High-Power Tapered Diode Laser at 1060 nm

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Sumpf, Bernd; Erbert, Götz

    2011-01-01

    We report a large tuning range from 1018 to 1093 nm from a InGaAs single quantum-well 1060-nm external cavity tapered diode laser. More than 2.5-W output power has been achieved. The tuning range is to our knowledge the widest obtained from a high-power InGaAs single quantum-well tapered laser...... operating around 1060 nm. The light emitted by the laser has a nearly diffraction limited beam quality and a narrow linewidth of less than 6 pm everywhere in the tuning range....

  12. Tunable diode lasers as a tool for conformational control: the case of matrix-isolated oxamic acid.

    Science.gov (United States)

    Halasa, Anna; Lapinski, Leszek; Rostkowska, Hanna; Reva, Igor; Nowak, Maciej J

    2015-03-19

    A tunable diode laser was applied as a source of narrowband near-infrared light used to manipulate the structure of the molecule of oxamic acid. Monomers of the most stable conformer I of the molecule, with the trans orientation of the O═COH group and the trans orientation of the O═CC═O fragment, were trapped from the gas phase in low-temperature argon, neon, and nitrogen matrixes. Monomers of oxamic acid, isolated in argon or neon matrixes, were then irradiated with narrowband near-IR light from the diode laser tuned at 6833 (Ar) or 6840 cm(-1) (Ne). Upon such irradiation another conformer, II, of oxamic acid was generated, with cis orientation of the O═COH group and trans orientation of the O═CC═O fragment. Both forms were identified by comparison of their experimental mid-IR spectra with the spectra theoretically calculated for I and II. Subsequent irradiation of the matrix at 6940 (Ar) or 6991 cm(-1) (Ne), where absorption appeared in the near-IR spectrum of the photoproduct, led to photoconversion of conformer II into form I. In a series of subsequent irradiations at 6833(Ar)/6840(Ne) cm(-1) and at 6940(Ar)/6991(Ne) cm(-1), the population of oxamic acid molecules was selectively shifted several times from I to II and vice versa. As far as we know, this is the first reported study where a tunable diode laser source of narrowband near-IR light was used to manipulate the structure of a molecule. Spontaneous II → I transformation was observed for Ne and Ar matrixes kept in the dark and at cryogenic temperature.

  13. Development of laser diode pumped solid state green laser for the pumping of wavelength tunable laser. 1. Development of single-pass Nd:YAG MOPA system

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Yoichiro; Kato, Masaaki; Oba, Masaki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-06-01

    For the pumping of wavelength tunable laser, a high repetition rate, high average power solid state laser pumped by a high duty laser diode (LD) array has been developed. The solid state laser using Nd:YAG zigzag slab crystals consists of an oscillator and an amplifier. Using this Nd:YAG MOPA system, the maximum fundamental average power of 33 W is obtained. The wavefront distortion of amplified laser beam is within 0.3 wavelength. M{sup 2} measured is about 1.5 which means the laser beam is near diffraction limited. By using nonlinear crystals, fundamental laser radiation is converted to second, third and fourth harmonics. The average power is 15.5 W at 532 nm, 1.2 W at 355 nm and 2.3 W at 266 nm. The beam quality of the second harmonic is good. With the measurement of the laser parameters, it is confirmed that the high repetition rate, high power and high quality second harmonic can be produced by the LD pumped Nd:YAG laser MOPA system. (author)

  14. Electro-Optic Tunable Laser Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will develop a compact, rugged, rapidly and widely tunable laser based on a quantum cascade diode laser at...

  15. Time-resolved tunable diode laser absorption spectroscopy of pulsed plasma

    Czech Academy of Sciences Publication Activity Database

    Adámek, Petr; Olejníček, Jiří; Čada, Martin; Kment, Š.; Hubička, Zdeněk

    2013-01-01

    Roč. 38, č. 14 (2013), s. 2428-2430 ISSN 0146-9592 R&D Projects: GA MŠk LH12045; GA ČR(CZ) GAP205/11/0386; GA MŠk LD12002; GA MŠk LH12043 Institutional support: RVO:68378271 Keywords : diode lasers * plasma diagnostics * absorption spectroscopy * time resolved Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.179, year: 2013

  16. Dual-wavelength high-power diode laser system based on an external-cavity tapered amplifier with tunable frequency difference

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2012-01-01

    knowledge, this is the broadest tuning range of the frequency difference from a dual-wavelength diode laser system. The spectrum, output power, and beam quality of the diode laser system are characterized. The power stability of each wavelength is measured, and the power fluctuations of the two wavelengths......A dual-wavelength high-power semiconductor laser system based on a tapered amplifier with double-Littrow external cavity is demonstrated around 800 nm. The two wavelengths can be tuned individually, and the frequency difference of the two wavelengths is tunable from 0.5 to 10.0 THz. To our...

  17. Tunable diode laser measurements of air-broadened linewidths in the nu6 band of H2O2

    Science.gov (United States)

    Malathy Devi, V.; Benner, D. C.; Rinsland, C. P.; Smith, M. A. H.; Fridovich, B.

    1986-01-01

    Air-broadened half-widths of 18 transitions in the nu6 band of H2O2 between 1252/cm and 1291/cm have been determined from spectra recorded at room temperature using a tunable diode laser spectrometer. The preparation of the H2O2 gas samples for the measurements is described, and the data analysis is discussed, including the derivation of Lorentz broadening coefficients and the contribution of molecular collisions to the measured Lorentz half-widths. For the 18 transitions, the half-widths varied from 0.0923/cm/atm to 0.1155/cm/atm at 296 K, with a mean value of 0.1020/cm/atm. An error of less than 10 percent is estimated for these results.

  18. Thermal Boundary Layer Effects on Line-of-Sight Tunable Diode Laser Absorption Spectroscopy (TDLAS) Gas Concentration Measurements.

    Science.gov (United States)

    Qu, Zhechao; Werhahn, Olav; Ebert, Volker

    2018-01-01

    The effects of thermal boundary layers on tunable diode laser absorption spectroscopy (TDLAS) measurement results must be quantified when using the line-of-sight (LOS) TDLAS under conditions with spatial temperature gradient. In this paper, a new methodology based on spectral simulation is presented quantifying the LOS TDLAS measurement deviation under conditions with thermal boundary layers. The effects of different temperature gradients and thermal boundary layer thickness on spectral collisional widths and gas concentration measurements are quantified. A CO 2 TDLAS spectrometer, which has two gas cells to generate the spatial temperature gradients, was employed to validate the simulation results. The measured deviations and LOS averaged collisional widths are in very good agreement with the simulated results for conditions with different temperature gradients. We demonstrate quantification of thermal boundary layers' thickness with proposed method by exploitation of the LOS averaged the collisional width of the path-integrated spectrum.

  19. Anti-Reflective Fluoride Coatings for Widely Tunable Deep-Ultraviolet Diode-Pumped Solid-State Laser Applications

    International Nuclear Information System (INIS)

    Bin-Cheng, Li; Da-Wei, Lin; Yan-Ling, Han; Chun, Guo; Yun-Dong, Zhang; Hong-Xiang, Liu

    2010-01-01

    An anti-reflective (AR) fluoride coating in the 170–230 nm spectral range is prepared by the thermal evaporation method for the applications of widely tunable deep-ultraviolet diode-pumped solid-state lasers. The transmittance of an AR coated calcium fluoride (CaF 2 ) window in thickness 3 mm is measured to be in the range of 95.8% at 170 nm to 97.1% at 230 nm, with the maximum transmittance 99.2% and the minimum residual reflectance 0.04% appeared at 195 nm. The experimental results indicate that treating the AR coated window and the bare substrate with ultraviolet irradiation can significantly improve their optical performance

  20. Infrared vibration-rotation spectra of the ClO radical using tunable diode laser spectroscopy. [ozone destruction in stratosphere

    Science.gov (United States)

    Rogowski, R. S.; Bair, C. H.; Wade, W. R.; Hoell, J. M.; Copeland, G. E.

    1978-01-01

    Tunable diode laser spectroscopy is used to measure the infrared vibration-rotation spectra of the ClO radical. The radical is generated in a flow system where a Cl2-He mixture passes through a microwave discharge to dissociate the Cl2. An O3-O2 mixture from an ozone generator is injected into the system downstream of the microwave discharge where O3 combines with Cl to form ClO. By adjusting the gas flow rates to yield an excess of Cl atoms, all the ozone is combined. ClO concentration is measured with UV absorption at 2577 and 2772 A and a deuterium lamp as a continuous source. Total cell pressure is 5.5 torr. The diode laser spectrometer is calibrated with ammonia lines as a reference where possible. The frequency of vibration-rotation lines is expressed as a function of rotational quantum number, fundamental vibrational frequency, and the rotational constants of the upper and lower vibrational states.

  1. Improved Thermoelectrically Cooled Laser-Diode Assemblies

    Science.gov (United States)

    Glesne, Thomas R.; Schwemmer, Geary K.; Famiglietti, Joe

    1994-01-01

    Cooling decreases wavelength and increases efficiency and lifetime. Two improved thermoelectrically cooled laser-diode assemblies incorporate commercial laser diodes providing combination of both high wavelength stability and broad wavelength tuning which are broadly tunable, highly stable devices for injection seeding of pulsed, high-power tunable alexandrite lasers used in lidar remote sensing of water vapor at wavelengths in vicinity of 727 nanometers. Provide temperature control needed to take advantage of tunability of commercial AlGaAs laser diodes in present injection-seeding application.

  2. Frequency tracking and stabilization of a tunable dual-wavelength external-cavity diode laser

    Science.gov (United States)

    Hsu, L.; Chi, L. C.; Wang, S. C.; Pan, Ci-Ling

    1999-09-01

    We show a unique dual-wavelength external-cavity laser diode with frequency tracking capability and obtain a stable beat frequency between the dual-wavelength output. By using a Fabry-Perot interferometer as the frequency discriminator and the time-gating technique in a servo loop, the peak-to-peak frequency fluctuations were stabilized, with respect to the Fabry-Perot cavity, to 86 kHz in the dual-wavelength output at 802.5 and 804.5 nm, and to 17 kHz in their 0.9 THz beat signal. Similar performance was achieved for tuning of the dual wavelength separation ranging from 0.2 to 4 nm.

  3. 2.5-Gb/s hybridly-integrated tunable external cavity laser using a superluminescent diode and a polymer Bragg reflector.

    Science.gov (United States)

    Yoon, Ki-Hong; Oh, Su Hwan; Kim, Ki Soo; Kwon, O-Kyun; Oh, Dae Kon; Noh, Young-Ouk; Lee, Hyung-Jong

    2010-03-15

    We presented a hybridly-integrated tunable external cavity laser with 0.8 nm mode spacing 16 channels operating in the direct modulation of 2.5-Gbps for a low-cost source of a WDM-PON system. The tunable laser was fabricated by using a superluminescent diode (SLD) and a polymer Bragg reflector. The maximum output power and the power slope efficiency of the tunable laser were 10.3 mW and 0.132 mW/mA, respectively, at the SLD current of 100 mA and the temperature of 25 degrees C. The directly-modulated tunable laser successfully provided 2.5-Gbps transmissions through 20-km standard single mode fiber. The power penalty of the tunable laser was less than 0.8 dB for 16 channels after a 20-km transmission. The power penalty variation was less than 1.4 dB during the blue-shifted wavelength tuning.

  4. Performances of new reconstruction algorithms for CT-TDLAS (computer tomography-tunable diode laser absorption spectroscopy)

    International Nuclear Information System (INIS)

    Jeon, Min-Gyu; Deguchi, Yoshihiro; Kamimoto, Takahiro; Doh, Deog-Hee; Cho, Gyeong-Rae

    2017-01-01

    Highlights: • The measured data were successfully used for generating absorption spectra. • Four different reconstruction algorithms, ART, MART, SART and SMART were evaluated. • The calculation speed of convergence by the SMART algorithm was the fastest. • SMART was the most reliable algorithm for reconstructing the multiple signals. - Abstract: Recent advent of the tunable lasers made to measure simultaneous temperature and concentration fields of the gases. CT-TDLAS (computed tomography-tunable diode laser absorption spectroscopy) is one the leading techniques for the measurements of temperature and concentration fields of the gases. In CT-TDLAS, the accuracies of the measurement results are strongly dependent upon the reconstruction algorithms. In this study, four different reconstruction algorithms have been tested numerically using experimental data sets measured by thermocouples for combustion fields. Three reconstruction algorithms, MART (multiplicative algebraic reconstruction technique) algorithm, SART (simultaneous algebraic reconstruction technique) algorithm and SMART (simultaneous multiplicative algebraic reconstruction technique) algorithm, are newly proposed for CT-TDLAS in this study. The calculation results obtained by the three algorithms have been compared with previous algorithm, ART (algebraic reconstruction technique) algorithm. Phantom data sets have been generated by the use of thermocouples data obtained in an actual experiment. The data of the Harvard HITRAN table in which the thermo-dynamical properties and the light spectrum of the H 2 O are listed were used for the numerical test. The reconstructed temperature and concentration fields were compared with the original HITRAN data, through which the constructed methods are validated. The performances of the four reconstruction algorithms were demonstrated. This method is expected to enhance the practicality of CT-TDLAS.

  5. Tunable diode laser mesurements of widths of air- and nitrogen-broadened lines in the nu(4) band of C-13H4

    Science.gov (United States)

    Devi, V. M.; Benner, D. C.; Rinsland, C. P.; Smith, M. A. H.

    1985-01-01

    Tunable diode laser measurements of air-broadened and N2-broadened halfwidths are reported for 23 lines in the nu(4) band of C-13H4, between 1260 and 1360/cm. For all lines, at least three scans of each of four or more pressures were recorded. The experimental halfwidths presently obtained for C-13H4 are both larger and smaller than the U.S. Air Force Geophysics Laboratory values.

  6. Tunable laser applications

    CERN Document Server

    Duarte, FJ

    2008-01-01

    Introduction F. J. Duarte Spectroscopic Applications of Tunable Optical Parametric Oscillators B. J. Orr, R. T. White, and Y. He Solid-State Dye Lasers Costela, I. García-Moreno, and R. Sastre Tunable Lasers Based on Dye-Doped Polymer Gain Media Incorporating Homogeneous Distributions of Functional Nanoparticles F. J. Duarte and R. O. James Broadly Tunable External-Cavity Semiconductor Lasers F. J. Duarte Tunable Fiber Lasers T. M. Shay and F. J. Duarte Fiber Laser Overview and Medical Applications

  7. Supersonic Mass Flux Measurements via Tunable Diode Laser Absorption and Non-Uniform Flow Modeling

    Science.gov (United States)

    Chang, Leyen S.; Strand, Christopher L.; Jeffries, Jay B.; Hanson, Ronald K.; Diskin, Glenn S.; Gaffney, Richard L.; Capriotti, Diego P.

    2011-01-01

    Measurements of mass flux are obtained in a vitiated supersonic ground test facility using a sensor based on line-of-sight (LOS) diode laser absorption of water vapor. Mass flux is determined from the product of measured velocity and density. The relative Doppler shift of an absorption transition for beams directed upstream and downstream in the flow is used to measure velocity. Temperature is determined from the ratio of absorption signals of two transitions (lambda(sub 1)=1349 nm and lambda(sub 2)=1341.5 nm) and is coupled with a facility pressure measurement to obtain density. The sensor exploits wavelength-modulation spectroscopy with second-harmonic detection (WMS-2f) for large signal-to-noise ratios and normalization with the 1f signal for rejection of non-absorption related transmission fluctuations. The sensor line-of-sight is translated both vertically and horizontally across the test section for spatially-resolved measurements. Time-resolved measurements of mass flux are used to assess the stability of flow conditions produced by the facility. Measurements of mass flux are within 1.5% of the value obtained using a facility predictive code. The distortion of the WMS lineshape caused by boundary layers along the laser line-of-sight is examined and the subsequent effect on the measured velocity is discussed. A method for correcting measured velocities for flow non-uniformities is introduced and application of this correction brings measured velocities within 4 m/s of the predicted value in a 1630 m/s flow.

  8. The feasibility of detecting partial discharges in metalclad equipment by tunable diode laser spectrometry of SF 6 breakdown products

    Science.gov (United States)

    Brassington, D. J.; Freedman, A. N.; Laird, C. K.

    Passage of electricity through SF 6 under arcing or partial discharge conditions causes decomposition of the SF 6 and the eventual production of breakdown products, two of the principal of which are thionyl fluoride and sulphuryl fluoride. Analysis of samples of SF 6 from the gas-zones of metalclad substations to monitor the build-up of breakdown products could in principle be used to give early warning of the development of a fault in the gas-zone. However, no analytical method is at present available which is capable of measuring the low concentrations of the breakdown products necessary to give adequate warning of a fault. It is estimated that detection of the breakdown products at ppb levels or below in SF 6 would be required. Tunable diode laser spectrometry is one technique which is potentially capable of achieving the sensitivity and selectivity required for breakdown product monitoring. To investigate the possibility of applying the technique, high-resolution spectra of sulphur hexafluoride, thionyl fluoride and sulphuryl fluoride were measured using a Fourier transform spectrometer. It was established that, though the choice is limited by the proximity of SF 6 absorption bands, suitable spectral regions do exist for determination of traces of either of these breakdown products in SF 6, and that detection at ppb levels should be possible. Using recently published data for the production rates of discharge-generated decomposition products of SF 6, it is estimated that this would enable discharge levels as low as 3 pC/cycle to be detected in a gas-zone containing 100 kg of SF 6, assuming that the zone was sampled at 6-monthly intervals. Application of the technique would, however, require that the practice of including canisters of alumina or molecular sieve in the gas-zones be stopped, as both sulphuryl and thionyl fluorides are irreversibly absorbed. Of the two decomposition products, sulphuryl fluoride has a simpler spectrum than thionyl fluoride, with

  9. Compact green-diode-based lasers for biophotonic bioimaging

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Hansen, Anders Kragh; Petersen, Paul Michael

    2014-01-01

    Diode lasers simultaneously offer tunability, high-power emission, and compact size at fairly low cost and are increasingly preferred for pumping titanium:sapphire lasers.......Diode lasers simultaneously offer tunability, high-power emission, and compact size at fairly low cost and are increasingly preferred for pumping titanium:sapphire lasers....

  10. True Yellow Light-Emitting Diodes as Phosphor for Tunable Color-Rendering Index Laser-Based White Light

    KAUST Repository

    Janjua, Bilal

    2016-10-11

    An urgent challenge for the lighting research community is the lack of efficient optical devices emitting in between 500 and 600 nm, resulting in the “green-yellow gap”. In particular, true green (∼555 nm) and true yellow (∼590 nm), along with blue and red, constitute four technologically important colors. The III-nitride material system, being the most promising choice of platform to bridge this gap, still suffers from high dislocation density and poor crystal quality in realizing high-power, efficient devices. Particularly, the high polarization fields in the active region of such 2D quantum confined structures prevent efficient recombination of carriers. Here we demonstrate a true yellow nanowire (NW) light emitting diode (LED) with peak emission of 588 nm at 29.5 A/cm2 (75 mA in a 0.5 × 0.5 mm2 device) and a low turn-on voltage of ∼2.5 V, while having an internal quantum efficiency of 39%, and without “efficiency droop” up to an injection current density of 29.5 A/cm2. By mixing yellow light from a NW LED in reflective configuration with that of a red, green, and blue laser diode (LD), white light with a correlated color temperature of ∼6000 K and color-rendering index of 87.7 was achieved. The nitride-NW-based device offers a robust, long-term stability for realizing yellow light emitters for tunable color-rendering index solid-state lighting, on a scalable, low-cost, foundry-compatible titanium/silicon substrate, suitable for industry uptake.

  11. Research on atmospheric CO2 remote sensing with open-path tunable diode laser absorption spectroscopy and comparison methods

    Science.gov (United States)

    Xin, Fengxin; Guo, Jinjia; Sun, Jiayun; Li, Jie; Zhao, Chaofang; Liu, Zhishen

    2017-06-01

    An open-path atmospheric CO2 measurement system was built based on tunable diode laser absorption spectroscopy (TDLAS). The CO2 absorption line near 2 μm was selected, measuring the atmospheric CO2 with direct absorption spectroscopy and carrying on the comparative experiment with multipoint measuring instruments of the open-path. The detection limit of the TDLAS system is 1.94×10-6. The calibration experiment of three AZ-7752 handheld CO2 measuring instruments was carried out with the Los Gatos Research gas analyzer. The consistency of the results was good, and the handheld instrument could be used in the TDLAS system after numerical calibration. With the contrast of three AZ-7752 and their averages, the correlation coefficients are 0.8828, 0.9004, 0.9079, and 0.9393 respectively, which shows that the open-path TDLAS has the best correlation with the average of three AZ-7752 and measures the concentration of atmospheric CO2 accurately. Multipoint measurement provides a convenient comparative method for open-path TDLAS.

  12. 13CO2/12CO2 ratio analysis in exhaled air by lead-salt tunable diode lasers for noninvasive diagnostics in gastroenterology

    Science.gov (United States)

    Stepanov, Eugene V.; Zyrianov, Pavel V.; Miliaev, Valerii A.; Selivanov, Yurii G.; Chizhevskii, Eugene G.; Os'kina, Svetlana; Ivashkin, Vladimir T.; Nikitina, Elena I.

    1999-07-01

    An analyzer of 13CO2/12CO2 ratio in exhaled air based on lead-salt tunable diode lasers is presented. High accuracy of the carbon isotope ratio detection in exhaled carbon dioxide was achieved with help of very simple optical schematics. It was based on the use of MBE laser diodes operating in pulse mode and on recording the resonance CO2 absorption at 4.2 micrometers . Special fast acquisition electronics and software were applied for spectral data collection and processing. Developed laser system was tested in a clinical train aimed to assessment eradication efficiency in therapy of gastritis associated with Helicobacter pylori infection. Data on the 13C-urea breath test used for P.pylori detection and obtained with tunable diode lasers in the course of the trail was compared with the results of Mass-Spectroscopy analysis and histology observations. The analyzer can be used also for 13CO2/12CO2 ratio detection in exhalation to perform gastroenterology breath test based on using other compounds labeled with stable isotopes.

  13. A compact tunable diode laser absorption spectrometer to monitor CO2 at 2.7 μm wavelength in hypersonic flows.

    Science.gov (United States)

    Vallon, Raphäel; Soutadé, Jacques; Vérant, Jean-Luc; Meyers, Jason; Paris, Sébastien; Mohamed, Ajmal

    2010-01-01

    Since the beginning of the Mars planet exploration, the characterization of carbon dioxide hypersonic flows to simulate a spaceship's Mars atmosphere entry conditions has been an important issue. We have developed a Tunable Diode Laser Absorption Spectrometer with a new room-temperature operating antimony-based distributed feedback laser (DFB) diode laser to characterize the velocity, the temperature and the density of such flows. This instrument has been tested during two measurement campaigns in a free piston tunnel cold hypersonic facility and in a high enthalpy arc jet wind tunnel. These tests also demonstrate the feasibility of mid-infrared fiber optics coupling of the spectrometer to a wind tunnel for integrated or local flow characterization with an optical probe placed in the flow.

  14. Tunable diode laser IR spectrometer for in situ measurements of the gas phase composition and particle size distribution of Titan's atmosphere

    Science.gov (United States)

    Webster, Christopher R.; Sander, Stanley P.; Beer, Reinhard; May, Randy D.; Knollenberg, Robert G.

    1990-01-01

    A new instrument, the Probe Infrared Laser Spectrometer (PIRLS), is described for in situ sensing of the gas composition and particle size distribution of Titan's atmosphere on the NASA/ESA Cassini mission. For gas composition measurements, several narrow-band (0.0001/cm) tunable lead-salt diode lasers operating near 80 K at selected mid-IR wavelengths are directed over a path length defined by a small reflector extending over the edge of the probe spacecraft platform; volume mixing ratios of 10 to the -9th should be measurable for several species of interest. A cloud-particle-size spectrometer using a diode laser source at 780 nm shares the optical path and deployed reflector; a combination of imaging and light scattering techniques is used to determine sizes of haze and cloud particles and their number density as a function of altitude.

  15. Analysis of algebraic reconstruction technique for accurate imaging of gas temperature and concentration based on tunable diode laser absorption spectroscopy

    Science.gov (United States)

    Hui-Hui, Xia; Rui-Feng, Kan; Jian-Guo, Liu; Zhen-Yu, Xu; Ya-Bai, He

    2016-06-01

    An improved algebraic reconstruction technique (ART) combined with tunable diode laser absorption spectroscopy(TDLAS) is presented in this paper for determining two-dimensional (2D) distribution of H2O concentration and temperature in a simulated combustion flame. This work aims to simulate the reconstruction of spectroscopic measurements by a multi-view parallel-beam scanning geometry and analyze the effects of projection rays on reconstruction accuracy. It finally proves that reconstruction quality dramatically increases with the number of projection rays increasing until more than 180 for 20 × 20 grid, and after that point, the number of projection rays has little influence on reconstruction accuracy. It is clear that the temperature reconstruction results are more accurate than the water vapor concentration obtained by the traditional concentration calculation method. In the present study an innovative way to reduce the error of concentration reconstruction and improve the reconstruction quality greatly is also proposed, and the capability of this new method is evaluated by using appropriate assessment parameters. By using this new approach, not only the concentration reconstruction accuracy is greatly improved, but also a suitable parallel-beam arrangement is put forward for high reconstruction accuracy and simplicity of experimental validation. Finally, a bimodal structure of the combustion region is assumed to demonstrate the robustness and universality of the proposed method. Numerical investigation indicates that the proposed TDLAS tomographic algorithm is capable of detecting accurate temperature and concentration profiles. This feasible formula for reconstruction research is expected to resolve several key issues in practical combustion devices. Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61205151), the National Key Scientific Instrument and Equipment Development Project of China (Grant

  16. Generation of single-frequency tunable green light in a coupled ring tapered diode laser cavity

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Petersen, Paul Michael

    2013-01-01

    in the broad wavelength range from 1049 nm to 1093 nm and the beam propagation factor is improved from M2 = 2.8 to below 1.1. The laser frequency is automatically locked to the cavity resonance frequency using optical feedback. Furthermore, we show that this adaptive external cavity approach leads to efficient...

  17. Tunable Microfluidic Dye Laser

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Helbo, Bjarne; Kutter, Jörg Peter

    2003-01-01

    We present a tunable microfluidic dye laser fabricated in SU-8. The tunability is enabled by integrating a microfluidic diffusion mixer with an existing microfluidic dye laser design by Helbo et al. By controlling the relative flows in the mixer between a dye solution and a solvent......, the concentration of dye in the laser cavity can be adjusted, allowing the wavelength to be tuned. Wavelength tuning controlled by the dye concentration was demonstrated with macroscopic dye lasers already in 1971, but this principle only becomes practically applicable by the use of microfluidic mixing...

  18. Tunable diode laser absorption spectroscopy-based tomography system for on-line monitoring of two-dimensional distributions of temperature and H2O mole fraction

    Science.gov (United States)

    Xu, Lijun; Liu, Chang; Jing, Wenyang; Cao, Zhang; Xue, Xin; Lin, Yuzhen

    2016-01-01

    To monitor two-dimensional (2D) distributions of temperature and H2O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors' knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H2O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm-1 (1343.3 nm) and 7185.6 cm-1 (1391.67 nm), respectively. The tomographic sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H2O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H2O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.

  19. Tunable Diode Laser Sensors to Monitor Temperature and Gas Composition in High-Temperature Coal Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Ronald [Stanford Univ., CA (United States); Whitty, Kevin [Univ. of Utah, Salt Lake City, UT (United States)

    2014-12-01

    The integrated gasification combined cycle (IGCC) when combined with carbon capture and storage can be one of the cleanest methods of extracting energy from coal. Control of coal and biomass gasification processes to accommodate the changing character of input-fuel streams is required for practical implementation of integrated gasification combined-cycle (IGCC) technologies. Therefore a fast time-response sensor is needed for real-time monitoring of the composition and ideally the heating value of the synthesis gas (here called syngas) as it exits the gasifier. The goal of this project was the design, construction, and demonstration an in situ laserabsorption sensor to monitor multiple species in the syngas output from practical-scale coal gasifiers. This project investigated the hypothesis of using laser absorption sensing in particulateladen syngas. Absorption transitions were selected with design rules to optimize signal strength while minimizing interference from other species. Successful in situ measurements in the dusty, high-pressure syngas flow were enabled by Stanford’s normalized and scanned wavelength modulation strategy. A prototype sensor for CO, CH4, CO2, and H2O was refined with experiments conducted in the laboratory at Stanford University, a pilot-scale at the University of Utah, and an engineering-scale gasifier at DoE’s National Center for Carbon Capture with the demonstration of a prototype sensor with technical readiness level 6 in the 2014 measurement campaign.

  20. Tunable laser optics

    CERN Document Server

    Duarte, FJ

    2015-01-01

    This Second Edition of a bestselling book describes the optics and optical principles needed to build lasers. It also highlights the optics instrumentation necessary to characterize laser emissions and focuses on laser-based optical instrumentation. The book emphasizes practical and utilitarian aspects of relevant optics including the essential theory. This revised, expanded, and improved edition contains new material on tunable lasers and discusses relevant topics in quantum optics.

  1. Tunable high pressure lasers

    Science.gov (United States)

    Hess, R. V.

    1976-01-01

    Atmospheric transmission of high energy CO2 lasers is considerably improved by high pressure operation which, due to pressure broadening, permits tuning the laser lines off atmospheric absorption lines. Pronounced improvement is shown for horizontal transmission at altitudes above several kilometers and for vertical transmission through the entire atmosphere. Applications of tunable high pressure CO2 lasers to energy transmission and to remote sensing are discussed along with initial efforts in tuning high pressure CO2 lasers.

  2. Tunable high-power narrow-spectrum external-cavity diode laser at 675 nm as a pump source for UV generation

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Erbert, Gotz

    2011-01-01

    High-power narrow-spectrum diode laser systems based on tapered gain media in external cavity are demonstrated at 675 nm. Two 2-mm-long amplifiers are used, one with a 500-µm-long ridge-waveguide section (device A), the other with a 750-µm-long ridge-waveguide section (device B). The laser system...... A based on device A is tunable from 663 to 684 nm with output power higher than 0.55 W in the tuning range, as high as 1.25 W output power is obtained at 675.34 nm. The emission spectral bandwidth is less than 0.05 nm throughout the tuning range, and the beam quality factor M2 is 2.07 at an output power...... of 1.0 W. The laser system B based on device B is tunable from 666 to 685 nm. As high as 1.05 W output power is obtained around 675.67 nm. The emission spectral bandwidth is less than 0.07 nm throughout the tuning range, and the beam quality factor M2 is 1.13 at an output power of 0.93 W. The laser...

  3. Dual-beam, second-derivative tunable diode-laser infrared spectroscopy applied to trace-gas measurement

    International Nuclear Information System (INIS)

    Tallant, D.R.; Jungst, R.G.

    1981-04-01

    A dual beam diode laser spectrometer has been constructed using off-axis reflective optics. The spectrometer can be amplitude modulated for direct absorption measurements or frequency modulated to obtain derivative spectra. The spectrometer has high throughput, is easy to operate and align, provides good dual beam compensation, and has no evidence of the interference effects that have been observed in diode laser spectrometers using refractive optics. Unpurged, using second derivative techniques, the instrument has measured 108 parts-per-million CO (10 cm absorption cell, atmospheric pressure-broadened) with good signal/noise. With the replacement of marginal instrumental components, the signal/noise should be substantially increased. This instrument was developed to monitor the evolution of decomposition gases in sealed containers of small volume at atmospheric pressure

  4. Development and characterization of type-II semiconductor structures for the tuning region in tunable laser diodes; Entwicklung und Charakterisierung von Typ-II-Heterostrukturen fuer die Abstimmregion in abstimmbaren Laserdioden

    Energy Technology Data Exchange (ETDEWEB)

    Roesel, G.

    2005-04-01

    In this thesis the most important criteria for the design of type-II superlattices for a tuning layer in tunable laser diodes are stated. For the experimental realization and verification of the theoretical results different type-II heterostructures were fabricated and characterized. These structures thereby differ mainly in the reached band discontinuities.

  5. DWDM channel spacing tunable optical TDM carrier from a mode-locked weak-resonant-cavity Fabry-Perot laser diode based fiber ring.

    Science.gov (United States)

    Peng, Guo-Hsuan; Chi, Yu-Chieh; Lin, Gong-Ru

    2008-08-18

    A novel optical TDM pulsed carrier with tunable mode spacing matching the ITU-T defined DWDM channels is demonstrated, which is generated from an optically injection-mode-locked weak-resonant-cavity Fabry-Perot laser diode (FPLD) with 10%-end-facet reflectivity. The FPLD exhibits relatively weak cavity modes and a gain spectral linewidth covering >33.5 nm. The least common multiple of the mode spacing determined by both the weak-resonant-cavity FPLD and the fiber-ring cavity can be tunable by adjusting length of the fiber ring cavity or the FPLD temperature to approach the desired 200GHz DWDM channel spacing of 1.6 nm. At a specific fiber-ring cavity length, such a least-common- multiple selection rule results in 12 lasing modes between 1532 and 1545 nm naturally and a mode-locking pulsewidth of 19 ps broadened by group velocity dispersion among different modes. With an additional intracavity bandpass filter, the operating wavelength can further extend from 1520 to 1553.5 nm. After channel filtering, each selected longitudinal mode gives rise to a shortened pulsewidth of 12 ps due to the reduced group velocity dispersion. By linear dispersion compensating with a 55-m long dispersion compensation fiber (DCF), the pulsewidth can be further compressed to 8 ps with its corresponding peak-to-peak chirp reducing from 9.7 to 4.3 GHz.

  6. Spectral control of diode lasers using external waveguide circuits

    NARCIS (Netherlands)

    Oldenbeuving, Ruud

    2013-01-01

    We investigated spectral control of diode lasers using external waveguide circuits. The purpose of this work is to investigate such external control for providing a new class of diode lasers with technologically interesting properties, such as a narrow spectral bandwidth and spectrally tunable

  7. Spectral and Radiometric Calibration Using Tunable Lasers

    Science.gov (United States)

    McCorkel, Joel (Inventor)

    2017-01-01

    A tunable laser system includes a tunable laser, an adjustable laser cavity for producing one or more modes of laser light emitted from the tunable laser, a first optical parametric oscillator positioned in a light path of the adjustable laser cavity, and a controller operable to simultaneously control parameters of at least the tunable laser, the first optical parametric oscillator, and the adjustable laser cavity to produce a range of wavelengths emitted from the tunable laser system. A method of operating a tunable laser system includes using a controller to simultaneously control parameters of a tunable laser, an adjustable laser cavity for producing one or more modes of laser light emitted from the tunable laser, and a first optical parametric oscillator positioned in a light path of the adjustable laser cavity, to produce a range of wavelengths emitted from the tunable laser system.

  8. Integrated tunable CMOS laser.

    Science.gov (United States)

    Creazzo, Timothy; Marchena, Elton; Krasulick, Stephen B; Yu, Paul K L; Van Orden, Derek; Spann, John Y; Blivin, Christopher C; He, Lina; Cai, Hong; Dallesasse, John M; Stone, Robert J; Mizrahi, Amit

    2013-11-18

    An integrated tunable CMOS laser for silicon photonics, operating at the C-band, and fabricated in a commercial CMOS foundry is presented. The III-V gain medium section is embedded in the silicon chip, and is hermetically sealed. The gain section is metal bonded to the silicon substrate creating low thermal resistance into the substrate and avoiding lattice mismatch problems. Optical characterization shows high performance in terms of side mode suppression ratio, relative intensity noise, and linewidth that is narrow enough for coherent communications.

  9. Tunable femtosecond Cherenkov fiber laser

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Svane, Ask Sebastian; Lægsgaard, Jesper

    2014-01-01

    We demonstrate electrically-tunable femtosecond Cherenkov fiber laser output at the visible range. Using an all-fiber, self-starting femtosecond Yb-doped fiber laser as the pump source and nonlinear photonic crystal fiber link as the wave-conversion medium, ultrafast, milliwatt-level, tunable...

  10. Diode laser pumping

    International Nuclear Information System (INIS)

    Skagerlund, L.E.

    1975-01-01

    A diode laser is pumped or pulsed by a repeated capacitive discharge. A capacitor is periodically charged from a dc voltage source via a transformer, the capacitor being discharged through the diode laser via a controlled switching means after one or more charging periods. During a first interval of each charging period the transformer, while unloaded, stores a specific amount of energy supplied from the dc voltage source. During a subsequent interval of the charging period said specific amount of energy is transmitted from the transformer to the capacitor. The discharging of the capacitor takes place during a first interval of a charging period. (auth)

  11. Rapid response of leaf photosynthesis in two fern species Pteridium aquilinum and Thelypteris dentata to changes in CO2 measured by tunable diode laser absorption spectroscopy.

    Science.gov (United States)

    Nishida, Keisuke; Kodama, Naomi; Yonemura, Seiichiro; Hanba, Yuko T

    2015-09-01

    We investigated stomatal conductance (g(s)) and mesophyll conductance (g(m)) in response to atmospheric CO2 concentration [CO2] in two primitive land plants, the fern species Pteridium aquilinum and Thelypteris dentata, using the concurrent measurement of leaf gas exchange and carbon isotope discrimination. [CO2] was initially decreased from 400 to 200 μmol mol(-1), and then increased from 200 to 700 μmol mol(-1), and finally decreased from 700 to 400 μmol mol(-1). Analysis by tunable diode laser absorption spectroscopy (TDLAS) revealed a rapid and continuous response in g m within a few minutes. In most cases, both ferns showed rapid and significant responses of g m to changes in [CO2]. The largest changes (quote % decrease) were obtained when [CO2] was decreased from 400 to 200 μmol mol(-1). This is in contrast to angiosperms where an increase in g(m) is commonly observed at low [CO2]. Similarly, fern species observed little or no response of g(s) to changes in [CO2] whereas, a concomitant decline of g(m) and g(s) with [CO2] is often reported in angiosperms. Together, these results suggest that regulation of g(m) to [CO2] may differ between angiosperms and ferns.

  12. In Situ Measurements of N2O and CH4 During SOLVE on the ER-2 Using a New Tunable Diode Laser Instrument

    Science.gov (United States)

    Jost, Hansjurg

    2002-01-01

    This report is the final report for Cooperative Agreement NCC2-1105: 'In Situ Measurements of N2O and CH4 during SOLVE on the ER-2 using a new tunable diode laser instrument.' The tasks outlined in the proposal are listed below with a brief comment. The publications and the conference presentations are listed. Finally the important publications are attached. The Cooperative Agreement made possible a research effort to produce high precision and high accuracy in situ measurements of methane and nitrous oxide on the ER-2 during the SOLVE field campaign and to analyze these measurements. These measurements of CH4 and N2O were of utmost importance to studies of the ozone losses in the Arctic winter and spring. The concentrations measured over a large spatial and temporal range allowed the separation of the dynamical and chemical ozone loss. The most important results of the SOLVE program were contained in two scientific papers. This Cooperative Agreement allowed the participation of the Argus instrument in the program and the analysis of the data.

  13. Infrared diode laser spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Civiš, Svatopluk; Cihelka, Jaroslav; Matulková, Irena

    2010-01-01

    Roč. 18, č. 4 (2010), s. 408-420 ISSN 1230-3402 R&D Projects: GA AV ČR IAA400400705 Institutional research plan: CEZ:AV0Z40400503 Keywords : FTIR spectroscopy * absorption spectroscopy * laser diodes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.027, year: 2010

  14. Frequency-comb-assisted broadband precision spectroscopy with cascaded diode lasers

    DEFF Research Database (Denmark)

    Liu, Junqiu; Brasch, Victor; Pfeiffer, Martin H. P.

    2016-01-01

    Frequency-comb-assisted diode laser spectroscopy, employing both the accuracy of an optical frequency comb and the broad wavelength tuning range of a tunable diode laser, has been widely used in many applications. In this Letter, we present a novel method using cascaded frequency agile diode lasers...

  15. Tunable on chip optofluidic laser

    DEFF Research Database (Denmark)

    Bakal, Avraham; Vannahme, Christoph; Kristensen, Anders

    2016-01-01

    On chip tunable laser is demonstrated by realizing a microfluidic droplet array. The periodicity is controlled by the pressure applied to two separate inlets, allowing to tune the lasing frequency over a broad spectral range.......On chip tunable laser is demonstrated by realizing a microfluidic droplet array. The periodicity is controlled by the pressure applied to two separate inlets, allowing to tune the lasing frequency over a broad spectral range....

  16. Long-term field performance of a tunable diode laser absorption spectrometer for analysis of carbon isotopes of CO2 in forest air

    Directory of Open Access Journals (Sweden)

    D. R. Bowling

    2008-09-01

    Full Text Available Tunable diode laser absorption spectrometry (TDLAS is gaining in popularity for measuring the mole fraction [CO2] and stable isotopic composition (δ13C of carbon dioxide (CO2 in air in studies of biosphere-atmosphere gas exchange. Here we present a detailed examination of the performance of a commercially-available TDLAS located in a high-altitude subalpine coniferous forest (the Niwot Ridge AmeriFlux site, providing the first multi-year analysis of TDLAS instrument performance for measuring CO2 isotopes in the field. Air was sampled from five to nine vertical locations in and above the forest canopy every ten minutes for 2.4 years. A variety of methods were used to assess instrument performance. Measurement of two compressed air cylinders that were in place over the entire study establish the long-term field precision of 0.2 μmol mol−1 for [CO2] and 0.35‰ for δ13C, but after fixing several problems the isotope precision improved to 0.2permil (over the last several months. The TDLAS provided detail on variability of δ13C of atmospheric CO2 that was not represented in weekly flask samples, as well as information regarding the influence of large-scale (regional seasonal cycle and local forest processes on [CO2] and δ13C of CO2. There were also clear growing season and winter differences in the relative contributions of photosynthesis and respiration on the [CO2] and δ13C of forest air.

  17. Diode-pumped neodymium lasers

    Science.gov (United States)

    Albers, Peter

    1990-08-01

    Since the invention of diode lasers in the early 1960's there had been continuous investigations in laser diode pumped solid state lasers as has been reviewed in detail by a number of papers ( see e.g. [1] ). There are two main advantages of using diode lasers instead of flashlaraps as a pump source for solid state lasers: First the emission of the diode lasers matches well with the absorption bands of several Rare Earth ions that are doped in laser crystals ( mainly Nd3+, but also Er3, Tm3, Dy3', and others ) . This summary will report only about diode lasers at a wavelength of around BlOnm, which fits to an absorptionband of Nd3t Second diode lasers provide the possibility of longitudinally pumped configurations and therefore an excellent mode matching with the solid state laser mode. For both reasons the efficiency of a diode laser puniped solid state laser is nuch higher than of a flashlamp pumped one. Since the early 1980's a much wider interest in diode laser pumped solid state lasers arose. It was stimulated by the improved performance of the new generation of diode lasers in terms of reliability , operational lifetime and output power [21. Two important steps in direction to the diode lasers at present time were the developments of double hetero (DH) structure- and graded index separate confinement hetero (GrInSCH) structurediode lasers. In the same way the development of new production techniques were necessary to ensure the reliability of the diode lasers. Starting with the liquid phase epitaxy (LPE) the (GaAl)As structures are now grown by the molecular beam epitaxy (MBE), mainly used for very high precision laboratory investigations, and metal organic chemical vapour deposition (MOCVD), mainly used for commercial production. As a first commercial product SDL introduced a 100mW array in 1984. Since then the output power of the commercially available diode lasers increased by two orders of magnitude to lOW. These diode lasers are multi stripe bar arrays

  18. Development of laser diode-pumped solid state green laser for the pumping of wavelength tunable laser. 2. Development of double-pass Nd:YAG MOPA system

    Energy Technology Data Exchange (ETDEWEB)

    Oba, Masaki; Kato, Masaaki; Maruyama, Yoichiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-06-01

    The characteristics of a LD pumped zigzag slab YAG laser double-pass amplification is studied. The amplified laser power of 43W in IR is obtained, and the energy extraction efficiency from Nd:YAG crystals 40%. The electrical efficiency is 3.7%. The green power is 19W by using a KTP crystal, with the conversion efficiency of 46%. In this condition, electrical energy efficiency is 1.4%. We also study the quality of the laser beam, and shows that the M{sup 2} of the laser beam is around 1.5 at high average power condition. (author)

  19. Photoluminescence excitation measurements using pressure-tuned laser diodes

    Science.gov (United States)

    Bercha, Artem; Ivonyak, Yurii; Medryk, Radosław; Trzeciakowski, Witold A.; Dybała, Filip; Piechal, Bernard

    2015-06-01

    Pressure-tuned laser diodes in external cavity were used as tunable sources for photoluminescence excitation (PLE) spectroscopy. The method was demonstrated in the 720 nm-1070 nm spectral range using a few commercial laser diodes. The samples for PLE measurements were quantum-well structures grown on GaAs and on InP. The method is superior to standard PLE measurements using titanium sapphire laser because it can be extended to any spectral range where anti-reflection coated laser diodes are available.

  20. Photoluminescence excitation measurements using pressure-tuned laser diodes

    International Nuclear Information System (INIS)

    Bercha, Artem; Ivonyak, Yurii; Mędryk, Radosław; Trzeciakowski, Witold A.; Dybała, Filip; Piechal, Bernard

    2015-01-01

    Pressure-tuned laser diodes in external cavity were used as tunable sources for photoluminescence excitation (PLE) spectroscopy. The method was demonstrated in the 720 nm-1070 nm spectral range using a few commercial laser diodes. The samples for PLE measurements were quantum-well structures grown on GaAs and on InP. The method is superior to standard PLE measurements using titanium sapphire laser because it can be extended to any spectral range where anti-reflection coated laser diodes are available

  1. Tunable on chip optofluidic laser

    DEFF Research Database (Denmark)

    Bakal, Avraham; Vannahme, Christoph; Kristensen, Anders

    2015-01-01

    A chip scale tunable laser in the visible spectral band is realized by generating a periodic droplet array inside a microfluidic channel. Combined with a gain medium within the droplets, the periodic structure provides the optical feedback of the laser. By controlling the pressure applied to two...

  2. Absolute intensities and self-, N2-, and air-broadened Lorentz halfwidths for selected lines in the nu3 band of (C-12)H3D from measurements with a tunable diode laser spectrometer

    Science.gov (United States)

    Malathy Devi, V.; Benner, D. C.; Rinsland, C. P.; Smith, M. A. H.; Thakur, K. B.

    1986-01-01

    Absolute intensities and self-, air- and N2-broadened half-widths have been determined for the first time for individual lines in the nu3(A1) band of (C-12)H3D near 7.6 microns from measurements of individual vibration-rotation lines using a tunable diode laser spectrometer. The intensity measurements are believed to be accurate to within three percent. Within experimental uncertainties, equal broadening efficiencies are found for both air and nitrogen. Self-broadened half-widths determined for three transitions yield an average half-width value of 0.803 + or -0.0010/cm/atm at 296 K.

  3. Pneumatically tunable optofluidic dye laser

    OpenAIRE

    Song, W.; Psaltis, D.

    2010-01-01

    We presented a tunable optofluidic dye laser with integrated elastomeric air-gap etalon controlled by air pressure. The chip was fabricated with polydimethylsiloxane (PDMS) via replica molding. It comprises a liquid waveguide and microscale air-gap mirrors providing the feedback. The lasing wavelength is chosen by the interference between two parallel PDMS-air interfaces inside the internal tunable air-gap etalon, of which pneumatic tuning can be realized by inflating the air-gap etalon with ...

  4. Tunable diode laser absorption spectroscopy-based tomography system for on-line monitoring of two-dimensional distributions of temperature and H{sub 2}O mole fraction

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Lijun, E-mail: lijunxu@buaa.edu.cn; Liu, Chang; Jing, Wenyang; Cao, Zhang [School of Instrument Science and Opto-Electronic Engineering, Beihang University, Beijing 100191 (China); Ministry of Education’s Key Laboratory of Precision Opto-Mechatronics Technology, Beijing 100191 (China); Xue, Xin; Lin, Yuzhen [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China)

    2016-01-15

    To monitor two-dimensional (2D) distributions of temperature and H{sub 2}O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors’ knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H{sub 2}O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm{sup −1} (1343.3 nm) and 7185.6 cm{sup −1} (1391.67 nm), respectively. The tomographic sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H{sub 2}O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H{sub 2}O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.

  5. Atomic spectroscopy with diode lasers

    International Nuclear Information System (INIS)

    Tino, G.M.

    1994-01-01

    Some applications of semiconductor diode lasers in atomic spectroscopy are discussed by describing different experiments performed with lasers emitting in the visible and in the near-infrared region. I illustrate the results obtained in the investigation of near-infrared transitions of atomic oxygen and of the visible intercombination line of strontium. I also describe how two offset-frequency-locked diode lasers can be used to excite velocity selective Raman transitions in Cs. I discuss the spectral resolution, the accuracy of frequency measurements, and the detection sensitivity achievable with diode lasers. (orig.)

  6. Tunable diode laser in-situ CH4 measurements aboard the CARIBIC passenger aircraft: instrument performance assessment

    Science.gov (United States)

    Dyroff, C.; Zahn, A.; Sanati, S.; Christner, E.; Rauthe-Schöch, A.; Schuck, T. J.

    2014-03-01

    A laser spectrometer for automated monthly measurements of methane (CH4) mixing ratios aboard the CARIBIC passenger aircraft is presented. The instrument is based on a commercial Fast Greenhouse Gas Analyser (FGGA, Los Gatos Res.), which was adapted to meet the requirements imposed by unattended airborne operation. It was characterised in the laboratory with respect to instrument stability, precision, cross sensitivity to H2O, and accuracy. For airborne operation, a calibration strategy is described that utilises CH4 measurements obtained from flask samples taken during the same flights. The precision of airborne measurements is 2 ppb for 10 s averages. The accuracy at aircraft cruising altitude is 3.85 ppb. During aircraft ascent and descent, where no flask samples were obtained, instrumental drifts can be less accurately determined and the uncertainty is estimated to be 12.4 ppb. A linear humidity bias correction was applied to the CH4 measurements, which was most important in the lower troposphere. On average, the correction bias was around 6.5 ppb at an altitude of 2 km, and negligible at cruising flight level. Observations from 103 long-distance flights are presented that span a large part of the northern hemispheric upper troposphere and lowermost stratosphere (UT/LMS), with occasional crossing of the tropics on flights to southern Africa. These accurate data mark the largest UT/LMS in-situ CH4 dataset worldwide. An example of a tracer-tracer correlation study with ozone is given, highlighting the possibility for accurate cross-tropopause transport analyses.

  7. Time-resolved tunable diode laser absorption spectroscopy of excited argon and ground-state titanium atoms in pulsed magnetron discharges

    Czech Academy of Sciences Publication Activity Database

    Sushkov, V.; Do, H.T.; Čada, Martin; Hubička, Zdeněk; Hippler, R.

    2013-01-01

    Roč. 22, č. 1 (2013), 1-10 ISSN 0963-0252 R&D Projects: GA ČR(CZ) GAP205/11/0386; GA ČR GAP108/12/2104 Institutional research plan: CEZ:AV0Z10100522 Keywords : absorption spectroscopy * diode laser * magnetron * argon metastable * HiPIMS * titanium * time-resolved Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.056, year: 2013 http://iopscience.iop.org/0963-0252/22/1/015002/

  8. Enhanced vbasis laser diode package

    Science.gov (United States)

    Deri, Robert J.; Chen, Diana; Bayramian, Andy; Freitas, Barry; Kotovsky, Jack

    2014-08-19

    A substrate having an upper surface and a lower surface is provided. The substrate includes a plurality of v-grooves formed in the upper surface. Each v-groove includes a first side and a second side perpendicular to the first side. A laser diode bar assembly is disposed within each of the v-grooves and attached to the first side. The laser diode bar assembly includes a first adhesion layer disposed on the first side of the v-groove, a metal plate attached to the first adhesion layer, a second adhesion layer disposed over the metal plate, and a laser diode bar attached to the second adhesion layer. The laser diode bar has a coefficient of thermal expansion (CTE) substantially similar to that of the metal plate.

  9. Tunable excimer lasers

    International Nuclear Information System (INIS)

    Sze, R.C.

    1990-01-01

    The wide bandwidth nature of the rare-gas halide excimer transitions allow reasonable tuning of the laser oscillation wavelength that makes it useful for a number of applications. At the same time this wide bandwidth makes narrow band operation difficult and special techniques are needed to insure narrow frequency lasing as well as absolute frequency resettability. The author discusses briefly some of the classical frequency narrowing techniques and then goes on to some recent work that require lasers of special frequency characteristics for special applications including KrF laser fusion

  10. Laser Diode Beam Basics, Manipulations and Characterizations

    CERN Document Server

    Sun, Haiyin

    2012-01-01

    Many optical design technical books are available for many years which mainly deal with image optics design based on geometric optics and using sequential raytracing technique. Some books slightly touched laser beam manipulation optics design. On the other hand many books on laser diodes have been published that extensively deal with laser diode physics with little touching on laser diode beam manipulations and characterizations. There are some internet resources dealing with laser diode beams. However, these internet resources have not covered enough materials with enough details on laser diode beam manipulations and characterizations. A technical book concentrated on laser diode beam manipulations and characterizations can fit in to the open and provide useful information to laser diode users. Laser Diode Beam Basics, Manipulations and  Characterizations is concentrated on the very practical side of the subject, it only discusses the basic physics and mathematics that are necessary for the readers in order...

  11. Feed-forward coherent link from a comb to a diode laser: Application to widely tunable cavity ring-down spectroscopy

    Science.gov (United States)

    Gotti, Riccardo; Prevedelli, Marco; Kassi, Samir; Marangoni, Marco; Romanini, Daniele

    2018-02-01

    We apply a feed-forward frequency control scheme to establish a phase-coherent link from an optical frequency comb to a distributed feedback (DFB) diode laser: This allows us to exploit the full laser tuning range (up to 1 THz) with the linewidth and frequency accuracy of the comb modes. The approach relies on the combination of an RF single-sideband modulator (SSM) and of an electro-optical SSM, providing a correction bandwidth in excess of 10 MHz and a comb-referenced RF-driven agile tuning over several GHz. As a demonstration, we obtain a 0.3 THz cavity ring-down scan of the low-pressure methane absorption spectrum. The spectral resolution is 100 kHz, limited by the self-referenced comb, starting from a DFB diode linewidth of 3 MHz. To illustrate the spectral resolution, we obtain saturation dips for the 2ν3 R(6) methane multiplet at μbar pressure. Repeated measurements of the Lamb-dip positions provide a statistical uncertainty in the kHz range.

  12. High Power Diode Lasers with External Feedback: Overview and Prospects

    DEFF Research Database (Denmark)

    Chi, Mingjun; Petersen, Paul Michael

    2012-01-01

    In summary, different external-cavity feedback techniques to improve the spatial beam quality and narrow the linewidth of the output beam from both BALs and TDLs are presented. Broad-area diode laser system with external-cavity feedback around 800 nm can produce several Watts of output power...... with a good beam quality. Tapered diode laser systems with external-cavity feedback around 800 and 1060 nm can deliver more than 2 W output power with diffraction-limited beam quality and can be operated in single-longitudinal mode. These high-brightness, narrow linewidth, and tunable external-cavity diode...... lasers emerge as the next generation of compact lasers that have the potential of replacing conventional high power laser systems in many existing applications....

  13. Laser scanning laser diode photoacoustic microscopy system.

    Science.gov (United States)

    Erfanzadeh, Mohsen; Kumavor, Patrick D; Zhu, Quing

    2018-03-01

    The development of low-cost and fast photoacoustic microscopy systems enhances the clinical applicability of photoacoustic imaging systems. To this end, we present a laser scanning laser diode-based photoacoustic microscopy system. In this system, a 905 nm, 325 W maximum output peak power pulsed laser diode with 50 ns pulsewidth is utilized as the light source. A combination of aspheric and cylindrical lenses is used for collimation of the laser diode beam. Two galvanometer scanning mirrors steer the beam across a focusing aspheric lens. The lateral resolution of the system was measured to be ∼21 μm using edge spread function estimation. No averaging was performed during data acquisition. The imaging speed is ∼370 A-lines per second. Photoacoustic microscopy images of human hairs, ex vivo mouse ear, and ex vivo porcine ovary are presented to demonstrate the feasibility and potentials of the proposed system.

  14. Highly optimized tunable Er3+-doped single longitudinal mode fiber ring laser, experiment and model

    DEFF Research Database (Denmark)

    Poulsen, Christian; Sejka, Milan

    1993-01-01

    A continuous wave (CW) tunable diode-pumped Er3+-doped fiber ring laser, pumped by diode laser at wavelengths around 1480 nm, is discussed. Wavelength tuning range of 42 nm, maximum slope efficiency of 48% and output power of 14.4 mW have been achieved. Single longitudinal mode lasing with a line...... with a linewidth of 6 kHz has been measured. A fast model of erbium-doped fiber laser was developed and used to optimize output parameters of the laser......A continuous wave (CW) tunable diode-pumped Er3+-doped fiber ring laser, pumped by diode laser at wavelengths around 1480 nm, is discussed. Wavelength tuning range of 42 nm, maximum slope efficiency of 48% and output power of 14.4 mW have been achieved. Single longitudinal mode lasing...

  15. High average power diode pumped solid state lasers for CALIOPE

    International Nuclear Information System (INIS)

    Comaskey, B.; Halpin, J.; Moran, B.

    1994-07-01

    Diode pumping of solid state media offers the opportunity for very low maintenance, high efficiency, and compact laser systems. For remote sensing, such lasers may be used to pump tunable non-linear sources, or if tunable themselves, act directly or through harmonic crystals as the probe. The needs of long range remote sensing missions require laser performance in the several watts to kilowatts range. At these power performance levels, more advanced thermal management technologies are required for the diode pumps. The solid state laser design must now address a variety of issues arising from the thermal loads, including fracture limits, induced lensing and aberrations, induced birefringence, and laser cavity optical component performance degradation with average power loading. In order to highlight the design trade-offs involved in addressing the above issues, a variety of existing average power laser systems are briefly described. Included are two systems based on Spectra Diode Laboratory's water impingement cooled diode packages: a two times diffraction limited, 200 watt average power, 200 Hz multi-rod laser/amplifier by Fibertek, and TRW's 100 watt, 100 Hz, phase conjugated amplifier. The authors also present two laser systems built at Lawrence Livermore National Laboratory (LLNL) based on their more aggressive diode bar cooling package, which uses microchannel cooler technology capable of 100% duty factor operation. They then present the design of LLNL's first generation OPO pump laser for remote sensing. This system is specified to run at 100 Hz, 20 nsec pulses each with 300 mJ, less than two times diffraction limited, and with a stable single longitudinal mode. The performance of the first testbed version will be presented. The authors conclude with directions their group is pursuing to advance average power lasers. This includes average power electro-optics, low heat load lasing media, and heat capacity lasers

  16. Laser-diode pumped Nd:YAG lasers; Laser diode reiki Nd:YAG lasear

    Energy Technology Data Exchange (ETDEWEB)

    Yuasa, H.; Akiyama, Y.; Nakayama, M. [Toshiba Corp., Tokyo (Japan)

    2000-04-01

    Laser-diode pumped Nd:YAG lasers are expected to be applied to laser processing fields such as welding, cutting, drilling, and marking due to their potential for high efficiency and compactness. We are designing and developing laser-diode pumped Nd:YAG lasers using numerical analysis simulation techniques such as ray tracing and thermal analysis. We have succeeded in achieving a laser power of more than 3 kW with 20% efficiency, which is the best ever obtained. In addition, we have developed a laser-diode pumped green laser by second harmonic generation, for precision machining on silicon wafers. (author)

  17. H2O temperature sensor for low-pressure flames using tunable diode laser absorption near 2.9 νm

    KAUST Repository

    Li, Sijie

    2011-10-19

    Making use of a newly available rapid-tuning diode laser operating at wavelengths up to 2.9 νm, an absorption-based temperature sensor was developed for in situ measurements in low-pressure flames. Based on the systematic analysis of H2O vapor transitions in the fundamental vibrational bands (ν1 and ν3) of H2O in the range of 2.5-3.0 νm, an optimal closely-spaced spectral line pair near 2.9 νm was selected for its temperature sensitivity in the range of 1000-2500 K. The narrow-linewidth room-temperature laser was scanned repetitively across these spectral features at 5 kHz, enabling fast, accurate temperature sensing. Use of the temperature sensor was investigated in low-pressure flames supported on a McKenna burner at 15, 25 and 60 Torr. To avoid absorption by the cold gases in the flame edges and the recirculation region between the burner and the vacuum chamber wall, a variable-path in situ probe was designed and an optimal path length was determined to accurately measure the flame centerline temperature. Different flame conditions were investigated to illustrate the potential of this sensor system for sensitive measurements of combustion temperature in low-pressure flames. © 2011 IOP Publishing Ltd.

  18. Tunability of optofluidic distributed feedback dye lasers

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Kristensen, Anders

    2007-01-01

    We investigate the tunability of optofluidic distributed feedback (DFB) dye lasers. The lasers rely on light-confinement in a nano-structured polymer film where an array of nanofluidic channels constitutes a third order Bragg grating DFB laser resonator with a central phase-shift. The lasers...

  19. Laser materials processing with diode lasers

    OpenAIRE

    Li, Lin; Lawrence, Jonathan; Spencer, Julian T.

    1996-01-01

    Laser materials processing is currently dominated by CO2, Nd-YAG and Excimer lasers. Continuous advances in semiconductor laser technology over the last decade have increased the average power output of the devices annualy by two fold, resulting in the commercial availability of the diode lasers today with delivery output powers in excess of 60W in CW mode and 5kW in qasi-CW mode. The advantages of compactness, high reliability, high efficiency and potential low cost, due to the mass producti...

  20. Tunable Optofluidic Third Order DFB Dye Laser

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Kristensen, Anders

    2007-01-01

    We present a low-threshold polymer-based nanofluidic dye laser. By employing a third order DFB laser resonator, we demonstrate a threshold fluence of ~7 muJ/mm2 and a tunability of 45 nm using a single laser dye......We present a low-threshold polymer-based nanofluidic dye laser. By employing a third order DFB laser resonator, we demonstrate a threshold fluence of ~7 muJ/mm2 and a tunability of 45 nm using a single laser dye...

  1. Stopping atoms with diode lasers

    International Nuclear Information System (INIS)

    Watts, R.N.; Wieman, C.E.

    1986-01-01

    The use of light pressure to cool and stop neutral atoms has been an area of considerable interest recently. Cooled neutral atoms are needed for a variety of interesting experiments involving neutral atom traps and ultrahigh-resolution spectroscopy. Laser cooling of sodium has previously been demonstrated using elegant but quite elaborate apparatus. These techniques employed stabilized dye lasers and a variety of additional sophisticated hardware. The authors have demonstrated that a frequency chirp technique can be implemented using inexpensive diode lasers and simple electronics. In this technique the atoms in an atomic beam scatter resonant photons from a counterpropagating laser beam. The momentum transfer from the photons slows the atoms. The primary difficulty is that as the atoms slow their Doppler shift changes, and so they are no longer in resonance with the incident photons. In the frequency chirp technique this is solved by rapidly changing the laser frequency so that the atoms remain in resonance. To achieve the necessary frequency sweep with a dye laser one must use an extremely sophisticated high-speed electrooptic modulator. With a diode laser, however, the frequency can be smoothly and rapidly varied over many gigahertz simply by changing the injection current

  2. Liquid crystal tunable photonic crystal dye laser

    DEFF Research Database (Denmark)

    Buss, Thomas; Christiansen, Mads Brøkner; Smith, Cameron

    2010-01-01

    We present a dye-doped liquid crystal laser using a photonic crystal cavity. An applied electric field to the liquid crystal provides wavelength tunability. The photonic crystal enhances resonant interaction with the gain medium.......We present a dye-doped liquid crystal laser using a photonic crystal cavity. An applied electric field to the liquid crystal provides wavelength tunability. The photonic crystal enhances resonant interaction with the gain medium....

  3. Construction of a Visible Diode Laser Source for Free Radical Photochemistry and Spectroscopy Experiments

    Science.gov (United States)

    Newman, Bronjelyn; Halpern, Joshua B.

    1997-01-01

    Tunable diode lasers are reliable sources of narrow-band light and comparatively cheap. Optical feedback simplifies frequency tuning of the laser diodes. We are building an inexpensive diode laser system incorporating optical feedback from a diffraction grating. The external optical cavity can be used with lasers that emit between 2 and 100 mW, and will also work if they are pulsed, although this will significantly degrade the bandwidth. The diode laser output power and bandwidth are comparable to CW dye lasers used in kinetics and dynamics experiments. However, their cost and maintenance will be much less as will alignment time. We intend to use the diode lasers to investigate CN and C2 kinetics as well as to study dissociation dynamics of atmospherically important molecules.

  4. Blue-emitting laser diodes

    Science.gov (United States)

    Nakano, K.; Ishibashi, A.

    This paper reviews the recent results of blue-emitting laser diodes. These devices are based on ZnMgSSe alloy II-VI semiconductors. Recently we have achieved room temperature continuous-wave operation of ZnMgSSe blue lasers for the first time. ZnMgSSe alloys offer a wide range of band-gap energy from 2.8 to 4.5 eV, while maintaining lattice matching to GaAs substrates. These characteristics make ZnMgSSe suitable for cladding layers of blue lasers. In this article, the feasibilities of ZnMgSSe will be reviewed. The laser structures and characteristics will be also mentioned.

  5. Novel diode laser system for photodynamic therapy

    DEFF Research Database (Denmark)

    Samsøe, E.; Petersen, P.M.; Andersen, Peter E.

    2001-01-01

    In this paper a novel diode laser system for photodynamic therapy is demonstrated. The system is based on linear spatial filtering and optical phase conjugate feedback from a photorefractive BaTiO3 crystal. The spatial coherence properties of the diode laser are significantly improved. The system...... is extracted in a high-quality beam and 80 percent of the output power is extracted through the fiber. The power transmitted through tile fiber scales linearly with the power of the laser diode. which means that a laser diode emitting 1.7 W multi-mode radiation would provide 1 W of optical power through a 50...

  6. Laser diode package with enhanced cooling

    Science.gov (United States)

    Deri, Robert J [Pleasanton, CA; Kotovsky, Jack [Oakland, CA; Spadaccini, Christopher M [Oakland, CA

    2011-09-13

    A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.

  7. Absolute Distance Measurements with Tunable Semiconductor Laser

    Czech Academy of Sciences Publication Activity Database

    Mikel, Břetislav; Číp, Ondřej; Lazar, Josef

    T118, - (2005), s. 41-44 ISSN 0031-8949 R&D Projects: GA AV ČR(CZ) IAB2065001 Keywords : tunable laser * absolute interferometer Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.661, year: 2004

  8. Diode laser MIR-DFG spectrometer for trace gas detection

    Science.gov (United States)

    Willer, Ulrike; Blanke, Torsten; Schade, Wolfgang

    1996-10-01

    Two cw-single mode diode-lasers with powers of 30 and 50 mW at the center wavelengths 682 and 791 nm are applied as signal and pump sources for difference frequency generation (DFG) in an AgGaS2 crystal with a length of 30 mm. For 90 degree type I phase matching tunable mid-infrared laser radiation is obtained in the spectral range between 4.9 and 5.1 micrometers , while the DFG-output power is 0.2 (mu) W. The performance of this diode-laser MIR-DFG spectrometer is shown as the absorption of CO for the P(28) rotational line around 2023 cm-1 is probed in a cell and on-line in the exhaust of an engine.

  9. Optical vortex generation from a diode-pumped alexandrite laser

    Science.gov (United States)

    Thomas, G. M.; Minassian, A.; Damzen, M. J.

    2018-04-01

    We present the demonstration of an optical vortex mode directly generated from a diode-pumped alexandrite slab laser, operating in the bounce geometry. This is the first demonstration of an optical vortex mode generated from an alexandrite laser or from any other vibronic laser. An output power of 2 W for a vortex mode with a ‘topological charge’ of 1 was achieved and the laser was made to oscillate with both left- and right-handed vorticity. The laser operated at two distinct wavelengths simultaneously, 755 and 759 nm, due to birefringent filtering in the alexandrite gain medium. The result offers the prospect of broadly wavelength tunable vortex generation directly from a laser.

  10. Computer control of pulsed tunable dye lasers

    International Nuclear Information System (INIS)

    Thattey, S.S.; Dongare, A.S.; Suri, B.M.; Nair, L.G.

    1992-01-01

    Pulsed tunable dye lasers are being used extensively for spectroscopic and photo-chemical experiments, and a system for acquisition and spectral analysis of a volume of data generated will be quite useful. The development of a system for wavelength tuning and control of tunable dye lasers and an acquisition system for spectral data generated in experiments with these lasers are described. With this system, it is possible to control the tuning of three lasers, and acquire data in four channels, simultaneously. It is possible to arrive at the desired dye laser wavelength with a reproducibility of ± 0.012 cm -1 , which is within the absorption width (atomic interaction) caused by pulsed dye lasers of linewidth 0.08 cm -1 . The spectroscopic data generated can be analyzed for spectral identification within absolute accuracy ± 0.012 cm -1 . (author). 6 refs., 11 figs

  11. Diode Laser Ear Piercing: A Novel Technique.

    Science.gov (United States)

    Suseela, Bibilash Babu; Babu, Preethitha; Chittoria, Ravi Kumar; Mohapatra, Devi Prasad

    2016-01-01

    Earlobe piercing is a common office room procedure done by a plastic surgeon. Various methods of ear piercing have been described. In this article, we describe a novel method of laser ear piercing using the diode laser. An 18-year-old female patient underwent an ear piercing using a diode laser with a power of 2.0 W in continuous mode after topical local anaesthetic and pre-cooling. The diode laser was fast, safe, easy to use and highly effective way of ear piercing. The advantages we noticed while using the diode laser over conventional methods were more precision, minimal trauma with less chances of hypertrophy and keloids, no bleeding with coagulation effect of laser, less time taken compared to conventional method and less chance of infection due to thermal heat effect of laser.

  12. Narrowband tunable laser for uranium-233 cleanup process

    International Nuclear Information System (INIS)

    Singh, Sunita; Sridhar, G.; Rawat, V.S.; Kawde, Nitin; Sinha, A.K.; Bhatt, S.; Gantayet, L.M.

    2009-01-01

    Design, development and technology demonstration of proto type Single Longitudinal Mode pulsed tunable laser is reported in this work. The tunable laser has a narrow bandwidth less than 400 MHz required for isotopic clean up of 233 U. (author)

  13. Adaptive Tunable Laser Spectrometer for Space Applications

    Science.gov (United States)

    Flesch, Gregory; Keymeulen, Didier

    2010-01-01

    An architecture and process for the rapid prototyping and subsequent development of an adaptive tunable laser absorption spectrometer (TLS) are described. Our digital hardware/firmware/software platform is both reconfigurable at design time as well as autonomously adaptive in real-time for both post-integration and post-launch situations. The design expands the range of viable target environments and enhances tunable laser spectrometer performance in extreme and even unpredictable environments. Through rapid prototyping with a commercial RTOS/FPGA platform, we have implemented a fully operational tunable laser spectrometer (using a highly sensitive second harmonic technique). With this prototype, we have demonstrated autonomous real-time adaptivity in the lab with simulated extreme environments.

  14. Investigation of Tunable Diode Spectroscopy for Monitoring Gases in Geothermal Plants

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Partin

    2006-08-01

    The results of an investigation directed at the development of instrument-tation for the real-time monitoring of gases, such as hydrogen sulfide (H2S) and chloride (HCl), in geothermal process streams is described. The geothermal power industry has an interest in the development of new low maintenance techniques since improved capabilities could lead to considerable cost savings through the optimization of various gas abatement processes. Tunable diode laser spectroscopy was identified as a candidate tech-nology for this application and a commercial instrument was specified and procured for testing. The measurement principle involved the use of solid state diode lasers and frequency modulation techniques. The gallium arsenide diode lasers employed emit light in the 0.7 to 2.0 micron region of the electromagnetic spectrum. This region contains the overtone and combination absorption bands of a number of species of industrial interest, including H2S and HCl. A particular device can be tuned over a small range to match the absorption line by changing its applied temperature and current. The diode current can also be sinusoidally modulated in frequency as it is tuned across the line. This modulation allows measurements to be conducted at frequencies where the laser intensity noise is minimal; and therefore, very high signal-to-noise measurements are possible. The feasibility of using this technology in various types of geothermal process streams has been explored. The results of laboratory and field studies are presented along with new advances in laser technology that could allow more sensitive and selective measurements to be performed.

  15. Laterally injected light-emitting diode and laser diode

    Science.gov (United States)

    Miller, Mary A.; Crawford, Mary H.; Allerman, Andrew A.

    2015-06-16

    A p-type superlattice is used to laterally inject holes into an III-nitride multiple quantum well active layer, enabling efficient light extraction from the active area. Laterally-injected light-emitting diodes and laser diodes can enable brighter, more efficient devices that impact a wide range of wavelengths and applications. For UV wavelengths, applications include fluorescence-based biological sensing, epoxy curing, and water purification. For visible devices, applications include solid state lighting and projection systems.

  16. Semiconductor laser diodes and the design of a D.C. powered laser diode drive unit

    OpenAIRE

    Cappuccio, Joseph C., Jr.

    1988-01-01

    Approved for public release; distribution is unlimited This thesis addresses the design, development and operational analysis of a D.C. powered semiconductor laser diode drive unit. A laser diode requires an extremely stable power supply since a picosecond spike of current or power supply switching transient could result in permanent damage. The design offers stability and various features for operational protection of the laser diode. The ability to intensity modulate (analog) and pulse m...

  17. HCl yield and chemical kinetics study of the reaction of Cl atoms with CH3I at the 298K temperature using the infra-red tunable diode laser absorption spectroscopy.

    Science.gov (United States)

    Sharma, R C; Blitz, M; Wada, R; Seakins, P W

    2014-07-15

    Pulsed ArF excimer laser (193 nm)-CW infrared (IR) tunable diode laser Herriott type absorption spectroscopic technique has been made for the detection of product hydrochloric acid HCl. Absorption spectroscopic technique is used in the reaction chlorine atoms with methyl iodide (Cl+CH3I) to the study of kinetics on reaction Cl+CH3I and the yield of (HCl). The reaction of Cl+CH3I has been studied with the support of the reaction Cl+C4H10 (100% HCl) at temperature 298 K. In the reaction Cl+CH3I, the total pressure of He between 20 and 125 Torr at the constant concentration of [CH3I] 7.0×10(14) molecule cm(-3). In the present work, we estimated adduct formation is very important in the reaction Cl+CH3I and reversible processes as well and CH3I molecule photo-dissociated in the methyl [CH3] radical. The secondary chemistry has been studied as CH3+CH3ICl = product, and CH3I+CH3ICl = product2. The system has been modeled theoretically for secondary chemistry in the present work. The calculated and experimentally HCl yield nearly 65% at the concentration 1.00×10(14) molecule cm(-3) of [CH3I] and 24% at the concentration 4.0×10(15) molecule cm(-3) of [CH3I], at constant concentration 4.85×10(12) molecule cm(-3) of [CH3], and at 7.3×10(12) molecule cm(-3) of [Cl]. The pressure dependent also studied product of HCl at the constant [CH3], [Cl] and [CH3I]. The experimental results are also very good matching with the modelling work at the reaction CH3+CH3ICl = product (k = (2.75±0.35)×10(-10) s(-1)) and CH3I+CH3ICl = product2 (k = 1.90±0.15)×10(-12) s(-1). The rate coefficients of the reaction CH3+CH3ICl and CH3I+CH3ICl has been made in the present work. The experimental results has been studied by two method (1) phase locked and (2) burst mode. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Tapered diode laser pumped 946 nm Nd:YAG laser

    DEFF Research Database (Denmark)

    Cheng, Haynes Pak Hay; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2009-01-01

    We successfully implemented a 946 nm Nd:YAG laser based on a 808 nm tapered diode pump laser. The tapered diode is developed at the Ferdinand-Braun-Institute fur Hochstfrequenztechnik in Germany. Figure 2 shows the experimental setup and results of each pump source coupled into a 1.5 mm crystal...... laser, we show that tapered diode laser pumping potentially increase the power of 946 nm lasers by a factor of two and reduce the threshold by a factor of three....

  19. NAMMA DIODE LASER HYGROMETER (DLH) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Diode Laser Hygrometer (DLH), a near-infrared spectrometer operating from aircraft platforms, was developed by NASA's Langley and Ames Research Centers. It...

  20. NAMMA DIODE LASER HYGROMETER (DLH) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NAMMA Diode Laser Hygrometer (DLH) dataset uses the DLH, a near-infrared spectrometer operating from aircraft platforms, was developed by NASA's Langley and Ames...

  1. Tunable lasers for waste management photochemistry applications

    International Nuclear Information System (INIS)

    Finch, F.T.

    1978-09-01

    A review of lasers with potential photochemical applications in waste management indicates that dye lasers, as a class, can provide tunable laser output through the visible and near-uv regions of the spectrum of most interest to photochemistry. Many variables can affect the performance of a specific dye laser, and the interactions of these variables, at the current state of the art, are complex. The recent literature on dye-laser characteristics has been reviewed and summarized, with emphasis on those parameters that most likely will affect the scaling of dye lasers in photochemical applications. Current costs are reviewed and correlated with output power. A new class of efficient uv lasers that appear to be scalable in both energy output and pulse rate, based on rare-gas halide excimers and similar molecules, is certain to find major applications in photochemistry. Because the most important developments are too recent to be adequately described in the literature or are the likely outcome of current experiments, the basic physics underlying the class of excimer lasers is described. Specific cost data are unavailable, but these new gas lasers should reflect costs similar to those of existing gas lasers, in particular, the pulsed CO 2 lasers. To complete the survey of tunable-laser characteristics, the technical characteristics of the various classes of lasers in the ir are summarized. Important developments in ir laser technology are being accelerated by isotope-separation research, but, initially at least, this portion of the spectrum is least likely to receive emphasis in waste-management-oriented photochemistry

  2. Cryogenic-cooled Tm:SBN tunable laser

    Science.gov (United States)

    Švejkar, Richard; Šulc, Jan; Němec, Michal; Jelínková, Helena; Doroshenko, Maxim E.; Papashvili, Alexander G.; Batygov, Sergei H.; Osiko, Vyacheslav V.

    2017-12-01

    In this work the temperature dependence of spectroscopic and laser properties of new ac- tive medium Tm:SBN (Strontium-Barium Niobate, SrxBa1-xNb2O6, x = 0.61). The tested sample of Tm:SBN (2 wt. % of Tm2O3) appropriate for generation of laser radiation at 1.88 μm had plan-parallel polished faces without anti-reflection (thickness 6.65 mm). During spectroscopy and laser experiments the Tm:SBN was at- tached to temperature-controlled copper holder and was placed in a vacuum chamber. The transmission and emission spectra of Tm:SBN and the fluorescence decay time were measured depending on temperature range 80 - 350 K. The fluorescence decay time was measured to be 3.5 ms and 2.8 ms at 80 and 350 K, respectively. Longitudinal excitation of Tm:SBN was carried out by a fibre-coupled laser diode (pulse duration 10 ms, rep- etition rate 10 Hz, pump wavelength 793 nm). The laser resonator was hemispherical, 146 mm long, with flat pumping mirror (HR @1.8 - 2.1 μm) and spherical output coupler (r = 150 mm, R = 97.5 % @1.8 - 2.1 μm). The Tm:SBN laser properties were investigated at temperature range 80 - 300 K. The highest slope efficiency with respect to absorbed pumped power was 3 % at 80 K. The maximum output peak amplitude power was 0.12 W at 80 K, i.e. 3.2 times higher than it was measured at 200 K. Tunability of laser wavelength at 80 K in the range of 1827 - 1962 nm was obtained by using SiO2 birefringent filter. At 300 K, wavelength tunability reached 1859 - 1970 nm. Thus, the new Tm:SBN crystal can be an useful laser material in the region of 2 μm.

  3. Chip scale broadly tunable laser for laser spectrometer

    Science.gov (United States)

    Chao, Tien-Hsin; Lu, Thomas; Davis, Scott R.; Anderson, Michael H.

    2016-04-01

    We are developing an innovative Tunable Laser Spectrometer (TLS) that is compact, broad tuning range (> 200 nm) enabled by an innovative chip-scale (a waveguide based architecture), non-mechanical (voltage- controlled tuning), Waveguide External-cavity Semiconductor Laser (WECSL). This WECSL based TLS, with broad tuning range, will enable the simultaneous measurement of multiple gases abundances in Martian and other planetary atmospheres, adsorbed to soil; and bound to rocks. This monolithic, robust, integrated-optic Tunable Laser Absorption Spectrometer (TLS) will operate in the near infrared and infrared spectral bands. The system architecture, principles of operation and applications of the TLS will be reported in this paper.

  4. Next generation diode lasers with enhanced brightness

    Science.gov (United States)

    Ried, S.; Rauch, S.; Irmler, L.; Rikels, J.; Killi, A.; Papastathopoulos, E.; Sarailou, E.; Zimer, H.

    2018-02-01

    High-power diode lasers are nowadays well established manufacturing tools in high power materials processing, mainly for tactile welding, surface treatment and cladding applications. Typical beam parameter products (BPP) of such lasers range from 30 to 50 mm·mrad at several kilowatts of output power. TRUMPF offers a product line of diode lasers to its customers ranging from 150 W up to 6 kW of output power. These diode lasers combine high reliability with small footprint and high efficiency. However, up to now these lasers are limited in brightness due to the commonly used spatial and coarse spectral beam combining techniques. Recently diode lasers with enhanced brightness have been presented by use of dense wavelength multiplexing (DWM). In this paper we report on TRUMPF's diode lasers utilizing DWM. We demonstrate a 2 kW and a 4 kW system ideally suited for fine welding and scanner welding applications. The typical laser efficiency is in the range of 50%. The system offers plug and play exchange of the fiber beam delivery cable, multiple optical outputs and integrated cooling in a very compact package. An advanced control system offers flexible integration in any customer's shop floor environment and includes industry 4.0 capabilities (e.g. condition monitoring and predictive maintenance).

  5. Diode laser based light sources for biomedical applications

    DEFF Research Database (Denmark)

    Müller, André; Marschall, Sebastian; Jensen, Ole Bjarlin

    2013-01-01

    Diode lasers are by far the most efficient lasers currently available. With the ever-continuing improvement in diode laser technology, this type of laser has become increasingly attractive for a wide range of biomedical applications. Compared to the characteristics of competing laser systems, diode...... imaging. This review provides an overview of the latest development of diode laser technology and systems and their use within selected biomedical applications....

  6. Element selective detection of molecular species applying chromatographic techniques and diode laser atomic absorption spectrometry.

    Science.gov (United States)

    Kunze, K; Zybin, A; Koch, J; Franzke, J; Miclea, M; Niemax, K

    2004-12-01

    Tunable diode laser atomic absorption spectroscopy (DLAAS) combined with separation techniques and atomization in plasmas and flames is presented as a powerful method for analysis of molecular species. The analytical figures of merit of the technique are demonstrated by the measurement of Cr(VI) and Mn compounds, as well as molecular species including halogen atoms, hydrogen, carbon and sulfur.

  7. A dynamic soil chamber system coupled with a tunable diode laser for online measurements of delta-13C, delta-18O, and efflux rate of soil respired CO2

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Heath H [Los Alamos National Laboratory; Mcdowell, Nate [Los Alamos National Laboratory; Hanson, David [UNM; Hunt, John [LANDCARE RESEARCH

    2009-01-01

    High frequency observations of the stable isotopic composition of CO(2) effluxes from soil have been sparse due in part to measurement challenges. We have developed an open-system method that utilizes a flow-through chamber coupled to a tunable diode laser (TDL) to quantify the rate of soil CO(2) efflux and its delta(13)C and delta(18)O values (delta(13)C(R) and delta(18)O(R), respectively). We tested the method first in the laboratory using an artificial soil test column and then in a semi-arid woodland. We found that the CO(2) efflux rates of 1.2 to 7.3 micromol m(-2) s(-1) measured by the chamber-TDL system were similar to measurements made using the chamber and an infrared gas analyzer (IRGA) (R(2) = 0.99) and compared well with efflux rates generated from the soil test column (R(2) = 0.94). Measured delta(13)C and delta(18)O values of CO(2) efflux using the chamber-TDL system at 2 min intervals were not significantly different from source air values across all efflux rates after accounting for diffusive enrichment. Field measurements during drought demonstrated a strong dependency of CO(2) efflux and isotopic composition on soil water content. Addition of water to the soil beneath the chamber resulted in average changes of +6.9 micromol m(-2) s(-1), -5.0 per thousand, and -55.0 per thousand for soil CO(2) efflux, delta(13)C(R) and delta(18)O(R), respectively. All three variables initiated responses within 2 min of water addition, with peak responses observed within 10 min for isotopes and 20 min for efflux. The observed delta(18)O(R) was more enriched than predicted from temperature-dependent H(2)O-CO(2) equilibration theory, similar to other recent observations of delta(18)O(R) from dry soils (Wingate L, Seibt U, Maseyk K, Ogee J, Almeida P, Yakir D, Pereira JS, Mencuccini M. Global Change Biol. 2008; 14: 2178). The soil chamber coupled with the TDL was found to be an effective method for capturing soil CO(2) efflux and its stable isotope composition at high

  8. Open-path atmospheric transmission for a diode-pumped cesium laser.

    Science.gov (United States)

    Rice, Christopher A; Lott, Gordon E; Perram, Glen P

    2012-12-01

    A tunable diode laser absorption spectroscopy device was developed to study atmospheric propagation for emerging high-energy laser weapons. The cesium diode-pumped alkali laser operates near 895 nm in the vicinity of several water-vapor absorption lines. Temperature, pressure, and water vapor concentration were determined for 150 m and 1 km open paths with statistical errors of ∼0.2%. Comparison with meteorological instruments yields agreement for the 1 km path to within 0.6% for temperature, 3.7% for pressure, and 2.4% for concentration.

  9. Diode-side-pumped Alexandrite slab lasers.

    Science.gov (United States)

    Damzen, M J; Thomas, G M; Minassian, A

    2017-05-15

    We present the investigation of diode-side-pumping of Alexandrite slab lasers in a range of designs using linear cavity and grazing-incidence bounce cavity configurations. An Alexandrite slab laser cavity with double-pass side pumping produces 23.4 mJ free-running energy at 100 Hz rate with slope efficiency ~40% with respect to absorbed pump energy. In a slab laser with single-bounce geometry output power of 12.2 W is produced, and in a double-bounce configuration 6.5 W multimode and 4.5 W output in TEM 00 mode is produced. These first results of slab laser and amplifier designs in this paper highlight some of the potential strategies for power and energy scaling of Alexandrite using diode-side-pumped Alexandrite slab architectures with future availability of higher power red diode pumping.

  10. Ultrafast photoconductor detector-laser-diode transmitter

    International Nuclear Information System (INIS)

    Wang, C.L.; Davis, B.A.; Davies, T.J.; Nelson, M.A.; Thomas, M.C.; Zagarino, P.A.

    1987-01-01

    We report the results of an experiment in which we used an ultrafast, photoconductive, radiation detector to drive a fast laser-diode transmitter. When we irradiated the neutron-damaged Cr-doped GaAs detector with 17-MeV electron beams, the temporal response was measured to be less than 30 ps. The pulses from this detector modulated a fast GaAlAs laser diode to transmit the laser output through 30- and 1100-m optical fibers. Preliminary results indicate that 50- and 80-ps time resolutions, respectively, are obtainable with these fibers. We are now working to integrate the photoconductive detector and the laser diode transmitter into a single chip

  11. Ultrafast photoconductive detector-laser-diode transmitter

    International Nuclear Information System (INIS)

    Wang, C.L.; Davies, T.J.; Nelson, M.A.; Thomas, M.C.; Zagarino, P.A.; Davis, B.A.

    1987-01-01

    The authors report the results of an experiment in which they used an ultrafast, photoconductive, radiation detector to drive a fast laser-diode transmitter. When they irradiated the neutron-damaged Cr-doped Ga/As detector with 17-MeV electron beams, the temporal response of was measured to be less than 30 ps. The pulses from this detector modulated a fast GaAlAs laser diode to transmit the laser output through 30- and 1100-m optical fibers. Preliminary results indicate that 50- and 80-ps time resolutions, respectively, are obtainable with these fibers. They are now working to integrate the photoconductive detector and the laser diode transmitter into a single chip

  12. A low-temperature external cavity diode laser for broad wavelength tuning

    Science.gov (United States)

    Tobias, William G.; Rosenberg, Jason S.; Hutzler, Nicholas R.; Ni, Kang-Kuen

    2016-11-01

    We report on the design and characterization of a low-temperature external cavity diode laser (ECDL) system for broad wavelength tuning. The performance achieved with multiple diode models addresses the scarcity of commercial red laser diodes below 633 nm, which is a wavelength range relevant to the spectroscopy of many molecules and ions. Using a combination of multiple-stage thermoelectric cooling and water cooling, the operating temperature of a laser diode is lowered to -64 °C, more than 85 °C below the ambient temperature. The laser system integrates temperature and diffraction grating feedback tunability for coarse and fine wavelength adjustments, respectively. For two different diode models, single-mode operation is achieved with 38 mW output power at 616.8 nm and 69 mW at 622.6 nm, more than 15 nm below their ambient temperature free-running wavelengths. The ECDL design can be used for diodes of any available wavelength, allowing individual diodes to be tuned continuously over tens of nanometers and extending the wavelength coverage of commercial laser diodes.

  13. Isotope separation using tunable lasers

    International Nuclear Information System (INIS)

    Snavely, B.B.

    1975-01-01

    Various processes for laser isotope separation based upon the use of the spectroscopic isotope effect in atomic and molecular vapors are discussed. Emphasis is placed upon processes which are suitable for uranium enrichment. A demonstration process for the separation of uranium isotopes using selective photoionization is described. (U.S.)

  14. Tunability of laser based on Yb-doped hot-pressed CaF2 ceramics

    Science.gov (United States)

    Sulc, Jan; Doroshenko, Maxim E.; Jelínková, Helena; Basiev, Tasoltan T.; Konyushkin, Vasilii A.; Osiko, Vyacheslav V.

    2012-06-01

    The aim of presented study was an investigation of tunability of diode pumped laser based on hot-pressed Yb:CaF2 ceramics. The tested Yb:CaF2 sample was in the form of 3.5mm thick plane-parallel face-polished plate (without AR coatings). The Yb3+ concentration was 5.5 %. A fiber (core diameter 200 μm, NA= 0.22) coupled laser diode (LIMO, HLU25F200-980) with emission at wavelength 976 nm, was used for longitudinal Yb:CaF2 pumping. The laser diode was operating in the pulsed regime (4 ms pulse length, 20 Hz repetition rate). The duty-cycle 8% ensured a low thermal load even under the maximum diode pumping power amplitude 10W (crystal sample was only air-cooled). This radiation was focused into the crystal (pumping beam waist diameter ~ 170 μm). The 145mm long semi-hemispherical laser resonator consisted of a flat pumping mirror (HR @ 1.01 - 1.09 μm, HT @ 0.97 μm) and curved (r = 150mm) output coupler with a reflectivity of ~ 98% @ 1.01 - 1.09 μm. Tuning of the ytterbium laser was accomplished by using a birefringent filter (single 1.5mm thick quartz plate) placed inside the optical resonator at the Brewster angle between the output coupler and the laser active medium. The extremely broad and smooth tuning was obtained. The laser was continuously tunable over ~ 66nm (from 1015nm to 1081 nm) and the tuning band was mostly limited by free spectral range of used birefringent filter. The tunability FWHM was 40 nm corresponding bandwidth 10 THz results in Fourier limited gaussian pulse width ~ 40 fs (FWHM). The maximum output power amplitude 0.68W was obtained at wavelength 1054nm for absorbed pump power amplitude 6W. The laser slope efficiency was 15%.

  15. High power diode lasers converted to the visible

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Hansen, Anders Kragh; Andersen, Peter E.

    2017-01-01

    High power diode lasers have in recent years become available in many wavelength regions. However, some spectral regions are not well covered. In particular, the visible spectral range is lacking high power diode lasers with good spatial quality. In this paper, we highlight some of our recent...... results in nonlinear frequency conversion of high power near infrared diode lasers to the visible spectral region....

  16. The Beam Characteristics of High Power Diode Laser Stack

    Science.gov (United States)

    Gu, Yuanyuan; Fu, Yueming; Lu, Hui; Cui, Yan

    2018-03-01

    Direct diode lasers have some of the most attractive features of any laser. They are very efficient, compact, wavelength versatile, low cost, and highly reliable. However, the full utilization of direct diode lasers has yet to be realized. However, the poor quality of diode laser beam itself, directly affect its application ranges, in order to better use of diode laser stack, need a proper correction of optical system, which requires accurate understanding of the diode laser beam characteristics. Diode laser could make it possible to establish the practical application because of rectangular beam patterns which are suitable to make fine bead with less power. Therefore diode laser cladding will open a new field of repairing for the damaged machinery parts which must contribute to recycling of the used machines and saving of cost.

  17. Diode laser prostatectomy (VLAP): initial canine evaluation

    Science.gov (United States)

    Kopchok, George E.; Verbin, Chris; Ayres, Bruce; Peng, Shi-Kaung; White, Rodney A.

    1995-05-01

    This study evaluated the acute and chronic effects of diode laser (960 nm) prostatectomy using a Prolase II fiber in a canine model (n equals 5). The laser fiber consists of a 1000 um quartz fiber which reflects a cone of laser energy, at 45 degree(s) to the axis of the fiber, into the prostatic urethra (Visual Laser Ablation of Prostate). Perineal access was used to guide a 15.5 Fr cystoscope to the level of the prostate. Under visual guidance and continual saline irrigation, 60 watts of laser power was delivered for 60 seconds at 3, 9, and 12 o'clock and 30 seconds at the 6 o'clock (posterior) positions for a total energy fluence of 12,600 J. One prostate received an additional 60 second exposure at 3 and 9 o'clock for a total fluence of 19,800 J. The prostates were evaluated at one day (n equals 1) and 8 weeks (n equals 4). The histopathology of laser effects at one day show areas of necrosis with loss of glandular structures and stromal edema. Surrounding this area was a zone of degenerative glandular structures extending up to 17.5 mm (cross sectional diameter). The histopathology of the 8 week laser treated animals demonstrated dilated prostatic urethras with maximum cross- sectional diameter of 23.4 mm (mean equals 18.5 +/- 3.9 mm). This study demonstrates the effectiveness of diode laser energy for prostatic tissue coagulation and eventual sloughing. The results also demonstrate the safety of diode laser energy, with similar tissue response as seen with Nd:YAG laser, for laser prostatectomy.

  18. Microring Diode Laser for THz Generation

    DEFF Research Database (Denmark)

    Mariani, S.; Andronico, A.; Favero, I.

    2013-01-01

    We report on the modeling and optical characterization of AlGaAs/InAs quantum-dot microring diode lasers designed for terahertz (THz) difference frequency generation (DFG) between two whispering gallery modes (WGMs) around 1.3 $\\mu$m. In order to investigate the spectral features of this active...

  19. Outcome of Diode Laser Cyclophotocoagulation in Neovascular ...

    African Journals Online (AJOL)

    Aim: To find out the short-term outcome of ciliary ablation with diode laser contact cyclophotocoagulation in Nigerians with neovascular glaucoma. Methods: The study is a retrospective, non-comparative, interventional case series. Demographic data, ocular and systemic history were obtained. Clinical examination included ...

  20. Co-extruded mechanically tunable multilayer elastomer laser

    Science.gov (United States)

    Crescimanno, Michael; Mao, Guilin; Andrews, James; Singer, Kenneth; Baer, Eric; Hiltner, Anne; Song, Hyunmin; Shakya, Bijayandra

    2011-04-01

    We have fabricated and studied mechanically tunable elastomer dye lasers constructed in large area sheets by a single-step layer-multiplying co-extrusion process. The laser films consist of a central dye-doped (Rhodamine-6G) elastomer layer between two 128-layer distributed Bragg reflector (DBR) films comprised of alternating elastomer layers with different refractive indices. The central gain layer is formed by folding the coextruded DBR film to enclose a dye-doped skin layer. By mechanically stretching the elastomer laser film from 0% to 19%, a tunable miniature laser source was obtained with ˜50 nm continuous tunability from red to green.

  1. Wavelength tunability of laser based on Yb-doped YGAG ceramics

    Science.gov (United States)

    Šulc, Jan; Jelínková, Helena; Jambunathan, Venkatesan; Miura, Taisuke; Endo, Akira; Lucianetti, Antonio; Mocek, TomáÅ.¡

    2015-02-01

    The wavelength tunability of diode pumped laser based on Yb-doped mixed garnet Y3Ga2Al3O12 (Yb:YGAG) ceramics was investigated. The tested Yb:YGAG sample (10% Yb/Y) was in the form of 2mm thick plane-parallel face-polished plate (without AR coatings). A fiber (core diameter 100 μm, NA= 0.22) coupled laser diode (LIMO, LIMO35-F100-DL980-FG-E) with emission at wavelength 969 nm, was used for longitudinal Yb:YGAG pumping. The laser diode was operating in the pulsed regime (2 ms pulse length, 10 Hz repetition rate). The duty-cycle 2% ensured a low thermal load even under the maximum diode pumping power amplitude 20W (ceramics sample was only air-cooled). The 145mm long semi-hemispherical laser resonator consisted of a flat pumping mirror (HR @ 1.01 - 1.09 μm, HT @ 0.97 μm) and curved (r = 150mm) output coupler with a reflectivity of ˜ 97% @ 1.01 - 1.09 μm. Wavelength tuning of the ytterbium laser was accomplished by using a birefringent filter (single 1.5mm thick quartz plate) placed inside the optical resonator at the Brewster angle between the output coupler and the laser active medium. The laser was continuously tunable over ˜ 58nm (from 1022nm to 1080 nm) and the tuning band was mostly limited by the free spectral range of used birefringent filter. The maximum output power amplitude 3W was obtained at wavelength 1046nm for absorbed pump power amplitude 10.6W. The laser slope efficiency was 34%.

  2. Diode-laser-illuminated automotive lamp systems

    Science.gov (United States)

    Marinelli, Michael A.; Remillard, Jeffrey T.

    1998-05-01

    We have utilized the high brightness of state-of-the-art diode laser sources, and a variety of emerging optical technologies to develop a new class of thin, uniquely styled automotive brake and signal lamps. Using optics based on thin (5 mm) plastic sheets, these lamps provide appearance and functional advantages not attainable with traditional automotive lighting systems. The light is coupled into the sheets using a 1 mm diameter glass fiber, and manipulated using refraction and reflection from edges, surfaces, and shaped cut-outs. Light can be extracted with an efficiency of approximately 50% and formed into a luminance distribution that meets the Society of Automotive Engineers (SAE) photometric requirements. Prototype lamps using these optics have been constructed and are less than one inch in thickness. Thin lamps reduce sheet metal costs, complexity, material usage, weight, and allow for increased trunk volume. In addition, these optics enhance lamp design flexibility. When the lamps are not energized, they can appear body colored, and when lighted, the brightness distribution across the lamp can be uniform or structured. A diode laser based brake lamp consumes seven times less electrical power than one using an incandescent source and has instant on capability. Also, diode lasers have the potential to be 10-year/150,000 mile light sources.

  3. High energy, single frequency, tunable laser source operating in burst mode for space based lidar applications

    Science.gov (United States)

    Cosentino, Alberto; Mondello, Alessia; Sapia, Adalberto; D'Ottavi, Alessandro; Brotini, Mauro; Nava, Enzo; Stucchi, Emanuele; Trespidi, Franco; Mariottini, Cristina; Wazen, Paul; Falletto, Nicolas; Fruit, Michel

    2017-11-01

    This paper describes the laser transmitter assembly used in the ALADIN instrument currently in C/D development phase for the ESA ADM-AEOLUS mission (EADS Astrium as prime contractor for the satellite and the instrument). The Laser Transmitter Assembly (TXA), based on a diode pumped tripled Nd:YAG laser, is used to generate tunable laser pulses of 150 mJ at a nominal wavelength of 355 nm. This laser is operated in burst mode, with a pulse repetition cycle of 100 Hz. The TXA is composed of the following units: a diodepumped CW Nd:YAG Laser named Reference Laser Head (RLH), used to inject a diode-pumped, Q-switched, amplified and frequency tripled Nd:YAG Laser working in the third harmonic referred as Power Laser Head (PLH) and a Transmitter Laser Electronics (TLE) containing all the control and power electronics needed for PLH and RLH operation. The TXA is made by an European consortium under the leadership of Galileo Avionica (It), and including CESI (It), Quantel (Fr), TESAT (Ge) and Thales (Fr).

  4. Eye and sensor protection from tunable laser beams

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.H.; Garrett, W.R.; DiCillo, J.J.; Phillips, R.C. (Oak Ridge National Lab., TN (United States)); Payne, M.G. (Georgia Southern Univ., Statesboro, GA (United States)); Templeton, D. (Army Tank-Automotive Command, Warren, MI (United States))

    1993-01-01

    We describe successes achieved in two different approaches to the problem of providing eye protection to personnel and sensor protection to devices in combat vehicles from perceived threats from tunable, visible laser beams.

  5. Eye and sensor protection from tunable laser beams

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.H.; Garrett, W.R.; DiCillo, J.J.; Phillips, R.C. [Oak Ridge National Lab., TN (United States); Payne, M.G. [Georgia Southern Univ., Statesboro, GA (United States); Templeton, D. [Army Tank-Automotive Command, Warren, MI (United States)

    1993-06-01

    We describe successes achieved in two different approaches to the problem of providing eye protection to personnel and sensor protection to devices in combat vehicles from perceived threats from tunable, visible laser beams.

  6. Novel Tunable Dye Laser for Lidar Detection, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A tunable dye laser for Lidar detection will be fabricated based on the innovative dye-doped Holographic Polymer Dispersed Liquid Crystals (HPDLC) technology. The...

  7. Spectral and Radiometric Calibration using Tunable Lasers Project

    Data.gov (United States)

    National Aeronautics and Space Administration —  SIRCUS-based calibration relies on a set of monitoring radiometers and tunable laser sources to provide an absolute radiometric calibration that can approach...

  8. High-power laser diodes at various wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Emanuel, M.A.

    1997-02-19

    High power laser diodes at various wavelengths are described. First, performance and reliability of an optimized large transverse mode diode structure at 808 and 941 nm are presented. Next, data are presented on a 9.5 kW peak power array at 900 nm having a narrow emission bandwidth suitable for pumping Yb:S-FAP laser materials. Finally, results on a fiber-coupled laser diode array at {approx}730 nm are presented.

  9. Noise equivalent circuit of a semiconductor laser diode

    OpenAIRE

    Harder, Christoph; Katz, Joseph; Margalit, S.; Shacham, J.; Yariv, A.

    1982-01-01

    The noise equivalent circuit of a semiconductor laser diode is derived from the rate equations including Langevin noise sources. This equivalent circuit allows a straightforward calculation of the noise and modulation characteristics of a laser diode combined with electronic components. The intrinsic junction voltage noise spectrum and the light intensity fluctuation of a current driven laser diode are calculated as a function of bias current and frequency.

  10. Diode lasers optimized in brightness for fiber laser pumping

    Science.gov (United States)

    Kelemen, M.; Gilly, J.; Friedmann, P.; Hilzensauer, S.; Ogrodowski, L.; Kissel, H.; Biesenbach, J.

    2018-02-01

    In diode laser applications for fiber laser pumping and fiber-coupled direct diode laser systems high brightness becomes essential in the last years. Fiber coupled modules benefit from continuous improvements of high-power diode lasers on chip level regarding output power, efficiency and beam characteristics resulting in record highbrightness values and increased pump power. To gain high brightness not only output power must be increased, but also near field widths and far field angles have to be below a certain value for higher power levels because brightness is proportional to output power divided by beam quality. While fast axis far fields typically show a current independent behaviour, for broadarea lasers far-fields in the slow axis suffer from a strong current and temperature dependence, limiting the brightness and therefore their use in fibre coupled modules. These limitations can be overcome by carefully optimizing chip temperature, thermal lensing and lateral mode structure by epitaxial and lateral resonator designs and processing. We present our latest results for InGaAs/AlGaAs broad-area single emitters with resonator lengths of 4mm emitting at 976nm and illustrate the improvements in beam quality over the last years. By optimizing the diode laser design a record value of the brightness for broad-area lasers with 4mm resonator length of 126 MW/cm2sr has been demonstrated with a maximum wall-plug efficiency of more than 70%. From these design also pump modules based on 9 mini-bars consisting of 5 emitters each have been realized with 360W pump power.

  11. Polarization methods for diode laser excitation of solid state lasers

    Science.gov (United States)

    Holtom, Gary R.

    2008-11-25

    A mode-locked laser employs a coupled-polarization scheme for efficient longitudinal pumping by reshaped laser diode bars. One or more dielectric polarizers are configured to reflect a pumping wavelength having a first polarization and to reflect a lasing wavelength having a second polarization. A Yb-doped gain medium can be used that absorbs light having a first polarization and emits light having a second polarization. Using such pumping with laser cavity dispersion control, pulse durations of less than 100 fs can be achieved.

  12. Semiconductor Laser Diode Pumps for Inertial Fusion Energy Lasers

    International Nuclear Information System (INIS)

    Deri, R.J.

    2011-01-01

    Solid-state lasers have been demonstrated as attractive drivers for inertial confinement fusion on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) and at the Omega Facility at the Laboratory for Laser Energetics (LLE) in Rochester, NY. For power plant applications, these lasers must be pumped by semiconductor diode lasers to achieve the required laser system efficiency, repetition rate, and lifetime. Inertial fusion energy (IFE) power plants will require approximately 40-to-80 GW of peak pump power, and must operate efficiently and with high system availability for decades. These considerations lead to requirements on the efficiency, price, and production capacity of the semiconductor pump sources. This document provides a brief summary of these requirements, and how they can be met by a natural evolution of the current semiconductor laser industry. The detailed technical requirements described in this document flow down from a laser ampl9ifier design described elsewhere. In brief, laser amplifiers comprising multiple Nd:glass gain slabs are face-pumped by two planar diode arrays, each delivering 30 to 40 MW of peak power at 872 nm during a ∼ 200 (micro)s quasi-CW (QCW) pulse with a repetition rate in the range of 10 to 20 Hz. The baseline design of the diode array employs a 2D mosaic of submodules to facilitate manufacturing. As a baseline, they envision that each submodule is an array of vertically stacked, 1 cm wide, edge-emitting diode bars, an industry standard form factor. These stacks are mounted on a common backplane providing cooling and current drive. Stacks are conductively cooled to the backplane, to minimize both diode package cost and the number of fluid interconnects for improved reliability. While the baseline assessment in this document is based on edge-emitting devices, the amplifier design does not preclude future use of surface emitting diodes, which may offer appreciable future cost reductions and

  13. High power diode laser remelting of metals

    International Nuclear Information System (INIS)

    Chmelickova, H; Tomastik, J; Ctvrtlik, R; Supik, J; Nemecek, S; Misek, M

    2014-01-01

    This article is focused on the laser surface remelting of the steel samples with predefined overlapping of the laser spots. The goal of our experimental work was to evaluate microstructure and hardness both in overlapped zone and single pass ones for three kinds of ferrous metals with different content of carbon, cast iron, non-alloy structural steel and tool steel. High power fibre coupled diode laser Laserline LDF 3600-100 was used with robotic guided processing head equipped by the laser beam homogenizer that creates rectangular beam shape with uniform intensity distribution. Each sample was treated with identical process parameters - laser power, beam diameter, focus position, speed of motion and 40% spot overlap. Dimensions and structures of the remelted zone, zone of the partial melting, heat affected zone and base material were detected and measured by means of laser scanning and optical microscopes. Hardness progress in the vertical axis of the overlapped zone from remelted surface layer to base material was measured and compared with the hardness of the single spots. The most hardness growth was found for cast iron, the least for structural steel. Experiment results will be used to processing parameters optimization for each tested material separately.

  14. Linear diode laser bar optical stretchers for cell deformation

    Science.gov (United States)

    Sraj, Ihab; Marr, David W.M.; Eggleton, Charles D.

    2010-01-01

    To investigate the use of linear diode laser bars to optically stretch cells and measure their mechanical properties, we present numerical simulations using the immersed boundary method (IBM) coupled with classic ray optics. Cells are considered as three-dimensional (3D) spherical elastic capsules immersed in a fluid subjected to both optical and hydrodynamic forces in a periodic domain. We simulate cell deformation induced by both single and dual diode laser bar configurations and show that a single diode laser bar induces significant stretching but also induces cell translation of speed < 10 µm/sec for applied 6.6 mW/µm power in unconfined systems. The dual diode laser bar configuration, however, can be used to both stretch and optically trap cells at a fixed position. The net cell deformation was found to be a function of the total laser power and not the power distribution between single or dual diode laser bar configurations. PMID:21258483

  15. Method for partially coating laser diode facets

    Science.gov (United States)

    Dholakia, Anil R. (Inventor)

    1990-01-01

    Bars of integral laser diode devices cleaved from a wafer are placed with their p regions abutting and n regions abutting. A thin BeCu mask having alternate openings and strips of the same width as the end facets is used to mask the n region interfaces so that multiple bars can be partially coated over their exposed p regions with a reflective or partial reflective coating. The partial coating permits identification of the emitting facet from the fully coated back facet during a later device mounting procedure.

  16. Diode lasers for interstitial laser coagulation of the prostate

    Science.gov (United States)

    Muschter, Rolf; Perlmutter, Aaron P.; Anson, K.; Jahnen, P.; Vargas Stuve, Juan C.; Razvi, Hassan A.; Sroka, Ronald; Hofstetter, Alfons G.; Vaughan, Darracott E., Jr.

    1995-05-01

    The concept of interstitial laser coagulation (ILC) of the prostate is the generation of intraprostatic lesions of large volumes, which secondarily are resorbed. In previously published experimental and clinical studies Nd:YAG lasers in combination with specially designed light guides were used. The aim of this study was to examine the suitability of diode lasers to be used in ILC. Diode lasers of various wavelengths (805 nm, 830 nm, 950 nm and 980 nm) with different interstitial applicators (predominantly diffusor tips) were tested in vitro (potatoes, turkey muscle, porcine liver) and in vivo (canine prostate). In vitro experiments were done with various powers and radiation times in order to evaluate the maximum lesion size achievable without tissue carbonization. This depended on the length of the applicator and could measure more than 20 mm. To get large lesion volumes with short radiation times, but to avoid charring, in vivo graded powers were favorable. These were optimized for some systems. In the canine prostate, lesion diameters of up to 15 mm were achieved. For clinical use, interstitial applicators were inserted into the bulky BPH transurethrally through a cystoscope under direct vision, either directly or aided by an introducer system. The number of fiber placements depended on the size and configuration of the gland and varied between 3 and 16. With the 980 nm diode laser and an applicator with conical beam pattern, irradiation was performed for 3 minutes per fiber placement using stepwise reduced power (20 W for 30 s, 15 W for 30 s, 10 W for 30 s and 7 W for 90 s). With the 830 nm diode laser and diffusor tip, the initial power of 10 W was reduced to 5 W within 4 minutes total radiation time. From 1993, 19 patients were treated with diode lasers (830 and 980 nm). Three months follow-up in 15 patients treated with 830 nm showed an AUA-score change from 18.9 to 5.9 and a peak flow rate change from 7.8 to 15.2 ml/s.

  17. Electrically tunable liquid crystal photonic bandgap fiber laser

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Scolari, Lara; Wei, Lei

    2010-01-01

    We demonstrate electrical tunability of a fiber laser by using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an al...

  18. Cascade Type-I Quantum Well GaSb-Based Diode Lasers

    Directory of Open Access Journals (Sweden)

    Leon Shterengas

    2016-05-01

    Full Text Available Cascade pumping of type-I quantum well gain sections was utilized to increase output power and efficiency of GaSb-based diode lasers operating in a spectral region from 1.9 to 3.3 μm. Carrier recycling between quantum well gain stages was realized using band-to-band tunneling in GaSb/AlSb/InAs heterostructure complemented with optimized electron and hole injector regions. Coated devices with an ~100-μm-wide aperture and a 3-mm-long cavity demonstrated continuous wave (CW output power of 1.96 W near 2 μm, 980 mW near 3 μm, 500 mW near 3.18 μm, and 360 mW near 3.25 μm at 17–20 °C—a nearly or more than twofold increase compared to previous state-of-the-art diode lasers. The utilization of the different quantum wells in the cascade laser heterostructure was demonstrated to yield wide gain lasers, as often desired for tunable laser spectroscopy. Double-step etching was utilized to minimize both the internal optical loss and the lateral current spreading penalties in narrow-ridge lasers. Narrow-ridge cascade diode lasers operate in a CW regime with ~100 mW of output power near and above 3 μm and above 150 mW near 2 μm.

  19. Electric-field tunable spin diode FMR in patterned PMN-PT/NiFe structures

    Energy Technology Data Exchange (ETDEWEB)

    Ziętek, Slawomir, E-mail: zietek@agh.edu.pl; Skowroński, Witold; Stobiecki, Tomasz [AGH University of Science and Technology, Department of Electronics, Al. Mickiewicza 30, 30-059 Kraków (Poland); Ogrodnik, Piotr, E-mail: piotrogr@if.pw.edu.pl [AGH University of Science and Technology, Department of Electronics, Al. Mickiewicza 30, 30-059 Kraków (Poland); Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa (Poland); Stobiecki, Feliks [Institute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17, 60-179 Poznań (Poland); Dijken, Sebastiaan van [NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto (Finland); Barnaś, Józef [Faculty of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań (Poland); Institute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17, 60-179 Poznań (Poland)

    2016-08-15

    Dynamic properties of NiFe thin films on PMN-PT piezoelectric substrate are investigated using the spin-diode method. Ferromagnetic resonance (FMR) spectra of microstrips with varying width are measured as a function of magnetic field and frequency. The FMR frequency is shown to depend on the electric field applied across the substrate, which induces strain in the NiFe layer. Electric field tunability of up to 100 MHz per 1 kV/cm is achieved. An analytical model based on total energy minimization and the Landau-Lifshitz-Gilbert equation, taking into account the magnetostriction effect, is used to explain the measured dynamics. Based on this model, conditions for optimal electric-field tunable spin diode FMR in patterned NiFe/PMN-PT structures are derived.

  20. High-power green diode laser systems for biomedical applications

    DEFF Research Database (Denmark)

    Müller, André

    spectroscopy and imaging, and fluorescence measurements. A major challenge in diode laser technology is to obtain high-power laser emission at wavelengths green spectral range is of high importance, for example, in dermatology or for direct pumping of ultrashort pulsed lasers...... in conjunction with optical coherence tomography, two-photon microscopy or coherent anti-Stokes Raman scattering microscopy. In order to provide high-power green diode laser emission, nonlinear frequency conversion of state-of-the-art near-infrared diode lasers represents a necessary means. However, the obtained...... output power of frequency doubled single emitters is limited by thermal effects potentially resulting in laser degradation and failure. In this work new concepts for power scaling of visible diode laser systems are introduced that help to overcome current limitations and enhance the application potential...

  1. A practical guide to handling laser diode beams

    CERN Document Server

    Sun, Haiyin

    2015-01-01

    This book offers the reader a practical guide to the control and characterization of laser diode beams.  Laser diodes are the most widely used lasers, accounting for 50% of the global laser market.  Correct handling of laser diode beams is the key to the successful use of laser diodes, and this requires an in-depth understanding of their unique properties. Following a short introduction to the working principles of laser diodes, the book describes the basics of laser diode beams and beam propagation, including Zemax modeling of a Gaussian beam propagating through a lens.  The core of the book is concerned with laser diode beam manipulations: collimating and focusing, circularization and astigmatism correction, coupling into a single mode optical fiber, diffractive optics and beam shaping, and manipulation of multi transverse mode beams.  The final chapter of the book covers beam characterization methods, describing the measurement of spatial and spectral properties, including wavelength and linewidth meas...

  2. Computer-Assisted Experiments with a Laser Diode

    Science.gov (United States)

    Kraftmakher, Yaakov

    2011-01-01

    A laser diode from an inexpensive laser pen (laser pointer) is used in simple experiments. The radiant output power and efficiency of the laser are measured, and polarization of the light beam is shown. The "h/e" ratio is available from the threshold of spontaneous emission. The lasing threshold is found using several methods. With a…

  3. Laser cooling of beryllium ions using a frequency-doubled 626 nm diode laser

    NARCIS (Netherlands)

    Cozijn, F.M.J.; Biesheuvel, J.; Flores, A.S.; Ubachs, W.M.G.; Blume, G.; Wicht, A.; Paschke, K.; Erbert, G.; Koelemeij, J.C.J.

    2013-01-01

    We demonstrate laser cooling of trapped beryllium ions at 313 nm using a frequency-doubled extended cavity diode laser operated at 626 nm, obtained by cooling a ridge waveguide diode laser chip to -31°C. Up to 32 mW of narrowband 626 nm laser radiation is obtained. After passage through an optical

  4. Photodynamics and physics behind tunable solid-state lasers

    Science.gov (United States)

    Alfano, R. R.; Petricevic, V.; Demos, S. G.

    1991-02-01

    Research was focused in two areas. The use of excite-and-probe anti-Stokes Raman scattering apparatus, the nonequilibrium phonons which participate in the overall complex nonradiative decay in tunable solid state laser crystals, were directly identified. Rise and decay behavior of different Raman-active phonon modes were measured. A new laser ion, Chromium 4(+) in chromium-doped forsterite was discovered, and its spectroscopic and laser characteristics were investigated.

  5. Gate-tunable carbon nanotube–MoS2 heterojunction p-n diode

    Science.gov (United States)

    Jariwala, Deep; Sangwan, Vinod K.; Wu, Chung-Chiang; Prabhumirashi, Pradyumna L.; Geier, Michael L.; Marks, Tobin J.; Lauhon, Lincoln J.; Hersam, Mark C.

    2013-01-01

    The p-n junction diode and field-effect transistor are the two most ubiquitous building blocks of modern electronics and optoelectronics. In recent years, the emergence of reduced dimensionality materials has suggested that these components can be scaled down to atomic thicknesses. Although high-performance field-effect devices have been achieved from monolayered materials and their heterostructures, a p-n heterojunction diode derived from ultrathin materials is notably absent and constrains the fabrication of complex electronic and optoelectronic circuits. Here we demonstrate a gate-tunable p-n heterojunction diode using semiconducting single-walled carbon nanotubes (SWCNTs) and single-layer molybdenum disulfide as p-type and n-type semiconductors, respectively. The vertical stacking of these two direct band gap semiconductors forms a heterojunction with electrical characteristics that can be tuned with an applied gate bias to achieve a wide range of charge transport behavior ranging from insulating to rectifying with forward-to-reverse bias current ratios exceeding 104. This heterojunction diode also responds strongly to optical irradiation with an external quantum efficiency of 25% and fast photoresponse <15 μs. Because SWCNTs have a diverse range of electrical properties as a function of chirality and an increasing number of atomically thin 2D nanomaterials are being isolated, the gate-tunable p-n heterojunction concept presented here should be widely generalizable to realize diverse ultrathin, high-performance electronics and optoelectronics. PMID:24145425

  6. Generation conditions of CW Diode Laser Sustained Plasma

    Science.gov (United States)

    Nishimoto, Koji; Matsui, Makoto; Ono, Takahiro

    2016-09-01

    Laser sustained plasma was generated using 1 kW class continuous wave diode laser. The laser beam was focused on the seed plasma generated by arc discharge in 1 MPa xenon lamp. The diode laser has advantages of high energy conversion efficiency of 80%, ease of maintenance, compact size and availability of conventional quartz based optics. Therefore, it has a prospect of further development compared with conventional CO2 laser. In this study, variation of the plasma shape caused by laser power is observed and also temperature distribution in the direction of plasma radius is measured by optical emission spectroscopy.

  7. Colour-tunable light-emitting diodes based on InP/GaP nanostructures

    International Nuclear Information System (INIS)

    Hatami, Fariba; Masselink, W Ted; Harris, James S

    2006-01-01

    We describe a novel colour-tunable light-emitting diode whose operation is based on direct band-gap emission from coupled configurations of InP quantum dots and quantum wells embedded in GaP. The control of the emission colour stems from a marked difference in the current dependence of intensities of two different emission processes. At lower currents, the emission is dominated by the 720 nm luminescence from the quantum dots and appears red; at higher currents, the emission is dominated by the 550 nm quantum-well luminescence and the perceived colour is green. Thus, we are able to tune the colour of such diodes from red to green by means of drive current. A multi-colour pixel can be realized by a single diode, with rapid switching between colour states to provide a range of colour mix

  8. High brightness diode lasers controlled by volume Bragg gratings

    Science.gov (United States)

    Glebov, Leonid

    2017-02-01

    Volume Bragg gratings (VBGs) recorded in photo-thermo-refractive (PTR) glass are holographic optical elements that are effective spectral and angular filters withstanding high power laser radiation. Reflecting VBGs are narrow-band spectral filters while transmitting VBGs are narrow-band angular filters. The use of these optical elements in external resonators of semiconductor lasers enables extremely resonant feedback that provides dramatic spectral and angular narrowing of laser diodes radiation without significant power and efficiency penalty. Spectral narrowing of laser diodes by reflecting VBGs demonstrated in wide spectral region from near UV to 3 μm. Commercially available VBGs have spectral width ranged from few nanometers to few tens of picometers. Efficient spectral locking was demonstrated for edge emitters (single diodes, bars, modules, and stacks), vertical cavity surface emitting lasers (VCSELs), grating coupled surface emitting lasers (GCSELs), and interband cascade lasers (ICLs). The use of multiplexed VBGs provides multiwavelength emission from a single emitter. Spectrally locked semiconductor lasers demonstrated CW power from milliwatts to a kilowatt. Angular narrowing by transmitting VBGs enables single transverse mode emission from wide aperture diode lasers having resonators with great Fresnel numbers. This feature provides close to diffraction limit divergence along a slow axis of wide stripe edge emitters. Radiation exchange between lasers by means of spatially profiled or multiplexed VBGs enables coherent combining of diode lasers. Sequence of VBGs or multiplexed VBGs enable spectral combining of spectrally narrowed diode lasers or laser modules. Thus the use of VBGs for diode lasers beam control provides dramatic increase of brightness.

  9. A Continuously Tunable Erbium-Doped Fibre Laser Using Tunable Fibre Bragg Gratings and Optical Circulator

    International Nuclear Information System (INIS)

    Peng, Liu; Feng-Ping, Yan; Jian, Li; Lin, Wang; Ti-Gang, Ning; Tao-Rong, Gong; Shui-Sheng, Jian

    2008-01-01

    A continuously tunable erbium-doped fibre laser (TEDFL) based on tunable fibre Bragger grating (TFBG) and a three-port optical circulator (OC) is proposed and demonstrated. The OC acts as a 100%-reflective mirror. A strain-induced uniform fibre Bragger grating (FBG) which functions as a partial-reflecting mirror is implemented in the linear cavity. By applying axial strain onto the TFBG, a continuously tunable lasing output can be realized. The wavelength tuning range covers approximately 7.00nm in C band (from 1543.6161 to 1550.3307nm). The side mode suppression ratio (SMSR) is better than 50 dB, and the 3 dB bandwidth of the laser is less than 0.01 nm. Moreover, an array waveguide grating (AWG) is inserted into the cavity for wavelength preselecting, and a 50 km transmission experiment was performed using our TEDFL at a 10Gb/s modulation rate

  10. Modular package for cooling a laser diode array

    Science.gov (United States)

    Mundinger, David C.; Benett, William J.; Beach, Raymond J.

    1992-01-01

    A laser diode array is disclosed that includes a plurality of planar packages and active cooling. The laser diode array may be operated in a long duty cycle, or in continuous operation. A laser diode bar and a microchannel heat sink are thermally coupled in a compact, thin planar package having the laser diode bar located proximate to one edge. In an array, a number of such thin planar packages are secured together in a stacked configuration, in close proximity so that the laser diodes are spaced closely. The cooling means includes a microchannel heat sink that is attached proximate to the laser bar so that it absorbs heat generated by laser operation. To provide the coolant to the microchannels, each thin planar package comprises a thin inlet manifold and a thin outlet manifold connected to an inlet corridor and an outlet corridor. The inlet corridor comprises a hole extending through each of the packages in the array, and the outlet corridor comprises a hole extending through each of the packages in the array. The inlet and outlet corridors are connected to a conventional coolant circulation system. The laser diode array with active cooling has application as an optical pump for high power solid state lasers. Further, it can be incorporated in equipment such as communications devices and active sensors, and in military and space applications, and it can be useful in applications having space constraints and energy limitations.

  11. Micro-integrated extended cavity diode lasers for precision potassium spectroscopy in space.

    Science.gov (United States)

    Luvsandamdin, Erdenetsetseg; Kürbis, Christian; Schiemangk, Max; Sahm, Alexander; Wicht, Andreas; Peters, Achim; Erbert, Götz; Tränkle, Günther

    2014-04-07

    We present a micro-integrated, extended cavity diode laser module for space-based experiments on potassium Bose-Einstein condensates and atom interferometry. The module emits at the wavelength of the potassium D2-line at 766.7 nm and provides 27.5 GHz of continuous tunability. It features sub-100 kHz short term (100 μs) emission linewidth. To qualify the extended cavity diode laser module for quantum optics experiments in space, vibration tests (8.1 g(RMS) and 21.4 g(RMS)) and mechanical shock tests (1500 g) were carried out. No degradation of the electro-optical performance was observed.

  12. Active stabilization of a diode laser injection lock.

    Science.gov (United States)

    Saxberg, Brendan; Plotkin-Swing, Benjamin; Gupta, Subhadeep

    2016-06-01

    We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser's transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudden failures such as temporary occlusion of the injection beam. We demonstrate the successful performance of our stabilization method in a diode laser setup at 399 nm used for laser cooling of Yb atoms. The device eases the requirements on passive stabilization and can benefit any diode laser injection lock application, particularly those where several such locks are employed.

  13. Development of tunable flashlamp excited dye laser system

    International Nuclear Information System (INIS)

    Bhanthumnavin, V.; Apikitmata, S.; Kochareon, P.

    1991-01-01

    A tunable flashlamp excited dye laser (FEDL) was successfully developed for the first time in Thailand by Thai scientists at KMIT Thonburi (Bangmod). The Rhodamine 6G dissolved in ethyl alcohol was utilized as a laser medium and circulated by a pump through a laser head. The dye cuvette had an inner diameter of 4.0 mm and was 90 mm long. The cavity mirrors M 1 , and M 2 were concave mirrors with reflectivities of 100% and 73% respectively. A power supply of 0-20 kV and current of 0-50 mA charged a capacitor of 0.3 μ f at 10-15 kV which was then discharged via a spark gap through the flashlamp. The output laser wavelengths was tunable from λ = 550-640 nm. It is the first FEDL system, locally developed, which has a tunable wavelength for the laser output. The laser pulse width is about 1.0 μs with energy of 20 mJ and peak power pf 20 KW. The repetition rate of the laser is 1/15 Hz. (author). 14 refs, 7 figs

  14. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide

    Science.gov (United States)

    Baugher, Britton W. H.; Churchill, Hugh O. H.; Yang, Yafang; Jarillo-Herrero, Pablo

    2014-04-01

    The p-n junction is the functional element of many electronic and optoelectronic devices, including diodes, bipolar transistors, photodetectors, light-emitting diodes and solar cells. In conventional p-n junctions, the adjacent p- and n-type regions of a semiconductor are formed by chemical doping. Ambipolar semiconductors, such as carbon nanotubes, nanowires and organic molecules, allow for p-n junctions to be configured and modified by electrostatic gating. This electrical control enables a single device to have multiple functionalities. Here, we report ambipolar monolayer WSe2 devices in which two local gates are used to define a p-n junction within the WSe2 sheet. With these electrically tunable p-n junctions, we demonstrate both p-n and n-p diodes with ideality factors better than 2. Under optical excitation, the diodes demonstrate a photodetection responsivity of 210 mA W-1 and photovoltaic power generation with a peak external quantum efficiency of 0.2%, promising values for a nearly transparent monolayer material in a lateral device geometry. Finally, we demonstrate a light-emitting diode based on monolayer WSe2. These devices provide a building block for ultrathin, flexible and nearly transparent optoelectronic and electronic applications based on ambipolar dichalcogenide materials.

  15. Short range laser obstacle detector. [for surface vehicles using laser diode array

    Science.gov (United States)

    Kuriger, W. L. (Inventor)

    1973-01-01

    A short range obstacle detector for surface vehicles is described which utilizes an array of laser diodes. The diodes operate one at a time, with one diode for each adjacent azimuth sector. A vibrating mirror a short distance above the surface provides continuous scanning in elevation for all azimuth sectors. A diode laser is synchronized with the vibrating mirror to enable one diode laser to be fired, by pulses from a clock pulse source, a number of times during each elevation scan cycle. The time for a given pulse of light to be reflected from an obstacle and received is detected as a measure of range to the obstacle.

  16. Micropulse diode laser trabeculoplasty -- 180-degree treatment.

    Science.gov (United States)

    Rantala, Elina; Välimäki, Juha

    2012-08-01

    To evaluate the outcome of 180° micropulse diode laser trabeculoplasty (MDLT) in patients with open-angle glaucoma. A retrospective review of 40 eyes of 29 MDLT-treated patients with a minimum follow-up time of 6 months. Successful outcome was defined as follows: (i) a ≥20% or (ii) a ≥3-mmHg decrease of intraocular pressure (IOP), no further need for laser- or incisional surgery and the number of glaucoma medication was the same or less than preoperative. These definitions will from now on be referred to as definition one and definition two. Life-table analysis showed an overall success rate of 2.5% (1/40) and 7.5% (3/40) (according to definitions one and two, respectively) after up to 19 months of follow-up. The average time for failure was by definition one 2.9 months (standard deviation, SD ± 3.5, range 1-12 months) and by definition two 3.3 months (SD ± 3.9, range 1-16 months). There were no intra- or postoperative complications caused by MDLT. Postoperative inflammatory reaction, cells and flare, was scanty. Our results suggest that 180° MDLT is a safe but ineffective treatment in patients with open-angle glaucoma. © 2010 The Authors. Acta Ophthalmologica © 2010 Acta Ophthalmologica Scandinavica Foundation.

  17. Active stabilization of a diode laser injection lock

    Energy Technology Data Exchange (ETDEWEB)

    Saxberg, Brendan; Plotkin-Swing, Benjamin; Gupta, Subhadeep [Department of Physics, University of Washington, P.O. Box 351560, Seattle, Washington 98195-1560 (United States)

    2016-06-15

    We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser’s transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudden failures such as temporary occlusion of the injection beam. We demonstrate the successful performance of our stabilization method in a diode laser setup at 399 nm used for laser cooling of Yb atoms. The device eases the requirements on passive stabilization and can benefit any diode laser injection lock application, particularly those where several such locks are employed.

  18. Effect of different diode laser powers in photodynamic therapy

    CSIR Research Space (South Africa)

    Maduray, K

    2010-09-01

    Full Text Available This preliminary photodynamic therapy study investigated the effect of different diode laser powers (mW) for the activation of two photosensitizers (AlTSPc, aluminum tetrasulfonatedphthalocyanine and ZnTSPc, zinc tetrasulfonatedphthalocyanine...

  19. Unmanned Aerial Vehicle Diode Laser Sensor for Methane Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A compact, lightweight, and low power diode laser sensor will be developed for atmospheric methane detection on small unmanned aerial vehicles (UAVs). The physical...

  20. Active stabilization of a diode laser injection lock

    International Nuclear Information System (INIS)

    Saxberg, Brendan; Plotkin-Swing, Benjamin; Gupta, Subhadeep

    2016-01-01

    We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser’s transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudden failures such as temporary occlusion of the injection beam. We demonstrate the successful performance of our stabilization method in a diode laser setup at 399 nm used for laser cooling of Yb atoms. The device eases the requirements on passive stabilization and can benefit any diode laser injection lock application, particularly those where several such locks are employed.

  1. Wavelength stabilized multi-kW diode laser systems

    Science.gov (United States)

    Köhler, Bernd; Unger, Andreas; Kindervater, Tobias; Drovs, Simon; Wolf, Paul; Hubrich, Ralf; Beczkowiak, Anna; Auch, Stefan; Müntz, Holger; Biesenbach, Jens

    2015-03-01

    We report on wavelength stabilized high-power diode laser systems with enhanced spectral brightness by means of Volume Holographic Gratings. High-power diode laser modules typically have a relatively broad spectral width of about 3 to 6 nm. In addition the center wavelength shifts by changing the temperature and the driving current, which is obstructive for pumping applications with small absorption bandwidths. Wavelength stabilization of high-power diode laser systems is an important method to increase the efficiency of diode pumped solid-state lasers. It also enables power scaling by dense wavelength multiplexing. To ensure a wide locking range and efficient wavelength stabilization the parameters of the Volume Holographic Grating and the parameters of the diode laser bar have to be adapted carefully. Important parameters are the reflectivity of the Volume Holographic Grating, the reflectivity of the diode laser bar as well as its angular and spectral emission characteristics. In this paper we present detailed data on wavelength stabilized diode laser systems with and without fiber coupling in the spectral range from 634 nm up to 1533 nm. The maximum output power of 2.7 kW was measured for a fiber coupled system (1000 μm, NA 0.22), which was stabilized at a wavelength of 969 nm with a spectral width of only 0.6 nm (90% value). Another example is a narrow line-width diode laser stack, which was stabilized at a wavelength of 1533 nm with a spectral bandwidth below 1 nm and an output power of 835 W.

  2. Active Stabilization of a Diode Laser Injection Lock

    OpenAIRE

    Saxberg, Brendan; Plotkin-Swing, Benjamin; Gupta, Subhadeep

    2016-01-01

    We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser's transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudde...

  3. Spectral beam combining of diode lasers with high efficiency

    DEFF Research Database (Denmark)

    Müller, André; Vijayakumar, Deepak; Jensen, Ole Bjarlin

    2012-01-01

    Based on spectral beam combining we obtain 16 W of output power, combining two 1063 nm DBR-tapered diode lasers. The spectral separation within the combined beam can be used for subsequent sum-frequency generation.......Based on spectral beam combining we obtain 16 W of output power, combining two 1063 nm DBR-tapered diode lasers. The spectral separation within the combined beam can be used for subsequent sum-frequency generation....

  4. Investigation of diode-laser pumped thulium-doped fluoride lasers; Investigacao de lasers de floureto dopados com tulio e bombeados por diodo-laser

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Paulo Sergio Fabris de

    2006-07-01

    Tunable lasers emitting around 2.3 mum region are important in many areas, like gas detection, remote sensing and medical applications. Thulium has a large emission spectra around 2.3 mum with demonstrated tuning range of 2.2-2.45 mum using the YLF host. For efficient pump absorption, a high concentration sensitizer like ytterbium can be used. We demonstrate quasi-cw operation of the Yb:Tm:YLF laser, pumped at 960 nm with a 20 W diode bar achieving the highest output power reported so far of 620 mW. Simultaneous pumping of the 2.3 mm Yb:Tm:YLF laser at 685 nm and 960 nm is demonstrated, showing higher slope efficiency than 960 nm alone. Numerical simulations and analytical models show the best ratio of pump power between both wavelengths. (author)

  5. Advances in AlGaInN laser diode technology

    Science.gov (United States)

    Najda, S. P.; Perlin, P.; Suski, T.; Marona, L.; Bockowski, Mike; Leszczyński, M.; Wisniewski, P.; Czernecki, R.; Kucharski, R.; Targowski, G.; Watson, S.; Kelly, A. E.

    2014-03-01

    The latest developments in AlGaInN laser diode technology are reviewed. The AlGaInN material system allows for laser diodes to be fabricated over a very wide range of wavelengths from u.v., i.e, 380nm, to the visible, i.e., 530nm, by tuning the indium content of the laser GaInN quantum well. Advantages of using Plasma assisted MBE (PAMBE) compared to more conventional MOCVD epitaxy to grow AlGaInN laser structures are highlighted. Ridge waveguide laser diode structures are fabricated to achieve single mode operation with optical powers of >100mW in the 400-420nm wavelength range that are suitable for telecom applications. Visible light communications at high frequency (up to 2.5 Gbit/s) using a directly modulated 422nm Galliumnitride (GaN) blue laser diode is reported. High power operation of AlGaInN laser diodes is demonstrated with a single chip, AlGaInN laser diode `mini-array' with a common p-contact configuration at powers up to 2.5W cw at 410nm. Low defectivity and highly uniform GaN substrates allow arrays and bars of nitride lasers to be fabricated. GaN laser bars of up to 5mm with 20 emitters, mounted in a CS mount package, give optical powers up to 4W cw at ~410nm with a common contact configuration. An alternative package configuration for AlGaInN laser arrays allows for each individual laser to be individually addressable allowing complex free-space and/or fibre optic system integration within a very small form-factor.

  6. Tradeoff between laser diodes and light-emitting diodes (LEDs) for the common weapon control system

    Science.gov (United States)

    Greenwell, R. A.

    1982-07-01

    The use of laser diodes or light emitting diodes (LEDs) for the ground-launched cruise missile (GLCM) is comparatively evaluated. Source characteristics of interest, including radiated power output, spectral width and peak emission, modulation bandwidth, size coupling efficiency, lifetime, rise time, and price, are presented for noncoherent LED and the coherent laser diode. The advantages and disadvantages of laser diodes and LEDs are briefly discussed, and nuclear explosion effects on these instruments, including catastrophic damage, transient ionization effects, and permanent degradation, are summarized. A link analysis of the cable parameters required for the GLCM fiber optic data link is given, arriving at power levels consistent with a LED-PIN link. Two LEDs which meet these requirements are briefly discussed.

  7. High Power High Efficiency Diode Laser Stack for Processing

    Science.gov (United States)

    Gu, Yuanyuan; Lu, Hui; Fu, Yueming; Cui, Yan

    2018-03-01

    High-power diode lasers based on GaAs semiconductor bars are well established as reliable and highly efficient laser sources. As diode laser is simple in structure, small size, longer life expectancy with the advantages of low prices, it is widely used in the industry processing, such as heat treating, welding, hardening, cladding and so on. Respectively, diode laser could make it possible to establish the practical application because of rectangular beam patterns which are suitable to make fine bead with less power. At this power level, it can have many important applications, such as surgery, welding of polymers, soldering, coatings and surface treatment of metals. But there are some applications, which require much higher power and brightness, e.g. hardening, key hole welding, cutting and metal welding. In addition, High power diode lasers in the military field also have important applications. So all developed countries have attached great importance to high-power diode laser system and its applications. This is mainly due their low performance. In this paper we will introduce the structure and the principle of the high power diode stack.

  8. Tunable lasers and their application in analytical chemistry

    Science.gov (United States)

    Steinfeld, J. I.

    1975-01-01

    The impact that laser techniques might have in chemical analysis is examined. Absorption, scattering, and heterodyne detection is considered. Particular emphasis is placed on the advantages of using frequency-tunable sources, and dye solution lasers are regarded as the outstanding example of this type of laser. Types of spectroscopy that can be carried out with lasers are discussed along with the ultimate sensitivity or minimum detectable concentration of molecules that can be achieved with each method. Analytical applications include laser microprobe analysis, remote sensing and instrumental methods such as laser-Raman spectroscopy, atomic absorption/fluorescence spectrometry, fluorescence assay techniques, optoacoustic spectroscopy, and polarization measurements. The application of lasers to spectroscopic methods of analysis would seem to be a rewarding field both for research in analytical chemistry and for investments in instrument manufacturing.

  9. Features of laser diodes' radiation in different temperature intervals

    Directory of Open Access Journals (Sweden)

    Vlasova S. V.

    2017-12-01

    Full Text Available In the literature there is practically no information on the change in the characteristics of the emission spectrum of industrial semiconductor laser diodes in a wide range of temperatures, including cryogenic temperatures. Nevertheless, this information is decisive when choosing specific laser diodes for industrial devices. An experimental study of features of the emission spectra of laser semiconductor diodes in the temperature range 50–300 K has been conducted. The material used in the laser diodes' manufacture is a compound based on the solid quaternary AlGaInP solution. The radiation spectrum has been investigated using a monochromator MDR-23 with a CCD detector installed. The study has proved that the temperature of the laser diode operation determines the nature of the radiation spectrum, in particular the predominance of stimulated or induced radiation has taken place, the range of wavelengths of radiation changes as well. It is believed that in the temperature range from 50 to 300 K in the volume of the laser diode material some processes are realized, as a result of which the value of the forbidden band width changes, it decreases by approximately 4.2–4.5 % from the value corresponding to the temperature of 50 K. The calculation of the value of the temperature coefficient of the change in the forbidden band width has shown that in the temperature range from 50 to 300 K the meaning of βvaries in absolute value by 2–3 times. A new experimental method for determining ionization energies of exciton levels has been proposed. It is of practical use for monitoring the electro-physical parameters of semiconductor materials used in the manufacture of industrial semiconductor lasers. The advantage of the proposed method is the ability to obtain qualitative and quantitative information about the exciton spectrum of the laser diode material directly in the region of the p–n-junction where the laser radiation is formed

  10. Disruptive laser diode source for embedded LIDAR sensors

    Science.gov (United States)

    Canal, Celine; Laugustin, Arnaud; Kohl, Andreas; Rabot, Olivier

    2017-02-01

    Active imaging based on laser illumination is used in various fields such as medicine, security, defense, civil engineering and in the automotive sector. In this last domain, research and development to bring autonomous vehicles on the roads has been intensified these last years with an emphasis on lidar technology that is probably the key to achieve full automation level. Based on time-of-flight measurements, the profile of objects can be measured together with their location in various conditions, creating a 3D mapping of the environment. To be embedded on a vehicle as advanced driver assistance systems (ADAS), these sensors require compactness, low-cost and reliability, as it is provided by a flash lidar. An attractive candidate, especially with respect to cost reduction, for the laser source integrated in these devices is certainly laser diodes as long as they can provide sufficiently short pulses with a high energy. A recent breakthrough in laser diode and diode driver technology made by Quantel (Les Ulis, France) now allows laser emission higher than 1 mJ with pulses as short as 12 ns in a footprint of 4x5 cm2 (including both the laser diode and driver) and an electrical-to-optical conversion efficiency of the whole laser diode source higher than 25% at this level of energy. The components used for the laser source presented here can all be manufactured at low cost. In particular, instead of having several individual laser diodes positioned side by side, the laser diodes are monolithically integrated on a single semiconductor chip. The chips are then integrated directly on the driver board in a single assembly step. These laser sources emit in the range of 800-1000 nm and their emission is considered to be eye safe when taking into account the high divergence of the output beam and the aperture of possible macro lenses so that they can be used for end consumer applications. Experimental characterization of these state-of-the-art pulsed laser diode sources

  11. Efficient tunable infrared lasers for isotope separation

    International Nuclear Information System (INIS)

    Tashiro, Hideo; Suda, Akira

    1996-01-01

    The cost of photons is a major determinant for the economical success of laser enrichment processes. The molecular laser isotope separation (MLIS) using infrared lasers is advantageous in this aspect, because infrared lasers with potentiality for high efficiency and high-power operation is usable. The present efficiency of the MLIS laser system is, however, still unsatisfactory from the economical viewpoint. The aim of current research of laser development at RIKEN is to increase laser efficiency by introducing new technologies for MLIS lasers. Under a name of Breakthrough Studies project, efforts are concentrated on the development of p-H 2 Raman lasers, which can overcome the efficiency barrier imposed under the conventional concept of the MLIS laser. For the laser breakthrough studies, two new types of the 16mm Raman laser are now under study. One is the intracavity Raman laser that requires no longer lenghthy oscillator-amplifier chains of TEA-CO 2 lasers and large multiple pass Raman cells. A coupled cavity for TEA-CO 2 laser and Raman laser is constructed withy a dichroic mirror, and is designed to oscillate in circulary polarization. The laser beam is focused in the Raman cell, while it is expanded in the TEA-CO 2 discharge section. In order to design such a pump-Stokes combined cavity, growth of Stokes pulses was analyzed with simulation regarding the threshold powers and pulse durations inside the cavity. The oscillation of CO 2 pulses with circular polarization was rea;lized by combination with circularly polarized external CO 2 seeder and the careful isotropic arrangement of optics around the optical axis. The success of oscillation recently achieved suggests effectiveness of the intracavity infrared Raman conversion and the possibility of high-efficiency energy extraction. The other is the automatically tuned 16mn laser to the absorption band of UF6. This makes it possible to eliminate the use of highly-pressurized TE-CO 2 lasers. We have demonstrated

  12. Tunable Schottky diodes fabricated from crossed electrospun SnO{sub 2}/PEDOT-PSSA nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Carrasquillo, Katherine V. [Department of Physics and Electronics, University of Puerto Rico-Humacao, Humacao, PR 00792 (Puerto Rico); Pinto, Nicholas J., E-mail: nicholas.pinto@upr.edu [Department of Physics and Electronics, University of Puerto Rico-Humacao, Humacao, PR 00792 (Puerto Rico)

    2012-06-25

    Graphical abstract: Crossed SnO{sub 2}/PEDOT-PSSA nanoribbon Schottky diodes. Highlight: Black-Right-Pointing-Pointer An inexpensive electrospinning technique is used to fabricate crossed nanoribbons of n-doped tin oxide and p-PEDOT. Black-Right-Pointing-Pointer Each intersection is a localized Schottky diode that is completely exposed to the environment after electrodes deposition. Black-Right-Pointing-Pointer This makes it useful as a gas and light sensor. Black-Right-Pointing-Pointer In addition, the ability to tune the diode parameters via a back gate truly makes this device multifunctional. Black-Right-Pointing-Pointer A half wave rectifier has been demonstrated with this device under UV illumination. - Abstract: Schottky diodes have been fabricated on doped Si/SiO{sub 2} substrates in air, by simply crossing individual electrospun tin oxide (SnO{sub 2}) and poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) (PEDOT-PSSA) nanoribbons. The conductivity of PEDOT-PSSA was {approx}6 S/cm with no observable field effect, while SnO{sub 2} exhibited n-doped field effect behavior with a charge mobility of {approx}3.1 cm{sup 2}/V-s. The diodes operate in air or in vacuum, under ambient illumination or in the dark, with low turn-on voltages and device parameters that are tunable via a back gate bias or a UV light source. Their unique design involves a highly localized active region that is completely exposed to the surrounding environment, making them potentially attractive for use as sensors. The standard thermionic emission model of a Schottky junction was applied to analyze the forward bias diode characteristics and was successfully tested as a half wave rectifier.

  13. Tunable Schottky diodes fabricated from crossed electrospun SnO2/PEDOT-PSSA nanoribbons

    International Nuclear Information System (INIS)

    Carrasquillo, Katherine V.; Pinto, Nicholas J.

    2012-01-01

    Graphical abstract: Crossed SnO 2 /PEDOT-PSSA nanoribbon Schottky diodes. Highlight: ► An inexpensive electrospinning technique is used to fabricate crossed nanoribbons of n-doped tin oxide and p-PEDOT. ► Each intersection is a localized Schottky diode that is completely exposed to the environment after electrodes deposition. ► This makes it useful as a gas and light sensor. ► In addition, the ability to tune the diode parameters via a back gate truly makes this device multifunctional. ► A half wave rectifier has been demonstrated with this device under UV illumination. - Abstract: Schottky diodes have been fabricated on doped Si/SiO 2 substrates in air, by simply crossing individual electrospun tin oxide (SnO 2 ) and poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) (PEDOT-PSSA) nanoribbons. The conductivity of PEDOT-PSSA was ∼6 S/cm with no observable field effect, while SnO 2 exhibited n-doped field effect behavior with a charge mobility of ∼3.1 cm 2 /V-s. The diodes operate in air or in vacuum, under ambient illumination or in the dark, with low turn-on voltages and device parameters that are tunable via a back gate bias or a UV light source. Their unique design involves a highly localized active region that is completely exposed to the surrounding environment, making them potentially attractive for use as sensors. The standard thermionic emission model of a Schottky junction was applied to analyze the forward bias diode characteristics and was successfully tested as a half wave rectifier.

  14. Wavelength-Agile External-Cavity Diode Laser for DWDM

    Science.gov (United States)

    Pilgrim, Jeffrey S.; Bomse, David S.

    2006-01-01

    A prototype external-cavity diode laser (ECDL) has been developed for communication systems utilizing dense wavelength- division multiplexing (DWDM). This ECDL is an updated version of the ECDL reported in Wavelength-Agile External- Cavity Diode Laser (LEW-17090), NASA Tech Briefs, Vol. 25, No. 11 (November 2001), page 14a. To recapitulate: The wavelength-agile ECDL combines the stability of an external-cavity laser with the wavelength agility of a diode laser. Wavelength is modulated by modulating the injection current of the diode-laser gain element. The external cavity is a Littman-Metcalf resonator, in which the zeroth-order output from a diffraction grating is used as the laser output and the first-order-diffracted light is retro-reflected by a cavity feedback mirror, which establishes one end of the resonator. The other end of the resonator is the output surface of a Fabry-Perot resonator that constitutes the diode-laser gain element. Wavelength is selected by choosing the angle of the diffracted return beam, as determined by position of the feedback mirror. The present wavelength-agile ECDL is distinguished by design details that enable coverage of all 60 channels, separated by 100-GHz frequency intervals, that are specified in DWDM standards.

  15. Power blue and green laser diodes and their applications

    Science.gov (United States)

    Hager, Thomas; Strauß, Uwe; Eichler, Christoph; Vierheilig, Clemens; Tautz, Sönke; Brüderl, Georg; Stojetz, Bernhard; Wurm, Teresa; Avramescu, Adrian; Somers, André; Ristic, Jelena; Gerhard, Sven; Lell, Alfred; Morgott, Stefan; Mehl, Oliver

    2013-03-01

    InGaN based green laser diodes with output powers up to 50mW are now well established for variety of applications ranging from leveling to special lighting effects and mobile projection of 12lm brightness. In future the highest market potential for visible single mode profile lasers might be laser projection of 20lm. Therefore direct green single-mode laser diodes with higher power are required. We found that self heating was the limiting factor for higher current operation. We present power-current characteristics of improved R and D samples with up to 200mW in cw-operation. An optical output power of 100mW is reached at 215mA, a current level which is suitable for long term operation. Blue InGaN laser diodes are also the ideal source for phosphor based generation of green light sources of high luminance. We present a light engine based on LARP (Laser Activated Remote Phosphor) which can be used in business projectors of several thousand lumens on screen. We discuss the advantages of a laser based systems in comparison with LED light engines. LARP requires highly efficient blue power laser diodes with output power above 1W. Future market penetration of LARP will require lower costs. Therefore we studied new designs for higher powers levels. R and D chips with power-current characteristics up to 4W in continuous wave operation on C-mount at 25°C are presented.

  16. In-volume heating using high-power laser diodes

    NARCIS (Netherlands)

    Denisenkov, V.S.; Kiyko, V.V.; Vdovin, G.V.

    2015-01-01

    High-power lasers are useful instruments suitable for applications in various fields; the most common industrial applications include cutting and welding. We propose a new application of high-power laser diodes as in-bulk heating source for food industry. Current heating processes use surface

  17. Dichroic mirror for diode pumped YAG:Nd-laser

    DEFF Research Database (Denmark)

    Dinca, Andreea; Skettrup, Torben; Lupei, V.

    1996-01-01

    The paper describes the design and realization of a dichroic mirror for a diode pumped YAG:Nd laser. The mirror is deposed on an optical glass substrate and works in optical contact with the laser crystal. The design was performed by admittance matching of the basic stack with the adjacent media...

  18. Design of a high power laser diode driver

    Science.gov (United States)

    Li, Wen-jiang; Wang, Qian-qian; Liu, Li; Peng, Zhong

    2013-12-01

    Laser diodes are preferred light sources for compact non-scanning imaging laser radar systems due to their small volume and easiness to be integrated. Therefore, lots of present studies focus on research of modulation characteristics of highpower laser diodes. A high-frequency modulated driver for a compact non-scanning imaging laser radar system is described in this paper. It is based on linear constant current theory and can modulate a high power laser diode quasi-continuously. A high-speed operational amplifier is used to drive a power MOSFET, which can take full advantages of the power MOSFET-low driver current and good dynamic characteristics. In addition, an operational amplifier and PI (Proportion-Integration) control are applied in a negative feedback network to improve the current stability further. In order to avoid damaging the laser diode, a slow start circuit and over-current protection circuit have also been designed. The maximum current of the over-current protection circuit can be set according to the requirement. In addition, the power supply can also be switched between CW and QCW operating modes. When the high power semiconductor laser is modulated by large signal, some nonlinear effects will occur such as turn-on delay, relaxation oscillation and modulation chirp. Some theoretical analysis and experimental research on some nonlinear effects have also been done. Experimental results are consistent with theoretical analysis by using this driver for a 1W GaAs quantum well laser.

  19. Photoporation and cell transfection using a violet diode laser

    Science.gov (United States)

    Paterson, L.; Agate, B.; Comrie, M.; Ferguson, R.; Lake, T. K.; Morris, J. E.; Carruthers, A. E.; Brown, C. T. A.; Sibbett, W.; Bryant, P. E.; Gunn-Moore, F.; Riches, A. C.; Dholakia, Kishan

    2005-01-01

    The introduction and subsequent expression of foreign DNA inside living mammalian cells (transfection) is achieved by photoporation with a violet diode laser. We direct a compact 405 nm laser diode source into an inverted optical microscope configuration and expose cells to 0.3 mW for 40 ms. The localized optical power density of ~1200 MW/m2 is six orders of magnitude lower than that used in femtosecond photoporation (~104 TW/m2). The beam perforates the cell plasma membrane to allow uptake of plasmid DNA containing an antibiotic resistant gene as well as the green fluorescent protein (GFP) gene. Successfully transfected cells then expand into clonal groups which are used to create stable cell lines. The use of the violet diode laser offers a new and simple poration technique compatible with standard microscopes and is the simplest method of laser-assisted cell poration reported to date.

  20. Doping Optimization for High Efficiency in Semiconductor Diode Lasers and Amplifiers

    Science.gov (United States)

    2016-03-01

    JOURNAL OF QUANTUM ELECTRONICS, VOL. , NO. , 1 Doping Optimization for High Efficiency in Semiconductor Diode Lasers and Amplifiers Dominic F...Siriani, Member, IEEE Abstract—A generalized theoretical formalism is derived that optimizes the doping profile of semiconductor diode lasers and amplifiers...Diode lasers, semiconductor lasers, semiconduc- tor optical amplifiers. I. INTRODUCTION ELECTRICALLY injected diode lasers have been demon-strated in many

  1. An auto-locked diode laser system for precision metrology

    Science.gov (United States)

    Beica, H. C.; Carew, A.; Vorozcovs, A.; Dowling, P.; Pouliot, A.; Barron, B.; Kumarakrishnan, A.

    2017-05-01

    We present a unique external cavity diode laser system that can be auto-locked with reference to atomic and molecular spectra. The vacuum-sealed laser head design uses an interchangeable base-plate comprised of a laser diode and optical elements that can be selected for desired wavelength ranges. The feedback light to the laser diode is provided by a narrow-band interference filter, which can be tuned from outside the laser cavity to fineadjust the output wavelength in vacuum. To stabilize the laser frequency, the digital laser controller relies either on a pattern-matching algorithm stored in memory, or on first or third derivative feedback. We have used the laser systems to perform spectroscopic studies in rubidium at 780 nm, and in iodine at 633 nm. The linewidth of the 780-nm laser system was measured to be ˜500 kHz, and we present Allan deviation measurements of the beat note and the lock stability. Furthermore, we show that the laser system can be the basis for a new class of lidar transmitters in which a temperature-stabilized fiber-Bragg grating is used to generate frequency references for on-line points of the transmitter. We show that the fiber-Bragg grating spectra can be calibrated with reference to atomic transitions.

  2. Violet Laser Diode Enables Lighting Communication.

    Science.gov (United States)

    Chi, Yu-Chieh; Huang, Yu-Fang; Wu, Tsai-Chen; Tsai, Cheng-Ting; Chen, Li-Yin; Kuo, Hao-Chung; Lin, Gong-Ru

    2017-09-05

    Violet laser diode (VLD) based white-light source with high color rendering index (CRI) for lighting communication is implemented by covering with Y 3 Al 5 O 12 :Ce 3+ (YAG:Ce) or Lu 3 Al 5 O 12 :Ce 3+ /CaAlSiN 3 :Eu 2+ (LuAG:Ce/CASN:Eu) phosphorous diffuser plates. After passing the beam of VLD biased at 70 mA (~2I th ) through the YAG:Ce phosphorous diffuser, a daylight with a correlated color temperature (CCT) of 5068 K and a CRI of 65 is acquired to provide a forward error correction (FEC) certified data rate of 4.4 Gbit/s. By using the VLD biased at 122 mA (~3.5I th ) to excite the LuAG:Ce/CASN:Eu phosphorous diffuser with 0.85-mm thickness, a warm white-light source with a CCT of 2700 K and a CRI of 87.9 is obtained at a cost of decreasing transmission capacity to 2.4 Gbit/s. Thinning the phosphor thickness to 0.75 mm effectively reduces the required bias current by 32 mA to achieve the same CCT for the delivered white light, which offers an enlarged CRI of 89.1 and an increased data rate of 4.4 Gbit/s. Further enlarging the bias current to 105 mA remains the white-light transmission capacity at 4.4 Gbit/s but reveals an increased CCT of 3023 K and an upgraded CRI of 91.5.

  3. Tunable Seed Lasers for Laser Remote Sensing of CO2 and O2, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Vescent Photonics propose to develop a chip-sized narrow linewidth ( 10 nm's) diode laser that will be suitable for a wide variety of NASA remote sensing missions....

  4. Inferior turbinate reduction: Diode laser or conventional partial turbinectomy?

    Science.gov (United States)

    Doreyawar, Venkatesh; Gadag, Raveendra P; Manjunath, Dandi Narasaiah; Javali, Shivalingappa B; Maradi, Nagaraj; Shetty, Deekshit

    2018-01-01

    Hypertrophy of the inferior nasal turbinate is one of the most common causes of nasal obstruction. The diode laser has proven to be as effective as other lasers for this indication. Our objective was to study various outcomes associated with the use of the diode laser, such as improvements in nasal obstruction and postoperative pain, reduction in intraoperative bleeding, and rapidity of healing. A nonrandomized, controlled trial was conducted in which outcomes were compared between diode laser turbinate reduction (LTR) and conventional partial inferior turbinectomy (PIT) in 60 patients, 30 who underwent LTR and 30 who underwent PIT. The improvement in nasal obstruction was measured postoperatively up to 6 months. Intraoperative bleeding was measured and postoperative pain scores were assessed each day up to the fifth postoperative day. Rapidity of healing was evaluated until 6 months postoperatively. Subjective relief of nasal obstruction occurred in 90.8% of the LTR group and 65% of the PIT group at 6 months (p diode laser were better and diode LTR caused less morbidity compared with the conventional technique.

  5. Continuously Tunable Erbium-Doped Fiber Ring Laser Using Fiber Bragg Grating

    Directory of Open Access Journals (Sweden)

    S. W. Harun H. Ahmad and P. Poopalan

    2012-08-01

    Full Text Available An efficient tunable erbium-doped fiber (EDF ring laser utilizing a single fiber Bragg grating (FBG and an optical circulator is investigated. The laser demonstrates a threshold of 3.43 mW and a slope efficiency of 12.5%. Tunability of the fiber laser is obtained by thermal tuning of the FBG. Simultaneous temperature tuning demonstrates a 0.01 nm/oC variation in laser wavelength.Key Words:  Fiber Bragg grating, fiber laser, tunable laser, ring laser, thermal tuning

  6. Determination of QW laser diode degradation based on the emission spectrum

    Directory of Open Access Journals (Sweden)

    Bliznyuk Vladimir

    2017-01-01

    Full Text Available The possibility of laser diodes degradation control by monitoring of their spectrum is shown. For red and infra-red laser diodes, the time dependence of the radiation spectrum width was obtained.

  7. Portable Diode Laser Diagnostic System for Collaborative Research on Air-Breathing Combustion

    National Research Council Canada - National Science Library

    Hanson, Ronald

    2003-01-01

    This equipment grant focused on four areas: (1) portable diode laser sensors with new fiber-coupled diode lasers and the support equipment to provide higher power with extended wavelength tuning range and speed; (2...

  8. Future Solid State Lighting using LEDs and Diode Lasers

    DEFF Research Database (Denmark)

    Petersen, Paul Michael

    2014-01-01

    significant savings. Solid state lighting (SSL) based on LEDs is today the most efficient light source for generation of high quality white light. Diode lasers, however, have the potential of being more efficient than LEDs for the generation of white light. A major advantage using diode lasers for solid state......Lighting accounts for 20% of all electrical energy usage. Household lighting and commercial lighting such as public and street lighting are responsible for significant greenhouse gas emissions. Therefore, currently many research initiatives focus on the development of new light sources which shows...... lighting is that the high efficiency can be obtained at high light lumen levels in a single element emitter and thus less light sources are required to achieve a desired light level. Furthermore, the high directionality of the generated light from laser diodes increases the energy savings in many...

  9. Microchannel heatsinks for high-average-power laser diode arrays

    Science.gov (United States)

    Benett, William J.; Freitas, Barry L.; Beach, Raymond J.; Ciarlo, Dino R.; Sperry, Verry; Comaskey, Brian J.; Emanuel, Mark A.; Solarz, Richard W.; Mundinger, David C.

    1992-06-01

    Detailed performance results and fabrication techniques for an efficient and low thermal impedance laser diode array heatsink are presented. High duty factor or even CW operation of fully filled laser diode arrays is enabled at high average power. Low thermal impedance is achieved using a liquid coolant and laminar flow through microchannels. The microchannels are fabricated in silicon using a photolithographic pattern definition procedure followed by anisotropic chemical etching. A modular rack-and-stack architecture is adopted for the heatsink design allowing arbitrarily large two-dimensional arrays to be fabricated and easily maintained. The excellent thermal control of the microchannel cooled heatsinks is ideally suited to pump array requirements for high average power crystalline lasers because of the stringent temperature demands that result from coupling the diode light to several nanometers wide absorption features characteristic of lasing ions in crystals.

  10. High brightness laser source based on polarization coupling of two diode lasers with asymmetric feedback

    DEFF Research Database (Denmark)

    Thestrup, B.; Chi, M.; Sass, B.

    2003-01-01

    200 mum broad area laser diode applied with a specially designed feedback circuit. When operating at two times threshold, 50% of the freely running system output power is obtained in a single beam with an M-2 beam quality factor of 1.6+/-0.1, whereas the M-2 values of the two freely running diode......In this letter, we show that polarization coupling and asymmetric diode-laser feedback can be used to combine two diode-laser beams with low spatial coherence into a single beam with high spatial coherence. The coupled laser source is based on two similar laser systems each consisting of a 1 mumx...... lasers are 29+/-1 and 34+/-1, respectively. (C) 2003 American Institute of Physics....

  11. Comparative hazard evaluation of near-infrared diode lasers.

    Science.gov (United States)

    Marshall, W J

    1994-05-01

    Hazard evaluation methods from various laser protection standards differ when applied to extended-source, near-infrared lasers. By way of example, various hazard analyses are applied to laser training systems, which incorporate diode lasers, specifically those that assist in training military or law enforcement personnel in the proper use of weapons by simulating actual firing by the substitution of a beam of near-infrared energy for bullets. A correct hazard evaluation of these lasers is necessary since simulators are designed to be directed toward personnel during normal use. The differences among laser standards are most apparent when determining the hazard class of a laser. Hazard classification is based on a comparison of the potential exposures with the maximum permissible exposures in the 1986 and 1993 versions of the American National Standard for the Safe Use of Lasers, Z136.1, and the accessible emission limits of the federal laser product performance standard. Necessary safety design features of a particular system depend on the hazard class. The ANSI Z136.1-1993 standard provides a simpler and more accurate hazard assessment of low-power, near-infrared, diode laser systems than the 1986 ANSI standard. Although a specific system is evaluated, the techniques described can be readily applied to other near-infrared lasers or laser training systems.

  12. Diode laser vaporisation of the prostate vs. diode laser under cold irrigation: A randomised control trial.

    Science.gov (United States)

    Pillai, Ravisankar G; Al Naieb, Ziad; Angamuthu, Stephen; Mundackal, Tintu

    2014-12-01

    To compare the perioperative morbidity and early follow-up after diode laser vaporisation of the prostate (LVP) and its modification, diode laser under cold irrigation (LUCI) in patients with symptomatic benign prostatic hyperplasia, as the main disadvantages of LVP are the postoperative pain, dysuria and storage urinary symptoms. This was a single-centre prospective randomised control trial in which 100 patients were randomised to receive LVP (50) or LUCI (50) from June 2011 until July 2012. LUCI is similar to LVP except that it is done under normal irrigation with saline at 4 °C instead of saline at room temperature. The primary outcome measures were the International Prostate Symptom Score (IPSS), IPSS-Dysuria, a pain scale (PS), maximum flow rate (Q max), a quality-of-life (QoL) score and the postvoid residual urine volume (PVR) after 1 month, then the IPSS, Q max, QoL, and PVR at 3 and 12 months. Secondary outcomes included intraoperative surgical variables, e.g., the decline in core temperature, bleeding, peri- and postoperative morbidity. The baseline characteristics of both groups were similar. For the primary outcome measures, there was a statistically significant difference between the groups in all variables except Q max after 1 month, in favour of LUCI. The mean (SD) IPSS at 1 month in the LVP group was 8.97 (1.68), statistically significantly different from that after LUCI, of 6.89 (1.5) (P  0.05). LUCI is a good modification for reducing the pain, dysuria and storage symptoms associated with LVP. The procedure appears to be safe, with no significant decrease in core temperature in either group.

  13. Mathematical modeling of a passively Q-switched diode laser

    International Nuclear Information System (INIS)

    Abdul Ghani, B.; Hammadi, M.

    2009-11-01

    A mathematical model describing the dynamic emission of the intracavity frequency doubling (IFD) of a gain-switched InGaAs/GaAs/KTP and a gain-switched mode-locked two-sections tapered ridge-waveguide InGaAs/GaAs diode laser has been presented. The IFD of a gain-switched and a gain-switched mode-locked two-sections diode laser is modeled where one section is electrically pumped to proved gain while the second section is unpumped (reverse biased) to provide a saturable absorber. (author)

  14. Gummy Smile Correction with Diode Laser: Two Case Reports.

    Science.gov (United States)

    Narayanan, Mahesh; Laju, S; Erali, Susil M; Erali, Sunil M; Fathima, Al Zainab; Gopinath, P V

    2015-01-01

    Beautification of smiles is becoming an everyday requirement in dental practice. Apart from teeth, gingiva also plays an important role in smile esthetics. Excessive visualization of gingiva is a common complaint among patients seeking esthetic treatment. A wide variety of procedures are available for correction of excessive gum display based on the cause of the condition. Soft tissue diode laser contouring of gingiva is a common procedure that can be undertaken in a routine dental setting with excellent patient satisfaction and minimal post-operative sequale. Two cases of esthetic crown lengthening with diode laser 810 nm are presented here.

  15. Characteristic of laser diode beam propagation through a collimating lens.

    Science.gov (United States)

    Xu, Qiang; Han, Yiping; Cui, Zhiwei

    2010-01-20

    A mathematical model of a laser diode beam propagating through a collimating lens is presented. Wave propagation beyond the paraxial approximation is studied. The phase delay of the laser diode wave in passing through the lens is analyzed in detail. The propagation optical field after the lens is obtained from the diffraction integral by the stationary phase method. The model is employed to predict the light intensity at various beam cross sections, and the computed intensity distributions are in a good agreement with the corresponding measurements.

  16. Frequency-doubled diode laser for direct pumping of Ti:sapphire lasers

    DEFF Research Database (Denmark)

    Müller, André; Jensen, Ole Bjarlin; Unterhuber, Angelika

    2012-01-01

    A single-pass frequency doubled high-power tapered diode laser emitting nearly 1.3 W of green light suitable for direct pumping of Ti:sapphire lasers generating ultrashort pulses is demonstrated. The pump efficiencies reached 75 % of the values achieved with a commercial solid-state pump laser....... However, the superior electro-optical efficiency of the diode laser improves the overall efficiency of the Ti:sapphire laser by a factor > 2. The optical spectrum emitted by the Ti:sapphire laser shows a spectral width of 112 nm (FWHM). Based on autocorrelation measurements, pulse widths of less than 20...... fs are measured. These results open the opportunity of establishing diode laser pumped Ti:sapphire lasers for e.g. biophotonic applications like retinal optical coherence tomography or pumping of photonic crystal fibers for CARS microscopy....

  17. Blue laser diode (LD) and light emitting diode (LED) applications

    International Nuclear Information System (INIS)

    Bergh, Arpad A.

    2004-01-01

    The family of blue LEDs, edge emitting and surface emitting lasers, enable a number of applications. Blue lasers are used in digital applications such as optical storage in high density DVDs. The resolution of the spot size and hence the storage density is diffraction limited and is inversely proportional to the square of the wavelength of the laser. Other applications include printing, optical scanners, and high-resolution photo-lithography. As light emitters, blue LEDs are used for signaling and in direct view large area emissive displays. They are also making inroads into signage and LCD back-lighting, mobile platforms, and decorative accent lighting in curtains, furniture, etc. Blue LEDs produce white light either with phosphor wavelength converters or in combination with red and green LEDs. The full potential of LED light sources will require three devices to enable complete control over color and intensity. Sensing and medical/bio applications have a major impact on home security, on monitoring the environment, and on health care. New emerging diagnostic and therapeutic applications will improve the quality and reduce the cost of health care. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Tunable mode-locked semiconductor laser with Bragg mirror external cavity

    DEFF Research Database (Denmark)

    Yvind, Kresten; Jørgensen, T.; Birkedal, Dan

    2002-01-01

    We present a simplified design for a wavelength tunable external cavity mode-locked laser by employing a wedged GaAs/AlGaAs Bragg mirror. The device emits 4-6 ps pulses at 10 GHz and is tunable over 15 nm. Although, in the present configuration, tunability is limited to 15 nm, however, we have...

  19. Low-cost photoacoustic imaging systems based on laser diode and light-emitting diode excitation

    Directory of Open Access Journals (Sweden)

    Qingkai Yao

    2017-07-01

    Full Text Available Photoacoustic imaging, an emerging biomedical imaging modality, holds great promise for preclinical and clinical researches. It combines the high optical contrast and high ultrasound resolution by converting laser excitation into ultrasonic emission. In order to generate photoacoustic signal efficiently, bulky Q-switched solid-state laser systems are most commonly used as excitation sources and hence limit its commercialization. As an alternative, the miniaturized semiconductor laser system has the advantages of being inexpensive, compact, and robust, which makes a significant effect on production-forming design. It is also desirable to obtain a wavelength in a wide range from visible to near-infrared spectrum for multispectral applications. Focussing on practical aspect, this paper reviews the state-of-the-art developments of low-cost photoacoustic system with laser diode and light-emitting diode excitation source and highlights a few representative installations in the past decade.

  20. Development of diode-pumped medical solid-state lasers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Kim, Min Suk

    2000-09-01

    Two thirds of human body consists of water and the absorption of laser by water is an important factor in medical laser treatment. Er medical lasers have been used in the dermatology, ophthalmology and dental treatments due to its highest absorption by water. However, 2.9 um Er laser can not be transmitted through an optical fiber. On the other hand, Tm laser can be transmitted through an fiber and also has very high absorption by water. Therefore, Tm lasers are used in ophthalmology and heart treatment wherein the fiber delivery is very important for the treatment. Until now, mainly lamp-pumped solid-state lasers have been used in medical treatments, but the lamp-pumped solid-state lasers are being replaced with the diode-pumped solid-state lasers because the diode-pumped solid-state lasers are more compact and much easier to maintain. Following this trend, end-pumped Er and side-pumped Tm lasers have been developed and the output power of 1 W was obtained for Er and Tm respectively.

  1. Development of diode-pumped medical solid-state lasers

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Kim, Min Suk

    2000-09-01

    Two thirds of human body consists of water and the absorption of laser by water is an important factor in medical laser treatment. Er medical lasers have been used in the dermatology, ophthalmology and dental treatments due to its highest absorption by water. However, 2.9 um Er laser can not be transmitted through an optical fiber. On the other hand, Tm laser can be transmitted through an fiber and also has very high absorption by water. Therefore, Tm lasers are used in ophthalmology and heart treatment wherein the fiber delivery is very important for the treatment. Until now, mainly lamp-pumped solid-state lasers have been used in medical treatments, but the lamp-pumped solid-state lasers are being replaced with the diode-pumped solid-state lasers because the diode-pumped solid-state lasers are more compact and much easier to maintain. Following this trend, end-pumped Er and side-pumped Tm lasers have been developed and the output power of 1 W was obtained for Er and Tm respectively

  2. Diode laser-based detection in liquid chromatography and capillary electrophoresis.

    NARCIS (Netherlands)

    Mank, A.J.G.; Lingeman, H.; Gooijer, C.

    1996-01-01

    Detection techniques involving diode lasers are increasingly of interest in separation science, Diode lasers are small and inexpensive and have a very stable output. However, diode lasers emitting at wavelengths shorter than 635 nm are not commercially available. This seriously limits the

  3. Tunable photoluminescence of CsPbBr3 perovskite quantum dots for light emitting diodes application

    Science.gov (United States)

    Chen, Weiwei; Xin, Xing; Zang, Zhigang; Tang, Xiaosheng; Li, Cunlong; Hu, Wei; Zhou, Miao; Du, Juan

    2017-11-01

    All-inorganic cesium lead halide (CsPbBr3) perovskite quantum dots (QDs), as one kind of promising materials, have attracted considerable attention in optoelectronic applications. Herein, we synthesized the colloidal CsPbBr3 QDs with tunable photoluminescence (PL) (493-531 nm) by adjusting the reaction temperatures, which revealed narrow emission bandwidths of about 25 nm. The average diameters of the QDs could be adjusted from 7.1 to 12.3 nm as the temperature increased from 100 °C to 180 °C. Moreover, the radiative lifetimes of CsPbBr3 QDs were measured to be 2 ns, and the single QD fluorescence intensity time trace results demonstrated its suppressed blinking emission. Moreover, green light emitting diodes by using CsPbBr3 QDs casted on blue LED chips were further fabricated, which provided potential applications in the field of display and lighting technology.

  4. Diode Laser Velocity Measurements by Modulated Filtered Rayleigh Scattering

    Science.gov (United States)

    Mach, J. J.; Varghese, P. L.; Jagodzinski, J. J.

    1999-01-01

    The ability of solid-state lasers to be tuned in operating frequency at MHz rates by input current modulation, while maintaining a relatively narrow line-width, has made them useful for spectroscopic measurements. Their other advantages include low cost, reliability, durability, compact size, and modest power requirements, making them a good choice for a laser source in micro-gravity experiments in drop-towers and in flight. For their size, they are also very bright. In a filtered Rayleigh scattering (FRS) experiment, a diode laser can be used to scan across an atomic or molecular absorption line, generating large changes in transmission at the resonances for very small changes in frequency. The hyperfine structure components of atomic lines of alkali metal vapors are closely spaced and very strong, which makes such atomic filters excellent candidates for sensitive Doppler shift detection and therefore for high-resolution velocimetry. In the work we describe here we use a Rubidium vapor filter, and work with the strong D(sub 2) transitions at 780 nm that are conveniently accessed by near infrared diode lasers. The low power output of infrared laser diodes is their primary drawback relative to other laser systems commonly used for velocimetry. However, the capability to modulate the laser frequency rapidly and continuously helps mitigate this. Using modulation spectroscopy and a heterodyne detection scheme with a lock-in amplifier, one can extract sub-microvolt signals occurring at a specific frequency from a background that is orders of magnitude stronger. The diode laser modulation is simply achieved by adding a small current modulation to the laser bias current. It may also be swept repetitively in wavelength using an additional lower frequency current ramp.

  5. Heterogeneously grown tunable group-IV laser on silicon

    Science.gov (United States)

    Hudait, Mantu; Clavel, M.; Lester, L.; Saladukha, D.; Ochalski, T.; Murphy-Armando, F.

    2016-02-01

    Tunable tensile-strained germanium (epsilon-Ge) thin films on GaAs and heterogeneously integrated on silicon (Si) have been demonstrated using graded III-V buffer architectures grown by molecular beam epitaxy (MBE). epsilon-Ge epilayers with tunable strain from 0% to 1.95% on GaAs and 0% to 1.11% on Si were realized utilizing MBE. The detailed structural, morphological, band alignment and optical properties of these highly tensile-strained Ge materials were characterized to establish a pathway for wavelength-tunable laser emission from 1.55 μm to 2.1 μm. High-resolution X-ray analysis confirmed pseudomorphic epsilon-Ge epitaxy in which the amount of strain varied linearly as a function of indium alloy composition in the InxGa1-xAs buffer. Cross-sectional transmission electron microscopic analysis demonstrated a sharp heterointerface between the epsilon-Ge and the InxGa1-xAs layer and confirmed the strain state of the epsilon-Ge epilayer. Lowtemperature micro-photoluminescence measurements confirmed both direct and indirect bandgap radiative recombination between the Γ and L valleys of Ge to the light-hole valence band, with L-lh bandgaps of 0.68 eV and 0.65 eV demonstrated for the 0.82% and 1.11% epsilon-Ge on Si, respectively. The highly epsilon-Ge exhibited a direct bandgap, and wavelength-tunable emission was observed for all samples on both GaAs and Si. Successful heterogeneous integration of tunable epsilon-Ge quantum wells on Si paves the way for the implementation of monolithic heterogeneous devices on Si.

  6. Kerr-lens mode-locked Ti:Sapphire laser pumped by a single laser diode

    Science.gov (United States)

    Kopylov, D. A.; Esaulkov, M. N.; Kuritsyn, I. I.; Mavritskiy, A. O.; Perminov, B. E.; Konyashchenko, A. V.; Murzina, T. V.; Maydykovskiy, A. I.

    2018-04-01

    The performance of a Ti:sapphire laser pumped by a single 461 nm laser diode is presented for both the continuous-wave and the mode-locked regimes of operation. We introduce a simple astigmatism correction scheme for the laser diode beam consisting of two cylindrical lenses affecting the pump beam along the fast axis of the laser diode, which provides the mode-matching between the nearly square-shaped pump beam and the cavity mode. The resulting efficiency of the suggested Ti:Sapphire oscillator pumped by such a laser diode is analyzed for the Ti:sapphire crystals of 3 mm, 5 mm and 10 mm in length. We demonstrate that such a system provides the generation of ultrashort pulses up to 15 fs in duration with the repetition rate of 87 MHz, the average power being 170 mW.

  7. Method and system for homogenizing diode laser pump arrays

    Science.gov (United States)

    Bayramian, Andy J

    2013-10-01

    An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.

  8. Dual-Wavelength Internal-Optically-Pumped Semiconductor Laser Diodes

    Science.gov (United States)

    Green, Benjamin

    Dual-wavelength laser sources have various existing and potential applications in wavelength division multiplexing, differential techniques in spectroscopy for chemical sensing, multiple-wavelength interferometry, terahertz-wave generation, microelectromechanical systems, and microfluidic lab-on-chip systems. In the drive for ever smaller and increasingly mobile electronic devices, dual-wavelength coherent light output from a single semiconductor laser diode would enable further advances and deployment of these technologies. The output of conventional laser diodes is however limited to a single wavelength band with a few subsequent lasing modes depending on the device design. This thesis investigates a novel semiconductor laser device design with a single cavity waveguide capable of dual-wavelength laser output with large spectral separation. The novel dual-wavelength semiconductor laser diode uses two shorter- and longer-wavelength active regions that have separate electron and hole quasi-Fermi energy levels and carrier distributions. The shorter-wavelength active region is based on electrical injection as in conventional laser diodes, and the longer-wavelength active region is then pumped optically by the internal optical field of the shorter-wavelength laser mode, resulting in stable dual-wavelength laser emission at two different wavelengths quite far apart. Different designs of the device are studied using a theoretical model developed in this work to describe the internal optical pumping scheme. The carrier transport and separation of the quasi-Fermi distributions are then modeled using a software package that solves Poisson's equation and the continuity equations to simulate semiconductor devices. Three different designs are grown using molecular beam epitaxy, and broad-area-contact laser diodes are processed using conventional methods. The modeling and experimental results of the first generation design indicate that the optical confinement factor of the

  9. Diode-pumped fiber lasers: a new clinical tool?

    Science.gov (United States)

    Jackson, Stuart D; Lauto, Antonio

    2002-01-01

    Diode-pumped fiber lasers are a compact and an efficient source of high power laser radiation. These laser systems have found wide recognition in the area of lasers as a result of these very practical characteristics and are now becoming important tools for a large number of applications. In this review, we outline the basic physics of fiber lasers and illustrate how a number of clinical procedures would benefit from their employment. The pump mechanisms, the relevant pump and laser transitions between the energy levels, and the main properties of the output from fiber lasers will be briefly reviewed. The main types of high power fiber lasers that have been demonstrated will be examined along with some recent medical applications that have used these lasers. We will also provide a general review of some important medical specialties, highlighting why these fields would gain from the introduction of the fiber laser. It is established that while the fiber laser is still a new form of laser device and hence not commercially available in a wide sense, a number of important medical procedures will benefit from its general introduction into medicine. With the number of medical and surgical applications requiring high power laser radiation steadily increasing, the demand for more efficient and compact laser systems providing this capacity will grow commensurately. The high power fiber laser is one system that looks like a promising modality to meet this need. Copyright 2002 Wiley-Liss, Inc.

  10. Injection locking of a high power ultraviolet laser diode for laser cooling of ytterbium atoms.

    Science.gov (United States)

    Hosoya, Toshiyuki; Miranda, Martin; Inoue, Ryotaro; Kozuma, Mikio

    2015-07-01

    We developed a high-power laser system at a wavelength of 399 nm for laser cooling of ytterbium atoms with ultraviolet laser diodes. The system is composed of an external cavity laser diode providing frequency stabilized output at a power of 40 mW and another laser diode for amplifying the laser power up to 220 mW by injection locking. The systematic method for optimization of our injection locking can also be applied to high power light sources at any other wavelengths. Our system does not depend on complex nonlinear frequency-doubling and can be made compact, which will be useful for providing light sources for laser cooling experiments including transportable optical lattice clocks.

  11. Management of gingival hyperpigmentation by semiconductor diode laser

    Directory of Open Access Journals (Sweden)

    Geeti Gupta

    2011-01-01

    Full Text Available Gingival hyperpigmentation is caused by excessive deposition of melanin in the basal and suprabasal cell layers of the epithelium. Although melanin pigmentation of the gingiva is completely benign, cosmetic concerns are common, particularly in patients having a very high smile line (gummy smile. Various depigmentation techniques have been employed, such as scalpel surgery, gingivectomy, gingivectomy with free gingival autografting, cryosurgery, electrosurgery, chemical agents such as 90% phenol and 95% alcohol, abrasion with diamond burs, Nd:YAG laser, semiconductor diode laser, and CO 2 laser. The present case report describes simple and effective depigmentation technique using semiconductor diode laser surgery - for gingival depigmentation, which have produced good results with patient satisfaction.

  12. Advancements of ultra-high peak power laser diode arrays

    Science.gov (United States)

    Crawford, D.; Thiagarajan, P.; Goings, J.; Caliva, B.; Smith, S.; Walker, R.

    2018-02-01

    Enhancements of laser diode epitaxy in conjunction with process and packaging improvements have led to the availability of 1cm bars capable of over 500W peak power at near-infrared wavelengths (770nm to 1100nm). Advances in cooler design allow for multi-bar stacks with bar-to-bar pitches as low as 350μm and a scalable package architecture enabled a single diode assembly with total peak powers of over 1MegaWatt of peak power. With the addition of micro-optics, overall array brightness greater than 10kW/cm2 was achieved. Performance metrics of barbased diode lasers specifically engineered for high peak power and high brightness at wavelengths and pulse conditions commonly used to pump a variety of fiber and solid-state materials are presented.

  13. Modeling of diode pumped metastable rare gas lasers.

    Science.gov (United States)

    Yang, Zining; Yu, Guangqi; Wang, Hongyan; Lu, Qisheng; Xu, Xiaojun

    2015-06-01

    As a new kind of optically pumped gaseous lasers, diode pumped metastable rare gas lasers (OPRGLs) show potential in high power operation. In this paper, a multi-level rate equation based model of OPRGL is established. A qualitative agreement between simulation and Rawlins et al.'s experimental result shows the validity of the model. The key parameters' influences and energy distribution characteristics are theoretically studied, which is useful for the optimized design of high efficient OPRGLs.

  14. Diode lasers: A magical wand to an orthodontic practice

    Directory of Open Access Journals (Sweden)

    Vipul Kumar Srivastava

    2014-01-01

    Full Text Available LASER (Light Amplification by Stimulated Emission of Radiation is a powerful source of light, which has innumerable applications in all the fields of science including medicine and dentistry. It is one such technology that has become a desirable and an inseparable alternative to many traditional surgical procedures being held in the field of dentistry, and orthodontics is no exception. The current article describes the uses of a diode laser as an indispensable tool in an orthodontic office.

  15. Chirp of monolithic colliding pulse mode-locked diode lasers

    DEFF Research Database (Denmark)

    Hofmann, M.; Bischoff, S.; Franck, Thorkild

    1997-01-01

    Spectrally resolved streak camera measurements of picosecond pulses emitted by hybridly colliding pulse mode-locked (CPM) laser diodes are presented in this letter. Depending on the modulation frequency both blue-chirped (upchirped) and red-chirped (downchirped) pulses can be observed. The two...... different regimes and the transition between them are characterized experimentally and the behavior is explained on the basis of our model for the CPM laser dynamics. (C) 1997 American Institute of Physics....

  16. Innovative Facet Passivation for High-Brightness Laser Diodes

    Science.gov (United States)

    2016-02-05

    formation process (cleaving) or from contamination from the ambient . (a) Papers published in peer-reviewed journals (N/A for none) Enter List of...funded by a DoD funded Center of Excellence grant for Education , Research and Engineering: The number of undergraduates funded by your agreement who...contamination from the ambient . 15. S U B J E C T T E R M S High-power laser diodes, catastrophic optical damage, high energy lasers 16. SECURITY

  17. Comparing the 810nm Diode Laser with Conventional Surgery in ...

    African Journals Online (AJOL)

    Aim: To compare the use of the 810nm diode laser with conventional surgery in the management of soft tissue mucogingival problems associated with orthodontic treatment. Methods: Orthodontic patients requiring different soft tissue surgical procedures were randomly assigned to receive conventional surgery or soft tissue ...

  18. Multiple diode laser polygon raster output scanner design

    Science.gov (United States)

    Dunn, Susan E.; Ossman, Kenneth R.

    1997-07-01

    The usual xerographic polygon raster output scanner (ROS) design is a set of compromises among speed, image quality, reliability and cost. The design solution presented here pushes the ROS print speed and quality boundaries well beyond the desktop printer while keeping cost low. A dual diode laser source is used to simultaneously write two high resolution, high contrast scan lines that are offset in the cross-scan plane in an underfilled polygon embodiment. The benefits of a dual diode laser design are the high print rate with a low motor polygon assembly (MPA) speed; each beam power is half of that required of a single source; and the electronic data transfer rates are reduced by a factor of two. As the number of sources increases clearly so do these benefits. Reliable and cost effective MPA speeds are limited to less than 30,000 rpm. Multiple diode laser sources impose additional design constraints over single laser sources. The demanding image quality specifications of single laser ROS designs such as spot size and shape, wobble, bow and scan linearity must be achieved while managing new, multiple laser characteristics such as line separation and differential bow. Appropriate compromises of individual image quality parameters must always be made in order to achieve a system design that meets all of the image quality specifications over a reasonable depth of focus.

  19. Tunable High-Power Single-Frequency Laser at 2050 nm, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a novel new architecture for a low-phase noise electronically tunable laser single-frequency laser at 2.05 microns that meets all the demanding...

  20. Fast tunable blazed MEMS grating for external cavity lasers

    Science.gov (United States)

    Tormen, Maurizio; Niedermann, Philippe; Hoogerwerf, Arno; Shea, Herbert; Stanley, Ross

    2017-11-01

    Diffractive MEMS are interesting for a wide range of applications, including displays, scanners or switching elements. Their advantages are compactness, potentially high actuation speed and in the ability to deflect light at large angles. We have designed and fabricated deformable diffractive MEMS grating to be used as tuning elements for external cavity lasers. The resulting device is compact, has wide tunability and a high operating speed. The initial design is a planar grating where the beams are free-standing and attached to each other using leaf springs. Actuation is achieved through two electrostatic comb drives at either end of the grating. To prevent deformation of the free-standing grating, the device is 10 μm thick made from a Silicon on Insulator (SOI) wafer in a single mask process. At 100V a periodicity tuning of 3% has been measured. The first resonant mode of the grating is measured at 13.8 kHz, allowing high speed actuation. This combination of wide tunability and high operating speed represents state of the art in the domain of tunable MEMS filters. In order to improve diffraction efficiency and to expand the usable wavelength range, a blazed version of the deformable MEMS grating has been designed. A key issue is maintaining the mechanical properties of the original device while providing optically smooth blazed beams. Using a process based on anisotropic KOH etching, blazed gratings have been obtained and preliminary characterization is promising.

  1. LASERS: Solid-state tunable laser with a forsterite converter

    Science.gov (United States)

    Minkov, B. I.; Nazarenko, P. N.; Stavrov, A. A.

    1994-09-01

    The energy efficiency of a forsterite laser was investigated. Calculations show that the use of real components limits the efficiency to ~10%. Some ways of optimising the parameters of such a laser are suggested. The calculated results are on the whole in agreement with the experimental data, including those obtained by other authors. A description is given of the first all-solid forsterite laser and ways of improving it further are proposed.

  2. Endoscopic diode laser therapy for chronic radiation proctitis.

    Science.gov (United States)

    Polese, Lino; Marini, Lucia; Rizzato, Roberto; Picardi, Edgardo; Merigliano, Stefano

    2018-01-01

    The purpose of this study is to determine the effectiveness of endoscopic diode laser therapy in patients presenting rectal bleeding due to chronic radiation proctitis (CRP). A retrospective analysis of CRP patients who underwent diode laser therapy in a single institution between 2010 and 2016 was carried out. The patients were treated by non-contact fibers without sedation in an outpatient setting. Fourteen patients (median age 77, range 73-87 years) diagnosed with CRP who had undergone high-dose radiotherapy for prostatic cancer and who presented with rectal bleeding were included. Six required blood transfusions. Antiplatelet (three patients) and anticoagulant (two patients) therapy was not suspended during the treatments. The patients underwent a median of two sessions; overall, a mean of 1684 J of laser energy per session was used. Bleeding was resolved in 10/14 (71%) patients, and other two patients showed improvement (93%). Only one patient, who did not complete the treatment, required blood transfusions after laser therapy; no complications were noted during or after the procedures. Study findings demonstrated that endoscopic non-contact diode laser treatment is safe and effective in CRP patients, even in those receiving antiplatelet and/or anticoagulant therapy.

  3. Dye-enhanced diode laser photocoagulation of choroidal neovascularizations

    Science.gov (United States)

    Klingbeil, Ulrich; Puliafito, Carmen A.; McCarthy, Dan; Reichel, Elias; Olk, Joseph; Lesiecki, Michael L.

    1994-06-01

    Dye-enhanced diode laser photocoagulation, using the dye indocyanine green (ICG), has shown some potential in the treatment of choroidal neovascularizations (CNV). A diode laser system was developed and optimized to emit at the absorption maximum of ICG. In a clinical study at two retinal centers, more than 70 patients, the majority of which had age-related macular degeneration, were treated. Eighteen cases with ill-defined subfoveal CNV were followed an average of 11 months after laser treatment. The results show success in resolving the CNV with an average long-term preservation of visual function equal to or superior to data provided by the Macular Photocoagulation Study for confluent burns of low intensity applied to the CNV. Details of the technique and discussion of the controversies inherent in such a treatment strategy will be presented.

  4. A comparative evaluation: Oral leukoplakia surgical management using diode laser, CO2 laser, and cryosurgery.

    Science.gov (United States)

    Natekar, Madhukar; Raghuveer, Hosahallli-Puttaiah; Rayapati, Dilip-Kumar; Shobha, Eshwara-Singh; Prashanth, Nagesh-Tavane; Rangan, Vinod; Panicker, Archana G

    2017-06-01

    The comparatively evaluate the three surgical treatment modalities namely cryosurgery, diode and CO2 laser surgery in terms of healing outcomes on the day of surgery, first and second week post operatively and recurrence at the end of 18 months was assessed. Thirty selected patients were divided randomly into three groups. Each group comprising of ten patients were subjected to one of the three modalities of treatment namely cryosurgery, diode laser or CO2 laser surgery for ablation of OL. Obtained data was analyzed using mainly using Chi-square and Anova tests. Study showed statistical significant differences (p > 0.05) for evaluation parameters like pain, edema and scar. The parameters like infection, recurrence, bleeding showed no statistical significance. Pain was significantly higher in CO2 laser surgery group as compared with diode laser group. There was no recurrence observed at the end of the 6 months follow up period in all the three study groups. Observations from the study highlights that all three surgical modalities used in this study were effective for treatment of OL, and the overall summation of the results of the study showed that laser therapy (CO2 and Diode) seems to offer better clinically significant results than cryotherapy. Key words: Oral premalignant lesion, leukoplakia, cryosurgery, CO2 laser surgery, diode laser surgery.

  5. Effects of atmospheric transmission of high power diode pumped alkali lasers

    Science.gov (United States)

    Rice, Christopher A.; Perram, Glen P.

    2013-03-01

    As diode pumped alkali lasers (DPAL) are scaled to powers exceeding 1 kW, the effects of atmospheric transmission, including thermal blooming, is explored. The cesium and rubidium lasers operate near 894 and 795 nm, respectively, in the vicinity of atmospheric water vapor absorption lines. The potassium laser line lies in the high rotational limit of the O2 X-b (0,0) band near 770 nm. We assess the effects of atmospheric transmission on high power propagation using the High Energy Laser End-to End Operational Simulation. HELEEOS uses the scaling laws of the Scaling the High energy laser And Relay Engagements (SHaRE) toolbox which is anchored to the wave optics code WaveTrain and all significant degradation effects, including thermal blooming due to molecular and aerosol absorption, scattering extinction, and optical turbulence, are represented in the model. The HELEEOS model enables the evaluation of uncertainty in low-altitude high energy laser engagements due to all major low altitude atmospheric effects to include physically-based representations of water clouds, fog, light rain, and aerosols. Worldwide seasonal, diurnal, and geographical spatial-temporal variability in key climatological parameters is organized into probability density function databases in HELEEOS using a variety of recently available resources to include the Extreme and Percentile Environmental Reference Tables (ExPERT) for 408 sites worldwide, the Surface Marine Gridded Climatology (SMGC) database which provides coverage over all ocean areas, the Master Database for Optical Turbulence Research in support of the Airborne Laser, and the Global Aerosol Data Set (GADS) used to provide worldwide aerosol densities. The spectral transmission model is anchored to field data from an open-path Tunable Diode Laser Absorption (TDLAS) system composed of narrow band (~300 kHz) diode laser fiber coupled to a 12" Ritchey-Chrétien transmit telescope. The ruggedized system has been field deployed and tested

  6. Spectral narrowing of a 980 nm tapered diode laser bar

    DEFF Research Database (Denmark)

    Vijayakumar, Deepak; Jensen, Ole Bjarlin; Lucas Leclin, Gaëlle

    2011-01-01

    in wavelength specific applications and hence, it is vital to stabilize the emission spectrum of these devices. In our experiment, we describe the wavelength narrowing of a 12 element 980 nm tapered diode laser bar using a simple Littman configuration. The tapered laser bar which suffered from a big smile has...... been "smile corrected" using individual phase masks for each emitter. The external cavity consists of the laser bar, both fast and slow axis micro collimators, smile correcting phase mask, 6.5x beam expanding lens combination, a 1200 lines/mm reflecting grating with 85% efficiency in the first order...

  7. Resection of the Tooth Apex with Diode Laser

    Directory of Open Access Journals (Sweden)

    Uzunov Tz.

    2014-06-01

    Full Text Available An “in vitro” experimental study has been carried out on 70 extracted teeth. A laser resection of the root apex has been carried out with diode laser beam with a wavelength of - 810 ± 10 nm. Sequentially a radiation with increasing power has been applied, as follows: 1,3 W, 2W, 3W, 4W, 5W, 6W, 7W, in electro surgery mode. Successful resection of the tooth apex has been performed at: 3W; 4W; 5W; 6W and 7W power. It was established that when laser resected the tooth apex carbonizes.

  8. Laser-diode-pumped mirror-free Er sup 3+ -doped fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Y.; Suzuki, K.; Nakazawa, M. (Optical Communication Laboratory, NTT Transmission Systems Laboratories, Tokai, Ibaraki-ken 319-11, Japan (JP))

    1989-09-15

    We have demonstrated 1.47-{mu}m laser-diode-pumped Er{sup 3+}-doped fiber laser operation at 1.552 {mu}m, in which a cleaved fiber facet with 4% reflectivity is used as the output mirror. The pump source is a 1.47-{mu}m InGaAsP laser diode inserted into the fiber laser cavity. End pumping a 7-m-long Er{sup 3+}-doped fiber yields an output power of 1 mW for an absorbed pump power of 60 mW and a slope efficiency of 6.25%.

  9. Treatment of Gingival Hyperpigmentation by Diode Laser for Esthetical Purposes

    Directory of Open Access Journals (Sweden)

    Hanaa M. El Shenawy

    2015-08-01

    Full Text Available BACKGROUND: Gingival hyperpigmentation is a common esthetical concern in patients with gummy smile or excessive gingival display. Laser ablation has been recognized recently as the most effective, pleasant and reliable technique. It has the advantage of easy handling, short treatment time, hemostasis, decontamination, and sterilization effect. AIM: In the present study we wanted to explore the efficacy of a 980 nm wavelength diode laser in gingival depigmentation clinically by using both VAS and digital imaging method as means of assessment. METHODS: Diode laser ablation was done for 15 patients who requested cosmetic therapy for melanin pigmented gums. The laser beam delivered by fiberoptic with a diameter of 320 µm, the diode laser system has 980 nm wave lengths and 3 W irradiation powers, in a continuous contact mode in all cases, the entire surface of each pigmented maxillary and mandibular gingiva that required treatment was irradiated in a single session. Clinical examination and digital image analysis were done and the patients were followed up for 3 successive months. RESULTS: There was a statistically significant change in prevalence of bleeding after treatment, as none of the cases showed any signs of bleeding 1 week, 1 month and 3 months after ablation. No statistically significant change was observed in the prevalence of swelling after treatment The VAS evaluation demonstrated that only 4 patients complained of mild pain immediately after the procedure. No pain was perceived from the patients in the rest of the follow up period. There was no statistically significant change in prevalence of pain immediately after treatment compared to pain during treatment. There was a decrease in cases with mild pain after 1 week, 1 month as well as 3 months compared to pain during treatment and immediately after treatment. CONCLUSION: Within the limitations of this study, the use of diode laser was shown to be a safe and effective treatment

  10. Highly-reliable laser diodes and modules for spaceborne applications

    Science.gov (United States)

    Deichsel, E.

    2017-11-01

    Laser applications become more and more interesting in contemporary missions such as earth observations or optical communication in space. One of these applications is light detection and ranging (LIDAR), which comprises huge scientific potential in future missions. The Nd:YAG solid-state laser of such a LIDAR system is optically pumped using 808nm emitting pump sources based on semiconductor laser-diodes in quasi-continuous wave (qcw) operation. Therefore reliable and efficient laser diodes with increased output powers are an important requirement for a spaceborne LIDAR-system. In the past, many tests were performed regarding the performance and life-time of such laser-diodes. There were also studies for spaceborne applications, but a test with long operation times at high powers and statistical relevance is pending. Other applications, such as science packages (e.g. Raman-spectroscopy) on planetary rovers require also reliable high-power light sources. Typically fiber-coupled laser diode modules are used for such applications. Besides high reliability and life-time, designs compatible to the harsh environmental conditions must be taken in account. Mechanical loads, such as shock or strong vibration are expected due to take-off or landing procedures. Many temperature cycles with high change rates and differences must be taken in account due to sun-shadow effects in planetary orbits. Cosmic radiation has strong impact on optical components and must also be taken in account. Last, a hermetic sealing must be considered, since vacuum can have disadvantageous effects on optoelectronics components.

  11. Laser absorption spectroscopy using lead salt and quantum cascade tunable lasers

    Science.gov (United States)

    Namjou-Khales, Khosrow

    A new class of analytic instruments based on the detection of chemical species through their spectroscopic absorption 'fingerprint' is emerging based on the use of tunable semiconductor lasers as the excitation source. Advantages of this approach include compact device size, in-line measurement capability, and large signal-bandwidth product. To realize these advantages will require the marriage of laser devices with broad tunability in the infrared spectral range with sophisticated signal processing techniques. Currently, commercial devices based on short wavelength telecommunications type lasers exist but there is potential for much more versatile instruments based on longer wavelength operation. This thesis is divided into two parts. In the first part I present a theoretical analysis and experimental characterization of frequency and wavelength modulation spectroscopy using long wavelength infrared tunable lasers. The experimental measurements were carried out using commercially available lead salt lasers and excellent agreement is found between theoretically predicted performance and experimental verification. The lead salt laser has several important drawbacks as a source in practical instrumentation. In the second part of the thesis I report on the use of the quantum cascade (QC) laser for use in sensitive absorption spectroscopy. The QC laser is a new type of tunable device developed at Bell Laboratories. It features broad infrared tunability, single mode distributed feedback operation, and near room temperature lasing. Using the modulation techniques developed originally for the lead salt lasers, the QC laser was used to detect Nsb2O and other small molecules with absorption features near 8 mum wavelength. The noise equivalent absorption for our measurements was 5× 10sp{-5}/sqrt{Hz} which corresponds to a detection limit of ˜0.25 ppm-m/sqrt{Hz} for Nsb2O. The QC laser sensitivity was found to be limited by excess amplitude modulation in the detection

  12. Tunable mW Narrow Bandwidth Mid-Infrared Light Source

    DEFF Research Database (Denmark)

    Krenzen, Erik; Kehlet, Louis M.; Tidemand-Lichtenberg, Peter

    2012-01-01

    A Tunable Mid-IR light source base on single resonant Difference Frequency Generation (DFG) is experimentally investigated. The DFG process is pumped by an 800 nm tunable tapered diode laser. Grating feedback to the single mode channel of the tapered diode narrows the spectrum and allows for tuning...

  13. Present state of applying diode laser in Toyota Motor Corp.

    Science.gov (United States)

    Terada, Masaki; Nakamura, Hideo

    2003-03-01

    Since the mid-1980s, Toyota Motor Corporation has applied CO2 lasers and YAG lasers to machine (welding, piercing, cutting, surface modifying etc.) automobile parts. In recent years diode lasers, which are excellent in terms of cost performance, are now available on the market as a new type of oscillator and are expected to bring about a new age in laser technology. Two current problems with these lasers, however, are the lack of sufficient output and the difficulty in improving the focusing the beam, which is why it has not been easy to apply them to the machining of metal parts in the past. On the other hand, plastics can be joined with low energy because they have a lower melting point than metal and the rate of absorption of the laser is easy to control. Moreover, because the high degree of freedom in molding plastic parts results in many complex shapes that need to be welded, Toyota is looking into the use of diode lasers to weld plastic parts. This article will introduce the problems of plastics welding and the methods to solve them referring to actual examples.

  14. Diode Lasers used in Plastic Welding and Selective Laser Soldering - Applications and Products

    Science.gov (United States)

    Reinl, S.

    Aside from conventional welding methods, laser welding of plastics has established itself as a proven bonding method. The component-conserving and clean process offers numerous advantages and enables welding of sensitive assemblies in automotive, electronic, medical, human care, food packaging and consumer electronics markets. Diode lasers are established since years within plastic welding applications. Also, soft soldering using laser radiation is becoming more and more significant in the field of direct diode laser applications. Fast power controllability combined with a contactless temperature measurement to minimize thermal damage make the diode laser an ideal tool for this application. These advantages come in to full effect when soldering of increasingly small parts in temperature sensitive environments is necessary.

  15. Single Spatial-Mode Room-Temperature-Operated 3.0 to 3.4 micrometer Diode Lasers

    Science.gov (United States)

    Frez, Clifford F.; Soibel, Alexander; Belenky, Gregory; Shterengas, Leon; Kipshidze, Gela

    2010-01-01

    Compact, highly efficient, 3.0 to 3.4 m light emitters are in demand for spectroscopic analysis and identification of chemical substances (including methane and formaldehyde), infrared countermeasures technologies, and development of advanced infrared scene projectors. The need for these light emitters can be currently addressed either by bulky solid-state light emitters with limited power conversion efficiency, or cooled Interband Cascade (IC) semiconductor lasers. Researchers here have developed a breakthrough approach to fabrication of diode mid-IR lasers that have several advantages over IC lasers used for the Mars 2009 mission. This breakthrough is due to a novel design utilizing the strain-engineered quantum-well (QW) active region and quinternary barriers, and due to optimization of device material composition and growth conditions (growth temperatures and rates). However, in their present form, these GaSb-based laser diodes cannot be directly used as a part of sensor systems. The device spectrum is too broad to perform spectroscopic analysis of gas species, and operating currents and voltages are too high. In the current work, the emitters were fabricated as narrow-ridge waveguide index-guided lasers rather than broad stripe-gain guided multimode Fabry-Perot (FP) lasers as was done previously. These narrow-ridge waveguide mid-IR lasers exhibit much lower power consumptions, and can operate in a single spatial mode that is necessary for demonstration of single-mode distributed feedback (DBF) devices for spectroscopic applications. These lasers will enable a new generation of compact, tunable diode laser spectrometers with lower power consumption, reduced complexity, and significantly reduced development costs. These lasers can be used for the detection of HCN, C2H2, methane, and ethane.

  16. Optical pumping of Rb by Ti:Sa laser and high-power laser diode

    Czech Academy of Sciences Publication Activity Database

    Buchta, Zdeněk; Rychnovský, Jan; Lazar, Josef

    2006-01-01

    Roč. 8, č. 1 (2006), s. 350-354 ISSN 1454-4164 R&D Projects: GA AV ČR IAA1065303; GA ČR GA102/04/2109 Institutional research plan: CEZ:AV0Z20650511 Keywords : optical pumping * Ti:Sa laser * laser diode * emission linewidth * spectroscopy * laser frequency stabilization Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.106, year: 2006

  17. High temperature semiconductor diode laser pumps for high energy laser applications

    Science.gov (United States)

    Campbell, Jenna; Semenic, Tadej; Guinn, Keith; Leisher, Paul O.; Bhunia, Avijit; Mashanovitch, Milan; Renner, Daniel

    2018-02-01

    Existing thermal management technologies for diode laser pumps place a significant load on the size, weight and power consumption of High Power Solid State and Fiber Laser systems, thus making current laser systems very large, heavy, and inefficient in many important practical applications. To mitigate this thermal management burden, it is desirable for diode pumps to operate efficiently at high heat sink temperatures. In this work, we have developed a scalable cooling architecture, based on jet-impingement technology with industrial coolant, for efficient cooling of diode laser bars. We have demonstrated 60% electrical-to-optical efficiency from a 9xx nm two-bar laser stack operating with propylene-glycolwater coolant, at 50 °C coolant temperature. To our knowledge, this is the highest efficiency achieved from a diode stack using 50 °C industrial fluid coolant. The output power is greater than 100 W per bar. Stacks with additional laser bars are currently in development, as this cooler architecture is scalable to a 1 kW system. This work will enable compact and robust fiber-coupled diode pump modules for high energy laser applications.

  18. A car-borne highly sensitive near-IR diode-laser methane detector

    International Nuclear Information System (INIS)

    Berezin, A G; Ershov, Oleg V; Shapovalov, Yu P

    2003-01-01

    A highly sensitive automated car-borne detector for measuring methane concentration in real time is designed, developed and tested under laboratory and field conditions. Measurements were made with the help of an uncooled tunable near-IR 1.65-μm laser diode. The detector consists of a multipass optical cell with a 45-m long optical path and a base length of 0.5 m. The car-borne detector is intended for monitoring the methane concentration in air from the moving car to reveal the leakage of domestic gas. The sensitivity limit (standard deviation) under field conditions is 1 ppm (20 ppb under laboratory conditions) for a measuring time of 0.4 s. The measuring technique based on the detection of a single methane line ensured a high selectivity of methane detector relative to other gases. The methane detector can be easily modified for measuring other simple-molecule gases (e.g., CO, CO 2 , HF, NO 2 , H 2 O) by replacing the diode laser and varying the parameters of the control program. (special issue devoted to the memory of academician a m prokhorov)

  19. Non-invasive gas monitoring in newborn infants using diode laser absorption spectroscopy: a case study

    Science.gov (United States)

    Lundin, Patrik; Svanberg, Emilie K.; Cocola, Lorenzo; Lewander, Märta; Andersson-Engels, Stefan; Jahr, John; Fellman, Vineta; Svanberg, Katarina; Svanberg, Sune

    2012-03-01

    Non-invasive diode laser spectroscopy was, for the first time, used to assess gas content in the intestines and the lungs of a new-born, 4 kg, baby. Two gases, water vapor and oxygen, were studied with two low-power tunable diode lasers, illuminating the surface skin tissue and detecting the diffusely emerging light a few centimeters away. The light, having penetrated into the tissue, had experienced absorption by gas located in the lungs and in the intestines. Very distinct water vapor signals were obtained from the intestines while imprint from oxygen was lacking, as expected. Detectable, but minor, signals of water vapor were also obtained from the lungs, illuminating the armpit area and detecting below the collar bone. Water vapor signals were seen but again oxygen signals were lacking, now due to the difficulties of penetration of the oxygen probing light into the lungs of this full-term baby. Ultra-sound images were obtained both from the lungs and from the stomach of the baby. Based on dimensions and our experimental findings, we conclude, that for early pre-term babies, also oxygen should be detectable in the lungs, in addition to intestine and lung detection of water vapor. The present paper focuses on the studies of the intestines while the lung studies will be covered in a forthcoming paper.

  20. On Developing Field-Effect-Tunable Nanofluidic Ion Diodes with Bipolar, Induced-Charge Electrokinetics

    Directory of Open Access Journals (Sweden)

    Ye Tao

    2018-04-01

    Full Text Available We introduce herein the induced-charge electrokinetic phenomenon to nanometer fluidic systems; the design of the nanofluidic ion diode for field-effect ionic current control of the nanometer dimension is developed by enhancing internal ion concentration polarization through electrochemical transport of inhomogeneous inducing-counterions resulting from double gate terminals mounted on top of a thin dielectric layer, which covers the nanochannel connected to microfluidic reservoirs on both sides. A mathematical model based on the fully-coupled Poisson-Nernst-Plank-Navier-Stokes equations is developed to study the feasibility of this structural configuration causing effective ionic current rectification. The effect of various physiochemical and geometrical parameters, such as the native surface charge density on the nanochannel sidewalls, the number of gate electrodes (GE, the gate voltage magnitude, and the solution conductivity, permittivity, and thickness of the dielectric coating, as well as the size and position of the GE pair of opposite gate polarity, on the resulted rectification performance of the presented nanoscale ionic device is numerically analyzed by using a commercial software package, COMSOL Multiphysics (version 5.2. Three types of electrohydrodynamic flow, including electroosmosis of 1st kind, induced-charge electroosmosis, and electroosmosis of 2nd kind that were originated by the Coulomb force within three distinct charge layers coexist in the micro/nanofluidic hybrid network and are shown to simultaneously influence the output current flux in a complex manner. The rectification factor of a contrast between the ‘on’ and ‘off’ working states can even exceed one thousand-fold in the case of choosing a suitable combination of several key parameters. Our demonstration of field-effect-tunable nanofluidic ion diodes of double external gate electrodes proves invaluable for the construction of a flexible electrokinetic platform

  1. Industrial integration of high coherence tunable single frequency semiconductor lasers based on VECSEL technology for scientific instrumentation in NIR and MIR

    Science.gov (United States)

    Lecocq, Vincent; Chomet, Baptiste; Ferrières, Laurence; Myara, Mikhaël.; Beaudoin, Grégoire; Sagnes, Isabelle; Cerutti, Laurent; Denet, Stéphane; Garnache, Arnaud

    2017-02-01

    Laser technology is finding applications in areas such as high resolution spectroscopy, radar-lidar, velocimetry, or atomic clock where highly coherent tunable high power light sources are required. The Vertical External Cavity Surface Emitting Laser (VECSEL) technology [1] has been identified for years as a good candidate to reach high power, high coherence and broad tunability while covering a wide emission wavelength range exploiting III-V semiconductor technologies. Offering such performances in the Near- and Middle-IR range, GaAs- and Sb-based VECSEL technologies seem to be a well suited path to meet the required specifications of demanding applications. Built up in this field, our expertise allows the realization of compact and low power consumption marketable products, with performances that do not exist on the market today in the 0.8-1.1 μm and 2-2.5 μm spectral range. Here we demonstrate highly coherent broadly tunable single frequency laser micro-chip, intracavity element free, based on a patented VECSEL technology, integrated into a compact module with driving electronics. VECSEL devices emitting in the Near and Middle-IR developed in the frame of this work [2] exhibit exciting features compared to diode-pumped solid-state lasers and DFB diode lasers; they combine high power (>100mW) high temporal coherence together with a low divergence diffraction limited TEM00 beam. They exhibit a class-A dynamics with a Relative Intensity Noise as low as -140dB/Hz and at shot noise level reached above 200MHz RF frequency (up to 160GHz), a free running narrow linewidth at sub MHz level (fundamental limit at Hz level) with high spectral purity (SMSR >55dB), a linear polarization (>50dB suppression ratio), and broadband continuous tunability greater than 400GHz (state of the art commercial technologies thanks to a combination of power-coherence-wavelength tunability performances and integration.

  2. Equipment for Diode Laser Pumping of New and Improved Optical Materials

    National Research Council Canada - National Science Library

    Jenssen, H

    1999-01-01

    .... Experiments using laser diodes as the pump source are essential for a complete characterization of these materials, which exploit the advantages of diode-pumping, leading potentially to compact...

  3. Diode laser photocoagulation in PHACES syndrome hemangiomas: a case series

    Science.gov (United States)

    Romeo, U.; Russo, N.; Polimeni, A.; Favia, G.; Lacaita, M. G.; Limongelli, L.; Franco, S.

    2014-01-01

    PHACES syndrome is a pediatric syndrome with cutaneous and extra-cutaneous manifestations, such as Posterior fossa defects, Hemangiomas, Arterial lesions, Cardiac abnormalities/aortic coarctation, Eye abnormalities and Sternal cleft. Facial hemangiomas affect the 75% of patients and may arise on the oral mucosa or perioral cutaneous regions. In this study we treated 26 Intraoral Haemangiomas (IH) and 15 Perioral Haemangiomas (PH) with diode laser photocoagulation using a laser of 800+/-10nm of wavelength. For IH treatment an optical fiber of 320 μm was used, and the laser power was set ted at 4 W (t-on 200 ms / t-off 400ms; fluence: 995 J/cm2). For PH treatment an optical fiber of 400 μm at the power of 5 W was used (t-on 100 ms / t-off 300 ms; fluence: 398 J/cm2). IH healed after one session (31%), the other (69%) after two sessions of Laser therapy. In each session, only a limited area of the PH was treated, obtaining a progressive improvement of the lesion. Diode laser photocoagulation is an effective option of treatment for IH and PH in patients affected by PHACE because of its minimal invasiveness. Moreover laser photocoagulation doesn't have side effects and can be performed repeatedly without cumulative toxicity. Nevertheless, more studies are required to evaluate the effectiveness of the therapy in mid and long time period.

  4. Investigation of Diode Pumped Alkali Laser Atmospheric Transmission Using Tunable Diode Laser Absorption Spectroscopy

    Science.gov (United States)

    2012-09-01

    reflectivity of the background. This device can be configured to detect hydrogen fluoride , hydrogen sulfide, or methane. Other related papers with the...absorption spectroscopy and in-situ gas chromatography ”. volume 3758, 109–115. SPIE, October 1999. 42. Hunsmann, S., K. Wunderle, S. Wagner, U. Rascher, U...black), 1 atm He (dashed black) and 10 atm He (short dash back), each with a buffer gas mixture including 100 Torr C2H6. Gain profiles are normalized

  5. Gate-Tunable WSe2/SnSe2Backward Diode with Ultrahigh-Reverse Rectification Ratio.

    Science.gov (United States)

    Murali, Krishna; Dandu, Medha; Das, Sarthak; Majumdar, Kausik

    2018-02-14

    Backward diodes conduct more efficiently in the reverse bias than in the forward bias, providing superior high-frequency response, temperature stability, radiation hardness, and 1/f noise performance than a conventional diode conducting in the forward direction. Here, we demonstrate a van der Waals material-based backward diode by exploiting the giant staggered band offsets of WSe 2 /SnSe 2 vertical heterojunction. The diode exhibits an ultrahigh-reverse rectification ratio (R) of ∼2.1 × 10 4 , and the same is maintained up to an unusually large bias of 1.5 V-outperforming existing backward diode reports using conventional bulk semiconductors as well as one- and two-dimensional materials by more than an order of magnitude while maintaining an impressive curvature coefficient (γ) of ∼37 V -1 . The transport mechanism in the diode is shown to be efficiently tunable by external gate and drain bias, as well as by the thickness of the WSe 2 layer and the type of metal contacts used. These results pave the way for practical electronic circuit applications using two-dimensional materials and their heterojunctions.

  6. The study of laser beam riding guided system based on 980nm diode laser

    Science.gov (United States)

    Qu, Zhou; Xu, Haifeng; Sui, Xin; Yang, Kun

    2015-10-01

    With the development of science and technology, precision-strike weapons has been considered to be important for winning victory in military field. Laser guidance is a major method to execute precision-strike in modern warfare. At present, the problems of primary stage of Laser guidance has been solved with endeavors of countries. Several technical aspects of laser-beam riding guided system have been mature, such as atmosphere penetration of laser beam, clutter inhibition on ground, laser irradiator, encoding and decoding of laser beam. Further, laser beam quality, equal output power and atmospheric transmission properties are qualified for warfare situation. Riding guidance instrument is a crucial element of Laser-beam riding guided system, and is also a vital element of airborne, vehicle-mounted and individual weapon. The optical system mainly consist of sighting module and laser-beam guided module. Photoelectric detector is the most important sensing device of seeker, and also the key to acquire the coordinate information of target space. Currently, in consideration of the 1.06 u m of wavelength applied in all the semi-active laser guided weapons systems, lithium drifting silicon photodiode which is sensitive to 1.06 u m of wavelength is used in photoelectric detector. Compared to Solid and gas laser, diode laser has many merits such as small volume, simple construction, light weight, long life, low lost and easy modulation. This article introduced the composition and operating principle of Laser-beam riding guided system based on 980 nm diode laser, and made a analysis of key technology; for instance, laser irradiator, modulating disk of component, laser zooming system. Through the use of laser diode, Laser-beam riding guided system is likely to have smaller shape and very light.

  7. Phosphor converted laser diode light source for endoscopic diagnostics

    DEFF Research Database (Denmark)

    Krasnoshchoka, Anastasiia; Thorseth, Anders; Dam-Hansen, Carsten

    2017-01-01

    In order to provide light sources for endourology and on-site testing of the light source, we are developing a portable endoscope light source prototype based on a phosphor converted laser diode. A small emitting area from the phosphor material excited by a laser diode enables coupling...... of the generated white light into thin optical fibres. The development involves designing optics for optimizing the light extraction efficiency and guiding of light to the area of interest. In this paper we compared the developed light source to the current standard in endoscopy – xenon arc lamps. Detailed...... spectral analysis of illuminance, CRI and CCT at two power levels and two distances for both the PC-LD and the xenon light source was performed. The obtained results verified that the developed light source is suitable for endoscopy illumination and the first pre-clinical trials will be performed shortly....

  8. V-shaped resonators for addition of broad-area laser diode arrays

    Science.gov (United States)

    Liu, Bo; Liu, Yun; Braiman, Yehuda Y.

    2012-12-25

    A system and method for addition of broad-area semiconductor laser diode arrays are described. The system can include an array of laser diodes, a V-shaped external cavity, and grating systems to provide feedback for phase-locking of the laser diode array. A V-shaped mirror used to couple the laser diode emissions along two optical paths can be a V-shaped prism mirror, a V-shaped stepped mirror or include multiple V-shaped micro-mirrors. The V-shaped external cavity can be a ring cavity. The system can include an external injection laser to further improve coherence and phase-locking.

  9. Fungal testing of diode laser collimators

    Science.gov (United States)

    de Lourdes Quinta, Maria; Freitas, Jose C. A.; Rodrigues, Fernando C.; Silva, Jeronimo A.

    1991-03-01

    The utilization of laser systems in adverse environment conditions imposes several project restrictions. In our application, the design of laser collimators was developed according not only with the specified optical, mechanical and electronic parameters, but also, taking into account the specific environment characteristics in which the equipment was to be used, namely, climate, physical elements and biological agents. The utilization of several kinds of materials, like silicone, rubber, PVC, nitro-cellulose lacquers and oil varnishes, may facilitate the attack by fungi and in some special cases by bacteria in humid environments. In this paper the behavior of laser collimators after a severe essay with optimal conditions of humidity and temperature appropriated to growth of fungi is described.

  10. Continuous wave and tunable laser operation of Yb3+ in disordered NaLa(MoO4)2

    Science.gov (United States)

    Rico, M.; Liu, J.; Cano-Torres, J. M.; García-Cortés, A.; Cascales, C.; Zaldo, C.; Griebner, U.; Petrov, V.

    2005-09-01

    Continuous-wave Yb3+ laser operation is studied in single crystals of disordered NaLa(MoO4)2 at room temperature. The sample used was grown by the Czochralski technique and incorporates an Yb ion density of 3.1×1020 cm-3. The effect of the Yb concentration on some of the crystal properties is described as well as the spectroscopic Yb3+ properties at 5 K. Maximum slope efficiencies of about 40% for π and 38% for σ polarization were obtained under Ti:sapphire laser pumping near 976 nm, respectively. The maximum output power for the π polarization was 400 mW at 1039.5 nm, the threshold in this case amounted to 240 mW (absorbed pump power). The laser emission was tunable between 1016 and 1064 nm with a Lyot filter. Lasing was also realized by pumping with a fiber-coupled diode laser module. Maximum output power of 900 mW at 1035 nm was achieved in this case for the π polarization and the threshold was 280 mW. The results, in terms of output power and tunability, are superior in comparison to all previous reports on Yb-doped disordered double tungstate or molybdate crystals and represent a significant improvement in comparison to earlier experiments with low-doped Yb:NaLa(MoO4)2.

  11. Biostimulation using an 810nm Diode Laser - A Case Series

    Directory of Open Access Journals (Sweden)

    Naseem Joy Garg

    2013-01-01

    Full Text Available A decrease in orthodontic treatment time is not only a demand by the esthetically concerned patient but is also the duty of every orthodontist. With the advent of 810 nm diode laser it could be made possible. This article presents a case series wherein use of 810 nm has been used to biostimulate the tissues and thereby resulting in increased rate of tooth movement appreciated by amount of clinically detected space closure.

  12. Antibacterial Effectiveness Of Low Energy Diode Laser Irradiation

    OpenAIRE

    Howida M. Sharaf *, Adel M. Elkhodary**, Ali E. Saafan***, Mostafa I. Mostafa

    2012-01-01

    Background: With the poor oral hygiene exhibited by patients with Down syndrome, the potential for a robust flora arises causing Periodontitis. Along with periodontal disease, the patient population has other medical conditions that limit treatment. This study was conducted to evaluate the antibacterial effectiveness of an 870-nm diode laser on periodontitis in patients with Down syndrome. Subjects & methods :Thirty five patients with Down syndrome suffering from p...

  13. Noise equivalent circuit of a semiconductor laser diode

    Science.gov (United States)

    Harder, C.; Margalit, S.; Yariv, A.; Katz, J.; Shacham, J.

    1982-01-01

    A small-signal model of a semiconductor laser is extended to include the effects of intrinsic noise by adding current and voltage noise sources. The current noise source represents the shot noise of carrier recombination, while the voltage noise source represents the random process of simulated emission. The usefulness of the noise equivalent circuit is demonstrated by calculating the modulation and noise characteristics of a current-driven diode as a function of bias current and frequency.

  14. WDM Nanoscale Laser Diodes for Si Photonic Interconnects

    Science.gov (United States)

    2016-07-25

    formed on silicon platforms, such as SiN on SiO2, or other materials. The VCSEL also has key features needed for high speed, including low thermal...mounting on silicon . The nanoscale VCSELs can achieve small optical modes and present a compact laser diode that is also robust. In this work we have used...Report Title The goal of this work has been to develop nanoscale VCSELs for integration into various optical systems, including for mounting on silicon

  15. Cultured Human Fibroblast Biostimulation Using a 940 nm Diode Laser

    Directory of Open Access Journals (Sweden)

    Rebeca Illescas-Montes

    2017-07-01

    Full Text Available Background: Fibroblasts are the main cells involved in regeneration during wound healing. The objective was to determine the effect of 940 nm diode laser on cultured human fibroblasts using different irradiation regimens. Methods: The CCD-1064Sk human epithelial fibroblast cell line was treated with a 940 nm diode laser at different energy doses (power: 0.2–1 W and energy density: 1–7 J/cm2 using different transmission modes (continuous or pulsed. The effect on cell growth at 24 and 72 h post-treatment was examined by measuring the proliferative capacity, the impact on the cell cycle, and the effect on cell differentiation. Results: fibroblast proliferative capacity was increased at 24 and 72 h post-treatment as a function of the energy dose. The greatest increase was observed with a power of 0.2 or 0.5 W and energy density between 1 and 4 J/cm2; no difference was observed between continuous and pulsed modes. There were no significant differences in cell cycle between treated groups and controls. α-actin expression was increased by treatment, indicating enhanced cell differentiation. Conclusion: The 940 nm diode laser has biostimulating effects on fibroblasts, stimulating proliferative capacity and cell differentiation without altering the cell cycle. Further researches are necessary to explore its potential clinical usefulness in wound healing.

  16. Cultured Human Fibroblast Biostimulation Using a 940 nm Diode Laser

    Science.gov (United States)

    Illescas-Montes, Rebeca; Melguizo-Rodríguez, Lucía; Manzano-Moreno, Francisco Javier; García-Martínez, Olga; Ruiz, Concepción

    2017-01-01

    Background: Fibroblasts are the main cells involved in regeneration during wound healing. The objective was to determine the effect of 940 nm diode laser on cultured human fibroblasts using different irradiation regimens. Methods: The CCD-1064Sk human epithelial fibroblast cell line was treated with a 940 nm diode laser at different energy doses (power: 0.2–1 W and energy density: 1–7 J/cm2) using different transmission modes (continuous or pulsed). The effect on cell growth at 24 and 72 h post-treatment was examined by measuring the proliferative capacity, the impact on the cell cycle, and the effect on cell differentiation. Results: fibroblast proliferative capacity was increased at 24 and 72 h post-treatment as a function of the energy dose. The greatest increase was observed with a power of 0.2 or 0.5 W and energy density between 1 and 4 J/cm2; no difference was observed between continuous and pulsed modes. There were no significant differences in cell cycle between treated groups and controls. α-actin expression was increased by treatment, indicating enhanced cell differentiation. Conclusion: The 940 nm diode laser has biostimulating effects on fibroblasts, stimulating proliferative capacity and cell differentiation without altering the cell cycle. Further researches are necessary to explore its potential clinical usefulness in wound healing. PMID:28773152

  17. Quantitative fluorescein angiography following diode laser retinal photocoagulation.

    Science.gov (United States)

    Mordon, S; Desmettre, T; Devoisselle, J M

    1999-01-01

    An in vivo study was done to establish if laser-induced damage of the retina could be quantified using fluorescein angiography. This study was carried out on rabbit eyes (n = 6) with an 810 nm diode laser (spot diameter: 500 microm, pulse duration: 1 second, power: 100 mW-400 mW) adapted on a slit lamp. Fluorescence measurements were performed with a fundus camera connected to a fluorescence imaging system. Fluorescence staining of the retina was evaluated by mathematical modeling. Lesions were correlated to laser parameters and to histologic data. Image analysis shows that the laser lesions stained progressively. Fluorescence appears first at the borders of the lesion exhibiting a fluorescent ring. A progressive increase of the fluorescence into the central zone is observed. The maximum fluorescence intensity into the center of the laser spot is obtained after a delay depending on the laser energy. Below 100 +/- 20 mW, lesions are detectable by fluorescence imaging only. A fluorescence plateau appears for a threshold light dose above 200 +/- 20 mW. Mathematical modeling demonstrates that quantitative assessment of laser-induced damage to the retina is feasible using fluorescence imaging. The quantification of fluorescence staining in terms of both intensity and time can contribute to a better quantification of laser-induced damage. At last, since laser damage may mimic naturally occurring pathology, this method should also be considered to quantify different types of lesions.

  18. Future prospects of laser diodes and fiber lasers

    International Nuclear Information System (INIS)

    Ueda, Ken-ichi

    2000-01-01

    For the next century we should develop new concepts for coherent control of light generation and propagation. Owing to the recent development of ultra fine structures in semiconductor lasers, fiber lasers, and various kinds of waveguide structure, we can make optical devices which control the light propagation artificially. But, the phase locking and phase control of multiple laser oscillators are one of the most important directions of laser science and technology. The coherent summation has been a dream of laser since 1960. Is it possible to solve this old and quite challenging problem for laser science? This is also a very basic concept because the laser action based on the stimulated emission is the process of coherent summation of huge number of photons emitted from individual atoms. In this paper, I discuss the fundamental direction of laser research in the next ten or twenty years. The active optics and laser technology should be combined intrinsically in near future. (author)

  19. Benefits of quantum well intermixing in high power diode lasers

    Science.gov (United States)

    Najda, Stephen P.; Bacchin, Gianluca; Qiu, Bocang; Liu, Xuefeng; Kowalski, Olek P.; Silver, Mark; McDougall, Stewart D.; Hamilton, Craig J.; Marsh, John H.

    2004-05-01

    Quantum well intermixing (QWI) can bring considerable benefits to the reliability and performance of high power laser diodes by intermixing the facet regions of the device to increase the band-gap and hence eliminate absorption, avoiding catastrophic optical damage (COD). The non-absorbing mirror (NAM) regions of the laser cavity can be up to ~20% of the cavity length, giving an additional benefit on cleave tolerances, to fabricate very large element arrays of high power, individually addressable, single mode lasers. As a consequence, large arrays of single mode lasers can bring additional benefits for packaging in terms of hybrization and integration into an optics system. Our QWI techniques have been applied to a range of material systems, including GaAs/AlGaAs, (Al)GaAsP/AlGaAs and InGaAs/GaAs.

  20. Laser cooling of beryllium ions using a frequency-doubled 626 nm diode laser.

    Science.gov (United States)

    Cozijn, F M J; Biesheuvel, J; Flores, A S; Ubachs, W; Blume, G; Wicht, A; Paschke, K; Erbert, G; Koelemeij, J C J

    2013-07-01

    We demonstrate laser cooling of trapped beryllium ions at 313 nm using a frequency-doubled extended cavity diode laser operated at 626 nm, obtained by cooling a ridge waveguide diode laser chip to -31°C. Up to 32 mW of narrowband 626 nm laser radiation is obtained. After passage through an optical isolator and beam shaping optics, 14 mW of 626 nm power remains of which 70% is coupled into an external enhancement cavity containing a nonlinear crystal for second-harmonic generation. We produce up to 35 μW of 313 nm radiation, which is subsequently used to laser cool and detect 6×10(2) beryllium ions, stored in a linear Paul trap, to a temperature of about 10 mK, as evidenced by the formation of Coulomb crystals. Our setup offers a simple and affordable alternative for Doppler cooling, optical pumping, and detection to presently used laser systems.

  1. A smile insensitive method for spectral linewidth narrowing on high power laser diode arrays

    Science.gov (United States)

    Yang, Zining; Wang, Hongyan; Li, Yuandong; Lu, Qisheng; Hua, Weihong; Xu, Xiaojun; Chen, Jinbao

    2011-10-01

    To eliminate the smile effect in spectral linewidth narrowing on high power laser diode arrays, we have introduced a plane reflective mirror into a common Littrow configuration external cavity to enhance the correlation among emitters. By this way, we obtained uniform spectral distribution among emitters of a 64-elements laser diode array with 35 GHz linewidth and 41 W output laser power.

  2. Visible laser and superluminescent diode based free space and underwater communications

    KAUST Repository

    Ooi, Boon S.

    2017-01-30

    We report on our recent progress in high-modulation-efficiency, InGaN-based integrated waveguide modulator-laser diodes (IWM-LDs), high-speed violet and blue emitting superluminescent diodes (SLDs), InGaN-based vertical-cavity surface-emitting lasers (VCSELs), and their applications for gigahertz laser based free-space and underwater wireless optical communications.

  3. Laser-induced fluorescence imaging of plants using a liquid crystal tunable filter and charge coupled device imaging camera

    Science.gov (United States)

    Saito, Yasunori; Matsubara, Tomohiro; Koga, Tomoya; Kobayashi, Fumitoshi; Kawahara, Takuya D.; Nomura, Akio

    2005-10-01

    We developed a laser-induced fluorescence imaging system for plant monitoring use, with which it was possible to make an image at any wavelength between 430 and 750nm. The excitation source for the fluorescence was a cw ultraviolet laser diode with 398nm, and the detector was an image-intensified charge coupled device. A liquid crystal tunable filter was used as the fluorescence wavelength selection device. All of the system performance including the wavelength tuning was electrically controlled, so that it could be operated with no mechanical vibration noise. The fluorescence images of a coffee tree leaf obtained at 440, 530, 685, and 740nm clearly showed a distribution pattern of the fluorescence intensity over the leaf. The pattern reflected the different physiological statuses of the plant. Advantages of the imaging system were experimentally discussed on a point of detection of inhomogeneous physiological activities over a plant leaf.

  4. Diode-side-pumped monolithic Nd:YAG slab laser

    Science.gov (United States)

    Šulc, Jan; Jelínek, Michal; Kubeček, Václav; Jelínková, Helena; Nejezchleb, Karel; Škoda, Václav

    2017-05-01

    Compact, high-efficient, side-pumped monolithic Nd:YAG slab laser is presented. Designed active crystal shape ensures four internal reflections of generated laser radiation forming a ring resonator with high gain. A horizontal projection of the active medium form was a isosceles trapezoid with 18.6 mm long base, and 5 mm height. The angels between long base and legs are 87 deg. The thickness of the slab was 4 mm. Both base-sides and one leg-side was high reflective for lasing radiation. Second leg-side was partially reflective for lasing radiation and serves as an output coupler. The longer base-side was highly transparent for pumping radiation. The opposite base-side was highly reflecting for pump. To increase the pump absorption efficiency Nd-doping concentration was 1.4 % Nd/Y. As a pump source, single-bar quasi-cw fast-axis collimated laser diode JOLD-180-QPFN (Jenoptik) with peak power 180 W at 808 nm and output beam 10 0.9 mm without any further optics was used for slab side-pumping. The pumping pulses with repetition rate 5 Hz were 250 μs long (maximum pump energy 39 mJ). The Nd:YAG laser was operated at 1.06 µm. Two external mirrors (one totally reflecting, second with reflectivity 80 % at 1.06 μm) were used to form the oscillator. The laser was tested in the free-running regime. The maximum laser output energy reached was 5.9 mJ which corresponds to optical-to-optical efficiency of 15 %. The laser slope efficiency in respect to laser diode output was 20 %. The divergence of multimode output beam was 7 × 2.5mrad.

  5. Color tunable hybrid light-emitting diodes based on perovskite quantum dot/conjugated polymer

    Science.gov (United States)

    Germino, José C.; Yassitepe, Emre; Freitas, Jilian N.; Santiago, Glauco M.; Bonato, Luiz Gustavo; de Morais, Andréia; Atvars, Teresa D. Z.; Nogueira, Ana F.

    2017-08-01

    Inorganic organic metal halide perovskite materials have been investigated for several technological applications, such as photovoltaic cells, lasers, photodetectors and light emitting diodes (LEDs), either in the bulk form or as colloidal nanoparticles. Recently, all inorganic Cesium Lead Halide (CsPbX3, X=Cl,Br, I) perovskite quantum dots (PQDs) were reported with high photoluminescence quantum yield with narrow emission lines in the visible wavelengths. Here, green-emitting perovskite quantum dots (PQDs) prepared by a synthetic method based on a mixture of oleylamine and oleic acid as surfactants were applied in the electroluminescent layer of hybrid LEDs in combination with two different conjugated polymers: polyvinylcarbazole (PVK) or poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO). The performance of the diodes and the emission color tuning upon dispersion of different concentrations of the PQDs in the polymer matrix is discussed. The presented approach aims at the combination of the optical properties of the PQDs and their interaction with wide bandgap conjugated polymers, associated with the solution processing ability of these materials.

  6. Photoacoustic CO2 sensor based on a DFB diode laser at 2.7 μm

    Science.gov (United States)

    Wolff, M.; Germer, M.; Groninga, H. G.; Harde, H.

    2008-01-01

    We present a new detection scheme for carbon dioxide (CO{2}) based on a custom-made room temperature distributed feedback (DFB) diode laser at 2.7 μm, currently representing one of the lasers with the highest emission wavelength of its kind. The detector's especially compact and simple set-up is based on photoacoustic spectroscopy (PAS). This method makes use of the transformation of absorbed modulated radiation into a sound wave. The sensor enables a very high detection sensitivity for CO{2} in the ppb range. Furthermore, the carefully selected spectral region as well as the narrow bandwidth and wide tunability of the single-mode laser ensure an excellent selectivity. Even measurements of different CO{2} isotopes can be easily performed. This enables applications in industrial sensing and medical diagnostics (e.g. 13C-breath tests).

  7. Tunable CO2 laser system with subnanosecond-pulse-train output

    Science.gov (United States)

    Kimura, W. D.

    2017-02-01

    A CO2 laser system has been demonstrated that generates a train of subnanosecond pulses tunable over the P and R branches of the CO2 laser spectrum at 9-11 μm. It utilizes optical free induction decay to generate a single 100-ps laser pulse from a tunable transverse-excited-atmospheric CO2 laser. This laser pulse is injection-seeded into a high-pressure CO2 oscillator whose output consists of a train of amplified 100-ps pulses with maximum pulse energy of 30 mJ, corresponding to a peak power of 300 MW. The 100-ps, tunable, infrared laser pulses are needed for a new technique to remotely detect atmospheric gaseous molecules, which relies on the train of CO2 laser pulses selectively exciting the target molecules whose presence is then revealed using a separate terahertz probe beam.

  8. ScBO/sub 3/: Cr-A room temperature near-infrared tunable laser

    International Nuclear Information System (INIS)

    Lai, S.T.; Chai, B.H.T.; Long, M.; Morris, R.C.

    1986-01-01

    The authors report the first room temperature tunable laser in a borate single crystal. A tuning range of 787-892 nm has been demonstrated in a ScBO/sub 3/:Cr laser. The laser loss is estimated to be 1.3 percent/cm from our preliminary laser results. Spectroscopic measurements indicate that the material is clear of absorption loss in the lasing spectral region, and the relative fluorescence efficiency for the entire Cr absorption band in the visible region is nearly unit. ScBO/sub 3/:Cr holds promise as a high efficiency near-infrared tunable laser

  9. 100  J-level nanosecond pulsed diode pumped solid state laser.

    Science.gov (United States)

    Banerjee, Saumyabrata; Mason, Paul D; Ertel, Klaus; Jonathan Phillips, P; De Vido, Mariastefania; Chekhlov, Oleg; Divoky, Martin; Pilar, Jan; Smith, Jodie; Butcher, Thomas; Lintern, Andrew; Tomlinson, Steph; Shaikh, Waseem; Hooker, Chris; Lucianetti, Antonio; Hernandez-Gomez, Cristina; Mocek, Tomas; Edwards, Chris; Collier, John L

    2016-05-01

    We report on the successful demonstration of a 100 J-level, diode pumped solid state laser based on cryogenic gas cooled, multi-slab ceramic Yb:YAG amplifier technology. When operated at 175 K, the system delivered a pulse energy of 107 J at a 1 Hz repetition rate and 10 ns pulse duration, pumped by 506 J of diode energy at 940 nm, corresponding to an optical-to-optical efficiency of 21%. To the best of our knowledge, this represents the highest energy obtained from a nanosecond pulsed diode pumped solid state laser. This demonstration confirms the energy scalability of the diode pumped optical laser for experiments laser architecture.

  10. Diode-pumped all-solid-state lasers and applications

    CERN Document Server

    Parsons-Karavassilis, D

    2002-01-01

    This thesis describes research carried out by the within the Physics Department at Imperial College that was aimed at developing novel all-solid-state laser sources and investigating potential applications of this technology. A description of the development, characterisation and application of a microjoule energy level, diode-pumped all-solid-state Cr:LiSGAF femtosecond oscillator and regenerative amplifier system is presented. The femtosecond oscillator was pumped by two commercially available laser diodes and produced an approx 80 MHz pulse train of variable pulse duration with approx 30 mW average output power and a tuning range of over approx 60 nm. This laser oscillator was used to seed a regenerative amplifier, resulting in adjustable repetition rate (single pulse to 20 kHz) approx 1 mu J picosecond pulses. These pulses were compressed to approx 150 fs using a double-pass twin-grating compressor. The amplifier's performance was investigated with respect to two different laser crystals and different pul...

  11. Tunable Single Frequency 1.55 Micron Fiber Laser, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal, we propose to demonstrate and build a widely tunable, narrow linewidth, single frequency fiber laser by developing an innovative Er/Yb-co-doped...

  12. Tuning range multiplication of a precision and fast tunable seed-laser system

    Data.gov (United States)

    National Aeronautics and Space Administration — This project develops a high precision and fast tunable laser technology for Earth and planetary Science missions to measure atmospheric constituents (such as CO2,...

  13. Tunable Laser Development for In-flight OFDR Structural Health Monitoring Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of a cost-effective, robust, tunable, miniaturized, ruggedized, and flight tested swept laser for in-flight structural health monitoring, based on the...

  14. Tunable Laser for High-Performance, Low-Cost Distributed Sensing Platform, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed effort will establish technical feasibility of an approach to optimizing a low-cost, fast-sweeping tunable laser for distributed sensing. Multiple...

  15. Programmable current source for diode lasers stabilized optical fiber

    International Nuclear Information System (INIS)

    Gomez, J.; Camas, J.; Garcia, L.

    2012-01-01

    In this paper, we present the electronic design of a programmable stabilized current source. User can access to the source through a password, which, it has a database with the current and voltage operating points. This source was successfully used as current source in laser diode in optical fiber sensors. Variations in the laser current were carried out by a monitoring system and a control of the Direct Current (DC), which flowing through a How land source with amplifier. The laser current can be stabilized with an error percent of ± 1 μA from the threshold current (Ith) to its maximum operation current (Imax) in DC mode. The proposed design is reliable, cheap, and its output signal of stabilized current has high quality. (Author)

  16. Real time algorithm temperature compensation in tunable laser / VCSEL based WDM-PON system

    DEFF Research Database (Denmark)

    Iglesias Olmedo, Miguel; Rodes Lopez, Roberto; Pham, Tien Thang

    2012-01-01

    We report on a real time experimental validation of a centralized algorithm for temperature compensation of tunable laser/VCSEL at ONU and OLT, respectively. Locking to a chosen WDM channel is shown for temperature changes over 40°C.......We report on a real time experimental validation of a centralized algorithm for temperature compensation of tunable laser/VCSEL at ONU and OLT, respectively. Locking to a chosen WDM channel is shown for temperature changes over 40°C....

  17. Development of tunable high pressure CO2 laser for lidar measurements of pollutants and wind velocities

    Science.gov (United States)

    Levine, J. S.; Guerra, M.; Javan, A.

    1980-01-01

    The problem of laser energy extraction at a tunable monochromatic frequency from an energetic high pressure CO2 pulsed laser plasma, for application to remote sensing of atmospheric pollutants by Differential Absorption Lidar (DIAL) and of wind velocities by Doppler Lidar, was investigated. The energy extraction principle analyzed is based on transient injection locking (TIL) at a tunable frequency. Several critical experiments for high gain power amplification by TIL are presented.

  18. Diode laser absorption sensors for gas-dynamic and combustion flows

    Science.gov (United States)

    Allen, M. G.

    1998-01-01

    Recent advances in room-temperature, near-IR and visible diode laser sources for tele-communication, high-speed computer networks, and optical data storage applications are enabling a new generation of gas-dynamic and combustion-flow sensors based on laser absorption spectroscopy. In addition to conventional species concentration and density measurements, spectroscopic techniques for temperature, velocity, pressure and mass flux have been demonstrated in laboratory, industrial and technical flows. Combined with fibreoptic distribution networks and ultrasensitive detection strategies, compact and portable sensors are now appearing for a variety of applications. In many cases, the superior spectroscopic quality of the new laser sources compared with earlier cryogenic, mid-IR devices is allowing increased sensitivity of trace species measurements, high-precision spectroscopy of major gas constituents, and stable, autonomous measurement systems. The purpose of this article is to review recent progress in this field and suggest likely directions for future research and development. The various laser-source technologies are briefly reviewed as they relate to sensor applications. Basic theory for laser absorption measurements of gas-dynamic properties is reviewed and special detection strategies for the weak near-IR and visible absorption spectra are described. Typical sensor configurations are described and compared for various application scenarios, ranging from laboratory research to automated field and airborne packages. Recent applications of gas-dynamic sensors for air flows and fluxes of trace atmospheric species are presented. Applications of gas-dynamic and combustion sensors to research and development of high-speed flows aeropropulsion engines, and combustion emissions monitoring are presented in detail, along with emerging flow control systems based on these new sensors. Finally, technology in nonlinear frequency conversion, UV laser materials, room

  19. Diode laser supported partial nephrectomy in laparoscopic surgery: preliminary results

    Science.gov (United States)

    Sroka, Ronald; Hennig, Georg; Zillinberg, Katja; Khoder, Wael Y.

    2011-07-01

    Introduction: Warm ischemia and bleeding during laparoscopic partial nephrectomy place technical constraints on surgeons. Therefore it was the aim to develop a safe and effective laser assisted partial nephrectomy technique without need for ischemia. Patients and methods: A diode laser emitting light at 1318nm in cw mode was coupled into a bare fibre (core diameter 600 μm) thus able to transfer up to 100W to the tissue. After dry lab experience, a total of 8 patients suffering from kidney malformations underwent laparoscopic/retroperitoneoscopic partial nephrectomy. Clinically, postoperative renal function and serum c-reactive protein (CRP) were monitored. Laser induced coagulation depth and effects on resection margins were evaluated. Demographic, clinical and follow-up data are presented. Results: Overall interventions, the mean operative time was 116,5 minutes (range 60-175min) with mean blood loss of 238ml (range 50-600ml) while laser assisted resection of the kidney tissue took max 15min. After extirpation of the tumours all patients showed clinical favourable outcome during follow up period. The tumour size was measured to be 1.8 to 5cm. With respect to clinical safety and due to blood loos, two warm ischemia (19 and 24min) must be performed. Immediate postoperative serum creatinine and CRP were elevated within 0.1 to 0.6 mg/dl (mean 0.18 mg/dl) and 2.1-10 mg/dl (mean 6.24 mg/dl), respectively. The depth of the coagulation on the removed tissue ranged between <1 to 2mm without effect on histopathological evaluation of tumours or resection margin. As the surface of the remaining kidney surface was laser assisted coagulated after removal. The sealing of the surface was induced by a slightly larger coagulation margin, but could not measured so far. Conclusion: This prospective in-vivo feasibility study shows that 1318nm-diode laser assisted partial nephrectomy seems to be a safe and promising medical technique which could be provided either during open surgery

  20. Treatment of Dentine Hypersensitivity by Diode Laser: A Clinical Study

    Directory of Open Access Journals (Sweden)

    Romeo Umberto

    2012-01-01

    Full Text Available Introduction. Dentine hypersensitivity (DH is characterized by pain after stimuli that usually provoke no symptoms. This study compared the effectiveness of GaAlAs diode laser alone and with topical sodium fluoride gel (NaF. Materials and Methods. The study was conducted on 10 patients (8 F/2 M, age 25–60 and 115 teeth with DH assessed by air and tactile stimuli measured by Numeric Rating Scale (NRS. Teeth were randomly divided into G1 (34 teeth treated by 1.25% NaF; G2 (33 teeth lased at 0.5 W PW (T on 100 m and T off 100 ms, fluence 62.2 J/cm2 in defocused mode with a 320 μ fiber. Each tooth received three 1′ applications; G3 (48 teeth received NaF gel plus laser at same G2 parameters. NRS was checked at each control. Results. Significant pain reduction was showed. The NRS reduction percentages were calculated, and there was a concrete decrease of DH above all in G3 than G2 and G1. Conclusion. Diode laser is a useful device for DH treatment if used alone and mainly if used with NaF gel.

  1. SO2 Spectroscopy with A Tunable UV Laser

    Science.gov (United States)

    Morey, W. W.; Penney, C. M.; Lapp, M.

    1973-01-01

    A portion of the fluorescence spectrum of SO2 has been studied using a narrow wavelength doubled dye laser as the exciting source. One purpose of this study is to evaluate the use of SO2 resonance re-emission as a probe of SO2 in the atmosphere. When the SO2 is excited by light at 300.2 nm, for example, a strong reemission peak is observed which is Stokes-shifted from the incident light wavelength by the usual Raman shift (the VI symmetric vibration frequency 1150.5/cm ). The intensity of this peak is sensitive to small changes (.01 nm) in the incident wavelength. Measurements of the N2 quenching and self quenching of this re-emission have been obtained. Preliminary analysis of this data indicates that the quenching is weak but not negligible. The dye laser in our system is pumped by a pulsed N2 laser. Tuning 'and spectral narrowing are accomplished using a telescope-echelle grating combination. In a high power configuration the resulting pulses have a spectral width of about 5 x 10(exp -3) nm and a time duration of about 6 nsec. The echelle grating is rotated by a digital stepping motor, such that each step shifts the wavelength by 6 x 10(exp -4) nm. In addition to the tunable, narrow wavelength uv source and spectral analysis of the consequent re-emission, the system also provides time resolution of the re-emitted light to 6 nsec resolution. This capability is being used to study the lifetime of low pressure S02 fluorescence at different wavelengths and pressures.

  2. Thin planar package for cooling an array of edge-emitting laser diodes

    Science.gov (United States)

    Mundinger, David C.; Benett, William J.

    1992-01-01

    A laser diode array is disclosed that includes a plurality of planar assemblies and active cooling of each assembly. The laser diode array may be operated in a long duty cycle, or in continuous operation. A laser diode bar and a microchannel heat sink are thermally coupled in a compact, thin planar assembly having the laser diode bar located proximate to one edge. In an array, a number of such thin planar assemblies are secured together in a stacked configuration, in close proximity so that the laser diodes are spaced closely. The cooling means includes a microchannel heat sink proximate to the laser diode bar to absorb heat generated by laser operation. To provide the coolant to the microchannels, each thin planar assembly comprises passageways that connect the microchannels to inlet and outlet corridors. Each inlet passageway may comprise a narrow slot that directs coolant into the microchannels and increases the velocity of flow therethrough. The corridors comprises holes extending through each of the assemblies in the array. The inlet and outlet corridors are connected to a conventional coolant circulation system. The laser diode array with active cooling has applications as an optical pump for high power solid state lasers, or by mating the diodes with fiber optic lenses. Further, the arrays can be useful in applications having space constraints and energy limitations, and in military and space applications. The arrays can be incorporated in equipment such as communications devices and active sensors.

  3. Coagulative and ablative characteristics of a novel diode laser system (1470nm) for endonasal applications

    Science.gov (United States)

    Betz, C. S.; Havel, M.; Janda, P.; Leunig, A.; Sroka, R.

    2008-02-01

    Introduction: Being practical, efficient and inexpensive, fibre guided diode laser systems are preferable over others for endonasal applications. A new medical 1470 nm diode laser system is expected to offer good ablative and coagulative tissue effects. Methods: The new 1470 nm diode laser system was compared to a conventional 940 nm system with regards to laser tissue effects (ablation, coagulation, carbonization zones) in an ex vivo setup using fresh liver and muscle tissue. The laser fibres were fixed to a computer controlled stepper motor, and the light was applied using comparable power settings and a reproducible procedure under constant conditions. Clinical efficacy and postoperative morbidity was evaluated in two groups of 10 patients undergoing laser coagulation therapy of hyperplastic nasal turbinates. Results: In the experimental setup, the 1470 nm laser diode system proved to be more efficient in inducing tissue effects with an energy factor of 2-3 for highly perfused hepatic tissue to 30 for muscular tissue. In the clinical case series, the higher efficacy of the 1470 nm diode laser system led to reduced energy settings as compared to the conventional system with comparable clinical results. Postoperative crusting was less pronounced in the 1470 nm laser group. Conclusion: The 1470 nm diode laser system offers a highly efficient alternative to conventional diode laser systems for the coagulation of hyperplastic nasal turbinates. According to the experimental results it can be furthermore expected that it disposes of an excellent surgical potential with regards to its cutting abilities.

  4. Electrically tunable Yb-doped fiber laser based on a liquid crystal photonic bandgap fiber device

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Scolari, Lara; Wei, Lei

    2010-01-01

    We demonstrate electrical tunability of a fiber laser using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a tunable liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate...... an all-spliced laser cavity based on the liquid crystal photonic bandgap fiber mounted on a silicon assembly, a pump/signal combiner with single-mode signal feed-through and an ytterbium-doped photonic crystal fiber. The laser cavity produces a single-mode output and is tuned in the range 1040-1065 nm...

  5. High-Power, High-Efficiency 1.907nm Diode Lasers, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — nLight developed high-power, high-efficiency laser diodes emitting at 1907nm for the pumping of solid-state lasers during the Phase I. The innovation brought to bear...

  6. Temperature influence on diode pumped Yb:GGAG laser

    Science.gov (United States)

    Veselský, Karel; Boháček, Pavel; Šulc, Jan; Jelínková, Helena; Trunda, Bohumil; Havlák, Lubomír.; Jurek, Karel; Nikl, Martin

    2017-05-01

    We present temperature influence (in range from 78 up to 400,K) on spectroscopic properties and laser performance of new Yb-doped mixed garnet Gd3GaxAl5-xO12 (Yb:GGAG). The sample was 2.68 mm thick plane-parallel face-polished Yb:GGAG single-crystal plate which was AR coated for pump (930 nm) and generated (1030 nm) laser radiation wavelength. The composition of sample was Gd3.098Yb0:0897Ga2:41Al2.41O12 (3 at % Yb/Gd). The Yb:GGAG crystal was mounted in temperature controlled copper holder of the liquid nitrogen cryostat. The 138 mm long semi-hemispherical laser resonator consisted of a flat pumping mirror (T > 90 % @ 930 nm, HR @ 1030 nm) placed inside cryostat, and a curved output coupler (r = 150 mm, R = 94.5 % @ 1030 nm) placed outside cryostat. For longitudinal pumping a fiber coupled laser diode was used. The diode was operating in the pulse regime (5 ms pulse length, 20 Hz repetition rate) at wavelength 928.5 nm. The absorption spectrum was measured for the temperatures from 78 to 400 K, and absorption lines narrowing was observed with temperature decrease. Zero-phonon line at 970 nm has width 1 nm (FWHM) at 100 K. The fluorescence intensity decay time was measured and it increased linearly with temperature from 864 μs @ 78 K to 881 μs @ 300 K. The temperature of active medium has strong influence mainly on laser threshold which was 5 times lower at 100 K than at 300 K, and on slope efficiency which was 3 times higher at 100 K than at 300 K.

  7. Graphene based widely-tunable and singly-polarized pulse generation with random fiber lasers

    Science.gov (United States)

    Yao, B. C.; Rao, Y. J.; Wang, Z. N.; Wu, Y.; Zhou, J. H.; Wu, H.; Fan, M. Q.; Cao, X. L.; Zhang, W. L.; Chen, Y. F.; Li, Y. R.; Churkin, D.; Turitsyn, S.; Wong, C. W.

    2015-12-01

    Pulse generation often requires a stabilized cavity and its corresponding mode structure for initial phase-locking. Contrastingly, modeless cavity-free random lasers provide new possibilities for high quantum efficiency lasing that could potentially be widely tunable spectrally and temporally. Pulse generation in random lasers, however, has remained elusive since the discovery of modeless gain lasing. Here we report coherent pulse generation with modeless random lasers based on the unique polarization selectivity and broadband saturable absorption of monolayer graphene. Simultaneous temporal compression of cavity-free pulses are observed with such a polarization modulation, along with a broadly-tunable pulsewidth across two orders of magnitude down to 900 ps, a broadly-tunable repetition rate across three orders of magnitude up to 3 MHz, and a singly-polarized pulse train at 41 dB extinction ratio, about an order of magnitude larger than conventional pulsed fiber lasers. Moreover, our graphene-based pulse formation also demonstrates robust pulse-to-pulse stability and wide-wavelength operation due to the cavity-less feature. Such a graphene-based architecture not only provides a tunable pulsed random laser for fiber-optic sensing, speckle-free imaging, and laser-material processing, but also a new way for the non-random CW fiber lasers to generate widely tunable and singly-polarized pulses.

  8. Effect of the Bit Rate on the Pulses of the Laser Diodes | Ayadi ...

    African Journals Online (AJOL)

    The qualities required for Laser Diodes are their spatial and temporal coherence, and their performance in terms modulation. This paper presents the effect data rate of optical pulses delivered by diode laser using software COMSIS. Two types of modulation have been considered: direct modulation and external modulation.

  9. Comparison of the noise performance of 10GHz QW and QD mode-locked laser diodes

    DEFF Research Database (Denmark)

    Carpintero, Guillermo; Thompson, Mark G.; Yvind, Kresten

    2010-01-01

    This paper reports the experimental characterization of the noise performance of a quantum dot and a quantum well 10GHz passive mode locked laser diodes.......This paper reports the experimental characterization of the noise performance of a quantum dot and a quantum well 10GHz passive mode locked laser diodes....

  10. Optical signal inverter of erbium-doped yttrium aluminum garnet with red shift of laser diodes.

    Science.gov (United States)

    Maeda, Y

    1994-08-10

    An optical signal inverter was demonstrated in a simple structure that combined a laser diode with Er-doped YAG crystal. The optical signal inversion occurred at a response time of 7 ns and was caused by the decrease of transmission of Er:YAG against the red shift of the wavelength of the laser diode.

  11. QUANTITATIVE DETECTION OF ENVIRONMENTALLY IMPORTANT DYES USING DIODE LASER/FIBER-OPTIC RAMAN

    Science.gov (United States)

    A compact diode laser/fiber-optic Raman spectrometer is used for quantitative detection of environmentally important dyes. This system is based on diode laser excitation at 782 mm, fiber optic probe technology, an imaging spectrometer, and state-of-the-art scientific CCD camera. ...

  12. Portable multiwavelength laser diode source for handheld photoacoustic devices

    Science.gov (United States)

    Canal, Celine; Laugustin, Arnaud; Kohl, Andreas; Rabot, Olivier

    2016-04-01

    The ageing population faces today an increase of chronic diseases such as rheumatism/arthritis, cancer and cardio vascular diseases for which appropriate treatments based on a diagnosis at an early-stage of the disease are required. Some imaging techniques are already available in order to get structural information. Within the non-invasive group, ultrasound images are common in these fields of medicine. However, there is a need for a point-of-care device for imaging smaller structures such as blood vessels that cannot be observed with purely ultrasound based devices. Photoacoustics proved to be an attractive candidate. This novel imaging technique combines pulsed laser light for excitation of tissues and an ultrasound transducer as a receptor. Introduction of this technique into the clinic requires to drastically shrink the size and cost of the expensive and bulky nanosecond lasers generally used for light emission. In that context, demonstration of ultra-short pulse emission with highly efficient laser diodes in the near-infrared range has been performed by Quantel, France. A multi-wavelength laser source as small as a hand emitted more than 1 mJ per wavelength with four different wavelengths available in pulses of about 90 ns. Such a laser source can be integrated into high sensitivity photoacoustic handheld systems due to their outstanding electrical-to-optical efficiency of about 25 %. Further work continues to decrease the pulse length as low as 40 ns while increasing the pulse energy to 2 mJ.

  13. High power visible diode laser for the treatment of eye diseases by laser coagulation

    Science.gov (United States)

    Heinrich, Arne; Hagen, Clemens; Harlander, Maximilian; Nussbaumer, Bernhard

    2015-03-01

    We present a high power visible diode laser enabling a low-cost treatment of eye diseases by laser coagulation, including the two leading causes of blindness worldwide (diabetic retinopathy, age-related macular degeneration) as well as retinopathy of prematurely born children, intraocular tumors and retinal detachment. Laser coagulation requires the exposure of the eye to visible laser light and relies on the high absorption of the retina. The need for treatment is constantly increasing, due to the demographic trend, the increasing average life expectancy and medical care demand in developing countries. The World Health Organization reacts to this demand with global programs like the VISION 2020 "The right to sight" and the following Universal Eye Health within their Global Action Plan (2014-2019). One major point is to motivate companies and research institutes to make eye treatment cheaper and easily accessible. Therefore it becomes capital providing the ophthalmology market with cost competitive, simple and reliable technologies. Our laser is based on the direct second harmonic generation of the light emitted from a tapered laser diode and has already shown reliable optical performance. All components are produced in wafer scale processes and the resulting strong economy of scale results in a price competitive laser. In a broader perspective the technology behind our laser has a huge potential in non-medical applications like welding, cutting, marking and finally laser-illuminated projection.

  14. Diode-pumped two micron solid-state lasers

    International Nuclear Information System (INIS)

    Elder, I.F.

    1997-01-01

    This thesis presents an investigation of diode-pumped two micron solid-state lasers, concentrating on a comparison of the cw room temperature operation of Tm:YAP, Tm,Ho:YAP and Tm,Ho:YLF. Dopant concentrations in YAP were 4.2% thulium and 0.28% holmium; in YLF they were 6% thulium and 0.4% holmium. Thermal modelling was carried out in order to provide an insight into the thermal lensing and population distributions in these materials. Laser operation was achieved utilising an end-pumping geometry with a simple two mirror standing wave resonator. The pump source for these experiments was a 3 W laser diode. Maximum output power was achieved with Tm:YAP, generating 730 mW of laser output, representing 42% conversion efficiency in terms of absorbed pump power. Upper bounds on the conversion efficiency of Tm,Ho:YAP and Tm,Ho:YLF laser crystal of 14% and 30% were obtained, with corresponding output powers of 270 and 660 mW. In all three cases, the output beam was TEM 00 in nature. Visible upconversion fluorescence bands in the green and red were identified in Tm,Ho:YAP and Tm,Ho:YLF, with additional blue emission from the latter, all assigned to transitions on holmium. The principal upconversion mechanisms in these materials all involved the holmium first excited state. Upconversion in Tm:YAP was negligible. The spectral output of Tm:YAP consisted of a comb of lines in the range 1.965 to 2.020 μm. For both the double-doped crystals, the laser output was multilongitudinal mode on a single transition, wavelength 2.120 μm in YAP, 2.065 μm in YLF. In the time domain the output of Tm:YAP was dominated by large amplitude spiking, unlike both of the double-doped laser crystals. The long lifetime of the thulium upper laser level (4.4 ms) provided very weak damping of the spiking. Excitation sharing between thulium and holmium, with a measured characteristic lifetime in YAP of 11.9 μs and YLF of 14.8 μs, provided strong damping of any spiking behaviour. (author)

  15. A diode laser-based velocimeter providing point measurements in unseeded flows using modulated filtered Rayleigh scattering (MFRS)

    Science.gov (United States)

    Jagodzinski, Jeremy James

    2007-12-01

    in the velocity of the flow under investigation results in a change in the detected modulated absorption signal. This change in the detected signal provides a quantifiable measure of the Doppler frequency shift, and hence the velocity in the probe volume, provided that the laser source exhibits acceptable levels of frequency stability (determined by the magnitude of the velocities being measured). An extended cavity diode laser (ECDL) in the Littrow configuration provides frequency tunable, relatively narrow-linewidth lasing for the MFRS velocimeter. Frequency stabilization of the ECDL is provided by a proportional-integral-differential (PID) controller based on an error signal in the reference arm of the experiment. The optical power of the Littrow laser source is amplified by an antireflection coated (AR coated) broad stripe diode laser. The single-mode, frequency-modulatable, frequency-stable O(50 mW) of optical power provided by this extended cavity diode laser master oscillator power amplifier (ECDL-MOPA) system provided sufficient scattering signal from a condensing jet of CO2 to implement the MFRS technique in the frequency-locked mode of operation.

  16. Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor

    International Nuclear Information System (INIS)

    Liu, Jonathan T.C.; Rieker, Gregory B.; Jeffries, Jay B.; Gruber, Mark R.; Carter, Campbell D.; Mathur, Tarun; Hanson, Ronald K.

    2005-01-01

    Tunable diode laser absorption measurements of gas temperature and water concentration were made at the exit of a model scramjet combustor fueled on JP-7. Multiplexed, fiber-coupled, near-infrared distributed feedback lasers were used to probe three water vapor absorption features in the 1.34-1.47 μm spectral region (2v1and v1+ v3overtone bands). Ratio thermometry was performed using direct-absorption wavelength scans of isolated features at a 4-kHz repetition rate, as well as 2f wavelength modulation scans at a 2-kHz scan rate. Large signal-to-noise ratios demonstrate the ability of the optimally engineered optical hardware to reject beam steering and vibration noise. Successful measurements were made at full combustion conditions for a variety of fuel/air equivalence ratios and at eight vertical positions in the duct to investigate spatial uniformity. The use of three water vapor absorption features allowed for preliminary estimates of temperature distributions along the line of sight. The improved signal quality afforded by 2f measurements, in the case of weak absorption, demonstrates the utility of a scanned wavelength modulation strategy in such situations

  17. Fabrication and characterization of magnetically tunable metal-semiconductor schottky diode using barium hexaferrite thin film on gold

    Directory of Open Access Journals (Sweden)

    Jotinder Kaur

    2016-05-01

    Full Text Available Barium Hexaferrite (BaM is an extensively studied magnetic material due to its potential device application. In this paper, we study Schottky junction diodes fabricated using gold and BaM and demonstrate the function of a spintronic device. Gold (50 nm/silicon substrate was used to grow the BaM thin films (100-150 nm using pulsed laser deposition. I-V characteristics were measured on the Au/BaM structure sweeping the voltage from ±5 volts. The forward and reverse bias current-voltage curves show diode like rectifying characteristics. The threshold voltage decreases while the output current increases with increase in the applied external magnetic field showing that the I-V characteristics of the BaM based Schottky junction diodes can be tuned by external magnetic field. It is also demonstrated that, the fabricated Schottky diode can be used as a half-wave rectifier, which could operate at high frequencies in the range of 1 MHz compared to the regular p-n junction diodes, which rectify below 10 kHz. In addition, it is found that above 1 MHz, Au/BaM diode can work as a rectifier as well as a capacitor filter, making the average (dc voltage much larger.

  18. Fabrication and characterization of magnetically tunable metal-semiconductor schottky diode using barium hexaferrite thin film on gold

    Science.gov (United States)

    Kaur, Jotinder; Sharma, Vinay; Sharma, Vipul; Veerakumar, V.; Kuanr, Bijoy K.

    2016-05-01

    Barium Hexaferrite (BaM) is an extensively studied magnetic material due to its potential device application. In this paper, we study Schottky junction diodes fabricated using gold and BaM and demonstrate the function of a spintronic device. Gold (50 nm)/silicon substrate was used to grow the BaM thin films (100-150 nm) using pulsed laser deposition. I-V characteristics were measured on the Au/BaM structure sweeping the voltage from ±5 volts. The forward and reverse bias current-voltage curves show diode like rectifying characteristics. The threshold voltage decreases while the output current increases with increase in the applied external magnetic field showing that the I-V characteristics of the BaM based Schottky junction diodes can be tuned by external magnetic field. It is also demonstrated that, the fabricated Schottky diode can be used as a half-wave rectifier, which could operate at high frequencies in the range of 1 MHz compared to the regular p-n junction diodes, which rectify below 10 kHz. In addition, it is found that above 1 MHz, Au/BaM diode can work as a rectifier as well as a capacitor filter, making the average (dc) voltage much larger.

  19. UV-tunable laser induced phototransformations of matrix isolated anethole.

    Science.gov (United States)

    Krupa, Justyna; Wierzejewska, Maria; Nunes, Cláudio M; Fausto, Rui

    2014-03-14

    A matrix isolation study of the infrared spectra and structure of anethole (1-methoxy-4-(1-propenyl)benzene) has been carried out, showing the presence of two E conformers (AE1, AE2) of the molecule in the as-deposited matrices. Irradiation using ultraviolet-tunable laser light at 308-307 nm induced conformationally selective phototransformations of these forms into two less stable Z conformers (AZ1, AZ2). The back reactions were also detected upon irradiation at 301 nm. On the whole, the obtained results allow for full assignment of the infrared spectra of all the four experimentally observed anethole isomers and showed that the narrowband UV-induced E-Z photoisomerization is an efficient and selective way to interconvert the two isomers of anethole into each other, with conformational discrimination. Photolysis of anethole was observed as well, with initial methoxyl O-C bond cleavage and formation of CH3 and p-propenylphenoxy (AR) radicals, followed by radical recombination to form 2-methyl-4-propenyl-2,4-cyclohexadienone, which subsequently undergoes ring-opening generating several conformers of long-chain conjugated ketenes. Interpretation of the experimental observations was supported by density functional theory (B3LYP and B2PLYD) calculations.

  20. A reconfigurable silicon-on-insulator diode with tunable electrostatic doping

    Science.gov (United States)

    Cristoloveanu, Sorin; Lee, Kyung Hwa; Bawedin, Maryline

    2017-08-01

    P-N diodes can be emulated in ultrathin, fully depleted Silicon-On-Insulator films by appropriately biasing the front and back gates. Adjacent electron and hole populations form a virtual P-N junction. Systematic current-voltage I-V characteristics are presented revealing similarities and major differences with those of conventional P-N diodes with ion-implanted doping. The lateral electric field from the anode combines with the gate-induced vertical field and leads to unusual two-dimensional effects. A distinct merit of the virtual diode is the possibility to adjust the concentrations of electrostatic doping via the gates. The reverse current, forward current, and depletion depth become gate-controlled. Our experiments show that by modifying the type, N or P, of electrostatic doping, the virtual diode can be reconfigured in 8 other devices: semi-virtual diodes, PIN diodes, tunneling field-effect transistors or band-modulation FET.

  1. The advances and characteristics of high-power diode laser materials processing

    Science.gov (United States)

    Li, Lin

    2000-10-01

    This paper presents a review of the direct applications of high-power diode lasers for materials processing including soldering, surface modification (hardening, cladding, glazing and wetting modifications), welding, scribing, sheet metal bending, marking, engraving, paint stripping, powder sintering, synthesis, brazing and machining. The specific advantages and disadvantages of diode laser materials processing are compared with CO 2, Nd:YAG and excimer lasers. An effort is made to identify the fundamental differences in their beam/material interaction characteristics and materials behaviour. Also an appraisal of the future prospects of the high-power diode lasers for materials processing is given.

  2. Color-tunable and stable-efficiency white organic light-emitting diode fabricated with fluorescent-phosphorescent emission layers

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Su-Hua, E-mail: shya@cc.kuas.edu.tw; Shih, Po-Jen; Wu, Wen-Jie; Huang, Yi-Hua

    2013-10-15

    White organic light emitting diodes (OLEDs) were fabricated for color-tunable lighting applications. Fluorescent and phosphorescent hybrid emission layers (EMLs) were used to enhance the luminance and stability of the devices, which have blue-EML/CBP interlayer/green-EML/phosphorescent-sensitized-EML/red-EML structures. The influence of the composition and structure of the EMLs on the electroluminescence properties of the devices were investigated from the viewpoint of their emission spectra. The possible exciton harvesting, diffusion, transport, and annihilation processes occurring in the EMLs were also evaluated. A maximum luminance intensity of 7400 cd/m{sup 2} and a highly stable current efficiency of 3.2 cd/A were obtained. Good color tunability was achieved for the white OLEDs; the chromatic coordinates linearly shifted from pure white (0.300, 0.398) to cold white (0.261, 0.367) when the applied voltage was varied from 10 to 14 V. -- Highlights: • Exciton harvesting, diffusion, transport, and annihilation processes were evaluated. • The electroluminescence properties were investigated from the viewpoint of the emission spectra. • Good color tunability and stable-efficiency were achieved for the white OLEDs.

  3. Directly modulated and fully tunable hybrid silicon lasers for future generation of coherent colorless ONU.

    Science.gov (United States)

    de Valicourt, G; Le Liepvre, A; Vacondio, F; Simonneau, C; Lamponi, M; Jany, C; Accard, A; Lelarge, F; Make, D; Poingt, F; Duan, G H; Fedeli, J-M; Messaoudene, S; Bordel, D; Lorcy, L; Antona, J-C; Bigo, S

    2012-12-10

    We propose and demonstrate asymmetric 10 Gbit/s upstream--100 Gbit/s downstream per wavelength colorless WDM/TDM PON using a novel hybrid-silicon chip integrating two tunable lasers. The first laser is directly modulated in burst mode for upstream transmission over up to 25 km of standard single mode fiber and error free transmission over 4 channels across the C-band is demonstrated. The second tunable laser is successfully used as local oscillator in a coherent receiver across the C-band simultaneously operating with the presence of 80 downstream co-channels.

  4. Ring-resonator-integrated tunable external cavity laser employing EAM and SOA.

    Science.gov (United States)

    Yoon, Ki-Hong; Kwon, O-Kyun; Kim, Ki Soo; Choi, Byung-Seok; Oh, Su Hwan; Kim, Hyun Su; Sim, Jae-Sik; Kim, Chul Soo

    2011-12-05

    We propose and demonstrate a tunable external cavity laser (ECL) composed of a polymer Bragg reflector (PBR) and integrated gain chip with gain, a ring resonator, an electro-absorption modulator (EAM), and a semiconductor optical amplifier (SOA). The cavity of the laser is composed of the PBR, gain, and ring resonator. The ring resonator reflects the predetermined wavelengths into the gain region and transmits the output signal into integrated devices such as the EAM and SOA. The output wavelength of the tunable laser is discretely tuned in steps of about 0.8 nm through the thermal-optic effect of the PBR and predetermined mode spacing of the ring resonator.

  5. Tunable dual-wavelength actively Q-switched Er/Yb double-clad fiber laser

    International Nuclear Information System (INIS)

    Durán-Sánchez, M; Álvarez-Tamayo, R I; Kuzin, E A; Ibarra-Escamilla, B; González-García, A; Maya-Ordoñez, F; Pottiez, O; Flores-Rosas, A

    2014-01-01

    We demonstrate experimentally a dual-wavelength tunable actively Q-switched fiber laser using 3 m of Er 3+ /Yb 3+ co-doped fiber as the gain medium. For wavelength tuning we used a tunable Hi-Bi FBG having two reflection wavelengths separated by 0.4 nm. The laser emits a dual-wavelength signal that is tunable in a range of 11.8 nm. Laser operation can be switched between single and double wavelength emission. The laser operates at repetition rates from 30 to 110 kHz with pulse durations of 280 ns and pulse energies near 0.5 μJ. (letter)

  6. Efficient laser-diode end-pumped Nd:GGG lasers at 1054 and 1067 nm.

    Science.gov (United States)

    Xu, Bin; Xu, Huiying; Cai, Zhiping; Camy, P; Doualan, J L; Moncorgé, R

    2014-10-10

    Efficient and compact laser-diode end-pumped Nd:GGG simultaneous multiwavelength continuous-wave lasers at ∼1059, ∼1060 and ∼1062  nm were first demonstrated in a free-running 30 mm plano-concave laser cavity. The maximum output power was up to 3.92 W with a slope efficiency of about 53.6% with respect to the absorbed pump power. By inserting a 0.1 mm optical glass plate acting as a Fabry-Pérot etalon, a single-wavelength laser at ∼1067  nm with a maximum output power of 1.95 W and a slope efficiency of 28.5% can be obtained. Multiwavelength lasers, including those at ∼1054 or ∼1067  nm, were also achievable by suitably tilting the glass etalon. These simultaneous multiwavelength lasers provide a potential source for terahertz wave generation.

  7. Demonstration of a diode-pumped metastable Ar laser.

    Science.gov (United States)

    Han, Jiande; Glebov, Leonid; Venus, George; Heaven, Michael C

    2013-12-15

    Pulsed lasing from optically pumped rare gas metastable atoms (Ne, Ar, Kr, and Xe) has been demonstrated previously. The laser relies on a three-level scheme, which involves the (n+1)p[5/2](3) and (n+1)p[1/2](1) states from the np(5)(n+1)p electronic configuration and the metastable (n+1)s[3/2](2) level of the np(5)(n+1)s configuration (Racah notation). Population inversions were achieved using relaxation from ((n+1)p[5/2](3) to (n+1)p[1/2](1) induced by collisions with helium or argon at pressures near 1 atm. Pulsed lasing was easily achieved using the high instantaneous pump intensities provided by a pulsed optical parametric oscillator excitation laser. In the present study we examine the potential for the development of a continuous wave (CW) optically pumped Ar laser. We report lasing of the 4p[1/2](1)→4s[3/2](2) (912.547 nm) transition following CW diode laser excitation of the 4p[5/2](3)←4s[3/2](2) line (811.754 nm). A pulsed discharge was used to generate Ar 4s[3/2](2), and the time-resolved lasing kinetics provide insights concerning the radiative and collisional relaxation processes.

  8. Intensity and frequency stabilization of a laser diode by simultaneously controlling its temperature and current

    Science.gov (United States)

    Mu, Weiwei; Hu, Zhaohui; Wang, Jing; Zhou, Binquan

    2017-10-01

    Nuclear magnetic resonance gyroscope (NMRG) detects the angular velocity of the vehicle utilizing the interaction between the laser beam and the alkali metal atoms along with the noble gas atoms in the alkali vapor cell. In order to reach high precision inertial measurement target, semiconductor laser in NMRG should have good intensity and frequency stability. Generally, laser intensity and frequency are stabilized separately. In this paper, a new method to stabilize laser intensity and frequency simultaneously with double-loop feedback control is presented. Laser intensity is stabilized to the setpoint value by feedback control of laser diode's temperature. Laser frequency is stabilized to the Doppler absorption peak by feedback control of laser diode's current. The feedback control of current is a quick loop, hence the laser frequency stabilize quickly. The feedback control of temperature is a slow loop, hence the laser intensity stabilize slowly. With the feedback control of current and temperature, the laser intensity and frequency are stabilized finally. Additionally, the dependence of laser intensity and frequency on laser diode's current and temperature are analyzed, which contributes to choose suitable operating range for the laser diode. The advantage of our method is that the alkali vapor cell used for stabilizing laser frequency is the same one as the cell used for NMRG to operate, which helps to miniaturize the size of NMRG prototype. In an 8-hour continuous measurement, the long-term stability of laser intensity and frequency increased by two orders of magnitude and one order of magnitude respectively.

  9. High power 2 {mu}m diode-pumped Tm:YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    Beach, R.J.; Sutton, S.B.; Honea, E.C.; Skidmore, J.A.; Emanuel, M.A.

    1996-01-01

    Using a scaleable diode end-pumping technology developed at LLNL, we have demonstrated a compact Tm:YAG laser capable of generating more than 50 W of cw 2 {mu}m laser output power. The design and operational characteristics of this laser, which was built originally for use in assessing laser surgical techniques, are discussed.

  10. A low-cost, tunable laser lock without laser frequency modulation

    Science.gov (United States)

    Shea, Margaret E.; Baker, Paul M.; Gauthier, Daniel J.

    2015-05-01

    Many experiments in optical physics require laser frequency stabilization. This can be achieved by locking to an atomic reference using saturated absorption spectroscopy. Often, the laser frequency is modulated and phase sensitive detection used. This method, while well-proven and robust, relies on expensive components, can introduce an undesirable frequency modulation into the laser, and is not easily frequency tuned. Here, we report a simple locking scheme similar to those implemented previously. We modulate the atomic resonances in a saturated absorption setup with an AC magnetic field created by a single solenoid. The same coil applies a DC field that allows tuning of the lock point. We use an auto-balanced detector to make our scheme more robust against laser power fluctuations and stray magnetic fields. The coil, its driver, and the detector are home-built with simple, cheap components. Our technique is low-cost, simple to setup, tunable, introduces no laser frequency modulation, and only requires one laser. We gratefully acknowledge the financial support of the NSF through Grant # PHY-1206040.

  11. High power multiple wavelength diode laser stack for DPSSL application without temperature control

    Science.gov (United States)

    Hou, Dong; Yin, Xia; Wang, Jingwei; Chen, Shi; Zhan, Yun; Li, Xiaoning; Fan, Yingmin; Liu, Xingsheng

    2018-02-01

    High power diode laser stack is widely used in pumping solid-state laser for years. Normally an integrated temperature control module is required for stabilizing the output power of solid-state laser, as the output power of the solid-state laser highly depends on the emission wavelength and the wavelength shift of diode lasers according to the temperature changes. However the temperature control module is inconvenient for this application, due to its large dimension, high electric power consumption and extra adding a complicated controlling system. Furthermore, it takes dozens of seconds to stabilize the output power when the laser system is turned on. In this work, a compact hard soldered high power conduction cooled diode laser stack with multiple wavelengths is developed for stabilizing the output power of solid-state laser in a certain temperature range. The stack consists of 5 laser bars with the pitch of 0.43mm. The peak output power of each bar in the diode laser stack reaches as much as 557W and the combined lasing wavelength spectrum profile spans 15nm. The solidstate laser, structured with multiple wavelength diode laser stacks, allows the ambient temperature change of 65°C without suddenly degrading the optical performance.

  12. InGaAs/GaAs frequency tunable twin-guide quantum-well laser designed for steerable surface emission

    Science.gov (United States)

    Rosenberger, Matthias; Koeck, Anton; Gmachl, Claire F.; Gornik, Erich; Riechert, Henning; Bernklau, D.

    1993-11-01

    Based on a frequency tunable twin-guide (TTG) InGaAs/GaAs multiple quantum well (MQW) laser structure, we developed a novel design concept for a surface emitting laser device enabling spatial beam steering. Utilizing a change in the refractive index of the parallel monolithically integrated modulator diode due to carrier injection, we observe a continuous emission frequency (wavelength) shift up to (Delta) f equals 85 GHz ((Delta) (lambda) equals -0.35 nm). For this preliminary structure the experimental results are consistent with our model calculations. Based on the theoretical model, for an optimized device a tuning range of (Delta) f equals 1600 GHz ((Delta) (lambda) >= 5 nm) is expected. For the novel surface emitting device design, we make use of an additional structure on top of the TTG laser including a second waveguide and a grating. This will enable a wavelength dependent surface emission angle, i.e., continuous beam steering, by coupling the laser and the surface mode. A calculational model was developed to estimate the steering characteristics in dependence on the dielectric device structure including mode guiding and the surface grating shape.

  13. Comparison of the effect of diode laser versus intense pulsed light in axillary hair removal.

    Science.gov (United States)

    Ormiga, Patricia; Ishida, Cleide Eiko; Boechat, Alvaro; Ramos-E-Silva, Marcia

    2014-10-01

    Devices such as diode laser and intense pulsed light (IPL) are in constant development aiming at permanent hair removal, but there are few comparative studies between these technologies. The objective was to comparatively assess axillary hair removal performed by diode laser and IPL and to obtain parameters of referred pain and evolution response for each method. A comparative prospective, double-blind, and randomized study of axillary hair removal performed by the diode laser and IPL was conducted in 21 females. Six sessions were held with application of the diode laser in one axilla and the IPL in the other, with intervals of 30 days and follow-up of 6 months after the last session. Clinical photographs and digital dermoscopy for hair counts in predefined and fixed fields of the treated areas were performed before, 2 weeks after the sixth session, and 6 months after the end of treatment. A questionnaire to assess the pain was applied. The number of hair shafts was significantly reduced with the diode laser and IPL. The diode laser was more effective, although more painful than the IPL. No serious, adverse, or permanent effects were observed with both technologies. Both diode laser and the IPL are effective, safe, and able to produce lasting results in axillary hair removal.

  14. High-power direct diode laser output by spectral beam combining

    Science.gov (United States)

    Tan, Hao; Meng, Huicheng; Ruan, Xu; Du, Weichuan; Wang, Zhao

    2018-03-01

    We demonstrate a spectral beam combining scheme based on multiple mini-bar stacks, which have more diode laser combining elements, to increase the combined diode laser power and realize equal beam quality in both the fast and slow axes. A spectral beam combining diode laser output of 1130 W is achieved with an operating current of 75 A. When a 9.6 X de-magnifying telescope is introduced between the output mirror and the diffraction grating, to restrain cross-talk among diode laser emitters, a 710 W spectral beam combining diode laser output is achieved at the operating current of 70 A, and the beam quality on the fast and slow axes of the combined beam is about 7.5 mm mrad and 7.3 mm mrad respectively. The power reduction is caused by the existence of a couple resonator between the rear facet of the diode laser and the fast axis collimation lens, and it should be eliminated by using diode laser chips with higher front facet transmission efficiency and a fast axis collimation lens with lower residual reflectivity.

  15. Improved performance of high average power semiconductor arrays for applications in diode pumped solid state lasers

    International Nuclear Information System (INIS)

    Beach, R.; Emanuel, M.; Benett, W.; Freitas, B.; Ciarlo, D.; Carlson, N.; Sutton, S.; Skidmore, J.; Solarz, R.

    1994-01-01

    The average power performance capability of semiconductor diode laser arrays has improved dramatically over the past several years. These performance improvements, combined with cost reductions pursued by LLNL and others in the fabrication and packaging of diode lasers, have continued to reduce the price per average watt of laser diode radiation. Presently, we are at the point where the manufacturers of commercial high average power solid state laser systems used in material processing applications can now seriously consider the replacement of their flashlamp pumps with laser diode pump sources. Additionally, a low cost technique developed and demonstrated at LLNL for optically conditioning the output radiation of diode laser arrays has enabled a new and scalable average power diode-end-pumping architecture that can be simply implemented in diode pumped solid state laser systems (DPSSL's). This development allows the high average power DPSSL designer to look beyond the Nd ion for the first time. Along with high average power DPSSL's which are appropriate for material processing applications, low and intermediate average power DPSSL's are now realizable at low enough costs to be attractive for use in many medical, electronic, and lithographic applications

  16. Hardening and welding with high-power diode lasers

    Science.gov (United States)

    Ehlers, Bodo; Herfurth, Hans-Joachim; Heinemann, Stefan

    2000-03-01

    Commercially available high power diode lasers (HPDLs) with output powers of up to 6 kW have been recognized as an interesting tool for industrial applications. In certain fields of application they offer many advantages over Nd:YAG and CO2 lasers because of their low maintenance, compact design and low capital costs. Examples of successful industrial implementation of HPDLs include plastic welding, surface hardening and heat conduction welding of stainless steel and aluminum. The joining of plastics with an HPDL offers the advantages of producing a weld seam with high strength, high consistency and superior appearance. One example is the keyless entry system introduced with the Mercedes E-class where the microelectronic circuits are embedded in a plastic housing. Other applications include instrument panels, cell phones, headlights and tail lights. Applications in the field of surface treatment of metals profit from the HPDL's inherent line-shaped focus and the homogeneous intensity distribution across this focus. An HPDL system is used within the industry to harden rails for coordinate measurement machines. This system contains a customized zoom optic to focus the laser light onto the rails. With the addition of a temperature control, even complex shapes can be hardened with a constant depth and minimum distortion.

  17. Optical leak detection of oxygen using IR-laser diodes

    Science.gov (United States)

    Disimile, P. J.; Fox, C.; Toy, N.

    1991-01-01

    The ability to accurately measure the concentration of gaseous oxygen and its corresponding flow rate is becoming of greater importance. The technique being presented is based on the principal of light attenuation due to the absorption of radiation by the A-band of oxygen which is located in the 759-770 nm wavelength range. With an ability to measure the change in the light transmission to 0.05 percent, a sensitive optical leak detection system which has a rapid time response is possible. In this research program, the application of laser diode technology and its ability to be temperature tuned to a selected oxygen absorption spectral peak has allowed oxygen concentrations as low as 16,000 ppm to be detected.

  18. Widely-tunable interband cascade lasers for the mid-infrared

    Science.gov (United States)

    von Edlinger, M.; Scheuermann, J.; Weih, R.; Nähle, L.; Fischer, M.; Höfling, S.; Koeth, J.; Kamp, M.

    2015-01-01

    Distributed feedback (DFB) laser sources are key components of modern gas analyzers based on tunable laser absorption spectroscopy. While the current induced tuning range of DFB lasers is usually limited to a few nanometers, there are a number of applications which will benefit from lasers with a wider tunability, e.g. multi-gas sensing or spectroscopy of liquids. In this paper, we present monolithic widely tunable laser devices in the 3.6 μm wavelength region based on interband cascade laser material. Using the concept of binary superimposed (BSG) grating structures and two-segment Vernier-tuning, stable single-mode emission is realized at discrete wavelength channels in the 3560 nm to 3620 nm region. A total tuning range around 60 nm in three channels is demonstrated. Within a single channel, the emission wavelength can be tuned mode hop free over up to 5 nm. The wavelength channels can be arbitrarily placed in the range of the material gain, allowing BSG lasers to sweep over several gas absorption lines. The number of channels can be chosen as well. Within a wavelength channel, the lasers show DFB like spectral performance with setup limited sidemode suppressino ratios around 25 dB and milliwatt levels of continuous wave output powers around room temperature. This paper will present an overview of the laser concept, simulations, performance data and applications.

  19. Tunable Fiber Bragg Grating Ring Lasers using Macro Fiber Composite Actuators

    Science.gov (United States)

    Geddis, Demetris L.; Allison, Sidney G.; Shams, Qamar A.

    2006-01-01

    The research reported herein includes the fabrication of a tunable optical fiber Bragg grating (FBG) fiber ring laser (FRL)1 from commercially available components as a high-speed alternative tunable laser source for NASA Langley s optical frequency domain reflectometer (OFDR) interrogator, which reads low reflectivity FBG sensors. A Macro-Fiber Composite (MFC) actuator invented at NASA Langley Research Center (LaRC) was selected to tune the laser. MFC actuators use a piezoelectric sheet cut into uniaxially aligned rectangular piezo-fibers surrounded by a polymer matrix and incorporate interdigitated electrodes to deliver electric fields along the length of the piezo-fibers. This configuration enables MFC actuators to produce displacements larger than the original uncut piezoelectric sheet. The FBG filter was sandwiched between two MFC actuators, and when strained, produced approximately 3.62 nm of wavelength shift in the FRL when biasing the MFC actuators from 500 V to 2000 V. This tunability range is comparable to that of other tunable lasers and is adequate for interrogating FBG sensors using OFDR technology. Three different FRL configurations were studied. Configuration A examined the importance of erbium-doped fiber length and output coupling. Configuration B demonstrated the importance of the FBG filter. Configuration C added an output coupler to increase the output power and to isolate the filter. Only configuration C was tuned because it offered the best optical power output of the three configurations. Use of Plastic Optical Fiber (POF) FBG s holds promise for enhanced tunability in future research.

  20. Quantitative Detection of Combustion Species using Ultra-Violet Diode Lasers

    Science.gov (United States)

    Pilgrim, J. S.; Peterson, K. A.

    2001-01-01

    Southwest Sciences is developing a new microgravity combustion diagnostic based on UV diode lasers. The instrument will allow absolute concentration measurements of combustion species on a variety of microgravity combustion platforms including the Space Station. Our approach uses newly available room temperature UV diode lasers, thereby keeping the instrument compact, rugged and energy efficient. The feasibility of the technique was demonstrated by measurement of CH radicals in laboratory flames. Further progress in fabrication technology of UV diode lasers at shorter wavelengths and higher power will result in detection of transient species in the deeper UV. High sensitivity detection of combustion radicals is provided with wavelength modulation absorption spectroscopy.

  1. Comparison of laser diode response to pulsed electrical and radiative excitations

    International Nuclear Information System (INIS)

    Baggio, J.; Rainsant, J.M.; D'hose, C.; Lalande, P.; Musseau, O.; Leray, J.L.

    1996-01-01

    The authors have studied the electrical and optical response of two laser diodes under transient irradiation. Both diodes exhibit a positive photocurrent, which adds to the bias current, and a decrease of the optical power until extinction when dose rate is increased. Direct carrier generation in the laser cavity is a second order phenomena. The diode overall response is driven by both the substrate photocurrent and the transient conduction of current confinement regions, which decrease the net current density in the cavity and switches-off the laser emission. This behavior is in good agreement with pulsed electrical characterizations and 2D simulations

  2. Optical bistability in erbium-doped yttrium aluminum garnet crystal combined with a laser diode.

    Science.gov (United States)

    Maeda, Y

    1994-01-10

    Optical bistability was observed in a simple structure of an injection laser diode combined with an erbium-doped yttrium aluminum garnet crystal. Since a hysteresis characteristic exists in the relationship between the wavelength and the injection current of a laser diode, an optical memory function capable of holding the output status is confirmed. In addition, an optical signal inversion was caused by the decrease of transmission of the erbium-doped yttrium aluminum garnet crystal against the red shift (principally mode hopping) of the laser diode. It is suggested that the switching time of this phenomenon is the time necessary for a mode hopping by current injection.

  3. Tunable and non-reciprocal dual-wavelength SOA-fiber ring laser

    Science.gov (United States)

    Sabry, Yasser M.; Khalil, Kamal; Khalil, Diaa

    2017-02-01

    Dual-wavelength fiber lasers provide a low cost and simple method for the optical generation of microwave and THz radiation over the electrical techniques. The main reported technique for this purpose is based on the use of FBGs with two different and close wavelengths allowing these two wavelengths only to oscillate within a laser cavity comprising EDFA or SOA gain medium, where the latter provides much less homogeneous line-broadening and improved stability. Non-conventional FBGs and filtering mechanisms were reported all based on unidirectional configuration, where the two wavelengths propagate in the same direction in the ring laser. In this work, we report a tunable dual-wavelength ring laser including non-reciprocal circulators connected back to back providing uncommon path and allowing for having each wavelength rotating in a different direction in the ring. This technique provides the flexibility of controlling each of the wavelengths separately in terms of tunability, polarization and losses. Two tunable Fabry-Perot filters are inserted in the uncommon path and the wavelength of the CW and the CCW waves are controlled independently. Polarization controllers are used in the ring to achieve better stability and achieve single longitudinal mode of operation. For a given settings of the filters, the wavelength of the CW wave is 1485.2 nm while the CCW wave wavelength is 1488.5 nm. The generation of tunable dual wavelength laser is demonstrated by tuning of either of the Fabry-Perot filters. For instance, the CCW wave was tuned from 1532.2 nm to 1534.1 nm while holding the CW at 1535.2 nm. The results demonstrate the generation of tunable dual-wavelength laser output in the proposed nonreciprocal ring, which allows for tunable THz generation.

  4. The application of diode laser in the treatment of oral soft tissues lesions. A literature review.

    Science.gov (United States)

    Ortega-Concepción, Daniel; Cano-Durán, Jorge A; Peña-Cardelles, Juan-Francisco; Paredes-Rodríguez, Víctor-Manuel; González-Serrano, José; López-Quiles, Juan

    2017-07-01

    Since its appearance in the dental area, the laser has become a treatment of choice in the removal of lesions in the oral soft tissues, due to the numerous advantages they offer, being one of the most used currently the diode laser. The aim of this review was to determine the efficacy and predictability of diode laser as a treatment of soft tissue injuries compared to other surgical methods. A literature review of articles published in PubMed/MEDLINE, Scopus and the Cochrane Library databases between 2007 and 2017 was performed. "Diode laser", "soft tissue", "oral cavity" and "oral surgery" were employed for the search strategy. Only articles published English or Spanish were selected. The diode laser is a minimally invasive technology that offers great advantages, superior to those of the conventional scalpel, such as reduction of bleeding, inflammation and the lower probability of scars. Its effectiveness is comparable to that of other types of lasers, in addition to being an option of lower cost and greater ease of use. Its application in the soft tissues has been evaluated, being a safe and effective method for the excision of lesions like fibromas, epulis fissuratum and the accomplishment of frenectomies. The diode laser can be used with very good results for the removal of lesions in soft tissues, being used in small exophytic lesions due to their easy application, adequate coagulation, no need to suture and the slightest inflammation and pain. Key words: Diode laser, soft tissues, oral cavity, oral surgery.

  5. Diode laser pumped solid state laser. Part IV. ; Noise analysis. Handotai laser reiki kotai laser. 4. ; Noise kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, H.; Seno, T.; Tanabe, Y. (Asahi Glass Co. Ltd., Tokyo (Japan))

    1991-06-10

    Concerning the second harmonic generation(SHG) of diode laser pumped solid state laser using a nonlinear optical material, the researches are carried out to pracitically apply to the optical pickup. Therefore, the reduction of output optical noise has become the important researching subject. The theoretical and experimental analyses of noise generating mechanism were carried out for the system in which Nd;YAG as the laser diode and KTP (KTiOPO {sub 4}) as the nonlinear optical crystal were used. The following findings for the noise generating mechanism could be obtained: The competitive interaction between the polarization modes was dominant noise mechanism in the high frequency range from 1 to 20MHz and the noise could be removed sufficiently by using the QWP(quarter wave plate). On the other hand, the noise observed in the low frequency range from 100 to 200kHz depended on the resonance length, agreed qualitatively with the theoretical analysis of the noise to the competitive longitudinal modes and agreed quantitatively with the noise generating frequency range. 10 refs., 13 figs., 1 tab.

  6. Compact 2100 nm laser diode module for next-generation DIRCM

    Science.gov (United States)

    Dvinelis, Edgaras; Greibus, Mindaugas; TrinkÅ«nas, Augustinas; NaujokaitÄ--, Greta; Vizbaras, Augustinas; Vizbaras, Dominykas; Vizbaras, Kristijonas

    2017-10-01

    Compact high-power 2100 nm laser diode module for next-generation directional infrared countermeasure (DIRCM) systems is presented. Next-generation DIRCM systems require compact, light-weight and robust laser modules which could provide intense IR light emission capable of disrupting the tracking sensor of heat-seeking missile. Currently used solid-state and fiber laser solutions for mid-IR band are bulky and heavy making them difficult to implement in smaller form-factor DIRCM systems. Recent development of GaSb laser diode technology greatly improved optical output powers and efficiencies of laser diodes working in 1900 - 2450 nm band [1] while also maintaining very attractive size, weight, power consumption and cost characteristics. 2100 nm laser diode module presented in this work performance is based on high-efficiency broad emitting area GaSb laser diode technology. Each laser diode emitter is able to provide 1 W of CW output optical power with working point efficiency up to 20% at temperature of 20 °C. For output beam collimation custom designed fast-axis collimator and slow-axis collimator lenses were used. These lenses were actively aligned and attached using UV epoxy curing. Total 2 emitters stacked vertically were used in 2100 nm laser diode module. Final optical output power of the module goes up to 2 W at temperature of 20 °C. Total dimensions of the laser diode module are 35 x 25 x 16 mm (L x W x H) with a weight of 28 grams. Finally output beam is bore-sighted to mechanical axes of the module housing allowing for easy integration into next-generation DIRCM systems.

  7. Investigation into the accuracy of a proposed laser diode based multilateration machine tool calibration system

    International Nuclear Information System (INIS)

    Fletcher, S; Longstaff, A P; Myers, A

    2005-01-01

    Geometric and thermal calibration of CNC machine tools is required in modern machine shops with volumetric accuracy assessment becoming the standard machine tool qualification in many industries. Laser interferometry is a popular method of measuring the errors but this, and other alternatives, tend to be expensive, time consuming or both. This paper investigates the feasibility of using a laser diode based system that capitalises on the low cost nature of the diode to provide multiple laser sources for fast error measurement using multilateration. Laser diode module technology enables improved wavelength stability and spectral linewidth which are important factors for laser interferometry. With more than three laser sources, the set-up process can be greatly simplified while providing flexibility in the location of the laser sources improving the accuracy of the system

  8. An analysis of transient thermal properties for high power GaN-based laser diodes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Min; Kim, Seungtaek; Kang, Sung Bok; Kim, Young Jin; Jeong, Hoon; Lee, Kyeongkyun; Kim, Jongseok [Korea Institute of Industrial Technology, 35-3 Hongcheon-Ri, Ipjang-Myeon, Cheonan, Chungnam 331-825 (Korea); Lee, Sangdon; Suh, Dongsik [QSI Co., Ltd., 315-9 Cheonheung-Ri, Sungger-Eup, Cheonan, Chungnam 330-836 (Korea); Yi, Jeong Hoon; Choi, Yoonho; Jung, Seok Gu; Noh, Minsoo [LG Electronics Advanced Research Institute, 16 Woomyeon-Dong, Seocho-Gu, Seoul 137-724 (Korea)

    2010-07-15

    Thermal properties of 405 nm GaN-based laser diodes were investigated by employing a transient heating response method based on the temperature dependence of diode forward voltage. Thermal resistances of materials consisting of packaged laser diodes were differentiated in transient thermal response curves at a current below threshold current. With a current above threshold current, no significant change in thermal resistances and difference between junction-up and junction-down laser diodes was observed at pulses shorter than 3 sec. From an analysis with long current injections, thermal resistance of a packaged laser diode with a junction-up bonding was {proportional_to}45 C/W which was higher than that of a junction-down bonded laser diode by {proportional_to}10 C/W. Further analyses based on parameters obtained from voltage recovery curves indicated that the time constant for cooling is directly related to the thermal resistance and thermal capacitance of a laser diode package. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Tunable single and dual mode operation of an external cavity quantum-dot injection laser

    Energy Technology Data Exchange (ETDEWEB)

    Biebersdorf, A [Photonics and Optoelectronics Group, Physics Department and CeNS, Ludwig-Maximilians-Universitaet, Amalienstrasse 54, D-80799 Munich (Germany); Lingk, C [Photonics and Optoelectronics Group, Physics Department and CeNS, Ludwig-Maximilians-Universitaet, Amalienstrasse 54, D-80799 Munich (Germany); De Giorgi, M [Photonics and Optoelectronics Group, Physics Department and CeNS, Ludwig-Maximilians-Universitaet, Amalienstrasse 54, D-80799 Munich (Germany); Feldmann, J [Photonics and Optoelectronics Group, Physics Department and CeNS, Ludwig-Maximilians-Universitaet, Amalienstrasse 54, D-80799 Munich (Germany); Sacher, J [Sacher Lasertechnik GmbH, Hannah Arendt Strasse 3-7, D-35037 Marburg (Germany); Arzberger, M [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Ulbrich, C [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Boehm, G [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Amann, M-C [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Abstreiter, G [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany)

    2003-08-21

    We investigate quantum-dot (QD) lasers in an external cavity using Littrow and Littman configurations. Here, we report on a continuously tunable QD laser with a broad tuning range from 1047 to 1130 nm with high stability and efficient side mode suppression. The full-width at half-maximum of the laser line is 0.85 nm determined mainly by the quality of the external grating. This laser can be operated in a dual-mode modus, where the mode-spacing can be tuned continuously between 1.1 and 34 nm. Simultaneous emission of the two laser modes is shown by sum frequency generation experiments.

  10. Modulation of Frequency Doubled DFB-Tapered Diode Lasers for Medical Treatment

    DEFF Research Database (Denmark)

    Christensen, Mathias; Hansen, Anders Kragh; Noordegraaf, Danny

    2017-01-01

    The use of visible lasers for medical treatments is on the rise, and together with this comes higher expectations for the laser systems. For many medical treatments, such as ophthalmology, doctors require pulse on demand operation together with a complete extinction of the light between pulses. We...... have demonstrated power modulation from 0.1 Hz to 10 kHz at 532 nm with a modulation depth above 97% by wavelength detuning of the laser diode. The laser diode is a 1064 nm monolithic device with a distributed feedback (DFB) laser as the master oscillator (MO), and a tapered power amplifier (PA...

  11. Stabilizing operation point technique based on the tunable distributed feedback laser for interferometric sensors

    Science.gov (United States)

    Mao, Xuefeng; Zhou, Xinlei; Yu, Qingxu

    2016-02-01

    We describe a stabilizing operation point technique based on the tunable Distributed Feedback (DFB) laser for quadrature demodulation of interferometric sensors. By introducing automatic lock quadrature point and wavelength periodically tuning compensation into an interferometric system, the operation point of interferometric system is stabilized when the system suffers various environmental perturbations. To demonstrate the feasibility of this stabilizing operation point technique, experiments have been performed using a tunable-DFB-laser as light source to interrogate an extrinsic Fabry-Perot interferometric vibration sensor and a diaphragm-based acoustic sensor. Experimental results show that good tracing of Q-point was effectively realized.

  12. Wavelength Tunable Flip-Flop Operation of a Modulated Grating Y-branch Laser

    DEFF Research Database (Denmark)

    An, Yi; Lorences Riesgo, Abel; Peucheret, Christophe

    2012-01-01

    Wavelength tunable flip-flop operation is experimentally demonstrated in a single modulated grating Y-branch laser for the first time. The control pulses have energies of 0.16-0.34 pJ and the switching time is about 200 ps.......Wavelength tunable flip-flop operation is experimentally demonstrated in a single modulated grating Y-branch laser for the first time. The control pulses have energies of 0.16-0.34 pJ and the switching time is about 200 ps....

  13. Wavelength initialization employing wavelength recognition scheme in WDM-PON based on tunable lasers

    Science.gov (United States)

    Mun, Sil-Gu; Lee, Eun-Gu; Lee, Jong Hyun; Lee, Sang Soo; Lee, Jyung Chan

    2015-01-01

    We proposed a simple method to initialize the wavelength of tunable lasers in WDM-PON employing wavelength recognition scheme with an optical filter as a function of wavelength and accomplished plug and play operation. We also implemented a transceiver based on our proposed wavelength initialization scheme and then experimentally demonstrated the feasibility in WDM-PON configuration guaranteeing 16 channels with 100 GHz channel spacing. Our proposal is a cost-effective and easy-to-install method to realize the wavelength initialization of ONU. In addition, this method will support compatibility with all kind of tunable laser regardless of their structures and operating principles.

  14. High-flux focusable color-tunable and efficient white-light-emitting diode light engine for stage lighting

    DEFF Research Database (Denmark)

    Chakrabarti, Maumita; Pedersen, Henrik Chresten; Petersen, Paul Michael

    2016-01-01

    %. The design, simulation, and optimization of the lightengine is described and compared to the experimental characterization of a prototype. The light engine is optimizedthrough the simulated design of reflector, total internal reflection lens, and MA, as well as the number ofLEDs. An optical efficiency of 59......A color mixing light-emitting diode (LED) light engine that can replace 2-kW halogen–Fresnel spotlightwith high-luminous flux in excess of 20,000 lm is reported for applications in professional stage and studio lighting.The light engine focuses and mixes the light from 210 LEDs of five different...... colors through a microlens array(MA) at the gate of ∅50 mm. Hence, it produces homogeneous color-mixed tunable white light from 3000 to6000 K that can be adjustable from flood to spot position providing 10% translational loss, whereas the correspondingloss from the halogen–Fresnel spotlight is 37...

  15. Tunable hole injection of solution-processed polymeric carbon nitride towards efficient organic light-emitting diode

    Science.gov (United States)

    Zhang, Xiaowen; Zheng, Qinghong; Tang, Zhenyu; Li, Wanshu; Zhang, Yan; Xu, Kai; Xue, Xiaogang; Xu, Jiwen; Wang, Hua; Wei, Bin

    2018-02-01

    Polymeric carbon nitride (CNxHy) has been facilely synthesized from dicyandiamide and functions as a solution-processed hole injection layer in organic light-emitting diodes (OLEDs). The measurements using X-ray diffraction, atomic force microscopy, X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and impedance spectroscopy elucidate that CNxHy exhibits superior film morphology and extra electric properties such as tailored work function and tunable hole injection. The luminous efficiency of CNxHy-based OLED is found to improve by 76.6% in comparison to the counterpart using favorite solution-processed poly(ethylene dioxythiophene):poly(styrene sulfonate) as the hole injection layer. Our results also pave a way for broadening carbon nitride applications in organic electronics using the solution process.

  16. Cryogenic Yb:YAG laser pumped by VBG-stabilized narrowband laser diode at 969 nm

    Czech Academy of Sciences Publication Activity Database

    Jambunathan, Venkatesan; Horáčková, Lucie; Navrátil, Petr; Lucianetti, Antonio; Mocek, Tomáš

    2016-01-01

    Roč. 128, č. 12 (2016), s. 1328-1331 ISSN 1041-1135 R&D Projects: GA MŠk EE2.3.20.0143; GA ČR GA14-01660S Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 6(XE) CZ.1.07/2.3.00/20.0143 Institutional support: RVO:68378271 Keywords : Diode-pumped * cryogenic * volume Bragg grating * Yb doped * solid state lasers Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.375, year: 2016

  17. Kilowatt average power 100 J-level diode pumped solid state laser

    Czech Academy of Sciences Publication Activity Database

    Mason, P.; Divoký, Martin; Ertel, K.; Pilař, Jan; Butcher, T.; Hanuš, Martin; Banerjee, S.; Phillips, J.; Smith, J.; De Vido, M.; Lucianetti, Antonio; Hernandez-Gomez, C.; Edwards, C.; Mocek, Tomáš; Collier, J.

    2017-01-01

    Roč. 4, č. 4 (2017), s. 438-439 ISSN 2334-2536 R&D Projects: GA MŠk LO1602; GA MŠk LM2015086 Institutional support: RVO:68378271 Keywords : diode-pumped * solid state * laser Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 7.727, year: 2016

  18. Intensity Noise Transfer Through a Diode-pumped Titanium Sapphire Laser System

    DEFF Research Database (Denmark)

    Tawfieq, Mahmoud; Hansen, Anders Kragh; Jensen, Ole Bjarlin

    2017-01-01

    In this paper, we investigate the noise performance and transfer in a titanium sapphire (Ti:S) laser system. This system consists of a DBR tapered diode laser, which is frequency doubled in two cascaded nonlinear crystals and used to pump the Ti:S laser oscillator. This investigation includes...

  19. Influence of the laser-diode temperature on crystal absorption and ...

    Indian Academy of Sciences (India)

    Abstract. In this work, we studied the influence of heat loaded into the laser crystal in an end- pumped solid-state Nd:YVO4 high power laser. We have shown experimentally that the optimum value of the laser-diode temperature for the maximum pump power absorption by the Nd:YVO4 crystal and the maximum Nd:YVO4 ...

  20. Diode laser spectra of CC12F2 near 10.8 microns; air-broadening effects

    Science.gov (United States)

    Jennings, D. E.

    1978-01-01

    A tunable diode laser absorption spectrometer with resolution of about 0.0001/cm was used to record air-broadened spectra of CC12F2 in two regions near 922.8/cm and 921.7/cm. In the 922.8/cm region the structure shows good intensity contrast at pressures corresponding to upper atmospheric pressures. The absorption features have a spacing of 0.014/cm, which is sufficiently wide to retain spectral structure at pressures as high as 48 torr or altitudes as low as 19 km. The apparent broadening is 2 MHz/torr. The single-line broadening coefficient for CC12F2 can be estimated to be 8 + or - 2 MHz/torr FWHM. In the 921.7/cm region the high-resolution structure is discernible up to 24 torr, but the intensity contrast is not sufficiently strong to be of use in analysis of stratospheric spectra.

  1. Analysis of High-Power Diode Laser Heating Effects on HY-80 Steel for Laser Assisted Friction Stir Welding Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wiechec, Maxwell; Baker, Brad; McNelley, Terry; Matthews, Manyalibo; Rubenchik, Alexander; Rotter, Mark; Beach, Ray; Wu, Sheldon

    2017-01-01

    In this research, several conditions of high power diode laser heated HY-80 steel were characterized to determine the viability of using such lasers as a preheating source before friction stir welding in order to reduce frictional forces thereby reducing tool wear and increasing welding speeds. Differences in microstructures within heat affected zones were identified at specific laser powers and traverse speeds. Vickers hardness values were recorded and analyzed to validate the formation of additional martensite in diode laser heated regions of HY-80 steel. Conditions that produced little to no additional martensite were identified and relationships among high power diode laser power, traverse speed, and martensite formation were determined. The development of heat affected zones, change in grain structure, and creation of additional martensite in HY-80 can be prevented through the optimization of laser amperage and transverse speed.

  2. New class of compact diode pumped sub 10 fs lasers for biomedical applications

    DEFF Research Database (Denmark)

    Le, T.; Mueller, A.; Sumpf, B.

    2016-01-01

    Diode-pumping Ti: sapphire lasers promises a new approach to low-cost femtosecond light sources. Thus in recent years much effort has been taken just to overcome the quite low power and low beam qualities of available green diodes to obtain output powers of several hundred milliwatts from a fs-la...

  3. Chemical Kinetics of Triplet Methylene from Infrared Diode Laser Flash Kinetic Spectroscopy.

    Science.gov (United States)

    Darwin, David Charles

    A flash kinetic spectrometer based on a tunable infrared diode laser has been constructed. This spectrometer can measure Doppler limited spectra in the frequency region from 300-3000 cm^{-1}, allowing for the detection of nearly any molecular species. The spectrometer can be used in a spectroscopy mode to obtain the high resolution (<=q10^ {-3} cm^{-1})^ectrum of the species, or in a kinetic mode to detect time resolved behavior of events as fast as 20 ns. Using this spectrometer, room temperature, triplet methylene removal rate constants have been measured for NO_2, NO, SO_2, O_2, and H_2S (in order of decreasing reaction rate). For less reactive species, upper bounds to the removal rate constants were established. When no reactive gas is present, triplet methylene is removed from the system by self reaction. The triplet methylene self reaction rate constant was found to be faster than gas kinetic. To further study the self reaction of triplet methylene, the technique of product appearance kinetic spectroscopy (PAKS) was developed. Using PAKS, time resolved appearance of ground state acetylene was monitored with the diode laser spectrometer. The appearance rate of acetylene from triplet methylene self reaction was found to be equal to the removal rate of triplet methylene. This establishes that acetylene is a direct product of triplet methylene self reaction. Over the range of 2 to 10 torr ketene, a falloff in the quantum yield of acetylene produced by triplet methylene self reaction is observed. Rate constants for collision-induced intersystem crossing of singlet methylene to triplet methylene with the collision partners He and Ar were measured using flash kinetic spectroscopy with a visible probe laser. The rate constants for individual quantum states show small but definite variations. These variations are due to different degrees of singlet-triplet coupling for different levels. One singlet methylene state which is highly coupled to the triplet methylene

  4. Electric field tunable light emitting diodes containing europium β-diketonates with [2.2]paracyclophane moiety

    Science.gov (United States)

    Grykien, Remigiusz; Luszczynska, Beata; Glowacki, Ireneusz; Puntus, Lada; Pekareva, Irina; Lyssenko, Konstantin; Kajzar, François; Rau, Ileana; Lazar, Cosmina A.

    2016-07-01

    The synthesis and electroluminescent (EL) properties of two europium complexes with unsymmetrical β-diketonates and 1,10-phenanthroline are reported. The molecules are substituted by functional groups with different donor-acceptor properties and contain [2.2]paracyclophane moiety. They were used to fabricate the organic light emitting diodes (OLEDs). A large emission wavelength tunability by the applied electric field is observed for OLED containing europium β-diketonate substituted by phenyl group, with the maximum of luminance of 8 cd/m2. Such tunability disappears for OLED based on europium β-diketonate substituted by CH3 group, for which the luminance decreases to ca 2.5 cd/m2. Also in that case an emission band in UV disappears. The OLED stability is lower in the latter case too, showing the importance of the substitution on the OLED operation. It shows also a high potential for the electroluminescent properties control and improvement of these Eu based macromolecules through a simple β-diketonate ligand chemical structure modification.

  5. Comparing the effect of diode laser against acyclovir cream for the treatment of herpes labialis.

    Science.gov (United States)

    Honarmand, Marieh; Farhadmollashahi, Leila; Vosoughirahbar, Ehsan

    2017-06-01

    Recently alternative therapies such as the use of diode laser therapy have been introduced for recurrent herpes labial infection. The aim of this study was to evaluate the effectiveness of diode laser for treatment of recurrent herpes labialis. This was single-blind randomized clinical trial to evaluate the efficacy of diode laser for the treatment of recurrent herpes labial. In total, 60 patients whit recurrent herpes simplex labialis were selected and randomly divided in to three groups. 20 patients received treatment whit diode laser (at a wavelength of 870 nm, energy density 4.5 j/cm2), 20 patients were treated with acyclovir cream 5%, 20 patients received treatment with laser-off (placebo). The end point was lesions crusting. Data analyzed by Tukey HSD Test and One-way ANOVA (at a significance level of 0.05) in SPSS-20 software. The mean length of recovery time (day) in the laser, off laser, and acyclovir groups was 2.20±0.41, 4.30±1.03, and 3.4±1.142, respectively. There is a significant difference between three groups in this regard ( P diode laser reduced the length of recovery time and pain severity faster than treatment with acyclovir cream. Key words: Recurrent herpes labial, Acyclovir, Low level laser therapy.

  6. AlGaInN laser diode technology and systems for defence and security applications

    Science.gov (United States)

    Najda, Stephen P.; Perlin, Piotr; Suski, Tadek; Marona, Lujca; Boćkowski, Mike; Leszczyński, Mike; Wisniewski, Przemek; Czernecki, Robert; Kucharski, Robert; Targowski, Grzegorz; Watson, Scott; Kelly, Antony E.

    2015-10-01

    AlGaInN laser diodes is an emerging technology for defence and security applications such as underwater communications and sensing, atomic clocks and quantum information. The AlGaInN material system allows for laser diodes to be fabricated over a very wide range of wavelengths from u.v., ~380nm, to the visible ~530nm, by tuning the indium content of the laser GaInN quantum well. Thus AlGaInN laser diode technology is a key enabler for the development of new disruptive system level applications in displays, telecom, defence and other industries. Ridge waveguide laser diodes are fabricated to achieve single mode operation with optical powers up to 100mW with the 400-440nm wavelength range with high reliability. Visible free-space and underwater communication at frequencies up to 2.5GHz is reported using a directly modulated 422nm GaN laser diode. Low defectivity and highly uniform GaN substrates allow arrays and bars to be fabricated. High power operation operation of AlGaInN laser bars with up to 20 emitters have been demonstrated at optical powers up to 4W in a CS package with common contact configuration. An alternative package configuration for AlGaInN laser arrays allows for each individual laser to be individually addressable allowing complex free-space or optical fibre system integration with a very small form-factor.

  7. 700 W blue fiber-coupled diode-laser emitting at 450 nm

    Science.gov (United States)

    Balck, A.; Baumann, M.; Malchus, J.; Chacko, R. V.; Marfels, S.; Witte, U.; Dinakaran, D.; Ocylok, S.; Weinbach, M.; Bachert, C.; Kösters, A.; Krause, V.; König, H.; Lell, A.; Stojetz, B.; Löffler, A.; Strauss, U.

    2018-02-01

    A high-power blue laser source was long-awaited for processing materials with low absorption in the near infrared (NIR) spectral range like copper or gold. Due to the huge progress of GaN-based semiconductors, the performance of blue diode-lasers has made a major step forward recently. With the availability of unprecedented power levels at cw-operating blue diode-lasers emitting at 450 nm, it was possible to set up a high-power diode-laser in the blue spectral range to address these conventional laser applications and probably beyond that to establish completely new utilizations for lasers. Within the scope of the research project "BlauLas", funded within the German photonic initiative "EFFILAS" [8] by the German Federal Ministry of Education and Research (BMBF), Laserline in cooperation with OSRAM aims to realize a cw fiber-coupled diode-laser exceeding 1 kW blue laser power. In this paper the conceptual design and experimental results of a 700 W blue fiber-coupled diode-laser are presented. Initially a close look had to be taken on the mounting techniques of the semiconductors to serve the requirements of the GaN laser diodes. Early samples were used for extensive long term tests to investigate degradation processes. With first functional laser-modules we set up fiber-coupled laser-systems for further testing. Besides adaption of well-known optical concepts a main task within the development of the laser system was the selection and examination of suitable materials and assembling in order to minimize degradation and reach adequate lifetimes. We realized R&D blue lasersystems with lifetimes above 5,000 h, which enable first application experiments on processing of various materials as well as experiments on conversion to white-light.

  8. Phased laser diode array permits selective excitation of ultrasonic guided waves in coated bone-mimicking tubes

    Science.gov (United States)

    Moilanen, Petro; Salmi, Ari; Kilappa, Vantte; Zhao, Zuomin; Timonen, Jussi; Hæggström, Edward

    2017-10-01

    This paper validates simulation predictions, which state that specific modes could be enhanced in quantitative ultrasonic bone testing. Tunable selection of ultrasonic guided wave excitation is useful in non-destructive testing since it permits the mediation of energy into diagnostically useful modes while reducing the energy mediated into disturbing contributions. For instance, it is often challenging to distinguish and extract the useful modes from ultrasound signals measured in bone covered by a soft tissue. We show that a laser diode array can selectively excite ultrasound in bone mimicking phantoms. A fiber-coupled diode array (4 elements) illuminated two solid tubes (2-3 mm wall thickness) embraced by an opaque soft-tissue mimicking elastomer coating (5 mm thick). A predetermined time delay matching the selected mode and frequency was employed between the outputs of the elements. The generated ultrasound was detected by a 215 kHz piezo receiver. Our results suggest that this array reduces the disturbances caused by the elastomer cover and so pave way to permit non-contacting in vivo guided wave ultrasound assessment of human bones. The implementation is small, inexpensive, and robust in comparison with the conventional pulsed lasers.

  9. High-Power, High-Efficiency 1.907nm Diode Lasers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — nLight proposes to develop high-power, high-efficiency laser diodes emitting at 1907nm. Performance is expected to improve from the current state-of-the-art...

  10. Preliminary Demonstration of Power Beaming With Non-Coherent Laser Diode Arrays

    National Research Council Canada - National Science Library

    Kare, Jordin

    1999-01-01

    A preliminary demonstration of free-space electric power transmission has been conducted using non-coherent laser diode arrays as the transmitter and standard silicon photovoltaic cell arrays as the receiver...

  11. Effect of 810 nm Diode Laser Therapy on the Rate of Extraction Space Closure

    Directory of Open Access Journals (Sweden)

    Naseem Joy Garg

    2014-01-01

    Conclusion: Biostimulation carried out using a 810 nm diode laser is capable of increasing the rate of extraction space closure in humans. Hence, it can be concluded that it is capable of increasing the rate of orthodontic tooth movement.

  12. Efficient generation of 509 nm light by sum-frequency mixing between two tapered diode lasers

    DEFF Research Database (Denmark)

    Tawfieq, Mahmoud; Jensen, Ole Bjarlin; Hansen, Anders Kragh

    2015-01-01

    We demonstrate a concept for visible laser sources based on sum-frequency generation of beam com- bined tapered diode lasers. In this specific case, a 1.7 W sum-frequency generated green laser at 509 nm is obtained, by frequency adding of 6.17 W from a 978 nm tapered diode laser with 8.06 W from...... a 1063 nm tapered diode laser, inside a periodically poled MgO doped lithium niobate crystal. This corresponds to an optical to optical conversion ef fi ciency of 12.1%. As an example of potential applica- tions, the generated nearly diffraction-limited green light is used for pumping a Ti:sapphire laser...

  13. Clinical comparison between the bleaching efficacy of light-emitting diode and diode laser with sodium perborate.

    Science.gov (United States)

    Koçak, Sibel; Koçak, Mustafa Murat; Sağlam, Baran Can

    2014-04-01

    The aim of this clinical study was to test the efficacy of a light-emitting diode (LED) light and a diode laser, when bleaching with sodium perborate. Thirty volunteers were selected to participate in the study. The patients were randomly divided into two groups. The initial colour of each tooth to be bleached was quantified with a spectrophotometer. In group A, sodium perborate and distilled water were mixed and placed into the pulp chamber, and the LED light was source applied. In group B, the same mixture was used, and the 810 nm diode laser was applied. The final colour of each tooth was quantified with the same spectrophotometer. Initial and final spectrophotometer values were recorded. Mann-Whitney U-test and Wicoxon tests were used to test differences between both groups. Both devices successfully whitened the teeth. No statistical difference was found between the efficacy of the LED light and the diode laser. © 2013 The Authors. Australian Endodontic Journal © 2013 Australian Society of Endodontology.

  14. Selective nociceptor activation in volunteers by infrared diode laser

    Directory of Open Access Journals (Sweden)

    Nemenov Mikhail I

    2011-03-01

    Full Text Available Abstract Background Two main classes of peripheral sensory neurons contribute to thermal pain sensitivity: the unmyelinated C fibers and thinly myelinated Aδ fibers. These two fiber types may differentially underlie different clinical pain states and distinctions in the efficacy of analgesic treatments. Methods of differentially testing C and Aδ thermal pain are widely used in animal experimentation, but these methods are not optimal for human volunteer and patient use. Thus, this project aimed to provide psychophysical and electrophysiological evidence that whether different protocols of infrared diode laser stimulation, which allows for direct activation of nociceptive terminals deep in the skin, could differentially activate Aδ or C fiber thermonociceptors in volunteers. Results Short (60 ms, high intensity laser pulses (SP evoked monomodal "pricking" pain which was not enhanced by topical capsaicin, whereas longer, lower power pulses (LP evoked monomodal "burning" pain which was enhanced by topical capsaicin. SP also produced cortical evoked EEG potentials consistent with Aδ mediation, the amplitude of which was directly correlated with pain intensity but was not affected by topical capsaicin. LP also produced a distinct evoked potential pattern the amplitude of which was also correlated with pain intensity, which was enhanced by topical capsaicin, and the latency of which could be used to estimate the conduction velocity of the mediating nociceptive fibers. Conclusions Psychophysical and electrophysiological data were consistent with the ability of short high intensity infrared laser pulses to selectively produce Aδ mediated pain and of longer pulses to selectively produce C fiber mediated thermal pain. Thus, the use of these or similar protocols may be useful in developing and testing novel therapeutics based on the differential molecular mechanisms underlying activation of the two fiber types (e.g., TRPV1, TRPV2, etc. In addition

  15. Laser assisted die bending: a new application of high power diode lasers

    Science.gov (United States)

    Schuöcker, D.; Schumi, T.; Spitzer, O.; Bammer, F.; Schuöcker, G.; Sperrer, G.

    2015-02-01

    Nowadays high power lasers are mainly used for cutting of sheet metals, for welding, hardening and rapid prototyping. In the forming of sheet metals as bending or deep drawing lasers are not used. Nevertheless a few years ago a new application of high power lasers has been invented, where bending of materials that break at room temperature becomes possible by heating them along the bending edge with high power lasers thus allowing their treatment without cracks and rupture. For this purpose a large number of diode lasers are arranged in the bottom tool of a bending machine (a V-shaped die) which heat up the initially flat sheet metal during the bending process what is performed by pressing it into the die with a knife shaped upper tool where due to the laser heating the material is softened and thus cracks are avoided. For the technical realization of the new process of laser assisted die bending, modules equipped with numerous laser diodes and a total beam power of 2,5 kW are used. The light emitted by these modules enters a tool with a length of 15cm and is deflected towards the workpiece. By using ten of these modules with adjacent dies and by integrating those in a bending press a bending edge of sheet metals with a length of 1500mm can be realized. Such a bending press with laser assistance also needs energization with a power of practically 50kW, a respective water flow, a heat exchanger system and also a control for all functions of this system. Special measures have also been developed to avoid radiating of those tools that are not covered by a workpiece in the case of bending edges shorter than the full length of the bending tools whereas individual short circuiting of diode modules can be performed. Specific measures to ensure a safe operation without any harm to the operational person have been realized. Exploitation of the bending process has been carried out for titanium, where material thicknesses up to 3mm have been bent successfully.

  16. AlGaInN laser diode technology for defence, security and sensing applications

    Science.gov (United States)

    Najda, Stephen P.; Perlin, Piotr; Suski, Tadek; Marona, Lucja; Boćkowski, Mike; Leszczyński, Mike; Wisniewski, Przemek; Czernecki, Robert; Kucharski, Robert; Targowski, Grzegorz; Watson, Scott; Kelly, Antony E.

    2014-10-01

    The latest developments in AlGaInN laser diode technology are reviewed for defence, security and sensing applications. The AlGaInN material system allows for laser diodes to be fabricated over a very wide range of wavelengths from u.v., i.e, 380nm, to the visible, i.e., 530nm, by tuning the indium content of the laser GaInN quantum well. Advantages of using Plasma assisted MBE (PAMBE) compared to more conventional MOCVD epitaxy to grow AlGaInN laser structures are highlighted. Ridge waveguide laser diode structures are fabricated to achieve single mode operation with optical powers of <100mW in the 400-420nm wavelength range that are suitable for telecom applications. Visible light communications at high frequency (up to 2.5 Gbit/s) using a directly modulated 422nm Gallium-nitride (GaN) blue laser diode is reported. High power operation of AlGaInN laser diodes is demonstrated with a single chip, AlGaInN laser diode `mini-array' with a common p-contact configuration at powers up to 2.5W cw at 410nm. Low defectivity and highly uniform GaN substrates allow arrays and bars of nitride lasers to be fabricated. GaN laser bars of up to 5mm with 20 emitters, mounted in a CS mount package, give optical powers up to 4W cw at ~410nm with a common contact configuration. An alternative package configuration for AlGaInN laser arrays allows for each individual laser to be individually addressable allowing complex free-space and/or fibre optic system integration within a very small form-factor.or.

  17. GreenLight laser vs diode laser vaporization of the prostate: 3-year results of a prospective nonrandomized study.

    Science.gov (United States)

    Guo, Sanwei; Müller, Georg; Bonkat, Gernot; Püschel, Heike; Gasser, Thomas; Bachmann, Alexander; Rieken, Malte

    2015-04-01

    Laser vaporization of the prostate is one of the alternatives to transurethral resection of the prostate. Short-term studies report a comparable outcome after laser vaporization with the 532 nm 120-W GreenLight high-performance system (HPS) laser and the 980 nm 200 W high-intensity diode (diode) laser. In this study, we analyzed the intermediate-term results of both techniques. From January 2007 to January 2008, 112 consecutive patients with symptomatic benign prostate enlargement were nonrandomly assigned to treatment with the GreenLight laser or the diode laser. Perioperative parameters, postoperative functional outcome, complications, and the reoperation rate at 3 years were analyzed. Improvement of voiding symptoms (International Prostate Symptom Score, quality-of-life) and micturition parameters (maximum flow rate, postvoid residual volume) showed no significant difference between the HPS group and the diode group. A significantly higher reoperation rate was observed in the diode group in comparison to the HPS group (37.5% vs 8.9%, p=0.0003) due to obstructive necrotic tissue (16.1% vs 0%, p=0.0018), bladder neck stricture (16.1% vs 1.8%, p=0.008), and persisting or recurrent adenoma (5.4% vs 7.1%, p=0.70), respectively. Both lasers lead to comparable improvement of voiding parameters and micturition symptoms. Treatment with the 200 W diode laser led to a significantly higher reoperation rate, which might be attributed to a higher degree of coagulation necrosis. Thus, a careful clinical application of this diode laser type is warranted.

  18. In situ measurements of H2O, CH4 and CO2 in the upper troposphere and the lower stratosphere (UT-LS) with the baloonborne picoSDLA and AMULSE tunable diode laser spectrometers during the 2014 and 2015 "Stratoscience" campaigns

    Science.gov (United States)

    Miftah-El-Khair, Zineb; Joly, Lilian; Decarpenterie, Thomas; Cousin, Julien; Dumelié, Nicolas; Grouiez, Bruno; Albo, Grégory; Chauvin, Nicolas; Maamary, Rabih; Amarouche, Nadir; Durry, Georges

    2016-04-01

    H2O, CH4 and CO2 are major greenhouse gases with a strong impact on climate. The concentrations of CO2 and CH4 have dramatically increased since the beginning of the industrialization era due to anthropogenic activities, contributing thereby to the global warming. Anthropogenic activities as fossil fuels, ruminant, and biomass burning constitute the major sources of carbon dioxide and methane. The increase of H2O concentration in the stratosphere could cause a cooling of this atmospheric region, impacting the recovery of the ozone layer. Therefore, having information and data about the vertical distribution of H2O, CO2 and CH4 is very useful to improve our knowledge of the future of our climate. We have developed, with the help of French space agency (CNES) and CNRS, two laser diode sensors PicoSDLA and AMULSE devoted to the in situ measurements of H2O, CH4 and CO2 from balloon platforms. These instruments were operated from open stratospheric balloons in Timmins, CA, in August 2014 and 2015. We report and discuss the instrumental achievements of both sensors during these flights in the UT-LS. Aknowledgments: The authors acknowledge financial supports from CNES, CNRS and the region Champagne-Ardenne.

  19. Efficacy of Diode Laser for the Management of Potentially Malignant Disorders.

    Science.gov (United States)

    Reddy Kundoor, Vinay Kumar; Patimeedi, Ashwini; Roohi, Shameena; Maloth, Kotya Naik; Kesidi, Sunitha; Masabattula, Geetha Kumari

    2015-01-01

    Laser dentistry is a one of the upcoming advanced treatment modality for oral mucosal lesions. Diode laser is a soft tissue laser that has found much acceptance in all branches of dentistry. Available compact size and feasibility has render diode laser an enhanced tool for today's clinical practice. The aim of this study is to determine the efficacy and safety of diode laser for the management of white lesions such as oral leukoplakia (OL) and oral lichen planus (OLP). The study was conducted by using diode laser 980 nm on 10 patients with white lesions (5 OL and 5 OLP) aged between 35 to 65 years. Of the 10 patients (5 OL and 5 OLP), 3 patients (30%) complained of moderate pain and 7 patients (70%) complained of mild pain, for first 3 days after laser irradiation, and pain disappeared at end of first week. There was no recurrence of the lesion during the 6-month follow up. Diode lasers provide acceptable clinical improvement of potentially malignant lesions with minimal side effects. It can be considered one of the best alternative treatment modality for oral mucosal lesions.

  20. Complicações na dacriocistorrinostomia transcanalicular com laser diodo: complications Transcanalicular dacryocystorhinostomy with diode laser

    Directory of Open Access Journals (Sweden)

    Eduardo Alonso Garcia

    2009-08-01

    Full Text Available OBJETIVO: Analisar as complicações da aplicação do laser de diodo para o tratamento da obstrução nasolacrimal adquirida. MÉTODOS: Foram realizados 44 procedimentos (dacriocistorrinostomia transcanalicular com laser de diodo com intubação bicanalicular de silicone sob anestesia local entre fevereiro de 2002 a novembro de 2007 em 41 pacientes (3 bilateralmente, sendo 32 mulheres e 9 homens. RESULTADOS: As complicações mais frequentes no intraoperatório foram: dificuldade de passar a sonda de Crawford (13,6% e passagem da fibra óptica dificultada (11,3%. No pós-operatório, a epífora foi a ocorrência mais frequente (15,9%, seguida pela retirada acidental do silastic (11,3%. CONCLUSÃO: Os índices de complicações intra e pós-operatórias se equivalem aos artigos publicados com a mesma técnica cirúrgica (e mesmo tipo de laser.PURPOSE: To evaluate the complications of the use of diode laser in the treatment of acquired nasolacrimal obstruction. METHODS: Forty four procedures (transcanalicular dacryocystorhinostomy with diode laser with bicanalicular silicone tube intubation and local anesthesia where performed from February 2002 to November 2007 in 41 patients (3 bilaterally, 32 women and 9 men. RESULTS: The most common intraoperative complications were disability to pass the Crawford probe (13.6% and the laser probe (11.3%. Regarding postoperative complications, epiphora was the event of higher frequency (15.9% followed by the non-intentional silastic extrusion by the patient (11.3%. CONCLUSION: Intraoperative and postoperative complications rate were similar of others articles that demonstrated the same surgical technique (with same laser.

  1. The treatment of early cutaneous capillary haemangiomata (strawberry naevi) with the tunable dye laser.

    Science.gov (United States)

    Haywood, R M; Monk, B E; Mahaffey, P J

    2000-06-01

    We have treated 39 early cutaneous capillary haemangiomata, in 24 infants, with the tunable dye laser at a wavelength of 585 nm (SPTL 1b, Candela Corporation, Wayland, MA, USA). The average age at first treatment was 13 weeks. The first signs of involution were seen at 19 weeks of age. Complete resolution of the lesions was seen in 61. 5% of haemangiomata at an average age of 39 weeks. Two haemangiomata did not respond to laser treatment and were treated successfully with intralesional steroid injection. There were no complications of laser treatment. The natural history of the treated haemangiomata was significantly shorter than historical evidence suggests for untreated lesions. Haemangiomata may be treated safely and effectively with the tunable dye laser in the early weeks of life leading to accelerated involution and resolution. Copyright 2000 The British Association of Plastic Surgeons.

  2. An in vitro antifungal efficacy of silver nanoparticles activated by diode laser to Candida albicans

    Science.gov (United States)

    Astuti, S. D.; Kharisma, D. H.; Kholimatussa'diah, S.; Zaidan, A. H.

    2017-09-01

    Microbial infectious diseases and increased resistance to antibiotics become urgent problems requiring immediate solutions. One promising alternative is the using of silver nanoparticles. The combination of the microbial inhibition characteristic of silver nanotechnology enhances the activity of antimicrobial effect. This study aims to determine effectiveness of antifungal silver nanoparticles with the activation of the diode laser on Candida albicans. The samples were culture of Candida albicans. Candida albicans cultures were incubated with silver nanoparticles (concentration 10-4 M) and treated with various exposure time of diode laser (15, 30, 45, 60, 75, 90)s. The suspension was planted on Sabouraud Dextrone Agar sterile media and incubated for 24 hours at temperature of 37oC. The number of colony-forming units per milliliter (CFU/ml) was determined after incubation. The results were log-transformed and analyzed by analysis of variance (ANOVA). In this analysis, P value ≤0.05 was considered to indicate a statistically significant difference. The result of this study showed the quantum yield of silver nanoparticles with diode laser 450 nm was 63,61%. Irradiating with diode laser 450 nm for 75 s resulted in the highest decreasing percentage of Candida albicans viability 65,03%. Irradiating with diode laser 450 nm 75 s with silver nanoparticles resulted in the higest decreasing percentage of Candida albicans viability 84,63%. Therefore, silver nanoparticles activated with diode laser irradiation of 450 nm resulted antifungal effect to Candida albicans viability.

  3. Frequency locking of compact laser-diode modules at 633 nm

    Science.gov (United States)

    Nölleke, Christian; Leisching, Patrick; Blume, Gunnar; Jedrzejczyk, Daniel; Pohl, Johannes; Feise, David; Sahm, Alexander; Paschke, Katrin

    2018-02-01

    This work reports on a compact diode-laser module emitting at 633 nm. The emission frequency can be tuned with temperature and current, while optical feedback of an internal DBR grating ensures single-mode operation. The laser diode is integrated into a micro-fabricated package, which includes optics for beam shaping, a miniaturized optical isolator, and a vapor cell as frequency reference. The achieved absolute frequency stability is below 10-8 , while the output power can be more than 10 mW. This compact absolute frequency-stabilized laser system can replace gas lasers and may be integrated in future quantum technology devices.

  4. Tunable Laser Development for In-flight Fiber Optic Based Structural Health Monitoring Systems

    Science.gov (United States)

    Richards, Lance; Parker, Allen; Chan, Patrick

    2014-01-01

    The objective of this task is to investigate, develop, and demonstrate a low-cost swept lasing light source for NASA DFRC's fiber optics sensing system (FOSS) to perform structural health monitoring on current and future aerospace vehicles. This is the regular update of the Tunable Laser Development for In-flight Fiber Optic Based Structural Health Monitoring Systems website.

  5. Wavelength Tunable Flip-Flop Operation of a Modulated Grating Y-branch Laser

    DEFF Research Database (Denmark)

    An, Yi; Lorences Riesgo, Abel; Peucheret, Christophe

    2012-01-01

    Wavelength tunable flip-flop operation is experimentally demonstrated in a single modulated grating Y-branch laser for the first time. The control pulses have energies of 0.16-0.34 pJ and the switching time is about 200 ps....

  6. Independent tunability of the double-mode-locked cw dye laser.

    LENUS (Irish Health Repository)

    Bourkoff, E

    1979-06-01

    We report a new configuration that enables the double-mode-locked cw dye laser to be independently tunable. In addition, the output coupling at each of the two wavelengths can be independently specified. A series of oscillographs shows some interesting features unique to double mode locking and also shows the effects of varying the two cavity lengths with respect to each other.

  7. Comparison of Refractive Error Changes in Retinopathy of Prematurity Patients Treated with Diode and Red Lasers.

    Science.gov (United States)

    Roohipoor, Ramak; Karkhaneh, Reza; Riazi Esfahani, Mohammad; Alipour, Fateme; Haghighat, Mahtab; Ebrahimiadib, Nazanin; Zarei, Mohammad; Mehrdad, Ramin

    2016-01-01

    To compare refractive error changes in retinopathy of prematurity (ROP) patients treated with diode and red lasers. A randomized double-masked clinical trial was performed, and infants with threshold or prethreshold type 1 ROP were assigned to red or diode laser groups. Gestational age, birth weight, pretreatment cycloplegic refraction, time of treatment, disease stage, zone and disease severity were recorded. Patients received either red or diode laser treatment and were regularly followed up for retina assessment and refraction. The information at month 12 of corrected age was considered for comparison. One hundred and fifty eyes of 75 infants were enrolled in the study. Seventy-four eyes received diode and 76 red laser therapy. The mean gestational age and birth weight of the infants were 28.6 ± 3.2 weeks and 1,441 ± 491 g, respectively. The mean baseline refractive error was +2.3 ± 1.7 dpt. Posttreatment refraction showed a significant myopic shift (mean 2.6 ± 2.0 dpt) with significant difference between the two groups (p diode laser treatment (mean 6.00 dpt) and a lesser shift among children with zone II and red laser treatment (mean 1.12 dpt). The linear regression model, using the generalized estimating equation method, showed that the type of laser used has a significant effect on myopic shift even after adjustment for other variables. Myopic shift in laser-treated ROP patients is related to the type of laser used and the involved zone. Red laser seems to cause less myopic shift than diode laser, and those with zone I involvement have a greater myopic shift than those with ROP in zone II. © 2016 S. Karger AG, Basel.

  8. Novel 755-nm diode laser vs. conventional 755-nm scanned alexandrite laser: Side-by-side comparison pilot study for thorax and axillary hair removal.

    Science.gov (United States)

    Paasch, Uwe; Wagner, Justinus A; Paasch, Hartmut W

    2015-01-01

    Alexandrite (755 nm) and diode lasers (800-810 nm) are commonly used for hair removal. The alexandrite laser technology is somewhat cumbersome whereas new diode lasers are more robust. Recently, alexandrite-like 755 nm wavelength diodes became available. To compare the efficacy, tolerability, and subject satisfaction of a 755 nm diode laser operated in conventional (HR) and non-conventional in-motion (SHR) modes with a conventional scanned alexandrite 755 nm laser for chest and axillary hair removal. A prospective, single-center, proof of principle study was designed to evaluate the safety, efficacy and handling of a 755 nm diode laser system in comparison to a standard alexandrite 755 nm scanning hair removal laser. The new 755 nm diode is suitable to be used in SHR and HR mode and has been tested for its safety, efficacy and handling in a volunteer with success. Overall, both systems showed a high efficacy in hair reduction (88.8% 755 nm diode laser vs. 77.7% 755 nm alexandrite laser). Also, during the study period, no severe adverse effects were reported. The new 755 nm diode laser is as effective and safe as the traditional 755 nm alexandrite laser. Additionally, treatment with the 755 nm diode laser with HR and SHR modes was found to be less painful.

  9. Mode-locked Ti:sapphire laser oscillators pumped by wavelength-multiplexed laser diodes

    Science.gov (United States)

    Sugiyama, Naoto; Tanaka, Hiroki; Kannari, Fumihiko

    2018-05-01

    We directly pumped a Ti:sapphire laser by combining 478 and 520 nm laser diodes to prevent the effect of absorption loss induced by the pump laser of shorter wavelengths (∼450 nm). We obtain a continuous-wave output power of 660 mW at a total incident pump power of 3.15 W. We demonstrate mode locking using a semiconductor saturable absorber mirror, and 126 fs pulses were obtained at a repetition rate of 192 MHz. At the maximum pump power, the average output power is 315 mW. Shorter mode-locked pulses of 42 and 48 fs were respectively achieved by Kerr-lens mode locking with average output powers of 280 and 360 mW at a repetition rate of 117 MHz.

  10. Fiber Bragg grating interrogation using a wavelength modulated 1651-nm tunable distributed feedback laser and a fiber ring resonator for wearable biomedical sensors

    Science.gov (United States)

    Roy, Anirban; Chakraborty, Arup Lal; Jha, Chandan Kumar

    2017-04-01

    This paper demonstrates the interrogation of a fiber Bragg grating with a flat-topped reflection spectrum centred on 1649.55 nm using only a single mode tunable 1651.93 nm semiconductor laser and a fiber ring resonator. The Bragg shift is accurately measured with the fiber-optic ring resonator that has a free spectral range (FSR) of 0.1008 GHz and a broadband photo-detector. Laser wavelength modulation and harmonic detection are used to transform the gentle edges of the flat-topped FBG spectrum into prominent leading and trailing peaks, either of which can be used to accurately measure spectral shifts of the FBG reflection spectrum with a resolution of 0.9 pm. A Raspberry Pi-based low-cost embedded processor is used to measure the temperature-induced spectral shifts over the range 30˚C - 80˚C. The shift was linear with a temperature sensitivity of 12.8 pm/˚C. This technique does not use an optical spectrum analyzer at any stage of its design or operation. The laser does not need to be pre-characterized either. This technique can be readily extended to all types of tunable diode lasers and is ideally suited for compact field instruments.

  11. Theoretical study on the thermal and optical features of a diode side-pumped alkali laser

    Science.gov (United States)

    Han, Juhong; Liu, Xiaoxu; Wang, Hongyuan; Cai, He; An, Guofei; Zhang, Wei; Wang, You

    2018-03-01

    As one of the most hopeful candidates to achieve high power performances, a diode-pumped alkali laser (DPAL) has attracted a lot of attention in the last decade. Comparing with a diode end-pumped alkali laser (DEPAL), a diode side-pumped alkali laser (DSPAL) has great potentiality to realize an even-higher output of alkali lasers. However, there are few related researching studies concern DSPAL. In this paper, we introduce a theoretical model to investigate the physical features of a double-directions side-pumped alkali laser. The distributions of the population density, temperature, and absorption power at the cross section of a vapor cell are systematically studied. The analyses should be valuable for design of a steady high-powered DPAL.

  12. Analysis of localized drilling of zona pellucida by 1.48-μm diode laser

    Science.gov (United States)

    Rastegar, Sohi; Hollis, Artha J.; Descloux, Laurent; Rink, Klaus; Delacretaz, Guy P.; Senn, Alfred; Nocera, Dorotha; Germond, Marc

    1996-05-01

    Laser drilling of the zona pellucida of the mammalian egg can be achieved using a continuous wave 1.48 micrometers diode laser because of high absorption coefficient of water at this wavelength. Effect of increase in temperature of the medium on the holes produced by the laser is studied. A threshold temperature is identified and its relation to the radial temperature field in the laser irradiated zona is discussed.

  13. Modulation of distributed feedback (DFB) laser diode with the autonomous Chua's circuit: Theory and experiment

    Science.gov (United States)

    Talla Mbé, Jimmi Hervé; Woafo, Paul

    2018-03-01

    We report on a simple way to generate complex optical waveforms with very cheap and accessible equipments. The general idea consists in modulating a laser diode with an autonomous electronic oscillator, and in the case of this study, we use a distributed feedback (DFB) laser diode pumped with an electronic Chua's circuit. Based on the adiabatic P-I characteristics of the laser diode at low frequencies, we show that when the total pump is greater than the laser threshold, it is possible to convert the electrical waveforms of the Chua's circuit into optical carriers. But, if that is not the case, the on-off dynamical behavior of the laser permits to obtain many other optical waveform signals, mainly pulses. Our numerical results are consistent with experimental measurements. The work presents the advantage of extending the range of possible chaotic dynamics of the laser diodes in the time domains (millisecond) where it is not usually expected with conventional modulation techniques. Moreover, this new technique of laser diodes modulation brings a general benefit in the physical equipment, reduces their cost and congestion so that, it can constitute a step towards photonic integrated circuits.

  14. Temperature evaluation of dental implant surface irradiated with high-power diode laser.

    Science.gov (United States)

    Rios, F G; Viana, E R; Ribeiro, G M; González, J C; Abelenda, A; Peruzzo, D C

    2016-09-01

    The prevalence of peri-implantitis and the absence of a standard approach for decontamination of the dental implant surface have led to searches for effective therapies. Since the source of diode lasers is portable, has reduced cost, and does not cause damage to the titanium surface of the implant, high-power diode lasers have been used for this purpose. The effect of laser irradiation on the implants is the elevation of the temperature surface. If this elevation exceeds 47 °C, the bone tissue is irreversibly damaged, so for a safety therapy, the laser parameters should be controlled. In this study, a diode laser of GaAsAl was used to irradiate titanium dental implants, for powers 1.32 to 2.64 W (real) or 2.00 to 4.00 W (nominal), in continuous/pulsed mode DC/AC, with exposure time of 5/10 s, with/without air flow for cooling. The elevation of the temperature was monitored in real time in two positions: cervical and apical. The best results for decontamination using a 968-nm diode laser were obtained for a power of 1.65 and 1.98 W (real) for 10 s, in DC or AC mode, with an air flow of 2.5 l/min. In our perspective in this article, we determine a suggested approach for decontamination of the dental implant surface using a 968-nm diode laser.

  15. Structural, spectroscopic, and tunable laser properties of Yb3+ -doped NaGd(WO4)2

    Science.gov (United States)

    Cascales, C.; Serrano, M. D.; Esteban-Betegón, F.; Zaldo, C.; Peters, R.; Petermann, K.; Huber, G.; Ackermann, L.; Rytz, D.; Dupré, C.; Rico, M.; Liu, J.; Griebner, U.; Petrov, V.

    2006-11-01

    Single crystals of Yb3+ -doped NaGd(WO4)2 with up to 20mol% ytterbium content have been grown by the Czochralski technique in air or in N2+O2 atmosphere and cooled to room temperature at different rates (4-250°C/h) . Only the noncentrosymmetric tetragonal space group I4¯ accounts for all reflections observed in the single crystal x-ray diffraction analysis. The distortion of this symmetry with respect to the centrosymmetric tetragonal space group I41/a is much lower for crystals cooled at a fast rate. Na+ , Gd3+ , and Yb3+ ions share the two nonequivalent 2b and 2d sites of the I4¯ structure, but Yb3+ (and Gd3+ ) ions are found preferentially in the 2b site. Optical spectroscopy at low (5K) temperature provides additional evidence of the existence of these two sites contributing to the line broadening. The comparison with the F7/22(n) and F5/22(n') Stark energy levels calculated using the crystallographic Yb-O bond distances allows to correlate the experimental optical bands with the 2b and 2d sites. As a novel uniaxial laser host for Yb3+ , NaGd(WO4)2 is characterized also with respect to its transparency, band-edge, refractive indices, and main optical phonons. Continuous-wave Yb3+ -laser operation is studied at room temperature both under Ti:sapphire and diode laser pumping. A maximum slope efficiency of 77% with respect to the absorbed power is achieved for the π polarization by Ti:sapphire laser pumping in a three-mirror cavity with Brewster geometry. The emission is tunable in the 1014-1079nm spectral range with an intracavity Lyot filter. Passive mode locking of this laser produces 120fs long pulses at 1037.5nm with an average power of 360mW at ≈97MHz repetition rate. Using uncoated samples of Yb:NaGd(WO4)2 at normal incidence in simple two-mirror cavities, output powers as high as 1.45W and slope efficiencies as high as 51% are achieved with different diode laser pump sources.

  16. In Vitro Study of Dentin Hypersensitivity Treated by 980-nm Diode Laser

    Science.gov (United States)

    Liu, Ying; Gao, Jie; Gao, Yan; XU, Shuaimei; Zhan, Xueling; Wu, Buling

    2013-01-01

    Introduction: To investigate the ultrastructural changes of dentin irradiated with 980-nm diode laser under different parameters and to observe the morphological alterations of odontoblasts and pulp tissue to determine the safety parameters of 980-nm diode laser in the treatment of dentin hypersensitivity (DH). Methods: Twenty extracted human third molars were selected to prepare dentin discs. Each dentin disc was divided into four areas and was irradiated by 980-nm diode laser under different parameters: Group A: control group, 0 J/cm2; Group B: 2 W/CW (continuous mode), 166 J/cm2; Group C: 3W/CW, 250 J/cm2; and Group D: 4W/CW, 333 J/cm2. Ten additional extracted human third molars were selected to prepare dentin discs. Each dentin disc was divided into two areas and was irradiated by 980-nm diode laser: Group E: control group, 0 J/cm2; and Group F: 2.0 W/CW, 166 J/cm2. The morphological alterations of the dentin surfaces and odontoblasts were examined with scanning electron microscopy (SEM), and the morphological alterations of the dental pulp tissue irradiated by laser were observed with an upright microscope. Results: The study demonstrated that dentinal tubules can be entirely blocked after irradiation by 980-nm diode laser, regardless of the parameter setting. Diode laser with settings of 2.0 W and 980-nm sealed exposed dentin tubules effectively, and no significant morphological alterations of the pulp and odontoblasts were observed after irradiation. Conclusions: Irradiation with 980-nm diode laser could be effective for routine clinical treatment of DH, and 2.0W/CW (166 J/cm2) was a suitable energy parameter due to its rapid sealing of the exposed dentin tubules and its safety to the odontoblasts and pulp tissue. PMID:25606318

  17. PERFORMANCE OPTIMIZATION OF THE DIODE-PUMPED SOLID-STATE LASER FOR SPACE APPLICATIONS

    Directory of Open Access Journals (Sweden)

    D. A. Arkhipov

    2015-11-01

    Full Text Available Subject of Research. Thermophysical and optical techniques of parameter regulation for diode pumped solid-state laser are studied as applied to space laser communication and laser ranging lines. Methods. The investigations are carried out on the base of the original design of diode pumped solid-state laser module that includes the following: Nd:YAG slab element, diode pumped by 400W QCW produced by NORTHROP GRUMMAN; two-pass unstable resonator with rotation of the laser beam aperture about its axis through 1800; the output mirror of the resonator with a variable reflection coefficient; hyperthermal conductive plates for thermal stabilization of the laser diode generation modes. The presence of thermal conductive plates excludes conventional running water systems applied as cooling systems for solid-state laser components. The diodes temperature stabilization is achieved by applying the algorithm of pulse-width modulation of power of auxiliary electric heaters. To compensate for non-stationary thermal distortions of the slab refractive index, the laser resonator scheme comprises a prism reflector with an apex angle of 1200. Narrow sides of the prism are covered with reflective coating, and its wide side is sprayed with antireflection coating. The beam aperture is turned around its axis through 1800 because of triple reflection of the beam inside the prism. The turning procedure leads to compensating for the output beam phase distortions in view of symmetric character of the aberrations of slab refractive index. To suppress parasitic oscillations inside the slab, dielectric coatings of wide sides of the slab are used. Main Results. We have demonstrated theoretically and experimentally that the usage of hyperthermal conductive plates together with the algorithm of pulse-width modulation provides stabilizing of the diode substrate temperature accurate within ± 0.1 °С and smoothing the temperature distribution along the plate surface accurate

  18. Tuneable diode laser spectroscopy correction factor investigation on ammonia measurement

    Science.gov (United States)

    Li, Nilton; El-Hamalawi, Ashraf; Baxter, Jim; Barrett, Richard; Wheatley, Andrew

    2018-01-01

    Current diesel engine aftertreatment systems, such as Selective Catalyst Reduction (SCR) use ammonia (NH3) to reduce Nitrogen Oxides (NOx) into Nitrogen (N2) and water (H2O). However, if the reaction between NH3 and NOx is unbalanced, it can lead either NH3 or NOx being released into the environment. As NH3 is classified as a dangerous compound in the environment, its accurate measurement is essential. Tuneable Diode Laser (TDL) spectroscopy is one of the methods used to measure raw emissions inside engine exhaust pipes, especially NH3. This instrument requires a real-time exhaust temperature, pressure and other interference compounds in order to adjust itself to reduce the error in NH3 readings. Most researchers believed that exhaust temperature and pressure were the most influential factors in TDL when measuring NH3 inside exhaust pipes. The aim of this paper was to quantify these interference effects on TDL when undertaking NH3 measurement. Surprisingly, the results show that pressure was the least influential factor when compared to temperature, H2O, CO2 and O2 when undertaking NH3 measurement using TDL.

  19. The effect of gallium-aluminum-arsenide 808-nm low-level laser therapy on healing of skin incisions made using a diode laser.

    Science.gov (United States)

    Güngörmüş, Metin; Akyol, Utkan

    2009-12-01

    To investigate the effect of low-level laser therapy (LLLT) on healing of skin incisions made using a diode laser in rats. Eighteen Wistar rats were used for this study. Two parallel incisions (approximately 15 mm in length) were performed on the left and right side of the dorsum of each rat using a diode laser (4-W output powers with a tip 300 microm in diameter, 6 mm long, and 635-nm aiming beam). The wound on the left side of each rat received laser stimulation (10 J/cm2) from an 808-nm-wavelength gallium-aluminum-arsenide laser (Laser Source Power 20W, Laser Class IV, Medical Class IIB, Input Power Supply 230+/-10% VAC). They were assigned to two experimental groups: Group 1, diode laser (control); Group 2, diode laser+LLLT. It was determined that there was a significant difference between the diode laser and diode laser+LLLT groups in inflammation at day 10 and a difference in reepithelization at day 20 but no significant difference in inflammation at day 20. Diode laser incision (4 W) with 10 J/cm2 LLLT seems to have a beneficial effect on skin incisions in rats. As a result, it can be concluded that wound closure was significantly enhanced with lllt on diode laser incisions in rats.

  20. Multi-kW high-brightness fiber coupled diode laser based on two dimensional stacked tailored diode bars

    Science.gov (United States)

    Bayer, Andreas; Unger, Andreas; Köhler, Bernd; Küster, Matthias; Dürsch, Sascha; Kissel, Heiko; Irwin, David A.; Bodem, Christian; Plappert, Nora; Kersten, Maik; Biesenbach, Jens

    2016-03-01

    The demand for high brightness fiber coupled diode laser devices in the multi kW power region is mainly driven by industrial applications for materials processing, like brazing, cladding and metal welding, which require a beam quality better than 30 mm x mrad and power levels above 3kW. Reliability, modularity, and cost effectiveness are key factors for success in the market. We have developed a scalable and modular diode laser architecture that fulfills these requirements through use of a simple beam shaping concept based on two dimensional stacking of tailored diode bars mounted on specially designed, tap water cooled heat sinks. The base element of the concept is a tailored diode laser bar with an epitaxial and lateral structure designed such that the desired beam quality in slow-axis direction can be realized without using sophisticated beam shaping optics. The optical design concept is based on fast-axis collimator (FAC) and slow-axis collimator (SAC) lenses followed by only one additional focusing optic for efficient coupling into a 400 μm fiber with a numerical aperture (NA) of 0.12. To fulfill the requirements of scalability and modularity, four tailored bars are populated on a reduced size, tap water cooled heat sink. The diodes on these building blocks are collimated simply via FAC and SAC. The building blocks can be stacked vertically resulting in a two-dimensional diode stack, which enables a compact design of the laser source with minimum beam path length. For a single wavelength, up to eight of these building blocks, implying a total of 32 tailored bars, can be stacked into a submodule, polarization multiplexed, and coupled into a 400 μm, 0.12NA fiber. Scalability into the multi kW region is realized by wavelength combining of replaceable submodules in the spectral range from 900 - 1100 nm. We present results of a laser source based on this architecture with an output power of more than 4 kW and a beam quality of 25 mm x mrad.

  1. In Vitro Comparison of the Effects of Diode Laser and CO2 Laser on Topical Fluoride Uptake in Primary Teeth

    Directory of Open Access Journals (Sweden)

    Zahra Bahrololoomi

    2016-04-01

    Full Text Available Objectives: Fluoride therapy is important for control and prevention of dental caries. Laser irradiation can increase fluoride uptake especially when combined with topical fluoride application. The objective of this study was to compare the effects of CO2 and diode lasers on enamel fluoride uptake in primary teeth.Materials and Methods: Forty human primary molars were randomly assigned to four groups (n=10. The roots were removed and the crowns were sectioned mesiodistally into buccal and lingual halves as the experimental and control groups. All samples were treated with 5% sodium fluoride (NaF varnish. The experimental samples in the four groups were irradiated with 5 or 7W diode or 1 or 2W CO2 laser for 15 seconds and were compared with the controls in terms of fluoride uptake, which was determined using an ion selective electrode after acid dissolution of the specimens. Data were analyzed by SPSS version 16 using ANOVA treating the control measurements as covariates.Results: The estimated amount of fluoride uptake was 59.5± 16.31 ppm, 66.5± 14.9 ppm, 78.6± 12.43 ppm and 90.4± 11.51 ppm for 5W and 7 W diode and 1W and 2 W CO2 lasers, respectively, which were significantly greater than the values in the conventional topical fluoridation group (P<0.005. There were no significant differences between 7W diode laser and 1W CO2 laser, 5W and 7W diode laser, or 1W and 2W CO2 laser in this regard.Conclusion: The results showed that enamel surface irradiation by CO2 and diode lasers increases the fluoride uptake.

  2. Widely tunable terahertz source based on intra-cavity frequency mixing in quantum cascade laser arrays

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Aiting; Jung, Seungyong; Jiang, Yifan; Kim, Jae Hyun; Belkin, Mikhail A., E-mail: mbelkin@ece.utexas.edu [Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Vijayraghavan, Karun [Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); ATX Photonics, 10100 Burnet Rd., Austin, Texas 78758 (United States)

    2015-06-29

    We demonstrate a compact monolithic terahertz source continuously tunable from 1.9 THz to 3.9 THz with the maximum peak power output of 106 μW at 3.46 THz at room temperature. The source consists of an array of 10 electrically tunable quantum cascade lasers with intra-cavity terahertz difference-frequency generation. To increase fabrication yield and achieve high THz peak power output in our devices, a dual-section current pumping scheme is implemented using two electrically isolated grating sections to independently control gain for the two mid-IR pumps.

  3. A dual-wavelength tunable laser with superimposed fiber Bragg gratings

    International Nuclear Information System (INIS)

    Álvarez-Tamayo, R I; Durán-Sánchez, M; Pottiez, O; Ibarra-Escamilla, B; Kuzin, E A; Cruz, J L; Andrés, M V

    2013-01-01

    We report a dual-wavelength tunable fiber laser. The cavity is formed by two superimposed fiber Bragg gratings (FBGs) and a temperature tunable high-birefringence fiber optical loop mirror (FOLM). FBGs with wavelengths of 1548.5 and 1538.5 nm were printed in the same section of a fiber using two different masks. The superimposed FBGs were placed on a mechanical mount that allows stretch or compression of the FBGs. As a result of the FBG strain both lines are shifted simultaneously. Dual-wavelength generation requires a fine adjustment of the cavity loss for both wavelengths. (paper)

  4. Tunable vacuum ultraviolet laser based spectrometer for angle resolved photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Rui; Mou, Daixiang; Wu, Yun; Huang, Lunan; Kaminski, Adam [Division of Materials Science and Engineering, Ames Laboratory, Ames, Iowa 50011 (United States); Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); McMillen, Colin D.; Kolis, Joseph [Department of Chemistry, Clemson University, Clemson, South Carolina 29634 (United States); Giesber, Henry G.; Egan, John J. [Advanced Photonic Crystals LLC, Fort Mill, South Carolina 29708 (United States)

    2014-03-15

    We have developed an angle-resolved photoemission spectrometer with tunable vacuum ultraviolet laser as a photon source. The photon source is based on the fourth harmonic generation of a near IR beam from a Ti:sapphire laser pumped by a CW green laser and tunable between 5.3 eV and 7 eV. The most important part of the set-up is a compact, vacuum enclosed fourth harmonic generator based on potassium beryllium fluoroborate crystals, grown hydrothermally in the US. This source can deliver a photon flux of over 10{sup 14} photon/s. We demonstrate that this energy range is sufficient to measure the k{sub z} dispersion in an iron arsenic high temperature superconductor, which was previously only possible at synchrotron facilities.

  5. Construction and characterization of external cavity diode lasers for atomic physics.

    Science.gov (United States)

    Hardman, Kyle S; Bennetts, Shayne; Debs, John E; Kuhn, Carlos C N; McDonald, Gordon D; Robins, Nick

    2014-04-24

    Since their development in the late 1980s, cheap, reliable external cavity diode lasers (ECDLs) have replaced complex and expensive traditional dye and Titanium Sapphire lasers as the workhorse laser of atomic physics labs. Their versatility and prolific use throughout atomic physics in applications such as absorption spectroscopy and laser cooling makes it imperative for incoming students to gain a firm practical understanding of these lasers. This publication builds upon the seminal work by Wieman, updating components, and providing a video tutorial. The setup, frequency locking and performance characterization of an ECDL will be described. Discussion of component selection and proper mounting of both diodes and gratings, the factors affecting mode selection within the cavity, proper alignment for optimal external feedback, optics setup for coarse and fine frequency sensitive measurements, a brief overview of laser locking techniques, and laser linewidth measurements are included.

  6. Coherent addition of high power broad-area laser diodes with a compact VBG V-shaped external Talbot cavity

    Science.gov (United States)

    Liu, Bo; Braiman, Yehuda

    2018-05-01

    We introduced a compact V-shaped external Talbot cavity for phase locking of high power broad-area laser diodes. The length of compact cavity is ∼25 mm. Near diffraction-limit coherent addition of 10 broad-area laser diodes indicated that high quality phase locking was achieved. We measured the near-field emission mode of each individual broad-area laser diode with different feedback, such as a volume Bragg grating and a high reflection mirror. We found out that the best result of phase locking broad-area laser diodes was achieved by the compact V-shaped external Talbot cavity with volume Bragg grating feedback.

  7. Efficient laser performance of a cryogenic Yb:YAG laser pumped by fiber coupled 940 and 969 nm laser diodes

    Czech Academy of Sciences Publication Activity Database

    Jambunathan, Venkatesan; Miura, Taisuke; Těsnohlídková, L.; Lucianetti, Antonio; Mocek, Tomáš

    2015-01-01

    Roč. 12, č. 1 (2015), "015002-1"-"015002-6" ISSN 1612-2011 R&D Projects: GA MŠk ED2.1.00/01.0027; GA MŠk EE2.3.20.0143; GA ČR GA14-01660S Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 6(XE) CZ.1.07/2.3.00/20.0143 Institutional support: RVO:68378271 Keywords : cryogenic lasers * absorption * bandwidth * emission cross-section * absorption cross-section * diode pump ing Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.391, year: 2015

  8. Effect of Diode Laser Irradiation Combined with Topical Fluoride on Enamel Microhardness of Primary Teeth.

    Science.gov (United States)

    Bahrololoomi, Zahra; Lotfian, Malihe

    2015-02-01

    Laser irradiation has been suggested as an adjunct to traditional caries prevention methods. But little is known about the cariostatic effect of diode laser and most studies available are on permanent teeth.The purpose of the present study was to investigate the effect of diode laser irradiation combined with topical fluoride on enamel surface microhardness. Forty-five primary teeth were used in this in vitro study. The teeth were sectioned to produce 90 slabs. The baseline Vickers microhardness number of each enamel surface was determined. The samples were randomly divided into 3 groups. Group 1: 5% NaF varnish, group 2: NaF varnish+ diode laser at 5 W power and group 3: NaF varnish+ diode laser at 7 W power. Then, the final microhardness number of each surface was again determined. The data were statistically analyzed by repeated measures ANOVA at 0.05 level of significance. In all 3 groups, microhardness number increased significantly after surface treatment (P0.05). The combined application of diode laser and topical fluoride varnish on enamel surface did not show any significant additional effect on enamel resistance to caries.

  9. Temporal measurement of MeV pulsed gamma-ray using a diode laser

    Science.gov (United States)

    Liu, Jun; Ouyang, Xiaoping; Weng, Xiufeng; Zhang, Zhongbing; Xie, Haoyu; Li, Chunhua; Ruan, Jinlu; Xu, Qing

    2018-03-01

    A single-shot temporal measurement of pulsed gamma ray using a diode laser has been carried out with the MeV gamma beams at "Qiangguang-I" facility. The gamma-ray temporal profile is encoded to the power of a diode laser by the carrier variation in laser cavity. We analyze the dynamic process of carriers induced by gamma rays and derive a sensitivity expression for the detector based on a diode laser. It shows that the sensitivity is determined by both the gain of resonant cavity and the efficiency of gamma-ray deposition in the diode laser. And the efficiency of depositing gamma-ray is estimated with Monte Carlo methods. The experimental results demonstrate that the detection method with diode lasers can be used for the temporal profile measurement of a MeV pulsed gamma ray source. The relative gamma-ray sensitivity of the detector is estimated at about 1 . 27 × 10-22 Ccm2 from the experimental results, which agrees with the theoretical predictions.

  10. Evaluation of antimicrobial and thermal effects of diode laser on root canal dentin.

    Science.gov (United States)

    Kıvanc, B H; Arısu, H D; Sağlam, B C; Akça, G; Gürel, M A; Görgül, G

    2017-12-01

    The aim of this study was to evaluate the antimicrobial effects of diode laser and temperature rise on the root surface during application. Thirty-six teeth were chemomechanically prepared and irrigated with 2.5% sodium hypochlorite and 17% ethylenediaminetetraacetic acid, and then autoclaved and incubated with a suspension of Enterococcus faecalis. The specimens were randomly divided into three groups (n = 12): Group 1, irradiated by diode laser at 1.2 W; Group 2, irradiated by diode laser at 2 W; and Group 3, irradiated by diode laser at 3 W. The grown bacteria were counted and the mean numbers of the each test tube were determined. The temperature was measured on the external apical third of the root during laser application. The mean values of results for each group were compared using one-way analysis of variance and Tukey test. No significant difference was obtained among the test groups in terms of the colony counts (P > 0.05). According to the temperature changes, there was a significant difference between groups (P Diode laser irradiation with 1.2 W demonstrated comparable performance with 2 W and 3 W power sets for elimination of E. faecalis from root canal with less temperature rise.

  11. Effect of Diode Laser Irradiation Combined with Topical Fluoride on Enamel Microhardness of Primary Teeth.

    Directory of Open Access Journals (Sweden)

    Zahra Bahrololoomi

    2015-04-01

    Full Text Available Laser irradiation has been suggested as an adjunct to traditional caries prevention methods. But little is known about the cariostatic effect of diode laser and most studies available are on permanent teeth.The purpose of the present study was to investigate the effect of diode laser irradiation combined with topical fluoride on enamel surface microhardness.Forty-five primary teeth were used in this in vitro study. The teeth were sectioned to produce 90 slabs. The baseline Vickers microhardness number of each enamel surface was determined. The samples were randomly divided into 3 groups. Group 1: 5% NaF varnish, group 2: NaF varnish+ diode laser at 5 W power and group 3: NaF varnish+ diode laser at 7 W power. Then, the final microhardness number of each surface was again determined. The data were statistically analyzed by repeated measures ANOVA at 0.05 level of significance.In all 3 groups, microhardness number increased significantly after surface treatment (P0.05.The combined application of diode laser and topical fluoride varnish on enamel surface did not show any significant additional effect on enamel resistance to caries.

  12. High-power, high-efficiency, high-brightness long-wavelength laser diodes

    Science.gov (United States)

    Patterson, Steve; Crump, Paul; Wang, Jun; Dong, Weimin; Grimshaw, Mike; Zhang, Shiguo; Elim, Sandrio; Das, Suhit; Bougher, Mike; Patterson, Jason; Kuang, Guokui; Bell, Jake; Farmer, Jason; DeVito, Mark

    2006-05-01

    Interest is rapidly growing in solid-state lasers emitting from 1500-nm to 2100-nm with applications in eye-safe range finding, LIDAR, infrared countermeasures, medicine, dentistry, and others. Traditionally, these solid-state lasers have been pumped by flash lamps or more recently, by semiconductor diode lasers. In the case of the latter, the diodes of choice have been those emitting below 1-μm. The sub-micron class of semiconductor diode lasers is highly mature and has enjoyed recent rapid advances in power and efficiency. Unfortunately, the quantum defect generated when converting to the desired wavelengths results in large amounts of excess heat generation leading to costly and heavy, expensive cooling systems and performance problems related to thermal lensing. System complexity adds further cost and weight when intermediaries, such as optical parametric oscillators, are required to reach the desired longer wavelengths. Recent advances in laser diodes emitting from 1400-nm to over 1900-nm now enable the near resonant pumping of such solid state media as Er:YAG, Ho:YAG and Cr:ZnSe. Record results in the peak output power and electrical-to-optical conversion efficiency of diode lasers emitting around 1470-nm, 1700-nm and 1900-nm are presented here.

  13. Achieving Room Temperature Orange Lasing Using InGaP/InAlGaP Diode Laser

    KAUST Repository

    Al-Jabr, Ahmad

    2015-09-28

    We demonstrated the first orange laser diode at room temperature with a decent total output power of ∼46mW and lasing wavelength of 608nm, using a novel strain-induced quantum well intermixing in InGaP/InAlGaP red laser structure.

  14. Narrow line width operation of a 980 nm gain guided tapered diode laser bar

    DEFF Research Database (Denmark)

    Vijayakumar, Deepak; Jensen, Ole Bjarlin; Barrientos-Barria, Jessica

    2011-01-01

    We demonstrate two different schemes for the spectral narrowing of a 12 emitter 980 nm gain guided tapered diode laser bar. In the first scheme, a reflective grating has been used in a Littman Metcalf configuration and the wavelength of the laser emission could be narrowed down from more than 5.5...

  15. All-electronic suppression of mode hopping noise in diode lasers

    DEFF Research Database (Denmark)

    Bager, L.

    1990-01-01

    A simple all-electronic stabilization scheme is presented for suppression of external-cavity mode-hopping noise in diode lasers. This excess noise is generated when the laser is subjected to optical feedback and may degrade the overall performance of optical systems including sensors. Suppression...

  16. Optically pumped tunable HBr laser in the mid-infrared region.

    Science.gov (United States)

    Koen, Wayne; Jacobs, Cobus; Bollig, Christoph; Strauss, Hencharl J; Esser, M J Daniel; Botha, Lourens R

    2014-06-15

    An optically pumped tunable HBr laser has been demonstrated for the first time. The pump source was a single-frequency Ho:YLF laser and amplifier system, which was locked to the 2064 nm absorption line of HBr. Laser oscillation was demonstrated on 19 molecular transition lines, which included both the R-branch (3870-4015 nm) and the P-branch (4070-4453 nm), by the use of an intra-cavity diffraction grating. The highest output energy was 2.4 mJ at 4133 nm.

  17. Realization and characterization of a stabilized power supply for a laser diode

    International Nuclear Information System (INIS)

    Houji, Imen

    2010-01-01

    This final project study is entitled realization and characterization of a stabilized power supply for a diode laser. It was developed at the National Center for Nuclear Sciences and Technology at Sidi Thabet. In a first step, we are interested on the physics of lasers and its applications in different fields. We have also focused on the electronic manufacturing of diode lasers. In a second part, we have presented in detail the current stabilized power supply and the detailed description of the various blocks of this electronic schema. Before the experimental realization, we simulated the electronic schema using the commercial software P roteus 7 . Finally we presented the practical realization of various cards.

  18. Bistable optical devices with laser diodes coupled to absorbers of narrow spectral bandwidth.

    Science.gov (United States)

    Maeda, Y

    1994-06-20

    An optical signal inverter was demonstrated with a combination of the following two effects: One is the decrease of the transmission of an Er-doped YAG crystal with increasing red shift of a laser diode resulting from an increase in the injection current, and the other is a negative nonlinear absorption in which the transmission decreases inversely with increasing laser intensity. Because a hysteresis characteristic exists in the relationship between the wavelength and the injection current of the laser diode, an optical bistability was observed in this system.

  19. Communication with diode laser: short distance line of sight communication using fiber optics

    International Nuclear Information System (INIS)

    Mirza, A.H.

    1999-01-01

    The objective of this project is to carry audio signal from transmitting station to a short distance receiving station along line of sight and also communication through fiber optics is performed, using diode laser light as carrier. In this project optical communication system, modulation techniques, basics of laser and causes of using diode laser are discussed briefly. Transmitter circuit and receiver circuit are fully described. Communication was performed using pulse width modulation technique. Optical fiber communication have many advantages over other type of conventional communication techniques. This report contains the description of optical fiber communication and compared with other communication systems. (author)

  20. Realisation and characterization of a temperature controller for a laser diode

    International Nuclear Information System (INIS)

    Meknessi, Asma; Hafdhi, Hajer

    2010-01-01

    Our final project study focuses on the characterization and realisation of a temperature conroller for a laser diode using the proportional integral derivative (PID) servo technique. In this order, w developed and carried out two electronic cards. The first is dedicated to the PID servo. Th electronics of this card allows measurement of temperature, comparison with a user fixed temperature, the measurement of the error and finally the correction of temperature by heating or cooling the laser diode using a Peltier element. The second board is designed in order to supply the Peltier element by about 6V/3A. the first part of our work is a bibliographical research on lasers, laser diodes and their applications in the biomedical field.

  1. Electrically tunable Brillouin fiber laser based on a metal-coated single-mode optical fiber

    Directory of Open Access Journals (Sweden)

    S.M. Popov

    Full Text Available We explore tunability of the Brillouin fiber laser employing Joule heating. For this purpose, 10-m-length of a metal-coated single-mode optical cavity fiber has been directly included into an electrical circuit, like a conductor wire. With the current up to ∼3.5 A the laser tuning is demonstrated over a spectrum range of ∼400 MHz. The observed laser line broadening up to ∼2 MHz is explained by frequency drift and mode-hoping in the laser caused by thermal noise. Keywords: Brillouin fiber laser, Metal-coated optical fiber, Laser tuning, Fiber sensors

  2. Continuously tunable pulsed Ti:Sa laser self-seeded by an extended grating cavity

    CERN Document Server

    Li, Ruohong; Rothe, Sebastian; Teigelhöfer, Andrea; Mostamand, Maryam

    2016-01-01

    A continuously tunable titanium:sapphire (Ti:Sa) laser self-seeded by an extended grating cavity was demonstrated and characterized. By inserting a partially reflecting mirror inside the cavity of a classic single-cavity grating laser, two oscillators are created: a broadband power oscillator, and a narrowband oscillator with a prism beam expander and a diffraction grating in Littrow configuration. By coupling the grating cavity oscillation into the power oscillator, a power-enhanced narrow-linewidth laser oscillation is achieved. Compared to the classic grating laser, this simple modification significantly increases the laser output power without considerably broadening the linewidth. With most of the oscillating laser power confined inside the broadband power cavity and lower power incident onto the grating, the new configuration also allows higher pump power, which is typically limited by the thermal deformation of the grating coating at high oscillation power.

  3. The development of a tunable, single-frequency ultraviolet laser source for UV filtered Rayleigh scattering

    Science.gov (United States)

    Finkelstein, N.; Gambogi, J.; Lempert, Walter R.; Miles, Richard B.; Rines, G. A.; Finch, A.; Schwarz, R. A.

    1995-01-01

    We present the development of a flexible, high power, narrow line width, tunable ultraviolet source for diagnostic application. By frequency tripling the output of a pulsed titanium-sapphire laser, we achieve broadly tunable (227-360 nm) ultraviolet light with high quality spatial and spectral resolution. We also present the characterization of a mercury vapor cell which provides a narrow band, sharp edge absorption filter at 253.7 nm. These two components form the basis for the extension of the Filtered Rayleigh Scattering technique into the ultraviolet. The UV-FRS system is comprised of four pieces: a single frequency, cw tunable Ti:Sapphire seeding source; a high-powered pulsed Ti:Sapphire oscillator; a third harmonic generator system; and an atomic mercury vapor filter. In this paper we discuss the development and characterization of each of these elements.

  4. Comparative Study of Diode Laser Versus Neodymium-Yttrium Aluminum: Garnet Laser Versus Intense Pulsed Light for the Treatment of Hirsutism.

    Science.gov (United States)

    Puri, Neerja

    2015-01-01

    Lasers are widely used for the treatment of hirsutism. But the choice of the right laser for the right skin type is very important. Before starting with laser therapy, it is important to assess the skin type, the fluence, the pulse duration and the type of laser to be used. To compare the efficacy and side effects of Diode laser, Neodymium-yttrium aluminum - garnet (Nd: YAG) laser and intense pulsed light (IPL) on 30 female patients of hirsutism. Thirty female patients with hirsutism were selected for a randomised controlled study. The patients were divided into three groups of 10 patients each. In group I patients diode laser was used, in group II patients long pulsed Nd: YAG laser was used and in group III, IPL was used. The patients were evaluated and result graded according to a 4-point scale as excellent, >75% reduction; good, 50-75% reduction; fair; 25-50% reduction; and poor, diode laser group, followed by 35% hair reduction in the Nd: Yag laser group and 10% hair reduction in the IPL group. The percentage of hair reduction after four sessions of treatment was maximum (64%) in the diode laser group, followed by 62% hair reduction in the Nd: Yag laser group and 48% hair reduction in the IPL group. The percentage of hair reduction after eight sessions of treatment was maximum (92%) in the diode laser group, followed by 90% hair reduction in the Nd: YAG group and 70% hair reduction in the IPL group. To conclude for the Indian skin with dark hairs, the diode laser still stands the test of time. But, since the diode laser has a narrow margin of safety, proper pre and post-procedure cooling is recommended. Although, the side effects of Nd: YAG laser are less as compared to the diode laser, it is less efficacious as compared to the diode laser.

  5. Tunable Single Frequency 2.054 Micron Fiber Laser Using New Ho-Doped Fiber, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal, we propose to demonstrate and build a near 2 micron widely tunable, narrow linewidth, single frequency fiber laser by developing an innovative...

  6. Tunable Single Frequency 2.05 Micron Fiber Laser Using New Ho-Doped Fiber, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal, we propose to demonstrate and build a widely tunable, narrow linewidth, single frequency fiber laser near 2.05 micron by developing an innovative...

  7. Single-frequency diode-pumped Nd:YAG prism laser with use of a composite laser crystal

    DEFF Research Database (Denmark)

    Pedersen, Christian; Hansen, P. L.; Buchhave, Preben

    1997-01-01

    A compact, stable, diode-pumped Nd:YAG laser suitable for high-power single-frequency operation is investigated theoretically as well as experimentally. Residual spatial hole burning has been eliminated with a unidirectional ring-laser design with a specially designed intracavity prism and a comp...... and a composite YAG laser crystal. A detailed Jones matrix analysis is performed, leading to design criteria for high loss difference and high-frequency stability....

  8. A 1,470 nm diode laser in stapedotomy: Mechanical, thermal, and acoustic effects.

    Science.gov (United States)

    Koenraads, Simone P C; de Boorder, Tjeerd; Grolman, Wilko; Kamalski, Digna M A

    2017-08-01

    Multiple laser systems have been investigated for their use in stapes surgery in patients with otosclerosis. The diode 1,470 nm laser used in this study is an attractive laser system because it is easily transported and relatively inexpensive in use. This wavelength has relative high absorption in water. This study aimed to investigate the mechanical, thermal, and acoustic effects of the diode 1,470 nm laser on a stapes in an inner ear model. Experiments were performed in an inner ear model including fresh frozen human stapes. High-speed imaging with frame rates up to 2,000 frames per second (f/s) was used to visualize the effects in the vestibule during fenestration of the footplate. A special high-speed color Schlieren technique was used to study thermal effects. The sound produced by perforation was recorded by a hydrophone. Single pulse settings of the diode 1,470 nm laser were 100 ms, 3 W. Diode 1,470 nm laser fenestration showed mechanical effects with small vapor bubbles and pressure waves pushed into the vestibule. Thermal imaging visualized an increase temperature underneath the stapes footplate. Acoustic effects were limited, but larger sounds levels were reached when vaporization bubbles arise and explode in the vestibule. The diode 1,470 nm laser highly absorbs in perilymph and is capable of forming a clear fenestration in the stapes. An overlapping laser pulse will increase the risk of vapor bubbles, pressure waves, and heating the vestibule. As long as we do not know the possible damage of these effects to the inner ear function, it seems advisable to use the laser with less potential harm. Lasers Surg. Med. 49:619-624, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. A 10Gbps optical burst switching network incorporating ultra-fast (5ns) wavelength switched tunable laser sources

    Science.gov (United States)

    Ryan, Neil; Todd, Michael; Farrell, Tom; Lavin, Adrian; Rigole, Pierre-Jean; Corbett, Brian; Roycroft, Brendan; Engelstaedter, Jan-Peter

    2017-11-01

    This paper outlines the development of a prototype optical burst mode switching network based upon a star topology, the ultimate application of which could be as a transparent payload processor onboard satellite repeaters. The network architecture incorporates multiple tunable laser sources, burst mode receivers and a passive optical router (Arrayed Waveguide Grating). Each tunable optical signal should carry >=10Gbps and be capable of wavelength switching in c. 5ns timescales. Two monolithic tunable laser types, based upon different technologies, will be utilised: a Slotted Fabry Perot laser (a Fabry Perot laser with slots added in order to introduce controlled cavity perturbations); and a Modulated Grating Y-Branch Laser (MGY: a widely tunable, multi-section device similar to the DBR laser). While the Slotted Fabry Perot laser is expected to achieve the required switching times, it is an immature technology not yet capable of achieving tunability over 80 ITU channels from a single chip. The MGY device is a more mature technology and has full C-band ITU channel coverage, but is not capable of the required short switching times. Hence, in order to facilitate the integration of this more mature technology into the prototype breadboard with the requisite switching time capabilities, a system of `dual laser' transmitters is being developed to enable data transmission from one MGY laser while the other switches and vice-versa. This work is being performed under ESA contract AO 1-5025/06/NL/PM, Optical Technologies for Ultra - fast Processing.

  10. Research on a high-precision calibration method for tunable lasers

    Science.gov (United States)

    Xiang, Na; Li, Zhengying; Gui, Xin; Wang, Fan; Hou, Yarong; Wang, Honghai

    2018-03-01

    Tunable lasers are widely used in the field of optical fiber sensing, but nonlinear tuning exists even for zero external disturbance and limits the accuracy of the demodulation. In this paper, a high-precision calibration method for tunable lasers is proposed. A comb filter is introduced and the real-time output wavelength and scanning rate of the laser are calibrated by linear fitting several time-frequency reference points obtained from it, while the beat signal generated by the auxiliary interferometer is interpolated and frequency multiplied to find more accurate zero crossing points, with these points being used as wavelength counters to resample the comb signal to correct the nonlinear effect, which ensures that the time-frequency reference points of the comb filter are linear. A stability experiment and a strain sensing experiment verify the calibration precision of this method. The experimental result shows that the stability and wavelength resolution of the FBG demodulation can reach 0.088 pm and 0.030 pm, respectively, using a tunable laser calibrated by the proposed method. We have also compared the demodulation accuracy in the presence or absence of the comb filter, with the result showing that the introduction of the comb filter results to a 15-fold wavelength resolution enhancement.

  11. Current status of the laser diode array projector technology

    Science.gov (United States)

    Beasley, D. Brett; Saylor, Daniel A.

    1998-07-01

    This paper describes recent developments and the current status of the Laser Diode Array Projector (LDAP) Technology. The LDAP is a state-of-the-art dynamic infrared scene projector system capable of generating high resolution in-band infrared imagery at high frame rates. Three LDAPs are now operational at the U.S. Army Aviation and Missile Command's (AMCOM) Missile Research, Development, and Engineering Center (MRDEC). These projectors have been used to support multiple Hardware-in-the-Loop test entries of various seeker configurations. Seeker configurations tested include an InSb 256 X $256 focal-plane array (FPA), an InSb 512 X 512 FPA, a PtSi 640 X 480 FPA, a PtSi 256 X 256 FPA, an uncooled 320 X 240 microbolometer FPA, and two dual field- of-view (FOV) seekers. Several improvements in the projector technology have been made since we last reported in 1997. The format size has been increased to 544 X 544, and 672 X 512, and it has been proven that the LDAP can be synchronized without a signal from the unit-under test (UUT). The control software has been enhanced to provide 'point and click' control for setup, calibration, image display, image capture, and data analysis. In addition, the first long-wave infrared (LWIR) LDAP is now operational, as well as a dual field of view LDAP which can change its FOV within 0.25 seconds. The projector is interfaced to a Silicon Graphics scene generation computer which is capable of real-time 3-D scene generation. Sample images generated with the projector and captured by an InSb FPA sensor are included in the text.

  12. Controlling the emission wavelength in group III-V semiconductor laser diodes

    KAUST Repository

    Ooi, Boon S.

    2016-12-29

    Methods are provided for modifying the emission wavelength of a semiconductor quantum well laser diode, e.g. by blue shifting the emission wavelength. The methods can be applied to a variety of semiconductor quantum well laser diodes, e.g. group III-V semiconductor quantum wells. The group III-V semiconductor can include AlSb, AlAs, Aln, AlP, BN, GaSb, GaAs, GaN, GaP, InSb, InAs, InN, and InP, and group III-V ternary semiconductors alloys such as AlxGai.xAs. The methods can results in a blue shifting of about 20 meV to 350 meV, which can be used for example to make group III-V semiconductor quantum well laser diodes with an emission that is orange or yellow. Methods of making semiconductor quantum well laser diodes and semiconductor quantum well laser diodes made therefrom are also provided.

  13. Stabilized diode seed laser for flight and space-based remote lidar sensing applications

    Science.gov (United States)

    McNeil, Shirley; Pandit, Pushkar; Battle, Philip; Rudd, Joe; Hovis, Floyd

    2017-08-01

    AdvR, through support of the NASA SBIR program, has developed fiber-based components and sub-systems that are routinely used on NASA's airborne missions, and is now developing an environmentally hardened, diode-based, locked wavelength, seed laser for future space-based high spectral resolution lidar applications. The seed laser source utilizes a fiber-coupled diode laser, a fiber-coupled, calibrated iodine reference module to provide an absolute wavelength reference, and an integrated, dual-element, nonlinear optical waveguide component for second harmonic generation, spectral formatting and wavelength locking. The diode laser operates over a range close to 1064.5 nm, provides for stabilization of the seed to the desired iodine transition and allows for a highly-efficient, fully-integrated seed source that is well-suited for use in airborne and space-based environments. A summary of component level environmental testing and spectral purity measurements with a seeded Nd:YAG laser will be presented. A direct-diode, wavelength-locked seed laser will reduce the overall size weight and power (SWaP) requirements of the laser transmitter, thus directly addressing the need for developing compact, efficient, lidar component technologies for use in airborne and space-based environments.

  14. Tunable Schottky diodes fabricated from electrospun crossed SnO2/PEDOT-PSSA nanoribbons

    Science.gov (United States)

    Carrasquillo, Katherine; Pinto, Nicholas

    2011-03-01

    Hardware in most solid state devices contains at least one interface between a p -type and an n -type semiconductor. Such hetero-junctions are typically fabricated from all inorganic Si based materials. In the past two decades however, devices fabricated from organic-inorganic semiconductors that are not Si based, or from all organic semiconductors have been the focus of much research. Semiconducting n -doped metal oxides are also attractive for use in devices and of particular interest is tin oxide (Sn O2) as it is stable in air and is optically transparent with a band gap of ~ 3.4 eV. The p -doped conducting polymer PEDOT-PSSA is also stable in air and is widely used in flexible devices. We shall report on the electrospinning technique to fabricate in air Schottky diodes, by simply crossing n -doped Sn O2 and p -doped PEDOT-PSSA nanoribbons. The device parameters could be tuned by a back gate bias and by shining UV light. The diode parameters were calculated using the standard thermionic emission model of a Schottky and was tested as a half wave rectifier. NSF-RUI and NSF-PREM.

  15. Latest developments in AlGaInN laser diode technology for defence applications

    Science.gov (United States)

    Najda, S. P.; Perlin, P.; Suski, T.; Marona, L.; Boćkowski, M.; Leszczyński, M.; Wisniewski, P.; Czernecki, R.; Kucharski, R.; Targowski, G.

    2012-09-01

    The latest developments in AlGaInN laser diode technology is reviewed for defence applications such as underwater telecommunications, sensor systems etc. The AlGaInN material system allows for laser diodes to be fabricated over a very wide range of wavelengths from u.v., i.e, 380nm, to the visible, i.e., 530nm, by tuning the indium content of the laser GaInN quantum well. Advantages of using Plasma assisted MBE (PAMBE) compared to more conventional MOCVD epitaxy to grow AlGaInN laser structures are highlighted. Ridge waveguide laser diode structures are fabricated to achieve single mode operation with optical powers of <100mW in the 400-420nm wavelength range with high reliability. High power operation of AlGaInN laser diodes is also reviewed. We demonstrate the operation of a single chip, high power AlGaInN laser diode 'mini-array' consisting of a 3 stripe common p-contact configuration at powers up to 2.5W cw in the 408-412 nm wavelength range. Low defectivity and highly uniform TopGaN GaN substrates allow arrays and bars of nitride lasers to be fabricated. Packaging of nitride laser diodes is substantially different compared to GaAs laser technology and new processes and techniques are required to optimize the optical power from a nitride laser bar. Laser bars of up to 5mm with 20 emitters have shown optical powers up to 4W cw at ~410nm with a common contact configuration. An alternative package configuration for AlGaInN laser arrays allows for each individual laser to be individually addressable allowing complex free-space and/or fibre optic system integration within a very small form-factor. TopGaN are developing a new range of high power laser array technology over the u.v.- visible spectrum together with new packaging solutions for optical integration.

  16. Study on color-tunable phosphor-coated white light-emitting diodes with high S/P ratios

    Science.gov (United States)

    Guo, Ziquan; Shih, Tienmo; Xiao, Jingjing; Lu, Hongli; Lu, Yijun; Wu, Tingzhu; Lin, Yue; Gao, Yulin; Xiao, Hua; Chen, Zhong

    2016-03-01

    In this study, we have investigated the trade-off between the color rendering index (CRI, Ra) and the scotopic/photopic ratio (S/P) for color-tunable phosphor-coated white light-emitting diodes (LEDs) at two CRI limitations (Ra ≥ 70 and Ra ≥ 96). First, luminescent spectra measurements have been conducted to determine experimental results of Ra and S/P under various correlated color temperatures (CCTs). Then, a nonlinear programming method has been adopted for the optimization of Ra and S/P by varying spectral shapes through adjusting spectral parameters, such as peak wavelengths, full-width at half-maxima, and relative intensities. Therefore, polynomial curves of optimal S/P versus CCT at two Ra limitations have been discovered, enabling users to obtain optimal S/P under arbitrary CCTs within [2700 K, 6500 K]. In addition, a comparison study between the present work and our previous work has also been conducted at Ra = 70, and a fair agreement of optimal S/P has been observed.

  17. Polarity-Tunable Host Materials and Their Applications in Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes.

    Science.gov (United States)

    Xie, Gaozhan; Chen, Dongjun; Li, Xianglong; Cai, Xinyi; Li, Yunchuan; Chen, Dongcheng; Liu, Kunkun; Zhang, Qian; Cao, Yong; Su, Shi-Jian

    2016-10-04

    A series of polarity-tunable host materials were developed based on oligocarbazoles and diphenylphosphine oxide, and their polarities can be tuned through increasing distance of acceptor and donor units. Density functional theory calculations were employed, and photoluminescence spectra in different polar solvents were measured to illustrate different polarities of these host materials. As CZPO has relatively stronger polarity, electroluminescence (EL) spectrum of solution-processed device based on 6 wt % PXZDSO2:CZPO is 7 nm red-shifted relative to that of other host materials based devices. Besides, a comparable impressive external quantum efficiency (EQE) value of 18.7% is achieved for an evaporation-processed yellow device consisting of FCZBn, which is superior to that of the device based on CBP (4,4'-dicarbazolyl-1,1'-biphenyl) (17.0%), and its efficiency roll-off is also obviously reduced, giving an EQE value as high as 16.3% at the luminance of 1000 cd/m 2 . In addition, from CZPO to FCZBn as the polarities of host materials decrease, EL spectra of solution-processed devices based on DMAC-DPS emitter blue-shift constantly from 496 to 470 nm. The current work gives a constructive approach to control EL spectra of organic light-emitting diodes with a fixed thermally activated delayed fluorescence emitter by tuning the polarities of host materials.

  18. Self-tuning method for monitoring the density of a gas vapor component using a tunable laser

    Science.gov (United States)

    Hagans, K.; Berzins, L.; Galkowski, J.; Seng, R.

    1996-08-27

    The present invention relates to a vapor density monitor and laser atomic absorption spectroscopy method for highly accurate, continuous monitoring of vapor densities, composition, flow velocity, internal and kinetic temperatures and constituent distributions. The vapor density monitor employs a diode laser, preferably of an external cavity design. By using a diode laser, the vapor density monitor is significantly less expensive and more reliable than prior art vapor density monitoring devices. In addition, the compact size of diode lasers enables the vapor density monitor to be portable. According to the method of the present invention, the density of a component of a gas vapor is calculated by tuning the diode laser to a frequency at which the amount of light absorbed by the component is at a minimum or a maximum within about 50 MHz of that frequency. Laser light from the diode laser is then transmitted at the determined frequency across a predetermined pathlength of the gas vapor. By comparing the amount of light transmitted by the diode laser to the amount of light transmitted after the laser light passes through the gas vapor, the density of the component can be determined using Beer`s law. 6 figs.

  19. 500 nm Continuous Wave Tunable SingleFrequency MidIR Light Source for C–H Spectroscopy

    DEFF Research Database (Denmark)

    Høgstedt, Lasse; Jensen, Ole Bjarlin; Dam, Jeppe Seidelin

    2012-01-01

    A computer controlled tunable mid-IR light source, based on single resonant difference frequency generation (DFG), is experimentally investigated. The DFG process is pumped by an external cavity tapered diode laser, tunable over a spectral range of 30 nm. Grating feedback to the single mode channel...

  20. Diode pumped solid state kilohertz disk laser system for time-resolved combustion diagnostics under microgravity at the drop tower Bremen

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Volker; Paa, Wolfgang; Triebel, Wolfgang [Institute of Photonic Technology, Laser Diagnostics, Albert-Einstein-Str. 9, 07745 Jena (Germany); Eigenbrod, Christian; Klinkov, Konstantin [Center of Applied Space Technology and Microgravity, University Bremen, Am Fallturm, 28359 Bremen (Germany); Larionov, Mikhail; Giesen, Adolf; Stolzenburg, Christian [Institut für Strahlwerkzeuge (IFSW), Pfaffenwaldring 43, 70569 Stuttgart (Germany)

    2014-03-15

    We describe a specially designed diode pumped solid state laser system based on the disk laser architecture for combustion diagnostics under microgravity (μg) conditions at the drop tower in Bremen. The two-stage oscillator-amplifier-system provides an excellent beam profile (TEM{sub 00}) at narrowband operation (Δλ < 1 pm) and is tunable from 1018 nm to 1052 nm. The laser repetition rate of up to 4 kHz at pulse durations of 10 ns enables the tracking of processes on a millisecond time scale. Depending on the specific issue it is possible to convert the output radiation up to the fourth harmonic around 257 nm. The very compact laser system is integrated in a slightly modified drop capsule and withstands decelerations of up to 50 g (>11 ms). At first the concept of the two-stage disk laser is briefly explained, followed by a detailed description of the disk laser adaption to the drop tower requirements with special focus on the intended use under μg conditions. In order to demonstrate the capabilities of the capsule laser as a tool for μg combustion diagnostics, we finally present an investigation of the precursor-reactions before the droplet ignition using 2D imaging of the Laser Induced Fluorescence of formaldehyde.

  1. Polarization-free Cubic Phase GaN Ultraviolet Laser Diodes for Space-based Light Interferometry

    Data.gov (United States)

    National Aeronautics and Space Administration — Laser diodes have many advantages over other forms of lasers: extremely compact (<1cm in length), inexpensive and simple designs that can achieve high power, high...

  2. Widely tunable multiwavelength Brillouin-erbium fiber laser with triple Brillouin-shift wavelength spacing

    Science.gov (United States)

    Al-Mansoori, M. H.; Al-Sheriyani, A.; Younis, M. A. A.; Mahdi, M. A.

    2018-03-01

    In this paper, we demonstrate a widely tunable multiwavelength Brillouin-erbium fiber laser (MBEFL) having a wavelength spacing of 0.25 nm (triple Brillouin-shift wavelength spacing). The proposed laser structure overcomes the need for Brillouin pump wavelength to be closed to the self-lasing cavity modes region. The laser exhibits a wide tuning range of 40 nm (from 1530 nm to 1570 nm) at Brillouin pump and 980 nm pump powers of 25 mW and 350 mW, respectively. Four stable output channels are produced within this wavelength range with all the channels having a peak output power greater than 1.58 mW. The laser has the potential to be used as a multiwavelength laser source for dense wavelength division multiplexing communication.

  3. Widely tunable all-fiber SESAM mode-locked Ytterbium laser with a linear cavity

    Science.gov (United States)

    Zou, Feng; Wang, Zhaokun; Wang, Ziwei; Bai, Yang; Li, Qiurui; Zhou, Jun

    2017-07-01

    We present a widely tunable all-fiber mode-locked laser based on semiconductor saturable absorber mirror (SESAM) with a linear cavity design. An easy-to-use tunable bandpass filter based on thin film cavity technology is employed to tune the wavelength. By tuning the filter and adjusting the polarization controller, mode-locked operation can be achieved over the range of 1023 nm-1060 nm. With the polarization controller settled, mode-locked operation can be preserved and the wavelength can be continuously tuned from 1030 nm to 1053 nm. At 1030 nm, the laser delivers 9.6 mw average output power with 15.4 ps 10.96 MHz pulses at fundamental mode-locked operation.

  4. Athermal operation of multi-section slotted tunable lasers.

    Science.gov (United States)

    Wallace, M J; O'Reilly Meehan, R; Enright, R; Bello, F; McCloskey, D; Barabadi, B; Wang, E N; Donegan, J F

    2017-06-26

    Two distinct athermal bias current procedures based on thermal tuning are demonstrated for a low-cost, monotlithic, three section slotted single mode laser, achieving mode-hop free wavelength stability of ± 0.04 nm / 5 GHz over a temperature range of 8-47 °C. This is the first time that athermal performance has been demonstrated for a three-section slotted laser with simple fabrication, and is well within the 50 GHz grid spacing specified for DWDM systems. This performance is similar to experiments on more complex DS-DBR lasers, indicating that strong athermal performance can be achieved using our lower-cost three section devices. An analytical model and thermoreflectance measurements provide further insight into the operation of multi-section lasers and lay the foundation for an accurate predictive tool for optimising such devices for athermal operation.

  5. Tunable, Narrow Line Width Mid-Infrared Laser Source Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to advance the technology of interband cascade (IC) lasers and their facet coatings and to design, build, and deliver to NASA a...

  6. Fault-Protected Laser Diode Drivers for Improving the Performance and Lifetime of Multiple-Millisecond, Long-Pulse LDAs for NASA LIDAR Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project will develop and deliver to NASA revolutionary laser diode driver technology with intelligent fault protection for driving high power laser diode...

  7. Note: Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations.

    Science.gov (United States)

    Miao, Xinyu; Yin, Longfei; Zhuang, Wei; Luo, Bin; Dang, Anhong; Chen, Jingbiao; Guo, Hong

    2011-08-01

    We demonstrate an external-cavity laser system using an anti-reflection coated laser diode as gain medium with about 60 nm fluorescence spectrum, and a Rb Faraday anomalous dispersion optical filter (FADOF) as frequency-selecting element with a transmission bandwidth of 1.3 GHz. With 6.4% optical feedback, a single stable longitudinal mode is obtained with a linewidth of 69 kHz. The wavelength of this laser is operating within the center of the highest transmission peak of FADOF over a diode current range from 55 mA to 142 mA and a diode temperature range from 15 °C to 35 °C, thus it is immune to the fluctuations of current and temperature.

  8. Mathematical optimization of photovoltaic converters for diode lasers. [for spacecraft power supplies

    Science.gov (United States)

    Walker, Gilbert H.; Heinbockel, John H.

    1989-01-01

    The mathematical optimization of vertical-junction photovoltaic converters for use with diode laser arrays supplying powers up to 1 MW is discussed. Photovoltaic parameters were optimized using a mathematical model. The optimized converters have 500 single junctions connected in series. The efficiency varies from 41 percent for a 0.73-micron diode laser to 46 percent for a 0.83-micron diode laser. The optimum width of the single-junction converter is small, 3.0 microns, in order for the p-n junction to be within a diffusion length of the light-generated carriers. Another critical parameter is the series resistance; the optimum value of 0.001 ohms should be achievable. Another critical parameter is the donor carrier concentration, for which an optimum value of 5 x 10 to the 15th carriers/cu cm has been chosen.

  9. Fast random-number generation using a diode laser's frequency noise characteristic

    Science.gov (United States)

    Takamori, Hiroki; Doi, Kohei; Maehara, Shinya; Kawakami, Kohei; Sato, Takashi; Ohkawa, Masashi; Ohdaira, Yasuo

    2012-02-01

    Random numbers can be classified as either pseudo- or physical-random, in character. Pseudo-random numbers are generated by definite periodicity, so, their usefulness in cryptographic applications is somewhat limited. On the other hand, naturally-generated physical-random numbers have no calculable periodicity, thereby making them ideal for the task. Diode lasers' considerable wideband noise gives them tremendous capacity for generating physical-random numbers, at a high rate of speed. We measured a diode laser's output with a fast photo detector, and evaluated the binary-numbers from the diode laser's frequency noise characteristics. We then identified and evaluated the binary-number-line's statistical properties. We also investigate the possibility that much faster physical-random number parallel-generation is possible, using separate outputs of different optical-path length and character, which we refer to as "coherence collapse".

  10. Super fast physical-random number generation using laser diode frequency noises

    Science.gov (United States)

    Ushiki, Tetsuro; Doi, Kohei; Maehara, Shinya; Sato, Takashi; Ohkawa, Masashi; Ohdaira, Yasuo

    2011-02-01

    Random numbers can be classified as either pseudo- or physical-random in character. Pseudo-random numbers' periodicity renders them inappropriate for use in cryptographic applications, but naturally-generated physical-random numbers have no calculable periodicity, thereby making them ideally-suited to the task. The laser diode naturally produces a wideband "noise" signal that is believed to have tremendous capacity and great promise, for the rapid generation of physical-random numbers for use in cryptographic applications. We measured a laser diode's output, at a fast photo detector and generated physical-random numbers from frequency noises. We then identified and evaluated the binary-number-line's statistical properties. The result shows that physical-random number generation, at speeds as high as 40Gbps, is obtainable, using the laser diode's frequency noise characteristic.

  11. Modular microchannel cooled heatsinks for high average power laser diode arrays

    Science.gov (United States)

    Beach, Ray; Benett, William J.; Freitas, Barry L.; Mundinger, D.; Comaskey, Brian J.; Solarz, Richard W.; Emanuel, Mark A.

    1992-04-01

    Detailed performance results for an efficient and low thermal impedance laser diode array heatsink are presented. High duty factor or CW operation of fully filled laser diode arrays is made possible at high average power. Low thermal impedance is achieved using a liquid coolant and laminar flow through microchannels. The microchannels are fabricated in silicon using an anisotropic chemical etching process. A modular rack-and-stack architecture is adopted for the heatsink design, allowing arbitrarily large two-dimensional arrays to be fabricated and easily maintained. The excellent thermal control of the microchannel cooled heatsinks is ideally suited to pump array requirements for high average power crystalline lasers because of the stringent temperature demands that result from coupling the diode light to several nanometers wide absorption features characteristics of lasing ions in crystals.

  12. Microchannel-cooled heatsinks for high-average-power laser diode arrays

    Science.gov (United States)

    Benett, William J.; Freitas, Barry L.; Ciarlo, Dino R.; Beach, Raymond J.; Sutton, Steven B.; Emanuel, Mark A.; Solarz, Richard W.

    1993-11-01

    Detailed performance results for an efficient and low thermal impedance laser diode array heatsink are presented. High duty factor and even cw operation of fully filled laser diode arrays at high stacking densities are enabled at high average power. Low thermal impedance is achieved using a liquid coolant and laminar flow through microchannels. The microchannels are fabricated in silicon using an anisotropic chemical etching process. A modular rack-and- stack architecture is adopted for heatsink design, allowing arbitrarily large 2-D arrays to be fabricated and easily maintained. The excellent thermal control of the microchannel heatsinks is ideally suited to pump array requirements for high average power crystalline lasers because of the stringent temperature demands that are required to efficiently couple diode light to several-nanometer-wide absorption features characteristic of lasing ions in crystals.

  13. 760nm: a new laser diode wavelength for hair removal modules

    Science.gov (United States)

    Wölz, Martin; Zorn, Martin; Pietrzak, Agnieszka; Kindsvater, Alex; Meusel, Jens; Hülsewede, Ralf; Sebastian, Jürgen

    2015-02-01

    A new high-power semiconductor laser diode module, emitting at 760 nm is introduced. This wavelength permits optimum treatment results for fair skin individuals, as demonstrated by the use of Alexandrite lasers in dermatology. Hair removal applications benefit from the industry-standard diode laser design utilizing highly efficient, portable and light-weight construction. We show the performance of a tap-water-cooled encapsulated laser diode stack with a window for use in dermatological hand-pieces. The stack design takes into account the pulse lengths required for selectivity in heating the hair follicle vs. the skin. Super-long pulse durations place the hair removal laser between industry-standard CW and QCW applications. The new 760 nm laser diode bars are 30% fill factor devices with 1.5 mm long resonator cavities. At CW operation, these units provide 40 W of optical power at 43 A with wall-plug-efficiency greater than 50%. The maximum output power before COMD is 90 W. Lifetime measurements starting at 40 W show an optical power loss of 20% after about 3000 h. The hair removal modules are available in 1x3, 1x8 and 2x8 bar configurations.

  14. Widely tunable Sampled Grating Distributed Bragg Reflector Quantum Cascade laser for gas spectroscopy applications

    Science.gov (United States)

    Diba, Abdou Salam

    Since the advent of semiconductor lasers, the development of tunable laser sources has been subject of many efforts in industry and academia arenas. This interest towards broadly tunable lasers is mainly due to the great promise they have in many applications ranging from telecommunication, to environmental science and homeland security, just to name a few. After the first demonstration of quantum cascade laser (QCL) in the early nineties, QCL has experienced a rapid development, so much so that QCLs are now the most reliable and efficient laser source in the Mid-IR range covering between 3 microm to 30 microm region of the electromagnetic spectrum. QCLs have almost all the desirable characteristics of a laser for spectroscopy applications such as narrow spectral linewidth ideal for high selectivity measurement, high power enabling high sensitivity sensing and more importantly they emit in the finger-print region of most of the trace gases and large molecules. The need for widely tunable QCLs is now more pressing than ever before. A single mode quantum cascade laser (QCL) such as a distributed feedback (DFB) QCL, is an ideal light source for gas sensing in the MIR wavelength range. Despite their performance and reliability, DFB QCLs are limited by their relatively narrow wavelength tuning range determined by the thermal rollover of the laser. An external cavity (EC) QCL, on the other hand, is a widely tunable laser source, and so far is the choice mid-infrared single frequency light sources for detecting multiple species/large molecules. However, EC QCLs can be complex, bulky and expensive. In the quest for finding alternative broadly wavelength tunable sources in the mid-infrared, many monolithic tunable QCLs are recently proposed and fabricated, including SG-DBR, DFB-Arrays, Slot-hole etc. and they are all of potentially of interest as a candidate for multi-gas sensing and monitoring applications, due to their large tuning range (>50 cm-1), and potentially low

  15. Improved low-power semiconductor diode lasers for photodynamic therapy in veterinary medicine

    Science.gov (United States)

    Lee, Susanne M.; Mueller, Eduard K.; Van de Workeen, Brian C.; Mueller, Otward M.

    2001-05-01

    Cryogenically cooling semiconductor diode lasers provides higher power output, longer device lifetime, and greater monochromaticity. While these effects are well known, such improvements have not been quantified, and thus cryogenically operated semiconductor lasers have not been utilized in photodynamic therapy (PDT). We report quantification of these results from laser power meter and photospectrometer data. The emission wavelengths of these low power multiple quantum well semiconductor lasers were found to decrease and become more monochromatic with decreasing temperature. Significant power output improvements also were obtained at cryogenic temperatures. In addition, the threshold current, i.e. the current at which lasing begins, decreased with decreasing temperature. This lower threshold current combined with the increased power output produced dramatically higher device efficiencies. It is proposed that cryogenic operation of semiconductor diode lasers will reduce the number of devices needed to produce the requisite output for many veterinary and medical applications, permitting significant cost reductions.

  16. Diode laser based resonance ionization mass spectrometry for spectroscopy and trace analysis of uranium isotopes

    International Nuclear Information System (INIS)

    Hakimi, Amin

    2013-01-01

    In this doctoral thesis, the upgrade and optimization of a diode laser system for high-resolution resonance ionization mass spectrometry is described. A frequency-control system, based on a double-interferometric approach, allowing for absolute stabilization down to 1 MHz as well as frequency detunings of several GHz within a second for up to three lasers in parallel was optimized. This laser system was used for spectroscopic studies on uranium isotopes, yielding precise and unambiguous level energies, total angular momenta, hyperfine constants and isotope shifts. Furthermore, an efficient excitation scheme which can be operated with commercial diode lasers was developed. The performance of the complete laser mass spectrometer was optimized and characterized for the ultra-trace analysis of the uranium isotope 236 U, which serves as a neutron flux dosimeter and tracer for radioactive anthropogenic contaminations in the environment. Using synthetic samples, an isotope selectivity of ( 236 U)/( 238 U) = 4.5(1.5) . 10 -9 was demonstrated.

  17. AlGaAs/GaAs laser diode bars (λ = 808 nm) with improved thermal stability

    International Nuclear Information System (INIS)

    Marmalyuk, A A; Ladugin, M A; Andreev, A Yu; Telegin, K Yu; Yarotskaya, I V; Meshkov, A S; Konyaev, V P; Sapozhnikov, S M; Lebedeva, E I; Simakov, V A

    2013-01-01

    Two series of AlGaAs/GaAs laser heterostructures have been grown by metal-organic vapour phase epitaxy, and 808-nm laser diode bars fabricated from the heterostructures have been investigated. The heterostructures differed in waveguide thickness and quantum well depth. It is shown that increasing the barrier height for charge carriers in the active region has an advantageous effect on the output parameters of the laser sources in the case of the heterostructures with a narrow symmetric waveguide: the slope of their power – current characteristics increased from 0.9 to 1.05 W A -1 . Thus, the configuration with a narrow waveguide and deep quantum well is better suited for high-power laser diode bars under hindered heat removal conditions. (lasers)

  18. AlGaAs/GaAs laser diode bars (λ = 808 nm) with improved thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Marmalyuk, A A; Ladugin, M A; Andreev, A Yu; Telegin, K Yu; Yarotskaya, I V; Meshkov, A S; Konyaev, V P; Sapozhnikov, S M; Lebedeva, E I; Simakov, V A [Open Joint-Stock Company M.F. Stel' makh Polyus Research Institute, Moscow (Russian Federation)

    2013-10-31

    Two series of AlGaAs/GaAs laser heterostructures have been grown by metal-organic vapour phase epitaxy, and 808-nm laser diode bars fabricated from the heterostructures have been investigated. The heterostructures differed in waveguide thickness and quantum well depth. It is shown that increasing the barrier height for charge carriers in the active region has an advantageous effect on the output parameters of the laser sources in the case of the heterostructures with a narrow symmetric waveguide: the slope of their power – current characteristics increased from 0.9 to 1.05 W A{sup -1}. Thus, the configuration with a narrow waveguide and deep quantum well is better suited for high-power laser diode bars under hindered heat removal conditions. (lasers)

  19. Frequency Stabilization of DFB Laser Diodes at 1572 nm for Spaceborne Lidar Measurements of CO2

    Science.gov (United States)

    Numata, Kenji; Chen, Jeffrey R.; Wu, Stewart T.; Abshire, James B.; Krainak, Michael A.

    2010-01-01

    We report a fiber-based, pulsed laser seeder system that rapidly switches among 6 wavelengths across atmospheric carbon dioxide (CO2) absorption line near 1572.3 nm for measurements of global CO2 mixing ratios to 1-ppmv precision. One master DFB laser diode has been frequency-locked to the CO2 line center using a frequency modulation technique, suppressing its peak-to-peak frequency drifts to 0.3 MHz at 0.8 sec averaging time over 72 hours. Four online DFB laser diodes have been offset-locked to the master laser using phase locked loops, with virtually the same sub-MHz absolute accuracy. The 6 lasers were externally modulated and then combined to produce the measurement pulse train.

  20. 5.5 W of Diffraction-Limited Green Light Generated by SFG of Tapered Diode Lasers in a Cascade of Nonlinear Crystals

    DEFF Research Database (Denmark)

    Hansen, Anders Kragh; Jensen, Ole Bjarlin; Andersen, Peter Eskil

    2015-01-01

    Diode-based high power visible lasers are perfect pump sources for, e.g., titaniumsapphire lasers. The combination of favorable scaling laws in both SFG and cascading of nonlinear crystals allows access to unprecedented powers in diode-based systems.......Diode-based high power visible lasers are perfect pump sources for, e.g., titaniumsapphire lasers. The combination of favorable scaling laws in both SFG and cascading of nonlinear crystals allows access to unprecedented powers in diode-based systems....

  1. The efficiency of root canal disinfection using a diode laser: In vitro study

    Directory of Open Access Journals (Sweden)

    Anjali Kaiwar

    2013-01-01

    Full Text Available Aims: The aim of this study is to verify the disinfection of diode laser, following chemo-mechanical procedures against Enterococcus fecalis. Materials and Methods: Crowns of 30 extracted premolar teeth were sectioned at the cemento- enamel junction. The canals were shaped using step-back technique to K-file #40. The teeth were randomly assigned to three groups and placed into nutrient broth containing bacterial suspension of Enterococcus fecalis. Group A received no laser radiation. Specimens of group B and C were treated with diode laser (Sirona with energy set at 1.5 and 3 W, respectively. After laser irradiation, the teeth were placed in vials, which contained 2 mL of the nutrient broth. The vials were incubated at 37°C for 24 h. Grown colonies were identified by standard methods. Statistical Analysis Used: Statistical analysis used was the nonparametric Kruskal-Wallis test, with comparison using the Bonferroni methods of means. Results: Higher mean CFU/mL is recorded in Group A (without laser disinfection followed by Group B (with 1.5 W laser disinfection and Group C (with 3 W laser disinfection, respectively. The difference in CFU/mL between the three groups is found to be statistically significant ( P < 0.001. Conclusions: The results of this research show that the 980 nm diode laser can eliminate bacteria that has immigrated into dentin, thus being able to increase the success rate in endodontic therapy.

  2. Alignment control of columnar liquid crystals with wavelength tunable CO2 laser irradiation

    International Nuclear Information System (INIS)

    Monobe, Hirosato; Awazu, Kunio; Shimizu, Yo

    2008-01-01

    Infrared-induced alignment change with wavelength tunable CO 2 laser irradiation for columnar liquid crystal domains was investigated for a liquid crystalline triphenylene derivative. A uniformly aligned alignment change of domains was observed when a chopped linearly polarized infrared laser light corresponding to the wavelength of the aromatic C-O-C stretching vibration band (9.65 μm) was irradiated. The results strongly imply that the infrared irradiation is a possible technique for device fabrication by use of columnar mesophase as a liquid crystalline semiconductor

  3. Narrow-band laser amplifier system for tunable UV light generation

    International Nuclear Information System (INIS)

    Matsuoka, Leo; Hashimoto, Masashi; Yokoyama, Keiichi

    2013-01-01

    We developed a Ti:Sapphire narrow-band laser amplifier system for efficient third harmonic generation. The amplifier system was composed of a wavelength tunable narrow-band regenerative amplifier and a broadband multi-pass amplifier. With a pumping of ∼17 mJ by the second harmonics of a Nd:YLF laser, mode-locked seed pulses were amplified to ∼1.0 mJ at 1-kHz repetition. We obtained the third harmonic wave of ∼208-μJ pulse energy after the wavelength conversion by two β-BBO crystals. (author)

  4. Width-tunable pulse laser via optical injection induced gain modulation of semiconductor optical amplifiers

    Science.gov (United States)

    Pan, Honggang; Zhang, Ailing; Tong, Zhengrong; Zhang, Yue; Song, Hongyun; Yao, Yuan

    2018-03-01

    A width-tunable pulse laser via an optical injection induced gain modulation of a semiconductor optical amplifier (SOA) is demonstrated. When the pump current of the SOA is 330 mA or 400 mA and a continuous wave is injected into the laser cavity with different powers, bright or dark pulses with different pulse widths and frequency repetition rates are obtained. The bright and dark pulses are formed by the effect of gain dispersion and cross-gain modulation of the SOA.

  5. Diode laser-assisted endoscopic dacryocystorhinostomy: a comparison of three different combinations of adjunctive procedures.

    Science.gov (United States)

    Dogan, Remzi; Meric, Aysenur; Ozsütcü, Mustafa; Yenigun, Alper

    2013-08-01

    Chronic dacryocystitis is a frequently encountered condition which can be corrected by dacryocystorhinostomy. Today, the diode laser is increasingly put to use in such corrective operations. This study aims to answer the questions of which adjunctive procedures and which combinations of such procedures are necessary and effective in securing more successful outcomes in diode laser dacryocystorhinostomy. This prospective randomized study included eighty patients (13 male, 67 female) who underwent dacryocystorhinostomy in our hospital during the 2 year period of January 2009-January 2011. The patients were selected consecutively and were randomly allocated to three groups. Group 1 (30): diode laser + mitomycin C + silicone intubation; Group 2 (27): diode laser + silicone intubation; Group 3 (23): diode laser + mitomycin C. All patients were evaluated postoperatively on day 1, week 1, and on the 1st, 3rd, 6th, 12th, 18th, and 24th months. The postoperative evaluation consisted of preoperative and postoperative ostium measurements, recording postoperative complications, and calculating and comparing success rates and operative times. The mean ages of the patients were 63.4 for Group 1, 60.7 for Group 2, and 61.8 for Group 3. No statistically significant difference was found among the groups regarding pre- and postoperative ostium measurements. The success rates were 84.3, 80, and 76.9 % for Groups 1, 2, and 3, respectively. Complications noted in Group 1 were restenosis (3), premature silicone tube loss (1), development of granulation tissue (3), synechia (2), infection (2), and hemorrhage (3). Those for Group 2 were restenosis (5), premature tube loss (2), granulation (8), synechia (6), infection (3), and hemorrhage (4). Group 3 had 6 cases with stenosis, 5 with granulation, 3 with infection, 6 with synechia, and 5 with hemorrhage. The operative times of the groups were 25.5, 15.3, and 18.1 min, respectively, for Group 1, 2, and 3. All three groups had statistically

  6. Effect of 810 nm Diode Laser Therapy on the Rate of Extraction Space Closure

    OpenAIRE

    Naseem Joy Garg; Gurkeerat Singh; Sridhar Kannan; Deepak Rai; Ankur Kaul; Ashish Gupta; Abhishek Goyalia; Gaurav Gupta

    2014-01-01

    Purpose: To determine if biostimulation using a 810 nm diode laser was capable of affecting the rate of extraction space closure during orthodontic treatment. Materials and methods: Forty dental arches of patients above 17 years of age requiring bilateral first premolar extractions were exposed to a 810 nm diode laser with a power density of 3.97 W/cm2 at 3 weeks intervals for total duration of 12 weeks during the space closure phase under direct anchorage using miniscrews. Space closure m...

  7. Efficiency and stability of a phosphor-conversion white light source using a blue laser diode

    Directory of Open Access Journals (Sweden)

    G. Ledru

    2014-10-01

    Full Text Available A white light source using direct phosphor-conversion excited by a blue laser diode is presented. In this preliminary study we have investigated the influence of phosphor’s thickness and operating current of the laser diode over the (x, y chromaticity coordinates, Correlated Color Temperature (CCT and Color Rendering Index (CRI. The best values found were 4000 K and 94. A 40 lm/W luminous efficacy was achieved together with a CRI close to 90 for an operating current of 0.8 A. Those values, to the best of our knowledge, were not previously reported in the literature.

  8. Esthetic crown lengthening with depigmentation using an 810 nm GaAlAs diode laser.

    Science.gov (United States)

    Agrawal, Amit Arvind

    2014-10-01

    Hyperpigmentation of gingiva becomes more pronounced if it is associated with "gummy smile." Correction of gummy smile and depigmentation together are key to complete patient satisfaction. An 810 nm (1.5 W, pulsed) GaAlAs diode laser was used to achieve the desired results in a 22-year-old female patient. The 6-month follow-up results showed excellent color and contour of the gingiva. Mere depigmentation without correcting gummy smile may look cosmetically good but esthetically unacceptable. Diode laser was used as it is known to be an excellent tool as compared with other conventional surgical procedures in terms of patient and operator comfort.

  9. Phase Locking of Laser Diode Array by Using an Off-Axis External Talbot Cavity

    International Nuclear Information System (INIS)

    Su Zhou-Ping; Zhu Zhuo-Wei; Que Li-Zhi; Zhu Yun; Ji Zhi-Cheng

    2012-01-01

    Phase locking of a laser diode array is demonstrated experimentally by using an off-axis external Talbot cavity with a feedback plane mirror. Due to good spatial mode discrimination, the cavity does not need a spatial filter. By employing the cavity, a clear and stable far-field interference pattern can be observed when the driver current is less than 14 A. In addition, the spectral line width can be reduced to 0.8 nm. The slope efficiency of the phase-locked laser diode array is about 0.62 W/A. (fundamental areas of phenomenology(including applications))

  10. A comprehensive model of catastrophic optical-damage in broad-area laser diodes

    Science.gov (United States)

    Chin, A. K.; Bertaska, R. K.; Jaspan, M. A.; Flusberg, A. M.; Swartz, S. D.; Knapczyk, M. T.; Petr, R.; Smilanski, I.; Jacob, J. H.

    2009-02-01

    The present model of formation and propagation of catastrophic optical-damage (COD), a random failure-mode in laser diodes, was formulated in 1974 and has remained substantially unchanged. We extend the model of COD phenomena, based on analytical studies involving EBIC (electron-beam induced current), STEM (scanning transmission-electron microscopy) and sophisticated optical-measurements. We have determined that a ring-cavity mode, whose presence has not been previously reported, significantly contributes to COD initiation and propagation in broad-area laser-diodes.

  11. Efficacy of diode laser (810 and 940 nm) for facial skin tightening.

    Science.gov (United States)

    Voravutinon, Nataya; Seawthaweesin, Kanikar; Bureethan, Apron; Srivipatana, Anchisa; Vejanurug, Patnapa

    2015-12-01

    Laser treatment has been introduced for facial skin tightening. However, no prior study has used a diode laser to treat facial skin laxity. To evaluate the efficacy and safety of a 810- and 940-nm diode laser (MeDioStarNeXT) for treating facial skin laxity. Thirty patients, with facial skin laxity grading scale II-IV, were enrolled in this study. Each patient underwent four sessions with a 810- and 940-nm diode laser (MeDioStarNeXT) treatment over 3-week intervals. Improvement in the laxity of facial skin was evaluated using a Cutometer MPA 580, spectrophotometer, and a grading scale. Significant improvement was observed with the Cutometer F3 and R7 parameters at 1 and 3 months after complete treatment, respectively. Physician assessment showed significant improvement in the laxity scale at 1 and 6 months after treatment. Approximately 10% of the patients reported mild pain or minor adverse events. Ninety-eight percent of the patients were satisfied with the treatments. Treatment with a diode laser (810 and 940 nm) is safe and may be effective for facial skin tightening. Maintenance treatment is necessary to sustain the effect of treatment. © 2015 Wiley Periodicals, Inc.

  12. Sub-100 fs high average power directly blue-diode-laser-pumped Ti:sapphire oscillator

    Science.gov (United States)

    Rohrbacher, Andreas; Markovic, Vesna; Pallmann, Wolfgang; Resan, Bojan

    2016-03-01

    Ti:sapphire oscillators are a proven technology to generate sub-100 fs (even sub-10 fs) pulses in the near infrared and are widely used in many high impact scientific fields. However, the need for a bulky, expensive and complex pump source, typically a frequency-doubled multi-watt neodymium or optically pumped semiconductor laser, represents the main obstacle to more widespread use. The recent development of blue diodes emitting over 1 W has opened up the possibility of directly diode-laser-pumped Ti:sapphire oscillators. Beside the lower cost and footprint, a direct diode pumping provides better reliability, higher efficiency and better pointing stability to name a few. The challenges that it poses are lower absorption of Ti:sapphire at available diode wavelengths and lower brightness compared to typical green pump lasers. For practical applications such as bio-medicine and nano-structuring, output powers in excess of 100 mW and sub-100 fs pulses are required. In this paper, we demonstrate a high average power directly blue-diode-laser-pumped Ti:sapphire oscillator without active cooling. The SESAM modelocking ensures reliable self-starting and robust operation. We will present two configurations emitting 460 mW in 82 fs pulses and 350 mW in 65 fs pulses, both operating at 92 MHz. The maximum obtained pulse energy reaches 5 nJ. A double-sided pumping scheme with two high power blue diode lasers was used for the output power scaling. The cavity design and the experimental results will be discussed in more details.

  13. Comparing laser induced plasmas formed in diode and excimer pumped alkali lasers.

    Science.gov (United States)

    Markosyan, Aram H

    2018-01-08

    Lasing on the D 1 transition (6 2 P 1/2 → 6 2 S 1/2 ) of cesium can be reached in both diode and excimer pumped alkali lasers. The first uses D 2 transition (6 2 S 1/2 → 6 2 P 3/2 ) for pumping, whereas the second is pumped by photoexcitation of ground state Cs-Ar collisional pairs and subsequent dissociation of diatomic, electronically-excited CsAr molecules (excimers). Despite lasing on the same D 1 transition, differences in pumping schemes enables chemical pathways and characteristic timescales unique for each system. We investigate unavoidable plasma formation during operation of both systems side by side in Ar/C 2 H 6 /Cs.

  14. Comparing the 810nm diode laser with conventional surgery in orthodontic soft tissue procedures.

    Science.gov (United States)

    Ize-Iyamu, I N; Saheeb, B D; Edetanlen, B E

    2013-09-01

    To compare the use of the 810nm diode laser with conventional surgery in the management of soft tissue mucogingival problems associated with orthodontic treatment. Orthodontic patients requiring different soft tissue surgical procedures were randomly assigned to receive conventional surgery or soft tissue diode laser, (wavelength 810 nm). Parameters documented include the type of anaesthesia used, intra and post operative pain, bleeding, the use of scalpel and sutures. The chi-squared test was used to test for significance at 95% confidence level. Probability values (p-values) less than 0.05 were regarded as significant. Only 2(16.7%) of the procedures carried out with the soft tissue laser required infiltration anaesthesia compared to 10 (90.9%) with conventional surgery and this was significant (Pdiode laser (Pdiode laser. No sutures were used in all soft tissue cases managed with the diode laser and this was significant (Pdiode laser required less infiltration anaesthesia, had reduced bleeding during and after surgery, rapid postoperative haemostasis, elimination of the need for sutures and an improved postoperative comfort and healing.

  15. High power conversion efficiency and wavelength-stabilized narrow bandwidth 975nm diode laser pumps

    Science.gov (United States)

    Kanskar, M.; Cai, J.; Galstad, C.; He, Y.; Macomber, S. H.; Stiers, E.; Tatavarti-Bharatam, S. R.; Botez, D.; Mawst, L. J.

    2006-05-01

    We report on improvement from 50% to 70% power conversion efficiency on a 5-bar stack with 500 W of CW power at 25C coolant temperature resulting from a multi-pronged optimization approach. We also report on wavelength stabilization (0.07 nm/C) and emission bandwidth narrowing (0.3 nm at FWHM) of diode laser pump sources for precision pumping the upper transition levels of lasers that require narrow and stable pump sources such as Er/Yb co-doped or Yb:YAG lasers. These results have been achieved by integration of a Bragg grating inside a semiconductor laser cavity forming a low-loss, weak distributed feedback (DFB) laser, which results in record 53% wall-plug efficiency at 3 W CW operation and 25°C heatsink temperature from a 100-μm aperture diode laser and 45 W of wavelength-locked CW power from a 20% fill factor bar. This technique can be readily applied to diode laser structures for other strategic pump wavelengths.

  16. High-power green light generation by second harmonic generation of single-frequency tapered diode lasers

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Andersen, Peter E.; Sumpf, Bernd

    2010-01-01

    laser emits in excess of 9 W single-frequency output power with a good beam quality. The output from the tapered diode laser is frequency doubled using periodically poled MgO:LiNbO3. We investigate the modulation potential of the green light and improve the modulation depth from 1:4 to 1:50.......We demonstrate the generation of high power (>1.5W) and single-frequency green light by single-pass second harmonic generation of a high power tapered diode laser. The tapered diode laser consists of a DBR grating for wavelength selectivity, a ridge section and a tapered section. The DBR tapered...

  17. The future of diode pumped solid state lasers and their applicability to the automotive industry

    Science.gov (United States)

    Solarz, R.; Beach, R.; Hackel, L.

    1994-03-01

    The largest commercial application of high power lasers is for cutting and welding. Their ability to increase productivity by introducing processing flexibility and integrated automation into the fabrication process is well demonstrated. This paper addresses the potential importance of recent developments in laser technology to further impact their use within the automotive industry. The laser technology we will concentrate upon is diode laser technology and diode-pumped solid-state laser technology. We will review present device performance and cost and make projections for the future in these areas. Semiconductor laser arrays have matured dramatically over the last several years. They are lasers of unparalleled efficiency (greater than 50%), reliability (greater than 10,000 hours of continuous operation), and offer the potential of dramatic cost reductions (less than a dollar per watt). They can be used directly in many applications or can be used to pump solid-state lasers. When used as solid-state laser pump arrays, they simultaneously improve overall laser efficiency, reduce size, and improve reliability.

  18. Intensity noise properties of Nd:YVO 4 microchip lasers pumped with an amplitude squeezed diode laser

    Science.gov (United States)

    Becher, C.; Boller, K.-J.

    1998-02-01

    We report on intensity noise measurements of single-frequency Nd:YVO 4 microchip lasers optically pumped with amplitude squeezed light from an injection-locked diode laser. Calibrated homodyne measurements show a minimum intensity noise of 10.1 dB above the SQL at a frequency of 100 kHz. The measured intensity noise spectra are described with high accuracy by a theoretical model based on the quantum mechanical Langevin rate equations, including classical and quantum noise sources.

  19. Determination of temperature and residual laser energy on film fiber-optic thermal converter for diode laser surgery.

    Science.gov (United States)

    Liu, Weichao; Kong, Yaqun; Shi, Xiafei; Dong, Xiaoxi; Wang, Hong; Zhao, Jizhi; Li, Yingxin

    2017-12-01

    The diode laser was utilized in soft tissue incision of oral surgery based on the photothermic effect. The contradiction between the ablation efficiency and the thermal damage has always been in diode laser surgery, due to low absorption of its radiation in the near infrared region by biological tissues. Fiber-optic thermal converters (FOTCs) were used to improve efficiency for diode laser surgery. The purpose of this study was to determine the photothermic effect by the temperature and residual laser energy on film FOTCs. The film FOTC was made by a distal end of optical fiber impacting on paper. The external surface of the converter is covered by a film contained amorphous carbon. The diode laser with 810 nm worked at the different rated power of 1.0 W, 1.5 W, 2.0 W, 3.0 W, 4.0 W, 5.0 W, 6.0 W, 7.0 W, 8.0 W in continuous wave (CW)and pulse mode. The temperature of the distal end of optical fiber was recorded and the power of the residual laser energy from the film FOTC was measured synchronously. The temperature, residual power and the output power were analyzed by linear or exponential regression model and Pearson correlations analysis. The residual power has good linearity versus output power in CW and pulse modes (R 2  = 0.963, P fiber tip both in CW and pulsed mode while limiting the ability of the laser light to interact directly with target tissue. Film FOTCs can concentrate part of laser energy transferred to heat on distal end of optical fiber, which have the feasibility of improving efficiency and reducing thermal damage of deep tissue.

  20. Light-emitting diode versus laser irradiation phototherapy with lutetium texaphyrin (PCI-0123)

    Science.gov (United States)

    Woodburn, Kathryn W.; Young, Stuart W.; Qing, Fan; Miles, Dale R.; Thiemann, Patricia A.

    1997-05-01

    Lutetium texaphyrin (PCI-0123) is presently in clinical trials for the treatment of neoplasms. An argon-pumped dye laser has mostly been used to generate light for PCI-0123 photoactivation. However, lasers are expensive and produce a limited area of illumination, so the efficacy of light emitting diodes (LEDs) was investigated. An LED array was developed so that the spectral emission matched the far red absorption spectrum of PCI-0123. A preclinical PDT efficacy study comparing the laser and the LED was undertaken using EMT6-bearing animals. The LED and laser light sources were statistically comparable in eradicating the murine mammary sarcomas using PCI-0123 as the photosensitizer.