WorldWideScience

Sample records for tunable composite membranes

  1. Polyarylether composition and membrane

    Science.gov (United States)

    Hung, Joyce; Brunelle, Daniel Joseph; Harmon, Marianne Elisabeth; Moore, David Roger; Stone, Joshua James; Zhou, Hongyi; Suriano, Joseph Anthony

    2010-11-09

    A composition including a polyarylether copolymer is provided. The copolymer includes a polyarylether backbone; and a sulfonated oligomeric group bonded to the polyarylether suitable for use as a cation conducting membrane. Method of bonding a sulfonated oligomeric group to the polyarylether backbone to form a polyarylether copolymer. The membrane may be formed from the polyarylether copolymer composition. The chain length of the sulfonated oligomeric group may be controlled to affect or control the ion conductivity of the membrane.

  2. A photo-tunable membrane based on inter-particle crosslinking for decreasing diffusion rates

    KAUST Repository

    Li, Song

    2015-01-01

    Functional polymeric membranes are widely used to adjust and control the diffusion of molecules. Herein, photosensitive poly(hydroxycinnamic acid) (PHCA) microspheres, which were fabricated by an emulsification solvent-evaporation method, were embedded into an ethyl cellulose matrix to fabricate composite membranes with a photo-tunable property. The photoreaction of PHCA is based on the [2 + 2] cycloaddition of cinnamic moieties upon irradiation with 365 nm light. Intra-particle crosslinking in PHCA microspheres was confirmed in the solution phase, while inter-particle crosslinking between adjacent PHCA microspheres dominated the solid membrane phase. The inter-particle crosslinking turned down the permeability of the composite membranes by 74%. To prove the applicability of the designed system, the composite membrane was coated on a model drug reservoir tablet. Upon irradiating the tablet with UV light, the original permeability decreased by 57%, and consequently the diffusion rate of the cargo (Rhodamine B) from the tablet slowed down. Most importantly, the tablet showed sustained release for over 10 days. This controllability can be further tuned by adjusting the membrane thickness. Composite membranes showed excellent processing reproducibility together with consistent mechanical properties. These results demonstrate that the incorporation of photosensitive PHCA microspheres in polymeric membranes provides a promising photo-tunable material for different applications including coating and separation. This journal is © The Royal Society of Chemistry 2015.

  3. Membrane-based aberration-corrected tunable micro-lenses

    Science.gov (United States)

    Waibel, Philipp; Ermantraut, Eugen; Mader, Daniel; Zappe, Hans; Seifert, Andreas

    2010-05-01

    We present measurements and simulations of membrane-based micro-lens stacks, tunable in focal length in the range of 10mm to 50mm without chromatic aberration. The pressure-actuated, liquid-filled, membrane-based micro-lenses are fabricated by an all-silicone molding approach and consist of three chambers separated by two highly flexible silicone-membranes. Based on the idea of the classical achromatic Fraunhofer doublet, two different liquids with suitable optical properties are used. Pressure-dependent surface topologies are measured by profilometry for determining the correlation between refraction and applied pressure. The profiles are fit to polynomials; the coefficients of the polynomials are pressure-dependent and fit to empirically determined functions which are then used as an input for optical ray-tracing. Using this approach, the focal length is tunable while compensating for chromatic aberration by suitably applied pressures.

  4. Gyroid Nanoporous Membranes with Tunable Permeability

    DEFF Research Database (Denmark)

    Li, Li; Schulte, Lars; Clausen, Lydia D.

    2011-01-01

    -linked 1,2-polybutadiene (1,2-PB) membranes with uniform pores that, if needed, can be rendered hydrophilic. The gyroid porosity has the advantage of isotropic percolation with no need for structure prealignment. Closed (skin) or opened (nonskin) outer surface can be simply realized by altering...... the interface energy in the process of membrane fabrication. The morphology of the membranes’ outer surface was investigated by scanning electron microscopy, contact angle, and X-ray photoelectron spectroscopy. The effective diffusion coefficient of glucose decreases from nonskin, to one-sided skin to two......-sided skin membranes, much faster than expected by a naive resistance-in-series model; the flux through the two-sided skin membranes even increases with the membrane thickness. We propose a model that captures the physics behind the observed phenomena, as confirmed by flow visualization experiments...

  5. Antireflective "moth-eye" structures on tunable optical silicone membranes.

    Science.gov (United States)

    Brunner, Robert; Keil, Bettina; Morhard, Christoph; Lehr, Dennis; Draheim, Jan; Wallrabe, Ulrike; Spatz, Joachim

    2012-07-01

    Flexible silicone membranes are key components for tunable optical lenses. The elastic operation of the membranes impedes the use of classical layer systems for an antireflective (AR) effect. To overcome this limitation, we equipped optical elastomer membranes with "moth-eye" structures directly in the flexible silicone substrate. The manufacturing of the AR structures in the flexible membrane includes a mastering process based on block copolymer micelle nanolithography followed by a replication method. We investigate the performance of the resulting AR structures under strain of up to 20% membrane expansion. A significant transmittance enhancement of up to 2.5% is achieved over the entire visible spectrum, which means that more than half of the surface reflection losses are compensated by the AR structures.

  6. Composite membrane with integral rim

    Science.gov (United States)

    Routkevitch, Dmitri; Polyakov, Oleg G

    2015-01-27

    Composite membranes that are adapted for separation, purification, filtration, analysis, reaction and sensing. The composite membranes can include a porous support structure having elongate pore channels extending through the support structure. The composite membrane also includes an active layer comprising an active layer material, where the active layer material is completely disposed within the pore channels between the surfaces of the support structure. The active layer is intimately integrated within the support structure, thus enabling great robustness, reliability, resistance to mechanical stress and thermal cycling, and high selectivity. Methods for the fabrication of composite membranes are also provided.

  7. Tunable sieving of ions using graphene oxide membranes.

    Science.gov (United States)

    Abraham, Jijo; Vasu, Kalangi S; Williams, Christopher D; Gopinadhan, Kalon; Su, Yang; Cherian, Christie T; Dix, James; Prestat, Eric; Haigh, Sarah J; Grigorieva, Irina V; Carbone, Paola; Geim, Andre K; Nair, Rahul R

    2017-07-01

    Graphene oxide membranes show exceptional molecular permeation properties, with promise for many applications. However, their use in ion sieving and desalination technologies is limited by a permeation cutoff of ∼9 Å (ref. 4), which is larger than the diameters of hydrated ions of common salts. The cutoff is determined by the interlayer spacing (d) of ∼13.5 Å, typical for graphene oxide laminates that swell in water. Achieving smaller d for the laminates immersed in water has proved to be a challenge. Here, we describe how to control d by physical confinement and achieve accurate and tunable ion sieving. Membranes with d from ∼9.8 Å to 6.4 Å are demonstrated, providing a sieve size smaller than the diameters of hydrated ions. In this regime, ion permeation is found to be thermally activated with energy barriers of ∼10-100 kJ mol -1 depending on d. Importantly, permeation rates decrease exponentially with decreasing sieve size but water transport is weakly affected (by a factor of <2). The latter is attributed to a low barrier for the entry of water molecules and large slip lengths inside graphene capillaries. Building on these findings, we demonstrate a simple scalable method to obtain graphene-based membranes with limited swelling, which exhibit 97% rejection for NaCl.

  8. Tunable Tensor Voting Improves Grouping of Membrane-Bound Macromolecules

    Energy Technology Data Exchange (ETDEWEB)

    Loss, Leandro A.; Bebis, George; Parvin, Bahram

    2009-04-15

    Membrane-bound macromolecules are responsible for structural support and mediation of cell-cell adhesion in tissues. Quantitative analysis of these macromolecules provides morphological indices for damage or loss of tissue, for example as a result of exogenous stimuli. From an optical point of view, a membrane signal may have nonuniform intensity around the cell boundary, be punctate or diffused, and may even be perceptual at certain locations along the boundary. In this paper, a method for the detection and grouping of punctate, diffuse curvilinear signals is proposed. Our work builds upon the tensor voting and the iterative voting frameworks to propose an efficient method to detect and refine perceptually interesting curvilinear structures in images. The novelty of our method lies on the idea of iteratively tuning the tensor voting fields, which allows the concentration of the votes only over areas of interest. We validate the utility of our system with synthetic and annotated real data. The effectiveness of the tunable tensor voting is demonstrated on complex phenotypic signals that are representative of membrane-bound macromolecular structures.

  9. Tunable sieving of ions using graphene oxide membranes

    Science.gov (United States)

    Abraham, Jijo; Vasu, Kalangi S.; Williams, Christopher D.; Gopinadhan, Kalon; Su, Yang; Cherian, Christie T.; Dix, James; Prestat, Eric; Haigh, Sarah J.; Grigorieva, Irina V.; Carbone, Paola; Geim, Andre K.; Nair, Rahul R.

    2017-07-01

    Graphene oxide membranes show exceptional molecular permeation properties, with promise for many applications. However, their use in ion sieving and desalination technologies is limited by a permeation cutoff of ˜9 Å (ref. 4), which is larger than the diameters of hydrated ions of common salts. The cutoff is determined by the interlayer spacing (d) of ˜13.5 Å, typical for graphene oxide laminates that swell in water. Achieving smaller d for the laminates immersed in water has proved to be a challenge. Here, we describe how to control d by physical confinement and achieve accurate and tunable ion sieving. Membranes with d from ˜9.8 Å to 6.4 Å are demonstrated, providing a sieve size smaller than the diameters of hydrated ions. In this regime, ion permeation is found to be thermally activated with energy barriers of ˜10-100 kJ mol-1 depending on d. Importantly, permeation rates decrease exponentially with decreasing sieve size but water transport is weakly affected (by a factor of <2). The latter is attributed to a low barrier for the entry of water molecules and large slip lengths inside graphene capillaries. Building on these findings, we demonstrate a simple scalable method to obtain graphene-based membranes with limited swelling, which exhibit 97% rejection for NaCl.

  10. Alternation and tunable composition in hydrogen bonded supramolecular copolymers.

    Science.gov (United States)

    Felder, Thorsten; de Greef, Tom F A; Nieuwenhuizen, Marko M L; Sijbesma, Rint P

    2014-03-07

    Sequence control in supramolecular copolymers is limited by the selectivity of the associating monomer end groups. Here we introduce the use of monomers with aminopyrimidinone and aminohydroxynaphthyridine quadruple hydrogen bonding end groups, which both homodimerize, but form even stronger heterodimers. These features allow the formation of supramolecular copolymers with a tunable composition and a preference for alternating sequences.

  11. Layered plasma polymer composite membranes

    Science.gov (United States)

    Babcock, Walter C.

    1994-01-01

    Layered plasma polymer composite fluid separation membranes are disclosed, which comprise alternating selective and permeable layers for a total of at least 2n layers, where n is .gtoreq.2 and is the number of selective layers.

  12. Composite Fermions with Tunable Fermi Contour Anisotropy

    Science.gov (United States)

    Kamburov, D.; Liu, Yang; Shayegan, M.; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.

    2013-05-01

    The composite fermion formalism elegantly describes some of the most fascinating behaviors of interacting two-dimensional carriers at low temperatures and in strong perpendicular magnetic fields. In this framework, carriers minimize their energy by attaching two flux quanta and forming new quasiparticles, the so-called composite fermions. Thanks to the flux attachment, when a Landau level is half-filled, the composite fermions feel a vanishing effective magnetic field and possess a Fermi surface with a well-defined Fermi contour. Our measurements in a high-quality two-dimensional hole system confined to a GaAs quantum well demonstrate that a parallel magnetic field can significantly distort the hole-flux composite fermion Fermi contour.

  13. Infrared metasurface with tunable composite right/left-handed dispersion

    Science.gov (United States)

    Ma, Jie; Luo, Yi; Wu, Xuefei; Xu, Hongyan; Jing, Hongwei; Wu, Zhiming; Jiang, Yadong; Liu, Zhijun

    2017-11-01

    The distinctive dispersion of composite right/left-handed transmission-line metamaterial offers a unique way of manipulating electromagnetic waves across a wide spectral range from microwave to the infrared. In this paper, we present a tunable mid-infrared composite right/left-handed metasurface based on the phase-change material of vanadium dioxide. The metasurface consists of an array of ‘H’-shaped gold pads separated from a metallic ground plane by a film of vanadium dioxide. As the insulator-to-metal phase transition is thermally triggered, both right-handed and left-handed metasurface modes redshift with reduced absorbance before they are eventually switched off. The tunabilities of right-handed mode frequency and left-handed mode frequency are measured to be approximately 3.6% and 2.7%, respectively. Our demonstrated metasurface with tunable composite right/left-handed dispersion could be useful for beam scanning for a fixed frequency in mid-infrared applications.

  14. Study on the removal of organic micropollutants from aqueous and ethanol solutions by HAP membranes with tunable hydrophilicity and hydrophobicity.

    Science.gov (United States)

    He, Junyong; Li, Yulian; Cai, Xingguo; Chen, Kai; Zheng, Hejing; Wang, Chengming; Zhang, Kaisheng; Lin, Dongyue; Kong, Lingtao; Liu, Jinhuai

    2017-05-01

    A biocompatible and uniquely defined hydroxyapatite (HAP) adsorption membrane with a sandwich structure was developed for the removal of organic micropollutants for the first time. Both the adsorption and membrane technique were used for the removal of organic micropollutants. The hydrophilicity and hydrophobicity of the HAP adsorbent and membrane were tunable by controlling the surface structure of HAP. The adsorption of organic micropollutants on the HAP adsorbent was studied in batch experiments. The adsorption process was fit with the Freundlich model, while the adsorption kinetics followed the pseudo-second-order model. The HAP membrane could remove organic micropollutants effectively by dynamic adsorption in both aqueous and ethanol solutions. The removal efficiencies of organic micropollutants depended on the solution composition, membrane thickness and hydrophilicity, flow rate, and the initial concentration of organic micropollutants. The adsorption capacities of the HAP membrane with a sandwich structure (membrane thickness was 0.3 mm) were 6700, 6510, 6310, 5960, 5490, 5230, 4980 and 4360 L m -2 for 1-naphthyl amine, 2-naphthol, bisphenol S, propranolol hydrochloride, metolachlor, ethinyl oestradiol, 2,4-dichlorophenol and bisphenol A, respectively, when the initial concentration was 3.0 mg L -1 . The biocompatible HAP adsorption membrane can be easily regenerated by methanol and was thus demonstrated to be a novel concept for the removal of organic micropollutants from both aqueous and organic solutions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Nanoparticles with tunable shape and composition fabricated by nanoimprint lithography

    International Nuclear Information System (INIS)

    Alayo, Nerea; Bausells, Joan; Pérez-Murano, Francesc; Conde-Rubio, Ana; Labarta, Amilcar; Batlle, Xavier; Borrisé, Xavier

    2015-01-01

    Cone-like and empty cup-shaped nanoparticles of noble metals have been demonstrated to provide extraordinary optical properties for use as optical nanoanntenas or nanoresonators. However, their large-scale production is difficult via standard nanofabrication methods. We present a fabrication approach to achieve arrays of nanoparticles with tunable shape and composition by a combination of nanoimprint lithography, hard-mask definition and various forms of metal deposition. In particular, we have obtained arrays of empty cup-shaped Au nanoparticles showing an optical response with distinguishable features associated with the excitations of localized surface plasmons. Finally, this route avoids the most common drawbacks found in the fabrication of nanoparticles by conventional top-down methods, such as aspect ratio limitation, blurring, and low throughput, and it can be used to fabricate nanoparticles with heterogeneous composition. (paper)

  16. Soft-matter composites with electrically tunable elastic rigidity

    Science.gov (United States)

    Shan, Wanliang; Lu, Tong; Majidi, Carmel

    2013-08-01

    We use a phase-changing metal alloy to reversibly tune the elastic rigidity of an elastomer composite. The elastomer is embedded with a sheet of low-melting-point Field’s metal and an electric Joule heater composed of a serpentine channel of liquid-phase gallium-indium-tin (Galinstan®) alloy. At room temperature, the embedded Field’s metal is solid and the composite remains elastically rigid. Joule heating causes the Field’s metal to melt and allows the surrounding elastomer to freely stretch and bend. Using a tensile testing machine, we measure that the effective elastic modulus of the composite reversibly changes by four orders of magnitude when powered on and off. This dramatic change in rigidity is accurately predicted with a model for an elastic composite. Reversible rigidity control is also accomplished by replacing the Field’s metal with shape memory polymer. In addition to demonstrating electrically tunable rigidity with an elastomer, we also introduce a new technique to rapidly produce soft-matter electronics and multifunctional materials in several minutes with laser-patterned adhesive film and masked deposition of liquid-phase metal alloy.

  17. Tunable interdigital transducers made of piezoelectric macro-fiber composite

    Science.gov (United States)

    Mańka, Michał; Martowicz, Adam; Rosiek, Mateusz; Stepinski, Tadeusz; Uhl, Tadeusz

    2016-11-01

    The number of applications of Lamb waves (LWs) based structural health monitoring (SHM) has significantly increased in recent decades. The growth of interest results from several advantages of this diagnostic technique, that is, considerable mode selectivity and directivity that allow for the assessment of the technical condition of a monitored structure. Successful applications of LWs in the field of SHM stimulate continuous improvement of the transducers’ design to enable capturing more reliable diagnostic data. The paper introduces a new type of transducer that may be used in the LWs based SHM systems, namely tunable-interdigital transducer (T-IDT) based on macro-fiber composites (MFC). The authors provide a short overview on different types of transducers that may be used in SHM applications, followed by a detailed description of the structure of proposed T-IDT. Finally, the results of numerical and experimental tests carried out employing the proposed transducer are discussed and compared to those obtained with a traditional IDT.

  18. In situ temperature tunable pores of shape memory polyurethane membranes

    International Nuclear Information System (INIS)

    Ahn, Joon-Sung; Yu, Woong-Ryeol; Youk, Ji Ho; Ryu, Hee Youk

    2011-01-01

    Conventional shape memory polymers, such as shape memory polyurethanes (SMPU), can exhibit net two-way shape memory behavior (2WSM), i.e., upon heating and subsequent cooling, their macroscopic shapes change reversibly under an applied bias load. This paper is aimed at reporting similar 2WSM behavior, especially by focusing on the size of nanopores/micropores in SMPU membranes, i.e., the size of the pores can be reversibly changed by up to about 300 nm upon repeated heating and cooling. The SMPU membranes were prepared by electrospinning and elongated at temperatures higher than the transition temperature of the SMPU. Under the constant stress, the size change of the pores in the membranes was measured by applying cyclic temperature change. It was observed that the pore size changed from 150 to 440 nm according to the temperature change, demonstrating that the SMPU membrane can be utilized as a smart membrane to selectively separate substances according to their sizes by just controlling temperature

  19. LTCC Phase Shifters Based on Tunable Ferroelectric Composite Thick Films

    Science.gov (United States)

    Nikfalazar, M.; Kohler, C.; Heunisch, A.; Wiens, A.; Zheng, Y.; Schulz, B.; Mikolajek, M.; Sohrabi, M.; Rabe, T.; Binder, J. R.; Jakoby, R.

    2015-11-01

    This paper presents, the investigation of tunable components based on LTCC technology, implementing ferroelectric tunable thick-film dielectric. The tunable loaded line phase shifters are fabricated with metal-insulator-metal (MIM) varactors to demonstrate the capabilities of this method for packaging of the tunable components. The MIM varactors consist of one tunable dielectric paste layer that is printed between two silver layers. The tunable ferroelectric paste is optimized for LTCC sintering temperature around 850°C. The phase shifters are fabricated in two different process. They were achieved a figure of merit of 24°/dB (phase shift 192°) at 3 GHz and 18°/dB (phase shift 98°) at 4.4 GHz by using seven unit cells that each unit cell consisting of two MIM varactors.

  20. Composite membranes and methods for making same

    Science.gov (United States)

    Routkevitch, Dmitri; Polyakov, Oleg G

    2012-07-03

    Composite membranes that are adapted for separation, purification, filtration, analysis, reaction and sensing. The composite membranes can include a porous support structure having elongate pore channels extending through the support structure. The composite membrane also includes an active layer comprising an active layer material, where the active layer material is completely disposed within the pore channels between the surfaces of the support structure. The active layer is intimately integrated within the support structure, thus enabling great robustness, reliability, resistance to mechanical stress and thermal cycling, and high selectivity. Methods for the fabrication of composite membranes are also provided.

  1. Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions

    Science.gov (United States)

    Ning, Cun-Zheng; Dou, Letian; Yang, Peidong

    2017-12-01

    Over the past decade, tremendous progress has been achieved in the development of nanoscale semiconductor materials with a wide range of bandgaps by alloying different individual semiconductors. These materials include traditional II-VI and III-V semiconductors and their alloys, inorganic and hybrid perovskites, and the newly emerging 2D materials. One important common feature of these materials is that their nanoscale dimensions result in a large tolerance to lattice mismatches within a monolithic structure of varying composition or between the substrate and target material, which enables us to achieve almost arbitrary control of the variation of the alloy composition. As a result, the bandgaps of these alloys can be widely tuned without the detrimental defects that are often unavoidable in bulk materials, which have a much more limited tolerance to lattice mismatches. This class of nanomaterials could have a far-reaching impact on a wide range of photonic applications, including tunable lasers, solid-state lighting, artificial photosynthesis and new solar cells.

  2. Pollen viability and membrane lipid composition

    NARCIS (Netherlands)

    Bilsen, van D.G.J.L.

    1993-01-01

    In this thesis membrane lipid composition is studied in relation to pollen viability during storage. Chapter 1 reviews pollen viability, membranes in the dry state and membrane changes associated with cellular aging. This chapter is followed by a study of age-related changes in phospholipid

  3. Robust and Elastic Polymer Membranes with Tunable Properties for Gas Separation.

    Science.gov (United States)

    Cao, Peng-Fei; Li, Bingrui; Hong, Tao; Xing, Kunyue; Voylov, Dmitry N; Cheng, Shiwang; Yin, Panchao; Kisliuk, Alexander; Mahurin, Shannon M; Sokolov, Alexei P; Saito, Tomonori

    2017-08-09

    Polymer membranes with the capability to process a massive volume of gas are especially attractive for practical applications of gas separation. Although much effort has been devoted to develop novel polymer membranes with increased selectivity, the overall gas-separation performance and lifetime of membrane are still negatively affected by the weak mechanical performance, low plasticization resistance and poor physical aging tolerance. Recently, elastic polymer membranes with tunable mechanical properties have been attracting significant attentions due to their tremendous potential applications. Herein, we report a series of urethane-rich PDMS-based polymer networks (U-PDMS-NW) with improved mechanical performance for gas separation. The cross-link density of U-PDMS-NWs is tailored by varying the molecular weight (M n ) of PDMS. The U-PDMS-NWs show up to 400% elongation and tunable Young's modulus (1.3-122.2 MPa), ultimate tensile strength (1.1-14.3 MPa), and toughness (0.7-24.9 MJ/m 3 ). All of the U-PDMS-NWs exhibit salient gas-separation performance with excellent thermal resistance and aging tolerance, high gas permeability (>100 Barrer), and tunable gas selectivity (up to α[P CO 2 /P N 2 ] ≈ 41 and α[P CO 2 /P CH 4 ] ≈ 16). With well-controlled mechanical properties and gas-separation performance, these U-PDMS-NW can be used as a polymer-membrane platform not only for gas separation but also for other applications such as microfluidic channels and stretchable electronic devices.

  4. Tunable C2N Membrane for High Efficient Water Desalination

    Science.gov (United States)

    Yang, Yanmei; Li, Weifeng; Zhou, Hongcai; Zhang, Xiaoming; Zhao, Mingwen

    2016-01-01

    Water scarcity represents one of the most serious global problems of our time and challenges the advancements in desalination techniques. Although water-filtering architectures based on graphene have greatly advanced the approach to high performance desalination membranes, the controlled-generation of nanopores with particular diameter is tricky and has stunted its wide applications. Here, through molecular dynamic simulations and first-principles calculations, we propose that the recently reported graphene-like carbon nitride (g-C2N) monolayer can serve as high efficient filters for water desalination. Taking the advantages of the intrisic nanoporous structure and excellent mechanical properties of g-C2N, high water transparency and strong salt filtering capability have been demonstrated in our simulations. More importantly, the “open” and “closed” states of the g-C2N filter can be precisely regulated by tensile strain. It is found that the water permeability of g-C2N is significantly higher than that reported for graphene filters by almost one order of magnitude. In the light of the abundant family of graphene-like carbon nitride monolayered materials, our results thus offer a promising approach to the design of high efficient filteration architectures. PMID:27384666

  5. Engineered Asymmetric Composite Membranes with Rectifying Properties.

    Science.gov (United States)

    Wen, Liping; Xiao, Kai; Sainath, Annadanam V Sesha; Komura, Motonori; Kong, Xiang-Yu; Xie, Ganhua; Zhang, Zhen; Tian, Ye; Iyoda, Tomokazu; Jiang, Lei

    2016-01-27

    Asymmetric composite membranes with rectifying properties are developed by grafting pH-stimulus-responsive materials onto the top layer of the composite structure, which is prepared by two novel block copolymers using a phase-separation technique. This engineered asymmetric composite membrane shows potential applications in sensors, filtration, and nanofluidic devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Tunable permeability and selectivity : Heatable inorganic porous hollow fiber membrane with a thermo-responsive microgel coating

    NARCIS (Netherlands)

    Lohaus, T.; de Wit, P.; Kather, M.; Menne, D.; Benes, N. E.; Pich, A.; Wessling, M.

    2017-01-01

    In recent years, the interest in responsive materials to design membranes with tunable properties increased in order to customize membranes for adaptable process requirements. The majority of development methods require external adjustment of the feed stream temperature to achieve a responsiveness

  7. Ceramic nanostructure materials, membranes and composite layers

    NARCIS (Netherlands)

    Burggraaf, A.J.; Keizer, Klaas; van Hassel, B.A.

    1989-01-01

    Synthesis methods to obtain nanoscale materials will be briefly discussed with a focus on sol-gel methods. Three types of nanoscale composites (powders, membranes and ion implanted layers) will be discussed and exemplified with recent original research results. Ceramic membranes with a thickness of

  8. Composite perfluorohydrocarbon membranes, their preparation and use

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yong; Bikson, Benjamin

    2017-04-04

    Composite porous hydrophobic membranes are prepared by forming a perfluorohydrocarbon layer on the surface of a preformed porous polymeric substrate. The substrate can be formed from poly (aryl ether ketone) and a perfluorohydrocarbon layer can be chemically grafted to the surface of the substrate. The membranes can be utilized for a broad range of fluid separations, such as microfiltration, nanofiltration, ultrafiltration as membrane contactors for membrane distillation and for degassing and dewatering of fluids. The membranes can further contain a dense ultra-thin perfluorohydrocarbon layer superimposed on the porous poly (aryl ether ketone) substrate and can be utilized as membrane contactors or as gas separation. membranes for natural gas treatment and gas dehydration.

  9. Ceria Based Composite Membranes for Oxygen Separation

    DEFF Research Database (Denmark)

    Gurauskis, Jonas; Ovtar, Simona; Kaiser, Andreas

    2014-01-01

    Mixed ionic-electronic conducting membranes for oxygen gas separation are attracting a lot of interest due to their promising potential for the pure oxygen and the syngas production. Apart from the need for a sufficiently high oxygen permeation fluxes, the prolonged stability of these membranes...... under the large oxygen potential gradients at elevated temperatures is decisive for the future applications. The gadolinium doped cerium oxide (CGO) based composite membranes are considered as promising candidates due to inherent stability of CGO phase. The CGO matrix is a main oxygen ion transporter......; meanwhile the primary role of a secondary phase in this membrane is to compensate the low electronic conductivity of matrix at intended functioning conditions. In this work thin film (15-20 μm) composite membranes based on CGO matrix and LSF electronic conducting phase were fabricated and evaluated...

  10. Synthesis of Carbon Nanotube (CNT Composite Membranes

    Directory of Open Access Journals (Sweden)

    Dusan Losic

    2010-12-01

    Full Text Available Carbon nanotubes are attractive approach for designing of new membranes for advanced molecular separation because of their unique transport properties and ability to mimic biological protein channels. In this work the synthetic approach for fabrication of carbon nanotubes (CNTs composite membranes is presented. The method is based on growth of multi walled carbon nanotubes (MWCNT using chemical vapour deposition (CVD on the template of nanoporous alumina (PA membranes. The influence of experimental conditions including carbon precursor, temperature, deposition time, and PA template on CNT growth process and quality of fabricated membranes was investigated. The synthesis of CNT/PA composites with controllable nanotube dimensions such as diameters (30–150 nm, and thickness (5–100 µm, was demonstrated. The chemical composition and morphological characteristics of fabricated CNT/PA composite membranes were investigated by various characterisation techniques including scanning electron microscopy (SEM, energy-dispersive x-ray spectroscopy (EDXS, high resolution transmission electron microscopy (HRTEM and x-ray diffraction (XRD. Transport properties of prepared membranes were explored by diffusion of dye (Rose Bengal used as model of hydrophilic transport molecule.

  11. Hybrid Nano composite Membranes for PEMFC Applications

    International Nuclear Information System (INIS)

    Niepceron, F.

    2008-03-01

    This work aims at validating a new concept of hybrid materials for the realization of proton exchange membranes, an essential constituent of PEM fuel cells. The originality of this nano-composite hybrid concept corresponds to a separation of the membrane's properties. We investigated the preparation of composite materials based on an inert, relatively low cost, polymer matrix (PVDF-HFP) providing the mechanical stability embedding inorganic fillers providing the necessary properties o f proton-conduction and water retention. The first step of this work consisted in the modification of fumed silica to obtain a proton-conducting filler. An ionic exchange capacity (CEI) equal to 3 meq/g was obtained by the original grafting of sodium poly(styrene-sulfonate) chains from the surface of particles. Nano-composite hybrid membranes PVDF-HFP/functionalized silica were accomplished by a film casting process. The coupling of the morphological and physicochemical analyses validated the percolation of the inorganic phase for 30 wt.% of particles. Beyond 40 % of loading, measured protonic conductivity is higher than the reference membrane Nafion 112. Finally, these membranes presented high performances, above 0.8 W/cm 2 , in single-cell fuel cell tests. A compromise is necessary according to the rate of loading between performances in fuel cell and mechanical properties of the membrane. 50 % appeared as best choice with, until 90 C, a remarkable thermal stability of the performances. (author)

  12. Polymer-SnO2 composite membranes

    DEFF Research Database (Denmark)

    Nørgaard, Casper Frydendal; Skou, Eivind Morten

    When designing sulfonic acid based ionomers, high ion exchange capacity (IEC) comes at the expense of the mechanical properties. With too high IEC, the membrane will excessively swell or even dissolve in water. Therefore a suitable compromise must be found between high charge carrier concentration...... and adequate mechanical properties. It has been demonstrated that this compromise can be found at higher IEC when the mechanical properties are improved by increasing crystallinity, increasing molecular weight, crosslinking or reinforcement of the membrane by dispersion of interacting particles therein....... This work utilizes the latter approach and makes use of particles of tin dioxide (SnO2). Polymer-SnO2 composite membranes were successfully prepared using an ion-exchange method. SnO2 was incorporated into membranes by ion-exchange in solutions of SnCl2 ∙ 2 H2O in methanol, followed by oxidation to SnO2...

  13. Tunable Fiber Bragg Grating Ring Lasers using Macro Fiber Composite Actuators

    Science.gov (United States)

    Geddis, Demetris L.; Allison, Sidney G.; Shams, Qamar A.

    2006-01-01

    The research reported herein includes the fabrication of a tunable optical fiber Bragg grating (FBG) fiber ring laser (FRL)1 from commercially available components as a high-speed alternative tunable laser source for NASA Langley s optical frequency domain reflectometer (OFDR) interrogator, which reads low reflectivity FBG sensors. A Macro-Fiber Composite (MFC) actuator invented at NASA Langley Research Center (LaRC) was selected to tune the laser. MFC actuators use a piezoelectric sheet cut into uniaxially aligned rectangular piezo-fibers surrounded by a polymer matrix and incorporate interdigitated electrodes to deliver electric fields along the length of the piezo-fibers. This configuration enables MFC actuators to produce displacements larger than the original uncut piezoelectric sheet. The FBG filter was sandwiched between two MFC actuators, and when strained, produced approximately 3.62 nm of wavelength shift in the FRL when biasing the MFC actuators from 500 V to 2000 V. This tunability range is comparable to that of other tunable lasers and is adequate for interrogating FBG sensors using OFDR technology. Three different FRL configurations were studied. Configuration A examined the importance of erbium-doped fiber length and output coupling. Configuration B demonstrated the importance of the FBG filter. Configuration C added an output coupler to increase the output power and to isolate the filter. Only configuration C was tuned because it offered the best optical power output of the three configurations. Use of Plastic Optical Fiber (POF) FBG s holds promise for enhanced tunability in future research.

  14. Influence of membrane composition on its flexibility

    Energy Technology Data Exchange (ETDEWEB)

    Gerbelli, B.B.; Teixeira da Silva, E.R.; Oliveira, C.L.P.; Oliveira, E.A. [Universidade de Sao Paulo (USP), SP (Brazil)

    2012-07-01

    Full text: Lamellar phases and vesicles composed of lipids have been used as model systems to investigate biological process related to cell membrane as well as promising carriers for drugs and gene therapy. The composition of the membrane determines its three dimensional shape and its properties such as rigidity and compressibility which play an important role on membrane fusion, protein adhesion, interactions between proteins, etc. We present systematic study of a lamellar system composed mainly of lecithin which is a biocompatible phospholipid and simusol, which is a mixture of fatty acids that acts as a cosurfactant introducing flexibility to the membrane. Using X ray scattering we determine the lamellar periodicity as a function of the hydration for different formulations of the membrane; ranging from 100 % to 50 % mass fraction of lecithin. The X-ray spectra are fitted using a 4 Gaussian model [1]that allows us to determine the lamellar periodicity and the Caille parameter [2]. The ideal swelling law relating the membrane volume fraction ({phi}{sub m}) to the lamellar periodicity (D) is given by {phi}{sub m} ={delta}{sub m}/D, where {delta}{sub m} is the thickness membrane, however, when steric interactions are dominant with respect to electrostatic and van der Waals interactions, deviations from this behavior are expected [3]. We present experimental data illustrating the swelling behavior for the membrane compositions and the respective behavior of the hydration limit, membrane Luzzati [4], of the Caille parameter and qualitative interpretation of the interaction forces the systems studying the parameter membrane square amplitude fluctuation[5]. [1] Private communication with Prof. Dr. Cristiano Luis Pinto de Oliveira. [2] Caille A. et all, Acad. Sci. Paris B274 (1972) 891. [3] E. Kurtisovski et all, PRL 98, 258103 (2007). [4] Nagle et all, Curr Opin Struct Biol. 2000 Aug;10(4):474-80. [5] H. I. Petrache. Structure and interactions of fluid phospholipids

  15. Nanofiber Composite Membranes for Alkaline Fuel Cells: Generation of Compositional, Morphological, and Functional Property Relationships

    Science.gov (United States)

    2015-12-01

    properties of nanofiber composite anion-exchange membranes for alkaline fuel cells. A new membrane fabrication strategy, utilizing polymer fiber...Approved for Public Release; Distribution Unlimited Final Report: Nanofiber Composite Membranes for Alkaline Fuel Cells: Generation of Compositional...Park, NC 27709-2211 nanofibers, electrospinning, composite membranes, alkaline fuel cells REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER

  16. Tunable integration of absorption-membrane-adsorption for efficiently separating low boiling gas mixtures near normal temperature.

    Science.gov (United States)

    Liu, Huang; Pan, Yong; Liu, Bei; Sun, Changyu; Guo, Ping; Gao, Xueteng; Yang, Lanying; Ma, Qinglan; Chen, Guangjin

    2016-02-19

    Separation of low boiling gas mixtures is widely concerned in process industries. Now their separations heavily rely upon energy-intensive cryogenic processes. Here, we report a pseudo-absorption process for separating low boiling gas mixtures near normal temperature. In this process, absorption-membrane-adsorption is integrated by suspending suitable porous ZIF material in suitable solvent and forming selectively permeable liquid membrane around ZIF particles. Green solvents like water and glycol were used to form ZIF-8 slurry and tune the permeability of liquid membrane surrounding ZIF-8 particles. We found glycol molecules form tighter membrane while water molecules form looser membrane because of the hydrophobicity of ZIF-8. When using mixing solvents composed of glycol and water, the permeability of liquid membrane becomes tunable. It is shown that ZIF-8/water slurry always manifests remarkable higher separation selectivity than solid ZIF-8 and it could be tuned to further enhance the capture of light hydrocarbons by adding suitable quantity of glycol to water. Because of its lower viscosity and higher sorption/desorption rate, tunable ZIF-8/water-glycol slurry could be readily used as liquid absorbent to separate different kinds of low boiling gas mixtures by applying a multistage separation process in one traditional absorption tower, especially for the capture of light hydrocarbons.

  17. Tunable integration of absorption-membrane-adsorption for efficiently separating low boiling gas mixtures near normal temperature

    Science.gov (United States)

    Liu, Huang; Pan, Yong; Liu, Bei; Sun, Changyu; Guo, Ping; Gao, Xueteng; Yang, Lanying; Ma, Qinglan; Chen, Guangjin

    2016-01-01

    Separation of low boiling gas mixtures is widely concerned in process industries. Now their separations heavily rely upon energy-intensive cryogenic processes. Here, we report a pseudo-absorption process for separating low boiling gas mixtures near normal temperature. In this process, absorption-membrane-adsorption is integrated by suspending suitable porous ZIF material in suitable solvent and forming selectively permeable liquid membrane around ZIF particles. Green solvents like water and glycol were used to form ZIF-8 slurry and tune the permeability of liquid membrane surrounding ZIF-8 particles. We found glycol molecules form tighter membrane while water molecules form looser membrane because of the hydrophobicity of ZIF-8. When using mixing solvents composed of glycol and water, the permeability of liquid membrane becomes tunable. It is shown that ZIF-8/water slurry always manifests remarkable higher separation selectivity than solid ZIF-8 and it could be tuned to further enhance the capture of light hydrocarbons by adding suitable quantity of glycol to water. Because of its lower viscosity and higher sorption/desorption rate, tunable ZIF-8/water-glycol slurry could be readily used as liquid absorbent to separate different kinds of low boiling gas mixtures by applying a multistage separation process in one traditional absorption tower, especially for the capture of light hydrocarbons. PMID:26892255

  18. Analysis of bacteria-derived outer membrane vesicles using tunable resistive pulse sensing

    Science.gov (United States)

    Bogomolny, Evgeny; Hong, Jiwon; Blenkiron, Cherie; Simonov, Denis; Dauros, Priscila; Swift, Simon; Phillips, Anthony; Willmott, Geoff R.

    2015-03-01

    Accurate characterization of submicron particles within biological fluids presents a major challenge for a wide range of biomedical research. Detection, characterization and classification are difficult due to the presence of particles and debris ranging from single molecules up to particles slightly smaller than cells. Especial interest arises from extracellular vesicles (EVs) which are known to play a pivotal role in cell-signaling in multicellular organisms. Tunable resistive pulse sensing (TRPS) is increasingly proving to be a useful tool for high throughput particle-by-particle analysis of EVs and other submicron particles. This study examines the capability of TRPS for characterization of EVs derived from bacteria, also called outer membrane vesicles (OMVs). Measurement of a size distribution (124 +/- 3 nm modal diameter) and concentration (lower bound 7.4 x 109 mL-1) are demonstrated using OMVs derived from uropathogenic Escherichia coli. Important aspects of measurement are discussed, including sample preparation and size selection. Application of TRPS to study EVs could assist the development of these particles in clinical diagnostics and therapeutics.

  19. Poly(ethylene glycol)/carbon quantum dot composite solid films exhibiting intense and tunable blue–red emission

    International Nuclear Information System (INIS)

    Hao, Yanling; Gan, Zhixing; Xu, Jiaqing; Wu, Xinglong; Chu, Paul K.

    2014-01-01

    Highlights: • Poly(ethylene glycol)/carbon quantum dots (PEG/CQDs) composite solid films exhibiting strong and tunable blue–red emission were prepared. Successful preparation of tunable emitting CQDs solid films can extend the application of carbon quantum dots in photoelectric devices. • The mechanism of the tunable emission from the PEG/CQDs composite solid films was discussed. • On the basis of the characteristics of the PL from solid films in this work, the complex PL origins of CQDs were further defined. The PL mechanism provides insights into the fluorescence mechanism of CQDs and may promotes their applications. • Poly(ethylene glycol); carbon quantum dots; Strong and tunable blue-red emission; The fluorescent quantum yield of 12.6%. - Abstract: Although carbon quantum dots (CQDs) possess excellent luminescence properties, it is a challenge to apply water-soluble CQDs to tunable luminescent devices. Herein, quaternary CQDs are incorporated into poly(ethylene glycol) to produce poly(ethylene glycol)/CQD composite solid films which exhibit strong and tunable blue–red emission. The fluorescent quantum yield reaches 12.6% which is comparable to that of many liquid CQDs and the photoluminescence characteristics are determined to elucidate the fluorescence mechanism. The CQD solid films with tunable optical properties bode well for photoelectric devices especially displays

  20. Rapid One-Pot Microwave Synthesis of Mixed-Linker Hybrid Zeolitic-Imidazolate Framework Membranes for Tunable Gas Separations.

    Science.gov (United States)

    Hillman, Febrian; Brito, Jordan; Jeong, Hae-Kwon

    2018-02-14

    The relatively slow and complex fabrication processes of polycrystalline metal-organic framework (MOF) membranes often times restrict their way to commercialization, despite their potential for molecular separation applications. Herein, we report a rapid one-pot microwave synthesis of mixed-linker hybrid zeolitic-imidazolate framework (ZIF) membranes consisting of 2-methylimidazolate (ZIF-8 linker) and benzimidazolate (ZIF-7 linker) linkers, termed ZIF-7-8 membranes. The fast-volumetric microwave heating in conjunction with a unique counter diffusion of metal and linker solutions enabled unprecedented rapid synthesis of well-intergrown ZIF-7-8 membranes in ∼90 s, the fastest MOF membrane preparation up to date. Furthermore, we were able to tune the molecular sieving properties of the ZIF-7-8 membranes by varying the benzimidazole-to-2-methylimidazole (bIm-to-mIm) linker ratio in the hybrid frameworks. The tuning of their molecular sieving properties led to the systematic change in the permeance and selectivity of various small gases. The unprecedented rapid synthesis of well-intergrown ZIF-7-8 membranes with tunable molecular sieving properties is an important step forward for the commercial gas separation applications of ZIF membranes.

  1. Sulfonated carbon black-based composite membranes for fuel cell ...

    Indian Academy of Sciences (India)

    Pristine and composite membranes prepared from SPEEK82 decomposed completely in <1 h, which is undesirable for fuel cell applications. SPEEK60 membrane having wt% of 0.25–0.5 with S–C particles led to higher proton conductivity than that of pristine membrane. No positive effect was observed on the properties of ...

  2. Tunable interacting composite fermion phases in a half-filled bilayer-graphene Landau level

    Science.gov (United States)

    Zibrov, A. A.; Kometter, C.; Zhou, H.; Spanton, E. M.; Taniguchi, T.; Watanabe, K.; Zaletel, M. P.; Young, A. F.

    2017-09-01

    Non-Abelian anyons are a type of quasiparticle with the potential to encode quantum information in topological qubits protected from decoherence. Experimental systems that are predicted to harbour non-Abelian anyons include p-wave superfluids, superconducting systems with strong spin-orbit coupling, and paired states of interacting composite fermions that emerge at even denominators in the fractional quantum Hall (FQH) regime. Although even-denominator FQH states have been observed in several two-dimensional systems, small energy gaps and limited tunability have stymied definitive experimental probes of their non-Abelian nature. Here we report the observation of robust even-denominator FQH phases at half-integer Landau-level filling in van der Waals heterostructures consisting of dual-gated, hexagonal-boron-nitride-encapsulated bilayer graphene. The measured energy gap is three times larger than observed previously. We compare these FQH phases with numerical and theoretical models while simultaneously controlling the carrier density, layer polarization and magnetic field, and find evidence for the paired Pfaffian phase that is predicted to host non-Abelian anyons. Electric-field-controlled level crossings between states with different Landau-level indices reveal a cascade of FQH phase transitions, including a continuous phase transition between the even-denominator FQH state and a compressible composite fermion liquid. Our results establish graphene as a pristine and tunable experimental platform for studying the interplay between topology and quantum criticality, and for detecting non-Abelian qubits.

  3. Tunable Physical Properties of Ethylcellulose/Gelatin Composite Nanofibers by Electrospinning.

    Science.gov (United States)

    Liu, Yuyu; Deng, Lingli; Zhang, Cen; Feng, Fengqin; Zhang, Hui

    2018-02-28

    In this work, the ethylcellulose/gelatin blends at various weight ratios in water/ethanol/acetic acid solution were electrospun to fabricate nanofibers with tunable physical properties. The solution compatibility was predicted based on Hansen solubility parameters and evaluated by rheological measurements. The physical properties were characterized by scanning electron microscopy, porosity, differential scanning calorimetry, thermogravimetry, Fourier transform infrared spectroscopy, and water contact angle. Results showed that the entangled structures among ethylcellulose and gelatin chains through hydrogen bonds gave rise to a fine morphology of the composite fibers with improved thermal stability. The fibers with higher gelatin ratio (75%), possessed hydrophilic surface (water contact angle of 53.5°), and adequate water uptake ability (1234.14%), while the fibers with higher ethylcellulose proportion (75%) tended to be highly water stable with a hydrophobic surface (water contact angle of 129.7°). This work suggested that the composite ethylcellulose/gelatin nanofibers with tunable physical properties have potentials as materials for bioactive encapsulation, food packaging, and filtration applications.

  4. Sulfonated carbon black-based composite membranes for fuel cell

    Indian Academy of Sciences (India)

    Composite membranes were then prepared using S–C as fillers and sulfonated poly(ether ether ketone) (SPEEK) as polymer matrix with three different sulfonation degrees (DS = 60, 70 and 82%). Structure and properties of the composite membranes were characterized by FTIR, TGA, scanning electron microscopy, proton ...

  5. Effective non-retarded method as a tool for the design of tunable nanoparticle composite absorbers

    International Nuclear Information System (INIS)

    Ortiz, Guillermo; Inchaussandague, Marina; Skigin, Diana; Depine, Ricardo; Mochán, W Luis

    2014-01-01

    We investigate the capabilities of an effective non-retarded formalism (ENR) for the exploration and design of nanoparticle composites with specific optical properties. We consider a composite material comprising periodically distributed metallic spheres in a dielectric host matrix. The effective macroscopic dielectric function of the composite medium is obtained by means of the ENR and is used to calculate the electromagnetic response of a slab made of an inhomogeneous material. This response is compared with that obtained by using the layer Korringa–Kohn–Rostoker wave calculation method (LKKR). We analyze the optical properties for different filling fractions, especially in the vicinity of the resonance frequencies of the macroscopic dielectric function. We notice that for dense systems within the long wavelength regime, the results of some analytical theories developed by other authors do not properly describe the multipolar excitations and interactions of orders higher than the dipole, in contrast with the results obtained by using an ENR. Therefore, those methods are not suitable for the design of compound films with novel properties. We show that by appropriately choosing the parameters of the composite, it is possible to achieve a tunable absorber film, and more generally, we show that ENR is a versatile tool for the design of nanoparticle composite materials with specific properties. (paper)

  6. High performance thin-film composite forward osmosis membrane.

    Science.gov (United States)

    Yip, Ngai Yin; Tiraferri, Alberto; Phillip, William A; Schiffman, Jessica D; Elimelech, Menachem

    2010-05-15

    Recent studies show that osmotically driven membrane processes may be a viable technology for desalination, water and wastewater treatment, and power generation. However, the absence of a membrane designed for such processes is a significant obstacle hindering further advancements of this technology. This work presents the development of a high performance thin-film composite membrane for forward osmosis applications. The membrane consists of a selective polyamide active layer formed by interfacial polymerization on top of a polysulfone support layer fabricated by phase separation onto a thin (40 mum) polyester nonwoven fabric. By careful selection of the polysulfone casting solution (i.e., polymer concentration and solvent composition) and tailoring the casting process, we produced a support layer with a mix of finger-like and sponge-like morphologies that give significantly enhanced membrane performance. The structure and performance of the new thin-film composite forward osmosis membrane are compared with those of commercial membranes. Using a 1.5 M NaCl draw solution and a pure water feed, the fabricated membranes produced water fluxes exceeding 18 L m(2-)h(-1), while consistently maintaining observed salt rejection greater than 97%. The high water flux of the fabricated thin-film composite forward osmosis membranes was directly related to the thickness, porosity, tortuosity, and pore structure of the polysulfone support layer. Furthermore, membrane performance did not degrade after prolonged exposure to an ammonium bicarbonate draw solution.

  7. High Performance Thin-Film Composite Forward Osmosis Membrane

    KAUST Repository

    Yip, Ngai Yin

    2010-05-15

    Recent studies show that osmotically driven membrane processes may be a viable technology for desalination, water and wastewater treatment, and power generation. However, the absence of a membrane designed for such processes is a significant obstacle hindering further advancements of this technology. This work presents the development of a high performance thin-film composite membrane for forward osmosis applications. The membrane consists of a selective polyamide active layer formed by interfacial polymerization on top of a polysulfone support layer fabricated by phase separation onto a thin (40 μm) polyester nonwoven fabric. By careful selection of the polysulfone casting solution (i.e., polymer concentration and solvent composition) and tailoring the casting process, we produced a support layer with a mix of finger-like and sponge-like morphologies that give significantly enhanced membrane performance. The structure and performance of the new thin-film composite forward osmosis membrane are compared with those of commercial membranes. Using a 1.5 M NaCl draw solution and a pure water feed, the fabricated membranes produced water fluxes exceeding 18 L m2-h-1, while consistently maintaining observed salt rejection greater than 97%. The high water flux of the fabricated thin-film composite forward osmosis membranes was directly related to the thickness, porosity, tortuosity, and pore structure of the polysulfone support layer. Furthermore, membrane performance did not degrade after prolonged exposure to an ammonium bicarbonate draw solution. © 2010 American Chemical Society.

  8. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    International Nuclear Information System (INIS)

    Haryadi,; Sugianto, D.; Ristopan, E.

    2015-01-01

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm −1 and 3300 cm −1 respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10 −2 S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant

  9. Composition tunable cobalt–nickel and cobalt–iron alloy nanoparticles below 10 nm synthesized using acetonated cobalt carbonyl

    NARCIS (Netherlands)

    van Schooneveld, Matti M.; Campos-Cuerva, Carlos; Pet, Jeroen; Meeldijk, Johannes D.; van Rijssel, Jos; Meijerink, Andries; Erne, Ben H.; de Groot, Frank M. F.

    A general organometallic route has been developed to synthesize CoxNi1-x and CoxFe1-x alloy nanoparticles with a fully tunable composition and a size of 4–10 nm with high yield. In contrast to previously reported synthesis methods using dicobalt octacarbonyl (Co2(CO)8), here the cobalt–cobalt bond

  10. ZirfonR-composite membranes: properties and applications

    International Nuclear Information System (INIS)

    Leysen, R.; Doyen, W.; Adriansen, W.; Vermeiren, Ph.

    1993-01-01

    In this report, the fabrication and the applications of a new type of composite membrane, the zirconium-oxide-polysulphone membrane (registered trade mark name: Zirfon), are described. The investigated Zirfon membranes are fabricated by the film casting technique and are composed of zirconium oxide powder and a polymeric binder, polysulphone. Zirfon membranes have been developed first for use as separators in electrochemical applications (e.g. alkaline water electrolysis and alkaline fuel cells). Besides their applications in electrochemical systems, Zirfon membranes have been tested as separating membranes for several ultrafiltration purposes. The most recent application of Zirfon membranes is their use for the removal of heavy metals in waste streams by means of incorporated bacteria. In this application, micro-organisms are immobilized on the porous structure of the membrane. Potential future applications are in the field of energy production (fuel cells) and the treatment of non-nuclear or nuclear waste water. (A.S.)

  11. Polybenzimidazole and sulfonated polyhedral oligosilsesquioxane composite membranes for high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Aili, David; Allward, Todd; Alfaro, Silvia Martinez

    2014-01-01

    Composite membranes based on poly(2,2′(m-phenylene)-5,5́bibenzimidazole) (PBI) and sulfonated polyhedral oligosilsesquioxane (S-POSS) with S-POSS contents of 5 and 10wt.% were prepared by solution casting as base materials for high temperature polymer electrolyte membrane fuel cells. With membranes...... based on pure PBI as a reference point, the composite membranes were characterized with respect to spectroscopic and physicochemical properties. After doping with phosphoric acid, the composite membranes showed considerably improved ex situ proton conductivity under anhydrous as well as under fully...... humidified conditions in the 120-180°C temperature range. The conductivity improvements were also confirmed by in situ fuel cell tests at 160°C and further supported by the electrochemical impedance spectroscopy data based on the operating membrane electrode assemblies, demonstrating the technical...

  12. Membrane distillation : a new approach using composite membranes

    NARCIS (Netherlands)

    Franken, Antonius Christianus Maria

    1988-01-01

    In this thesis several aspects of the membrane distillation process and the thermally driven pervaporation process have been described. Both processes differ essentially from each other as far as their mechanism of separation and their applicability is concerned. From a practical point of view,

  13. Controlled fabrication and tunable photoluminescence properties of Mn2+ doped graphene–ZnO composite

    International Nuclear Information System (INIS)

    Luan, Xinglong; Zhang, Yihe; Tong, Wangshu; Shang, Jiwu; An, Qi; Huang, Hongwei

    2014-01-01

    Highlights: • Graphene–ZnO composites were synthesized by a mixed solvothermal method. • ZnO quantum dots are distributed uniformly on the graphene sheets. • A possible hypothesis is raised for the influence of graphene oxide on the nucleation of ZnO. • Mn 2+ doped graphene–ZnO composites were fabricated and the emission spectra can be tuned by doping. - Abstract: Graphene–ZnO composites (G–ZnO) with controlled morphology and photoluminescence property were synthesized by a mixed solvothermal method. Mixed solvent were composed by dimethyl sulfoxide and ethylene glycol. Fourier transform infrared spectroscopy, transmission electron microscopy and photoluminescence spectra were used to characterize G–ZnO. Graphene as a substrate can help the distribution and the dispersity of ZnO, and a possible model of the interaction between graphene oxide and ZnO particles is proposed. At the same time, graphene also reduce the size of ZnO particles to about 5 nm. Furthermore, Mn 2+ ions dopes G–ZnO successfully by the mixed solvothermal synthesis and the doping of Mn 2+ makes G–ZnO shift red from 465 nm to 548 nm and 554 nm in the emission spectrum. The changes of the emission spectrum by the adding of Mn 2+ make G–ZnO have tunable photoluminescence spectrum which is desirable for practical applications

  14. Endurance of Nafion-composite membranes in PEFCs operating at ...

    Indian Academy of Sciences (India)

    Reduced gas-crossover, fast fuel-cell-reaction kinetics and superior performance of the PEFCs with Nafion-SiO2 and Nafion-MZP composite membranes in relation to the PEFC with pristine Nafion-1135 membrane support the long-term operational usage of the former in PEFCs. An 8-cell PEFC stack employing Nafion-SiO2 ...

  15. Stable catalyst layers for hydrogen permeable composite membranes

    Science.gov (United States)

    Way, J. Douglas; Wolden, Colin A

    2014-01-07

    The present invention provides a hydrogen separation membrane based on nanoporous, composite metal carbide or metal sulfide coated membranes capable of high flux and permselectivity for hydrogen without platinum group metals. The present invention is capable of being operated over a broad temperature range, including at elevated temperatures, while maintaining hydrogen selectivity.

  16. Anti-deformed Polyacrylonitrile/Polysulfone Composite Membrane with Binary Structures for Effective Air Filtration.

    Science.gov (United States)

    Zhang, Shichao; Liu, Hui; Yin, Xia; Yu, Jianyong; Ding, Bin

    2016-03-01

    Airborne particle filtration proposed for fibers requires their assembly into porous structures with small pore size and low packing density. The ability to maintain structural stability upon deformation stress in service is essential to ensure a highly porous packing material that functions reliably; however, it has proven extremely challenging. Here, we report a strategy to create anti-deformed poly(ethylene oxide)@polyacrylonitrile/polysulfone (PEO@PAN/PSU) composite membranes with binary structures for effective air filtration by combining multijet electrospinning and physical bonding process. Our approach allows the ambigenous fiber framework including thin PAN nanofibers and fluffy PSU microfibers, through which run interpenetrating PEO bonding structures, to assemble into stable filtration medium with tunable pore size and packing density by facilely optimizing the bimodal fiber construction and benefiting from the PEO inspiration. With the integrated features of small pore size, high porosity, and robust mechanical properties (8.2 MPa), the resultant composite membrane exhibits high filtration efficiency of 99.992%, low pressure drop of 95 Pa, and desirable quality factor of 0.1 Pa(-1); more significantly, it successfully gets rid of the potential safety hazards caused by unexpected structural collapsing under service stress. The synthesis of PEO@PAN/PSU medium would not only make it a promising candidate for PM2.5 governance but also provide a versatile strategy to design and develop stable porous membranes for various applications.

  17. Fabrication of bioinspired composite nanofiber membranes with robust superhydrophobicity for direct contact membrane distillation.

    Science.gov (United States)

    Liao, Yuan; Wang, Rong; Fane, Anthony G

    2014-06-03

    The practical application of membrane distillation (MD) for water purification is hindered by the absence of desirable membranes that can fulfill the special requirements of the MD process. Compared to the membranes fabricated by other methods, nanofiber membranes produced by electrospinning are of great interest due to their high porosity, low tortuosity, large surface pore size, and high surface hydrophobicity. However, the stable performance of the nanofiber membranes in the MD process is still unsatisfactory. Inspired by the unique structure of the lotus leaf, this study aimed to develop a strategy to construct superhydrophobic composite nanofiber membranes with robust superhydrophobicity and high porosity suitable for use in MD. The newly developed membrane consists of a superhydrophobic silica-PVDF composite selective skin formed on a polyvinylidene fluoride (PVDF) porous nanofiber scaffold via electrospinning. This fabrication method could be easily scaled up due to its simple preparation procedures. The effects of silica diameter and concentration on membrane contact angle, sliding angle, and MD performance were investigated thoroughly. For the first time, the direct contact membrane distillation (DCMD) tests demonstrate that the newly developed membranes are able to present stable high performance over 50 h of testing time, and the superhydrophobic selective layer exhibits excellent durability in ultrasonic treatment and a continuous DCMD test. It is believed that this novel design strategy has great potential for MD membrane fabrication.

  18. Magnetoresponsive Poly(ether sulfone)-Based Iron Oxide cum Hydrogel Mixed Matrix Composite Membranes for Switchable Molecular Sieving.

    Science.gov (United States)

    Lin, Xi; Nguyen Quoc, Bao; Ulbricht, Mathias

    2016-10-26

    Stimuli-responsive membranes that can adjust mass transfer and interfacial properties "on demand" have drawn large interest over the last few decades. Here, we designed and prepared a novel magnetoresponsive separation membrane with remote switchable molecular sieving effect by simple one-step and scalable nonsolvent induced phase separation (NIPS) process. Specifically, poly(ether sulfone) (PES) as matrix for an anisotropic membrane, prefabricated poly(N-isopropylacrylamide) (PNIPAAm) nanogel (NG) particles as functional gates, and iron oxide magnetic nanoparticles (MNP) as localized heaters were combined in a synergistic way. Before membrane casting, the properties of the building blocks, including swelling property and size distribution for NG, and magnetic property and heating efficiency for MNP, were investigated. Further, to identify optimal film casting conditions for membrane preparation by NIPS, in-depth rheological study of the effects of composition and temperature on blend dope solutions was performed. At last, a composite membrane with 10% MNP and 10% NG blended in a porous PES matrix was obtained, which showed a large, reversible, and stable magneto-responsivity. It had 9 times higher water permeability at the "on" state of alternating magnetic field (AMF) than at the "off"-state. Moreover, the molecular weight cutoff of such membrane could be reversibly shifted from ∼70 to 1750 kDa by switching off or on the external AMF, as demonstrated in dextran ultrafiltration tests. Overall, it has been proved that the molecular sieving performance of the novel mixed matrix composite membrane can be controlled by the swollen/shrunken state of PNIPAAm NG embedded in the nanoporous barrier layer of a PES-based anisotropic porous matrix, via the heat generation of nearby MNP. And the structure of such membrane can be tailored by the NIPS process conditions. Such membrane has potential as enabling material for remote-controlled drug release systems or devices for

  19. Separation of tritiated water from water using composite membranes

    International Nuclear Information System (INIS)

    Duncan, J.; Nelson, D.

    1996-01-01

    Polymeric composite membranes are being developed to remove tritium from contaminated water at DOE sites. Industrial membrane systems are being developed that have proven to be energy efficient, and membrane technologies such as reverse-osmosis have been well developed for desalination and other industrial/municipal applications. Aromatic polyphosphazene membranes are being investigated because they have excellent radiological, thermal, and chemical stability. The FY 1996 effort is directed toward delineating a potential mechanism, providing a statistical approach to data acquisition, refining a mass balance, and designing a staged array module

  20. Performance modeling of direct contact membrane distillation (DCMD) seawater desalination process using a commercial composite membrane

    KAUST Repository

    Lee, Junggil

    2015-01-10

    This paper presents the development of a rigorous theoretical model to predict the transmembrane flux of a flat sheet hydrophobic composite membrane, comprising both an active layer of polytetrafluoroethylene and a scrim-backing support layer of polypropylene, in the direct contact membrane distillation (DCMD) process. An integrated model includes the mass, momentum, species and energy balances for both retentate and permeate flows, coupled with the mass transfer of water vapor through the composite membrane and the heat transfer across the membrane and through the boundary layers adjacent to the membrane surfaces. Experimental results and model predictions for permeate flux and performance ratio are compared and shown to be in good agreement. The permeate flux through the composite layer can be ignored in the consideration of mass transfer pathways at the composite membrane. The effect of the surface porosity and the thickness of active and support layers on the process performance of composite membrane has also been studied. Among these parameters, surface porosity is identified to be the main factor significantly influencing the permeate flux and performance ratio, while the relative influence of the surface porosity on the performance ratio is less than that on flux.

  1. Zeta-potential of fouled thin film composite membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, K.; Hachisuka, H.; Nakamura, T. [Nitto denko Corp., Ibaraki, (Japan); Kimura, S. [Kogakuin University, Tokyo (Japan). Dept. of Environ. Chemical Engineering; Ueyama, K. [Osaka University, Osaka (Japan). Dept. of Chemical Engineering

    1999-10-01

    The surface zeta-potential of a cross-linked polyamide thin film composite reverse osmosis membrane was measured using an electrophoresis method. It was confirmed that this method could be effectively applied to analyze the fouling of such membranes. It is known that the water flux of membranes drastically decreases as a result of fouling by surfactants. Although the surfactants adsorbed on reverse osmosis membranes could not be detected by conventional methods such as SEM, EDX and FT-IR, their presence could be clarified by the profile measurements of the surface zeta-potential. The profiles of the membrane surface zeta-potentials changed to more positive values in the measured pH range as a result of fouling by cationic or amphoteric surfactants. This measuring method of surface zeta-potentials allowed us to analyze a very small amount of fouling of a thin film composite reverse osmosis membrane. This method could be used to analyze the fouled surface of the thin film composite reverse osmosis membrane which is used for production of ultrapure water and shows a remarkable decrease in flux. It also became clear that this method is easy and effective for the reverse osmosis membrane surface analysis of adsorbed materials such as surfactants. (author)

  2. Multiplex coaxial flow focusing for producing multicompartment Janus microcapsules with tunable material compositions and structural characteristics.

    Science.gov (United States)

    Wu, Qiang; Yang, Chaoyu; Liu, Guangli; Xu, Wanghuai; Zhu, Zhiqiang; Si, Ting; Xu, Ronald X

    2017-09-12

    We propose a simple but efficient multiplex coaxial flow focusing (MCFF) process for single-step fabrication of multicompartment Janus microcapsules (MJMs) in a wide range of operating parameters. The produced MJMs consist of a multicompartmental core-shell structure with material compositions tunable in individual shell and core compartments. Potential applications of such a MJM agent are demonstrated in both benchtop and in vitro experiments. For the benchtop experiment, magnetic nanoparticles are loaded into one of the shell compartments and photopolymerized under ultraviolet light for controlled alignment and rotation of the microcapsules in a magnetic field. For the in vitro experiment, four different types of cells are encapsulated in the desired compartments of sodium alginate MJMs and co-cultured for seven days. By increasing the number of coaxial needles, we are also able to produce MJMs with three or more compartments. Our studies have shown that the proposed MCFF process is able to produce MJMs with desired material compositions and narrow size distribution. This process is inexpensive and scalable for mass production of various MJMs in its potential applications in biomedical imaging, drug delivery, and regenerative medicine.

  3. Robust hydrophobic polyurethane fibrous membranes with tunable porous structure for waterproof and breathable application

    Science.gov (United States)

    Gu, Jiatai; Gu, Haihong; Cao, Jin; Chen, Shaojie; Li, Ni; Xiong, Jie

    2018-05-01

    In this work, novel nanofibrous membranes with waterproof and breathable (W&B) performance were successfully fabricated by the combination of electrospinning and surface modification technology. This fibrous membranes consisted of polyurethane (PU), NaCl, and fluoroalkylsilane (FAS). Firstly, The fibrous construction and porous structure of fibrous membranes were regulated by tuning the NaCl concentrations in PU solutions. Then, the obtained PU/NaCl fibrous membranes were further modified with fluoroalkylsilane (FAS) to improve hydrophobic property. The synergistic effect of porous structure and hydrophobicity on waterproof and breathable performance was investigated. Furthermore, the mechanical property of fibrous membranes was deeply analysed on the basis of macromolecule orientation and adhesive structure. Benefiting from the optimized porous structure and hydrophobic modification, the resultant fibrous membranes exhibited excellent waterproof (hydrostatic pressure of 1261 Mbar), breathable (water vapor transmission (WVT) rate of 9.06 kg m-2 d-1 and air permeability of 4.8 mm s-1) performance, as well as high tensile strength (breakage stress of 10.4 MPa), suggesting a promising candidate for various applications, especially in protective clothing.

  4. Thin Film Composite Membranes: Mechanical and Antifouling Properties

    Directory of Open Access Journals (Sweden)

    Kassim Shaari Norin Zamiah

    2017-01-01

    Full Text Available As compared to membranes produced from pure polymer or pure inorganic materials, a hybrid membrane possesses better mechanical and thermal properties. This paper reported on the effect of incorporating silica nano-precursor (tetraethylorthosilicate as well as glycerol in the formulation of hybrid membrane on the mechanical properties and antifouling properties of the resultant thin film composite membranes. The mechanical properties were measured in terms of tensile strength, tensile strain and elastic modulus. Whereas for antifouling properties, it was evaluated through the measurements of relative flux decay (RFD and relative flux recovery (RFR, along with the permeate flux rate, percentage glycerol permeated and NaCl rejection. Results showed that the presence of silica and glycerol in hybrid membrane’s formulation had increased the tensile strength and elongation of the resultant membranes. In addition to that, the incorporation of glycerol has resulted in thin film composite with better antifouling properties as compared to the thin film composite with barrier layer from the pure polymer blend. Based on its performance, the fabricated thin film composite has a great potential to be used as a pathway for crude glycerol purification due to some advantages over the existing process that employ membrane.

  5. Hybrid polymer composite membrane for an electromagnetic (EM) valveless micropump

    Science.gov (United States)

    Said, Muzalifah Mohd; Yunas, Jumril; Bais, Badariah; Azlan Hamzah, Azrul; Yeop Majlis, Burhanuddin

    2017-07-01

    In this paper, we report on a hybrid membrane used as an actuator in an electromagnetically driven valveless micropump developed using MEMS processes. The membrane structure consists of the combination of a magnetic polymer composite membrane and an attached bulk permanent magnet which is expected to have a compact structure and a strong magnetic force with maintained membrane flexibility. A soft polymeric material made of polydimethylsiloxane (PDMS) is initially mixed with neodymium magnetic particles (NdFeB) to form a magnetic polymer composite membrane. The membrane is then bonded with the PDMS based microfluidic part, developed using soft lithography process. The developed micropump was tested in terms of the actuator membrane deflection capability and the fluidic flow of the injected fluid sample through the microfluidic channel. The experimental results show that the magnetic composite actuator membrane with an attached bulk permanent magnet is capable of producing a maximum membrane deflection of up to 106 µm. The functionality test of the electromagnetic (EM) actuator for fluid pumping purposes was done by supplying an AC voltage with various amplitudes, signal waves and frequencies. A wide range of sample injection rates from a few µl min-1 to tens of nl min-1 was achieved with a maximum flow rate of 6.6 µl min-1. The injection flow rate of the EM micropump can be controlled by adjusting the voltage amplitude and frequency supplied to the EM coil, to control the membrane deflection in the pump chamber. The designed valveless EM micropump has a very high potential to enhance the drug delivery system capability in biomedical applications.

  6. Solid polymer electrolyte composite membrane comprising laser micromachined porous support

    Science.gov (United States)

    Liu, Han [Waltham, MA; LaConti, Anthony B [Lynnfield, MA; Mittelsteadt, Cortney K [Natick, MA; McCallum, Thomas J [Ashland, MA

    2011-01-11

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 5 microns, are made by laser micromachining and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  7. High performance hydrophilic pervaporation composite membranes for water desalination

    KAUST Repository

    Liang, Bin

    2014-08-01

    A three-layer thin film nanofibrous pervaporation composite (TFNPVC) membrane was prepared by sequential deposition using electrospraying/electrospinning. The poly(vinyl alcohol) (PVA) top barrier layer was first electrosprayed on aluminum foil and its thickness can be easily controlled by adjusting the collecting time. Next a polyacrylonitrile (PAN) nanofibrous scaffold was deposited by electrospinning as a mid-layer support. A nonwoven PET layer is used to complete the composite membrane. The pervaporation desalination performance of TFNPVC membranes was tested using NaCl solutions at 100. Pa and at room temperature. The TFNPVC membranes show excellent desalination performance (high water flux and salt rejection >. 99.5%) for different salt concentrations with virtually no change in performance after 50. h of operation. © 2014 Elsevier B.V.

  8. A theoretical model for gas permeability in a composite membrane

    International Nuclear Information System (INIS)

    Serrano, D. A

    2009-01-01

    We present in this work an analytical expression for permeability in a two-layer composite membrane, which was derived assuming the same hypothesis as those of Adzumi model for permeability in a homogeneous membrane. Whereas in Adzumi model permeability shows a linear dependence on the mean pressure, our model for a composite membrane related permeability to pressure through a rather complex expression, which covers the whole range of flow, from molecular-Knudsen to viscous-Poiseuille regimes. The expression obtained for permeability contained information of membrane structural properties as pore size, porosity and thickness of each layer, as well as gas nature and operational conditions. Our two-layer-model expression turns into Adzumi formula when the structure of the layers approach to each other. [es

  9. Polymer microvalve with pre-stressed membranes for tunable flow–pressure characteristics

    DEFF Research Database (Denmark)

    Snakenborg, Detlef; Klank, Henning; Kutter, Jörg Peter

    2011-01-01

    A novel, inexpensive, polymer-based valve approach is presented that offers the combination of a check valve’s rectifying properties with the possibility to actively control the flow rate in the forward (open) direction. An elastic membrane with an incision is clamped between two rigid polymer pl...

  10. Carbon nanotubes based nafion composite membranes for fuel cell applications

    CSIR Research Space (South Africa)

    Cele, NP

    2009-01-01

    Full Text Available composite membranes. Keywords: Carbon Nanotubes, Conductivity, Fuel Cell, Nafion, Nanocomposite Membranes, Thermal Properties, Water Uptake FUEL CELLS 00, 0000, No. 0, 1–8 ? 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 1 ORIGINA L RESEAR CH PAPE... used strategies to overcome these drawbacks is the modification of Nafion by using polymer nanocomposite (PNC) technology. PNCs have recently shown a worldwide growth effort especially in the fabrication of high temperature PEM for fuel cells [18...

  11. Fabrication and characterization of magnetic nanoparticle composite membranes

    Science.gov (United States)

    Cruickshank, Akeem Armand

    To effectively and accurately deliver drugs within the human body, both new designs and components for implantable micropumps are being studied. Designs must ensure high biocompatibility, drug compatibility, accuracy and small power consumption. The focus of this thesis was to fabricate a prototype magnetic nanoparticle membrane for eventual incorporation into a biomedical pump and then determine the relationship between this membrane deflection and applied pneumatic or magnetic force. The magnetic nanoparticle polymer composite (MNPC) membranes in this study were composed of crosslinked polydimethylsiloxane (PDMS) and iron oxide nanoparticles (IONPs). An optimal iron oxide fabrication route was identified and particle size in each batch was approximately 24.6 nm. Once these nanoparticles were incorporated into a membrane (5 wt. %), the nanoparticle formed agglomerates with an average diameter of 2.26 +/-1.23 microm. Comparisons between the 0 and 5 wt. % loading of particles into the membranes indicated that the elastic modulus of the composite decreased with increasing particle concentration. The pressure- central deflection of the membranes could not be predicated by prior models and variation between magnetic and pneumatic pressure-deflection curves was quantified. Attempts to fabricate membranes with above 5 wt. % nanoparticles were not successful (no gelation). Fourier Transform Infrared (FTIR) spectroscopy results suggest that excess oleic acid on the nanoparticles prior to mixing might have prevented crosslinking.

  12. Funding initiates production of tunable nano-porous block copolymer membranes

    KAUST Repository

    Peinemann, Klaus-Viktor

    2013-06-01

    Researchers in Saudi Arabia at King Abdullah University of Science & Technology have created a membrane comprising a thin layer of densely packed, highly ordered cylindrical channels with uniform pore sizes - oriented perpendicular to its surface - on top of a non-ordered sponge-like layer. It is fabricated in a fast, one-step process by combining the self-assembly of an amphiphilic block copolymer (PS- b-P4VP) with non-solvent-induced phase separation. The university\\'s "Seed Fund" has helped the researchers to start manufacturing this membrane, which is particularly suited to size-selective and charge-based separation of bio-molecules. © 2013 Elsevier Ltd.

  13. Composite membranes prepared from cation exchange membranes and polyaniline and their transport properties in electrodialysis

    Energy Technology Data Exchange (ETDEWEB)

    Sata, Tshikatsu; Ishii, Yuuko; Kawamura, Kohei; Matsusaki, Koji [Yamaguchi Univ., Ube City, Yamaguchi (Japan). Dept. of Applied Chemistry and Chemical Engineering

    1999-02-01

    A cation exchange membrane was modified with polyaniline by polymerizing aniline with ammonium peroxodisulfate on the membrane surfaces, producing a membrane with polyaniline layers on both surfaces or a membrane with a single polyaniline layer on the surface. The modified membranes, composite membranes, showed sodium ion permselectivity in electrodialysis compared with divalent cations at an optimum polymerization time. The electronic conductivity of dry membranes showed a maximum (ca. 5 {times} 10{sup {minus}3} S/cm) at the same polymerization time as the time to attain a maximum value of the sodium ion permselectivity. Because emeraldine-based polyaniline is conductive and has a cationic charge, the sodium ion permselectivity is based on the difference in the electrostatic repulsion forces of the cationic charge on the membrane surface of a desalting side to divalent cations and sodium ions. In fact, the selective permeation of sodium ions appeared only when the layer faced the desalting side of the membrane, and was affected by dissociation of polyaniline. Further oxidized polyaniline, pernigraniline-based polyaniline, did not affect the permselectivity between cations, and the diffusion coefficient of neutral molecules, urea, increased with increasing polymerization time. Sodium ion permselectivity was maintained with repeated electrodialysis.

  14. Production of hydrogen using composite membrane in PEM water electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Santhi priya, E.L.; Mahender, C.; Mahesh, Naga; Himabindu, V. [Centre for Environment, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad-500 085, A.P (India); Anjaneyulu, Y. [Director, TLGVRC, JSU Box 18739, JSU, Jackson, MS 32917-0939 (United States)

    2012-07-01

    Electrolysis of water is the best known technology till today to produce hydrogen. The only practical way to produce hydrogen using renewable energy sources is by proton exchange membrane (PEM) water electrolysis. The most commonly used PEM membrane is Nafion. Composite membrane of TiO2 is synthesized by casting method using Nafion 5wt% solution. RuO2 is used as anode and 10 wt% Pd on activated carbon is used as cathode in the water electrolyser system. The performance of this Composite membrane is studied by varying voltage range 1.8 to 2.6V with respect to hydrogen yield and at current density 0.1, 0.2, 0.3, 0.4, and 0.5(A cm-2). This Composite membrane has been tested using in-house fabricated single cell PEM water electrolysis cell with 10cm2 active area at temperatures ranging from 30,45,65 850c and at 1 atmosphere pressure.

  15. AN INORGANIC COMPOSITE MEMBRANE COMPRISING MOLECULAR SIEVE CRYSTALS

    NARCIS (Netherlands)

    Geus, E.R.; Jansen, J.C.; Jaspers, B.C.; Schoonman, J.; Van Bekkum, H.

    1992-01-01

    Abstract of WO 9213631 (A1) Inorganic composite membrane containing molecular sieve crystals, comprising a macroporous support to which molecular sieve crystals and modifications thereof have been applied substantially as a monolayer, said crystals and modifications thereof having been oriented so

  16. Sulfonated carbon black-based composite membranes for fuel cell ...

    Indian Academy of Sciences (India)

    Sci., Vol. 36, No. 4, August 2013, pp. 563–573. c Indian Academy of Sciences. Sulfonated carbon black-based composite membranes for fuel cell applications .... All data were collected from a second heating cycle and glass tran- sition temperatures (Tg) were calculated as a midpoint of thermogram. 2.5d FTIR studies: FTIR ...

  17. Carbon nanotube embedded PVDF membranes: Effect of solvent composition on the structural morphology for membrane distillation

    Science.gov (United States)

    Mapunda, Edgar C.; Mamba, Bhekie B.; Msagati, Titus A. M.

    2017-08-01

    Rapid population increase, growth in industrial and agricultural sectors and global climate change have added significant pressure on conventional freshwater resources. Tapping freshwater from non-conventional water sources such as desalination and wastewater recycling is considered as sustainable alternative to the fundamental challenges of water scarcity. However, affordable and sustainable technologies need to be applied for the communities to benefit from the treatment of non-conventional water source. Membrane distillation is a potential desalination technology which can be used sustainably for this purpose. In this work multi-walled carbon nanotube embedded polyvinylidene fluoride membranes for application in membrane distillation desalination were prepared via non-solvent induced phase separation method. The casting solution was prepared using mixed solvents (N, N-dimethylacetamide and triethyl phosphate) at varying ratios to study the effect of solvent composition on membrane morphological structures. Membrane morphological features were studied using a number of techniques including scanning electron microscope, atomic force microscope, SAXSpace tensile strength analysis, membrane thickness, porosity and contact angle measurements. It was revealed that membrane hydrophobicity, thickness, tensile strength and surface roughness were increasing as the composition of N, N-dimethylacetamide in the solvent was increasing with maximum values obtained between 40 and 60% N, N-dimethylacetamide. Internal morphological structures were changing from cellular structures to short finger-like and sponge-like pores and finally to large macro void type of pores when the amount of N, N-dimethylacetamide in the solvent was changed from low to high respectively. Multi-walled carbon nanotube embedded polyvinylidene fluoride membranes of desired morphological structures and physical properties can be synthesized by regulating the composition of solvents used to prepare the

  18. Method of making sulfur-resistant composite metal membranes

    Science.gov (United States)

    Way, J Douglas [Boulder, CO; Lusk, Mark [Golden, CO; Thoen, Paul [Littleton, CO

    2012-01-24

    The invention provides thin, hydrogen-permeable, sulfur-resistant membranes formed from palladium or palladium-alloy coatings on porous, ceramic or metal supports. Also disclosed are methods of making these membranes via sequential electroless plating techniques, wherein the method of making the membrane includes decomposing any organic ligands present on the substrate, reducing the palladium crystallites on the substrate to reduced palladium crystallites, depositing a film of palladium metal on the substrate and then depositing a second, gold film on the palladium film. These two metal films are then annealed at a temperature between about 200.degree. C. and about 1200.degree. C. to form a sulfur-resistant, composite PdAu alloy membrane.

  19. Nafion®/ODF-silica composite membranes for medium temperature proton exchange membrane fuel cells

    KAUST Repository

    Treekamol, Yaowapa

    2014-01-01

    A series of composite membranes were prepared by dispersing fluorinated polyoxadiazole oligomer (ODF)-functionalized silica nanoparticles in a Nafion matrix. Both melt-extrusion and solvent casting processes were explored. Ion exchange capacity, conductivity, water uptake and dimensional stability, thermal stability and morphology were characterized. The inclusion of functionalized nanoparticles proved advantageous, mainly due to a physical crosslinking effect and better water retention, with functionalized nanoparticles performing better than the pristine silica particles. For the same filler loading, better nanoparticle dispersion was achieved for solvent-cast membranes, resulting in higher proton conductivity. Filler agglomeration, however,was more severe for solvent-castmembranes at loadings beyond 5wt.%. The composite membranes showed excellent thermal stability, allowing for operation in medium temperature PEM fuel cells. Fuel cell performance of the compositemembranesdecreaseswithdecreasing relativehumidity, but goodperformance values are still obtained at 34% RHand 90 °C,with the best results obtained for solvent castmembranes loaded with 10 wt.% ODF-functionalized silica. Hydrogen crossover of the composite membranes is higher than that forpureNafion membranes,possiblydue toporosityresulting fromsuboptimalparticle- matrixcompatibility. © 2013 Crown Copyright and Elsevier BV. All rights reserved.

  20. Milk fat globule membrane and buttermilks: from composition to valorization

    Directory of Open Access Journals (Sweden)

    Vanderghem, C.

    2010-01-01

    Full Text Available Buttermilk, the by-product from butter manufacture, is low cost and available in large quantities but has been considered for many years as invaluable. However, over the last two decades it has gained considerable attention due to its specific composition in proteins and polar lipids from the milk fat globule membrane (MFGM. The aim of this review is to take stock of current buttermilk knowledge. Firstly, the milk fat globule membrane composition and structure are described. Secondly, buttermilk and its associated products are defined according to the milk fat making process. Structure and mean composition of these products are summarized from recent dairy research data and related to technological properties, especially the emulsifying properties provided by MFGM components. Finally, new applications are presented, leading to promising valorizations of buttermilk and its derivate products.

  1. Mechanical performance of laminated composites incorporated with nanofibrous membranes

    International Nuclear Information System (INIS)

    Liu, L.; Huang, Z.-M.; He, C.L.; Han, X.J.

    2006-01-01

    The effect of non-woven nanofibrous membranes as interlaminar interfaces on the mechanical performance of laminated composites was investigated experimentally. The nanofibrous membranes are porous, thin and lightweight, and exhibit toughness and strength to some extent. They give little increase in weight and thickness when incorporated into a laminate. More important, they can be used as a functional agent carrier for the laminate. The nanofiber membranes used in this paper were prepared by electrospinning of Nylon-6 (PA6), Epoxy 609 (EPO 1691-410) and thermoplastic polyurethane (TPU), with a thickness ranging from 20 to 150 μm. The non-woven fabrics were attached to one side of a glass/epoxy fabric lamina prior to lamination and each fabric was arranged in between two adjacent plies of the laminate. The nanofibrous membranes were characterized through scanning electron microscopy (SEM) and tensile testing, whereas the mechanical properties of the laminate were understood in terms of three-point bending and short-beam shear tests. Results have shown that the nanofibrous membranes in the ply interfaces with a proper thickness did not affect the mechanical performance of the composite laminates significantly

  2. Separation of gases through gas enrichment membrane composites

    Science.gov (United States)

    Swedo, Raymond J.; Kurek, Paul R.

    1988-01-01

    Thin film composite membranes having as a permselective layer a film of a homopolymer of certain vinyl alkyl ethers are useful in the separation of various gases. Such homopolymers have a molecular weight of greater than 30,000 and the alkyl group of the vinyl alkyl monomer has from 4 to 20 carbon atoms with branching within the alkyl moiety at least at the carbon atom bonded to the ether oxygen or at the next adjacent carbon atom. These membranes show excellent hydrolytic stability, especially in the presence of acidic or basic gaseous components.

  3. Gas separation by composite solvent-swollen membranes

    Science.gov (United States)

    Matson, Stephen L.; Lee, Eric K. L.; Friesen, Dwayne T.; Kelly, Donald J.

    1989-01-01

    There is disclosed a composite immobulized liquid membrane of a solvent-swollen polymer and a microporous organic or inorganic support, the solvent being at least one highly polar solvent containing at least one nitrogen, oxygen, phosphorous or sulfur atom, and having a boiling point of at least 100.degree. C. and a specified solubility parameter. The solvent or solvent mixture is homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. The membrane is suitable for acid gas scrubbing and oxygen/nitrogen separation.

  4. Composite hollow fiber membranes for organic solvent-based liquid-liquid extraction

    NARCIS (Netherlands)

    He, T.; Bolhuis-Versteeg, Lydia A.M.; Mulder, M.H.V.; Wessling, Matthias

    2004-01-01

    Instability issues of liquid membranes extraction significantly limit its wide application in industry. We report research on the application of a new composite hollow fiber membrane to stabilizing liquid membrane extraction. These type of composite membranes have either a polysulfone (PSf)

  5. Preparation and characterization of the PVDF-based composite membrane for direct methanol fuel cells

    OpenAIRE

    Qian Liu, Laizhou Song, Zhihui Zhang, Xiaowei Liu

    2010-01-01

    The polyvinylidene fluoride-sulfonated polystyrene composite membrane with proton exchange performance, denoted as PVDF-SPS, was prepared using a thermally induced polymerization technique. The thermal stability of the PVDF-SPS composite membrane was investigated using thermogravimetric (TG) analysis. The complex formation of the composite membrane was ascertained by Fourier transform infrared spectroscopy (FTIR). The surface compositions of the PVDF-SPS membrane were analyzed using X-ray pho...

  6. Electrospinning synthesis and characterization of PLA-PEG-MNPs composite fibrous membranes

    Science.gov (United States)

    Kumar, M.; Klimke, S.; Preiss, A.; Unruh, D.; Wengerowsky, D.; Lehmann, R.; Sindelar, R.; Klingelhöfer, G.; Boča, R.; Renz, F.

    2017-11-01

    An electrospinning technique was used to fabricate PLA, PLA-PEG and PLA-PEG-MNPs composite fibrous membranes. The morphology of electrospun composite membranes were characterized by scanning electron microscope. To test the potential availability of MNPs in PLA-PEG composite membranes, TG, Raman, Mössbauer, VSM and ICP-OES analysis were used. The PLA-PEG composite fibrous membranes showed the presence of MNPs, hence offers the possibility for magnetically triggered on-demand drug delivery.

  7. Antimicrobial Hydroxyapatite-Gelatin-Silica Composite Pastes with Tunable Setting Properties.

    Science.gov (United States)

    Uskoković, Vuk; Ghosh, Shreya; Wu, Victoria M

    2017-08-14

    Bone grafting is one of the commonest surgical procedures, yet all bone substitutes developed so far suffer from specific weaknesses and the search for a bone graft material with ideal physical and biological properties is still ongoing. Calcium phosphate pastes are the most frequently used synthetic bone grafts, yet they (a) often take an impractically long time to set, (b) release the drug content too fast, and (c) do not form pores large enough to accommodate host cells and foster osseointegration. To make up for these deficiencies, we introduced gelatin and silica to pastes composed of 5-15 nm sized hydroxyapatite nanoparticles and yielded a bioresorbable composite that is compact, yet flowing upon injection; that prevents setting at room temperature, but sets promptly, in minutes, at 37 °C; that displays an increase in surface porosity following immersion in physiological fluids; that allows for sustained release of antibiotics; and that sets in a tunable manner and in clinically relevant time windows: 1-3 minutes at its fastest. Timelapse, in situ X-ray diffraction analysis demonstrated that the setting process is accompanied by an increase in crystallinity of the initially amorphous hydroxyapatite, involving no polymorphic phase transitions in its course. Setting time can be tuned by controlling the weight content of gelatin or powder-to-liquid ratio. The release of vancomycin was slow, ~ 8 % after 2 weeks, and unaffected by the gelatin content. While vancomycin-loaded pastes were effective in reducing the concentration of all bacterial species analyzed, the bacteriostatic effects of the antibiotic-free pastes were pronounced against S. liquefaciens and E. coli. S. liquefaciens bacilli underwent beading and filamentation during the treatment, suggesting that the antimicrobial effects are attributable to cell wall disruption by hydroxyapatite nanoparticles. Vancomycin-loaded pastes augmented the activity of the antibiotic against P. aeruginosa and S

  8. Polybenzimidazole/Mxene composite membranes for intermediate temperature polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Fei, Mingming; Lin, Ruizhi; Deng, Yuming; Xian, Hongxi; Bian, Renji; Zhang, Xiaole; Cheng, Jigui; Xu, Chenxi; Cai, Dongyu

    2018-01-01

    This report demonstrated the first study on the use of a new 2D nanomaterial (Mxene) for enhancing membrane performance of intermediate temperature (>100 °C) polymer electrolyte membrane fuel cells (ITPEMFCs). In this study, a typical Ti3C2T x -MXene was synthesized and incorporated into polybenzimidazole (PBI)-based membranes by using a solution blending method. The composite membrane with 3 wt% Ti3C2T x -MXene showed the proton conductivity more than 2 times higher than that of pristine PBI membrane at the temperature range of 100 °C-170 °C, and led to substantial increase in maximum power density of fuel cells by ˜30% tested at 150 °C. The addition of Ti3C2T x -MXene also improved the mechanical properties and thermal stability of PBI membranes. At 3 wt% Ti3C2T x -MXene, the elongation at break of phosphoric acid doped PBI remained unaffected at 150 °C, and the tensile strength and Young’s modulus was increased by ˜150% and ˜160%, respectively. This study pointed out promising application of MXene in ITPEMFCs.

  9. Antimicrobial Bacterial Cellulose-Silver Nanoparticles Composite Membranes

    Directory of Open Access Journals (Sweden)

    Hernane S. Barud

    2011-01-01

    Full Text Available Antimicrobial bacterial cellulose-silver nanoparticles composite membranes have been obtained by “in situ” preparation of Ag nanoparticles from hydrolytic decomposition of silver nitrate solution using triethanolamine as reducing and complexing agent. The formation of silver nanoparticles was evidenced by the X-ray diffraction, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and absorption in the UV-Visible (350 nm to 600 nm. Thermal and mechanical properties together with swelling behavior for water were considered. TEA concentration was observed to be important in order to obtain only Ag particles and not a mixture of silver oxides. It was also observed to control particle size and amount of silver contents in bacterial cellulose. The composite membranes exhibited strong antimicrobial activity against Gram-negative and Gram-positive bacteria.

  10. Solid polymer electrolyte composite membrane comprising plasma etched porous support

    Science.gov (United States)

    Liu, Han; LaConti, Anthony B.

    2010-10-05

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 0.1 to 5 microns, are made by plasma etching and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  11. Reconfigurable/tunable dual band/dual mode ferrite composite right/left-handed CPW coupled-line coupler

    Science.gov (United States)

    Abdalla, M. A.; Hu, Z.

    2017-09-01

    This paper presents the design, modeling and experimental verification of a novel reconfigurable/tunable dual band/dual mode ferrite composite right/left handed CPW coupled-line coupler. The composite right/left handed configuration has been realized by loading coupled CPW transmission lines with series inter-digital capacitors and shunt segment inductors. The coupler performance has been verified using the equivalent circuit model, electromagnetic full wave simulations and experimental measurements. The coupler operates on dual mode in that it has dual bands of operation with two different propagation mechanisms. The first band has only a reciprocal backward coupling whereas the second band has only nonreciprocal through propagation. The non-reciprocity isolation in the second band is better than average of 15 dB. Compared to conventional single band single mode coupled line coupler of length = 0.25 λg, the proposed novel dual band dual mode coupler length is almost the same (0.265 λg) at 4.5 GHz. Furthermore, the dual mode/dual band coupler can have tunable functionality.

  12. Tunable exchange bias-like effect in patterned hard-soft two-dimensional lateral composites with perpendicular magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Hierro-Rodriguez, A., E-mail: ahierro@fc.up.pt; Alvarez-Prado, L. M.; Martín, J. I.; Alameda, J. M. [Departamento de Física, Universidad de Oviedo, C/Calvo Sotelo S/N, 33007 Oviedo (Spain); Centro de Investigación en Nanomateriales y Nanotecnología—CINN (CSIC—Universidad de Oviedo—Principado de Asturias), Parque Tecnológico de Asturias, 33428 Llanera (Spain); Teixeira, J. M. [IN-IFIMUP, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre 687, 4169-007 Porto (Portugal); Vélez, M. [Departamento de Física, Universidad de Oviedo, C/Calvo Sotelo S/N, 33007 Oviedo (Spain)

    2014-09-08

    Patterned hard-soft 2D magnetic lateral composites have been fabricated by e-beam lithography plus dry etching techniques on sputter-deposited NdCo{sub 5} thin films with perpendicular magnetic anisotropy. Their magnetic behavior is strongly thickness dependent due to the interplay between out-of-plane anisotropy and magnetostatic energy. Thus, the spatial modulation of thicknesses leads to an exchange coupled system with hard/soft magnetic regions in which rotatable anisotropy of the thicker elements provides an extra tool to design the global magnetic behavior of the patterned lateral composite. Kerr microscopy studies (domain imaging and magneto-optical Kerr effect magnetometry) reveal that the resulting hysteresis loops exhibit a tunable exchange bias-like shift that can be switched on/off by the applied magnetic field.

  13. Scalable template synthesis of resorcinol-formaldehyde/graphene oxide composite aerogels with tunable densities and mechanical properties.

    Science.gov (United States)

    Wang, Xin; Lu, Lei-Lei; Yu, Zhi-Long; Xu, Xue-Wei; Zheng, Ya-Rong; Yu, Shu-Hong

    2015-02-16

    Resorcinol-formaldehyde (RF) and graphene oxide (GO) aerogels have found a variety of applications owing to their excellent properties and remarkable flexibility. However, the macroscopic and controllable synthesis of their composite gels is still a great challenge. By using GO sheets as template skeletons and metal ions (Co(2+), Ni(2+), or Ca(2+)) as catalysts and linkers, the first low-temperature scalable strategy for the synthesis of a new kind of RF-GO composite gel with tunable densities and mechanical properties was developed. The aerogels can tolerate a strain as high as 80% and quickly recover their original morphology after the compression has been released. Owing to their high compressibility, the gels might find applications in various areas, for example, as adsorbents for the removal of dye pollutants and in oil-spill cleanup. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Curvature of double-membrane organelles generated by changes in membrane size and composition.

    Directory of Open Access Journals (Sweden)

    Roland L Knorr

    Full Text Available Transient double-membrane organelles are key players in cellular processes such as autophagy, reproduction, and viral infection. These organelles are formed by the bending and closure of flat, double-membrane sheets. Proteins are believed to be important in these morphological transitions but the underlying mechanism of curvature generation is poorly understood. Here, we describe a novel mechanism for this curvature generation which depends primarily on three membrane properties: the lateral size of the double-membrane sheets, the molecular composition of their highly curved rims, and a possible asymmetry between the two flat faces of the sheets. This mechanism is evolutionary advantageous since it does not require active processes and is readily available even when resources within the cell are restricted as during starvation, which can induce autophagy and sporulation. We identify pathways for protein-assisted regulation of curvature generation, organelle size, direction of bending, and morphology. Our theory also provides a mechanism for the stabilization of large double-membrane sheet-like structures found in the endoplasmic reticulum and in the Golgi cisternae.

  15. Fabrication and characterization of magnetic composite membrane pressure sensor

    KAUST Repository

    Khan, Mohammed Asadullah

    2016-04-20

    This paper describes a magnetic field powered pressure sensor, which comprises a coil array and a magnetic composite membrane. The composite membrane is made by embedding a ribbon of the amorphous soft magnetic alloy Vitrovac®, in a 17 mm x 25 mm x 1.5 mm Polydimethylsiloxane (PDMS) layer. PDMS is chosen for its low Young\\'s modulus and the amorphous alloy for its high permeability. The membrane is suspended 1.5 mm above a 17x19 array of microfabricated planar coils. The coils are fabricated by patterning a 620 nm thick gold layer. Each coil occupies an area of 36000 μm2 and consists of 14 turns. The sensor is tested by subjecting it to pressure and simultaneously exciting it by a 24 A/m, 100 kHz magnetic field. A pressure change from 0 kPa to 5.1 kPa, results in a 5400 ppm change in the voltage output.

  16. Sub-100-nm nanoparticle arrays with perfect ordering and tunable and uniform dimensions fabricated by combining nanoimprinting with ultrathin alumina membrane technique.

    Science.gov (United States)

    Zhan, Zhibing; Lei, Yong

    2014-04-22

    This work reports a nonlithographic nanopatterning approach to fabricate perfectly ordered nanoparticle arrays with tunable and uniform dimensions from about 30 to 80 nm and strict periods of 100 nm in a square lattice on large-area substrates by combining nanoimprinting with ultrathin alumina membrane technique. There is no requirement of any organic layer to support an ultrathin membrane in our novel route, which totally addressed the problems of nonuniform pores in prepatterned alumina templates and contamination during sample preparation, and thus is indispensable for our fabrication of ideally regular nanoparticle arrays on various kinds of substrates (such as flexible plastic). The effect of imprinted pressure on the prepatterning of Al foil was also studied in order to ensure the reusability of the precious imprinting stamps. This simple but efficient method provides a cost-effective platform for the fabrication of perfectly ordered nanostructures on substrates for various applications in nanotechnology.

  17. Organic/inorganic composite membranes based on polybenzimidazole and nano-SiO2

    International Nuclear Information System (INIS)

    Pu Hongting; Liu Lu; Chang Zhihong; Yuan Junjie

    2009-01-01

    Organic/inorganic composite membranes based on polybenzimidazole (PBI) and nano-SiO 2 were prepared in this work. However, the preparation of PBI/SiO 2 composite membrane is not easy since PBI is insoluble in water, while nano-SiO 2 is hydrophilic due to the hydrophilicity of nano-SiO 2 and water-insolubility of PBI. Thus, a solvent-exchange method was employed to prepare the composite membrane. The morphology of the composite membranes was studied by scanning electron microscopy (SEM). It was revealed that inorganic particles were dispersed homogenously in the PBI matrix. The thermal stability of the composite membrane is higher than that of pure PBI, both for doped and undoped membranes. PBI/SiO 2 composite membranes with up to 15 wt% SiO 2 exhibited improved mechanical properties compared with PBI membranes. The proton conductivity of the composite membranes containing phosphoric acid was studied. The nano-SiO 2 in the composite membranes enhanced the ability to trap phosphoric acid, which improved the proton conductivity of the composite membranes. The membrane with 15 wt% of inorganic material is oxidatively stable and has a proton conductivity of 3.9 x 10 -3 S/cm at 180 deg. C.

  18. Development of electrospun composite as substitutive diaphragm membrane

    Science.gov (United States)

    Mohsenzadeh, E.; Khenoussi, N.; Schacher, L.; Adolphe, D.; Hemmerlé, J.; Schneider, A.; Bahlouli, N.; Wagner-Kocher, C.

    2017-10-01

    The diaphragm is the most important muscle for respiration with a bi-domed structure, which is separating thoracic cavity from abdominal cavity. Partial formation of diaphragm, with unknown reason during fetal development caused a birth defect called congenital diaphragmatic hernia (CDH). It allows the abdomen contents to go up into the chest cavity resulting in pulmonary hypoplasia, which is the major cause of the mortality. There are several types of membrane, which can be used as prostheses to close the existing hole. In this project, we study the tensile properties of electrospun PA-6 nanowebs and electrospun PA-6/B composite as substitution membrane by a comparison with the tensile properties of tendon part of pig’s diaphragm.

  19. Electrospun Superhydrophobic Organic/Inorganic Composite Nanofibrous Membranes for Membrane Distillation.

    Science.gov (United States)

    Li, Xiong; Yu, Xufeng; Cheng, Cheng; Deng, Li; Wang, Min; Wang, Xuefen

    2015-10-07

    Electrospun superhydrophobic organic/inorganic composite nanofibrous membranes exhibiting excellent direct contact membrane distillation (DCMD) performance were fabricated by a facile route combining the hydrophobization of silica nanoparticles (SiO2 NPs) and colloid electrospinning of the hydrophobic silica/poly(vinylidene fluoride) (PVDF) matrix. Benefiting from the utilization of SiO2 NPs with three different particle sizes, the electrospun nanofibrous membranes (ENMs) were endowed with three different delicate nanofiber morphologies and fiber diameter distribution, high porosity, and superhydrophobic property, which resulted in excellent waterproofing and breathability. Significantly, structural attributes analyses have indicated the major contributing role of fiber diameter distribution on determining the augment of permeate vapor flux through regulating mean flow pore size (MFP). Meanwhile, the extremely high liquid entry pressure of water (LEPw, 2.40 ± 0.10 bar), robust nanofiber morphology of PVDF immobilized SiO2 NPs, remarkable mechanical properties, thermal stability, and corrosion resistance endowed the as-prepared membranes with prominent desalination capability and stability for long-term MD process. The resultant choreographed PVDF/silica ENMs with optimized MFP presented an outstanding permeate vapor flux of 41.1 kg/(m(2)·h) and stable low permeate conductivity (∼2.45 μs/cm) (3.5 wt % NaCl salt feed; ΔT = 40 °C) over a DCMD test period of 24 h without membrane pores wetting detected. This result was better than those of typical commercial PVDF membranes and PVDF and modified PVDF ENMs reported so far, suggesting them as promising alternatives for MD applications.

  20. Poly(vinyl chloride) polyacrylonitrile composite membranes for the dehydration of acetic acid

    NARCIS (Netherlands)

    Koops, G.H.; Nolten-Oude Hendrikman, J.A.M.; Nolten-Oude Hendrikman, J.A.M.; Mulder, M.H.V.; Smolders, C.A.; Smolders, C.A.

    1993-01-01

    Composite membranes have been prepared consisting of a poly(vinyl chloride) (PVC) top layer on either a dense polyacrylonitrile (PAN) layer (bi-layer membrane) or a porous PAN support layer (normal composite membrane) and studied with respect to the dehydration of acetic acid. Especially, the

  1. Synthesis of a composite inorganic membrane for the separation of nitrogen, tetrafluoromethane and hexafluoropropylene

    Directory of Open Access Journals (Sweden)

    Hertzog Bissett

    2011-09-01

    Full Text Available Composite inorganic membranes were synthesised for gas component separation of N2, CF4 and C3F6. Selectivities lower than Knudsen selectivities were obtained due to membrane defects. A composite ceramic membrane consisting of a ceramic support structure, a MFI intermediate zeolite layer and a Teflon top layer, was developed to improve separation.

  2. Interaction of Cytotoxic and Cytoprotective Bile Acids with Model Membranes: Influence of the Membrane Composition.

    Science.gov (United States)

    Esteves, M; Ferreira, M J; Kozica, A; Fernandes, A C; Gonçalves da Silva, A; Saramago, B

    2015-08-18

    To understand the role of bile acids (BAs) in cell function, many authors have investigated their effect on biomembrane models which are less complex systems, but there are still many open questions. The present study aims to contribute for the deepening of the knowledge of the interaction between BAs and model membranes, in particular, focusing on the effect of BA mixtures. The cytotoxic deoxycholic acid (DCA), the cytoprotective ursodeoxycholic acid (UDCA), and the equimolar mixture (DCA + UDCA) were investigated. Monolayers and liposomes were taken as model membranes with two lipid compositions: an equimolar mixture of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), sphingomyelin (SM), and cholesterol (Chol)) traditionally associated with the formation of lipid rafts and an equimolar POPC/SM binary mixture. The obtained results showed that DCA causes the fluidization of monolayers and bilayers, leading to the eventual rupture of POPC/SM liposomes at high concentration. UDCA may provide a stabilization of POPC/SM membranes but has a negligible effect on the Chol-containing liposomes. In the case of equimolar mixture DCA/UDCA, the interactions depend not only on the lipid composition but also on the design of the experiment. The BA mixture has a greater impact on the monolayers than do pure BAs, suggesting a cooperative DCA-UDCA interaction that enhances the penetration of UDCA in both POPC/SM and POPC/SM/Chol monolayers. For the bilayers, the presence of UDCA in the mixture decreases the disturbing effect of DCA.

  3. Multilayer-WS2:ferroelectric composite for ultrafast tunable metamaterial-induced transparency applications

    International Nuclear Information System (INIS)

    Yang, Xiaoyu; Yang, Jinghuan; Zhu, Yu; Yang, Hong; Hu, Xiaoyong; Gong, Qihuang

    2015-01-01

    An ultrafast and low-power all-optical tunable metamaterial-induced transparency is realized, using polycrystalline barium titanate doped gold nanoparticles and multilayer tungsten disulfide microsheets as nonlinear optical materials. Large nonlinearity enhancement is obtained associated with quantum confinement effect, local-field effect, and reinforced interaction between light and multilayer tungsten disulfide. Low threshold pump intensity of 20 MW/cm 2 is achieved. An ultrafast response time of 85 ps is maintained because of fast carrier relaxation dynamics in nanoscale crystal grains of polycrystalline barium titanate. This may be useful for the study of integrated photonic devices based on two-dimensional materials

  4. Microstructure-tunable highly conductive graphene-metal composites achieved by inkjet printing and low temperature annealing

    Science.gov (United States)

    Zhao, Jie; Song, Man; Wen, Chenyu; Majee, Subimal; Yang, Dong; Wu, Biao; Zhang, Shi-Li; Zhang, Zhi-Bin

    2018-03-01

    We present a method for fabricating highly conductive graphene-silver composite films with a tunable microstructure achieved by means of an inkjet printing process and low temperature annealing. This is implemented by starting from an aqueous ink formulation using a reactive silver solution mixed with graphene nanoplatelets (GNPs), followed by inkjet printing deposition and annealing at 100 °C for silver formation. Due to the hydrophilic surfaces and the aid of a polymer stabilizer in an aqueous solution, the GNPs are uniformly covered with a silver layer. Simply by adjusting the content of GNPs in the inks, highly conductive GNP/Ag composites (>106 S m-1), with their microstructure changed from a large-area porous network to a compact film, is formed. In addition, the printed composite films show superior quality on a variety of unconventional substrates compared to its counterpart without GNPs. The availability of composite films paves the way to the metallization in different printed devices, e.g. interconnects in printed circuits and electrodes in energy storage devices.

  5. Anhydrous proton conducting composite membranes containing Nafion and triazole modified POSS

    International Nuclear Information System (INIS)

    Lei, M.; Wang, Y.G.; Zhang, F.F.; Huang, C.; Xu, X.; Zhang, R.; Fan, D.Y.

    2014-01-01

    Development of membrane electrolytes having reasonable proton conductivity and mechanical strength under anhydrous conditions is of great importance for proton exchange membrane fuel cells operated at elevated temperature. With the introduction of triazole modified polyhedral oligomeric silsesquioxanes (Tz-POSS) into Nafion membrane, the formed composite electrolytes exhibit improved mechanical properties compared to pristine Nafion membrane due to the well distribution of Tz-POSS inside the membrane. The anhydrous proton conductivity of the formed composite membranes increases initially with the increase in temperature, reaching about 0.02 Scm −1 at 140 °C. With further increase in temperature to about 150 °C, the composite membrane reaches its glass transition point above which the proton conductivity decreases dramatically. The performance of assembled single cell from composite membrane is slightly dependent on humidification conditions at 95 °C, reaching 0.45 V at 600 mAcm −2 using hydrogen and oxygen as reaction gases

  6. Fabrication and Water Treatment Application of Carbon Nanotubes (CNTs)-Based Composite Membranes: A Review.

    Science.gov (United States)

    Ma, Lining; Dong, Xinfa; Chen, Mingliang; Zhu, Li; Wang, Chaoxian; Yang, Fenglin; Dong, Yingchao

    2017-03-18

    Membrane separation technology is widely explored for various applications, such as water desalination and wastewater treatment, which can alleviate the global issue of fresh water scarcity. Specifically, carbon nanotubes (CNTs)-based composite membranes are increasingly of interest due to the combined merits of CNTs and membrane separation, offering enhanced membrane properties. This article first briefly discusses fabrication and growth mechanisms, characterization and functionalization techniques of CNTs, and then reviews the fabrication methods for CNTs-based composite membranes in detail. The applications of CNTs-based composite membranes in water treatment are comprehensively reviewed, including seawater or brine desalination, oil-water separation, removal of heavy metal ions and emerging pollutants as well as membrane separation coupled with assistant techniques. Furthermore, the future direction and perspective for CNTs-based composite membranes are also briefly outlined.

  7. Fabrication and Water Treatment Application of Carbon Nanotubes (CNTs-Based Composite Membranes: A Review

    Directory of Open Access Journals (Sweden)

    Lining Ma

    2017-03-01

    Full Text Available Membrane separation technology is widely explored for various applications, such as water desalination and wastewater treatment, which can alleviate the global issue of fresh water scarcity. Specifically, carbon nanotubes (CNTs-based composite membranes are increasingly of interest due to the combined merits of CNTs and membrane separation, offering enhanced membrane properties. This article first briefly discusses fabrication and growth mechanisms, characterization and functionalization techniques of CNTs, and then reviews the fabrication methods for CNTs-based composite membranes in detail. The applications of CNTs-based composite membranes in water treatment are comprehensively reviewed, including seawater or brine desalination, oil-water separation, removal of heavy metal ions and emerging pollutants as well as membrane separation coupled with assistant techniques. Furthermore, the future direction and perspective for CNTs-based composite membranes are also briefly outlined.

  8. Selectively gas-permeable composite membrane and process for production thereof

    International Nuclear Information System (INIS)

    Okita, K.; Asako, S.

    1984-01-01

    A selectively gas-permeable composite membrane and a process for producing said composite membrane are described. The composite membrane comprises a polymeric material support and a thin membrane deposited on the support, said thin membrane being obtained by glow discharge plasma polymerization of an organosilane compound containing at least one double bond or triple bond. Alternatively, the composite membrane comprises a polymeric material support having an average pore diameter of at least 0.1 micron, a hardened or cross-linked polyorganosiloxane layer on the support, and a thin membrane on the polyorganosiloxane layer, said thin membrane being obtained by plasma polymerization due to glow discharge of an organosilane compound containing at least one double bond or triple bond

  9. Chemical modification of polysulfone: composite anionic exchange membrane with TiO2 nano-particles

    CSIR Research Space (South Africa)

    Nonjola, PT

    2013-04-01

    Full Text Available Synthesis of quaternary polysulfone/Titanium dioxide (QPSf/TiO2) nanocomposite membranes by the recasting procedure as suitable electrolyte in alkaline fuel cells is described. The composite membranes were characterized by ionic conductivity...

  10. Novel Nonporous Fouling-Resistant Enzymatic Composite Membranes for Waste Water Treatment

    National Research Council Canada - National Science Library

    Freeman, Benny D

    2005-01-01

    .... Permeation properties of thin-films made of these gels is also reported. Approximately 20 m2 of chitosan composite membrane were prepared at our industrial partner, Membrane Technology and Research (MTR...

  11. Composite proton exchange membrane based on sulfonated organic nanoparticles

    Science.gov (United States)

    Pitia, Emmanuel Sokiri

    As the world sets its sight into the future, energy remains a great challenge. Proton exchange membrane (PEM) fuel cell is part of the solution to the energy challenge because of its high efficiency and diverse application. The purpose of the PEM is to provide a path for proton transport and to prevent direct mixing of hydrogen and oxygen at the anode and the cathode, respectively. Hence, PEMs must have good proton conductivity, excellent chemical stability, and mechanical durability. The current state-of-the-art PEM is a perfluorosulfonate ionomer, Nafion®. Although Nafion® has many desirable properties, it has high methanol crossover and it is expensive. The objective of this research was to develop a cost effective two-phase, composite PEM wherein a dispersed conductive organic phase preferentially aligned in the transport direction controls proton transport, and a continuous hydrophobic phase provides mechanical durability to the PEM. The hypothesis that was driving this research was that one might expect better dispersion, higher surface to volume ratio and improved proton conductivity of a composite membrane if the dispersed particles were nanometer in size and had high ion exchange capacity (IEC, = [mmol sulfonic acid]/gram of polymer). In view of this, considerable efforts were employed in the synthesis of high IEC organic nanoparticles and fabrication of a composite membrane with controlled microstructure. High IEC, ~ 4.5 meq/g (in acid form, theoretical limit is 5.4 meq/g) nanoparticles were achieved by emulsion copolymerization of a quaternary alkyl ammonium (QAA) neutralized-sulfonated styrene (QAA-SS), styrene, and divinylbenzene (DVB). The effects of varying the counterion of the sulfonated styrene (SS) monomer (alkali metal and QAA cations), SS concentration, and the addition of a crosslinking agent (DVB) on the ability to stabilize the nanoparticles to higher IECs were assessed. The nanoparticles were ion exchanged to acid form. The extent of ion

  12. Gradient composite metal-ceramic foam as supportive component for planar SOFCs and MIEC membranes

    Science.gov (United States)

    Smorygo, Oleg; Mikutski, Vitali; Marukovich, Alexander; Sadykov, Vladislav; Usoltsev, Vladimir; Mezentseva, Natalia; Borodinecs, Anatolijs; Bobrenok, Oleg

    2011-06-01

    A novel approach to the design of planar gradient porous supports for the thin-film SOFCs and MIEC membranes is described. The support's thermal expansion is controlled by the creation of a two-component composite metal-ceramic foam structure. Thin MIEC membranes and SOFCs were prepared on the composite supports by the layerwise deposition of composite functional layers including complex fluorites and perovskites. Lab-scale studies demonstrated promising performance of both MIEC membrane and SOFC.

  13. Growth of alloy MoS(2x)Se2(1-x) nanosheets with fully tunable chemical compositions and optical properties.

    Science.gov (United States)

    Li, Honglai; Duan, Xidong; Wu, Xueping; Zhuang, Xiujuan; Zhou, Hong; Zhang, Qinglin; Zhu, Xiaoli; Hu, Wei; Ren, Pinyun; Guo, Pengfei; Ma, Liang; Fan, Xiaopeng; Wang, Xiaoxia; Xu, Jinyou; Pan, Anlian; Duan, Xiangfeng

    2014-03-12

    Band gap engineering of atomically thin two-dimensional layered materials is critical for their applications in nanoelectronics, optoelectronics, and photonics. Here we report, for the first time, a simple one-step chemical vapor deposition approach for the simultaneous growth of alloy MoS2xSe2(1-x) triangular nanosheets with complete composition tunability. Both the Raman and the photoluminescence studies show tunable optical properties consistent with composition of the alloy nanosheets. Importantly, all samples show a single bandedge emission peak, with the spectral peak position shifting from 668 nm (for pure MoS2) to 795 nm (for pure MoSe2), indicating the high quality for these complete composition alloy nanosheets. These band gap engineered 2D structures could open up an exciting opportunity for probing their fundamental physical properties in 2D and may find diverse applications in functional electronic/optoelectronic devices.

  14. Biofouling in membrane bioreactors: nexus between polyacrylonitrile surface charge and community composition.

    Science.gov (United States)

    Marbelia, Lisendra; Hernalsteens, Marie-Aline; Ilyas, Shazia; Öztürk, Basak; Szymczyk, Anthony; Springael, Dirk; Vankelecom, Ivo

    2018-02-15

    The influence of membrane surface charge on biofouling community composition during activated sludge filtration in a membrane bioreactor was investigated in this study using polyacrylonitrile-based membranes. Membranes with different surface properties were synthesized by phase inversion followed by a layer-by-layer modification. Various characterization results showed that the membranes differed only in their surface chemical composition and charge, ie two of them were negative, one neutral and one positive. Membrane fouling experiments were performed for 40 days and the biofouling communities were analyzed. PCR-DGGE fingerprinting indicated selective enrichment of bacterial populations from the sludge suspension within the biofilms at any time point. The biofilm community composition seemed to change with time. However, no difference was observed between the biofilm community of differently charged membranes at specific time points. It could be concluded that membrane charges do not play a decisive role in the long-term selection of the key bacterial foulants.

  15. Novel thin/tunable gas diffusion electrodes with ultra-low catalyst loading for hydrogen evolution reactions in proton exchange membrane electrolyzer cells

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Zhenye; Yang, Gaoqiang; Mo, Jingke; Li, Yifan; Yu, Shule; Cullen, David A.; Retterer, Scott T.; Toops, Todd J.; Bender, Guido; Pivovar, Bryan S.; Green, Johney B.; Zhang, Feng-Yuan

    2018-05-01

    Proton exchange membrane electrolyzer cells (PEMECs) have received great attention for hydrogen/oxygen production due to their high efficiencies even at low-temperature operation. Because of the high cost of noble platinum-group metal (PGM) catalysts (Ir, Ru, Pt, etc.) that are widely used in water splitting, a PEMEC with low catalyst loadings and high catalyst utilizations is strongly desired for its wide commercialization. In this study, the ultrafast and multiscale hydrogen evolution reaction (HER) phenomena in an operating PEMEC is in-situ observed for the first time. The visualization results reveal that the HER and hydrogen bubble nucleation mainly occur on catalyst layers at the rim of the pores of the thin/tunable liquid/gas diffusion layers (TT-LGDLs). This indicates that the catalyst material of the conventional catalyst-coated membrane (CCM) that is located in the middle area of the LGDL pore is underutilized/inactive. Based on this discovery, a novel thin and tunable gas diffusion electrode (GDE) with a Pt catalyst thickness of 15 nm and a total thickness of about 25 um has been proposed and developed by taking advantage of advanced micro/nano manufacturing. The novel thin GDEs are comprehensively characterized both ex-situ and in-situ, and exhibit excellent PEMEC performance. More importantly, they achieve catalyst mass activity of up to 58 times higher than conventional CCM at 1.6 V under the operating conditions of 80 degrees C and 1 atm. This study demonstrates a promising concept for PEMEC electrode development, and provides a direction of future catalyst designs and fabrications for electrochemical devices.

  16. Novel composite membranes based on PBI and dicationic ionic liquids for high temperature polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Hooshyari, Khadijeh; Javanbakht, Mehran; Adibi, Mina

    2016-01-01

    Two types of innovative composite membranes based on polybenzimidazole (PBI) containing dicationic ionic liquid 1,3-di(3-methylimidazolium) propane bis (trifluoromethylsulfonyl) imide (PDC 3 ) and monocationic ionic liquid 1-hexyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide (PMC 6 ) are prepared as electrolyte for high temperature fuel cells applications under anhydrous conditions. The analyses of results display promising characteristics such as high proton conductivity and thermal stability. Moreover the fuel cell performance of PA doped PDC 3 composite membranes is enhanced in comparison with PA doped PMC 6 and PA doped PBI membranes at high temperatures. Dicationic ionic liquid with high number of charge carriers provides well-developed ionic channels which form facile pathways and considerably develop the anhydrous proton conductivity. The highest proton conductivity of 81 mS/cm is achieved for PA doped PDC 3 composite membranes with PBI/IL mole ratio: 4 at 180 °C. A power density of 0.44 W/cm 2 is obtained at 0.5 V and 180 °C for PA doped PDC 3 composite membranes, which proves that these developed composite membranes can be considered as most promising candidates for high temperature fuel cell applications with enhanced proton conductivity.

  17. Gold-Copper alloy “nano-dumplings” with tunable compositions and plasmonic properties

    International Nuclear Information System (INIS)

    Verma, Manoj; Kedia, Abhitosh; Kumar, P. Senthil

    2016-01-01

    The unique yet tunable optical properties of plasmonic metal nanoparticles have made them attractive targets for a wide range of applications including nanophotonics, molecular sensing, catalysis etc. Such diverse applications that require precisely stable / reproducible plasmonic properties depend sensitively on the particle morphology ie. the shape, size and constituents. Herein, we systematically study the size / shape controlled synthesis of gold-copper “dumpling” shaped alloy nanoparticles by simultaneous reduction of gold and copper salts in the PVP-methanol solute-solvent system, by effectively utilizing the efficient but mild reduction as well as capping abilities of Poly (N-vinylpyrrolidone). Introduction of copper salts not only yielded the alloy nanoparticles, but also slowed down the growth process to maintain high mono-dispersity of the new shapes evolved. Copper and gold has different lattice constants (0.361 and 0.408 nm respectively) and hence doping/addition/replacement of copper atoms to gold FCC unit cell introduces strain into the lattice which is key parameter to the shape evolution in anisotropic nanoparticles. Synthesized alloy nanoparticles were characterized by UV-visible absorption spectroscopy, XRD and TEM imaging.

  18. Exploring the structure-properties relationships of novel polyamide thin film composite membranes

    DEFF Research Database (Denmark)

    Briceño, Kelly; Javakhishvili, Irakli; Guo, Haofei

    Polysulfone (PSU) is a material widely used in the fabrication of membranes for ultrafiltration and as a support for nanofiltration and reverse osmosis membranes. Interfacial polymerization usually combines amine and acid chloride monomers for the fabrication of thin film composite membranes[1...

  19. Studies on poly (vinyl chloride/silica dioxide composite hollow fiber membrane

    Directory of Open Access Journals (Sweden)

    Mei Shuo

    2016-01-01

    Full Text Available Poly (vinyl chloride/silica dioxide composite hollow fiber membranes were prepared by using the method of immersion-precipitation process. The influences of stretching ratio on the formation of the interfacial microporous of poly (vinyl chloride/silica dioxide composite hollow fiber membranes were specifically investigated by scanning electron microscope, dynamic mechanical analysis, and finite element method. Results show that with the stretching ratio increasing, numerous IFM appear on the surface of membranes. Finite element method actually reflects the dynamic change of microporous structure of poly (vinyl chloride/silica dioxide composite hollow fiber membranes.

  20. Nafion®/H-ZSM-5 composite membranes with superior performance for direct methanol fuel cells

    NARCIS (Netherlands)

    Yildirim, M.H.; Curos, Anna Roca; Motuzas, Julius; Motuzas, J.; Julbe, Anne; Stamatialis, Dimitrios; Wessling, Matthias

    2009-01-01

    Solution cast composite direct methanol fuel cell membranes (DEZ) based on DE2020 Nafion® dispersion and in-house prepared H-ZSM-5 zeolites with different Si/Al ratios were prepared and thoroughly characterized for direct methanol fuel cell (DMFC) applications. All composite membranes have indeed

  1. Electrically conductive bacterial cellulose composite membranes produced by the incorporation of graphite nanoplatelets in pristine bacterial cellulose membranes

    Directory of Open Access Journals (Sweden)

    T. Zhou

    2013-09-01

    Full Text Available Graphite nanoplatelets (GNPs were utilized to improve the electrical conductivity of pristine bacterial cellulose (BC membranes. By physical and chemical methods, flake-shaped GNPs, weaving through the surface layer of web-like cellulose nanofibrils, were indeed fixed or trapped by the adjacent nanofibrils in the BC surface network, for comparison, rod-shaped multi-walled carbon nanotubes (MWCNTs were homogeneously inserted into BC membrane through the pore structures and tunnels within the BC membrane. Strong physical and chemical interaction exists between the BC nanofibrils and the particles of GNP or MWCNT even after 15 h sonication. BC membrane with 8.7 wt% incorporated GNPs reached the maximum electrical conductivity of 4.5 S/cm, while 13.9 wt% MWCNT/BC composite membrane achieved the maximum electrical conductivity of 1.2 S/cm. Compared with one dimensional (1-D MWCNTs, as long as GNPs inserted into BC membranes, the 2-D reinforcement of GNPs was proven to be more effective in improving the electrical conductivity of BC membranes thus not only break the bottleneck of further improvement of the electrical conductivity of BC-based composite membranes but also broaden the applications of BC and GNPs.

  2. Impact of Ionic Liquids on Silver Thermoplastic Composite Membrane Polyurethane for Propane/Propylene Separation

    OpenAIRE

    Wang, Yu; Yong Goh, Tee; Goodrich, Peter; Atilhan, Mert; Khraisheh, Majeda; Rooney, David; Thompson, Jillian; Jacquemin, Johan

    2017-01-01

    This work describes newly synthesized composite polymeric membranes and their utilization in propane/propylene separation in a gas mixture. The nonporous composite polymers were successfully synthesized by using thermoplastic polyurethane (TPU) and several silver salts/silver salts with ionic liquids (ILs). Our studies showed that silver bis(trifluoromethanesulfonyl)imide (Ag[Tf2N]) containing membranes outperformed other silver salt containing membranes in terms of selectivity. In addition, ...

  3. Fabrication and Water Treatment Application of Carbon Nanotubes (CNTs)-Based Composite Membranes: A Review

    OpenAIRE

    Ma, Lining; Dong, Xinfa; Chen, Mingliang; Zhu, Li; Wang, Chaoxian; Yang, Fenglin; Dong, Yingchao

    2017-01-01

    Membrane separation technology is widely explored for various applications, such as water desalination and wastewater treatment, which can alleviate the global issue of fresh water scarcity. Specifically, carbon nanotubes (CNTs)-based composite membranes are increasingly of interest due to the combined merits of CNTs and membrane separation, offering enhanced membrane properties. This article first briefly discusses fabrication and growth mechanisms, characterization and functionalization tec...

  4. Luminescent Poly(vinyl alcohol)/Carbon Quantum Dots Composites with Tunable Water-Induced Shape Memory Behavior in Different pH and Temperature Environments.

    Science.gov (United States)

    Yang, Guanghui; Wan, Xuejuan; Liu, Yijin; Li, Rui; Su, Yikun; Zeng, Xierong; Tang, Jiaoning

    2016-12-21

    Luminescent water-induced shape memory polymer (SMP) composites with tunable shape recovery rate are developed by blending poly(vinyl alcohol) (PVA) and carbon quantum dots (CQDs). The oxygen and active hydrogen-rich CQDs can serve as extra physical cross-linking points in PVA via strong hydrogen bonding interaction, which largely improves the shape memory performances of PVA. At room temperature, water can successfully actuate the shape recovery of deformed PVA/CQDs composite. It is demonstrated that this water-induced shape recovery is mainly attributed to the plasticizing effect of water and its competitive hydrogen bonding. Furthermore, a quantitative bending test suggests that the shape recovery time of this water-induced SMP is tunable by altering the environmental pH value and temperature, and a relatively large shape recovery time window (from 20 to 200 s) can be achieved. In addition, the introduction of CQDs endows the PVA/CQDs SMP composites with excellent luminescent property, which makes the shape change of SMP visible under UV light. It should be noted that the mild stimulus condition and tunable shape recovery performances make the luminescent visible PVA/CQDs SMP feasible for diverse biological applications in smart medical devices, stimuli-responsive drug-release, and intelligent sensors in vivo and in vitro.

  5. Unravelling the tunable exchange bias-like effect in magnetostatically-coupled two dimensional hybrid (hard/soft) composites

    International Nuclear Information System (INIS)

    Hierro-Rodriguez, A; Teixeira, J M; Rodriguez-Rodriguez, G; Rubio, H; Vélez, M; Álvarez-Prado, L M; Martín, J I; Alameda, J M

    2015-01-01

    Hybrid 2D hard-soft composites have been fabricated by combining soft (Co 73 Si 27 ) and hard (NdCo 5 ) magnetic materials with in-plane and out-of-plane magnetic anisotropies, respectively. They have been microstructured in a square lattice of CoSi anti-dots with NdCo dots within the holes. The magnetic properties of the dots allow us to introduce a magnetostatic stray field that can be controlled in direction and sense by their last saturating magnetic field. The magnetostatic interactions between dot and anti-dot layers induce a completely tunable exchange bias-like shift in the system’s hysteresis loops. Two different regimes for this shift are present depending on the lattice parameter of the microstructures. For large parameters, dipolar magnetostatic decay is observed, while for the smaller one, the interaction between the adjacent anti-dot’s characteristic closure domain structures enhances the exchange bias-like effect as clarified by micromagnetic simulations. (paper)

  6. Reductively Responsive Hydrogel Nanoparticles with Uniform Size, Shape, and Tunable Composition for Systemic siRNA Delivery in Vivo.

    Science.gov (United States)

    Ma, Da; Tian, Shaomin; Baryza, Jeremy; Luft, J Christopher; DeSimone, Joseph M

    2015-10-05

    To achieve the great potential of siRNA based gene therapy, safe and efficient systemic delivery in vivo is essential. Here we report reductively responsive hydrogel nanoparticles with highly uniform size and shape for systemic siRNA delivery in vivo. "Blank" hydrogel nanoparticles with high aspect ratio were prepared using continuous particle fabrication based on PRINT (particle replication in nonwetting templates). Subsequently, siRNA was conjugated to "blank" nanoparticles via a disulfide linker with a high loading ratio of up to 18 wt %, followed by surface modification to enhance transfection. This fabrication process could be easily scaled up to prepare large quantity of hydrogel nanoparticles. By controlling hydrogel composition, surface modification, and siRNA loading ratio, siRNA conjugated nanoparticles were highly tunable to achieve high transfection efficiency in vitro. FVII-siRNA conjugated nanoparticles were further stabilized with surface coating for in vivo siRNA delivery to liver hepatocytes, and successful gene silencing was demonstrated at both mRNA and protein levels.

  7. Efficient hydrogen isotopologues separation through a tunable potential barrier: The case of a C2N membrane

    OpenAIRE

    Qu, Yuanyuan; Li, Feng; Zhao, Mingwen

    2017-01-01

    Isotopes separation through quantum sieving effect of membranes is quite promising for industrial applications. For the light hydrogen isotopologues (eg. H2, D2), the confinement of potential wells in porous membranes to isotopologues was commonly regarded to be crucial for highly efficient separation ability. Here, we demonstrate from first-principles that a potential barrier is also favorable for efficient hydrogen isotopologues separation. Taking an already-synthesized two-dimensional carb...

  8. Harnessing the bistable composite shells to design a tunable phononic band gap structure

    Science.gov (United States)

    Li, Yi; Xu, Yanlong

    2018-02-01

    By proposing a system composed of an array of bistable composite shells immersed in air, we develop a new class of periodic structure to control the propagation of sound. Through numerical investigation, we find that the acoustic band gap of this system can be switched on and off by triggering the snap through deformation of the bistable composite shells. The shape of cross section and filling fraction of unit cell can be altered by different number of bistable composite shells, and they have strong impact on the position and width of the band gap. The proposed concept paves the way of using the bistable structures to design a new class of metamaterials that can be enable to manipulate sound.

  9. Novel powder/solid composites possessing low Young’s modulus and tunable energy absorption capacity, fabricated by electron beam melting, for biomedical applications

    International Nuclear Information System (INIS)

    Ikeo, Naoko; Ishimoto, Takuya; Nakano, Takayoshi

    2015-01-01

    Highlights: • We fabricated novel porous composites by electron beam melting. • The composites consist of necked powder and melted solid framework. • Unmelted powder that is usually discarded was mechanically functionalized by necking. • The composites possess controllably low Young’s modulus and excellent toughness. • The composites would be promising for utilization in biomedical applications. - Abstract: A novel, hierarchical, porous composite from a single material composed of necked powder and melted solid, with tunable mechanical properties, is fabricated by electron beam melting and subsequent heat treatment. The composite demonstrates low Young’s modulus (⩽31 GPa) and excellent energy absorption capacity, both of which are necessary for use in orthopedic applications. To the best of our knowledge, this is the first report on the synthesis of a material combining controllably low Young’s modulus and excellent toughness

  10. CO2 adsorption using TiO2 composite polymeric membranes: A kinetic study.

    Science.gov (United States)

    Hafeez, Sarah; Fan, X; Hussain, Arshad; Martín, C F

    2015-09-01

    CO2 is the main greenhouse gas which causes global climatic changes on larger scale. Many techniques have been utilised to capture CO2. Membrane gas separation is a fast growing CO2 capture technique, particularly gas separation by composite membranes. The separation of CO2 by a membrane is not just a process to physically sieve out of CO2 through the controlled membrane pore size. It mainly depends upon diffusion and solubility of gases, particularly for composite dense membranes. The blended components in composite membranes have a high capability to adsorb CO2. The adsorption kinetics of the gases may directly affect diffusion and solubility. In this study, we have investigated the adsorption behaviour of CO2 in pure and composite membranes to explore the complete understanding of diffusion and solubility of CO2 through membranes. Pure cellulose acetate (CA) and cellulose acetate-titania nanoparticle (CA-TiO2) composite membranes were fabricated and characterised using SEM and FTIR analysis. The results indicated that the blended CA-TiO2 membrane adsorbed more quantity of CO2 gas as compared to pure CA membrane. The high CO2 adsorption capacity may enhance the diffusion and solubility of CO2 in the CA-TiO2 composite membrane, which results in a better CO2 separation. The experimental data was modelled by Pseudo first-order, pseudo second order and intra particle diffusion models. According to correlation factor R(2), the Pseudo second order model was fitted well with experimental data. The intra particle diffusion model revealed that adsorption in dense membranes was not solely consisting of intra particle diffusion. Copyright © 2015. Published by Elsevier B.V.

  11. Hierarchical Composite Membranes with Robust Omniphobic Surface Using Layer-By-Layer Assembly Technique

    KAUST Repository

    Woo, Yun Chul

    2018-01-17

    In this study, composite membranes were fabricated via layer-by-layer (LBL) assembly of negatively-charged silica aerogel (SiA) and 1H, 1H, 2H, 2H – Perfluorodecyltriethoxysilane (FTCS) on a polyvinylidene fluoride phase inversion membrane, and interconnecting them with positively-charged poly(diallyldimethylammonium chloride) (PDDA) via electrostatic interaction. The results showed that the PDDA-SiA-FTCS coated membrane had significantly enhanced the membrane structure and properties. New trifluoromethyl and tetrafluoroethylene bonds appeared at the surface of the coated membrane, which led to lower surface free energy of the composite membrane. Additionally, the LBL membrane showed increased surface roughness. The improved structure and property gave the LBL membrane an omniphobic property, as indicated by its good wetting resistance. The membrane performed a stable air gap membrane distillation (AGMD) flux of 11.22 L/m2h with very high salt rejection using reverse osmosis brine from coal seam gas produced water as feed with the addition of up to 0.5 mM SDS solution. This performance was much better compared to those of the neat membrane. The present study suggests that the enhanced membrane properties with good omniphobicity via LBL assembly make the porous membranes suitable for long-term AGMD operation with stable permeation flux when treating challenging saline wastewater containing low surface tension organic contaminants.

  12. High-flux water desalination with interfacial salt sieving effect in nanoporous carbon composite membranes.

    Science.gov (United States)

    Chen, Wei; Chen, Shuyu; Liang, Tengfei; Zhang, Qiang; Fan, Zhongli; Yin, Hang; Huang, Kuo-Wei; Zhang, Xixiang; Lai, Zhiping; Sheng, Ping

    2018-03-05

    Freshwater flux and energy consumption are two important benchmarks for the membrane desalination process. Here, we show that nanoporous carbon composite membranes, which comprise a layer of porous carbon fibre structures grown on a porous ceramic substrate, can exhibit 100% desalination and a freshwater flux that is 3-20 times higher than existing polymeric membranes. Thermal accounting experiments demonstrated that the carbon composite membrane saved over 80% of the latent heat consumption. Theoretical calculations combined with molecular dynamics simulations revealed the unique microscopic process occurring in the membrane. When the salt solution is stopped at the openings to the nanoscale porous channels and forms a meniscus, the vapour can rapidly transport across the nanoscale gap to condense on the permeate side. This process is driven by the chemical potential gradient and aided by the unique smoothness of the carbon surface. The high thermal conductivity of the carbon composite membrane ensures that most of the latent heat is recovered.

  13. High-flux water desalination with interfacial salt sieving effect in nanoporous carbon composite membranes

    Science.gov (United States)

    Chen, Wei; Chen, Shuyu; Liang, Tengfei; Zhang, Qiang; Fan, Zhongli; Yin, Hang; Huang, Kuo-Wei; Zhang, Xixiang; Lai, Zhiping; Sheng, Ping

    2018-04-01

    Freshwater flux and energy consumption are two important benchmarks for the membrane desalination process. Here, we show that nanoporous carbon composite membranes, which comprise a layer of porous carbon fibre structures grown on a porous ceramic substrate, can exhibit 100% desalination and a freshwater flux that is 3-20 times higher than existing polymeric membranes. Thermal accounting experiments demonstrated that the carbon composite membrane saved over 80% of the latent heat consumption. Theoretical calculations combined with molecular dynamics simulations revealed the unique microscopic process occurring in the membrane. When the salt solution is stopped at the openings to the nanoscale porous channels and forms a meniscus, the vapour can rapidly transport across the nanoscale gap to condense on the permeate side. This process is driven by the chemical potential gradient and aided by the unique smoothness of the carbon surface. The high thermal conductivity of the carbon composite membrane ensures that most of the latent heat is recovered.

  14. High-flux water desalination with interfacial salt sieving effect in nanoporous carbon composite membranes

    KAUST Repository

    Chen, Wei

    2018-03-05

    Freshwater flux and energy consumption are two important benchmarks for the membrane desalination process. Here, we show that nanoporous carbon composite membranes, which comprise a layer of porous carbon fibre structures grown on a porous ceramic substrate, can exhibit 100% desalination and a freshwater flux that is 3-20 times higher than existing polymeric membranes. Thermal accounting experiments demonstrated that the carbon composite membrane saved over 80% of the latent heat consumption. Theoretical calculations combined with molecular dynamics simulations revealed the unique microscopic process occurring in the membrane. When the salt solution is stopped at the openings to the nanoscale porous channels and forms a meniscus, the vapour can rapidly transport across the nanoscale gap to condense on the permeate side. This process is driven by the chemical potential gradient and aided by the unique smoothness of the carbon surface. The high thermal conductivity of the carbon composite membrane ensures that most of the latent heat is recovered.

  15. Development of cesium phosphotungstate salt and chitosan composite membrane for direct methanol fuel cells.

    Science.gov (United States)

    Xiao, Yanxin; Xiang, Yan; Xiu, Ruijie; Lu, Shanfu

    2013-10-15

    A novel composite membrane has been developed by doping cesium phosphotungstate salt (CsxH3-xPW12O40 (0≤x≤3), Csx-PTA) into chitosan (CTS/Csx-PTA) for application in direct methanol fuel cells (DMFCs). Uniform distribution of Csx-PTA nanoparticles has been achieved in the chitosan matrix. The proton conductivity of the composite membrane is significantly affected by the Csx-PTA content in the composite membrane as well as the Cs substitution in PTA. The highest proton conductivity for the CTS/Csx-PTA membranes was obtained with x=2 and Cs2-PTA content of 5 wt%. The value is 6×10(-3) S cm(-1) and 1.75×10(-2) S cm(-1) at 298 K and 353 K, respectively. The methanol permeability of CTS/Cs2-PTA membrane is about 5.6×10(-7), 90% lower than that of Nafion-212 membrane. The highest selectivity factor (φ) was obtained on CTS/Cs2-PTA-5 wt% composite membrane, 1.1×10(4)/Scm(-3)s. The present study indicates the promising potential of CTS/Csx-PTA composite membrane as alternative proton exchange membranes in direct methanol fuel cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Study on the Durability of Recast Nafion/Montmorillonite Composite Membranes in Low Humidification Conditions

    Directory of Open Access Journals (Sweden)

    A. Pozio

    2011-01-01

    Full Text Available Nafion composite membranes were formed from a recasting procedure previously reported by the authors. Montmorillonite (MMT was used as a filler in the recasting procedure, and dimethylformamide (DMF was used as the casting solvent. Fuel cell tests performed with the recast membrane showed that at low relative humidity (R.H. the conductivity of the MMT-containing membranes is 10% higher than that of the MMT-free samples. In order to investigate the durability of such composite perfluorosulfonate membranes, long-term fuel cell experiments have been carried out. Results evidenced a strong effect of low RH on the lifetime of commercial polymer membranes, but the addition of a small silicate amount to the polymeric membrane reduced strongly the membrane degradation.

  17. Thin-film composite crosslinked polythiosemicarbazide membranes for organic solvent nanofiltration (OSN)

    KAUST Repository

    Aburabie, Jamaliah

    2015-01-01

    In this work we report a new class of solvent stable thin-film composite (TFC) membrane fabricated on crosslinked polythiosemicarbazide (PTSC) as substrate that exhibits superior stability compared with other solvent stable polymeric membranes reported up to now. Integrally skinned asymmetric PTSC membranes were prepared by the phase inversion process and crosslinked with an aromatic bifunctional crosslinker to improve the solvent stability. TFC membranes were obtained via interfacial polymerization using trimesoyl chloride (TMC) and diaminopiperazine (DAP) monomers. The membranes were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and contact angle measurement.The membranes exhibited high fluxes toward solvents like tetrahydrofuran (THF), dimethylformamide (DMF) and dimethylsulfoxide (DMSO) ranging around 20L/m2 h at 5bar with a molecular weight cut off (MWCO) of around 1000g/mol. The PTSC-based thin-film composite membranes are very stable toward polar aprotic solvents and they have potential applications in the petrochemical and pharmaceutical industry.

  18. Composite Nafion 117-TMSP membrane for Fe-Cr redox flow battery applications

    Science.gov (United States)

    Haryadi, Gunawan, Y. B.; Mursid, S. P.; Harjogi, D.

    2016-04-01

    The modification of Nafion 117 - TMSP (trimethoxysylilprophanthiol) composite membrane has been conducted by in-situ sol-gel method followed by characterization of structural and properties of material using spectroscopic techniques. The performance of composite membrane has then been examined in the single stack module of Fe-Cr Redox Flow Battery. It was found that the introduction of silica from TMSP through sol-gel process within the Nafion 117 membrane produced composite membrane that has slightly higher proton conductivity values as compared to the pristine of Nafion 117 membrane observed by electrochemical impedance spectroscopy. The degree of swelling of water in the composite membrane demonstrated greatly reduced than a pristine Nafion 117 signifying low water cross over. The SEM-EDX measurements indicated that there was no phase separation occurred suggesting that silica nanoparticles are distributed homogeneously within the composite membrane. The composite membrane used as separator in the system of Fe-Cr Redox Flow Battery revealed no cross mixing (crossover) occurred between anolyte and catholyte in the system as observed from the total voltage measurements that closed to the theoretical value. The battery efficiency generally increased as the volume of the electrolytes enlarged.

  19. Biochar composite membrane for high performance pollutant management: Fabrication, structural characteristics and synergistic mechanisms.

    Science.gov (United States)

    Ghaffar, Abdul; Zhu, Xiaoying; Chen, Baoliang

    2018-02-01

    Biochar, a natural sourced carbon-rich material, has been used commonly in particle shape for carbon sequestration, soil fertility and environmental remediation. Here, we report a facile approach to fabricate freestanding biochar composite membranes for the first time. Wood biochars pyrolyzed at 300 °C and 700 °C were blended with polyvinylidene fluoride (PVdF) in three percentages (10%, 30% and 50%) to construct membranes through thermal phase inversion process. The resultant biochar composite membranes possess high mechanical strength and porous structure with uniform distribution of biochar particles throughout the membrane surface and cross-section. The membrane pure water flux was increased with B300 content (4825-5411 ± 21 L m -2 h -1 ) and B700 content (5823-6895 ± 72 L m -2 h -1 ). The membranes with B300 were more hydrophilic with higher surface free energy (58.84-60.31 mJ m -2 ) in comparison to B700 (56.32-51.91 mJ m -2 ). The biochar composite membranes indicated promising adsorption capacities (47-187 mg g -1 ) to Rhodamine B (RhB) dye. The biochar membranes also exhibited high retention (74-93%) for E. coli bacterial suspensions through filtration. After simple physical cleaning, both the adsorption and sieving capabilities of the biochar composite membranes could be effectively recovered. Synergistic mechanisms of biochar/PVdF in the composite membrane are proposed to elucidate the high performance of the membrane in pollutant management. The multifunctional biochar composite membrane not only effectively prevent the problems caused by directly using biochar particle as sorbent but also can be produced in large scale, indicating great potential for practical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. CO2-Philic Thin Film Composite Membranes: Synthesis and Characterization of PAN-r-PEGMA Copolymer

    KAUST Repository

    Karunakaran, Madhavan

    2017-07-06

    In this work, we report the successful fabrication of CO2-philic polymer composite membranes using a polyacrylonitrile-r-poly(ethylene glycol) methyl ether methacrylate (PAN-r-PEGMA) copolymer. The series of PAN-r-PEGMA copolymers with various amounts of PEG content was synthesized by free radical polymerization in presence of AIBN initiator and the obtained copolymers were used for the fabrication of composite membranes. The synthesized copolymers show high molecular weights in the range of 44-56 kDa. We were able to fabricate thin film composite (TFC) membranes by dip coating procedure using PAN-r-PEGMA copolymers and the porous PAN support membrane. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were applied to analyze the surface morphology of the composite membranes. The microscopy analysis reveals the formation of the defect free skin selective layer of PAN-r-PEGMA copolymer over the porous PAN support membrane. Selective layer thickness of the composite membranes was in the range of 1.32-1.42 mu m. The resulting composite membrane has CO2 a permeance of 1.37 x 10(-1) m(3)/m(2).h.bar and an ideal CO2/N-2, selectivity of 65. The TFC membranes showed increasing ideal gas pair selectivities in the order CO2/N-2 > CO2/CH4 > CO2/H-2. In addition, the fabricated composite membranes were tested for long-term single gas permeation measurement and these membranes have remarkable stability, proving that they are good candidates for CO2 separation.

  1. CO2-Philic Thin Film Composite Membranes: Synthesis and Characterization of PAN-r-PEGMA Copolymer

    Directory of Open Access Journals (Sweden)

    Madhavan Karunakaran

    2017-07-01

    Full Text Available In this work, we report the successful fabrication of CO2-philic polymer composite membranes using a polyacrylonitrile-r-poly(ethylene glycol methyl ether methacrylate (PAN-r-PEGMA copolymer. The series of PAN-r-PEGMA copolymers with various amounts of PEG content was synthesized by free radical polymerization in presence of AIBN initiator and the obtained copolymers were used for the fabrication of composite membranes. The synthesized copolymers show high molecular weights in the range of 44–56 kDa. We were able to fabricate thin film composite (TFC membranes by dip coating procedure using PAN-r-PEGMA copolymers and the porous PAN support membrane. Scanning electron microscopy (SEM and atomic force microscopy (AFM were applied to analyze the surface morphology of the composite membranes. The microscopy analysis reveals the formation of the defect free skin selective layer of PAN-r-PEGMA copolymer over the porous PAN support membrane. Selective layer thickness of the composite membranes was in the range of 1.32–1.42 μm. The resulting composite membrane has CO2 a permeance of 1.37 × 10−1 m3/m2·h·bar and an ideal CO2/N2, selectivity of 65. The TFC membranes showed increasing ideal gas pair selectivities in the order CO2/N2 > CO2/CH4 > CO2/H2. In addition, the fabricated composite membranes were tested for long-term single gas permeation measurement and these membranes have remarkable stability, proving that they are good candidates for CO2 separation.

  2. Performance of a 1 kW Class Nafion-PTFE Composite Membrane Fuel Cell Stack

    Directory of Open Access Journals (Sweden)

    Pattabiraman Krishnamurthy

    2012-01-01

    Full Text Available Composite membranes have been prepared by impregnation of Nafion into the expanded polytetrafluoroethylene (EPTFE matrix. Nafion loading in the composite membranes was kept constant at 2 mg/cm2. The lower amount of electrolyte per unit area in the composite membranes offers cost advantages compared to conventional membrane of 50 μm thickness with an electrolyte loading of ~9 mg/cm2. Composite membranes (30 μm thickness were found to have higher thermal stability and mechanical strength compared to the conventional membranes (50 μm thickness. The performance of the membrane electrode assembly made with these composite membranes was comparable to that of the conventional membranes. Single cells fabricated from these MEAs were tested for their performance and durability before scaling them up for large area. The performance of a 20-cell stack of active area 330 cm2 fabricated using these membranes is reported.

  3. Novel structure design of composite proton exchange membranes with continuous and through-membrane proton-conducting channels

    Science.gov (United States)

    Wang, Hang; Tang, Chenxiao; Zhuang, Xupin; Cheng, Bowen; Wang, Wei; Kang, Weimin; Li, Hongjun

    2017-10-01

    The primary goal of this study is to develop a high-performanced proton exchange membrane with the characteristics of through-membrane and continuous solution blown nanofibers as proton-conducting channels. The curled sulfonated phenolphthalein poly (ether sulfone) and poly (vinylidene fluoride) nanofibers were separately fabricated through the solution blowing process which is a new nanofiber fabricating method with high productivity, then they were fabricated into a sandwich-structured mat. Then this sandwich-structured mat was hot-pressed to form the designed structure using different melting temperatures of the two polymers by melting and making poly (vinylidene fluoride) flow into the phenolphthalein poly (ether sulfone) nanofiber mat. The characteristics of the composite membrane, such as morphology and performance of the membrane, were investigated. The characterization results proved the successful preparation of the membrane structure. Performance results showed that the novel structured membrane with through-membrane nanofibers significantly improved water swelling and methanol permeability, though its conductivity is lower than that of Nafion, the cell performance showed comparable results. Therefore, the novel structure design can be considered as a promising method for preparing of proton exchange membranes.

  4. Proton conducting graft copolymers with tunable length and density of phosphonated side chains for fuel cell membranes

    DEFF Research Database (Denmark)

    Dimitrov, Ivaylo; Takamuku, Shogo; Jankova Atanasova, Katja

    2014-01-01

    gravimetrical analyses. The proton conductivity of membrane prepared from the graft copolymer with the shortest phosphonated side chains was 134 mS cm(-1) at 100 degrees C under fully immersed conditions. The graft copolymer TEM image shows a nanophase separation of ion-rich segments within the polysulfone...

  5. Facile spray-coating process for the fabrication of tunable adhesive superhydrophobic surfaces with heterogeneous chemical compositions used for selective transportation of microdroplets with different volumes.

    Science.gov (United States)

    Li, Jian; Jing, Zhijiao; Zha, Fei; Yang, Yaoxia; Wang, Qingtao; Lei, Ziqiang

    2014-06-11

    In this paper, tunable adhesive superhydrophobic ZnO surfaces have been fabricated successfully by spraying ZnO nanoparticle (NP) suspensions onto desired substrates. We regulate the spray-coating process by changing the mass percentage of hydrophobic ZnO NPs (which were achieved by modifying hydrophilic ZnO NPs with stearic acid) in the hydrophobic/hydrophilic ZnO NP mixtures to control heterogeneous chemical composition of the ZnO surfaces. Thus, the water adhesion on the same superhydrophobic ZnO surface could be effectively tuned by controlling the surface chemical composition without altering the surface morphology. Compared with the conventional tunable adhesive superhydrophobic surfaces, on which there were only three different water sliding angle values: lower than 10°, 90° (the water droplet is firmly pinned on the surface at any tilted angles), and the value between the two ones, the water adhesion on the superhydrophobic ZnO surfaces has been tuned effectively, on which the sliding angle is controlled from 2 ± 1° to 9 ± 1°, 21 ± 2°, 39 ± 3°, and 90°. Accordingly, the adhesive force can be adjusted from extremely low (∼2.5 μN) to very high (∼111.6 μN). On the basis of the different adhesive forces of the tunable adhesive superhydrophobic surfaces, the selective transportation of microdroplets with different volumes was achieved, which has never been reported before. In addition, we demonstrated a proof of selective transportation of microdroplets with different volumes for application in the droplet-based microreactors via our tunable adhesive superhydrophobic surfaces for the quantitative detection of AgNO3 and NaOH. The results reported herein realize the selective transportation of microdroplets with different volumes and we believe that this method would potentially be used in many important applications, such as selective water droplet transportation, biomolecular quantitative detection and droplet-based biodetection.

  6. Alterations in lipid composition and fluidity of liver plasma membranes in copper-deficient rats

    Energy Technology Data Exchange (ETDEWEB)

    Lei, K.Y.; Rosenstein, F.; Shi, F.; Hassel, C.A.; Carr, T.P.; Zhang, J. (Univ. of Arizona, Tucson (USA))

    1988-07-01

    In view of the importance of membrane fluidity on cell functions, the influence of phospholipid acyl groups on membrane fluidity, and the changes in lipid metabolism induced by copper (Cu) deficiency, this study was designed to examine the influence of dietary Cu on the lipid composition and fluidity of liver plasma membranes. Male Sprague-Dawley rats were divided into two dietary treatments, namely Cu deficient and Cu adequate. After 8 weeks of treatment, liver plasma membranes were isolated by sucrose density gradient centrifugation. The lipid fluidity of plasma membranes, as assessed by the intramolecular eximer fluorescence of 1,3-di(1-pyrenyl) propane, was significantly depressed by Cu deficiency. In addition, Cu deficiency significantly reduced the content of arachidonic and palmitoleic acids but increased the docosatetraenoic acids of membrane phospholipids. This alteration in unsaturated phospholipid fatty acid composition, especially the large reduction in arachidonic acid, may have contributed to the depressed membrane fluidity. Furthermore, Cu deficiency also markedly altered the fatty acid composition of the triacylglycerols associated with the plasma membranes. Thus, the lipid composition and fluidity of liver plasma membranes are responsive to the animal's Cu status.

  7. Removal of Zn (II) and Ga (III) from waste waters using activated composite membranes

    International Nuclear Information System (INIS)

    Melita, L.; Meghea, A.; Munoz Tapia, M.; Gives, J. de

    2001-01-01

    The present study refers to the preparation of activated composite membrane (ACM) containing Aliquat 336 as a carrier, and testing their properties towards the selective transport of Ga and Zn cations. A new type of liquid membrane was prepared, named Activated Composite Membrane (ACM). The stability of these membrane increases, referring to other common membranes used before. These membranes have also good characteristics to separate metals. We cast membranes in two steps, first we used non-woven fabric (Hollytex 3329, France) as a support to manufacture reinforced polysulfone (PS) membrane which was obtained by the phase inversion technique, and second, a thin top layer of polyamide containing Aliquat 336 of two different concentrations (0.5 and 1 M) was obtained by interfacial polymerisation. The membrane thus prepared is composed of polyamide and polysulfone layers containing carrier. The surface texture of the membrane under study was examined by scanning electron microscopy (SEM) using a JSM-6300 scanning electron microscope. The chemical elemental analysis of freshly prepared membranes was performed, by X-ray diffraction measuring the energy distribution of the X-ray signal generated by a focused electron beam. A correlation between the carrier content in the membrane and the concentration of metal separated was obtained from the results of the membrane analysis by using the inductively coupled plasma (ICP) technique. The competition between gallium and zinc in the membrane surface is presented by the retaining membrane capacity. This type of membrane is relatively new for metal removal (Ga and Zn) from waste waters and the best cation retention was obtained for Zn. (authors)

  8. Hydrophilic nanofibers as new supports for thin film composite membranes for engineered osmosis.

    Science.gov (United States)

    Bui, Nhu-Ngoc; McCutcheon, Jeffrey R

    2013-02-05

    Engineered osmosis (e.g., forward osmosis, pressure-retarded osmosis, direct osmosis) has emerged as a new platform for applications to water production, sustainable energy, and resource recovery. The lack of an adequately designed membrane has been the major challenge that hinders engineered osmosis (EO) development. In this study, nanotechnology has been integrated with membrane science to build a next generation membrane for engineered osmosis. Specifically, hydrophilic nanofiber, fabricated from different blends of polyacrylonitrile and cellulose acetate via electrospinning, was found to be an effective support for EO thin film composite membranes due to its intrinsically wetted open pore structure with superior interconnectivity. The resulting composite membrane exhibits excellent permselectivity while also showing a reduced resistance to mass transfer that commonly impacts EO processes due to its thin, highly porous nanofiber support layer. Our best membrane exhibited a two to three times enhanced water flux and 90% reduction in salt passage when compared to a standard commercial FO membrane. Furthermore, our membrane exhibited one of the lowest structural parameters reported in the open literature. These results indicate that hydrophilic nanofiber supported thin film composite membranes have the potential to be a next generation membrane for engineered osmosis.

  9. Electrochemical characterization and transport phenomena of polystyrene based barium–magnesium phosphate composite membrane

    Directory of Open Access Journals (Sweden)

    Mohammad Mujahid Ali Khan

    2016-09-01

    Full Text Available The polystyrene based barium–magnesium (BMP composite membrane was prepared by sol–gel method. The physico-chemical characterization of the BMP composite membrane was established by XRD, FTIR and simultaneous SEM studies. The membrane was found to be crystalline in nature with uniform arrangement of particles indicating no sign of visible cracks. Membrane potential is a measurable and important parameter to characterize the charge property of the membrane. Membrane potentials have been measured across the polystyrene based barium–magnesium (BMP composite membrane separating various 1:1 electrolytes at different concentrations and followed the order KCl < NaCl < LiCl. The membrane was found to be cation-selective. Membrane potentials have been used to calculate transport number, mobility ratio, distribution coefficient, charge effectiveness, and also the fixed charge density which is a central parameter governing the membrane phenomena by utilizing Teorell, Meyer, and Sievers method. The order of surface charge density for uni-univalent electrolytes solution was found to be LiCl < NaCl < KCl.

  10. Patchy Janus particles with tunable roughness and composition via vapor-assisted deposition of macromolecules

    Science.gov (United States)

    Shepard, Kimberly B.; Christie, Dane A.; Sosa, Chris L.; Arnold, Craig B.; Priestley, Rodney D.

    2015-03-01

    Here, we present a technique for the fabrication of patchy Janus particles utilizing a vapor-assisted macromolecular deposition technique, termed Matrix Assisted Pulsed Laser Evaporation (MAPLE). Using this technique, both inorganic and organic precursor particles, immobilized on a surface, are functionalized on one hemisphere with nanodroplets of a desired polymer, thus forming particles with a patchy Janus morphology and textured surface topology. This fabrication method is flexible with respect to the chemical identity of the precursor particle and the selection of the deposited polymer. By tuning MAPLE deposition parameters, e.g., target composition or deposition time, the Janus anisotropy and roughness (i.e., patchiness) can be tuned, thus enabling greater control over the particles' behavior for applications as nanoparticle surfactants for stabilization of emulsions and foams.

  11. Efficient hydrogen isotopologues separation through a tunable potential barrier: The case of a C2N membrane.

    Science.gov (United States)

    Qu, Yuanyuan; Li, Feng; Zhao, Mingwen

    2017-05-03

    Isotopes separation through quantum sieving effect of membranes is quite promising for industrial applications. For the light hydrogen isotopologues (eg. H 2 , D 2 ), the confinement of potential wells in porous membranes to isotopologues was commonly regarded to be crucial for highly efficient separation ability. Here, we demonstrate from first-principles that a potential barrier is also favorable for efficient hydrogen isotopologues separation. Taking an already-synthesized two-dimensional carbon nitride (C 2 N-h2D) as an example, we predict that the competition between quantum tunneling and zero-point-energy (ZPE) effects regulated by the tensile strain leads to high selectivity and permeance. Both kinetic quantum sieving and equilibrium quantum sieving effects are considered. The quantum effects revealed in this work offer a prospective strategy for highly efficient hydrogen isotopologues separation.

  12. Characteristics of polyimide-based composite membranes fabricated by low-temperature plasma polymerization

    International Nuclear Information System (INIS)

    Dung Thi Tran; Mori, Shinsuke; Suzuki, Masaaki

    2008-01-01

    Composite membranes were prepared by the deposition of plasma-polymerized allylamine films onto a porous polyimide substrate. The relationship between the plasma conditions and the membrane characteristics was described in terms of monomer flow rate, plasma discharge power, plasma polymerization time, and so on. Scanning electron microscope (SEM) images indicate that the thickness of the plasma polymer layer increased and the membrane skin pore size decreased gradually with the increasing of plasma polymerization time. Fourier transform infrared (FTIR) spectra demonstrate the appearance of amine groups in the plasma deposited polymer and the contact angle measurements indicate that the hydrophilicity of the membrane surfaces increased significantly after plasma polymerization. The composite membranes can reject salt from sodium chloride feed solution, and membrane separation performance depends strongly on the plasma conditions applied during the preparation of the plasma deposited polymer films

  13. Polysulphone composite membranes modified with two types of ...

    Indian Academy of Sciences (India)

    The presence of carbon fibrous additives in the PSU matrix improved its hydrophilicity. Porosity and topography of the PSU membranes were also changed upon incorporation of carbon additives. The mechanical properties of the PSU membranes were improved after SCF addition. All physicochemical properties of the ...

  14. Polysulfone - CNT composite membrane with enhanced water permeability

    Science.gov (United States)

    Hirani, Bhakti; Kar, Soumitra; Aswal, V. K.; Bindal, R. C.; Goyal, P. S.

    2018-04-01

    Polymeric membranes are routinely used for water purification. The performance of these conventional membranes can be improved by incorporating nanomaterials, such as metal oxide nanoparticle and carbon nanotubes (CNTs). This manuscript reports the synthesis and characterization of polysulfone (Psf) based nanocomposite membranes where multi wall carbon nanotubes (MWCNTs) and oleic acid coated Fe3O4 nanoparticles have been impregnated onto the polymeric host matrix. The performance of the membranes was evaluated by water permeability and solute rejection measurements. It was observed that the permeability of Psf membrane increases three times at 0.1% loading of MWCNT without compromise in selectivity. It was further observed that the increase in permeability is not affected upon addition of Fe3O4 nanoparticles into the membrane. In order to get a better insight into the membrane microstructure, small angle neutron scattering (SANS) studies were carried out. There is a good correlation between the water permeability and the pore sizes of the membranes as measured using SANS.

  15. Preparation and properties of a composite charged membrane

    NARCIS (Netherlands)

    Noordegraaf, D.A.; Smolders, C.A.; de Boer, R.; Romijn, D.J.

    1982-01-01

    In order to develop a low pressure desalination membrane with fixed ionic charges, we made use of the normally unwanted crosslinking tendency in preparing the polyelectrolyte poly(styrenesulfonate) by sulfonation of polystyrene. After dipcoating a poly(sulfone) or poly(phenylene oxide) UF membrane

  16. Tunable Diode Laser Sensors to Monitor Temperature and Gas Composition in High-Temperature Coal Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Ronald [Stanford Univ., CA (United States); Whitty, Kevin [Univ. of Utah, Salt Lake City, UT (United States)

    2014-12-01

    The integrated gasification combined cycle (IGCC) when combined with carbon capture and storage can be one of the cleanest methods of extracting energy from coal. Control of coal and biomass gasification processes to accommodate the changing character of input-fuel streams is required for practical implementation of integrated gasification combined-cycle (IGCC) technologies. Therefore a fast time-response sensor is needed for real-time monitoring of the composition and ideally the heating value of the synthesis gas (here called syngas) as it exits the gasifier. The goal of this project was the design, construction, and demonstration an in situ laserabsorption sensor to monitor multiple species in the syngas output from practical-scale coal gasifiers. This project investigated the hypothesis of using laser absorption sensing in particulateladen syngas. Absorption transitions were selected with design rules to optimize signal strength while minimizing interference from other species. Successful in situ measurements in the dusty, high-pressure syngas flow were enabled by Stanford’s normalized and scanned wavelength modulation strategy. A prototype sensor for CO, CH4, CO2, and H2O was refined with experiments conducted in the laboratory at Stanford University, a pilot-scale at the University of Utah, and an engineering-scale gasifier at DoE’s National Center for Carbon Capture with the demonstration of a prototype sensor with technical readiness level 6 in the 2014 measurement campaign.

  17. Electrospun Ultrafine Fiber Composites Containing Fumed Silica: From Solution Rheology to Materials with Tunable Wetting.

    Science.gov (United States)

    Dufficy, Martin K; Geiger, Mackenzie T; Bonino, Christopher A; Khan, Saad A

    2015-11-17

    Fumed silica (FS) particles with hydrophobic (R805) or hydrophilic (A150) surface functionalities are incorporated in polyacrylonitrile (PAN) fibers by electrospinning to produce mats with controlled wettability. Rheological measurements are conducted to elucidate the particle-polymer interactions and characterize the system while microscopic and analytic tools are used to examine FS location within both fibers and films to aid in the fundamental understanding of wetting behavior. Unlike traditional polymers, we find these systems to be gel-like, yet electrospinnable; the fumed silica networks break down into smaller aggregates during the electrospinning process and disperse both within and on the surface of the fibers. Composite nanofiber mats containing R805 FS exhibit an apparent contact angle over 130° and remain hydrophobic over 30 min, while similar mats with A150 display rapid surface-wetting with a static contact angle of ∼30°. Wicking experiments reveal that the water absorption properties can be further manipulated, with R805 FS-impregnated mats taking up only 8% water relative to mat weight in 15 min. In contrast, PAN fibers containing A150 FS absorb 425% of water in the same period, even more than the pure PAN fiber (371%). The vastly different responses to water demonstrate the versatility of FS in surface modification, especially for submicron fibrous mats. The role of fumed silica in controlling wettability is discussed in terms of their surface functionality, placement on nanofibers and induced surface roughness.

  18. Hydrogen-assisted post-growth substitution of tellurium into molybdenum disulfide monolayers with tunable compositions

    Science.gov (United States)

    Yin, Guoli; Zhu, Dancheng; Lv, Danhui; Hashemi, Arsalan; Fei, Zhen; Lin, Fang; Krasheninnikov, Arkady V.; Zhang, Ze; Komsa, Hannu-Pekka; Jin, Chuanhong

    2018-04-01

    Herein we report the successful doping of tellurium (Te) into molybdenum disulfide (MoS2) monolayers to form MoS2x Te2(1-x) alloy with variable compositions via a hydrogen-assisted post-growth chemical vapor deposition process. It is confirmed that H2 plays an indispensable role in the Te substitution into as-grown MoS2 monolayers. Atomic-resolution transmission electron microscopy allows us to determine the lattice sites and the concentration of introduced Te atoms. At a relatively low concentration, tellurium is only substituted in the sulfur sublattice to form monolayer MoS2(1-x)Te2x alloy, while with increasing Te concentration (up to ˜27.6% achieved in this study), local regions with enriched tellurium, large structural distortions, and obvious sulfur deficiency are observed. Statistical analysis of the Te distribution indicates the random substitution. Density functional theory calculations are used to investigate the stability of the alloy structures and their electronic properties. Comparison with experimental results indicate that the samples are unstrained and the Te atoms are predominantly substituted in the top S sublattice. Importantly, such ultimately thin Janus structure of MoS2(1-x)Te2x exhibits properties that are distinct from their constituents. We believe our results will inspire further exploration of the versatile properties of asymmetric 2D TMD alloys.

  19. Thin film composite membranes of glossy polymers for gas separation : preparation and characterization

    NARCIS (Netherlands)

    Ebert, Katrin

    1995-01-01

    The application of polymeric composite membranes can be very interesting in the field of gas separation. The two main parameters which determine the applicability of membranes are the selectivity and the permeability. Good selectivities can be achieved by developing proper materials, high permeation

  20. Sulfonated poly(ether ether ketone) based composite membranes for nanofiltration of acidic and alkaline media

    NARCIS (Netherlands)

    Dalwani, M.R.; Bargeman, Gerrald; Hosseiny, Seyed Schwan; Schwan Hosseiny, Seyed; Boerrigter, M.E.; Wessling, Matthias; Benes, Nieck Edwin

    2011-01-01

    Several thin film composite nanofiltration membranes have been prepared by spin coating a sulfonated poly(ether ether ketone) solution on a polyethersulfone support, followed by thermal treatment. The most optimal developed nanofiltration membrane shows a clean water permeance of ∼4.5 L m−2 h−1

  1. CO2-selective PEO–PBT (PolyActive™)/graphene oxide composite membranes

    KAUST Repository

    Karunakaran, Madhavan

    2015-07-31

    CO2-selective graphene oxide (GO) nano-composite membranes were prepared for the first time by embedding GO into a commercially available poly(ethylene oxide)–poly(butylene terephthalate) (PEO–PBT) copolymer (PolyActive™). The as-prepared GO membrane shows high CO2 permeability (143 Barrer) and CO2/N2 selectivity (α = 73).

  2. Exceptionally strong and robust millimeter-scale graphene–alumina composite membranes

    International Nuclear Information System (INIS)

    Berdova, Maria; Franssila, Sami; Perros, Alexander Pyymaki; Kim, Wonjae; Riikonen, Juha; Li, Changfeng; Lipsanen, Harri; Ylitalo, Tuomo; Kassamakov, Ivan; Hæggström, Edward; Heino, Jouni

    2014-01-01

    Graphene has attracted attention as a potential strengthening material and functional component in suspended membranes as utilized in micro and nanosystems. Development of a practical and scalable fabrication process is a necessary step to allow the exceptional material properties of graphene to be fully exploited in composite structures. Using standard and scalable microfabrication processes, we fabricated free-standing chemical vapor deposition monolayer graphene-reinforced Al 2 O 3 composite membranes, 0.5 mm in diameter, that are strong and robust. Bulge tests revealed that the graphene reinforcement increased the membrane fracture strength by a factor of at least three and maximum sustainable strain from 0.28% to at least 0.69%. We show that the graphene-reinforced membranes are even tolerant to significant cracking without loss of membrane integrity. The graphene composite membranes’ freestanding area of ∼200 000 μm 2 is almost a thousand times larger than suspended graphene membranes reported elsewhere. The presented graphene composite membranes may be seen as representing an interesting new class of durable composite materials warranting further study and having potential for broad applicability in a variety of fields. (paper)

  3. Characterization of phospholipid composition and its control in the plasma membrane of developing soybean root

    International Nuclear Information System (INIS)

    Whitman, C.E.

    1985-01-01

    The phospholipid composition of plasma membrane enriched fractions from developing soybean root and several mechanisms which may regulate it have been examined. Plasma membrane vesicles were isolated from meristematic and mature sections of four-day-old dark grown soybean roots (Glycine max [L.] Merr. Cult. Wells II). Analysis of lipid extracts revealed two major phospholipid classes: phosphatidylcholine and phosphatidylethanolamine. Minor phospholipid classes were phosphatidylinositol, phosphatidylserine, phosphatidylgylcerol and diphosphatidylgylcerol. Phospholipid composition was similar at each developmental stage. Fatty acids of phosphatidylcholine and phosphatidylethanolamine were 16:0, 18:0, 18:2, and 18:3. Fatty acid composition varied with both phospholipid class and the developmental stage of the root. The degradation of phosphatidylcholine by endogenous phospholipase D during membrane isolation indicated that this enzyme might be involved in phospholipid turnover within the membrane. Phospholipase D activity was heat labile and increasing the pH of the enzyme assay from 5.3 to 7.8 resulted in 90% inhibition of activity. The turnover of fatty acids within the phospholipids of the plasma membrane was studied. Mature root sections were incubated with [1- 14 C] acetate, 1 mM Na acetate and 50 μg/ml chloramphenicol. Membrane lipid extracts analyzed for phospholipid class and acyl chain composition revealed that the long incubation times did not alter the phospholipid composition of the plasma membrane enriched fraction

  4. TiO2/bi A-SPAES(Ds 1.0) composite membranes for proton exchange membrane in direct methanol fuel cell (DMFC).

    Science.gov (United States)

    Zhang, Ni; Zhong, Chuanqing; Xie, Bing; Liu, Huiling; Wang, Xingzu

    2014-09-01

    A series of TiO2/bi A-SPAES(Ds 1.0) composite membranes with various contents of nano-sized TiO2 particles were prepared through sol-gel method. Scanning electron microscopy (SEM) images indicated the TiO2 particles were well dispersed within polymer matrix. These membranes were used for proton exchange membrane (PEM) for performance evaluation in direct methanol fuel cell (DMFC). These composite membranes showed good thermal stability and mechanical strength. It was found that the water uptake of these membranes enhanced with the TiO2 amount increasing in these composite membranes. Meanwhile, the introduction of TiO2 particles increased the proton conductivity and reduced the methanol permeability. The proton conductivities of these composite membranes with 8% TiO2 particles (0.120 S/cm and 0.128 S/cm) were higher than those of Nafion 117 membrane (0.114 S/cm and 0.117 S/cm) at 80 degrees C and 100 degrees C. Specially, the methanol diffusion coefficient (1.2 x 10(-7) cm2/s) of the composite membrane with 8% TiO2 content was much lower than that of Nafion 117 membrane (2.1 x 10(-6) cm2/s). As a result, the TiO2/bi A-SPAES composite membrane was considered as a promising material for PEM in DMFC.

  5. Comparison of biofouling mechanisms between cellulose triacetate (CTA) and thin-film composite (TFC) polyamide forward osmosis membranes in osmotic membrane bioreactors.

    Science.gov (United States)

    Wang, Xinhua; Zhao, Yanxiao; Yuan, Bo; Wang, Zhiwei; Li, Xiufen; Ren, Yueping

    2016-02-01

    There are two types of popular forward osmosis (FO) membrane materials applied for researches on FO process, cellulose triacetate (CTA) and thin film composite (TFC) polyamide. However, performance and fouling mechanisms of commercial TFC FO membrane in osmotic membrane bioreactors (OMBRs) are still unknown. In current study, its biofouling behaviors in OMBRs were investigated and further compared to the CTA FO membrane. The results indicated that β-D-glucopyranose polysaccharides and microorganisms accounted for approximately 77% of total biovolume on the CTA FO membrane while β-D-glucopyranose polysaccharides (biovolume ratio of 81.1%) were the only dominant biofoulants on the TFC FO membrane. The analyses on the biofouling structure implied that a tighter biofouling layer with a larger biovolume was formed on the CTA FO membrane. The differences in biofouling behaviors including biofoulants composition and biofouling structure between CTA and TFC FO membranes were attributed to different membrane surface properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. PALLADIUM/COPPER ALLOY COMPOSITE MEMBRANES FOR HIGH TEMPERATURE HYDROGEN SEPARATION

    Energy Technology Data Exchange (ETDEWEB)

    J. Douglas Way

    2004-08-31

    This report summarizes progress made during the first year of research funding from DOE Grant No. DE-FG26-03NT41792 at the Colorado School of Mines. The period of performance was September 1, 2003 through August of 2004. Composite membranes, consisting of a thin Pd alloy film supported on a porous substrate have been investigated as a means of reducing the membrane cost and improving H{sub 2} flux. An electroless plating technique was utilized to deposit subsequent layers of palladium and copper over zirconia and alumina-based microfilters. The composite membranes thus made were annealed and tested at temperatures ranging from 250 to 500 C, under very high feed pressures (up to 450 psig) using pure gases and gaseous mixtures containing H{sub 2}, CO, CO{sub 2}, H{sub 2}O and H{sub 2}S, with the purpose of determining the effects these variables had on the H{sub 2} permeation rate, selectivity and percent recovery. The inhibition caused by CO/CO{sub 2} gases on a 7 {micro}m thick Pd-Cu composite membrane was less than 17% over a wide range of compositions at 350 C. H{sub 2}S caused a strong inhibition of the H{sub 2} flux of the same Pd-Cu composite membrane, which is accentuated at levels of 100 ppm or higher. The membrane was exposed to 50 ppm three times without permanent damage. At higher H{sub 2}S levels, above 100 ppm the membrane suffered some physical degradation and its performances was severely affected. The use of sweep gases improved the hydrogen flux and recovery of a Pd-Cu composite membrane. Recently, we have been able to dramatically reduce the thickness of these Pd alloy membranes to approximately one micron. This is significant because at this thickness, it is the cost of the porous support that controls the materials cost of a composite Pd alloy membrane, not the palladium inventory. Very recent results show that the productivity of our membranes is very high, essentially meeting the DOE pure hydrogen flux target value set by the DOE Hydrogen

  7. Highly Hydrophilic Thin-Film Composite Forward Osmosis Membranes Functionalized with Surface-Tailored Nanoparticles

    KAUST Repository

    Tiraferri, Alberto

    2012-09-26

    Thin-film composite polyamide membranes are state-of-the-art materials for membrane-based water purification and desalination processes, which require both high rejection of contaminants and high water permeabilities. However, these membranes are prone to fouling when processing natural waters and wastewaters, because of the inherent surface physicochemical properties of polyamides. The present work demonstrates the fabrication of forward osmosis polyamide membranes with optimized surface properties via facile and scalable functionalization with fine-tuned nanoparticles. Silica nanoparticles are coated with superhydrophilic ligands possessing functional groups that impart stability to the nanoparticles and bind irreversibly to the native carboxyl moieties on the membrane selective layer. The tightly tethered layer of nanoparticles tailors the surface chemistry of the novel composite membrane without altering the morphology or water/solute permeabilities of the membrane selective layer. Surface characterization and interfacial energy analysis confirm that highly hydrophilic and wettable membrane surfaces are successfully attained. Lower intermolecular adhesion forces are measured between the new membrane materials and model organic foulants, indicating the presence of a bound hydration layer at the polyamide membrane surface that creates a barrier for foulant adhesion. © 2012 American Chemical Society.

  8. Membrane fatty acid composition and radiation response of Bp8 sarcoma ascites tumour cells

    International Nuclear Information System (INIS)

    Harms-Ringdahl, M.

    1987-01-01

    Radiation responses of Bp8 sarcoma ascites tumour cells with differences in membrane fatty acid composition was studied. The cells were grown i.p. in NMRI mice and their membrane composition was changed in response to different dietary regimes provided to the hosts. Cell survival, varied insignificantly between the four dietary groups, while repair capacity differed significantly. Increased repair capacity was observed for ascites cells grown in animals on diets enriched in sunflower seed oil and coconut oil, compared with cells from mice fed the hydrogenated lard diet or from cells from the control animals. The membrane fatty acid composition of the cells from the two dietary groups with increased levels of repair capacity differed extensively, and in general there was no correlation between radiation response and the membrane fatty acid composition of the four groups. For coconut oil and control groups with marked differences in membrane fatty acid composition, the effects of irradiation on ascites tumour growth rate and cell cycle distribution were followed in vivo. For none of the parameters was an effect on membrane fatty acid composition on radiation response observed. (author)

  9. Functionalized carbon nanotube via distillation precipitation polymerization and its application in nafion-based composite membranes.

    Science.gov (United States)

    He, Guangwei; Zhao, Jing; Hu, Shen; Li, Lingqiao; Li, Zongyu; Li, Yifan; Li, Zhen; Wu, Hong; Yang, Xinlin; Jiang, Zhongyi

    2014-09-10

    The objective of this study is to develop a novel approach to in situ functionalizing multiwalled carbon nanotubes (MWCNTs) and exploring their application in Nafion-based composite membranes for efficient proton conduction. Covalent grafting of acrylate-modified MWCNTs with poly(methacrylic acid-co-ethylene glycol dimethacrylate), poly(vinylphosphonic acid-co-ethylene glycol dimethacrylate), and sulfonated poly(styrene-co-divinylbenzene) was achieved via surface-initiated distillation precipitation polymerization. The formation of core-shell structure was verified by TEM images, and polymer layers with thickness around 30 nm were uniformly covered on the MWCNTs. The graft yield reached up to 93.3 wt % after 80 min of polymerization. The functionalized CNTs (FCNTs) were incorporated into the Nafion matrix to prepare composite membranes. The influence of various functional groups (-COOH, -PO3H2, and -SO3H) in FCNTs on proton transport of the composite membranes was studied. The incorporation of FCNTs afforded the composite membranes significantly enhanced proton conductivities under reduced relative humidity. The composite membrane containing 5 wt % phosphorylated MWCNTs (PCNTs) showed the highest proton conductivity, which was attributed to the construction of lower-energy-barrier proton transport pathways by PCNTs, and excellent water-retention and proton-conduction properties of the cross-linked polymer in PCNTs. Moreover, the composite membranes exhibited an enhanced mechanical stability.

  10. Physically Gelled Room-Temperature Ionic Liquid-Based Composite Membranes for CO2/N-2 Separation: Effect of Composition and Thickness on Membrane Properties and Performance

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, PT; Voss, BA; Wiesenauer, EF; Gin, DL; Nobe, RD

    2013-07-03

    An aspartame-based, low molecular-weight organic gelator (LMOG) was used to form melt-infused and composite membranes with two different imidazolium-based room-temperature ionic liquids (RTILs) for CO2 separation from N-2. Previous work demonstrated that LMOGs can gel RTILs at low, loading levels, and this aspartame-based LMOG was selected because it has been reported to gel a large number of RTILs. The imidazolium-based RTILs were used because of their inherent good properties for CO2/light gas separations. Analysis of the resulting bulk RTIL/LMOG physical gels showed that these materials have high sol-gel transition temperatures (ca. 135 degrees C) suitable for flue gas applications. Gas permeabilities and burst pressure measurements of thick, melt infused membranes revealed a trade-off between high CO2 permeabilities and good mechanical stability as a function of the LMOG loading. Defect-free, composite membranes of the gelled RTILs were successfully fabricated by choosing an appropriate porous membrane support (hydrophobic PTFE) using a suitable coating technique (roller coating). The thicknesses of the applied composite gel layers ranged from 10.3 to 20.7 mu m, which represents an order of magnitude decrease in active layer thickness, compared to the original melt-infused gel RTIL membranes.

  11. Development of composite metallic membranes for hydrogen purification

    International Nuclear Information System (INIS)

    Gaillard, F.

    2003-12-01

    Fuel cells are able to convert chemical energy into electric power. There are different types of cells; the best for automotive applications are Proton Exchange Membrane Fuel Cells. But, these systems need hydrogen of high purity. However, fuel reforming generates a mixture of gases, from which hydrogen has to be extracted before supplying the electrochemical cell. The best way for the purification of hydrogen is the membrane separation technology. Palladium is selectively permeable to hydrogen and this is the reason why this metal is largely used for the membrane development. This work deals with the development of hydrogen-selective membranes by deposition of a thin film of palladium onto a porous mechanical support. For this, we have used the electroless plating technique: a palladium salt and a reducing agent are mixed and the deposition takes place onto the catalytic surface of the substrate. After bibliographic investigations, experimental studies have been performed first with a dense metallic substrate in order to better understand the different parameters controlling the deposition. First of all, potentiometric measurements have been carried out to follow the electrochemical reactions in the bath. Then, kinetic measurements of the coating thickness have been recorded to understand the effect of the bath conditions on the yield and the adhesion of the film. Finally, the electroless plating method has been applied to deposit palladium membranes onto porous stainless steel substrates. After optimisation, the resulting membranes were tested for their hydrogen permeation properties. (author)

  12. Membrane fouling mechanism transition in relation to feed water composition

    KAUST Repository

    Myat, Darli Theint

    2014-12-01

    The impact of secondary effluent wastewater from the Eastern Treatment Plant (ETP), Melbourne, Australia, before and after ion exchange (IX) treatment and polyaluminium chlorohydrate (PACl) coagulation, on hydrophobic polypropylene (PP) and hydrophilic polyvinylidene fluoride (PVDF) membrane fouling was studied. Laboratory fouling tests were operated over 3-5 days with regular, intermittent backwash. During the filtration with PP membranes, organic rejection data indicated that humic adsorption on hydrophobic PP membrane occurred during the first 24h of filtration and contributed to fouling for both raw wastewater and pre-treated wastewaters. However, after the first 24h of filtration the contribution of humic substances to fouling diminished and biopolymers that contribute to cake layer development became more prominent in their contribution to the fouling rate. For PVDF membranes, the per cent removal of humic substances from both raw wastewater and pre-treated wastewaters was very small as indicated by no change in UV254 from the feed to the permeate over the filtration period, even during the early stages of filtration. This suggested that the hydrophobic PP membrane adsorbed humic substances while the hydrophilic PVDF membrane did not. The highest mass of biopolymer removal by each PVDF membrane was from ETP water followed by PACl and IX treated water respectively. This was possibly due to differences in the backwashing efficiency linked to the filter cake contributed by biopolymers. Hydraulic backwashing was more effective during the later stages of filtration for the ETP water compared to IX and PACl treated waters, indicating that the filter cake contributed by ETP biopolymers was more extensively removed by hydraulic backwashing. It was proposed that humic substances may act to stabilise biopolymers in solution and that removing humics substances by coagulation or IX results in greater adhesive forces between the biopolymers and membrane/filter cake

  13. Electrospun Nafion®/Polyphenylsulfone Composite Membranes for Regenerative Hydrogen Bromine Fuel Cells.

    Science.gov (United States)

    Park, Jun Woo; Wycisk, Ryszard; Pintauro, Peter N; Yarlagadda, Venkata; Van Nguyen, Trung

    2016-02-29

    The regenerative H₂/Br₂-HBr fuel cell, utilizing an oxidant solution of Br₂ in aqueous HBr, shows a number of benefits for grid-scale electricity storage. The membrane-electrode assembly, a key component of a fuel cell, contains a proton-conducting membrane, typically based on the perfluorosulfonic acid (PFSA) ionomer. Unfortunately, the high cost of PFSA membranes and their relatively high bromine crossover are serious drawbacks. Nanofiber composite membranes can overcome these limitations. In this work, composite membranes were prepared from electrospun dual-fiber mats containing Nafion ® PFSA ionomer for facile proton transport and an uncharged polymer, polyphenylsulfone (PPSU), for mechanical reinforcement, and swelling control. After electrospinning, Nafion/PPSU mats were converted into composite membranes by softening the PPSU fibers, through exposure to chloroform vapor, thus filling the voids between ionomer nanofibers. It was demonstrated that the relative membrane selectivity, referenced to Nafion ® 115, increased with increasing PPSU content, e.g., a selectivity of 11 at 25 vol% of Nafion fibers. H₂-Br₂ fuel cell power output with a 65 μm thick membrane containing 55 vol% Nafion fibers was somewhat better than that of a 150 μm Nafion ® 115 reference, but its cost advantage due to a four-fold decrease in PFSA content and a lower bromine species crossover make it an attractive candidate for use in H₂/Br₂-HBr systems.

  14. Electrospun Nafion®/Polyphenylsulfone Composite Membranes for Regenerative Hydrogen Bromine Fuel Cells

    Science.gov (United States)

    Park, Jun Woo; Wycisk, Ryszard; Pintauro, Peter N.; Yarlagadda, Venkata; Van Nguyen, Trung

    2016-01-01

    The regenerative H2/Br2-HBr fuel cell, utilizing an oxidant solution of Br2 in aqueous HBr, shows a number of benefits for grid-scale electricity storage. The membrane-electrode assembly, a key component of a fuel cell, contains a proton-conducting membrane, typically based on the perfluorosulfonic acid (PFSA) ionomer. Unfortunately, the high cost of PFSA membranes and their relatively high bromine crossover are serious drawbacks. Nanofiber composite membranes can overcome these limitations. In this work, composite membranes were prepared from electrospun dual-fiber mats containing Nafion® PFSA ionomer for facile proton transport and an uncharged polymer, polyphenylsulfone (PPSU), for mechanical reinforcement, and swelling control. After electrospinning, Nafion/PPSU mats were converted into composite membranes by softening the PPSU fibers, through exposure to chloroform vapor, thus filling the voids between ionomer nanofibers. It was demonstrated that the relative membrane selectivity, referenced to Nafion® 115, increased with increasing PPSU content, e.g., a selectivity of 11 at 25 vol% of Nafion fibers. H2-Br2 fuel cell power output with a 65 μm thick membrane containing 55 vol% Nafion fibers was somewhat better than that of a 150 μm Nafion® 115 reference, but its cost advantage due to a four-fold decrease in PFSA content and a lower bromine species crossover make it an attractive candidate for use in H2/Br2-HBr systems. PMID:28773268

  15. Electrospun Nafion®/Polyphenylsulfone Composite Membranes for Regenerative Hydrogen Bromine Fuel Cells

    Directory of Open Access Journals (Sweden)

    Jun Woo Park

    2016-02-01

    Full Text Available The regenerative H2/Br2-HBr fuel cell, utilizing an oxidant solution of Br2 in aqueous HBr, shows a number of benefits for grid-scale electricity storage. The membrane-electrode assembly, a key component of a fuel cell, contains a proton-conducting membrane, typically based on the perfluorosulfonic acid (PFSA ionomer. Unfortunately, the high cost of PFSA membranes and their relatively high bromine crossover are serious drawbacks. Nanofiber composite membranes can overcome these limitations. In this work, composite membranes were prepared from electrospun dual-fiber mats containing Nafion® PFSA ionomer for facile proton transport and an uncharged polymer, polyphenylsulfone (PPSU, for mechanical reinforcement, and swelling control. After electrospinning, Nafion/PPSU mats were converted into composite membranes by softening the PPSU fibers, through exposure to chloroform vapor, thus filling the voids between ionomer nanofibers. It was demonstrated that the relative membrane selectivity, referenced to Nafion® 115, increased with increasing PPSU content, e.g., a selectivity of 11 at 25 vol% of Nafion fibers. H2-Br2 fuel cell power output with a 65 μm thick membrane containing 55 vol% Nafion fibers was somewhat better than that of a 150 μm Nafion® 115 reference, but its cost advantage due to a four-fold decrease in PFSA content and a lower bromine species crossover make it an attractive candidate for use in H2/Br2-HBr systems.

  16. Facile fabrication and characterization of poly(tetrafluoroethylene)@polypyrrole/nano-silver composite membranes with conducting and antibacterial property

    Science.gov (United States)

    Shi, Zhiquan; Zhou, Hui; Qing, Xutang; Dai, Tingyang; Lu, Yun

    2012-06-01

    Porous poly(tetrafluoroethylene) (PTFE) membranes play an important role in air purification and separation engineering. To achieve the bi-functionality of conducting and antibacterial property, two kinds of poly(tetrafluoroethylene)@ polypyrrole/nano-silver composite membranes have been prepared. One involves hydrophobic polypyrrole/nano-silver composite with hollow capsule nanostructures immobilized on the surface of the PTFE membranes. The other is a type of composite membranes with polypyrrole/nano-silver composite wholly packed on the fibrils of the expand PTFE membrane to form core/shell coaxial cable structures. The structure and morphology of the two kinds of composite membranes have been characterized by FTIR, UV-vis, XRD, TGA and SEM measurements. Possible formation mechanisms of the hollow capsules and the core/shell nanocable structures have been discussed in detail. The antibacterial effects of composite membranes are also briefly investigated.

  17. Electrospun hydrophilic fumed silica/polyacrylonitrile nanofiber-based composite electrolyte membranes

    International Nuclear Information System (INIS)

    Jung, Hong-Ryun; Ju, Dong-Hyuk; Lee, Wan-Jin; Zhang, Xiangwu; Kotek, Richard

    2009-01-01

    Hydrophilic fumed silica (SiO 2 )/polyacrylonitrile (PAN) composite electrolyte membranes were prepared by electrospinning composite solutions of SiO 2 and PAN in N,N-dimethylformamide (DMF). Among electrospinning solutions with various SiO 2 contents, the 12 wt% SiO 2 in PAN solution has highest zeta potential (-40.82 mV), and exhibits the best dispersibility of SiO 2 particles. The resultant 12 wt% SiO 2 /PAN nanofiber membrane has the smallest average fiber diameter, highest porosity, and largest specific surface area. In addition, this membrane has a three-dimensional network structure, which is fully interconnected with combined mesopores and macropores because of a good SiO 2 dispersion. Composite electrolyte membranes were prepared by soaking these porous nanofiber membranes in 1 M lithium hexafluorophosphate (LiPF 6 ) in ethylene carbonate (EC)/dimethyl carbonate (DMC) (1:1 vol%). It is found that 12 wt% SiO 2 /PAN electrolyte membrane has the highest conductivity (1.1 x 10 -2 S cm -1 ) due to the large liquid electrolyte uptake (about 490%). In addition, the electrochemical performance of composite electrolyte membranes is also improved after the introduction of SiO 2 . For initial cycle, 12 wt% SiO 2 /PAN composite electrolyte membrane delivers the discharge capacity of 139 mAh g -1 as 98% of theoretical value, and still retains a high value of 127 mAh g -1 as 89% at 150th cycle, which is significantly higher that of pure PAN nanofiber-based electrolyte membranes.

  18. Nafion/sulfated {beta}-cyclodextrin composite membranes for direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jae-Deok; Kwak, Seung-Yeop [Department of Materials Science and Engineering, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul 151-744 (Korea)

    2008-10-15

    Proton-conducting composite membranes based on H{sup +}-form sulfated {beta}-cyclodextrin (sb-CD) in a Nafion matrix are prepared via the solution-casting method and their methanol permeabilities, proton conductivities, proton diffusion coefficients and cell performances are measured. The methanol permeabilities of the composite membranes increase very slightly with increases in their sb-CD content. As a result of adding sb-CD with its many sulfonic acid groups into the Nafion matrix, the proton conductivities of the composite membranes increase with increases in their sb-CD content. The methanol permeability and proton conductivity results are used to show that the best selectivity of the membranes is that of the NC5 membrane ('NCx' denotes a Nafion/sb-CD composite membrane containing x wt.% sb-CD). The proton diffusion coefficients are measured with {sup 1}H pulsed field gradient nuclear magnetic resonance (PFG-NMR) and found to increase with increase in the sb-CD content in the order NC5 > NC3 > NC1 > NC0. Thus the presence of sb-CD in the Nafion membranes increases the proton diffusion coefficients as well as the proton conductivities, ionic cluster size, water uptakes and the ion-exchange capacities (IECs). A maximum power density of 58 mW cm{sup -2} is obtained for the NC5 membrane. The combination of these effects should lead to an improvement in the performance of direct methanol fuel cells prepared with Nafion/sb-CD composite membranes. (author)

  19. Glomerular basement membrane composition and the filtration barrier.

    Science.gov (United States)

    Miner, Jeffrey H

    2011-09-01

    The glomerular basement membrane (GBM) is an especially thick basement membrane that contributes importantly to the kidney's filtration barrier. The GBM derives from the fusion of separate podocyte and endothelial cell basement membranes during glomerulogenesis and consists primarily of laminin-521 (α5β2γ1), collagen α3α4α5(IV), nidogens-1 and -2, and agrin. Of these nine proteins, mutations in the genes encoding four of them (LAMB2, COL4A3, COL4A4, and COL4A5) cause glomerular disease in humans as well as in mice. Furthermore, mutation of a fifth (Lama5) gene in podocytes in mice causes proteinuria, nephrotic syndrome, and progression to renal failure. These results highlight the importance of the GBM for establishing and maintaining a properly functioning glomerular filtration barrier.

  20. Water vapor permeation and dehumidification performance of poly(vinyl alcohol)/lithium chloride composite membranes

    KAUST Repository

    Bui, Duc Thuan

    2015-10-09

    Thin and robust composite membranes comprising stainless steel scaffold, fine and porous TiO2 and polyvinyl alcohol/lithium chloride were fabricated and studied for air dehumidification application. Higher hydrophilicity, sorption and permeation were observed for membranes with increased lithium chloride content up to 50%. The permeation and sorption properties of the membranes were investigated under different temperatures. The results provided a deeper insight into the membrane water vapor permeation process. It was specifically noted that lithium chloride significantly reduces water diffusion energy barrier, resulting in the change of permeation energy from positive to negative values. Higher water vapor permeance was observed for the membrane with higher LiCl content at lower temperature. The isothermal air dehumidification tests show that the membrane is suitable for dehumidifying air in high humid condition. Additionally, results also indicate a trade-off between the humidity ratio drop with the water vapor removal rate when varying air flowrate.

  1. Rheological properties of poly(vinyl alcohol) (PVA) derived composite membranes for fuel cells

    International Nuclear Information System (INIS)

    Remiš, T

    2017-01-01

    Rheological properties of new anhydrous proton conducting membrane based on PVA, tetraethyl orthosilicate (TEOS),sulfosuccinic acid (SSA), titanium dioxide (TiO 2 )was examined at various stoichiometric ratios. SSA was used as sulfonating agents to form a crosslinked structure and as proton source, whereas TEO Sand TiO 2 were utilized to improve the thermal and mechanical properties of the membrane. In order to verify that all the substances were immobilized into the matrix, the membranes were analysed by means of FT-IR. The rheological, mechanical and thermal properties of the membranes were investigated using rheometer ARES G2 and thermogravimetic analyser (TGA).The analysis of mixed PVA solutions exhibited a unique behaviour of viscosity with increased crosslink density. The dynamic storage modulus G´ of dried composite membranes shows better mechanical resistance and increased tolerance to pressure applied during membrane electrode assembly (MEA). (paper)

  2. Rheological properties of poly(vinyl alcohol) (PVA) derived composite membranes for fuel cells

    Science.gov (United States)

    Remiš, T.

    2017-01-01

    Rheological properties of new anhydrous proton conducting membrane based on PVA, tetraethyl orthosilicate (TEOS),sulfosuccinic acid (SSA), titanium dioxide (TiO2)was examined at various stoichiometric ratios. SSA was used as sulfonating agents to form a crosslinked structure and as proton source, whereas TEO Sand TiO2were utilized to improve the thermal and mechanical properties of the membrane. In order to verify that all the substances were immobilized into the matrix, the membranes were analysed by means of FT-IR. The rheological, mechanical and thermal properties of the membranes were investigated using rheometer ARES G2 and thermogravimetic analyser (TGA).The analysis of mixed PVA solutions exhibited a unique behaviour of viscosity with increased crosslink density. The dynamic storage modulus G´ of dried composite membranes shows better mechanical resistance and increased tolerance to pressure applied during membrane electrode assembly (MEA).

  3. Preparation and characterization of polystyrene based Nickel molybdate composite membrane electrical–electrochemical properties

    Directory of Open Access Journals (Sweden)

    Urfi Ishrat

    2016-09-01

    Full Text Available The functional properties of the polystyrene based Nickel Molybdate composite membrane prepared by applying 70 MPa pressure are described. The fabricated membrane was characterized by using Fourier Transform Infrared, X-ray diffraction, particle size analyzer and Scanning electron microscopy technique and has been investigated for its functional, diffusive, electrochemical and electrical properties. The impedance data of membrane having capacitive and resistive components are plotted, which show the sequence of semicircles representing an electrical phenomenon due to grain material, grain boundary and interfacial phenomenon. The diffusion of electrolytes was determined by the TMS method revealing dependence of membrane potential on the charge on the membrane matrix, charge and size of permeating ions. The membrane determined the activity of cations with good accuracy in the higher concentration range and shows a great selectivity for K+. Other electrochemical properties like transport number have been discussed its selectivity.

  4. Graphene oxide doped ionic liquid ultrathin composite membranes for efficient CO2 capture

    KAUST Repository

    Karunakaran, Madhavan

    2016-11-28

    Advanced membrane systems with high flux and sufficient selectivity are required for industrial gas separation processes. In order to achieve high flux and high selectivity, the membrane material should be as thin as possible and it should have selective sieving channels and long term stability. This could be achieved by designing a three component material consisting of a blend of an ionic liquid and graphene oxide covered by a highly permeable low selective polymeric coating. By using a simple dip coating technique, we prepared high flux and CO selective ultrathin graphene oxide (GO)/ionic liquid membranes on a porous ultrafiltration support. The ultrathin composite membranes derived from GO/ionic liquid complex displays remarkable combinations of permeability (CO flux: 37 GPU) and selectivity (CO/N selectivity: 130) that surpass the upper bound of ionic liquid membranes for CO/N separation. Moreover, the membranes were stable when tested for 120 hours.

  5. Structure, composition, and strength of nitrifying membrane-aerated biofilms

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Smets, Barth F.

    2014-01-01

    Membrane-aerated biofilm reactors (MABRs) are a novel technology based on the growth of biofilms on oxygen-permeable membranes. Hereby, MABRs combine all the advantages of biofilm growth with a more flexible and efficient control of the oxygen load. In the present work, flow cell operation...... had a higher content of proteins and a lower level of carbohydrates. Staining analyses revealed that the EPS in the stronger biofilm regions had hydrophilic nature and distributed around dense microbial aggregates, whereas it was homogeneously distributed in the weaker strata. Overall, the obtained...

  6. Mixed Matrix Composite Membranes Containing POSS Molecules for Carbon Dioxide Removal Application

    KAUST Repository

    Rini, Eki Listya

    2011-05-10

    CO2 removal by membrane processes is considerably potential for several applications such as natural gas and synthesis gas purification, enhanced oil recovery application, and carbon dioxide capture in combat against global warming. Dense polymeric membranes are commonly utilized for these type of gas separation applications. Nevertheless, the intrinsic properties of dense polymeric membranes, which commonly characterize by the low gas permeability versus high gas selectivity trade–off or vice versa, is less desirable. In order to meet the increased demand of CO2 removal, a strategy to improve the gas separation performance of a polymeric membrane is investigated in this study. With this regard, mixed matrix membranes in which inorganic non porous fillers are incorporated into a polymeric matrix were prepared to achieve the aforementioned objective. The mixed matrix membranes were prepared from Pebax® block copolymers and PEG POSS® molecules. These hybrid membranes were formed as both dense and multilayer composite membranes. The dense transparent membranes with well–dispersed fillers could be obtained by variation of the solvent mixture. The DSC analyses showed that incorporation of PEG POSS® into Pebax® matrix altered the thermal properties of the matrix. The multilayer composite membranes were then prepared from a PTMSP gutter layer deposited on a PAN porous support and an adjacent hybrid Pebax®/PEG POSS® as the top layer. These hybrid multilayer composite membranes exhibited an enhanced CO2 selectiv4 ity by a factor of two relative to the pure Pebax®. In these hybrid systems, the CO2 separation was presumably enhanced by the high ether oxides content from PEG POSS® that has high affinities for CO2. For particular composition of Pebax® and PEG POSS® concentrations, the PTMSP gutter layer harnessed the CO2 selectivity without losing the CO2 permeation rate. At the same time, these membrane, however, suffered severe adhesion between the gutter layer

  7. Polysulphone composite membranes modified with two types of ...

    Indian Academy of Sciences (India)

    This study presents a detailed evaluation of the impact of carbon fibrous materials on the physicochemical properties of polysulphone (PSU) membranes and their preliminary osteoblast-like cells response in vitro. Multiwalled carbon nanotubes (MWCNTs) and short carbon fibres (SCFs) were incorporated into PSU and ...

  8. Fullerene and dendrimer based nano-composite gas separation membranes

    NARCIS (Netherlands)

    Sterescu, D.M.

    2007-01-01

    This thesis describes the development of new materials for membrane based gas separation processes. Long-term stable, loosely packed (high free volume) amorphous polymer films were prepared by introduction of super-molecular pendant groups, which possess hardsphere properties to avoid dense

  9. Chitosan/bioactive glass nanoparticle composite membranes for periodontal regeneration

    NARCIS (Netherlands)

    Mota, J.; Yu, N.; Caridade, S.G.; Luz, G.M.; Gomes, M.E.R.; Reis, R.L.; Jansen, J.A.; Walboomers, X.F.; Mano, J.F.

    2012-01-01

    Barrier membranes are used in periodontal applications with the aim of supporting periodontal regeneration by physically blocking migration of epithelial cells. The present work proposes a combination of chitosan (CHT) with bioactive glass nanoparticles (BG-NPs) in order to produce a novel guided

  10. Sulfonated carbon black-based composite membranes for fuel cell ...

    Indian Academy of Sciences (India)

    C/min under nitrogen atmosphere. All data were collected from a second heating cycle and glass tran- sition temperatures (Tg) were calculated as a midpoint of thermogram. 2.5d FTIR studies: FTIR spectra were recorded for mem- branes using Perkin Elmer Pyris 1 FTIR spectrophoto- meter. Membrane and carbon black ...

  11. Preparation of Nanofibrous Silver/Poly(vinylidene fluoride) Composite Membrane with Enhanced Infrared Extinction and Controllable Wetting Property.

    Science.gov (United States)

    Ren, Da-Ming; Huang, Hua-Kun; Yu, Yun; Li, Zeng-Tian; Jiang, Li-Wang; Chen, Shui-Mei; Lam, Kwok-Ho; Lin, Bo; Shi, Bo; He, Fu-An; Wu, Hui-Jun

    2018-05-01

    Nanofibrous silver (Ag)/poly(vinylidene fluoride) (PVDF) composite membranes were obtained from a two-step preparation method. In the first step, the electrospun silver nitrate (AgNO3)/PVDF membranes were prepared and the influence of the AgNO3 content on the electrospinning process was studied. According to scanning electron microscopy (SEM) results, when the electrospinning solution contained AgNO3 in the range between 3 to 7 wt.%, the nanofiber morphologies can be obtained. In the second step, the electrospun AgNO3/PVDF membranes were reduced by sodium borohydride to form the nanofibrous Ag/PVDF composite membranes. The resultant composite membranes were characterized by SEM, X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), differential scanning calorimetry, X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared. The XRD, XPS, and EDS characterizations proved the existence of Ag in the nanofibrous Ag/PVDF composite membranes. The crystallinity degree of PVDF for composite membranes declined with the increase in Ag content. More importantly, the nanofibrous Ag/PVDF composite membranes had obviously higher Rosseland extinction coefficients and lower thermal radiative conductivities in comparison with electrospun PVDF membrane, which demonstrates that such composite membranes with high porosity, low density, and good water vapor permeability are promising thermal insulating materials to block the heat transfer resulting from thermal radiation. In addition, three different methods for surface modification have been used to successfully improve the hydrophobicity of nanofibrous Ag/PVDF composite membranes.

  12. In vitro evaluation of hydroxyapatite-chitosan-gelatin composite membrane in guided tissue regeneration.

    Science.gov (United States)

    Hunter, Kimberly T; Ma, Teng

    2013-04-01

    Resorbable biomaterials have been investigated as barrier membranes to compartmentalize the periodontal defects while selectively guiding osteoprogenitor cell proliferation and bone tissue expansion. Hydroxyapatite (H), chitosan (C), and gelatin (G) have chemical similarity to the structural components of natural bone and their composites have been tested as bone scaffolds. Human mesenchymal stem or stromal cells (hMSCs) are inducible osteoprogenitors and are responsible for bone tissue repair and regeneration. In this study, the dynamic interactions of hMSC with composite hydroxyapatite-chitosan-gelatin (HCG) membranes were investigated. The association of HCG formed a biodegradable membrane with ~60 wt % water and an initial stiffness of ~20 kPa. Preconditioning in serum-containing media resulted in the formation nanopores in the HCG membranes and the increase of extracellular matrix (ECM) protein adsorption. Expression of integrin α(2)β(1) and α(5)β(1) coincided with ECM enrichment, suggesting the enhanced cell-ECM interactions. The elevated expression of bone marker proteins and genes in the HCG membranes suggests the progression of hMSC osteogenic differentiation in the absence of chemical induction. The results showed that the HCG membranes possess sufficient mechanical and structural properties to function as a barrier membrane, and that the adsorbed ECM proteins effectively functionalized the HCG membranes and promoted hMSC osteogenic differentiation. Copyright © 2012 Wiley Periodicals, Inc.

  13. Novel polyvinyl alcohol-bioglass 45S5 based composite nanofibrous membranes as bone scaffolds

    International Nuclear Information System (INIS)

    Shankhwar, Nisha; Kumar, Manishekhar; Mandal, Biman B.; Srinivasan, A.

    2016-01-01

    Composite nanofibrous membranes based on sol-gel derived 45SiO 2 24.5CaO 24.5 Na 2 O 6 P 2 O 5 (bioglass, BG) and 43SiO 2 24.5CaO 24.5 Na 2 O 6 P 2 O 5 2Fe 2 O 3 (magnetic bioglass, MBG) blended with polyvinyl alcohol (PVA) have been electrospun. These low cost membranes were mostly amorphous in structure with minor crystalline (sodium calcium phosphate) precipitates. All membranes were biodegradable. Among these, the composites exhibited higher tensile strength, better proliferation of human osteosarcoma MG63 cells and higher alkaline phosphatase enzyme activity than the bare PVA membrane, indicating their potential in bone tissue engineering. The magnetic PVA-MBG scaffold was also found to be a promising candidate for magnetic hyperthermia application. - Highlights: • Electrospun low-cost PVA-45S5 bioglass (BG) nanofibrous membranes • PVA-BG membranes containing 2 wt.% Fe 2 O 3 exhibit spontaneous magnetization. • BG fillers strongly enhanced mechanical strength and bioresponse of membranes. • Membranes show promise for bone scaffold and hyperthermia applications.

  14. Surface and charge transport characterization of polyaniline-cellulose acetate composite membranes.

    Science.gov (United States)

    Qaiser, Asif A; Hyland, Margaret M; Patterson, Darrell A

    2011-02-24

    This study elucidates the charge transport processes of polyaniline (PANI) composite membranes and correlates them to the PANI deposition site and the extent of PANI surface layering on the base microporous membranes. PANI was deposited either as a surface layer or inside the pores of cellulose acetate microporous membranes using various in situ chemical polymerization techniques. The extent of PANI layering at the surface of the base membrane and its oxidation and doping states were characterized using Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). PANI deposition on the membranes showed a strong dependence on the polymerization technique and polymerization time within a single technique. In XPS, the deconvolution of C 1s and N 1s core-level spectra of the composite membranes was used to quantify the extent of PANI layering at the surface along with its oxidation and doping states. PANI incompletely covered the surface of the base microporous membranes for all the employed techniques. However, the extent of the layering increased with the polymerization time in a particular technique. The charge transport through the bulk membrane and charge transfer at the membrane/electrode interface were studied by electrochemical impedance spectroscopy (EIS). The data were analyzed using the equivalent circuit modeling technique. The modeling parameters revealed that PANI deposition at the surface enhanced the interfacial charge transfer but the process depended on the extent of the surface coverage of the membrane. In addition, the charge transport in the bulk membrane depended on the PANI intercalation level, which varied depending on the polymerization technique employed. In addition, the EIS of electrolyte-soaked membranes was also conducted to evaluate the effects of PANI deposition site on charge transport in the presence of an electrolyte. PANI layering at the pore walls of the base membrane from diaphragmatic polymerization

  15. Tunable diode laser IR spectrometer for in situ measurements of the gas phase composition and particle size distribution of Titan's atmosphere

    Science.gov (United States)

    Webster, Christopher R.; Sander, Stanley P.; Beer, Reinhard; May, Randy D.; Knollenberg, Robert G.

    1990-01-01

    A new instrument, the Probe Infrared Laser Spectrometer (PIRLS), is described for in situ sensing of the gas composition and particle size distribution of Titan's atmosphere on the NASA/ESA Cassini mission. For gas composition measurements, several narrow-band (0.0001/cm) tunable lead-salt diode lasers operating near 80 K at selected mid-IR wavelengths are directed over a path length defined by a small reflector extending over the edge of the probe spacecraft platform; volume mixing ratios of 10 to the -9th should be measurable for several species of interest. A cloud-particle-size spectrometer using a diode laser source at 780 nm shares the optical path and deployed reflector; a combination of imaging and light scattering techniques is used to determine sizes of haze and cloud particles and their number density as a function of altitude.

  16. Preparation and characteristics of acrylic acid/styrene composite plasma polymerized membranes

    Science.gov (United States)

    Jiang, Zhongqing; Jiang, Zhong-jie; Shi, Yicai; Meng, Yuedong

    2010-08-01

    Plasma polymerization has gained increasing interest for the deposition of functional plasma-polymerized membranes suitable for a wide range of applications on account of its advantageous features. In this work, acrylic acid/styrene composite plasma polymerized membranes were synthesized by plasma polymerization of a mixture of acrylic acid and styrene monomers in a low-frequency after-glow capacitively coupled plasma (CCP) discharge process. The structure and composition of the plasma polymerized membranes were characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The results showed that the partial pressure ratio between acrylic acid (AA) and styrene (St), applied discharge power and the energy of the extracted particles have considerable effects on the structure and the content of functional groups of the deposited membranes.

  17. Ultrathin Sicopion Composite Cation-Exchange Membranes: Characteristics and Electrodialytic Performance following a Conditioning Procedure

    Directory of Open Access Journals (Sweden)

    Erik Ayala-Bribiesca

    2012-01-01

    Full Text Available The aim of this work was to investigate the properties of Sicopion membranes: an ultrathin (≈20 μm composite cation-exchange membrane (CEM made from sulphonated poly(ether-ether-ketone (SPEEK containing different levels of sulphonic-functionalized silica particles (SFSPs. Sicopion membranes were conditioned according to the French Normalization Association procedure, consisting in a series of acid and alkaline washes, and their electrodialytic characteristics were compared to an existent commercial food-grade membrane (CMX-SB. Electrical conductivity of Sicopion membranes was higher than that of CMX-SB membranes (9.92 versus 6.98 mS/cm, as well as their water content (34.0 versus 27.6%. As the SFSP level was reduced, the ion-exchange capacity (IEC of Sicopion membranes increased. Concerning their electrodialytic performances, Sicopion membranes presented a lower demineralization rate than CMX-SB membranes (35.9 versus 45.5%, due to an OH− leakage through the pores created by dislodging the SFSP particles during the conditioning procedure.

  18. Polyamide Thin-Film Composite Membranes for Potential Raw Biogas Purification: Experiments and Modelling.

    Czech Academy of Sciences Publication Activity Database

    Šimčík, Miroslav; Růžička, Marek; Kárászová, Magda; Sedláková, Zuzana; Vejražka, Jiří; Veselý, M.; Čapek, P.; Friess, K.; Izák, Pavel

    2016-01-01

    Roč. 167, JUL 14 (2016), s. 163-173 ISSN 1383-5866 R&D Projects: GA ČR GA14-12695S; GA TA ČR TE01020080; GA MŠk(CZ) LD13018; GA MŠk LH14006 Institutional support: RVO:67985858 Keywords : thin film composite membrane * biogas membrane separation * transport model ing Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.359, year: 2016

  19. Polyamide Thin-Film Composite Membranes for Potential Raw Biogas Purification: Experiments and Modelling.

    Czech Academy of Sciences Publication Activity Database

    Šimčík, Miroslav; Růžička, Marek; Kárászová, Magda; Sedláková, Zuzana; Vejražka, Jiří; Veselý, M.; Čapek, P.; Friess, K.; Izák, Pavel

    2016-01-01

    Roč. 167, JUL 14 (2016), s. 163-173 ISSN 1383-5866 R&D Projects: GA ČR GA14-12695S; GA TA ČR TE01020080; GA MŠk(CZ) LD13018; GA MŠk LH14006 Institutional support: RVO:67985858 Keywords : thin film composite membrane * biogas membrane separation * transport modeling Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.359, year: 2016

  20. Silicon/Porous Silicon Composite Membrane for High Sensitivity Pressure Sensor

    Science.gov (United States)

    2009-07-21

    for integrating with other processes on silicon wafer. The fabrication of silicone rubber membranes for making microvalves has been reported [5...alcohol (IPA) is used along with HF to increase the wettability of the silicon surface and to remove the bubbles formed during the reaction. Aluminium ...Report for AOARD funded Project No. AOARD-074061 Title: Silicon /Porous Silicon composite membrane for high sensitivity pressure sensor PI

  1. A novel CO2- and SO2-tolerant dual phase composite membrane for oxygen separation

    DEFF Research Database (Denmark)

    Cheng, Shiyang; Søgaard, Martin; Han, Li

    2015-01-01

    A novel dual phase composite oxygen membrane (Al0.02Ga0.02Zn0.96O1.02 – Gd0.1Ce0.9O1.95-δ) was successfully prepared and tested. The membrane shows chemical stability against CO2 and SO2, and a stable oxygen permeation over 300 hours in CO2 was demonstrated. ZnO is cheap and non...

  2. Composite Pd and Pd Alloy Porous Stainless Steel Membranes for Hydrogen Production and Process Intensification

    Energy Technology Data Exchange (ETDEWEB)

    Yi Hua Ma; Nikolaos Kazantzis; Ivan Mardilovich; Federico Guazzone; Alexander Augustine; Reyyan Koc

    2011-11-06

    The synthesis of composite Pd membranes has been modified by the addition of a Al(OH){sub 3} graded layer and sequential annealing at high temperatures to obtain membranes with high permeance and outstanding selectivity stability for over 4000 hours at 450°C. Most of the membranes achieved in this work showed H{sub 2} flux well above 2010 DOE targets and in some case, also above 2015 DOE targets. Similar composite membranes were tested in water gas shift reaction atmospheres and showed to be stable with high CO conversion and high hydrogen recovery for over 1000 hours. The H{sub 2} permeance of composite Pd-Au membranes was studied as well as its resistance in H{sub 2}S containing atmospheres. H{sub 2}S poisoning of Pd-based membranes was reduced by the addition of Au and the loss undergone by membranes was found to be almost totally recoverable with 10-30 wt%Au. PSA technique was studied to test the possibility of H{sub 2}S and COS removal from feed stream with limited success since the removal of H{sub 2}S also led to the removal of a large fraction of the CO{sub 2}. The economics of a WGS bundle reactor, using the information of the membranes fabricated under this project and integrated into an IGCC plant were studied based on a 2D reactor modeling. The calculations showed that without a government incentive to impose a CO{sub 2} tax, application of WGS membrane reactors in IGCC would be not as economically attractive as regular pulverized coal plants.

  3. Crosslinked cellulose thin film composite nanofiltration membranes with zero salt rejection

    KAUST Repository

    Puspasari, Tiara

    2015-05-14

    We report a new synthetic route of fabricating regenerated cellulose nanofiltration membranes. The membranes are composite membranes with a thin selective layer of cellulose, which was prepared by regeneration of trimethylsilyl cellulose (a hydrophobic cellulose derivative) film followed by crosslinking. Filtration experiments using mixtures of sugar and sodium chloride showed that solutes above 300 Da were highly rejected whereas practically no rejection was observed for NaCl. This is a big advantage for a complete desalination as the existing commercial nanofiltration membranes typically exhibit NaCl rejection in the range of 30–60%. Membranes with zero NaCl rejection are required for recovery and purification applications in food, chemical and pharmaceutical industry.

  4. REMOVAL OF CU (II AND FE (II IONS THROUGH THIN FILM COMPOSITE (TFC WITH HYBRID MEMBRANE

    Directory of Open Access Journals (Sweden)

    NURUL AIDA SULAIMAN

    2016-07-01

    Full Text Available In recent years, there has been rising concern about environmental issues and specifically about the presence of heavy metal in water. Therefore, the removal of heavy metal ions from wastewater is very important with respect to the ecological health and public health. This paper presents the possibility of removing metal ions by using a hybrid membrane through thin film composite (TFC membrane which represents an integrated polymer complexation method. The hybrid membrane was formulated from blended poly(vinyl alcohol (PVA and chitosan which was cross linked with various concentration of tetraethyl orthosilicate (TEOS such as 1%, 3% w/w and 5%w/w through using sol-gel technique under acidic condition. The hybrid membrane was coated on polysulfone membrane as the porous support. The separation process was conducted on the different heavy metal solutions containing Cu (II and Fe (II ions at various concentrations (50,100,150,200,250 ppm.The properties of the thin film composite (TFC membranes were characterized by using Fourier Transform Infrared (FTIR spectroscopy and hermogravimetric Analysis (TGA. The influence of TEOS concentration and Cu (II and Fe (II ion concentration was investigated with the aim to identify on the removal percentage efficiency of Cu (II and Fe (II ions. Result showed that the fabricated thin film composites with higher concentrations of TEOS were able to remove higher percentage Cu (II and Fe (II from the feed solution.

  5. Preparation and characterization of composite membrane via layer by layer assembly for desalination

    Energy Technology Data Exchange (ETDEWEB)

    Wasim, Maria, E-mail: maria-be24@hotmail.co.uk; Sabir, Aneela; Shafiq, Muhammad; Islam, Atif; Jamil, Tahir

    2017-02-28

    Highlights: • Cellulose acetate based polymer composite membranes were formed via layer by layer assembly for nanofiltration. • Modified membranes shown improved MgSO{sub 4} salt rejection property up to 98.9%. • Surface roughness and antibacterial property of fabricated membrane were successfully studied. - Abstract: Cellulose acetate (CA) incorporated with sepiolite and Polyvinylpyrrolidone (PVP) multilayer composite on Polysulfone (PSf) substrate have been prepared by layer by layer (LbL) assembly method. Fourier TransformInfrared Spectroscopy (FTIR) results verified the hydrogen bonding among the components of composite membrane. Atomic force microscopy (AFM), scanning electron microscope (SEM) was carried out for the determination and elucidation of roughness and morphology of the fabricated membranes on PSf substrate. The AFM and SEM results showed the increased surface roughness with the porous and spongy structure. The performance results verified that the successful incorporation of sepiolite in membranes showed maximum MgSO{sub 4} rejection (98.9%) and flux of 38.7 L/m{sup 2} h. Whereas, in case of NaCl the rejection is 98.3% and flux is 34.9L/m{sup 2} h. The modification was evidenced to be effective in increasing the surface hydrophilicity that led to increase in surface roughness. The chlorine resistivity is improved by dropping the active sites for chlorine attack and protecting the underlying PSf substrate.

  6. A new concept in polymeric thin-film composite nanofiltration membranes with antibacterial properties.

    Science.gov (United States)

    Mollahosseini, Arash; Rahimpour, Ahmad

    2013-01-01

    A new, thin film, biofouling resistant, nanofiltration (NF) membrane was fabricated with two key characteristics, viz. a low rate of silver (Ag) release and long-lasting antibacterial properties. In the new approach, nanoparticles were embedded completely in a polymeric thin-film layer. A comparison was made between the new thin-film composite (TFC), NF membrane and thin-film nanocomposite (TFN), and antibacterial NF membranes. Both types of NF membrane were fabricated by interfacial polymerization on a polysulphone sublayer using m-phenylenediamine and trimesoyl chloride as an amine monomer and an acid chloride monomer, respectively. Energy dispersive X-ray (EDX) microanalysis demonstrated the presence of Ag nanoparticles. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to study the cross-sectional and surface morphological properties of the NF membranes. Permeability and salt rejection were tested using a dead-end filtration cell. Ag leaching from the membranes was measured using inductively coupled mass spectrometry (ICP-MS). Morphological studies showed that the TFC NF membranes had better thin-film formation (a more compact structure and a smoother surface) than TFN NF membranes. Performance experiments on TFC NF membranes revealed that permeability was good, without sacrificing salt rejection. The antibacterial properties of the fabricated membranes were tested using the disk diffusion method and viable plate counts. The antibiofouling properties of the membranes were examined by measuring the quantity of bacterial cells released from the biofilm formed (as a function of the amount of biofilm present). A more sensitive surface was observed compared to that of a typical antibacterial NF membrane. The Ag leaching rates were low, which will likely result in long-lasting antibacterial and biofouling resistant properties.

  7. Synthesis of hyperbranched copolyimides and their application as selective layers in composite membranes

    Czech Academy of Sciences Publication Activity Database

    Peter, Jakub; Kosmala, Barbara; Bleha, Miroslav

    2009-01-01

    Roč. 245, 1-3 (2009), s. 516-526 ISSN 0011-9164. [Engineering with Membranes 2008; Membrane Processes: Development, Monitoring and Modelling – From the Nano to the Macro Scale – EWM 2008. Vale do Lobo, Algarve, 25.05.2008-28.05.2008] R&D Projects: GA MPO 2A-1TP1/116 Institutional research plan: CEZ:AV0Z40500505 Keywords : hyperbranched polyimide * composite membrane * gas separation * soluble polyimide Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.034, year: 2009

  8. Preparation and properties of novel magnetic composite nanostructures: Arrays of nanowires in porous membranes

    International Nuclear Information System (INIS)

    Vazquez, M.; Hernandez-Velez, M.; Asenjo, A.; Navas, D.; Pirota, K.; Prida, V.; Sanchez, O.; Baldonedo, J.L.

    2006-01-01

    In the present work, we introduce our latest achievements in the development of novel highly ordered composite magnetic nanostructures employing anodized nanoporous membranes as precursor templates where long-range hexagonal symmetry is induced by self-assembling during anodization process. Subsequent processing as electroplating, sputtering or pressing are employed to prepare arrays of metallic, semiconductor or polymeric nanowires embedded in oxide or metallic membranes. Particular attention is paid to recent results on controlling the magnetic anisotropy in arrays of metallic nanowires, particularly Co, and nanohole arrays in Ni membranes

  9. Testing the limits of model membrane simulations-bilayer composition and pressure scaling.

    Science.gov (United States)

    Ivanova, Nikoleta; Ivanova, Anela

    2018-03-30

    Studying transfer of bioactive compounds across cell membranes by simulations attracts growing attention. To perform such calculations accurately, it is necessary to verify the validity of computational protocols established for description of unperturbed lipid bilayers also with translocating substances present. The current work reports the results from 1 μs long atomistic molecular dynamics simulations of two types of model plasma membranes-one built of a single phospholipid (DPPC) and one constructed of four types of phospholipids-in the presence of a drug-peptide complex experimentally known to cross cell membranes. The influence of membrane composition and of applied pressure scaling algorithm on the simulations outcome is analyzed with particular focus on membrane structure and on complex-lipid interactions during the initial penetration stage. It is found that the mixed composition of the membrane is important for correct assessment of the interactions with the complex both from purely structural perspective and because of the uneven charge distribution. The structure of the mixed lipid bilayer is affected more markedly by the pressure scaling algorithm. When the pressure is isotropically scaled, lipids are distributed almost homogeneously along the membrane in liquid ordered state. On semi-isotropic scaling, the lipid tails undergo significant rearrangement and a long-range ordered state is established. This results in "freezing" of the membrane and expulsion of the complex. The statistical analysis of the MD data points to the conclusion that a mixed-lipid membrane model with isotropic pressure scaling would be more suitable for describing the process of complex translocation across neoplastic membranes. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Surface modification of thin film composite reverse osmosis membrane by glycerol assisted oxidation with sodium hypochlorite

    Science.gov (United States)

    Raval, Hiren D.; Samnani, Mohit D.; Gauswami, Maulik V.

    2018-01-01

    Need for improvement in water flux of thin film composite (TFC) RO membrane has been appreciated by researchers world over and surface modification approach is found promising to achieve higher water flux and solute rejection. Thin film composite RO membrane was exposed to 2000 mg/l sodium hypochlorite solution with varying concentrations of glycerol ranging from 1 to 10%. It was found that there was a drop in concentration of sodium hypochlorite after the addition of glycerol because of a new compound resulted from the oxidation of glycerol with sodium hypochlorite. The water flux of the membrane treated with 1% glycerol with 2000 mg/l sodium hypochlorite for 1 h was about 22% more and salt rejection was 1.36% greater than that of only sodium hypochlorite treated membrane for the same concentration and time. There was an increase in salt rejection of membrane with increase in concentration of glycerol from 1% to 5%, however, increasing glycerol concentration further up to 10%, the salt rejection declined. The water flux was found declining from 1% glycerol solution to 10% glycerol solution. The membrane samples were characterized to understand the change in chemical structure and morphology of the membrane.

  11. Preparation of mixed matrix PES-based nanofiltration membrane filled with PANI-co-MWCNT composite nanoparticles

    International Nuclear Information System (INIS)

    Bagheripour, Ehsan; Moghadassi, Abdolreza; Hosseini, Sayed Mohsen

    2016-01-01

    Mixed matrix polyethersulfone/PANI-co-MWCNTs composite nanoparticle nanofiltration membrane was prepared by casting solution technique. Polyvinylpyrrolidone was also used as membrane pore former in membrane fabrication. The effect of polyaniline-co-multi walled carbon nanotubes composite nanoparticle concentration in the casting solution on membrane structure and performance was investigated. Scanning optical microscopy and scanning electron microscopy, FTIR analysis, porosity, mean pore size, contact angle, water content, NaCl/Na2SO4 rejection, water flux, tensile strength measurements and 3D surface image were also carried out in membrane characterization. SOM images showed nanoparticle agglomeration at high additive loading ratio. SEM images showed the membrane sub-layer porosity and thickness were changed by use of nanoparticles in membrane matrix. The membrane water content, porosity and pore size were increased by increase of nanoparticle concentration, except for 1%wt. Use of PANI-co- MWCNT nanoparticles in the membrane matrix caused a decrease of membrane contact angle from 63.43 to 46.76o. Salt rejection and water flux were improved initially by increase of nanoparticle concentration up to 0.1%wt and then decreased by more additive concentration. In addition, the membranes tensile strength was reduced by increase of PANI-co-MWCNTs composite nanoparticle concentration. 3D surface images showed a smoother surface for mixed matrix membrane filled with 0.1wt% PANI-co-MWCNTs. Modified membrane containing 0.1wt% composite nanoparticles showed better performance compared to others.

  12. Preparation of mixed matrix PES-based nanofiltration membrane filled with PANI-co-MWCNT composite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bagheripour, Ehsan; Moghadassi, Abdolreza; Hosseini, Sayed Mohsen [Faculty of Engineering, Arak University, Arak (Iran, Islamic Republic of)

    2016-04-15

    Mixed matrix polyethersulfone/PANI-co-MWCNTs composite nanoparticle nanofiltration membrane was prepared by casting solution technique. Polyvinylpyrrolidone was also used as membrane pore former in membrane fabrication. The effect of polyaniline-co-multi walled carbon nanotubes composite nanoparticle concentration in the casting solution on membrane structure and performance was investigated. Scanning optical microscopy and scanning electron microscopy, FTIR analysis, porosity, mean pore size, contact angle, water content, NaCl/Na2SO4 rejection, water flux, tensile strength measurements and 3D surface image were also carried out in membrane characterization. SOM images showed nanoparticle agglomeration at high additive loading ratio. SEM images showed the membrane sub-layer porosity and thickness were changed by use of nanoparticles in membrane matrix. The membrane water content, porosity and pore size were increased by increase of nanoparticle concentration, except for 1%wt. Use of PANI-co- MWCNT nanoparticles in the membrane matrix caused a decrease of membrane contact angle from 63.43 to 46.76o. Salt rejection and water flux were improved initially by increase of nanoparticle concentration up to 0.1%wt and then decreased by more additive concentration. In addition, the membranes tensile strength was reduced by increase of PANI-co-MWCNTs composite nanoparticle concentration. 3D surface images showed a smoother surface for mixed matrix membrane filled with 0.1wt% PANI-co-MWCNTs. Modified membrane containing 0.1wt% composite nanoparticles showed better performance compared to others.

  13. Enhanced Critical Size Defect Repair in Rabbit Mandible by Electrospun Gelatin/β-TCP Composite Nanofibrous Membranes

    Directory of Open Access Journals (Sweden)

    Mingming Xu

    2015-01-01

    Full Text Available The design and fabrication of biodegradable barrier membranes with satisfactory structure and composition remain a considerable challenge for periodontal tissue regeneration. We have developed a biomimetic nanofibrous membrane made from a composite of gelatin and β-tricalcium phosphate (β-TCP. We previously confirmed the in vitro biological performance of the membrane material, but the efficacy of the membranes in promoting bone repair in situ has not yet been examined. Gelatin/β-TCP composite nanofibers were fabricated by incorporation of 20 wt.% β-TCP nanoparticles into electrospun gelatin nanofibers. Electron microscopy showed that the composite membranes presented a nonwoven structure with an interconnected porous network and had a rough surface due to the β-TCP nanoparticles, which were distributed widely and uniformly throughout the gelatin-fiber matrix. The repair efficacy of rabbit mandible defects implanted with bone substitute (Bio-Oss and covered with the gelatin/β-TCP composite nanofibrous membrane was evaluated in comparison with pure gelatin nanofibrous membrane. Gross observation, histological examination, and immunohistochemical analysis showed that new bone formation and defect closure were significantly enhanced by the composite membranes compared to the pure gelatin ones. From these results, we conclude that nanofibrous gelatin/β-TCP composite membranes could serve as effective barrier membranes for guided tissue regeneration.

  14. Composite mixed ion-electron conducting (MIEC) membranes for hydrogen generation and separation

    Science.gov (United States)

    Wang, Haibing

    Decomposition of steam under a chemical driving force at moderate temperatures (˜900°C) offers a convenient and economical way to generate hydrogen. A significant amount of hydrogen can be generated and separated by splitting steam and removing oxygen using a mixed ion-electron conducting (MIEC) membrane. In this work, Gd0.2Ce0.8O1.9-deltaGd 0.08Sr0.88Ti0.95Al0.05O3+/-delta MIEC membranes have been explored in which, Gd0.2Ce 0.8O1.9-delta (GDC) functions as a predominantly oxygen ionic conductor, and Gd0.08Sr0.88Ti0.95Al 0.05O3+/-delta (GSTA) functions as a predominantly n-type electronic conductor under the process conditions. During the hydrogen generation process, oxygen transports from the feed side to the permeate side through coupled diffusion of oxygen ions and electrons under an oxygen partial pressure gradient across membranes. This process results in a H2-rich product on the feed side and depleted fuel gases on the permeate side. In this work, membrane architectures comprising self-supported thick membranes and thin membranes supported on porous supports of the same composition have been studied. The effect of membrane thickness on hydrogen generation has been studied by measuring the area-specific hydrogen generation rates at different experimental conditions. Experimental results have shown that the hydrogen generation process for the thick membranes was controlled by the oxygen bulk diffusion through membranes, while the hydrogen generation process for the dense thin membranes was controlled by both the surface exchange reactions and oxygen bulk diffusion process. The area-specific hydrogen generation rates of the supported dense thin membranes were significantly enhanced by applying a porous catalytic layer onto the surface of the membrane. Experimental results showed that the area-specific hydrogen generation rates were higher when the surface catalytic layer was exposed to the feed side rather than the permeate side. A mathematical model for

  15. Surface Functionalization of Thin-Film Composite Membranes with Copper Nanoparticles for Antimicrobial Surface Properties

    KAUST Repository

    Ben-Sasson, Moshe

    2014-01-07

    Biofouling is a major operational challenge in reverse osmosis (RO) desalination, motivating a search for improved biofouling control strategies. Copper, long known for its antibacterial activity and relatively low cost, is an attractive potential biocidal agent. In this paper, we present a method for loading copper nanoparticles (Cu-NPs) on the surface of a thin-film composite (TFC) polyamide RO membrane. Cu-NPs were synthesized using polyethyleneimine (PEI) as a capping agent, resulting in particles with an average radius of 34 nm and a copper content between 39 and 49 wt.%. The positive charge of the Cu-NPs imparted by the PEI allowed a simple electrostatic functionalization of the negatively charged RO membrane. We confirmed functionalization and irreversible binding of the Cu-NPs to the membrane surface with SEM and XPS after exposing the membrane to bath sonication. We also demonstrated that Cu-NP functionalization can be repeated after the Cu-NPs dissolve from the membrane surface. The Cu-NP functionalization had minimal impact on the intrinsic membrane transport parameters. Surface hydrophilicity and surface roughness were also maintained, and the membrane surface charge became positive after functionalization. The functionalized membrane exhibited significant antibacterial activity, leading to an 80-95% reduction in the number of attached live bacteria for three different model bacterial strains. Challenges associated with this functionalization method and its implementation in RO desalination are discussed. © 2013 American Chemical Society.

  16. Palladium/Copper Alloy Composite Membranes for High Temperature Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    J. Douglas Way; Paul M. Thoen

    2006-08-31

    This report summarizes progress made during the a three year University Coal Research grant (DEFG26-03NT41792) at the Colorado School of Mines. The period of performance was September 1, 2003 through August of 2006. We made excellent progress toward our goal of contributing to the development of high productivity, sulfur tolerant composite metal membranes for hydrogen production and membrane reactors. Composite Pd and Pd alloy metal membranes with thin metal films (1-7 {micro}m) were prepared on porous stainless steel and ceramic supports that meet or exceed the DOE 2010 and 2015 pure hydrogen flux targets at differential pressure of only 20 psi. For example, a 2 {micro}m pure Pd membrane on a Pall AccuSep{reg_sign} substrate achieved an ideal H{sub 2}/N{sub 2} separation factor of over 6000, with a pure hydrogen flux of 210 SCFH/ft{sup 2} at only 20 psig feed pressure. Similar performance was achieved with a Pd{sub 80}Au{sub 20} composite membrane on a similar stainless steel substrate. Extrapolating the pure hydrogen flux of this PdAu membrane to the DOE Fossil Energy target conditions of 150 psia feed pressure and 50 psia permeate pressure gives a value of 508 SCFH/ft{sup 2}, exceeding the 2015 target. At these thicknesses, it is the support cost that will dominate the cost of a large scale module. In a direct comparison of FCC phase PdCu and PdAu alloys on identical supports, we showed that a Pd{sub 85}Au{sub 15} (mass %) alloy membrane is not inhibited by CO, CO{sub 2}, or steam present in a water-gas shift feed mixture at 400 C, has better resistance to sulfur than a Pd{sub 94}Cu{sub 6} membrane, and has over twice the hydrogen permeance.

  17. Free Vibrations of a Nonlinearly Deformable Isotropic on the Average Composite Rectangular Membrane

    Science.gov (United States)

    Tarasyuk, I. A.; Kravchuk, A. S.; Mikhasev, G. I.

    2018-03-01

    A refined vibration equation of a rectangular membrane is derived in this paper. It allows determining the natural frequencies as functions of the mechanical characteristics of an asymmetrically stretched membrane. The dynamic equation is generalized to the case of a nonlinearly deformable isotropic on the average composite material. An approximate analytical solution of the problem is found employing a new homogenization technique. This method is based on estimation of the effective deformation characteristics of the composite material. The range of its effective characteristics is obtained from the rule of mixtures for the stresses and strains found assuming Voigt and Reuss hypotheses. The nonlinear behavior of the material is modeled using the bilinear Prandtl diagrams as constitutive equations for components of the composite. The effective elastic moduli, hardening modulus, yield stress, and the natural frequencies as functions of elastoplastic characteristics of the composite are obtained analytically in a closed form.

  18. Tunable resistance coatings

    Science.gov (United States)

    Elam, Jeffrey W.; Mane, Anil U.

    2015-08-11

    A method and article of manufacture of intermixed tunable resistance composite materials containing at least one of W:Al.sub.2O.sub.3, Mo:Al.sub.2O.sub.3 or M:Al.sub.2O.sub.3 where M is a conducting compound containing either W or Mo. A conducting material and an insulating material are deposited by such methods as ALD or CVD to construct composites with intermixed materials which do not have structure or properties like their bulk counterparts.

  19. Amine Enrichment of Thin-Film Composite Membranes via Low Pressure Plasma Polymerization for Antimicrobial Adhesion.

    Science.gov (United States)

    Reis, Rackel; Dumée, Ludovic F; He, Li; She, Fenghua; Orbell, John D; Winther-Jensen, Bjorn; Duke, Mikel C

    2015-07-15

    Thin-film composite membranes, primarily based on poly(amide) (PA) semipermeable materials, are nowadays the dominant technology used in pressure driven water desalination systems. Despite offering superior water permeation and salt selectivity, their surface properties, such as their charge and roughness, cannot be extensively tuned due to the intrinsic fabrication process of the membranes by interfacial polymerization. The alteration of these properties would lead to a better control of the materials surface zeta potential, which is critical to finely tune selectivity and enhance the membrane materials stability when exposed to complex industrial waste streams. Low pressure plasma was employed to introduce amine functionalities onto the PA surface of commercially available thin-film composite (TFC) membranes. Morphological changes after plasma polymerization were analyzed by SEM and AFM, and average surface roughness decreased by 29%. Amine enrichment provided isoelectric point changes from pH 3.7 to 5.2 for 5 to 15 min of plasma polymerization time. Synchrotron FTIR mappings of the amine-modified surface indicated the addition of a discrete 60 nm film to the PA layer. Furthermore, metal affinity was confirmed by the enhanced binding of silver to the modified surface, supported by an increased antimicrobial functionality with demonstrable elimination of E. coli growth. Essential salt rejection was shown minimally compromised for faster polymerization processes. Plasma polymerization is therefore a viable route to producing functional amine enriched thin-film composite PA membrane surfaces.

  20. High-performance sulfosuccinic acid cross-linked PVA composite pervaporation membrane for desalination.

    Science.gov (United States)

    Zhang, Rui; Liang, Bin; Qu, Ting; Cao, Bing; Li, Pei

    2017-10-25

    Pervaperation (PV), as a novel technology, has shown great promise in fresh water production from salty water. However, the low water flux of the present membranes hinders their practical applications. Here, a new type of PV composite membrane, consisting of a selective skin layer fabricated from poly(vinyl alcohol) (PVA) cross-linked by sulfosuccinic acid and a porous support layer using a commercial polyacrylonitrile (PAN) ultrafiltration membrane, was developed for applications in desalination. The separation performance of S-PVA/PAN composite PV membranes with different S-PVA layer thicknesses was tested in detail. The best result showed a water flux of 27.9 kg m -2  h -1 with a salt rejection of 99.8%, which was obtained at a vacuum of 100 Pa and temperature of 70°C when separating a 35,000 ppm NaCl solution. The S-PVA/PAN composite membranes could also be used for the desalination of high-concentration (100,000 ppm) NaCl solutions with a water flux of 11.2 kg m -2  h -1 with a salt rejection of 99.8%. Moreover, a stable desalination performance was obtained for a 120 h operation time. This study shows the possibility of using PV in desalination applications for seawater, brackish water and reverse osmosis concentrate treatment.

  1. Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification.

    Science.gov (United States)

    Reis, Rackel; Dumée, Ludovic F; Tardy, Blaise L; Dagastine, Raymond; Orbell, John D; Schutz, Jürg A; Duke, Mikel C

    2016-07-01

    Advancing the design of thin-film composite membrane surfaces is one of the most promising pathways to deal with treating varying water qualities and increase their long-term stability and permeability. Although plasma technologies have been explored for surface modification of bulk micro and ultrafiltration membrane materials, the modification of thin film composite membranes is yet to be systematically investigated. Here, the performance of commercial thin-film composite desalination membranes has been significantly enhanced by rapid and facile, low pressure, argon plasma activation. Pressure driven water desalination tests showed that at low power density, flux was improved by 22% without compromising salt rejection. Various plasma durations and excitation powers have been systematically evaluated to assess the impact of plasma glow reactions on the physico-chemical properties of these materials associated with permeability. With increasing power density, plasma treatment enhanced the hydrophilicity of the surfaces, where water contact angles decreasing by 70% were strongly correlated with increased negative charge and smooth uniform surface morphology. These results highlight a versatile chemical modification technique for post-treatment of commercial membrane products that provides uniform morphology and chemically altered surface properties.

  2. EFFECT OF BENTONITE AS FILLER IN COMPOSITE MEMBRANE PERFORMANCE POLYVINYLIDENE FLUORIDE (PVDF-POLYMETHYLMETHACRYLATE (PMMA

    Directory of Open Access Journals (Sweden)

    Erda Marniza

    2018-02-01

    Full Text Available Abstract. The effect of bentonite as filler on the performance of the composite membrane of PVDF-PMMA has been performed. This study was conducted to determine the performance PVDF-PMMA composite membranes and membrane applications PVDF-PMMA-Bentonite on oily wastes. Bentonite is obtained from North Aceh while PVDF membrane-PMMA by phase inversion method. This study uses an oily waste water model was made by mixing surfactant tween 80 with concentration of 2% with palm oil and gas oil. Membrane PVDF-PMMA-Bentonite is analyzing using cell ultrafiltration (flux test, FTIR and SEM-EDX. The results showed that the value of flux with the addition of bentonite is greater than without bentonite. Good flux values contained in the PVDF-PMMA-Bentonite (1:1:2 amounted to 32.143 L/m2.h.bar with permeability of 21.428 L/m2.h. FTIR characterization analysis results show that bentonite can add to pore at wave number 1520 cm -1 and 1660 cm-1 SEM and EDX results showed regular shape and uniform pore. Keywords: Membrane, bentonite, filler, FTIR, SEM-EDX, Oily wastewater

  3. High Dehumidification Performance of Amorphous Cellulose Composite Membranes prepared from Trimethylsilyl Cellulose

    KAUST Repository

    Puspasari, Tiara

    2018-04-11

    Cellulose is widely regarded as an environmentally friendly, natural and low cost material which can significantly contribute the sustainable economic growth. In this study, cellulose composite membranes were prepared via regeneration of trimethylsilyl cellulose (TMSC), an easily synthesized cellulose derivative. The amorphous hydrophilic feature of the regenerated cellulose enabled fast permeation of water vapour. The pore-free cellulose layer thickness was adjustable by the initial TMSC concentration and acted as an efficient gas barrier. As a result, a 5,000 GPU water vapour transmission rate (WVTR) at the highest ideal selectivity of 1.1 x 106 was achieved by the membranes spin coated from a 7% (w/w) TMSC solution. The membranes maintained a 4,000 GPU WVTR with selectivity of 1.1 x 104 in the mixed-gas experiments, surpassing the performances of the previously reported composite membranes. This study provides a simple way to not only produce high performance membranes but also to advance cellulose as a low-cost and sustainable membrane material for dehumidification applications.

  4. An organic dye-polymer (phenol red-poly (vinyl alcohol)) composite architecture towards tunable -optical and -saturable absorption characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Sreedhar, Sreeja, E-mail: sreejasreedhar83@gmail.com; Muneera, C. I., E-mail: drcimuneera@hotmail.com [Department of Physics, University of Kerala, Kariavattom, Thiruvananthapuram 695581, Kerala (India); Illyaskutty, Navas [Institute for Sensorics and Information Systems (ISIS), Karlsruhe University of Applied Sciences, Moltkestr. 30, D-76133 Karlsruhe (Germany); Sreedhanya, S. [School of Chemical Sciences, M. G. University, Kottayam, Kerala 686560 (India); Philip, Reji [Light and Matter Physics Group, Raman Research Institute, Bangalore 560080 (India)

    2016-05-21

    Herein, we demonstrate that blending an organic dye (guest/filler), with a vinyl polymer (host template), is an inexpensive and simple approach for the fabrication of multifunctional photonic materials which could display an enhancement in the desirable properties of the constituent materials and, at the same time provide novel synergistic properties for the guest-host system. A new guest-host nanocomposite system comprising Phenol Red dye and poly (vinyl alcohol) as guest and host template, respectively, which exhibits tunable optical characteristics and saturable absorption behavior, is introduced. The dependence of local electronic environment provided by the polymer template and the interactions of the polymer molecules with the encapsulated guest molecules on the observed optical/nonlinear absorption behavior is discussed. An understanding of the tunability of the optical/ photophysical processes, with respect to the filler content, as discussed herein could help in the design of improved optical materials for several photonic device applications like organic light emitting diodes and saturable absorbers.

  5. Membrane stress tensor in the presence of lipid density and composition inhomogeneities.

    Science.gov (United States)

    Bitbol, A-F; Peliti, L; Fournier, J-B

    2011-05-01

    We derive the expression of the stress tensor for one- and two-component lipid membranes with density and composition inhomogeneities. We first express the membrane stress tensor as a function of the free-energy density by means of the principle of virtual work. We then apply this general result to a monolayer model which is shown to be a local version of the area-difference elasticity (ADE) model. The resulting stress tensor expression generalizes the one associated with the Helfrich model, and can be specialized to obtain the one associated with the ADE model. Our stress tensor directly gives the force exchanged through a boundary in a monolayer with density and composition inhomogeneities. Besides, it yields the force density, which is also directly obtained in covariant formalism. We apply our results to study the forces induced in a membrane by a local perturbation.

  6. PAN composite membrane with different solvent affinities controlled by surface modification methods

    Czech Academy of Sciences Publication Activity Database

    Dragan, E. S.; Mihai, M.; Schauer, Jan; Ghimici, L.

    2005-01-01

    Roč. 43, č. 18 (2005), s. 4161-4171 ISSN 0887-624X R&D Projects: GA ČR(CZ) GA203/05/0080 Institutional research plan: CEZ:AV0Z40500505 Keywords : composite membrane * functionalization of polymers * polyelectrolytes Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.027, year: 2005

  7. Multi-response data treatment of dynamic and steady state permeation measurement on composite membrane

    Czech Academy of Sciences Publication Activity Database

    Fíla, V.; Bernauer, B.; Hrabánek, Pavel

    2006-01-01

    Roč. 200, 1-3 (2006), s. 120-121 ISSN 0011-9164 R&D Projects: GA AV ČR(CZ) 1QS401250509 Institutional research plan: CEZ:AV0Z40400503 Keywords : composite membrane * physical chemistry * Wicke-Kalenbach permeation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.917, year: 2006

  8. Development of robust fluorinated TiO2/PVDF composite hollow fiber membrane for CO2 capture in gas-liquid membrane contactor

    Science.gov (United States)

    Lin, Yuqing; Xu, Yilin; Loh, Chun Heng; Wang, Rong

    2018-04-01

    Gas-liquid membrane contactor (GLMC) is a promising method to attain high efficiency for CO2 capture from flue gas, biogas and natural gas. However, membranes used in GLMC are prone to pore wetting due to insufficient hydrophobicity and low chemical resistance, resulting in significant increase in mass transfer resistance. To mitigate this issue, inorganic-organic fluorinated titania/polyvinylidene fluoride (fTiO2/PVDF) composite hollow fiber (HF) membranes was prepared via facile in-situ vapor induced hydrolyzation method, followed by hydrophobic modification. The proposed composite membranes were expected to couple the superb chemical stability of inorganic and high permeability/low cost of organic materials. The continuous fTiO2 layer deposited on top of PVDF substrate was found to possess a tighter microstructure and better hydrophobicity, which effectively prevented the membrane from wetting and lead to a high CO2 absorption flux (12.7 × 10-3 mol m-2 s-1). In a stability test with 21-day operation of GLMC using 1M monoethanolamine (MEA) as the absorbent, the fTiO2/PVDF membrane remained to be intact with a CO2 absorption flux decline of ∼16%, while the pristine PVDF membrane suffered from a flux decline of ∼80% due to membrane damage. Overall, this work provides an insight into the preparation of high-quality inorganic/organic composite HF membranes for CO2 capture in GLMC application.

  9. Cross-linked PAN-based thin-film composite membranes for non-aqueous nanofiltration

    KAUST Repository

    Pérez-Manríquez, Liliana

    2015-01-01

    A new approach on the development of cross-linked PAN based thin film composite (TFC) membranes for non-aqueous application is presented in this work. Polypropylene backed neat PAN membranes fabricated by phase inversion process were cross-linked with hydrazine to get excellent solvent stability toward dimethylformamide (DMF). By interfacial polymerization a selective polyamide active layer was coated over the cross-linked PAN using N,N′-diamino piperazine (DAP) and trimesoyl chloride (TMC) as monomers. Permeation and molecular weight cut off (MWCO) experiments using various dyes were done to evaluate the performance of the membranes. Membranes developed by such method show excellent solvent stability toward DMF with a permeance of 1.7 L/m2 h bar and a molecular weight cut-off of less than 600 Da.

  10. High temperature proton exchange membranes based on polybenzimidazole and clay composites for fuel cells

    DEFF Research Database (Denmark)

    Plackett, David; Siu, Ana; Li, Qingfeng

    2011-01-01

    dispersion of modified laponite clay was achieved in polybenzimidazole (PBI) solutions which, when cast and allowed to dry, resulted in homogeneous and transparent composite membranes containing up to 20 wt% clay in the polymer. The clay was organically modified using a series of ammonium...... and pyridinium salts with varying polarity and hydrogen-bonding capacity. Clay modification by ion-exchange reactions involving replacement of interlayer inorganic cations was confirmed using X-ray photoelectron and infrared spectroscopy techniques. The cast PBI membranes were characterized by their water uptake......-doped pristine PBI membranes. In accordance with the hydrogen permeability measurements, fuel cell tests exhibited high open circuit voltages (i.e., 1.02 V) at room temperature as well as high I–V performance compared with normal PBI membranes....

  11. Hydrophilic treatment poly(tetrafluoroethylene) reinforced sulfonated poly(ether ether ketone) composite membrane for proton exchange membrane fuel cell application

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Cheng; Zhang, Yu.; Xiao, Shaohua [Proton Exchange Membrane Fuel Cell Key Materials and Technology Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Zhang, Huamin [Proton Exchange Membrane Fuel Cell Key Materials and Technology Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China)

    2009-12-01

    A reinforced composite membrane based on SPEEK (sulfonated poly ether ether ketone) and porous PTFE substrate (polytetrafluoroethylene) is fabricated and investigated for proton exchange membrane fuel cell application. In order to improve the combination between SPEEK polymer and PTFE matrix, PTFE substrate is hydrophilically pretreated by naphthalene sodium solution. The experimental results indicate that SPEEK can impregnate into treated PTFE substrate (abbreviated as trPTFE) more easily. The variation of PTFE surface property before and after treatment is characterized by water contact angle experiment and ATR-FTIR technique. The impregnated status of SPEEK polymer in PTFE matrix is also characterized by ATR-FTIR. According to the appearance photo of two composite membranes, it is showed that SPEEK/trPTFE composite membrane has more uniform and homogeneous morphology. Moreover, the mechanical property of SPEEK/trPTFE composite membrane also has an advantage over pristine SPEEK membrane. Due to the reinforced effect of trPTFE substrate, thinner composite membrane can be applied in single cell evolution and achieves better performance as a result. (author)

  12. Optimizing Liposomal Cisplatin Efficacy through Membrane Composition Manipulations

    Science.gov (United States)

    Zisman, Natalia; Dos Santos, Nancy; Johnstone, Sharon; Tsang, Alan; Bermudes, David; Mayer, Lawrence; Tardi, Paul

    2011-01-01

    The first liposomal formulation of cisplatin to be evaluated clinically was SPI-077. Although the formulation demonstrated enhanced cisplatin tumor accumulation in preclinical models it did not enhance clinical efficacy, possibly due to limited cisplatin release from the formulation localized within the tumor. We have examined a series of liposomal formulations to address the in vivo relationship between cisplatin release rate and formulation efficacy in the P388 murine leukemia model. The base formulation of phosphatidylcholine: phosphatidylglycerol: cholesterol was altered in the C18 and C16 phospholipid content to influence membrane fluidity and thereby impacting drug circulation lifetime and drug retention. Phase transition temperatures (Tm) ranged from 42–55°C. The high Tm formulations demonstrated enhanced drug retention properties accompanied by low antitumor activity while the lowest Tm formulations released the drug too rapidly in the plasma, limiting drug delivery to the tumor which also resulted in low antitumor activity. A formulation composed of DSPC : DPPC : DSPG : Chol; (35 : 35 : 20 : 10) with an intermediate drug release rate and a cisplatin plasma half-life of 8.3 hours showed the greatest antitumor activity. This manuscript highlights the critical role that drug release rates play in the design of an optimized drug delivery vehicle. PMID:22312548

  13. Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure

    KAUST Repository

    Tiraferri, Alberto

    2011-02-01

    Osmotically driven membrane processes have the potential to treat impaired water sources, desalinate sea/brackish waters, and sustainably produce energy. The development of a membrane tailored for these processes is essential to advance the technology to the point that it is commercially viable. Here, a systematic investigation of the influence of thin-film composite membrane support layer structure on forward osmosis performance is conducted. The membranes consist of a selective polyamide active layer formed by interfacial polymerization on top of a polysulfone support layer fabricated by phase separation. By systematically varying the conditions used during the casting of the polysulfone layer, an array of support layers with differing structures was produced. The role that solvent quality, dope polymer concentration, fabric layer wetting, and casting blade gate height play in the support layer structure formation was investigated. Using a 1M NaCl draw solution and a deionized water feed, water fluxes ranging from 4 to 25Lm-2h-1 with consistently high salt rejection (>95.5%) were produced. The relationship between membrane structure and performance was analyzed. This study confirms the hypothesis that the optimal forward osmosis membrane consists of a mixed-structure support layer, where a thin sponge-like layer sits on top of highly porous macrovoids. Both the active layer transport properties and the support layer structural characteristics need to be optimized in order to fabricate a high performance forward osmosis membrane. © 2010 Elsevier B.V.

  14. Preparation of Novel Thin-Film Composite Nanofiltration Membranes for Separation of Amoxicillin

    Directory of Open Access Journals (Sweden)

    A. Akbari

    2014-04-01

    Full Text Available Several novel composite membranes were prepared to separate and recycle amoxicillin from pharmaceutical wastewater via nanofiltration process. The synthesis of these membranes included three stages: 1- preparation of polysulfone ultrafiltration membranes as a support via phase separation process, 2- modification of its surface by interfacial polymerization as a selective layer (polyamide, and 3- self-assembly of TiO2 nanoparticles on the selective layer as an anti-fouling agent. The rejection of all nanofiltration membranes was more than 99% and only its flux was changed proportional to different conditions. In the presence and absence of TiO2 nanoparticles, the pure water flux of polyamide thin-film membrane also obtained 44.4 and 38.4 L/h.m2 at 4 bar pressure, respectively. These were equal to 34 L/h.m2 for amoxicillin solutions. The results showed that TiO2 nanoparticles increased hydrophilicity of polyamide selective layer and therefore, nanoparticles decreased the fouling level. SEM images illustrated the excellent establishment of polyamide layer and distribution of TiO2 nanoparticles on the selective layer. The properties of membrane surface were taken into consideration by using AFM, indicating the increment of surface roughness with interfacial polymerization and TiO2 nanoparticles self-assembly. The pore size of membranes was in the nanoscale (2.653 and 2.604 nm without and with TiO2 nanoparticles self-assembly, respectively

  15. Development of polyelectrolyte multilayer thin film composite membrane for water desalination application

    KAUST Repository

    Fadhillah, F.

    2013-06-01

    Thin film composite membranes were fabricated via spin assisted layer by layer (SA-LbL) assembly by depositing alternate layers of poly(allyl amine hydrochloride) (PAH) and poly(acrylic acid) (PAA) on a polysulfone (PSF) ultrafiltration membrane as support. The suitability of these membranes for potential water purification applications was explored by testing the stability of the deposited thin films and their permeation characteristic using cross-flow permeation cell. Permeation test conducted at a pressure of 40bar, temperature of 25°C, pH of 6 and feed water concentration of 2000ppm NaCl demonstrated that the PAH/PAA multilayer film deposited on polysulfone support remained stable and intact under long-term test conditions. The 120 bilayers of PAH/PAA membrane tested at the above condition showed flux of 15L/m2.h and salt rejection of 65%. The membrane performance evaluation also revealed that SA-LbL PAH/PAA membrane follows the characteristics of the solution diffusion membrane. © 2013 Elsevier B.V.

  16. Enzymatic cleaning of biofouled thin-film composite reverse osmosis (RO) membrane operated in a biofilm membrane reactor.

    Science.gov (United States)

    Khan, Mohiuddin; Danielsen, Steffen; Johansen, Katja; Lorenz, Lindsey; Nelson, Sara; Camper, Anne

    2014-02-01

    Application of environmentally friendly enzymes to remove thin-film composite (TFC) reverse osmosis (RO) membrane biofoulants without changing the physico-chemical properties of the RO surface is a challenging and new concept. Eight enzymes from Novozyme A/S were tested using a commercially available biofouling-resistant TFC polyamide RO membrane (BW30, FilmTech Corporation, Dow Chemical Co.) without filtration in a rotating disk reactor system operated for 58 days. At the end of the operation, the accumulated biofoulants on the TFC RO surfaces were treated with the three best enzymes, Subtilisin protease and lipase; dextranase; and polygalacturonase (PG) based enzymes, at neutral pH (~7) and doses of 50, 100, and 150 ppm. Contact times were 18 and 36 h. Live/dead staining, epifluorescence microscopy measurements, and 5 μm thick cryo-sections of enzyme and physically treated biofouled membranes revealed that Subtilisin protease- and lipase-based enzymes at 100 ppm and 18 h contact time were optimal for removing most of the cells and proteins from the RO surface. Culturable cells inside the biofilm declined by more than five logs even at the lower dose (50 ppm) and shorter incubation period (18 h). Subtilisin protease- and lipase-based enzyme cleaning at 100 ppm and for 18 h contact time restored the hydrophobicity of the TFC RO surface to its virgin condition while physical cleaning alone resulted in a 50° increase in hydrophobicity. Moreover, at this optimum working condition, the Subtilisin protease- and lipase-based enzyme treatment of biofouled RO surface also restored the surface roughness measured with atomic force microscopy and the mass percentage of the chemical compositions on the TFC surface estimated with X-ray photoelectron spectroscopy to its virgin condition. This novel study will encourage the further development and application of enzymes to remove biofoulants on the RO surface without changing its surface properties.

  17. Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers

    KAUST Repository

    Li, Tao

    2013-01-01

    Mixed matrix materials made from selective inorganic fillers and polymers are very attractive for the manufacturing of gas separation membranes. But only few of these materials could be manufactured into high-performance asymmetric or composite membranes. We report here the first mixed matrix composite membrane made of commercially available poly (amide-b-ethylene oxide) (Pebax®1657, Arkema) mixed with the nano-sized zeolitic imidazole framework ZIF-7. This hybrid material has been successfully deposited as a thin layer (less than 1μm) on a porous polyacrylonitrile (PAN) support. An intermediate gutter layer of PTMSP was applied to serve as a flat and smooth surface for coating to avoid polymer penetration into the porous support. Key features of this work are the preparation and use of ultra-small ZIF-7 nano-particles (around 30-35nm) and the membrane processability of Pebax®1657. SEM pictures show that excellent adhesion and almost ideal morphology between the two phases has been obtained simply by mixing the as-synthesized ZIF-7 suspension into the Pebax®1657 dope, and no voids or clusters can be observed. The performance of the composite membrane is characterized by single gas permeation measurement of CO2, N2 and CH4. Both, permeability (PCO2 up to 145barrer) and gas selectivity (CO2/N2 up to 97 and CO2/CH4 up to 30) can be increased at low ZIF- loading. The CO2/CH4 selectivity can be further increased to 44 with the filler loading of 34wt%, but the permeability is reduced compared to the pure Pebax®1657 membrane. Polymer chain rigidification at high filler loading is supposed to be a reason for the reduced permeability. The composite membranes prepared in this work show better performance in terms of permeance and selectivity when compared with asymmetric mixed matrix membranes described in the recent literature. Overall, the ZIF 7/Pebax mixed matrix membranes show a high performance for CO2 separation from methane and other gas streams. They are easy to

  18. Growth of apatite on chitosan-multiwall carbon nanotube composite membranes

    International Nuclear Information System (INIS)

    Yang Jun; Yao Zhiwen; Tang Changyu; Darvell, B.W.; Zhang Hualin; Pan Lingzhan; Liu Jingsong; Chen Zhiqing

    2009-01-01

    Bioactive membranes for guided tissue regeneration would be of value for periodontal therapy. Chitosan-multiwall carbon nanotube (CS-MWNT) composites were treated to deposit nanoscopic apatite for MWNT proportions of 0-4 mass%. Fourier-transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis, and X-ray diffraction were used for characterization. Apatite was formed on the CS-MWNT composites at low MWNT concentrations, but the dispersion of the MWNT affects the crystallite size and the Ca/P molar ratio of the composite. The smallest crystallite size was 9 nm at 1 mass% MWNT.

  19. Preparation and characterization of hydroxyapatite/gelatin composite membranes for immunoisolation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jyh-Ping, E-mail: jpchen@mail.cgu.edu.tw [Department of Chemical and Materials Engineering, Chang Gung University, 259 Wen Hwa 1st Rd., Kwei-San, Taoyuan 333, Taiwan (China); Chang, Feng-Nian [Department of Chemical and Materials Engineering, Chang Gung University, 259 Wen Hwa 1st Rd., Kwei-San, Taoyuan 333, Taiwan (China)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer Cross-linking gelatin in the presence of hydroxyapatite forms composite membranes. Black-Right-Pointing-Pointer The membrane was used for immunoisolation and encapsulation of cells. Black-Right-Pointing-Pointer Encapsulated islet cells secrete insulin in response to glucose concentrations. Black-Right-Pointing-Pointer The membrane is a good candidate for bioartificial pancreas development. - Abstract: Composite membranes are fabricated from hydroxyapatite (HAP) and gelatin for immunoisolation of cells. The films were fabricated by crosslinking 5 wt%, 10 wt%, and 20 wt% gelatin with 1 wt% glutaraldehyde (GA) in the presence of HAP. Fourier transform infrared spectroscopy analysis confirms imide bond formation between GA and gelatin, while the crystal structure of HAP powder remains unchanged from X-ray diffraction analysis. The degree of crosslinking depends on crosslinking time and gelatin concentration. For 5% and 10% gelatin, the degree of crosslinking levels off at 90% within 48 h. From scanning electron microscopy micrographs, the microstructure of the composite membrane depends on the amount of gelatin used in the crosslinking reaction. The mechanical strength of the composite membrane could be enhanced by increasing the gelatin concentration. BET analysis indicates that pore size of the micropores on the surface HAP/gelatin agglomerates decreases with increasing gelatin concentration. However, the macropore, through which diffusion of molecules occurs, is larger at higher gelatin concentrations. The permeability coefficients of different molecules through a HAP/gelatin composite membrane increase with increasing gelatin concentration and is inversely correlated with the molecular weight of the molecule. For immunoisolation of cells, the diffusion of large molecules stimulated by the immune system can be rejected by a chamber constructed from the HAP/gelatin membrane. Insulinoma cells were encapsulated in alginate

  20. Multilayer thin films with compositional PbZr0.52Ti0.48O3/Bi1.5Zn1.0Nb1.5O7 layers for tunable applications.

    Science.gov (United States)

    Yu, Shihui; Li, Lingxia; Zhang, Weifeng; Sun, Zheng; Dong, Helei

    2015-05-11

    The dielectric properties and tunability of multilayer thin films with compositional PbZr0.52Ti0.48O3/Bi1.5Zn1.0Nb1.5O7 (PZT/BZN) layers (PPBLs) fabricated by pulsed laser deposition on Pt/TiO2/SiO2/Si substrate have been investigated. Dielectric measurements indicate that the PZT/BZN bilayer thin films exhibit medium dielectric constant of about 490, low loss tangent of 0.017, and superior tunable dielectric properties (tunability=49.7% at 500 kV/cm) at a PZT/BZN thickness ratio of 3, while the largest figure of merit is obtained as 51.8. The thickness effect is discussed with a series connection model of bilayer capacitors, and the calculated dielectric constant and loss tangent are obtained. Furthermore, five kinds of thin-film samples comprising single bilayers, two, three, four and five PPBLs were also elaborated with the final same thickness. The four PPBLs show the largest dielectric constant of ~538 and tunability of 53.3% at a maximum applied bias field of 500 kV/cm and the lowest loss tangent of ~0.015, while the largest figure of merit is 65.6. The results indicate that four PPBLs are excellent candidates for applications of tunable devices.

  1. A graphite-coated carbon fiber epoxy composite bipolar plate for polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Yu, Ha Na; Lim, Jun Woo; Suh, Jung Do; Lee, Dai Gil

    A PEMFC (polymer electrolyte membrane fuel cell or proton exchange membrane fuel cell) stack is composed of GDLs (gas diffusion layers), MEAs (membrane electrode assemblies), and bipolar plates. One of the important functions of bipolar plates is to collect and conduct the current from cell to cell, which requires low electrical bulk and interfacial resistances. For a carbon fiber epoxy composite bipolar plate, the interfacial resistance is usually much larger than the bulk resistance due to the resin-rich layer on the composite surface. In this study, a thin graphite layer is coated on the carbon/epoxy composite bipolar plate to decrease the interfacial contact resistance between the bipolar plate and the GDL. The total electrical resistance in the through-thickness direction of the bipolar plate is measured with respect to the thickness of the graphite coating layer, and the ratio of the bulk resistance to the interfacial contact resistance is estimated using the measured data. From the experiment, it is found that the graphite coating on the carbon/epoxy composite bipolar plate has 10% and 4% of the total electrical and interfacial contact resistances of the conventional carbon/epoxy composite bipolar plate, respectively, when the graphite coating thickness is 50 μm.

  2. Ni@Ru and NiCo@Ru Core-Shell Hexagonal Nanosandwiches with a Compositionally Tunable Core and a Regioselectively Grown Shell.

    Science.gov (United States)

    Hwang, Hyeyoun; Kwon, Taehyun; Kim, Ho Young; Park, Jongsik; Oh, Aram; Kim, Byeongyoon; Baik, Hionsuck; Joo, Sang Hoon; Lee, Kwangyeol

    2018-01-01

    The development of highly active electrocatalysts is crucial for the advancement of renewable energy conversion devices. The design of core-shell nanoparticle catalysts represents a promising approach to boost catalytic activity as well as save the use of expensive precious metals. Here, a simple, one-step synthetic route is reported to prepare hexagonal nanosandwich-shaped Ni@Ru core-shell nanoparticles (Ni@Ru HNS), in which Ru shell layers are overgrown in a regioselective manner on the top and bottom, and around the center section of a hexagonal Ni nanoplate core. Notably, the synthesis can be extended to NiCo@Ru core-shell nanoparticles with tunable core compositions (Ni 3 Co x @Ru HNS). Core-shell HNS structures show superior electrocatalytic activity for the oxygen evolution reaction (OER) to a commercial RuO 2 black catalyst, with their OER activity being dependent on their core compositions. The observed trend in OER activity is correlated to the population of Ru oxide (Ru 4+ ) species, which can be modulated by the core compositions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Synthesis of mesh-shaped calcia partially stabilized zirconia using eggshell membrane template as filler composite

    Directory of Open Access Journals (Sweden)

    Gema Gempita

    2017-08-01

    Full Text Available This experiment was conducted experimentally to synthesize Calcia Partially Stabilized Zirconia (Ca-PSZ by sol-gel method using eggshell membrane template as a composite filler. The eggshell membrane was used to produce a mesh shaped structure, which hopefully can improve the mechanical properties of the composite. Ca-PSZ filler was synthesized from ZrOCl2 precursor and Ca(NO32 stabilizer with a 24 hours immersion time. Ca-PSZ of synthesis then mixed with the resin matrix to test its composite hardness. The EDS characterization results suggested that the sample contained elements of zirconia, calcium, and oxygen. Whereas, the XRD characterization identified that crystal structures that formed in the sample were nano scale tetragonal. Characterization of SEM showed Ca-PSZ with mesh structured. The average composite hardness value was 15.79 VHN. The composites with Ca-PSZ-synthesized filler could be prepared and its hardness value was higher than the composite with Ca-PSZ filler in spherical particles, but the hardness was still below the composite on the market.

  4. Novel composite Zr/PBI-O-PhT membranes for HT-PEFC applications

    Directory of Open Access Journals (Sweden)

    Mikhail S. Kondratenko

    2013-08-01

    Full Text Available Novel composite membranes for high temperature polymer-electrolyte fuel cells (HT-PEFC based on a poly[oxy-3,3-bis(4′-benzimidazol-2″-ylphenylphtalide-5″(6″-diyl] (PBI-O-PhT polymer with small amounts of added Zr were prepared. It was shown in a model reaction between zirconium acetylacetonate (Zr(acac4 and benzimidazole (BI that Zr-atoms are capable to form chemical bonds with BI. Thus, Zr may be used as a crosslinking agent for PBI membranes. The obtained Zr/PBI-O-PhT composite membranes were examined by means of SAXS, thermomechanical analysis (TMA, and were tested in operating fuel cells by means of stationary voltammetry and impedance spectroscopy. The new membranes showed excellent stability in a 2000-hour fuel cell (FC durability test. The modification of the PBI-O-PhT films with Zr facilitated an increase of the phosphoric acid (PA uptake by the membranes, which resulted in an up to 2.5 times increased proton conductivity. The existence of an optimal amount of Zr content in the modified PBI-O-PhT film was shown. Larger amounts of Zr lead to a lower PA doping level and a reduced conductivity due to an excessively high degree of crosslinking.

  5. In vitro aging of mineralized collagen-based composite as guided tissue regeneration membrane

    International Nuclear Information System (INIS)

    Pan, S.X.; Li, Y.; Feng, H.L.; Bai, W.; Gu, Y.Y.

    2006-01-01

    The technique of guided tissue regeneration (GTR) has been developed for the regeneration of periodontal tissues, bone around natural teeth and dental implants. The aim of this study is to investigate the biodegradability and mechanic behavior of a novel mineralized nano-hydroxyapatite/collagen/poly (lactic acid) (nHAC/PLA) composite as GTR membrane in vitro. The elastic modulus and maximum tensile strength of GTR film samples with different nHAC/PLA ratio were measured to get an optimal nHAC/PLA ratio. Thermogravimetric analysis was conducted to evaluate the change of the inorganic component in the samples during the process of in vitro aging. Morphology of samples was checked by using scanning electron microscopy. On the basis of the above results, it can be concluded that the GTR membranes maintained integrity and the original appearance throughout the 1-month in vitro aging. There is an active dissolution and deposition process of crystals which is propitious to the bone formation on the surface of the composite membrane. The optimal nHAC/PLA ratio of the novel membrane is 0.4:1. For a longer period of bone repair, PLA with higher molecular weight should be chosen as the scaffold for the GTR membrane

  6. Triple-layered PLGA/nanoapatite/lauric acid graded composite membrane for periodontal guided bone regeneration.

    Science.gov (United States)

    Jamuna-Thevi, Kalitheertha; Saarani, Nur Najiha; Abdul Kadir, Mohamed Rafiq; Hermawan, Hendra

    2014-10-01

    This paper discusses the successful fabrication of a novel triple-layered poly(lactic-co-glycolic acid) (PLGA)-based composite membrane using only a single step that combines the techniques of solvent casting and thermally induced phase separation/solvent leaching. The resulting graded membrane consists of a small pore size layer-1 containing 10 wt% non-stoichiometric nanoapatite (NAp)+1-3 wt% lauric acid (LA) for fibroblastic cell and bacterial inhibition, an intermediate layer-2 with 20-50 wt% NAp+1 wt% LA, and a large pore size layer-3 containing 30-100 wt% NAp without LA to allow bone cell growth. The synergic effects of 10-30 wt% NAp and 1 wt% LA in the membrane demonstrated higher tensile strength (0.61 MPa) and a more elastic behavior (16.1% elongation at break) in 3 wt% LA added membrane compared with the pure PLGA (0.49 MPa, 9.1%). The addition of LA resulted in a remarkable plasticizing effect on PLGA at 3 wt% due to weak intermolecular interactions in PLGA. The pure and composite PLGA membranes had good cell viability toward human skin fibroblast, regardless of LA and NAp contents. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Novel composite Zr/PBI-O-PhT membranes for HT-PEFC applications.

    Science.gov (United States)

    Kondratenko, Mikhail S; Ponomarev, Igor I; Gallyamov, Marat O; Razorenov, Dmitry Yu; Volkova, Yulia A; Kharitonova, Elena P; Khokhlov, Alexei R

    2013-01-01

    Novel composite membranes for high temperature polymer-electrolyte fuel cells (HT-PEFC) based on a poly[oxy-3,3-bis(4'-benzimidazol-2″-ylphenyl)phtalide-5″(6″)-diyl] (PBI-O-PhT) polymer with small amounts of added Zr were prepared. It was shown in a model reaction between zirconium acetylacetonate (Zr(acac)4) and benzimidazole (BI) that Zr-atoms are capable to form chemical bonds with BI. Thus, Zr may be used as a crosslinking agent for PBI membranes. The obtained Zr/PBI-O-PhT composite membranes were examined by means of SAXS, thermomechanical analysis (TMA), and were tested in operating fuel cells by means of stationary voltammetry and impedance spectroscopy. The new membranes showed excellent stability in a 2000-hour fuel cell (FC) durability test. The modification of the PBI-O-PhT films with Zr facilitated an increase of the phosphoric acid (PA) uptake by the membranes, which resulted in an up to 2.5 times increased proton conductivity. The existence of an optimal amount of Zr content in the modified PBI-O-PhT film was shown. Larger amounts of Zr lead to a lower PA doping level and a reduced conductivity due to an excessively high degree of crosslinking.

  8. Cs2.5H0.5PWO40/SiO2 as addition self-humidifying composite membrane for proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Wang, L.; Yi, B.L.; Zhang, H.M.; Xing, D.M.

    2007-01-01

    In this paper, we first reported a novel self-humidifying composite membrane for the proton exchange membrane fuel cell (PEMFC). Cs 2.5 H 0.5 PWO 40 /SiO 2 catalyst particles were dispersed uniformly into the Nafion (registered) resin, and then Cs 2.5 H 0.5 PWO 40 -SiO 2 /Nafion composite membrane was prepared using solution-cast method. Compared with the H 3 PWO 40 (PTA) , the Cs 2.5 H 0.5 PWO 40 /SiO 2 was steady due to the substitute of H + with Cs + and the interaction between the Cs 2.5 H 0.5 PWO 40 and SiO 2 . And compared with the performance of the fuel cell with commercial Nafion (registered) NRE-212 membrane, the cell performance with the self-humidifying composite membrane was obviously improved under both humidified and dry conditions at 60 and 80 o C. The best performance under dry condition was obtained at 60 o C. The self-humidifying composite membrane could minimize membrane conductivity loss under dry conditions due to the presence of catalyst and hydrophilic Cs 2.5 H 0.5 PWO 40 /SiO 2 particles

  9. Influence of membrane fatty acid composition and fluidity on airborne survival of Escherichia coli.

    Science.gov (United States)

    Ng, Tsz Wai; Chan, Wing Lam; Lai, Ka Man

    2018-04-01

    Finding ways to predict and control the survival of bacterial aerosols can contribute to the development of ways to alleviate a number of crucial microbiological problems. Significant damage in the membrane integrity of Escherichia coli during aerosolization and airborne suspension has been revealed which has prompted the question of how the membrane fatty acid composition and fluidity influence the survival of airborne bacteria. Two approaches of using isogenic mutants and different growth temperatures were selected to manipulate the membrane fatty acid composition of E. coli before challenging the bacteria with different relative humidity (RH) levels in an aerosol chamber. Among the mutants (fabR - , cfa. fadA - ), fabR - had the lowest membrane fluidity index (FI) and generally showed a higher survival than the parental strain. Surprisingly, its resistance to airborne stress was so strong that its viability was fully maintained even after airborne suspension at 40% RH, a harsh RH level to bacterial survival. Moreover, E. coli cultured at 20 °C with a higher FI than that at 30 and 37 °C generally had a lower survival after aerosolization and airborne suspension. Unlike FI, individual fatty acid and cyclopropane fatty acid composition did not relate to the bacterial survival. Lipid peroxidation of the membrane was undetected in all the bacteria. Membrane fluidity plays a stronger role in determining the bacteria survival during airborne suspension than during aerosolization. Certain relationships between FI and bacteria survival were identified, which could help predict the transmission of bacteria under different conditions.

  10. Preparation and characterization of hydroxyapatite/gelatin composite membranes for immunoisolation

    Science.gov (United States)

    Chen, Jyh-Ping; Chang, Feng-Nian

    2012-12-01

    Composite membranes are fabricated from hydroxyapatite (HAP) and gelatin for immunoisolation of cells. The films were fabricated by crosslinking 5 wt%, 10 wt%, and 20 wt% gelatin with 1 wt% glutaraldehyde (GA) in the presence of HAP. Fourier transform infrared spectroscopy analysis confirms imide bond formation between GA and gelatin, while the crystal structure of HAP powder remains unchanged from X-ray diffraction analysis. The degree of crosslinking depends on crosslinking time and gelatin concentration. For 5% and 10% gelatin, the degree of crosslinking levels off at 90% within 48 h. From scanning electron microscopy micrographs, the microstructure of the composite membrane depends on the amount of gelatin used in the crosslinking reaction. The mechanical strength of the composite membrane could be enhanced by increasing the gelatin concentration. BET analysis indicates that pore size of the micropores on the surface HAP/gelatin agglomerates decreases with increasing gelatin concentration. However, the macropore, through which diffusion of molecules occurs, is larger at higher gelatin concentrations. The permeability coefficients of different molecules through a HAP/gelatin composite membrane increase with increasing gelatin concentration and is inversely correlated with the molecular weight of the molecule. For immunoisolation of cells, the diffusion of large molecules stimulated by the immune system can be rejected by a chamber constructed from the HAP/gelatin membrane. Insulinoma cells were encapsulated in alginate-poly-L-lysine-alginate microcapsules and enclosed in a HAP/gelatin chamber. The chamber did not impair the viability and function of insulinoma cells and cells can secrete insulin in response to glucose concentration change. The chamber is therefore useful for the physiologically controlled secretion of insulin in response to the blood glucose level. Intraperitoneal transplantation of the chamber into streptozotocin-induced diabetic SD rats could

  11. Steel reinforced composite silicone membranes and its integration to microfluidic oxygenators for high performance gas exchange.

    Science.gov (United States)

    Matharoo, Harpreet; Dabaghi, Mohammadhossein; Rochow, Niels; Fusch, Gerhard; Saraei, Neda; Tauhiduzzaman, Mohammed; Veldhuis, Stephen; Brash, John; Fusch, Christoph; Selvaganapathy, P Ravi

    2018-01-01

    Respiratory distress syndrome (RDS) is one of the main causes of fatality in newborn infants, particularly in neonates with low birth-weight. Commercial extracorporeal oxygenators have been used for low-birth-weight neonates in neonatal intensive care units. However, these oxygenators require high blood volumes to prime. In the last decade, microfluidics oxygenators using enriched oxygen have been developed for this purpose. Some of these oxygenators use thin polydimethylsiloxane (PDMS) membranes to facilitate gas exchange between the blood flowing in the microchannels and the ambient air outside. However, PDMS is elastic and the thin membranes exhibit significant deformation and delamination under pressure which alters the architecture of the devices causing poor oxygenation or device failure. Therefore, an alternate membrane with high stability, low deformation under pressure, and high gas exchange was desired. In this paper, we present a novel composite membrane consisting of an ultra-thin stainless-steel mesh embedded in PDMS, designed specifically for a microfluidic single oxygenator unit (SOU). In comparison to homogeneous PDMS membranes, this composite membrane demonstrated high stability, low deformation under pressure, and high gas exchange. In addition, a new design for oxygenator with sloping profile and tapered inlet configuration has been introduced to achieve the same gas exchange at lower pressure drops. SOUs were tested by bovine blood to evaluate gas exchange properties. Among all tested SOUs, the flat design SOU with composite membrane has the highest oxygen exchange of 40.32 ml/min m 2 . The superior performance of the new device with composite membrane was demonstrated by constructing a lung assist device (LAD) with a low priming volume of 10 ml. The LAD was achieved by the oxygen uptake of 0.48-0.90 ml/min and the CO 2 release of 1.05-2.27 ml/min at blood flow rates ranging between 8 and 48 ml/min. This LAD was shown to increase the

  12. Thin-film Nanofibrous Composite Membranes Containing Cellulose or Chitin Barrier Layers Fabricated by Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    H Ma; B Hsiao; B Chu

    2011-12-31

    The barrier layer of high-flux ultrafiltration (UF) thin-film nanofibrous composite (TFNC) membranes for purification of wastewater (e.g., bilge water) have been prepared by using cellulose, chitin, and a cellulose-chitin blend, regenerated from an ionic liquid. The structures and properties of regenerated cellulose, chitin, and a cellulose-chitin blend were analyzed with thermogravimetric analysis (TGA) and wide-angle X-ray diffraction (WAXD). The surface morphology, pore size and pore size distribution of TFNC membranes were determined by SEM images and molecular weight cut-off (MWCO) methods. An oil/water emulsion, a model of bilge water, was used as the feed solution, and the permeation flux and rejection ratio of the membranes were investigated. TFNC membranes based on the cellulose-chitin blend exhibited 10 times higher permeation flux when compared with a commercial UF membrane (PAN10, Sepro) with a similar rejection ratio after filtration over a time period of up to 100 h, implying the practical feasibility of such membranes for UF applications.

  13. Polysulfone thin film composite nanofiltration membranes for removal of textile dyes wastewater

    Science.gov (United States)

    Sutedja, Andrew; Aileen Josephine, Claresta; Mangindaan, Dave

    2017-12-01

    This research was conducted to produce nanofiltration (NF) membranes, which have good performance in terms of removal of textile dye (Reactive Red 120, RR120) from simulated wastewater as one of several eco-engineering developments for sustainable water resource management. Phase inversion technique was utilized to fabricate the membrane with polysulfone (PSF) support, dissolved in N-methyl-2 pyrollidone (NMP) solvent, and diethylene glycol (DEG) as non-solvent additive. The fabricated membrane then modified with the additional of dopamine coating and further modified by interfacial polymerization (IP) to form a thin film composite (TFC)-NF membrane with PSF substrate. TFC was formed from interaction between amine monomer (2 %-weight of m-phenylenediamine (MPD) in deionized water) and acyl chloride (0.2 %-weight of trimesoyl chloride (TMC) in hexane). From this study, the fabricated PSF-TFC membrane could remove dyestuff from RR120 wastewater by 88% rejection at 120 psi. The result of this study is promising to be applied in Indonesia where researches on removal of dyes from textile wastewater by using membranes are still quite rare. Therefore, this paper may open new avenues for development of eco-engineering development in Indonesia.

  14. Enhanced Performance of Thin Film Composite Forward Osmosis Membrane by Chemical Post-Treatment

    Science.gov (United States)

    Liu, Zheng; Chen, Jiangrong; Cao, Zhen; Wang, Jian; Guo, Chungang

    2018-01-01

    Forward osmosis is an attractive technique in water purification and desalination fields. Enhancement of the forward osmosis membrane performance is essential to the application of this technique. In this study, an optimized chemical post-treatment approach which was used to improve RO membrane performance was employed for enhancing water flux of thin film composite forward osmosis membrane. Home-made polysulfide-based forward osmosis membrane was prepared and nitric acid, sulfuric acid, ethanol, 2-propanol were employed as post-treatment solutions. After a short-term treatment, all the membrane samples manifested water flux enhancement compared with their untreated counterparts. Over 50% increase of water flux had been obtained by ethanol solution treatment. The swelling, changes of hydrophobicity and solvency in both active layer and substrate were verified as the major causes for the enhancement of the water flux. It is noted that the treatment time and solution concentration should be controlled to get both appropriate water flux and reverse salt flux. The results obtained in this study will be useful for further FO membrane development and application.

  15. Membranolytic Activity of Bile Salts: Influence of Biological Membrane Properties and Composition

    Directory of Open Access Journals (Sweden)

    Alfred Blume

    2007-10-01

    Full Text Available The two main steps of the membranolytic activity of detergents: 1 the partitioning of detergent molecules in the membrane and 2 the solubilisation of the membrane are systematically investigated. The interactions of two bile salt molecules, sodium cholate (NaC and sodium deoxycholate (NaDC with biological phospholipid model membranes are considered. The membranolytic activity is analysed as a function of the hydrophobicity of the bile salt, ionic strength, temperature, membrane phase properties, membrane surface charge and composition of the acyl chains of the lipids. The results are derived from calorimetric measurements (ITC, isothermal titration calorimetry. A thermodynamic model is described, taking into consideration electrostatic interactions, which is used for the calculation of the partition coefficient as well as to derive the complete thermodynamic parameters describing the interaction of detergents with biological membranes (change in enthalpy, change in free energy, change in entropy etc. The solubilisation properties are described in a so-called vesicle-to-micelle phase transition diagram. The obtained results are supplemented and confirmed by data obtained from other biophysical techniques (DSC differential scanning calorimetry, DLS dynamic light scattering, SANS small angle neutron scattering.

  16. Superhydrophilic Thin-Film Composite Forward Osmosis Membranes for Organic Fouling Control: Fouling Behavior and Antifouling Mechanisms

    KAUST Repository

    Tiraferri, Alberto

    2012-10-16

    This study investigates the fouling behavior and fouling resistance of superhydrophilic thin-film composite forward osmosis membranes functionalized with surface-tailored nanoparticles. Fouling experiments in both forward osmosis and reverse osmosis modes are performed with three model organic foulants: alginate, bovine serum albumin, and Suwannee river natural organic matter. A solution comprising monovalent and divalent salts is employed to simulate the solution chemistry of typical wastewater effluents. Reduced fouling is consistently observed for the superhydrophilic membranes compared to control thin-film composite polyamide membranes, in both reverse and forward osmosis modes. The fouling resistance and cleaning efficiency of the functionalized membranes is particularly outstanding in forward osmosis mode where the driving force for water flux is an osmotic pressure difference. To understand the mechanism of fouling, the intermolecular interactions between the foulants and the membrane surface are analyzed by direct force measurement using atomic force microscopy. Lower adhesion forces are observed for the superhydrophilic membranes compared to the control thin-film composite polyamide membranes. The magnitude and distribution of adhesion forces for the different membrane surfaces suggest that the antifouling properties of the superhydrophilic membranes originate from the barrier provided by the tightly bound hydration layer at their surface, as well as from the neutralization of the native carboxyl groups of thin-film composite polyamide membranes. © 2012 American Chemical Society.

  17. Superhydrophilic thin-film composite forward osmosis membranes for organic fouling control: fouling behavior and antifouling mechanisms.

    Science.gov (United States)

    Tiraferri, Alberto; Kang, Yan; Giannelis, Emmanuel P; Elimelech, Menachem

    2012-10-16

    This study investigates the fouling behavior and fouling resistance of superhydrophilic thin-film composite forward osmosis membranes functionalized with surface-tailored nanoparticles. Fouling experiments in both forward osmosis and reverse osmosis modes are performed with three model organic foulants: alginate, bovine serum albumin, and Suwannee river natural organic matter. A solution comprising monovalent and divalent salts is employed to simulate the solution chemistry of typical wastewater effluents. Reduced fouling is consistently observed for the superhydrophilic membranes compared to control thin-film composite polyamide membranes, in both reverse and forward osmosis modes. The fouling resistance and cleaning efficiency of the functionalized membranes is particularly outstanding in forward osmosis mode where the driving force for water flux is an osmotic pressure difference. To understand the mechanism of fouling, the intermolecular interactions between the foulants and the membrane surface are analyzed by direct force measurement using atomic force microscopy. Lower adhesion forces are observed for the superhydrophilic membranes compared to the control thin-film composite polyamide membranes. The magnitude and distribution of adhesion forces for the different membrane surfaces suggest that the antifouling properties of the superhydrophilic membranes originate from the barrier provided by the tightly bound hydration layer at their surface, as well as from the neutralization of the native carboxyl groups of thin-film composite polyamide membranes.

  18. In vitro bioactivity assessment of composite membrane containing antimicrobial lauric acid for guided bone regeneration in dental application

    Science.gov (United States)

    Suleiman, Muhammad Jabir; Kalitheertha, Jamuna Thevi; Sabri, Siti Noorzidah

    2015-07-01

    The manuscript reflect research work in fabrication of a triple layered composite membrane and to perform an in vitro bioactivity evaluation on composite membrane containing antimicrobial lauric acid. Poly(lactic-co-glycolic acid) (PLGA) matrix was incorporated with various amounts of nanoapatite (NAp) and lauric acid (LA) to form a triple-layered composite membrane. This membrane was prepared using a single step fabrication technique comprising of solvent casting, thermally induced phase separation and solvent leaching processes. Apatite mineralization was detected on the composite membranes within 30 days of exposure to simulated body fluid (SBF) and showed increased apatite formation at 30-60wt% of NAp content in the PLGA matrix on layer 3 (L3), that has the highest amount of NAp compared with layer 1 (L1) and layer 2 (L2) of the membrane. However, apatite mineralization was not detected on pure PLGA membrane. In addition, incorporation of LA on L1 and L2 has no influence on apatite mineral formation as none detected on these surfaces. The presence of NAp determines the formation of apatite crystals on the composite membrane. These membranes with triple layered design and bioactive properties showed potential use for guided bone regeneration purposes in dental application.

  19. Structural and dielectric properties of cobaltacarborane composite polybenzimidazole membranes as solid polymer electrolytes at high temperature.

    Science.gov (United States)

    Fuentes, Isabel; Andrio, Andreu; García-Bernabé, Abel; Escorihuela, Jorge; Viñas, Clara; Teixidor, Francesc; Compañ, Vicente

    2018-03-29

    The conductivity of a series of composite membranes, based on polybenzimidazole (PBI) containing the metallacarborane salt M[Co(C2B9H11)2], M[COSANE] and tetraphenylborate, M[B(C6H5)4], M[TPB] both anions having the same number of atoms and the same negative charge, has been investigated. Different cations (M = H+, Li+ and Na+) have been studied and the composite membranes have been characterized by water uptake, swelling ratios, ATR FT-IR, thermogravimetric analysis and electrochemical impedance spectroscopy to explore the dielectric response and ion dynamics in composite membranes. Our results show that conductivity increases with increasing temperature and it is higher for H+ than for Li+ and Na+ for all temperatures under study. The mobility of Li+ is greater in [COSANE]- than in [TPB]- composite PBI@membranes while for Na+ it is the opposite. The temperature dependence of the conductivity of the composite was followed by a typical Arrhenius behaviour with two different regions: (1) between 20 and 100 °C, and (2) between 100 and 150 °C. Using the analysis of electrode polarization (EP) based on the Thrukhan theory we have calculated the ionic diffusion coefficients and the density of carriers. From the double logarithmic plot of the imaginary part of the conductivity (σ'') versus frequency in the entire range of temperatures studied we have determined for each sample at each temperature, the frequency values of the onset (fON) and full development of electrode polarization (fMAX), respectively, which permit us to calculate static permittivity.

  20. New type of chitosan/2-hydroxypropyl-β-cyclodextrin composite membrane for gallic acid encapsulation and controlled release.

    Science.gov (United States)

    Paun, Gabriela; Neagu, Elena; Tache, Andreia; Radu, G L

    2014-01-01

    A new type of chitosan/2-hydroxypropyl-β-cyclodextrin composite membrane have been developed for the encapsulation and controlled release of gallic acid. The morphology of the composite membrane was investigated by infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM), whereas swelling gallic acid and release properties were investigated by UV-visible spectroscopy. The release behavior with pH changes was also explored. The composite membrane based on chitosan/2-hydroxypropyl-β-cyclodextrin with gallic acid included showed improved antioxidant capacities compared to plain chitosan membrane. The information obtained in this study will facilitate the design and preparation of composite membrane based on chitosan and could open a wide range of applications, particularly its use as an antioxidant in food, food packaging, biomedical (biodegradable soft porous scaffolds for enhance the surrounding tissue regeneration), pharmaceutical and cosmetics industries.

  1. Development of a PVAl/chitosan composite membrane compatible with the dermo-epidermic system

    International Nuclear Information System (INIS)

    Almeida, Tiago Luiz de

    2009-03-01

    surface, thus obtaining a composite membrane compatible with the dermo-epidermic system. (author)

  2. Preliminary biocompatible evaluation of nano-hydroxyapatite/polyamide 66 composite porous membrane

    Directory of Open Access Journals (Sweden)

    Yili Qu

    2010-06-01

    Full Text Available Yili Qu1,3, Ping Wang1,3, Yi Man1, Yubao Li2, Yi Zuo2, Jidong Li21State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610064, China; 2Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China; 3These authors contributed equally to this workAbstract: Nano-hydroxyapatite/polyamide 66 (nHA/PA66 composite with good bioactivity and osteoconductivity was employed to develop a novel porous membrane with asymmetric structure for guided bone regeneration (GBR. In order to test material cytotoxicity and to investigate surface-dependent responses of bone-forming cells, the morphology, proliferation, and cell cycle of bone marrow stromal cells (BMSCs of rats cultured on the prepared membrane were determined. The polygonal and fusiform shape of BMSCs was observed by scanning electronic microscopy (SEM. The proliferation of BMSCs cultured on nHA/PA66 membrane tested by the MTT method (MTT: [3-{4,5-dimethylthiazol-2yl}-2,5-diphenyl-2H-tetrazoliumbromide] was higher than that of negative control groups for 1 and 4 days’ incubation and had no significant difference for 7 and 11 days’ culture. The results of cell cycle also suggested that the membrane has no negative influence on cell division. The nHA/PA66 membranes were then implanted into subcutaneous sites of nine Sprague Dawley rats. The wounds and implant sites were free from suppuration and necrosis in all periods. All nHA/PA66 membranes were surrounded by a fibrous capsule with decreasing thickness 1 to 8 weeks postoperatively. In conclusion, the results of the in vitro and in vivo studies reveal that nHA/PA66 membrane has excellent biocompatibility and indicate its use in guided tissue regeneration (GTR or GBR.Keywords: hydroxyapatite/polyamide, barrier membrane, biocompatibility, guided bone regeneration

  3. Surface modifications of Ti alloy with tunable hierarchical structures and chemistry for improved metal-polymer interface used in deepwater composite riser

    Science.gov (United States)

    He, Peigang; Chen, Ke; Yang, Jinglei

    2015-02-01

    Ti-based fiber reinforced plastic (Ti-FRP) composites have attracted increasing attentions in the marine and offshore applications due their excellent specific mechanical and physical properties. Among those, interface issues play important role to determine the failure modes of the hybrid composites. In this paper, tunable hierarchical structures and oxidation states on Ti alloy (Ti6Al4V) were achieved via physical and chemical surface treatment techniques including sandblasting, anodization, etching and annealing. Wetability and interfacial bonding strength between the treated Ti alloy surfaces and epoxy resin were systemically investigated in consideration of surface microstructures, oxidation states of Ti, and possible chemical reaction between oxidized Ti and amine. After the combined treatments, the epoxy-adhered specimen showed fully cohesive failure mode in epoxy with the highest shear strength and work of fracture. The great increase in the shear bonding strength was attributed to the nano- to macro-scale hierarchical structure on the Ti alloy surface which resulted in the enhanced adhesive strength between epoxy and adherend in terms of the excellent wettability, significant interfacial chemical reaction and reasonable mechanical interlocking.

  4. Tunable thermodynamic stability of Au-CuPt core-shell trimetallic nanoparticles by controlling the alloy composition: insights from atomistic simulations.

    Science.gov (United States)

    Huang, Rao; Shao, Gui-Fang; Wen, Yu-Hua; Sun, Shi-Gang

    2014-11-07

    A microscopic understanding of the thermal stability of metallic core-shell nanoparticles is of importance for their synthesis and ultimately application in catalysis. In this article, molecular dynamics simulations have been employed to investigate the thermodynamic evolution of Au-CuPt core-shell trimetallic nanoparticles with various Cu/Pt ratios during heating processes. Our results show that the thermodynamic stability of these nanoparticles is remarkably enhanced upon rising Pt compositions in the CuPt shell. The melting of all the nanoparticles initiates at surface and gradually spreads into the core. Due to the lattice mismatch among Au, Cu and Pt, stacking faults have been observed in the shell and their numbers are associated with the Cu/Pt ratios. With the increasing temperature, they have reduced continuously for the Cu-dominated shell while more stacking faults have been produced for the Pt-dominated shell because of the significantly different thermal expansion coefficients of the three metals. Beyond the overall melting, all nanoparticles transform into a trimetallic mixing alloy coated by an Au-dominated surface. This work provides a fundamental perspective on the thermodynamic behaviors of trimetallic, even multimetallic, nanoparticles at the atomistic level, indicating that controlling the alloy composition is an effective strategy to realize tunable thermal stability of metallic nanocatalysts.

  5. Silica based composite membranes for methanol fuel cells operating at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, A.; Guzman, C.; Peza-Ledesma, C.; Godinez, Luis A.; Nava, R.; Duron-Torres, S.M.; Ledesma-Garcia, J.; Arriaga, L.G.

    2011-01-15

    Direct methanol fuel cells (DMFCs) are seen as an alternative energy source for several applications, particularly portable power sources. Nafion membranes constitute a well known proton exchange system for DMFC systems due to their convenient electrochemical, mechanical and thermal stability and high proton conductivity properties. But there are problems currently associated with the direct methanol fuel cell technology. Intensive efforts to decrease the methanol crossover are focused mainly on the development of new polymer electrolyte membranes. In this study, Nafion polymer was modified by means of the incorporation of inorganic oxides with different structural properties (SBA-15 and SiO2), both prepared by sol-gel method in order to increase the proton conductivity at high temperature of fuel cell and to contribute decrementing the methanol crossover effect. Composite membranes based in inorganic fillers showed a significant decrease in the concentration of methanol permeation.

  6. Synthesis and performance of antifouling and self-cleaning polyethersulfone/graphene oxide composite membrane functionalized with photoactive semiconductor catalyst.

    Science.gov (United States)

    Dizge, Nadir; Gonuldas, Hakan; Ozay, Yasin; Ates, Hasan; Ocakoglu, Kasim; Harputlu, Ersan; Yildirimcan, Saadet; Unyayar, Ali

    2017-02-01

    This study was performed to synthesize membranes of polyethersulfone (PES) blended with graphene oxide (GO) and PES blended with GO functionalized with photoactive semiconductor catalyst (TiO 2 and ZnO). The antifouling and self-cleaning properties of composite membranes were also investigated. The GO was prepared from natural graphite powder by oxidation method at low temperature. TiO 2 and ZnO nanopowders were synthesized by anhydrous sol-gel method. The surface of TiO 2 and ZnO nanopowders was modified by a surfactant (myristic acid) to obtain a homogeneously dispersed mixture in a solvent, and then GO was functionalized by loading with these metal oxide nanopowders. The PES membranes blended with GO and functionalized GO into the casting solution were prepared via phase inversion method and tested for their antifouling as well as self-cleaning properties. The composite membranes were synthesized as 14%wt. of PES polymer with three different concentrations (0.5, 1.0, and 2.0%wt.) of GO, GO-TiO 2 , and GO-ZnO. The functionalization of membranes improved hydrophilicity property of membranes as compared to neat PES membrane. However, the lowest flux was obtained by functionalized membranes with GO-TiO 2 . The results showed that functionalized membranes demonstrated better self-cleaning property than neat PES membrane. Moreover, the flux recovery rate of functionalized membranes over five cycles was higher than that of neat membrane.

  7. Stokes shift and fine structure splitting in composition-tunable Zn{sub x}Cd{sub 1−x}Se nanocrystals: Atomistic tight-binding theory

    Energy Technology Data Exchange (ETDEWEB)

    Sukkabot, Worasak, E-mail: w.sukkabot@gmail.com

    2017-02-01

    I report on the atomistic correlation of the structural properties and excitonic splitting of ternary alloy Zn{sub x}Cd{sub 1−x}Se wurtzite nanocrystals using the sp{sup 3}s* empirical tight-binding method with the description of the first nearest neighbouring interaction and bowing effect. Based on a successful model, the computations are presented under various Zn compositions (x) and diameters of alloy Zn{sub x}Cd{sub 1−x}Se nanocrystals with the experimentally synthesized compositions and sizes. With increasing Zn contents (x), the optical band gaps and electron-hole coulomb energies are improved, while ground electron-hole wave function overlaps, electron-hole exchange energies, stokes shift and fine structure splitting are reduced. A composition-tunable emission from blue to yellow wavelength is obviously demonstrated. The optical band gaps, ground electron-hole wave function overlaps, electron-hole interactions, stokes shift and fine structure splitting are progressively decreased with the increasing diameters. Alloy Zn{sub x}Cd{sub 1−x}Se nanocrystal with Zn rich and large diameter is the best candidate to optimistically be used as a source of entangled photon pairs. The agreement with the experimental data is remarkable. Finally, the present systematic study on the structural properties and excitonic splitting predominantly opens a new perspective to understand the size- and composition-dependent properties of Zn{sub x}Cd{sub 1−x}Se nanocrystals with a comprehensive strategy to design the optoelectronic devices.

  8. Omega-3 supplementation alters mitochondrial membrane composition and respiration kinetics in human skeletal muscle.

    Science.gov (United States)

    Herbst, E A F; Paglialunga, S; Gerling, C; Whitfield, J; Mukai, K; Chabowski, A; Heigenhauser, G J F; Spriet, L L; Holloway, G P

    2014-03-15

    Studies have shown increased incorporation of omega-3 fatty acids into whole skeletal muscle following supplementation, although little has been done to investigate the potential impact on the fatty acid composition of mitochondrial membranes and the functional consequences on mitochondrial bioenergetics. Therefore, we supplemented young healthy male subjects (n = 18) with fish oils [2 g eicosapentaenoic acid (EPA) and 1 g docosahexanoic acid (DHA) per day] for 12 weeks and skeletal muscle biopsies were taken prior to (Pre) and following (Post) supplementation for the analysis of mitochondrial membrane phospholipid composition and various assessments of mitochondrial bioenergetics. Total EPA and DHA content in mitochondrial membranes increased (P respiration, determined in permeabilized muscle fibres, demonstrated no change in maximal substrate-supported respiration, or in the sensitivity (apparent Km) and maximal capacity for pyruvate-supported respiration. In contrast, mitochondrial responses during ADP titrations demonstrated an enhanced ADP sensitivity (decreased apparent Km) that was independent of the creatine kinase shuttle. As the content of ANT1, ANT2, and subunits of the electron transport chain were unaltered by supplementation, these data suggest that prolonged omega-3 intake improves ADP kinetics in human skeletal muscle mitochondria through alterations in membrane structure and/or post-translational modification of ATP synthase and ANT isoforms. Omega-3 supplementation also increased the capacity for mitochondrial reactive oxygen species emission without altering the content of oxidative products, suggesting the absence of oxidative damage. The current data strongly emphasize a role for omega-3s in reorganizing the composition of mitochondrial membranes while promoting improvements in ADP sensitivity.

  9. Synthesis of a composite inorganic membrane for the separation of nitrogen, tetrafluoromethane and hexafluoropropylene

    Directory of Open Access Journals (Sweden)

    Hertzog Bissett

    2013-09-01

    Full Text Available The advanced use of inorganic membranes, such as zeolites, in large-scale industrial processes is hindered by the inability to manufacture continuous and defect-free membranes. We therefore aimed to construct such a defect-free membrane. Various zeolites were synthesised on the inner surface of ?-alumina support tubes by a hydrothermal process. Gas permeation properties were investigated at 298 K for single component systems of N2, CF4 and C3F6. Ideal selectivities lower than Knudsen selectivities were obtained as a result of defects from intercrystalline slits and crack formation during synthesis and template removal. A composite ceramic membrane consisting of a ceramic support structure, a mordenite framework inverted intermediate zeolite layer and a Teflon AF 2400 top layer was developed to improve separation. The Teflon layer sealed possible defects present in the separation layer forcing the gas molecules to follow the path through the zeolite pores. Ideal selectivities of 88 and 71 were obtained for N2/CF4 and N2/C3F6 respectively. Adsorption experiments performed on materials present in the membrane structure suggested that although adsorption of C3F6 onto Teflon AF 2400 compared to CF4 results in a considerable contribution to permeation for the composite ceramic membrane, the sealing effect of the zeolite layer by the Teflon layer is the reason for the large N2/CF4 and N2/C3F6 selectivities obtained. The Teflon layer effectively sealed intercrystalline areas in-between zeolite crystals, which resulted in high ideal selectivies for N2/CF4 and N2/C3F6.

  10. Reinforced Poly(Propylene Carbonate) Composite with Enhanced and Tunable Characteristics, an Alternative for Poly(lactic Acid).

    Science.gov (United States)

    Manavitehrani, Iman; Fathi, Ali; Wang, Yiwei; Maitz, Peter K; Dehghani, Fariba

    2015-10-14

    The acidic nature of the degradation products of polyesters often leads to unpredictable clinical complications, such as necrosis of host tissues and massive immune cell invasions. In this study, poly(propylene carbonate) (PPC) and starch composite is introduced with superior characteristics as an alternative to polyester-based polymers. The degradation products of PPC-starch composites are mainly carbon dioxide and water; hence, the associated risks to the acidic degradation of polyesters are minimized. Moreover, the compression strength of PPC-starch composites can be tuned over the range of 0.2±0.03 MPa to 33.9±1.51 MPa by changing the starch contents of composites to address different clinical needs. More importantly, the addition of 50 wt % starch enhances the thermal processing capacity of the composites by elevating their decomposition temperature from 245 to 276 °C. Therefore, thermal processing methods, such as extrusion and hot melt compression methods can be used to generate different shapes and structures from PPC-starch composites. We also demonstrated the cytocompatibility and biocompatibility of these composites by conducting in vitro and in vivo tests. For instance, the numbers of osteoblast cells were increased 2.5 fold after 7 days post culture. In addition, PPC composites in subcutaneous mice model resulted in mild inflammatory responses (e.g., the formation of fibrotic tissue) that were diminished from two to 4 weeks postimplantation. The long-term in vivo biodegradation of PPC composites are compared with poly(lactic acid) (PLA). The histochemical analysis revealed that after 8 weeks, the biodegradation of PLA leads to massive immune cell infusion and inflammation at the site, whereas the PPC composites are well-tolerated in vivo. All these results underline the favorable properties of PPC-starch composites as a benign biodegradable biomaterial for fabrication of biomedical implants.

  11. Nafion/ZrSPP composite membrane for high temperature operation of PEMFCs

    International Nuclear Information System (INIS)

    Kim, Young-Taek; Song, Min-Kyu; Kim, Ki-Hyun; Park, Seung-Bae; Min, Sung-Kyu; Rhee, Hee-Woo

    2004-01-01

    Nafion/zirconium sulphophenyl phosphate (ZrSPP) composite membranes were prepared to maintain proton conductivity at elevated temperatures. ZrSPP was precipitated by the reaction of Zr 4+ ion and m-sulphophenyl phosphonic (SPP) acid with a stoichiometric ratio P/Zr = 2. The synthesis of ZrSPP was confirmed by phosphonate (P-O) stretching band, assigned at 900-1300 cm -1 in FTIR spectra. The sharp diffraction pattern at 2θ = 5 deg. indicated crystalline α-layered structure of ZrSPP. The proton conductivity of Nafion/ZrSPP (12.5 wt.%) composite membrane reached ca. 0.07 S/cm at 140 deg. C without extra humidification

  12. Quinoline biodegradation by filamentous fungus Cunninghamella elegans and adaptive modifications of the fungal membrane composition.

    Science.gov (United States)

    Felczak, Aleksandra; Bernat, Przemysław; Różalska, Sylwia; Lisowska, Katarzyna

    2016-05-01

    Quinoline, which belongs to N-heterocyclic compounds, occurs naturally in the environment and is used in numerous industrial processes. The structures of various chemicals, such as dyes and medicines, are based on this compound. Due to that fact, quinoline and its derivatives are widely distributed in environment and can exert toxic effects on organisms from different trophic levels. The ability of the filamentous fungus Cunninghamella elegans IM 1785/21Gp to degrade quinoline and modulate the membrane composition in response to the pollutant was studied. C. elegans IM 1785/21Gp removes quinoline with high efficiency and transforms the pollutant into two novel hydroxylated derivatives, 2-hydroxyquinoline and 3-hydroxyquinoline. Moreover, due to the disruption in the membrane stability by quinoline, C. elegans IM 1785/21Gp modulates the fatty acid composition and phospholipid profile.

  13. Effect of reaction conditions on film morphology of polyaniline composite membranes for gas separation

    KAUST Repository

    Blinova, Natalia V.

    2012-04-21

    Composite membranes combining polyaniline as an active layer with a polypropylene support have been prepared using an in situ deposition technique. The protonated polyaniline layer with a thickness in the range of 90-200 nm was prepared using precipitation, dispersion, or emulsion polymerization of aniline with simultaneous deposition on top of the porous polypropylene support, which was immersed in the reaction mixture. Variables such as temperature, concentration of reagents, presence of steric stabilizers, surfactants, and heteropolyacid were found to control both the formation and the quality of the polyaniline layers. Both morphology and thickness of the layers were characterized using scanning electron microscopy. Selective separation of carbon dioxide from its mixture with methane is used to illustrate potential application of these composite membranes. © 2012 Wiley Periodicals, Inc.

  14. Spectroscopic study on the in vitro degradation of a biodegradable composite periodontal membrane

    Science.gov (United States)

    Taddei, P.; Simoni, R.; Fini, G.

    2001-05-01

    The hydrolithic in vitro degradation of a commercial biodegradable hydroxyapatite (HA)-polymer (poly(ɛ-caprolactone)-poly(oxyethylene)-poly(ɛ-caprolactone) block copolymer, PCL-POE-PCL) composite membrane was investigated by Raman and IR spectroscopies in three aqueous media at 37°C; 0.01 M NaOH solution, saline phosphate buffer (SPB) at pH 7.4 and simulated body fluid (SBF) buffered at pH 7.5. The vibrational results showed that the polymeric component undergoes preferential degradation of POE blocks while HA is removed by the degradation media faster than the polymer. Vibrational spectroscopy appeared to be a valid non-destructive method for investigating the degradation mechanism of the composite membrane.

  15. Glass microporous fiber/nanoporous polytetrafluoroethene composite membranes for high efficient phosphoric acid fuel cell

    International Nuclear Information System (INIS)

    Lu, Chia-Lien; Lee, Wei-Jia; Tseng, Fan-Gang; Chang, Cheng-Ping

    2014-01-01

    This paper reports a high efficient phosphoric acid fuel cell by employing a micro/nano composite proton exchange membrane incorporating glass microfiber (GMF) sealed by polytetrafluoroethylene (PTFE) nano-porous film. This multilayer membrane not only possesses both thermal and chemical stability at phosphoric acid fuel cell working temperature at 150∼220°C but also is cost effective. As a result, the inclusion of the high porosity and proton conductivity from glass microfiber and the prevention of phosphoric acid leakage from PTEF nano film can be achieved at the same time.The composite membrane maximum proton conductivity achieves 0.71 S/cm at 150 °C from AC impedance analysis, much higher than common phosphoric acid porous membranes For single cell test, The GMF fuel cell provides a 63.6mW/cm2 power density at 200mA/cm2 current density while GMF plus methanol treated PTFE (GMF+mPTFE) provides 59.2mW/cm2 power density at 160mA/cm2 current density for hydrogen and oxygen supply at 150 °C. When we change the electrodes that are more suited for phosphoric acid fuel cell, the GMF+mPTFE single cell gets higher performance which achieve 296mW/cm2 power density at 900mA/cm2 current density for hydrogen and oxygen supply at 150 °C

  16. Deoxygenation Affects Composition of Membrane-Bound Proteins in Human Erythrocytes

    Directory of Open Access Journals (Sweden)

    Oksana G. Luneva

    2016-06-01

    Full Text Available Background/Aims: ATP release from erythrocyte plays a key role in hypoxia-induced elevation of blood flow in systematic circulation. We have previously shown that hemolysis contributes to erythrocyte ATP release triggered by several stimuli, including hypoxia, but the molecular mechanisms of hypoxia-increased membrane fragility remain unknown. Methods: In this study, we compared the action of hypoxia on hemolysis, ATP release and the composition of membrane-bound proteins in human erythrocytes. Results: Twenty minutes incubation of human erythrocytes in the oxygen-free environment increased the content of extracellular hemoglobin by ∼1.5 fold. Paired measurements of hemoglobin and ATP content in the same samples, showed a positive correlation between hemolysis and ATP release. Comparative analysis of SDS-PAGE electrophoresis of erythrocyte ghosts obtained under control and deoxygenated conditions revealed a ∼2-fold elevation of the content of membrane-bound protein with Mr of ∼60 kDa. Conclusion: Deoxygenation of human erythrocytes affects composition of membrane-bound proteins. Additional experiments should be performed to identify the molecular origin of 60 kDa protein and its role in the attenuation of erythrocyte integrity and ATP release in hypoxic conditions.

  17. Mordenite/Nafion and analcime/Nafion composite membranes prepared by spray method for improved direct methanol fuel cell performance

    Science.gov (United States)

    Prapainainar, Paweena; Du, Zehui; Kongkachuichay, Paisan; Holmes, Stuart M.; Prapainainar, Chaiwat

    2017-11-01

    The aim of this work was to improve proton exchange membranes (PEMs) used in direct methanol fuel cells (DMFCs). A membrane with a high proton conductivity and low methanol permeability was required. Zeolite filler in Nafion (NF matrix) composite membranes were prepared using two types of zeolite, mordenite (MOR) and analcime (ANA). Spray method was used to prepare the composite membranes, and properties of the membranes were investigated: mechanical properties, solubility, water and methanol uptake, ion-exchange capacity (IEC), proton conductivity, methanol permeability, and DMFC performance. It was found that MOR filler showed higher performance than ANA. The MOR/Nafion composite membrane gave better properties than ANA/Nafion composite membrane, including a higher proton conductivity and a methanol permeability that was 2-3 times lower. The highest DMFC performance (10.75 mW cm-2) was obtained at 70 °C and with 2 M methanol, with a value 1.5 times higher than that of ANA/Nafion composite membrane and two times higher than that of commercial Nafion 117 (NF 117).

  18. Tunable features of magnetoelectric transformers.

    Science.gov (United States)

    Dong, Shuxiang; Zhai, Junyi; Priya, Shashank; Li, Jie-Fang; Viehland, Dwight

    2009-06-01

    We have found that magnetostrictive FeBSiC alloy ribbons laminated with piezoelectric Pb(Zr,Ti)O(3) fiber can act as a tunable transformer when driven under resonant conditions. These composites were also found to exhibit the strongest resonant magnetoelectric voltage coefficient of 750 V/cm-Oe. The tunable features were achieved by applying small dc magnetic biases of -5 transformer features can be attributed to large changes in the piezomagnetic coefficient and permeability of the magnetostrictive phase under H(dc).

  19. Testosterone replacement therapy improves erythrocyte membrane lipid composition in hypogonadal men.

    Science.gov (United States)

    Angelova, Petya; Momchilova, Albena; Petkova, Diana; Staneva, Galya; Pankov, Roumen; Kamenov, Zdravko

    2012-09-01

    The aim of this study was to investigate the effects of testosterone replacement therapy (TRT) on erythrocyte membrane (EM) lipid composition and physico-chemical properties in hypogonadal men. EM isolated from three patients before and after TRT with injectable testosterone undecanoate or testosterone gel were used for analysis of the phospholipid and fatty acid composition, cholesterol/phospholipid ratio, membrane fluidity, ceramide level and enzyme activities responsible for sphingomyelin metabolism. TRT induced increase of phosphatidylethanolamine (PE) in the EMs and sphingomyelin. Reduction of the relative content of the saturated palmitic and stearic fatty acids and a slight increase of different unsaturated fatty acids was observed in phosphatidylcholine (PC). TRT also induced decrease of the cholesterol/total phospholipids ratio and fluidization of the EM. The TRT induced increase of PE content and the reduction of saturation in the PC acyl chains induced alterations in the structure of EM could result in higher flexibility of the erythrocytes. The increase of the SM-metabolizing enzyme neutral sphingomyelinase, which regulates the content of ceramide in membranes has a possible impact on the SM signaling pathway. We presume that the observed effect of TRT on the composition and fluidity of the EM contributes for improvement of blood rheology and may diminish the thrombosis risk. Larger studies are needed to confirm the findings of this pilot study.

  20. Sonication-induced Ostwald ripening of ZIF-8 nanoparticles and formation of ZIF-8/polymer composite membranes

    KAUST Repository

    Thompson, Joshua A.

    2012-08-01

    The effect of typical membrane processing conditions on the structure, interfacial morphology, and gas separation performance of MOF/polymer nanocomposite membranes is investigated. In particular, the ZIF-8/Matrimid® nanocomposite membrane system is examined, and it is shown that ultrasonication - a commonly employed particle dispersion method - induces significant changes in the shape, size distribution, and structure of ZIF-8 particles suspended in an organic solvent during membrane processing. Dynamic light scattering and electron microscopy reveal that ZIF-8 nanoparticles undergo substantial Ostwald ripening when subjected to high intensity ultrasonication as often required in the formation of MOF/polymer nanocomposite membranes. Other characterization techniques reveal that the ripened particles exhibit lower pore volumes and lower surface areas compared to the as-made material. ZIF-8/Matrimid® composite membranes fabricated using two sonication methods show significant differences in microstructure. Permeation measurements show significant enhancement in permeability of CO 2 and increased CO 2/CH 4 selectivity in membranes fabricated with high-intensity sonication. In contrast, composite membranes prepared with low-intensity sonication are found to be defective. A careful evaluation of MOF membrane processing conditions, as well as knowledge of the properties of the MOF material after these membrane processing steps, are necessary to develop reliable processing-structure-property relations for MOF-containing membranes. © 2012 Elsevier Inc. All rights reserved.

  1. Multi-scale cellulose based new bio-aerogel composites with thermal super-insulating and tunable mechanical properties.

    Science.gov (United States)

    Seantier, Bastien; Bendahou, Dounia; Bendahou, Abdelkader; Grohens, Yves; Kaddami, Hamid

    2016-03-15

    Bio-composite aerogels based on bleached cellulose fibers (BCF) and cellulose nanoparticles having various morphological and physico-chemical characteristics are prepared by a freeze-drying technique and characterized. The various composite aerogels obtained were compared to a BCF aerogel used as the reference. Severe changes in the material morphology were observed by SEM and AFM due to a variation of the cellulose nanoparticle properties such as the aspect ratio, the crystalline index and the surface charge density. BCF fibers form a 3D network and they are surrounded by the cellulose nanoparticle thin films inducing a significant reduction of the size of the pores in comparison with a neat BCF based aerogel. BET analyses confirm the appearance of a new organization structure with pores of nanometric sizes. As a consequence, a decrease of the thermal conductivities is observed from 28mWm(-1)K(-1) (BCF aerogel) to 23mWm(-1)K(-1) (bio-composite aerogel), which is below the air conductivity (25mWm(-1)K(-1)). This improvement of the insulation properties for composite materials is more pronounced for aerogels based on cellulose nanoparticles having a low crystalline index and high surface charge (NFC-2h). The significant improvement of their insulation properties allows the bio-composite aerogels to enter the super-insulating materials family. The characteristics of cellulose nanoparticles also influence the mechanical properties of the bio-composite aerogels. A significant improvement of the mechanical properties under compression is obtained by self-organization, yielding a multi-scale architecture of the cellulose nanoparticles in the bio-composite aerogels. In this case, the mechanical property is more dependent on the morphology of the composite aerogel rather than the intrinsic characteristics of the cellulose nanoparticles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Fe0.4Ta0.5P2O7-based composite membrane for high-temperature, low-humidity proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Heo, Pilwon; Shen, Yanbai; Kojima, Keijiro; Pak, Chanho; Choi, Kyoung Hwan; Hibino, Takashi

    2014-01-01

    Highlights: • Fe 0.4 Ta 0.5 P 2 O 7 based composite membranes were prepared with a satisfactory mechanical strength. • It showed high proton conductivity of 0.01 S cm −1 at 150 °C in an unhumidified condition. • The membrane (t > 50 μm) has a gas-impermeability and low area-specific resistance (ASR). • The ASR is 0.17 Ω cm 2 at high temperature of 150 °C and low humidity of 6.6%RH. - Abstract: An inorganic–organic composite membrane composed of Fe 0.4 Ta 0.5 P 2 O 7 (FTPO) and sulfonated polystyrene-b-poly(ethylene/butylene)-b-polystyrene (sSEBS) is prepared and characterized. To gain satisfaction of both the proton conductivity and mechanical strength in composite membranes, the optimal content of sSEBS was determined to be 30 wt%, which resulted in high proton conductivities of approximately 0.01 S cm −1 between 50 and 150 °C even under an unhumidified condition, a tensile strength of 4.1 MPa, and an elongation at break of 613%. A homogeneous distribution of the FTPO particles in the matrix was achieved at the composite membrane thickness greater than 50 μm, providing gas-impermeability and low area-specific resistance (ASR) of the membrane (0.17 Ω cm 2 at 150 °C and H 2 O vapor concentration of 30.8 vol%). Fuel cell tests using the composite membrane provided peak power densities of 265 and 303 mW cm −2 at 150 °C under an unhumidified condition and at a H 2 O vapor concentration of 30.8 vol%, respectively

  3. Bench Scale Thin Film Composite Hollow Fiber Membranes for Post-Combustion Carbon Dioxide Capture

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, Paul [General Electric Global Research, Niskayuna, NY (United States); Bhandari, Dhaval [General Electric Global Research, Niskayuna, NY (United States); Narang, Kristi [General Electric Global Research, Niskayuna, NY (United States); McCloskey, Pat [General Electric Global Research, Niskayuna, NY (United States); Singh, Surinder [General Electric Global Research, Niskayuna, NY (United States); Ananthasayanam, Balajee [General Electric Global Research, Niskayuna, NY (United States); Howson, Paul [General Electric Global Research, Niskayuna, NY (United States); Lee, Julia [General Electric Global Research, Niskayuna, NY (United States); Wroczynski, Ron [General Electric Global Research, Niskayuna, NY (United States); Stewart, Frederick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Orme, Christopher [Idaho National Lab. (INL), Idaho Falls, ID (United States); Klaehn, John [Idaho National Lab. (INL), Idaho Falls, ID (United States); McNally, Joshua [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rownaghi, Ali [Georgia Inst. of Technology, Atlanta, GA (United States); Lu, Liu [Georgia Inst. of Technology, Atlanta, GA (United States); Koros, William [Georgia Inst. of Technology, Atlanta, GA (United States); Goizueta, Roberto [Georgia Inst. of Technology, Atlanta, GA (United States); Sethi, Vijay [Western Research Inst., Laramie, WY (United States)

    2015-04-01

    GE Global Research, Idaho National Laboratory (INL), Georgia Institute of Technology (Georgia Tech), and Western Research Institute (WRI) proposed to develop high performance thin film polymer composite hollow fiber membranes and advanced processes for economical post-combustion carbon dioxide (CO2) capture from pulverized coal flue gas at temperatures typical of existing flue gas cleanup processes. The project sought to develop and then optimize new gas separations membrane systems at the bench scale, including tuning the properties of a novel polyphosphazene polymer in a coating solution and fabricating highly engineered porous hollow fiber supports. The project also sought to define the processes needed to coat the fiber support to manufacture composite hollow fiber membranes with high performance, ultra-thin separation layers. Physical, chemical, and mechanical stability of the materials (individual and composite) towards coal flue gas components was considered via exposure and performance tests. Preliminary design, technoeconomic, and economic feasibility analyses were conducted to evaluate the overall performance and impact of the process on the cost of electricity (COE) for a coal-fired plant including capture technologies. At the onset of the project, Membranes based on coupling a novel selective material polyphosphazene with an engineered hollow fiber support was found to have the potential to capture greater than 90% of the CO2 in flue gas with less than 35% increase in COE, which would achieve the DOE-targeted performance criteria. While lab-scale results for the polyphosphazene materials were very promising, and the material was incorporated into hollow-fiber modules, difficulties were encountered relating to the performance of these membrane systems over time. Performance, as measured by both flux of and selectivity for CO2 over other flue gas constituents was found to deteriorate over time, suggesting a system that was

  4. Collagen-chitosan-glycerol bio-composite as artificial tympanic membrane for ruptured inner ear organ

    Science.gov (United States)

    Widiyanti, Prihartini; Setya Angtika, Rara; Githanadi, Brillyana; Hanif Kharisma, Ditya; Asyraf, Tarikh Omar; Wardani, Adita

    2017-05-01

    WHO data in 2012 shows that 5.3% of world population highly suffers from hearing loss and deafness. One of the deafness causes is rupture of tympanic membrane. Tympanic membrane damage which occurs often is perforated tympanic membrane, and it is also commonly known in medical term as tympanic membrane perforation. The causes, for instance, are high frequency of using earphones, traumatic accidents, noise, bacteria, viruses, and infectious microorganism. Tympanoplasty becomes the only treatment that can be widely accepted despite of deficiencies in postoperative complications. Therefore, this research aims to create artificial tympanic membrane made of natural materials such as type I collagen composited with chitosan and made of addition of glycerol to improve its mechanical strength and biodegradability. The method included the process of dissolving acetic acid in distilled water and mixation with chitosan. The solution is next added with glycerol and stirred to be homogeneous. After that, it was minted in petri dish and aerated before characterized. The sample characterization included tensile strength of which tensile test results showed that the value of the elasticity modulus tended to decrease with an increase in collagen concentration. The elasticity modulus values in a row for the variations of 7: 3, 8: 2, and 9: 1 were 35.10 MPa, 54,52MPa, and 47,45MPa respectively. The morphological test with 1000x, 2500x, and 5000x magnification showed their interaction in the formation of pores. Cytotoxicity results, moreover, showed that those samples were non-toxic and safe for the body due to the percentage of living cells. The sound absorption coefficient was between 1000 Hz - 2000 Hz which means that it could use as sound absorbing material. The antibacterial test results showed that all the sample variations were anti-bacterial due to the diameter of the clear zone. In conclusion, collagen and chitosan composite with addition of glycerol could be used for

  5. Effect of pH on the performance of polyamide/polyacrylonitrile based thin film composite membranes

    NARCIS (Netherlands)

    Dalwani, M.R.; Benes, Nieck Edwin; Bargeman, Gerrald; Stamatialis, Dimitrios; Wessling, Matthias

    2011-01-01

    In this study the effect of pH on the performance of thin film composite (TFC) nanofiltration (NF) membranes has been investigated at the relevant pH conditions, in the range of pH 1–13. TFC polyamide NF membranes have been fabricated on a polyacrylonitrile support via interfacial polymerization

  6. Low-Temperature Sintering of Ba0.5Sr0.5TiO3-SrMoO4 Dielectric Tunable Composite Ceramics for LTCC Applications

    Science.gov (United States)

    Tang, Linjiang; Wang, Jinwen; Zhai, Jiwei

    2013-08-01

    A sintering-aid system using melting of B-Li glass for barium strontium titanate (BST)-based compositions to be used in low-temperature cofired ceramic (LTCC) layers is introduced. The effects of the sintering aid on the microstructure, dielectric properties, and application in LTCC were investigated. The composition Ba0.5Sr0.5TiO3-SrMoO4 with 3 wt.% B-Li glass sintered at 950°C exhibits optimized dielectric properties, including low dielectric constant (368), low dielectric loss (0.007), and moderate tunability (13%, 60 kV/cm) at 10 kHz. At 1.44 GHz, it possesses a dielectric constant of 218 and Q value of 230. LTCC multilayer ceramic capacitors fabricated by the tape-casting process have steady relative tunability of 12% at 300 V, suggesting that BST50-SrMoO4-B-Li glass composite ceramic is a promising candidate for electrically tunable LTCC microwave device applications.

  7. Effects of acclimation temperature on thermal tolerance and membrane phospholipid composition in the fruit fly Drosophila melanogaster

    DEFF Research Database (Denmark)

    Overgaard, Johannes; Tomcala, Ales; Sørensen, Jesper G

    2008-01-01

    and the composition of membrane GPLs in adult Drosophila melanogaster. Long-term cold survival was significantly improved by low acclimation temperature. After 60h at 0 degrees C, more than 80% of the 15 degrees C-acclimated flies survived while none of the 25 degrees C-acclimated flies survived. Cold shock tolerance...... acclimation temperature and correlated with the changes in GPL composition in membranes of adult D. melanogaster. Udgivelsesdato: 2008-Mar...

  8. Bacterial nanocellulose/Nafion composite membranes for low temperature polymer electrolyte fuel cells

    Science.gov (United States)

    Jiang, Gao-peng; Zhang, Jing; Qiao, Jin-li; Jiang, Yong-ming; Zarrin, Hadis; Chen, Zhongwei; Hong, Feng

    2015-01-01

    Novel nanocomposite membranes aimed for both proton-exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC) are presented in this work. The membranes are based on blending bacterial nanocellulose pulp and Nafion (abbreviated as BxNy, where x and y indicates the mass ratio of bacterial cellulose to Nafion). The structure and properties of BxNy membranes are characterized by FTIR, SEM, TG, DMA and EIS, along with water uptake, swelling behavior and methanol permeability tests. It is found that the BxNy composite membranes with reinforced concrete-like structure show excellent mechanical and thermal stability regardless of annealing. The water uptake plus area and volume swelling ratios are all decreased compared to Nafion membranes. The proton conductivities of pristine and annealed B1N9 are 0.071 and 0.056 S cm-1, respectively, at 30 °C and 100% humidity. Specifically, annealed B1N1 exhibited the lowest methanol permeability of 7.21 × 10-7 cm2 s-1. Through the selectivity analysis, pristine and annealed B1N7 are selected to assemble the MEAs. The performances of annealed B1N7 in PEMFC and DMFC show the maximum power densities of 106 and 3.2 mW cm-2, respectively, which are much higher than those of pristine B1N7 at 25 °C. The performances of the pristine and annealed B1N7 reach a level as high as 21.1 and 20.4 mW cm-2 at 80 °C in DMFC, respectively.

  9. Effect of filler surface functionalization on the performance of Nafion/Titanium oxide composite membranes

    International Nuclear Information System (INIS)

    Bonis, Catia de; Cozzi, Dafne; Mecheri, Barbara; D'Epifanio, Alessandra; Rainer, Alberto; De Porcellinis, Diana; Licoccia, Silvia

    2014-01-01

    The phenylsulfonic functionalized nanometric titania (TiO 2 -PhSO 3 H) was synthesized to be used as filler in Nafion-based composite membranes for direct methanol fuel cell (DMFC) applications. The organic moieties were covalently bound on the surface of TiO 2 nanoparticles and the hybrid product was characterized by Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric and differential thermal analysis (TG/DTA), field emission scanning electron microscopy (FE-SEM), and X-ray diffraction (XRD) analysis. TiO 2 -PhSO 3 H showed higher ion exchange capacity (IEC) and proton conductivity values with respect to those of TiO 2 . The incorporation of TiO 2 -PhSO 3 H in Nafion led to a mechanical reinforcement of the membranes and higher conductivity than that obtained with unfilled Nafion. The composite membrane containing 10 wt.% of TiO 2 -PhSO 3 H showed an increased crystallinity and the highest conductivity, reaching 0.11 S cm −1 at 140 °C. DMFC tests were carried out showing that the use of the organic-inorganic hybrid filler leads to a general improvement in the cell performance, in terms of higher current and power density and reduced methanol crossover

  10. Highly Zeolite-Loaded Polyvinyl Alcohol Composite Membranes for Alkaline Fuel-Cell Electrolytes

    Directory of Open Access Journals (Sweden)

    Po-Ya Hsu

    2018-01-01

    Full Text Available Having a secure and stable energy supply is a top priority for the global community. Fuel-cell technology is recognized as a promising electrical energy generation system for the twenty-first century. Polyvinyl alcohol/zeolitic imidazolate framework-8 (PVA/ZIF-8 composite membranes were successfully prepared in this work from direct ZIF-8 suspension solution (0–45.4 wt % and PVA mixing to prevent filler aggregation for direct methanol alkaline fuel cells (DMAFCs. The ZIF-8 fillers were chosen for the appropriate cavity size as a screening aid to allow water and suppress methanol transport. Increased ionic conductivities and suppressed methanol permeabilities were achieved for the PVA/40.5% ZIF-8 composites, compared to other samples. A high power density of 173.2 mW cm−2 was achieved using a KOH-doped PVA/40.5% ZIF-8 membrane in a DMAFC at 60 °C with 1–2 mg cm−2 catalyst loads. As the filler content was raised beyond 45.4 wt %, adverse effects resulted and the DMAFC performance (144.9 mW cm−2 was not improved further. Therefore, the optimal ZIF-8 content was approximately 40.5 wt % in the polymeric matrix. The specific power output was higher (58 mW mg−1 than most membranes reported in the literature (3–18 mW mg−1.

  11. Preparation and Characterization of a Cross-linked Matrimid/Polyvinylidene Fluoride Composite Membrane for H2/N2 Separation

    Directory of Open Access Journals (Sweden)

    Mahmood Esmaeilipur

    2017-01-01

    Full Text Available A double layer composite membrane was fabricated by matrimid 5218 as a selective layer on polyvinylidene fluoride (PVDF, a porous asymmetric membrane, as a sublayer. The effect of chemical cross-linking of Matrimid 5218 by ethylenediamine (EDA was investigated on gas transport properties of the corresponding membrane. The permeability levels of hydrogen (H2 and nitrogen (N2 were measured through the fabricated composite membranes at 25°C under pressure range of 2-8 bar. Scanning electron microscopy (SEM was used for morphological observations of the composite membranes. The Matrimid membranes before and after cross-linking modification were characterized by the Fourier transform infrared (FTIR spectroscopy, X-ray diffraction (XRD and density measurement. The FTIR results showed the conversion of imide functional groups into amide through the crosslinking reaction in Matrimid. The XRD results demonstrated a reduction in d-spacing between the polymer chains through cross-linking reaction. Measuring the density of each membrane's partial selective layer and calculating the corresponding fractional free volume revealed an increase in the density and reduced free volumes in Matrimid through the cross-linking reaction. Moreover, by increasing the EDA concentration, the gas permeability in each membrane decreased significantly for nitrogen compared to hydrogen which could be related to lower gas diffusivity through chain packing due to cross-linking of the polymer. The H2/N2 selectivity at 2 bar increased through the cross-linking modification from 56.5 for the pure Matrimid to 79.4 for the composite membrane containing 12 wt% EDA. The effect of pressure on gas permeability through the composite membranes was investigated and the results found to be in agreement with the behavior of less soluble gases in the glassy polymers. Moreover, the H2/N2 selectivity decreased first at low EDA content (0-4 wt%, before reaching a constant value at 8 wt% EDA and

  12. Synthesis, structure and properties of highly elastic poly(dimethylsiloxane)/graphene oxide composite elastomer membranes

    Science.gov (United States)

    Ha, Heonjoo; Park, Jaesung; Freeman, Benny D.; Ellison, Christopher J.

    This study illustrates that amine functional groups on the ends of telechelic poly(dimethylsiloxane) (PDMS) can undergo post-processing reactions with surface epoxy groups on graphene oxide (GO) to form a robust elastomer during simple heating. In these materials, GO acts as a nanofiller that reinforces the mechanical properties and participates as a multifunctional crosslinker that promotes elastic properties. Experiments indicate that the telechelic PDMS/GO elastomer is highly crosslinked (e.g., more than 75 wt % is a non-dissolving crosslinked gel) but highly flexible such that it can be stretched up to 300% of its original length. After processing these materials into membranes, the permeability for some common gases was studied as a function of GO concentration. Due to the macromolecular network and tortuous pathways formed during the curing reaction, factor of two enhancements in gas selectivities were observed for CO2/N2 and CO2/CH4 compared to neat PDMS membranes. Considering the expected thermal and chemical tolerance of the PDMS/GO composite membrane detailed in this work suggests these membranes could be useful in applications such as post-combustion CO2 capture, CO2 removal from natural gas and in other industries that use or process CO2.

  13. Tannin-based thin-film composite membranes for solvent nanofiltration

    KAUST Repository

    Perez Manriquez, Liliana

    2017-06-28

    The natural oligomer tannic acid was used as a reactant for an interfacial polymerisation on top of a crosslinked polyacrylonitrile (PAN) membrane. The PAN membrane was soaked with the aqueous tannic acid solution and contacted with a dilute solution of teraphtaloylchloride in hexane. Since both layers, the PAN support and the thin tannin-based layer, are highly crosslinked, the resulting thin film composite membrane is stable in harsh solvent environments such as N-Methyl-2-pyrrolidone (NMP). NMP permeances of up to 0.09L/m2 h bar with a molecular weight cut-off of approximately 800g/mol were obtained. The exceptional stability in NMP and the incorporation of natural compounds like tannic acid for the manufacture of organic solvent nanofiltration membranes provides a cost-effective alternative for industrial separations due to the simplicity of the interfacial reaction and the replacement of the commonly applied toxic aromatic amines. The scale up of the manufacturing process is not difficult; the low price of the natural tannic acid is another advantage.

  14. Biofouling of reverse-osmosis membranes during tertiary wastewater desalination: microbial community composition.

    Science.gov (United States)

    Al Ashhab, Ashraf; Herzberg, Moshe; Gillor, Osnat

    2014-03-01

    Reverse-osmosis (RO) desalination is frequently used for the production of high-quality water from tertiary treated wastewater (TTWW). However, the RO desalination process is often hampered by biofouling, including membrane conditioning, microbial adhesion, and biofilm growth. The vast majority of biofilm exploration concentrated on the role of bacteria in biofouling neglecting additional microbial contributors, i.e., fungi and archaea. To better understand the RO biofouling process, bacterial, archaeal and fungal diversity was characterized in a laboratory-scale RO desalination plant exploring the TTWW (RO feed), the RO membrane and the RO feed tube biofilms. We sequenced 77,400 fragments of the ribosome small subunit-encoding gene (16S and 18S rRNA) to identify the microbial community members in these matrices. Our results suggest that the bacterial, archaeal but not fungal community significantly differ from the RO membrane biofouling layer to the feedwater and tube biofilm (P fungal communities composition was similar in all matrices, dominated by Ascomycota (97.6 ± 2.7%). Our results suggest that the RO membrane is a selective surface, supporting unique bacterial, and to a lesser extent archaeal communities, yet it does not select for a fungal community. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Biobased Membrane

    NARCIS (Netherlands)

    Koenders, E.A.B.; Zlopasa, J.; Picken, S.J.

    2015-01-01

    The present invention is in the field of a composition for forming a bio-compatible membrane applicable to building material, such as concrete, cement, etc., to a meth od of applying said composition for forming a bio-compatible membrane, a biocompatible membrane, use of said membrane for various

  16. Flexible and Responsive Chiral Nematic Cellulose Nanocrystal/Poly(ethylene glycol) Composite Films with Uniform and Tunable Structural Color.

    Science.gov (United States)

    Yao, Kun; Meng, Qijun; Bulone, Vincent; Zhou, Qi

    2017-07-01

    The fabrication of responsive photonic structures from cellulose nanocrystals (CNCs) that can operate in the entire visible spectrum is challenging due to the requirements of precise periodic modulation of the pitch size of the self-assembled multilayer structures at the length scale within the wavelength of the visible light. The surface charge density of CNCs is an important factor in controlling the pitch size of the chiral nematic structure of the dried solid CNC films. The assembly of poly(ethylene glycol) (PEG) together with CNCs into smaller chiral nematic domains results in solid films with uniform helical structure upon slow drying. Large, flexible, and flat photonic composite films with uniform structure colors from blue to red are prepared by changing the composition of CNCs and PEG. The CNC/PEG(80/20) composite film demonstrates a reversible and smooth structural color change between green and transparent in response to an increase and decrease of relative humidity between 50% and 100% owing to the reversible swelling and dehydration of the chiral nematic structure. The composite also shows excellent mechanical and thermal properties, complementing the multifunctional property profile. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Omega-3 PUFA concentration by a novel PVDF nano-composite membrane filled with nano-porous silica particles.

    Science.gov (United States)

    Ghasemian, Samaneh; Sahari, Mohammad Ali; Barzegar, Mohsen; Ahmadi Gavlighi, Hasan

    2017-09-01

    In this study, polyvinylidene fluoride (PVDF) and nano-porous silica particle were used to fabricate an asymmetric nano-composite membrane. Silica particles enhanced the thermal stability of PVDF/SiO 2 membranes; increasing the decomposition temperature from 371°C to 408°C. Cross sectional morphology showed that silica particles were dispersed in polymer matrix uniformly. However, particle agglomeration was found at higher loading of silica (i.e., 20 by weight%). The separation performance of nano-composite membranes was also evaluated using the omega-3 polyunsaturated fatty acids (PUFA) concentration at a temperature and pressure of 30°C and 4bar, respectively. Silica particle increased the omega-3PUFA concentration from 34.8 by weight% in neat PVDF to 53.9 by weight% in PVDF with 15 by weight% of silica. Moreover, PVDF/SiO 2 nano-composite membranes exhibited enhanced anti-fouling property compared to neat PVDF membrane. Fouling mechanism analysis revealed that complete pore blocking was the predominant mechanism occurring in oil filtration. The concentration of omega-3 polyunsaturated fatty acids (PUFA) is important in the oil industries. While the current methods demand high energy consumptions in concentrating the omega-3, membrane separation technology offers noticeable advantages in producing pure omega-3 PUFA. Moreover, concentrating omega-3 via membrane separation produces products in the triacylglycerol form which possess better oxidative stability. In this work, the detailed mechanisms of fouling which limits the performance of membrane separation were investigated. Incorporating silica particles to polymeric membrane resulted in the formation of mixed matrix membrane with improved anti-fouling behaviour compared to the neat polymeric membrane. Hence, the industrial potential of membrane processing to concentrate omega-3 fatty acids is enhanced. Copyright © 2017. Published by Elsevier Ltd.

  18. Thin-Film Composite Pressure Retarded Osmosis Membranes for Sustainable Power Generation from Salinity Gradients

    KAUST Repository

    Yip, Ngai Yin

    2011-05-15

    Pressure retarded osmosis has the potential to produce renewable energy from natural salinity gradients. This work presents the fabrication of thin-film composite membranes customized for high performance in pressure retarded osmosis. We also present the development of a theoretical model to predict the water flux in pressure retarded osmosis, from which we can predict the power density that can be achieved by a membrane. The model is the first to incorporate external concentration polarization, a performance limiting phenomenon that becomes significant for high-performance membranes. The fabricated membranes consist of a selective polyamide layer formed by interfacial polymerization on top of a polysulfone support layer made by phase separation. The highly porous support layer (structural parameter S = 349 μm), which minimizes internal concentration polarization, allows the transport properties of the active layer to be customized to enhance PRO performance. It is shown that a hand-cast membrane that balances permeability and selectivity (A = 5.81 L m-2 h-1 bar-1, B = 0.88 L m-2 h-1) is projected to achieve the highest potential peak power density of 10.0 W/m2 for a river water feed solution and seawater draw solution. The outstanding performance of this membrane is attributed to the high water permeability of the active layer, coupled with a moderate salt permeability and the ability of the support layer to suppress the undesirable accumulation of leaked salt in the porous support. Membranes with greater selectivity (i.e., lower salt permeability, B = 0.16 L m-2 h-1) suffered from a lower water permeability (A = 1.74 L m-2 h-1 bar-1) and would yield a lower peak power density of 6.1 W/m2, while membranes with a higher permeability and lower selectivity (A = 7.55 L m-2 h-1 bar-1, B = 5.45 L m-2 h-1) performed poorly due to severe reverse salt permeation, resulting in a similar projected peak power density of 6.1 W/m2. © 2011 American Chemical Society.

  19. Design and fabrication of microfluidic mixer from carbonyl iron–PDMS composite membrane

    KAUST Repository

    Li, Jiaxing

    2010-10-12

    This paper introduces a carbonyl iron-PDMS (CI-PDMS) composite magnetic elastomer in which carbonyl iron (CI) particles are uniformly distributed in a PDMS matrix. The CI particles and the PDMS were mixed at different weight ratios and tested to determine the influence of CI concentration. The magnetic and mechanical properties of the magnetic elastomers were characterized, respectively, by vibrating-sample magnetometer and by tensile testing using a mechanical analyzer. The elastomer was found to exhibit high magnetization and good mechanical flexibility. The morphology and deformation of the CI-PDMS membrane also were observed. A magnetically actuated microfluidic mixer (that is, a micromixer) integrated with CI-PDMS elastomer membranes was successfully designed and fabricated. The high efficiency and quality of the mixing makes possible the impressive potential applications of this unique CI-PDMS material in microfluidic systems. © Springer-Verlag 2010.

  20. Pebax®1657/Graphene oxide composite membranes for improved water vapor separation

    KAUST Repository

    Akhtar, Faheem Hassan

    2016-11-02

    In this study composite mixed matrix membranes containing hydrophilic microphase-separated block copolymer (Pebax® 1657) and graphene oxide nanosheets were prepared using a dip coating method. Water vapor and N2 gas permeation were measured as a function of different parameters: (i) layer thickness, (ii) content of graphene oxide (GO), and (iii) content of reduced GO. Surprisingly, a concentration of only 2 wt% of GO nanosheets well dispersed in the Pebax layer boosted the selectivity 8 times by decreasing the water vapor permeance by only 12% whereas N2 gas permeance decreased by 70%. Using reduced GO instead, the water vapor permeance declined by up to 16% with no influence on the N2 gas permeance. We correlated the permeation properties of the mixed matrix membranes with different models and found, that both the modified Nielsen model and the Cussler model give good correlation with experimental findings.

  1. Synthesis and Characterization of Methyl Cellulose/Keratin Hydrolysate Composite Membranes

    Directory of Open Access Journals (Sweden)

    Bernd M. Liebeck

    2017-03-01

    Full Text Available It is known that aqueous keratin hydrolysate solutions can be produced from feathers using superheated water as solvent. This method is optimized in this study by varying the time and temperature of the heat treatment in order to obtain a high solute content in the solution. With the dissolved polypeptides, films are produced using methyl cellulose as supporting material. Thereby, novel composite membranes are produced from bio-waste. It is expected that these materials exhibit both protein and polysaccharide properties. The influence of the embedded keratin hydrolysates on the methyl cellulose structure is investigated using Fourier transform infrared spectroscopy (FTIR and wide angle X-ray diffraction (WAXD. Adsorption peaks of both components are present in the spectra of the membranes, while the X-ray analysis shows that the polypeptides are incorporated into the semi-crystalline methyl cellulose structure. This behavior significantly influences the mechanical properties of the composite films as is shown by tensile tests. Since further processing steps, e.g., crosslinking, may involve a heat treatment, thermogravimetric analysis (TGA is applied to obtain information on the thermal stability of the composite materials.

  2. Highly Sulfonated Diamine Synthesized Polyimides and Protic Ionic Liquid Composite Membranes Improve PEM Conductivity

    Directory of Open Access Journals (Sweden)

    Bor-Kuan Chen

    2015-06-01

    Full Text Available A novel sulfonated diamine was synthesized from 1,4-bis(4-aminophenoxy benzene [pBAB]. Sulfonated polyimides (SPIs were synthesized from sulfonated pBAB, 1,4-bis(4-aminophenoxy-2-sulfonic acid benzenesulfonic acid [pBABTS], various diamines and aromatic dianhydrides. Composite proton exchange membranes (PEMs made of novel SPIs and a protic ionic liquid (PIL 1-vinyl-3-H-imidazolium trifluoromethanesulfonate [VIm][OTf] showed substantially increased conductivity. We prepared an SPI/PIL composite PEM using pBABTS, 4,4′-(9-fluorenylidene dianiline (9FDA as diamine, 3,3′,4,4′-diphenylsulfone tetracarboxylic dianhydride (DSDA as dianhydride and 40 wt % [VIm][OTf] with a high conductivity of 16 mS/cm at 120 °C and anhydrous condition. pBABTS offered better conductivity, since the chemical structure had more sulfonated groups that provide increased conductivity. The new composite membrane could be a promising anhydrous or low-humidity PEM for intermediate or high-temperature fuel cells.

  3. Reorganization of Azospirillum brasilense cell membrane is mediated by lipid composition adjustment to maintain optimal fluidity during water deficit.

    Science.gov (United States)

    Cesari, A B; Paulucci, N S; Biasutti, M A; Reguera, Y B; Gallarato, L A; Kilmurray, C; Dardanelli, M S

    2016-01-01

    We study the Azospirillum brasilense tolerance to water deficit and the dynamics of adaptive process at the level of the membrane. Azospirillum brasilense was exposed to polyethylene glycol (PEG) growth and PEG shock. Tolerance, phospholipids and fatty acid (FA) composition and membrane fluidity were determined. Azospirillum brasilense was able to grow in the presence of PEG; however, its viability was reduced. Cells grown with PEG showed membrane fluidity similar to those grown without, the lipid composition was modified, increasing phosphatidylcholine and decreasing phosphatidylethanolamine amounts. The unsaturation FAs degree was reduced. The dynamics of the adaptive response revealed a decrease in fluidity 20 min after the addition of PEG, indicating that the PEG has a fluidizing effect on the hydrophobic region of the cell membrane. Fluidity returned to initial values after 60 min of PEG exposure. Azospirillum brasilense is able to perceive osmotic changes by changing the membrane fluidity. This effect is offset by changes in the composition of membrane phospholipid and FA, contributing to the homeostasis of membrane fluidity under water deficit. This knowledge can be used to develop new Azospirillum brasilense formulations showing an adapted membrane to water deficit. © 2015 The Society for Applied Microbiology.

  4. Analysis of cerium-composite polymer-electrolyte membranes during and after accelerated oxidative-stability test

    Science.gov (United States)

    Shin, Dongwon; Han, Myungseong; Shul, Yong-Gun; Lee, Hyejin; Bae, Byungchan

    2018-02-01

    The oxidative stability of membranes constructed from a composite of pristine sulfonated poly(arylene ether sulfone) and cerium was investigated by conducting an accelerated oxidative-stability test at the open-circuit voltage (OCV). The membranes were analyzed in situ through OCV and impedance measurements, cyclic voltammetry, and linear-sweep voltammetry to monitor the electrochemical properties during the stability test. Although the high-frequency resistance of a composite membrane was slightly higher than that of a pristine membrane because of the exchange of protons from the sulfonic acid with cerium ions, the composite membrane maintained its potential for much longer than the pristine membrane. The effect of the cerium ions as radical scavengers was confirmed by analyzing the drain water and chemical structure after operation. These post-operation analyses confirmed that cerium ions improved the oxidative stability of the hydrocarbon-based polymer during fuel-cell operation. It is clear that the cerium-based radical scavengers prevented chemical degradation of the polymer membrane as well as the electrode in terms of hydrogen cross-over, polymer-chain scission, and the electrochemical surface area, while they rarely diffused outward from the membrane.

  5. Flame Retardancy Effects of Graphene Nanoplatelet/Carbon Nanotube Hybrid Membranes on Carbon Fiber Reinforced Epoxy Composites

    Directory of Open Access Journals (Sweden)

    Dongxian Zhuo

    2013-01-01

    Full Text Available Carbon nanotube/graphene nanoplatelet (MWCNT/GNP hybrid membranes with lower liquid permeability and better barrier effect compared to MWCNT membranes were successfully synthesized by vacuum filtering. Their morphologies, water permeability, and pore structures were characterized by a scanning electron microscope (SEM and nitrogen adsorption isotherms. Furthermore, MWCNT/GNP membranes were used to improve the flame retardancy of carbon fiber reinforced polymer (CFRP composites, and the influence of weight percentage of GNPs on the permeability and flame retardancy of MWCNT/GNP membranes was systematically investigated. Results show that incorporation of MWCNT/GNP membranes on CFRP composite plates can remarkably improve the flame retardancy of CFRP composites. Specifically, the incorporation of hierarchical MWCNT/GNP membrane with 7.5 wt% of GNP displays a 35% reduction in the peak heat release rate (PHRR for a CFRP composite plate with the epoxy as matrix and a 11% reduction in PHRR compared with the incorporation of MWCNT membrane only. A synergistic flame retarding mechanism is suggested to be attributed to these results, which includes controlling the pore size and penetrative network structure.

  6. Ultrathin Composite Polymeric Membranes for CO2 /N2 Separation with Minimum Thickness and High CO2 Permeance.

    Science.gov (United States)

    Benito, Javier; Sánchez-Laínez, Javier; Zornoza, Beatriz; Martín, Santiago; Carta, Mariolino; Malpass-Evans, Richard; Téllez, Carlos; McKeown, Neil B; Coronas, Joaquín; Gascón, Ignacio

    2017-10-23

    The use of ultrathin films as selective layers in composite membranes offers significant advantages in gas separation for increasing productivity while reducing the membrane size and energy costs. In this contribution, composite membranes have been obtained by the successive deposition of approximately 1 nm thick monolayers of a polymer of intrinsic microporosity (PIM) on top of dense membranes of the ultra-permeable poly[1-(trimethylsilyl)-1-propyne] (PTMSP). The ultrathin PIM films (30 nm in thickness) demonstrate CO 2 permeance up to seven times higher than dense PIM membranes using only 0.04 % of the mass of PIM without a significant decrease in CO 2 /N 2 selectivity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Palladium/Copper Alloy Composite Membranes for High Temperature Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    J. Douglas Way; Paul M. Thoen

    2005-08-31

    This report summarizes progress made during the second year of research funding from DOE Grant DE-FG26-03NT41792 at the Colorado School of Mines. The period of performance was September 1, 2004 through August of 2005. We have reformulated our Pd plating process to minimize the presence of carbon contamination in our membranes. This has improved durability and increased permeability. We have developed techniques for plating the outside diameter of ceramic and metal substrate tubes. This configuration has numerous advantages including a 40% increase in specific surface area, the ability to assay the alloy composition non-destructively, the ability to potentially repair defects in the plated surface, and the ability to visually examine the plated surfaces. These improvements have allowed us to already meet the 2007 DOE Fossil Energy pure H{sub 2} flux target of 100 SCFH/ft{sup 2} for a hydrogen partial pressure difference of 100 psi with several Pd-Cu alloy membranes on ceramic microfilter supports. Our highest pure H{sub 2} flux on inexpensive, porous alumina support tubes at the DOE target conditions is 215 SCFH/ft{sup 2}. Progress toward meeting the other DOE Fossil Energy performance targets is also summarized. Additionally, we have adapted our membrane fabrication procedure to apply Pd and Pd alloy films to commercially available porous stainless steel substrates. Stable performance of Pd-Cu films on stainless steel substrates was demonstrated over a three week period at 400 C. Finally, we have fabricated and tested Pd-Au alloy membranes. These membranes also exceed both the 2007 and 2010 DOE pure H{sub 2} flux targets and exhibit ideal H{sub 2}/N{sub 2} selectivities of over 1000 at partial pressure difference of 100 psi.

  8. Effect of wheatgrass on membrane fatty acid composition during hepatotoxicity induced by alcohol and heated PUFA.

    Science.gov (United States)

    Durairaj, Varalakshmi; Shakya, Garima; Pajaniradje, Sankar; Rajagopalan, Rukkumani

    2014-06-01

    Alcoholism is a broad term used for problems related to alcohol, medically considered as disease, specifically an addictive illness, abuse, and dependence. It is the major cause of liver disease in western countries. Alcoholic liver disease encompasses the hepatic alterations leading to fatty liver, hepatitis, and fibrosis or cirrhosis. Fried food items prepared with repeatedly heated polyunsaturated fatty acid (PUFA) exacerbate the disturbances induced by alcohol. The use of herbs to treat diseases is almost universal. Wheatgrass (WG) is used as a supplemental nutrition because of its unique curative properties. As it has antioxidant property, it prevents cancer, diabetes, and acts as liver cleanser. The present study was undertaken to evaluate the efficacy of WG on preserving membrane integrity in liver damage induced by alcohol and heated PUFA (ΔPUFA).The rats were divided into four groups. The animals in group 1 served as normal (standard diet), group 2 served as hepatotoxic (alcohol + ΔPUFA), group 3 served as treated (alcohol + ΔPUFA + WG), and group 4 served as WG control. The compositions of membrane fatty acid, total phospholipids, phospholipase A, C (PLA and PLC) were analyzed in liver to evaluate the effects of WG. Changes in fatty acid composition, decrease in phospholipids levels, and increase in PLA, PLC were observed in the diseased group. Restoration effect was seen in WG-treated rats. Histopathological observations were in correlation with the biochemical parameters. From the results obtained, we conclude that WG effectively protects the liver against alcohol and ΔPUFA-induced changes in fatty acid composition and preserves membrane integrity.

  9. Evaluation of a ZrO2 composite membrane in PEM fuel operating at high temperature and low relativity humidity

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, C.; Alvarez, A.; Godinez, Luis A.; Herrera, O.E.; Merida, W.; Ledesma-Garcia, J.; Arriaga, L.G.

    2011-01-15

    Using proton exchange fuel cells (PEMFC's) is a sustainable way to generate electrical power. High temperature PEMFC's (HT - PEMFC's) have enhanced electrode kinetics, increased CO tolerance and simplified water management that these operation conditions imply. Unfortunately, Nafion and other perfluorosulfonic acid membranes (PFSA) are characterized by a decreased proton conductivity at high temperatures (above 100 degree C) due to dehydration which also causes shrinkage and increases the contact resistance between the membrane and the electrode. For these reasons, fuel cell research aims to create new membranes capable of working at high temperatures and low relative humidity conditions. The inclusion of inorganic materials into the Nafion matrix are employed to improve the mechanical properties of the membrane and enhance the membrane's hydration. In this study, the composite membrane ZrO2 showed better performance at high temperature and low relative humidity than commercial Nafion membrane. The performance results confirmed that composite membranes retain water and help retain the membrane hydration.

  10. Synthesis and Characterization of Composite Membranes made of Graphene and Polymers of Intrinsic Microporosity

    Science.gov (United States)

    2016-02-16

    characterization of composite membranes made of graphene and polymers of intrinsic microporosity Yuyoung Shin a, Eric Prestat b, Kai-Ge Zhou a, Patricia Gorgojo c...dx.doi.org/10.1016/j.carbon.2016.02.037 0008-6223/© 2016 The Authors. Published by Elseviea b s t r a c t Polymers of intrinsic microporosity (PIMs) are a...group of polymers with molecular sieve behaviour due to their rigid, contorted macromolecular backbones. They show great potential in organophilic

  11. Electric conductivity-tunable transparent flexible nanowire-filled polymer composites: orientation control of nanowires in a magnetic field.

    Science.gov (United States)

    Nagai, Takayuki; Aoki, Nobuyuki; Ochiai, Yuichi; Hoshino, Katsuyoshi

    2011-07-01

    Cobalt compound nanowires were dispersed in a transparent nonconductive polymer film by merely stirring, and the film's transparency and electrical conductivity were examined. This composite film is a unique system in which the average length of the nanowires exceeds the film's thickness. Even in such a system, a percolation threshold existed for the electric conductivity in the direction of the film thickness, and the value was 0.18 vol%. The electric conductivity value changed from ∼1 × 10(-12) S/cm to ∼1 × 10(-3) S/cm when the volume fraction exceeded the threshold. The electric conductivity apparently followed the percolation model until the volume fraction of the nanowires was about 0.45 vol %. The visible light transmission and electric conductivity of the composite film of about 1 vol % nanowires were 92% and 5 × 10(-3) S/cm, respectively. Moreover, the electric conductivity in the direction parallel to the film surface did not depend on the amount of the dispersed nanowires, and its value was about 1 × 10(-14) S/cm. Even in a weak magnetic field of about 100 mT, the nanowires were aligned in a vertical and parallel direction to the film surface, and the electric conductivity of each aligned composite film was 2.0 × 10(-2) S/cm and 2.1 × 10(-12) S/cm. The relation between the average wire length and the electric conductivity was examined, and the effect of the magnetic alignment on that relation was also examined.

  12. Metal matrix-metal nanoparticle composites with tunable melting temperature and high thermal conductivity for phase-change thermal storage.

    Science.gov (United States)

    Liu, Minglu; Ma, Yuanyu; Wu, Hsinwei; Wang, Robert Y

    2015-02-24

    Phase-change materials (PCMs) are of broad interest for thermal storage and management applications. For energy-dense storage with fast thermal charging/discharging rates, a PCM should have a suitable melting temperature, large enthalpy of fusion, and high thermal conductivity. To simultaneously accomplish these traits, we custom design nanocomposites consisting of phase-change Bi nanoparticles embedded in an Ag matrix. We precisely control nanoparticle size, shape, and volume fraction in the composite by separating the nanoparticle synthesis and nanocomposite formation steps. We demonstrate a 50-100% thermal energy density improvement relative to common organic PCMs with equivalent volume fraction. We also tune the melting temperature from 236-252 °C by varying nanoparticle diameter from 8.1-14.9 nm. Importantly, the silver matrix successfully prevents nanoparticle coalescence, and no melting changes are observed during 100 melt-freeze cycles. The nanocomposite's Ag matrix also leads to very high thermal conductivities. For example, the thermal conductivity of a composite with a 10% volume fraction of 13 nm Bi nanoparticles is 128 ± 23 W/m-K, which is several orders of magnitude higher than typical thermal storage materials. We complement these measurements with calculations using a modified effective medium approximation for nanoscale thermal transport. These calculations predict that the thermal conductivity of composites with 13 nm Bi nanoparticles varies from 142 to 47 W/m-K as the nanoparticle volume fraction changes from 10 to 35%. Larger nanoparticle diameters and/or smaller nanoparticle volume fractions lead to larger thermal conductivities.

  13. Self-assembly of nanoparticles onto the surfaces of polystyrene spheres with a tunable composition and loading.

    Science.gov (United States)

    Pilapil, Brandy K; Wang, Michael C P; Paul, Michael T Y; Nazemi, Amir; Gates, Byron D

    2015-02-06

    Functional colloidal materials were prepared by design through the self-assembly of nanoparticles (NPs) on the surfaces of polystyrene (PS) spheres with control over NP surface coverage, NP-to-NP spacing, and NP composition. The ability to control and fine tune the coating was extended to the first demonstration of the co-assembly of NPs of dissimilar composition onto the same PS sphere, forming a multi-component coating. A broad range of NP decorated PS (PS@NPs) spheres were prepared with uniform coatings attributed to electrostatic and hydrogen bonding interactions between stabilizing groups on the NPs and the functionalized surfaces of the PS spheres. This versatile two-step method provides more fine control than methods previously demonstrated in the literature. These decorated PS spheres are of interest for a number of applications, such as catalytic reactions where the PS spheres provide a support for the dispersion, stabilization, and recovery of NP catalysts. The catalytic properties of these PS@NPs spheres were assessed by studying the catalytic degradation of azo dyes, an environmental contaminant detrimental to eye health. The PS@NPs spheres were used in multiple, sequential catalytic reactions while largely retaining the NP coating.

  14. Achieving the broader frequency electromagnetic absorber by development of magnetic core-shell composite with tunable shell/core sizes

    Science.gov (United States)

    Cheng, Ye; Guo, Yuhang; Zhang, Zhenya; Dong, Songtao; Liu, Suwei; Wang, Hongying

    2018-03-01

    Magnetic absorber has been regarded as the advanced electromagnetic energy transfer material to solve the increasingly high frequency electromagnetic interference issue. Even so, the pure magnetic material, in particular magnetic metal nanoparticle, suffering from the poor chemical stability and strong eddy current effect, thus limits it further application. To overcome this shortage, surrounded the magnetic metal nanoparticle (MPs) with insulated oxide shell has been considered to be an efficient route to suppress such an eddy current effect. Meanwhile, the combined insulated shell with good impedance matching feature, shows a positive role on the electromagnetic energy transfer intensity. In this regard, the binary Fe@α-Fe2O3 composite with the average size of ∼ 20 nm was prepared by a facile self-oxidation reaction. Interestingly, both the core diameter and shell thickness is controllable by controlling the oxide degree. The electromagnetic energy transfer performance revealed the maximum absorption frequency bandwidth of the optimal Fe@α-Fe2O3 composite is up to 5.3 G(8.2-13.5 GHz)under a small coating thickness of 1.5 mm.

  15. In situ formation of silver nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation

    KAUST Repository

    Ben-Sasson, Moshe

    2014-10-01

    The potential to incorporate silver nanoparticles (Ag-NPs) as biocides in membranes for water purification has gained much interest in recent years. However, a viable strategy for loading the Ag-NPs on the membrane remains challenging. This paper presents a novel, facile procedure for loading Ag-NPs on thin-film composite (TFC) reverse osmosis membranes. Reaction of silver salt with a reducing agent on the membrane surface resulted in uniform coverage of Ag-NPs, irreversibly bound to the membrane, as confirmed by XPS, TEM, and SEM analyses. Salt selectivity of the membrane as well its surface roughness, hydrophilicity, and zeta potential were not impacted by Ag-NP functionalization, while a slight reduction (up to 17%) in water permeability was observed. The formed Ag-NPs imparted strong antibacterial activity to the membrane, leading to reduction of more than 75% in the number of live bacteria attached to the membrane for three model bacteria strains. In addition, confocal microscopy analyses revealed that Ag-NPs significantly suppressed biofilm formation, with 41% reduction in total biovolume and significant reduction in EPS, dead, and live bacteria on the functionalized membrane. The simplicity of the method, the short reaction time, the ability to load the Ag-NPs on site, and the strong imparted antibacterial activity highlight the potential of this method in real-world RO membrane applications. © 2014 Elsevier Ltd.

  16. Reverse osmosis membrane composition, structure and performance modification by bisulphite, iron(III), bromide and chlorite exposure.

    Science.gov (United States)

    Ferrer, O; Gibert, O; Cortina, J L

    2016-10-15

    Reverse osmosis (RO) membrane exposure to bisulphite, chlorite, bromide and iron(III) was assessed in terms of membrane composition, structure and performance. Membrane composition was determined by Rutherford backscattering spectrometry (RBS) and membrane performance was assessed by water and chloride permeation, using a modified version of the solution-diffusion model. Iron(III) dosage in presence of bisulphite led to an autooxidation of the latter, probably generating free radicals which damaged the membrane. It comprised a significant raise in chloride passage (chloride permeation coefficient increased 5.3-5.1 fold compared to the virgin membrane under the conditions studied) rapidly. No major differences in terms of water permeability and membrane composition were observed. Nevertheless, an increase in the size of the network pores, and a raise in the fraction of aggregate pores of the polyamide (PA) layer were identified, but no amide bond cleavage was observed. These structural changes were therefore, in accordance with the transport properties observed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Regulation of biliary cholesterol secretion is independent of hepatocyte canalicular membrane lipid composition: a study in the diosgenin-fed rat model

    NARCIS (Netherlands)

    Nibbering, C. P.; Groen, A. K.; Ottenhoff, R.; Brouwers, J. F.; vanBerge-Henegouwen, G. P.; van Erpecum, K. J.

    2001-01-01

    Phosphatidylcholine (PC) and sphingomyelin (SM) are the major phospholipids on the outer leaflet of the hepatocyte canalicular membrane. Since cholesterol preferentially associates with SM in detergent-resistant microdomains, we hypothesized that canalicular membrane lipid composition could modulate

  18. NOVEL COMPOSITE MEMBRANES FOR HYDROGEN SEPARATION IN GASIFICATION PROCESSES IN VISION 21 ENERGY PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Michael Schwartz

    2004-12-01

    This report describes the work performed, accomplishments and conclusion obtained from the project entitled ''Novel Composite Membranes for Hydrogen Separation in Gasification Processes in Vision 21 Energy Plants'' under the United States Department of Energy Contract DE-FC26-01NT40973. ITN Energy Systems was the prime contractor. Team members included: the Idaho National Engineering and Environmental Laboratory; Nexant Consulting; Argonne National Laboratory and Praxair. The objective of the program was to develop a novel composite membrane structure for hydrogen separation as a key technology module within the future ''Vision 21'' fossil fuel plants. The separation technology module is targeted for use within the gasification module of the ''Vision 21'' fossil fuel plant. The high performance and low-cost manufacturing of the proposed technology will benefit the deployment of ''Vision 21'' fossil fuel plant processes by improving the energy efficiency, flexibility and environmental performance of these plants. Of particular importance is that this technology will also produce a stream of pure carbon dioxide. This allows facile sequestration or other use of this greenhouse gas. These features will benefit the U.S. in allowing for the continued use of domestic fossil fuels in a more energy efficient and environmentally acceptable manner. The program developed and evaluated composite membranes and catalysts for hydrogen separation. Components of the monolithic modules were fabricated by plasma spray processing. The engineering and economic characteristics of the proposed Ion Conducting Ceramic Membrane (ICCM) approach, including system integration issues, were also assessed. This resulted in a comprehensive evaluation of the technical and economic feasibility of integration schemes of ICCM hydrogen separation technology within Vision 21 fossil fuel plants. Several results and conclusion

  19. PALLADIUM/COPPER ALLOY COMPOSITE MEMBRANES FOR HIGH TEMPERATURE HYDROGEN SEPARATION FROM COAL-DERIVED GAS STREAMS; F

    International Nuclear Information System (INIS)

    J. Douglas Way; Robert L. McCormick

    2001-01-01

    Recent advances have shown that Pd-Cu composite membranes are not susceptible to the mechanical, embrittlement, and poisoning problems that have prevented widespread industrial use of Pd for high temperature H(sub 2) separation. These membranes consist of a thin ((approx)10(micro)m) film of metal deposited on the inner surface of a porous metal or ceramic tube. Based on preliminary results, thin Pd(sub 60)Cu(sub 40) films are expected to exhibit hydrogen flux up to ten times larger than commercial polymer membranes for H(sub 2) separation, and resist poisoning by H(sub 2)S and other sulfur compounds typical of coal gas. Similar Pd-membranes have been operated at temperatures as high as 750 C. The overall objective of the proposed project is to demonstrate the feasibility of using sequential electroless plating to fabricate Pd(sub 60)Cu(sub 40) alloy membranes on porous supports for H(sub 2) separation. These following advantages of these membranes for processing of coal-derived gas will be demonstrated: High H(sub 2) flux; Sulfur tolerant, even at very high total sulfur levels (1000 ppm); Operation at temperatures well above 500 C; and Resistance to embrittlement and degradation by thermal cycling. The proposed research plan is designed to providing a fundamental understanding of: Factors important in membrane fabrication; Optimization of membrane structure and composition; Effect of temperature, pressure, and gas composition on H(sub 2) flux and membrane selectivity; and How this membrane technology can be integrated in coal gasification-fuel cell systems

  20. Characteristics of fatty acid composition of lipids in higher plant vacuolar membranes.

    Science.gov (United States)

    Makarenko, S P; Konenkina, T A; Salyaev, R K

    2000-01-01

    The fatty acid composition of vacuolar membrane lipids from plant storage tissues and their genesis have been studied. A high content of unsaturated fatty acids (up to 77%) was observed in lipids of these membranes. Linoleic acid prevailed in vacuolar lipids of carrot and red beet (54.2 and 44.2%, respectively). Linolenic acid prevailed in vacuolar lipids of garden radish and turnip (39.7 and 33.9%, respectively). Regarding saturated fatty acids, vacuolar lipids of garden radish, carrot, and red beet contained predominantly palmitic acid (up to 20-24%). Unsaturated fatty acids, petroselinic (C18: 1omega12), cis-vaccenic (C18: 1omega7), hexatrien-7,-10,-13-oic (C16:3omega3) and others, were observed in vacuolar lipids of roots. These acids are usually synthesized in chloroplasts, and their presence in vacuolar lipids can be associated either with the transport of metabolites to the vacuole, or with endocytosis during vacuolar formation in the plant cell. The specific features of fatty acid composition of tonoplast lipids apparently are closely related to the tonoplast unique fluidity and mobility required for running osmotic processes in the cell and for forming transport protein assemblies.

  1. Perfluorocyclobutyl polymer thin-film composite membrane fabrication, plasticization and physical aging

    Science.gov (United States)

    Zhou, Jinxiang

    My research consists of three parts: 1) study of perfluorocyclobutyl (PFCB) thin film formation, 2) development and characterization of PFCB thin-film composite membranes, and 3) elucidation of the roles that plasticization and physical aging play on PFCB thin-film performance. In part 1, I conducted comprehensive research to understand how PFCB thin films form by the method of dip coating. Through the control of solvents, polymer solution concentrations, and withdrawal speeds, a series of PFCB thin films were formed on silicon wafers. Film thickness and refractive index were characterized by ellipsometry. Results suggested that when the withdrawal speeds are higher than 50 mm/min, film thickness increases with increasing withdrawal speeds, as it is predicted in the proposed extension of the Landau-Levich model. When the withdrawal speeds are lower than 50 mm/min, film thickness increases with decreasing withdrawal speeds, which could be explained by the phenomenon of PFCB surface excess. Subsequent surface tension studies proved the existence of this surface excess. Surface images of these films were measured by atomic force microscope. Films prepared from tetrahydrofuran and chloroform yielded uniform nanolayers. However, films prepared using acetone as solvent yielded a partial dewetting pattern, which could be explained by a surface depletion layer of pure solvent between the bulk PFCB/acetone solution and the substrate. Based on the knowledge generated in part 1, I developed, from scratch, procedures to prepare PFCB TFC membranes that were free of major defects. I used mathematical models based on resistance in series to predict composite membrane performance. In many cases, surface defects are the major reason for poor separation ability of TFC membranes. Mathematical analysis showed that the surface defects are less critical in thinner films but are still an important factor causing selectivity loss. Surface defects occur mainly from polymer dewetting on the

  2. Familial aggregation of red blood cell membrane fatty acid composition: the Kibbutzim Family Study.

    Science.gov (United States)

    Lemaitre, Rozenn N; Siscovick, David S; Berry, Elliot M; Kark, Jeremy D; Friedlander, Yechiel

    2008-05-01

    The fatty acid composition of membranes plays an important role in health and diseases. Whether genetic factors play a role in interindividual variability in membrane fatty acid levels has received limited attention. Using variance decomposition methods, we estimated the heritability of red blood cell (RBC) membrane fatty acids in an unselected population sample of 80 families (205 male and 212 female subjects) living in kibbutz settlements in Israel. Fatty acid levels were measured by gas chromatography. We estimated that polygenes explained 40% to 70% of the sex- and age-adjusted interindividual variability in all RBC fatty acids: saturated, monounsaturated, and polyunsaturated. The heritability estimates remained very similar after further adjustment for smoking, alcohol consumption, physical activity, lipoproteins, body mass index, waist to hip ratio, education, and religiosity. In bivariate genetic analyses, we observed positive genetic correlations for the fatty acid pairs 20:4n6-22:6n3 and 20:5n3-22:6n3, and negative genetic correlations for the pairs 16:0-20:4n6, 16:0-22:6n3, 18:1n9-20:3n6, 18:2n6-20:4n6, 18:2n6-24:0, and 20:3n6-20:4n6, suggesting that shared effects of the same sets of loci account for 12% to 30% of the additive genetic variance in these pairs of fatty acids. This study suggests a considerable polygenic component for all RBC membrane fatty acids and provides evidence that shared genetic effects account for the additive genetic variance in various fatty acid pairs. Future studies are needed to map the genes underlying the interindividual variation in these inherited phenotypes.

  3. Tunable Controlled Release of Bioactive SDF-1α via Protein Specific Interactions within Fibrin/Nanoparticle Composites.

    Science.gov (United States)

    Dutta, D; Fauer, C; Mulleneux, H L; Stabenfeldt, S E

    2015-10-31

    The chemokine, stromal cell-derived factor 1α (SDF-1α), is a key regulator of the endogenous neural progenitor/stem cell-mediated regenerative response after neural injury. Increased and sustained bioavailability of SDF-1α in the peri-injury region is hypothesized to modulate this endogenous repair response. Here, we describe poly(lactic-co-glycolic) acid (PLGA) nanoparticles capable of releasing bioactive SDF-1α in a sustained manner over 60days after a burst of 23%. Moreover, we report a biphasic cellular response to SDF-1α concentrations thus the large initial burst release in an in vivo setting may result in supratherapeutic concentrations of SDF-1α. Specific protein-protein interactions between SDF-1α and fibrin (as well as its monomer, fibrinogen) were exploited to control the magnitude of the burst release. Nanoparticles embedded in fibrin significantly reduced the amount of SDF-1α released after 72 hrs as a function of fibrin density. Therefore, the nanoparticle/fibrin composites represented a means to independently tune the magnitude of the burst phase release from the nanoparticles while perserving a bioactive depot of SDF-1α for release over 60days.

  4. Sound Insulation Property Study on Nylon 66 Scrim Reinforced PVF Laminated Membranes and their Composite Sound Proof Structure

    Science.gov (United States)

    Chen, Lihe; Chen, Zhaofeng; Zhang, Xinyang; Wang, Weiwei

    2018-01-01

    In this paper, we investigated the sound insulation property of nylon 66 scrim reinforced PVF laminated membranes and their corresponding composite structures with glass fiber felt and carbon fiber board. Sound transmission loss (STL) was measured by standing wave tube method. The results show that, with the decrease of nylon 66 gridlines spacing, STL of nylon 66 scrim reinforced PVF laminated membranes was improved. The sound insulation performance of laminated membranes with gridlines spacing of 3mm is the best, whose STL was up to 10dB at 6.3 kHz. Besides, STL was improved effectively as air layers were embedded into the composite sound proof construction consist of laminated membrane, glass fiber felt and carbon fiber board.

  5. Enhanced proton conductivity by the influence of modified montmorillonite on poly (vinyl alcohol) based blend composite membranes

    Energy Technology Data Exchange (ETDEWEB)

    Palani, P. Bahavan, E-mail: bahavanpalani@gmail.com; Abidin, K. Sainul [Department of Physics, University College of Engineering, Anna University, Dindigul-624622 (India); Kannan, R., E-mail: rksrsrk@gmail.com [Department of Physics, University College of Engineering, Anna University, Dindigul-624622 (India); Department of Material Sciences & Engineering, Cornell University, Ithaca, NewYork-14853 (United States); Rajashabala, S. [School of Physics, Madurai Kamaraj University, Madurai-625021 (India); Sivakumar, M. [School of Physics, Alagappa University, Karaikudi-630004 (India)

    2016-05-23

    The highest proton conductivity value of 0.0802 Scm{sup −1} is obtained at 6 wt% of protonated MMT added to the PVA/PEG blends. The polymer blend composite membranes are prepared with varied concentration of Poly vinyl alcohol (PVA), Poly ethylene glycol (PEG) and Montmorillonite (MMT) by solution casting method. The Na{sup +} MMT was modified (protonated) to H{sup +} MMT with ion exchange process. The prepared membranes were characterized by using TGA, FTIR, XRD, Ion Exchange Capacity, Water/Methanol uptake, swelling ratio and proton conductivity. The significant improvements in the hydrolytic stability were observed. In addition, thermal stability of the composite membranes were improved and controlled by the addition of MMT. All the prepared membranes are shown appreciable values of proton conductivity at room temperature with 100% relative humidity.

  6. Effects of membrane lipid composition and antibacterial drugs on the rigidity of Escherichia coli: Different contributions of various bacterial substructures.

    Science.gov (United States)

    Li, Ming; Gan, Chaoye; Shao, Wenxiang; Yu, Chuan; Wang, Xingguo; Chen, Yong

    2016-01-01

    The rigidity/stiffness is an important biomechanical property of bacteria and potentially correlated with many bacterial activities. While the rigidity or fluidity of the bacterial membrane has been extensively studied, the contributions of different bacterial substructures to the bacterial rigidity are less investigated. Here, we utilized four Escherichia coli (E. coli) strains with different membrane lipid compositions and three antibacterial drugs (EDTA, lysozyme, and streptomycin) to specifically alter bacterial substructures. By using atomic force microscopy (AFM), we found that the average height and Young's modulus of phosphatidylethanolamine (PE)-deficient E. coli strains were larger than those of PE(+) strains and that EDTA, EDTA plus lysozyme instead of lysozyme alone, and streptomycin all caused significant decreases in height and Young's modulus of the four E. coli strains. Our data imply that membrane lipid composition, the integrated outer membrane, the cell wall, and the cytoplasmic content are all responsible for bacterial rigidity but to different extents. © Wiley Periodicals, Inc.

  7. Composite hollow fiber gas-liquid membrane contactors for olefin/paraffin separation

    NARCIS (Netherlands)

    Nijmeijer, Dorothea C.; Visser, Tymen; Assen, R.; Wessling, Matthias

    2004-01-01

    Gas¿liquid membrane contactors frequently suffer from undesired wetting of the microporous membrane by the absorption liquid. Stabilization layers at the liquid-side of the microporous membrane potentially prevent this wetting. We apply such stabilized membranes in a membrane contactor using AgNO3

  8. Characterisation of a re-cast composite Nafion 1100 series of proton exchange membranes incorporating inert inorganic oxide particles

    International Nuclear Information System (INIS)

    Slade, S.M.; Smith, J.R.; Campbell, S.A.; Ralph, T.R.; Ponce de Leon, C.; Walsh, F.C.

    2010-01-01

    A series of cation exchange membranes was produced by impregnating and coating both sides of a quartz web with a Nafion solution (1100 EW, 10%wt in water). Inert filler particles (SiO 2 , ZrO 2 or TiO 2 ; 5-20%wt) were incorporated into the aqueous Nafion solution to produce robust, composite membranes. Ion-exchange capacity/equivalent weight, water take-up, thickness change on hydration and ionic and electrical conductivity were measured in 1 mol dm -3 sulfuric acid at 298 K. The TiO 2 filler significantly impacted on these properties, producing higher water take-up and increased conductivity. Such membranes may be beneficial for proton exchange membrane (PEM) fuel cell operation at low humidification. The PEM fuel cell performance of the composite membranes containing SiO 2 fillers was examined in a Ballard Mark 5E unit cell. While the use of composite membranes offers a cost reduction, the unit cell performance was reduced, in practice, due to drying of the ionomer at the cathode.

  9. Ultrahigh Flux Composite Hollow Fiber Membrane via Highly Crosslinked PDMS for Recovery of Hydrocarbons: Propane and Propene.

    Science.gov (United States)

    Liang, Can Zeng; Chung, Tai-Shung

    2018-03-01

    In order to make membrane separation technologies more cost-competitive with the well-established processes that are energy intensive for gas/vapor separation, a defect-free membrane with a high gas permeance is necessary. However, it remains challenging to meet these needs because of the difficulties in developing a suitable material and process that are economical and practical. Herein, a novel and straightforward strategy is presented to produce a defect-free hollow fiber composite membrane using a highly crosslinked polydimethylsiloxane (PDMS) synthesized by using a postcrosslinking method. The PDMS can be directly coated on a polyacrylonitrile (PAN) membrane substrate, and the resultant PDMS/PAN composite membrane has ultrahigh C 3 H 8 and C 3 H 6 permeances that are higher than 10 000 and 11 000 GPU, respectively, and the corresponding permselectivity of C 3 H 8 /N 2 and C 3 H 6 /N 2 are about 21 and 24, respectively. The newly developed methods and materials may open up a new cost-effective method to fabricate next-generation composite membranes for the recovery of hydrocarbons, organic vapors, and gases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Dietary Selenium or Zinc Supplementation Restores Brain Lipid Composition and Membrane Fluidity in Protein-Undernourished Rats.

    Science.gov (United States)

    Adebayo, Olusegun L; Salau, Bamidele A; Sandhir, Rajat; Adenuga, Gbenga A

    2016-01-01

    Studies have shown that protein undernutrition (PU) modifies the membrane lipid composition in the intestine and liver, as well as in plasma and other areas. However, there is limited information on the effect of PU on synaptosomal membrane lipid composition and fluidity and the protective role of selenium (Se) and zinc (Zn), which is a major focus of the present study. For 10 weeks, rats were fed diets containing 16% casein, which constituted the adequate protein diet, or 5% casein, representing the PU diet. The animals were supplemented with Se and Zn at a concentration of 0.15 and 227 mg L-1, respectively, in drinking water for 3 weeks. The results showed a significant increase in total lipids, glycolipids, triglycerides, cholesterol, and the cholesterol/phospholipid (Chol/PL) ratio, and a significant reduction in phospholipids and membrane fluidity. Se and Zn supplementation to PU rats, however, significantly lowered total lipids, glycolipids, triglycerides, cholesterol, and the Chol/PL ratio, while phospholipids and membrane fluidity were significantly restored. It is concluded that a perturbed lipid composition induced by PU affects the membrane structure and fluidity, which in turn influences membrane functions. The study suggests that Se and Zn supplementation might be beneficial in restoring the lipid dyshomeostasis associated with PU. © 2017 S. Karger AG, Basel.

  11. Novel sulfonated poly(ether ether ketone)s containing nitrile groups and their composite membranes for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Meimei; Liu, Baijun; Guan, Shaowei; Li, Long; Liu, Chang; Zhang, Yunhe; Jiang, Zhenhua [Alan G. MacDiarmid Institute, Jilin University, 2699 Qianjin Street, Changchun 130012 (China)

    2010-08-01

    A series of novel sulfonated poly(ether ether ketone)s containing a cyanophenyl group (SPEEKCNxx) are prepared based on (4-cyano)phenylhydroquinone via nucleophilic substitution polycondensation reactions. To further improve their properties, novel composite membranes composed of sulfonated poly(ether ether ketone)s containing cyanophenyl group as an acidic component and aminated poly(aryl ether ketone) as a basic component are successfully prepared. Most of the membranes exhibit excellent thermal, oxidative and dimensional stability, low-swelling ratio, high proton conductivity, low methanol permeability and high selectivity. The proton conductivities of the membranes are close to Nafion 117 at room temperature. And especially, the values of SPEEKCN40 and its composite membranes are higher than Nafion 117 at 80 C (0.17 S cm{sup -1} of Nafion, 0.26 S cm{sup -1} of SPEEKCN40, 0.20 S cm{sup -1} of SPEEKCN40-1, and 0.18 S cm{sup -1} of SPEEKCN40-2). Moreover, the methanol permeability is one order magnitude lower than that of Nafion 117. All the data prove that both copolymers and their composite membranes may be potential proton exchange membrane for fuel cells applications. (author)

  12. Application of a nanofibrous composite membrane to the fertilizer-driven forward osmosis process for irrigation water use.

    Science.gov (United States)

    An, Hee-Kyung; Lee, Chang-Gu; Park, Seong-Jik

    2017-11-01

    In this study, we fabricated a nanofibrous composite (NFC) membrane as a substrate to produce forward osmosis (FO) membranes, and we also assessed the use of liquid fertilizer as a draw solution for the FO process in order to produce agricultural irrigation water. Commercial cellulose triacetate (CTA) and thin-film composite (TFC) FO membranes were included in this study. Under FO tests, the NFC, CTA, and TFC membranes achieved initial osmotic water flux values of 35.31, 6.85, and 3.31 L/m 2 ·h and final osmotic water flux values of 12.62, 6.31, and 3.85 L/m 2  h, respectively. The reason for the high osmotic water flux of the NFC membrane is because its nanofiber layer has low tortuosity, high porosity, and a low thickness, resulting in a reduction in the internal concentration polarization phenomenon. When liquid fertilizer was used as the draw solution, the water flux values in the FO experiments for the NFC, CTA, and TFC membranes were 15.54, 5.46, and 2.54 L/m 2  h. Finally, our results revealed that the FO process using liquid fertilizer as a draw solution can be applied to produce agricultural irrigation water from brackish water and the newly fabricated NFC membrane can be applied to the FO process.

  13. Preparation of polysiloxane modified perfluorosulfonic acid composite membranes assisted by supercritical carbon dioxide for direct methanol fuel cell

    Science.gov (United States)

    Su, Lijun; Li, Lei; Li, Hong; Tang, Junkun; Zhang, Yongming; Yu, Wei; Zhou, Chixing

    Polysiloxane modified perfluorosulfonic acid (PFSA) composite membranes are prepared by using (3-mercaptopropyl) methyldimethoxysilane (MPMDMS) as a precursor of silicon alkoxide in supercritical carbon dioxide (Sc-CO 2) system. In the Sc-CO 2 system with the presence of water, Sc-CO 2 is not only used as a solvent and swelling agent, but also functioned as an acid catalyst for the condensation polymerization of MPMDMS. Characteristics of the modified composite membranes are investigated by using attenuated total reflection-infrared spectra, scanning electron microscopy and transmission electron microscopy. The modified membrane with 13.9 wt.% poly(MPMDMS) is the best one among all the modified membranes, whose methanol permeability is extremely lower and selectivity (ratio of proton conductivity to methanol permeability) is about 5.49 times higher than that of pristine membrane and 5.88 times than that of Nafion ® 117, respectively. This modified PFSA membrane still can maintain its higher selectivity value than that of Nafion ® 117 in the temperature range of 25-65 °C. Therefore, the modified membranes prepared in Sc-CO 2 system may be the suitable candidate electrolytes for direct methanol fuel cell applications.

  14. Antifouling coatings via plasma polymerization and atom transfer radical polymerization on thin film composite membranes for reverse osmosis

    Science.gov (United States)

    Hirsch, Ulrike; Ruehl, Marco; Teuscher, Nico; Heilmann, Andreas

    2018-04-01

    A major drawback to otherwise highly efficient membrane-based desalination techniques like reverse osmosis (RO) is the susceptibility of the membranes to biofouling. In this work, a combination of plasma activation, plasma bromination and surface-initiated atom transfer radical polymerization (si-ATRP) of hydrophilic and zwitterionic monomers, namely hydroxyethyl methacrylate (HEMA), 2-methacryloyloxyethyl phosphorylcholine (MPC) and [2-(methacryloyloxy)ethyl]-dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA), was applied to generate non-specific, anti-adhesive coatings on thin film composite (TFC) membranes. The antifouling effect of the coatings was shown by short-time batch as well as long-time steady state cultivation experiments with the microorganism Pseudomonas fluorescens. It could be shown that plasma functionalization and polymerization is possible on delicate thin film composite membranes without restricting their filtration performance. All modified membranes showed an increased resistance towards the adhesion of Pseudomonas fluorescens. On average, the biofilm coverage was reduced by 51.4-12.6% (for HEMA, SBMA, and MPC), the highest reduction was monitored for MPC with a biofilm reduction by 85.4%. The hydrophilic coatings applied did not only suppress the adhesion of Pseudomonas fluorescens, but also significantly increase the permeate flux of the membranes relative to uncoated membranes. The stability of the coatings was however not ideal and will have to be improved for future commercial use.

  15. Recycling of phenol from aqueous solutions by pervaporation with ZSM-5/PDMS/PVDF hollow fiber composite membrane

    Science.gov (United States)

    Li, Dan; Yao, Jie; Sun, Hao; Liu, Bing; van Agtmaal, Sjack; Feng, Chunhui

    2018-01-01

    Zeolite (ZSM-5)/polydimethylsiloxane (PDMS)/polyvinylidene fluoride (PVDF) hollow fiber composite membrane was prepared by dynamic negative pressure. The influence of ZSM-5 silanization, coating time and concentration of ZSM-5 on the resulting pervaporation (PV) performance of composite membranes was investigated. The contact angle (CA) was used to measure surface hydrophobic property and it was found that the water contact angle of the membrane was increased significantly from 99° to 132° when the concentration of ZSM-5 increased from 0% to 50%. The morphology of the membrane was characterized by scanning electron microscope (SEM) and those SEM images illustrated that the thickness of the separating layer has obvious differences at varying coating times. Furthermore, the membranes were investigated in PV process to recycle phenol from aqueous solutions as feed mixtures. The impact of phenol concentration in feed, temperature and pressure of penetration side on the PV performance of membrane was studied systematically. When the ZSM-5 concentration was 40% and the coating time was 60 min, separation factor and phenol permeability were 4.56 and 5.78 g/(m2 h), respectively. ZSM-5/PDMS/PVDF membrane significantly improved the recovery efficiency of phenols.

  16. Modified nanocrystal cellulose/fluorene-containing sulfonated poly(ether ether ketone ketone) composites for proton exchange membranes

    Science.gov (United States)

    Wei, Yingcong; Shang, Yabei; Ni, Chuangjiang; Zhang, Hanyu; Li, Xiaobai; Liu, Baijun; Men, Yongfeng; Zhang, Mingyao; Hu, Wei

    2017-09-01

    Highly sulfonated poly(ether ether ketone ketone)s (SFPEEKKs) with sulfonation degrees of 2.34 (SFPEEKK5) and 2.48 (SFPEEKK10) were synthesized through the direct sulfonation of a fluorene-containing poly(ether ether ketone ketone) under a relatively mild reaction condition. Using the solution blending method, sulfonated nanocrystal cellulose (sNCC)-enhanced SFPEEKK composites (SFPEEKK/sNCC) were successfully prepared for investigation as proton exchange membranes. Transmission electron microscopy showed that sNCC was uniformly distributed in the composite membranes. The properties of the composite membranes, including thermal stability, mechanical properties, water uptake, swelling ratio, oxidative stability and proton conductivity were thoroughly evaluated. Results indicated that the insertion of sNCC could contribute to water management and improve the mechanical performance of the membranes. Notably, the proton conductivity of SFPEEKK5/sNCC-5 was as high as 0.242 S cm-1 at 80 °C. All data proved the potential of SFPEEKK/sNCC composites for proton exchange membranes in medium-temperature fuel cells.

  17. Quantitative analysis of supported membrane composition using the NanoSIMS

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, M L; Fishel, S F; Marxer, C G; Weber, P K; Hutcheon, I D; Boxer, S G

    2009-06-02

    We have improved methods reported earlier [1] for sample preparation, imaging and quantifying components in supported lipid bilayers using high-resolution secondary ion mass spectrometry performed with the NanoSIMS 50. By selectively incorporating a unique stable isotope into each component of interest, a component-specific image is generated from the location and intensity of the unique secondary ion signals exclusively produced by each molecule. Homogeneous supported lipid bilayers that systematically varied in their isotopic enrichment levels were freeze-dried and analyzed with the NanoSIMS 50. The molecule-specific secondary ion signal intensities had an excellent linear correlation to the isotopically labeled lipid content. Statistically indistinguishable calibration curves were obtained using different sample sets analyzed months apart. Fluid bilayers can be patterned using lithographic methods and the composition of each corralled region varied systematically by simple microfluidic methods. The resulting composition variations can be imaged and quantified. This approach opens the possibility of imaging and quantifying the composition of microdomains within membranes, including protein components, without using bulky labels and with very high lateral resolution and sensitivity.

  18. Analysis of microbial community composition in a lab-scale membrane distillation bioreactor.

    Science.gov (United States)

    Zhang, Q; Shuwen, G; Zhang, J; Fane, A G; Kjelleberg, S; Rice, S A; McDougald, D

    2015-04-01

    Membrane distillation bioreactors (MDBR) have potential for industrial applications where wastewater is hot or waste heat is available, but the role of micro-organisms in MDBRs has never been determined, and thus was the purpose of this study. Microbial communities were characterized by bacterial and archaeal 16S and eukaryotic 18S rRNA gene tag-encoded pyrosequencing of DNA obtained from sludge. Taxonomy-independent analysis revealed that bacterial communities had a relatively low richness and diversity, and community composition strongly correlated with conductivity, total nitrogen and bound extracellular polymeric substances (EPS). Taxonomy-dependent analysis revealed that Rubrobacter and Caldalkalibacillus were abundant members of the bacterial community, but no archaea were detected. Eukaryotic communities had a relatively high richness and diversity, and both changes in community composition and abundance of the dominant genus, Candida, correlated with bound EPS. Thermophilic MDBR communities were comprised of a low diversity bacterial community and a highly diverse eukaryotic community with no archea detected. Communities exhibited low resilience to changes in operational parameters. Specifically, retenatate nutrient composition and concentration was strongly correlated with the dominant species. This study provides an understanding of microbial community diversity in an MDBR, which is fundamental to the optimization of reactor performance. © 2015 The Authors published by John Wiley & Sons Ltd on behalf of Society for Applied Microbiology.

  19. Electrical conductivity of sulfonated poly(ether ether ketone) based composite membranes containing sulfonated polyhedral oligosilsesquioxane

    Science.gov (United States)

    Celso, Fabricio; Mikhailenko, Serguei D.; Rodrigues, Marco A. S.; Mauler, Raquel S.; Kaliaguine, Serge

    2016-02-01

    Composite proton exchange membranes (PEMs) intended for fuel cell applications were prepared by embedding of various amounts of dispersed tri-sulfonic acid ethyl POSS (S-Et-POSS) and tri-sulfonic acid butyl POSS (S-Bu-POSS) in thin films of sulfonated poly ether-ether ketone. The electrical properties of the PEMs were studied by Impedance spectroscopy and it was found that their conductivity σ changes with the filler content following a curve with a maximum. The water uptake of these PEMs showed the same dependence. The investigation of initial isolated S-POSS substances revealed the properties of typical electrolytes, which however in both cases possessed low conductivities of 1. 17 × 10-5 S cm-1 (S-Et-POSS) and 3.52 × 10-5 S cm-1 (S-Bu-POSS). At the same time, the insoluble in water S-POSS was found forming highly conductive interface layer when wetted with liquid water and hence producing a strong positive impact on the conductivity of the composite PEM. Electrical properties of the composites were analysed within the frameworks of effective medium theory and bounding models, allowing to evaluate analytically the range of possible conductivity values. It was found that these approaches produced quite good approximation of the experimental data and constituted a fair basis for interpretation of the observed relationship.

  20. Implications of modifying membrane fatty acid composition on membrane oxidation, integrity, and storage viability of freeze-dried probiotic, Lactobacillus acidophilus La-5.

    Science.gov (United States)

    Hansen, Marie-Louise R W; Petersen, Mikael A; Risbo, Jens; Hümmer, Magdalena; Clausen, Anders

    2015-01-01

    The aim of this study was to investigate the effect of altering the fatty acid profile of the lipid membrane on storage survival of freeze-dried probiotic, Lactobacillus acidophilus La-5, as well as study the membrane integrity and lipid oxidation. The fatty acid composition of the lipid membrane of L. acidophilus La-5 was significantly different upon growth in MRS (containing Tween 80, an oleic acid source), or in MRS with Tween 20 (containing C12:0 and C14:0), linoleic, or linolenic acid supplemented. Bacteria grown in MRS showed the highest storage survival rates. No indications of loss of membrane integrity could be found, and membrane integrity could therefore not be connected with loss of viability. Survival of bacteria grown with linoleic or linolenic acid was more negatively affected by the presence of oxygen, than bacteria grown in MRS or with Tween 20 supplemented. A small, but significant, loss of linolenic acid during storage could be identified, and an increase of volatile secondary oxidation products during storage was found for bacteria grown in MRS, or with linoleic, or linolenic acid supplemented, but not for bacteria grown with Tween 20. Overall, the results indicate that lipid oxidation and loss of membrane integrity are not the only or most important detrimental reactions which can occur during storage. By altering the fatty acid composition, it was also found that properties of oleic acid gave rise to more robust bacteria than more saturated or unsaturated fatty acids did. © 2015 American Institute of Chemical Engineers.

  1. Tunable Control of an Escherichia coli Expression System for the Overproduction of Membrane Proteins by Titrated Expression of a Mutant lac Repressor.

    Science.gov (United States)

    Kim, Seong Keun; Lee, Dae-Hee; Kim, Oh Cheol; Kim, Jihyun F; Yoon, Sung Ho

    2017-09-15

    Most inducible expression systems suffer from growth defects, leaky basal induction, and inhomogeneous expression levels within a host cell population. These difficulties are most prominent with the overproduction of membrane proteins that are toxic to host cells. Here, we developed an Escherichia coli inducible expression system for membrane protein production based on titrated expression of a mutant lac repressor (mLacI). Performance of the mLacI inducible system was evaluated in conjunction with commonly used lac operator-based expression vectors using a T7 or tac promoter. Remarkably, expression of a target gene can be titrated by the dose-dependent addition of l-rhamnose, and the expression levels were homogeneous in the cell population. The developed system was successfully applied to overexpress three membrane proteins that were otherwise difficult to produce in E. coli. This gene expression control system can be easily applied to a broad range of existing protein expression systems and should be useful in constructing genetic circuits that require precise output signals.

  2. Influence of feed composition and membrane fouling on forward osmosis performance

    DEFF Research Database (Denmark)

    Schneider, Carina; Sathyadev Rajmohan, Rajath; Zarebska, Agata

    2016-01-01

    . Nonetheless, the existing membrane technologies often face fouling problem that lowers the economic viability of the membrane application in industrial scale. Recent development in the membrane technology indicates that forward osmosis (FO) has a high potential for wastewater treatment, producing high quality...... water [1]. Compared to other pressure driven membrane processes, forward osmosis (FO) membranes suffered less severe fouling due to the lack of hydraulic pressure [2]. Furthermore, novel biomimetic membranes incorporating Aquaporins, highly selective water channels, became commercially available...

  3. Additive manufacturing of tunable lenses

    Science.gov (United States)

    Schlichting, Katja; Novak, Tobias; Heinrich, Andreas

    2017-02-01

    Individual additive manufacturing of optical systems based on 3D Printing offers varied possibilities in design and usage. In addition to the additive manufacturing procedure, the usage of tunable lenses allows further advantages for intelligent optical systems. Our goal is to bring the advantages of additive manufacturing together with the huge potential of tunable lenses. We produced tunable lenses as a bundle without any further processing steps, like polishing. The lenses were designed and directly printed with a 3D Printer as a package. The design contains the membrane as an optical part as well as the mechanical parts of the lens, like the attachments for the sleeves which contain the oil. The dynamic optical lenses were filled with an oil. The focal length of the lenses changes due to a change of the radius of curvature. This change is caused by changing the pressure in the inside of the lens. In addition to that, we designed lenses with special structures to obtain different areas with an individual optical power. We want to discuss the huge potential of this technology for several applications. Further, an appropriate controlling system is needed. Wéll show the possibilities to control and regulate the optical power of the lenses. The lenses could be used for illumination tasks, and in the future, for individual measurement tasks. The main advantage is the individuality and the possibility to create an individual design which completely fulfills the requirements for any specific application.

  4. Synthesis and Characterization of Nafion-SiO2 Composite Membranes as an Electrolyte for Medium Temperature and Low Relative Humidity

    Directory of Open Access Journals (Sweden)

    Mahreni Mahreni

    2011-12-01

    Full Text Available The weakness of the Nafion membrane as electrolyte of PEMFC associated with physical properties that is easy to shrink at temperatures above 80°C due to dehydration. Shrinkage will decrease the conductivity and membrane damage. Nafion-SiO2 composite membranes can improve membrane stability. The role of SiO2 in the Nafion clusters is as water absorbent cause the membrane remains wet at high temperatures and low humidity and conductivity remains high. The results showed the content of 2.8 wt% of SiO2 in the Nafion membrane, the conductivity of composite membrane is higher than the pure Nafion membrane that are 0.127 S cm-1 in dry conditions and 0.778 S cm-1 in wet conditions at room temperature. Compared with the pure Nafion membrane conductivity are 0.0661 S cm-1 and 0.448 S cm-1 respectively in dry and wet conditions.

  5. Outer-selective thin film composite (TFC) hollow fiber membranes for osmotic power generation

    KAUST Repository

    Le, Ngoc Lieu

    2016-01-14

    The pressure-retarded osmosis (PRO) process is a green technique for power generation to respond the world\\'s need of energy sustainability. In this study, we have developed the vital component of the process, i.e. membrane, in the configuration of the outer-selective thin-film composite (TFC) hollow fiber, which is more practical than other configurations in the real applications. The support layer morphology and the formation of the selective polyamide layer have been optimized for a good PRO performance. The results show that the bore fluid with higher amount of the solvent N-methyl-2-pyrrolidone leads to full finger-like hollow fibers, which provide higher flux but lower pressure tolerance. The addition of higher amount of diethylene glycol into the dope solution, improves the pore formation and suppresses the macrovoid formation, while properly lowering the take-up speed increases their wall thickness and pressure tolerance. A simple alcohol-pre-wetting approach on the fiber support leads to a smooth and thin polyamide layer, which is favorable for a high water flux and power density. Its efficiency follows this order: n-propanol>ethanol>methanol>water. The n-propanol pre-wetted TFC membrane can tolerate 17 bar with a peak power density of 9.59 W/m2 at room temperature, using 1 M NaCl solution as the draw solution and DI water as feed. This work demonstrates the potential of outer-selective TFC hollow fiber membranes for energy conversion via PRO process, provides useful database to fabricate suitable support morphology and raise a simple technique to practically form a thin and smooth polyamide layer.

  6. Eccentric contractions affect muscle membrane phospholipid fatty acid composition in rats

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff; Therkildsen, K J; Jørgensen, T B

    2001-01-01

    This study investigated if prior eccentric contractions, and thus mechanical strain and muscle damage, exert an effect on the muscle membrane phospholipid fatty acid composition in rats, and whether a possible effect could be attenuated by dietary supplements. Twenty-three rats were randomised...... muscle, was excised from both legs. In the muscles stimulated to contract eccentrically, compared to the control muscles, the proportion of arachidonic acid, C20:4,n-6 (17.7 +/- 0.6; 16.4 +/- 0.4% of total fatty acids, respectively) and docosapentanoeic acid, C22:5,n-3 (2.9 +/- 0.1 and 2.7 +/- 0.......1% of total fatty acids, respectively) was uniformly higher across groups (P acids) compared to the control leg (38.2 +/- 0...

  7. Degradation of chlortetracycline using immobilized laccase on Polyacrylonitrile-biochar composite nanofibrous membrane.

    Science.gov (United States)

    Taheran, M; Naghdi, M; Brar, S K; Knystautas, E J; Verma, M; Surampalli, R Y

    2017-12-15

    The continuous release of antibiotic compounds through wastewater effluent into environment has raised concerns about their potential problems for different organisms. Enzymatic degradation with laccase is a green option for removal of pharmaceutical compounds from aqueous media. In this study, laccase was immobilized onto homemade Polyacrylonitrile-biochar composite nanofibrous membrane and the obtained biocatalyst was employed for removal of chlortetracycline, a widely used antibiotic, from aqueous media in continuous mode. The results showed that the immobilized laccase has improved storage, temperature and pH stability compared to free laccase. Also, it retained more than 50% of its initial activity after 7cycles of ABTS oxidation which indicated improved enzyme reusability. Finally, while using immobilized laccase for degradation of chlortetracycline in continuous mode exhibited 58.3%, 40.7% and 22.6% chlortetracycline removal efficiency at flux rates of 1, 2 and 3mL/h∙cm 2 . Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Eccentric contractions affect muscle membrane phospholipid fatty acid composition in rats

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff; Therkildsen, K J; Jørgensen, T B

    2001-01-01

    This study investigated if prior eccentric contractions, and thus mechanical strain and muscle damage, exert an effect on the muscle membrane phospholipid fatty acid composition in rats, and whether a possible effect could be attenuated by dietary supplements. Twenty-three rats were randomised...... to three groups who received chow with added fish oil (n = 8), vitamin C (n = 8) or no supplement (n = 7). After 3 weeks of feeding, calf muscles on one side were stimulated electrically during anaesthesia causing eccentric contractions. Two days later the white gastrocnemius, a part of the stimulated calf...... muscle, was excised from both legs. In the muscles stimulated to contract eccentrically, compared to the control muscles, the proportion of arachidonic acid, C20:4,n-6 (17.7 +/- 0.6; 16.4 +/- 0.4% of total fatty acids, respectively) and docosapentanoeic acid, C22:5,n-3 (2.9 +/- 0.1 and 2.7 +/- 0...

  9. Dendrimeric Thin-Film Composite Membranes: Free Volume, Roughness, and Fouling Resistance

    KAUST Repository

    Phuoc, Duong

    2017-11-10

    Copolyamide films with a thickness from 50 to 780 nm were fabricated by interfacial polymerization between mixtures of m-phenylene diamine and primary amine-terminated polyamidoamine dendrimers (PAMAM) in the aqueous phase and trimesoyl chloride (TMC) in the organic phase. Different PAMAM generations (G0, d = 15 Å, Z = 4; G3, d = 36 Å, Z = 32; and G5, d = 54, Z = 128, where d is the measured diameter and Z is the number of terminal groups) and concentrations were used to obtain copolyamide films with different crosslinked structures. The influences of the concentration and degree of branching (PAMAM generation) on free volume were analysed via positon annihilation spectroscopy (PAS) and correlated with the separation properties of copolyamide films. Besides, surface and intrinsic properties of copolyamide films under different conditions were compared. The high hydrophilicity of PAMAM in the copolyamide network leads to the formation of a hydration layer on the copolyamide surface, which minimizes fouling. The separation performance of copolyamide membranes with various PAMAM networks was investigated in forward osmosis (FO) experiments. Understanding the correlation between the PAMAM structure/concentration, free volume, thickness, and surface intrinsic properties leads to the design of suitable fouling resistant thin-film composite membranes in a single interfacial polymerization process.

  10. Investigation of a polymer electrolyte membrane fuel cell catalyst layer with bidirectionally-graded composition

    Science.gov (United States)

    Cetinbas, Firat C.; Advani, Suresh G.; Prasad, Ajay K.

    2014-12-01

    The catalyst layer (CL) of the polymer electrolyte membrane (PEM) fuel cell must be modeled accurately in order to resolve the effects of complex interactions between charge and mass transport on the fuel cell's electrochemical reactions. In previous work, we developed an agglomerate model [1] which correctly accounts for variations in the agglomerate surface area as the CL constituents are varied to provide a better estimate of diffusion losses. Here, this improved agglomerate model is employed to investigate a PEM fuel cell catalyst layer with a functionally-graded composition. We present results for varying catalyst and ionomer loadings in both the through-thickness and in-plane directions. In agreement with experimental observations, we find that a higher catalyst and/or ionomer loading at the membrane/CL interface improves performance especially in the ohmic loss regime. Similarly, improved performance is observed for higher catalyst and/or ionomer loadings under the channel in the mass transport loss regime. In addition, we investigated bidirectionally graded CLs for the first time. It is observed that higher performance can be obtained with bidirectionally graded CLs in both ohmic and mass transport loss regimes.

  11. In-situ Non-Invasive Imaging of Liquid-Immersed Thin Film Composite Membranes

    KAUST Repository

    Ogieglo, Wojciech

    2017-10-14

    We present a non-invasive method to directly image liquid-immersed thin film composite membranes. The approach allows accessing information not only on the lateral distribution of the coating thickness, including variations in its swelling and density, but also on the distribution of substrate porosity, roughness, accessibility of pores to liquid, and even the degree of pore intrusion related to the thin layer deposition process. The method can be particularly helpful in the fields of functional coatings or membranes to allow laterally-resolved studies under realistic application conditions thereby opening completely new research avenues. The approach is demonstrated in a study of two polymers of intrinsic microporosity, PIM-1 and PIM-6FDA-OH, coated on polyacrylonitrile support and immersed in water. Variations of the skin morphology using different coating methods (floating, spin-coating and dip-coating) are evaluated with the help of the presented method. Surfaces of at least tens of cm2 can be potentially analyzed.

  12. Effects of surface coating process conditions on the water permeation and salt rejection properties of composite polyamide reverse osmosis membranes

    KAUST Repository

    Louie, Jennifer Sarah

    2011-02-01

    The application of polymer surface coatings to improve the fouling resistance of reverse osmosis membranes tends to increase flow resistance across the membrane. This paper presents a systematic analysis on how membrane properties and performance are impacted by the coating process steps, and investigates how such effects could contribute to lower water flux. On one hand, simply pre-soaking dry aromatic polyamide composite membranes in aliphatic alcohols results in a significant increase in water flux, which is attributed to wetting of pores in the selective polyamide layer and to changes in the polymer structure. This flux increase was not readily reversible, based on a 300-h water permeation test. Conversely, drying a wetted membrane led to a decrease in water flux, which we hypothesize is caused by increased interchain hydrogen-bonding in the selective layer. This drop in water flux was not permanent; higher flux was observed if the same wetted/dried membrane was then re-soaked in ethanol prior to the water permeation experiment. An ethanol pre-soaking step also increased water flux of a PEBAX-coated membrane by nearly 70%. In contrast to the reduction in water flux caused by the specific treatment sequence of ethanol-swelling followed by drying, this same sequence actually increased gas transport. The eight- to ten-fold increase in Knudsen diffusion-based gas permeance after this pre-treatment was attributed to an increase in the number or size of membrane defects. © 2010 Elsevier B.V.

  13. Evaluation of clayey masses compositions starting from the residue incorporation of the red ceramic industry to obtain tubular ceramic membranes

    International Nuclear Information System (INIS)

    Silva, Adriano Lima da; Chaves, Alexsandra Cristina; Luna, Carlos Bruno Barreto; Neves, Gelmires de Araujo; Lira, Helio de Lucena

    2017-01-01

    The inappropriate residue disposal of red ceramic industry is very high. Nowadays, one of the major challenges is the investigation of processes to obtain alternative materials, enabling the use of these residues to manufacture new materials. This work's objective is to study clayey masses' compositions starting from the residue incorporation of the red ceramic industry to be used in tubular ceramic membranes. Two compositions of ceramic masses were established, composition A (50% of residue) and composition B (70% of residue). Granulometric analysis of the ceramic masses presented an average size of particles, what indicates membranes in the microfiltration scale. Another observed factor is related to the increase of residue amount, what favored a decrease in the ceramic mass' plasticity. A rise in the apparent porosity was also observed, probably because of a possible growing in the bigger pores numbers, due to the sintering high temperature and the elevation of residue quantity itself. (author)

  14. Capacitive Detection of Low-Enthalpy, Higher-Order Phase Transitions in Synthetic and Natural Composition Lipid Membranes.

    Science.gov (United States)

    Taylor, Graham J; Heberle, Frederick A; Seinfeld, Jason S; Katsaras, John; Collier, C Patrick; Sarles, Stephen A

    2017-09-26

    In-plane lipid organization and phase separation in natural membranes play key roles in regulating many cellular processes. Highly cooperative, first-order phase transitions in model membranes consisting of few lipid components are well understood and readily detectable via calorimetry, densitometry, and fluorescence. However, far less is known about natural membranes containing numerous lipid species and high concentrations of cholesterol, for which thermotropic transitions are undetectable by the above-mentioned techniques. We demonstrate that membrane capacitance is highly sensitive to low-enthalpy thermotropic transitions taking place in complex lipid membranes. Specifically, we measured the electrical capacitance as a function of temperature for droplet interface bilayer model membranes of increasing compositional complexity, namely, (a) a single lipid species, (b) domain-forming ternary mixtures, and (c) natural brain total lipid extract (bTLE). We observed that, for single-species lipid bilayers and some ternary compositions, capacitance exhibited an abrupt, temperature-dependent change that coincided with the transition detected by other techniques. In addition, capacitance measurements revealed transitions in mixed-lipid membranes that were not detected by the other techniques. Most notably, capacitance measurements of bTLE bilayers indicated a transition at ∼38 °C not seen with any other method. Likewise, capacitance measurements detected transitions in some well-studied ternary mixtures that, while known to yield coexisting lipid phases, are not detected with calorimetry or densitometry. These results indicate that capacitance is exquisitely sensitive to low-enthalpy membrane transitions because of its sensitivity to changes in bilayer thickness that occur when lipids and excess solvent undergo subtle rearrangements near a phase transition. Our findings also suggest that heterogeneity confers stability to natural membranes that function near

  15. Tunable and Memory Metamaterials

    Science.gov (United States)

    2015-12-02

    AFRL-AFOSR-VA-TR-2015-0402 TUNABLE AND MEMORY METAMATERIALS Dimitri Basov UNIVERSITY OF CALIFORNIA SAN DIEGO Final Report 12/02/2015 DISTRIBUTION A...DATES COVERED (From - To) 15-08-2010 to 14-08-2015 4. TITLE AND SUBTITLE TUNABLE AND MEMORY METAMATERIALS 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550...common limitations of infrared metamaterials in order to achieve low electromagnetic losses and broad tunability of the electromagnetic response. One

  16. Multilayer sulfur-resistant composite metal membranes and methods of making and repairing the same

    Science.gov (United States)

    Way, J. Douglas; Hatlevik, Oyvind

    2014-07-15

    The invention relates to thin, hydrogen-permeable, sulfur-resistant membranes formed from multi-layers of palladium or palladium-alloy coatings on porous, ceramic or metal supports, methods of making these membranes, methods of repairing layers of these membranes and devices that incorporate these membranes.

  17. Nanostructured bacterial cellulose-poly(4-styrene sulfonic acid) composite membranes with high storage modulus and protonic conductivity.

    Science.gov (United States)

    Gadim, Tiago D O; Figueiredo, Andrea G P R; Rosero-Navarro, Nataly C; Vilela, Carla; Gamelas, José A F; Barros-Timmons, Ana; Neto, Carlos Pascoal; Silvestre, Armando J D; Freire, Carmen S R; Figueiredo, Filipe M L

    2014-05-28

    The present study reports the development of a new generation of bio-based nanocomposite proton exchange membranes based on bacterial cellulose (BC) and poly(4-styrene sulfonic acid) (PSSA), produced by in situ free radical polymerization of sodium 4-styrenesulfonate using poly(ethylene glycol) diacrylate (PEGDA) as cross-linker, followed by conversion of the ensuing polymer into the acidic form. The BC nanofibrilar network endows the composite membranes with excellent mechanical properties at least up to 140 °C, a temperature where either pure PSSA or Nafion are soft, as shown by dynamic mechanical analysis. The large concentration of sulfonic acid groups in PSSA is responsible for the high ionic exchange capacity of the composite membranes, reaching 2.25 mmol g(-1) for a composite with 83 wt % PSSA/PEGDA. The through-plane protonic conductivity of the best membrane is in excess of 0.1 S cm(-1) at 94 °C and 98% relative humidity (RH), decreasing to 0.042 S cm(-1) at 60% RH. These values are comparable or even higher than those of ionomers such as Nafion or polyelectrolytes such as PSSA. This combination of electric and viscoelastic properties with low cost underlines the potential of these nanocomposites as a bio-based alternative to other polymer membranes for application in fuel cells, redox flow batteries, or other devices requiring functional proton conducting elements, such as sensors and actuators.

  18. Tunable laser applications

    CERN Document Server

    Duarte, FJ

    2008-01-01

    Introduction F. J. Duarte Spectroscopic Applications of Tunable Optical Parametric Oscillators B. J. Orr, R. T. White, and Y. He Solid-State Dye Lasers Costela, I. García-Moreno, and R. Sastre Tunable Lasers Based on Dye-Doped Polymer Gain Media Incorporating Homogeneous Distributions of Functional Nanoparticles F. J. Duarte and R. O. James Broadly Tunable External-Cavity Semiconductor Lasers F. J. Duarte Tunable Fiber Lasers T. M. Shay and F. J. Duarte Fiber Laser Overview and Medical Applications

  19. PALLADIUM/COPPER ALLOY COMPOSITE MEMBRANES FOR HIGH TEMPERATURE HYDROGEN SEPARATION FROM COAL-DERIVED GAS STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    J. Douglas Way

    2003-01-01

    For hydrogen from coal gasification to be used economically, processing approaches that produce a high purity gas must be developed. Palladium and its alloys, nickel, platinum and the metals in Groups 3 to 5 of the Periodic Table are all permeable to hydrogen. Hydrogen permeable metal membranes made of palladium and its alloys are the most widely studied due to their high hydrogen permeability, chemical compatibility with many hydrocarbon containing gas streams, and infinite hydrogen selectivity. Our Pd composite membranes have demonstrated stable operation at 450 C for over 70 days. Coal derived synthesis gas will contain up to 15000 ppm H{sub 2}S as well as CO, CO{sub 2}, N{sub 2} and other gases. Highly selectivity membranes are necessary to reduce the H{sub 2}S concentration to acceptable levels for solid oxide and other fuel cell systems. Pure Pd-membranes are poisoned by sulfur, and suffer from mechanical problems caused by thermal cycling and hydrogen embrittlement. Recent advances have shown that Pd-Cu composite membranes are not susceptible to the mechanical, embrittlement, and poisoning problems that have prevented widespread industrial use of Pd for high temperature H{sub 2} separation. These membranes consist of a thin ({le} 5 {micro}m) film of metal deposited on the inner surface of a porous metal or ceramic tube. With support from this DOE Grant, we have fabricated thin, high flux Pd-Cu alloy composite membranes using a sequential electroless plating approach. Thin, Pd{sub 60}Cu{sub 40} films exhibit a hydrogen flux more than ten times larger than commercial polymer membranes for H{sub 2} separation, resist poisoning by H{sub 2}S and other sulfur compounds typical of coal gas, and exceed the DOE Fossil Energy target hydrogen flux of 80 ml/cm{sup 2} {center_dot} min = 0.6 mol/m{sup 2} {center_dot} s for a feed pressure of 40 psig. Similar Pd-membranes have been operated at temperatures as high as 750 C. We have developed practical electroless plating

  20. Yak milk fat globules from the Qinghai-Tibetan Plateau: Membrane lipid composition and morphological properties.

    Science.gov (United States)

    Luo, Jie; Huang, Ziyu; Liu, Hongna; Zhang, Yan; Ren, Fazheng

    2018-04-15

    Yak milk fat products constitute the base of Qinghai-Tibetan pastoralists' daily food intake. Despite the great importance of fat in processing and pastoralists' health, studies about yak milk fat are scarce. In this study, the lipid composition and the morphological properties of milk fat globule membranes (MFGMs) of yak milk were investigated. The results demonstrated that the yak milk had a higher cholesterol and sphingomyelin content compared to cow milk. In situ structural investigations performed at 25 °C by confocal microscopy showed the presence of lipid domains in yak MFGM, with a larger number and wider size range compared to cow milk. Moreover, the simultaneous localization of glycosylated molecules and polar lipids indicated that glycosylated molecules could be integrated into the lipid domains in yak MFGM. Different characteristics in yak MFGM could be related to the lipid composition and may affect the functions of yak milk lipids during processing and digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Preparation of Nafion 117™-SnO2 Composite Membranes using an Ion-Exchange Method

    DEFF Research Database (Denmark)

    Nørgaard, Casper Frydendal; Nielsen, Ulla Gro; Skou, Eivind Morten

    2012-01-01

    ∙ 2 H2O used in the ion-exchange step, compositions ranging from 2 to 8 wt% SnO2 with SnO2 homogeneously distributed as nanoparticles were obtained. The prepared nanocomposite membranes were characterized by powder XRD, 119Sn MAS NMR spectroscopy, electrochemical impedance spectroscopy, water uptake......Nafion 117™-SnO2 composite membranes were prepared by in-situ particle formation using an ion-exchange method. SnO2 was incorporated into Nafion 117ä membranes by ion-exchange in solutions of SnCl2 ∙2 H2O in methanol, followed by oxidation to SnO2 in air. By adjustment of the concentration of SnCl2...

  2. Multilayer composite membranes for gas separation based on crosslinked PTMSP gutter layer and partially crosslinked Matrimid R 5218 selective layer

    Czech Academy of Sciences Publication Activity Database

    Peter, Jakub; Peinemann, K.; V.

    2009-01-01

    Roč. 340, 1-2 (2009), s. 62-72 ISSN 0376-7388 Grant - others:Marie Curie fellowship(XE) HPMT-CT-2001-00220 Institutional research plan: CEZ:AV0Z40500505 Keywords : composite membrane * gas separation * PTMSP * Matrimid Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.203, year: 2009

  3. The tunable pReX expression vector enables optimizing the T7-based production of membrane and secretory proteins in E. coli.

    Science.gov (United States)

    Kuipers, Grietje; Karyolaimos, Alexandros; Zhang, Zhe; Ismail, Nurzian; Trinco, Gianluca; Vikström, David; Slotboom, Dirk Jan; de Gier, Jan-Willem

    2017-12-16

    To optimize the production of membrane and secretory proteins in Escherichia coli, it is critical to harmonize the expression rates of the genes encoding these proteins with the capacity of their biogenesis machineries. Therefore, we engineered the Lemo21(DE3) strain, which is derived from the T7 RNA polymerase-based BL21(DE3) protein production strain. In Lemo21(DE3), the T7 RNA polymerase activity can be modulated by the controlled co-production of its natural inhibitor T7 lysozyme. This setup enables to precisely tune target gene expression rates in Lemo21(DE3). The t7lys gene is expressed from the pLemo plasmid using the titratable rhamnose promoter. A disadvantage of the Lemo21(DE3) setup is that the system is based on two plasmids, a T7 expression vector and pLemo. The aim of this study was to simplify the Lemo21(DE3) setup by incorporating the key elements of pLemo in a standard T7-based expression vector. By incorporating the gene encoding the T7 lysozyme under control of the rhamnose promoter in a standard T7-based expression vector, pReX was created (ReX stands for Regulated gene eXpression). For two model membrane proteins and a model secretory protein we show that the optimized production yields obtained with the pReX expression vector in BL21(DE3) are similar to the ones obtained with Lemo21(DE3) using a standard T7 expression vector. For another secretory protein, a c-type cytochrome, we show that pReX, in contrast to Lemo21(DE3), enables the use of a helper plasmid that is required for the maturation and hence the production of this heme c protein. Here, we created pReX, a T7-based expression vector that contains the gene encoding the T7 lysozyme under control of the rhamnose promoter. pReX enables regulated T7-based target gene expression using only one plasmid. We show that with pReX the production of membrane and secretory proteins can be readily optimized. Importantly, pReX facilitates the use of helper plasmids. Furthermore, the use of pReX is

  4. Ultra-selective defect-free interfacially polymerized molecular sieve thin-film composite membranes for H2 purification

    KAUST Repository

    Ali, Zain

    2017-10-10

    Purification is a major bottleneck towards generating low-cost commercial hydrogen. In this work, inexpensive high-performance H2 separating membranes were fabricated by modifying the commercially successful interfacial polymerization production method for reverse osmosis membranes. Defect-free thin-film composite membranes were formed demonstrating unprecedented mixed-gas H2/CO2 selectivity of ≈ 50 at 140 °C with H2 permeance of 350 GPU, surpassing the permeance/selectivity upper bound of all known polymer membranes by a wide margin. The combination of exceptional separation performance and low manufacturing cost makes them excellent candidates for cost-effective hydrogen purification from steam cracking and similar processes.

  5. Preparation and characterization of antibacterial electrospun chitosan/poly (vinyl alcohol)/graphene oxide composite nanofibrous membrane

    Science.gov (United States)

    Yang, Shuai; Lei, Peng; Shan, Yujuan; Zhang, Dawei

    2018-03-01

    In this paper, chitosan (CS)/poly (vinyl alcohol) (PVA)/graphene oxide (GO) composite nanofibrous membranes were prepared via electrospinning. Such nanofibrous membranes have been characterized and investigated for their morphological, structural, thermal stability, hydrophilic and antibacterial properties. SEM images showed that the uniform and defect-free nanofibers were obtained and GO sheets, shaping spindle and spherical, were partially embedded into nanofibers. FTIR, XRD, DSC and TGA indicated the good compatibility between CS and PVA. There were strong intermolecular hydrogen bonds between the chitosan and PVA molecules. Contact angle measurement indicated that while increasing the content of GO, the distance between fibers increased and water drop showed wetting state on the surface of nanofibrous membranes. As a result, the contact angle decreased significantly. Meanwhile, good antibacterial activity of the prepared nanofibrous membranes were exhibited against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus.

  6. Preparation and Bioactivity Properties of a Novel Composite Membrane of Fructose Mediated β-Tricalcium Pyrophosphate/(Polyethylene Glycol/Chitosan for Guided Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Jian-Wen Wang

    2015-01-01

    Full Text Available A novel composite membrane of β-tricalcium pyrophosphate (β-TCP and fructose- (F- mediated chitosan/poly(ethylene glycol (CS/PEG was prepared by thermally induced phase separation technique. The prepared composite membranes were characterized using scanning electron microscopy (SEM and X-ray diffraction (XRD. The mechanical property, swelling, degradation, and cytotoxicity of the composite membranes were evaluated in vitro with respect to its potential for use as biodegradable guided tissue regeneration (GTR membrane. In vitro degradation tests showed the composite membrane with a controllable degradation rate when changing the β-TCP content. The incorporation of β-TCP granules also caused a significant enhancement of tensile strength. When β-TCP content is controlled to 50 wt%, homogeneous composite membranes with well mechanical property and enzymatic degradation rate can be obtained. Cytotoxicity assay demonstrates that the composite membranes were nontoxic and had very good cell compatibility. Most importantly, the release of calcium ions and glucosamine from the composite membranes was proved to increase the cell proliferation of NIH3T3. The results of this study have indicated that this novel F-β-TCP/CS/PEG composite can be a suitable material for GTR applications.

  7. Cellulose Aerogel Membranes with a Tunable Nanoporous Network as a Matrix of Gel Polymer Electrolytes for Safer Lithium-Ion Batteries.

    Science.gov (United States)

    Wan, Jiqiang; Zhang, Jinming; Yu, Jian; Zhang, Jun

    2017-07-26

    Cellulose aerogel membranes (CAMs) are proposed as a matrix for gel polymer electrolyte to the fabrication of lithium-ion batteries (LIBs) with superior thermal stability. The CAMs are obtained from a cellulose-ionic liquid solution via a dissolution-regeneration-supercritical drying route. The presence of high porosity, the nanoporous network structure, and numerous polar hydroxyl groups benefits the quick absorption of liquid electrolytes for gelation of the CAMs and improves the ionic conductivity of the gelled CAMs. LIBs assembled with the gelled CAMs display excellent electrochemical performance at room temperature, and more importantly, the intrinsic thermal resistance of cellulose allows the LIBs to run stably for at least 30 min at working temperatures as high as 120 °C. The CAMs, with their excellent thermal stability, are promising for the development of highly safe, cost-effective, and high-performance LIBs.

  8. Hydraulically irreversible fouling on ceramic MF/UF membranes: comparison of fouling indices, foulant composition and irreversible pore narrowing

    KAUST Repository

    Shang, Ran

    2015-05-06

    The application of ceramic membranes in water treatment is becoming increasing attractive because of their long life time and excellent chemical, mechanical and thermal stability. However, fouling of ceramic membranes, especially hydraulically irreversible fouling, is still a critical aspect affecting the operational cost and energy consumption in water treatment plants. In this study, four ceramic membranes with pore sizes or molecular weight cut-off (MWCO) of 0.20 μm, 0.14 μm, 300 kDa and 50 kDa were compared during natural surface water filtration with respect to hydraulically irreversible fouling index (HIFI), foulant composition and narrowing of pore size due to the irreversible fouling. Our results showed that the hydraulically irreversible fouling index (HIFI) was proportional to the membrane pore size (r2=0.89) when the same feed water was filtrated. The UF membranes showed lower HIFI values than the MF membranes. Pore narrowing (internal fouling) was found to be a main fouling pattern of the hydraulically irreversible fouling. The internal fouling was caused by monolayer adsorption of foulants with different sizes that is dependent on the size of the membrane pore.

  9. Novel cellulose ester substrates for high performance flat-sheet thin-film composite (TFC) forward osmosis (FO) membranes

    KAUST Repository

    Ong, Rui Chin

    2015-01-01

    A novel hydrophilic cellulose ester with a high intrinsic water permeability and a water partition coefficient was discovered to construct membrane supports for flat-sheet thin film composite (TFC) forward osmosis (FO) membranes for water reuse and seawater desalination with high performance. The performance of TFC-FO membranes prepared from the hydrophilic cellulose ester containing a high degree of OH and a moderate degree of Pr substitutions clearly surpasses those prepared from cellulose esters and other polymers with moderate hydrophilicity. Post-treatments of TFC-FO membranes using sodium dodecyl sulfate (SDS) and glycerol followed by heat treatment further enhance the water flux without compromising the selectivity. Positron annihilation lifetime analyses have confirmed that the SDS/glycerol post-treatment increases the free volume size and fractional free volume of the polyamide selective layer. The newly developed post-treated TFC-FO membranes exhibit a remarkably high water flux up to 90 LMH when the selective layer is oriented towards the draw solution (i.e., PRO mode) using 1. M NaCl as the draw solution and DI water as the feed. For seawater desalination, the membranes display a high water flux up to 35 LMH using a 2. M NaCl draw solution. These water fluxes exceeded the water fluxes achieved by other types of FO membranes reported in literatures. © 2014 Elsevier B.V.

  10. Molecular Simulation of Ionic Polyimides and Composites with Ionic Liquids as Gas-Separation Membranes.

    Science.gov (United States)

    Abedini, Asghar; Crabtree, Ellis; Bara, Jason E; Turner, C Heath

    2017-10-24

    Polyimides are at the forefront of advanced membrane materials for CO 2 capture and gas-purification processes. Recently, ionic polyimides (i-PIs) have been reported as a new class of condensation polymers that combine structural components of both ionic liquids (ILs) and polyimides through covalent linkages. In this study, we report CO 2 and CH 4 adsorption and structural analyses of an i-PI and an i-PI + IL composite containing [C 4 mim][Tf 2 N]. The combination of molecular dynamics (MD) and grand canonical Monte Carlo (GCMC) simulations is used to compute the gas solubility and the adsorption performance with respect to the density, fractional free volume (FFV), and surface area of the materials. Our results highlight the polymer relaxation process and its correlation to the gas solubility. In particular, the surface area can provide meaningful guidance with respect to the gas solubility, and it tends to be a more sensitive indicator of the adsorption behavior versus only considering the system density and FFV. For instance, as the polymer continues to relax, the density, FFV, and pore-size distribution remain constant while the surface area can continue to increase, enabling more adsorption. Structural analyses are also conducted to identify the nature of the gas adsorption once the ionic liquid is added to the polymer. The presence of the IL significantly displaces the CO 2 molecules from the ligand nitrogen sites in the neat i-PI to the imidazolium rings in the i-PI + IL composite. However, the CH 4 molecules move from the imidazolium ring sites in the neat i-PI to the ligand nitrogen atoms in the i-PI + IL composite. These molecular details can provide critical information for the experimental design of highly selective i-PI materials as well as provide additional guidance for the interpretation of the simulated adsorption systems.

  11. The production of sulfonated chitosan-sodium alginate found in brown algae (Sargassum sp.) composite membrane as proton exchange membrane fuel cell (PEMFC)

    Science.gov (United States)

    Wafiroh, Siti; Pudjiastuti, Pratiwi; Sari, Ilma Indana

    2016-03-01

    The majority of energy was used in this period is from fossil fuel, which getting decreased in the future. The objective of this research is production and characterization of sulfonated chitosan-sodium alginate found in brown algae (Sargassum sp.) composite membrane as Proton Exchange Membrane Fuel Cell (PEMFC) for alternative energy. PEMFC was produced with 4 variations (w/w) ratio between chitosan and sodium alginate, 8 : 0, 8 : 1, 8 : 2, 8 : 4 (w/w). The production of membrane was mixed sodium alginate solution into chitosan solution and sulfonated with H2SO4 0.72 N. The characterization of the PEM was uses Modulus Young analysis, water swelling, ion exchange capacity, FTIR, SEM, DTA, methanol permeability and proton conductivity. The result of the research, showed that the optimum membrane was with ratio 8 : 2 (w/w) that the Modulus Young 8564 kN/m2, water swelling 31.86%, ion exchange capacity 1.020 meq/g, proton conductivity 8,8 × 10-6 S/cm, methanol permeability 1.90 × 10-8 g/cm2s and glass transition temperature (Tg) 100.9 °C, crystalline temperature (Tc) 227.6 °C, and the melting temperature (Tm) 267.9 °C.

  12. MEMS Tunable Antennas

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Morris, Art; Pedersen, Gert Frølund

    2014-01-01

    Addressing low frequency bands is challenging on small platforms. Tunability is a promising solution to cover the bandwidth required for 4G mobile communication. The work presents two designs and shows that for comparable efficiency and bandwidth, the tunable antenna occupies half the volume requ...

  13. Seasonal changes in the composition of storage and membrane lipids in overwintering larvae of the codling moth, Cydia pomonella.

    Science.gov (United States)

    Rozsypal, Jan; Koštál, Vladimír; Berková, Petra; Zahradníčková, Helena; Simek, Petr

    2014-10-01

    The codling moth (Cydia pomonella) is a major insect pest of apples worldwide. It overwinters as a diapausing fifth instar larva. The overwintering is often a critical part of the insect life-cycle in temperate zone. This study brings detailed analysis of seasonal changes in lipid composition and fluidity in overwintering larvae sampled in the field. Fatty acid composition of triacylglycerol (TG) depots in the fat body and relative proportions of phospholipid (PL) molecular species in biological membranes were analyzed. In addition, temperature of melting (Tm) in TG depots was assessed by using differential scanning calorimetry and the conformational order (fluidity) of PL membranes was analyzed by measuring the anisotropy of fluorescence polarization of diphenylhexatriene probe in membrane vesicles. We observed a significant increase of relative proportion of linoleic acid (C18:2n6) at the expense of palmitic acid (C16:0) in TG depots during the larval transition to diapause accompanied with decreasing melting temperature of total lipids, which might increase the accessibility of depot fats for enzymatic breakdown during overwintering. The fluidity of membranes was maintained very high irrespective of developmental mode or seasonally changing acclimation status of larvae. The seasonal changes in PL composition were relatively small. We discuss these results in light of alternative survival strategies of codling moth larvae (supercooling vs. freezing), variability and low predictability of environmental conditions, and other cold tolerance mechanisms such as extending the supercooling capacity and massive accumulation of cryoprotective metabolites. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Preparation and Characterization of Thin-Film Composite Membrane with Nanowire-Modified Support for Forward Osmosis Process

    Directory of Open Access Journals (Sweden)

    Ze-Xian Low

    2015-03-01

    Full Text Available Internal concentration polarization (ICP in forward osmosis (FO process is a characteristic problem for asymmetric thin-film composite (TFC FO membrane which leads to lower water flux. To mitigate the ICP effect, modification of the substrates’ properties has been one of the most effective methods. A new polyethersulfone-based ultrafiltration membrane with increased surface porosity and high water flux was recently produced by incorporating Zn2GeO4 nanowires. The composite membrane was used as a substrate for the fabrication of TFC FO membrane, by coating a thin layer of polyamide on top of the substrate. The substrate and the nanowires were characterized by a range of techniques such as SEM, XRD, and contact angle goniometry. The water permeability and molecular weight cut-offs (MWCO of the substrate; and the FO performance of the TFC membrane were also determined. The Zn2GeO4-modified membrane showed ~45% increase in water permeability and NaCl salt rejection of 80% under RO mode. In FO mode, the ratio of water flux to reverse solute flux was also improved. However, lower FO flux was obtained which could be due to ICP. The result shows that Zn2GO4 nanowire may be used as a modifier to the substrate to improve the quality of the polyamide layer on the substrate to improve the flux and selectivity, but not as effective in reducing ICP. This work demonstrates that the incorporation of nanomaterials to the membrane substrate may be an alternative approach to improve the formation of polyamide skin layer to achieve better FO performance.

  15. Preparation and Characterization of Thin-Film Composite Membrane with Nanowire-Modified Support for Forward Osmosis Process

    Science.gov (United States)

    Low, Ze-Xian; Liu, Qi; Shamsaei, Ezzatollah; Zhang, Xiwang; Wang, Huanting

    2015-01-01

    Internal concentration polarization (ICP) in forward osmosis (FO) process is a characteristic problem for asymmetric thin-film composite (TFC) FO membrane which leads to lower water flux. To mitigate the ICP effect, modification of the substrates’ properties has been one of the most effective methods. A new polyethersulfone-based ultrafiltration membrane with increased surface porosity and high water flux was recently produced by incorporating Zn2GeO4 nanowires. The composite membrane was used as a substrate for the fabrication of TFC FO membrane, by coating a thin layer of polyamide on top of the substrate. The substrate and the nanowires were characterized by a range of techniques such as SEM, XRD, and contact angle goniometry. The water permeability and molecular weight cut-offs (MWCO) of the substrate; and the FO performance of the TFC membrane were also determined. The Zn2GeO4-modified membrane showed ~45% increase in water permeability and NaCl salt rejection of 80% under RO mode. In FO mode, the ratio of water flux to reverse solute flux was also improved. However, lower FO flux was obtained which could be due to ICP. The result shows that Zn2GO4 nanowire may be used as a modifier to the substrate to improve the quality of the polyamide layer on the substrate to improve the flux and selectivity, but not as effective in reducing ICP. This work demonstrates that the incorporation of nanomaterials to the membrane substrate may be an alternative approach to improve the formation of polyamide skin layer to achieve better FO performance. PMID:25803239

  16. Non-noble metal based electro-catalyst compositions for proton exchange membrane based water electrolysis and methods of making

    Energy Technology Data Exchange (ETDEWEB)

    Kumta, Prashant N.; Kadakia, Karan Sandeep; Datta, Moni Kanchan; Velikokhatnyi, Oleg

    2017-02-07

    The invention provides electro-catalyst compositions for an anode electrode of a proton exchange membrane-based water electrolysis system. The compositions include a noble metal component selected from the group consisting of iridium oxide, ruthenium oxide, rhenium oxide and mixtures thereof, and a non-noble metal component selected from the group consisting of tantalum oxide, tin oxide, niobium oxide, titanium oxide, tungsten oxide, molybdenum oxide, yttrium oxide, scandium oxide, cooper oxide, zirconium oxide, nickel oxide and mixtures thereof. Further, the non-noble metal component can include a dopant. The dopant can be at least one element selected from Groups III, V, VI and VII of the Periodic Table. The compositions can be prepared using a surfactant approach or a sol gel approach. Further, the compositions are prepared using noble metal and non-noble metal precursors. Furthermore, a thin film containing the compositions can be deposited onto a substrate to form the anode electrode.

  17. Novel Ceramic-Polymer Composite Membranes for the Separation of Hazardous Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Yoram Cohen

    2001-12-01

    The present project was conceived to address the need for robust yet selective membranes suitable for operating in harsh ph, solvent, and temperature environments. An important goal of the project was to develop a membrane chemical modification technology that would allow one to tailor-design membranes for targeted separation tasks. The method developed in the present study is based on the process of surface graft polymerization. Using essentially the same base technology of surface modification the research was aimed at demonstrating that improved membranes can be designed for both pervaporation separation and ultrafiltration. In the case of pervaporation, the present study was the first to demonstrate that pervaporation can be achieved with ceramic support membranes modified with an essentially molecular layer of terminally anchored polymer chains. The main advantage of the above approach, relative to other proposed membranes, is that the separating polymer layer is covalently attached to the ceramic support. Therefore, such membranes have a potential use in organic-organic separations where the polymer can swell significantly yet membrane robustness is maintained due to the chemical linkage of the chains to be inorganic support. The above membrane technology was also useful in developing fouling resistant ultrafiltration membranes. The prototype membrane developed in the project was evaluated for the treatment of oil-in-water microemulsions, demonstrating lack of irreversible fouling common with commercial membranes.

  18. Modification of Polyamide-Urethane (PAUt Thin Film Composite Membrane for Improving the Reverse Osmosis Performance

    Directory of Open Access Journals (Sweden)

    Li-Fen Liu

    2018-03-01

    Full Text Available In the current study, the poly (amide-urethane (PAUt membranes were successfully fabricated by interfacial polymerization of m-phenylenediamine (MPD and 5-choroformyloxyisophaloyl chloride (CFIC on the polysulfone substrates. Two modification methods based on layer-by-layer assembly were applied to modify the PAUt membrane surface to achieve antifouling property: 1. Chitosan (CS was directly self-assembled on the PAUt membrane (i.e., PAUt-CS; and 2. polydimethyl diallyl ammonium chloride (PDDA, polystyrene sulfonate (PSS, and CS were successively self-assembled on the membrane surface (i.e., PAUt-PDDA/PSS/CS. The resultant membranes were symmetrically characterized by Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR, X-ray Photoelectron Spectroscopy (XPS, Scanning Electron Microscopy (SEM, Atomic Force Microscopy (AFM and Contact Angle Meter (CAM, respectively. The results indicated that the modified membranes had much smoother and more hydrophilic surfaces as compared to the nascent PAUt membrane. Meanwhile, the modified membranes exhibited better reverse osmosis performance in terms of water permeability and salt rejection. After the modified membranes were fouled by lake water, the PAUt-PDDA/PSS/CS membrane presented the best antifouling performance among the three types of membranes. Combining the reverse osmosis performance with the anti-fouling property obviously, the PAUt-PDDA/PSS/CS membrane behaved as a promising candidate to be used in real applications.

  19. Novel Protic Ionic Liquid Composite Membranes with Fast and Selective Gas Transport Nanochannels for Ethylene/Ethane Separation.

    Science.gov (United States)

    Dou, Haozhen; Jiang, Bin; Xiao, Xiaoming; Xu, Mi; Tantai, Xiaowei; Wang, Baoyu; Sun, Yongli; Zhang, Luhong

    2018-04-25

    Protic ionic liquids (PILs) were utilized for the fabrication of composite membranes containing silver salt as the C 2 H 4 transport carrier to perform C 2 H 4 /C 2 H 6 separation for the first time. The intrinsic nanostructures of PILs were adopted to construct fast and selective C 2 H 4 transport nanochannels. The investigation of structure-performance relationships of composite membranes suggested that transport nanochannels (polar domains of PILs) could be tuned by the sizes of cations, which greatly manipulated activity of the carrier and determined the separation performances of membranes. The role of different carriers in the facilitated transport was studied, which revealed that the PILs were good solvents for dissolution and activation of the carrier due to their hydrogen bond networks and waterlike properties. The operating conditions of separation process were investigated systemically and optimized, confirming C 2 H 4 /C 2 H 6 selectivity was enhanced with the increase of silver salt concentration, the flow rate of sweep gas, and the feed ratio of C 2 H 4 to C 2 H 6 , as well as the decrease of the transmembrane pressure and operating temperature. Furthermore, the composite membranes exhibited long-term stability and obtained very competitive separation performances compared with other results. In summary, PIL composite membranes, which possess good long-term stability, high C 2 H 4 /C 2 H 6 selectivity, and excellent C 2 H 4 permeability, may have a good perspective in industrial C 2 H 4 /C 2 H 6 separation.

  20. Development and glycoprotein composition of the perimicrovillar membrane in Triatoma (Meccus) pallidipennis (Hemiptera: Reduviidae).

    Science.gov (United States)

    Gutiérrez-Cabrera, Ana E; Alejandre-Aguilar, Ricardo; Hernández-Martínez, Salvador; Espinoza, Bertha

    2014-11-01

    Hemipterans and thysanopterans (Paneoptera: Condylognatha) differ from other insects by having an intestinal perimicrovillar membrane (PMM) which extends from the base of the microvilli to the intestinal lumen. The development and composition of the PMM in hematophagous Reduviidae depend on factors related to diet. The PMM may also allow the human parasite Trypanosoma cruzi, the etiological agent of human Chagas Disease, to establish and develop in this insect vector. We studied the PMM development in the Mexican vector of Chagas Disease, Triatoma (Meccus) pallidipennis. We describe changes in the midgut epithelial cells of insects in response to starvation, and at different times (10, 15 and 20 days) after bloodfeeding. In starved insects, the midguts showed epithelial cells closely connected to each other but apparently free of PMM with some regions being periodic acid-Schiff (PAS-Schiff) positive. In contrast, the PMM was evident and fully developed in the midgut region of insects 15 days after feeding. After this time, the PMM completely covered the microvilli and reached the midgut lumen. At 15 days following feeding the labeled PAS-Schiff increased in the epithelial apex, suggesting an increase in carbohydrates. Lectins as histochemical reagents show the presence of a variety of glycoconjugates including mannose, glucose, galactosamine, N-acetyl-galactosamine. Also present were N-acetyl-glucosamine and sialic acid which contribute to the successful establishment and replication or T. cruzi in its insect vectors. By means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM), the formation and structure of the PMM is confirmed at 15 days post feeding. Our results confirmed the importance of the feeding processes in the formation of the PMM and showed the nature of the biochemical composition of the vectors' intestine in this important Mexican vector of Chagas disease. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. How different is the composition of the fouling layer of wastewater reuse and seawater desalination RO membranes?

    KAUST Repository

    Khan, Muhammad

    2014-08-01

    To study the effect of water quality and operating parameters on membrane fouling, a comparative analysis of wastewater (WW) and seawater (SW) fouled reverse osmosis (RO) membranes was conducted. Membranes were harvested from SWRO and WWRO pilot plants located in Vilaseca (East Spain), both using ultrafiltration as pretreatment. The SWRO unit was fed with Mediterranean seawater and the WWRO unit was operated using secondary effluent collected from the municipal wastewater treatment plant. Lead and terminal SWRO and WWRO modules were autopsied after five months and three months of operation, respectively. Ultrastructural, chemical, and microbiological analyses of the fouling layers were performed. Results showed that the WWRO train had mainly bio/organic fouling at the lead position element and inorganic fouling at terminal position element, whereas SWRO train had bio/organic fouling at both end position elements. In the case of WWRO membranes, Betaproteobacteria was the major colonizing species; while Ca, S, and P were the major present inorganic elements. The microbial population of SWRO membranes was mainly represented by Alpha and Gammaproteobacteria. Ca, Fe, and S were the main identified inorganic elements of the fouling layer of SWRO membranes. These results confirmed that the RO fouling layer composition is strongly impacted by the source water quality. © 2014 Elsevier Ltd.

  2. Preparation of mesoporous poly (acrylic acid)/SiO2 composite nanofiber membranes having adsorption capacity for indigo carmine dye

    Science.gov (United States)

    Xu, Ran; Jia, Min; Li, Fengting; Wang, Hongtao; Zhang, Bingru; Qiao, Junlian

    2012-03-01

    Mesoporous poly (acrylic acid)/SiO2 (PAA/SiO2) composite nanofiber membranes functionalized with mercapto groups were fabricated by a sol-gel electrospinning method, and their adsorption capacity for indigo carmine was investigated. The membranes were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, x-ray powder diffraction (XRD), and nitrogen adsorption-desorption measurement. SEM and TEM observation results showed that the PAA/SiO2 fibers had diameters between 400-800 nm and mesopores with an average pore size of 3.88 nm. The specific surface area of the mesoporous nanofiber membranes was 514.89 m2/g. The characteristic peaks for mercapto group vibration in FTIR and Raman spectra demonstrated that the mercapto groups have been incorporated into the silica skeleton. The adsorption isotherm data of indigo carmine on the membranes fit well with Redlich-Peterson model, and the maximum adsorption capacity calculated was 523.11 mg/g. It was found that the removal rate of indigo carmine by the membranes reached a maximum of 98% in 90 min and the adsorption kinetics followed a pseudo-second-order model. The high adsorption capacity of PAA/SiO2 nanofiber membrane makes it a promising adsorbent for indigo carmine removal from the wastewater.

  3. Electrolytic Production of Ti5Si3/TiC Composites by Solid Oxide Membrane Technology

    Science.gov (United States)

    Zheng, Kai; Zou, Xingli; Xie, Xueliang; Lu, Changyuan; Chen, Chaoyi; Xu, Qian; Lu, Xionggang

    2018-02-01

    This paper investigated the electrolytic production of Ti5Si3/TiC composites from TiO2/SiO2/C in molten CaCl2. The solid-oxide oxygen-ion-conducting membrane tube filled with carbon-saturated liquid tin was served as the anode, and the pressed spherical TiO2/SiO2/C pellet was used as the cathode. The electrochemical reduction process was carried out at 1273 K and 3.8 V. The characteristics of the obtained cathode products and the reaction mechanism of the electroreduction process were studied by a series of time-dependent electroreduction experiments. It was found that the electroreduction process generally proceeds through the following steps: TiO2/SiO2/C → Ti2O3, CaTiO3, Ca2SiO4, SiC → Ti5Si3, TiC. The morphology observation and the elemental distribution analysis indicate that the reaction routes for Ti5Si3 and TiC products are independent during the electroreduction process.

  4. Synthesis and Gas Transport Properties of Hyperbranched Polyimide–Silica Hybrid/Composite Membranes

    Directory of Open Access Journals (Sweden)

    Masako Miki

    2013-12-01

    Full Text Available Hyperbranched polyimide–silica hybrids (HBPI–silica HBDs and hyperbranched polyimide–silica composites (HBPI–silica CPTs were prepared, and their general and gas transport properties were investigated to clarify the effect of silica sources and preparation methods. HBPI–silica HBDs and HBPI–silica CPTs were synthesized by two-step polymerization of A2 + B3 monomer system via polyamic acid as precursor, followed by hybridizing or blending silica sources. Silica components were incorporated by the sol-gel reaction with tetramethoxysilane (TMOS or the addition of colloidal silica. In HBPI-silica HBDs, the aggregation of silica components is controlled because of the high affinity of HBPI and silica caused by the formation of covalent bonds between HBPI and silica. Consequently, HBPI-silica HBDs had good film formability, transparency, and mechanical properties compared with HBPI-silica CPTs. HBPI-silica HBD and CPT membranes prepared via the sol-gel reaction with TMOS showed specific gas permeabilities and permselectivities for CO2/CH4 separation, that is, both CO2 permeability and CO2/CH4 selectivity increased with increasing silica content. This result suggests that gas transport can occur through a molecular sieving effect of the porous silica network derived from the sol-gel reaction and/or through the narrow interfacial region between the silica networks and the organic matrix.

  5. Human Immunodeficiency Virus Type 1 Nef protein modulates the lipid composition of virions and host cell membrane microdomains

    Directory of Open Access Journals (Sweden)

    Geyer Matthias

    2007-10-01

    Full Text Available Abstract Background The Nef protein of Human Immunodeficiency Viruses optimizes viral spread in the infected host by manipulating cellular transport and signal transduction machineries. Nef also boosts the infectivity of HIV particles by an unknown mechanism. Recent studies suggested a correlation between the association of Nef with lipid raft microdomains and its positive effects on virion infectivity. Furthermore, the lipidome analysis of HIV-1 particles revealed a marked enrichment of classical raft lipids and thus identified HIV-1 virions as an example for naturally occurring membrane microdomains. Since Nef modulates the protein composition and function of membrane microdomains we tested here if Nef also has the propensity to alter microdomain lipid composition. Results Quantitative mass spectrometric lipidome analysis of highly purified HIV-1 particles revealed that the presence of Nef during virus production from T lymphocytes enforced their raft character via a significant reduction of polyunsaturated phosphatidylcholine species and a specific enrichment of sphingomyelin. In contrast, Nef did not significantly affect virion levels of phosphoglycerolipids or cholesterol. The observed alterations in virion lipid composition were insufficient to mediate Nef's effect on particle infectivity and Nef augmented virion infectivity independently of whether virus entry was targeted to or excluded from membrane microdomains. However, altered lipid compositions similar to those observed in virions were also detected in detergent-resistant membrane preparations of virus producing cells. Conclusion Nef alters not only the proteome but also the lipid composition of host cell microdomains. This novel activity represents a previously unrecognized mechanism by which Nef could manipulate HIV-1 target cells to facilitate virus propagation in vivo.

  6. APPLICATION OF PAN/PANI COMPOSITE MEMBRANES IN PURIFICATION OF INDUSTRIAL WASTEWATER GENERATED DURING PROCESSING OF METALS

    Directory of Open Access Journals (Sweden)

    Beata Fryczkowska

    2017-04-01

    Full Text Available The paper presents results of research on the use of composite membranes of polyacrylonitrile (PAN doped polyaniline (PANI to remove contaminations of industrial wastewater generated during the processing of metals. Wastewater obtained from industry was pre-treated with the flocculant Magnafloc®336, and then the supernatant solution was introduced into the ultrafiltration cell, AMICON (Millipore equipped in the previously prepared polymer membrane. Using spectrophotometer UV-Vis (HACH and atomic absorption spectrometry (AAS pollution indicators was marked before and after the integrated purification proces, to determine the degree of removal of selected ions from wastewater. As a result of flocculation from wastewater there have been removed phosphates (79%, chlorides (11-14%, sulfates (2-10% and iron (36-92%, cobalt (~ 80%, cadmium (~ 31% and nickel (~ 25%. However, the pressure membrane process almost completely removed zinc, copper and cadmium (~ 100%, iron (by a further 43-69% and phosphate anions, which was a little.

  7. Modulation of intestinal brush border membrane chemical composition during postnatal development in rats: effect of gestational diabetes.

    Science.gov (United States)

    Sharma, Ruchi; Chauhan, Shailender Singh; Mahmood, Akhtar

    2012-01-01

    There was a significant increase in fucose (52%), total hexoses (16%) and hexosamine (56%) except sialic acid, which was reduced (77%) in the microvillus membrane of infants born to rat mothers made diabetic by injecting alloxan on day 3 of gestation. Expressed on the protein basis there were a significant increase in membrane, triglyceride, total cholesterol, and phospholipids content of brush border in pups from diabetic group between 5-45 days of postnatal age. Intestinal morphology in diabetic group showed, regression of tubular glands, distorted cellular organization of mucosal cells, reduction in the mucosal cell height and number of secretory goblet cells. These findings suggest that the gestational diabetes affects the sugar and lipid composition of the intestinal brush border membrane in rats during early stages of the postnatal development, which may be associated with compromised tissue functions later in life.

  8. Preparation of Nafion 117™-SnO2 Composite Membranes using an Ion-Exchange Method

    DEFF Research Database (Denmark)

    Nørgaard, Casper Frydendal; Nielsen, Ulla Gro; Skou, Eivind Morten

    Nafion 117™-SnO2 composite membranes were successfully prepared using an ion-exchange method. SnO2 was incorporated into Nafion 117™ membranes by ion-exchange in solutions of SnCl2 · 2 H2O in methanol, followed by oxidation to SnO2 in air. The content of SnO2 proved controllable by adjusting...... the concentration of the ion-exchange solution. The prepared nanocomposite membranes were characterized by XRD and 119Sn MAS NMR while the in-plane proton conductivity was found to decrease with SnO2 content when evaluated with EIS. However, the conductivity was comparable to Nafion™ at SnO2 contents below 8 wt%....

  9. Composites of ionic liquid and amine-modified SAPO 34 improve CO2 separation of CO2-selective polymer membranes

    Science.gov (United States)

    Hu, Leiqing; Cheng, Jun; Li, Yannan; Liu, Jianzhong; Zhang, Li; Zhou, Junhu; Cen, Kefa

    2017-07-01

    Mixed matrix membranes with ionic liquids and molecular sieve particles had high CO2 permeabilities, but CO2 separation from small gas molecules such as H2 was dissatisfied because of bad interfacial interaction between ionic liquid and molecular sieve particles. To solve that, amine groups were introduced to modify surface of molecular sieve particles before loading with ionic liquid. SAPO 34 was adopted as the original filler, and four mixed matrix membranes with different fillers were prepared on the outer surface of ceramic hollow fibers. Both surface voids and hard agglomerations disappeared, and the surface became smooth after SAPO 34 was modified by amine groups and ionic liquid [P66614][2-Op]. Mixed matrix membranes with composites of amine-modified SAPO 34 and ionic liquid exhibited excellent CO2 permeability (408.9 Barrers) and CO2/H2 selectivity (22.1).

  10. Characterization and Modification of Electrospun Fiber Mats for Use in Composite Proton Exchange Membranes

    Science.gov (United States)

    Mannarino, Matthew Marchand

    conducting material or forms a continuous fuel-blocking film. The LbL component consists of a proton-conducting, methanolimpermeable poly(diallyl dimethyl ammonium chloride)/sulfonated poly(2,6-dimethyl 1,4-phenylene oxide) (PDAC/sPPO) thin film. The electrospun fiber component consists of PA 6(3)T fibers of average diameter between 400 and 800 nm, in a nonwoven matrix of 60-90% porosity depending on the temperature of thermal annealing utilized to improve the mechanical properties. This thesis demonstrates the versatility and flexibility of this fabrication technique, since any ion conducting LbL system may be sprayed onto any electrospun fiber mat, allowing for independent control of functionality and mechanical properties. The mechanical properties of the spray coated electrospun mats are shown to be superior to the LbL-only system, and possess intrinsically greater dimensional stability and lower mechanical hysteresis than Nafion under hydration cycling. The electrochemical selectivity of the composite LbL-electrospun membrane is found to be superior to Nafion, which makes them a viable alternative proton exchange membrane for fuel cell applications. The composite proton exchange membranes fabricated in this work were tested in an operational direct methanol fuel cell, with results showing the capability for higher open circuit voltages (OCV) and comparable cell resistances when compared to Nafion. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs@mit.edu)

  11. Magnetically tunable dielectric, impedance and magnetoelectric response in MnFe{sub 2}O{sub 4}/(Pb{sub 1−x}Sr{sub x})TiO{sub 3} composites thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bala, Kanchan, E-mail: bala.kanchan1987@gmail.com [Department of Physics, Himachal Pradesh University, Shimla 171005 (India); Kotnala, R.K. [CSIR, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012 (India); Negi, N.S., E-mail: nsn_phy_hpu@yahoo.com [Department of Physics, Himachal Pradesh University, Shimla 171005 (India)

    2017-02-15

    We have synthesized piezomagnetic–piezoelectric composites thin films MnFe{sub 2}O{sub 4}/(Pb{sub 1−x}Sr{sub x})TiO{sub 3}, where x=0.1, 0.2, and 0.3, using the metalorganic deposition (MOD) reaction method. The structural and microstructural analysis using the X-ray diffraction (XRD), AFM, and SEM reveals the presence of homogenous growth of both pervoskite and spinel phases in the composite films. Our results show that all the composites films exhibit good multiferroic as well as considerable magnetoelectric coupling. The impedance (Z′ and Z″) and electrical modulus (M′ and M″) Nyquist plots show distinct electrical responses with the magnetic field. Our analyses suggest that this electrical response arises due to the coexistence of the high resistive phase and the comparatively conductive phase in the MFO/PST composite films. The maximum magnetoelectric coefficient (α) is found to be 4.29 V Oe{sup −1} cm{sup −1} and 2.82 V Oe{sup −1} cm{sup −1} for compositions x=0.1 and 0.2. These values are substantially larger than those reported for bilayer composites thin films in literature and make them interesting for room temperature device applications. - Highlights: • Influence of Sr doping on multiferroic and magnetoelectric properties composites thin films of MnFe{sub 2}O{sub 4} and (Pb, Sr)TiO{sub 3}. • Dielectric constant and dielectric loss with application of magnetic field. • Magnetically tunable AC electrical properties. • Magnetoelectric coupling in MnFe{sub 2}O{sub 4}/(Pb, Sr)TiO{sub 3} composite films by passive method.

  12. Integrating seawater desalination and wastewater reclamation forward osmosis process using thin-film composite mixed matrix membrane with functionalized carbon nanotube blended polyethersulfone support layer.

    Science.gov (United States)

    Choi, Hyeon-Gyu; Son, Moon; Choi, Heechul

    2017-10-01

    Thin-film composite mixed matrix membrane (TFC MMM) with functionalized carbon nanotube (fCNT) blended in polyethersulfone (PES) support layer was synthesized via interfacial polymerization and phase inversion. This membrane was firstly tested in lab-scale integrating seawater desalination and wastewater reclamation forward osmosis (FO) process. Water flux of TFC MMM was increased by 72% compared to that of TFC membrane due to enhanced hydrophilicity. Although TFC MMM showed lower water flux than TFC commercial membrane, enhanced reverse salt flux selectivity (RSFS) of TFC MMM was observed compared to TFC membrane (15% higher) and TFC commercial membrane (4% higher), representing membrane permselectivity. Under effluent organic matter (EfOM) fouling test, 16% less normalized flux decline of TFC MMM was observed compared to TFC membrane. There was 8% less decline of TFC MMM compared to TFC commercial membrane due to fCNT effect on repulsive foulant-membrane interaction enhancement, caused by negatively charged membrane surface. After 10 min physical cleaning, TFC MMM displayed higher recovered normalized flux than TFC membrane (6%) and TFC commercial membrane (4%); this was also supported by visualized characterization of fouling layer. This study presents application of TFC MMM to integrated seawater desalination and wastewater reclamation FO process for the first time. It can be concluded that EfOM fouling of TFC MMM was suppressed due to repulsive foulant-membrane interaction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Tunable Handset Antenna

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Foroozanfard, Ehsan; Morris, Art

    2017-01-01

    With the future LTE auction for TV white spaces at 600 MHz, there is a strong need for efficient handset antennas operating at very low frequencies. This paper shows a tunable antenna covering the LTE bands from 600 MHz to 2.6 GHz. The antenna uses state-of-the-art MEMS tunable capacitors in order...... to reconfigure its operating frequency. In this work, the design mitigates the tuning loss with a tunable extended ground plane. The resulting dual-resonant antenna exhibits a peak total efficiency of -3.9 dB at 600 MHz....

  14. Perovskite Superlattices as Tunable Microwave Devices

    Science.gov (United States)

    Christen, H. M.; Harshavardhan, K. S.

    2003-01-01

    Experiments have shown that superlattices that comprise alternating epitaxial layers of dissimilar paraelectric perovskites can exhibit large changes in permittivity with the application of electric fields. The superlattices are potentially useful as electrically tunable dielectric components of such microwave devices as filters and phase shifters. The present superlattice approach differs fundamentally from the prior use of homogeneous, isotropic mixtures of base materials and dopants. A superlattice can comprise layers of two or more perovskites in any suitable sequence (e.g., ABAB..., ABCDABCD..., ABACABACA...). Even though a single layer of one of the perovskites by itself is not tunable, the compositions and sequence of the layers can be chosen so that (1) the superlattice exhibits low microwave loss and (2) the interfacial interaction between at least two of the perovskites in the superlattice renders either the entire superlattice or else at least one of the perovskites tunable.

  15. Micromold methods for fabricating perforated substrates and for preparing solid polymer electrolyte composite membranes

    Energy Technology Data Exchange (ETDEWEB)

    Mittelsteadt, Cortney; Argun, Avni; Laicer, Castro; Willey, Jason

    2017-08-08

    In polymer electrolyte membrane (PEM) fuel cells and electrolyzes, attaining and maintaining high membrane conductivity and durability is crucial for performance and efficiency. The use of low equivalent weight (EW) perfluorinated ionomers is one of the few options available to improve membrane conductivity. However, excessive dimensional changes of low EW ionomers upon application of wet/dry or freeze/thaw cycles yield catastrophic losses in membrane integrity. Incorporation of ionomers within porous, dimensionally-stable perforated polymer electrolyte membrane substrates provides improved PEM performance and longevity. The present invention provides novel methods using micromolds to fabricate the perforated polymer electrolyte membrane substrates. These novel methods using micromolds create uniform and well-defined pore structures. In addition, these novel methods using micromolds described herein may be used in batch or continuous processing.

  16. Highly sensitive oxygen sensors based on Cu(I) complex-polystyrene composite nanofibrous membranes prepared by electrospinning.

    Science.gov (United States)

    Wang, Yinghui; Li, Bin; Liu, Yanhong; Zhang, Liming; Zuo, Qinghui; Shi, Linfang; Su, Zhongmin

    2009-10-21

    The first optical oxygen sensor based on Cu(I) complex-polystyrene composite nanofibrous membranes, showing high sensitivity (I(0)/I(100) = 15.56), good linear Stern-Volmer characteristics (R(2) = 0.9966) and short response/recovery time (t(decrease) (s) = 7 and t(increase) (s) = 14), has been prepared; these results represent the best values reported for oxygen sensors based on Cu(I) complexes.

  17. Mechanical and transport properties of layer-by-layer electrospun composite proton exchange membranes for fuel cell applications.

    Science.gov (United States)

    Mannarino, Matthew M; Liu, David S; Hammond, Paula T; Rutledge, Gregory C

    2013-08-28

    Composite membranes composed of highly conductive and selective layer-by-layer (LbL) films and electrospun fiber mats were fabricated and characterized for mechanical strength and electrochemical selectivity. The LbL component consists of a proton-conducting, methanol-blocking poly(diallyl dimethyl ammonium chloride)/sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (PDAC/sPPO) thin film. The electrospun fiber component consists of poly(trimethyl hexamethylene terephthalamide) (PA 6(3)T) fibers in a nonwoven mat of 60-90% porosity. The bare mats were annealed to improve their mechanical properties, which improvements are shown to be retained in the composite membranes. Spray LbL assembly was used as a means for the rapid formation of proton-conducting films that fill the void space throughout the porous electrospun matrix and create a fuel-blocking layer. Coated mats as thin as 15 μm were fabricated, and viable composite membranes with methanol permeabilities 20 times lower than Nafion and through-plane proton selectivity five and a half times greater than Nafion are demonstrated. The mechanical properties of the spray coated electrospun mats are shown to be superior to the LbL-only system and possess intrinsically greater dimensional stability and lower mechanical hysteresis than Nafion under hydrated conditions. The composite proton exchange membranes fabricated here were tested in an operational direct methanol fuel cell. The results show the potential for higher open circuit voltages (OCV) and comparable cell resistances when compared to fuel cells based on Nafion.

  18. A Composite Membrane of Caesium Salt of Heteropolyacids/Quaternary Diazabicyclo-Octane Polysulfone with Poly (Tetrafluoroethylene for Intermediate Temperature Fuel Cells

    Directory of Open Access Journals (Sweden)

    Keith Scott

    2012-07-01

    Full Text Available Inorganic-organic composite electrolyte membranes were fabricated from CsXH3−XPMo12O40 (CsPOMo and quaternary diazabicyclo-octane polysulfone (QDPSU using a polytetrafluoroethylene (PTFE porous matrix for the application of intermediate temperature fuel cells. The CsPOMo/QDPSU/PTFE composite membrane was made proton conducting by using a relatively low phosphoric acid loading, which benefits the stability of the membrane conductivity and the mechanical strength. The casting method was used in order to build a thin and robust composite membrane. The resulting composite membrane films were characterised in terms of the elemental composition, membrane structure and morphology by EDX, FTIR and SEM. The proton conductivity of the membrane was 0.04 S cm−1 with a H3PO4 loading level of 1.8 PRU (amount of H3PO4 per repeat unit of polymer QDPSU. The fuel cell performance with the membrane gave a peak power density of 240 mW cm−2 at 150 °C and atmospheric pressure.

  19. Effects of temperature and buffer composition on calcium sequestration by sarcoplasmic reticulum and plasma membrane of rabbit renal artery

    International Nuclear Information System (INIS)

    McGuffee, L.J.; Little, S.A.; Mercure, J.V.; Skipper, B.J.; Wheeler-Clark, E.S.

    1990-01-01

    45Ca electron microscopic autoradiography was used to examine the effects of buffer composition and temperature on the distribution of calcium in rabbit renal artery smooth muscle cells. The results show that the relative distribution of calcium is dependent on both the buffer used (Tris or Krebs) and the temperature of the bathing solution (25 degrees C or 34 degrees C). Krebs buffer at 34 degrees C gave the highest relative activity in the plasma membrane, sarcoplasmic reticulum, and mitochondria. Buffer and temperature had little effect on the relative activity of the nucleus or cytoplasm. Next, we identified the cellular sites of calcium accumulation after 5, 15, 30, or 60 min exposure to 45 Ca in Krebs buffer at 34 degrees C. The results show that sarcoplasmic reticulum and plasma membrane are the primary sites of calcium accumulation during influx into these cells. Although the amount of 45 Ca in the cell continues to increase with longer exposure, the relative distribution of calcium is essentially the same after 5 or 60 min. The data also indicate that the relative activity of plasma membrane + sarcoplasmic reticulum (a combination site that includes sarcoplasmic reticulum within a mean distance of 275 nm of the plasma membrane) is similar to the membrane alone and is lower than the sarcoplasmic reticulum alone

  20. Developing thin-film-composite forward osmosis membranes on the PES/SPSf substrate through interfacial polymerization

    KAUST Repository

    Wang, Kaiyu

    2011-04-22

    A new scheme has been developed to fabricate high-performance forward osmosis (FO) membranes through the interfacial polymerization reaction on porous polymeric supports. p-Phenylenediamine and 1,3,5-trimesoylchloride were adopted as the monomers for the in-situ polycondensation reaction to form a thin aromatic polyamide selective layer of 150 nm in thickness on the substrate surface, a lab-made polyethersulfone (PES)/sulfonated polysulfone (SPSf)-alloyed porous membrane with enhanced hydrophilicity. Under FO tests, the FO membrane achieved a higher water flux of 69.8 LMH when against deionized water and 25.2 LMH when against a model 3.5 wt % NaCl solution under 5.0 M NaCl as the draw solution in the pressure-retarded osmosis mode. The PES/SPSf thin-film-composite (TFC)-FO membrane has a smaller structural parameter S of 238 μm than those reported data. The morphology and topology of substrates and TFC-FO membranes have been studied by means of atomic force microscopy and scanning electronic microscopy. © 2011 American Institute of Chemical Engineers (AIChE).

  1. Structural properties of lipid reconstructs and lipid composition of normotensive and hypertensive rat vascular smooth muscle cell membranes

    Directory of Open Access Journals (Sweden)

    T.R. Oliveira

    2009-09-01

    Full Text Available Multiple cell membrane alterations have been reported to be the cause of various forms of hypertension. The present study focuses on the lipid portion of the membranes, characterizing the microviscosity of membranes reconstituted with lipids extracted from the aorta and mesenteric arteries of spontaneously hypertensive (SHR and normotensive control rat strains (WKY and NWR. Membrane-incorporated phospholipid spin labels were used to monitor the bilayer structure at different depths. The packing of lipids extracted from both aorta and mesenteric arteries of normotensive and hypertensive rats was similar. Lipid extract analysis showed similar phospholipid composition for all membranes. However, cholesterol content was lower in SHR arteries than in normotensive animal arteries. These findings contrast with the fact that the SHR aorta is hyporeactive while the SHR mesenteric artery is hyperreactive to vasopressor agents when compared to the vessels of normotensive animal strains. Hence, factors other than microviscosity of bulk lipids contribute to the vascular smooth muscle reactivity and hypertension of SHR. The excess cholesterol in the arteries of normotensive animal strains apparently is not dissolved in bulk lipids and is not directly related to vascular reactivity since it is present in both the aorta and mesenteric arteries. The lower cholesterol concentrations in SHR arteries may in fact result from metabolic differences due to the hypertensive state or to genes that co-segregate with those that determine hypertension during the process of strain selection.

  2. Composite Membrane Formation by Combination of Reaction-Induced and Nonsolvent-Induced Phase Separation

    KAUST Repository

    Aburabie, Jamaliah

    2017-05-25

    A novel method of preparing skinned asymmetric membranes with two distinctive layers is described: a top layer composed of chemically cross-linked polymer chains (dense layer) and a bottom layer of non-cross-linked polymer chains (porous substructure). The method consists of two simple steps that are compatible with industrial membrane fabrication facilities. Unlike conventional processes to prepare asymmetric membranes, with this approach it is possible to finely control the structure and functionalities of the final membrane. The thickness of the dense layer can be easily controlled over several orders of magnitude and targeted functional groups can be readily incorporated in it.

  3. High-performance polyamide thin-film composite nanofiltration membrane: Role of thermal treatment

    Science.gov (United States)

    Liu, Baicang; Wang, Shuai; Zhao, Pingju; Liang, Heng; Zhang, Wen; Crittenden, John

    2018-03-01

    Nanofiltration (NF) membranes have many excellent applications (e.g., removing multivalent ions and pretreating water before reverse osmosis, RO), but their relatively high cost limits their application. Especially in recent years, researchers have paid substantial attention to reducing the cost of NF membranes. In this paper, high-performance NF membranes were fabricated using interfacial polymerization (IP) methods. The polymer concentration, IP solution concentration, and thermal treatment conditions were varied. The synthesized membranes were characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), a contact angle goniometer, X-ray photoelectron spectroscopy (XPS), attenuated total reflectance fourier transform infrared (ATR-FTIR) spectroscopy, and performance tests. The results show that water flux was significantly improved using a hot-water thermal treatment method. Our fabricated thermal-treated NF membrane had an approximately 15% higher water permeability with a value of 13.6 L/(m2 h bar) than that of the commercially available GE HL membrane with a value of 11.8 L/(m2 h bar). Our membranes had the same MgSO4 rejection as that of the GE HL membrane. We found that the thermal treatment causes the NF membrane surface to be smoother and have a high crosslinking degree.

  4. Removal of bisphenol A by adsorption mechanism using PES-SiO2 composite membranes.

    Science.gov (United States)

    Muhamad, Mimi Suliza; Salim, Mohd Razman; Lau, Woei Jye; Hadibarata, Tony; Yusop, Zulkifli

    2016-08-01

    Polyethersulphone (PES) membranes blended with silicon dioxide (SiO2) nanoparticles were prepared via a dry-jet wet spinning technique for the removal of bisphenol A (BPA) by adsorption mechanism. The morphology of SiO2 nanoparticles was analysed using a transmission electron microscopy and particle size distribution was also analysed. The prepared membranes were characterized by several techniques including field emission scanning electron microscopy, Fourier transform infrared spectroscopy and water contact angle. The adsorption mechanism of membrane towards BPA was evaluated by batch experiments and kinetic model. The influence of natural organic matter (NOM) in feed water on membrane BPA removal was also studied by filtration experiments. Results showed that BPA adsorption capacity as high as 53 µg/g could be achieved by the PES membrane incorporated with 2 wt% SiO2 in which the adsorption mechanism was in accordance with the pseudo-second-order kinetic model. The intraparticles diffusion model suggested that the rate limiting factor of membrane adsorption mechanism is governed by the diffusion of BPA into the membrane pores. The presence of 10 ppm NOM has reported to negatively reduce BPA removal by 24%, as it tended to compete with BPA for membrane adsorption. This work has demonstrated that PES-SiO2 membrane has the potential to eliminate trace amount of BPA from water source containing NOM.

  5. Tunable Optical Polymer Systems

    National Research Council Canada - National Science Library

    Jenekhe, S. A; Bard, Allen J; Chen, S. H; Hammond, P. T; Rothberg, L. J

    2004-01-01

    This multidisciplinary university research initiative (MURI) program investigated tunable optical polymer systems suitable for large-area color-switchable coatings and devices, displays, sensors, and other electronic applications...

  6. Tunable micro-optics

    CERN Document Server

    Duppé, Claudia

    2015-01-01

    Presenting state-of-the-art research into the dynamic field of tunable micro-optics, this is the first book to provide a comprehensive survey covering a varied range of topics including novel materials, actuation concepts and new imaging systems in optics. Internationally renowned researchers present a diverse range of chapters on cutting-edge materials, devices and subsystems, including soft matter, artificial muscles, tunable lenses and apertures, photonic crystals, and complete tunable imagers. Special contributions also provide in-depth treatment of micro-optical characterisation, scanners, and the use of natural eye models as inspiration for new concepts in advanced optics. With applications extending from medical diagnosis to fibre telecommunications, Tunable Micro-optics equips readers with a solid understanding of the broader technical context through its interdisciplinary approach to the realisation of new types of optical systems. This is an essential resource for engineers in industry and academia,...

  7. Temperature and metal exposure affect membrane fatty acid composition and transcription of desaturases and elongases in fathead minnow muscle and brain.

    Science.gov (United States)

    Fadhlaoui, Mariem; Pierron, Fabien; Couture, Patrice

    2018-02-01

    In this study, we tested the hypothesis that metal exposure affected the normal thermal response of cell membrane FA composition and of elongase and desaturase gene transcription levels. To this end, muscle and brain membrane FA composition and FA desaturase (fads2, degs2 and scd2) and elongase (elovl2, elovl5 and elovl6) gene transcription levels were analyzed in fathead minnows (Pimephales promelas) acclimated for eight weeks to 15, 25 or 30°C exposed or not to cadmium (Cd, 6μg/l) or nickel (Ni, 450 6μg/l). The response of membrane FA composition to temperature variations or metal exposure differed between muscle and brain. In muscle, an increase of temperature induced a decrease of polyunsaturated FA (PUFA) and an increase of saturated FA (SFA) in agreement with the current paradigm. Although a similar response was observed in brain between 15 and 25°C, at 30°C, brain membrane unsaturation was higher than predicted. In both tissues, metal exposure affected the normal thermal response of membrane FA composition. The transcription of desaturases and elongases was higher in the brain and varied with acclimation temperature and metal exposure but these variations did not generally reflect changes in membrane FA composition. The mismatch between gene transcription and membrane composition highlights that several levels of control other than gene transcription are involved in adjusting membrane FA composition, including post-transcriptional regulation of elongases and desaturases and de novo phospholipid biosynthesis. Our study also reveals that metal exposure affects the mechanisms involved in adjusting cell membrane FA composition in ectotherms. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Capacitive micromachined ultrasonic transducer arrays as tunable acoustic metamaterials

    International Nuclear Information System (INIS)

    Lani, Shane W.; Sabra, Karim G.; Wasequr Rashid, M.; Hasler, Jennifer; Levent Degertekin, F.

    2014-01-01

    Capacitive Micromachined Ultrasonic Transducers (CMUTs) operating in immersion support dispersive evanescent waves due to the subwavelength periodic structure of electrostatically actuated membranes in the array. Evanescent wave characteristics also depend on the membrane resonance which is modified by the externally applied bias voltage, offering a mechanism to tune the CMUT array as an acoustic metamaterial. The dispersion and tunability characteristics are examined using a computationally efficient, mutual radiation impedance based approach to model a finite-size array and realistic parameters of variation. The simulations are verified, and tunability is demonstrated by experiments on a linear CMUT array operating in 2-12 MHz range

  9. Capacitive micromachined ultrasonic transducer arrays as tunable acoustic metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Lani, Shane W., E-mail: shane.w.lani@gmail.com, E-mail: karim.sabra@me.gatech.edu, E-mail: levent.degertekin@me.gatech.edu; Sabra, Karim G. [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801Ferst Drive, Georgia 30332-0405 (United States); Wasequr Rashid, M.; Hasler, Jennifer [School of Electrical and Computer Engineering, Georgia Institute of Technology, Van Leer Electrical Engineering Building, 777 Atlantic Drive NW, Atlanta, Georgia 30332-0250 (United States); Levent Degertekin, F. [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801Ferst Drive, Georgia 30332-0405 (United States); School of Electrical and Computer Engineering, Georgia Institute of Technology, Van Leer Electrical Engineering Building, 777 Atlantic Drive NW, Atlanta, Georgia 30332-0250 (United States)

    2014-02-03

    Capacitive Micromachined Ultrasonic Transducers (CMUTs) operating in immersion support dispersive evanescent waves due to the subwavelength periodic structure of electrostatically actuated membranes in the array. Evanescent wave characteristics also depend on the membrane resonance which is modified by the externally applied bias voltage, offering a mechanism to tune the CMUT array as an acoustic metamaterial. The dispersion and tunability characteristics are examined using a computationally efficient, mutual radiation impedance based approach to model a finite-size array and realistic parameters of variation. The simulations are verified, and tunability is demonstrated by experiments on a linear CMUT array operating in 2-12 MHz range.

  10. Capacitive micromachined ultrasonic transducer arrays as tunable acoustic metamaterials

    Science.gov (United States)

    Lani, Shane W.; Wasequr Rashid, M.; Hasler, Jennifer; Sabra, Karim G.; Levent Degertekin, F.

    2014-02-01

    Capacitive Micromachined Ultrasonic Transducers (CMUTs) operating in immersion support dispersive evanescent waves due to the subwavelength periodic structure of electrostatically actuated membranes in the array. Evanescent wave characteristics also depend on the membrane resonance which is modified by the externally applied bias voltage, offering a mechanism to tune the CMUT array as an acoustic metamaterial. The dispersion and tunability characteristics are examined using a computationally efficient, mutual radiation impedance based approach to model a finite-size array and realistic parameters of variation. The simulations are verified, and tunability is demonstrated by experiments on a linear CMUT array operating in 2-12 MHz range.

  11. Cigarette smokers develop altered erythrocyte membrane composition: an investigation unmasking the role of membrane bound integral protein GLUT 1.

    Science.gov (United States)

    Sikdar, Jyotirmoy; Seal, Paromita; Roy, Amartya; Haldar, Rajen

    2017-04-01

    Erythrocytes in cigarette smokers are prone to oxidative damage. Here, we sought to elucidate the facts behind modifications and possible defense system developed in erythrocyte of cigarette smokers. We observed significant increase in stomatocytes and spherocytes, and osmotic fragility of erythrocyte, along with reduced level of protein thiol and increased fluorescence anisotropy in isolated membrane. Denaturing gel electrophoresis indicated alterations in band 3, band 4.2 and band 4.5. Among those, Glut 1 (i.e. band 4.5), which transports glucose (insulin independent) and dehydroascorbate (DHA), was selectively chosen for its long history in reducing reactive oxygen species (ROS). The increased Glut 1 level in smokers was confirmed by immunoblotting and immunocytochemistry. Furthermore, smokers showed significantly higher glucose uptake in whole blood. The intracellular (Ic) ROS (as indicated by 2',7'-dichlorofluorescin) was significantly higher in smokers as evidenced by flow cytometric assay. Glucose and DHA alone or together significantly reduced IcROS at higher rate in smokers. However, in presence of Glut 1 specific blocker, phloretin, neither glucose nor DHA could reduce IcROS in both non-smokers and smokers. This confirms that Glut 1 by transporting glucose or DHA attenuates IcROS. Therefore, we conclude that erythrocytes, although altered morphologically, also develop a defense system by upregulating Glut 1 to combat with enhanced Ic oxidative insult in cigarette smokers.

  12. Development of an electrospun nano-apatite/PCL composite membrane for GTR/GBR application.

    NARCIS (Netherlands)

    Yang, F.; Both, S.K.; Yang, X.; Walboomers, X.F.; Jansen, J.A.

    2009-01-01

    In dental practice, membranes are used as a barrier to prevent soft tissue ingrowth and create space for slowly regenerating periodontal and bony tissues. The aim of this study was to develop a biodegradable membrane system which can be used for guided tissue or bone regeneration. Three types of

  13. Crosslinked poly(ether block amide) composite membranes for organic solvent nanofiltration applications

    KAUST Repository

    Aburabie, Jamaliah

    2016-10-01

    Poly(ether block amide) – Pebax® – based membranes are well described for gas separation applications. But only a few publications exist for their application in pressure driven liquid applications like ultrafiltration and nanofiltration. Here we use the commercially available Pebax® 1657 for the preparation of membranes for the filtration of organic solvents. Porous polyacrylonitrile membranes were coated with Pebax® 1657 which was then crosslinked. Toluene diisocyanate (TDI) was used as a crosslinker agent for the coating. Reaction time and crosslinker concentration were optimized for the aimed application. The Pebax® coating and the impact of the TDI on the resulting crosslinked membranes were investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). SEM analysis shows a uniform thin coating of the PEBAX that covers the pores of the PAN membranes. FTIR and DSC analysis confirm the crosslinking reaction. Crosslinked Pebax® membranes show high stability toward ethanol propanol, acetone and even dimethylformamide (DMF). In the case of DMF applications, the standard PAN was replaced by crosslinked PAN developed in our laboratory. In order to increase the membranes permeances, graphene oxide (GO) nanosheets were incorporated in the Pebax® coating. These GO containing membranes showed strongly increased permeances for selected solvents. © 2016 Elsevier B.V.

  14. Electrospun sulfonated poly(ether ketone) nanofibers as proton conductive reinforcement for durable Nafion composite membranes

    Science.gov (United States)

    Klose, Carolin; Breitwieser, Matthias; Vierrath, Severin; Klingele, Matthias; Cho, Hyeongrae; Büchler, Andreas; Kerres, Jochen; Thiele, Simon

    2017-09-01

    We show that the combination of direct membrane deposition with proton conductive nanofiber reinforcement yields highly durable and high power density fuel cells. Sulfonated poly(ether ketone) (SPEK) was directly electrospun onto gas diffusion electrodes and then filled with Nafion by inkjet-printing resulting in a 12 μm thin membrane. The ionic membrane resistance (30 mΩ*cm2) was well below that of a directly deposited membrane reinforced with chemically inert (PVDF-HFP) nanofibers (47 mΩ*cm2) of comparable thickness. The power density of the fuel cell with SPEK reinforced membrane (2.04 W/cm2) is 30% higher than that of the PVDF-HFP reinforced reference sample (1.57 W/cm2). During humidity cycling and open circuit voltage (OCV) hold, the SPEK reinforced Nafion membrane showed no measurable degradation in terms of H2 crossover current density, thus fulfilling the target of 2 mA/cm2 of the DOE after degradation. The chemical accelerated stress test (100 h OCV hold at 90 °C, 30% RH, H2/air, 50/50 kPa) revealed a degradation rate of about 0.8 mV/h for the fuel cell with SPEK reinforced membrane, compared to 1.0 mV/h for the PVDF-HFP reinforced membrane.

  15. Composition-Tunable Optical Properties of Zn x Cd(1 - x)S Quantum Dot-Carboxymethylcellulose Conjugates: Towards One-Pot Green Synthesis of Multifunctional Nanoplatforms for Biomedical and Environmental Applications

    Science.gov (United States)

    Mansur, Alexandra A. P.; Mansur, Herman S.; Caires, Anderson J.; Mansur, Rafael L.; Oliveira, Luiz C.

    2017-07-01

    Quantum dots (QDs) are colloidal semiconductor nanocrystals with unique properties that can be engineered by controlling the nanoparticle size and chemical composition by doping and alloying strategies. However, due to their potential toxicity, augmenting their biocompatibility is yet a challenge for expanding to several biomedical and environmentally friendly applications. Thus, the main goal of this study was to develop composition-tunable and biocompatible Zn x Cd1 - x S QDs using carboxymethylcellulose polysaccharide as direct capping ligand via green colloidal aqueous route at neutral pH and at room temperature for potential biomedical and environmental applications. The ternary alloyed QDs were extensively characterized using UV-vis spectroscopy, photoluminescence spectroscopy (PL), transmission electron microscopy (TEM), X-ray diffraction (XRD), electron energy loss spectroscopy (EELS), and X-ray photoelectrons spectroscopy (XPS). The results indicated that Zn x Cd(1 - x)S QDs were surface stabilized by carboxymethylcellulose biopolymer with spherical morphology for all composition of alloys and narrow sizes distributions ranging from 4 to 5 nm. The XRD results indicated that monophasic ternary alloyed Zn x Cd1 - x S nanocrystals were produced with homogenous composition of the core as evidenced by EELS and XPS analyses. In addition, the absorption and emission optical properties of Zn x Cd1 - x S QDs were red shifted with increasing the amount of Cd2+ in the alloyed nanocrystals, which have also increased the quantum yield compared to pure CdS and ZnS nanoparticles. These properties of alloyed nanomaterials were interpreted based on empirical model of Vegard's law and chemical bond model (CBM). As a proof of concept, these alloyed-QD conjugates were tested for biomedical and environmental applications. The results demonstrated that they were non-toxic and effective fluorophores for bioimaging live HEK293T cells (human embryonic kidney cells) using confocal

  16. Application of thin film cellulose composite membrane for dye wastewater reuse

    KAUST Repository

    Puspasari, Tiara

    2016-09-22

    The use of low cost membranes with high salt/dye selectivity and high flux is ideal for an economic and eco-friendly treatment of dye wastewater. Here, regenerated cellulose membranes prepared from trimethylsilyl cellulose are studied for treating artificial dye effluents. In the experiments using a feed containing Congo Red and high NaCl concentration, the membrane featured impressive dye removal with zero salt rejection combined with high flux. More interestingly, the membrane reached as much as 600 LMH flux at 80 °C and 4 bar while maintaining high dye rejection close to 98%. In prolonged experiments up to 75 h the membrane exhibited good antifouling behavior with nearly 100% flux recovery. This study may provide a promising alternative of dye effluent treatment where high amounts of monovalent salts are present. © 2016

  17. Enhancement of proton conduction at low humidity by incorporating imidazole microcapsules into polymer electrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingtao; Yue, Xiujun; Zhang, Zizhuo; Yang, Zheng; Li, Yifan; Wu, Hong; Jiang, Zhongyi [Key Laboratory for Green Chemical Technology, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Zhang, Han; Yang, Xinlin [Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071 (China)

    2012-11-07

    Design and fabrication of hierarchically structured membranes with high proton conductivity is crucial to many energy-relevant applications including proton exchange membrane fuel cell (PEMFC). Here, a series of imidazole microcapsules (IMCs) with tunable imidazole group loading, shell thickness, and lumen size are synthesized and incorporated into a sulfonated poly(ether ether ketone) (SPEEK) matrix to prepare composite membranes. The IMCs play two roles: i) Improving water retention properties of the membrane. The IMCs, similar to the vacuoles in plant cells, can render membrane a stable water environment. The lumen of the IMCs acts as a water reservoir and the shell of IMCs can manipulate water release. ii) They form anhydrous proton transfer pathways and low energy barrier pathways for proton hopping, imparting an enhanced proton transfer via either a vehicle mechanism or Grotthuss mechanism. In particular, at the relative humidity (RH) as low as 20%, the composite membrane exhibits an ultralow proton conductivity decline and the proton conductivity is one to two orders of magnitude higher than that of SPEEK control membrane. The enhanced proton conductivity affords the composite membrane an elevated peak power density from 69.5 to 104.5 mW cm{sup -2} in a single cell. Moreover, the application potential of the composite membrane for CO{sub 2} capture is explored. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Hydrophilicity/porous structure-tuned, SiO2/polyetherimide-coated polyimide nonwoven porous substrates for reinforced composite proton exchange membranes.

    Science.gov (United States)

    Lee, Jung-Ran; Won, Ji-Hye; Kim, Na-Young; Lee, Moo-Seok; Lee, Sang-Young

    2011-10-15

    Porous substrate-reinforced composite proton exchange membranes have drawn considerable attention due to their promising application to polymer electrolyte membrane fuel cells (PEMFCs). In the present study, we develop silica (SiO(2)) nanoparticles/polyetherimide (PEI) binders-coated polyimide (PI) nonwoven porous substrates (referred to as "S-PI substrates") for reinforced composite membranes. The properties of S-PI substrates, which crucially affect the performance of resulting reinforced composite membranes, are significantly improved by controlling the hygroscopic SiO(2) particle size. The 40 nm S-PI substrate (herein, 40 nm SiO(2) particles are employed) shows the stronger hydrophilicity and highly porous structure than the 530 nm S-PI substrate due to the larger specific surface area of 40 nm SiO(2) particles. Based on the comprehensive understanding of the S-PI substrates, the structures and performances of the S-PI substrates-reinforced composite membranes are elucidated. In comparison with the 530 nm S-PI substrate, the hydrophilicity/porous structure-tuned 40 nm S-PI substrate enables the impregnation of a large amount of a perfluorosulfonic acid ionomer (Nafion), which thus contributes to the improved proton conductivity of the reinforced Nafion composite membrane. Meanwhile, the reinforced Nafion composite membranes effectively mitigate the steep decline of proton conductivity with time at low humidity conditions, as compared to the pristine Nafion membrane. This intriguing finding is further discussed by considering the unusual features of the S-PI substrates and the state of water in the reinforced Nafion composite membranes. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Investigation on Nano composite Membrane of Multi walled Carbon Nano tube Reinforced Polycarbonate Blend for Gas Separation

    International Nuclear Information System (INIS)

    Kausar, A.

    2016-01-01

    Carbon nano tube has been explored as a nano filler in high performance polymeric membrane for gas separation. In this regard, nano composite membrane of polycarbonate (PC), poly(vinylidene fluoride-co-hexafluoropropylene) (PVFHFP), and multi walled carbon nano tube (MWCNT) was fabricated via phase inversion technique. Poly (ethylene glycol) (PEG) was employed for the compatibilization of the blend system. Two series of PC/PVFHFP/PEG were developed using purified P-MWCNT and acid functional A-MWCNT nano filler. Scanning and transmission electron micrographs have shown fine nano tube dispersion and wetting by matrix, compared with the purified system. Tensile strength and Young s modulus of PC/PVFHFP/PEG/MWCNT-A 1-5 were found to be in the range of 63.6-72.5 MPa and 110.6-122.1 MPa, respectively. The nano composite revealed 51% increase in Young s modulus and 28% increase in tensile stress relative to the pristine blend. The A-MWCNT was also effective in enhancing the perm selectivity αCO 2 /N 2 (31.2-39.9) of nano composite membrane relative to the blend membrane (21.6). The permeability ρCO 2 of blend was 125.6 barrer; however, the functional series had enhancedρCO 2 values ranging from 142.8 to 186.6 barrer. Moreover, A-MWCNT loading improved the gas diffusivity of PC/PVFHFP/PEG/MWCNT-A 1-5; however, filler content did not significantly influence the CO 2 and N 2 solubility.

  20. Membrane phospholipid fatty acid composition regulates cardiac SERCA activity in a hibernator, the Syrian hamster (Mesocricetus auratus.

    Directory of Open Access Journals (Sweden)

    Sylvain Giroud

    Full Text Available Polyunsaturated fatty acids (PUFA have strong effects on hibernation and daily torpor. Increased dietary uptake of PUFA of the n-6 class, particularly of Linoleic acid (LA, C18:2 n-6 lengthens torpor bout duration and enables animals to reach lower body temperatures (T(b and metabolic rates. As previously hypothesized, this well-known influence of PUFA may be mediated via effects of the membrane fatty acid composition on sarcoplasmic reticulum (SR Ca(2+-ATPase 2a (SERCA in the heart of hibernators. We tested the hypotheses that high proportions of n-6 PUFA in general, or specifically high proportions of LA (C18:2 n-6 in SR phospholipids (PL should be associated with increased cardiac SERCA activity, and should allow animals to reach lower minimum T(b in torpor. We measured activity of SERCA from hearts of hibernating and non-hibernating Syrian hamsters (Mesocricetus auratus in vitro at 35 °C. Further, we determined the PL fatty acid composition of the SR membrane of these hearts. We found that SERCA activity strongly increased as the proportion of LA in SR PL increased but was negatively affected by the content of Docosahexaenoic acid (DHA; C22:6 n-3. SR PL from hibernating hamsters were characterized by high proportions of LA and low proportions of DHA. As a result, SERCA activity was significantly higher during entrance into torpor and in torpor compared to inter-bout arousal. Also, animals with increased SERCA activity reached lower T(b during torpor. Interestingly, a subgroup of hamsters which never entered torpor but remained euthermic throughout winter displayed a phenotype similar to animals in summer. This was characterized by lower proportions of LA and increased proportions of DHA in SR membranes, which is apparently incompatible with torpor. We conclude that the PUFA composition of SR membranes affects cardiac function via modulating SERCA activity, and hence determines the minimum T(b tolerated by hibernators.

  1. Surfactant-Assisted Perovskite Nanofillers Incorporated in Quaternized Poly (Vinyl Alcohol Composite Membrane as an Effective Hydroxide-Conducting Electrolyte

    Directory of Open Access Journals (Sweden)

    Selvaraj Rajesh Kumar

    2017-05-01

    Full Text Available Perovskite LaFeO3 nanofillers (0.1% are incorporated into a quaternized poly(vinyl alcohol (QPVA matrix for use as hydroxide-conducting membranes in direct alkaline methanol fuel cells (DAMFCs. The as-synthesized LaFeO3 nanofillers are amorphous and functionalized with cetyltrimethylammonium bromide (CTAB surfactant. The annealed LaFeO3 nanofillers are crystalline without CTAB. The QPVA/CTAB-coated LaFeO3 composite membrane shows a defect-free structure while the QPVA/annealed LaFeO3 film has voids at the interfaces between the soft polymer and rigid nanofillers. The QPVA/CTAB-coated LaFeO3 composite has lower methanol permeability and higher ionic conductivity than the pure QPVA and QPVA/annealed LaFeO3 films. We suggest that the CTAB-coated LaFeO3 provides three functions to the polymeric composite: increasing polymer free volume, ammonium group contributor, and plasticizer to enhance the interfacial compatibility. The composite containing CTAB-coated LaFeO3 results in superior cell performance. A maximum power density of 272 mW cm−2 is achieved, which is among the highest power outputs reported for DAMFCs in the literature.

  2. Composite membrane of bacterially-derived cellulose and molecularly imprinted polymer for use as a transdermal enantioselective controlled-release system of racemic propranolol.

    Science.gov (United States)

    Bodhibukkana, Chatchada; Srichana, Teerapol; Kaewnopparat, Sanae; Tangthong, Naruedom; Bouking, Pisit; Martin, Gary P; Suedee, Roongnapa

    2006-06-12

    A composite membrane for transdermal delivery of S-propranolol enantiomer was developed based on the controlled pore functionalization of bacterial cellulose membranes using a molecularly imprinted polymer (MIP) layer synthesis. The reactive pore-filling of an asymmetric porous cellulose membrane with a MIP thin-layer was effected using a silanized coupler as an additional anchor for the MIP. MIP thin-layers with specific binding sites for S-propranolol were synthesized by copolymerization of methacrylic acid with a cross-linker, ethylene glycol dimethacrylate in the presence of S-propranolol as the template molecule and the latter was subsequently extracted. Selective transport of S-propranolol through the MIP composite membrane was obtained, although this was determined mostly by the parent cellulose membrane with some ancillary contributory effect from the MIP layer. In addition, an enantioselectivity in the transport of propranolol prodrug enantiomers was found, suggesting that the shape and functional groups orientation, which are similar to that of the print molecule were essential for enantiomeric recognition of the MIP composite membrane. The enantioselectivity of S-MIP membranes was also shown when the release of propranolol enantiomers was studied in vitro using rat skin, with racemic propranolol contained in the donor compartment. The composite membrane of bacterially-derived cellulose and molecularly imprinted polymer may have great potential for use as a transdermal enantioselective controlled-release system for racemic propranolol.

  3. Novel ceramic-polymer composite membranes for the separation of hazardous liquid waste. 1998 annual progress report

    International Nuclear Information System (INIS)

    Cohen, Y.

    1998-01-01

    'This report summarizes the work progress over the last 1.75 years of a 3 year project. The objectives of the project have been to develop a new class of ceramic-supported polymeric membranes that could be tailored-designed for a wide-range of applications in remediation and pollution prevention. To date, a new class of chemically-modified ceramic membranes was developed for the treatment of oil-in-water emulsions and for the pervaporation removal of volatile organics from aqueous systems. These new ceramic-supported polymer (CSP) membranes are fabricated by modifying the pore surface of a ceramic membrane support by a graft polymerization process (Chaimberg and Cohen, 1994). The graft polymerization process consists of activating the membrane surface with alkoxy vinyl silanes onto which vinyl monomers are added via free-radical graft polymerization resulting in a thin surface layer of terminally anchored polymer chains. Reaction conditions are selected based on knowledge of the graft polymerization kinetics for the specific polymer/substrate system. The resultant ceramic-supported polymer (CSP) membrane is a composite structure in which mechanical strength is provided by the ceramic support and the selectivity is determined by the covalently bonded polymer brush layer. Thus, one of the unique attributes of the CSP membrane is that it can be used in environments where the polymer layer is swollen (or even completely miscible) in the mixture to be separated (Castro et al., 1993). It is important to note that the above modification process is carried out under mild conditions (e.g., temperature of about 70 C) and is well suited for large scale commercial application. In a series of studies, the applicability of a polyvinylpyrrolidone CSP membrane was demonstrated for the treatment of oil-in-water emulsion under a variety of flow conditions (Castro et al.,1996). Improved membrane performance was achieved due to minimization of surface adsorption of the oil components

  4. Preparation and Characterization of TiO2/g-C3N4/PVDF Composite Membrane with Enhanced Physical Properties

    Directory of Open Access Journals (Sweden)

    Huiya Wang

    2018-03-01

    Full Text Available TiO2/g-C3N4/PVDF composite membranes were prepared by a phase inversion method. A comparison of the performance and morphology was carried out among pure PVDF, g-C3N4/PVDF, TiO2/PVDF and TiO2/g-C3N4/PVDF composite membranes. The results of permeability and instrumental analysis indicated that TiO2 and g-C3N4 organic-inorganic composites obviously changed the performance and structure of the PVDF membranes. The porosity and water content of 0.75TiO2/0.25g-C3N4/PVDF composite membranes were 97.3 and 188.3 L/(m2·h, respectively. The porosity and water content of the 0.75TiO2/0.25g-C3N4 membranes were increased by 20.8% and 27.4%, respectively, compared with that of pure PVDF membranes. This suggested that the combination of organic-inorganic composite with PVDF could remarkably improve UTS, membrane porosity and water content.

  5. Durable and self-hydrating tungsten carbide-based composite polymer electrolyte membrane fuel cells.

    Science.gov (United States)

    Zheng, Weiqing; Wang, Liang; Deng, Fei; Giles, Stephen A; Prasad, Ajay K; Advani, Suresh G; Yan, Yushan; Vlachos, Dionisios G

    2017-09-04

    Proton conductivity of the polymer electrolyte membranes in fuel cells dictates their performance and requires sufficient water management. Here, we report a simple, scalable method to produce well-dispersed transition metal carbide nanoparticles. We demonstrate that these, when added as an additive to the proton exchange Nafion membrane, provide significant enhancement in power density and durability over 100 hours, surpassing both the baseline Nafion and platinum-containing recast Nafion membranes. Focused ion beam/scanning electron microscope tomography reveals the key membrane degradation mechanism. Density functional theory exposes that OH• and H• radicals adsorb more strongly from solution and reactions producing OH• are significantly more endergonic on tungsten carbide than on platinum. Consequently, tungsten carbide may be a promising catalyst in self-hydrating crossover gases while retarding desorption of and capturing free radicals formed at the cathode, resulting in enhanced membrane durability.The proton conductivity of polymer electrolyte membranes in fuel cells dictates their performance, but requires sufficient water management. Here, the authors report a simple method to produce well-dispersed transition metal carbide nanoparticles as additives to enhance the performance of Nafion membranes in fuel cells.

  6. Composite Electrolyte Membranes from Partially Fluorinated Polymer and Hyperbranched, Sulfonated Polysulfone

    Directory of Open Access Journals (Sweden)

    Surya Subianto

    2013-12-01

    Full Text Available Macromolecular modification of poly(vinylidene fluoride-co-hexafluoropropylene (PVDF was done with various proportions of sulfonic acid terminated, hyperbranched polysulfone (HPSU with a view to prepare ion conducting membranes. The PVDF-co-HFP was first chemically modified by dehydrofluorination and chlorosulfonation in order to make the membrane more hydrophilic as well as to introduce unsaturation, which would allow crosslinking of the PVDF-co-HFP matrix to improve the stability of the membrane. The modified samples were characterized for ion exchange capacity, morphology, and performance. The HPSU modified S-PVDF membrane shows good stability and ionic conductivity of 5.1 mS cm−1 at 80 °C and 100% RH for blends containing 20% HPSU, which is higher than the literature values for equivalent blend membranes using Nafion. SEM analysis of the blend membranes containing 15% or more HPSU shows the presence of spherical domains with a size range of 300–800 nm within the membranes, which are believed to be the HPSU-rich area.

  7. Pervaporation separation of ethanol-water mixtures using polyethylenimine composite membranes

    Science.gov (United States)

    Neidlinger, H.H.; Schissel, P.O.; Orth, R.A.

    1985-06-19

    Synthetic, organic, polymeric membranes were prepared from polyethylenimine for use with pervaporation apparatus in the separation of ethanol-water mixtures. The polymeric material was prepared in dilute aqueous solution and coated onto a polysulfone support film, from which excess polymeric material was subsequently removed. Cross-links were then generated by limited exposure to toluene-2,4-diisocyanate solution, after which the prepared membrane was heat-cured. The resulting membrane structures showed high selectivity in permeating ethanol or water over a wide range of feed concentrations. 2 tabs.

  8. Synthesis of a composite inorganic membrane for the separation of nitrogen, tetrafluoromethane and hexafluoropropylene

    OpenAIRE

    Bissett, Hertzog; Krieg, Henning M.

    2013-01-01

    The advanced use of inorganic membranes, such as zeolites, in large-scale industrial processes is hindered by the inability to manufacture continuous and defect-free membranes. We therefore aimed to construct such a defect-free membrane. Various zeolites were synthesised on the inner surface of α-alumina support tubes by a hydrothermal process. Gas permeation properties were investigated at 298 K for single component systems of N2, CF4 and C3F6. Ideal selectivities lower than Knud...

  9. A New Class of P(VdF-HFP-CeO2-LiClO4-Based Composite Microporous Membrane Electrolytes for Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    G. Vijayakumar

    2011-01-01

    Full Text Available Composite microporous membranes based on Poly (vinylidene fluoride–co-hexafluoro propylene P(VdF-co-HFP-CeO2 were prepared by phase inversion and preferential polymer dissolution process. It was then immersed in 1M LiClO4-EC/DMC (v/v=1:1 electrolyte solution to obtain their corresponding composite microporous membrane electrolytes. For comparison, composite membrane electrolytes were also prepared by conventional phase inversion method. The surface morphology of composite membranes obtained by both methods was examined by FE-SEM analysis, and their thermal behaviour was investigated by DSC analysis. It was observed that the preferential polymer dissolution composite membrane electrolytes (PDCMEs had better properties, such as higher porosity, electrolyte uptake (216 wt%, ionic conductivity (3.84 mS⋅cm−1 and good electrochemical stability (4.9 V, than the phase inversion composite membrane electrolytes (PICMEs. As a result, a cell fabricated with PDCME in between mesocarbon microbead (MCMB anode and LiCoO2 cathode had better cycling performance than a cell fabricated with PICME.

  10. Continuous esterification to produce biodiesel by SPES/PES/NWF composite catalytic membrane in flow-through membrane reactor: experimental and kinetic studies.

    Science.gov (United States)

    Shi, Wenying; He, Benqiao; Cao, Yuping; Li, Jianxin; Yan, Feng; Cui, Zhenyu; Zou, Zhiqun; Guo, Shiwei; Qian, Xiaomin

    2013-02-01

    A novel composite catalytic membrane (CCM) was prepared from sulfonated polyethersulfone (SPES) and polyethersulfone (PES) blend supported by non-woven fabrics, as a heterogeneous catalyst to produce biodiesel from continuous esterification of oleic acid with methanol in a flow-through mode. A kinetic model of esterification was established based on a plug-flow assumption. The effects of the CCM structure (thickness, area, porosity, etc.), reaction temperature and the external and internal mass transfer resistances on esterification were investigated. The results showed that the CCM structure had a significant effect on the acid conversion. The external mass transfer resistance could be neglected when the flow rate was over 1.2 ml min(-1). The internal mass transfer resistance impacted on the conversion when membrane thickness was over 1.779 mm. An oleic acid conversion kept over 98.0% for 500 h of continuous running. The conversions obtained from the model are in good agreement with the experimental data. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. An in vitro model of the glomerular capillary wall using electrospun collagen nanofibres in a bioartificial composite basement membrane.

    Directory of Open Access Journals (Sweden)

    Sadie C Slater

    Full Text Available The filtering unit of the kidney, the glomerulus, contains capillaries whose walls function as a biological sieve, the glomerular filtration barrier. This comprises layers of two specialised cells, glomerular endothelial cells (GEnC and podocytes, separated by a basement membrane. Glomerular filtration barrier function, and dysfunction in disease, remains incompletely understood, partly due to difficulties in studying the relevant cell types in vitro. We have addressed this by generation of unique conditionally immortalised human GEnC and podocytes. However, because the glomerular filtration barrier functions as a whole, it is necessary to develop three dimensional co-culture models to maximise the benefit of the availability of these cells. Here we have developed the first two tri-layer models of the glomerular capillary wall. The first is based on tissue culture inserts and provides evidence of cell-cell interaction via soluble mediators. In the second model the synthetic support of the tissue culture insert is replaced with a novel composite bioartificial membrane. This consists of a nanofibre membrane containing collagen I, electrospun directly onto a micro-photoelectroformed fine nickel supporting mesh. GEnC and podocytes grew in monolayers on either side of the insert support or the novel membrane to form a tri-layer model recapitulating the human glomerular capillary in vitro. These models will advance the study of both the physiology of normal glomerular filtration and of its disruption in glomerular disease.

  12. Reinforced PEI/PVdF Multicore-Shell Structure Composite Membranes by Phase Prediction on a Ternary Solution

    Directory of Open Access Journals (Sweden)

    Jihye Chae

    2018-04-01

    Full Text Available To construct a polyetherimide (PEI-reinforced polyvinylidene fluoride (PVdF composite membrane with multicore-shell structure, a ternary solution was prepared and electrospun by single-nozzle electrospinning. A theoretical prediction was made for the feasibility of complete distinction of two phases. The diameters of the membrane fibers and the PEI multi-core fibrils varied with the PEI ratio and the spinning time, respectively. The tensile strength and modulus were improved to 48 MPa and 1.5 GPa, respectively. The shrinkage of the membrane was only 6.6% at 180 °C, at which temperature the commercial PE separator melted down. The reinforcement in mechanical and thermal properties is associated with multiple PEI nanofibrils oriented along the fiber axis. Indeed, the unique morphology of self-assembled multicore-shell fibers plays an important role in their properties. All in all, PEI/PVdF membranes are appropriate for a lithium-ion battery application due to their high mechanical strength, excellent thermal stability, and controllable textural properties.

  13. Preliminary study on application of Pd composite membrane in helium purification system of high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Cai Jianhua; Yang Xiaoyong; Wang Jie; Yu Suyuan

    2008-01-01

    Helium purification system (HPS) is the main part of the helium auxiliary system of high-temperature gas-cooled reactors (HTGR), also in fusion reactors. Some exploratory work was carried out on the application of Pd composite membrane in the separation of He and H 2 . A typical single stripper permeator with recycle (SSP) system was designed, based on the design parameters of a small scale He purification test system CIGNE in CADARACHE, CEA, France, and finite element analysis method was used to solve the model. The total length of membrane module is fixed to 0.5 m. The results show that the concentration of H 2 is found to reduce from 1 000 μL/L in feed gas to 5 μL/L in the product He (the upper limitation of HPS in HTGR). And the molar ratio of product He to feed gas is 96.18% with the optimized ratio of sweep gas to retentive gas 0. 3970. It's an exponential distribution of H 2 concentration along the membrane module. The results were also compared with the other two popular designs, two stripper in series permeator (TSSP) and continuous membrane column (CMC). (authors)

  14. Application of thin film composite membranes with forward osmosis technology for the separation of emulsified oil-water

    KAUST Repository

    Duong, Hoang Hanh Phuoc

    2014-02-01

    Large amounts of oily wastewater have been produced from various industries. The main challenge of oily wastewater treatments is to separate the stable emulsified oil particles from water. Therefore, the aim of this study is to investigate the effectiveness of forward osmosis (FO) processes to treat the stable oil-water emulsions. The FO technique has been demonstrated successfully for the treatment of a wide range of oil-water emulsions from a low to a very high concentration up to 200,000. ppm. The dependence of separation performance on oily feed concentration and flow rate has been investigated. Water can be separated from oily feeds containing 500. ppm or 200,000. ppm emulsified oil at a relatively high flux of 16.5±1.2. LMH or 11.8±1.6. LMH respectively by using a thin film composite membrane PAN-TFC and 1. M NaCl as the draw solution. Moreover, this membrane can achieve an oil rejection of 99.88% to produce water with a negligible oil level. Due to the presence of emulsified oil particles in the oily feed solutions, the membrane fouling has been addressed in this study. Better anti-fouling TFC FO membranes are needed. © 2013 Elsevier B.V.

  15. Ionic polymer metal composite actuators employing irradiation-crosslinked sulfonated poly(styrene-ran-ethylene) as ion-exchange membranes

    Science.gov (United States)

    Wang, Xuanlun; Cheng, Tai-Hong; Xu, Liang; Oh, Il-Kwon

    2009-07-01

    Ionic polymer metal composites (IPMC) are soft polymeric smart materials having large displacement at low voltage in moist environments or water. This type of actuators consists of an ionic membrane and noble metal electrodes plated on both surfaces. The ion-exchange membrane, Nafion, remains as the benchmark for a majority of research and development in IPMC technology. In this research, we employed sulfonated poly(styrene-ran-ethylene) (SPSE) that is crosslinked by UV irradiation as a novel ionic membrane. The crosslinking reaction between polymer matrix and crosslinking agent was proved by FTIR analysis. The sulfonic acid groups were stable during the UV irradiation crosslinking process. Water uptake, ion exchange capacity, and sulfonation degree are characterized for both pure SPSE and crosslinked SPSE membrane. The bending responses of SPSE actuators under both direct current (DC) and alternating current (AC) excitations were investigated. The voltage-current behaviors of the actuators under AC excitations are also measured. Results showed the crosslinked SPSE actuators have better electromechanical performance than that of pure SPSE actuator with regard to tip displacement.

  16. Lipid raft localization of TLR2 and its co-receptors is independent of membrane lipid composition

    Directory of Open Access Journals (Sweden)

    Christine Hellwing

    2018-01-01

    Full Text Available Background Toll like receptors (TLRs are an important and evolutionary conserved class of pattern recognition receptors associated with innate immunity. The recognition of Gram-positive cell wall constituents strongly depends on TLR2. In order to be functional, TLR2 predominantly forms a heterodimer with TLR1 or TLR6 within specialized membrane microdomains, the lipid rafts. The membrane lipid composition and the physicochemical properties of lipid rafts are subject to modification by exogenous fatty acids. Previous investigations of our group provide evidence that macrophage enrichment with polyunsaturated fatty acids (PUFA induces a reordering of lipid rafts and non-rafts based on the incorporation of supplemented PUFA as well as their elongation and desaturation products. Methods In the present study we investigated potential constraining effects of membrane microdomain reorganization on the clustering of TLR2 with its co-receptors TLR1 and TLR6 within lipid rafts. To this end, RAW264.7 macrophages were supplemented with either docosahexaenoic acid (DHA or arachidonic acid (AA and analyzed for receptor expression and microdomain localization in context of TLR stimulation. Results and Conclusions Our analyses showed that receptor levels and microdomain localization were unchanged by PUFA supplementation. The TLR2 pathway, in contrast to the TLR4 signaling cascade, is not affected by exogenous PUFA at the membrane level.

  17. ProClusEnsem: Predicting membrane protein types by fusing different modes of pseudo amino acid composition

    KAUST Repository

    Wang, Jim Jing-Yan

    2012-05-01

    Knowing the type of an uncharacterized membrane protein often provides a useful clue in both basic research and drug discovery. With the explosion of protein sequences generated in the post genomic era, determination of membrane protein types by experimental methods is expensive and time consuming. It therefore becomes important to develop an automated method to find the possible types of membrane proteins. In view of this, various computational membrane protein prediction methods have been proposed. They extract protein feature vectors, such as PseAAC (pseudo amino acid composition) and PsePSSM (pseudo position-specific scoring matrix) for representation of protein sequence, and then learn a distance metric for the KNN (K nearest neighbor) or NN (nearest neighbor) classifier to predicate the final type. Most of the metrics are learned using linear dimensionality reduction algorithms like Principle Components Analysis (PCA) and Linear Discriminant Analysis (LDA). Such metrics are common to all the proteins in the dataset. In fact, they assume that the proteins lie on a uniform distribution, which can be captured by the linear dimensionality reduction algorithm. We doubt this assumption, and learn local metrics which are optimized for local subset of the whole proteins. The learning procedure is iterated with the protein clustering. Then a novel ensemble distance metric is given by combining the local metrics through Tikhonov regularization. The experimental results on a benchmark dataset demonstrate the feasibility and effectiveness of the proposed algorithm named ProClusEnsem. © 2012 Elsevier Ltd.

  18. Effect of cesium salt of tungstophosphoric acid (Cs-TPA) on the properties of sulfonated polyether ether ketone (SPEEK) composite membranes for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, Hacer; Inan, Tuelay Y.; Unveren, Elif [The Scientific and Technological Research Council of Turkey (TUeBiTAK), Marmara Research Center, Chemistry Institute, P.K. 21, 41470 Gebze-Kocaeli (Turkey); Kaya, Metin [DEMIRDOeKUeM A.S. 4 Eyluel Mah, ismet inoenue Cad. No:245 Bozueyuek/Bilecik (Turkey)

    2010-08-15

    We have prepared composite membranes for fuel cell applications. Cesium salt of tungstophosphoric acid (Cs-TPA) particles was synthesized by aqueous solutions of tungstophosphoric acid and cesium hydroxide and, Cs-TPA particles and sulfonated (polyether ether ketone) (SPEEK) with two sulfonation degrees (DS), 60 and 70%have been used. We examined both the effects of Cs-TPA in SPEEK membranes as functions of sulfonation degrees of SPEEK and the content of Cs-TPA. The performance of the composite membranes was evaluated in terms of water uptake, ion exchange capacity, proton conductivity, chemical stability, hydrolytic stability, thermal stability and methanol permeability. The morphology of the membranes was investigated with SEM micrographs. Increasing sulfonation degree of SPEEK from 60 to 70 caused agglomeration of the Cs-TPA particles. The methanol permeability was reduced to 4.7 x 10{sup -7} cm{sup 2}/s for SPEEK (DS: 60%)/Cs-TPA membrane with 10 wt.% Cs-TPA concentration, and acceptable proton conductivity of 1.3 x 10{sup -1} S/cm was achieved at 80 C under 100% RH. The weight loss at 900 C increased with the addition of inorganic particles, as expected. The hydrolytic stability of the SPEEK/Cs-TPA based composite membranes was improved with the incorporation of the Cs-TPA particles into the matrix. We also noted that SPEEK60/Cs-TPA composite membranes were hydrolytically more stable than SPEEK70/Cs-TPA composite membranes. On the other hand, Methanol, water vapor, and hydrogen permeability values of SPEEK60 composite membranes were found to be lower than that of Nafion {sup registered}. (author)

  19. Meningococcal outer membrane vesicle composition-dependent activation of the innate immune response

    NARCIS (Netherlands)

    Zariri, Afshin; Beskers, Joep; van de Waterbeemd, Bas; Hamstra, Hendrik Jan; Bindels, Tim H E; van Riet, Elly; van Putten, Jos P M; van der Ley, Peter

    2016-01-01

    Meningococcal outer membrane vesicles (OMVs) have been extensively investigated and successfully implemented as vaccines. They contain pathogen associated molecular patterns including lipopolysaccharide (LPS), capable of triggering innate immunity. However, Neisseria meningitidis contains an

  20. Optimisation of polypyrrole/Nafion composite membranes for direct methanol fuel cells

    International Nuclear Information System (INIS)

    Zhu Jun; Sattler, Rita R.; Garsuch, Arnd; Yepez, Omar; Pickup, Peter G.

    2006-01-01

    Acidic and neutral Nafion[reg] 115 perfluorosulphonate membranes have been modified by in situ polymerization of pyrrole using Fe(III) and H 2 O 2 as oxidizing agents, in order to decrease methanol crossover in direct methanol fuel cells. Improved selectivities for proton over methanol transport and improved fuel cell performances were only obtained with membranes that were modified while in the acid form. Use of Fe(III) as the oxidizing agent can produce a large decrease in methanol crossover, but causes polypyrrole deposition on the surface of the membrane. This increases the resistance of the membrane, and leads to poor fuel cell performances due to poor bonding with the electrodes. Surface polypyrrole deposition can be minimized, and surface polypyrrole can be removed, by using H 2 O 2 . The use of Nafion in its tetrabutylammonium form leads to very low methanol permeabilities, and appears to offer potential for manipulating the location of polypyrrole within the Nafion structure

  1. Effect of reaction conditions on film morphology of polyaniline composite membranes for gas separation

    Czech Academy of Sciences Publication Activity Database

    Blinova, N. V.; Stejskal, Jaroslav; Fréchet, J. M. J.; Švec, F.

    2012-01-01

    Roč. 50, č. 15 (2012), s. 3077-3085 ISSN 0887-624X Institutional support: RVO:61389013 Keywords : conducting polymer * thin film * membrane Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.543, year: 2012

  2. Dual delivery of hydrophilic and hydrophobic drugs from chitosan/diatomaceous earth composite membranes.

    Science.gov (United States)

    López-Cebral, Rita; Peng, Guangjia; Reys, Lara L; Silva, Simone S; Oliveira, Joaquim M; Chen, Jie; Silva, Tiago H; Reis, Rui L

    2018-02-02

    Oral administration of drugs presents important limitations, which are frequently not granted the importance that they really have. For instance, hepatic metabolism means an important drug loss, while some patients have their ability to swell highly compromised (i.e. unconsciousness, cancer…). Sublingual placement of an accurate Pharmaceutical Dosage Form is an attractive alternative. This work explores the use of the β-chitosan membranes, from marine industry residues, composed with marine sediments for dual sublingual drug delivery. As proof of concept, the membranes were loaded with a hydrophilic (gentamicin) and a hydrophobic (dexamethasone) drug. The physico-chemical and morphological characterization indicated the successful incorporated of diatomaceous earth within the chitosan membranes. Drug delivery studies showed the potential of all formulations for the immediate release of hydrophilic drugs, while diatomaceous earth improved the loading and release of the hydrophobic drug. These results highlight the interest of the herein developed membranes for dual drug delivery.

  3. Electrical and thermal conductivities of novel metal mesh hybrid polymer composite bipolar plates for proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Min-Chien; Liao, Shu-Hang; Yen, Ming-Yu.; Ma, Chen-Chi M. [Department of Chemical Engineering, National Tsing Hua University, 101, Section 2 Kuang Fu Road, Hsin-Chu 30043 (China); Lee, Shuo-Jen; Chen, Yung-Hung [Fuel Cell Center, Yuan Ze University, Tao-Yuan 32003 (China); Hung, Chih-Hung [Plastics Industry Development Center, Tai-Chung 40768 (China); Lin, Yu-Feng [Chemicals and Chemical Engineering, Chung Shan Institute of Science and Technology, Taoyuan 325 (China); Xie, Xiao-Feng [Institute of Nuclear and New Energy technology, Tsinghua University, Beijing 100084 (China)

    2010-01-15

    This study prepares novel metal mesh hybrid polymer composite bipolar plates for proton exchange membrane fuel cells (PEMFCs) via inserting a copper or aluminum mesh in polymer composites. The composition of polymer composites consists of 70 wt% graphite powder and 0-2 wt% modified multi-walled carbon nanotubes (m-MWCNTs). Results indicate that the in-plane electrical conductivity of m-MWCNTs/polymer composite bipolar plates increased from 156 S cm{sup -1} (0 wt% MWCNT) to 643 S cm{sup -1} (with 1 wt% MWCNT) (D.O.E. target >100 S cm{sup -1}). The bulk thermal conductivities of the copper and aluminum mesh hybrid polymer composite bipolar plates (abbreviated to Cu-HPBP and Al-HPBP) increase from 27.2 W m{sup -1} K{sup -1} to 30.0 W m{sup -1} K{sup -1} and 30.4 W m{sup -1} K{sup -1}, respectively. The through-plane conductivities decrease from 37.8 S cm{sup -1} to 36.7 S cm{sup -1} for Cu-HPBP and 22.9 S cm{sup -1} for Al-HPBP. Furthermore, the current and power densities of a single fuel cell using copper or aluminum mesh hybrid polymer composite bipolar plates are more stable than that of using neat polymer composite bipolar plates, especially in the ohmic overpotential region of the polarization curves of single fuel cell tests. The overall performance confirms that the metal mesh hybrid polymer composite bipolar plates prepared in this study are promising for PEMFC application. (author)

  4. The influence of erythrocyte maturity on ion transport and membrane lipid composition in the rat

    Czech Academy of Sciences Publication Activity Database

    Vokurková, Martina; Rauchová, Hana; Dobešová, Zdenka; Loukotová, Jana; Nováková, O.; Kuneš, Jaroslav; Zicha, Josef

    2016-01-01

    Roč. 65, č. 1 (2016), s. 91-99 ISSN 0862-8408 R&D Projects: GA MZd(CZ) NV15-25396A; GA ČR(CZ) GAP304/12/0259 Institutional support: RVO:67985823 Keywords : reticulocytes * immature erythrocytes * mean cellular hemoglobin content * membrane phospholipids * membrane cholesterol Subject RIV: ED - Physiology Impact factor: 1.461, year: 2016

  5. Exploring large-scale phenomena in composite membranes through an efficient implicit-solvent model

    Science.gov (United States)

    Laradji, Mohamed; Kumar, P. B. Sunil; Spangler, Eric J.

    2016-07-01

    Several microscopic and mesoscale models have been introduced in the past to investigate various phenomena in lipid membranes. Most of these models account for the solvent explicitly. Since in a typical molecular dynamics simulation, the majority of particles belong to the solvent, much of the computational effort in these simulations is devoted for calculating forces between solvent particles. To overcome this problem, several implicit-solvent mesoscale models for lipid membranes have been proposed during the last few years. In the present article, we review an efficient coarse-grained implicit-solvent model we introduced earlier for studies of lipid membranes. In this model, lipid molecules are coarse-grained into short semi-flexible chains of beads with soft interactions. Through molecular dynamics simulations, the model is used to investigate the thermal, structural and elastic properties of lipid membranes. We will also review here few studies, based on this model, of the phase behavior of nanoscale liposomes, cytoskeleton-induced blebbing in lipid membranes, as well as nanoparticles wrapping and endocytosis by tensionless lipid membranes. Topical Review article submitted to the Journal of Physics D: Applied Physics, May 9, 2016

  6. Exploring large-scale phenomena in composite membranes through an efficient implicit-solvent model

    International Nuclear Information System (INIS)

    Laradji, Mohamed; Sunil Kumar, P B; Spangler, Eric J

    2016-01-01

    Several microscopic and mesoscale models have been introduced in the past to investigate various phenomena in lipid membranes. Most of these models account for the solvent explicitly. Since in a typical molecular dynamics simulation, the majority of particles belong to the solvent, much of the computational effort in these simulations is devoted for calculating forces between solvent particles. To overcome this problem, several implicit-solvent mesoscale models for lipid membranes have been proposed during the last few years. In the present article, we review an efficient coarse-grained implicit-solvent model we introduced earlier for studies of lipid membranes. In this model, lipid molecules are coarse-grained into short semi-flexible chains of beads with soft interactions. Through molecular dynamics simulations, the model is used to investigate the thermal, structural and elastic properties of lipid membranes. We will also review here few studies, based on this model, of the phase behavior of nanoscale liposomes, cytoskeleton-induced blebbing in lipid membranes, as well as nanoparticles wrapping and endocytosis by tensionless lipid membranes. (topical review)

  7. Membrane composition and dynamics: a target of bioactive virgin olive oil constituents.

    Science.gov (United States)

    Lopez, Sergio; Bermudez, Beatriz; Montserrat-de la Paz, Sergio; Jaramillo, Sara; Varela, Lourdes M; Ortega-Gomez, Almudena; Abia, Rocio; Muriana, Francisco J G

    2014-06-01

    The endogenous synthesis of lipids, which requires suitable dietary raw materials, is critical for the formation of membrane bilayers. In eukaryotic cells, phospholipids are the predominant membrane lipids and consist of hydrophobic acyl chains attached to a hydrophilic head group. The relative balance between saturated, monounsaturated, and polyunsaturated acyl chains is required for the organization and normal function of membranes. Virgin olive oil is the richest natural dietary source of the monounsaturated lipid oleic acid and is one of the key components of the healthy Mediterranean diet. Virgin olive oil also contains a unique constellation of many other lipophilic and amphipathic constituents whose health benefits are still being discovered. The focus of this review is the latest evidence regarding the impact of oleic acid and the minor constituents of virgin olive oil on the arrangement and behavior of lipid bilayers. We highlight the relevance of these interactions to the potential use of virgin olive oil in preserving the functional properties of membranes to maintain health and in modulating membrane functions that can be altered in several pathologies. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes.

    Science.gov (United States)

    Ren, Ke; Wang, Yi; Sun, Tao; Yue, Wen; Zhang, Hongyu

    2017-09-01

    Guided bone regeneration (GBR) membranes have been proved of great benefit for bone tissue engineering due to the improvement of cell attachment and proliferation. To develop GBR membranes with better biocompatibility and more proper degradation ability, here we fabricated polycaprolactone (PCL, polymer)/gelatin (protein) hybrid nanofibrous GBR membranes via electrospinning, followed by crosslinking with genipin. Acetic acid (HAc) was utilized to resolve the phase separation of PCL and gelatin, therefore homogeneous PCL/gelatin hybrid nanofibers with different ratios were successfully prepared. FTIR, XPS, TGA, DSC results proved that the proportion of PCL and gelatin in the as-spun nanofiber membranes could be simply adjusted by changing the weight ratio of PCL and gelatin in the spinning solution. SEM and AFM images demonstrated that all the nanofibers possessed uniform and smooth structures both in two dimension (2D) and three dimension (3D). The mechanical tests showed that these nanofibers exhibited appropriate tensile and strength properties, which were suitable for bone tissue engineering. CCK-8 and SEM images revealed that all the membranes were biocompatible to MC3T3-e1 cells. In addition, the in vitro osteogenesis characterizations, alizarin red in normal medium and osteogenesis medium, indicated that the nanofibers could promote bone formation. Therefore, all these results could suggest that our design of electrospun polymer/protein nanofiber membranes was effective for guided bone regeneration. Copyright © 2017. Published by Elsevier B.V.

  9. Positron annihilation characteristics, water uptake and proton conductivity of composite Nafion membranes.

    Science.gov (United States)

    Yin, Chongshan; Wang, Lingtao; Li, Jingjing; Zhou, Yawei; Zhang, Haining; Fang, Pengfei; He, Chunqing

    2017-06-21

    The free volumes and proton conductivities of Nafion membranes were investigated at different humidities by positron annihilation lifetime spectroscopy (PALS) and using an electrochemical workstation, respectively. The results showed that the variation in o-Ps lifetime τ o-Ps was closely associated with the microstructure evolution and the development of hydrophilic ion clusters in Nafion membranes as a function of water uptake, regardless of metal oxide additives. In particular, with increasing relative humidity, the maximum value of τ o-Ps in the Nafion membranes corresponded to the formation of numerous water channels for proton transportation. Numerous well-connected water channels in Nafion-TiO 2 hybrid membranes could be formed at a much lower relative humidity (∼40% RH) than in the pristine one (∼75% RH), due to the better water retention ability of the Nafion-TiO 2 membranes. Further, a percolation behavior of proton conductivity at high water uptake in Nafion membranes was observed, which showed that the percolation of ionic-water clusters occurred at the water uptake of ∼4.5 wt%, and ∼6 wt% was basically enough for the formation of a well-connected water channel network.

  10. Magnetically tunable superconductor filters using yttrium iron garnet films

    International Nuclear Information System (INIS)

    Tsutsumi, Makoto; Fukusako, Takeshi; Shimasaki, Hitoshi

    1995-01-01

    Magnetically tunable superconducting single-resonator filters using YIG films have been demonstrated experimentally. Tunability of 400 MHz at a center frequency of 6 GHz was achieved for a half wavelength microstrip comprising a YIG-YBCO-MgO composite structure. The reason why the quality factor of the filter is relatively low is possibly due to an increase of the magnetic linewidth ΔH at liquid nitrogen temperature. The theory on dispersion relation of the filter is also presented

  11. Earliest Results in the Use of Activated Composite Membranes for the Transport of Silver Ions from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Yucundo Mendoza-Tolentino

    2014-01-01

    Full Text Available This paper presents the results concerning the first use of activated composite membranes (ACMs for the facilitated transport of silver ions containing di-(2-ethylhexyl-dithiophosphoric acid (DTPA as the carrier. DTPA was immobilized by interfacial polymerization in a dense layer that was deposited in a porous layer, which was prepared on a nonwoven fabric support by phase inversion. The influence of fundamental parameters affecting the transport of silver ion as the carrier concentration in the membrane phase and stripping agent variation of the stripping solution have been studied. In the optimal conditions, the amount of silver transported across the ACMs was greater than 50%, whereas if the content of the carrier is modified, more than the 90% of the initial silver is removed from the feed phase.

  12. Ultrastructure and lipid composition of detergent-resistant membranes derived from mammalian sperm and two types of epithelial cells.

    Science.gov (United States)

    van Gestel, Renske A; Brouwers, Jos F; Ultee, Anton; Helms, J Bernd; Gadella, Bart M

    2016-01-01

    Lipid rafts are micro-domains of ordered lipids (Lo phase) in biological membranes. The Lo phase of cellular membranes can be isolated from disordered lipids (Ld phase) after treatment with 1 % Triton  X-100 at 4 °C in which the Lo phase forms the detergent-resistant membrane (DRM) fraction. The lipid composition of DRM derived from Madin-Darby canine kidney (MDCK) cells, McArdle cells and porcine sperm is compared with that of the whole cell. Remarkably, the unsaturation and chain length degree of aliphatic chains attached to phospholipids is virtually the same between DRM and whole cells. Cholesterol and sphingomyelin were enriched in DRMs but to a cell-specific molar ratio. Sulfatides (sphingolipids from MDCK cells) were enriched in the DRM while a seminolipid (an alkylacylglycerolipid from sperm) was depleted from the DRM. Treatment with DRM without affecting the composition and amount of the phospholipid while higher levels disrupted the DRM. The substantial amount of (poly)unsaturated phospholipids in DRMs as well as a low stoichiometric amount of cholesterol suggest that lipid rafts in biological membranes are more fluid and dynamic than previously anticipated. Using negative staining, ultrastructural features of DRM were monitored and in all three cell types the DRMs appeared as multi-lamellar vesicular structures with a similar morphology. The detergent resistance is a result of protein-cholesterol and sphingolipid interactions allowing a relatively passive attraction of phospholipids to maintain the Lo phase. For this special issue, the relevance of our findings is discussed in a sperm physiological context.

  13. Ion-exchange composite membranes pore-filled with sulfonated poly(ether ether ketone) and Engelhard titanosilicate-10 for improved performance of vanadium redox flow batteries

    Science.gov (United States)

    Kim, Jihoon; Lee, Yongkyu; Jeon, Jae-Deok; Kwak, Seung-Yeop

    2018-04-01

    A series of ion-exchange membranes for vanadium redox flow batteries (VRBs) are prepared by filling the pores of a poly(tetrafluoroethylene) (PTFE) substrate with sulfonated poly(ether ether ketone) (SPEEK) and microporous Engelhard titanosilicate-10 (ETS-10). The effects of ETS-10 incorporation and PTFE reinforcement on membrane properties and VRB single-cell performance are investigated using various characterization tools. The results show that these composite membranes exhibit improved mechanical properties and reduced vanadium-ion permeabilities owing to the interactions between ETS-10 and SPEEK, the suppressed swelling of PTFE, and the unique ETS-10 framework. The composite membrane with 3 wt% ETS-10 (referred to as "SE3/P") exhibits the best membrane properties and highest ion selectivity. The VRB system with the SE3/P membrane exhibits higher cell capacity, higher cell efficiency, and lower capacity decay than that with a Nafion membrane. These results indicate that this composite membrane has potential as an alternative to Nafion in VRB systems.

  14. Novel Inorganic/Polymer Composite Membranes for CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Ho, W.S. Winston [The Ohio State Univ., Columbus, OH (United States). Depts. of Chemical and Biomolecular Engineering, Chemistry, and Materials Science and Engineering; Dutta, Prabir K. [The Ohio State Univ., Columbus, OH (United States). Depts. of Chemical and Biomolecular Engineering, Chemistry, and Materials Science and Engineering; Schmit, Steve J. [Gradient Technology, Elk River, MN (United States)

    2016-10-01

    The objective of this project is to develop a cost-effective design and manufacturing process for new membrane modules that capture CO2 from flue gas in coal-fired power plants. The membrane consisted of a thin selective layer including inorganic (zeolite) embedded in a polymer structure so that it can be made in a continuous manufacturing process. The membrane was incorporated in spiral-wound modules for the field test with actual flue gas at the National Carbon Capture Center (NCCC) in Wilsonville, AL and bench scale tests with simulated flue gas at the Ohio State University (OSU). Using the modules for post-combustion CO2 capture is expected to achieve the DOE target of $40/tonne CO2 captured (in 2007 dollar) for 2025. Membranes with the amine-containing polymer cover layer on zeolite-Y (ZY) nanoparticles deposited on the polyethersulfone (PES) substrate were successfully synthesized. The membranes showed a high CO2 permeance of about 1100 GPU (gas permeation unit, 1 GPU = 10-6 cm3 (STP)/(cm2 • s • cm Hg), 3000 GPU = 10-6 mol/(m2 • s • Pa)) with a high CO2/N2 selectivity of > 200 at the typical flue gas conditions at 57°C (about 17% water vapor in feed gas) and > 1400 GPU CO2 permeance with > 500 CO2/N2 selectivity at 102°C (~ 80% water vapor). The synthesis of ZY nanoparticles was successfully scaled up, and the pilot-scale membranes were also successfully fabricated using the continuous membrane machine at OSU. The transport performance of the pilot-scale membranes agreed reasonably well with the lab-scale membranes. The results from both the lab-scale and scale-up membranes were used for the techno-economic analysis. The scale-up membranes were fabricated into prototype spiral-wound membrane modules for continuous testing with simulated or real flue gas. For real flue gas testing, we worked with NCCC, in

  15. Studies of thermal annealing and dope composition on the enhancement of separation performance cellulose acetate membrane for brackish water treatment from Jepara

    Directory of Open Access Journals (Sweden)

    Tutuk Djoko Kusworo

    2014-08-01

    Full Text Available Membrane is an alternative technology of water treatment with filtration principle that is being widely developed and used for water treatment. The main objective of this study was to make an asymmetric membrane using cellulose acetate polymer and study the effect of additive and annealing treatment on the morphology structure and performance of cellulose acetate membranes in brackish water treatment. Asymmetric membranes for brackish water treatment were casted using a casting machine process from dope solutions containing cellulose acetates and acetone as a solvent. Membranes was prepared by phase inversion method  with variation of polyethylene glycol (PEG concentration of 1 and 5 wt% and with thermal annealing at 60 oC in 10 seconds and without thermal annealing behavior. Membrane characterization consists of calculation of membrane flux and rejection with brackish water as a feed from Jepara. The research concluded that asymmetric cellulose acetate membrane can be made by dry/wet phase inversion method. The more added concentration of PEG will be resulted the larger pore of membrane. Meanwhile the higher temperature and the longer time of annealing treatment, the skin layer of membrane become denser. Membrane with the composition of 18 wt% cellulose acetate, 5 wt% PEG, 1 wt% distilled water, with heat treatment at temperature of 60 oC for 10 seconds is obtained optimal performance.

  16. Performance of Platinum Nanoparticles / Multiwalled Carbon Nanotubes / Bacterial Cellulose Composite as Anode Catalyst for Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Henry Fonda Aritonang

    2017-05-01

    Full Text Available Highly dispersed platinum (Pt nanoparticles / multiwalled carbon nanotubes (MWCNTs on bacterial cellulose (BC as anode catalysts for proton exchange membrane fuel cells (PEMFC were prepared with various precursors and their electro-catalytic activities towards hydrogen oxidation at 70 oC under non-humidified conditions. The composite was prepared by deposition of Pt nanoparticles and MWCNTs on BC gel by impregnation method using a water solution of metal precursors and MWCNTs followed by reducing reaction using a hydrogen gas. The composite was characterized by using TEM (transmission electron microscopy, EDS (energy dispersive spectroscopy, and XRD (X-ray diffractometry techniques. TEM images and XRD patterns both lead to the observation of spherical metallic Pt nanoparticles with mean diameter of 3-11 nm well impregnated into the BC fibrils. Preliminary tests on a single cell indicate that renewable BC is a good prospect to be explored as a membrane in fuel cell field. Copyright © 2017 BCREC Group. All rights reserved Received: 21st November 2016; Revised: 26th February 2017; Accepted: 27th February 2017 How to Cite: Aritonang, H.F., Kamu, V.S., Ciptati, C., Onggo, D., Radiman, C.L. (2017. Performance of Platinum Nanoparticles / Multiwalled Carbon Nanotubes / Bacterial Cellulose Composite as Anode Catalyst for Proton Exchange Membrane Fuel Cells. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2: 287-292 (doi:10.9767/bcrec.12.2.803.287-292 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.2.803.287-292

  17. Synthesis, characterization and fuel cell performance tests of boric acid and boron phosphate doped, sulphonated and phosphonated poly(vinyl alcohol) based composite membranes

    Science.gov (United States)

    Şahin, Alpay; Ar, İrfan

    2015-08-01

    The aim of this study is to synthesize a composite membrane having high proton conductivity, ion exchange capacity and chemical stability. In order to achieve this aim, poly(vinyl alcohol) (PVA) based composite membranes are synthesized by using classic sol-gel method. Boric acid (H3BO3) and boron phosphate (BPO4) are added to the membrane matrix in different ratios in order to enhance the membrane properties. Characterization tests, i.e; FT-IR analysis, mechanical strength tests, water hold-up capacities, swelling properties, ion exchange capacities, proton conductivities and fuel cell performance tests of synthesized membranes are carried out. As a result of performance experiments highest performance values are obtained for the membrane containing 15% boron phosphate at 0.6 V and 750 mA/cm2. Water hold-up capacity, swelling ratio, ion exchange capacity and proton conductivity of this membrane are found as 56%, 8%, 1.36 meq/g and 0.37 S/cm, respectively. These values are close to the values obtained ones for perfluorosulphonic acid membranes. Therefore this membrane can be regarded as a promising candidate for usage in fuel cells.

  18. Tunable Microfluidic Dye Laser

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Helbo, Bjarne; Kutter, Jörg Peter

    2003-01-01

    We present a tunable microfluidic dye laser fabricated in SU-8. The tunability is enabled by integrating a microfluidic diffusion mixer with an existing microfluidic dye laser design by Helbo et al. By controlling the relative flows in the mixer between a dye solution and a solvent......, the concentration of dye in the laser cavity can be adjusted, allowing the wavelength to be tuned. Wavelength tuning controlled by the dye concentration was demonstrated with macroscopic dye lasers already in 1971, but this principle only becomes practically applicable by the use of microfluidic mixing...

  19. Preparation of Fouling-Resistant Nanofibrous Composite Membranes for Separation of Oily Wastewater

    Directory of Open Access Journals (Sweden)

    Fatma Yalcinkaya

    2017-12-01

    Full Text Available A facile and low-cost method has been developed for separation of oily wastewater. Polyvinylidene fluoride/polyacrylonitrile (PVDF/PAN nanofibers laminated on a supporting layer were tested. In order to create highly permeable and fouling-resistant membranes, surface modifications of both fibers were conducted. The results of oily wastewater separation showed that, after low vacuum microwave plasma treatment with Argon (Ar and chemical modification with sodium hydroxide (NaOH, the membranes had excellent hydrophilicity, due to the formation of active carboxylic groups. However, the membrane performance failed during the cleaning procedures. Titanium dioxide (TiO2 was grafted onto the surface of membranes to give them highly permeable and fouling-resistance properties. The results of the self-cleaning experiment indicated that grafting of TiO2 on the surface of the membranes after their pre-treatment with Ar plasma and NaOH increased the permeability and the anti-fouling properties. A new surface modification method using a combination of plasma and chemical treatment was introduced.

  20. Electrochemical properties of proton exchange membranes: the role of composition and microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Holdcroft, S.; Beattie, P.D.; Basura, V.I.; Schmeisser, J.; Chuy, C.; Orfino, F.; Ding, J. [Simon Fraser Univ., Burnaby, BC (Canada). Dept. of Chemistry

    2001-06-01

    To measure electrochemical and proton conduction properties of a large variety of different polyelectrolyte membranes that possess a wide array of equivalent weights and water contents, a number of analytical techniques were employed and the results presented in this paper. At the electrocatalyst/polymer electrolyte interface, kinetic and mass transport parameters play an important role in fuel cell operation, the authors used microelectrodes to study the effects of temperature and pressure on the electrochemical reduction of oxygen at platinum/solid polymer electrolyte interfaces in solid polymer electrolytes under controlled humidity. Under conditions of controlled humidity and temperature, proton conductivity was measured transverse and normal to the membrane surface using an alternate current (a.c.) impedance spectroscopy. A wide array of membranes were investigated, including those based on sulfonated polystyrene-block-hydrogenated butadiene, polystyrenesulfonic acid grafted onto ethylenetetrafluoroethylene, sulfonated trifluorostyrene-copolymers, and a novel series of membranes where the internal biphasic morphology is controlled to yield materials with low water and high conductivity and prepared in house. Transmission electron microscopy and small angle X-ray scattering was used for the analysis of the microstructure of selected membranes. Modelling the scattered intensities was used to quantify aspects of the microstructure.

  1. Electrospun carboxyl multi-walled carbon nanotubes grafted polyhydroxybutyrate composite nanofibers membrane scaffolds: Preparation, characterization and cytocompatibility.

    Science.gov (United States)

    Zhijiang, Cai; Cong, Zhu; Jie, Guo; Qing, Zhang; Kongyin, Zhao

    2018-01-01

    Electrospun polyhydroxybutyrate (PHB)/carboxyl multi-walled carbon nanotubes grafted polyhydroxybutyrate (CMWCNT-g-PHB) composite nanofibers scaffolds were fabricated by electrospinning technology. The grafted product CMWCNT-g-PHB was prepared by condensation reactions between the carboxyl groups of CMWCNT and hydroxyl groups of PHB molecules and characterized by FTIR, XRD, XPS, TG and TEM measurements. The surface morphology, hydrophilicity and tensile mechanical properties of the electrospun PHB/CMWCNT-g-PHB composite nanofibers membrane scaffolds were investigated. The values of tensile strength, breaking elongation rate, initial modulus and fracture energy of the composite nanofibers scaffolds can reach to 4.64MPa, 255.59%, 88MPa and 109.73kJ/m 2 , respectively. The biodegradability and cytocompatibility of the electrospun composite nanofibers scaffolds were preliminarily evaluated. The as-prepared electrospun PHB/CMWCNT-g-PHB composite nanofibers scaffolds with the characteristics of large specific area, high porosity, good biodegradability and cytocompatibility as well as sufficient mechanical properties should be more promising in the field of tissue engineering scaffolds and biological medicine. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Investigation of Antibacterial and Fouling Resistance of Silver and Multi-Walled Carbon Nanotubes Doped Poly(Vinylidene Fluoride-co-Hexafluoropropylene) Composite Membrane.

    Science.gov (United States)

    Macevele, Lutendo E; Moganedi, Kgabo L M; Magadzu, Takalani

    2017-07-13

    Composite membranes were successfully prepared using a phase-inversion method. The X-ray powder diffraction (XRD) and energy dispersive X-ray (EDX) profiles has confirmed formation of 4.8 wt % Ag/poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP), 3 wt % Ag-MWCNTs/PVDF-HFP (EDX surface composition of Ag nanoparticles) and 1.5 wt % MWCNTs/PVDF-HFP composite membranes. The MWCNTs crystallites are mainly encapsulated by a layer of PVDF-HFP, as evidenced by disappearance of graphitic peak. The scanning electron microscopy (SEM) images have depicted the formation of microporous structure, with few MWCNTs on the surface and strongly interacting with PVDF-HFP as demonstrated by thermogravimetric analysis (TGA), XRD and Fourier transform infrared (FTIR) data. The data indicated an increase in porosity, swellability and water content of the PVDF-HFP membrane with the addition of MWCNTs and/or Ag nanoparticles, showing an improved hydrophilicity. The 1.5 wt % MWCNTs/PVDF-HFP composite membrane showed good desalination and fouling resistance rates, which correlates with a low water contact angle. The combined effects of Ag nanoparticles and MWCNTs do not promote fouling resistance of PVDF-HFP membranes, as shown during NaCl microfiltration (this is linked with high water contact angle as compared to that of MWCNTs/PVDF-HFP composite). Both 1.5 wt % MWCNTs/PVDF-HFP and 3 wt % Ag-MWCNTs/PVDF-HFP composite membranes prevented the bacteria passing through the membrane (100% bacterial load reduction). The surface of 3 wt % Ag-MWCNTs/PVDF-HFP showed good bactericidal and non-leaching properties of the dopant materials (MWCNTs and Ag), as evidenced by bacterial growth on the edges of the membranes.

  3. Polymer and Composite Membranes for Proton-Conducting, High-Temperature Fuel Cells: A Critical Review.

    Science.gov (United States)

    Quartarone, Eliana; Angioni, Simone; Mustarelli, Piercarlo

    2017-06-22

    Polymer fuel cells operating above 100 °C (High Temperature Polymer Electrolyte Membrane Fuel Cells, HT-PEMFCs) have gained large interest for their application to automobiles. The HT-PEMFC devices are typically made of membranes with poly(benzimidazoles), although other polymers, such as sulphonated poly(ether ether ketones) and pyridine-based materials have been reported. In this critical review, we address the state-of-the-art of membrane fabrication and their properties. A large number of papers of uneven quality has appeared in the literature during the last few years, so this review is limited to works that are judged as significant. Emphasis is put on proton transport and the physico-chemical mechanisms of proton conductivity.

  4. Oxygen transport membrane

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a novel composite oxygen transport membrane as well as its preparation and uses thereof.......The present invention relates to a novel composite oxygen transport membrane as well as its preparation and uses thereof....

  5. Investigation of Antibacterial and Fouling Resistance of Silver and Multi-Walled Carbon Nanotubes Doped Poly(Vinylidene Fluoride-co-Hexafluoropropylene) Composite Membrane

    OpenAIRE

    Macevele, Lutendo E.; Moganedi, Kgabo L. M.; Magadzu, Takalani

    2017-01-01

    Composite membranes were successfully prepared using a phase-inversion method. The X-ray powder diffraction (XRD) and energy dispersive X-ray (EDX) profiles has confirmed formation of 4.8 wt % Ag/poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP), 3 wt % Ag-MWCNTs/PVDF-HFP (EDX surface composition of Ag nanoparticles) and 1.5 wt % MWCNTs/PVDF-HFP composite membranes. The MWCNTs crystallites are mainly encapsulated by a layer of PVDF-HFP, as evidenced by disappearance of graphitic peak....

  6. Eggshell and Bacterial Cellulose Composite Membrane as Absorbent Material in Active Packaging

    Directory of Open Access Journals (Sweden)

    S. Ummartyotin

    2016-01-01

    Full Text Available Bacterial cellulose and eggshell composite was successfully developed. Eggshell was mixed with bacterial cellulose suspension and it was casted as a composite film. CaCO3 derived from eggshell was compared with its commercial availability. It can be noted that good dispersion of eggshell particle was prepared. Eggshell particle was irregular in shape with a variation in size. It existed in bacterial cellulose network. Characterization on composite was focused on thermal and mechanical properties. It showed that flexibility and thermal stability of composite were enhanced. No significant effect of mechanical properties was therefore observed. The thermal stability of composite was stable up to 300°C. The adsorption experiment on water and vegetable oil capacity was performed. The enhancement on adsorption was due to the existence of eggshell in bacterial cellulose composite. It exhibited the potential to be a good candidate for absorbent material in active packaging.

  7. Investigating the effects of proton exchange membrane fuel cell conditions on carbon supported platinum electrocatalyst composition and performance

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Anant; Artyushkova, Kateryna; Atanassov, Plamen; Colbow, Vesna; Dutta, Monica; Harvey, Davie; Wessel, Silvia

    2011-12-01

    Changes that carbon-supported platinum electrocatalysts undergo in a proton exchange membrane fuel cell environment were simulated by ex situ heat treatment of catalyst powder samples at 150 C and 100% relative humidity. In order to study modifications that are introduced to chemistry, morphology, and performance of electrocatalysts, XPS, HREELS and three-electrode rotating disk electrode experiments were performed. Before heat treatment, graphitic content varied by 20% among samples with different types of carbon supports, with distinct differences between bulk and surface compositions within each sample. Following the aging protocol, the bulk and surface chemistry of the samples were similar, with graphite content increasing or remaining constant and Pt-carbide decreasing for all samples. From the correlation of changes in chemical composition and losses in performance of the electrocatalysts, we conclude that relative distribution of Pt particles on graphitic and amorphous carbon is as important for electrocatalytic activity as the absolute amount of graphitic carbon present

  8. Investigating the effects of proton exchange membrane fuel cell conditions on carbon supported platinum electrocatalyst composition and performance

    Energy Technology Data Exchange (ETDEWEB)

    A. Patel; K. Artyushkova; P. Atanassov; V. Colbow; M. Dutta; D. Harvey; S. Wessel

    2012-04-30

    Changes that carbon-supported platinum electrocatalysts undergo in a proton exchange membrane fuel cell environment were simulated by ex situ heat treatment of catalyst powder samples at 150 C and 100% relative humidity. In order to study modifications that are introduced to chemistry, morphology, and performance of electrocatalysts, XPS, HREELS and three-electrode rotating disk electrode experiments were performed. Before heat treatment, graphitic content varied by 20% among samples with different types of carbon supports, with distinct differences between bulk and surface compositions within each sample. Following the aging protocol, the bulk and surface chemistry of the samples were similar, with graphite content increasing or remaining constant and Pt-carbide decreasing for all samples. From the correlation of changes in chemical composition and losses in performance of the electrocatalysts, we conclude that relative distribution of Pt particles on graphitic and amorphous carbon is as important for electrocatalytic activity as the absolute amount of graphitic carbon present

  9. Effect of CO{sub 2}-laser irradiation on properties and performance of thin-film composite polyamide reverse osmosis membrane

    Energy Technology Data Exchange (ETDEWEB)

    Jahangiri, Foad; Mousavi, Seyyed Abbas; Farhadi, Fathollah; Sabzi, Behnam; Chenari, Zeinab [Sharif University of Technology, Tehran (Iran, Islamic Republic of); Vatanpour, Vahid [Kharazmi (Tarbiat Moallem) University, Tehran (Iran, Islamic Republic of)

    2016-03-15

    CO{sub 2}-laser irradiation was used to modify the surface properties of thin-film composite (TFC) polyamide reverse osmosis (RO) membranes. These membranes were first synthesized via interfacial polymerization of m-phenylenediamine (MPD) monomers and trimesoyl chloride (TMC) over porous polysulfone ultrafiltration support, followed by a CO{sub 2}-irradiation. AFM, ATR-FTIR, SEM and contact angle measurements were used to characterize the surface properties of these membranes. The ATR-FTIR results indicated that CO{sub 2}-laser irradiation did not induce any functional groups on the membrane surface. However, it was found that the laser irradiation enhanced the NaCl salt rejection and slightly reduced the permeate flux. Moreover, the maintenance of the flux in modified membranes was much higher than untreated ones. Specially, after 180 min of filtration, the reduction in initial flux for the unmodified membranes was 22%. However, the reduction in initial flux for the modified membranes was less than 5%. Bovine serum albumin (BSA) filtration revealed an improvement in the antifouling properties of the modified membranes. The changes in the membrane surface morphology showed that the roughness of membrane surface is reduced significantly.

  10. Polyunsaturated eicosapentaenoic acid displaces proteins from membrane rafts by altering rafts lipid composition

    Czech Academy of Sciences Publication Activity Database

    Stuling, T. M.; Huber, J.; Leitinger, N.; Imre, E. M.; Angelisová, Pavla; Nowotny, P.; Waldhaus, W.

    2001-01-01

    Roč. 276, č. 40 (2001), s. 37335-37340 ISSN 0021-9258 R&D Projects: GA ČR GA310/99/0349 Institutional research plan: CEZ:AV0Z5052915 Keywords : membrane raft * Lck * LAT Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.258, year: 2001

  11. Dimensionally stable Nafion-polyethylene composite membranes for direct methanol fuel cell applications

    NARCIS (Netherlands)

    Yildirim, M.H.; Stamatialis, Dimitrios; Wessling, Matthias

    2008-01-01

    Nafion ® impregnated Solupor ®, microporous UHMWPE film, (N-PE), Nafion ®117 (N117) and a membrane prepared using a DE2020 Nafion ® dispersion (DE2020) were characterized with respect to their swelling degree (SD), methanol cross-over, proton conductivity and DMFC performance at various methanol

  12. Membrane contactors in the beverage industry for controlling the water gas composition.

    Science.gov (United States)

    Criscuoli, Alessandra; Drioli, Enrico; Moretti, Ugo

    2003-03-01

    In the work described here, membrane contactors are used for coupling the removal of species (oxygen and hydrogen sulfide) present in the water with the water carbonation process. We include both experiments and a theoretical study devoted to the analysis of the transport phenomena that occur in the membrane contactor. The main resistance to mass transport was located at the liquid side. Correlations between Sherwood and Reynolds numbers on the shell side that are suitable for the membrane contactor used to carry out our experiments have been determined. In particular, for Re > 1.6, the expression proposed by Yang and Cussler in 1986: Sh = 0.90 Re(0.40) Sc(0.33) describes the behavior of the system; whereas, for Re between 0.03 and 0.3, a new expression is proposed: Sh = 0.435 Re(1.2)Sc(0.33). A comparison with traditional equipment is also furnished. Membrane contactors offer reduced size, CO(2) consumption, and capital costs.

  13. Assessment of Blend PVDF Membranes, and the Effect of Polymer Concentration and Blend Composition

    Directory of Open Access Journals (Sweden)

    Imtiaz Ali

    2018-03-01

    Full Text Available In this work, PVDF homopolymer was blended with PVDF-co-HFP copolymer and studied in terms of morphology, porosity, pore size, hydrophobicity, permeability, and mechanical properties. Different solvents, namely N-Methyl-2 pyrrolidone (NMP, Tetrahydrofuran (THF, and Dimethylformamide (DMF solvents, were used to fabricate blended PVDF flat sheet membranes without the introduction of any pore forming agent, through a non-solvent induced phase separation (NIPS technique. Furthermore, the performance of the fabricated membranes was investigated for pressure and thermal driven applications. The porosity of the membranes was slightly increased with the increase in the overall content of PVDF and by the inclusion of PVDF copolymer. Total PVDF content, copolymer content, and mixed-solvent have a positive effect on mechanical properties. The addition of copolymer increased the hydrophobicity when the total PVDF content was 20%. At 25% and with the inclusion of mixed-solvent, the hydrophobicity was adversely affected. The permeability of the membranes increased with the increase in the overall content of PVDF. Mixed-solvents significantly improved permeability.

  14. Sequentially aerated membrane biofilm reactors for autotrophic nitrogen removal: microbial community composition and dynamics

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Franck, Stephanie; Gülay, Arda

    2014-01-01

    Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration...

  15. Assessment of Blend PVDF Membranes, and the Effect of Polymer Concentration and Blend Composition.

    Science.gov (United States)

    Ali, Imtiaz; Bamaga, Omar A; Gzara, Lassaad; Bassyouni, M; Abdel-Aziz, M H; Soliman, M F; Drioli, Enrico; Albeirutty, Mohammed

    2018-03-05

    In this work, PVDF homopolymer was blended with PVDF-co-HFP copolymer and studied in terms of morphology, porosity, pore size, hydrophobicity, permeability, and mechanical properties. Different solvents, namely N-Methyl-2 pyrrolidone (NMP), Tetrahydrofuran (THF), and Dimethylformamide (DMF) solvents, were used to fabricate blended PVDF flat sheet membranes without the introduction of any pore forming agent, through a non-solvent induced phase separation (NIPS) technique. Furthermore, the performance of the fabricated membranes was investigated for pressure and thermal driven applications. The porosity of the membranes was slightly increased with the increase in the overall content of PVDF and by the inclusion of PVDF copolymer. Total PVDF content, copolymer content, and mixed-solvent have a positive effect on mechanical properties. The addition of copolymer increased the hydrophobicity when the total PVDF content was 20%. At 25% and with the inclusion of mixed-solvent, the hydrophobicity was adversely affected. The permeability of the membranes increased with the increase in the overall content of PVDF. Mixed-solvents significantly improved permeability.

  16. Assessment of Blend PVDF Membranes, and the Effect of Polymer Concentration and Blend Composition

    Science.gov (United States)

    Bamaga, Omar A.; Abdel-Aziz, M. H.

    2018-01-01

    In this work, PVDF homopolymer was blended with PVDF-co-HFP copolymer and studied in terms of morphology, porosity, pore size, hydrophobicity, permeability, and mechanical properties. Different solvents, namely N-Methyl-2 pyrrolidone (NMP), Tetrahydrofuran (THF), and Dimethylformamide (DMF) solvents, were used to fabricate blended PVDF flat sheet membranes without the introduction of any pore forming agent, through a non-solvent induced phase separation (NIPS) technique. Furthermore, the performance of the fabricated membranes was investigated for pressure and thermal driven applications. The porosity of the membranes was slightly increased with the increase in the overall content of PVDF and by the inclusion of PVDF copolymer. Total PVDF content, copolymer content, and mixed-solvent have a positive effect on mechanical properties. The addition of copolymer increased the hydrophobicity when the total PVDF content was 20%. At 25% and with the inclusion of mixed-solvent, the hydrophobicity was adversely affected. The permeability of the membranes increased with the increase in the overall content of PVDF. Mixed-solvents significantly improved permeability. PMID:29510555

  17. Membrane plasmalogen composition and cellular cholesterol regulation: a structure activity study

    Directory of Open Access Journals (Sweden)

    Su-Myat Khine K

    2010-06-01

    Full Text Available Abstract Background Disrupted cholesterol regulation leading to increased circulating and membrane cholesterol levels is implicated in many age-related chronic diseases such as cardiovascular disease (CVD, Alzheimer's disease (AD, and cancer. In vitro and ex vivo cellular plasmalogen deficiency models have been shown to exhibit impaired intra- and extra-cellular processing of cholesterol. Furthermore, depleted brain plasmalogens have been implicated in AD and serum plasmalogen deficiencies have been linked to AD, CVD, and cancer. Results Using plasmalogen deficient (NRel-4 and plasmalogen sufficient (HEK293 cells we investigated the effect of species-dependent plasmalogen restoration/augmentation on membrane cholesterol processing. The results of these studies indicate that the esterification of cholesterol is dependent upon the amount of polyunsaturated fatty acid (PUFA-containing ethanolamine plasmalogen (PlsEtn present in the membrane. We further elucidate that the concentration-dependent increase in esterified cholesterol observed with PUFA-PlsEtn was due to a concentration-dependent increase in sterol-O-acyltransferase-1 (SOAT1 levels, an observation not reproduced by 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA reductase inhibition. Conclusion The present study describes a novel mechanism of cholesterol regulation that is consistent with clinical and epidemiological studies of cholesterol, aging and disease. Specifically, the present study describes how selective membrane PUFA-PlsEtn enhancement can be achieved using 1-alkyl-2-PUFA glycerols and through this action reduce levels of total and free cholesterol in cells.

  18. Tunability enhanced electromagnetic wiggler

    Science.gov (United States)

    Schlueter, R.D.; Deis, G.A.

    1992-03-24

    The invention discloses a wiggler used in synchrotron radiation sources and free electron lasers, where each pole is surrounded by at least two electromagnetic coils. The electromagnetic coils are energized with different amounts of current to provide a wide tunable range of the on-axis magnetic flux density, while preventing magnetic saturation of the poles. 14 figs.

  19. Synthesis of Thin Film Composite Metal-Organic Frameworks Membranes on Polymer Supports

    KAUST Repository

    Barankova, Eva

    2017-06-01

    Since the discovery of size-selective metal-organic frameworks (MOF) researchers have tried to manufacture them into gas separation membranes. ZIF-8 became the most studied MOF for membrane applications mainly because of its simple synthesis, good chemical and thermal stability, recent commercial availability and attractive pore size. The aim of this work is to develop convenient methods for growing ZIF thin layers on polymer supports to obtain defect-free ZIF membranes with good gas separation properties. We present new approaches for ZIF membranes preparation on polymers. We introduce zinc oxide nanoparticles in the support as a secondary metal source for ZIF-8 growth. Initially the ZnO particles were incorporated into the polymer matrix and later on the surface of the polymer by magnetron sputtering. In both cases, the ZnO facilitated to create more nucleation opportunities and improved the ZIF-8 growth compared to the synthesis without using ZnO. By employing the secondary seeded growth method, we were able to obtain thin (900 nm) ZIF-8 layer with good gas separation performance. Next, we propose a metal-chelating polymer as a suitable support for growing ZIF layers. Defect-free ZIF-8 films with a thickness of 600 nm could be obtained by a contra-diffusion method. ZIF-8 membranes were tested for permeation of hydrogen and hydrocarbons, and one of the highest selectivities reported so far for hydrogen/propane, and propylene/propane was obtained. Another promising method to facilitate the growth of MOFs on polymeric supports is the chemical functionalization of the support surface with functional groups, which can complex metal ions and which can covalently bond the MOF crystals. We functionalized the surface of a common porous polymeric membrane with amine groups, which took part in the reaction to form ZIF-8 nanocrystals. We observed an enhancement in adhesion between the ZIF layer and the support. The effect of parameters of the contra-diffusion experiment

  20. Chitosan/(polyvinyl alcohol)/zeolite electrospun composite nanofibrous membrane for adsorption of Cr{sup 6+}, Fe{sup 3+} and Ni{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Habiba, Umma; Afifi, Amalina M.; Salleh, Areisman; Ang, Bee Chin, E-mail: amelynang@um.edu.my

    2017-01-15

    Highlights: • Chitosan/PVA/zeolite nanofibrous composite membrane was prepared by electrospinning method as a new chitosan based composite membrane. • The notable property of the resulting nanofibrous composite membrane is the rigidity and no weight loss in distilled water, basic and acidic medium. • Heavy metal removal effectiveness reaches to almost 100%, as the initial concentration of heavy metal is 10–20 mg/L. • The kinetic rate of adsorption is very high. • The reusability of the chitosan/PVA/zeolite nanofibrous membrane is an important finding of the current study. - Abstract: In this study, chitosan/polyvinyl alcohol (PVA)/zeolite nanofibrous composite membrane was fabricated via electrospinning. First, crude chitosan was hydrolyzed with NaOH for 24 h. Afterward, hydrolyzed chitosan solution was blended with aqueous PVA solution in different weight ratios. Morphological analysis of chitosan/PVA electrospun nanofiber showed a defect-free nanofiber material with 50:50 weight ratio of chitosan/PVA. Subsequently, 1 wt.% of zeolite was added to this blended solution of 50:50 chitosan/PVA. The resulting nanofiber was characterized with field emission scanning electron microscopy, X-Ray diffraction, Fourier transform infrared spectroscopy, swelling test, and adsorption test. Fine, bead-free nanofiber with homogeneous nanofiber was electrospun. The resulting membrane was stable in distilled water, acidic, and basic media in 20 days. Moreover, the adsorption ability of nanofibrous membrane was studied over Cr (VI), Fe (III), and Ni (II) ions using Langmuir isotherm. Kinetic parameters were estimated using the Lagergren first-order, pseudo-second-order, and intraparticle diffusion kinetic models. Kinetic study showed that adsorption rate was high. However, the resulting nanofiber membrane showed less adsorption capacity at high concentration. The adsorption capacity of nanofiber was unaltered after five recycling runs, which indicated the reusability of

  1. Electrolyte Composition of Mink (Mustela vison Erythrocytes and Active Cation Transporters of the Cell Membrane

    Directory of Open Access Journals (Sweden)

    Clausen TN

    2001-06-01

    Full Text Available Red blood cells from mink (Mustela vison were characterized with respect to their electrolyte content and their cell membranes with respect to enzymatic activity for cation transport. The intra- and extracellular concentrations of Na+, K+, Cl-, Ca2+ and Mg2+ were determined in erythrocytes and plasma, respectively. Plasma and red cell water content was determined, and molal electrolyte concentrations were calculated. Red cells from male adult mink appeared to be of the low-K+, high-Na+ type as seen in other carnivorous species. The intracellular K+ concentration is slightly higher than the extracellular one and the plasma-to-cell chemical gradient for Na+ is weak, though even the molal concentrations may differ significantly. Consistent with the high intracellular Na+ and low K+ concentrations, a very low or no ouabain-sensitive Na+,K+-ATPase activity and no K+-activated pNPPase activity were found in the plasma membrane fraction from red cells. The Cl- and Mg2+ concentrations expressed per liter cell water were significantly higher in red cells than in plasma whereas the opposite was the case with Ca2+. The distribution of Cl- thus does not seem compatible with an inside-negative membrane potential in mink erythrocytes. In spite of a steep calcium gradient across the red cell membrane, neither a calmodulin-activated Ca2+-ATPase activity nor an ATP-activated Ca2+-pNPPase activity were detectable in the plasma membrane fraction. The origin of a supposed primary Ca2+ gradient for sustaining of osmotic balance thus seems uncertain.

  2. Effect of combination dope composition and evaporation time on the separation performance of cellulose acetate membrane for demak brackish water treatment

    Directory of Open Access Journals (Sweden)

    Kusworo Tutuk Djoko

    2017-01-01

    Full Text Available The coastal areas in Indonesia often have a problem of clean water lack, because the water is classified as brackish water. Therefore, this research investigated the fabrication of CA membranes using phase inversion method for brackish water treatment. Investigation was conducted to study the effect of combination dope composition and evaporation time on separation performance and morphology of the memrbane. Membrane was fabricated by dry-wet phase inversion technique with variation of polymer concentration 17, 18 and 20 wt% in the total solid and evaporation time of 5, 10 and 15 seconds, respectively. The asymmetric membranes were characterized by permeability test through rejection and flux measurements using brackish water as feed. The experimental results from SEM images analysis showed that all the membranes have a thin small porous layer and thicker sub-structure of larger porous layer formed asymmetric membrane. Moreover, the greater polymer concentration is resulting smaller pore size and smaller membrane porosity. The longer evaporation time was also resulted in denser membrane active layer. The best membrane performance was observed at the composition of 20 wt% CA polymer, 1 wt % polyethylene glycol with the solvent evaporation time of 15 seconds.

  3. Elastic metamaterial beam with remotely tunable stiffness

    Science.gov (United States)

    Qian, Wei; Yu, Zhengyue; Wang, Xiaole; Lai, Yun; Yellen, Benjamin B.

    2016-02-01

    We demonstrate a dynamically tunable elastic metamaterial, which employs remote magnetic force to adjust its vibration absorption properties. The 1D metamaterial is constructed from a flat aluminum beam milled with a linear array of cylindrical holes. The beam is backed by a thin elastic membrane, on which thin disk-shaped permanent magnets are mounted. When excited by a shaker, the beam motion is tracked by a Laser Doppler Vibrometer, which conducts point by point scanning of the vibrating element. Elastic waves are unable to propagate through the beam when the driving frequency excites the first elastic bending mode in the unit cell. At these frequencies, the effective mass density of the unit cell becomes negative, which induces an exponentially decaying evanescent wave. Due to the non-linear elastic properties of the membrane, the effective stiffness of the unit cell can be tuned with an external magnetic force from nearby solenoids. Measurements of the linear and cubic static stiffness terms of the membrane are in excellent agreement with experimental measurements of the bandgap shift as a function of the applied force. In this implementation, bandgap shifts by as much as 40% can be achieved with ˜30 mN of applied magnetic force. This structure has potential for extension in 2D and 3D, providing a general approach for building dynamically tunable elastic metamaterials for applications in lensing and guiding elastic waves.

  4. Elastic metamaterial beam with remotely tunable stiffness

    International Nuclear Information System (INIS)

    Qian, Wei; Yu, Zhengyue; Wang, Xiaole; Lai, Yun; Yellen, Benjamin B.

    2016-01-01

    We demonstrate a dynamically tunable elastic metamaterial, which employs remote magnetic force to adjust its vibration absorption properties. The 1D metamaterial is constructed from a flat aluminum beam milled with a linear array of cylindrical holes. The beam is backed by a thin elastic membrane, on which thin disk-shaped permanent magnets are mounted. When excited by a shaker, the beam motion is tracked by a Laser Doppler Vibrometer, which conducts point by point scanning of the vibrating element. Elastic waves are unable to propagate through the beam when the driving frequency excites the first elastic bending mode in the unit cell. At these frequencies, the effective mass density of the unit cell becomes negative, which induces an exponentially decaying evanescent wave. Due to the non-linear elastic properties of the membrane, the effective stiffness of the unit cell can be tuned with an external magnetic force from nearby solenoids. Measurements of the linear and cubic static stiffness terms of the membrane are in excellent agreement with experimental measurements of the bandgap shift as a function of the applied force. In this implementation, bandgap shifts by as much as 40% can be achieved with ∼30 mN of applied magnetic force. This structure has potential for extension in 2D and 3D, providing a general approach for building dynamically tunable elastic metamaterials for applications in lensing and guiding elastic waves

  5. INFLUENCE AT DIFFERENT OPERATION CONDITIONS ON THE ACEROLA JUICE CONCENTRATION BY REVERSE OSMOSIS, USING SPIRAL MEMBRANE OF COMPOSITE FILM

    Directory of Open Access Journals (Sweden)

    E. R.S. GOMES

    2009-03-01

    Full Text Available

    The concentration of acerola juice, involves removal of water with the objective of reducing packing, storage and transport costs. The reverse osmosis (RO is a process of increasing interest in food industry and among the advantages they stand out: the low consumption of energy and the minimum thermal damages is caused to the products. The objective of this work was to evaluate the influence of different operation conditions in relation to the permeate flux, in the concentration process of the acerola juice by RO. All the RO experiments were carried out with retentate recycling. The concentration by RO, were carried on the transmembrane pressures of 20, 30 and 40 bar and at 23ºC and 40ºC, being used a membrane of composite film in spiral module (99% NaCl rejection. The acerola pulp was defrosted and treated with Citrozym Ultra L enzyme (100 ppm, 45ºC ,1 hour, then it was ultrafiltrated at 3 bar at the same temperature, in 0.1 µm ceramic membrane, and so it was concentrated by RO. It was verified that the pressure and the temperature influenced the concentration and the permeate flux obtained in the RO process. The flux decreased along the processing, once the feeding becomes more concentrate, increasing the viscosity, osmotic pressure and retained sugar. KEYWORDS: Acerola juice concentration; reverse osmosis; membrane of composite film.

  6. Polysulfide-Breathing/Dual-Conductive, Heterolayered Battery Separator Membranes Based on 0D/1D Mingled Nanomaterial Composite Mats.

    Science.gov (United States)

    Kim, Jeong-Hoon; Jung, Gwan Yeong; Lee, Yong-Hyeok; Kim, Jung-Hwan; Lee, Sun-Young; Kwak, Sang Kyu; Lee, Sang-Young

    2017-04-12

    Facile/sustainable utilization of sulfur active materials is an ultimate challenge in high-performance lithium-sulfur (Li-S) batteries. Here, as a membrane-driven approach to address this issue, we demonstrate a new class of polysulfide-breathing (capable of reversibly adsorbing and desorbing polysulfides)/dual (electron and ion) conductive, heterolayered battery separator membranes (denoted as "MEC-AA separators") based on 0D (nanoparticles)/1D (nanofibers) composite mats. The MEC-AA separator is fabricated through an in-series, concurrent electrospraying/electrospinning process. The top layer of the MEC-AA separator comprises close-packed mesoporous MCM-41 nanoparticles spatially besieged by multiwalled carbon nanotubes (MWNT) wrapped poly(ether imide) (PEI) nanofibers. The MCM-41 in the top layer shows reversible adsorption/desorption of polysulfides, and the MWNT-wrapped PEI nanofibers act as a dual-conductive upper current collector. Preferential deposition of the MWNTs along the PEI nanofibers and dispersion state of the separator components are elucidated theoretically using computational methods. The support layer, which consists of densely packed Al 2 O 3 nanoparticles and polyacrylonitrile nanofibers, serves as a mechanically/thermally stable and polysulfide-capturing porous membrane. The unique structure and multifunctionality of the MEC-AA separator allow for substantial improvements in redox reaction kinetics and cycling performance of Li-S cells far beyond those achievable with conventional polyolefin separators. The heterolayered nanomat-based membrane strategy opens a new route toward electrochemically active/permselective advanced battery separators.

  7. Fabrication of zirconia composite membrane by in-situ hydrothermal technique and its application in separation of methyl orange.

    Science.gov (United States)

    Kumar, R Vinoth; Ghoshal, Aloke Kumar; Pugazhenthi, G

    2015-11-01

    The main objective of the work was preparation of zirconia membrane on a low cost ceramic support through an in-situ hydrothermal crystallization technique for the separation of methyl orange dye. To formulate the zirconia film on the ceramic support, hydrothermal reaction mixture was prepared using zirconium oxychloride as a zirconia source and ammonia as a precursor. The synthesized zirconia powder was characterized by X-ray diffractometer (XRD), N2 adsorption/desorption isotherms, Thermogravimetric analysis (TGA), Fourier transform infrared analysis (FTIR), Energy-dispersive X-ray (EDX) analysis and particle size distribution (PSD) to identify the phases and crystallinity, specific surface area, pore volume and pore size distribution, thermal behavior, chemical composition and size of the particles. The porosity, morphological structure and pure water permeability of the prepared zirconia membrane, as well as ceramic support were investigated using the Archimedes' method, Field emission scanning electron microscopy (FESEM) and permeability. The specific surface area, pore volume, pore size distribution of the zirconia powder was found to be 126.58m(2)/g, 3.54nm and 0.3-10µm, respectively. The porosity, average pore size and pure water permeability of the zirconia membrane was estimated to be 42%, 0.66µm and 1.44×10(-6)m(3)/m(2)skPa, respectively. Lastly, the potential of the membrane was investigated with separation of methyl orange by means of flux and rejection as a function of operating pressure and feed concentration. The rejection was found to decrease with increasing the operating pressure and increases with increasing feed concentrations. Moreover, it showed a high ability to reject methyl orange from aqueous solution with a rejection of 61% and a high permeation flux of 2.28×10(-5)m(3)/m(2)s at operating pressure of 68kPa. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Permeability and Selectivity of PPO/Graphene Composites as Mixed Matrix Membranes for CO2 Capture and Gas Separation

    Directory of Open Access Journals (Sweden)

    Riccardo Rea

    2018-01-01

    Full Text Available We fabricated novel composite (mixed matrix membranes based on a permeable glassy polymer, Poly(2,6-dimethyl-1,4-phenylene oxide (PPO, and variable loadings of few-layer graphene, to test their potential in gas separation and CO2 capture applications. The permeability, selectivity and diffusivity of different gases as a function of graphene loading, from 0.3 to 15 wt %, was measured at 35 and 65 °C. Samples with small loadings of graphene show a higher permeability and He/CO2 selectivity than pure PPO, due to a favorable effect of the nanofillers on the polymer morphology. Higher amounts of graphene lower the permeability of the polymer, due to the prevailing effect of increased tortuosity of the gas molecules in the membrane. Graphene also allows dramatically reducing the increase of permeability with temperature, acting as a “stabilizer” for the polymer matrix. Such effect reduces the temperature-induced loss of size-selectivity for He/N2 and CO2/N2, and enhances the temperature-induced increase of selectivity for He/CO2. The study confirms that, as observed in the case of other graphene-based mixed matrix glassy membranes, the optimal concentration of graphene in the polymer is below 1 wt %. Below such threshold, the morphology of the nanoscopic filler added in solution affects positively the glassy chains packing, enhancing permeability and selectivity, and improving the selectivity of the membrane at increasing temperatures. These results suggest that small additions of graphene to polymers can enhance their permselectivity and stabilize their properties.

  9. Study of poly(vinyl alcohol)/titanium oxide composite polymer membranes and their application on alkaline direct alcohol fuel cell

    Science.gov (United States)

    Yang, Chun-Chen; Chiu, Shwu-Jer; Lee, Kuo-Tong; Chien, Wen-Chen; Lin, Che-Tseng; Huang, Ching-An

    The novel poly(vinyl alcohol)/titanium oxide (PVA/TiO 2) composite polymer membrane was prepared using a solution casting method. The characteristic properties of the PVA/TiO 2 composite polymer membrane were investigated by thermal gravimetric analysis (TGA), a scanning electron microscopy (SEM), a micro-Raman spectroscopy, a methanol permeability measurement and the AC impedance method. An alkaline direct alcohol (methanol, ethanol and isopropanol) fuel cell (DAFC), consisting of an air cathode based on MnO 2/C inks, an anode based on PtRu (1:1) black and a PVA/TiO 2 composite polymer membrane, was assembled and examined for the first time. The results indicate that the alkaline DAFC comprised of a cheap, non-perfluorinated PVA/TiO 2 composite polymer membrane shows an improved electrochemical performances. The maximum power densities of alkaline DAFCs with 4 M KOH + 2 M CH 3OH, 2 M C 2H 5OH and 2 M isopropanol (IPA) solutions at room temperature and ambient air are 9.25, 8.00, and 5.45 mW cm -2, respectively. As a result, methanol shows the highest maximum power density among three alcohols. The PVA/TiO 2 composite polymer membrane with the permeability values in the order of 10 -7 to 10 -8 cm 2 s -1 is a potential candidate for use on alkaline DAFCs.

  10. The activation energy for insertion of transmembrane alpha-helices is dependent on membrane composition.

    Science.gov (United States)

    Meijberg, Wim; Booth, Paula J

    2002-06-07

    The physical mechanisms that gove