WorldWideScience

Sample records for tunable chemokine production

  1. Tunable chemokine production by antigen presenting dendritic cells in response to changes in regulatory T cell frequency in mouse reactive lymph nodes.

    Directory of Open Access Journals (Sweden)

    Valentina Dal Secco

    Full Text Available BACKGROUND: Although evidence exists that regulatory T cells (Tregs can suppress the effector phase of immune responses, it is clear that their major role is in suppressing T cell priming in secondary lymphoid organs. Recent experiments using two photon laser microscopy indicate that dendritic cells (DCs are central to Treg cell function and that the in vivo mechanisms of T cell regulation are more complex than those described in vitro. PRINCIPAL FINDINGS: Here we have sought to determine whether and how modulation of Treg numbers modifies the lymph node (LN microenvironment. We found that pro-inflammatory chemokines -- CCL2 (MCP-1 and CCL3 (MIP-la -- are secreted in the LN early (24 h after T cell activation, that this secretion is dependent on antigen-specific DC-T cell interactions, and that it was inversely related to the frequency of Tregs specific for the same antigen. Furthermore, we demonstrate that Tregs modify the chemoattractant properties of antigen-presenting DCs, which, as the frequency of Tregs increases, fail to produce CCL2 and CCL3 and to attract antigen-specific T cells. CONCLUSIONS: These results substantiate a major role of Tregs in LN patterning during antigen-specific immune responses.

  2. Chemokines

    Directory of Open Access Journals (Sweden)

    Richard Horuk

    2007-01-01

    Full Text Available Chemokines are a family of polypeptides that direct the migration of leukocytestoward a site of infection. They play a major role in autoimmune disease and chemokine receptors have recently been found to mediate HIV-1 fusion. In this short review we examine the role of chemokines in host defence and in the pathophysiology of autoimmune diseases. We conclude by discussing various therapeutic approaches that target chemokine receptors and that could be beneficial in disease.

  3. Effect of thalidomide on chemokine production by human microglia.

    Science.gov (United States)

    Lokensgard, J R; Hu, S; van Fenema, E M; Sheng, W S; Peterson, P K

    2000-09-01

    Thalidomide, a psychoactive drug that readily crosses the blood-brain barrier, has been shown to possess immunomodulatory attributes, including the inhibition of cytokine production by monocytes and microglia. In this study, we investigated the effect of thalidomide on chemokine production by human microglial cells. Microglial cells were stimulated with lipopolysaccharide, a key cell-wall component of gram-negative bacteria responsible for meningitis, and production of chemokines (regulated upon activation normally T cell expressed and secreted [RANTES], monocyte chemoattractant protein [MCP]-1, macrophage inflammatory protein [MIP]-1beta, and interleukin [IL]-8) was examined by ELISA. Thalidomide treatment was found to cause potent and selective inhibition of IL-8 production in a dose-responsive manner. This inhibition was associated with decreased intracellular IL-8 staining as well as reduced transcription of IL-8 mRNA. In addition, thalidomide treatment of lipopolysaccharide-stimulated microglia inhibited the activation of protein NF-kappaB, a transcription factor known to be important for IL-8 production. These results suggest thalidomide could have a therapeutic role in acute bacterial meningitis through inhibition of IL-8-mediated neutrophil chemotaxis.

  4. Reduced IL-37 Production Increases Spontaneous Chemokine Expressions in Colon Epithelial Cells

    NARCIS (Netherlands)

    Günaltay, Sezin; Ghiboub, Mohammed; Hultgren, Olof; Hörnquist, Elisabeth Hultgren

    2017-01-01

    Microscopic colitis, comprising collagenous colitis and lymphocytic colitis, is a common cause of chronic diarrhea. Previously, we showed enhanced chemokine productions in microscopic colitis patients, indicating dysregulated immune cell chemotaxis in the immunopathogenesis. We also showed decreased

  5. Inhibition of dengue virus production and cytokine/chemokine expression by ribavirin and compound A.

    Science.gov (United States)

    Rattanaburee, Thidarath; Junking, Mutita; Panya, Aussara; Sawasdee, Nunghathai; Songprakhon, Pucharee; Suttitheptumrong, Aroonroong; Limjindaporn, Thawornchai; Haegeman, Guy; Yenchitsomanus, Pa-thai

    2015-12-01

    Dengue virus (DENV) infection is a worldwide public health problem with an increasing magnitude. The severity of disease in the patients with DENV infection correlates with high viral load and massive cytokine production - the condition referred to as "cytokine storm". Thus, concurrent inhibition of DENV and cytokine production should be more effective for treatment of DENV infection. In this study, we investigated the effects of the antiviral agent - ribavirin (RV), and the anti-inflammatory compound - compound A (CpdA), individually or in combination, on DENV production and cytokine/chemokine transcription in human lung epithelial carcinoma (A549) cells infected with DENV. Initially, the cells infected with DENV serotype 2 (DENV2) was studied. The results showed that treatment of DENV-infected cells with RV could significantly reduce both DENV production and cytokine (IL-6 and TNF-α) and chemokine (IP-10 and RANTES) transcription while treatment of DENV-infected cells with CpdA could significantly reduce cytokine (IL-6 and TNF-α) and chemokine (RANTES) transcription. Combined RV and CpdA treatment of the infected cells showed greater reduction of DENV production and cytokine/chemokine transcription. Similar results of this combined treatment were observed for infection with any one of the four DENV (DENV1, 2, 3, and 4) serotypes. These results indicate that combination of the antiviral agent and the anti-inflammatory compound offers a greater efficiency in reduction of DENV and cytokine/chemokine production, providing a new therapeutic approach for DENV infection. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin

    Science.gov (United States)

    Nagao, Keisuke; Kobayashi, Tetsuro; Moro, Kazuyo; Ohyama, Manabu; Adachi, Takeya; Kitashima, Daniela Y; Ueha, Satoshi; Horiuchi, Keisuke; Tanizaki, Hideaki; Kabashima, Kenji; Kubo, Akiharu; Cho, Young-hun; Clausen, Björn E; Matsushima, Kouji; Suematsu, Makoto; Furtado, Glaucia C; Lira, Sergio A; Farber, Joshua M; Udey, Mark C; Amagai, Masayuki

    2014-01-01

    Langerhans cells (LCs) are epidermal dendritic cells with incompletely understood origins that associate with hair follicles for unknown reasons. Here we show that in response to external stress, mouse hair follicles recruited Gr-1hi monocyte-derived precursors of LCs whose epidermal entry was dependent on the chemokine receptors CCR2 and CCR6, whereas the chemokine receptor CCR8 inhibited the recruitment of LCs. Distinct hair-follicle regions had differences in their expression of ligands for CCR2 and CCR6. The isthmus expressed the chemokine CCL2; the infundibulum expressed the chemokine CCL20; and keratinocytes in the bulge produced the chemokine CCL8, which is the ligand for CCR8. Thus, distinct hair-follicle keratinocyte subpopulations promoted or inhibited repopulation with LCs via differences in chemokine production, a feature also noted in humans. Pre-LCs failed to enter hairless skin in mice or humans, which establishes hair follicles as portals for LCs. PMID:22729248

  7. Intravenous infusion of erythromycin inhibits CXC chemokine production, but augments neutrophil degranulation in whole blood stimulated with Streptococcus pneumoniae

    NARCIS (Netherlands)

    Schultz, M. J.; Speelman, P.; Hack, C. E.; Buurman, W. A.; van Deventer, S. J.; van der Poll, T.

    2000-01-01

    Macrolides may influence the inflammatory response to an infection by mechanisms that are unrelated to their antimicrobial effect. Indeed, erythromycin and other macrolides inhibit cytokine production and induce degranulation of neutrophils in vitro. CXC chemokines are small chemotactic cytokines

  8. CCR5 and CXCR4 chemokine receptor expression and β-chemokine production during early T cell repopulation induced by highly active anti-retroviral therapy

    Science.gov (United States)

    Giovannetti, A; Ensoli, F; Mazzetta, F; De Cristofaro, M; Pierdominici, M; Muratori, D S; Fiorelli, V; Aiuti, F

    1999-01-01

    Expression of chemokine receptors and β-chemokine production by peripheral blood mononuclear cells (PBMC) were determined in HIV-1-infected individuals before and after highly active anti-retroviral therapy (HAART) and their relationship to viral load, T cell phenotype and the expression of immunological activation markers was examined. We found that the expression of CCR5 is up-regulated in HIV-1-infected individuals while CXCR4 appears down-regulated on both CD4 and CD8 T cells compared with normal controls. These alterations are associated with the high levels of viral load. In addition, a relationship was observed between the degree of immune activation and chemokine receptor expression on T cells. However, after 3 months of combined anti-retroviral regimen, expression of CXCR4 significantly increased while CCR5 decreased when compared with pretherapy determinations. This was seen in strict association with a dramatic decrease of viral load and an increase of both CD45RA+/CD62L+ (naive) and CD45RA−/CD62L+ or CD45RA+/CD62L− (memory) T cells accompanied by a significant decrease of the expression of immune activation markers such as HLA-DR and CD38. At enrolment, both spontaneous and lectin-induced RANTES, macrophage inflammatory protein-1α (MIP-1α) and MIP-1β production by PBMC were higher in HIV-1-infected individuals compared with normal controls, although differences for MIP-1β were not statistically significant. However, RANTES and MIP-1α production decreased during HAART at levels closer to that determined with normal controls, while MIP-1β production was less consistently modified. These data indicate that the expression of chemokine receptors CCR5 and CXCR4 and the production of β-chemokines are altered in HIV-infected individuals, and suggest that their early modifications during HAART reflect both the peripheral redistribution of naive/memory T cell compartments and the decrease in levels of T cell activation. Such modifications in the

  9. Antimycotics suppress the Malassezia extract-induced production of CXC chemokine ligand 10 in human keratinocytes.

    Science.gov (United States)

    Hau, Carren S; Kanda, Naoko; Makimura, Koichi; Watanabe, Shinichi

    2014-02-01

    Malassezia, a lipophilic yeast, exacerbates atopic dermatitis. Malassezia products can penetrate the disintegrated stratum corneum and encounter subcorneal keratinocytes in the skin of atopic dermatitis patients. Type 1 helper T (Th1) cells infiltrate chronic lesions with atopic dermatitis, and antimycotic agents improve its symptoms. We aimed to identify Malassezia-induced chemokines in keratinocytes and examine whether antimycotics suppressed this induction. Normal human keratinocytes were incubated with a Malassezia restricta extract and antimycotics. Chemokine expression was analyzed by enzyme-linked immunosorbent assays and real-time polymerase chain reaction. Signal transducer and activator of transcription (STAT)1 activity was examined by luciferase assays. The tyrosine-phosphorylation of STAT1 was analyzed by western blotting. The M. restricta extract increased the mRNA and protein expression of Th1-attracting CXC chemokine ligand (CXCL)10 and STAT1 activity and phosphorylation in keratinocytes, which was suppressed by a Janus kinase inhibitor. The antimycotics itraconazole, ketoconazole, luliconazole, terbinafine, butenafine and amorolfine suppressed M. restricta extract-induced CXCL10 mRNA and protein expression and STAT1 activity and phosphorylation. These effects were similarly induced by 15-deoxy-Δ-(12,14) -prostaglandin J2 (15d-PGJ2 ), a prostaglandin D2 metabolite. Antimycotics increased the release of 15d-PGJ2 from keratinocytes. The antimycotic-induced suppression of CXCL10 production and STAT1 activity was counteracted by a lipocalin-type prostaglandin D synthase inhibitor. The antimycotics itraconazole, ketoconazole, luliconazole, terbinafine, butenafine and amorolfine may suppress the M. restricta-induced production of CXCL10 by inhibiting STAT1 through an increase in 15d-PGJ2 production in keratinocytes. These antimycotics may block the Th1-mediated inflammation triggered by Malassezia in the chronic phase of atopic dermatitis. © 2014

  10. Alpha-mangostin inhibits both dengue virus production and cytokine/chemokine expression.

    Science.gov (United States)

    Tarasuk, Mayuri; Songprakhon, Pucharee; Chimma, Pattamawan; Sratongno, Panudda; Na-Bangchang, Kesara; Yenchitsomanus, Pa-Thai

    2017-08-15

    Since severe dengue virus (DENV) infection in humans associates with both high viral load and massive cytokine production - referred to as "cytokine storm", an ideal drug for treatment of DENV infection should efficiently inhibit both virus production and cytokine expression. In searching for such an ideal drug, we discovered that α-mangostin (α-MG), a major bioactive compound purified from the pericarp of the mangosteen fruit (Garcinia mangostana Linn), which has been used in traditional medicine for several conditions including trauma, diarrhea, wound infection, pain, fever, and convulsion, inhibits both DENV production in cultured hepatocellular carcinoma HepG2 and Huh-7 cells, and cytokine/chemokine expression in HepG2 cells. α-MG could also efficiently inhibit all four serotypes of DENV. Treatment of DENV-infected cells with α-MG (20μM) significantly reduced the infection rates of four DENV serotypes by 47-55%. α-MG completely inhibited production of DENV-1 and DENV-3, and markedly reduced production of DENV-2 and DENV-4 by 100 folds. Furthermore, it could markedly reduce cytokine (IL-6 and TNF-α) and chemokine (RANTES, MIP-1β, and IP-10) transcription. These actions of α-MG are more potent than those of antiviral agent (ribavirin) and anti-inflammatory drug (dexamethasone). Thus, α-MG is potential to be further developed as therapeutic agent for DENV infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. 15-Lipoxygenases regulate the production of chemokines in human lung macrophages.

    Science.gov (United States)

    Abrial, C; Grassin-Delyle, S; Salvator, H; Brollo, M; Naline, E; Devillier, P

    2015-09-01

    15-Lipoxygenase (15-LOX) activity is associated with inflammation and immune regulation. The objectives of the present study were to investigate the expression of 15-LOX-1 and 15-LOX-2 and evaluate the enzymes' roles in the polarization of human lung macrophages (LMs) in response to LPS and Th2 cytokines (IL-4/-13). LMs were isolated from patients undergoing surgery for carcinoma. The cells were cultured with a 15-LOX inhibitor (PD146176 or ML351), a COX inhibitor (indomethacin), a 5-LOX inhibitor (MK886) or vehicle and then stimulated with LPS (10 ng · mL(-1)), IL-4 (10 ng · mL(-1)) or IL-13 (50 ng · mL(-1)) for 24 h. Levels of ALOX15 (15-LOX-1) and ALOX15B (15-LOX-2) transcripts were determined by real-time quantitative PCR. Immunoassays were used to measure levels of LPS-induced cytokines (TNF-α, CCL2, CCL3, CCL4, CXCL1, CXCL8 and CXCL10) and Th2 cytokine-induced chemokines (CCL13, CCL18 and CCL22) in the culture supernatant. Stimulation of LMs with LPS was associated with increased expression of ALOX15B, whereas stimulation with IL-4/IL-13 induced the expression of ALOX15. PD146176 and ML351 (10 μM) reduced the release of the chemokines induced by LPS and Th2 cytokines. The effects of these 15-LOX inhibitors were maintained in the presence of indomethacin and MK886. Furthermore, indomethacin revealed the inhibitory effect of PD146176 on TNF-α release. Inhibition of the 15-LOX pathways is involved in the down-regulation of the in vitro production of chemokines in LMs. Our results suggest that the 15-LOX pathways have a role in the pathogenesis of inflammatory lung disorders and may thus constitute a potential drug target. © 2015 The British Pharmacological Society.

  12. Macrophage Transactivation for Chemokine Production Identified as a Negative Regulator of Granulomatous Inflammation Using Agent-Based Modeling

    Directory of Open Access Journals (Sweden)

    Daniel Moyo

    2018-03-01

    Full Text Available Cellular activation in trans by interferons, cytokines, and chemokines is a commonly recognized mechanism to amplify immune effector function and limit pathogen spread. However, an optimal host response also requires that collateral damage associated with inflammation is limited. This may be particularly so in the case of granulomatous inflammation, where an excessive number and/or excessively florid granulomas can have significant pathological consequences. Here, we have combined transcriptomics, agent-based modeling, and in vivo experimental approaches to study constraints on hepatic granuloma formation in a murine model of experimental leishmaniasis. We demonstrate that chemokine production by non-infected Kupffer cells in the Leishmania donovani-infected liver promotes competition with infected KCs for available iNKT cells, ultimately inhibiting the extent of granulomatous inflammation. We propose trans-activation for chemokine production as a novel broadly applicable mechanism that may operate early in infection to limit excessive focal inflammation.

  13. Carnosol and Related Substances Modulate Chemokine and Cytokine Production in Macrophages and Chondrocytes

    Directory of Open Access Journals (Sweden)

    Joseph Schwager

    2016-04-01

    Full Text Available Phenolic diterpenes present in Rosmarinus officinalis and Salvia officinalis have anti-inflammatory and chemoprotective effects. We investigated the in vitro effects of carnosol (CL, carnosic acid (CA, carnosic acid-12-methylether (CAME, 20-deoxocarnosol and abieta-8,11,13-triene-11,12,20-triol (ABTT in murine macrophages (RAW264.7 cells and human chondrocytes. The substances concentration-dependently reduced nitric oxide (NO and prostaglandin E2 (PGE2 production in LPS-stimulated macrophages (i.e., acute inflammation. They significantly blunted gene expression levels of iNOS, cytokines/interleukins (IL-1α, IL-6 and chemokines including CCL5/RANTES, CXCL10/IP-10. The substances modulated the expression of catabolic and anabolic genes in chondrosarcoma cell line SW1353 and in primary human chondrocytes that were stimulated by IL-1β (i.e., chronic inflammation In SW1353, catabolic genes like MMP-13 and ADAMTS-4 that contribute to cartilage erosion were down-regulated, while expression of anabolic genes including Col2A1 and aggrecan were shifted towards pre-pathophysiological homeostasis. CL had the strongest overall effect on inflammatory mediators, as well as on macrophage and chondrocyte gene expression. Conversely, CAME mainly affected catabolic gene expression, whereas ABTT had a more selectively altered interleukin and chemokine gene exprssion. CL inhibited the IL-1β induced nuclear translocation of NF-κBp65, suggesting that it primarily regulated via the NF-κB signalling pathway. Collectively, CL had the strongest effects on inflammatory mediators and chondrocyte gene expression. The data show that the phenolic diterpenes altered activity pattern of genes that regulate acute and chronic inflammatory processes. Since the substances affected catabolic and anabolic gene expression in cartilage cells in vitro, they may beneficially act on the aetiology of osteoarthritis.

  14. Oxidative damage and chemokine production dominate days before immune cell infiltration and EAE disease debut

    DEFF Research Database (Denmark)

    Hasseldam, Henrik; Rasmussen, Rune Skovgaard; Johansen, Flemming Fryd

    2016-01-01

    with cytochrome C release, cleavage of caspases 9 (38/40 kDa) and 3 (17/19 kDa), and cleavage of PARP (89 kDa) or spectrin (120/150 kDa), and apoptosis was not initiated. Axonal degeneration was only present at disease onset. Increases in a range of cytokines and chemokines were observed systemically...... as a consequence of immunization with complete Freund's adjuvant, whereas the encephalitogenic emulsion induced an upregulation of the chemokines Ccl2, Ccl20, and Cxcl1, specifically in brain tissue, 7 days after immunization. CONCLUSION: Five to seven days after immunization, subtle decreases in the mitochondrial...

  15. Inulae Flos and Its Compounds Inhibit TNF-α- and IFN-γ-Induced Chemokine Production in HaCaT Human Keratinocytes

    Directory of Open Access Journals (Sweden)

    Jung-Hoon Kim

    2012-01-01

    Full Text Available The present study is to investigate which kinds of solvent extracts of Inulae Flos inhibit the chemokine productions in HaCaT cell and whether the inhibitory capacity of Inulae Flos is related with constitutional compounds. The 70% methanol extract showed comparatively higher inhibition of thymus and activation-regulated chemokine (TARC/CCL17 in HaCaT cells, therefore this extract was further partitioned with n-hexane, chloroform, ethyl acetate, butanol, and water. The ethyl acetate fraction inhibited TARC, macrophage-derived chemokine (MDC/CCL22, and regulated on activation of normal T-cell-expressed and -secreted (RANTES/CCL5 production in HaCaT cells better than the other fractions. The compounds of Inulae Flos, such as 1,5-dicaffeoylquinic acid and luteolin, inhibited TARC, MDC, and RANTES production in HaCaT cells. 1,5-Dicaffeoylquinic acid was contained at the highest concentrations both in the 70% methanol extract and ethyl acetate fraction and inhibited the secretion of chemokines dose-dependently more than the other compounds. Luteolin also represented dose-dependent inhibition on chemokine productions although it was contained at lower levels in 70% methanol extract and solvent fractions. These results suggest that the inhibitory effects of Inulae Flos on chemokine production in HaCaT cell could be related with constituent compounds contained, especially 1,5-dicaffeoylquinic acid and luteolin.

  16. Autocrine production of beta-chemokines protects CMV-Specific CD4 T cells from HIV infection.

    Directory of Open Access Journals (Sweden)

    Joseph P Casazza

    2009-10-01

    Full Text Available Induction of a functional subset of HIV-specific CD4+ T cells that is resistant to HIV infection could enhance immune protection and decrease the rate of HIV disease progression. CMV-specific CD4+ T cells, which are less frequently infected than HIV-specific CD4+ T cells, are a model for such an effect. To determine the mechanism of this protection, we compared the functional response of HIV gag-specific and CMV pp65-specific CD4+ T cells in individuals co-infected with CMV and HIV. We found that CMV-specific CD4+ T cells rapidly up-regulated production of MIP-1alpha and MIP-1beta mRNA, resulting in a rapid increase in production of MIP-1alpha and MIP-1beta after cognate antigen stimulation. Production of beta-chemokines was associated with maturational phenotype and was rarely seen in HIV-specific CD4+ T cells. To test whether production of beta-chemokines by CD4+ T cells lowers their susceptibility to HIV infection, we measured cell-associated Gag DNA to assess the in vivo infection history of CMV-specific CD4+ T cells. We found that CMV-specific CD4+ T cells which produced MIP-1beta contained 10 times less Gag DNA than did those which failed to produce MIP-1beta. These data suggest that CD4+ T cells which produce MIP-1alpha and MIP-1beta bind these chemokines in an autocrine fashion which decreases the risk of in vivo HIV infection.

  17. Terameprocol, a methylated derivative of nordihydroguaiaretic acid, inhibits production of prostaglandins and several key inflammatory cytokines and chemokines

    Directory of Open Access Journals (Sweden)

    Scholle F

    2009-01-01

    Full Text Available Abstract Background Extracts of the creosote bush, Larrea tridentata, have been used for centuries by natives of western American and Mexican deserts to treat a variety of infectious diseases and inflammatory disorders. The beneficial activity of this plant has been linked to the compound nordihydroguaiaretic acid (NDGA and its various substituted derivatives. Recently, tetra-O-methyl NDGA or terameprocol (TMP has been shown to inhibit the growth of certain tumor-derived cell lines and is now in clinical trials for the treatment of human cancer. In this report, we ask whether TMP also displays anti-inflammatory activity. TMP was tested for its ability to inhibit the LPS-induced production of inflammatory lipids and cytokines in vitro. We also examined the effects of TMP on production of TNF-α in C57BL6/J mice following a sublethal challenge with LPS. Finally, we examined the molecular mechanisms underlying the effects we observed. Methods RAW 264.7 cells and resident peritoneal macrophages from C57BL6/J mice, stimulated with 1 μg/ml LPS, were used in experiments designed to measure the effects of TMP on the production of prostaglandins, cytokines and chemokines. Prostaglandin production was determined by ELISA. Cytokine and chemokine production were determined by antibody array and ELISA. Western blots, q-RT-PCR, and enzyme assays were used to assess the effects of TMP on expression and activity of COX-2. q-RT-PCR was used to assess the effects of TMP on levels of cytokine and chemokine mRNA. C57BL6/J mice injected i.p. with LPS were used in experiments designed to measure the effects of TMP in vivo. Serum levels of TNF-α were determined by ELISA. Results TMP strongly inhibited the production of prostaglandins from RAW 264.7 cells and normal peritoneal macrophages. This effect correlated with a TMP-dependent reduction in levels of COX-2 mRNA and protein, and inhibition of the enzymatic activity of COX-2. TMP inhibited, to varying degrees, the

  18. Production of chemokines in respiratory syncytial virus infection with central nervous system manifestations.

    Science.gov (United States)

    Kawashima, Hisashi; Kashiwagi, Yasuyo; Ioi, Hiroaki; Morichi, Shinichiro; Oana, Shingo; Yamanaka, Gaku; Takekuma, Kouji; Hoshika, Akinori; Sawai, Jun; Kato, Yuichi

    2012-12-01

    Respiratory syncytial virus (RSV) infection in children can be associated with acute encephalopathy. However, the roles of cytokines in the cerebrospinal fluid (CSF) of such patients remain unevaluated. In this study, a profile of 17 cytokines was determined for eight RSV-infected children with neurological complications. In one patient with high levels of 13 cytokines, a cytokine storm was considered to have occurred. Interleukin (IL)-6, IL-8, monocyte chemoattractant protein (MCP)-1, and macrophage inflammatory protein (MIP)-1β levels were also high in other patients. These data suggest that chemokines in CSF play roles in neurological complications in RSV-infected children.

  19. Production of cytokine and chemokines by human mononuclear cells and whole blood cells after infection with Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Karine Rezende-Oliveira

    2012-02-01

    Full Text Available INTRODUCTION: The innate immune response is the first mechanism of protection against Trypanosoma cruzi, and the interaction of inflammatory cells with parasite molecules may activate this response and modulate the adaptive immune system. This study aimed to analyze the levels of cytokines and chemokines synthesized by the whole blood cells (WBC and peripheral blood mononuclear cells (PBMC of individuals seronegative for Chagas disease after interaction with live T. cruzi trypomastigotes. METHODS: IL-12, IL-10, TNF-α, TGF-β, CCL-5, CCL-2, CCL-3, and CXCL-9 were measured by ELISA. Nitrite was determined by the Griess method. RESULTS: IL-10 was produced at high levels by WBC compared with PBMC, even after incubation with live trypomastigotes. Production of TNF-α by both PBMC and WBC was significantly higher after stimulation with trypomastigotes. Only PBMC produced significantly higher levels of IL-12 after parasite stimulation. Stimulation of cultures with trypomastigotes induced an increase of CXCL-9 levels produced by WBC. Nitrite levels produced by PBMC increased after the addition of parasites to the culture. CONCLUSIONS: Surface molecules of T. cruzi may induce the production of cytokines and chemokines by cells of the innate immune system through the activation of specific receptors not evaluated in this experiment. The ability to induce IL-12 and TNF-α contributes to shift the adaptive response towards a Th1 profile.

  20. Extracellular Histones Induce Chemokine Production in Whole Blood Ex Vivo and Leukocyte Recruitment In Vivo.

    Science.gov (United States)

    Westman, Johannes; Papareddy, Praveen; Dahlgren, Madelene W; Chakrakodi, Bhavya; Norrby-Teglund, Anna; Smeds, Emanuel; Linder, Adam; Mörgelin, Matthias; Johansson-Lindbom, Bengt; Egesten, Arne; Herwald, Heiko

    2015-12-01

    The innate immune system relies to a great deal on the interaction of pattern recognition receptors with pathogen- or damage-associated molecular pattern molecules. Extracellular histones belong to the latter group and their release has been described to contribute to the induction of systemic inflammatory reactions. However, little is known about their functions in the early immune response to an invading pathogen. Here we show that extracellular histones specifically target monocytes in human blood and this evokes the mobilization of the chemotactic chemokines CXCL9 and CXCL10 from these cells. The chemokine induction involves the toll-like receptor 4/myeloid differentiation factor 2 complex on monocytes, and is under the control of interferon-γ. Consequently, subcutaneous challenge with extracellular histones results in elevated levels of CXCL10 in a murine air pouch model and an influx of leukocytes to the site of injection in a TLR4 dependent manner. When analyzing tissue biopsies from patients with necrotizing fasciitis caused by Streptococcus pyogenes, extracellular histone H4 and CXCL10 are immunostained in necrotic, but not healthy tissue. Collectively, these results show for the first time that extracellular histones have an important function as chemoattractants as their local release triggers the recruitment of immune cells to the site of infection.

  1. Effects of Imatinib Mesylate (Gleevec) on Human Islet NF-kappaB Activation and Chemokine Production In Vitro

    Science.gov (United States)

    Mokhtari, Dariush; Li, Tingting; Lu, Tao; Welsh, Nils

    2011-01-01

    Purpose Imatinib Mesylate (Gleevec) is a drug that potently counteracts diabetes both in humans and in animal models for human diabetes. We have previously reported that this compound in human pancreatic islets stimulates NF-κB signaling and islet cell survival. The aim of this study was to investigate control of NF-κB post-translational modifications exerted by Imatinib and whether any such effects are associated with altered islet gene expression and chemokine production in vitro. Procedures Human islets were either left untreated or treated with Imatinib for different timepoints. IκB-α and NF-κB p65 phosphorylation and methylation were assessed by immunoblot analysis. Islet gene expression was assessed using a commercial Pathway Finder microarray kit and RT-PCR. Islet chemokine production was determined by flow cytometric bead array analysis. Findings Human islet IκB-α and Ser276-p65 phosphorylation were increased by a 20 minute Imatinib exposure. Methylation of p65 at position Lys221 was increased after 60 min of Imatinib exposure and persisted for 3 hours. Microarray analysis of islets exposed to Imatinib for 4 hours revealed increased expression of the inflammatory genes IL-4R, TCF5, DR5, I-TRAF, I-CAM, HSP27 and IL-8. The islet release of IL-8 was augmented in islets cultured over night in the presence of Imatinib. Following 30 hours of Imatinib exposure, the cytokine-induced IκB-α and STAT1 phosphorylation was abolished and diminished, respectively. The cytokine-induced release of the chemokines MIG and IP10 was lower in islets exposed to Imatinib for 30 hours. Conclusion Imatinib by itself promotes a modest activation of NF-κB. However, a prolonged exposure of human islets to Imatinib is associated with a dampened response to cytokines. It is possible that Imatinib induces NF-κB preconditioning of islet cells leading to lowered cytokine sensitivity and a mitigated islet inflammation. PMID:21935477

  2. Saussurea lappa alleviates inflammatory chemokine production in HaCaT cells and house dust mite-induced atopic-like dermatitis in Nc/Nga mice.

    Science.gov (United States)

    Lim, Hye-Sun; Ha, Hyekyung; Lee, Mee-Young; Jin, Seong-Eun; Jeong, Soo-Jin; Jeon, Woo-Young; Shin, Na-Ra; Sok, Dai-Eun; Shin, Hyeun-Kyoo

    2014-01-01

    Saussurea lappa is a traditional herbal medicine used for to treat various inflammatory diseases. In this study, we investigated the protective effects of S. lappa against atopic dermatitis using human keratinocyte HaCaT cells, murine mast cell line MC/9 cells, and a house dust mite-induced atopic dermatitis model of Nc/Nga mice. Treatment with the S. lappa caused a significant reduction in the mRNA levels and production of inflammatory chemokines and cytokine, including thymus- and activation-regulated chemokine (TARC), macrophage-derived chemokine (MDC), regulated on activation, normal T-cell expressed and secreted (RANTES), and interleukin-8 (IL-8) in tumor necrosis factor-α/interferone-γ-stimulated HaCaT cells. S. lappa exhibited the significant reduction in histamine production in MC/9 cells. In the atopic dermatitis model, S. lappa significantly reduced the dermatitis score and serum IgE and TARC levels. In addition, the back skin and ears of S. lappa-treated Nc/Nga mice exhibited reduced histological manifestations of atopic skin lesions such as erosion, hyperplasia of the epidermis and dermis, and inflammatory cell infiltration. In conclusion, an extract of S. lappa effectively suppressed the development of atopic dermatitis, which was closely related to the reduction of chemokines and cytokine. Our study suggests that S. lappa may be a potential treatment for atopic dermatitis. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  3. Elevated Production of Nociceptive CC Chemokines and sE-Selectin in Patients With Low Back Pain and the Effects of Spinal Manipulation: A Nonrandomized Clinical Trial.

    Science.gov (United States)

    Teodorczyk-Injeyan, Julita A; McGregor, Marion; Triano, John J; Injeyan, Stephen H

    2018-01-01

    The involvement of inflammatory components in the pathophysiology of low back pain (LBP) is poorly understood. It has been suggested that spinal manipulative therapy (SMT) may exert anti-inflammatory effects. The purpose of this study was to determine the involvement of inflammation-associated chemokines (CC series) in the pathogenesis of nonspecific LBP and to evaluate the effect of SMT on that process. Patients presenting with nonradicular, nonspecific LBP (minimum pain score 3 on 10-point visual analog scale) were recruited according to stringent inclusion criteria. They were evaluated for appropriateness to treat using a high velocity low amplitude manipulative thrust in the lumbar-lumbosacral region. Blood samples were obtained at baseline and following the administration of a series of 6 high velocity low amplitude manipulative thrusts on alternate days over the period of 2 weeks. The in vitro levels of CC chemokine ligands (CCL2, CCL3, and CCL4) production and plasma levels of an inflammatory biomarker, soluble E-selectin (sE-selectin), were determined at baseline and at the termination of treatments 2 weeks later. Compared with asymptomatic controls baseline production of all chemokines was significantly elevated in acute (P=0.004 to visual analog scale and Oswestry Disability Index scores. This was accompanied by a significant decline in CCL3 production (P<0.0001) in both groups of patients. Change scores for CCL4 production differed significantly (P<0.0001) only for the acute LBP cohort, and no effect on the production of CCL2 or plasma sE-selectin levels was noted in either group. The production of chemotactic cytokines is significantly and protractedly elevated in LBP patients. Changes in chemokine production levels, which might be related to SMT, differ in the acute and chronic LBP patient cohorts.

  4. Elevated Production of Nociceptive CC Chemokines and sE-Selectin in Patients With Low Back Pain and the Effects of Spinal Manipulation

    Science.gov (United States)

    Teodorczyk-Injeyan, Julita A.; McGregor, Marion; Triano, John J.

    2018-01-01

    Background: The involvement of inflammatory components in the pathophysiology of low back pain (LBP) is poorly understood. It has been suggested that spinal manipulative therapy (SMT) may exert anti-inflammatory effects. Purpose: The purpose of this study was to determine the involvement of inflammation-associated chemokines (CC series) in the pathogenesis of nonspecific LBP and to evaluate the effect of SMT on that process. Methods: Patients presenting with nonradicular, nonspecific LBP (minimum pain score 3 on 10-point visual analog scale) were recruited according to stringent inclusion criteria. They were evaluated for appropriateness to treat using a high velocity low amplitude manipulative thrust in the lumbar-lumbosacral region. Blood samples were obtained at baseline and following the administration of a series of 6 high velocity low amplitude manipulative thrusts on alternate days over the period of 2 weeks. The in vitro levels of CC chemokine ligands (CCL2, CCL3, and CCL4) production and plasma levels of an inflammatory biomarker, soluble E-selectin (sE-selectin), were determined at baseline and at the termination of treatments 2 weeks later. Results: Compared with asymptomatic controls baseline production of all chemokines was significantly elevated in acute (P=0.004 to visual analog scale and Oswestry Disability Index scores. This was accompanied by a significant decline in CCL3 production (P<0.0001) in both groups of patients. Change scores for CCL4 production differed significantly (P<0.0001) only for the acute LBP cohort, and no effect on the production of CCL2 or plasma sE-selectin levels was noted in either group. Conclusions: The production of chemotactic cytokines is significantly and protractedly elevated in LBP patients. Changes in chemokine production levels, which might be related to SMT, differ in the acute and chronic LBP patient cohorts. PMID:29200015

  5. PULSION registered HP: Tunable, High Productivity Plasma Doping

    International Nuclear Information System (INIS)

    Felch, S. B.; Torregrosa, F.; Etienne, H.; Spiegel, Y.; Roux, L.; Turnbaugh, D.

    2011-01-01

    Plasma doping has been explored for many implant applications for over two decades and is now being used in semiconductor manufacturing for two applications: DRAM polysilicon counter-doping and contact doping. The PULSION HP is a new plasma doping tool developed by Ion Beam Services for high-volume production that enables customer control of the dominant mechanism--deposition, implant, or etch. The key features of this tool are a proprietary, remote RF plasma source that enables a high density plasma with low chamber pressure, resulting in a wide process space, and special chamber and wafer electrode designs that optimize doping uniformity.

  6. RNA Sensors Enable Human Mast Cell Anti-Viral Chemokine Production and IFN-Mediated Protection in Response to Antibody-Enhanced Dengue Virus Infection

    Science.gov (United States)

    Huang, Yan Y.; Haidl, Ian D.; Al-Afif, Ayham; Marshall, Jean S.; Anderson, Robert

    2012-01-01

    Dengue hemorrhagic fever and/or dengue shock syndrome represent the most serious pathophysiological manifestations of human dengue virus infection. Despite intensive research, the mechanisms and important cellular players that contribute to dengue disease are unclear. Mast cells are tissue-resident innate immune cells that play a sentinel cell role in host protection against infectious agents via pathogen-recognition receptors by producing potent mediators that modulate inflammation, cell recruitment and normal vascular homeostasis. Most importantly, mast cells are susceptible to antibody-enhanced dengue virus infection and respond with selective cytokine and chemokine responses. In order to obtain a global view of dengue virus-induced gene regulation in mast cells, primary human cord blood-derived mast cells (CBMCs) and the KU812 and HMC-1 mast cell lines were infected with dengue virus in the presence of dengue-immune sera and their responses were evaluated at the mRNA and protein levels. Mast cells responded to antibody-enhanced dengue virus infection or polyinosiniċpolycytidylic acid treatment with the production of type I interferons and the rapid and potent production of chemokines including CCL4, CCL5 and CXCL10. Multiple interferon-stimulated genes were also upregulated as well as mRNA and protein for the RNA sensors PKR, RIG-I and MDA5. Dengue virus-induced chemokine production by KU812 cells was significantly modulated by siRNA knockdown of RIG-I and PKR, in a negative and positive manner, respectively. Pretreatment of fresh KU812 cells with supernatants from dengue virus-infected mast cells provided protection from subsequent infection with dengue virus in a type I interferon-dependent manner. These findings support a role for tissue-resident mast cells in the early detection of antibody-enhanced dengue virus infection via RNA sensors, the protection of neighbouring cells through interferon production and the potential recruitment of leukocytes via

  7. RNA sensors enable human mast cell anti-viral chemokine production and IFN-mediated protection in response to antibody-enhanced dengue virus infection.

    Directory of Open Access Journals (Sweden)

    Michael G Brown

    Full Text Available Dengue hemorrhagic fever and/or dengue shock syndrome represent the most serious pathophysiological manifestations of human dengue virus infection. Despite intensive research, the mechanisms and important cellular players that contribute to dengue disease are unclear. Mast cells are tissue-resident innate immune cells that play a sentinel cell role in host protection against infectious agents via pathogen-recognition receptors by producing potent mediators that modulate inflammation, cell recruitment and normal vascular homeostasis. Most importantly, mast cells are susceptible to antibody-enhanced dengue virus infection and respond with selective cytokine and chemokine responses. In order to obtain a global view of dengue virus-induced gene regulation in mast cells, primary human cord blood-derived mast cells (CBMCs and the KU812 and HMC-1 mast cell lines were infected with dengue virus in the presence of dengue-immune sera and their responses were evaluated at the mRNA and protein levels. Mast cells responded to antibody-enhanced dengue virus infection or polyinosiniċpolycytidylic acid treatment with the production of type I interferons and the rapid and potent production of chemokines including CCL4, CCL5 and CXCL10. Multiple interferon-stimulated genes were also upregulated as well as mRNA and protein for the RNA sensors PKR, RIG-I and MDA5. Dengue virus-induced chemokine production by KU812 cells was significantly modulated by siRNA knockdown of RIG-I and PKR, in a negative and positive manner, respectively. Pretreatment of fresh KU812 cells with supernatants from dengue virus-infected mast cells provided protection from subsequent infection with dengue virus in a type I interferon-dependent manner. These findings support a role for tissue-resident mast cells in the early detection of antibody-enhanced dengue virus infection via RNA sensors, the protection of neighbouring cells through interferon production and the potential recruitment of

  8. Response to Comment on "Tissue Factor-Dependent Chemokine Production Aggravates Experimental Colitis"

    NARCIS (Netherlands)

    Queiroz, Karla C.; Spek, C. Arnold

    2011-01-01

    In our recent work we utilized genetically modified mice to investigate the role of tissue factor (TF) in experimental colitis. We present evidence suggesting TF plays a detrimental role in this disease via signal transduction dependent KC production in colon epithelial cells, which provokes

  9. IL-6 amplifies TLR mediated cytokine and chemokine production: implications for the pathogenesis of rheumatic inflammatory diseases.

    Directory of Open Access Journals (Sweden)

    Ivan Caiello

    Full Text Available The role of Interleukin(IL-6 in the pathogenesis of joint and systemic inflammation in rheumatoid arthritis (RA and systemic juvenile idiopathic arthritis (s-JIA has been clearly demonstrated. However, the mechanisms by which IL-6 contributes to the pathogenesis are not completely understood. This study investigates whether IL-6 affects, alone or upon toll like receptor (TLR ligand stimulation, the production of inflammatory cytokines and chemokines in human peripheral blood mononuclear cells (PBMCs, synovial fluid mononuclear cells from JIA patients (SFMCs and fibroblast-like synoviocytes from rheumatoid arthritis patients (RA synoviocytes and signalling pathways involved. PBMCs were pre-treated with IL-6 and soluble IL-6 Receptor (sIL-6R. SFMCs and RA synoviocytes were pre-treated with IL-6/sIL-6R or sIL-6R, alone or in combination with Tocilizumab (TCZ. Cells were stimulated with LPS, S100A8-9, poly(I-C, CpG, Pam2CSK4, MDP, IL-1β. Treatment of PBMCs with IL-6 induced production of TNF-α, CXCL8, and CCL2, but not IL-1β. Addition of IL-6 to the same cells after stimulation with poly(I-C, CpG, Pam2CSK4, and MDP induced a significant increase in IL-1β and CXCL8, but not TNF-α production compared with TLR ligands alone. This enhanced production of IL-1β and CXCL8 paralleled increased p65 NF-κB activation. In contrast, addition of IL-6 to PBMCs stimulated with LPS or S100A8-9 (TLR-4 ligands led to reduction of IL-1β, TNF-α and CXCL8 with reduced p65 NF-κB activation. IL-6/IL-1β co-stimulation increased CXCL8, CCL2 and IL-6 production. Addition of IL-6 to SFMCs stimulated with LPS or S100A8 increased CXCL8, CCL2 and IL-1β production. Treatment of RA synoviocytes with sIL-6R increased IL-6, CXCL8 and CCL2 production, with increased STAT3 and p65 NF-κB phosphorylation. Our results suggest that IL-6 amplifies TLR-induced inflammatory response. This effect may be relevant in the presence of high IL-6 and sIL-6R levels, such as in arthritic

  10. Evasin-displaying lactic acid bacteria bind different chemokines and neutralize CXCL8 production in Caco-2 cells.

    Science.gov (United States)

    Škrlec, Katja; Pucer Janež, Anja; Rogelj, Boris; Štrukelj, Borut; Berlec, Aleš

    2017-11-01

    Chemokines are key signals in the immune system and play an important role as proinflammatory mediators in the pathology of inflammatory bowel disease and colorectal cancer, making them an important target for therapy. Recombinant lactic acid bacteria (LAB) were engineered to bind CC and CXC chemokines by displaying chemokine-binding proteins evasin-1, evasin-3 and evasin-4 on their surface. Evasin genes were cloned into lactococcal surface display vector and overexpressed in L. lactis NZ9000 and NZ9000ΔhtrA in fusion with secretion signal and surface anchor. Evasin-displaying bacteria removed from 15% to 90% of 11 different chemokines from the solution as determined with ELISA and Luminex multiplexing assays, whereby L. lactis NZ9000ΔhtrA proved more efficient. Lactobacillus salivarius ATCC 11741 was coated with L. . lactis-expressed evasin fusion protein, and its ability to bind chemokines was also confirmed. Evasin-3-displaying L. lactis removed 76.0% of IL-1β-induced CXCL8 from the supernatant of Caco-2 epithelial cells. It also prevented secretion of CXCL8 from Caco-2 cells in a time-dependent manner when added before induction with IL-1β. Evasin-displaying LAB have the ability to bind multiple chemokines simultaneously and exert synergistic activity. This innovative treatment approach therefore has the potential for mucosal therapy of inflammatory bowel disease or colorectal cancer. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  11. Tick saliva increases production of three chemokines including monocyte chemoattractant protein-1, a histamine-releasing cytokine

    Czech Academy of Sciences Publication Activity Database

    Langhansová, Helena; Bopp, T.; Schmitt, E.; Kopecký, Jan

    2015-01-01

    Roč. 37, č. 2 (2015), s. 92-96 ISSN 0141-9838 R&D Projects: GA ČR GCP302/11/J029 Institutional support: RVO:60077344 Keywords : chemokine * histamine * Ixodes ricinus * mcp-1 * Th2 response * tick saliva Subject RIV: EC - Immunology Impact factor: 1.917, year: 2015

  12. (+)-Nootkatone inhibits tumor necrosis factor α/interferon γ-induced production of chemokines in HaCaT cells.

    Science.gov (United States)

    Choi, Hyeon-Jae; Lee, Jin-Hwee; Jung, Yi-Sook

    2014-05-02

    Chemokines are important mediators of cell migration, and thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) are well-known typical inflammatory chemokines involved in atopic dermatitis (AD). (+)-Nootkatone is the major component of Cyperus rotundus. (+)-Nootkatone has antiallergic, anti-inflammatory, and antiplatelet activities. The purpose of this study was to investigate the effect of (+)-nootkatone on tumor necrosis factor α (TNF-α)/interferon γ (IFN-γ)-induced expression of Th2 chemokines in HaCaT cells. We found that (+)-nootkatone inhibited the TNF-α/IFN-γ-induced expression of TARC/CCL17 and MDC/CCL22 mRNA in HaCaT cells. It also significantly inhibited TNF-α/IFN-γ-induced activation of nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK), and protein kinase Cζ (PKCζ). Furthermore, we showed that PKCζ and p38 MAPK contributed to the inhibition of TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression by blocking IκBα degradation in HaCaT cells. Taken together, these results suggest that (+)-nootkatone may suppress TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression in HaCaT cells by inhibiting of PKCζ and p38 MAPK signaling pathways that lead to activation of NF-κB. We propose that (+)-nootkatone may be a useful therapeutic candidate for inflammatory skin diseases such as AD. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Chemokines and chemokine receptors in inflammation of the nervous system

    DEFF Research Database (Denmark)

    Huang, D; Han, Yong-Chang; Rani, M R

    2000-01-01

    This article focuses on the production of chemokines by resident glial cells of the nervous system. We describe studies in two distinct categories of inflammation within the nervous system: immune-mediated inflammation as seen in experimental autoimmune encephalomyelitis (EAE) or multiple sclerosis...... (MS) and post-traumatic inflammation. We provide evidence that chemokines play a role in amplifying the inflammatory reaction in EAE (and, probably, MS). In the context of neural trauma, chemokines appear to be primary stimuli for leukocyte recruitment. Strikingly, expression of monocyte...... that produce aggregates of simultaneous stimuli. These characteristics, in turn, mirror the expression patterns of the endogenous genes: MCP-1 is expressed under a variety of circumstances, while IP-10 appears primarily during immune-mediated processes that feature exposure of resident neuroglia to high levels...

  14. Up-Regulation of Pro-Inflammatory Cytokines and Chemokine Production in Avian Influenza H9N2 Virus-Infected Human Lung Epithelial Cell Line (A549).

    Science.gov (United States)

    Farzin, Hamidreza; Toroghi, Reza; Haghparast, Alireza

    2016-01-01

    Influenza H9N2 virus mostly infects avian species but poses a potential health risk to humans. Little is known about the mammalian host immune responses to H9N2 virus. To obtain insight into the innate immune responses of human lung epithelial cells to the avian H9N2 virus, the expressions of pro-inflammatory cytokines and chemokine in the human airway epithelial cells infected with avian H9N2 virus were examined by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). H9N2 virus was able to cultivate in the human lung epithelial cell line (A549) and stimulate production of pro-inflammatory cytokines (IL-1β, IL-6) and chemokine (IL-8). Expressions of cytokine genes were up-regulated to a significantly higher level for IL-1β (p line compared to non-virus-cultured A549 cells and were significant in both IL-1β (p < 0.05 in 18 hours and p < 0.001 in 24-48 hours harvested supernatant) and IL-6 (p < 0.001). Silencing the p65 component of NF-κB in A549 cells suppressed the stimulatory effects of influenza virus on secretion of pro-inflammatory cytokines and chemokine. The findings in this study will broaden our understanding of host innate immune mechanisms and the pathogenesis of H9N2 influenza viruses in human respiratory epithelium.

  15. (+)-Nootkatone inhibits tumor necrosis factor α/interferon γ-induced production of chemokines in HaCaT cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyeon-Jae; Lee, Jin-Hwee [College of Pharmacy, Ajou University, Suwon 443-749 (Korea, Republic of); Jung, Yi-Sook, E-mail: yisjung@ajou.ac.kr [College of Pharmacy, Ajou University, Suwon 443-749 (Korea, Republic of); Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 443-749 (Korea, Republic of)

    2014-05-02

    Highlights: • (+)-Nootkatone inhibits TNF-α/IFN-γ-induced TARC and MDC expression in HaCaT cells. • PKCζ, p38 MAPK, or NF-κB mediate TNF-α/IFN-γ-induced TARC and MDC expression. • (+)-Nootkatone inhibits TNF-α/IFN-γ-induced activation of PKCζ, p38 MAPK, or NF-κB. • (+)-Nootkatone suppresses chemokine expression by inhibiting of PKCζ and p38 pathways. - Abstract: Chemokines are important mediators of cell migration, and thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) are well-known typical inflammatory chemokines involved in atopic dermatitis (AD). (+)-Nootkatone is the major component of Cyperus rotundus. (+)-Nootkatone has antiallergic, anti-inflammatory, and antiplatelet activities. The purpose of this study was to investigate the effect of (+)-nootkatone on tumor necrosis factor α (TNF-α)/interferon γ (IFN-γ)-induced expression of Th2 chemokines in HaCaT cells. We found that (+)-nootkatone inhibited the TNF-α/IFN-γ-induced expression of TARC/CCL17 and MDC/CCL22 mRNA in HaCaT cells. It also significantly inhibited TNF-α/IFN-γ-induced activation of nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK), and protein kinase Cζ (PKCζ). Furthermore, we showed that PKCζ and p38 MAPK contributed to the inhibition of TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression by blocking IκBα degradation in HaCaT cells. Taken together, these results suggest that (+)-nootkatone may suppress TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression in HaCaT cells by inhibiting of PKCζ and p38 MAPK signaling pathways that lead to activation of NF-κB. We propose that (+)-nootkatone may be a useful therapeutic candidate for inflammatory skin diseases such as AD.

  16. Chemokines and immunity

    Science.gov (United States)

    Palomino, Diana Carolina Torres; Marti, Luciana Cavalheiro

    2015-01-01

    Chemokines are a large family of small cytokines and generally have low molecular weight ranging from 7 to 15kDa. Chemokines and their receptors are able to control the migration and residence of all immune cells. Some chemokines are considered pro-inflammatory, and their release can be induced during an immune response at a site of infection, while others are considered homeostatic and are involved in controlling of cells migration during tissue development or maintenance. The physiologic importance of this family of mediators is resulting from their specificity − members of the chemokine family induce recruitment of well-defined leukocyte subsets. There are two major chemokine sub-families based upon cysteine residues position: CXC and CC. As a general rule, members of the CXC chemokines are chemotactic for neutrophils, and CC chemokines are chemotactic for monocytes and sub-set of lymphocytes, although there are some exceptions. This review discusses the potential role of chemokines in inflammation focusing on the two best-characterized chemokines: monocyte chemoattractant protein-1, a CC chemokine, and interleukin-8, a member of the CXC chemokine sub-family. PMID:26466066

  17. Touch of chemokines

    Directory of Open Access Journals (Sweden)

    Xavier eBLANCHET

    2012-07-01

    Full Text Available Chemoattractant cytokines or chemokines constitute a family of structurally related proteins found in vertebrates, bacteria or viruses. So far, 48 chemokines genes have been identified in humans, which bind to around 20 chemokine receptors. These receptors belong to the seven transmembrane G-protein-coupled receptors family. Chemokines and their receptors were originally studied for their role in cellular trafficking of leukocytes during inflammation and immune surveillance as well. It is now known that they exert different functions under physiological conditions such as homeostasis, development, tissue repair, and angiogenesis but also under pathological disorders including tumorigenesis, cancer metastasis, inflammatory and autoimmune diseases. Physicochemical properties of chemokines and chemokine receptors confer them the ability to homo- and hetero-oligomerize. Many efforts are currently performed in establishing new therapeutically compounds able to target the chemokine/chemokine receptors system.In this review, we are interested in the role of chemokines in inflammatory disease and leukocyte trafficking with a focus on vascular inflammatory diseases, the operating synergism and the emerging therapeutic approaches of chemokines.

  18. Polymorphisms in genes TLR1, 2 and 4 are associated with differential cytokine and chemokine serum production in patients with leprosy

    Directory of Open Access Journals (Sweden)

    Nadja de Lima Santana

    Full Text Available BACKGROUND Leprosy or hansen’s disease is a spectral disease whose clinical forms mostly depends on host’s immune and genetic factors. Different Toll-like receptors (TLR variants have been described associated with leprosy, but with some lack of replication across different populations. OBJECTIVES To evaluate the role of polymorphisms in genes TLR1, TLR2 and TLR4 and susceptibility to leprosy in a genetic case control study; to verify the association between genotypes of these markers and the immunological profile in the serum of patients with leprosy. METHODS Pre-designed TaqMan® assays were used to genotype markers at TLR1 (rs4833095, rs5743551, TLR2 (rs7656411, rs3804099 and TLR4 (rs1927914, rs1927911. A panel of cytokines and chemokines was accessed by enzime-linked immunosorbent assay (ELISA test in the serum of a subgroup of patients with and without leprosy reactions. FINDINGS Our results show an association between the T allele of rs3804099 at the TLR2 gene and increased risk for leprosy per se [Odds ratio (OR = 1.296, p = 0,022]. In addition, evaluating the association between different genotypes of the TLR1, 2 and 4 markers and cytokine/chemokine serological levels, IL-17 appears as an immunological marker regulated by the polymorphism of the three TLR genes evaluated, whereas different TLR1 genotypes were associated with differential production of IL-12p40 and MCP-1(CCL2. Furthermore, other relevant serum markers such as CXCL-10 and IL-6 seemed to be regulated by TLR2 variants and IL-1β was related to TLR4 genotypes. MAIN CONCLUSIONS All together our data points that the tested TLR markers may have a regulatory role in the immunity against Mycobacterium leprae, by driving the host’s production of key cytokines and chemokines involved in the pathogenesis of this disease.

  19. Chemokines, lymphocytes, and HIV

    Directory of Open Access Journals (Sweden)

    Farber J.M.

    1998-01-01

    Full Text Available Chemokines are members of a family of more than 30 human cytokines whose best-described activities are as chemotactic factors for leukocytes and that are presumed to be important in leukocyte recruitment and trafficking. While many chemokines can act on lymphocytes, the roles of chemokines and their receptors in lymphocyte biology are poorly understood. The recent discoveries that chemokines can suppress infection by HIV-1 and that chemokine receptors serve, along with CD4, as obligate co-receptors for HIV-1 entry have lent urgency to studies on the relationships between chemokines and lymphocytes. My laboratory has characterized Mig and Crg-2/IP-10, chemokines that are induced by IFN-g and that specifically target lymphocytes, particularly activated T cells. We have demonstrated that the genes for these chemokines are widely expressed during experimental infections in mice with protozoan and viral pathogens, but that the patterns of mig and crg-2 expression differed, suggesting non-redundant roles in vivo. Our related studies to identify new chemokine receptors from activated lymphocytes resulted in the cloning of STRL22 and STRL33. We and others have shown that STRL22 is a receptor for the CC chemokine MIP-3a, and STRL22 has been re-named CCR6. Although STRL33 remains an orphan receptor, we have shown that it can function as a co-receptor for HIV-1 envelope glycoproteins, and that it is active with a broader range of HIV-1 envelope glycoproteins than the major co-receptors described to date. The ability of STRL33 to function with a wide variety of envelope glycoproteins may become particularly important if therapies are instituted to block other specific co-receptors. We presume that investigations into the roles of chemokines and their receptors in lymphocyte biology will provide information important for understanding the pathogenesis of AIDS and for manipulating immune and inflammatory responses for clinical benefit

  20. [Chemokines in ophthalmology].

    Science.gov (United States)

    Bleul, T; Schlunck, G; Reinhard, T; Lapp, T

    2017-12-07

    Chemokines are chemotactically active cytokines, which coordinate the distribution of immune cells within the body and also regulate the migration of leukocytes in malignant and inflammatory processes. Chemokines are a heterogeneous group of short-chain proteins that are divided into different subgroups on the basis of their structure. In addition to the chemokines (ligands) various chemokine receptors also exist. The chemokine system is given its complexity by the high redundancy of ligand-receptor interactions: one single ligand can bind to different receptors and a single receptor can interact with different ligands. In terms of receptors, distinct immune cell types have characteristic receptor expression patterns, which can be used for the immunological characterization of leukocytes. Important basic research is currently leading to a better understanding of the chemokine system. The essential importance of the chemokine system in various diseases of the anterior and posterior eye segments is becoming increasingly apparent. The following synopsis explains the individual clinical aspects as well as the underlying scientific work in the context of "chemokines in ophthalmology".

  1. Astrocyte production of the chemokine macrophage inflammatory protein-2 is inhibited by the spice principle curcumin at the level of gene transcription

    Directory of Open Access Journals (Sweden)

    Santoro Thomas J

    2005-02-01

    Full Text Available Abstract Background In neuropathological processes associated with neutrophilic infiltrates, such as experimental allergic encephalitis and traumatic injury of the brain, the CXC chemokine, macrophage inflammatory protein-2 (MIP-2 is thought to play a pivotal role in the induction and perpetuation of inflammation in the central nervous system (CNS. The origin of MIP-2 in inflammatory disorders of the brain has not been fully defined but astrocytes appear to be a dominant source of this chemokine. Curcumin is a spice principle in, and constitutes approximately 4 percent of, turmeric. Curcumin's immunomodulating and antioxidant activities suggest that it might be a useful adjunct in the treatment of neurodegenerative illnesses characterized by inflammation. Relatively unexplored, but relevant to its potential therapeutic efficacy in neuroinflammatory syndromes is the effect of curcumin on chemokine production. To examine the possibility that curcumin may influence CNS inflammation by mechanisms distinct from its known anti-oxidant activities, we studied the effect of this spice principle on the synthesis of MIP-2 by astrocytes. Methods Primary astrocytes were prepared from neonatal brains of CBA/CaJ mice. The cells were stimulated with lipopolysaccharide in the presence or absence of various amount of curcumin or epigallocatechin gallate. MIP-2 mRNA was analyzed using semi-quantitative PCR and MIP-2 protein production in the culture supernatants was quantified by ELISA. Astrocytes were transfected with a MIP-2 promoter construct, pGL3-MIP-2, and stimulated with lipopolysaccharide in the presence or absence of curcumin. Results The induction of MIP-2 gene expression and the production of MIP-2 protein were inhibited by curcumin. Curcumin also inhibited lipopolysaccharide-induced transcription of the MIP-2 promoter reporter gene construct in primary astrocytes. However MIP-2 gene induction by lipopolysaccharide was not inhibited by another anti

  2. Astrocyte production of the chemokine macrophage inflammatory protein-2 is inhibited by the spice principle curcumin at the level of gene transcription.

    Science.gov (United States)

    Tomita, Michiyo; Holman, Brita J; Santoro, Christopher P; Santoro, Thomas J

    2005-02-25

    BACKGROUND: In neuropathological processes associated with neutrophilic infiltrates, such as experimental allergic encephalitis and traumatic injury of the brain, the CXC chemokine, macrophage inflammatory protein-2 (MIP-2) is thought to play a pivotal role in the induction and perpetuation of inflammation in the central nervous system (CNS). The origin of MIP-2 in inflammatory disorders of the brain has not been fully defined but astrocytes appear to be a dominant source of this chemokine.Curcumin is a spice principle in, and constitutes approximately 4 percent of, turmeric. Curcumin's immunomodulating and antioxidant activities suggest that it might be a useful adjunct in the treatment of neurodegenerative illnesses characterized by inflammation. Relatively unexplored, but relevant to its potential therapeutic efficacy in neuroinflammatory syndromes is the effect of curcumin on chemokine production. To examine the possibility that curcumin may influence CNS inflammation by mechanisms distinct from its known anti-oxidant activities, we studied the effect of this spice principle on the synthesis of MIP-2 by astrocytes. METHODS: Primary astrocytes were prepared from neonatal brains of CBA/CaJ mice. The cells were stimulated with lipopolysaccharide in the presence or absence of various amount of curcumin or epigallocatechin gallate. MIP-2 mRNA was analyzed using semi-quantitative PCR and MIP-2 protein production in the culture supernatants was quantified by ELISA. Astrocytes were transfected with a MIP-2 promoter construct, pGL3-MIP-2, and stimulated with lipopolysaccharide in the presence or absence of curcumin. RESULTS: The induction of MIP-2 gene expression and the production of MIP-2 protein were inhibited by curcumin. Curcumin also inhibited lipopolysaccharide-induced transcription of the MIP-2 promoter reporter gene construct in primary astrocytes. However MIP-2 gene induction by lipopolysaccharide was not inhibited by another anti-oxidant, epigallocatechin

  3. Molecular machinations: chemokine signals in host-pathogen interactions.

    Science.gov (United States)

    Chensue, S W

    2001-10-01

    Chemokines and their G-protein-coupled receptors represent an ancient and complex system of cellular communication participating in growth, development, homeostasis and immunity. Chemokine production has been detected in virtually every microbial infection examined; however, the precise role of chemokines is still far from clear. In most cases they appear to promote host resistance by mobilizing leukocytes and activating immune functions that kill, expel, or sequester pathogens. In other cases, the chemokine system has been pirated by pathogens, especially protozoa and viruses, which have exploited host chemokine receptors as modes of cellular invasion or developed chemokine mimics and binding proteins that act as antagonists or inappropriate agonists. Understanding microbial mechanisms of chemokine evasion will potentially lead to novel antimicrobial and anti-inflammatory therapeutic agents.

  4. Effects of nitrous oxide on the production of cytokines and chemokines by the airway epithelium during anesthesia with sevoflurane and propofol.

    Science.gov (United States)

    Kumakura, Seiichiro; Yamaguchi, Keisuke; Sugasawa, Yusuke; Murakami, Taisuke; Kikuchi, Toshihiro; Inada, Eiichi; Nagaoka, Isao

    2013-12-01

    The aim of this study was to evaluate the effects of nitrous oxide (a gaseous anesthetic) on the in vivo production of inflammatory cytokines and chemokines by the airway epithelium, when combined with sevoflurane or propofol. Subjects undergoing simple or segmental mastectomy were randomly assigned to the sevoflurane and nitrous oxide, sevoflurane and air, propofol and nitrous oxide, or propofol and air group (all n=13). Epithelial lining fluid (ELF) was obtained using the bronchoscopic microsampling method prior to and following the mastectomy to enable measurement of the pre- and post-operative levels of certain inflammatory cytokines and chemokines using a cytometric bead array system. Notably, the levels of interleukin (IL)-1β, IL-8 and monocyte chemotactic protein-1 (MCP-1) in the ELF were significantly increased following the operations which involved the inhalation of sevoflurane and nitrous oxide, although the levels of these molecules were not significantly changed by the inhalation of sevoflurane and air. Furthermore, the IL-12p70 levels were significantly reduced in the ELF following the operations that involved the inhalation of sevoflurane and air, although the IL-12p70 levels were not significantly changed by the inhalation of nitrous oxide and sevoflurane. These observations suggest that the combination of sevoflurane and nitrous oxide induces an inflammatory response (increased production of IL-1β, IL-8 and MCP-1) and suppresses the anti-inflammatory response (reduced production of IL-12p70) in the local milieu of the airway. Thus, the combination of these compounds should be carefully administered for anesthesia.

  5. The Purification Method Using Iodixanol (Optiprep)-Based Density Gradient Significantly Reduces Cytokine/Chemokine Production from Human Islet Preparations, Leading to Prolong β-Cell Survival During Culture

    Science.gov (United States)

    Mita, Atsuyoshi; Ricordi, Camillo; Miki, Atsushi; Barker, Scott; Khan, Aisha; Alvarez, Alejandro; Hashikura, Yasuhiko; Miyagawa, Shin-ichi; Ichii, Hirohito

    2009-01-01

    Improved islet isolation has still been important to obtain adequate islet numbers for islet transplantation. Although Ficol-based density gradient is widely used for purification in most islet processing centers, OptiPrep-based density gradient is recently used in the limited centers and their clinical outcomes are excellent. Cytokine/chemokine production from islet preparations for transplantation widely varies. Some cytokines/chemokines have been reported to cause apoptosis in human islet preparations after isolation. Reducing cytokine/chemokine production is a key to improve islet numbers after isolation and islet transplantation outcome. The aim of current study is to investigate the variability of pro-inflammatory cytokine/chemokine production from islet preparations purified by different density gradient. After digestion of human pancreata, pre-purification digests were devided into two groups and purified using semi-automated cell processor with Ficoll-based and OptiPrep-based density gradient. Islet preparations were cultured for 2 days and assessed regarding islet cell viability (FDA/PI), fractional β-cell viability and β-cell content. Cytokine/chemokine production from islet preparations was also examined. After purification, purity, post-purification IEQ and islet recovery rate were comparable between two groups. Although FDA/PI and fractional β-cell viability showed no significant differences, β-cell survival during culture significantly increased in OptiPrep-based density gradient group when compared to Ficoll-based density gradient group. TNF-α, IL-1β, IFN-γ, IL-6 and MIP-1β production from OptiPrep-based density gradient group significantly decreased. OptiPrep-based density gradient can reduce cytokine-production when compared to Ficoll-based density gradient, resulting in improvement of quantity of β-cell mass. Cytokine profiling could spot new light on assessment of islet preparations before transplantation. PMID:19249543

  6. Molecular Machinations: Chemokine Signals in Host-Pathogen Interactions

    OpenAIRE

    Chensue, Stephen W.

    2001-01-01

    Chemokines and their G-protein-coupled receptors represent an ancient and complex system of cellular communication participating in growth, development, homeostasis and immunity. Chemokine production has been detected in virtually every microbial infection examined; however, the precise role of chemokines is still far from clear. In most cases they appear to promote host resistance by mobilizing leukocytes and activating immune functions that kill, expel, or sequester pathogens. In other case...

  7. Different patterns of cytokines and chemokines combined with IFN-γ production reflect Mycobacterium tuberculosis infection and disease.

    Directory of Open Access Journals (Sweden)

    Yang Yu

    Full Text Available BACKGROUND: IFN-γ is presently the only soluble immunological marker used to help diagnose latent Mycobacterium tuberculosis (M.tb infection. However, IFN-γ is not available to distinguish latent from active TB infection. Moreover, extrapulmonary tuberculosis, such as tuberculous pleurisy, cannot be properly diagnosed by IFN-γ release assay. As a result, other disease- or infection-related immunological biomarkers that would be more effective need to be screened and identified. METHODOLOGY: A panel of 41 soluble immunological molecules (17 cytokines and 24 chemokines was tested using Luminex liquid array-based multiplexed immunoassays. Samples, including plasma and pleural effusions, from healthy donors (HD, n = 12 or patients with latent tuberculosis infection (LTBI, n = 20, pulmonary tuberculosis (TB, n = 12, tuberculous pleurisy (TP, n = 15 or lung cancer (LC, n = 15 were collected and screened for soluble markers. Peripheral blood mononuclear cells (PBMCs and pleural fluid mononuclear cells (PFMCs were also isolated to investigate antigen-specific immune factors. PRINCIPAL FINDINGS: For the 41 examined factors, our results indicated that three patterns were closely associated with infection and disease. (1 Significantly elevated plasma levels of IL-2, IP-10, CXCL11 and CXCL12 were present in both patients with tuberculosis and in a sub-group participant with latent tuberculosis infection who showed a higher level of IFN-γ producing cells by ELISPOT assay compared with other latently infected individuals. (2 IL-6 and IL-9 were only significantly increased in plasma from active TB patients, and the two factors were consistently highly secreted after M.tb antigen stimulation. (3 When patients developed tuberculous pleurisy, CCL1, CCL21 and IL-6 were specifically increased in the pleural effusions. In particular, these three factors were consistently highly secreted by pleural fluid mononuclear cells following M

  8. Alantolactone from Saussurea lappa Exerts Antiinflammatory Effects by Inhibiting Chemokine Production and STAT1 Phosphorylation in TNF-α and IFN-γ-induced in HaCaT cells.

    Science.gov (United States)

    Lim, Hye-Sun; Jin, Sung-Eun; Kim, Ohn-Soon; Shin, Hyeun-Kyoo; Jeong, Soo-Jin

    2015-07-01

    Skin inflammation is the most common condition seen in dermatology practice and can be caused by various allergic reactions and certain toxins or chemicals. In the present study, we investigated the antiinflammatory effects of Saussurea lappa, a medicinal herb, and its marker compounds alantolactone, caryophyllene, costic acid, costunolide, and dehydrocostuslactone in the HaCaT human keratinocyte cell line. HaCaT cells were stimulated with tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ), and treated with S. lappa or each of five marker compounds. Chemokine production and expression were analyzed by enzyme-linked immunosorbent assay and reverse transcription-polymerase chain reaction, respectively. Phosphorylation of signal transducer and activator of transcription (STAT) 1 was determined by immunoblotting. Stimulation with TNF-α and IFN-γ significantly increased the production of the following chemokines: thymus-regulated and activation-regulated chemokine (TARC): regulated on activation, normal T-cell expressed and secreted (RANTES): macrophage-derived chemokine (MDC): and interleukin-8 (IL-8). By contrast, S. lappa and the five marker compounds significantly reduced the production of these chemokines by TNF-α and IFN-γ-treated cells. S. lappa and alantolactone suppressed the TNF-α and IFN-γ-stimulated increase in the phosphorylation of STAT1. Our results demonstrate that alantolactone from S. lappa suppresses TNF-α and IFN-γ-induced production of RANTES and IL-8 by blocking STAT1 phosphorylation in HaCaT cells. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Chemokines and chemokine receptors expression in the lesions of patients with American cutaneous leishmaniasis

    Directory of Open Access Journals (Sweden)

    Nilka Luisa Diaz

    2013-06-01

    Full Text Available American cutaneous leishmaniasis (ACL presents distinct active clinical forms with different grades of severity, known as localised (LCL, intermediate (ICL and diffuse (DCL cutaneous leishmaniasis. LCL and DCL are associated with a polarised T-helper (Th1 and Th2 immune response, respectively, whereas ICL, or chronic cutaneous leishmaniasis, is associated with an exacerbated immune response and a mixed cytokine expression profile. Chemokines and chemokine receptors are involved in cellular migration and are critical in the inflammatory response. Therefore, we evaluated the expression of the chemokines CXCL10, CCL4, CCL8, CCL11 and CXCL8 and the chemokine receptors CCR3, CXCR3, CCR5 and CCR7 in the lesions of patients with different clinical forms of ACL using immunohistochemistry. LCL patients exhibited a high density of CXCL10+, CCL4+ and CCL8+ cells, indicating an important role for these chemokines in the local Th1 immune response and the migration of CXCR3+ cells. LCL patients showed a higher density of CCR7+ cells than ICL or DCL patients, suggesting major dendritic cell (DC migration to lymph nodes. Furthermore, DCL was associated with low expression levels of Th1-associated chemokines and CCL11+ epidermal DCs, which contribute to the recruitment of CCR3+ cells. Our findings also suggest an important role for epidermal cells in the induction of skin immune responses through the production of chemokines, such as CXCL10, by keratinocytes.

  10. Bacterial sepsis and chemokines.

    Science.gov (United States)

    Kobayashi, Makiko; Tsuda, Yasuhiro; Yoshida, Tsuyoshi; Takeuchi, Dan; Utsunomiya, Tokuichiro; Takahashi, Hitoshi; Suzuki, Fujio

    2006-01-01

    Bacterial sepsis causes a high mortality rate when it occurs in patients with compromised host defenses. Severely burned patients, typical immunocompromised hosts, are extremely susceptible to infections from various pathogens, and a local wound infection frequently escalates into sepsis. In these patients, Staphylococcus aureus, Enterococcus faecalis and Pseudomonas aeruginosa are familiar pathogens that cause opportunistic infections. Also, polymicrobial sepsis frequently occurs in these patients. In this review, therefore, the roles of chemokines in thermally injured patients infected with these 3 pathogens and polymicrobial sepsis will be discussed. These infections in thermally injured patients may be controlled immunologically, because immunocompetent hosts are resistant to infections with these pathogens. Classically activated macrophages (M1Mphi) are major effector cells for host innate immune responses against these infections. However, M1Mphi are not generated in thermally injured patients whose alternatively activated macrophages (M2Mphi) predominate. M2Mphi appear in patients early after severe burn injuries. M2Mphi inhibit M1Mphi generation through the secretion of CCL17 and IL-10. As a modulator of Mphi, two different subsets of neutrophils (PMN-I, PMN-II) are described. PMN-I direct the polarization of resident Mphi into M1Mphi through the production of CCL3. M2Mphi are induced from resident Mphi by CCL2 released from PMN-II. Therefore, as an inhibitor of CCL2, glycyrrhizin protects individuals infected with S. aureus. Sepsis stemming from P. aeruginosa wound infection is also influenced by CCL2 released from immature myeloid cells. A large number of immature myeloid cells appear in association with burn injuries. Host resistance to S. aureus, E. faecalis, P. aeruginosa or polymicrobial infections may be improved in thermally injured patients through the induction of M1Mphi, elimination of CCL2 and/or depletion of M2Mphi induced by CCL2.

  11. Subpicosecond bunch train production for a tunable mJ level THz source.

    Science.gov (United States)

    Antipov, S; Babzien, M; Jing, C; Fedurin, M; Gai, W; Kanareykin, A; Kusche, K; Yakimenko, V; Zholents, A

    2013-09-27

    A strong energy modulation in an electron bunch passing through a dielectric-lined waveguide was recently demonstrated in Antipov et al., Phys. Rev. Lett. 108, 144801 (2012). In this Letter, we demonstrate a successful conversion of this energy modulation into a beam density modulation, and the formation of a series of microbunches with a subpicosecond periodicity by means of magnetic optics (chicane). A strong coherent transition radiation signal produced by the microbunches is obtained and the tunability of its carrier frequency in the 0.68-0.9 THz range by regulating the energy chirp in the incoming electron bunch is demonstrated using infrared interferometry. A tabletop, compact, tunable, and narrowband source of intense THz radiation based on this technology is proposed.

  12. Nanoporous carbon tunable resistor/transistor and methods of production thereof

    Science.gov (United States)

    Biener, Juergen; Baumann, Theodore F; Dasgupta, Subho; Hahn, Horst

    2014-04-22

    In one embodiment, a tunable resistor/transistor includes a porous material that is electrically coupled between a source electrode and a drain electrode, wherein the porous material acts as an active channel, an electrolyte solution saturating the active channel, the electrolyte solution being adapted for altering an electrical resistance of the active channel based on an applied electrochemical potential, wherein the active channel comprises nanoporous carbon arranged in a three-dimensional structure. In another embodiment, a method for forming the tunable resistor/transistor includes forming a source electrode, forming a drain electrode, and forming a monolithic nanoporous carbon material that acts as an active channel and selectively couples the source electrode to the drain electrode electrically. In any embodiment, the electrolyte solution saturating the nanoporous carbon active channel is adapted for altering an electrical resistance of the nanoporous carbon active channel based on an applied electrochemical potential.

  13. IFN-gamma shapes immune invasion of the central nervous system via regulation of chemokines

    DEFF Research Database (Denmark)

    Tran, E H; Prince, E N; Owens, T

    2000-01-01

    Dynamic interplay between cytokines and chemokines directs trafficking of leukocyte subpopulations to tissues in autoimmune inflammation. We have examined the role of IFN-gamma in directing chemokine production and leukocyte infiltration to the CNS in experimental autoimmune encephalomyelitis (EA...

  14. Keratinocyte cytokine and chemokine receptors.

    Science.gov (United States)

    Tüzün, Yalçin; Antonov, Meltem; Dolar, Neslihan; Wolf, Ronni

    2007-10-01

    Chemokines are a superfamily of small, secreted proteins that regulate cell traffic in homeostatic and inflammatory conditions. Keratinocytes synthesize many chemokines, including members of the CC and CXC subfamilies, such as regulated on activation of normal T-cell expressed and secreted, gamma-interferon inducible protein-10, monokine induced by gamma-interferon, and thymus- and activation-regulated chemokine. They also express some chemokine receptors that mediate the inflammatory or immune response by attracting various kinds of leukocytes.

  15. A requirement for CD45 distinguishes Ly49D-mediated cytokine and chemokine production from killing in primary natural killer cells

    Science.gov (United States)

    Huntington, Nicholas D.; Xu, Yuekang; Nutt, Stephen L.; Tarlinton, David M.

    2005-01-01

    Engagement of receptors on the surface of natural killer (NK) cells initiates a biochemical cascade ultimately triggering cytokine production and cytotoxicity, although the interrelationship between these two outcomes is currently unclear. In this study we investigate the role of the cell surface phosphatase CD45 in NK cell development and intracellular signaling from activating receptors. Stimulation via the major histocompatibility complex I–binding receptor, Ly49D on CD45 −/− primary NK cells resulted in the activation of phosphoinositide-3-kinase and normal cytotoxicity but failed to elicit a range of cytokines and chemokines. This blockage is associated with impaired phosphorylation of Syk, Vav1, JNK, and p38, which mimics data obtained using inhibitors of the src-family kinases (SFK). These data, supported by analogous findings after CD16 and NKG2D stimulation of CD45 −/− primary NK cells, place CD45 upstream of SFK in NK cells after stimulation via immunoreceptor tyrosine-based activation motif-containing receptors. Thus we identify CD45 as a pivotal enzyme in eliciting a precise subset of NK cell responses. PMID:15867094

  16. The role of chemokines and chemokine receptors in eosinophil activation during inflammatory allergic reactions

    Directory of Open Access Journals (Sweden)

    Oliveira S.H.P.

    2003-01-01

    Full Text Available Chemokines are important chemotactic cytokines that play a fundamental role in the trafficking of leukocytes to sites of inflammation. They are also potent cell-activating factors, inducing cytokine and histamine release and free radical production, a fact that makes them particularly important in the pathogenesis of allergic inflammation. The action of chemokines is regulated at the level of agonist production and processing as well as at the level of receptor expression and coupling. Therefore, an analysis of the ligands must necessarily consider receptors. Eosinophils are target cells involved in the allergic inflammatory response since they are able to release a wide variety of mediators including CC and CXC chemokines and express their receptors. These mediators could damage the airway epithelial cells and might be important to stimulate other cells inducing an amplification of the allergic response. This review focuses on recently emerging data pertaining to the importance of chemokines and chemokine receptors in promoting eosinophil activation and migration during the allergic inflammatory process. The analysis of the function of eosinophils and their chemokine receptors during allergic inflammation might be a good approach to understanding the determinants of asthma severity and to developing novel therapies.

  17. Molecular piracy of chemokine receptors by herpesviruses.

    Science.gov (United States)

    Murphy, P M

    1994-01-01

    To succeed as a biological entity, viruses must exploit normal cellular functions and elude the host immune system; they often do so by molecular mimicry. One way that mimicry may occur is when viruses copy and modify host genes. The best studied examples of this are the oncogenes of RNA retroviruses, but a growing number of examples are also known for DNA viruses. So far they all come from just two groups of DNA viruses, the herpesviruses and poxviruses, and the majority of examples are for genes whose products regulate immune responses, such as cytokines, cytokine receptors, and complement control proteins. This review will focus on human and herpesvirus receptors for chemokines, a family of leukocyte chemoattractant and activating factors that are thought to be important mediators of inflammation. Although the biological roles of the viral chemokine receptor homologues are currently unknown, their connection to specific sets of chemokines has suggested a number of possible functions.

  18. The feasibility of detecting partial discharges in metalclad equipment by tunable diode laser spectrometry of SF 6 breakdown products

    Science.gov (United States)

    Brassington, D. J.; Freedman, A. N.; Laird, C. K.

    Passage of electricity through SF 6 under arcing or partial discharge conditions causes decomposition of the SF 6 and the eventual production of breakdown products, two of the principal of which are thionyl fluoride and sulphuryl fluoride. Analysis of samples of SF 6 from the gas-zones of metalclad substations to monitor the build-up of breakdown products could in principle be used to give early warning of the development of a fault in the gas-zone. However, no analytical method is at present available which is capable of measuring the low concentrations of the breakdown products necessary to give adequate warning of a fault. It is estimated that detection of the breakdown products at ppb levels or below in SF 6 would be required. Tunable diode laser spectrometry is one technique which is potentially capable of achieving the sensitivity and selectivity required for breakdown product monitoring. To investigate the possibility of applying the technique, high-resolution spectra of sulphur hexafluoride, thionyl fluoride and sulphuryl fluoride were measured using a Fourier transform spectrometer. It was established that, though the choice is limited by the proximity of SF 6 absorption bands, suitable spectral regions do exist for determination of traces of either of these breakdown products in SF 6, and that detection at ppb levels should be possible. Using recently published data for the production rates of discharge-generated decomposition products of SF 6, it is estimated that this would enable discharge levels as low as 3 pC/cycle to be detected in a gas-zone containing 100 kg of SF 6, assuming that the zone was sampled at 6-monthly intervals. Application of the technique would, however, require that the practice of including canisters of alumina or molecular sieve in the gas-zones be stopped, as both sulphuryl and thionyl fluorides are irreversibly absorbed. Of the two decomposition products, sulphuryl fluoride has a simpler spectrum than thionyl fluoride, with

  19. Teleost Chemokines and Their Receptors

    Directory of Open Access Journals (Sweden)

    Steve Bird

    2015-11-01

    Full Text Available Chemokines are a superfamily of cytokines that appeared about 650 million years ago, at the emergence of vertebrates, and are responsible for regulating cell migration under both inflammatory and physiological conditions. The first teleost chemokine gene was reported in rainbow trout in 1998. Since then, numerous chemokine genes have been identified in diverse fish species evidencing the great differences that exist among fish and mammalian chemokines, and within the different fish species, as a consequence of extensive intrachromosomal gene duplications and different infectious experiences. Subsequently, it has only been possible to establish clear homologies with mammalian chemokines in the case of some chemokines with well-conserved homeostatic roles, whereas the functionality of other chemokine genes will have to be independently addressed in each species. Despite this, functional studies have only been undertaken for a few of these chemokine genes. In this review, we describe the current state of knowledge of chemokine biology in teleost fish. We have mainly focused on those species for which more research efforts have been made in this subject, specially zebrafish (Danio rerio, rainbow trout (Oncorhynchus mykiss and catfish (Ictalurus punctatus, outlining which genes have been identified thus far, highlighting the most important aspects of their expression regulation and addressing any known aspects of their biological role in immunity. Finally, we summarise what is known about the chemokine receptors in teleosts and provide some analysis using recently available data to help characterise them more clearly.

  20. Expression of Human CD4 and chemokine receptors in cotton rat cells confers permissiveness for productive HIV infection

    Directory of Open Access Journals (Sweden)

    Broder Christopher C

    2009-05-01

    Full Text Available Abstract Background Current small animal models for studying HIV-1 infection are very limited, and this continues to be a major obstacle for studying HIV-1 infection and pathogenesis, as well as for the urgent development and evaluation of effective anti-HIV-1 therapies and vaccines. Previously, it was shown that HIV-1 can infect cotton rats as indicated by development of antibodies against all major proteins of the virus, the detection of viral cDNA in spleen and brain of challenged animals, the transmission of infectious virus, albeit with low efficiency, from animal to animal by blood, and an additional increase in the mortality in the infected groups. Results Using in vitro experiments, we now show that cotton rat cell lines engineered to express human receptor complexes for HIV-1 (hCD4 along with hCXCR4 or hCCR5 support virus entry, viral cDNA integration, and the production of infectious virus. Conclusion These results further suggest that the development of transgenic cotton rats expressing human HIV-1 receptors may prove to be useful small animal model for HIV infection.

  1. Psidium guajava extract inhibits thymus and activation-regulated chemokine (TARC/CCL17) production in human keratinocytes by inducing heme oxygenase-1 and blocking NF-κB and STAT1 activation.

    Science.gov (United States)

    Han, Eun Hee; Hwang, Yong Pil; Choi, Jae Ho; Yang, Ji Hye; Seo, Jong Kwon; Chung, Young Chul; Jeong, Hye Gwang

    2011-09-01

    Psidium guajava (P. guajava) is a food and medicinal plant with antioxidant, anti-inflammatory, and anti-allergic activities that support its traditional uses. The aim of this study was to determine the effects of P. guajava ethyl acetate extract (PGEA) on atopic dermatitis and to investigate the possible mechanisms by which PGEA inhibits cytokine-induced Th2 chemokine expression in HaCaT human keratinocyte cells. We found that PGEA suppressed the IFN-γ/TNF-α-co-induced production of thymus and activation-regulated chemokine (TARC) protein and mRNA in HaCaT cells. Additionally, PGEA inhibited the TNF-α/IFN-γ-co-induced activation of NF-κB and STAT1 and increased the expression of heme oxygenase-1 (HO-1) protein and mRNA. HO-1 inhibitor enhanced the suppressive effects of PGEA on TNF-α/IFN-γ-co-induced TARC production and gene expression. Collectively, these data demonstrate that PGEA inhibits chemokine expression in keratinocytes by inducing HO-1 expression and it suggests a possible therapeutic application in atopic dermatitis and other inflammatory skin diseases. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Tunable X-ray source

    Science.gov (United States)

    Boyce, James R [Williamsburg, VA

    2011-02-08

    A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

  3. Chemokines in tumor proximal fluids.

    Science.gov (United States)

    Kotyza, Jaromir

    2017-03-01

    Chemokines are chemotactic cytokines produced by leukocytes and other types of cells including tumor cells. Their action is determined by the expression of cognate receptors and subsequent signaling in target cells, followed by the modulation of cytoskeletal proteins and the induction of other responses. In tumors, chemokines produced by neoplastic/stroma cells control the leukocyte infiltrate influencing tumor growth and progression. Tumor cells also express functional chemokine receptors responding to chemokine signals, promoting cell survival, proliferation and metastasis formation. Chemokines may be detected in serum of cancer patients, but due to the paracrine nature of these molecules, more significant concentrations are found in the tumor adjacent, non-vascular fluids, collectively called tumor proximal fluids. This review summarizes the expression of CC and CXC chemokines in these fluids, namely in interstitial fluid, pleural, ascitic, and cyst fluids, but also in urine, saliva, cerebrospinal fluid, cervical secretions and bronchoalveolar lavage fluid. Most comparative clinical studies reveal increased chemokine levels in high-grade tumor proximal fluids rather than in low-grade tumors and benign conditions, indicating shorter survival periods. The data confirm peritumoral fluid chemokines as sensitive diagnostic and prognostic markers, as well as offer support for chemokines and their receptors as potential targets for antitumor therapy.

  4. Elevated Production of Nociceptive CC-chemokines and sE-selectin in Patients with Low Back Pain and the Effects of Spinal Manipulation: A Non-randomized Clinical Trial.

    Science.gov (United States)

    Teodorczyk-Injeyan, Julita A; McGregor, Marion; Triano, John J; Injeyan, H Stephen

    2017-04-19

    The involvement of inflammatory components in the pathophysiology of low back pain is poorly understood. It has been suggested that spinal manipulative therapy (SMT) may exert anti-inflammatory effects. To determine the involvement of inflammation-associated chemokines (CC series) in the pathogenesis of non-specific low back pain and to evaluate the effect of SMT on that process. Patients presenting with non-radicular, non-specific low back pain (minimum pain score 3 on 10 point visual analogue scale, VAS) were recruited according to stringent inclusion criteria. They were evaluated for appropriateness to treat using a high velocity low amplitude manipulative thrust (HVLT) in the lumbar-lumbosacral region. Blood samples were obtained at baseline and following the administration of a series of 6 HVLTs on alternate days over the period of two weeks. The in vitro levels of CC chemokines (CCL2, CCL3 and CCL4) production and plasma levels of an inflammatory biomarker, soluble E-selectin, were determined at baseline and at the termination of treatments two weeks later. Compared with asymptomatic controls baseline production of all chemokines was significantly elevated in acute (P=0.004 - <0.0001), and that of CCL2 and CCL4 in chronic LBP patients (P<0.0001). Furthermore, CCL4 production was significantly higher (P<0.0001) in the acute versus chronic LBP group. sE-selectin levels were significantly higher (P=0.003) in chronic but not in acute LBP patients. Following SMT, patient reported outcomes showed significant (P<0.0001) improvements in VAS and ODI scores. This was accompanied by a significant decline in CCL 3 production (P<0.0001) in both groups of patients. Change scores for CCL4 production differed significantly (P<0.0001) only for the acute LBP cohort, and no effect on the production of CCL2 or plasma sE-selectin levels was noted in either group. The production of chemotactic cytokines is significantly and protractedly elevated in LBP patients. Changes in

  5. Probing Biased Signaling in Chemokine Receptors

    DEFF Research Database (Denmark)

    Amarandi, Roxana Maria; Hjortø, Gertrud Malene; Rosenkilde, Mette Marie

    2016-01-01

    The chemokine system mediates leukocyte migration during homeostatic and inflammatory processes. Traditionally, it is described as redundant and promiscuous, with a single chemokine ligand binding to different receptors and a single receptor having several ligands. Signaling of chemokine receptor...

  6. Astrocyte production of the chemokine macrophage inflammatory protein-2 is inhibited by the spice principle curcumin at the level of gene transcription

    OpenAIRE

    Tomita, Michiyo; Holman, Brita J; Santoro, Christopher P; Santoro, Thomas J

    2005-01-01

    Abstract Background In neuropathological processes associated with neutrophilic infiltrates, such as experimental allergic encephalitis and traumatic injury of the brain, the CXC chemokine, macrophage inflammatory protein-2 (MIP-2) is thought to play a pivotal role in the induction and perpetuation of inflammation in the central nervous system (CNS). The origin of MIP-2 in inflammatory disorders of the brain has not been fully defined but astrocytes appear to be a dominant source of this chem...

  7. Rosacea: the Cytokine and Chemokine Network

    Science.gov (United States)

    Gerber, Peter Arne; Buhren, Bettina Alexandra; Steinhoff, Martin; Homey, Bernhard

    2013-01-01

    Rosacea is one of the most common dermatoses of adults. Recent studies have improved our understanding of the pathophysiology of rosacea. Current concepts suggest that known clinical trigger factors of rosacea such as UV radiation, heat, cold, stress, spicy food, and microbes modulate Toll-like receptor signaling, induce reactive oxygen species, as well as enhance antimicrobial peptide and neuropeptide production. Downstream of these events cytokines and chemokines orchestrate an inflammatory response that leads to the recruitment and activation of distinct leukocyte subsets and induces the characteristic histopathological features of rosacea. Here we summarize the current knowledge of the cytokine and chemokine network in rosacea and propose pathways that may be of therapeutic interest. PMID:22076326

  8. Collagen-like block copolymers with tunable design : production in yeast and functional characterisation

    NARCIS (Netherlands)

    Teles, H.M.

    2010-01-01

    Animal-derived collagen and gelatin have been extensively used in the past decades for several pharmaceutical and biomedical applications. However, there is need for collagen-based materials with predictable and tailorable properties. The aim of this thesis is the design and microbial production of

  9. TARSyn: Tunable Antibiotic Resistance Devices Enabling Bacterial Synthetic Evolution and Protein Production

    DEFF Research Database (Denmark)

    Rennig, Maja; Martinez, Virginia; Mirzadeh, Kiavash

    2018-01-01

    and allows expression levels in large clone libraries to be probed using a simple cell survival assay on the respective antibiotic. The power of the approach is demonstrated by substantially increasing production of two commercially interesting proteins, a Nanobody and an Affibody. The method is a simple...

  10. Exacerbation of collagen induced arthritis by Fcγ receptor targeted collagen peptide due to enhanced inflammatory chemokine and cytokine production

    Directory of Open Access Journals (Sweden)

    Szarka E

    2012-04-01

    Full Text Available Eszter Szarka1*, Zsuzsa Neer1*, Péter Balogh2, Monika Ádori1, Adrienn Angyal1, József Prechl3, Endre Kiss1,3, Dorottya Kövesdi1, Gabriella Sármay11Department of Immunology, Eötvös Loránd University, 1117 Budapest, 2Department of Immunology and Biotechnology, University of Pécs, Pécs, 3Immunology Research Group of the Hungarian Academy of Science at Eötvös Loránd University, 1117 Budapest, Hungary*These authors contributed equally to this workAbstract: Antibodies specific for bovine type II collagen (CII and Fcγ receptors play a major role in collagen-induced arthritis (CIA, a mouse model of rheumatoid arthritis (RA. Our aim was to clarify the mechanism of immune complex-mediated inflammation and modulation of the disease. CII pre-immunized DBA/1 mice were intravenously boosted with extravidin coupled biotinylated monomeric CII-peptide epitope (ARGLTGRPGDA and its complexes with biotinylated FcγRII/III specific single chain Fv (scFv fragment. Disease scores were monitored, antibody titers and cytokines were determined by ELISA, and binding of complexes was detected by flow cytometry and immune histochemistry. Cytokine and chemokine secretion was monitored by protein profiler microarray. When intravenously administered into collagen-primed DBA/1 mice, both CII-peptide and its complex with 2.4G2 scFv significantly accelerated CIA and increased the severity of the disease, whereas the monomeric peptide and monomeric 2.4G2 scFv had no effect. FcγRII/III targeted CII-peptide complexes bound to marginal zone macrophages and dendritic cells, and significantly elevated the synthesis of peptide-specific IgG2a. Furthermore, CII-peptide containing complexes augmented the in vivo secretion of cytokines, including IL-10, IL-12, IL-17, IL-23, and chemokines (CXCL13, MIP-1, MIP-2. These data indicate that complexes formed by the CII-peptide epitope aggravate CIA by inducing the secretion of chemokines and the IL-12/23 family of pro

  11. Tunable Syngas Production from CO2and H2O in an Aqueous Photoelectrochemical Cell.

    Science.gov (United States)

    Chu, Sheng; Fan, Shizhao; Wang, Yongjie; Rossouw, David; Wang, Yichen; Botton, Gianluigi A; Mi, Zetian

    2016-11-07

    Syngas, the mixture of CO and H 2 , is a key feedstock to produce methanol and liquid fuels in industry, yet limited success has been made to develop clean syngas production using renewable solar energy. We demonstrated that syngas with a benchmark turnover number of 1330 and a desirable CO/H 2 ratio of 1:2 could be attained from photoelectrochemical CO 2 and H 2 O reduction in an aqueous medium by exploiting the synergistic co-catalytic effect between Cu and ZnO. The CO/H 2 ratio in the syngas products was tuned in a large range between 2:1 and 1:4 with a total unity Faradaic efficiency. Moreover, a high Faradaic efficiency of 70 % for CO was acheived at underpotential of 180 mV, which is the lowest potential ever reported in an aqueous photoelectrochemical cell. It was found that the combination of Cu and ZnO offered complementary chemical properties that lead to special reaction channels not seen in Cu, or ZnO alone. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Effects of Hovenia dulcis Thunb. extract and methyl vanillate on atopic dermatitis-like skin lesions and TNF-α/IFN-γ-induced chemokines production in HaCaT cells.

    Science.gov (United States)

    Lim, Sue Ji; Kim, Myungsuk; Randy, Ahmad; Nam, Eui Jeong; Nho, Chu Won

    2016-11-01

    Here, we hypothesized that Hovenia dulcis branch extract (HDB) and its active constituents ameliorates 2,4-dinitrochlorobenzene-induced atopic dermatitis (AD)-like skin lesions by modulating the T helper Th1/Th2 balance in NC/Nga mice and TNF-α- and IFN-γ-induced production of thymus and activation-regulated chemokine (TARC) and macrophage-derived chemokine (MDC) in HaCaT cells. HaCaT cells were stimulated by TNF-α/IFN-γ in the presence of HDB and its constituents. TARC and MDC were measured by ELISA and RT-PCR. For the in-vivo study, oral feeding of HDB was performed for 5 weeks with 2,4-dinitrochlorobenzene (DNCB) treatment every other day. The efficacy of HDB on parameters of DNCB-induced AD was evaluated morphologically, physiologically and immunologically. In-vitro studies showed that HDB and its constituents suppressed TNF-α/IFN-γ-induced production of TARC and MDC in HaCaT cells by inhibiting MAPK signalling. In-vivo studies showed that HDB regulated immunoglobulin (Ig) E and immunoglobulin G2a (IgG2a) levels in serum and the expression of mRNA for Th1- and Th2-related mediators in skin lesions. Histopathological analyses revealed reduced epidermal thickness and reduced infiltration of skin lesions by inflammatory cells. These results suggest that HDB inhibits AD-like skin diseases by regulating Th1 and Th2 responses in NC/Nga mice and in HaCaT cells. © 2016 Royal Pharmaceutical Society.

  13. In vitro and in vivo dependency of chemokine generation on C5a and TNF-alpha

    DEFF Research Database (Denmark)

    Czermak, B J; Sarma, V; Bless, N M

    1999-01-01

    Under a variety of conditions, alveolar macrophages can generate early response cytokines (TNF-alpha, IL-1), complement components, and chemotactic cytokines (chemokines). In the current studies, we determined the requirements for TNF-alpha and the complement activation product C5a in chemokine...... production in vitro and in vivo. Two rat CXC chemokines (macrophage inflammatory protein (MIP)-2 and cytokine-induced neutrophil chemoattractant (CINC)) as well as three rat CC chemokines (MIP-1alpha, MIP-1beta, and monocyte chemoattractant protein (MCP)-1) were investigated. Chemokine generation in vitro.......v., and effects on chemokine levels in bronchoalveolar lavage fluids were quantitated by ELISA. Both in vitro and in vivo studies demonstrated the requirements for TNF-alpha and C5a for full generation of CXC and CC chemokines. In vitro and in vivo blockade of TNF-alpha or C5a resulted in significantly reduced...

  14. Selected CC and CXC chemokines in children with atopic asthma

    Directory of Open Access Journals (Sweden)

    Edyta Machura

    2016-05-01

    Full Text Available Introduction : There are only limited data on CC and CXC chemokines regulation in children with asthma. Aim: We compared the serum profile of selected CC and CXC chemokines in patients with atopic asthma and healthy children. Material and methods : Serum concentration of CC chemokines RANTES, MCP-1, and CXC chemokines IP-10, MIG, IL-8, RANTES was measured using cytometric bead array in 44 children with atopic asthma and 17 healthy subjects. Results: The concentration of RANTES was significantly higher and the MIG level was lower in all children with asthma as compared to their control counterparts. We observed increased RANTES and decreased MIG levels also in patients with stable asthma when compared with children in the control group. The IP-10 concentration was similar between the whole asthma group and healthy controls, while significantly increased levels of this chemokine in acute asthma have been observed when compared to stable asthma. For MCP-1 and IL-8, the serum concentration was similar in all compared groups. The MIG concentration correlated positively with IP-10, IL-8, and CRP levels and negatively with the eosinophil count. A negative correlation between the IP-10 and eosinophil count and a negative correlation between FEV1 and IP-10 were found. Conclusions : An increased serum RANTES level in children with asthma may result in enhancement of Th2 lymphocyte recruitment into the airway. A decreased expression of Th1 chemokine MIG in children with stable asthma may contribute to a diminished antagonizing effect on Th2 cytokine production and hence intensify Th2 predominance. An increased IP-10 level in children during an asthma attack suggest that this chemokine is a serological marker of disease exacerbation.

  15. Functional interaction between herpes simplex virus type 2 gD and HVEM transiently dampens local chemokine production after murine mucosal infection.

    Directory of Open Access Journals (Sweden)

    Miri Yoon

    2011-01-01

    Full Text Available Herpes virus entry mediator (HVEM is one of two principal receptors mediating herpes simplex virus (HSV entry into murine and human cells. It functions naturally as an immune signaling co-receptor, and may participate in enhancing or repressing immune responses depending on the natural ligand used. To investigate whether engagement of HVEM by HSV affects the in vivo response to HSV infection, we generated recombinants of HSV-2(333 that expressed wild-type gD (HSV-2/gD or mutant gD able to bind to nectin-1 (the other principal entry receptor but not HVEM. Replication kinetics and yields of the recombinant strains on Vero cells were indistinguishable from those of wild-type HSV-2(333. After intravaginal inoculation with mutant or wild-type virus, adult female C57BL/6 mice developed vaginal lesions and mortality in similar proportions, and mucosal viral titers were similar or lower for mutant strains at different times. Relative to HSV-2/gD, percentages of HSV-specific CD8(+ T-cells were similar or only slightly reduced after infection with the mutant strain HSV-2/gD-Δ7-15, in all tissues up to 9 days after infection. Levels of HSV-specific CD4(+ T-cells five days after infection also did not differ after infection with either strain. Levels of the cytokine IL-6 and of the chemokines CXCL9, CXCL10, and CCL4 were significantly lower in vaginal washes one day after infection with HSV-2/gD compared with HSV-2/gD-Δ7-15. We conclude that the interaction of HSV gD with HVEM may alter early innate events in the murine immune response to infection, without significantly affecting acute mortality, morbidity, or initial T-cell responses after lethal challenge.

  16. Targeting cellular adhesion molecules, chemokines and chemokine receptors in rheumatoid arthritis

    NARCIS (Netherlands)

    Haringman, Jasper J.; Oostendorp, Roos L.; Tak, Paul P.

    2005-01-01

    The development of specific targeted therapies, such as anti-TNF-alpha treatment, for chronic inflammatory disorders such as rheumatoid arthritis, has significantly improved treatment, although not all patients respond. Targeting cellular adhesion molecules and chemokines/chemokine receptors as

  17. Microbiological exploitation of the chemokine system

    DEFF Research Database (Denmark)

    Holst, Peter J; Rosenkilde, Mette M

    2003-01-01

    Several viruses encode chemokine elements in their genome. This review focuses on the roles of such elements in the ongoing battle between the virus and the host. The biological and pharmacological characterizations of several of these chemokine elements have highlighted their importance in the m...... in the mammalian immune system for antiviral responses and suggested future antiviral and anti-inflammatory therapeutic strategies.......Several viruses encode chemokine elements in their genome. This review focuses on the roles of such elements in the ongoing battle between the virus and the host. The biological and pharmacological characterizations of several of these chemokine elements have highlighted their importance...

  18. Decoration of size-tunable CuO nanodots on TiO2 nanocrystals for noble metal-free photocatalytic H2 production

    Science.gov (United States)

    Moon, Geon Dae; Joo, Ji Bong; Lee, Ilkeun; Yin, Yadong

    2014-09-01

    We report a simple yet effective approach for the decoration of the TiO2 nanocrystal surface with size-tunable CuO nanodots for high-performance noble metal-free photocatalytic H2 production. Modification with polyacrylic acid enables the surface of TiO2 nanocrystals to be selectively deposited with Cu(OH)2 nanodots, which can be subsequently converted to CuO through dehydration without changing their morphologies. UV irradiation of the nanocomposite solution in the presence of a hole scavenger produces photogenerated electrons which reduce CuO to metallic Cu nanodots, making them effective co-catalysts in a role similar to Pt for promoting photocatalytic H2 production. Due to the considerably high work function of Cu, the formation of a metal-semiconductor Schottky junction induces efficient charge separation and transfer. As a result, the TiO2 nanocrystals decorated with an optimal amount of CuO nanodots (1.7 wt%) could reach ~50% of the photocatalytic activity achievable by the Pt-TiO2 counterparts (1 wt%), clearly demonstrating the great potential of such composite catalysts for efficient noble metal-free photocatalytic H2 production.We report a simple yet effective approach for the decoration of the TiO2 nanocrystal surface with size-tunable CuO nanodots for high-performance noble metal-free photocatalytic H2 production. Modification with polyacrylic acid enables the surface of TiO2 nanocrystals to be selectively deposited with Cu(OH)2 nanodots, which can be subsequently converted to CuO through dehydration without changing their morphologies. UV irradiation of the nanocomposite solution in the presence of a hole scavenger produces photogenerated electrons which reduce CuO to metallic Cu nanodots, making them effective co-catalysts in a role similar to Pt for promoting photocatalytic H2 production. Due to the considerably high work function of Cu, the formation of a metal-semiconductor Schottky junction induces efficient charge separation and transfer. As a

  19. Prostaglandin E2 reverses aberrant production of an inflammatory chemokine by microglia from Sandhoff disease model mice through the cAMP-PKA pathway.

    Directory of Open Access Journals (Sweden)

    Eri Kawashita

    Full Text Available BACKGROUND: Sandhoff disease (SD is a neurodegenerative lysosomal β-hexosaminidase (Hex deficiency involving excessive accumulation of undegraded substrates, including terminal GlcNAc-oligosaccharides and GM2 ganglioside. Microglia-mediated neuroinflammation contributes to the pathogenesis and progression of SD. Our previous study demonstrated that MIP-1α, a putative pathogenic factor for SD, is up-regulated in microglial cells derived from SD model mice (SD-Mg through activation of Akt and JNK. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we first demonstrated that prostaglandin E2 (PGE2, which is one of the lipid mediators derived from arachidonic acid and is known to suppress activation of microglia, reduced the aberrant MIP-1α production by SD-Mg to the same level as by WT-Mg. PGE2 also attenuated the activation of Akt and JNK. The inhibition of MIP-1α production and the activation of Akt and JNK occurred through the EP2 and 4/cAMP/PKA signaling pathway in the murine microglia derived from SD model mice. CONCLUSIONS/SIGNIFICANCE: We propose that PGE2 plays a role as a negative regulator of MIP-1α production in the pathogenesis of SD, and that PGE2-EP2 and 4/cAMP/PKA signaling could be a target pathway for therapy for SD.

  20. Atypical chemokine receptors in cancer: friends or foes?

    Science.gov (United States)

    Massara, Matteo; Bonavita, Ornella; Mantovani, Alberto; Locati, Massimo; Bonecchi, Raffaella

    2016-06-01

    The chemokine system is a fundamental component of cancer-related inflammation involved in all stages of cancer development. It controls not only leukocyte infiltration in primary tumors but also angiogenesis, cancer cell proliferation, and migration to metastatic sites. Atypical chemokine receptors are a new, emerging class of regulators of the chemokine system. They control chemokine bioavailability by scavenging, transporting, or storing chemokines. They can also regulate the activity of canonical chemokine receptors with which they share the ligands by forming heterodimers or by modulating their expression levels or signaling activity. Here, we summarize recent results about the role of these receptors (atypical chemokine receptor 1/Duffy antigen receptor for chemokine, atypical chemokine receptor 2/D6, atypical chemokine receptor 3/CXC-chemokine receptor 7, and atypical chemokine receptor 4/CC-chemokine receptor-like 1) on the tumorigenesis process, indicating that their effects are strictly dependent on the cell type on which they are expressed and on their coexpression with other chemokine receptors. Indeed, atypical chemokine receptors inhibit tumor growth and progression through their activity as negative regulators of chemokine bioavailability, whereas, on the contrary, they can promote tumorigenesis when they regulate the signaling of other chemokine receptors, such as CXC-chemokine receptor 4. Thus, atypical chemokine receptors are key components of the regulatory network of inflammation and immunity in cancer and may have a major effect on anti-inflammatory and immunotherapeutic strategies. © Society for Leukocyte Biology.

  1. Production of carbonaceous materials with various lengths in small spheroidal fullerenes and long CNTs by tunable multi-walled carbon nanotube cutting

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Hoi; Shin, Ueon Sang [Dankook University, Cheonan (Korea, Republic of)

    2016-10-15

    Tunable cutting of multi-walled carbon nanotubes (CNTs) using high pressure homogenizer and/or HNO{sub 3}/H{sub 2}SO{sub 4} solution was accomplished, resulting in the production of short CNTs with minimum length of 35 nm. Field emission scanning electron microscopy (FE-SEM) and Zeta sizer analysis showed significant reduction of CNT length from this tunable cutting (e.g. from long and entangled pristine CNTs at about 20 μm to ≥1000 nm, ⁓400 nm, ⁓200 nm, and ⁓100 nm via high pressure jet-spraying cutting within 5 h, while chemical cutting process using greatly longer hours (48 h) showed a reduction only to about 1000 nm). When CNT sample of average 1000 nm length previously shortened by HNO{sub 3}/H{sub 2}SO{sub 4} was subjected to the high pressure jet-spraying cutting process, the reduction progressed faster (≤1 h), producing ≥35 nm. Fourier transform infrared spectra and thermogravimetric analysis (TGA) indicated restricted formation of hydrophilic functional groups such as carboxylic group and hydroxyl group in the high pressure jet-spraying cutting, whereas an intensive formation of hydrophilic functional groups on the surface of shortened CNT samples was found after chemical cutting. Such short CNT samples would fulfill the requirements for carbonaceous materials with various lengths in small spheroidal fullerenes and long CNTs. The short CNTs produced are promising for scientific and technological applications in many fields such as electronics, diagnostics, pharmaceuticals, biomedical engineering, and environmental or energy industries.

  2. Chemokines and chemokine receptors in inflammation of the nervous system

    DEFF Research Database (Denmark)

    Huang, D; Han, Yong-Chang; Rani, M R

    2000-01-01

    chemoattractant protein (MCP)-1 and interferon-gamma-inducible protein-10 (IP-10) are largely restricted to astrocytes or other glial cells in these diverse pathological states. The remainder of the review focuses on studies that address the molecular mechanisms which underlie transcriptional regulation of three...... astrocyte-derived chemokines: MCP-1, IP-10 and beta-R1/interferon-gamma-inducible T-cell chemoattractant (I-TAC). Based on these studies, we propose that the complex promoters of these genes are marvelously organized for flexible and efficient response to challenge. In the case of MCP-1, several different...... stimuli can elicit gene transcription, acting through a conserved mechanism that includes binding of inducible transcription factors and recruitment of the constitutive factor Sp1. For IP-10 and beta-R1/I-TAC, it appears that efficient gene transcription occurs only in highly inflammatory circumstances...

  3. Decrease in Dengue virus-2 infection and reduction of cytokine/chemokine production by Uncaria guianensis in human hepatocyte cell line Huh-7

    Directory of Open Access Journals (Sweden)

    Cíntia da Silva Mello

    Full Text Available ABSTRACT BACKGROUND Dengue fever may present hemorrhages and cavitary effusions as result of exacerbated immune responses. We investigated hydro-alcoholic extracts from leaves (UGL and bark (UGB of the medicinal species Uncaria guinanensis with respect to antiviral effects in Dengue virus (DENV infection and in immunological parameters associated with in vivo physiopathological features. METHODS Chemical profiles from UGB or UGL were compared in thin layer chromatography and 1H nuclear magnetic resonance using flavonoid compounds and a pentacyclic oxindole alkaloid-enriched fraction as references. DENV-2-infected hepatocytes (Huh-7 were treated with extracts. Cell viability, DENV antigens and immunological factors were detected by enzyme-linked immunosorbent assay (ELISA or flow cytometry. FINDINGS The UGL mainly differed from UGB by selectively containing the flavonoid kaempferitrin. UGB and UGL improved hepatocyte viability. Both extracts reduced intracellular viral antigen and inhibited the secretion of viral non-structural protein (NS1, which is indicative of viral replication. Reduction in secretion of macrophage migration inhibitory factor was achieved by UGB, of interleukin-6 by UGL, and of interleukin-8 by both UGB and UGL. MAIN CONCLUSIONS The U. guianensis extracts presented, antiviral and immunomodulatory effects for DENV and possibly a hepatocyte-protective activity. Further studies may be performed to consider these products as potential candidates for the development of an herbal product for the future treatment of dengue.

  4. Decrease in Dengue virus-2 infection and reduction of cytokine/chemokine production by Uncaria guianensis in human hepatocyte cell line Huh-7.

    Science.gov (United States)

    Mello, Cíntia da Silva; Valente, Ligia Maria Marino; Wolff, Thiago; Lima-Junior, Raimundo Sousa; Fialho, Luciana Gomes; Marinho, Cintia Ferreira; Azeredo, Elzinandes Leal; Oliveira-Pinto, Luzia Maria; Pereira, Rita de Cássia Alves; Siani, Antonio Carlos; Kubelka, Claire Fernandes

    2017-06-01

    Dengue fever may present hemorrhages and cavitary effusions as result of exacerbated immune responses. We investigated hydro-alcoholic extracts from leaves (UGL) and bark (UGB) of the medicinal species Uncaria guinanensis with respect to antiviral effects in Dengue virus (DENV) infection and in immunological parameters associated with in vivo physiopathological features. Chemical profiles from UGB or UGL were compared in thin layer chromatography and 1H nuclear magnetic resonance using flavonoid compounds and a pentacyclic oxindole alkaloid-enriched fraction as references. DENV-2-infected hepatocytes (Huh-7) were treated with extracts. Cell viability, DENV antigens and immunological factors were detected by enzyme-linked immunosorbent assay (ELISA) or flow cytometry. The UGL mainly differed from UGB by selectively containing the flavonoid kaempferitrin. UGB and UGL improved hepatocyte viability. Both extracts reduced intracellular viral antigen and inhibited the secretion of viral non-structural protein (NS1), which is indicative of viral replication. Reduction in secretion of macrophage migration inhibitory factor was achieved by UGB, of interleukin-6 by UGL, and of interleukin-8 by both UGB and UGL. MAIN. The U. guianensis extracts presented, antiviral and immunomodulatory effects for DENV and possibly a hepatocyte-protective activity. Further studies may be performed to consider these products as potential candidates for the development of an herbal product for the future treatment of dengue.

  5. Chapter 8. Activation mechanisms of chemokine receptors

    DEFF Research Database (Denmark)

    Jensen, Pia C; Rosenkilde, Mette M

    2009-01-01

    Chemokine receptors belong to the large family of 7-transmembrane (7TM) G-protein-coupled receptors. These receptors are targeted and activated by a variety of different ligands, indicating that activation is a result of similar molecular mechanisms but not necessarily similar modes of ligand...... binding. Attempts to unravel the activation mechanism of 7TM receptors have led to the conclusion that activation involves movements of the transmembrane segments VI and VII in particular, as recently gathered in the Global Toggle Switch Model. However, to understand the activation mechanism completely......, more research has to be done in this field. Chemokine receptors are interesting tools in this matter. First, the chemokine system has a high degree of promiscuity that allows several chemokines to target one receptor in different ways, as well as a single chemokine ligand to target several receptors...

  6. Tunable and Memory Metamaterials

    Science.gov (United States)

    2015-12-02

    AFRL-AFOSR-VA-TR-2015-0402 TUNABLE AND MEMORY METAMATERIALS Dimitri Basov UNIVERSITY OF CALIFORNIA SAN DIEGO Final Report 12/02/2015 DISTRIBUTION A...DATES COVERED (From - To) 15-08-2010 to 14-08-2015 4. TITLE AND SUBTITLE TUNABLE AND MEMORY METAMATERIALS 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550...common limitations of infrared metamaterials in order to achieve low electromagnetic losses and broad tunability of the electromagnetic response. One

  7. Tunable laser applications

    CERN Document Server

    Duarte, FJ

    2008-01-01

    Introduction F. J. Duarte Spectroscopic Applications of Tunable Optical Parametric Oscillators B. J. Orr, R. T. White, and Y. He Solid-State Dye Lasers Costela, I. García-Moreno, and R. Sastre Tunable Lasers Based on Dye-Doped Polymer Gain Media Incorporating Homogeneous Distributions of Functional Nanoparticles F. J. Duarte and R. O. James Broadly Tunable External-Cavity Semiconductor Lasers F. J. Duarte Tunable Fiber Lasers T. M. Shay and F. J. Duarte Fiber Laser Overview and Medical Applications

  8. Chemokines and Chemokine Receptors: Accomplices for Human Immunodeficiency Virus Infection and Latency

    Directory of Open Access Journals (Sweden)

    Zhuo Wang

    2017-10-01

    Full Text Available Chemokines are small chemotactic cytokines that are involved in the regulation of immune cell migration. Multiple functional properties of chemokines, such as pro-inflammation, immune regulation, and promotion of cell growth, angiogenesis, and apoptosis, have been identified in many pathological and physiological contexts. Human immunodeficiency virus (HIV infection is characterized by persistent inflammation and immune activation during both acute and chronic phases, and the “cytokine storm” is one of the hallmarks of HIV infection. Along with immune activation after HIV infection, an extensive range of chemokines and other cytokines are elevated, thereby generating the so-called “cytokine storm.” In this review, the effects of the upregulated chemokines and chemokine receptors on the processes of HIV infection are discussed. The objective of this review was to focus on the main chemokines and chemokine receptors that have been found to be associated with HIV infection and latency. Elevated chemokines and chemokine receptors have been shown to play important roles in the HIV life cycle, disease progression, and HIV reservoir establishment. Thus, targeting these chemokines and receptors and the other proteins of related signaling pathways might provide novel therapeutic strategies, and the evidence indicates a promising future regarding the development of a functional cure for HIV.

  9. Novel chemokine-like activities of histones in tumor metastasis.

    Science.gov (United States)

    Chen, Ruochan; Xie, Yangchun; Zhong, Xiao; Fu, Yongmin; Huang, Yan; Zhen, Yixiang; Pan, Pinhua; Wang, Haichao; Bartlett, David L; Billiar, Timothy R; Lotze, Michael T; Zeh, Herbert J; Fan, Xue-Gong; Tang, Daolin; Kang, Rui

    2016-09-20

    Histones are intracellular nucleosomal components and extracellular damage-associated molecular pattern molecules that modulate chromatin remodeling, as well as the immune response. However, their extracellular roles in cell migration and invasion remain undefined. Here, we demonstrate that histones are novel regulators of tumor metastasis with chemokine-like activities. Indeed, exogenous histones promote both hepatocellular carcinoma (HCC) cell migration and invasion through toll-like receptor (TLR)4, but not TLR2 or the receptor for advanced glycosylation end product. TLR4-mediated activation of nuclear factor-κB (NF-κB) by extracellular signal-regulated kinase (ERK) is required for histone-induced chemokine (e.g., C-C motif ligand 9/10) production. Pharmacological and genetic inhibition of TLR4-ERK-NF-κB signaling impairs histone-induced chemokine production and HCC cell migration. Additionally, TLR4 depletion (by using TLR4-/- mice and TLR4-shRNA) or inhibition of histone release/activity (by administration of heparin and H3 neutralizing antibody) attenuates lung metastasis of HCC cells injected via the tail vein of mice. Thus, histones promote tumor metastasis of HCC cells through the TLR4-NF-κB pathway and represent novel targets for treating patients with HCC.

  10. CALiPER Report 23: Photometric Testing of White Tunable LED Luminaires

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-01-01

    This report documents an initial investigation of photometric testing procedures for white-tunable LED luminaires and summarizes the key features of those products. Goals of the study include understanding the amount of testing required to characterize a white-tunable product, and documenting the performance of available color-tunable luminaires that are intended for architectural lighting.

  11. MEMS Tunable Antennas

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Morris, Art; Pedersen, Gert Frølund

    2014-01-01

    Addressing low frequency bands is challenging on small platforms. Tunability is a promising solution to cover the bandwidth required for 4G mobile communication. The work presents two designs and shows that for comparable efficiency and bandwidth, the tunable antenna occupies half the volume requ...

  12. Interaction of chemokines with their receptors--from initial chemokine binding to receptor activating steps

    DEFF Research Database (Denmark)

    Thiele, Stefanie; Rosenkilde, Mette Marie

    2014-01-01

    and surveillance. Chemokines are a group of 8-12 kDa large peptides with a secondary structure consisting of a flexible N-terminus and a core-domain usually stabilized by two conserved disulfide bridges. They mainly interact with the extracellular domains of their cognate 7TM receptors. Affinityand activity......-contributing interactions are attributed to different domains and known to occur in two steps. Here, knowledge on chemokine and receptor domains involved in the first binding-step and the second activation-step is reviewed. A mechanism comprising at least two steps seems consistent; however, several intermediate...... interactions possibly occur, resulting in a multi-step process, as recently proposed for other 7TM receptors. Overall, the N-terminus of chemokine receptors is pivotal for binding of all chemokines. During receptor activation, differences between the two major chemokine subgroups occur, as CC-chemokines mainly...

  13. Viral leads for chemokine-modulatory drugs

    DEFF Research Database (Denmark)

    Lindow, Morten; Lüttichau, Hans Rudolf; Schwartz, Thue W

    2003-01-01

    The chemokine system, which controls leukocyte trafficking, provides several potentially very attractive anti-inflammatory drug targets. However, the complexity and redundancy of this system makes it very difficult to exploit through classical drug discovery. Despite this, viruses have millions...

  14. The human cutaneous chemokine system

    Directory of Open Access Journals (Sweden)

    Bernhard eMoser

    2011-08-01

    Full Text Available Irrespective of the immune status, the vast majority of all lymphocytes reside in peripheral tissues whereas those present in blood only amount to a small fraction of the total. It has been estimated that T cells in healthy human skin outnumber those present in blood by at least a factor of two. How lymphocytes within these two compartments relate to each other is not well understood. However, mounting evidence suggest that the study of T cell subsets present in peripheral blood does not reflect the function of their counterparts at peripheral sites. This is especially true under steady-state conditions whereby long-lived memory T cells in healthy tissues, notably those in epithelial tissues at body surfaces, are thought to fulfil a critical immune surveillance function by contributing to the first line of defence against a series of local threats, including microbes, tumours and toxins, and by participating in wound healing. The relative scarcity of information regarding peripheral T cells and the factors regulating their localization is primarily due to inherent difficulties in obtaining healthy tissue for the extraction and study of immune cells on a routine basis. This is most certainly true for humans. Here, we review our current understanding of T cell homing to human skin and discuss candidate chemokines that may account for the tissue selectivity in this process.

  15. Chemokines: Small Molecules Participate in Diabetes

    Directory of Open Access Journals (Sweden)

    S. Mostafa Hosseini-Zijoud

    2013-04-01

    Full Text Available Background: Chemokines are small protein molecules involved in cell signaling processes. They play a crucial role in many physiological and pathological processes. Chemokines are functionally classified into two categories; inflammatory/inducible and constitutive. Their biologic functional differences are the result of their receptors structural differences. Recently some studies were performed about the chemokines changes in diabetes. Inflammatory mechanisms have an important role in diabetes.Materials and Methods: In this review article we searched the keywords chemokines, diabetes, diabetes pathogenesis, and type 1 and 2 diabetes in Persian resources, PubMed and famous English-language websites through advanced search engines and found the newest studies about the role of chemokines in the pathogenesis of diabetes.Results: The results of the studies showed that diabetes and its disorders enhance the activation of immune cells and the expression of cytokines such as IL-1, IL-6, IL-8, IL-10, SDF-1, INF-γ, TGF-β, MCP-1, IP-10, TNF-α, and RANTES; most of them have impact on the pathogenesis of diabetes.Conclusion: Comparison and analysis of the results obtained from our research and the results of performed studies in the world and Iran shows that chemokines, like other protein molecules involved in the pathogenesis and etiology of diabetes, play a role in this process.

  16. Tunable Handset Antenna

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Foroozanfard, Ehsan; Morris, Art

    2017-01-01

    With the future LTE auction for TV white spaces at 600 MHz, there is a strong need for efficient handset antennas operating at very low frequencies. This paper shows a tunable antenna covering the LTE bands from 600 MHz to 2.6 GHz. The antenna uses state-of-the-art MEMS tunable capacitors in order...... to reconfigure its operating frequency. In this work, the design mitigates the tuning loss with a tunable extended ground plane. The resulting dual-resonant antenna exhibits a peak total efficiency of -3.9 dB at 600 MHz....

  17. Synergistic enhancement of chemokine generation and lung injury by C5a or the membrane attack complex of complement

    DEFF Research Database (Denmark)

    Czermak, B J; Lentsch, A B; Bless, N M

    1999-01-01

    demonstrated synergistic production of C-X-C (macrophage inflammatory protein-2 and cytokine-induced neutrophil chemoattractant) and C-C (macrophage inflammatory protein-1alpha and monocyte chemoattractant-1) chemokines. In the absence of the costimulus, C5a or MAC did not induce chemokine generation....... In in vivo studies, C5a and MAC alone caused limited or no intrapulmonary generation of chemokines, but in the presence of a costimulus (IgG immune complexes) C5a and MAC caused synergistic intrapulmonary generation of C-X-C and C-C chemokines but not of tumor necrosis factor alpha. Under these conditions...... increased neutrophil accumulation occurred, as did lung injury. These observations suggest that C5a and MAC function synergistically with a costimulus to enhance chemokine generation and the intensity of the lung inflammatory response....

  18. Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke; Tani, M; Jensen, J

    1999-01-01

    Chemokines direct tissue invasion by specific leukocyte populations. Thus, chemokines may play a role in multiple sclerosis (MS), an idiopathic disorder in which the central nervous system (CNS) inflammatory reaction is largely restricted to mononuclear phagocytes and T cells. We asked whether...

  19. Tunable Optical Polymer Systems

    National Research Council Canada - National Science Library

    Jenekhe, S. A; Bard, Allen J; Chen, S. H; Hammond, P. T; Rothberg, L. J

    2004-01-01

    This multidisciplinary university research initiative (MURI) program investigated tunable optical polymer systems suitable for large-area color-switchable coatings and devices, displays, sensors, and other electronic applications...

  20. Tunable micro-optics

    CERN Document Server

    Duppé, Claudia

    2015-01-01

    Presenting state-of-the-art research into the dynamic field of tunable micro-optics, this is the first book to provide a comprehensive survey covering a varied range of topics including novel materials, actuation concepts and new imaging systems in optics. Internationally renowned researchers present a diverse range of chapters on cutting-edge materials, devices and subsystems, including soft matter, artificial muscles, tunable lenses and apertures, photonic crystals, and complete tunable imagers. Special contributions also provide in-depth treatment of micro-optical characterisation, scanners, and the use of natural eye models as inspiration for new concepts in advanced optics. With applications extending from medical diagnosis to fibre telecommunications, Tunable Micro-optics equips readers with a solid understanding of the broader technical context through its interdisciplinary approach to the realisation of new types of optical systems. This is an essential resource for engineers in industry and academia,...

  1. Microbial corruption of the chemokine system: an expanding paradigm.

    Science.gov (United States)

    Pease, J E; Murphy, P M

    1998-06-01

    The chemokine signaling system includes more than 40 secreted pro-inflammatory peptides and 12 G protein-coupled receptors that together orchestrate specific leukocyte trafficking in the mammalian immune system, ideally for anti- microbial defense and tissue repair processes. Paradoxically and perversely, some chemokines and chemokine receptors are also promicrobial factors and facilitate infectious disease, the result of either exploitation or subversion by specific microbes. Two modes of exploitation are known: usage of cellular chemokine receptors for cell entry by intracellular pathogens, including HIV, and usage of virally-encoded chemokine receptors for host cell proliferation. Likewise, two modes of subversion are known: virally-encoded chemokine antagonists and virally-encoded chemokine scavengers. Understanding how microbes turn the tables on the chemokine system may point to new methods to prevent or treat infection, or, more generally, to treat inappropriate chemokine-mediated inflammation. Copyright 1998 Academic Press.

  2. Varicose veins show enhanced chemokine expression.

    Science.gov (United States)

    Solá, L del Rio; Aceves, M; Dueñas, A I; González-Fajardo, J A; Vaquero, C; Crespo, M Sanchez; García-Rodríguez, C

    2009-11-01

    Leucocyte infiltration in the wall of varicose veins has been reported previously. This study was designed to investigate the expression of pro-inflammatory cytokines and chemokines in control and in patients with varicose veins and to test the effect of treating varicose vein patients with acetylsalicylic acid (ASA) on cytokine expression prior to removal of varices. Sections of vein were removed during operation from both patient groups, and ribonuclease protection assays (RPAs) were performed to assess the expression of chemokines. Group I included non-varicose saphenous veins from healthy patients undergoing amputation for trauma. Varicose veins were obtained from patients with primary varicose undergoing surgical treatment who received no drug (group II) or treatment with 300 mg day(-1) of ASA for 15 days before surgery (group III). Non-varicose veins constitutively expressed low levels of monocyte-chemoattractant protein (MCP-1) and interleukin (IL)-8 mRNA. Varicose veins had a distinct chemokine expression pattern, since significant up-regulation of MCP-1 and IL-8 and a marked expression of IP-10, RANTES, MIP-1alpha and MIP-1beta mRNA were detected. Removal of the endothelium did not alter this pattern. Varicose veins obtained from patients treated with ASA showed a consistent decrease in chemokine expression, although it did not reach statistical significance. Varicose veins showed increased expression of several chemokines compared to control veins. A non-significant reduction of activation was observed following treatment with ASA for 15 days.

  3. Furin is a chemokine-modifying enzyme

    DEFF Research Database (Denmark)

    Hensbergen, Paul J; Verzijl, Dennis; Balog, Crina I A

    2004-01-01

    Chemokines comprise a class of structurally related proteins that are involved in many aspects of leukocyte migration under basal and inflammatory conditions. In addition to the large number of genes, limited processing of these proteins by a variety of enzymes enhances the complexity of the total...... agonist activity on the virally encoded receptor ORF74 and the direct antibacterial activity of CXCL10 are fully retained. Hence, we have identified furin as a novel chemokine-modifying enzyme in vitro and most probably also in vivo, generating a C-terminally truncated CXCL10, which fully retains its...

  4. New insights in chemokine signaling [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Daniel F. Legler

    2018-01-01

    Full Text Available Chemokine signaling is essential for coordinated cell migration in health and disease to specifically govern cell positioning in space and time. Typically, chemokines signal through heptahelical, G protein-coupled receptors to orchestrate cell migration. Notably, chemokine receptors are highly dynamic structures and signaling efficiency largely depends on the discrete contact with the ligand. Promiscuity of both chemokines and chemokine receptors, combined with biased signaling and allosteric modulation of receptor activation, guarantees a tightly controlled recruitment and positioning of individual cells within the local environment at a given time. Here, we discuss recent insights in understanding chemokine gradient formation by atypical chemokine receptors and how typical chemokine receptors can transmit distinct signals to translate guidance cues into coordinated cell locomotion in space and time.

  5. Necrotic foci, elevated chemokines and infiltrating neutrophils in the liver of glycogen storage disease type Ia

    Science.gov (United States)

    Kim, So Youn; Weinstein, David A.; Starost, Matthew F.; Mansfield, Brian C.; Chou, Janice Y.

    2009-01-01

    Background/Aims Glycogen storage disease type Ia (GSD-Ia) patients manifest the long-term complication of hepatocellular adenoma (HCA) of unknown etiology. We showed previously that GSD-Ia mice exhibit neutrophilia and elevated serum cytokine levels. This study was conducted to evaluate whether human GSD-Ia patients exhibit analogous increases and whether in GSD-Ia mice a correlation exists between immune abnormalities and, biochemical and histological alterations in the liver. Methods Differential leukocyte counts and cytokine levels were investigated in GSD-Ia patients. Hepatic chemokine production, neutrophil infiltration, and histological abnormalities were investigated in GSD-Ia mice. Results We show that GSD-Ia patients exhibit increased peripheral neutrophil counts and serum interleukin-8 (IL-8). Compared to normal subjects, HCA-bearing GSD-Ia patients have a 2.8-fold higher serum IL8 concentration, while GSD-Ia patients without HCA have a 1.4-fold higher concentration. Hepatic injury in GSD-Ia mice is evidenced by necrotic foci, markedly elevated infiltrating neutrophils, and increased hepatic production of chemokines. Conclusion Peripheral neutrophilia and elevated serum chemokines are characteristic of GSD-Ia with HCA-bearing GSD-Ia patients having the highest serum IL-8. In GSD-Ia mice these elevations correlate with elevated hepatic chemokine levels, neutrophil infiltration, and necrosis. Taken together, peripheral neutrophilia and increased serum chemokines may indicate hepatic injuries in GSD-Ia PMID:18191274

  6. Chemokines and chemokine receptors in susceptibility to HIV-1 infection and progression to AIDS.

    Science.gov (United States)

    Chatterjee, Animesh; Rathore, Anurag; Vidyant, Sanjukta; Kakkar, Kavita; Dhole, Tapan N

    2012-01-01

    A multitude of host genetic factors plays a crucial role in susceptibility to HIV-1 infection and progression to AIDS, which is highly variable among individuals and populations. This review focuses on the chemokine-receptor and chemokine genes, which were extensively studied because of their role as HIV co-receptor or co-receptor competitor and influences the susceptibility to HIV-1 infection and progression to AIDS in HIV-1 infected individuals.

  7. Tunable Microfluidic Dye Laser

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Helbo, Bjarne; Kutter, Jörg Peter

    2003-01-01

    We present a tunable microfluidic dye laser fabricated in SU-8. The tunability is enabled by integrating a microfluidic diffusion mixer with an existing microfluidic dye laser design by Helbo et al. By controlling the relative flows in the mixer between a dye solution and a solvent......, the concentration of dye in the laser cavity can be adjusted, allowing the wavelength to be tuned. Wavelength tuning controlled by the dye concentration was demonstrated with macroscopic dye lasers already in 1971, but this principle only becomes practically applicable by the use of microfluidic mixing...

  8. Dysregulation of chemokine/chemokine receptor axes and NK cell tissue localization during diseases

    Directory of Open Access Journals (Sweden)

    Giovanni Bernardini

    2016-10-01

    Full Text Available ABSTRACTChemokines are small chemotactic molecules that play key roles in physiological and pathological conditions. Upon signaling via their specific receptors, chemokines regulate tissue mobilization and trafficking of a wide array of immune cells, including NK cells. Current research is focused in analyzing changes of chemokine/chemokine receptor expression during various diseases to interfere with pathological trafficking of cells, or to recruit selected cell types to specific tissues. NK cells are a heterogeneous lymphocyte population comprising several subsets endowed with distinct functional properties and mainly representing distinct stages of a linear development process. Because of their different functional potential, the type of subset that accumulates in a tissue drives the final outcome of NK cell-regulated immune response, leading to either protection or pathology. Correspondingly, chemokine receptors including CXCR4, CXCR3 and CX3CR1 are differentially expressed by NK cell subsets and their expression levels can be modulated during NK cell activation. This review will at first summarize the current knowledge on the contribution of chemokines to the localization and generation of NK cell subsets in homeostasis. How an inappropriate chemotactic response can lead to pathology and how chemokine targeting can therapeutically affect tissue recruitment/localization of distinct NK cell subsets will also be discussed.

  9. Possible Roles of CC- and CXC-Chemokines in Regulating Bovine Endometrial Function during Early Pregnancy

    Directory of Open Access Journals (Sweden)

    Ryosuke Sakumoto

    2017-03-01

    Full Text Available The aim of the present study was to determine the possible roles of chemokines in regulating bovine endometrial function during early pregnancy. The expression of six chemokines, including CCL2, CCL8, CCL11, CCL14, CCL16, and CXCL10, was higher in the endometrium at 15 and 18 days of pregnancy than at the same days in non-pregnant animals. Immunohistochemical staining showed that chemokine receptors (CCR1, CCR2, CCR3, and CXCR3 were expressed in the epithelial cells and glandular epithelial cells of the bovine endometrium as well as in the fetal trophoblast obtained from a cow on day 18 of pregnancy. The addition of interferon-τ (IFNT to an endometrial tissue culture system increased CCL8 and CXCL10 expression in the tissues, but did not affect CCL2, CCL11, and CCL16 expression. CCL14 expression by these tissues was inhibited by IFNT. CCL16, but not other chemokines, clearly stimulated interferon-stimulated gene 15 (ISG15 and myxovirus-resistance gene 1 (MX1 expression in these tissues. Cyclooxygenase 2 (COX2 expression decreased after stimulation with CCL8 and CCL14, and oxytocin receptor (OTR expression was decreased by CCL2, CCL8, CCL14, and CXCL10. Collectively, the expression of chemokine genes is increased in the endometrium during early pregnancy. These genes may contribute to the regulation of endometrial function by inhibiting COX2 and OTR expression, subsequently decreasing prostaglandin production and preventing luteolysis in cows.

  10. Tunability enhanced electromagnetic wiggler

    Science.gov (United States)

    Schlueter, R.D.; Deis, G.A.

    1992-03-24

    The invention discloses a wiggler used in synchrotron radiation sources and free electron lasers, where each pole is surrounded by at least two electromagnetic coils. The electromagnetic coils are energized with different amounts of current to provide a wide tunable range of the on-axis magnetic flux density, while preventing magnetic saturation of the poles. 14 figs.

  11. Prospects for cytokine and chemokine biotherapy.

    Science.gov (United States)

    Oppenheim, J J; Murphy, W J; Chertox, O; Schirrmacher, V; Wang, J M

    1997-12-01

    Cytokines with immunostimulating effects have the capacity to induce tumor immunity in animal models, whereas some cytokines interfere with tumor growth based on their angiostatic effects. Despite these capabilities, cytokines, such as IFN-, IFN-, tumor necrosis factor, interleukin (IL)-1, and IL-2, have had limited clinical efficacy and many undesirable side effects. In preclinical models, cytokines can even promote tumor growth and increase metastatic spread. Although chemokines have had limited clinical evaluation, studies of animal models show that they can also have tumor-suppressive or tumor-enhancing effects. In mice, chemokines, such as IP-10, RANTES, and TCA3, have resulted in tumor regression and immunity to subsequent tumor challenge. Those chemokines that are angiostatic (e.g., PF4, IP-10, and MIG) can also induce tumor regression by reducing the tumor blood supply. Conversely, IL-8, which is angiogenic, can promote tumor growth. Our studies show that nasopharyngeal cell line cells (FADU) show a chemotactic as well as a proliferative response to MCP-1. In addition, a variant murine T cell lymphoma cell line Esb-MP, unlike the parental variant Esb, was selectively chemoattracted by murine MCP-1/JE. When injected s.c. into mice, the Esb-MP variant metastasized to the kidney with much higher frequency than the Esb variant. Both cultured kidneys from normal mice and a mesangial cell line constitutively produced chemoattractants that acted on Esb-MP but not Esb parental cells. Purification to homogeneity of these chemoattractants led to the identification of RANTES and JE. These results demonstrate that some chemokines may promote tumor growth and organ-specific metastatic spread of those tumors that have adapted and become responsive to chemokines. Finally, tumors appear to use numerous adaptive mechanisms to subvert and suppress the immune system. More effective therapy with cytokines and chemokines will require better characterization of the means by

  12. Basic Research on Virus-Induced Asthma Exacerbation: Inhibition of Inflammatory Chemokine Expression by Fluticasone Propionate

    Science.gov (United States)

    Matsukura, Satoshi; Kurokawa, Masatsugu; Homma, Tetsuya; Watanabe, Shin; Suzuki, Shintaro; Ieki, Koushi; Takeuchi, Hiroko; Notomi, Kyoko; Schleimer, Robert P.; Kawaguchi, Mio; Kokubu, Fumio

    2016-01-01

    Background Viral infection can exacerbate asthma by inducing the accumulation of inflammatory cells in the airway. We have previously reported that double-stranded RNA (dsRNA), a viral product and ligand of the Toll-like receptor-3 (TLR3), activates the transcription factors NF-κB and IRF-3 and upregulates the expression of inflammatory chemokines in airway epithelial cells. Here, we examined the effects of the glucocorticoid fluticasone propionate (FP) on the expression of the inflammatory chemokines CCL5, CXCL8 and CXCL10. Methods The airway epithelial cell line BEAS-2B was used for this study. Expression of CCL5, CXCL8 and CXCL10 mRNA and protein was quantified by real-time PCR and ELISA assay, respectively. To examine the association of FP with the physiology of chemokine production, we included several methods. Nuclear translocation of transcription factors was determined by performing Western blot analysis. Histone deacetylase (HDAC) activity in nuclear extracts was measured using a colorimetric assay. Stability of the chemokine mRNAs was examined in cells incubated with actinomycin D. The activities of the CCL5 promoter and the transcription factors NF-κB and IRF-3 were assessed using luciferase reporter assays. Results Treatment of BEAS-2B cells with FP significantly and dose-dependently (10−9 to 10−6 M) inhibited dsRNA-induced expression of CCL5, CXCL8 and CXCL10 protein and mRNA, but did not affect mRNA stability. FP also significantly inhibited dsRNA-stimulated CCL5 promoter activity. However, FP had no effect on the activity of HDAC or the nuclear translocation of NF-κB and IRF-3. Conclusions FP inhibits the dsRNA-stimulated expression of inflammatory chemokines in airway epithelial cells. FP may act by inhibiting chemokine transcription through an as yet Unidentified mechanism. PMID:23711858

  13. Targeting herpesvirus reliance of the chemokine system

    DEFF Research Database (Denmark)

    Rosenkilde, Mette M; Kledal, Thomas N

    2006-01-01

    Viral infections depend on an intimate relationship between the infectious agent and the host cells. Viruses need the host cells for replication, while the innate- and adaptive- immunesystem of the host is fighting to kill the infected cell in order to clear out the pathogen and survive...... the infection. However, since both virus and host exist, the organisms struggle must reach an ecological equilibrium. Among the best-studied interactions between viruses and the host immune system are those between herpesviruses and their hosts. Herpesviruses are known to devote a significant part...... acquired homologs of both chemokines and chemokine receptors belonging to the 7 transmembrane (7TM) spanning, G protein-coupled receptor family. 7TM receptors are very efficient drug targets and are currently the most popular class of investigational drug targets. A notable trait for the virus encoded...

  14. Allergic rhinitis and CXCR3 chemokines.

    Science.gov (United States)

    Mazzi, V; Fallahi, P

    2017-01-01

    The underlying mechanism of allergic rhinitis involves IgE antibodies attaching to the allergen and causing the release of inflammatory chemicals such as histamine from mast cells. Cytokines are very important in this process. Many data suggest a systemic shift to more intensely type 1-dominated immune responses in non-allergic individuals and, conversely, to more type 2-dominated responses in allergic individuals upon natural re-exposure to grass pollen. However other studies have found that chemokine (C-X-C motif) ligand (CXCL)10/ interferon (IFN)-γ-induced protein 10 (IP-10) and CXCL9/monokine induced by IFN-γ (MIG) concentrations are elevated in nasal lavages from allergic patients suggesting that these chemokines may play a role in chronic allergic inflammation. Several studies have also evaluated the effect of different immune-modulating drugs in allergic rhinitis showing local and peripheral increase of IFN-γ and IP-10, associated with a reduction of symptoms. Further studies are needed to clarify the role of T helper (Th)1 chemokines in the pathogenesis of allergic rhinitis, and to evaluate their role as biomarkers of disease and of response to treatments.

  15. Virally encoded chemokines and chemokine receptors in the role of viral infections

    DEFF Research Database (Denmark)

    Holst, Peter J; Lüttichau, Hans R; Schwartz, Thue W

    2003-01-01

    are the acquisition and modification of host-encoded chemokines and chemokine receptors. The described viral molecules leave nothing to chance and have thoroughly and efficiently corrupted the host immune system. Through this process viruses have identified key molecules in antiviral responses by their inhibition...... of these or potent ways to alter an efficient antiviral response to a weak Th2-driven response. Examples here are the chemokine scavenging by US28, attractance of Th2 cells and regulatory cells by vMIP1-3 and the selective engaging of CCR8 by MC148. Important insights into viral pathology and possible targets......Large DNA viruses such as pox- and in particular herpesviruses are notorious in their ability to evade the immune system and to be maintained in the general population. Based on the accumulated knowledge reviewed in this study it is evident that important mechanisms of these actions...

  16. Tunable surface plasmon devices

    Science.gov (United States)

    Shaner, Eric A [Rio Rancho, NM; Wasserman, Daniel [Lowell, MA

    2011-08-30

    A tunable extraordinary optical transmission (EOT) device wherein the tunability derives from controlled variation of the dielectric constant of a semiconducting material (semiconductor) in evanescent-field contact with a metallic array of sub-wavelength apertures. The surface plasmon resonance wavelength can be changed by changing the dielectric constant of the dielectric material. In embodiments of this invention, the dielectric material is a semiconducting material. The dielectric constant of the semiconducting material in the metal/semiconductor interfacial region is controllably adjusted by adjusting one or more of the semiconductor plasma frequency, the concentration and effective mass of free carriers, and the background high-frequency dielectric constant in the interfacial region. Thermal heating and/or voltage-gated carrier-concentration changes may be used to variably adjust the value of the semiconductor dielectric constant.

  17. Tunable laser optics

    CERN Document Server

    Duarte, FJ

    2015-01-01

    This Second Edition of a bestselling book describes the optics and optical principles needed to build lasers. It also highlights the optics instrumentation necessary to characterize laser emissions and focuses on laser-based optical instrumentation. The book emphasizes practical and utilitarian aspects of relevant optics including the essential theory. This revised, expanded, and improved edition contains new material on tunable lasers and discusses relevant topics in quantum optics.

  18. Tunable high pressure lasers

    Science.gov (United States)

    Hess, R. V.

    1976-01-01

    Atmospheric transmission of high energy CO2 lasers is considerably improved by high pressure operation which, due to pressure broadening, permits tuning the laser lines off atmospheric absorption lines. Pronounced improvement is shown for horizontal transmission at altitudes above several kilometers and for vertical transmission through the entire atmosphere. Applications of tunable high pressure CO2 lasers to energy transmission and to remote sensing are discussed along with initial efforts in tuning high pressure CO2 lasers.

  19. Increased replication of T-cell-tropic HIV strains and CXC-chemokine receptor-4 induction in T cells treated with macrophage inflammatory protein (MIP)-1alpha, MIP-1beta and RANTES beta-chemokines.

    Science.gov (United States)

    Dolei, A; Biolchini, A; Serra, C; Curreli, S; Gomes, E; Dianzani, F

    1998-01-22

    To study, in T-lymphoid cells, the effects of macrophage inflammatory protein (MIP)-1alpha, MIP-1beta and RANTES beta-chemokines on the replication of T-cell-tropic HIV-1 strains, since it has been reported that beta-chemokines interfere with the replication of macrophage-tropic HIV-1 strains, but not T-cell-tropic strains. Freshly phytohaemagglutinin (PHA)-activated peripheral blood lymphocytes (PBL) and cultured PHA-activated T cells from healthy volunteers, as well as the C8166 T-cell line, were treated overnight with beta-chemokines before infection with T-cell-tropic HIV-1 isolates, or human T-lymphotropic virus type IIIB. HIV replication was followed by detecting the production of infectious particles, p24 antigen, and viral sequences. CXC-chemokine receptor (CXCR)-4 expression was followed by detection and quantification of specific transcripts. Pretreatment of T cells with MIP-1alpha, MIP-1beta and RANTES affected T-cell-tropic strains, increased the replication of HIV-1beta and HIV-1RPdT strains dose-dependently, as well as virus absorption and provirus DNA accumulation. These findings were associated with increased accumulation of CXCR-4 transcripts, and mediated by the protein tyrosine kinase signalling. Moreover, beta-chemokines stimulated PBL proliferation. Beta-chemokines increase the adsorption and replication of at least some T-cell-tropic HIV-1 strains, and this is related to stimulated expression of the CXCR-4 coreceptor.

  20. Chemokines: structure, receptors and functions. A new target for inflammation and asthma therapy?

    Directory of Open Access Journals (Sweden)

    F. A. A. van Acker

    1996-01-01

    Full Text Available Five to 10% of the human population have a disorder of the respiratory tract called ‘asthma’. It has been known as a potentially dangerous disease for over 2000 years, as it was already described by Hippocrates and recognized as a disease entity by Egyptian and Hebrew physicians. At the beginning of this decade, there has been a fundamental change in asthma management. The emphasis has shifted from symptom relief with bronchodilator therapies (e.g. β2-agonists to a much earlier introduction of anti-inflammatory treatment (e.g. corticosteroids. Asthma is now recognized to be a chronic inflammatory disease of the airways, involving various inflammatory cells and their mediators. Although asthma has been the subject of many investigations, the exact role of the different inflammatory cells has not been elucidated completely. Many suggestions have been made and several cells have been implicated in the pathogenesis of asthma, such as the eosinophils, the mast cells, the basophils and the lymphocytes. To date, however, the relative importance of these cells is not completely understood. The cell type predominantly found in the asthmatic lung is the eosinophil and the recruitment of these eosinophils can be seen as a characteristic of asthma. In recent years much attention is given to the role of the newly identified chemokines in asthma pathology. Chemokines are structurally and functionally related 8–10 kDa peptides that are the products of distinct genes clustered on human chromosomes 4 and 17 and can be found at sites of inflammation. They form a superfamily of proinflammatory mediators that promote the recruitment of various kinds of leukocytes and lymphocytes. The chemokine superfamily can be divided into three subgroups based on overall sequence homology. Although the chemokines have highly conserved amino acid sequences, each of the chemokines binds to and induces the chemotaxis of particular classes of white blood cells. Certain

  1. CXC and CC Chemokines as Angiogenic Modulators in Nonhaematological Tumors

    Directory of Open Access Journals (Sweden)

    Matteo Santoni

    2014-01-01

    Full Text Available Chemokines are a superfamily of structurally homologous heparin-binding proteins that includes potent inducers and inhibitors of angiogenesis. The imbalance between angiogenic and angiostatic chemokine activities can lead to abnormalities, such as chronic inflammation, dysplastic transformation, and even tumor development and spreading. In this review, we summarize the current literature regarding the role of chemokines as modulators of tumor angiogenesis and their potential role as therapeutic targets in patients with nonhaematological tumors.

  2. Non-Enzymatic-Browning-Reaction: A Versatile Route for Production of Nitrogen-Doped Carbon Dots with Tunable Multicolor Luminescent Display

    Science.gov (United States)

    Wei, Weili; Xu, Can; Wu, Li; Wang, Jiasi; Ren, Jinsong; Qu, Xiaogang

    2014-01-01

    The non-enzymatic browning, namely Maillard reaction is commonly invoked to account for abiotic chemical transformations of organic matter. Here we report a new reaction pathway via the Maillard reaction to systematically synthesize a series of nitrogen-doped carbon dots (C-dots) with superhigh quantum yield (QY) and tunable multicolor luminescent displayment. The starting materials are glucose and the serial amino acid analogues which allow systemically controlling luminescent and physicochemical properties of C-dots at will. Unexpectedly, the as-prepared C-dots possess bright photoluminescence with QY up to 69.1% which is almost the highest ever reported, favorable biocompatibility, excellent aqueous and nonaqueous dispersibility, ultrahigh photostability, and readily functionalization. We have demonstrated that they are particularly suitable for multicolor luminescent display and long-term and real-time cellular imaging. Furthermore, the methodology is readily scalable to large yield, and can provide sufficient amount of C-dots for practical demands.

  3. Genomic organization, annotation, and ligand-receptor inferences of chicken chemokines and chemokine receptor genes based on comparative genomics

    Directory of Open Access Journals (Sweden)

    Sze Sing-Hoi

    2005-03-01

    Full Text Available Abstract Background Chemokines and their receptors play important roles in host defense, organogenesis, hematopoiesis, and neuronal communication. Forty-two chemokines and 19 cognate receptors have been found in the human genome. Prior to this report, only 11 chicken chemokines and 7 receptors had been reported. The objectives of this study were to systematically identify chicken chemokines and their cognate receptor genes in the chicken genome and to annotate these genes and ligand-receptor binding by a comparative genomics approach. Results Twenty-three chemokine and 14 chemokine receptor genes were identified in the chicken genome. All of the chicken chemokines contained a conserved CC, CXC, CX3C, or XC motif, whereas all the chemokine receptors had seven conserved transmembrane helices, four extracellular domains with a conserved cysteine, and a conserved DRYLAIV sequence in the second intracellular domain. The number of coding exons in these genes and the syntenies are highly conserved between human, mouse, and chicken although the amino acid sequence homologies are generally low between mammalian and chicken chemokines. Chicken genes were named with the systematic nomenclature used in humans and mice based on phylogeny, synteny, and sequence homology. Conclusion The independent nomenclature of chicken chemokines and chemokine receptors suggests that the chicken may have ligand-receptor pairings similar to mammals. All identified chicken chemokines and their cognate receptors were identified in the chicken genome except CCR9, whose ligand was not identified in this study. The organization of these genes suggests that there were a substantial number of these genes present before divergence between aves and mammals and more gene duplications of CC, CXC, CCR, and CXCR subfamilies in mammals than in aves after the divergence.

  4. Tunable femtosecond Cherenkov fiber laser

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Svane, Ask Sebastian; Lægsgaard, Jesper

    2014-01-01

    We demonstrate electrically-tunable femtosecond Cherenkov fiber laser output at the visible range. Using an all-fiber, self-starting femtosecond Yb-doped fiber laser as the pump source and nonlinear photonic crystal fiber link as the wave-conversion medium, ultrafast, milliwatt-level, tunable...

  5. Tunable resistance coatings

    Science.gov (United States)

    Elam, Jeffrey W.; Mane, Anil U.

    2015-08-11

    A method and article of manufacture of intermixed tunable resistance composite materials containing at least one of W:Al.sub.2O.sub.3, Mo:Al.sub.2O.sub.3 or M:Al.sub.2O.sub.3 where M is a conducting compound containing either W or Mo. A conducting material and an insulating material are deposited by such methods as ALD or CVD to construct composites with intermixed materials which do not have structure or properties like their bulk counterparts.

  6. MEMS Tunable nanostructured photodetector

    DEFF Research Database (Denmark)

    Learkthanakhachon, Supannee

    This thesis was prepared at the department of Photonics Engineering, the Technical University of Denmark in fulfilment of the requirements for acquiring a Philosophiae doctor (Ph.D.) in Photonics Engineering. The thesis deals with the design and fabrication of tunable resonant......-cavity-enhanced photodetector using dielectric subwavelength gratings as reflectors operating at 1550 nm optical communication wavelength. The main work in this thesis divided equally into device design and process development. The properties of dielectric subwavelength grating are described. The main result of the thesis...

  7. Tunable multiwalled nanotube resonator

    Science.gov (United States)

    Jensen, Kenneth J; Girit, Caglar O; Mickelson, William E; Zettl, Alexander K; Grossman, Jeffrey C

    2013-11-05

    A tunable nanoscale resonator has potential applications in precise mass, force, position, and frequency measurement. One embodiment of this device consists of a specially prepared multiwalled carbon nanotube (MWNT) suspended between a metal electrode and a mobile, piezoelectrically controlled contact. By harnessing a unique telescoping ability of MWNTs, one may controllably slide an inner nanotube core from its outer nanotube casing, effectively changing its length and thereby changing the tuning of its resonance frequency. Resonant energy transfer may be used with a nanoresonator to detect molecules at a specific target oscillation frequency, without the use of a chemical label, to provide label-free chemical species detection.

  8. Tunable Nitride Josephson Junctions.

    Energy Technology Data Exchange (ETDEWEB)

    Missert, Nancy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Henry, Michael David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lewis, Rupert M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Howell, Stephen W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wolfley, Steven L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brunke, Lyle Brent [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wolak, Matthaeus [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    We have developed an ambient temperature, SiO2/Si wafer - scale process for Josephson junctions based on Nb electrodes and Ta x N barriers with tunable electronic properties. The films are fabricated by magnetron sputtering. The electronic properties of the TaxN barriers are controlled by adjusting the nitrogen flow during sputtering. This technology offers a scalable alternative to the more traditional junctions based on AlOx barriers for low - power, high - performance computing.

  9. Integrated tunable CMOS laser.

    Science.gov (United States)

    Creazzo, Timothy; Marchena, Elton; Krasulick, Stephen B; Yu, Paul K L; Van Orden, Derek; Spann, John Y; Blivin, Christopher C; He, Lina; Cai, Hong; Dallesasse, John M; Stone, Robert J; Mizrahi, Amit

    2013-11-18

    An integrated tunable CMOS laser for silicon photonics, operating at the C-band, and fabricated in a commercial CMOS foundry is presented. The III-V gain medium section is embedded in the silicon chip, and is hermetically sealed. The gain section is metal bonded to the silicon substrate creating low thermal resistance into the substrate and avoiding lattice mismatch problems. Optical characterization shows high performance in terms of side mode suppression ratio, relative intensity noise, and linewidth that is narrow enough for coherent communications.

  10. Human osteoarthritic cartilage shows reduced in vivo expression of IL-4, a chondroprotective cytokine that differentially modulates IL-1β-stimulated production of chemokines and matrix-degrading enzymes in vitro.

    Directory of Open Access Journals (Sweden)

    Elisa Assirelli

    Full Text Available BACKGROUND: In osteoarthritis (OA, an inflammatory environment is responsible for the imbalance between the anabolic and catabolic activity of chondrocytes and, thus, for articular cartilage derangement. This study was aimed at providing further insight into the impairment of the anabolic cytokine IL-4 and its receptors in human OA cartilage, as well as the potential ability of IL-4 to antagonize the catabolic phenotype induced by IL-1β. METHODOLOGY/PRINCIPAL FINDINGS: The in vivo expression of IL-4 and IL-4 receptor subunits (IL-4R, IL-2Rγ, IL-13Rα1 was investigated on full thickness OA or normal knee cartilage. IL-4 expression was found to be significantly lower in OA, both in terms of the percentage of positive cells and the amount of signal per cell. IL-4 receptor type I and II were mostly expressed in mid-deep cartilage layers. No significant difference for each IL-4 receptor subunit was noted. IL-4 anti-inflammatory and anti-catabolic activity was assessed in vitro in the presence of IL-1β and/or IL-4 for 24 hours using differentiated high density primary OA chondrocyte also exhibiting the three IL-4 R subunits found in vivo. Chemokines, extracellular matrix degrading enzymes and their inhibitors were evaluated at mRNA (real time PCR and protein (ELISA or western blot levels. IL-4 did not affect IL-1β-induced mRNA expression of GRO-α/CXCL1, IL-8/CXCL8, ADAMTS-5, TIMP-1 or TIMP-3. Conversely, IL-4 significantly inhibited RANTES/CCL5, MIP-1α/CCL3, MIP-1β/CCL4, MMP-13 and ADAMTS-4. These results were confirmed at protein level for RANTES/CCL5 and MMP-13. CONCLUSIONS/SIGNIFICANCE: Our results indicate for the first time that OA cartilage has a significantly lower expression of IL-4. Furthermore, we found differences in the spectrum of biological effects of IL-4. The findings that IL-4 has the ability to hamper the IL-1β-induced release of both MMP-13 and CCL5/RANTES, both markers of OA chondrocytes, strongly indicates IL-4 as a

  11. Plasma macrophage-derived chemokine (CCL22) and its receptor ...

    African Journals Online (AJOL)

    Ehab

    CCR. 4+ P. BT. L. %. Fig. 2B (In-between attacks). Figure 2. Positive correlations between the percentage of peripheral blood T lymphocytes expressing the chemokine CC receptor-4 (CCR4) and plasma levels of macrophage derived chemokine (MDC) among asthmatic children during acute attacks (Fig.2A) and after ...

  12. Chemokine receptor CCR5 in interferon-treated multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, F; Kristiansen, T B; Wittenhagen, P

    2007-01-01

    To study the relationship between CC chemokine receptor CCR5 expression and disease activity in multiple sclerosis (MS) patients treated with beta-interferon (IFN-beta).......To study the relationship between CC chemokine receptor CCR5 expression and disease activity in multiple sclerosis (MS) patients treated with beta-interferon (IFN-beta)....

  13. Chemokine Involvement in Fetal and Adult Wound Healing

    Science.gov (United States)

    Balaji, Swathi; Watson, Carey L.; Ranjan, Rajeev; King, Alice; Bollyky, Paul L.; Keswani, Sundeep G.

    2015-01-01

    Significance: Fetal wounds heal with a regenerative phenotype that is indistinguishable from surrounding skin with restored skin integrity. Compared to this benchmark, all postnatal wound healing is impaired and characterized by scar formation. The biologic basis of the fetal regenerative phenotype can serve as a roadmap to recapitulating regenerative repair in adult wounds. Reduced leukocyte infiltration, likely mediated, in part, through changes in the chemokine milieu, is a fundamental feature of fetal wound healing. Recent Advances: The contributions of chemokines to wound healing are a topic of active investigation. Recent discoveries have opened the possibility of targeting chemokines therapeutically to treat disease processes and improve healing capability, including the possibility of achieving a scarless phenotype in postnatal wounds. Critical Issues: Successful wound healing is a complex process, in which there is a significant interplay between multiple cell types, signaling molecules, growth factors, and extracellular matrix. Chemokines play a crucial role in this interplay and have been shown to have different effects in various stages of the healing process. Understanding how these chemokines are locally produced and regulated during wound healing and how the chemokine milieu differs in fetal versus postnatal wounds may help us identify ways in which we can target chemokine pathways. Future Directions: Further studies on the role of chemokines and their role in the healing process will greatly advance the potential for using these molecules as therapeutic targets. PMID:26543680

  14. Neonatal chemokine levels and risk of autism spectrum disorders

    DEFF Research Database (Denmark)

    Abdallah, Morsi; Larsen, Nanna; Grove, Jakob

    2013-01-01

    A potential role of chemokines in the pathophysiology of Autism Spectrum Disorders (ASDs) has been previously suggested. In a recent study we examined levels of three inflammatory chemokines (MCP-1, MIP-1a and RANTES) in samples of amniotic fluid of children diagnosed later in life with ASD...

  15. Chemokine-Derived Peptides: Novel Antimicrobial and Antineoplasic Agents

    Directory of Open Access Journals (Sweden)

    Julio Valdivia-Silva

    2015-06-01

    Full Text Available Chemokines are a burgeoning family of chemotactic cytokines displaying a broad array of functions such as regulation of homeostatic leukocyte traffic and development, as well as activating the innate immune system. Their role in controlling early and late inflammatory stages is now well recognized. An improper balance either in chemokine synthesis or chemokine receptor expression contributes to various pathological disorders making chemokines and their receptors a useful therapeutic target. Research in this area is progressing rapidly, and development of novel agents based on chemokine/ chemokine receptors antagonist functions are emerging as attractive alternative drugs. Some of these novel agents include generation of chemokine-derived peptides (CDP with potential agonist and antagonist effects on inflammation, cancer and against bacterial infections. CDP have been generated mainly from N- and C-terminus chemokine sequences with subsequent modifications such as truncations or elongations. In this review, we present a glimpse of the different pharmacological actions reported for CDP and our current understanding regarding the potential use of CDP alone or as part of the novel therapies proposed in the treatment of microbial infections and cancer.

  16. Viral chemokine-modulatory proteins : tools and targets

    NARCIS (Netherlands)

    Boomker, JM; de Leij, LFMH; The, TH; Harmsen, MC

    The chemokine network is an extensive system that regulates many immune functions such as leukocyte locomotion, T cell differentiation, angiogenesis and mast cell degranulation. Tight control of chemokines is vital for proper immune function. Not surprisingly, viruses have found ways to subvert or

  17. Tunable Topological Phononic Crystals

    KAUST Repository

    Chen, Zeguo

    2016-05-27

    Topological insulators first observed in electronic systems have inspired many analogues in photonic and phononic crystals in which remarkable one-way propagation edge states are supported by topologically nontrivial band gaps. Such band gaps can be achieved by breaking the time-reversal symmetry to lift the degeneracy associated with Dirac cones at the corners of the Brillouin zone. Here, we report on our construction of a phononic crystal exhibiting a Dirac-like cone in the Brillouin zone center. We demonstrate that simultaneously breaking the time-reversal symmetry and altering the geometric size of the unit cell result in a topological transition that we verify by the Chern number calculation and edge-mode analysis. We develop a complete model based on the tight binding to uncover the physical mechanisms of the topological transition. Both the model and numerical simulations show that the topology of the band gap is tunable by varying both the velocity field and the geometric size; such tunability may dramatically enrich the design and use of acoustic topological insulators.

  18. Electrothermally Tunable Arch Resonator

    KAUST Repository

    Hajjaj, Amal Z.

    2017-03-18

    This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of electrothermally actuated microelectromechanical arch beams. The beams are made of silicon and are intentionally fabricated with some curvature as in-plane shallow arches. An electrothermal voltage is applied between the anchors of the beam generating a current that controls the axial stress caused by thermal expansion. When the electrothermal voltage increases, the compressive stress increases inside the arch beam. This leads to an increase in its curvature, thereby increasing its resonance frequencies. We show here that the first resonance frequency can increase monotonically up to twice its initial value. We show also that after some electrothermal voltage load, the third resonance frequency starts to become more sensitive to the axial thermal stress, while the first resonance frequency becomes less sensitive. These results can be used as guidelines to utilize arches as wide-range tunable resonators. Analytical results based on the nonlinear Euler Bernoulli beam theory are generated and compared with the experimental data and the results of a multi-physics finite-element model. A good agreement is found among all the results. [2016-0291

  19. Distinct chemokine receptor and cytokine expression profile in secondary progressive MS

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke; Sellebjerg, F

    2001-01-01

    Chemokines, small chemotactic cytokines, have been implicated in active relapsing-remitting MS (RRMS). However, the role of chemokines and chemokine receptors has not been specifically studied in secondary progressive MS (SPMS).......Chemokines, small chemotactic cytokines, have been implicated in active relapsing-remitting MS (RRMS). However, the role of chemokines and chemokine receptors has not been specifically studied in secondary progressive MS (SPMS)....

  20. Anti-chemokine small molecule drugs: a promising future?

    Science.gov (United States)

    Proudfoot, Amanda E I; Power, Christine A; Schwarz, Matthias K

    2010-03-01

    Chemokines have principally been associated with inflammation due to their role in the control of leukocyte migration, but just over a decade ago chemokine receptors were also identified as playing a pivotal role in the entry of the HIV virus into cells. Chemokines activate seven transmembrane G protein-coupled receptors, making them extremely attractive therapeutic targets for the pharmaceutical industry. Although there are now a large number of molecules targeting chemokines and chemokine receptors including neutralizing antibodies in clinical trials for inflammatory diseases, the results to date have not always been positive, which has been disappointing for the field. These failures have often been attributed to redundancy in the chemokine system. However, other difficulties have been encountered in drug discovery processes targeting the chemokine system, and these will be addressed in this review. In this review, the reader will get an insight into the hurdles that have to be overcome, learn about some of the pitfalls that may explain the lack of success, and get a glimpse of the outlook for the future. In 2007, the FDA approved maraviroc, an inhibitor of CCR5 for the prevention of HIV infection, the first triumph for a small-molecule drug acting on the chemokine system. The time to market, 11 years from discovery of CCR5, was fast by industry standards. A second small-molecule drug, a CXCR4 antagonist for hematopoietic stem cell mobilization, was approved by the FDA at the end of 2008. The results of a Phase III trial with a CCR9 inhibitor for Crohn's disease are also promising. This could herald the first success for a chemokine receptor antagonist as an anti-inflammatory therapeutic and confirms the importance of chemokine receptors as a target class for anti-inflammatory and autoimmune diseases.

  1. The murine cytomegalovirus chemokine homolog, m131/129, is a determinant of viral pathogenicity.

    Science.gov (United States)

    Fleming, P; Davis-Poynter, N; Degli-Esposti, M; Densley, E; Papadimitriou, J; Shellam, G; Farrell, H

    1999-08-01

    Chemokines are important mediators of the early inflammatory response to infection and modify a wide range of host immune responses. Functional homologs of cellular chemokines have been identified in a number of herpesviruses, suggesting that the subversion of the host chemokine response contributes to the pathogenesis of these viruses. Transcriptional and reverse transcription-PCR analyses demonstrated that the murine cytomegalovirus (MCMV) chemokine homolog, m131, was spliced at the 3' end to the adjacent downstream open reading frame, m129, resulting in a predicted product of 31 kDa, which is significantly larger than most known chemokines. The in vivo impact of m131/129 was investigated by comparing the replication of MCMV mutants having m131/129 deleted (Deltam131/129) with that of wild-type (wt) MCMV. Our studies demonstrate that both wt and Deltam131/129 viruses replicated to equivalent levels during the first 2 to 3 days following in vivo infection. However, histological studies demonstrated that the early inflammatory response elicited by Deltam131/129 was reduced compared with that of wt MCMV. Furthermore, the Deltam131/129 mutants failed to establish a high-titer infection in the salivary glands. These results suggest that m131/129 possesses proinflammatory properties in vivo and is important for the dissemination of MCMV to or infection of the salivary gland. Notably, the Deltam131/129 mutants were cleared more rapidly from the spleen and liver during acute infection compared with wt MCMV. The accelerated clearance of the mutants was dependent on NK cells and cells of the CD4(+) CD8(+) phenotype. These data suggest that m131/129 may also contribute to virus mechanisms of immune system evasion during early infection, possibly through the interference of NK cells and T cells.

  2. Chemokines CXCL10 and CCL2

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke; Sellebjerg, F; Jensen, C V

    2001-01-01

    leukocyte count, the CSF concentration of neopterin, matrix metalloproteinase (MMP)-9, and intrathecal IgG and IgM synthesis. The concentration of CCL2 increased between baseline for 3 weeks in both groups, more distinctly so in patients treated with methylprednisolone. CCL2 correlated negatively with MMP-9...... patients in relapse, whilst levels of CCL2 (MCP-1) were reduced. Here, we report a serial analysis of CSF CXCL10 and CCL2 concentrations in 22 patients with attacks of MS or acute optic neuritis (ON) treated with methylprednisolone, and 26 patients treated with placebo in two randomized controlled trials....... Chemokine concentrations were measured by enzyme linked immunosorbent assay (ELISA) in CSF obtained at baseline and after 3 weeks, and were compared with other measures of intrathecal inflammation. At baseline CSF concentrations of CCL2 were significantly lower in the patient group than in controls...

  3. Mid-infrared tunable metamaterials

    Science.gov (United States)

    Brener, Igal; Miao, Xiaoyu; Shaner, Eric A; Passmore, Brandon Scott; Jun, Young Chul

    2015-04-28

    A mid-infrared tunable metamaterial comprises an array of resonators on a semiconductor substrate having a large dependence of dielectric function on carrier concentration and a semiconductor plasma resonance that lies below the operating range, such as indium antimonide. Voltage biasing of the substrate generates a resonance shift in the metamaterial response that is tunable over a broad operating range. The mid-infrared tunable metamaterials have the potential to become the building blocks of chip based active optical devices in mid-infrared ranges, which can be used for many applications, such as thermal imaging, remote sensing, and environmental monitoring.

  4. Mid-infrared tunable metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Brener, Igal; Miao, Xiaoyu; Shaner, Eric A.; Passmore, Brandon Scott

    2017-07-11

    A mid-infrared tunable metamaterial comprises an array of resonators on a semiconductor substrate having a large dependence of dielectric function on carrier concentration and a semiconductor plasma resonance that lies below the operating range, such as indium antimonide. Voltage biasing of the substrate generates a resonance shift in the metamaterial response that is tunable over a broad operating range. The mid-infrared tunable metamaterials have the potential to become the building blocks of chip based active optical devices in mid-infrared ranges, which can be used for many applications, such as thermal imaging, remote sensing, and environmental monitoring.

  5. Tunable grating with active feedback

    Science.gov (United States)

    Rosset, Samuel; O'Brien, Benjamin M.; Gisby, Todd; Xu, Daniel; Shea, Herbert R.; Anderson, Iain A.

    2013-04-01

    We report on the use of capacitive self-sensing to operate a DEA-based tunable grating in closed-loop mode. Due to their large strain capabilities, DEAs are key candidates for tunable optics applications. However, the viscoelasticity of elastomers is detrimental for applications that require long-term stability, such as tunable gratings and lenses. We show that capacitive sensing of the electrode strain can be used to suppress the strain drift and increase the response speed of silicone-based actuators. On the other hand, VHB actuators exhibit a time-dependent permittivity, which causes a drift between the device capacitance and its strain.

  6. Electrothermally Tunable Bridge Resonator

    KAUST Repository

    Hajjaj, Amal Z.

    2016-12-05

    This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of an in-plane clamped-clamped microbeam, bridge, and resonator compressed by a force due to electrothermal actuation. We demonstrate that a single resonator can be operated at a wide range of frequencies. The microbeam is actuated electrothermally, by passing a DC current through it. We show that when increasing the electrothermal voltage, the compressive stress inside the microbeam increases, which leads eventually to its buckling. Before buckling, the fundamental frequency decreases until it drops to very low values, almost to zero. After buckling, the fundamental frequency increases, which is shown to be as high as twice the original resonance frequency. Analytical results based on the Galerkin discretization of the Euler Bernoulli beam theory are generated and compared to the experimental data and to simulation results of a multi-physics finite-element model. A good agreement is found among all the results.

  7. Electrostatically Tunable Nanomechanical Shallow Arches

    KAUST Repository

    Kazmi, Syed N. R.

    2017-11-03

    We report an analytical and experimental study on the tunability of in-plane doubly-clamped nanomechanical arches under varied DC bias conditions at room temperature. For this purpose, silicon based shallow arches are fabricated using standard e-beam lithography and surface nanomachining of a highly conductive device layer on a silicon-on-insulator (SOI) wafer. The experimental results show good agreement with the analytical results with a maximum tunability of 108.14% for 180 nm thick arch with a transduction gap of 1 μm between the beam and the driving/sensing electrodes. The high tunability of shallow arches paves the ways for highly tunable band pass filtering applications in high frequency range.

  8. Tissue-specific regulation of CXCL9/10/11 chemokines in keratinocytes: Implications for oral inflammatory disease.

    Directory of Open Access Journals (Sweden)

    Alison Marshall

    Full Text Available The IFN-γ-inducible chemokines CXCL9, CXCL10, and CXCL11 play a key role in many inflammatory conditions, particularly those mediated by T cells. Therefore, the production of these chemokines in peripheral tissues could be instrumental in the pathophysiology of tissue-specific immunological diseases such as oral lichen planus (OLP. In the present study, we assessed the production of keratinocyte-derived CXCL9/10/11 under basal and inflammatory conditions and investigated whether these chemokines were involved in the pathogenesis of OLP. We used semi-quantitative PCR, ELISA, chemotaxis assays, and fluorescence-activated cell sorting (FACS to assess the expression and functional role of CXCL9/10/11 in oral keratinocytes (three strains of normal human oral keratinocytes (NHOK, and the H357 oral cancer cell line in the presence or absence of IFN-γ. CXCL9/10/11 were also assessed in tissues from normal patients and those with oral lichen planus (OLP. The time course study in oral keratinocytes treated with IFN-γ showed that expression of CXCL9/10/11 chemokines was significantly enhanced by IFN-γ in a time-dependent manner. In particular, CXCL10, a prominent chemokine that was overexpressed by IFN-γ-stimulated NHOK, was able to effectively recruit CD4 lymphocytes, mainly CD4+CD45RA- cells. Significantly higher levels of CXCL9/10/11 were found in tissues from patients with OLP compared to normal oral mucosa. Taken together, the results demonstrate that normal oral keratinocytes produce chemotactic molecules that mediate T cell recruitment. This study furthers understanding of chemokine production in oral keratinocytes and their role in the pathophysiology of oral mucosa, with particular relevance to OLP.

  9. Tunable on chip optofluidic laser

    DEFF Research Database (Denmark)

    Bakal, Avraham; Vannahme, Christoph; Kristensen, Anders

    2016-01-01

    On chip tunable laser is demonstrated by realizing a microfluidic droplet array. The periodicity is controlled by the pressure applied to two separate inlets, allowing to tune the lasing frequency over a broad spectral range.......On chip tunable laser is demonstrated by realizing a microfluidic droplet array. The periodicity is controlled by the pressure applied to two separate inlets, allowing to tune the lasing frequency over a broad spectral range....

  10. Pneumatically tunable optofluidic dye laser

    OpenAIRE

    Song, W.; Psaltis, D.

    2010-01-01

    We presented a tunable optofluidic dye laser with integrated elastomeric air-gap etalon controlled by air pressure. The chip was fabricated with polydimethylsiloxane (PDMS) via replica molding. It comprises a liquid waveguide and microscale air-gap mirrors providing the feedback. The lasing wavelength is chosen by the interference between two parallel PDMS-air interfaces inside the internal tunable air-gap etalon, of which pneumatic tuning can be realized by inflating the air-gap etalon with ...

  11. Spectral and Radiometric Calibration Using Tunable Lasers

    Science.gov (United States)

    McCorkel, Joel (Inventor)

    2017-01-01

    A tunable laser system includes a tunable laser, an adjustable laser cavity for producing one or more modes of laser light emitted from the tunable laser, a first optical parametric oscillator positioned in a light path of the adjustable laser cavity, and a controller operable to simultaneously control parameters of at least the tunable laser, the first optical parametric oscillator, and the adjustable laser cavity to produce a range of wavelengths emitted from the tunable laser system. A method of operating a tunable laser system includes using a controller to simultaneously control parameters of a tunable laser, an adjustable laser cavity for producing one or more modes of laser light emitted from the tunable laser, and a first optical parametric oscillator positioned in a light path of the adjustable laser cavity, to produce a range of wavelengths emitted from the tunable laser system.

  12. Synthetic Cationic Peptide IDR-1002 Provides Protection against Bacterial Infections through Chemokine Induction and Enhanced Leukocyte Recruitment

    DEFF Research Database (Denmark)

    Nijnik, Anastasia; Madera, Laurence; Ma, Shuhua

    2010-01-01

    , an immunomodulatory peptide IDR-1002 was selected from a library of bactenecin derivatives based on its substantially more potent ability to induce chemokines in human PBMCs. The enhanced chemokine induction activity of the peptide in vitro correlated with stronger protective activity in vivo in the Staphylococcus......With the rapid rise in the incidence of multidrug resistant infections, there is substantial interest in host defense peptides as templates for production of new antimicrobial therapeutics. Natural peptides are multifunctional mediators of the innate immune response, with some direct antimicrobial...... aureus-invasive infection model, with a >5-fold reduction in the protective dose in direct comparison with IDR-1. IDR-1002 also afforded protection against the Gram-negative bacterial pathogen Escherichia coli. Chemokine induction by IDR-1002 was found to be mediated through a Gi-coupled receptor...

  13. Structure of CC Chemokine Receptor 5 with a Potent Chemokine Antagonist Reveals Mechanisms of Chemokine Recognition and Molecular Mimicry by HIV

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yi; Han, Gye Won; Abagyan, Ruben; Wu, Beili; Stevens, Raymond C.; Cherezov, Vadim; Kufareva, Irina; Handel, Tracy M. (USC); (Chinese Aca. Sci.); (UCSD)

    2017-06-01

    CCR5 is the primary chemokine receptor utilized by HIV to infect leukocytes, whereas CCR5 ligands inhibit infection by blocking CCR5 engagement with HIV gp120. To guide the design of improved therapeutics, we solved the structure of CCR5 in complex with chemokine antagonist [5P7]CCL5. Several structural features appeared to contribute to the anti-HIV potency of [5P7]CCL5, including the distinct chemokine orientation relative to the receptor, the near-complete occupancy of the receptor binding pocket, the dense network of intermolecular hydrogen bonds, and the similarity of binding determinants with the FDA-approved HIV inhibitor Maraviroc. Molecular modeling indicated that HIV gp120 mimicked the chemokine interaction with CCR5, providing an explanation for the ability of CCR5 to recognize diverse ligands and gp120 variants. Our findings reveal that structural plasticity facilitates receptor-chemokine specificity and enables exploitation by HIV, and provide insight into the design of small molecule and protein inhibitors for HIV and other CCR5-mediated diseases.

  14. Structure of CC Chemokine Receptor 5 with a Potent Chemokine Antagonist Reveals Mechanisms of Chemokine Recognition and Molecular Mimicry by HIV.

    Science.gov (United States)

    Zheng, Yi; Han, Gye Won; Abagyan, Ruben; Wu, Beili; Stevens, Raymond C; Cherezov, Vadim; Kufareva, Irina; Handel, Tracy M

    2017-06-20

    CCR5 is the primary chemokine receptor utilized by HIV to infect leukocytes, whereas CCR5 ligands inhibit infection by blocking CCR5 engagement with HIV gp120. To guide the design of improved therapeutics, we solved the structure of CCR5 in complex with chemokine antagonist [5P7]CCL5. Several structural features appeared to contribute to the anti-HIV potency of [5P7]CCL5, including the distinct chemokine orientation relative to the receptor, the near-complete occupancy of the receptor binding pocket, the dense network of intermolecular hydrogen bonds, and the similarity of binding determinants with the FDA-approved HIV inhibitor Maraviroc. Molecular modeling indicated that HIV gp120 mimicked the chemokine interaction with CCR5, providing an explanation for the ability of CCR5 to recognize diverse ligands and gp120 variants. Our findings reveal that structural plasticity facilitates receptor-chemokine specificity and enables exploitation by HIV, and provide insight into the design of small molecule and protein inhibitors for HIV and other CCR5-mediated diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Roles for C-X-C chemokines and C5a in lung injury after hindlimb ischemia-reperfusion

    DEFF Research Database (Denmark)

    Bless, N M; Warner, R L; Padgaonkar, V A

    1999-01-01

    We evaluated the roles of the C-X-C chemokines cytokine-induced neutrophil chemoattractant (CINC) and macrophage inflammatory protein-2 (MIP-2) as well as the complement activation product C5a in development of lung injury after hindlimb ischemia-reperfusion in rats. During reperfusion, CD11b and...

  16. IFN-gamma shapes immune invasion of the central nervous system via regulation of chemokines

    DEFF Research Database (Denmark)

    Tran, E H; Prince, E N; Owens, T

    2000-01-01

    Dynamic interplay between cytokines and chemokines directs trafficking of leukocyte subpopulations to tissues in autoimmune inflammation. We have examined the role of IFN-gamma in directing chemokine production and leukocyte infiltration to the CNS in experimental autoimmune encephalomyelitis (EAE......). BALB/c and C57BL/6 mice are resistant to induction of EAE by immunization with myelin basic protein. However, IFN-gamma-deficient (BALB/c) and IFN-gammaR-deficient (C57BL/6) mice developed rapidly progressing lethal disease. Widespread demyelination and disseminated leukocytic infiltration of spinal...... of IL-2, IL-3, and IL-15, but no increase in IL-12p40 mRNA levels in IFN-gamma- or IFN-gammaR-deficient mice with EAE. Lymph node cells from IFN-gamma-deficient mice proliferated in response to myelin basic protein, whereas BALB/c lymph node cells did not. These findings show a regulatory role for IFN...

  17. Chemokine-Mediated Choreography of Thymocyte Development and Selection.

    Science.gov (United States)

    Lancaster, Jessica N; Li, Yu; Ehrlich, Lauren I R

    2018-02-01

    As they differentiate, thymocytes encounter spatially restricted cues critical for differentiation and selection of a functional, self-tolerant T cell repertoire. Sequential migration of developing T cells through distinct thymic microenvironments is enforced by the ordered expression of chemokine receptors. Herein, we provide an updated perspective on T cell differentiation through the lens of recent advances that illuminate the dynamics of chemokine-driven thymocyte migration, localization, and interactions with stromal cells. We consider these findings in the context of earlier groundwork exploring the contribution of chemokines to T cell development, recent advances regarding the specificity of chemokine signaling, and novel techniques for evaluating the T cell repertoire. We suggest future research should amalgamate visualization of localized cellular interactions with downstream molecular signals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Differential Expression of Chemokine Receptors and their Roles in Cancer Imaging

    International Nuclear Information System (INIS)

    Nimmagadda, Sridhar

    2012-01-01

    Chemokine/chemokine receptor interactions play diverse roles in cell migration and homeostasis. Emerging evidence suggests that cancer cells co-opt chemokine networks for survival, proliferation, immune evasion, and metastasis. Most of the chemokine receptors are reported to be involved in tumor progression. Given their extensive implication in cancer progression, several chemokine receptor/ligand axes are considered as potential therapeutic targets. This review provides a survey of chemokine receptor expression in cancer and evaluates the potential of chemokine receptor imaging as a tool for molecular characterization of cancer.

  19. Generating substrate bound functional chemokine gradients in vitro

    DEFF Research Database (Denmark)

    Hjortø, Gertrud Malene; Hansen, Morten; Larsen, Niels Bent

    2009-01-01

    Microcontact printing (mCP) is employed to generate discontinuous microscale gradients of active fractalkine, a chemokine expressed by endothelial cells near sites of inflammation where it is believed to form concentration gradients descending away from the inflamed area. In vivo, fractalkine is ...... surface-bound chemokines (haptotactic gradients). The use of a capture antibody facilitates control of the orientation of tagged molecules, thereby ensuring a high degree of bio-functionality through correct presentation and reduced protein denaturation....

  20. Enhanced Chronic Pain Management Utilizing Chemokine Receptor Antagonists

    Science.gov (United States)

    2016-08-01

    AWARD NUMBER: W81XWH-15 1-0252 TITLE: Enhanced Chronic Pain Management Utilizing Chemokine Receptor Antagonists PRINCIPAL INVESTIGATOR...14 Jul 2016 4. TITLE AND SUBTITLE Enhanced Chronic Pain Management Utilizing Chemokine Receptor Antagonists 5a. CONTRACT NUMBER 5b. GRANT...Center for Substance Abuse Research Lewis Katz School of Medicine at Temple University 3500 N, Broad Street Philadelphia, PA 19140 AND ADDRESS(ES) 8

  1. Magnetostatic wave tunable resonators

    Science.gov (United States)

    Castera, J.-P.; Hartemann, P.

    1983-06-01

    Theoretical principles and techniques for the implementation of magnetostatic surface wave and volume wave resonators in high frequency oscillators are discussed. Magnetostatic waves are magnetic waves that propagate in materials exposed to a polarized magnetic field. The propagation speed ranges from 3-300 km/sec for wavelengths between 1 micron and 10 mm, in the presence of lags from 10-1000 nsec/ cm. Tunable resonators in the 1-20 GHz frequency range have been manufactured with YIG using liquid phase epitaxy for deposition on gadolinium and gallium substrates. Distributed-mirror Fabry-Perot cavity resonators are described and performance tests results are reported, including losses of 8 dB, a quality coefficient under voltage of 450, and frequency rejection outside of resonance better than 10 dB. However, saturation occurs at low power levels at frequencies lower than 4.2 GHz, a feature overcome with forward volume magnetostatic wave generators, which have a quality factor of 500, an insertion loss of 22 dB, and rejection around 15 dB.

  2. Investigating tunable KRb gases and Bose-Einstein condensates

    DEFF Research Database (Denmark)

    Jørgensen, Nils Byg

    2015-01-01

    We present the production of dual-species Bose-Einstein condensates of 39K and 87Rb with tunable interactions. A dark spontaneous force optical trap was used for 87Rb to reduce the losses in 39K originating from light-assisted collisions in the magneto optical trapping phase. Using sympathetic...

  3. Tunable Multiband Microwave Photonic Filters

    Directory of Open Access Journals (Sweden)

    Mable P. Fok

    2017-11-01

    Full Text Available The increasing demand for multifunctional devices, the use of cognitive wireless technology to solve the frequency resource shortage problem, as well as the capabilities and operational flexibility necessary to meet ever-changing environment result in an urgent need of multiband wireless communications. Spectral filter is an essential part of any communication systems, and in the case of multiband wireless communications, tunable multiband RF filters are required for channel selection, noise/interference removal, and RF signal processing. Unfortunately, it is difficult for RF electronics to achieve both tunable and multiband spectral filtering. Recent advancements of microwave photonics have proven itself to be a promising candidate to solve various challenges in RF electronics including spectral filtering, however, the development of multiband microwave photonic filtering still faces lots of difficulties, due to the limited scalability and tunability of existing microwave photonic schemes. In this review paper, we first discuss the challenges that were facing by multiband microwave photonic filter, then we review recent techniques that have been developed to tackle the challenge and lead to promising developments of tunable microwave photonic multiband filters. The successful design and implementation of tunable microwave photonic multiband filter facilitate the vision of dynamic multiband wireless communications and radio frequency signal processing for commercial, defense, and civilian applications.

  4. Duffy antigen receptor for chemokines mediates chemokine endocytosis through a macropinocytosis-like process in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Yani Zhao

    Full Text Available The Duffy antigen receptor for chemokines (DARC shows high affinity binding to multiple inflammatory CC and CXC chemokines and is expressed by erythrocytes and endothelial cells. Recent evidence suggests that endothelial DARC facilitates chemokine transcytosis to promote neutrophil recruitment. However, the mechanism of chemokine endocytosis by DARC remains unclear.We investigated the role of several endocytic pathways in DARC-mediated ligand internalization. Here we report that, although DARC co-localizes with caveolin-1 in endothelial cells, caveolin-1 is dispensable for DARC-mediated (125I-CXCL1 endocytosis as knockdown of caveolin-1 failed to inhibit ligand internalization. (125I-CXCL1 endocytosis by DARC was also independent of clathrin and flotillin-1 but required cholesterol and was, in part, inhibited by silencing Dynamin II expression.(125I-CXCL1 endocytosis was inhibited by amiloride, cytochalasin D, and the PKC inhibitor Gö6976 whereas Platelet Derived Growth Factor (PDGF enhanced ligand internalization through DARC. The majority of DARC-ligand interactions occurred on the endothelial surface, with DARC identified along plasma membrane extensions with the appearance of ruffles, supporting the concept that DARC provides a high affinity scaffolding function for surface retention of chemokines on endothelial cells.These results show DARC-mediated chemokine endocytosis occurs through a macropinocytosis-like process in endothelial cells and caveolin-1 is dispensable for CXCL1 internalization.

  5. Structures of Orf Virus Chemokine Binding Protein in Complex with Host Chemokines Reveal Clues to Broad Binding Specificity.

    Science.gov (United States)

    Couñago, Rafael M; Knapp, Karen M; Nakatani, Yoshio; Fleming, Stephen B; Corbett, Michael; Wise, Lyn M; Mercer, Andrew A; Krause, Kurt L

    2015-07-07

    The chemokine binding protein (CKBP) from orf virus (ORFV) binds with high affinity to chemokines from three classes, C, CC, and CXC, making it unique among poxvirus CKBPs described to date. We present its crystal structure alone and in complex with three CC chemokines, CCL2, CCL3, and CCL7. ORFV CKBP possesses a β-sandwich fold that is electrostatically and sterically complementary to its binding partners. Chemokines bind primarily through interactions involving the N-terminal loop and a hydrophobic recess on the ORFV CKBP β-sheet II surface, and largely polar interactions between the chemokine 20s loop and a negatively charged surface groove located at one end of the CKBP β-sheet II surface. ORFV CKBP interacts with leukocyte receptor and glycosaminoglycan binding sites found on the surface of bound chemokines. SEC-MALLS and chromatographic evidence is presented supporting that ORFV CKBP is a dimer in solution over a broad range of protein concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Truncation of CXCL12 by CD26 reduces its CXC chemokine receptor 4- and atypical chemokine receptor 3-dependent activity on endothelial cells and lymphocytes

    DEFF Research Database (Denmark)

    Janssens, Rik; Mortier, Anneleen; Boff, Daiane

    2017-01-01

    The chemokine CXCL12 or stromal cell-derived factor 1/SDF-1 attracts hematopoietic progenitor cells and mature leukocytes through the G protein-coupled CXC chemokine receptor 4 (CXCR4). In addition, it interacts with atypical chemokine receptor 3 (ACKR3 or CXCR7) and glycosaminoglycans. CXCL12 ac...

  7. Tunable features of magnetoelectric transformers.

    Science.gov (United States)

    Dong, Shuxiang; Zhai, Junyi; Priya, Shashank; Li, Jie-Fang; Viehland, Dwight

    2009-06-01

    We have found that magnetostrictive FeBSiC alloy ribbons laminated with piezoelectric Pb(Zr,Ti)O(3) fiber can act as a tunable transformer when driven under resonant conditions. These composites were also found to exhibit the strongest resonant magnetoelectric voltage coefficient of 750 V/cm-Oe. The tunable features were achieved by applying small dc magnetic biases of -5 transformer features can be attributed to large changes in the piezomagnetic coefficient and permeability of the magnetostrictive phase under H(dc).

  8. Tunable Soft X-Ray Oscillators

    International Nuclear Information System (INIS)

    Wurtele, Jonathan; Gandhi, Punut; Gu, X.-W.; Fawley, William M.; Reinsch, Matthia; Penn, Gregory; Kim, K.-J.; Lindberg, Ryan; Zholents, Alexander

    2010-01-01

    A concept for a tunable soft x-ray free electron laser (FEL) photon source is presented and studied numerically. The concept is based on echo-enabled harmonic generation (EEHG), wherein two modulator-chicane sections impose high harmonic structure with much greater efficacy as compared to conventional high harmonic FELs that use only one modulator-chicane section. The idea proposed here is to replace the external laser power sources in the EEHG modulators with FEL oscillators, and to combine the bunching of the beam with the production of radiation. Tunability is accomplished by adjusting the magnetic chicanes while the two oscillators remain at a fixed frequency. This scheme eliminates the need to develop coherent sources with the requisite power, pulse length, and stability requirements by exploiting the MHz bunch repetition rates of FEL continuous wave (CW) sources driven by superconducting (SC) linacs. We present time-dependent GINGER simulation results for an EEHG scheme with an oscillator modulator at 43 nm employing 50percent reflective dielectric mirrors and a second modulator employing an external, 215-nm drive laser. Peak output of order 300 MW is obtained at 2.7 nm, corresponding to the 80th harmonic of 215 nm. An alternative single-cavity echo-oscillator scheme based on a 13.4 nm oscillator is investigated with time-independent simulations that a 180-MW peak power at final wavelength of 1.12 nm. Three alternate configurations that use separate bunches to produce the radiation for EEHG microbunching are also presented. Our results show that oscillator-based soft x-ray FELs driven by CWSC linacs are extremely attractive because of their potential to produce tunable radiation at high average power together with excellent longitudinal coherence and narrow spectral bandwidth.

  9. Tunable Soft X-Ray Oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Wurtele, Jonathan; Gandhi, Punut; Gu, X-W; Fawley, William M; Reinsch, Matthia; Penn, Gregory; Kim, K-J; Lindberg, Ryan; Zholents, Alexander

    2010-09-17

    A concept for a tunable soft x-ray free electron laser (FEL) photon source is presented and studied numerically. The concept is based on echo-enabled harmonic generation (EEHG), wherein two modulator-chicane sections impose high harmonic structure with much greater efficacy as compared to conventional high harmonic FELs that use only one modulator-chicane section. The idea proposed here is to replace the external laser power sources in the EEHG modulators with FEL oscillators, and to combine the bunching of the beam with the production of radiation. Tunability is accomplished by adjusting the magnetic chicanes while the two oscillators remain at a fixed frequency. This scheme eliminates the need to develop coherent sources with the requisite power, pulse length, and stability requirements by exploiting the MHz bunch repetition rates of FEL continuous wave (CW) sources driven by superconducting (SC) linacs. We present time-dependent GINGER simulation results for an EEHG scheme with an oscillator modulator at 43 nm employing 50percent reflective dielectric mirrors and a second modulator employing an external, 215-nm drive laser. Peak output of order 300 MW is obtained at 2.7 nm, corresponding to the 80th harmonic of 215 nm. An alternative single-cavity echo-oscillator scheme based on a 13.4 nm oscillator is investigated with time-independent simulations that a 180-MW peak power at final wavelength of 1.12 nm. Three alternate configurations that use separate bunches to produce the radiation for EEHG microbunching are also presented. Our results show that oscillator-based soft x-ray FELs driven by CWSC linacs are extremely attractive because of their potential to produce tunable radiation at high average power together with excellent longitudinal coherence and narrow spectral bandwidth.

  10. Correlation between lymph node pathology and chemokine expression during bovine tuberculosis.

    Science.gov (United States)

    Widdison, Stephanie; Watson, Michael; Coffey, Tracey J

    2009-11-01

    Bovine tuberculosis is a disease of worldwide importance yet comparatively little is known about chemokine responses to infection. We report on the levels of chemokine expression within lymph nodes of cattle infected with Mycobacterium bovis when infection would be well established. Expression levels of a number of chemokines were increased in infected cattle and could be correlated to levels of respective chemokine receptors. Several chemokines were significantly correlated to pathology within the lymph node, indicating a direct relationship between chemokine expression and disease. Vaccinated animals challenged with M. bovis had lower levels of chemokine expression than unvaccinated, challenged animals, correlating with lower levels of disease in vaccinated animals. The chemokine expression profile correlated with previous evidence for a pro-inflammatory bias within the lymph node. At this stage of infection we suggest there is on-going chemokine expression by cells associated with the granuloma and continual recruitment of cells to control infection.

  11. The tunable pReX expression vector enables optimizing the T7-based production of membrane and secretory proteins in E. coli.

    Science.gov (United States)

    Kuipers, Grietje; Karyolaimos, Alexandros; Zhang, Zhe; Ismail, Nurzian; Trinco, Gianluca; Vikström, David; Slotboom, Dirk Jan; de Gier, Jan-Willem

    2017-12-16

    To optimize the production of membrane and secretory proteins in Escherichia coli, it is critical to harmonize the expression rates of the genes encoding these proteins with the capacity of their biogenesis machineries. Therefore, we engineered the Lemo21(DE3) strain, which is derived from the T7 RNA polymerase-based BL21(DE3) protein production strain. In Lemo21(DE3), the T7 RNA polymerase activity can be modulated by the controlled co-production of its natural inhibitor T7 lysozyme. This setup enables to precisely tune target gene expression rates in Lemo21(DE3). The t7lys gene is expressed from the pLemo plasmid using the titratable rhamnose promoter. A disadvantage of the Lemo21(DE3) setup is that the system is based on two plasmids, a T7 expression vector and pLemo. The aim of this study was to simplify the Lemo21(DE3) setup by incorporating the key elements of pLemo in a standard T7-based expression vector. By incorporating the gene encoding the T7 lysozyme under control of the rhamnose promoter in a standard T7-based expression vector, pReX was created (ReX stands for Regulated gene eXpression). For two model membrane proteins and a model secretory protein we show that the optimized production yields obtained with the pReX expression vector in BL21(DE3) are similar to the ones obtained with Lemo21(DE3) using a standard T7 expression vector. For another secretory protein, a c-type cytochrome, we show that pReX, in contrast to Lemo21(DE3), enables the use of a helper plasmid that is required for the maturation and hence the production of this heme c protein. Here, we created pReX, a T7-based expression vector that contains the gene encoding the T7 lysozyme under control of the rhamnose promoter. pReX enables regulated T7-based target gene expression using only one plasmid. We show that with pReX the production of membrane and secretory proteins can be readily optimized. Importantly, pReX facilitates the use of helper plasmids. Furthermore, the use of pReX is

  12. Chemokine-Ligands/Receptors: Multiplayers in Traumatic Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Friederike Knerlich-Lukoschus

    2015-01-01

    Full Text Available Spinal cord injury (SCI results in complex posttraumatic sequelae affecting the whole neuraxis. Due to its involvement in varied neuromodulatory processes, the chemokine-ligand/receptor-network is a key element of secondary lesion cascades induced by SCI. This review will provide a synopsis of chemokine-ligand/receptor-expression along the whole neuraxis after traumatic spinal cord (sc insults on basis of recent in vivo and in vitro findings in a SCI paradigm of thoracic force-defined impact lesions (Infinite Horizon Impactor in adult rats. Analyses of chemokine-ligand/receptor-expression at defined time points after sc lesion of different severity grades or sham operation revealed that these inflammatory mediators are induced in distinct anatomical sc regions and in thalamic nuclei, periaqueductal grey, and hippocampal structures in the brain. Cellular and anatomical expression profiles together with colocalization/expression of neural stem/progenitor cell markers in adult sc stem cells niches or with pain-related receptors and mediators in dorsal horns, dorsal columns, and pain-processing brain areas support the notion that chemokines are involved in distinct cascades underlying clinical posttraumatic impairments and syndromes. These aspects and their implication in concepts of tailored SCI treatment are reviewed in the context of the recent literature on chemokine-ligand/receptor involvement in complex secondary lesion cascades.

  13. Structural basis of ligand interaction with atypical chemokine receptor 3

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Martin; Wang, Liwen; van Gils, Noortje; Stephens, Bryan S.; Zhang, Penglie; Schall, Thomas J.; Yang, Sichun; Abagyan, Ruben; Chance, Mark R.; Kufareva, Irina; Handel, Tracy M.

    2017-01-18

    Chemokines drive cell migration through their interactions with seven-transmembrane (7TM) chemokine receptors on cell surfaces. The atypical chemokine receptor 3 (ACKR3) binds chemokines CXCL11 and CXCL12 and signals exclusively through β-arrestin-mediated pathways, without activating canonical G-protein signalling. This receptor is upregulated in numerous cancers making it a potential drug target. Here we collected over 100 distinct structural probes from radiolytic footprinting, disulfide trapping, and mutagenesis to map the structures of ACKR3:CXCL12 and ACKR3:small-molecule complexes, including dynamic regions that proved unresolvable by X-ray crystallography in homologous receptors. The data are integrated with molecular modelling to produce complete and cohesive experimentally driven models that confirm and expand on the existing knowledge of the architecture of receptor:chemokine and receptor:small-molecule complexes. Additionally, we detected and characterized ligand-induced conformational changes in the transmembrane and intracellular regions of ACKR3 that elucidate fundamental structural elements of agonism in this atypical receptor.

  14. Genome Diversification Mechanism of Rodent and Lagomorpha Chemokine Genes

    Directory of Open Access Journals (Sweden)

    Kanako Shibata

    2013-01-01

    Full Text Available Chemokines are a large family of small cytokines that are involved in host defence and body homeostasis through recruitment of cells expressing their receptors. Their genes are known to undergo rapid evolution. Therefore, the number and content of chemokine genes can be quite diverse among the different species, making the orthologous relationships often ambiguous even between closely related species. Given that rodents and rabbit are useful experimental models in medicine and drug development, we have deduced the chemokine genes from the genome sequences of several rodent species and rabbit and compared them with those of human and mouse to determine the orthologous relationships. The interspecies differences should be taken into consideration when experimental results from animal models are extrapolated into humans. The chemokine gene lists and their orthologous relationships presented here will be useful for studies using these animal models. Our analysis also enables us to reconstruct possible gene duplication processes that generated the different sets of chemokine genes in these species.

  15. Chemokines in tuberculosis: The good, the bad and the ugly

    Science.gov (United States)

    Monin, Leticia; Khader, Shabaana A.

    2014-01-01

    Mycobacterium tuberculosis (Mtb) infects about one third of the world’s population, with a majority of infected individuals exhibiting latent asymptomatic infection, while 5–10% of infected individuals progress to active pulmonary disease. Research in the past two decades has elucidated critical host immune mechanisms that mediate Mtb control. Among these, chemokines have been associated with numerous key processes that lead to Mtb containment, from recruitment of myeloid cells into the lung to activation of adaptive immunity, formation of protective granulomas and vaccine recall responses. However, imbalances in several key chemokine mediators can alter the delicate balance of cytokines and cellular responses that promote mycobacterial containment, instead precipitating terminal tissue destruction and spread of Mtb infection. In this review, we will describe recent insights in the involvement of chemokines in host responses to Mtb infection and Mtb containment (the good), chemokines contributing to inflammation during TB (the bad), and the role of chemokines in driving cavitation and lung pathology (the ugly). PMID:25444549

  16. Chemokine CCL2 and chemokine receptor CCR2 in early active multiple sclerosis

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke; Ransohoff, R M; Strieter, R M

    2004-01-01

    The chemokine monocyte chemoattractant protein (MCP)-1/CCL2 and its receptor CCR2 have been strongly implicated in disease pathogenesis in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis (MS), whereas data on the CCL2-CCR2 axis are scarce in MS. We studied...... the expression of CCR2 on leukocytes in blood and cerebrospinal fluid (CSF) from patients with monosymptomatic optic neuritis and MS, and the concentration of CCL2 in the CSF from these patients. Results were compared with the results in non-inflammatory neurological controls and were correlated with other...... parameters (magnetic resonance imaging and CSF data). Our findings suggest a limited role for CCL2/CCR2 in early active MS....

  17. Tunable electro-optic filter stack

    Energy Technology Data Exchange (ETDEWEB)

    Fontecchio, Adam K.; Shriyan, Sameet K.; Bellingham, Alyssa

    2017-09-05

    A holographic polymer dispersed liquid crystal (HPDLC) tunable filter exhibits switching times of no more than 20 microseconds. The HPDLC tunable filter can be utilized in a variety of applications. An HPDLC tunable filter stack can be utilized in a hyperspectral imaging system capable of spectrally multiplexing hyperspectral imaging data acquired while the hyperspectral imaging system is airborne. HPDLC tunable filter stacks can be utilized in high speed switchable optical shielding systems, for example as a coating for a visor or an aircraft canopy. These HPDLC tunable filter stacks can be fabricated using a spin coating apparatus and associated fabrication methods.

  18. Tunable on chip optofluidic laser

    DEFF Research Database (Denmark)

    Bakal, Avraham; Vannahme, Christoph; Kristensen, Anders

    2015-01-01

    A chip scale tunable laser in the visible spectral band is realized by generating a periodic droplet array inside a microfluidic channel. Combined with a gain medium within the droplets, the periodic structure provides the optical feedback of the laser. By controlling the pressure applied to two...

  19. Chemokines involved in protection from colitis by CD4+CD25+ regulatory T cells

    DEFF Research Database (Denmark)

    Kristensen, Nanna Ny; Brudzewsky, Dan; Gad, Monika

    2006-01-01

    Chemokines are small proteins involved in the direction of migration of immune cells both during normal homeostasis and inflammation. Chemokines have been implicated in the pathology of many different inflammatory disorders and are therefore appealing therapeutic targets. Using a chemokine....../chemokine receptor-specific gene expression profiling system of 67 genes, the authors have determined the expression profile of chemokine and chemokine receptor genes in the rectum of colitic mice and in mice that have been protected fromcolitis by CD4CD25 regulatory T cells. In mice protected from colitis...

  20. Chemokines in the corpus luteum: Implications of leukocyte chemotaxis

    Directory of Open Access Journals (Sweden)

    Liptak Amy R

    2003-11-01

    Full Text Available Abstract Chemokines are small molecular weight peptides responsible for adhesion, activation, and recruitment of leukocytes into tissues. Leukocytes are thought to influence follicular atresia, ovulation, and luteal function. Many studies in recent years have focused attention on the characterization of leukocyte populations within the ovary, the importance of leukocyte-ovarian cell interactions, and more recently, the mechanisms of ovarian leukocyte recruitment. Information about the role of chemokines and leukocyte trafficking (chemotaxis during ovarian function is important to understanding paracrine-autocrine relationships shared between reproductive and immune systems. Recent advances regarding chemokine expression and leukocyte accumulation within the ovulatory follicle and the corpus luteum are the subject of this mini-review.

  1. Airfoil sampling of a pulsed Laval beam with tunable vacuum ultraviolet (VUV) synchrotron ionization quadrupole mass spectrometry: Application to low--temperature kinetics and product detection

    Energy Technology Data Exchange (ETDEWEB)

    Soorkia, Satchin; Liu, Chen-Lin; Savee, John D; Ferrell, Sarah J; Leone, Stephen R; Wilson, Kevin R

    2011-10-12

    A new pulsed Laval nozzle apparatus with vacuum ultraviolet (VUV) synchrotron photoionization quadrupole mass spectrometry is constructed to study low-temperature radicalneutralchemical reactions of importance for modeling the atmosphere of Titan and the outer planets. A design for the sampling geometry of a pulsed Laval nozzle expansion has beendeveloped that operates successfully for the determination of rate coefficients by time-resolved mass spectrometry. The new concept employs airfoil sampling of the collimated expansion withexcellent sampling throughput. Time-resolved profiles of the high Mach number gas flow obtained by photoionization signals show that perturbation of the collimated expansion by theairfoil is negligible. The reaction of C2H with C2H2 is studied at 70 K as a proof-of-principle result for both low-temperature rate coefficient measurements and product identification basedon the photoionization spectrum of the reaction product versus VUV photon energy. This approach can be used to provide new insights into reaction mechanisms occurring at kinetic ratesclose to the collision-determined limit.

  2. Human astrocytes: secretome profiles of cytokines and chemokines.

    Directory of Open Access Journals (Sweden)

    Sung S Choi

    Full Text Available Astrocytes play a key role in maintenance of neuronal functions in the central nervous system by producing various cytokines, chemokines, and growth factors, which act as a molecular coordinator of neuron-glia communication. At the site of neuroinflammation, astrocyte-derived cytokines and chemokines play both neuroprotective and neurotoxic roles in brain lesions of human neurological diseases. At present, the comprehensive profile of human astrocyte-derived cytokines and chemokines during inflammation remains to be fully characterized. We investigated the cytokine secretome profile of highly purified human astrocytes by using a protein microarray. Non-stimulated human astrocytes in culture expressed eight cytokines, including G-CSF, GM-CSF, GROα (CXCL1, IL-6, IL-8 (CXCL8, MCP-1 (CCL2, MIF and Serpin E1. Following stimulation with IL-1β and TNF-α, activated astrocytes newly produced IL-1β, IL-1ra, TNF-α, IP-10 (CXCL10, MIP-1α (CCL3 and RANTES (CCL5, in addition to the induction of sICAM-1 and complement component 5. Database search indicated that most of cytokines and chemokines produced by non-stimulated and activated astrocytes are direct targets of the transcription factor NF-kB. These results indicated that cultured human astrocytes express a distinct set of NF-kB-target cytokines and chemokines in resting and activated conditions, suggesting that the NF-kB signaling pathway differentially regulates gene expression of cytokines and chemokines in human astrocytes under physiological and inflammatory conditions.

  3. The C-C Chemokines CCL17 and CCL22 and Their Receptor CCR4 in CNS Autoimmunity

    Directory of Open Access Journals (Sweden)

    Stefanie Scheu

    2017-11-01

    Full Text Available Multiple sclerosis (MS is a chronic inflammatory demyelinating disease of the central nervous system (CNS. It affects more than two million people worldwide, mainly young adults, and may lead to progressive neurological disability. Chemokines and their receptors have been shown to play critical roles in the pathogenesis of experimental autoimmune encephalomyelitis (EAE, a murine disease model induced by active immunization with myelin proteins or transfer of encephalitogenic CD4+ T cells that recapitulates clinical and neuropathological features of MS. Chemokine ligand-receptor interactions orchestrate leukocyte trafficking and influence multiple pathophysiological cellular processes, including antigen presentation and cytokine production by dendritic cells (DCs. The C-C class chemokines 17 (CCL17 and 22 (CCL22 and their C-C chemokine receptor 4 (CCR4 have been shown to play an important role in homeostasis and inflammatory responses. Here, we provide an overview of the involvement of CCR4 and its ligands in CNS autoimmunity. We review key clinical studies of MS together with experimental studies in animals that have demonstrated functional roles of CCR4, CCL17, and CCL22 in EAE pathogenesis. Finally, we discuss the therapeutic potential of newly developed CCR4 antagonists and a humanized anti-CCR4 antibody for treatment of MS.

  4. Photodissociation Cross Sections for the Production of C2 from C2H Using Laser Induced Hg Photosensitization and Tunable Ultraviolet and Visible Lasers

    Science.gov (United States)

    Jackson, William M.

    1996-01-01

    The principle goal of our research was to understand the formation of free radicals in comets. To do this we compared laboratory results with cometary observations in attempt to make sure that the cometary observations agree with what is known about the photochemistry of the proposed parent molecule. Initially we concentrated on the CS emission in an effort to show the parent of this molecule was CS2, consistent with cometary observations of the photochemical lifetime. We then started to look into the problem of the C2 formation in comets. We set out to see if we could measure all of the nascent distributions of the C2 products in the hope that they would be a characteristic signature of the formation process.

  5. Chemokine receptor expression by inflammatory T cells in EAE

    DEFF Research Database (Denmark)

    Mony, Jyothi Thyagabhavan; Khorooshi, Reza; Owens, Trevor

    2014-01-01

    Chemokines direct cellular infiltration to tissues, and their receptors and signaling pathways represent targets for therapy in diseases such as multiple sclerosis (MS). The chemokine CCL20 is expressed in choroid plexus, a site of entry of T cells to the central nervous system (CNS). The CCL20...... immunofluorescence. Consistent with flow cytometry data some but not all CD4(+) T cells expressed CCR6 within infiltrates. CD4-negative CCR6(+) cells included macrophage/microglial cells. Thus we have for the first time directly studied CD4(+) and CD8(+) T cells in the CNS of mice with peak EAE, and determined IFNγ...

  6. Rac1 mediates collapse of microvilli on chemokine-activated T lymphocytes

    NARCIS (Netherlands)

    Nijhara, Ruchika; van Hennik, Paula B.; Gignac, Michelle L.; Kruhlak, Michael J.; Hordijk, Peter L.; Delon, Jerome; Shaw, Stephen

    2004-01-01

    Lymphocytes circulate in the blood and upon chemokine activation rapidly bind, where needed, to microvasculature to mediate immune surveillance. Resorption of microvilli is an early morphological alteration induced by chemokines that facilitates lymphocyte emigration. However, the antecedent

  7. Dual GPCR and GAG mimicry by the M3 chemokine decoy receptor

    Energy Technology Data Exchange (ETDEWEB)

    Alexander-Brett, Jennifer M.; Fremont, Daved H. (WU-MED)

    2008-09-23

    Viruses have evolved a myriad of evasion strategies focused on undermining chemokine-mediated immune surveillance, exemplified by the mouse {gamma}-herpesvirus 68 M3 decoy receptor. Crystal structures of M3 in complex with C chemokine ligand 1/lymphotactin and CC chemokine ligand 2/monocyte chemoattractant protein 1 reveal that invariant chemokine features associated with G protein-coupled receptor binding are primarily recognized by the decoy C-terminal domain, whereas the N-terminal domain (NTD) reconfigures to engage divergent basic residue clusters on the surface of chemokines. Favorable electrostatic forces dramatically enhance the association kinetics of chemokine binding by M3, with a primary role ascribed to acidic NTD regions that effectively mimic glycosaminoglycan interactions. Thus, M3 employs two distinct mechanisms of chemical imitation to potently sequester chemokines, thereby inhibiting chemokine receptor binding events as well as the formation of chemotactic gradients necessary for directed leukocyte trafficking.

  8. Elevated plasma chemokine CCL18/PARC in beta-thalassemia

    NARCIS (Netherlands)

    Dimitriou, E.; Verhoek, M.; Altun, S.; Karabatsos, F.; Moraitou, M.; Youssef, J.; Boot, R.; Sarafidou, J.; Karagiorga, M.; Aerts, H.; Michelakakis, H.

    2005-01-01

    Plasma CCL18/PARC, a member of the CC chemokine family, has been found to be several ten-fold increased in symptomatic Gaucher type I patients. Elevated plasma chitotriosidase levels are a well-known abnormality in Gaucher patients, however, its diagnostic use is limited by the frequent genetic

  9. Chemokine receptor CCR5 in interferon-treated multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, F; Kristiansen, Thomas Birk; Wittenhagen, P

    2007-01-01

    OBJECTIVE: To study the relationship between CC chemokine receptor CCR5 expression and disease activity in multiple sclerosis (MS) patients treated with beta-interferon (IFN-beta). METHODS: The CCR5 Delta32 allele and a CCR5 promoter polymorphism associated with cell surface expression of CCR5 were...

  10. Cytokines and Chemokines Involved in Acute Retinal Necrosis

    NARCIS (Netherlands)

    de Boer, JH; de Visser, L; Rijkers, G.; Wiertz, K.; van den Ham, H.J.; van Loon, A.M.; Rothova, Aniki; Mijnes, JDF

    2017-01-01

    Purpose: To investigate which cytokines and chemokines are involved in the immunopathogenesis of acute retinal necrosis (ARN), and whether cytokine profiles are associated with clinical manifestations, such as visual outcome. Methods: Serum and aqueous humor (AH) samples of 19 patients with ARN were

  11. Cytokines and chemokines involved in acute retinal necrosis

    NARCIS (Netherlands)

    L. De Visser (Lenneke); J.H. de Boer (Joke); G.T. Rijkers; Wiertz, K. (Karin); H.J. van den Ham; de Boer, R. (Rob); van Loon, A.M. (Anton M.); A. Rothová (Aniki); J.D.F. de Groot-Mijnes (Jolanda )

    2017-01-01

    textabstractPURPOSE. To investigate which cytokines and chemokines are involved in the immunopatho-genesis of acute retinal necrosis (ARN), and whether cytokine profiles are associated with clinical manifestations, such as visual outcome. METHODS. Serum and aqueous humor (AH) samples of 19 patients

  12. Plasma concentration of thymus and activation-regulated chemokine ...

    African Journals Online (AJOL)

    Background: Thymus and activation-regulated chemokine (TARC) is responsible for trafficking of T helper 2 lymphocytes into sites of allergic inflammation. However, its role in assessing the severity of acute asthma in children is still unclear. Objective: We sought to evaluate plasma TARC as a marker for monitoring asthma ...

  13. Development of specific cytokine and Chemokine ELISAs for Bottlenose Dolphins

    Science.gov (United States)

    Earlier detection of changes in the health status of bottlenose dolphins (Tursiops truncatus) is expected to further improve their medical care. Cytokines and chemokines are critical mediators of the cellular immune response, and studies have suggested that these molecules may serve as important bio...

  14. Tunable excitons in bilayer graphene

    Science.gov (United States)

    Ju, Long; Wang, Lei; Cao, Ting; Taniguchi, Takashi; Watanabe, Kenji; Louie, Steven G.; Rana, Farhan; Park, Jiwoong; Hone, James; Wang, Feng; McEuen, Paul L.

    2017-11-01

    Excitons, the bound states of an electron and a hole in a solid material, play a key role in the optical properties of insulators and semiconductors. Here, we report the observation of excitons in bilayer graphene (BLG) using photocurrent spectroscopy of high-quality BLG encapsulated in hexagonal boron nitride. We observed two prominent excitonic resonances with narrow line widths that are tunable from the mid-infrared to the terahertz range. These excitons obey optical selection rules distinct from those in conventional semiconductors and feature an electron pseudospin winding number of 2. An external magnetic field induces a large splitting of the valley excitons, corresponding to a g-factor of about 20. These findings open up opportunities to explore exciton physics with pseudospin texture in electrically tunable graphene systems​.

  15. Autoantibodies to Chemokines and Cytokines Participate in the Regulation of Cancer and Autoimmunity

    Directory of Open Access Journals (Sweden)

    Nathan Karin

    2018-03-01

    Full Text Available We have previously shown that predominant expression of key inflammatory cytokines and chemokines at autoimmune sites or tumor sites induces loss of B cells tolerance, resulting in autoantibody production against the dominant cytokine/chemokine that is largely expressed at these sites. These autoantibodies are high-affinity neutralizing antibodies. Based on animal models studies, we suggested that they participate in the regulation of cancer and autoimmunity, albeit at the level of their production cannot entirely prevent the development and progression of these diseases. We have, therefore, named this selective breakdown of tolerance as “Beneficial Autoimmunity.” Despite its beneficial outcome, this process is likely to be stochastic and not directed by a deterministic mechanism, and is likely to be associated with the dominant expression of these inflammatory mediators at sites that are partially immune privileged. A recent study conducted on autoimmune regulator-deficient patients reported that in human this type of breakdown of B cell tolerance is T cell dependent. This explains, in part, why the response is highly restricted, and includes high-affinity antibodies. The current mini-review explores this subject from different complementary perspectives. It also discusses three optional translational aspects: amplification of autoantibody production as a therapeutic approach, development of autoantibody based diagnostic tools, and the use of B cells from donors that produce these autoantibodies for the development of high-affinity human monoclonal antibodies.

  16. Acidic pH stimulates the production of the angiogenic CXC chemokine, CXCL8 (interleukin-8), in human adult mesenchymal stem cells via the extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and NF-kappaB pathways.

    Science.gov (United States)

    Bischoff, David S; Zhu, Jian-Hua; Makhijani, Nalini S; Yamaguchi, Dean T

    2008-07-01

    Blood vessel injury results in limited oxygen tension and diffusion leading to hypoxia, increased anaerobic metabolism, and elevated production of acidic metabolites that cannot be easily removed due to the reduced blood flow. Therefore, an acidic extracellular pH occurs in the local microenvironment of disrupted bone. The potential role of acidic pH and glu-leu-arg (ELR(+)) CXC chemokines in early events in bone repair was studied in human mesenchymal stem cells (hMSCs) treated with medium of decreasing pH (7.4, 7.0, 6.7, and 6.4). The cells showed a reciprocal increase in CXCL8 (interleukin-8, IL-8) mRNA levels as extracellular pH decreased. At pH 6.4, CXCL8 mRNA was induced >60x in comparison to levels at pH 7.4. hMSCs treated with osteogenic medium (OGM) also showed an increase in CXCL8 mRNA with decreasing pH; although, at a lower level than that seen in cells grown in non-OGM. CXCL8 protein was secreted into the medium at all pHs with maximal induction at pH 6.7. Inhibition of the G-protein-coupled receptor alpha, G(alphai), suppressed CXCL8 levels in response to acidic pH; whereas phospholipase C inhibition had no effect on CXCL8. The use of specific mitogen-activated protein kinase (MAPK) signal transduction inhibitors indicated that the pH-dependent increase in CXCL8 mRNA is due to activation of ERK and p38 pathways. The JNK pathway was not involved. NF-kappaB inhibition resulted in a decrease in CXCL8 levels in hMSCs grown in non-OGM. However, OGM-differentiated hMSCs showed an increase in CXCL8 levels when treated with the NF-kappaB inhibitor PDTC, a pyrrolidine derivative of dithiocarbamate. 2008 Wiley-Liss, Inc.

  17. Tunable Meta-Liquid Crystals.

    Science.gov (United States)

    Liu, Mingkai; Fan, Kebin; Padilla, Willie; Powell, David A; Zhang, Xin; Shadrivov, Ilya V

    2016-02-24

    Meta-liquid crystals, a novel form of tunable 3D metamaterials, are proposed and experimentally demonstrated in the terahertz frequency regime. A morphology change under a bias electric field and a strong modulation of the transmission are observed. In comparison to conventional liquid crystals, there is considerable freedom to prescribe the electromagnetic properties through the judicious design of the meta-atom geometry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. CXC chemokine receptor 2 contributes to host defense in murine urinary tract infection

    NARCIS (Netherlands)

    Olszyna, D. P.; Florquin, S.; Sewnath, M.; Branger, J.; Speelman, P.; van Deventer, S. J.; Strieter, R. M.; van der Poll, T.

    2001-01-01

    CXC chemokines have been implicated in the recruitment of neutrophils to sites of infection. To determine the role of CXC chemokines in the host response to urinary tract infection (UTI), female mice were treated with an antibody against the major CXC chemokine receptor in the mouse, CXCR2, before

  19. Chemokine receptor expression on B cells and effect of interferon-beta in multiple sclerosis

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke; Roed, Hanne; Sellebjerg, Finn

    2002-01-01

    We investigated the B-cell expression of chemokine receptors CXCR3, CXCR5 and CCR5 in the blood and cerebrospinal fluid (CSF) from patients in relapse of multiple sclerosis (MS) and in neurological controls. Chemokine receptor expression was also studied in interferon-beta-treated patients with r......, and chemokine receptor expression was not affected by interferon-beta treatment....

  20. Chemokines after human ischemic stroke: From neurovascular unit to blood using protein arrays

    Directory of Open Access Journals (Sweden)

    Teresa García-Berrocoso

    2014-06-01

    From our study, we can conclude that these chemokines do not perform a clear role of outcome biomarkers. Further studies are necessary to assess which mechanisms underlie the association of chemokines with the neurological state at distinct time points since the differences found here could be reflecting the dual role of chemokines in neuroinflammation.

  1. Additive manufacturing of tunable lenses

    Science.gov (United States)

    Schlichting, Katja; Novak, Tobias; Heinrich, Andreas

    2017-02-01

    Individual additive manufacturing of optical systems based on 3D Printing offers varied possibilities in design and usage. In addition to the additive manufacturing procedure, the usage of tunable lenses allows further advantages for intelligent optical systems. Our goal is to bring the advantages of additive manufacturing together with the huge potential of tunable lenses. We produced tunable lenses as a bundle without any further processing steps, like polishing. The lenses were designed and directly printed with a 3D Printer as a package. The design contains the membrane as an optical part as well as the mechanical parts of the lens, like the attachments for the sleeves which contain the oil. The dynamic optical lenses were filled with an oil. The focal length of the lenses changes due to a change of the radius of curvature. This change is caused by changing the pressure in the inside of the lens. In addition to that, we designed lenses with special structures to obtain different areas with an individual optical power. We want to discuss the huge potential of this technology for several applications. Further, an appropriate controlling system is needed. Wéll show the possibilities to control and regulate the optical power of the lenses. The lenses could be used for illumination tasks, and in the future, for individual measurement tasks. The main advantage is the individuality and the possibility to create an individual design which completely fulfills the requirements for any specific application.

  2. Highly Tunable Electrostatic Nanomechanical Resonators

    KAUST Repository

    Kazmi, Syed Naveed Riaz

    2017-11-24

    There has been significant interest towards highly tunable resonators for on-demand frequency selection in modern communication systems. Here, we report highly tunable electrostatically actuated silicon-based nanomechanical resonators. In-plane doubly-clamped bridges, slightly curved as shallow arches due to residual stresses, are fabricated using standard electron beam lithography and surface nanomachining. The resonators are designed such that the effect of mid-plane stretching dominates the softening effect of the electrostatic force. This is achieved by controlling the gap-to-thickness ratio and by exploiting the initial curvature of the structure from fabrication. We demonstrate considerable increase in the resonance frequency of nanoresonators with the dc bias voltages up to 108% for 180 nm thick structures with a transduction gap of 1 $mu$m separating them from the driving/sensing electrodes. The experimental results are found in good agreement with those of a nonlinear analytical model based on the Euler-Bernoulli beam theory. As a potential application, we demonstrate a tunable narrow band-pass filter using two electrically coupled nanomechanical arch resonators with varied dc bias voltages.

  3. Highly tunable NEMS shallow arches

    KAUST Repository

    Kazmi, Syed N. R.

    2017-11-30

    We report highly tunable nanoelectromechanical systems NEMS shallow arches under dc excitation voltages. Silicon based in-plane doubly clamped bridges, slightly curved as shallow arches, are fabricated using standard electron beam lithography and surface nanomachining of a highly conductive device layer on a silicon-on-insulator wafer. By designing the structures to have gap to thickness ratio of more than four, the mid-plane stretching of the nano arches is maximized such that an increase in the dc bias voltage will result into continuous increase in the resonance frequency of the resonators to wide ranges. This is confirmed analytically based on a nonlinear beam model. The experimental results are found to be in good agreement with that of the results from developed analytical model. A maximum tunability of 108.14% for a 180 nm thick arch with an initially designed gap of 1 μm between the beam and the driving/sensing electrodes is achieved. Furthermore, a tunable narrow bandpass filter is demonstrated, which opens up opportunities for designing such structures as filtering elements in high frequency ranges.

  4. Lightweight Tunable Infrared Filter, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Michigan Aerospace Corporation has developed spaceflight qualified compact tunable Fabry-Perot interferometers for a number of applications, from ranging direct...

  5. Liquid Tunable Microlenses based on MEMS techniques

    Science.gov (United States)

    Zeng, Xuefeng; Jiang, Hongrui

    2013-01-01

    The recent rapid development in microlens technology has provided many opportunities for miniaturized optical systems, and has found a wide range of applications. Of these microlenses, tunable-focus microlenses are of special interest as their focal lengths can be tuned using micro-scale actuators integrated with the lens structure. Realization of such tunable microlens generally relies on the microelectromechanical system (MEMS) technologies. Here, we review the recent progress in tunable liquid microlenses. The underlying physics relevant to these microlenses are first discussed, followed by description of three main categories of tunable microlenses involving MEMS techniques, mechanically driven, electrically driven, and those integrated within microfluidic systems. PMID:24163480

  6. HIV-1 exploits CCR5 conformational heterogeneity to escape inhibition by chemokines.

    Science.gov (United States)

    Colin, Philippe; Bénureau, Yann; Staropoli, Isabelle; Wang, Yongjin; Gonzalez, Nuria; Alcami, Jose; Hartley, Oliver; Brelot, Anne; Arenzana-Seisdedos, Fernando; Lagane, Bernard

    2013-06-04

    CC chemokine receptor 5 (CCR5) is a receptor for chemokines and the coreceptor for R5 HIV-1 entry into CD4(+) T lymphocytes. Chemokines exert anti-HIV-1 activity in vitro, both by displacing the viral envelope glycoprotein gp120 from binding to CCR5 and by promoting CCR5 endocytosis, suggesting that they play a protective role in HIV infection. However, we showed here that different CCR5 conformations at the cell surface are differentially engaged by chemokines and gp120, making chemokines weaker inhibitors of HIV infection than would be expected from their binding affinity constants for CCR5. These distinct CCR5 conformations rely on CCR5 coupling to nucleotide-free G proteins ((NF)G proteins). Whereas native CCR5 chemokines bind with subnanomolar affinity to (NF)G protein-coupled CCR5, gp120/HIV-1 does not discriminate between (NF)G protein-coupled and uncoupled CCR5. Interestingly, the antiviral activity of chemokines is G protein independent, suggesting that "low-chemokine affinity" (NF)G protein-uncoupled conformations of CCR5 represent a portal for viral entry. Furthermore, chemokines are weak inducers of CCR5 endocytosis, as is revealed by EC50 values for chemokine-mediated endocytosis reflecting their low-affinity constant value for (NF)G protein-uncoupled CCR5. Abolishing CCR5 interaction with (NF)G proteins eliminates high-affinity binding of CCR5 chemokines but preserves receptor endocytosis, indicating that chemokines preferentially endocytose low-affinity receptors. Finally, we evidenced that chemokine analogs achieve highly potent HIV-1 inhibition due to high-affinity interactions with internalizing and/or gp120-binding receptors. These data are consistent with HIV-1 evading chemokine inhibition by exploiting CCR5 conformational heterogeneity, shed light into the inhibitory mechanisms of anti-HIV-1 chemokine analogs, and provide insights for the development of unique anti-HIV molecules.

  7. Role of Conserved Disulfide Bridges and Aromatic Residues in Extracellular Loop 2 of Chemokine Receptor CCR8 for Chemokine and Small Molecule Binding

    DEFF Research Database (Denmark)

    Barington, Line; Rummel, Pia C; Lückmann, Michael

    2016-01-01

    and aromatic residues in extracellular loop 2 (ECL2) for ligand binding and activation in the chemokine receptor CCR8. We used IP3 accumulation and radioligand binding experiments to determine the impact of receptor mutagenesis on both chemokine and small molecule agonist and antagonist binding and action...... in CCR8. We find that the 7 transmembrane (7TM) receptor conserved disulfide bridge (7TM bridge) linking transmembrane helix (TM)III and ECL2 is crucial for chemokine and small molecule action, whereas the chemokine receptor conserved disulfide bridge between the N terminus and TMVII is needed only...

  8. The flavonoid baicalin exhibits anti-inflammatory activity by binding to chemokines.

    Science.gov (United States)

    Li, B Q; Fu, T; Gong, W H; Dunlop, N; Kung, H; Yan, Y; Kang, J; Wang, J M

    2000-09-01

    Baicalin (BA) is a flavonoid compound purified from the medicinal plant Scutellaria baicalensis Georgi and has been reported to possess anti-inflammatory and anti-viral activities. In order to elucidate the mechanism(s) of action of BA, we tested whether BA could interfere with chemokines or chemokine receptors, which are critical mediators of inflammation and infection. We observed that BA inhibited the binding of a number of chemokines to human leukocytes or cells transfected to express specific chemokine receptors. This was associated with a reduced capacity of the chemokines to induce cell migration. Co-injection of BA with CXC chemokine interleukin-8 (IL-8) into rat skin significantly inhibited IL-8 elicited neutrophil infiltration. BA did not directly compete with chemokines for binding to receptors, but rather acted through its selective binding to chemokine ligands. This conclusion was supported by the fact that BA cross-linked to oxime resin bound chemokines of the CXC (stromal cell-derived factor (SDF)-1alpha, IL-8), CC (macrophage inflammatory protein (MIP)-1beta, monocyte chemotactic protein (MCP)-2), and C (lymphotactin (Ltn)) subfamilies. BA did not interact with CX3C chemokine fractalkine/neurotactin or other cytokines, such as TNF-alpha and IFN-gamma, indicating that its action is selective. These results suggest that one possible anti-inflammatory mechanism of BA is to bind a variety of chemokines and limit their biological function.

  9. Virus-encoded chemokine receptors--putative novel antiviral drug targets

    DEFF Research Database (Denmark)

    Rosenkilde, Mette M

    2005-01-01

    as such a paramount role in the antiviral immune responses. It is therefore not surprising that viruses have found ways to exploit and subvert the chemokine system by means of molecular mimicry. By ancient acts of molecular piracy and by induction and suppression of endogenous genes, viruses have utilized chemokines...... and their receptors to serve a variety of roles in viral life-cycle. This review focuses on the pharmacology of virus-encoded chemokine receptors, yet also the family of virus-encoded chemokines and chemokine-binding proteins will be touched upon. Key properties of the virus-encoded receptors, compared...... to their closest endogenous homologs, are interactions with a wider range of chemokines, which can act as agonists, antagonists and inverse agonists, and the exploitation of many signal transduction pathways. High constitutive activity is another key property of some--but not all--of these receptors. The chemokine...

  10. What Do Structures Tell Us About Chemokine Receptor Function and Antagonism?

    Energy Technology Data Exchange (ETDEWEB)

    Kufareva, Irina; Gustavsson, Martin; Zheng, Yi; Stephens, Bryan S.; Handel, Tracy M. (UCSD)

    2017-05-22

    Chemokines and their cell surface G protein–coupled receptors are critical for cell migration, not only in many fundamental biological processes but also in inflammatory diseases and cancer. Recent X-ray structures of two chemokines complexed with full-length receptors provided unprecedented insight into the atomic details of chemokine recognition and receptor activation, and computational modeling informed by new experiments leverages these insights to gain understanding of many more receptor:chemokine pairs. In parallel, chemokine receptor structures with small molecules reveal the complicated and diverse structural foundations of small molecule antagonism and allostery, highlight the inherent physicochemical challenges of receptor:chemokine interfaces, and suggest novel epitopes that can be exploited to overcome these challenges. The structures and models promote unique understanding of chemokine receptor biology, including the interpretation of two decades of experimental studies, and will undoubtedly assist future drug discovery endeavors.

  11. Evolution of the ability to modulate host chemokine networks via gene duplication in human cytomegalovirus (HCMV).

    Science.gov (United States)

    Scarborough, Jessica A; Paul, John R; Spencer, Juliet V

    2017-07-01

    Human cytomegalovirus (HCMV) is a widespread pathogen that is particularly skillful at evading immune detection and defense mechanisms, largely due to extensive co-evolution with its host. One aspect of this co-evolution involves the acquisition of virally encoded G protein-coupled receptors (GPCRs) with homology to the chemokine receptor family. GPCRs are the largest family of cell surface proteins, found in organisms from yeast to humans, and they regulate a variety of cellular processes including development, sensory perception, and immune cell trafficking. The US27 and US28 genes are encoded by human and primate CMVs, but homologs are not found in the genomes of viruses infecting rodents or other species. Phylogenetic analysis was used to investigate the US27 and US28 genes, which are adjacent in the unique short (US) region of the HCMV genome, and their relationship to one another and to human chemokine receptor genes. The results indicate that both US27 and US28 share the same common ancestor with human chemokine receptor CX3CR1, suggesting that a single host gene was captured and a subsequent viral gene duplication event occurred. The US28 gene product (pUS28) has maintained the function of the ancestral gene and has the ability to bind and signal in response to CX3CL1/fractalkine, the natural ligand for CX3CR1. In contrast, pUS27 does not bind to any known chemokine ligand, and the sequence has diverged significantly, highlighted by the fact that pUS27 currently exhibits greater sequence similarity to human CCR1. While the evolutionary advantage of the gene duplication and neofunctionalization event remains unclear, the US27 and US28 genes are highly conserved among different HCMV strains and retained even in laboratory strains that have lost many virulence genes, suggesting that US27 and US28 have each evolved distinct, important functions during virus infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Artificial Oxide Heterostructures with Tunable Band Gap

    Science.gov (United States)

    2016-12-20

    tunable band gap and band structures in epitaxial grown CaMnO3. The efforts have been devoted to (1) the thin film growth; (2) the tunable optical...plan to pursue a claim for personal or organizational intellectual property? Changes in research objectives (if any): Change in AFOSR Program Officer

  13. A closed-tube assay for genotyping of the 32-bp deletion polymorphism in the chemokine receptor 5 (CCR5) gene

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Berg; Werge, Thomas

    2007-01-01

    We have developed a closed-tube assay for determination of the chemokine receptor type 5 (CCR5) 32-bp deletion allele, which protects against infections with HIV and modulates susceptibility to a variety of inflammatory diseases. This assay utilizes dissociation analysis of amplified products...

  14. Mutational analysis of the extracellular disulphide bridges of the atypical chemokine receptor ACKR3/CXCR7 uncovers multiple binding and activation modes for its chemokine and endogenous non-chemokine agonists.

    Science.gov (United States)

    Szpakowska, Martyna; Meyrath, Max; Reynders, Nathan; Counson, Manuel; Hanson, Julien; Steyaert, Jan; Chevigné, Andy

    2018-03-09

    The atypical chemokine receptor ACKR3/CXCR7 plays crucial roles in numerous physiological processes but also in viral infection and cancer. ACKR3 shows strong propensity for activation and, unlike classical chemokine receptors, can respond to chemokines from both the CXC and CC families as well as to the endogenous peptides BAM22 and adrenomedullin. Moreover, despite belonging to the G protein coupled receptor family, its function appears to be mainly dependent on β-arrestin. ACKR3 has also been shown to continuously cycle between the plasma membrane and the endosomal compartments, suggesting a possible role as a scavenging receptor. So far, the molecular basis accounting for these atypical binding and signalling properties remains elusive. Noteworthy, ACKR3 extracellular domains bear three disulphide bridges. Two of them lie on top of the two main binding subpockets and are conserved among chemokine receptors, and one, specific to ACKR3, forms an intra-N terminus four-residue-loop of so far unknown function. Here, by mutational and functional studies, we examined the impact of the different disulphide bridges for ACKR3 folding, ligand binding and activation. We showed that, in contrast to most classical chemokine receptors, none of the extracellular disulphide bridges was essential for ACKR3 function. However, the disruption of the unique ACKR3 N-terminal loop drastically reduced the binding of CC chemokines whereas it only had a mild impact on CXC chemokine binding. Mutagenesis also uncovered that chemokine and endogenous non-chemokine ligands interact and activate ACKR3 according to distinct binding modes characterized by different transmembrane domain subpocket occupancy and N-terminal loop contribution, with BAM22 mimicking the binding mode of CC chemokine N terminus. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Tunable synthesis of copper nanotubes

    International Nuclear Information System (INIS)

    Kaniukov, E; Yakimchuk, D; Kozlovsky, A; Shlimas, D; Zdorovets, M; Kadyrzhanov, K

    2016-01-01

    Simple method of tunable synthesis of copper nanotubes based on template synthesis was developed. A comprehensive study of the structural, morphological and electrical characteristics of the obtained nanostructures was carried out. Characterization of structural features was made by methods of scanning electron microscopy, energy dispersive spectroscopy and X-ray diffractometry analysis. Evaluation of wall thickness is made by methods of gas permeability. Electrical conductivity of nanotubes was define in the study of their current-voltage characteristics. The possibility to control of copper nanotubes physical properties by variation of the deposition parameters was shown. (paper)

  16. ELR+ CXC chemokine expression in benign and malignant colorectal conditions

    International Nuclear Information System (INIS)

    Rubie, Claudia; Frick, Vilma Oliveira; Wagner, Mathias; Schuld, Jochen; Gräber, Stefan; Brittner, Brigitte; Bohle, Rainer M; Schilling, Martin K

    2008-01-01

    CXCR2 chemokine ligands CXCL1, CXCL5 and CXCL6 were shown to be involved in chemoattraction, inflammatory responses, tumor growth and angiogenesis. Here, we comparatively analyzed their expression profile in resection specimens from patients with colorectal adenoma (CRA) (n = 30) as well as colorectal carcinoma (CRC) (n = 48) and corresponding colorectal liver metastases (CRLM) (n = 16). Chemokine expression was assessed by microdissection, quantitative real-time PCR (Q-RT-PCR), the enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC). In contrast to CXCL6, we demonstrated CXCL1 and CXCL5 mRNA and protein expression to be significantly up-regulated in CRC and CRLM tissue specimens in relation to their matched tumor neighbor tissues. Moreover, both chemokine ligands were demonstrated to be significantly higher expressed in CRC tissues than in CRA tissues thus indicating a progressive increase in the transition from the premalignant condition to the development of the malignant status. Although a comparative analysis of the CXCL1/CXCL5 protein expression profiles in CRC patients revealed that the absolute expression level of CXCL1 was significantly higher in comparison to CXCL5, mRNA- and protein overexpression of CXCL5 in CRC and CRLM tissues was much more pronounced (80- and 60- fold in CRC tissues, respectively) in comparison to CXCL1 (5- and 3.5- fold in CRC tissues, respectively). Our results demonstrate a significant association between CXCL1 and CXCL5 expression with CRC and CRLM suggesting for both chemokine ligands a potential role in the progression from CRA to CRC and thus, in the initiation of CRC

  17. Chemokine Function in Periodontal Disease and Oral Cavity Cancer

    Directory of Open Access Journals (Sweden)

    Sinem Esra Sahingur

    2015-05-01

    Full Text Available The chemotactic cytokines, or chemokines, comprise a superfamily of polypeptides with a wide range of activities that include recruitment of immune cells to sites of infection and inflammation, as well as stimulation of cell proliferation. As such, they function as antimicrobial molecules and play a central role in host defenses against pathogen challenge. However, their ability to recruit leukocytes and potentiate or prolong the inflammatory response may have profound implications for the progression of oral diseases such as chronic periodontitis, where tissue destruction may be widespread. Moreover, it is increasingly recognized that chronic inflammation is a key component of tumor progression. Interaction between cancer cells and their microenvironment is mediated in large part by secreted factors such as chemokines, and serves to enhance the malignant phenotype in oral and other cancers. In this article, we will outline the biological and biochemical mechanisms of chemokine action in host-microbiome interactions in periodontal disease and in oral cancer, and how these may overlap and contribute to pathogenesis.

  18. Impact of Cytokines and Chemokines on Alzheimer's Disease Neuropathological Hallmarks.

    Science.gov (United States)

    Domingues, Catarina; da Cruz E Silva, Odete A B; Henriques, Ana Gabriela

    2017-01-01

    Alzheimer's disease (AD) is the most common neurodegenerative disorder, neuropathologically characterized by aggregates of β-amyloid peptides, which deposit as senile plaques, and of TAU protein, which forms neurofibrillary tangles. It is now widely accepted that neuroinflammation is implicated in AD pathogenesis. Indeed, inflammatory mediators, such as cytokines and chemokines (chemotactic cytokines) can impact on the Alzheimer´s amyloid precursor protein by affecting its expression levels and amyloidogenic processing and/or β -amyloid aggregation. Additionally, cytokines and chemokines can influence kinases' activities, leading to abnormal TAU phosphorylation. To date there is no cure for AD, but several therapeutic strategies have been directed to prevent neuroinflammation. Anti-inflammatory, but also anti-amyloidogenic compounds, such as flavonoids were shown to favourably modulate some pathological events associated with neurodegeneration. This review focuses on the role of cytokines and chemokines in AD-associated pathologies, and summarizes the potential anti-inflammatory therapeutic approaches aimed at preventing or slowing down disease progression. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Chemokine Function in Periodontal Disease and Oral Cavity Cancer

    Science.gov (United States)

    Sahingur, Sinem Esra; Yeudall, W. Andrew

    2015-01-01

    The chemotactic cytokines, or chemokines, comprise a superfamily of polypeptides with a wide range of activities that include recruitment of immune cells to sites of infection and inflammation, as well as stimulation of cell proliferation. As such, they function as antimicrobial molecules and play a central role in host defenses against pathogen challenge. However, their ability to recruit leukocytes and potentiate or prolong the inflammatory response may have profound implications for the progression of oral diseases such as chronic periodontitis, where tissue destruction may be widespread. Moreover, it is increasingly recognized that chronic inflammation is a key component of tumor progression. Interaction between cancer cells and their microenvironment is mediated in large part by secreted factors such as chemokines, and serves to enhance the malignant phenotype in oral and other cancers. In this article, we will outline the biological and biochemical mechanisms of chemokine action in host–microbiome interactions in periodontal disease and in oral cancer, and how these may overlap and contribute to pathogenesis. PMID:25999952

  20. Inflammatory microenvironment and expression of chemokines in hepatocellular carcinoma.

    Science.gov (United States)

    Han, Ke-Qi; He, Xue-Qun; Ma, Meng-Yu; Guo, Xiao-Dong; Zhang, Xue-Min; Chen, Jie; Han, Hui; Zhang, Wei-Wei; Zhu, Quan-Gang; Nian, Hua; Ma, Li-Jun

    2015-04-28

    To study the inflammatory microenvironment and expression of chemokines in hepatocellular carcinoma (HCC) in nude mice. CBRH-7919 HCC cells were injected into the subcutaneous region of nude mice. Beginning two weeks after the challenge, tumor growth was measured every week for six weeks. The stromal microenvironment and inflammatory cell infiltration was assessed by immunohistochemistry in paired tumor and adjacent peritumoral samples, and macrophage phenotype was assessed using double-stain immunohistochemistry incorporating expression of an intracellular enzyme. A chemokine PCR array, comprised of 98 genes, was used to screen differential gene expressions, which were validated by Western blotting. Additionally, expression of identified chemokines was knocked-down by RNA interference, and the effect on tumor growth was assessed. Inflammatory cell infiltrates are a key feature of adjacent peritumoral tissues with increased macrophage, neutrophil, and T cell (specifically helper and activated subsets) infiltration. Macrophages within adjacent peritumoral tissues express inducible nitric oxide synthase, suggestive of a proinflammatory phenotype. Fifty-one genes were identified in tumor tissues during the progression period, including 50 that were overexpressed (including CXCL1, CXCL2 and CXCL3) and three that were underexpressed (CXCR1, Ifg and Actb). RNA interference of CXCL1 in the CBRH-7919 cells decreased the growth of tumors in nude mice and inhibited expression of CXCL2, CXCL3 and interleukin-1β protein. These findings suggest that CXCL1 plays a critical role in tumor growth and may serve as a potential molecular target for use in HCC therapy.

  1. Abnormal peritoneal regulation of chemokine activation-The role of IL-8 in pathogenesis of endometriosis.

    Science.gov (United States)

    Sikora, Justyna; Smycz-Kubańska, Marta; Mielczarek-Palacz, Aleksandra; Kondera-Anasz, Zdzisława

    2017-04-01

    Endometriosis is a chronic inflammatory disease associated with an impairment in immune response. Disorders in the peritoneal fluid and ectopic endometrium macrophage populations and their secretory products create a specific microenvironment inducing the development of the disease. The important factors involved in inflammation associated with endometriosis are chemokines, especially interleukin (IL)-8. For this reason, the current study briefly reviews the role of IL-8 in the pathogenesis of endometriosis. A systematic review was done on all published studies that compared IL-8 expression and concentration in patients with and without endometriosis to evaluate their potential as biomarkers for the disease. IL-8 induces chemotaxis of neutrophils and other immune cells; also, it is a potent angiogenic agent. Most researchers pointed to the increased peritoneal and serum IL-8 levels and showed correlation with the severity of the disease, size and number of the active lesions. IL-8 takes part in all processes during the development of the disease: adhesion, invasion, and implantation of ectopic tissue. Additionally, the chemokine plays a role in growth and maintenance of ectopic endometrial tissue directly affecting endometrial cell proliferation. IL-8 might also protect ectopic cells against death by apoptosis. It may act as an autocrine growth factor in the endometrium and promotes the vicious circle of endometrial cell attachment and, in consequence, may lead to a transformation from acute to chronic inflammation stage. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Expression of chemokine receptors CCR5 and CXCR4 on CD4+ T cells and plasma chemokine levels during treatment of active tuberculosis in HIV-1-coinfected patients

    NARCIS (Netherlands)

    Wolday, Dawit; Tegbaru, Belete; Kassu, Afework; Messele, Tsehaynesh; Coutinho, Roel; van Baarle, Debbie; Miedema, Frank

    2005-01-01

    The pathogenesis of persistently elevated plasma HIV viremia in patients coinfected with tuberculosis (TB) during anti-TB treatment in Africans remains unknown. We examined the expression of chemokine receptors CCR5 and CXCR4 on CD4+ T cells and plasma chemokine levels of macrophage inflammatory

  3. Expression of human immunodeficiency virus coreceptors CXC chemokine receptor 4 and CC chemokine receptor 5 on monocytes is down-regulated during human endotoxemia

    NARCIS (Netherlands)

    Juffermans, Nicole P.; Weijer, Sebastiaan; Verbon, Annelies; Speelman, Peter; van der Poll, Tom

    2002-01-01

    Lipopolysaccharide (LPS) can inhibit human immunodeficiency virus (HIV) infection in monocytes in vitro. To test the hypothesis that an LPS effect on CXC chemokine receptor 4 (CXCR4) and CC chemokine receptor 5 (CCR5), known coreceptors for HIV, contributes to this effect, 8 healthy men were

  4. Atypical chemokine receptor ACKR2 mediates chemokine scavenging by primary human trophoblasts and can regulate fetal growth, placental structure, and neonatal mortality in mice.

    Science.gov (United States)

    Teoh, Pek Joo; Menzies, Fiona M; Hansell, Chris A H; Clarke, Mairi; Waddell, Carolann; Burton, Graham J; Nelson, Scott M; Nibbs, Robert J B

    2014-11-15

    Inflammatory chemokines produced in the placenta can direct the migration of placental leukocytes using chemokine receptors that decorate the surface of these cells. Fetal trophoblasts can also express receptors for inflammatory chemokines, and they are one of the few cell types that express atypical chemokine receptor 2 (ACKR2), previously known as D6. ACKR2 binds many inflammatory CC chemokines but cannot stimulate cell migration or activate signaling pathways used by conventional chemokine receptors. Existing evidence suggests that ACKR2 is a specialized chemokine scavenger, but its function in primary human trophoblasts has not been explored. In mice, ACKR2 is thought to be dispensable for the reproductive success of unchallenged females that have conceived naturally, but it can suppress inflammation-induced abortion and aid the survival of implanted allogeneic embryos. In this article, we demonstrate that cultured primary human trophoblasts express ACKR2 far more strongly than genes encoding conventional receptors for inflammatory CC chemokines. Moreover, these cells are capable of the rapid internalization and efficient scavenging of extracellular chemokine, and this is mediated by ACKR2. We also report that in unchallenged DBA/1j mice, Ackr2 deficiency increases the incidence of stillbirth and neonatal death, leads to structural defects in the placenta, and can decrease fetal weight. Loss of Ackr2 specifically from fetal cells makes a key contribution to the placental defects. Thus, primary human trophoblasts use ACKR2 to scavenge chemokines, and ACKR2 deficiency can cause abnormal placental structure and reduced neonatal survival. Copyright © 2014 by The American Association of Immunologists, Inc.

  5. Nonlinear, tunable and active metamaterials

    CERN Document Server

    Lapine, Mikhail; Kivshar, Yuri

    2015-01-01

    Metamaterials, artificial electromagnetic media achieved by structuring on the subwave-length-scale were initially suggested for the negative index and superlensing. They became a paradigm for engineering electromagnetic space and controlling propagation of waves. The research agenda is now shifting on achieving tuneable, switchable, nonlinear and sensing functionalities. The time has come to talk about the emerging research field of metadevices employing active and tunable metamaterials with unique functionalities achieved by structuring of functional matter on the subwave-length scale. This book presents the first systematic and comprehensive summary of the reviews written by the pioneers and top-class experts in the field of metamaterials. It addresses many grand challenges of the cutting edge research for creating smaller and more efficient photonic structures and devices.

  6. Heme oxygenase-1 induction alters chemokine regulation and ameliorates human immunodeficiency virus-type-1 infection in lipopolysaccharide-stimulated macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhao-Hua [Division of Monoclonal Antibodies, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States); Kumari, Namita; Nekhai, Sergei [Center for Sickle Cell Disease, Department of Medicine, Howard University, Washington, DC (United States); Clouse, Kathleen A. [Division of Monoclonal Antibodies, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States); Wahl, Larry M. [National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Yamada, Kenneth M. [Laboratory of Cell and Development Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Dhawan, Subhash, E-mail: subhash.dhawan@fda.hhs.gov [Viral Immunology Section, Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States)

    2013-06-07

    Highlights: •Lipopolysaccharide stimulation of heme oxygenase-1 (HO-1) ameliorated HIV-1 infection of primary human macrophages. •The partial protection by HO-1 against HIV infection was associated with induction of chemokines such as MIP1α and MIP1β. •This mechanism explains lipopolysaccharide-stimulated HO-1-mediated inhibition of HIV-1 infection of macrophages. -- Abstract: We have elucidated a putative mechanism for the host resistance against HIV-1 infection of primary human monocyte-derived macrophages (MDM) stimulated with lipopolysaccharide (LPS). We show that LPS-activated MDM both inhibited HIV-1 entry into the cells and were refractory to post-entry productive viral replication. LPS-treated cells were virtually negative for mature virions as revealed by transmission electron microscopy. LPS activation of MDM markedly enhanced the expression of heme oxygenase-1 (HO-1), a potent inducible cytoprotective enzyme. Increased HO-1 expression was accompanied by elevated production of macrophage inflammatory chemokines (MIP1α and MIP1β) by LPS-activated MDM, significantly decreased surface chemokine receptor-5 (CCR-5) expression, and substantially reduced virus replication. Treatment of cells with HO-1 inhibitor SnPP IX (tin protoporphyrin IX) attenuated the LPS-mediated responses, HIV-1 replication and secretion of MIP1α, MIP1β, and LD78β chemokines with little change in surface CCR-5 expression. These results identify a novel role for HO-1 in the modulation of host immune response against HIV infection of MDM.

  7. Heme oxygenase-1 induction alters chemokine regulation and ameliorates human immunodeficiency virus-type-1 infection in lipopolysaccharide-stimulated macrophages

    International Nuclear Information System (INIS)

    Zhou, Zhao-Hua; Kumari, Namita; Nekhai, Sergei; Clouse, Kathleen A.; Wahl, Larry M.; Yamada, Kenneth M.; Dhawan, Subhash

    2013-01-01

    Highlights: •Lipopolysaccharide stimulation of heme oxygenase-1 (HO-1) ameliorated HIV-1 infection of primary human macrophages. •The partial protection by HO-1 against HIV infection was associated with induction of chemokines such as MIP1α and MIP1β. •This mechanism explains lipopolysaccharide-stimulated HO-1-mediated inhibition of HIV-1 infection of macrophages. -- Abstract: We have elucidated a putative mechanism for the host resistance against HIV-1 infection of primary human monocyte-derived macrophages (MDM) stimulated with lipopolysaccharide (LPS). We show that LPS-activated MDM both inhibited HIV-1 entry into the cells and were refractory to post-entry productive viral replication. LPS-treated cells were virtually negative for mature virions as revealed by transmission electron microscopy. LPS activation of MDM markedly enhanced the expression of heme oxygenase-1 (HO-1), a potent inducible cytoprotective enzyme. Increased HO-1 expression was accompanied by elevated production of macrophage inflammatory chemokines (MIP1α and MIP1β) by LPS-activated MDM, significantly decreased surface chemokine receptor-5 (CCR-5) expression, and substantially reduced virus replication. Treatment of cells with HO-1 inhibitor SnPP IX (tin protoporphyrin IX) attenuated the LPS-mediated responses, HIV-1 replication and secretion of MIP1α, MIP1β, and LD78β chemokines with little change in surface CCR-5 expression. These results identify a novel role for HO-1 in the modulation of host immune response against HIV infection of MDM

  8. Tunable conductivity in mesoporous germanium

    Science.gov (United States)

    Beattie, Meghan N.; Bioud, Youcef A.; Hobson, David G.; Boucherif, Abderraouf; Valdivia, Christopher E.; Drouin, Dominique; Arès, Richard; Hinzer, Karin

    2018-05-01

    Germanium-based nanostructures have attracted increasing attention due to favourable electrical and optical properties, which are tunable on the nanoscale. High densities of germanium nanocrystals are synthesized via electrochemical etching, making porous germanium an appealing nanostructured material for a variety of applications. In this work, we have demonstrated highly tunable electrical conductivity in mesoporous germanium layers by conducting a systematic study varying crystallite size using thermal annealing, with experimental conductivities ranging from 0.6 to 33 (×10‑3) Ω‑1 cm‑1. The conductivity of as-prepared mesoporous germanium with 70% porosity and crystallite size between 4 and 10 nm is shown to be ∼0.9 × 10‑3 Ω‑1 cm‑1, 5 orders of magnitude smaller than that of bulk p-type germanium. Thermal annealing for 10 min at 400 °C further reduced the conductivity; however, annealing at 450 °C caused a morphological transformation from columnar crystallites to interconnecting granular crystallites and an increase in conductivity by two orders of magnitude relative to as-prepared mesoporous germanium caused by reduced influence of surface states. We developed an electrostatic model relating the carrier concentration and mobility of p-type mesoporous germanium to the nanoscale morphology. Correlation within an order of magnitude was found between modelled and experimental conductivities, limited by variation in sample uniformity and uncertainty in void size and fraction after annealing. Furthermore, theoretical results suggest that mesoporous germanium conductivity could be tuned over four orders of magnitude, leading to optimized hybrid devices.

  9. 3D profile-based approach to proteome-wide discovery of novel human chemokines.

    Directory of Open Access Journals (Sweden)

    Aurelie Tomczak

    Full Text Available Chemokines are small secreted proteins with important roles in immune responses. They consist of a conserved three-dimensional (3D structure, so-called IL8-like chemokine fold, which is supported by disulfide bridges characteristic of this protein family. Sequence- and profile-based computational methods have been proficient in discovering novel chemokines by making use of their sequence-conserved cysteine patterns. However, it has been recently shown that some chemokines escaped annotation by these methods due to low sequence similarity to known chemokines and to different arrangement of cysteines in sequence and in 3D. Innovative methods overcoming the limitations of current techniques may allow the discovery of new remote homologs in the still functionally uncharacterized fraction of the human genome. We report a novel computational approach for proteome-wide identification of remote homologs of the chemokine family that uses fold recognition techniques in combination with a scaffold-based automatic mapping of disulfide bonds to define a 3D profile of the chemokine protein family. By applying our methodology to all currently uncharacterized human protein sequences, we have discovered two novel proteins that, without having significant sequence similarity to known chemokines or characteristic cysteine patterns, show strong structural resemblance to known anti-HIV chemokines. Detailed computational analysis and experimental structural investigations based on mass spectrometry and circular dichroism support our structural predictions and highlight several other chemokine-like features. The results obtained support their functional annotation as putative novel chemokines and encourage further experimental characterization. The identification of remote homologs of human chemokines may provide new insights into the molecular mechanisms causing pathologies such as cancer or AIDS, and may contribute to the development of novel treatments. Besides

  10. Regulation of MCP-1 chemokine transcription by p53.

    Science.gov (United States)

    Hacke, Katrin; Rincon-Orozco, Bladimiro; Buchwalter, Gilles; Siehler, Simone Y; Wasylyk, Bohdan; Wiesmüller, Lisa; Rösl, Frank

    2010-04-20

    Our previous studies showed that the expression of the monocyte-chemoattractant protein (MCP)-1, a chemokine, which triggers the infiltration and activation of cells of the monocyte-macrophage lineage, is abrogated in human papillomavirus (HPV)-positive premalignant and malignant cells. In silico analysis of the MCP-1 upstream region proposed a putative p53 binding side about 2.5 kb upstream of the transcriptional start. The aim of this study is to monitor a physiological role of p53 in this process. The proposed p53 binding side could be confirmed in vitro by electrophoretic-mobility-shift assays and in vivo by chromatin immunoprecipitation. Moreover, the availability of p53 is apparently important for chemokine regulation, since TNF-alpha can induce MCP-1 only in human keratinocytes expressing the viral oncoprotein E7, but not in HPV16 E6 positive cells, where p53 becomes degraded. A general physiological role of p53 in MCP-1 regulation was further substantiated in HPV-negative cells harboring a temperature-sensitive mutant of p53 and in Li-Fraumeni cells, carrying a germ-line mutation of p53. In both cases, non-functional p53 leads to diminished MCP-1 transcription upon TNF-alpha treatment. In addition, siRNA directed against p53 decreased MCP-1 transcription after TNF-alpha addition, directly confirming a crosstalk between p53 and MCP-1. These data support the concept that p53 inactivation during carcinogenesis also affects immune surveillance by interfering with chemokine expression and in turn communication with cells of the immunological compartment.

  11. Circulating Chemokine Levels in Febrile Infants With Serious Bacterial Infections

    Directory of Open Access Journals (Sweden)

    Hsiu-Lin Chen

    2009-12-01

    Full Text Available Early diagnosis of serious bacterial infections (SBI in febrile young infants based on clinical symptoms and signs is difficult. This study aimed to evaluate the diagnostic values of circulating chemokines and C-reactive protein (CRP levels in febrile young infants < 3 months of age with suspected SBI. We enrolled 43 febrile young infants < 3 months of age with clinically suspected SBI who were admitted to the neonatal intensive care unit or complete nursing unit of the pediatric department of Kaohsiung Medical University Hospital between December 2006 and July 2007. Blood was drawn from the patients at admission, and complete blood counts, plasma levels of CRP, granulocyte colony-stimulating factor (G-CSF, and chemokines, including interleukin-8 (IL-8, macrophage inflammatory protein-1α, macrophage inflammatory protein-1β, monokine induced by interferon-γ, and monocyte chemotactic protein-1 were measured. Patients’ symptoms and signs, length of hospital stay, main diagnosis, and results of routine blood tests and microbiological culture results were recorded. Twenty-six infants (60.5% were diagnosed with SBI, while 17 (39.5% had no evidence of SBI based on the results of bacterial cultures. CRP, IL-8 and G-CSF levels were significantly higher in the infants with SBI than in those without SBI. Plasma levels of other chemokines were not significantly different between the groups. The area under the receiver-operating characteristic (ROC curve for differentiating between the presence and absence of SBI was 0.79 for CRP level. Diagnostic accuracy was further improved by combining CRP and IL-8, when the area under the ROC curve increased to 0.91. CRP levels were superior to IL-8 and G-CSF levels for predicting SBI in febrile infants at initial survey. IL-8 levels could be used as an additional diagnostic tool in the initial evaluation of febrile young infants, allowing clinicians to treat these patients more appropriately.

  12. Hypothalamic Inflammation and Energy Balance Disruptions: Spotlight on Chemokines

    Directory of Open Access Journals (Sweden)

    Ophélia Le Thuc

    2017-08-01

    Full Text Available The hypothalamus is a key brain region in the regulation of energy balance as it controls food intake and both energy storage and expenditure through integration of humoral, neural, and nutrient-related signals and cues. Many years of research have focused on the regulation of energy balance by hypothalamic neurons, but the most recent findings suggest that neurons and glial cells, such as microglia and astrocytes, in the hypothalamus actually orchestrate together several metabolic functions. Because glial cells have been described as mediators of inflammatory processes in the brain, the existence of a causal link between hypothalamic inflammation and the deregulations of feeding behavior, leading to involuntary weight loss or obesity for example, has been suggested. Several inflammatory pathways that could impair the hypothalamic control of energy balance have been studied over the years such as, among others, toll-like receptors and canonical cytokines. Yet, less studied so far, chemokines also represent interesting candidates that could link the aforementioned pathways and the activity of hypothalamic neurons. Indeed, chemokines, in addition to their role in attracting immune cells to the inflamed site, have been suggested to be capable of neuromodulation. Thus, they could disrupt cellular activity together with synthesis and/or secretion of multiple neurotransmitters/mediators involved in the maintenance of energy balance. This review discusses the different inflammatory pathways that have been identified so far in the hypothalamus in the context of feeding behavior and body weight control impairments, with a particular focus on chemokines signaling that opens a new avenue in the understanding of the major role played by inflammation in obesity.

  13. CXC-type chemokines promote myofibroblast phenoconversion and prostatic fibrosis.

    Directory of Open Access Journals (Sweden)

    Mehrnaz Gharaee-Kermani

    Full Text Available Recent studies from our group suggest that extracellular matrix (ECM deposition and fibrosis characterize the peri-urethral prostate tissues of some men suffering from Lower Urinary Tract Symptoms (LUTS and that fibrosis may be a contributing factor to the etiology of LUTS. Fibrosis can generally be regarded as an errant wound-healing process in response to chronic inflammation, and several studies have shown that the aging prostate tissue microenvironment is rich with inflammatory cells and proteins. However, it is unclear whether these same inflammatory proteins, particularly CXC-type chemokines, can mediate myofibroblast phenoconversion and the ECM deposition necessary for the development of prostatic tissue fibrosis. To examine this, immortalized and primary prostate stromal fibroblasts treated with TGF-β1, CXCL5, CXCL8, or CXCL12 were evaluated morphologically by microscopy, by immunofluorescence and qRT-PCR for αSMA, collagen 1, vimentin, calponin, and tenascin protein and transcript expression, and by gel contraction assays for functional myofibroblast phenoconversion. The results of these studies showed that that immortalized and primary prostate stromal fibroblasts are induced to express collagen 1 and 3 and αSMA gene transcripts and proteins and to undergo complete and functional myofibroblast phenoconversion in response to CXC-type chemokines, even in the absence of exogenous TGF-β1. Moreover, CXCL12-mediated myofibroblast phenoconversion can be completely abrogated by inhibition of the CXCL12 receptor, CXCR4. These findings suggest that CXC-type chemokines, which comprise inflammatory proteins known to be highly expressed in the aging prostate, can efficiently and completely mediate myofibroblast phenoconversion and may thereby promote fibrotic changes in prostate tissue architecture associated with the development and progression of male lower urinary tract dysfunction.

  14. Amniotic fluid chemokines and autism spectrum disorders: An exploratory study utilizing a Danish Historic Birth Cohort

    DEFF Research Database (Denmark)

    Abdallah, Morsi; Larsen, Nanna Brink; Grove, Jakob

    2012-01-01

    Elevated levels of chemokines have been reported in plasma and brain tissue of individuals with Autism Spectrum Disorders (ASD). The aim of this study was to examine chemokine levels in amniotic fluid (AF) samples of individuals diagnosed with ASD and their controls.......Elevated levels of chemokines have been reported in plasma and brain tissue of individuals with Autism Spectrum Disorders (ASD). The aim of this study was to examine chemokine levels in amniotic fluid (AF) samples of individuals diagnosed with ASD and their controls....

  15. Therapeutic implications of chemokine-mediated pathways in atherosclerosis: realistic perspectives and utopias.

    Science.gov (United States)

    Apostolakis, Stavros; Amanatidou, Virginia; Spandidos, Demetrios A

    2010-09-01

    Current perspectives on the pathogenesis of atherosclerosis strongly support the involvement of inflammatory mediators in the establishment and progression of atherosclerostic lesions. Chemokine-mediated mechanisms are potent regulators of such processes by orchestrating the interactions of inflammatory cellular components of the peripheral blood with cellular components of the arterial wall. The increasing evidence supporting the role of chemokine pathways in atherosclerosis renders chemokine ligands and their receptors potential therapeutic targets. In the following review, we aim to highlight the special structural and functional features of chemokines and their receptors in respect to their roles in atherosclerosis, and examine to what extent available data can be applied in disease management practices.

  16. Pulsed high-dose dexamethasone modulates Th1-/Th2-chemokine imbalance in immune thrombocytopenia.

    Science.gov (United States)

    Liu, Zongtang; Wang, Meiying; Zhou, Shufen; Ma, Ji; Shi, Yan; Peng, Jun; Hou, Ming; Guo, Chengshan

    2016-10-24

    Chemokines and chemokine receptors play important roles in autoimmune diseases; however, their role in immune thrombocytopenia (ITP) is unclear. High-dose dexamethasone (HD-DXM) may become a first-line therapy for adult patients with ITP, but the effect of HD-DXM on chemokines in ITP patients is unknown. Our aim was to investigate the mechanism of pulsed HD-DXM for management of ITP, specifically regarding the chemokine pathways. Th1-/Th2-associated chemokine and chemokine receptor profiles in ITP patients before and after pulsed HD-DXM was studied. Plasma levels of CCL5 and CXCL11 (Th1-associated) and of CCL11 (Th2-associated) were determined by ELISA. Gene expression of these three chemokines and their corresponding receptors CCR5, CXCR3, and CCR3, in peripheral blood mononuclear cells (PBMCs) was determined by quantitative RT-PCR. Thirty-three of the thirty-eight ITP patients responded effectively to HD-DXM (oral, 40 mg/day, 4 days). In ITP patients, plasma CXCL11 levels increased, while CCL11 and CCL5 decreased compared to controls (P Th1-/Th2-associated chemokines and chemokine receptors may play important roles in the pathogenesis of ITP. Importantly, regulating Th1 polarization by pulsed HD-DXM may represent a novel approach for immunoregulation in ITP.

  17. Rose hip and its constituent galactolipids confer cartilage protection by modulating cytokine, and chemokine expression.

    Science.gov (United States)

    Schwager, Joseph; Hoeller, Ulrich; Wolfram, Swen; Richard, Nathalie

    2011-11-03

    Clinical studies have shown that rose hip powder (RHP) alleviates osteoarthritis (OA). This might be due to anti-inflammatory and cartilage-protective properties of the complete RHP or specific constituents of RHP. Cellular systems (macrophages, peripheral blood leukocytes and chondrocytes), which respond to inflammatory and OA-inducing stimuli, are used as in vitro surrogates to evaluate the possible pain-relief and disease-modifying effects of RHP. (1) Inflammatory processes were induced in RAW264.7 cells or human peripheral blood leukocytes (PBL) with LPS. Inflammatory mediators (nitric oxide (NO), prostaglandin E(2) (PGE(2)) and cytokines/chemokines) were determined by the Griess reaction, EIA and multiplex ELISA, respectively. Gene expression was quantified by RT-PCR. RHP or its constituent galactolipid, GLGPG (galactolipid (2S)-1, 2-di-O-[(9Z, 12Z, 15Z)-octadeca-9, 12, 15-trienoyl]-3-O-β-D-galactopyranosyl glycerol), were added at various concentrations and the effects on biochemical and molecular parameters were evaluated. (2) SW1353 chondrosarcoma cells and primary human knee articular chondrocytes (NHAC-kn) were treated with interleukin (IL)-1β to induce in vitro processes similar to those occurring during in vivo degradation of cartilage. Biomarkers related to OA (NO, PGE(2), cytokines, chemokines, metalloproteinases) were measured by multiplex ELISA and gene expression analysis in chondrocytes. We investigated the modulation of these events by RHP and GLGPG. In macrophages and PBL, RHP and GLGPG inhibited NO and PGE(2) production and reduced the secretion of cytokines (TNF-α, IFN-γ, IL-1β, IL-6, IL-12) and chemokines (CCL5/RANTES, CXCL10/IP-10). In SW1353 cells and primary chondrocytes, RHP and GLGPG diminished catabolic gene expression and inflammatory protein secretion as shown by lower mRNA levels of matrix metalloproteinases (MMP-1, MMP-3, MMP-13), aggrecanase (ADAMTS-4), macrophage inflammatory protein (MIP-2, MIP-3α), CCL5/RANTES, CXCL10/IP

  18. Rose hip and its constituent galactolipids confer cartilage protection by modulating cytokine, and chemokine expression

    Directory of Open Access Journals (Sweden)

    Schwager Joseph

    2011-11-01

    Full Text Available Abstract Background Clinical studies have shown that rose hip powder (RHP alleviates osteoarthritis (OA. This might be due to anti-inflammatory and cartilage-protective properties of the complete RHP or specific constituents of RHP. Cellular systems (macrophages, peripheral blood leukocytes and chondrocytes, which respond to inflammatory and OA-inducing stimuli, are used as in vitro surrogates to evaluate the possible pain-relief and disease-modifying effects of RHP. Methods (1 Inflammatory processes were induced in RAW264.7 cells or human peripheral blood leukocytes (PBL with LPS. Inflammatory mediators (nitric oxide (NO, prostaglandin E2 (PGE2 and cytokines/chemokines were determined by the Griess reaction, EIA and multiplex ELISA, respectively. Gene expression was quantified by RT-PCR. RHP or its constituent galactolipid, GLGPG (galactolipid (2S-1, 2-di-O-[(9Z, 12Z, 15Z-octadeca-9, 12, 15-trienoyl]-3-O-β-D-galactopyranosyl glycerol, were added at various concentrations and the effects on biochemical and molecular parameters were evaluated. (2 SW1353 chondrosarcoma cells and primary human knee articular chondrocytes (NHAC-kn were treated with interleukin (IL-1β to induce in vitro processes similar to those occurring during in vivo degradation of cartilage. Biomarkers related to OA (NO, PGE2, cytokines, chemokines, metalloproteinases were measured by multiplex ELISA and gene expression analysis in chondrocytes. We investigated the modulation of these events by RHP and GLGPG. Results In macrophages and PBL, RHP and GLGPG inhibited NO and PGE2 production and reduced the secretion of cytokines (TNF-α, IFN-γ, IL-1β, IL-6, IL-12 and chemokines (CCL5/RANTES, CXCL10/IP-10. In SW1353 cells and primary chondrocytes, RHP and GLGPG diminished catabolic gene expression and inflammatory protein secretion as shown by lower mRNA levels of matrix metalloproteinases (MMP-1, MMP-3, MMP-13, aggrecanase (ADAMTS-4, macrophage inflammatory protein (MIP-2, MIP-3

  19. Circulating chemokine ligand levels before and after successful kidney transplantation

    Directory of Open Access Journals (Sweden)

    Hamdi Elmoselhi

    2016-10-01

    Full Text Available Abstract Background Chemokine ligands (CCLs play a pivotal role in tissue injury before and after kidney transplantation. Meanwhile, transplantation improves patient’s survival and diminishes morbidity. It is hypothesized, then, that kidney transplantation diminishes pre-transplant (pre-TX levels of circulating inflammatory CCLs. This retrospective study compared circulating levels and profiles of CCLs before transplantation (pre-TX and after transplantation (post-TX. Methods Nineteen CCLs (1, 2, 3, 4, 5, 8, 11, 13, 15, 17, 21, 24, 26, 27, CXCL 5, 8, 10, 12 and 13 were measured in 47 stable post-TX recipients, and their stored pre-TX plasma was analyzed by multiplexed fluorescent bead-based immunoassay. Twenty normal controls were included for comparisons. Normalized data was presented as mean ± SD and non-normalized data as median (5–95 % CI. Significance was measured at p < 0.01. Arbitrary upper and lower margins for each CCL at the 95 % CI or 2SD levels in each group were chosen to calculate the percentile of patients in the other group who exceeded these limits. Significant CCL levels present in more than 75 % of patients in a group that exceeded the arbitrary upper or lower set margins in the other two groups were labeled as preferentially characteristic for the respective group. Results More than 75 % of pre- and post-TX patients had levels that exceeded the upper control for CCL1, 11, 15 and CCL15, CCL26 and CXCL13 levels, respectively. More than 75 % of pre- and post-TX patients exceeded the lower control for CCL3, 21, and CCL5 limits, respectively. More than 75 % of post-TX patients demonstrated elevated levels of CCL2, 3, 21, 26 and CXCL13 above the upper pre-TX cut offs. Meanwhile, more than 75 % of post-TX patients exceeded the lower pre-TX levels for CCL1, 4, 5, 8, 13, 15, 17, 24 and CXCL8 and10. Pre-TX was preferentially characterized by elevated CCL1 and 15 and diminished CCL3 and 21. Post-TX was preferentially

  20. Electro-Optic Tunable Laser Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will develop a compact, rugged, rapidly and widely tunable laser based on a quantum cascade diode laser at...

  1. Tunable Beam Diffraction in Infiltrated Microstructured Fibers

    DEFF Research Database (Denmark)

    Rosberg, Christian Romer; Bennet, Francis H.; Neshev, Dragomir N.

    We experimentally study beam propagation in two dimensional photonic lattices in microstructured optical fibers infiltrated with high index liquids. We demonstrate strongly tunable beam diffraction by dynamically varying the coupling between individual lattice sites.......We experimentally study beam propagation in two dimensional photonic lattices in microstructured optical fibers infiltrated with high index liquids. We demonstrate strongly tunable beam diffraction by dynamically varying the coupling between individual lattice sites....

  2. Liquid crystal tunable photonic crystal dye laser

    DEFF Research Database (Denmark)

    Buss, Thomas; Christiansen, Mads Brøkner; Smith, Cameron

    2010-01-01

    We present a dye-doped liquid crystal laser using a photonic crystal cavity. An applied electric field to the liquid crystal provides wavelength tunability. The photonic crystal enhances resonant interaction with the gain medium.......We present a dye-doped liquid crystal laser using a photonic crystal cavity. An applied electric field to the liquid crystal provides wavelength tunability. The photonic crystal enhances resonant interaction with the gain medium....

  3. Three-dimensional broadband tunable terahertz metamaterials

    DEFF Research Database (Denmark)

    Fan, Kebin; Strikwerda, Andrew; Zhang, Xin

    2013-01-01

    We present optically tunable magnetic three-dimensional (3D) metamaterials at terahertz (THz) frequencies which exhibit a tuning range of ~30% of the resonance frequency. This is accomplished by fabricating 3D array structures consisting of double-split-ring resonators (DSRRs) on silicon on sapph...... as verified through electromagnetic simulations and parameter retrieval. Our approach extends dynamic metamaterial tuning to magnetic control, and may find applications in switching and modulation, polarization control, or tunable perfect absorbers....

  4. Electrically Tunable Plasmonic Resonances with Graphene

    DEFF Research Database (Denmark)

    Emani, Naresh K.; Chung, Ting-Fung; Ni, Xingjie

    2012-01-01

    Real time switching of a plasmonic resonance may find numerous applications in subwavelength optoelectronics, spectroscopy and sensing. We take advantage of electrically tunable interband transitions in graphene to control the strength of the plasmonic resonance.......Real time switching of a plasmonic resonance may find numerous applications in subwavelength optoelectronics, spectroscopy and sensing. We take advantage of electrically tunable interband transitions in graphene to control the strength of the plasmonic resonance....

  5. Tunable Multifunction Filter Using Current Conveyor

    OpenAIRE

    Kumar, Manish; Srivastava, M. C.; Kumar, Umesh

    2010-01-01

    The paper presents a current tunable multifunction filter using current conveyor. The proposed circuit can be realized as on chip tunable low pass, high pass, band pass and elliptical notch filter. The circuit employs two current conveyors, one OTA, four resistors and two grounded capacitors, ideal for integration. It has only one output terminal and the number of input terminals may be used. Further, there is no requirement for component matching in the circuit. The resonance frequency ({\\om...

  6. CD8 chemokine receptors in chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Smyth, L J C; Starkey, C; Gordon, F S

    2008-01-01

    Increased lung CD8 cells and their expression of chemokine receptors CXCR3 and CCR5 have been previously reported in chronic obstructive pulmonary disease (COPD). Alterations of CD8-CCR3 and -CCR4 expression and their ligands in COPD patients have not been fully investigated. The objective...... of this study was to assess in COPD patients: (i) broncho-alveolar lavage (BAL) CD8 CCR3 and CCR4 expression in COPD patients; and (ii) airway levels of the CCR3 ligands, CCL11 and CCL5. Multi-parameter flow cytometric analysis was used to assess BAL CD3 and CD8-chemokine receptor expression in COPD patients......, smokers and healthy non-smokers (HNS). CCL5 and CCL11 levels were measured in BAL, and from the supernatants of lung resection explant cultures. CD8-CCR3 and -CCR5 expression (means) were increased in COPD patients (22% and 46% respectively) and smokers (20% and 45%) compared with HNS (3% and 22%); P

  7. Structure and function of A41, a vaccinia virus chemokine binding protein.

    Directory of Open Access Journals (Sweden)

    Mohammad W Bahar

    2008-01-01

    Full Text Available The vaccinia virus (VACV A41L gene encodes a secreted 30 kDa glycoprotein that is nonessential for virus replication but affects the host response to infection. The A41 protein shares sequence similarity with another VACV protein that binds CC chemokines (called vCKBP, or viral CC chemokine inhibitor, vCCI, and strains of VACV lacking the A41L gene induced stronger CD8+ T-cell responses than control viruses expressing A41. Using surface plasmon resonance, we screened 39 human and murine chemokines and identified CCL21, CCL25, CCL26 and CCL28 as A41 ligands, with Kds of between 8 nM and 118 nM. Nonetheless, A41 was ineffective at inhibiting chemotaxis induced by these chemokines, indicating it did not block the interaction of these chemokines with their receptors. However the interaction of A41 and chemokines was inhibited in a dose-dependent manner by heparin, suggesting that A41 and heparin bind to overlapping sites on these chemokines. To better understand the mechanism of action of A41 its crystal structure was solved to 1.9 A resolution. The protein has a globular beta sandwich structure similar to that of the poxvirus vCCI family of proteins, but there are notable structural differences, particularly in surface loops and electrostatic charge distribution. Structural modelling suggests that the binding paradigm as defined for the vCCI-chemokine interaction is likely to be conserved between A41 and its chemokine partners. Additionally, sequence analysis of chemokines binding to A41 identified a signature for A41 binding. The biological and structural data suggest that A41 functions by forming moderately strong (nM interactions with certain chemokines, sufficient to interfere with chemokine-glycosaminoglycan interactions at the cell surface (microM-nM and thereby to destroy the chemokine concentration gradient, but not strong enough to disrupt the (pM chemokine-chemokine receptor interactions.

  8. Evidence of positive selection at codon sites localized in extracellular domains of mammalian CC motif chemokine receptor proteins

    Directory of Open Access Journals (Sweden)

    Metzger Kelsey J

    2010-05-01

    Full Text Available Abstract Background CC chemokine receptor proteins (CCR1 through CCR10 are seven-transmembrane G-protein coupled receptors whose signaling pathways are known for their important roles coordinating immune system responses through targeted trafficking of white blood cells. In addition, some of these receptors have been identified as fusion proteins for viral pathogens: for example, HIV-1 strains utilize CCR5, CCR2 and CCR3 proteins to obtain cellular entry in humans. The extracellular domains of these receptor proteins are involved in ligand-binding specificity as well as pathogen recognition interactions. In mammals, the majority of chemokine receptor genes are clustered together; in humans, seven of the ten genes are clustered in the 3p21-24 chromosome region. Gene conversion events, or exchange of DNA sequence between genes, have been reported in chemokine receptor paralogs in various mammalian lineages, especially between the cytogenetically closely located pairs CCR2/5 and CCR1/3. Datasets of mammalian orthologs for each gene were analyzed separately to minimize the potential confounding impact of analyzing highly similar sequences resulting from gene conversion events. Molecular evolution approaches and the software package Phylogenetic Analyses by Maximum Likelihood (PAML were utilized to investigate the signature of selection that has acted on the mammalian CC chemokine receptor (CCR gene family. The results of neutral vs. adaptive evolution (positive selection hypothesis testing using Site Models are reported. In general, positive selection is defined by a ratio of nonsynonymous/synonymous nucleotide changes (dN/dS, or ω >1. Results Of the ten mammalian CC motif chemokine receptor sequence datasets analyzed, only CCR2 and CCR3 contain amino acid codon sites that exhibit evidence of positive selection using site based hypothesis testing in PAML. Nineteen of the twenty codon sites putatively indentified as likely to be under positive

  9. Plasma thymus and activation-regulated chemokine as an early response marker in classical Hodgkin's lymphoma

    NARCIS (Netherlands)

    Plattel, Wouter J.; van den Berg, Anke; Visser, Lydia; van der Graaf, Anne-Marijn; Pruim, Jan; Vos, Hans; Hepkema, Bouke; Diepstra, Arjan; van Imhoff, Gustaaf W.

    BACKGROUND: Plasma thymus and activation-regulated chemokine is a potential biomarker for classical Hodgkin's lymphoma. To define its value as a marker to monitor treatment response, we correlated serial plasma thymus and activation-regulated chemokine levels with clinical response in newly

  10. Chemokine stromal cell-derived factor 1alpha activates basophils by means of CXCR4

    DEFF Research Database (Denmark)

    Jinquan, T; Jacobi, H H; Jing, C

    2000-01-01

    The CXC chemokine receptor 4 (CXCR4) is predominantly expressed on inactivated naive T lymphocytes, B lymphocytes, dendritic cells, and endothelial cells. CXC chemokine stromal cell-derived factor 1alpha (SDF-1alpha) is the only known ligand for CXCR4. To date, the CXCR4 expression and function...... of SDF-1alpha in basophils are unknown....

  11. Tumorigenesis induced by the HHV8-encoded chemokine receptor requires ligand modulation of high constitutive activity

    DEFF Research Database (Denmark)

    Holst, P J; Rosenkilde, M M; Manfra, D

    2001-01-01

    ORF74 (or KSHV-vGPCR) is a highly constitutively active G protein-coupled receptor encoded by HHV8 that is regulated both positively and negatively by endogenous chemokines. When expressed in transgenic mice, this chemokine receptor induces an angioproliferative disease closely resembling Kaposi...

  12. Orphan chemokine receptors in neuroimmunology : functional and pharmacological analysis of L-CCR and HCR

    NARCIS (Netherlands)

    Zuurman, Michael Wilhelmer

    2003-01-01

    In this thesis we have investigated the expression and biological activity of the orphan chemokine receptors L-CCR/HCR in astrocytes and microglia. Several lines of evidence indicate that the chemokines CCL2, CCL5, CCL7 and CCL8 are agonists for these receptors. Although a variety of biological

  13. Targeting the chemokine receptor CXCR3 and its ligand CXCL10 in the central nervous system

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke

    2004-01-01

    focuses on the present data regarding CXCL10 (previously known as IP-10) and CXRC3 in multiple sclerosis, since consistent data has suggested that this chemokine/chemokine receptor pair has a pivotal role in leukocyte recruitment into the central nervous system (CNS) in multiple sclerosis....

  14. Dienogest inhibits C-C motif chemokine ligand 20 expression in human endometriotic epithelial cells.

    Science.gov (United States)

    Mita, Shizuka; Nakakuki, Masanori; Ichioka, Masayuki; Shimizu, Yutaka; Hashiba, Masamichi; Miyazaki, Hiroyasu; Kyo, Satoru

    2017-07-01

    C-C motif chemokine ligand 20 is thought to contribute to the development of endometriosis by recruiting Th17 lymphocytes into endometriotic foci. The present study investigated the effects of dienogest, a progesterone receptor agonist used to treat endometriosis, on C-C motif chemokine ligand 20 expression by endometriotic cells. Effects of dienogest on mRNA expression and protein secretion of C-C motif chemokine ligand 20 induced by interleukin 1β were assessed in three immortalized endometriotic epithelial cell lines, parental cells (EMosis-CC/TERT1), and stably expressing human progesterone receptor isoform A (EMosis-CC/TERT1/PRA+) or isoform B (EMosis-CC/TERT1/PRA-/PRB+). Dienogest markedly inhibited interleukin 1β-stimulated C-C motif chemokine ligand 20 mRNA expression and protein secretion in EMosis-CC/TERT1/PRA-/PRB+, which was abrogated by the progesterone receptor antagonist RU486. In EMosis-CC/TERT1/PRA+, dienogest slightly inhibited C-C motif chemokine ligand 20 mRNA and protein. In EMosis-CC/TERT1, dienogest slightly inhibited C-C motif chemokine ligand 20 mRNA, but had no effect on C-C motif chemokine ligand 20 protein. Dienogest inhibited interleukin 1β-induced up-regulation of C-C motif chemokine ligand 20 in endometriotic epithelial cells, mainly mediated by progesterone receptor B. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Pro-inflammatory functions of carp CXCL8-like and CXCb chemokines

    NARCIS (Netherlands)

    van der Aa, Lieke M.; Chadzinska, Magdalena; Golbach, Lieke A.; Ribeiro, Carla M. S.; Lidy Verburg-van Kemenade, B. M.

    2012-01-01

    Numerous CXC chemokines have been identified in fish, however, their role in inflammation is not well established. Here. CXC chemokines of the CXCL8-like (CXCa_Ll and CXCL8_L2) and CXCL9/10/11-like (CXCb) subset were investigated in carp. Recombinant CXCa_L1, CXCL8_12 and CXCb all stimulated

  16. Maternal Plasma and Amniotic Fluid Chemokines Screening in Fetal Down Syndrome

    Directory of Open Access Journals (Sweden)

    Piotr Laudanski

    2014-01-01

    Full Text Available Objective. Chemokines exert different inflammatory responses which can potentially be related to certain fetal chromosomal abnormalities. The aim of the study was to determine the concentration of selected chemokines in plasma and amniotic fluid of women with fetal Down syndrome. Method. Out of 171 amniocentesis, we had 7 patients with confirmed fetal Down syndrome (15th–18th weeks of gestation. For the purpose of our control, we chose 14 women without confirmed chromosomal aberration. To assess the concentration of chemokines in the blood plasma and amniotic fluid, we used a protein macroarray, which allows the simultaneous determination of 40 chemokines per sample. Results. We showed significant decrease in the concentration of 4 chemokines, HCC-4, IL-28A, IL-31, and MCP-2, and increase in the concentration of CXCL7 (NAP-2 in plasma of women with fetal Down syndrome. Furthermore, we showed decrease in concentration of 3 chemokines, ITAC, MCP-3, MIF, and increase in concentration of 4 chemokines, IP-10, MPIF-1, CXCL7, and 6Ckine, in amniotic fluid of women with fetal Down syndrome. Conclusion. On the basis of our findings, our hypothesis is that the chemokines may play role in the pathogenesis of Down syndrome. Defining their potential as biochemical markers of Down syndrome requires further investigation on larger group of patients.

  17. Targeting spare CC chemokine receptor 5 (CCR5) as a principle to inhibit HIV-1 entry.

    Science.gov (United States)

    Jin, Jun; Colin, Philippe; Staropoli, Isabelle; Lima-Fernandes, Evelyne; Ferret, Cécile; Demir, Arzu; Rogée, Sophie; Hartley, Oliver; Randriamampita, Clotilde; Scott, Mark G H; Marullo, Stefano; Sauvonnet, Nathalie; Arenzana-Seisdedos, Fernando; Lagane, Bernard; Brelot, Anne

    2014-07-04

    CCR5 binds the chemokines CCL3, CCL4, and CCL5 and is the major coreceptor for HIV-1 entry into target cells. Chemokines are supposed to form a natural barrier against human immunodeficiency virus, type 1 (HIV-1) infection. However, we showed that their antiviral activity is limited by CCR5 adopting low-chemokine affinity conformations at the cell surface. Here, we investigated whether a pool of CCR5 that is not stabilized by chemokines could represent a target for inhibiting HIV infection. We exploited the characteristics of the chemokine analog PSC-RANTES (N-α-(n-nonanoyl)-des-Ser(1)-[l-thioprolyl(2), l-cyclohexylglycyl(3)]-RANTES(4-68)), which displays potent anti-HIV-1 activity. We show that native chemokines fail to prevent high-affinity binding of PSC-RANTES, analog-mediated calcium release (in desensitization assays), and analog-mediated CCR5 internalization. These results indicate that a pool of spare CCR5 may bind PSC-RANTES but not native chemokines. Improved recognition of CCR5 by PSC-RANTES may explain why the analog promotes higher amounts of β-arrestin 2·CCR5 complexes, thereby increasing CCR5 down-regulation and HIV-1 inhibition. Together, these results highlight that spare CCR5, which might permit HIV-1 to escape from chemokines, should be targeted for efficient viral blockade. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Chemokine receptor allelic polymorphisms: relationships to HIV resistance and disease progression

    NARCIS (Netherlands)

    Paxton, W. A.; Kang, S.

    1998-01-01

    It is now well established that an array of CC and CXC chemokine receptors, in association with the CD4 molecule, can interact with the HIV-1 gp120 protein to facilitate viral fusion. A 32bp deletion in the CC chemokine receptor CCR5, the major M-tropic viral co-receptor, provides considerable

  19. Inhibition of zymosan-induced cytokine and chemokine expression in human corneal fibroblasts by triptolide

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2016-01-01

    Full Text Available AIM: To investigate the effects of triptolide on proinflammatory cytokine and chemokine expression induced by the fungal component zymosan in cultured human corneal fibroblasts (HCFs. METHODS: HCFs were cultured in the absence or presence of zymosan or triptolide. The release of interleukin (IL-6, IL-8, and monocyte chemoattractant protein-1 (MCP-1 into culture supernatants was measured with enzyme-linked immunosorbent assays. The cellular abundance of the mRNAs for these proteins was determined by reverse transcription and real-time polymerase chain reaction analysis. The phosphorylation of mitogen-activated protein kinases (MAPKs and the endogenous nuclear factor-κB (NF-κB inhibitor IκB-α was examined by immunoblot analysis. The release of lactate dehydrogenase (LDH activity from HCFs was measured with a colorimetric assay. RESULTS: Triptolide inhibited the zymosan-induced release of IL-6, IL-8, and MCP-1 from HCFs in a concentration- and time-dependent manner. It also inhibited the zymosan-induced up-regulation of IL-6, IL-8, and MCP-1 mRNA abundance in these cells. Furthermore, triptolide attenuated zymosan-induced phosphorylation of the MAPKs extracellular signal-regulated kinase (ERK, c-Jun NH2-terminal kinase (JNK, and p38 as well as the phosphorylation and degradation of IκB-α. Triptolide did not exhibit cytotoxicity for HCFs. CONCLUSION: Triptolide inhibited proinflammatory cytokine and chemokine production by HCFs exposed to zymosan, with this action likely being mediated by suppression of MAPK and NF-κB signaling pathways. This compound might thus be expected to limit the infiltration of inflammatory cells into the cornea associated with fungal infection.

  20. Endogenous NAMPT dampens chemokine expression and apoptotic responses in stressed tubular cells.

    Science.gov (United States)

    Benito-Martin, Alberto; Ucero, Alvaro C; Izquierdo, María Concepción; Santamaria, Beatriz; Picatoste, Belén; Carrasco, Susana; Lorenzo, Oscar; Ruiz-Ortega, Marta; Egido, Jesus; Ortiz, Alberto

    2014-02-01

    Diabetic nephropathy (DN) is the most common cause of end-stage renal disease and identification of new therapeutic targets is needed. Nicotinamide phosphoribosyltransferase (NAMPT) is both an extracellular and intracellular protein. Circulating NAMPT is increased in diabetics and in chronic kidney disease patients. The role of NAMPT in renal cell biology is poorly understood. NAMPT mRNA and protein were increased in the kidneys of rats with streptozotocin-induced diabetes. Immunohistochemistry localized NAMPT to glomerular and tubular cells in diabetic rats. The inflammatory cytokine TNFα increased NAMPT mRNA, protein and NAD production in cultured kidney human tubular cells. Exogenous NAMPT increased the mRNA expression of chemokines MCP-1 and RANTES. The NAMPT enzymatic activity inhibitor FK866 prevented these effects. By contrast, FK866 boosted TNFα-induced expression of MCP-1 and RANTES mRNA and endogenous NAMPT targeting by siRNA also had a proinflammatory effect. Furthermore, FK866 promoted tubular cell apoptosis in an inflammatory milieu containing the cytokines TNFα/IFNγ. In an inflammatory environment FK866 promoted tubular cell expression of the lethal cytokine TRAIL. These data are consistent with a role of endogenous NAMPT activity as an adaptive, protective response to an inflammatory milieu that differs from the proinflammatory activity of exogenous NAMPT. Thus, disruption of endogenous NAMPT function in stressed cells promotes tubular cell death and chemokine expression. This information may be relevant for the design of novel therapeutic strategies in DN. Copyright © 2013. Published by Elsevier B.V.

  1. Lymphoid follicle cells in chronic obstructive pulmonary disease overexpress the chemokine receptor CXCR3.

    Science.gov (United States)

    Kelsen, Steven G; Aksoy, Mark O; Georgy, Mary; Hershman, Richard; Ji, Rong; Li, Xiuxia; Hurford, Matthew; Solomides, Charalambos; Chatila, Wissam; Kim, Victor

    2009-05-01

    The mechanisms underlying formation of lung lymphoid follicles (LF) in chronic obstructive pulmonary disease (COPD) are unknown. The chemokine receptor CXCR3 regulates immune responses in secondary lymphoid structures elsewhere in the body and is highly expressed by Th1 lymphocytes in the airway in COPD. Because chemokine receptors control inflammatory cell homing to inflamed tissue, we reasoned that CXCR3 may contribute to LF formation in COPD. We assessed the expression of CXCR3 and its ligands (IP-10/CXCL10, Mig/CXCL9, and ITAC/CXCL11) by LF cells in never-smokers, smokers without COPD, and subjects with COPD. CXCR3, IP-10, Mig, and ITAC expression were assessed in lung sections from 46 subjects (never-smokers, smokers without COPD [S], and subjects with COPD in GOLD stages 1-4) by immunohistochemistry. CXCR3-expressing T cells (CD8+ or CD4+) and B cells (CD20+) were topographically distributed at the follicle periphery and center, respectively. The percentage of immunohistochemically identified CXCR3+ cells increased progressively while proceeding from S through GOLD 3-4 (P < 0.01 for GOLD 3-4 vs. S). Moreover, the number of CXCR3+ follicular cells correlated inversely with FEV(1) (r = 0.60). The CXCR3 ligands IP-10 and Mig were expressed by several cell types in and around the follicle, including CD68+ dendritic cells/ macrophages, airway epithelial cells, endothelial cells, and T and B cells. These results suggest that LF form in the COPD lung by recruitment and/or retention of CXCR3-expressing T and B lymphocytes, which are attracted to the region through production of CXCR3 ligands IP-10 and Mig by lung structural and follicular cells.

  2. Structural basis for chemokine recognition and activation of a viral G protein-coupled receptor

    Energy Technology Data Exchange (ETDEWEB)

    Burg, John S.; Ingram, Jessica R.; Venkatakrishnan, A.J.; Jude, Kevin M.; Dukkipati, Abhiram; Feinberg, Evan N.; Angelini, Alessandro; Waghray, Deepa; Dror, Ron O.; Ploegh, Hidde L.; Garcia, K. Christopher (Stanford); (Stanford-MED); (Whitehead); (MIT)

    2015-03-05

    Chemokines are small proteins that function as immune modulators through activation of chemokine G protein-coupled receptors (GPCRs). Several viruses also encode chemokines and chemokine receptors to subvert the host immune response. How protein ligands activate GPCRs remains unknown. We report the crystal structure at 2.9 angstrom resolution of the human cytomegalovirus GPCR US28 in complex with the chemokine domain of human CX3CL1 (fractalkine). The globular body of CX3CL1 is perched on top of the US28 extracellular vestibule, whereas its amino terminus projects into the central core of US28. The transmembrane helices of US28 adopt an active-state-like conformation. Atomic-level simulations suggest that the agonist-independent activity of US28 may be due to an amino acid network evolved in the viral GPCR to destabilize the receptor’s inactive state.

  3. Combining the benefits of homogeneous and heterogeneous catalysis with tunable solvents and nearcritical water.

    Science.gov (United States)

    Fadhel, Ali Z; Pollet, Pamela; Liotta, Charles L; Eckert, Charles A

    2010-11-16

    The greatest advantage of heterogeneous catalysis is the ease of separation, while the disadvantages are often limited activity and selectivity. We report solvents that use tunable phase behavior to achieve homogeneous catalysis with ease of separation. Tunable solvents are homogeneous mixtures of water or polyethylene glycol with organics such as acetonitrile, dioxane, and THF that can be used for homogeneously catalyzed reactions. Modest pressures of a soluble gas, generally CO₂, achieve facile post-reaction heterogeneous separation of products from the catalyst. Examples shown here are rhodium-catalyzed hydroformylation of 1-octene and p-methylstyrene and palladium catalyzed C-O coupling to produce o-tolyl-3,5-xylyl ether and 3,5-di-tert-butylphenol. Both were successfully carried out in homogeneous tunable solvents followed by separation efficiencies of up to 99% with CO₂ pressures of 3 MPa. Further examples in tunable solvents are enzyme catalyzed reactions such as kinetic resolution of rac-1-phenylethyl acetate and hydrolysis of 2-phenylethyl acetate (2PEA) to 2-phenylethanol (2PE). Another tunable solvent is nearcritical water (NCW), whose unique properties offer advantages for developing sustainable alternatives to traditional processes. Some examples discussed are Friedel-Crafts alkylation and acylation, hydrolysis of benzoate esters, and water-catalyzed deprotection of N-Boc-protected amine compounds.

  4. Combining the Benefits of Homogeneous and Heterogeneous Catalysis with Tunable Solvents and Nearcritical Water

    Directory of Open Access Journals (Sweden)

    Charles A. Eckert

    2010-11-01

    Full Text Available The greatest advantage of heterogeneous catalysis is the ease of separation, while the disadvantages are often limited activity and selectivity.  We report solvents that use tunable phase behavior to achieve homogeneous catalysis with ease of separation.  Tunable solvents are homogeneous mixtures of water or polyethylene glycol with organics such as acetonitrile, dioxane, and THF that can be used for homogeneously catalyzed reactions. Modest pressures of a soluble gas, generally CO2, achieve facile post-reaction heterogeneous separation of products from the catalyst. Examples shown here are rhodium-catalyzed hydroformylation of 1-octene and p-methylstyrene and palladium catalyzed C-O coupling to produce o-tolyl-3,5-xylyl ether and 3,5-di-tert-butylphenol. Both were successfully carried out in homogeneous tunable solvents followed by separation efficiencies of up to 99% with CO2 pressures of 3 MPa. Further examples in tunable solvents are enzyme catalyzed reactions such as kinetic resolution of rac-1-phenylethyl acetate and hydrolysis of 2-phenylethyl acetate (2PEA to 2-phenylethanol (2PE. Another tunable solvent is nearcritical water (NCW, whose unique properties offer advantages for developing sustainable alternatives to traditional processes. Some examples discussed are Friedel-Crafts alkylation and acylation, hydrolysis of benzoate esters, and water-catalyzed deprotection of N-Boc-protected amine compounds.

  5. C-X-C motif chemokine 12 influences the development of extramedullary hematopoiesis in the spleens of myelofibrosis patients.

    Science.gov (United States)

    Wang, Xiaoli; Cho, Sool Yeon; Hu, Cing Siang; Chen, Daniel; Roboz, John; Hoffman, Ronald

    2015-02-01

    Myelofibrosis (MF) is characterized by the constitutive mobilization of hematopoietic stem cells (HSC) and hematopoietic progenitor cells (HPC) and the establishment of extramedullary hematopoiesis. The mechanisms underlying this abnormal HSC/HPC trafficking pattern remain poorly understood. We demonstrated that both splenic and peripheral blood (PB) MF CD34(+) cells equally share a defective ability to home to the marrow, but not to the spleens, of NOD/LtSz-Prkdc(scid) mice. This trafficking pattern could not be attributed to discordant expression of integrins or chemokine receptors other than the downregulation of C-X-C chemokine receptor type 4 by both PB and splenic MF CD34(+) cells. The number of both splenic MF CD34(+) cells and HPCs that migrated toward splenic MF plasma was, however, significantly greater than the number that migrated toward PB MF plasma. The concentration of the intact HSC/HPC chemoattractant C-X-C motif chemokine 12 (CXCL12) was greater in splenic MF plasma than PB MF plasma, as quantified using mass spectrometry. Functionally inactive truncated products of CXCL12, which are the product of proteolytic degradation by serine proteases, were detected at similar levels in both splenic and PB MF plasma. Treatment with an anti-CXCL12 neutralizing antibody resulted in a reduction in the degree of migration of splenic MF CD34(+) cells toward both PB and splenic MF plasma, validating the role of CXCL12 as a functional chemoattractant. Our data indicate that the MF splenic microenvironment is characterized by increased levels of intact, functional CXCL12, which contributes to the localization of MF CD34(+) cells to the spleen and the establishment of extramedullary hematopoiesis. Copyright © 2015 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  6. Loss of epidermal AP1 transcription factor function reduces filaggrin level, alters chemokine expression and produces an ichthyosis-related phenotype.

    Science.gov (United States)

    Young, Christina A; Rorke, Ellen A; Adhikary, Gautam; Xu, Wen; Eckert, Richard L

    2017-06-01

    AP1 transcription factors are important controllers of epidermal differentiation. Multiple family members are expressed in the epidermis in a differentiation-dependent manner, where they function to regulate gene expression. To study the role of AP1 factor signaling, TAM67 (dominant-negative c-jun) was inducibly expressed in the suprabasal epidermis. The TAM67-positive epidermis displays keratinocyte hyperproliferation, hyperkeratosis and parakeratosis, delayed differentiation, extensive subdermal vasodilation, nuclear loricrin localization, tail and digit pseudoainhum and reduced filaggrin level. These changes are associated with increased levels of IFNγ, CCL3, CCL5, CXCL9, CXCL10, and CXCL11 (Th1-associated chemokines), and CCL1, CCL2, CCL5 and CCL11 (Th2-associated chemokines) in the epidermis and serum. S100A8 and S100A9 protein levels are also markedly elevated. These changes in epidermal chemokine level are associated with increased levels of the corresponding chemokine mRNA. The largest increases were observed for CXCL9, CXCL10, CXCL11, and S100A8 and S100A9. To assess the role of CXCL9, CXCL10, CXCL11, which bind to CXCR3, on phenotype development, we expressed TAM67 in CXCR3 knockout mice. Using a similar strategy, we examine the role of S100A8 and S100A9. Surprisingly, loss of CXCR3 or S100A8/A9 did not attenuate phenotype development. These studies suggest that interfering with epidermal AP1 factor signaling initiates a loss of barrier function leading to enhanced epidermal chemokine production, but that CXCR3 and S100A8/A9 do not mediate the phenotypic response.

  7. The anti-inflammatory effect of low-dose radiation therapy involves a diminished CCL20 chemokine expression and granulocyte/endothelial cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Roedel, F. [Dept. of Radiotherapy and Oncology, Univ. of Frankfurt/Main (Germany); Hofmann, D.; Auer, J.; Roellinghoff, M.; Beuscher, H.U. [Inst. of Microbiology and Immunology, Univ. of Erlangen-Nuremberg, Erlangen (Germany); Keilholz, L. [Dept. of Radiotherapy, Clinical Center Bayreuth (Germany); Sauer, R. [Dept. of Radiooncology, Univ. of Erlangen-Nuremberg, Erlangen (Germany)

    2008-01-15

    Background and purpose: low-dose radiotherapy (LD-RT) is known to exert an anti-inflammatory effect, however, the underlying molecular mechanisms are not fully understood. The manipulation of polymorphonuclear neutrophil (PMN) function and/or recruitment may be one mechanism. Chemokines contribute to this process by creating a chemotactic gradient and by activating integrins. This study aimed to characterize the effect of LD-RT on CCL20 chemokine production and PMN/endothelial cell (EC) adhesion. Material and methods: the EC line EA.hy.926 was irradiated with doses ranging from 0 to 3 Gy and was co-cultured with PMNs from healthy donors either by direct cell contact or separated by transwell membrane chambers. CXCL8, CCL18, CCL20 chemokine and tumor necrosis factor-(TNF-){alpha} cytokine levels in supernatants were determined by ELISA and adhesion assays were performed. The functional impact of the cytokines transforming growth factor-(TGF-){beta}{sub 1} and TNF-{alpha} and of the intercellular adhesion molecule-(ICAM-)1 on CCL20 expression was analyzed by using neutralizing antibodies. Results: as compared to CXCL8 and CCL18, CCL20 chemokine secretion was found to be exclusively induced by a direct cell-cell contact between PMNs and EA.hy.926 ECs in a TNF-{alpha}-dependent, but ICAM-1-independent manner. Furthermore, irradiation with doses between 0.5 and 1 Gy resulted in a significant reduction of CCL20 release which was dependent on TGF-{beta}{sub 1} (p < 0.01). The decrease of CCL20 paralleled with a significant reduction in PMN/EA.hy.926 EC adhesion (p < 0.001). Conclusion: the modulation of CCL20 chemokine expression and PMN/EC adhesion adds a further facet to the plethora of mechanisms contributing to the anti-inflammatory efficacy of LD-RT. (orig.)

  8. Proinflammatory chemokines are major mediators of exuberant immune response associated with Influenza A (H1N1) pdm09 virus infection.

    Science.gov (United States)

    Thomas, Maria; Mani, Reeta Subramaniam; Philip, Mariamma; Adhikary, Ranjeeta; Joshi, Sangeeta; Revadi, Srigiri S; Buggi, Shashidhar; Desai, Anita; Vasanthapuram, Ravi

    2017-08-01

    In India, the case fatality ratio of the pandemic A (H1N1) pdm09 influenza was relatively higher when compared to seasonal Influenza A infection. Hypercytokinemia or "cytokine storm" has been previously implicated in the pathogenesis of other influenza viruses. The present study was undertaken to compare the cytokine profiles of A (H1N1) pdm09 influenza and seasonal H3 infection in Indian population and to correlate the findings with disease severity. Plasma levels of 18 cytokines/chemokines were measured by flow-cytometry using a bead based assay in patients infected with A (H1N1) pdm09 virus (n = 96) and Influenza A seasonal H3 virus (n = 30) categorised into mild, moderate, and severe groups along with healthy controls (n = 36). There was an overall trend indicating an exuberant cytokine/chemokine response in A (H1N1) pdm09 as compared to seasonal H3 influenza, which was more evident in severe cases, suggesting a role for these cytokines/chemokines in the pathogenesis of A(H1N1) pdm09. Increased levels of CXCL-8/IL-8, IL-10, IL-6, and IL-17A were seen in both A(H1N1) pdm09 influenza and seasonal H3 cases when compared to healthy controls. However, dysregulated production of proinflammatory chemokines was seen more pronounced in A (H1N1) pdm09 influenza cases as compared to seasonal H3 cases. This study has brought forth the potential role of chemokines as prognostic indicators of disease severity and outcome. Further research on modulating the host immune response to limit severity of the disease could help in the treatment and management of influenza. © 2017 Wiley Periodicals, Inc.

  9. Narrowband tunable laser for uranium-233 cleanup process

    International Nuclear Information System (INIS)

    Singh, Sunita; Sridhar, G.; Rawat, V.S.; Kawde, Nitin; Sinha, A.K.; Bhatt, S.; Gantayet, L.M.

    2009-01-01

    Design, development and technology demonstration of proto type Single Longitudinal Mode pulsed tunable laser is reported in this work. The tunable laser has a narrow bandwidth less than 400 MHz required for isotopic clean up of 233 U. (author)

  10. The role of CC chemokine receptor 5 in antiviral immunity

    DEFF Research Database (Denmark)

    Nansen, Anneline; Christensen, Jan Pravsgaard; Andreasen, Susanne Ørding

    2002-01-01

    response to lymphocytic choriomeningitis virus in mice lacking CCR5 (CCR5(-/-) mice). This infection is a classical model for studying antiviral immunity, and influx of CCR5-expressing CD8(+) T cells and macrophages is essential for both virus control and associated immunopathology. Results showed......The CC chemokine receptor CCR5 is an important coreceptor for human immunodeficiency virus (HIV), and there is a major thrust to develop anti-CCR5-based therapies for HIV-1. However, it is not known whether CCR5 is critical for a normal antiviral T-cell response. This study investigated the immune...... influence of CCR5 was found, not even when viral peptide was used as local trigger instead of live virus. Finally, long-term CD8(+) T cell-mediated immune surveillance was efficiently sustained in CCR5(-/-) mice. Taken together, these results indicate that expression of CCR5 is not critical for T cell...

  11. Chemokine receptor CCR5 in interferon-treated multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, F; Kristiansen, Thomas Birk; Wittenhagen, P

    2007-01-01

    OBJECTIVE: To study the relationship between CC chemokine receptor CCR5 expression and disease activity in multiple sclerosis (MS) patients treated with beta-interferon (IFN-beta). METHODS: The CCR5 Delta32 allele and a CCR5 promoter polymorphism associated with cell surface expression of CCR5 were...... analyzed in 109 patients with relapsing-remitting MS treated with IFN-beta who were followed clinically for 1 year. Cellular CCR5 expression was measured by flow cytometry. RESULTS: Patients with MS had a higher percentage of CCR5-positive monocytes than healthy controls. Increased monocyte expression...... of CCR5 correlated weakly with an increased short-term relapse risk but there was no relationship between CCR5 Delta32 allele and CCR5 promoter polymorphism genotypes and relapse risk. CONCLUSIONS: The results do not support a major role of CCR5 in the pathogenesis of relapses in MS patients treated...

  12. The chemokine receptor CCR5 in the central nervous system.

    Science.gov (United States)

    Sorce, Silvia; Myburgh, Renier; Krause, Karl-Heinz

    2011-02-01

    The expression and the role of the chemokine receptor CCR5 have been mainly studied in the context of HIV infection. However, this protein is also expressed in the brain, where it can be crucial in determining the outcome in response to different insults. CCR5 expression can be deleterious or protective in controlling the progression of certain infections in the CNS, but it is also emerging that it could play a role in non-infectious diseases. In particular, it appears that, in addition to modulating immune responses, CCR5 can influence neuronal survival. Here, we summarize the present knowledge about the expression of CCR5 in the brain and highlight recent findings suggesting its possible involvement in neuroprotective mechanisms. Copyright © 2011. Published by Elsevier Ltd.

  13. Platelets and their chemokines in atherosclerosis – clinical applications

    Directory of Open Access Journals (Sweden)

    Philipp evon Hundelshausen

    2014-08-01

    Full Text Available The concept of platelets as important players in the process of atherogenesis has become increasingly accepted due to accumulating experimental and clinical evidence. Despite the progress in understanding the molecular details of atherosclerosis, particularly by using animal models, the inflammatory and thrombotic roles of activated platelet s especially in the human system remain difficult to dissect, as often only the complications of atherosclerosis i.e. stroke and myocardial infarction are definable but not the plaque burden.Platelet indices including platelet count and mean platelet volume and soluble mediators released by activated platelets are associated with atherosclerosis. The chemokine CXCL4 has multiple atherogenic activities e.g. altering the differentiation of T cells and macrophages by inhibiting neutrophil and monocyte apoptosis and by increasing the uptake of oxLDL and synergizing with CCL5. CCL5 is released and deposited on endothelium by activated platelets thereby triggering atherogenic monocyte recruitment, which can be attenuated by blocking the corresponding chemokine receptor CCR5. Atheroprotective and plaque stabilizing properties are attributed to CXCL12, which plays an important role in regenerative processes by attracting progenitor cells. Its release from luminal attached platelets accelerates endothelial healing after injury. Platelet surface molecules GPIIb/IIIa, GP1bα, P-selectin, JAM-A and the CD40/CD40L dyade are crucially involved in the interaction with endothelial cells, leukocytes and matrix molecules affecting atherogenesis. Beyond the effects on the arterial inflammatory infiltrate, platelets affect cholesterol metabolism by binding, modifying and endocytosing LDL particles via their scavenger receptors and contribute to the formation of lipid laden macrophages. Current medical therapies for the prevention of atherosclerotic therapies enable the elucidation of mechanisms linking platelets to inflammation

  14. Distinct Cytokine and Chemokine Profiles in Autism Spectrum Disorders.

    Science.gov (United States)

    Han, Yvonne M Y; Cheung, Winnie K Y; Wong, Chun Kwok; Sze, Sophia L; Cheng, Timmy W S; Yeung, Michael K; Chan, Agnes S

    2017-01-01

    Previous studies have shown that immunological factors are involved in the pathogenesis of autism spectrum disorders (ASDs). However, this research has been conducted almost exclusively in Western contexts, and only a handful of studies on immune measures have been conducted in Asian populations, such as Chinese populations. The present study examined whether immunological abnormalities are associated with cognitive deficits and problem behaviors in Chinese children with ASD and whether these children show different immunological profiles. Thirteen typically developing (TD) children and 22 children with ASD, aged 6-17 years, participated voluntarily in the study. Executive functions and short-term memory were measured using neuropsychological tests, and behavioral measures were assessed using parent ratings. The children were also assessed on immunological measures, specifically, the levels of cytokines and chemokines in the blood serum. Children with ASD showed greater deficits in cognitive functions, as well as altered levels of immunological measures, including CCL2, CCL5, and CXCL9 levels, compared to TD children, and the cognitive functions and associated behavioral deficits of children with ASD were significantly associated with different immunological measures. The children were further sub-classified into ASD with only autistic features (ASD-only) or ASD comorbid with attention deficit hyperactivity disorder (ASD + ADHD). The comorbidity results showed that there were no differences between the two groups of ASD children in any of the cognitive or behavioral measures. However, the results pertaining to immunological measures showed that the children with ASD-only and ASD + ADHD exhibited distinct cytokine and chemokine profiles and that abnormal immunologic function was associated with cognitive functions and inattention/hyperactivity symptoms. These results support the notion that altered immune functions may play a role in the selective

  15. Are cytokines and chemokines suitable biomarkers for Takayasu arteritis?

    Science.gov (United States)

    Savioli, Bruna; Abdulahad, Wayel H; Brouwer, Elisabeth; Kallenberg, Cees G M; de Souza, Alexandre Wagner Silva

    2017-10-01

    There is a growing need for disease related biomarkers in Takayasu arteritis (TA).The assessment of pro-inflammatory cytokines and chemokines in TA may provide a better understanding of its pathophysiology, and circulating levels of these mediators may act as biomarkers of disease activity. Serum level of interleukin 6 (IL-6) is a potential biomarker for TA, which is mostly associated with TA status and disease activity. Associations between TA and serum/plasma levels of other cytokines are less clear. mRNA expression of IL-4 and tumor necrosis factor α (TNFα) are constitutively increased in peripheral blood mononuclear cells (PBMC) from TA patients and the expression of both cytokines increases even more after PBMC stimulation in vitro, while the expression of IL-10 mRNA decreases. In addition, circulating T cells from TA patients produce increased levels of both Th1- and Th17-related cytokines upon in vitro stimulation. In the aorta from TA patients, an increased expression of interferon γ (IFNγ), IL-6, IL-12 and IL-17 has been described. Regarding circulating chemokines in TA, serum/plasma levels of IL-8 (CXCL8), CCL2 and CCL5 were shown to be elevated in TA patients compared with healthy controls as well as in TA patients with active disease compared with those in remission. Serum IL-6 seems to be the best biomarker for disease state and disease activity in TA and increased Th1 and Th17 responses are predominant in the pathophysiology of TA. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Modulation of monocyte/macrophage-derived cytokine and chemokine profile by persistent Hepatitis C virus (HCV infection leads to chronic inflammation

    Directory of Open Access Journals (Sweden)

    Penelope Mavromara

    2012-02-01

    Full Text Available HCV infection presents a major public health problem, with more than 170 million people infected worldwide. Chronicity and persistence of infection constitute the hallmark of the disease. Although HCV is a hepatotropic virus, subsets of immune cells have been found to be permissive to infection and viral replication. Peripheral blood monocytes, attracted to the site of infection and differentiated into macrophages, and resident hepatic macrophages, known as Kupffer cells, are important mediators of innate immunity, through production of several chemokines and cytokines in addition to their phagocytic activity. HCV proteins have been shown to modulate the cytokine and chemokine production profile of monocytes/macrophages, as it is suggested by both in vitro and clinical studies. This modified expression profile appears crucial for the establishment of aberrant inflammation that leads to liver cirrhosis and hepatocellular carcinoma.

  17. Inhibition of chemokine-glycosaminoglycan interactions in donor tissue reduces mouse allograft vasculopathy and transplant rejection.

    Directory of Open Access Journals (Sweden)

    Erbin Dai

    2010-05-01

    Full Text Available Binding of chemokines to glycosaminoglycans (GAGs is classically described as initiating inflammatory cell migration and creating tissue chemokine gradients that direct local leukocyte chemotaxis into damaged or transplanted tissues. While chemokine-receptor binding has been extensively studied during allograft transplantation, effects of glycosaminoglycan (GAG interactions with chemokines on transplant longevity are less well known. Here we examine the impact of interrupting chemokine-GAG interactions and chemokine-receptor interactions, both locally and systemically, on vascular disease in allografts.Analysis of GAG or CC chemokine receptor 2 (CCR2 deficiency were coupled with the infusion of viral chemokine modulating proteins (CMPs in mouse aortic allograft transplants (n = 239 mice. Inflammatory cell invasion and neointimal hyperplasia were significantly reduced in N-deacetylase-N-sulfotransferase-1 (Ndst1(f/fTekCre(+ heparan sulfate (GAG-deficient (Ndst1(-/-, p<0.044 and CCR2-deficient (Ccr2(-/-, p<0.04 donor transplants. Donor tissue GAG or CCR2 deficiency markedly reduced inflammation and vasculopathy, whereas recipient deficiencies did not. Treatment with three CMPs was also investigated; Poxviral M-T1 blocks CC chemokine receptor binding, M-T7 blocks C, CC, and CXC GAG binding, and herpesviral M3 binds receptor and GAG binding for all classes. M-T7 reduced intimal hyperplasia in wild type (WT (Ccr2(+/+, p< or =0.003 and Ccr2(-/-, pchemokine-GAG interactions, even in the absence of chemokine-receptor blockade, is a highly effective approach to reduction of

  18. Highly Tunable Narrow Bandpass MEMS Filter

    KAUST Repository

    Hafiz, Md Abdullah Al

    2017-07-07

    We demonstrate a proof-of-concept highly tunable narrow bandpass filter based on electrothermally and electrostatically actuated microelectromechanical-system (MEMS) resonators. The device consists of two mechanically uncoupled clamped-clamped arch resonators, designed such that their resonance frequencies are independently tuned to obtain the desired narrow passband. Through the electrothermal and electrostatic actuation, the stiffness of the structures is highly tunable. We experimentally demonstrate significant percentage tuning (~125%) of the filter center frequency by varying the applied electrothermal voltages to the resonating structures, while maintaining a narrow passband of 550 ± 50 Hz, a stopband rejection of >17 dB, and a passband ripple ≤ 2.5 dB. An analytical model based on the Euler-Bernoulli beam theory is used to confirm the behavior of the filter, and the origin of the high tunability using electrothermal actuation is discussed.

  19. Adaptive Tunable Laser Spectrometer for Space Applications

    Science.gov (United States)

    Flesch, Gregory; Keymeulen, Didier

    2010-01-01

    An architecture and process for the rapid prototyping and subsequent development of an adaptive tunable laser absorption spectrometer (TLS) are described. Our digital hardware/firmware/software platform is both reconfigurable at design time as well as autonomously adaptive in real-time for both post-integration and post-launch situations. The design expands the range of viable target environments and enhances tunable laser spectrometer performance in extreme and even unpredictable environments. Through rapid prototyping with a commercial RTOS/FPGA platform, we have implemented a fully operational tunable laser spectrometer (using a highly sensitive second harmonic technique). With this prototype, we have demonstrated autonomous real-time adaptivity in the lab with simulated extreme environments.

  20. Perovskite Superlattices as Tunable Microwave Devices

    Science.gov (United States)

    Christen, H. M.; Harshavardhan, K. S.

    2003-01-01

    Experiments have shown that superlattices that comprise alternating epitaxial layers of dissimilar paraelectric perovskites can exhibit large changes in permittivity with the application of electric fields. The superlattices are potentially useful as electrically tunable dielectric components of such microwave devices as filters and phase shifters. The present superlattice approach differs fundamentally from the prior use of homogeneous, isotropic mixtures of base materials and dopants. A superlattice can comprise layers of two or more perovskites in any suitable sequence (e.g., ABAB..., ABCDABCD..., ABACABACA...). Even though a single layer of one of the perovskites by itself is not tunable, the compositions and sequence of the layers can be chosen so that (1) the superlattice exhibits low microwave loss and (2) the interfacial interaction between at least two of the perovskites in the superlattice renders either the entire superlattice or else at least one of the perovskites tunable.

  1. Structural Insights into the Interaction Between a Potent Anti-Inflammatory Protein, Viral CC Chemokine Inhibitor (vCCI), and the Human CC Chemokine, Eotaxin-1

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Nai-Wei; Gao, Yong; Schill, Megan S.; Isern, Nancy G.; Dupureur, Cynthia M.; Liwang, Patricia J.

    2014-01-30

    Chemokines play important roles in the immune system, not only recruiting leukocytes to the site of infection and inflammation but also guiding cell homing and cell development. The soluble poxvirusencoded protein vCCI, a CC chemokine inhibitor, can bind to human CC chemokines tightly to impair the host immune defense. This protein has no known homologs in eukaryotes, and may represent a potent method to stop inflammation. Previously, our structure of the vCCI:MIP-1β complex indicated that vCCI uses negatively charged residues in β-sheet II to interact with positively charged residues in the MIP-1βN-terminus, 20’s region and 40’s loop. However, the interactions between vCCI and other CC chemokines have not yet been fully explored. Here, we used NMR and fluorescence anisotropy to study the interaction between vCCI and eotaxin-1 (CCL11), another CC chemokine that is an important factor in the asthma response. NMR results reveal that the binding pattern is very similar to the vCCI:MIP-1βcomplex, and suggest that electrostatic interactions provide a major contribution to binding. Fluorescence anisotropy results on variants of eotaxin-1 further confirm the critical roles of the charged residues in eotaxin. Compared to wild-type eotaxin, single, double, or triple mutations at these critical charged residues weaken the binding. One exception is the K47A mutation that exhibits increased affinity for vCCI, which can be explained structurally. In addition, the binding affinity between vCCI and other wild type CC chemokines, MCP-1, MIP-1β and RANTES, were determined as 1.09 nM, 1.16 nM, and 0.22 nM, respectively. To our knowledge, this is the first work quantitatively measuring the binding affinity between vCCI and different CC chemokines.

  2. Tunable Cu Enrichment Enables Designer Syngas Electrosynthesis from CO2.

    Science.gov (United States)

    Ross, Michael B; Dinh, Cao Thang; Li, Yifan; Kim, Dohyung; De Luna, Phil; Sargent, Edward H; Yang, Peidong

    2017-07-12

    Using renewable energy to recycle CO 2 provides an opportunity to both reduce net CO 2 emissions and synthesize fuels and chemical feedstocks. It is of central importance to design electrocatalysts that both are efficient and can access a tunable spectrum of products. Syngas, a mixture of carbon monoxide (CO) and hydrogen (H 2 ), is an important chemical precursor that can be converted downstream into small molecules or larger hydrocarbons by fermentation or thermochemistry. Many processes that utilize syngas require different syngas compositions: we therefore pursued the rational design of a family of electrocatalysts that can be programmed to synthesize different designer syngas ratios. We utilize in situ surface-enhanced Raman spectroscopy and first-principles density functional theory calculations to develop a systematic picture of CO* binding on Cu-enriched Au surface model systems. Insights from these model systems are then translated to nanostructured electrocatalysts, whereby controlled Cu enrichment enables tunable syngas production while maintaining current densities greater than 20 mA/cm 2 .

  3. Tunable high-gradient permanent magnet quadrupoles

    CERN Document Server

    Shepherd, B J A; Marks, N; Collomb, N A; Stokes, D G; Modena, M; Struik, M; Bartalesi, A

    2014-01-01

    A novel type of highly tunable permanent magnet (PM) based quadrupole has been designed by the ZEPTO collaboration. A prototype of the design (ZEPTO-Q1), intended to match the specification for the CLIC Drive Beam Decelerator, was built and magnetically measured at Daresbury Laboratory and CERN. The prototype utilises two pairs of PMs which move in opposite directions along a single vertical axis to produce a quadrupole gradient variable between 15 and 60 T/m. The prototype meets CLIC's challenging specification in terms of the strength and tunability of the magnet.

  4. Tunable Optofluidic Third Order DFB Dye Laser

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Kristensen, Anders

    2007-01-01

    We present a low-threshold polymer-based nanofluidic dye laser. By employing a third order DFB laser resonator, we demonstrate a threshold fluence of ~7 muJ/mm2 and a tunability of 45 nm using a single laser dye......We present a low-threshold polymer-based nanofluidic dye laser. By employing a third order DFB laser resonator, we demonstrate a threshold fluence of ~7 muJ/mm2 and a tunability of 45 nm using a single laser dye...

  5. Brain microvascular pericytes are immunoactive in culture: cytokine, chemokine, nitric oxide, and LRP-1 expression in response to lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Erickson Michelle A

    2011-10-01

    Full Text Available Abstract Background Brain microvascular pericytes are important constituents of the neurovascular unit. These cells are physically the closest cells to the microvascular endothelial cells in brain capillaries. They significantly contribute to the induction and maintenance of the barrier functions of the blood-brain barrier. However, very little is known about their immune activities or their roles in neuroinflammation. Here, we focused on the immunological profile of brain pericytes in culture in the quiescent and immune-challenged state by studying their production of immune mediators such as nitric oxide (NO, cytokines, and chemokines. We also examined the effects of immune challenge on pericyte expression of low density lipoprotein receptor-related protein-1 (LRP-1, a protein involved in the processing of amyloid precursor protein and the brain-to-blood efflux of amyloid-β peptide. Methods Supernatants were collected from primary cultures of mouse brain pericytes. Release of nitric oxide (NO was measured by the Griess reaction and the level of S-nitrosylation of pericyte proteins measured with a modified "biotin-switch" method. Specific mitogen-activated protein kinase (MAPK pathway inhibitors were used to determine involvement of these pathways on NO production. Cytokines and chemokines were analyzed by multianalyte technology. The expression of both subunits of LRP-1 was analyzed by western blot. Results Lipopolysaccharide (LPS induced release of NO by pericytes in a dose-dependent manner that was mediated through MAPK pathways. Nitrative stress resulted in S-nitrosylation of cellular proteins. Eighteen of twenty-three cytokines measured were released constitutively by pericytes or with stimulation by LPS, including interleukin (IL-12, IL-13, IL-9, IL-10, granulocyte-colony stimulating factor, granulocyte macrophage-colony stimulating factor, eotaxin, chemokine (C-C motif ligand (CCL-3, and CCL-4. Pericyte expressions of both subunits of

  6. Human Cytomegalovirus Encoded Homologs of Cytokines, Chemokines and their Receptors: Roles in Immunomodulation

    Science.gov (United States)

    McSharry, Brian P.; Avdic, Selmir; Slobedman, Barry

    2012-01-01

    Human cytomegalovirus (HCMV), the largest human herpesvirus, infects a majority of the world’s population. Like all herpesviruses, following primary productive infection, HCMV establishes a life-long latent infection, from which it can reactivate years later to produce new, infectious virus. Despite the presence of a massive and sustained anti-HCMV immune response, productively infected individuals can shed virus for extended periods of time, and once latent infection is established, it is never cleared from the host. It has been proposed that HCMV must therefore encode functions which help to evade immune mediated clearance during productive virus replication and latency. Molecular mimicry is a strategy used by many viruses to subvert and regulate anti-viral immunity and HCMV has hijacked/developed a range of functions that imitate host encoded immunomodulatory proteins. This review will focus on the HCMV encoded homologs of cellular cytokines/chemokines and their receptors, with an emphasis on how these virus encoded homologs may facilitate viral evasion of immune clearance. PMID:23202490

  7. Human Cytomegalovirus Encoded Homologs of Cytokines, Chemokines and their Receptors: Roles in Immunomodulation

    Directory of Open Access Journals (Sweden)

    Brian P. McSharry

    2012-10-01

    Full Text Available Human cytomegalovirus (HCMV, the largest human herpesvirus, infects a majority of the world’s population. Like all herpesviruses, following primary productive infection, HCMV establishes a life-long latent infection, from which it can reactivate years later to produce new, infectious virus. Despite the presence of a massive and sustained anti-HCMV immune response, productively infected individuals can shed virus for extended periods of time, and once latent infection is established, it is never cleared from the host. It has been proposed that HCMV must therefore encode functions which help to evade immune mediated clearance during productive virus replication and latency. Molecular mimicry is a strategy used by many viruses to subvert and regulate anti-viral immunity and HCMV has hijacked/developed a range of functions that imitate host encoded immunomodulatory proteins. This review will focus on the HCMV encoded homologs of cellular cytokines/chemokines and their receptors, with an emphasis on how these virus encoded homologs may facilitate viral evasion of immune clearance.

  8. Immune response CC Chemokines, CCL2 and CCL5 are associated with Pulmonary Sarcoidosis

    LENUS (Irish Health Repository)

    Palchevskiy, Vyacheslav

    2011-04-04

    Abstract Background Pulmonary sarcoidosis involves an intense leukocyte infiltration of the lung with the formation of non-necrotizing granulomas. CC chemokines (chemokine (C-C motif) ligand 2 (CCL2)-CCL5) are chemoattractants of mononuclear cells and act through seven transmembrane G-coupled receptors. Previous studies have demonstrated conflicting results with regard to the associations of these chemokines with sarcoidosis. In an effort to clarify previous discrepancies, we performed the largest observational study to date of CC chemokines in bronchoalveolar lavage fluid (BALF) from patients with pulmonary sarcoidosis. Results BALF chemokine levels from 72 patients affected by pulmonary sarcoidosis were analyzed by enzyme-linked immunosorbent assay (ELISA) and compared to 8 healthy volunteers. BALF CCL3 and CCL4 levels from pulmonary sarcoidosis patients were not increased compared to controls. However, CCL2 and CCL5 levels were elevated, and subgroup analysis showed higher levels of both chemokines in all stages of pulmonary sarcoidosis. CCL2, CCL5, CC chemokine receptor type 1 (CCR1), CCR2 and CCR3 were expressed from mononuclear cells forming the lung granulomas, while CCR5 was only found on mast cells. Conclusions These data suggest that CCL2 and CCL5 are important mediators in recruiting CCR1, CCR2, and CCR3 expressing mononuclear cells as well as CCR5-expressing mast cells during all stages of pulmonary sarcoidosis.

  9. Enhanced monocyte migration to CXCR3 and CCR5 chemokines in COPD.

    Science.gov (United States)

    Costa, Claudia; Traves, Suzanne L; Tudhope, Susan J; Fenwick, Peter S; Belchamber, Kylie B R; Russell, Richard E K; Barnes, Peter J; Donnelly, Louise E

    2016-04-01

    Chronic obstructive pulmonary disease (COPD) patients exhibit chronic inflammation, both in the lung parenchyma and the airways, which is characterised by an increased infiltration of macrophages and T-lymphocytes, particularly CD8+ cells. Both cell types can express chemokine (C-X-C motif) receptor (CXCR)3 and C-C chemokine receptor 5 and the relevant chemokines for these receptors are elevated in COPD. The aim of this study was to compare chemotactic responses of lymphocytes and monocytes of nonsmokers, smokers and COPD patients towards CXCR3 ligands and chemokine (C-C motif) ligand (CCL)5. Migration of peripheral blood mononuclear cells, monocytes and lymphocytes from nonsmokers, smokers and COPD patients toward CXCR3 chemokines and CCL5 was analysed using chemotaxis assays. There was increased migration of peripheral blood mononuclear cells from COPD patients towards all chemokines studied when compared with nonsmokers and smokers. Both lymphocytes and monocytes contributed to this enhanced response, which was not explained by increased receptor expression. However, isolated lymphocytes failed to migrate and isolated monocytes from COPD patients lost their enhanced migratory capacity. Both monocytes and lymphocytes cooperate to enhance migration towards CXCR3 chemokines and CCL5. This may contribute to increased numbers of macrophages and T-cells in the lungs of COPD patients, and inhibition of recruitment using selective antagonists might be a treatment to reduce the inflammatory response in COPD.

  10. Impact of genetic variations in C-C chemokine receptors and ligands on infectious diseases.

    Science.gov (United States)

    Qidwai, Tabish; Khan, M Y

    2016-10-01

    Chemokine receptors and ligands are crucial for extensive immune response against infectious diseases such as malaria, leishmaniasis, HIV and tuberculosis and a wide variety of other diseases. Role of chemokines are evidenced in the activation and regulation of immune cell migration which is important for immune response against diseases. Outcome of disease is determined by complex interaction among pathogen, host genetic variability and surrounding milieu. Variation in expression or function of chemokines caused by genetic polymorphisms could be associated with attenuated immune responses. Exploration of chemokine genetic polymorphisms in therapeutic response, gene regulation and disease outcome is important. Infectious agents in human host alter the expression of chemokines via epigenetic alterations and thus contribute to disease pathogenesis. Although some fragmentary data are available on chemokine genetic variations and their contribution in diseases, no unequivocal conclusion has been arrived as yet. We therefore, aim to investigate the association of CCR5-CCL5 and CCR2-CCL2 genetic polymorphisms with different infectious diseases, transcriptional regulation of gene, disease severity and response to therapy. Furthermore, the role of epigenetics in genes related to chemokines and infectious disease are also discussed. Copyright © 2016 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  11. [Circulating levels of Th1- and Th2-chemokines increase in patients with early syphilis].

    Science.gov (United States)

    Zhu, Anyou; Wang, Chenchen; Sun, Hong; Han, Hongfang; Wang, Fengchao; Zhang, Lunjun; Hu, Jianguo

    2017-03-01

    Objective To study the changes of plasma T helper type I (Th1)-and Th2-chemokine levels and analyze their roles in immune response and pathogenesis of early syphilis. Methods Heparin-anticoagulated peripheral blood was collected from 56 patients with early syphilis (primary syphilis, PS, n=22; secondary syphilis, SS, n=34) and healthy controls (HC, n=20). The levels of plasma Th1 chemokines including monokine induced by interferon-γ (MIG), interferon-γ inducible protein-10 (IP-10), interferon-inducible T-cell α chemoattractant (I-TAC) and Th2 chemokines including thymus-and activation-regulated chemokine (TARC), macrophage-derived chemokine (MDC) were examined using ELISA. Meanwhile, the levels of plasma cytokines (IFN-γ, IL-4 and TNF-α) and C-reactive protein (CRP) were detected. Results The levels of plasma MIG, IP-10 and TARC, MDC in the patients with PS and SS were significantly higher than those in the healthy controls. Moreover, the level of I-TAC in the patients with SS was significantly higher than that in the healthy controls. In particular, the levels of plasma Th1 chemokines (MIG, IP-10 and I-TAC) in the patients with SS significantly increased compared with those with PS. However, no significant difference was observed in the levels of plasma Th2 chemokines (TARC and MDC) between the patients with PS and SS. The correlation analysis showed that there was an obvious positive correlation between IP-10 and MIG, I-TAC, IFN-γ, TNF-α levels in the patients with early syphilis. Furthermore, the levels of MIG and IP-10 were positively associated with plasma CRP in the patients with early syphilis. Conclusion Both Th1 chemokines and Th2 chemokines are involved in immune response of early syphilis.

  12. Circulating levels of Th1 and Th2 chemokines in patients with ankylosing spondylitis.

    Science.gov (United States)

    Wang, Jianing; Zhao, Qi; Wang, Gaoya; Yang, Chunshu; Xu, Yong; Li, Yujia; Yang, Pingting

    2016-05-01

    Although chemokines are critical elements for the selective attraction and activation of various leukocyte subsets in the inflammatory process, there are few findings concerning T helper (Th) 1 or Th2 chemokines in ankylosing spondylitis (AS). This study was designed to determine whether serum levels of chemokines that are preferentially chemotactic for Th1 (IFN-gamma-inducible protein-10, IP-10/CXCL10) and Th2 (thymus and activation regulated chemokine, TARC/CCL17) and (macrophage derived chemokine, MDC/CCL22) cells were elevated and whether they correlated with the clinical features in patients with AS. Forty-two patients with axial AS and 25 healthy controls were enrolled into the study. Serum levels of chemokines (IP-10, TARC and MDC) and cytokines (IFN-γ, TNF-α and IL-4) were examined using ELISA. The disease activity was evaluated by Ankylosing Spondylitis Disease Activity Score (ASDAS). Serum levels of IgG, IgA, IgM, erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) were measured. Serum chemokine levels of IP-10, TARC and MDC were significantly higher in patients with AS than those in healthy controls. Serum cytokine levels of IFN-γ, TNF-α were also significantly increased, but the levels of IL-4 were not. Furthermore, IP-10 levels in AS patients correlated with ESP, CRP and ASDAS, while the levels of TARC and MDC did not correlate with these clinic indexes. Correlation analysis between the levels of chemokines and cytokines revealed a positive correlation between IP-10 and TNF-α. The levels of both Th1 and Th2 chemokines decreased under blockade of TNF-α. Our results suggest that both a Th1 chemoattractant IP-10 and Th2 chemoattractants, TARC and MDC, cooperatively play a role in the development of AS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Reduced Fc∊RI-Mediated Release of Asthma-Promoting Cytokines and Chemokines from Human Basophils during Omalizumab Therapy

    Science.gov (United States)

    Oliver, Janet M.; Tarleton, Christy A.; Gilmartin, Laura; Archibeque, Tereassa; Qualls, Clifford R.; Diehl, Lorena; Wilson, Bridget S.; Schuyler, Mark

    2010-01-01

    Background Treating asthmatics with the humanized IgE-scavenging antibody, omalizumab (rhuMAb-E25, Xolair®), reduces airways inflammation and asthma symptoms. Previously, omalizumab was shown to cause a dramatic and reversible loss of cell surface high-affinity IgE receptors, Fc∊RI, from the peripheral blood basophils of asthmatics. The consequences of receptor loss for the Fc∊RI-mediated synthesis and release of cytokines implicated in allergic asthma have not been examined. Methods Fifteen asthmatic volunteers each received omalizumab for 12 weeks. Peripheral blood basophils were isolated before, during, 2 weeks after and 6 months after omalizumab. Basophils were assayed for the basal and anti-IgE-stimulated release of cytokines, chemokines and histamine. Pooled data were analyzed by repeated measures ANOVA and by paired t tests. Results Anti-IgE-stimulated human basophils synthesize and release Th2 cytokines (IL-4, IL-13) and chemokines (IL-8, RANTES). The anti-IgE-stimulated release of IL-4, IL-13 and IL-8 was reduced during omalizumab treatment and returned to pretreatment levels after omalizumab withdrawal. Omalizumab did not alter basophil histamine levels or basal and anti-IgE-stimulated histamine release. Conclusions Omalizumab may reduce asthma symptoms in part by suppressing the Fc∊RI-mediated production by basophils of Th2 cytokines and selected chemokines. Anti-IgE-stimulated basophil cytokine synthesis appears more sensitive than histamine release to the loss of Fc∊RI caused by omalizumab treatment. PMID:19844128

  14. The CXC chemokine cCAF stimulates precocious deposition of ECM molecules by wound fibroblasts, accelerating development of granulation tissue

    Directory of Open Access Journals (Sweden)

    Li Qi-Jing

    2002-06-01

    Full Text Available Abstract Background During wound repair, fibroblasts orchestrate replacement of the provisional matrix formed during clotting with tenascin, cellular fibronectin and collagen III. These, in turn, are critical for migration of endothelial cells, keratinocytes and additional fibroblasts into the wound site. Fibroblasts are also important in the deposition of collagen I during scar formation. The CXC chemokine chicken Chemotactic and Angiogenic Factor (cCAF, is highly expressed by fibroblasts after wounding and during development of the granulation tissue, especially in areas where extracellular matrix (ECM is abundant. We hypothesized that cCAF stimulates fibroblasts to produce these matrix molecules. Results Here we show that this chemokine can stimulate precocious deposition of tenascin, fibronectin and collagen I, but not collagen III. Studies in culture and in vivo show that tenascin stimulation can also be achieved by the N-terminal 15 aas of the protein and occurs at the level of gene expression. In contrast, stimulation of fibronectin and collagen I both require the entire molecule and do not involve changes in gene expression. Fibronectin accumulation appears to be linked to tenascin production, and collagen I to decreased MMP-1 levels. In addition, cCAF is chemotactic for fibroblasts and accelerates their migration. Conclusions These previously unknown functions for chemokines suggest that cCAF, the chicken orthologue of human IL-8, enhances healing by rapidly chemoattracting fibroblasts into the wound site and stimulating them to produce ECM molecules, leading to precocious development of granulation tissue. This acceleration of the repair process may have important application to healing of impaired wounds.

  15. Inhibition of cytokine gene expression and induction of chemokine genes in non-lymphatic cells infected with SARS coronavirus

    Directory of Open Access Journals (Sweden)

    Weber Friedemann

    2006-03-01

    Full Text Available Abstract Background SARS coronavirus (SARS-CoV is the etiologic agent of the severe acute respiratory syndrome. SARS-CoV mainly infects tissues of non-lymphatic origin, and the cytokine profile of those cells can determine the course of disease. Here, we investigated the cytokine response of two human non-lymphatic cell lines, Caco-2 and HEK 293, which are fully permissive for SARS-CoV. Results A comparison with established cytokine-inducing viruses revealed that SARS-CoV only weakly triggered a cytokine response. In particular, SARS-CoV did not activate significant transcription of the interferons IFN-α, IFN-β, IFN-λ1, IFN-λ2/3, as well as of the interferon-induced antiviral genes ISG56 and MxA, the chemokine RANTES and the interleukine IL-6. Interestingly, however, SARS-CoV strongly induced the chemokines IP-10 and IL-8 in the colon carcinoma cell line Caco-2, but not in the embryonic kidney cell line 293. Conclusion Our data indicate that SARS-CoV suppresses the antiviral cytokine system of non-immune cells to a large extent, thus buying time for dissemination in the host. However, synthesis of IP-10 and IL-8, which are established markers for acute-stage SARS, escapes the virus-induced silencing at least in some cell types. Therefore, the progressive infiltration of immune cells into the infected lungs observed in SARS patients could be due to the production of these chemokines by the infected tissue cells.

  16. A tunable electromechanical Helmholtz resonator

    Science.gov (United States)

    Liu, Fei

    Acoustic liners are used in turbofan engine nacelles for the suppression of engine noise. For a given engine, there are different optimum impedance distributions associated with take-off, cut-back, and approach flight conditions. The impedance of conventional acoustic liners is fixed for a given geometry, and conventional active liner approaches are impractical. This project addresses the need for a tunable impedance through the development of an electromechanical Helmholtz resonator (EMHR). The device consists of a Helmholtz resonator with the standard rigid backplate replaced by a compliant piezoelectric composite. Analytical models (i.e., a lumped element model (LEM) and a transfer matrix (TM) representation of the EMHR) are developed to predict the acoustic behavior of the EMHR. The EMHR is experimentally investigated using the standard two-microphone method (TMM). The measurement results validate both the LEM and the TM of the EMHR. Good agreement between predicted and measured impedance is obtained. Short- and open-circuit loads define the limits of the tuning range using resistive and capacitive loads. There is approximately a 9% tuning limit under these conditions for the non-optimized resonator configuration studied. Inductive shunt loads result in a 3 degree-of-freedom (DOF) system and an enhanced tuning range of over 47% that is not restricted by the short- and open-circuit limits. Damping coefficient measurements for a piezoelectric backplate in a vacuum chamber are performed and indicate that the damping is dominated by structural damping losses. A Pareto optimization design based on models of the EMHR is performed with non-inductive loads. The EMHR with non-inductive loads has 2DOF and two resonant frequencies. The tuning ranges of the two resonant frequencies of the EMHR with non-inductive loads cannot be optimized simultaneously, so a trade-off (Pareto solution) must be reached. The Pareto solution shows how design trade-offs can be used to satisfy

  17. IFN-gamma-induced chemokines synergize with pertussis toxin to promote T cell entry to the central nervous system

    DEFF Research Database (Denmark)

    Millward, Jason M; Caruso, Maria; Campbell, Iain L

    2007-01-01

    for the chemokines CXCL10 and CCL5, to levels comparable to those seen during experimental autoimmune encephalomyelitis. Other chemokines (CXCL2, CCL2, CCL3) were not induced. Mice lacking the IFN-gammaR showed no response, and a control viral vector did not induce chemokine expression. Chemokine expression...... was predominantly localized to meningeal and ependymal cells, and was also seen in astrocytes and microglia. IFN-gamma-induced chemokine expression did not lead to inflammation. However, when pertussis toxin was given i.p. to mice infected with the IFN-gamma vector, there was a dramatic increase in the number of T...

  18. Tumorigenesis induced by the HHV8-encoded chemokine receptor requires ligand modulation of high constitutive activity

    DEFF Research Database (Denmark)

    Holst, P J; Rosenkilde, M M; Manfra, D

    2001-01-01

    sarcoma (KS). Here we demonstrate that several lines of mice carrying mutated receptors deficient in either constitutive activity or chemokine regulation fail to develop KS-like disease. In addition, animals expressing a receptor that preserves chemokine binding and constitutive activity but that does...... not respond to agonist stimulation have a much lower incidence of angiogenic lesions and tumors. These results indicate that induction of the KS-like disease in transgenic mice by ORF74 requires not only high constitutive signaling activity but also modulation of this activity by endogenous chemokines....

  19. Frequency tunable surface magneto elastic waves

    NARCIS (Netherlands)

    Janusonis, J.; Chang, C. L.; van Loosdrecht, P. H. M.; Tobey, R. I.

    2015-01-01

    We use the transient grating technique to generate narrow-band, widely tunable, in-plane surface magnetoelastic waves in a nickel film. We monitor both the structural deformation of the acoustic wave and the accompanying magnetic precession and witness their intimate coupling in the time domain.

  20. Tunable structures and modulators for THz light

    Czech Academy of Sciences Publication Activity Database

    Kužel, Petr; Kadlec, Filip

    2008-01-01

    Roč. 9, - (2008), 197-214 ISSN 1631-0705 R&D Projects: GA AV ČR KJB100100512; GA MŠk LC512 Institutional research plan: CEZ:AV0Z10100520 Keywords : terahertz radiation * tunable devices * photonic crystals * strontium titanate * gallium arsenide Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.164, year: 2008

  1. Tunable metamaterials fabricated by fiber drawing

    DEFF Research Database (Denmark)

    Fleming, Simon; Stefani, Alessio; Tang, Xiaoli

    2017-01-01

    We demonstrate a practical scalable approach to the fabrication of tunable metamaterials. Designed for terahertz (THz) wavelengths, the metamaterial is comprised of polyurethane filled with an array of indium wires using the well-established fiber drawing technique. Modification of the dimensions...

  2. Absolute Distance Measurements with Tunable Semiconductor Laser

    Czech Academy of Sciences Publication Activity Database

    Mikel, Břetislav; Číp, Ondřej; Lazar, Josef

    T118, - (2005), s. 41-44 ISSN 0031-8949 R&D Projects: GA AV ČR(CZ) IAB2065001 Keywords : tunable laser * absolute interferometer Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.661, year: 2004

  3. 130-nm tunable grating-mirror VCSEL

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2014-01-01

    We have reported that a combination of the high-index-contrast grating (HCG) mirror as movable mirror and the extended cavity configuration with an antireflection layer can provide a tuning wavelength range of 100 nm for tunable VCSELs. Here, we report that using the air-coupled cavity...

  4. Tunability of optofluidic distributed feedback dye lasers

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Kristensen, Anders

    2007-01-01

    We investigate the tunability of optofluidic distributed feedback (DFB) dye lasers. The lasers rely on light-confinement in a nano-structured polymer film where an array of nanofluidic channels constitutes a third order Bragg grating DFB laser resonator with a central phase-shift. The lasers...

  5. Tunable Water-based Microwave Metasurface

    DEFF Research Database (Denmark)

    Kapitanova, Polina; Odit, Mikhail; Dobrykh, Dmitry

    2017-01-01

    A water-based dynamically tunable microwave metasurface is developed and experimentally investigated. A simple approach to tune the metasurface properties by changing the shape of water-based unit cells by gravitation force is proposed. The transmission spectra of the metasurface for linear...... angle. The proposed approach can be used to design cheap metasurfaces for electromagnetic wave control in the microwave frequency range....

  6. Principal component analysis of the cytokine and chemokine response to human traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Adel Helmy

    Full Text Available There is a growing realisation that neuro-inflammation plays a fundamental role in the pathology of Traumatic Brain Injury (TBI. This has led to the search for biomarkers that reflect these underlying inflammatory processes using techniques such as cerebral microdialysis. The interpretation of such biomarker data has been limited by the statistical methods used. When analysing data of this sort the multiple putative interactions between mediators need to be considered as well as the timing of production and high degree of statistical co-variance in levels of these mediators. Here we present a cytokine and chemokine dataset from human brain following human traumatic brain injury and use principal component analysis and partial least squares discriminant analysis to demonstrate the pattern of production following TBI, distinct phases of the humoral inflammatory response and the differing patterns of response in brain and in peripheral blood. This technique has the added advantage of making no assumptions about the Relative Recovery (RR of microdialysis derived parameters. Taken together these techniques can be used in complex microdialysis datasets to summarise the data succinctly and generate hypotheses for future study.

  7. Differential effects of Radix Paeoniae Rubra (Chishao on cytokine and chemokine expression inducible by mycobacteria

    Directory of Open Access Journals (Sweden)

    Li James

    2011-03-01

    Full Text Available Abstract Background Upon initial infection with mycobacteria, macrophages secrete multiple cytokines and chemokines, including interleukin-6 (IL-6, IL-8 and tumor necrosis factor-α (TNF-α, to mediate host immune responses against the pathogen. Mycobacteria also induce the production of IL-10 via PKR activation in primary human monocytes and macrophages. As an anti-inflammatory cytokine, over-expression of IL-10 may contribute to mycobacterial evasion of the host immunity. Radix Paeoniae Rubra (RPR, Chishao, a Chinese medicinal herb with potentials of anti-inflammatory, hepatoprotective and neuroprotective effects, is used to treat tuberculosis. This study investigates the immunoregulatory effects of RPR on primary human blood macrophages (PBMac during mycobacterial infection. Methods The interaction of Bacillus Calmette-Guerin (BCG with PBMac was used as an experimental model. A series of procedures involving solvent extraction and fractionation were used to isolate bioactive constituents in RPR. RPR-EA-S1, a fraction with potent immunoregulatory effects was obtained with a bioactivity guided fractionation scheme. PBMac were treated with crude RPR extracts or RPR-EA-S1 before BCG stimulation. The expression levels of IL-6, IL-8, IL-10 and TNF-α were measured by qPCR and ELISA. Western blotting was used to determine the effects of RPR-EA-S1 on signaling kinases and transcriptional factors in the BCG-activated PBMac. Results In BCG-stimulated macrophages, crude RPR extracts and fraction RPR-EA-S1 specifically inhibited IL-10 production while enhanced IL-8 expression at both mRNA and protein levels without affecting the expressions of IL-6 and TNF-α. Inhibition of BCG-induced IL-10 expression by RPR-EA-S1 occurred in a dose- and time-dependent manner. RPR-EA-S1 did not affect the phosphorylation of cellular protein kinases including MAPK, Akt and GSK3β. Instead, it suppressed the degradation of IκBα in the cytoplasm and inhibited the

  8. Tunable Microwave Filter Design Using Thin-Film Ferroelectric Varactors

    Science.gov (United States)

    Haridasan, Vrinda

    Military, space, and consumer-based communication markets alike are moving towards multi-functional, multi-mode, and portable transceiver units. Ferroelectric-based tunable filter designs in RF front-ends are a relatively new area of research that provides a potential solution to support wideband and compact transceiver units. This work presents design methodologies developed to optimize a tunable filter design for system-level integration, and to improve the performance of a ferroelectric-based tunable bandpass filter. An investigative approach to find the origins of high insertion loss exhibited by these filters is also undertaken. A system-aware design guideline and figure of merit for ferroelectric-based tunable band- pass filters is developed. The guideline does not constrain the filter bandwidth as long as it falls within the range of the analog bandwidth of a system's analog to digital converter. A figure of merit (FOM) that optimizes filter design for a specific application is presented. It considers the worst-case filter performance parameters and a tuning sensitivity term that captures the relation between frequency tunability and the underlying material tunability. A non-tunable parasitic fringe capacitance associated with ferroelectric-based planar capacitors is confirmed by simulated and measured results. The fringe capacitance is an appreciable proportion of the tunable capacitance at frequencies of X-band and higher. As ferroelectric-based tunable capac- itors form tunable resonators in the filter design, a proportionally higher fringe capacitance reduces the capacitance tunability which in turn reduces the frequency tunability of the filter. Methods to reduce the fringe capacitance can thus increase frequency tunability or indirectly reduce the filter insertion-loss by trading off the increased tunability achieved to lower loss. A new two-pole tunable filter topology with high frequency tunability (> 30%), steep filter skirts, wide stopband

  9. A study of chemokines, chemokine receptors and interleukin-6 in patients with panic disorder, personality disorders and their co-morbidity.

    Science.gov (United States)

    Ogłodek, Ewa A; Szota, Anna M; Just, Marek J; Szromek, Adam R; Araszkiewicz, Aleksander

    2016-08-01

    Stress may induce inflammatory changes in the immune system and activate pro-inflammatory cytokines and their receptors by activating the hypothalamic-pituitary-adrenal axis. 460 hospitalized patients with panic disorders (PD) and/or personality disorders (P) were studied. The study group comprised subjects with PD, avoidant personality disorder (APD), borderline personality disorder (BPD), obsessive-compulsive personality disorder (OCPD), and concomitant (PD+APD; PD+BPD; PD+OCPD). Each study group consisted of 60 subjects (30 females and 30 males). The control group included 20 females and 20 males without any history of mental disorder. ELISA was used to assess the levels of chemokines: CCL-5/RANTES (regulated on activation, normal T-cell expressed and secreted), CXCL-12/SDF-1 (stromal derived factor), their receptors CXCR-5 (C-C chemokine receptor type-5), CXCR-4 (chemokine C-X-C motif receptor-4), and IL-6. Statistically significant differences in the levels of CCL-5 and CCR-5 were revealed between all study groups. The greatest differences were found between the groups with PD+OCPD and PD+APD. Moreover, concomitance of PD with P significantly increased the level of chemokines and their receptors in all study groups versus the subjects with P alone. The results of the study show differences between the groups. To be specific, inflammatory markers were more elevated in the study groups than the controls. Therefore, chemokines and chemokine receptors may be used as inflammatory markers in patients with PD co-existent with P to indicate disease severity. PD was found to be a factor in maintaining inflammatory activity in the immune system in patients with P. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  10. Comparison of chemokines (CCL-5 and SDF-1), chemokine receptors (CCR-5 and CXCR-4) and IL-6 levels in patients with different severities of depression.

    Science.gov (United States)

    Ogłodek, Ewa A; Szota, Anna; Just, Marek J; Moś, Danuta; Araszkiewicz, Aleksander

    2014-10-01

    Depression can be perceived as a psychoneuroimmunological disorder in which cytokines affecting the body's neurochemical and neuroendocrine functions play an important role. Among cytokines, chemokines participating in activation of the inflammatory response are considered to be crucial. 160 men and women were enrolled in the study. 120 of them were diagnosed with various types of depression. The mean age was 45.2 ± 4.5 years (range: 19-47 years). The control group consisted of 40 healthy individuals. The average age in this group was 42.4 ± 4.1 years. Plasma levels of chemokines and their receptors (CCL-5 - RANTES and CXCR-5, SDF-1 and CXCR-4), as well as of IL-6, were assessed by ELISA. There was an increase in SDF-1 and CCL-5 levels in women and men with different severities of depression, versus the control group. Also, an increase in the IL-6 levels, CXCR4 and CCR-5 receptors was observed in both women and men with all types of depression. Levels of SDF-1 and CCL-5 chemokines, as well as of CCR-5 and CXCR4 chemokine receptors, were higher in women than in men. The results of this study indicate the need for assessment of CCL-5 and SDF-1 chemokines levels, as they are likely markers of developing depression. Early measurement of these chemokines levels may be helpful in choosing the best pharmacotherapy. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  11. Chemokines and Heart Disease: A Network Connecting Cardiovascular Biology to Immune and Autonomic Nervous Systems

    Science.gov (United States)

    Dusi, Veronica; Ghidoni, Alice; Ravera, Alice; De Ferrari, Gaetano M.; Calvillo, Laura

    2016-01-01

    Among the chemokines discovered to date, nineteen are presently considered to be relevant in heart disease and are involved in all stages of cardiovascular response to injury. Chemokines are interesting as biomarkers to predict risk of cardiovascular events in apparently healthy people and as possible therapeutic targets. Moreover, they could have a role as mediators of crosstalk between immune and cardiovascular system, since they seem to act as a “working-network” in deep linkage with the autonomic nervous system. In this paper we will describe the single chemokines more involved in heart diseases; then we will present a comprehensive perspective of them as a complex network connecting the cardiovascular system to both the immune and the autonomic nervous systems. Finally, some recent evidences indicating chemokines as a possible new tool to predict cardiovascular risk will be described. PMID:27242392

  12. Extracellular Disulfide Bridges Serve Different Purposes in Two Homologous Chemokine Receptors, CCR1 and CCR5

    DEFF Research Database (Denmark)

    Rummel, Pia Cwarzko; Thiele, Stefanie; Hansen, Laerke Smidt

    2013-01-01

    interact with residues in the main binding crevice, we show that the 7TM-conserved bridge is essential for all types of ligand-mediated activation, whereas the chemokine-conserved bridge is dispensable for small-molecule activation in CCR1. However, in striking contrast to previous studies in other...... chemokine receptors, high affinity CCL3 chemokine binding was maintained in the absence of either bridge. In CCR5, the closest homolog to CCR1, a completely different dependency was observed as neither chemokine activation nor binding was retained in the absence of either bridge. In contrast, both bridges...... where dispensable for small-molecule activation. This indicates that CCR5 activity is independent of extracellular regions, whereas in CCR1, preserved folding of ECL2 is necessary for activation. These results indicate that conserved structural features in a receptor subgroup, does not necessarily...

  13. submitter Emerging importance of chemokine receptor CXCR3 and its ligands in cardiovascular diseases

    CERN Document Server

    Altara, R; Brandao, R D; Zeidan, A; Booz, G W; Zouein, F A

    2016-01-01

    The CXC chemokines, CXCL4, -9, -10, -11, CXCL4L1, and the CC chemokine CCL21, activate CXC chemokine receptor 3 (CXCR3), a cell-surface G protein-coupled receptor expressed mainly by Th1 cells, cytotoxic T (Tc) cells and NK cells that have a key role in immunity and inflammation. However, CXCR3 is also expressed by vascular smooth muscle and endothelial cells, and appears to be important in controlling physiological vascular function. In the last decade, evidence from pre-clinical and clinical studies has revealed the participation of CXCR3 and its ligands in multiple cardiovascular diseases (CVDs) of different aetiologies including atherosclerosis, hypertension, cardiac hypertrophy and heart failure, as well as in heart transplant rejection and transplant coronary artery disease (CAD). CXCR3 ligands have also proven to be valid biomarkers for the development of heart failure and left ventricular dysfunction, suggesting an underlining pathophysiological relation between levels of these chemokines and the deve...

  14. Effects of montelukast on M2-related cytokine and chemokine in M2 macrophages

    Directory of Open Access Journals (Sweden)

    Yi-Ching Lin

    2018-02-01

    Conclusion: Montelukast suppressed LPS-induced M2-related cytokines and chemokines in alternatively activated macrophages, and the effects might be mediated through the MAPK-p38 and NF-κB-p65 pathways.

  15. Chemokine Signaling during Midline Epithelial Seam Disintegration Facilitates Palatal Fusion

    Directory of Open Access Journals (Sweden)

    Christiaan M. Suttorp

    2017-10-01

    Full Text Available Disintegration of the midline epithelial seam (MES is crucial for palatal fusion, and failure results in cleft palate. Palatal fusion and wound repair share many common signaling pathways related to epithelial-mesenchymal cross-talk. We postulate that chemokine CXCL11, its receptor CXCR3, and the cytoprotective enzyme heme oxygenase (HO, which are crucial during wound repair, also play a decisive role in MES disintegration. Fetal growth restriction and craniofacial abnormalities were present in HO-2 knockout (KO mice without effects on palatal fusion. CXCL11 and CXCR3 were highly expressed in the disintegrating MES in both wild-type and HO-2 KO animals. Multiple apoptotic DNA fragments were present within the disintegrating MES and phagocytized by recruited CXCR3-positive wt and HO-2 KO macrophages. Macrophages located near the MES were HO-1-positive, and more HO-1-positive cells were present in HO-2 KO mice compared to wild-type. This study of embryonic and palatal development provided evidence that supports the hypothesis that the MES itself plays a prominent role in palatal fusion by orchestrating epithelial apoptosis and macrophage recruitment via CXCL11-CXCR3 signaling.

  16. Chemokines: a new dendritic cell signal for T cell activation

    Directory of Open Access Journals (Sweden)

    Christoph A Thaiss

    2011-08-01

    Full Text Available Dendritic cells (DCs are the main inducers and regulators of cytotoxic T lymphocyte (CTL responses against viruses and tumors. One checkpoint to avoid misguided CTL activation, which might damage healthy cells of the body, is the necessity for multiple activation signals, involving both antigenic as well as additional signals that reflect the presence of pathogens. DCs provide both signals when activated by ligands of pattern recognition receptors and licensed by helper lymphocytes. Recently, it has been established that such T cell licensing can be facilitated by CD4+ T helper cells (classical licensing or by NKT cells (alternative licensing. Licensing regulates the DC/CTL cross-talk at multiple layers. Direct recruitment of CTLs through chemokines released by licensed DCs has recently emerged as a common theme and has a crucial impact on the efficiency of CTL responses. Here, we discuss recent advances in our understanding of DC licensing for cross-priming and implications for the temporal and spatial regulation underlying this process. Future vaccination strategies will benefit from a deeper insight into the mechanisms that govern CTL activation.

  17. Feasibility of the use of combinatorial chemokine arrays to study blood and CSF in multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Keith R Edwards

    Full Text Available Meningeal inflammation, including the presence of semi-organized tertiary lymphoid tissue, has been associated with cortical pathology at autopsy in secondary progressive multiple sclerosis (SPMS. Accessible and robust biochemical markers of cortical inflammation for use in SPMS clinical trials are needed. Increased levels of chemokines in the cerebrospinal fluid (CSF can report on inflammatory processes occurring in the cerebral cortex of MS patients. A multiplexed chemokine array that included BAFF, a high sensitivity CXCL13 assay and composite chemokine scores were developed to explore differences in lymphoid (CXCL12, CXCL13, CCL19 and CCL21 and inflammatory (CCL2, CXCL9, CXCL10 and CXCL11 chemokines in a small pilot study. Paired CSF and serum samples were obtained from healthy controls (n=12, relapsing-remitting MS (RRMS (n=21 and SPMS (N=12. A subset of the RRMS patients (n = 9 was assessed upon disease exacerbation and 1 month later following iv methylprednisone. SPMS patients were sampled twice to ascertain stability. Both lymphoid and inflammatory chemokines were elevated in RRMS and SPMS with the highest levels found in the active RRMS group. Inflammatory and lymphoid chemokine signatures were defined and generally correlated with each other. This small exploratory clinical study shows the feasibility of measuring complex and potentially more robust chemokine signatures in the CSF of MS patients during clinical trials. No differences were found between stable RRMS and SPMS. Future trials with larger patient cohorts with this chemokine array are needed to further characterize the differences, or the lack thereof, between stable RRMS and SPMS.

  18. Chemokines and Cytokines as Salivary Biomarkers for the Early Diagnosis of Oral Cancer

    OpenAIRE

    Gareema Prasad; Michael McCullough

    2013-01-01

    Chemokines have been shown to be important in both inflammation and carcinogenesis and are able to be measured in saliva with relatively robust methods including enzyme-linked immunosorbent assays (ELISA). Thus it has been hypothesized that patients with oral cancer and oral potentially malignant lesions will have elevated levels of specific chemokines in oral fluids and that this may be used as a marker of both the early detection of malignant disease and progression to malignancy. The conce...

  19. New insights into the subversion of the chemokine system by poxviruses.

    Science.gov (United States)

    Alcami, Antonio

    2007-04-01

    Viruses encode immune evasion mechanisms to survive in the immunocompetent host. Chemokines mediate the migration of immune cells and their critical role in immunity is emphasized by the numerous virus-encoded strategies to modulate their activity. Evidence published in this issue of the European Journal of Immunology uncovers novel mechanisms encoded by vaccinia virus to inhibit the chemokine-mediated migration of DC, an important event in the initiation of the immune response to viral infections.

  20. Modified Huo-Luo-Xiao-Ling Dan Suppresses Adjuvant Arthritis by Inhibiting Chemokines and Matrix-Degrading Enzymes

    Directory of Open Access Journals (Sweden)

    Siddaraju M. Nanjundaiah

    2012-01-01

    Full Text Available Rheumatoid arthritis (RA is a chronic inflammatory disease affecting the joints that can lead to deformities and disability. The prolonged use of conventionally used drugs is associated with severe adverse reactions. Therefore, safer and less expensive therapeutic products are continually being sought. Huo-Luo-Xiao-Ling dan (HLXL, a traditional Chinese herbal mixture, and its modified versions possess anti-arthritic activity. In this paper, we examined the influence of modified HLXL on two of the key mediators of arthritic inflammation and tissue damage, namely, chemokines and matrix-metalloproteinases (MMPs in the rat adjuvant-induced arthritis (AA model of RA. We treated arthritic Lewis rats with HLXL (2.3 g/kg by daily gavage beginning at the onset of AA. The control rats received the vehicle. At the peak phase of AA, rats were sacrificed and their draining lymph node cells (LNC and spleen adherent cells (SAC were tested. The HLXL-treated rats showed a significant reduction in the levels of chemokines (RANTES, MCP-1, MIP-1α, and GRO/KC, MMPs (MMP 2 and 9, as well as cytokines (IL-6 and IL-17 that induce them, compared to the control vehicle-treated rats. Thus, HLXL controls arthritis in part by suppressing the mediators of immune pathology, and it might offer a promising alternative/adjunct treatment for RA.

  1. Pathophysiological roles of microvascular alterations in pulmonary inflammatory diseases: possible implications of tumor necrosis factor-alpha and CXC chemokines

    Directory of Open Access Journals (Sweden)

    Kanami Orihara

    2008-10-01

    Full Text Available Kanami Orihara, Akio MatsudaDepartment of Allergy and Immunology, National Research Institute for Child Health and Development, Tokyo, JapanAbstract: Chronic obstructive pulmonary disease (COPD and bronchial asthma are common respiratory diseases that are caused by chronic infl ammation of the airways. Although these diseases are mediated by substantially distinct immunological reactions, especially in mild cases, they both show increased numbers of neutrophils, increased production of tumor necrosis factor-alpha (TNF-α and poor responses to corticosteroids, particularly in patients with severe diseases. These immunological alterations may contribute strongly to airway structural changes, commonly referred to as airway remodeling. Microvascular alterations, a component of airway remodeling and caused by chronic inflammation, are observed and appear to be clinically involved in both diseases. It has been well established that vascular endothelial growth factor (VEGF plays important roles in the airway microvascular alterations in mild and moderate cases of both diseases, but any role that VEGF might play in severe cases of these diseases remains unclear. Here, we review recent research findings, including our own data, and discuss the possibility that TNF-α and its associated CXC chemokines play roles in microvascular alterations that are even more crucial than those of VEGF in patients with severe COPD or asthma.Keywords: TNF-α, CXC chemokines, corticosteroid, pulmonary microvessels, COPD, asthma

  2. Gene Expression Profiling of Chemokines and Their Receptors in Low and High Grade Astrocytoma

    Science.gov (United States)

    Sharma, Ira; Singh, Avninder; Sharma, Karam Chand; Saxena, Sunita

    2017-05-01

    Background: Despite intense interest in molecular characterization and searches for novel therapeutic targets, the glioblastoma remains a formidable clinical challenge. Among many contributors to gliomagenesis, chemokines have drawn special attention due to their involvement in a plethora of biological processes and pathological conditions. In the present study we aimed to elucidate any pro-gliomagenic chemokine axis and probable roles in development of glioblastoma multiforme (GBM). Method: An array of 84 chemokines, chemokine receptors and related genes were studied by real time PCR with comparison between low grade astrocytoma (diffuse astrocytoma – grade II) and high grade astrocytoma (glioblastoma multiforme – grade IV). Gene ontology analysis and database mining were performed to funnel down the important axis in GBM followed by validation at the protein level by immunohistochemistry on tissue microarrays. Results: Gene expression and gene ontology analysis identified CXCL8 as an important chemokine which was more frequently up-regulated in GBM as compared to diffuse astrocytoma. Further we demonstrated localization of CXCL8 and its receptors in glioblastoma possibly affecting autocrine and paracrine signalling that promotes tumor cell proliferation and neovascularisation with vascular mimicry. Conclusion: From these results CXCL8 appears to be an important gliomagenic chemokine which may be involved in GBM growth by promoting tumor cell proliferation and neovascularization via vascular mimicry. Further in vitro and in vivo investigations are required to explore its potential candidature in anti-GBM therapy. Creative Commons Attribution License

  3. Chemokines in neuron-glial cell interaction and pathogenesis of neuropathic pain.

    Science.gov (United States)

    Zhang, Zhi-Jun; Jiang, Bao-Chun; Gao, Yong-Jing

    2017-09-01

    Neuropathic pain resulting from damage or dysfunction of the nervous system is a highly debilitating chronic pain state and is often resistant to currently available treatments. It has become clear that neuroinflammation, mainly mediated by proinflammatory cytokines and chemokines, plays an important role in the establishment and maintenance of neuropathic pain. Chemokines were originally identified as regulators of peripheral immune cell trafficking and were also expressed in neurons and glial cells in the central nervous system. In recent years, accumulating studies have revealed the expression, distribution and function of chemokines in the spinal cord under chronic pain conditions. In this review, we provide evidence showing that several chemokines are upregulated after peripheral nerve injury and contribute to the pathogenesis of neuropathic pain via different forms of neuron-glia interaction in the spinal cord. First, chemokine CX3CL1 is expressed in primary afferents and spinal neurons and induces microglial activation via its microglial receptor CX3CR1 (neuron-to-microglia signaling). Second, CCL2 and CXCL1 are expressed in spinal astrocytes and act on CCR2 and CXCR2 in spinal neurons to increase excitatory synaptic transmission (astrocyte-to-neuron signaling). Third, we recently identified that CXCL13 is highly upregulated in spinal neurons after spinal nerve ligation and induces spinal astrocyte activation via receptor CXCR5 (neuron-to-astrocyte signaling). Strategies that target chemokine-mediated neuron-glia interactions may lead to novel therapies for the treatment of neuropathic pain.

  4. Serum cytokine and chemokine profiles in neonates with meconium aspiration syndrome.

    Science.gov (United States)

    Okazaki, Kaoru; Kondo, Masatoshi; Kato, Masahiko; Kakinuma, Ryota; Nishida, Akira; Noda, Masahiro; Taniguchi, Kiyosu; Kimura, Hirokazu

    2008-04-01

    Various inflammatory cytokines and chemokines are thought to be associated with the pathophysiology of meconium aspiration syndrome. To clarify any such association, we compared various serum cytokine and chemokine profiles in patients with and without meconium aspiration syndrome. Using a highly sensitive fluorescence microsphere method, 17 types of cytokines and chemokines in sera were measured in 11 neonatal patients with meconium aspiration syndrome, 16 neonatal patients without meconium aspiration syndrome, and 9 healthy children. The concentrations of 8 types of proinflammatory cytokines and chemokines were significantly higher in the meconium aspiration syndrome group than in healthy controls: interleukin-1beta, interleukin-6, interleukin-8, granulocyte-macrophage colony-stimulating factor, granulocyte colony-stimulating factor, interferon-gamma, macrophage inflammatory protein-1beta, and tumor necrosis factor-alpha. Six types of proinflammatory cytokines and chemokines were significantly higher in the meconium aspiration syndrome group than in the nonmeconium aspiration syndrome group: interleukin-6, interleukin-8, granulocyte-macrophage colony-stimulating factor, granulocyte colony-stimulating factor, interferon-gamma, and tumor necrosis factor-alpha. Serum concentrations of interleukin-10 (anti-inflammatory cytokine) in the meconium aspiration syndrome group were higher than those in both the nonmeconium aspiration syndrome group and healthy children group (P = .007 and 0.001, respectively). Most types of proinflammatory cytokines and chemokines in sera of neonates with meconium aspiration syndrome were higher than those without meconium aspiration syndrome, giving support to the suggestion that elevated levels are associated with the pathogenesis of meconium aspiration syndrome.

  5. MEMS for Tunable Photonic Metamaterial Applications

    Science.gov (United States)

    Stark, Thomas

    Photonic metamaterials are materials whose optical properties are derived from artificially-structured sub-wavelength unit cells, rather than from the bulk properties of the constituent materials. Examples of metamaterials include plasmonic materials, negative index materials, and electromagnetic cloaks. While advances in simulation tools and nanofabrication methods have allowed this field to grow over the past several decades, many challenges still exist. This thesis addresses two of these challenges: fabrication of photonic metamaterials with tunable responses and high-throughput nanofabrication methods for these materials. The design, fabrication, and optical characterization of a microelectromechanical systems (MEMS) tunable plasmonic spectrometer are presented. An array of holes in a gold film, with plasmon resonance in the mid-infrared, is suspended above a gold reflector, forming a Fabry-Perot interferometer of tunable length. The spectra exhibit the convolution of extraordinary optical transmission through the holes and Fabry-Perot resonances. Using MEMS, the interferometer length is modulated from 1.7 mum to 21.67 mum , thereby tuning the free spectral range from about 2900 wavenumbers to 230.7 wavenumbers and shifting the reflection minima and maxima across the infrared. Due to its broad spectral tunability in the fingerprint region of the mid-infrared, this device shows promise as a tunable biological sensing device. To address the issue of high-throughput, high-resolution fabrication of optical metamaterials, atomic calligraphy, a MEMS-based dynamic stencil lithography technique for resist-free fabrication of photonic metamaterials on unconventional substrates, has been developed. The MEMS consists of a moveable stencil, which can be actuated with nanometer precision using electrostatic comb drive actuators. A fabrication method and flip chip method have been developed, enabling evaporation of metals through the device handle for fabrication on an

  6. Murine macrophage response from peritoneal cavity requires signals mediated by chemokine receptor CCR-2 during Staphylococcus aureus infection.

    Science.gov (United States)

    Nandi, Ajeya; Bishayi, Biswadev

    2016-02-01

    C-C chemokine receptor-2 (CCR-2) is a cognate receptor for monocyte chemotactic protein-1 (MCP-1), and recent studies revealed that MCP-1-CCR-2 signaling is involved in several inflammatory diseases characterized by macrophage infiltration. Currently, there is no study on the involvement of CCR-2 in the killing of S. aureus by macrophages of Swiss albino mice, and its substantial role in host defense against S. aureus infection in murine macrophages is still unclear. Therefore, the present study was aimed to investigate the functional and interactive role of CCR-2 and MCP-1 in regulating peritoneal macrophage responses with respect to acute S. aureus infection. We found that phagocytosis of S. aureus can serve as an important stimulus for MCP-1 production by peritoneal macrophages, which is dependent directly or indirectly on cytokines, reactive oxygen species and nitric oxide. Neutralization of CCR-2 in macrophages leads to increased production of IL-10 and decreased production of IFN-γ and IL-6. In CCR-2 blocked macrophages, pretreatment with specific blocker of NF-κB or p38-MAPK causes elevation in MCP-1 level and subsequent downregulation of CCR-2 itself. We speculate that CCR-2 is involved in S. aureus-induced MCP-1 production via NF-κB or p38-MAPK signaling. We also hypothesized that unnaturally high level of MCP-1 that build up upon CCR-2 neutralization might allow promiscuous binding to one or more other chemokine receptors, a situation that would not occur in CCR-2 non-neutralized condition. This may be the plausible explanation for such observed Th-2 response in CCR-2 blocked macrophages infected with S. aureus in the present study.

  7. The role of CXC chemokine ligand (CXCL)12-CXC chemokine receptor (CXCR)4 signalling in the migration of neural stem cells towards a brain tumour

    NARCIS (Netherlands)

    van der Meulen, A. A. E.; Biber, K.; Lukovac, S.; Balasubramaniyan, V.; den Dunnen, W. F. A.; Boddeke, H. W. G. M.; Mooij, J. J. A.

    2009-01-01

    Aims: It has been shown that neural stem cells (NSCs) migrate towards areas of brain injury or brain tumours and that NSCs have the capacity to track infiltrating tumour cells. The possible mechanism behind the migratory behaviour of NSCs is not yet completely understood. As chemokines are involved

  8. Identification and expression analysis of an atypical chemokine receptor-2 (ACKR2)/CC chemokine binding protein-2 (CCBP2) in rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Qi, Zhitao; Jiang, Yousheng; Holland, Jason W; Nie, Pin; Secombes, Christopher J; Wang, Tiehui

    2015-06-01

    Atypical chemokine receptors (ACKRs) have emerged as key components of the chemokine system, with an essential regulatory function in innate and adaptive immune responses and inflammation. In mammals ACKR2 is a 'scavenging' receptor for inflammatory CC chemokines and plays a central role in the resolution of in vivo inflammatory responses. An ACKR2 like gene has been identified and cloned in rainbow trout (Teleostei) in the present study, enabling the further identification of this molecule in another group of ray-finned teleost fish (Holostei), in a lobe-finned fish (Sarcopterygii-coelacanth), and in reptiles. The identity of these ACKR2 molecules is supported by their conserved structure, and by phylogenetic tree and synteny analysis. Trout ACKR2 is highly expressed in spleen and head kidney, suggesting a homeostatic role of this receptor in limiting the availability of its potential ligands. Trout ACKR2 expression can be modulated in vivo by bacterial and parasitic infections, and in vitro by PAMPs (poly I:C and peptidoglycan) and cytokines (IL-6, TNF-α, IFN-γ and IL-21) in a time dependent manner. These patterns of expression and modulation suggest that trout ACKR2 is regulated in a complex way and has an important role in control of the chemokine network in fish as in mammals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Tunable Sparse Network Coding for Multicast Networks

    DEFF Research Database (Denmark)

    Feizi, Soheil; Roetter, Daniel Enrique Lucani; Sørensen, Chres Wiant

    2014-01-01

    This paper shows the potential and key enabling mechanisms for tunable sparse network coding, a scheme in which the density of network coded packets varies during a transmission session. At the beginning of a transmission session, sparsely coded packets are transmitted, which benefits decoding...... complexity. At the end of a transmission, when receivers have accumulated degrees of freedom, coding density is increased. We propose a family of tunable sparse network codes (TSNCs) for multicast erasure networks with a controllable trade-off between completion time performance to decoding complexity....... Coding density tuning can be performed by designing time-dependent coding matrices. In multicast networks, this tuning can be performed within the network by designing time-dependent pre- coding and network coding matrices with mild conditions on the network structure for specific densities. We present...

  10. Cutting and Folding for Tunable Materials Properties

    Science.gov (United States)

    Damasceno, Pablo; Dodd, Paul; Shyu, Terry; Shlian, Matthew; Shtein, Max; Kotov, Nicholas; Glotzer, Sharon

    2014-03-01

    Despite the small set of building blocks used for their assembly, naturally occurring materials such as proteins show remarkable diversity in their mechanical properties ranging from something resembling rubber-low stiffness, high resilience and extensibility-to silk-high stiffness and strength. Moreover, their self-folding properties inspire the design of structures capable of tunable reconfiguration. Motivated by such versatility, we report on simulations and experiments for the design of nanocomposites sheets whose mechanical properties can be made tunable via ``secondary structures'' patterning. Our simulations reveal the main cutting features needed to obtain desired material extensibility. Additionally, we study how similar sheets could self-fold into their desired ``native'' structure via stochastic forces. Our results open the possibilities for manufacture of flexible and reconfigurable materials with targeted strength and extensibility. Research supported by the National Science Foundation, Emerging Frontiers in Research and Innovation Award # EFRI-1240264.

  11. Optically tunable chirped fiber Bragg grating.

    Science.gov (United States)

    Li, Zhen; Chen, Zhe; Hsiao, V K S; Tang, Jie-Yuan; Zhao, Fuli; Jiang, Shao-Ji

    2012-05-07

    This work presents an optically tunable chirped fiber Bragg grating (CFBG). The CFBG is obtained by a side-polished fiber Bragg grating (SPFBG) whose thickness of the residual cladding layer in the polished area (D(RC)) varies with position along the length of the grating, which is coated with a photoresponsive liquid crystal (LC) overlay. The reflection spectrum of the CFBG is tuned by refractive index (RI) modulation, which comes from the phase transition of the overlaid photoresponsive LC under ultraviolet (UV) light irradiation. The broadening in the reflection spectrum and corresponding shift in the central wavelength are observed with UV light irradiation density of 0.64mW/mm. During the phase transition of the photoresponsive LC, the RI increase of the overlaid LC leads to the change of the CFBG reflection spectrum and the change is reversible and repeatable. The optically tunable CFBGs have potential use in optical DWDM system and an all-fiber telecommunication system.

  12. Computer control of pulsed tunable dye lasers

    International Nuclear Information System (INIS)

    Thattey, S.S.; Dongare, A.S.; Suri, B.M.; Nair, L.G.

    1992-01-01

    Pulsed tunable dye lasers are being used extensively for spectroscopic and photo-chemical experiments, and a system for acquisition and spectral analysis of a volume of data generated will be quite useful. The development of a system for wavelength tuning and control of tunable dye lasers and an acquisition system for spectral data generated in experiments with these lasers are described. With this system, it is possible to control the tuning of three lasers, and acquire data in four channels, simultaneously. It is possible to arrive at the desired dye laser wavelength with a reproducibility of ± 0.012 cm -1 , which is within the absorption width (atomic interaction) caused by pulsed dye lasers of linewidth 0.08 cm -1 . The spectroscopic data generated can be analyzed for spectral identification within absolute accuracy ± 0.012 cm -1 . (author). 6 refs., 11 figs

  13. Construction of tunable peptide nucleic acid junctions.

    Science.gov (United States)

    Duan, Tanghui; He, Liu; Tokura, Yu; Liu, Xin; Wu, Yuzhou; Shi, Zhengshuang

    2018-03-15

    We report here the construction of 3-way and 4-way peptide nucleic acid (PNA) junctions as basic structural units for PNA nanostructuring. The incorporation of amino acid residues into PNA chains makes PNA nanostructures with more structural complexity and architectural flexibility possible, as exemplified by building 3-way PNA junctions with tunable nanopores. Given that PNA nanostructures have good thermal and enzymatic stabilities, they are expected to have broad potential applications in biosensing, drug delivery and bioengineering.

  14. Tunable terahertz metamaterials with negative permeability

    Czech Academy of Sciences Publication Activity Database

    Němec, Hynek; Kužel, Petr; Kadlec, Filip; Kadlec, Christelle; Yahiaoui, R.; Mounaix, P.

    2009-01-01

    Roč. 79, č. 24 (2009), 241108/1-241108/4 ISSN 1098-0121 R&D Projects: GA AV ČR(CZ) IAA100100907; GA MŠk LC512; GA MŠk MEB020742 Institutional research plan: CEZ:AV0Z10100520 Keywords : tunable metamaterial * effective magnetic permeability * incipient ferroelectrics * strontium titanate * terahertz spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.475, year: 2009

  15. Flow of Tunable Elastic Microcapsules through Constrictions

    OpenAIRE

    do Nascimento, D?bora F.; Avenda?o, Jorge A.; Mehl, Ana; Moura, Maria J. B.; Carvalho, Marcio S.; Duncanson, Wynter J.

    2017-01-01

    We design and fabricate elastically tunable monodisperse microcapsules using microfluidics and cross-linkable polydimethylsiloxane (PDMS). The overall stiffness of the microcapsules is governed by both the thickness and cross-link ratio of the polymer shell. Flowing suspensions of microcapsules through constricted spaces leads to transient blockage of fluid flow, thus altering the flow behavior. The ability to tune microcapsule mechanical properties enables the design of elastic microcapsules...

  16. Electronically Tunable Resistorless Mixed Mode Biquad Filters

    OpenAIRE

    Yesil, A.; Kacar, F.

    2013-01-01

    This paper presents a new realization of elec¬tronically tunable mixed mode (including transadmittance- and voltage-modes) biquad filter with single input, three outputs or three inputs, single output using voltage differ-encing transconductance amplifier (VDTA), a recently introduced active element. It can simultaneously realize standard filtering signals: low-pass, band-pass and high-pass or by selecting input terminals, it can realize all five different filtering signals: low-pass, band-pa...

  17. Cathepsin D Specifically Cleaves the Chemokines Macrophage Inflammatory Protein-1α, Macrophage Inflammatory Protein-1β, and SLC That Are Expressed in Human Breast Cancer

    Science.gov (United States)

    Wolf, Marlene; Clark-Lewis, Ian; Buri, Caroline; Langen, Hanno; Lis, Maddalena; Mazzucchelli, Luca

    2003-01-01

    Cathepsin D (Cath-D) expression in human primary breast cancer has been associated with a poor prognosis. In search of a better understanding of the Cath-D substrates possibly involved in cancer invasiveness and metastasis, we investigated the potential interactions between this protease and chemokines. Here we report that purified Cath-D, as well as culture supernatants from the human breast carcinoma cell lines MCF-7 and T47D, selectively degrade macrophage inflammatory protein (MIP)-1α (CCL3), MIP-1β (CCL4), and SLC (CCL21). Proteolysis was totally blocked by the protease inhibitor pepstatin A, and specificity of Cath-D cleavage was demonstrated using a large chemokine panel. Whereas MIP-1α and MIP-1β degradation was rapid and complete, cleavage of SLC was slow and not complete. Mass spectrometry analysis showed that Cath-D cleaves the Leu58 to Trp59 bond of SLC producing two functionally inactive fragments. Analysis of Cath-D proteolysis of a series of monocyte chemoattractant protein-3/MIP-1β hybrids indicated that processing of MIP-1β might start by cleaving off amino acids located in the C-terminal domain. In situ hybridization studies revealed MIP-1α, MIP-1β, and Cath-D gene expression mainly in the stromal compartment of breast cancers whereas SLC transcripts were found in endothelial cells of capillaries and venules within the neoplastic tissues. Cath-D production in the breast carcinoma cell lines MCF-7 and T47D, as assessed by enzyme-linked immunosorbent assay of culture supernatants and cell lysates, was not affected by stimulation with chemokines such as interleukin-8 (CXCL8), SDF-1 (CXCL12), and SLC. These data suggest that inactivation of chemokines by Cath-D possibly influences regulatory mechanisms in the tumoral extracellular microenvironment that in turn may affect the generation of the antitumoral immune response, the migration of cancer cells, or both processes. PMID:12651610

  18. Plasma levels of cytokines and chemokines and the risk of mortality in HIV-infected individuals: a case-control analysis nested in a large clinical trial

    Science.gov (United States)

    French, MA; Cozzi-Lepri, A; Arduino, RC; Johnson, M; Achhra, AC; Landay, A

    2015-01-01

    Background All-cause mortality and serious non-AIDS events (SNAEs) in individuals with HIV-1 infection receiving antiretroviral therapy are associated with increased production of interleukin (IL)-6, which appears to be driven by monocyte/macrophage activation. Plasma levels of other cytokines or chemokines associated with immune activation might also be biomarkers of an increased risk of mortality and/or SNAEs. Methods Baseline plasma samples from 142 participants enrolled into the SMART study who subsequently died, and 284 matched controls, were assayedfor levels of 15 cytokines and chemokines. Cytokine and chemokine levels were analysed individually and when grouped according to function (innate/pro-inflammatory response, cell trafficking and cell activation/proliferation) for their association with the risk of subsequent death. Results Higher plasma levels of pro-inflammatory cytokines (IL-6 and tumour necrosis factor-alpha) were associated with an increased risk of all-cause mortality but in analyses adjusted for potential confounders, only the association with IL-6 persisted. Increased plasma levels of the chemokine CXCL8 were also associated with all-cause mortality independently of HCV status but not when analyses were adjusted for all confounders. In contrast, higher plasma levels of cytokines mediating cell activation/proliferation were not associated with a higher mortality risk and exhibited a weak protective effect when analysed as a group. Conclusions While plasma levels of IL-6 are the most informative biomarker of cytokine dysregulation associated with all-cause mortality in individuals with HIV-1 infection, assessment of plasma levels of CXCL8 might provide information about causes of mortality and possibly SNAEs. PMID:25695873

  19. Plasma levels of cytokines and chemokines and the risk of mortality in HIV-infected individuals: a case-control analysis nested in a large clinical trial.

    Science.gov (United States)

    French, Martyn A; Cozzi-Lepri, Alessandro; Arduino, Roberto C; Johnson, Margaret; Achhra, Amit C; Landay, Alan

    2015-04-24

    All-cause mortality and serious non-AIDS events (SNAEs) in individuals with HIV-1 infection receiving antiretroviral therapy are associated with increased production of interleukin-6 which appears to be driven by monocyte/macrophage activation. Plasma levels of other cytokines or chemokines associated with immune activation might also be biomarkers of an increased risk of mortality and/or SNAEs. Baseline plasma samples from 142 participants enrolled into the Strategies for Management of Antiretroviral Therapy study, who subsequently died, and 284 matched controls, were assayed for levels of 15 cytokines and chemokines. Cytokine and chemokine levels were analysed individually and when grouped according to function (innate/proinflammatory response, cell trafficking and cell activation/proliferation) for their association with the risk of subsequent death. Higher plasma levels of proinflammatory cytokines (interleukin-6 and tumour necrosis factor-α) were associated with an increased risk of all-cause mortality but in analyses adjusted for potential confounders, only the association with interleukin-6 persisted. Increased plasma levels of the chemokine CXCL8 were also associated with all-cause mortality independently of hepatitis C virus status but not when analyses were adjusted for all confounders. In contrast, higher plasma levels of cytokines mediating cell activation/proliferation were not associated with a higher mortality risk and exhibited a weak protective effect when analysed as a group. Whereas plasma levels of interleukin-6 are the most informative biomarker of cytokine dysregulation associated with all-cause mortality in individuals with HIV-1 infection, assessment of plasma levels of CXCL8 might provide information about causes of mortality and possibly SNAEs.

  20. LTCC Phase Shifters Based on Tunable Ferroelectric Composite Thick Films

    Science.gov (United States)

    Nikfalazar, M.; Kohler, C.; Heunisch, A.; Wiens, A.; Zheng, Y.; Schulz, B.; Mikolajek, M.; Sohrabi, M.; Rabe, T.; Binder, J. R.; Jakoby, R.

    2015-11-01

    This paper presents, the investigation of tunable components based on LTCC technology, implementing ferroelectric tunable thick-film dielectric. The tunable loaded line phase shifters are fabricated with metal-insulator-metal (MIM) varactors to demonstrate the capabilities of this method for packaging of the tunable components. The MIM varactors consist of one tunable dielectric paste layer that is printed between two silver layers. The tunable ferroelectric paste is optimized for LTCC sintering temperature around 850°C. The phase shifters are fabricated in two different process. They were achieved a figure of merit of 24°/dB (phase shift 192°) at 3 GHz and 18°/dB (phase shift 98°) at 4.4 GHz by using seven unit cells that each unit cell consisting of two MIM varactors.

  1. Quantitative nanometer-scale mapping of dielectric tunability

    Energy Technology Data Exchange (ETDEWEB)

    Tselev, Alexander [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Klein, Andreas [Technische Univ. Darmstadt (Germany); Gassmann, Juergen [Technische Univ. Darmstadt (Germany); Jesse, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Li, Qian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kalinin, Sergei V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wisinger, Nina Balke [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-21

    Two scanning probe microscopy techniques—near-field scanning microwave microscopy (SMM) and piezoresponse force microscopy (PFM)—are used to characterize and image tunability in a thin (Ba,Sr)TiO3 film with nanometer scale spatial resolution. While sMIM allows direct probing of tunability by measurement of the change in the dielectric constant, in PFM, tunability can be extracted via electrostrictive response. The near-field microwave imaging and PFM provide similar information about dielectric tunability with PFM capable to deliver quantitative information on tunability with a higher spatial resolution close to 15 nm. This is the first time that information about the dielectric tunability is available on such length scales.

  2. Tunable nanoparticle arrays at charged interfaces.

    Science.gov (United States)

    Srivastava, Sunita; Nykypanchuk, Dmytro; Fukuto, Masafumi; Gang, Oleg

    2014-10-28

    Structurally tunable two-dimensional (2D) arrays of nanoscale objects are important for modulating functional responses of thin films. We demonstrate that such tunable and ordered nanoparticles (NP) arrays can be assembled at charged air-water interfaces from nanoparticles coated with polyelectrolyte chains, DNA. The electrostatic attraction between the negatively charged nonhybridizing DNA-coated gold NPs and a positively charged lipid layer at the interface facilitates the formation of a 2D hexagonally closed packed (HCP) nanoparticle lattice. We observed about 4-fold change of the monolayer nanoparticle density by varying the ionic strength of the subphase. The tunable NP arrays retain their structure reasonably well when transferred to a solid support. The influence of particle's DNA corona and lipid layer composition on the salt-induced in-plane and normal structural evolution of NP arrays was studied in detail using a combination of synchrotron-based in situ surface scattering methods, grazing incidence X-ray scattering (GISAXS), and X-ray reflectivity (XRR). Comparative analysis of the interparticle distances as a function of ionic strength reveals the difference between the studied 2D nanoparticle arrays and analogous bulk polyelectrolyte star polymers systems, typically described by Daoud-Cotton model and power law scaling. The observed behavior of the 2D nanoparticle array manifests a nonuniform deformation of the nanoparticle DNA corona due to its electrostatically induced confinement at the lipid interface. The present study provides insight on the interfacial properties of the NPs coated with charged soft shells.

  3. Nanoparticles with tunable shape and composition fabricated by nanoimprint lithography

    International Nuclear Information System (INIS)

    Alayo, Nerea; Bausells, Joan; Pérez-Murano, Francesc; Conde-Rubio, Ana; Labarta, Amilcar; Batlle, Xavier; Borrisé, Xavier

    2015-01-01

    Cone-like and empty cup-shaped nanoparticles of noble metals have been demonstrated to provide extraordinary optical properties for use as optical nanoanntenas or nanoresonators. However, their large-scale production is difficult via standard nanofabrication methods. We present a fabrication approach to achieve arrays of nanoparticles with tunable shape and composition by a combination of nanoimprint lithography, hard-mask definition and various forms of metal deposition. In particular, we have obtained arrays of empty cup-shaped Au nanoparticles showing an optical response with distinguishable features associated with the excitations of localized surface plasmons. Finally, this route avoids the most common drawbacks found in the fabrication of nanoparticles by conventional top-down methods, such as aspect ratio limitation, blurring, and low throughput, and it can be used to fabricate nanoparticles with heterogeneous composition. (paper)

  4. The viral KSHV chemokine vMIP-II inhibits the migration of Naive and activated human NK cells by antagonizing two distinct chemokine receptors.

    Directory of Open Access Journals (Sweden)

    Rachel Yamin

    2013-08-01

    Full Text Available Natural killer (NK cells are innate immune cells able to rapidly kill virus-infected and tumor cells. Two NK cell populations are found in the blood; the majority (90% expresses the CD16 receptor and also express the CD56 protein in intermediate levels (CD56(Dim CD16(Pos while the remaining 10% are CD16 negative and express CD56 in high levels (CD56(Bright CD16(Neg. NK cells also reside in some tissues and traffic to various infected organs through the usage of different chemokines and chemokine receptors. Kaposi's sarcoma-associated herpesvirus (KSHV is a human virus that has developed numerous sophisticated and versatile strategies to escape the attack of immune cells such as NK cells. Here, we investigate whether the KSHV derived cytokine (vIL-6 and chemokines (vMIP-I, vMIP-II, vMIP-III affect NK cell activity. Using transwell migration assays, KSHV infected cells, as well as fusion and recombinant proteins, we show that out of the four cytokine/chemokines encoded by KSHV, vMIP-II is the only one that binds to the majority of NK cells, affecting their migration. We demonstrate that vMIP-II binds to two different receptors, CX3CR1 and CCR5, expressed by naïve CD56(Dim CD16(Pos NK cells and activated NK cells, respectively. Furthermore, we show that the binding of vMIP-II to CX3CR1 and CCR5 blocks the binding of the natural ligands of these receptors, Fractalkine (Fck and RANTES, respectively. Finally, we show that vMIP-II inhibits the migration of naïve and activated NK cells towards Fck and RANTES. Thus, we present here a novel mechanism in which KSHV uses a unique protein that antagonizes the activity of two distinct chemokine receptors to inhibit the migration of naïve and activated NK cells.

  5. The viral KSHV chemokine vMIP-II inhibits the migration of Naive and activated human NK cells by antagonizing two distinct chemokine receptors.

    Science.gov (United States)

    Yamin, Rachel; Kaynan, Noa S; Glasner, Ariella; Vitenshtein, Alon; Tsukerman, Pinchas; Bauman, Yoav; Ophir, Yael; Elias, Shlomo; Bar-On, Yotam; Gur, Chamutal; Mandelboim, Ofer

    2013-08-01

    Natural killer (NK) cells are innate immune cells able to rapidly kill virus-infected and tumor cells. Two NK cell populations are found in the blood; the majority (90%) expresses the CD16 receptor and also express the CD56 protein in intermediate levels (CD56(Dim) CD16(Pos)) while the remaining 10% are CD16 negative and express CD56 in high levels (CD56(Bright) CD16(Neg)). NK cells also reside in some tissues and traffic to various infected organs through the usage of different chemokines and chemokine receptors. Kaposi's sarcoma-associated herpesvirus (KSHV) is a human virus that has developed numerous sophisticated and versatile strategies to escape the attack of immune cells such as NK cells. Here, we investigate whether the KSHV derived cytokine (vIL-6) and chemokines (vMIP-I, vMIP-II, vMIP-III) affect NK cell activity. Using transwell migration assays, KSHV infected cells, as well as fusion and recombinant proteins, we show that out of the four cytokine/chemokines encoded by KSHV, vMIP-II is the only one that binds to the majority of NK cells, affecting their migration. We demonstrate that vMIP-II binds to two different receptors, CX3CR1 and CCR5, expressed by naïve CD56(Dim) CD16(Pos) NK cells and activated NK cells, respectively. Furthermore, we show that the binding of vMIP-II to CX3CR1 and CCR5 blocks the binding of the natural ligands of these receptors, Fractalkine (Fck) and RANTES, respectively. Finally, we show that vMIP-II inhibits the migration of naïve and activated NK cells towards Fck and RANTES. Thus, we present here a novel mechanism in which KSHV uses a unique protein that antagonizes the activity of two distinct chemokine receptors to inhibit the migration of naïve and activated NK cells.

  6. Chemokine Ligand 5 (CCL5 and chemokine receptor (CCR5 genetic variants and prostate cancer risk among men of African Descent: a case-control study

    Directory of Open Access Journals (Sweden)

    Kidd LaCreis R

    2012-11-01

    Full Text Available Abstract Background Chemokine and chemokine receptors play an essential role in tumorigenesis. Although chemokine-associated single nucleotide polymorphisms (SNPs are associated with various cancers, their impact on prostate cancer (PCA among men of African descent is unknown. Consequently, this study evaluated 43 chemokine-associated SNPs in relation to PCA risk. We hypothesized inheritance of variant chemokine-associated alleles may lead to alterations in PCA susceptibility, presumably due to variations in antitumor immune responses. Methods Sequence variants were evaluated in germ-line DNA samples from 814 African-American and Jamaican men (279 PCA cases and 535 controls using Illumina’s Goldengate genotyping system. Results Inheritance of CCL5 rs2107538 (AA, GA+AA and rs3817655 (AA, AG, AG+AA genotypes were linked with a 34-48% reduction in PCA risk. Additionally, the recessive and dominant models for CCR5 rs1799988 and CCR7 rs3136685 were associated with a 1.52-1.73 fold increase in PCA risk. Upon stratification, only CCL5 rs3817655 and CCR7 rs3136685 remained significant for the Jamaican and U.S. subgroups, respectively. Conclusions In summary, CCL5 (rs2107538, rs3817655 and CCR5 (rs1799988 sequence variants significantly modified PCA susceptibility among men of African descent, even after adjusting for age and multiple comparisons. Our findings are only suggestive and require further evaluation and validation in relation to prostate cancer risk and ultimately disease progression, biochemical/disease recurrence and mortality in larger high-risk subgroups. Such efforts will help to identify genetic markers capable of explaining disproportionately high prostate cancer incidence, mortality, and morbidity rates among men of African descent.

  7. The role of CXC chemokines in the transition of chronic inflammation to esophageal and gastric cancer.

    Science.gov (United States)

    Verbeke, Hannelien; Hannelien, Verbeke; Geboes, Karel; Karel, Geboes; Van Damme, Jo; Jo, Van Damme; Struyf, Sofie; Sofie, Struyf

    2012-01-01

    Chronic inflammation may increase the risk to develop cancer, for instance esophagitis or gastritis may lead to development of esophageal or gastric cancer, respectively. The key molecules attracting leukocytes to local inflammatory sites are chemokines. We here provide a systematic review on the impact of CXC chemokines (binding the receptors CXCR1, CXCR2, CXCR3 and CXCR4) on the transition of chronic inflammation in the upper gastrointestinal tract to neoplasia. CXCR2 ligands, including GRO-α,β,γ/CXCL1,2,3, ENA-78/CXCL5 and IL-8/CXCL8 chemoattract pro-tumoral neutrophils. In addition, angiogenic CXCR2 ligands stimulate the formation of new blood vessels, facilitating tumor progression. The CXCR4 ligand SDF-1/CXCL12 also promotes tumor development by stimulating angiogenesis and by favoring metastasis of CXCR4-positive tumor cells to distant organs producing SDF-1/CXCL12. Furthermore, these angiogenic chemokines also directly enhance tumor cell survival and proliferation. In contrast, the CXCR3 ligands Mig/CXCL9, IP-10/CXCL10 and I-TAC/CXCL11 are angiostatic and attract anti-tumoral T lymphocytes and may therefore mediate tumor growth retardation and regression. Thus, chemokines exert diverging, sometimes dual roles in tumor biology as described for esophageal and gastric cancer. Therefore extensive research is needed to completely unravel the complex chemokine code in specific cancers. Possibly, chemokine-targeted cancer therapy will have to be adapted to the individual's chemokine profile. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. A Continuously Tunable Erbium-Doped Fibre Laser Using Tunable Fibre Bragg Gratings and Optical Circulator

    International Nuclear Information System (INIS)

    Peng, Liu; Feng-Ping, Yan; Jian, Li; Lin, Wang; Ti-Gang, Ning; Tao-Rong, Gong; Shui-Sheng, Jian

    2008-01-01

    A continuously tunable erbium-doped fibre laser (TEDFL) based on tunable fibre Bragger grating (TFBG) and a three-port optical circulator (OC) is proposed and demonstrated. The OC acts as a 100%-reflective mirror. A strain-induced uniform fibre Bragger grating (FBG) which functions as a partial-reflecting mirror is implemented in the linear cavity. By applying axial strain onto the TFBG, a continuously tunable lasing output can be realized. The wavelength tuning range covers approximately 7.00nm in C band (from 1543.6161 to 1550.3307nm). The side mode suppression ratio (SMSR) is better than 50 dB, and the 3 dB bandwidth of the laser is less than 0.01 nm. Moreover, an array waveguide grating (AWG) is inserted into the cavity for wavelength preselecting, and a 50 km transmission experiment was performed using our TEDFL at a 10Gb/s modulation rate

  9. Chemokines Responses to Ascaris Lumbricoides Sole Infection and Co-infection with Hookworm among Nigerians.

    Science.gov (United States)

    Asemota, Omorodion Oriri; Nmorsi, O P G; Isaac, C; Odoya, E M; Akinseye, J; Isaac, O

    2014-02-01

    Geohelminth infections are predominant in Nigeria and communities at greatest risks are those with poor environmental/sanitary conditions and unhygienic habits. Chemokine ligands (CXCL) a class under chemokine group play important roles in the immune system by either mediating susceptible or protective immune responses to parasitic infections. This study was to assess the impact of Ascaris lumbricoides sole infection and co-infection on some serum chemokines (CXCL5, CXCL9, and CXCL11) in infected Nigerians. A total of 194 individuals attending Agbor general hospital were examined for A. lumbricoides and hookworm infections. Thereafter, sera were obtained from positive volunteers and control group using enzyme-linked immunosorbent assay to examine the impact of these helminth infections on the serum concentration of some chemokines (CXCL5, CXCL9, and CXCL11). The mean sera levels of CXCL5 and CXCL9 in infected volunteers were higher than the control subjects. Also, positive correlation was recorded for CXCL9 (P > 0.05), while negative responses were seen for CXCL5 and CXCL11 (P > 0.05) in relation to increase in the intensities of infections. CXCL9 was more expressed in A. lumbricoides + hookworm co-infections than single. Furthermore, the mean concentration of CXCL5 was higher in infected females than males (P lumbricoides and hookworm infections could be an indication of the meditating roles of these chemokines in the immune system to either confer some form of host/parasite immunity or susceptibility.

  10. Laminar chemokine mRNA concentrations in horses with carbohydrate overload-induced laminitis.

    Science.gov (United States)

    Faleiros, Rafael R; Leise, Britta S; Watts, Mauria; Johnson, Philip J; Black, Samuel J; Belknap, James K

    2011-11-15

    Chemokines play a vital role in leukocyte activation and emigration that reportedly plays a central role in laminar injury in equine laminitis. The purpose of this study was to evaluate the pattern of laminar chemokine expression in horses in the classical carbohydrate overload (CHO)-model of laminitis. Laminar samples were obtained 24h following water administration in the control group (CON, n=8), and at the onset of fever (≥ 102°F, 12-22 h post CHO, DEV group, n=8) and at the onset of lameness (20-48 h post CHO, LAM group, n=8) in induced horses. Real time quantitative PCR was performed on all samples in order to determine laminar mRNA concentrations of both CXC chemokines (CXCL1, CXCL6, CXCL8) and CC chemokines (CCL2 [MCP-1], CCL3 [MIP-1α], and CCL8 [MCP-2]). Data were subjected to ANOVA followed by Student-Newman-Keuls (Plaminitis models. Chemokine antagonists may be considered as possible therapeutic targets to decrease the influx of leukocytes that occurs during the development of equine laminitis. Published by Elsevier B.V.

  11. Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice

    DEFF Research Database (Denmark)

    Koenen, RR; Hundelshausen, P; Nesmelova, IV

    2009-01-01

    Atherosclerosis is characterized by chronic inflammation of the arterial wall due to chemokine-driven mononuclear cell recruitment. Activated platelets can synergize with chemokines to exacerbate atherogenesis; for example, by deposition of the chemokines platelet factor-4 (PF4, also known as CXC...... monocyte recruitment and reducing atherosclerosis without the aforementioned side effects. These results establish the in vivo relevance of chemokine heteromers and show the potential of targeting heteromer formation to achieve therapeutic effects......) and RANTES (CCL5), triggering monocyte arrest on inflamed endothelium. Homo-oligomerization is required for the recruitment functions of CCL5, and chemokine heteromerization has more recently emerged as an additional regulatory mechanism, as evidenced by a mutual modulation of CXCL8 and CXCL4 activities...... compromise systemic immune responses, delay macrophage-mediated viral clearance and impair normal T cell functions. Here we determined structural features of CCL5-CXCL4 heteromers and designed stable peptide inhibitors that specifically disrupt proinflammatory CCL5-CXCL4 interactions, thereby attenuating...

  12. Elevated serum levels of interferon-regulated chemokines are biomarkers for active human systemic lupus erythematosus.

    Directory of Open Access Journals (Sweden)

    Jason W Bauer

    2006-12-01

    Full Text Available Systemic lupus erythematosus (SLE is a serious systemic autoimmune disorder that affects multiple organ systems and is characterized by unpredictable flares of disease. Recent evidence indicates a role for type I interferon (IFN in SLE pathogenesis; however, the downstream effects of IFN pathway activation are not well understood. Here we test the hypothesis that type I IFN-regulated proteins are present in the serum of SLE patients and correlate with disease activity.We performed a comprehensive survey of the serologic proteome in human SLE and identified dysregulated levels of 30 cytokines, chemokines, growth factors, and soluble receptors. Particularly striking was the highly coordinated up-regulation of 12 inflammatory and/or homeostatic chemokines, molecules that direct the movement of leukocytes in the body. Most of the identified chemokines were inducible by type I IFN, and their levels correlated strongly with clinical and laboratory measures of disease activity.These data suggest that severely disrupted chemokine gradients may contribute to the systemic autoimmunity observed in human SLE. Furthermore, the levels of serum chemokines may serve as convenient biomarkers for disease activity in lupus.

  13. CSF cytokines/chemokines as biomarkers in neuroinflammatory CNS disorders: A systematic review.

    Science.gov (United States)

    Kothur, Kavitha; Wienholt, Louise; Brilot, Fabienne; Dale, Russell C

    2016-01-01

    Despite improved understanding of the pathogenesis of neuroinflammatory disorders of the brain and development of new diagnostic markers, our biomarker repertoire to demonstrate and monitor inflammation remains limited. Using PubMed database, we reviewed 83 studies on CSF cytokines and chemokines and describe the pattern of elevation and possible role of cytokines/chemokines as biomarkers in viral and autoimmune inflammatory neurological disorders of the CNS. Despite inconsistencies and overlap of cytokines and chemokines in different neuroinflammation syndromes, there are some trends regarding the pattern of cytokines/chemokine elevation. Namely B cell markers, such as CXCL13 and BAFF are predominantly investigated and found to be elevated in autoantibody-associated disorders, whereas interferon gamma (IFN-γ) is elevated mainly in viral encephalitis. Th2 and Th17 cytokines are frequently elevated in acute disseminated encephalomyelitis (ADEM) and neuromyelitis optica (NMO), whereas Th1 and Th17 cytokines are more commonly elevated in multiple sclerosis (MS). Cytokine/chemokine profiling might provide new insights into disease pathogenesis, and improve our ability to monitor inflammation and response to treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Autoantibodies to citrullinated proteins induce joint pain independent of inflammation via a chemokine-dependent mechanism.

    Science.gov (United States)

    Wigerblad, Gustaf; Bas, Duygu B; Fernades-Cerqueira, Cátia; Krishnamurthy, Akilan; Nandakumar, Kutty Selva; Rogoz, Katarzyna; Kato, Jungo; Sandor, Katalin; Su, Jie; Jimenez-Andrade, Juan Miguel; Finn, Anja; Bersellini Farinotti, Alex; Amara, Khaled; Lundberg, Karin; Holmdahl, Rikard; Jakobsson, Per-Johan; Malmström, Vivianne; Catrina, Anca I; Klareskog, Lars; Svensson, Camilla I

    2016-04-01

    An interesting and so far unexplained feature of chronic pain in autoimmune disease is the frequent disconnect between pain and inflammation. This is illustrated well in rheumatoid arthritis (RA) where pain in joints (arthralgia) may precede joint inflammation and persist even after successful anti-inflammatory treatment. In the present study, we have addressed the possibility that autoantibodies against citrullinated proteins (ACPA), present in RA, may be directly responsible for the induction of pain, independent of inflammation. Antibodies purified from human patients with RA, healthy donors and murinised monoclonal ACPA were injected into mice. Pain-like behaviour was monitored for up to 28 days, and tissues were analysed for signs of pathology. Mouse osteoclasts were cultured and stimulated with antibodies, and supernatants analysed for release of factors. Mice were treated with CXCR1/2 (interleukin (IL) 8 receptor) antagonist reparixin. Mice injected with either human or murinised ACPA developed long-lasting pronounced pain-like behaviour in the absence of inflammation, while non-ACPA IgG from patients with RA or control monoclonal IgG were without pronociceptive effect. This effect was coupled to ACPA-mediated activation of osteoclasts and release of the nociceptive chemokine CXCL1 (analogue to human IL-8). ACPA-induced pain-like behaviour was reversed with reparixin. The data suggest that CXCL1/IL-8, released from osteoclasts in an autoantibody-dependent manner, produces pain by activating sensory neurons. The identification of this new pain pathway may open new avenues for pain treatment in RA and also in other painful diseases associated with autoantibody production and/or osteoclast activation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  15. CCR5 signalling, but not DARC or D6 regulatory, chemokine receptors are targeted by herpesvirus U83A chemokine which delays receptor internalisation via diversion to a caveolin-linked pathway

    Directory of Open Access Journals (Sweden)

    Gompels Ursula A

    2009-07-01

    Full Text Available Abstract Background Herpesviruses have evolved chemokines and chemokine receptors, which modulate the recruitment of human leukocytes during the inflammatory response to infection. Early post-infection, human herpesvirus 6A (HHV-6A infected cells express the chemokine receptor U51A and chemokine U83A which have complementary effects in subverting the CC-chemokine family thereby controlling anti-viral leukocyte recruitment. Here we show that, to potentiate this activity, the viral chemokine can also avoid clearance by scavenger chemokine receptors, DARC and D6, which normally regulate an inflammatory response. Conversely, U83A delays internalisation of its signalling target receptor CCR5 with diversion to caveolin rich membrane domains. This mechanism can redirect displaced human chemokines to DARC and D6 for clearance of the anti-viral inflammatory response, leaving the viral chemokine unchecked. Methods Cell models for competitive binding assays were established using radiolabeled human chemokines and cold U83A on CCR5, DARC or D6 expressing cells. Flow cytometry was used to assess specific chemotaxis of CCR5 bearing cells to U83A, and internalisation of CCR5 specific chemokine CCL4 after stimulation with U83A. Internalisation analyses were supported by confocal microscopy of internalisation and co-localisation of CCR5 with caveosome marker caveolin-1, after virus or human chemokine stimulation. Results U83A displaced efficiently human chemokines from CCR5, with a high affinity of 0.01nM, but not from DARC or D6. Signalling via CCR5 resulted in specific chemoattraction of primary human leukocytes bearing CCR5. However, U83A effective binding and signalling to CCR5 resulted in delayed internalisation and recycling up to 2 hours in the absence of continual re-stimulation. This resulted in diversion to a delayed caveolin-linked pathway rather than the rapid clathrin mediated endocytosis previously shown with human chemokines CCL3 or CCL4

  16. CCR5 signalling, but not DARC or D6 regulatory, chemokine receptors are targeted by herpesvirus U83A chemokine which delays receptor internalisation via diversion to a caveolin-linked pathway.

    Science.gov (United States)

    Catusse, Julie; Clark, David J; Gompels, Ursula A

    2009-07-30

    Herpesviruses have evolved chemokines and chemokine receptors, which modulate the recruitment of human leukocytes during the inflammatory response to infection. Early post-infection, human herpesvirus 6A (HHV-6A) infected cells express the chemokine receptor U51A and chemokine U83A which have complementary effects in subverting the CC-chemokine family thereby controlling anti-viral leukocyte recruitment. Here we show that, to potentiate this activity, the viral chemokine can also avoid clearance by scavenger chemokine receptors, DARC and D6, which normally regulate an inflammatory response. Conversely, U83A delays internalisation of its signalling target receptor CCR5 with diversion to caveolin rich membrane domains. This mechanism can redirect displaced human chemokines to DARC and D6 for clearance of the anti-viral inflammatory response, leaving the viral chemokine unchecked. Cell models for competitive binding assays were established using radiolabeled human chemokines and cold U83A on CCR5, DARC or D6 expressing cells. Flow cytometry was used to assess specific chemotaxis of CCR5 bearing cells to U83A, and internalisation of CCR5 specific chemokine CCL4 after stimulation with U83A. Internalisation analyses were supported by confocal microscopy of internalisation and co-localisation of CCR5 with caveosome marker caveolin-1, after virus or human chemokine stimulation. U83A displaced efficiently human chemokines from CCR5, with a high affinity of 0.01nM, but not from DARC or D6. Signalling via CCR5 resulted in specific chemoattraction of primary human leukocytes bearing CCR5. However, U83A effective binding and signalling to CCR5 resulted in delayed internalisation and recycling up to 2 hours in the absence of continual re-stimulation. This resulted in diversion to a delayed caveolin-linked pathway rather than the rapid clathrin mediated endocytosis previously shown with human chemokines CCL3 or CCL4. U83A diverts human chemokines from signalling, but not

  17. Chemokine (C-C motif ligand 20, a potential biomarker for Graves' disease, is regulated by osteopontin.

    Directory of Open Access Journals (Sweden)

    Xiaoli Li

    Full Text Available CONTEXT: Graves' disease (GD is a common autoimmune disease involving the thyroid gland. The altered balance of pro- and anti-inflammatory cytokines plays an important role in the pathogenesis of GD. Chemokine (C-C motif ligand 20 (CCL20 is important for interleukin-17 (IL-17 signal activation and a potent chemoattractant for Th17 cells. Meanwhile, Osteopontin (OPN, a broadly expressed pleiotropic cytokine, has been implicated in GD through inducing Th1-involved response to enhance the production of proinflammatory cytokines and chemokines, but little is known about the role of OPN in regulating CCL20 and IL-17 signaling. OBJECTIVE: This study sought to explore the possibility of CCL20 level as a biomarker for GD, as well as investigate the role of OPN in regulating CCL20 production. METHODS: Fifty untreated GD patients, fifteen euthyroid GD patients, twelve TRAb-negative GD patients and thirty-five healthy control donors were recruited. OPN, CCL20 and other clinical GD diagnosis parameters were measured. CD4+T cells were isolated from peripheral blood mononuclear cells (PBMCs using antibody-coated magnetic beads. Enzyme-linked immune-sorbent assay and quantitative polymerase chain reaction were used to determine CCL20 expression level. RESULTS: We found that the plasma CCL20 level was enhanced in GD patients and decreased in euthyroid and TRAb-negative GD patients. In addition, CCL20 level correlated with GD clinical diagnostic parameters and plasma OPN level. Moreover, we demonstrated that recombinant OPN and plasma from untreated GD patients increased the expression of CCL20 in CD4+T cells, which could be blocked by OPN antibody. Furthermore, we found that the effect of OPN on CCL20 expression was mediated by β3 integrin receptor, IL-17, NF-κB and MAPK pathways. CONCLUSIONS: These results demonstrated that CCL20 might serve as a biomarker for GD and suggested the possible role of OPN in induction of CCL20 expression.

  18. A highly selective CCR2 chemokine agonist encoded by human herpesvirus 6

    DEFF Research Database (Denmark)

    Lüttichau, Hans R; Clark-Lewis, Ian; Jensen, Peter Østrup

    2003-01-01

    calcium mobilization as efficiently as the endogenous chemokine ligand CCL2 through the CCR2 receptor, whereas the virally encoded chemokine did not affect any of the other 17 human chemokine receptors tested. Mutual cross-desensitization between CCL2 and vCCL4 was demonstrated in the CCR2-transfected...... cells. The affinity of vCCL4 for the CCR2 receptor was 79 nm as determined in competition binding against radioactively labeled CCL2. In the murine pre-B lymphocyte cell line L1.2 stably transfected with the CCR2 receptor, vCCL4 acted as a relatively low potency but highly efficacious chemoattractant...... being equally or more efficacious in causing cell migration than CCL2 and CCL7 and considerably more efficacious than CCL8 and CCL13. It is concluded that human herpesvirus 6 encodes a highly selective and efficacious CCR2 agonist, which will attract CCR2 expressing cells, for example macrophages...

  19. Allosteric and orthosteric sites in CC chemokine receptor (CCR5), a chimeric receptor approach

    DEFF Research Database (Denmark)

    Thiele, Stefanie; Steen, Anne; Jensen, Pia C

    2011-01-01

    molecules often act more deeply in an allosteric mode. However, opposed to the well described molecular interaction of allosteric modulators in class C 7-transmembrane helix (7TM) receptors, the interaction in class A, to which the chemokine receptors belong, is more sparsely described. Using the CCR5...... chemokine receptor as a model system, we studied the molecular interaction and conformational interchange required for proper action of various orthosteric chemokines and allosteric small molecules, including the well known CCR5 antagonists TAK-779, SCH-C, and aplaviroc, and four novel CCR5 ago......-allosteric molecules. A chimera was successfully constructed between CCR5 and the closely related CCR2 by transferring all extracellular regions of CCR2 to CCR5, i.e. a Trojan horse that resembles CCR2 extracellularly but signals through a CCR5 transmembrane unit. The chimera bound CCR2 (CCL2 and CCL7), but not CCR5...

  20. Dynamic T-lymphocyte chemokine receptor expression induced by interferon-beta therapy in multiple sclerosis

    DEFF Research Database (Denmark)

    Krakauer, M; Sorensen, P S; Khademi, M

    2006-01-01

    and immunoregulatory genes. In conclusion, IFN-beta treatment caused 'steady-state' increases of several chemokine receptors relevant for CD4(+) T-lymphocyte trafficking and function, possibly facilitating lymphocyte migration into the CNS. An important therapeutic effect of IFN-beta treatment may be the normalization......Treatment with interferon (IFN)-beta reduces clinical disease activity in multiple sclerosis (MS). Using flow cytometry, an enzyme-linked immunosorbent assay and a real-time polymerase chain reaction, we studied in vivo IFN-beta-induced effects on CD4(+) T-lymphocyte chemokine receptor expression...... as these influence central nervous system (CNS) transmigration and inflammation. At 'steady state' (>/=1 day after the most recent IFN-beta injection), IFN-beta treatment increased CD4(+) T-cell surface expression of CC chemokine receptor (CCR)4, CCR5 and CCR7 after 3 months of treatment, whereas that of CXC...

  1. The Role of Chemokines in Promoting Colorectal Cancer Invasion/Metastasis

    Directory of Open Access Journals (Sweden)

    Yoshiro Itatani

    2016-04-01

    Full Text Available Colorectal cancer (CRC is one of the leading causes of cancer-related death worldwide. Although most of the primary CRC can be removed by surgical resection, advanced tumors sometimes show recurrences in distant organs such as the liver, lung, lymph node, bone or peritoneum even after complete resection of the primary tumors. In these advanced and metastatic CRC, it is the tumor-stroma interaction in the tumor microenvironment that often promotes cancer invasion and/or metastasis through chemokine signaling. The tumor microenvironment contains numerous host cells that may suppress or promote cancer aggressiveness. Several types of host-derived myeloid cells reside in the tumor microenvironment, and the recruitment of them is under the control of chemokine signaling. In this review, we focus on the functions of chemokine signaling that may affect tumor immunity by recruiting several types of bone marrow-derived cells (BMDC to the tumor microenvironment of CRC.

  2. Structure of the CCR5 Chemokine Receptor-HIV Entry Inhibitor Maraviroc Complex

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Qiuxiang; Zhu, Ya; Li, Jian; Chen, Zhuxi; Han, Gye Won; Kufareva, Irina; Li, Tingting; Ma, Limin; Fenalti, Gustavo; Li, Jing; Zhang, Wenru; Xie, Xin; Yang, Huaiyu; Jiang, Hualiang; Cherezov, Vadim; Liu, Hong; Stevens, Raymond C.; Zhao, Qiang; Wu, Beili [Scripps; (Chinese Aca. Sci.); (UCSD)

    2013-10-21

    The CCR5 chemokine receptor acts as a co-receptor for HIV-1 viral entry. Here we report the 2.7 angstrom–resolution crystal structure of human CCR5 bound to the marketed HIV drug maraviroc. The structure reveals a ligand-binding site that is distinct from the proposed major recognition sites for chemokines and the viral glycoprotein gp120, providing insights into the mechanism of allosteric inhibition of chemokine signaling and viral entry. A comparison between CCR5 and CXCR4 crystal structures, along with models of co-receptor–gp120-V3 complexes, suggests that different charge distributions and steric hindrances caused by residue substitutions may be major determinants of HIV-1 co-receptor selectivity. These high-resolution insights into CCR5 can enable structure-based drug discovery for the treatment of HIV-1 infection.

  3. Atorvastatin reduces plasma levels of chemokine (CXCL10) in patients with Crohn's disease.

    Science.gov (United States)

    Grip, Olof; Janciauskiene, Sabina

    2009-01-01

    In Crohn's disease high tissue expression and serum levels of chemokines and their receptors are known to correlate with disease activity. Because statins can reduce chemokine expression in patients with coronary diseases, we wanted to test whether this can be achieved in patients with Crohn's disease. We investigated plasma levels of chemokines (CCL2, CCL4, CCL11, CCL13, CCL17, CCL22, CCL26, CXCL8, CXCL10) and endothelial cytokines (sP-selectin, sE-selectin, sICAM-3, thrombomodulin) in ten Crohn's disease patients before and after thirteen weeks' daily treatment with 80 mg atorvastatin. Of the 13 substances investigated, only CXCL10 was found to be significantly reduced (by 34%, p = 0.026) in all of the treated patients. Levels of CXCL10 correlated with C-reactive protein (r = 0.82, pCrohns disease in the future. (ClinicalTrials.gov) NCT00454545.

  4. Enhanced T cell transmigration across the murine liver sinusoidal endothelium is mediated by transcytosis and surface presentation of chemokines.

    Science.gov (United States)

    Schrage, Arnhild; Wechsung, Katja; Neumann, Katrin; Schumann, Michael; Schulzke, Jörg-Dieter; Engelhardt, Britta; Zeitz, Martin; Hamann, Alf; Klugewitz, Katja

    2008-10-01

    Transmigration through the liver endothelium is a prerequisite for the homeostatic balance of intrahepatic T cells and a key regulator of inflammatory processes within the liver. Extravasation into the liver parenchyma is regulated by the distinct expression patterns of adhesion molecules and chemokines and their receptors on the lymphocyte and endothelial cell surface. In the present study, we investigated whether liver sinusoidal endothelial cells (LSEC) inhibit or support the chemokine-driven transmigration and differentially influence the transmigration of pro-inflammatory or anti-inflammatory CD4(+) T cells, indicating a mechanism of hepatic immunoregulation. Finally, the results shed light on the molecular mechanisms by which LSEC modulate chemokine-dependent transmigration. LSEC significantly enhanced the chemotactic effect of CXC-motif chemokine ligand 12 (CXCL12) and CXCL9, but not of CXCL16 or CCL20, on naive and memory CD4(+) T cells of a T helper 1, T helper 2, or interleukin-10-producing phenotype. In contrast, brain and lymphatic endothelioma cells and ex vivo isolated lung endothelia inhibited chemokine-driven transmigration. As for the molecular mechanisms, chemokine-induced activation of LSEC was excluded by blockage of G(i)-protein-coupled signaling and the use of knockout mice. After preincubation of CXCL12 to the basal side, LSEC took up CXCL12 and enhanced transmigration as efficiently as in the presence of the soluble chemokine. Blockage of transcytosis in LSEC significantly inhibited this effect, and this suggested that chemokines taken up from the basolateral side and presented on the luminal side of endothelial cells trigger T cell transmigration. Our findings demonstrate a unique capacity of LSEC to present chemokines to circulating lymphocytes and highlight the importance of endothelial cells for the in vivo effects of chemokines. Chemokine presentation by LSEC could provide a future therapeutic target for inhibiting lymphocyte

  5. Vibrio vulnificus MO6-24/O Lipopolysaccharide Stimulates Superoxide Anion, Thromboxane B2, Matrix Metalloproteinase-9, Cytokine and Chemokine Release by Rat Brain Microglia in Vitro

    Directory of Open Access Journals (Sweden)

    Alejandro M. S. Mayer

    2014-03-01

    Full Text Available Although human exposure to Gram-negative Vibrio vulnificus (V. vulnificus lipopolysaccharide (LPS has been reported to result in septic shock, its impact on the central nervous system’s innate immunity remains undetermined. The purpose of this study was to determine whether V. vulnificus MO6-24/O LPS might activate rat microglia in vitro and stimulate the release of superoxide anion (O2−, a reactive oxygen species known to cause oxidative stress and neuronal injury in vivo. Brain microglia were isolated from neonatal rats, and then treated with either V. vulnificus MO6-24/O LPS or Escherichia coli O26:B6 LPS for 17 hours in vitro. O2− was determined by cytochrome C reduction, and matrix metalloproteinase-2 (MMP-2 and MMP-9 by gelatinase zymography. Generation of cytokines tumor necrosis factor alpha (TNF-α, interleukin-1 alpha (IL-1α, IL-6, and transforming growth factor-beta 1 (TGF-β1, chemokines macrophage inflammatory protein (MIP-1α/chemokine (C-C motif ligand 3 (CCL3, MIP-2/chemokine (C-X-C motif ligand 2 (CXCL2, monocyte chemotactic protein-1 (MCP-1/CCL2, and cytokine-induced neutrophil chemoattractant-2alpha/beta (CINC-2α/β/CXCL3, and brain-derived neurotrophic factor (BDNF, were determined by specific immunoassays. Priming of rat microglia by V. vulnificus MO6-24/O LPS in vitro yielded a bell-shaped dose-response curve for PMA (phorbol 12-myristate 13-acetate-stimulated O2− generation: (1 0.1–1 ng/mL V. vulnificus LPS enhanced O2− generation significantly but with limited inflammatory mediator generation; (2 10–100 ng/mL V. vulnificus LPS maximized O2− generation with concomitant release of thromboxane B2 (TXB2, matrix metalloproteinase-9 (MMP-9, and several cytokines and chemokines; (3 1000–100,000 ng/mL V. vulnificus LPS, with the exception of TXB2, yielded both attenuated O2− production, and a progressive decrease in MMP-9, cytokines and chemokines investigated. Thus concentration-dependent treatment of

  6. The scavenging chemokine receptor ACKR2 has a significant impact on acute mortality rate and early lesion development after traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Thomas M Woodcock

    Full Text Available The atypical chemokine receptor ACKR2 promotes resolution of acute inflammation by operating as a scavenger receptor for inflammatory CC chemokines in several experimental models of inflammatory disorders, however its role in the brain remains unclear. Based on our previous reports of increased expression of inflammatory chemokines and their corresponding receptors following traumatic brain injury (TBI, we hypothesised that ACKR2 modulates neuroinflammation following brain trauma and that its deletion exacerbates cellular inflammation and chemokine production. We demonstrate increased CCL2 and ACKR2 mRNA expression in post-mortem human brain, whereby ACKR2 mRNA levels correlated with later times post-TBI. This data is consistent with the transient upregulation of ACKR2 observed in mouse brain after closed head injury (CHI. As compared to WT animals, ACKR2-/- mice showed a higher mortality rate after CHI, while the neurological outcome in surviving mice was similar. At day 1 post-injury, ACKR2-/- mice displayed aggravated lesion volume and no differences in CCL2 expression and macrophage recruitment relative to WT mice. Reciprocal regulation of ACKR2 and CCL2 expression was explored in cultured astrocytes, which are recognized as the major source of CCL2 and also express ACKR2. ACKR2 mRNA increased as early as 2 hours after an inflammatory challenge in WT astrocytes. As expected, CCL2 expression also dramatically increased at 4 hours in WT astrocytes but was significantly lower in ACKR2-/- astrocytes, possibly indicating a co-regulation of CCL2 and ACKR2 in these cells. Conversely, in vivo, CCL2 mRNA/protein levels were increased similarly in ACKR2-/- and WT brains at 4 and 12 hours after CHI, in line with the lack of differences in cerebral macrophage recruitment and neurological recovery. In conclusion, ACKR2 is induced after TBI and has a significant impact on mortality and lesion development acutely following CHI, while its role in chemokine

  7. Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yi; Qin, Ling; Ortiz Zacarías, Natalia V.; de Vries, Henk; Han, Gye Won; Gustavsson, Martin; Dabros, Marta; Zhao, Chunxia; Cherney, Robert J.; Carter, Percy; Stamos, Dean; Abagyan, Ruben; Cherezov, Vadim; Stevens, Raymond C.; IJzerman, Adriaan P.; Heitman, Laura H.; Tebben, Andrew; Kufareva, Irina; Handel , Tracy M. (Vertex Pharm); (Leiden-MC); (USC); (BMS); (UCSD)

    2016-12-07

    CC chemokine receptor 2 (CCR2) is one of 19 members of the chemokine receptor subfamily of human class A G-protein-coupled receptors. CCR2 is expressed on monocytes, immature dendritic cells, and T-cell subpopulations, and mediates their migration towards endogenous CC chemokine ligands such as CCL2 (ref. 1). CCR2 and its ligands are implicated in numerous inflammatory and neurodegenerative diseases2 including atherosclerosis, multiple sclerosis, asthma, neuropathic pain, and diabetic nephropathy, as well as cancer3. These disease associations have motivated numerous preclinical studies and clinical trials4 (see http://www.clinicaltrials.gov) in search of therapies that target the CCR2–chemokine axis. To aid drug discovery efforts5, here we solve a structure of CCR2 in a ternary complex with an orthosteric (BMS-681 (ref. 6)) and allosteric (CCR2-RA-[R]7) antagonist. BMS-681 inhibits chemokine binding by occupying the orthosteric pocket of the receptor in a previously unseen binding mode. CCR2-RA-[R] binds in a novel, highly druggable pocket that is the most intracellular allosteric site observed in class A G-protein-coupled receptors so far; this site spatially overlaps the G-protein-binding site in homologous receptors. CCR2-RA-[R] inhibits CCR2 non-competitively by blocking activation-associated conformational changes and formation of the G-protein-binding interface. The conformational signature of the conserved microswitch residues observed in double-antagonist-bound CCR2 resembles the most inactive G-protein-coupled receptor structures solved so far. Like other protein–protein interactions, receptor–chemokine complexes are considered challenging therapeutic targets for small molecules, and the present structure suggests diverse pocket epitopes that can be exploited to overcome obstacles in drug design.

  8. Role of atypical chemokine receptor ACKR2 in experimental oral squamous cell carcinogenesis.

    Science.gov (United States)

    da Silva, Janine Mayra; Dos Santos, Tálita Pollyanna Moreira; Saraiva, Adriana Machado; Fernandes de Oliveira, Ana Laura; Garlet, Gustavo Pompermaier; Batista, Aline Carvalho; de Mesquita, Ricardo Alves; Russo, Remo Castro; da Silva, Tarcília Aparecida

    2018-03-14

    Chemokines and chemokine receptors are critical in oral tumourigenesis. The atypical chemokine receptor ACKR2 is a scavenger of CC chemokines controlling the availability of these molecules at tumour sites, but the role of ACKR2 in the context of oral carcinogenesis is unexplored. In this study, wild-type (WT) and ACKR2 deficient mice (ACKR2 -/- ) were treated with chemical carcinogen 4-nitroquinoline-1-oxide (4NQO) for induction of oral carcinogenesis. Tongues were collected for macro and microscopic analysis and to evaluate the expression of ACKRs, CC chemokines and its receptors, inflammatory cytokines, angiogenic factors, adhesion molecules and extracellular matrix components. An increased expression of ACKR2 in squamous cell carcinoma (SCC) lesions of 4NQO-treated WT mice was observed. No significant differences were seen in the ACKR1, ACKR3 and ACKR4 mRNA expression comparing SCC lesions from WT and ACKR2 -/- treated mice. Significantly higher expression of CCL2, IL-6 and IL-17 was detected in ACKR2 -/- treated mice. In contrast, the expression of other CC-chemokines, and receptors, angiogenic factors, adhesion molecules and extracellular matrix components were similarly increased in SCC lesions of both groups. Clinical and histopathological analysis revealed no differences in inflammatory cell recruitment and in the SCC incidence comparing WT and ACKR2 -/- treated mice. The results suggest that ACKR2 expression regulates inflammation in tumour-microenvironment but the absence of ACKR2 does not impact chemically-induced oral carcinogenesis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Development of frequency tunable gyrotrons for plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Idehara, T.; Mitsudo, S.; Sabchevski, S.; Glyavin, M. [Research Center for Development of Far-Infrared Region, Fukui Univ., Fukui (Japan); Ogawa, I. [Faculty of Engineering, Fukui Univ., Fukui (Japan); Sato, M.; Kawahata, K. [National Inst. for Fusion Science, Toki, Gifu (Japan); Brand, G.F. [School of Physics, Univ. of Sydney, NSW (Australia)

    2000-03-01

    Development of two types of frequency tunable gyrotrons are described. One is frequency step-tunable gyrotrons (Gyrotron FU Series) which cover wide range from millimeter to submillimeter wavelength region. The other is a quasi-optical gyrotron operating in 90 and 180 GHz bands. Both are applicable for plasma diagnostics as power sources. (author)

  10. Development of frequency tunable gyrotrons for plasma diagnostics

    International Nuclear Information System (INIS)

    Idehara, T.; Mitsudo, S.; Sabchevski, S.; Glyavin, M.; Ogawa, I.; Sato, M.; Kawahata, K.; Brand, G.F.

    2000-01-01

    Development of two types of frequency tunable gyrotrons are described. One is frequency step-tunable gyrotrons (Gyrotron FU Series) which cover wide range from millimeter to submillimeter wavelength region. The other is a quasi-optical gyrotron operating in 90 and 180 GHz bands. Both are applicable for plasma diagnostics as power sources. (author)

  11. A low-loss, continuously tunable microwave notch filter

    DEFF Research Database (Denmark)

    Acar, Öncel; Johansen, Tom Keinicke; Zhurbenko, Vitaliy

    2016-01-01

    The development in high-end microwave transceiver systems toward the software defined radio has brought about the need for tunable frontend filters. Although the problem is being tackled by the microwave community, there still appears to be an unmet demand for practical tunable filter technologies...

  12. Water: Promising Opportunities For Tunable All-dielectric Electromagnetic Metamaterials

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Kuznetsova, Svetlana M.; Zhukovsky, Sergei

    2015-01-01

    We reveal an outstanding potential of water as an inexpensive, abundant and bio-friendly high-refractive-index material for creating tunable all-dielectric photonic structures and metamaterials. Specifically, we demonstrate thermal, mechanical and gravitational tunability of magnetic and electric...

  13. Tunable optical absorption in silicene molecules

    KAUST Repository

    Mokkath, Junais Habeeb

    2016-07-13

    Two-dimensional materials with a tunable band gap that covers a wide range of the solar spectrum hold great promise for sunlight harvesting. For this reason, we investigate the structural, electronic, and optical properties of silicene molecules using time dependent density functional theory. We address the influence of the molecular size, buckling, and charge state as well as that of a dielectric environment. Unlike planar graphene molecules, silicene molecules prefer to form low-buckled structures with strong visible to ultraviolet optical response. We also identify molecular plasmons.

  14. Tunable superconducting qudit mediated by microwave photons

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sung Un [Korea Research Institute of Standards and Science, Daejeon 305-340 (Korea, Republic of); Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Bae, Myung-Ho; Kim, Nam [Korea Research Institute of Standards and Science, Daejeon 305-340 (Korea, Republic of); Kang, Kicheon [Department of Physics, Chonnam National University, Gwangju 500-757 (Korea, Republic of)

    2015-08-15

    We have investigated the time-domain characteristics of the Autler-Townes doublet in a superconducting circuit. The transition probabilities between the ground state and the Autler-Townes doublet states are shown to be controlled in a phase-coherent manner using a well-known microwave pulse pattern technique. The experimental results are well explained by a numerical simulation based on the Markovian master equation. Our result indicates that the Autler-Townes doublet states might be useful as a tunable qudit for implementation of quantum information processing, in particular as a multivalued quantum logic element.

  15. Tunable superconducting qudit mediated by microwave photons

    Directory of Open Access Journals (Sweden)

    Sung Un Cho

    2015-08-01

    Full Text Available We have investigated the time-domain characteristics of the Autler-Townes doublet in a superconducting circuit. The transition probabilities between the ground state and the Autler-Townes doublet states are shown to be controlled in a phase-coherent manner using a well-known microwave pulse pattern technique. The experimental results are well explained by a numerical simulation based on the Markovian master equation. Our result indicates that the Autler-Townes doublet states might be useful as a tunable qudit for implementation of quantum information processing, in particular as a multivalued quantum logic element.

  16. Active microring based tunable optical power splitters

    Science.gov (United States)

    Peter, Eldhose; Thomas, Arun; Dhawan, Anuj; Sarangi, Smruti R.

    2016-01-01

    In this paper we propose a set of novel tunable optical power splitters based on active microring resonators. They work by operating ring resonators in the transient zone between full resonance and off-resonance states for a specific wavelength. We can achieve different split ratios by either varying the bias voltage, or by selectively enabling a given resonator with a specific split ratio among an array of ring resonators. We take 500 ps to tune the resonator, which is at least 10× better that competing designs. Its split ratio varies from 0.4 to 1.8 for an applied voltage range of 0-5 V.

  17. Nano electro-mechanical optoelectronic tunable VCSEL.

    Science.gov (United States)

    Huang, Michael C Y; Zhou, Ye; Chang-Hasnain, Connie J

    2007-02-05

    We report a novel electrostatic actuated nano-electromechanical optoelectronic (NEMO) tunable vertical-cavity surface-emitting laser (VCSEL) centered at 850 nm. By integrating a movable, single-layer (230 nm), high-index-contrast subwavelength grating (HCG) as the VCSEL top mirror, single mode emission (SMSR >40 dB) and continuous wavelength tuning (~2.5 nm) was obtained at room temperature under CW operation. The small footprint of HCG enables the scaling down of each of the cantilever dimensions by a factor of 10, leading to 1000 times reduction in mass, which potentially increases the mechanical resonant frequency and tuning speed.

  18. Magnetic nanoparticles for tunable microwave metamaterials

    KAUST Repository

    Noginova, Natalia

    2012-09-24

    Commonly, metamaterials are electrically engineered systems with optimized spatial arrangement of subwavelength sized metal and dielectric components. We explore alternative methods based on use of magnetic inclusions, such as magnetic nanoparticles, which can allow permeability of a composite to be tuned from negative to positive at the range of magnetic resonance. To better understand effects of particle size and magnetization dynamics, we performed electron magnetic resonance study on several varieties of magnetic nanoparticles and determined potential of nanoparticle use as building blocks for tunable microwave metamaterials. © (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  19. Magnetocapacitance of an electrically tunable silicene device

    KAUST Repository

    Tahir, M.

    2012-09-26

    Despite their structural similarity, the electronic properties of silicene are fundamentally different from those of well-known graphene due to the strong intrinsic spin orbit interaction and buckled structure of silicene. We address the magnetocapacitance of spin and valley polarized silicene in an external perpendicular magnetic field to clarify the interplay of the spin orbit interaction and the perpendicular electric field. We find that the band gap is electrically tunable and show that the magnetocapacitance exhibits beating at low and splitting of the Shubnikov de Haas oscillations at high magnetic field.

  20. Structure, function and physiological consequences of virally encoded chemokine seven transmembrane receptors

    DEFF Research Database (Denmark)

    Rosenkilde, M M; Smit, M J; Waldhoer, M

    2008-01-01

    A number of human and animal herpes viruses encode G-protein coupled receptors with seven transmembrane (7TM) segments-most of which are clearly related to human chemokine receptors. It appears, that these receptors are used by the virus for immune evasion, cellular transformation, tissue targeting...... pathogenesis is still poorly understood. Here we focus on the current knowledge of structure, function and trafficking patterns of virally encoded chemokine receptors and further address the putative roles of these receptors in virus survival and host -cell and/or -immune system modulation. Finally, we...

  1. Cytokines and Chemokines as Regulators of Skeletal Muscle Inflammation: Presenting the Case of Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Boel De Paepe

    2013-01-01

    Full Text Available Duchenne muscular dystrophy is a severe inherited muscle disease that affects 1 in 3500 boys worldwide. Infiltration of skeletal muscle by inflammatory cells is an important facet of disease pathophysiology and is strongly associated with disease severity in the individual patient. In the chronic inflammation that characterizes Duchenne muscle, cytokines and chemokines are considered essential activators and recruiters of inflammatory cells. In addition, they provide potential beneficiary effects on muscle fiber damage control and tissue regeneration. In this review, current knowledge of cytokine and chemokine expression in Duchenne muscular dystrophy and its relevant animal disease models is listed, and implications for future therapeutic avenues are discussed.

  2. Association study of inflammatory cytokine and chemokine expression in hand foot and mouth disease

    OpenAIRE

    Shang, Wenzhong; Qian, Suying; Fang, Lijuan; Han, Yong; Zheng, Cuiping

    2017-01-01

    Objective To determine the relationship of cytokine/chemokine expression with the clinical presentation of hand, foot and mouth disease (HFMD). Results All cytokine/chemokine levels were higher in severe HFMD patients than in mild HFMD patients or controls (P < 0.01). RANTES, MCP-1, IL-4, IL-12 and IL-18 levels were higher in mild HFMD patients than in the controls (P < 0.05). In severe HFMD, all levels (except IL-8 and IL-4) were higher in patients with encephalitis plus pulmonary edema than...

  3. Inflammation-induced chemokine expression in uveal melanoma cell lines stimulates monocyte chemotaxis

    DEFF Research Database (Denmark)

    Jehs, Tina; Faber, Carsten; Juel, Helene B

    2014-01-01

    of activated T cells on the expression of chemotactic cytokines in UM cells. Furthermore, we examined the ability of stimulated UM cells to attract monocytes. METHODS: We used an in vitro coculture system in which UM cell lines and T cells were cultured together, but separated by a membrane. Uveal melanoma...... resulted in an upregulation of chemokines such as CXCL8, CXCL9, CXCL10, CXCL11, CCL2, CCL5, VEGF, intracellular adhesion molecule 1 (ICAM1), and granulocyte-macrophage colony-stimulating factor (GM-CSF). The upregulation of these molecules was confirmed at the protein level. This increase of chemokines...

  4. The herpesvirus 8-encoded chemokine vMIP-II, but not the poxvirus-encoded chemokine MC148, inhibits the CCR10 receptor

    DEFF Research Database (Denmark)

    Lüttichau, H R; Lewis, I C; Gerstoft, J

    2001-01-01

    The viral chemokine antagonist vMIP-II encoded by human herpesvirus 8 (HHV8) and MC148 encoded by the poxvirus - Molluscum contagiosum - were tested against the newly identified chemokine receptor CCR10. As the CCR10 ligand ESkine / CCL27 had the highest identity to MC148 and because both...... chemokines are expressed in the skin we suspected MC148 to block CCR10. However, in calcium mobilization assays we found MC148 unable to block CCR10 in micromolar concentrations in contrast to vMIP-II. (125)I-MC148 was only able to bind to CCR8, but not to CCR10, CCR11, CXCR6 / BONZO, APJ, DARC or the orphan...... receptors BOB, EBI-II, GPR4, GPR17, HCR or RDC1. We conclude that MC148 is a highly selective CCR8 antagonist conceivably optimized to interfere with NK cell and monocyte invasion, whereas the broad-spectrum antagonist vMIP-II protects HHV8 by blocking multiple receptors....

  5. On-line monitoring of methanol and methyl formate in the exhaust gas of an industrial formaldehyde production plant by a mid-IR gas sensor based on tunable Fabry-Pérot filter technology.

    Science.gov (United States)

    Genner, Andreas; Gasser, Christoph; Moser, Harald; Ofner, Johannes; Schreiber, Josef; Lendl, Bernhard

    2017-01-01

    On-line monitoring of key chemicals in an industrial production plant ensures economic operation, guarantees the desired product quality, and provides additional in-depth information on the involved chemical processes. For that purpose, rapid, rugged, and flexible measurement systems at reasonable cost are required. Here, we present the application of a flexible mid-IR filtometer for industrial gas sensing. The developed prototype consists of a modulated thermal infrared source, a temperature-controlled gas cell for absorption measurement and an integrated device consisting of a Fabry-Pérot interferometer and a pyroelectric mid-IR detector. The prototype was calibrated in the research laboratory at TU Wien for measuring methanol and methyl formate in the concentration ranges from 660 to 4390 and 747 to 4610 ppmV. Subsequently, the prototype was transferred and installed at the project partner Metadynea Austria GmbH and linked to their Process Control System via a dedicated micro-controller and used for on-line monitoring of the process off-gas. Up to five process streams were sequentially monitored in a fully automated manner. The obtained readings for methanol and methyl formate concentrations provided useful information on the efficiency and correct functioning of the process plant. Of special interest for industry is the now added capability to monitor the start-up phase and process irregularities with high time resolution (5 s).

  6. The chemokines CCL11, CCL20, CCL21, and CCL24 are preferentially expressed in polarized human secondary lymphoid follicles.

    Science.gov (United States)

    Buri, Caroline; Gutersohn, Andreas; Hauser, Chantal; Kappeler, Andreas; Mueller, Christoph

    2004-10-01

    Chemokines regulate cellular trafficking to and from lymphoid follicles. Here, the distribution pattern of four CCL chemokines is defined by in situ hybridization in human lymphoid follicles from tonsils and lymph nodes (LNs) of newborns and adults. Cells expressing CCL11 (eotaxin) and CCL20 (Exodus) were preferentially located within follicles, while cells expressing CCL21 (secondary lymphoid-tissue chemokine) and CCL24 (eotaxin-2) mRNA were almost exclusively found in the perifollicular areas. Hence, the two CCR3-binding chemokines, CCL11 and CCL24, showed a mutually exclusive expression pattern in the intra- and extra-follicular areas, respectively. Chemokine gene expression paralleled follicular maturation: in tonsils, where approximately 80% of follicles are polarized, CCL11 and CCL20 mRNA-positive cells were detected more frequently than in lymph nodes from adults, where about half of follicles are non-polarized. No intrafollicular chemokine expression was detectable in the primary follicles from newborns. Extrafollicular cells expressing CCL21 and CCL24 were again more frequent in tonsils than in LNs from adults. The observed preferential presence of cells expressing CC chemokines in polarized human lymphoid follicles indicates that chemokines are not only instrumental in the induction of follicle formation, but may also be involved in their further differentiation.

  7. Evidence favoring the involvement of CC chemokine receptor (CCR) 5 in T-lymphocyte accumulation in optic neuritis

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke; Ransohoff, R M; Jensen, J

    2003-01-01

    To define the relationships between levels of chemokine receptor (CCR)5+ T-cells in blood and cerebrospinal fluid (CSF) of optic neuritis (ON) and control patients (CON).......To define the relationships between levels of chemokine receptor (CCR)5+ T-cells in blood and cerebrospinal fluid (CSF) of optic neuritis (ON) and control patients (CON)....

  8. Deficiency for the chemokine monocyte chemoattractant protein-1 aggravates tubular damage after renal ischemia/reperfusion injury

    NARCIS (Netherlands)

    Stroo, Ingrid; Claessen, Nike; Teske, Gwendoline J. D.; Butter, Loes M.; Florquin, Sandrine; Leemans, Jaklien C.

    2015-01-01

    Temporal expression of chemokines is a crucial factor in the regulation of renal ischemia/reperfusion (I/R) injury and repair. Beside their role in the migration and activation of inflammatory cells to sites of injury, chemokines are also involved in other processes such as angiogenesis, development

  9. Bruton's tyrosine kinase and phospholipase C gamma 2 mediate chemokine-controlled B cell migration and homing

    NARCIS (Netherlands)

    de Gorter, David J. J.; Beuling, Esther A.; Kersseboom, Rogier; Middendorp, Sabine; van Gils, Janine M.; Hendriks, Rudolf W.; Pals, Steven T.; Spaargaren, Marcel

    2007-01-01

    Control of integrin-mediated adhesion and migration by chemokines plays a critical role in B cell development, differentiation, and function; however, the underlying signaling mechanisms are poorly defined. Here we show that the chemokine SDF-1 induced activation of Bruton's tyrosine kinase (Btk)

  10. Human cytomegalovirus chemokine receptor US28 induces migration of cells on a CX3CL1-presenting surface

    DEFF Research Database (Denmark)

    Hjortø, Gertrud M; Kiilerich-Pedersen, Katrine; Selmeczi, David

    2013-01-01

    Human cytomegalovirus (HCMV)-encoded G protein-coupled-receptor US28 is believed to participate in virus dissemination through modulation of cell migration and immune evasion. US28 binds different CC chemokines and the CX3C chemokine CX3CL1. Membrane-anchored CX3CL1 is expressed by immune...

  11. A closed-tube assay for genotyping of the 32-bp deletion polymorphism in the chemokine receptor 5 (CCR5) gene

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Berg; Werge, Thomas

    2007-01-01

    We have developed a closed-tube assay for determination of the chemokine receptor type 5 (CCR5) 32-bp deletion allele, which protects against infections with HIV and modulates susceptibility to a variety of inflammatory diseases. This assay utilizes dissociation analysis of amplified products...... in the presence of Sybr Green I for allele discrimination. After having established robust conditions for the assay, we used it to genotype 590 unknown DNA samples. A blinded comparison with a procedure based upon agarose gel electrophoresis of amplified material revealed complete concordance between the two...

  12. Angiogenic peptide (AG)-30/5C activates human keratinocytes to produce cytokines/chemokines and to migrate and proliferate via MrgX receptors.

    Science.gov (United States)

    Kiatsurayanon, Chanisa; Niyonsaba, François; Chieosilapatham, Panjit; Okumura, Ko; Ikeda, Shigaku; Ogawa, Hideoki

    2016-09-01

    In addition to their antimicrobial activities, antimicrobial peptides, also known as host defense peptides (HDPs) activate keratinocytes; promote wound healing; and improve the skin barrier. AG-30/5C is a novel angiogenic HDP that activates various functions of fibroblasts and endothelial cells, including cytokine/chemokine production and wound healing. To investigate whether AG-30/5C activates human keratinocytes and to examine the underlying mechanisms. Production of cytokines/chemokines was assessed by ELISA. Expression of Mas-related G-protein coupled receptors X (MrgXs) in keratinocytes was determined by real-time PCR and Western blot. MAPK and NF-κB activation was analysed by Western blot. Cell migration was assessed by chemotaxis microchamber and in vitro wound closure assay, whereas cell proliferation was analysed using an XTT assay. We found that AG-30/5C was more efficient than its parent peptide AG-30 in increasing the production of various cytokines/chemokines and promoting keratinocyte migration and proliferation. Furthermore, MrgX3 and MrgX4 receptors were constitutively expressed in keratinocytes at higher levels than MrgX1 and MrgX2, and were up-regulated upon stimulation with TLR ligands. Because MrgX3 and MrgX4 siRNAs suppressed AG-30/5C-mediated cytokine/chemokine production, keratinocyte migration and proliferation, we propose that AG-30/5C utilizes these MrgXs to stimulate keratinocytes. In addition, AG-30/5C-induced activation of keratinocytes was controlled by MAPK and NF-κB pathways, as evidenced by the inhibitory effects of ERK-, JNK-, p38- and NF-κB-specific inhibitors. Indeed, we confirmed that AG-30/5C enhanced phosphorylation of MAPKs and IκB. Our findings provide novel evidence that AG-30/5C may be a useful therapeutic agent for wound healing by activating human keratinocytes. Copyright © 2016 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  13. The Lymphotoxin Pathway Regulates Aire-Independent Expression of Ectopic Genes and Chemokines in Thymic Stromal Cells1

    Science.gov (United States)

    Seach, Natalie; Ueno, Tomoo; Fletcher, Anne L.; Lowen, Tamara; Mattesich, Monika; Engwerda, Christian R.; Scott, Hamish S.; Ware, Carl F.; Chidgey, Ann P.; Gray, Daniel H. D.; Boyd, Richard L.

    2009-01-01

    Medullary thymic epithelial cells (mTEC) play an important and unique role in central tolerance, expressing tissue-restricted Ags (TRA) which delete thymocytes autoreactive to peripheral organs. Since deficiencies in this cell type or activity can lead to devastating autoimmune diseases, it is important to understand the factors which regulate mTEC differentiation and function. Lymphotoxin (LT) ligands and the LTβR have been recently shown to be important regulators of mTEC biology; however, the precise role of this pathway in the thymus is not clear. In this study, we have investigated the impact of this signaling pathway in greater detail, focusing not only on mTEC but also on other thymic stromal cell subsets. LTβR expression was found in all TEC subsets, but the highest levels were detected in MTS-15+ thymic fibroblasts. Rather than directing the expression of the autoimmune regulator Aire in mTEC, we found LTβR signals were important for TRA expression in a distinct population of mTEC characterized by low levels of MHC class II (mTEClow), as well as maintenance of MTS-15+ fibroblasts. In addition, thymic stromal cell subsets from LT-deficient mice exhibit defects in chemokine production similar to that found in peripheral lymphoid organs of Lta−/− and Ltbr−/− mice. Thus, we propose a broader role for LTα1β2-LTβR signaling in the maintenance of the thymic microenvironments, specifically by regulating TRA and chemokine expression in mTEClow for efficient induction of central tolerance. PMID:18390720

  14. Elastic metamaterial beam with remotely tunable stiffness

    Science.gov (United States)

    Qian, Wei; Yu, Zhengyue; Wang, Xiaole; Lai, Yun; Yellen, Benjamin B.

    2016-02-01

    We demonstrate a dynamically tunable elastic metamaterial, which employs remote magnetic force to adjust its vibration absorption properties. The 1D metamaterial is constructed from a flat aluminum beam milled with a linear array of cylindrical holes. The beam is backed by a thin elastic membrane, on which thin disk-shaped permanent magnets are mounted. When excited by a shaker, the beam motion is tracked by a Laser Doppler Vibrometer, which conducts point by point scanning of the vibrating element. Elastic waves are unable to propagate through the beam when the driving frequency excites the first elastic bending mode in the unit cell. At these frequencies, the effective mass density of the unit cell becomes negative, which induces an exponentially decaying evanescent wave. Due to the non-linear elastic properties of the membrane, the effective stiffness of the unit cell can be tuned with an external magnetic force from nearby solenoids. Measurements of the linear and cubic static stiffness terms of the membrane are in excellent agreement with experimental measurements of the bandgap shift as a function of the applied force. In this implementation, bandgap shifts by as much as 40% can be achieved with ˜30 mN of applied magnetic force. This structure has potential for extension in 2D and 3D, providing a general approach for building dynamically tunable elastic metamaterials for applications in lensing and guiding elastic waves.

  15. 130-nm tunable grating-mirror VCSEL

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2014-01-01

    We have reported that a combination of the high-index-contrast grating (HCG) mirror as movable mirror and the extended cavity configuration with an antireflection layer can provide a tuning wavelength range of 100 nm for tunable VCSELs. Here, we report that using the air-coupled cavity configurat......We have reported that a combination of the high-index-contrast grating (HCG) mirror as movable mirror and the extended cavity configuration with an antireflection layer can provide a tuning wavelength range of 100 nm for tunable VCSELs. Here, we report that using the air-coupled cavity...... configuration instead of the extended cavity configuration can bring 130-nm tuning range around 1330-nm wavelength. The air-coupled cavity is known to reduce the quantum confinement factor in VCSELs, increasing threshold. In our air-coupled cavity HCG VCSEL case, the very short power penetration length...... in the HCG minimizes this reduction of the quantum confinement factor, not as significant as in the air-coupled cavity DBR VCSEL....

  16. Directed growth of diameter-tunable nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Ozturk, Birol; Talukdar, Ishan; Flanders, Bret N [Department of Physics, Oklahoma State University, 145 Physical Sciences II, Stillwater, OK 74078 (United States)

    2007-09-12

    This study characterizes a method for controlling the nanowire diameter in the directed electrochemical nanowire assembly technique, where alternating voltages applied to electrodes in simple salt solutions induce the crystallization of metallic wires. Dendritic solidification is identified as an important component of this technique. A characteristic of dendritic solidification is that the growth velocity and tip radius are anti-correlated. This relationship is exploited here to realize diameter-tunable nanowire growth. The experimental parameter that provides this control is {omega}, the frequency of the alternating voltage. Increasing {omega} effectively steepens the metal cation concentration gradient at the wire-solution interface, thereby increasing the growth velocity of the wire. For indium wires, increasing {omega} from 0.5 to 3.5 MHz increases their growth velocity from 11 to 78 {mu}m s{sup -1} and reduces their diameter from 770 to 114 nm. Gold wires exhibit diameter-tunability that ranges from 150 nm to 45 nm. Thus, it is possible to tune the wire diameter from the microscale down to the nanoscale. Moreover, this control is a consequence of non-stationary dendritic growth, which distinguishes this process from most previously studied examples of dendritic solidification.

  17. Elastic metamaterial beam with remotely tunable stiffness

    International Nuclear Information System (INIS)

    Qian, Wei; Yu, Zhengyue; Wang, Xiaole; Lai, Yun; Yellen, Benjamin B.

    2016-01-01

    We demonstrate a dynamically tunable elastic metamaterial, which employs remote magnetic force to adjust its vibration absorption properties. The 1D metamaterial is constructed from a flat aluminum beam milled with a linear array of cylindrical holes. The beam is backed by a thin elastic membrane, on which thin disk-shaped permanent magnets are mounted. When excited by a shaker, the beam motion is tracked by a Laser Doppler Vibrometer, which conducts point by point scanning of the vibrating element. Elastic waves are unable to propagate through the beam when the driving frequency excites the first elastic bending mode in the unit cell. At these frequencies, the effective mass density of the unit cell becomes negative, which induces an exponentially decaying evanescent wave. Due to the non-linear elastic properties of the membrane, the effective stiffness of the unit cell can be tuned with an external magnetic force from nearby solenoids. Measurements of the linear and cubic static stiffness terms of the membrane are in excellent agreement with experimental measurements of the bandgap shift as a function of the applied force. In this implementation, bandgap shifts by as much as 40% can be achieved with ∼30 mN of applied magnetic force. This structure has potential for extension in 2D and 3D, providing a general approach for building dynamically tunable elastic metamaterials for applications in lensing and guiding elastic waves

  18. Highly Tunable Electrothermally and Electrostatically Actuated Resonators

    KAUST Repository

    Hajjaj, Amal Z.

    2016-03-30

    This paper demonstrates experimentally, theoretically, and numerically for the first time, a wide-range tunability of an in-plane clamped-clamped microbeam, bridge, and resonator actuated electrothermally and electrostatically. Using both actuation methods, we demonstrate that a single resonator can be operated at a wide range of frequencies. The microbeam is actuated electrothermally by passing a dc current through it, and electrostatically by applying a dc polarization voltage between the microbeam and the stationary electrode. We show that when increasing the electrothermal voltage, the compressive stress inside the microbeam increases, which leads eventually to its buckling. Before buckling, the fundamental frequency decreases until it drops to very low values, almost to zero. After buckling, the fundamental frequency increases, which is shown to be as high as twice the original resonance frequency. Adding a dc bias changes the qualitative nature of the tunability both before and after buckling, which adds another independent way of tuning. This reduces the dip before buckling, and can eliminate it if desired, and further increases the fundamental frequency after buckling. Analytical results based on the Galerkin discretization of the Euler Bernoulli beam theory are generated and compared with the experimental data and simulation results of a multi-physics finite-element model. A good agreement is found among all the results. [2015-0341

  19. Tunable Mechanical Filter for Longitudinal Vibrations

    Directory of Open Access Journals (Sweden)

    S. Asiri

    2007-01-01

    Full Text Available This paper presents both theoretically and experimentally a new kind of vibration isolator called tunable mechanical filter which consists of four parallel hybrid periodic rods connected between two plates. The rods consist of an assembly of periodic cells, each cell being composed of a short rod and piezoelectric inserts. By actively controlling the piezoelectric elements, it is shown that the periodic rods can efficiently attenuate the propagation of vibration from the upper plate to the lower one within critical frequency bands and consequently minimize the effects of transmission of undesirable vibration and sound radiation. In such a filter, longitudinal waves can propagate from the vibration source in the upper plate to the lower one along the rods only within specific frequency bands called the “Pass Bands” and wave propagation is efficiently attenuated within other frequency bands called the “Stop Bands”. The spectral width of these bands can be tuned according to the nature of the external excitation. The theory governing the operation of this class of vibration isolator is presented and their tunable filtering characteristics are demonstrated experimentally as functions of their design parameters. The concept of this mechanical filter as presented can be employed in many applications to control the wave propagation and the force transmission of longitudinal vibrations both in the spectral and spatial domains in an attempt to stop/attenuate the propagation of undesirable disturbances.

  20. Highly Tunable Electrothermally Actuated Arch Resonator

    KAUST Repository

    Hajjaj, Amal Z.

    2016-12-05

    This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of electrothermally actuated MEMS arch beams. The beams are made of silicon and are intentionally fabricated with some curvature as in-plane shallow arches. Analytical results based on the Galerkin discretization of the Euler Bernoulli beam theory are generated and compared to the experimental data and results of a multi-physics finite-element model. A good agreement is found among all the results. The electrothermal voltage is applied between the anchors of the clamped-clamped MEMS arch beam, generating a current that passes through the MEMS arch beam and controls its axial stress caused by thermal expansion. When the electrothermal voltage increases, the compressive stress increases inside the arch beam. This leads to increase in its curvature, thereby increases the resonance frequencies of the structure. We show here that the first resonance frequency can increase up to twice its initial value. We show also that after some electro-thermal voltage load, the third resonance frequency starts to become more sensitive to the axial thermal stress, while the first resonance frequency becomes less sensitive. These results can be used as guidelines to utilize arches as wide-range tunable resonators.

  1. Selective elimination of high constitutive activity or chemokine binding in the human herpesvirus 8 encoded seven transmembrane oncogene ORF74

    DEFF Research Database (Denmark)

    Rosenkilde, M M; Kledal, T N; Holst, Peter Johannes

    2000-01-01

    Open reading frame 74 (ORF74) encoded by human herpesvirus 8 is a highly constitutively active seven transmembrane (7TM) receptor stimulated by angiogenic chemokines, e.g. growth-related oncogene-alpha, and inhibited by angiostatic chemokines e.g. interferon-gamma-inducible protein. Transgenic mice...... and action of chemokines obtained through deletion of 22 amino acids from the N-terminal extension; an ORF74 with high constitutive activity but with selective elimination of stimulatory regulation by angiogenic chemokines obtained through substitution of basic residues at the extracellular ends of TM......-V or TM-VI; and an ORF74 lacking constitutive activity but with preserved ability to be stimulated by agonist chemokines obtained through introduction of an Asp residue on the hydrophobic, presumed membrane-exposed face of TM-II. It is concluded that careful molecular dissection can selectively eliminate...

  2. Role of chemokines and their receptors in viral persistence and liver damage during chronic hepatitis C virus infection

    Science.gov (United States)

    Larrubia, Juan R; Benito-Martínez, Selma; Calvino, Miryam; Sanz-de-Villalobos, Eduardo; Parra-Cid, Trinidad

    2008-01-01

    Chemokines produced in the liver during hepatitis C virus (HCV) infection induce migration of activated T cells from the periphery to infected parenchyma. The milieu of chemokines secreted by infected hepatocytes is predominantly associated with the T-helper/T-cytotoxic type-1 cell (Th1/Tc1) response. These chemokines consist of CCL3 (macrophage inflammatory protein-1α; MIP-1α), CCL4 (MIP-1β), CCL5 (regulated on activation normal T cell expressed and secreted; RANTES), CXCL10 (interferon-γ−inducible protein-10; IP-10), CXCL11 (interferon-inducible T-cell α chemoattractant; I-TAC), and CXCL9 (monokine induced by interferon γ; Mig) and they recruit T cells expressing either CCR5 or CXCR3 chemokine receptors. Intrahepatic and peripheral blood levels of these chemokines are increased during chronic hepatitis C. The interaction between chemokines and their receptors is essential in recruiting HCV-specific T cells to control the infection. When the adaptive immune response fails in this task, non-specific T cells without the capacity to control the infection are also recruited to the liver, and these are ultimately responsible for the persistent hepatic damage. The modulation of chemokine receptor expression and chemokine secretion could be a viral escape mechanism to avoid specific T cell migration to the liver during the early phase of infection, and to maintain liver viability during the chronic phase, by impairing non-specific T cell migration. Some chemokines and their receptors correlate with liver damage, and CXCL10 (IP-10) and CXCR3 levels have shown a clinical utility as predictors of treatment response outcome. The regulation of chemokines and their receptors could be a future potential therapeutic target to decrease liver inflammation and to increase specific T cell migration to the infected liver. PMID:19084927

  3. Regulation of Chemokine Expression by Lipopolysaccharide In Vitro and In Vivo

    Science.gov (United States)

    2002-06-10

    McMurray, D. Smith, J. Sims, 194 T. Bird , and L. O’Neil. 2001. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature...HuMig: a new human member of the chemokine family of cytokines. Biochem. Biophys. Res. Commun. 192:223. 128. Cole, K., C. Strick, T. Paradis , K

  4. CXC Chemokines Exhibit Bactericidal Activity against Multidrug-Resistant Gram-Negative Pathogens

    Directory of Open Access Journals (Sweden)

    Matthew A. Crawford

    2017-11-01

    Full Text Available The continued rise and spread of antimicrobial resistance among bacterial pathogens pose a serious challenge to global health. Countering antimicrobial-resistant pathogens requires a multifaceted effort that includes the discovery of novel therapeutic approaches. Here, we establish the capacity of the human CXC chemokines CXCL9 and CXCL10 to kill multidrug-resistant Gram-negative bacteria, including New Delhi metallo-beta-lactamase-1-producing Klebsiella pneumoniae and colistin-resistant members of the family Enterobacteriaceae that harbor the mobile colistin resistance protein MCR-1 and thus possess phosphoethanolamine-modified lipid A. Colistin-resistant K. pneumoniae isolates affected by genetic mutation of the PmrA/PmrB two-component system, a chromosomally encoded regulator of lipopolysaccharide modification, and containing 4-amino-4-deoxy-l-arabinose-modified lipid A were also found to be susceptible to chemokine-mediated antimicrobial activity. However, loss of PhoP/PhoQ autoregulatory control, caused by disruption of the gene encoding the negative regulator MgrB, limited the bactericidal effects of CXCL9 and CXCL10 in a variable, strain-specific manner. Cumulatively, these findings provide mechanistic insight into chemokine-mediated antimicrobial activity, highlight disparities amongst determinants of colistin resistance, and suggest that chemokine-mediated bactericidal effects merit additional investigation as a therapeutic avenue for treating infections caused by multidrug-resistant pathogens.

  5. Tumor Necrosis Factor (TNF) and Chemokines in Colitis-Associated Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Mukaida, Naofumi, E-mail: naofumim@kenroku.kanazawa-u.ac.jp; Sasakki, So-ichiro [Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Popivanova, Boryana K. [Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Present Address, Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan)

    2011-06-27

    The connection between inflammation and tumorigenesis has been well established, based on a great deal of supporting evidence obtained from epidemiological, pharmacological, and genetic studies. One representative example is inflammatory bowel disease, because it is an important risk factor for the development of colon cancer. Moreover, intratumoral infiltration of inflammatory cells suggests the involvement of inflammatory responses also in other forms of sporadic as well as heritable colon cancer. Inflammatory responses and tumorigenesis activate similar sets of transcription factors such as NF-κB, Stat3, and hypoxia inducible factor and eventually enhances the expression of inflammatory cytokines including tumor necrosis factor (TNF) and chemokines. The expression of TNF and chemokines is aberrantly expressed in a mouse model of colitis-associated carcinogenesis as well as in inflammatory bowel disease and colon cancer in humans. Here, after summarizing the presumed actions of TNF and chemokines in tumor biology, we will discuss the potential roles of TNF and chemokines in chronic inflammation-associated colon cancer in mice.

  6. Secretion of antiretroviral chemokines by human cells cultured with acyclic nucleoside phosphonates

    Czech Academy of Sciences Publication Activity Database

    Zídek, Zdeněk; Kmoníčková, Eva; Holý, Antonín

    2007-01-01

    Roč. 574, - (2007), s. 77-84 ISSN 0014-2999 R&D Projects: GA MŠk 1M0508 Institutional research plan: CEZ:AV0Z50390512; CEZ:AV0Z40550506 Keywords : Acyclic nucleoside phosphonate * Chemokine * Cytokine Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.376, year: 2007

  7. Renal Protection by Genetic Deletion of the Atypical Chemokine Receptor ACKR2 in Diabetic OVE Mice

    Directory of Open Access Journals (Sweden)

    Shirong Zheng

    2016-01-01

    Full Text Available In diabetic nephropathy (DN proinflammatory chemokines and leukocyte infiltration correlate with tubulointerstitial injury and declining renal function. The atypical chemokine receptor ACKR2 is a chemokine scavenger receptor which binds and sequesters many inflammatory CC chemokines but does not transduce typical G-protein mediated signaling events. ACKR2 is known to regulate diverse inflammatory diseases but its role in DN has not been tested. In this study, we utilized ACKR2−/− mice to test whether ACKR2 elimination alters progression of diabetic kidney disease. Elimination of ACKR2 greatly reduced DN in OVE26 mice, an established DN model. Albuminuria was significantly lower at 2, 4, and 6 months of age. ACKR2 deletion did not affect diabetic blood glucose levels but significantly decreased parameters of renal inflammation including leukocyte infiltration and fibrosis. Activation of pathways that increase inflammatory gene expression was attenuated. Human biopsies stained with ACKR2 antibody revealed increased staining in diabetic kidney, especially in some tubule and interstitial cells. The results demonstrate a significant interaction between diabetes and ACKR2 protein in the kidney. Unexpectedly, ACKR2 deletion reduced renal inflammation in diabetes and the ultimate response was a high degree of protection from diabetic nephropathy.

  8. Increased cerebrospinal fluid concentrations of the chemokine CXCL13 in active MS

    DEFF Research Database (Denmark)

    Sellebjerg, F; Börnsen, L; Khademi, M

    2009-01-01

    BACKGROUND: Accumulating evidence supports a major role of B cells in multiple sclerosis (MS) pathogenesis. How B cells are recruited to the CNS is incompletely understood. Our objective was to study B-cell chemokine concentrations in MS, their relationship with disease activity, and how treatmen...

  9. Peroxisome Proliferator-Activated Receptor Agonists Modulate Neuropathic Pain: a Link to Chemokines?

    Directory of Open Access Journals (Sweden)

    Caroline eFreitag

    2014-08-01

    Full Text Available Chronic pain presents a widespread and intractable medical problem. While numerous pharmaceuticals are used to treat chronic pain, drugs that are safe for extended use and highly effective at treating the most severe pain do not yet exist. Chronic pain resulting from nervous system injury (neuropathic pain is common in conditions ranging from multiple sclerosis to HIV-1 infection to type II diabetes. Inflammation caused by neuropathy is believed to contribute to the generation and maintenance of neuropathic pain. Chemokines are key inflammatory mediators, several of which (MCP-1, RANTES, MIP-1α, fractalkine, SDF-1 among others have been linked to chronic, neuropathic pain in both human conditions and animal models. The important roles chemokines play in inflammation and pain make them an attractive therapeutic target. Peroxisome proliferator-activated receptors are a family of nuclear receptors known for their roles in metabolism. Recent research has revealed that PPARs also play a role in inflammatory gene repression. PPAR agonists have wide-ranging effects including inhibition of chemokine expression and pain behavior reduction in animal models. Experimental evidence suggests a connection between PPAR agonists' pain ameliorating effects and suppression of inflammatory gene expression, including chemokines. In early clinical research, one PPARα agonist, palmitoylethanolamide, shows promise in relieving chronic pain. If this link can be better established, PPAR agonists may represent a new drug therapy for neuropathic pain.

  10. Molecular requirements for inhibition of the chemokine receptor CCR8--probe-dependent allosteric interactions

    DEFF Research Database (Denmark)

    Rummel, Pia Cwarzko; Arfelt, K N; Baumann, L

    2012-01-01

    Here we present a novel series of CCR8 antagonists based on a naphthalene-sulfonamide structure. This structure differs from the predominant pharmacophore for most small-molecule CC-chemokine receptor antagonists, which in fact activate CCR8, suggesting that CCR8 inhibition requires alternative...

  11. Inflammatory role and prognostic value of platelet chemokines in acute coronary syndrome

    NARCIS (Netherlands)

    Blanchet, X.; Cesarek, K.; Brandt, J.; Herwald, H.; Teupser, D.; Küchenhoff, H.; Karshovska, E.; Mause, S. F.; Siess, W.; Wasmuth, H.; Soehnlein, O.; Koenen, R. R.; Weber, C.; von Hundelshausen, P.

    2014-01-01

    Activated platelets and neutrophils exacerbate atherosclerosis. Platelets release the chemokines CXCL4, CXCL4L1 and CCL5, whereas myeloperoxidase (MPO) and azurocidin are neutrophil-derived. We investigated whether plasma levels of these platelet and neutrophil mediators are affected by the acute

  12. The Role of CC-Chemokines in the Regulation of Angiogenesis

    Directory of Open Access Journals (Sweden)

    Anisyah Ridiandries

    2016-11-01

    Full Text Available Angiogenesis, the formation of new blood vessels, is critical for survival and in the regenerative response to tissue injury or ischemia. However, in diseases such as cancer and atherosclerosis, inflammation can cause unregulated angiogenesis leading to excessive neovascularization, which exacerbates disease. Current anti-angiogenic therapies cause complete inhibition of both inflammatory and ischemia driven angiogenesis causing a range of side effects in patients. Specific inhibition of inflammation-driven angiogenesis would therefore be immensely valuable. Increasing evidence suggests that the CC-chemokine class promotes inflammation-driven angiogenesis, whilst there is little evidence for a role in ischemia-mediated angiogenesis. The differential regulation of angiogenesis by CC-chemokines suggests it may provide an alternate strategy to treat angiogenesis associated pathological diseases. The focus of this review is to highlight the significant role of the CC-chemokine class in inflammation, versus ischemia driven angiogenesis, and to discuss the related pathologies including atherosclerosis, cancer, and rheumatoid arthritis. We examine the pros and cons of anti-angiogenic therapies currently in clinical trials. We also reveal novel therapeutic strategies that cause broad-spectrum inhibition of the CC-chemokine class that may have future potential for the specific inhibition of inflammatory angiogenesis.

  13. Bicyclams, selective antagonists of the human chemokine receptor CXCR4, potently inhibit feline immunodeficiency virus replication

    NARCIS (Netherlands)

    Horzinek, M.C.; Egberink, H.F.; Clercq, E. de; Vliet, A.L.W. van; Balzarini, J.; Bridger, G.J.; Henson, G.; Schols, D.

    1999-01-01

    Bicyclams are low-molecular-weight anti-human immunodeficiency virus (HIV) agents that have been shown to act as potent and selective CXC chemokine receptor 4 (CXCR4) antagonists. Here, we demonstrate that bicyclams are potent inhibitors of feline immunodeficiency virus (FIV) replication when

  14. A chemokine self-presentation mechanism involving formation of endothelial surface microstructures.

    Science.gov (United States)

    Whittall, Catherine; Kehoe, Oksana; King, Sophie; Rot, Antal; Patterson, Angela; Middleton, Jim

    2013-02-15

    Endothelial surface microstructures have been described previously under inflammatory conditions; however, they remain ill-characterized. In this study, CXCL8, an inflammatory chemokine, was shown to induce the formation of filopodia-like protrusions on endothelial cells; the same effects were observed with CXCL10 and CCL5. Chemokines stimulated filopodia formation by both microvascular (from bone marrow and skin) and macrovascular (from human umbilical vein) endothelial cells. Use of blocking Abs and degradative enzymes demonstrated that CXCL8-stimulated filopodia formation was mediated by CXCR1 and CXCR2, Duffy Ag/receptor for chemokines, heparan sulfate (HS), and syndecans. HS was present on filopodial protrusions appearing as a meshwork on the cell surface, which colocalized with CXCL8, and this glycosaminoglycan was 2,6-O- and 3-O-sulfated. Transmission electron microscopy revealed that CXCL8-stimulated filopodial and microvilli-like protrusions that interacted with leukocytes before transendothelial migration and removal of HS reduced this migration. iTRAQ mass spectrometry showed that changes in the levels of cytoskeletal, signaling, and extracellular matrix proteins were associated with CXCL8-stimulated filopodia/microvilli formation; these included tropomyosin, fascin, and Rab7. This study suggests that chemokines stimulate endothelial filopodia and microvilli formation, leading to their presentation to leukocytes and leukocyte transendothelial migration.

  15. Design, synthesis, and functionalization of dimeric peptides targeting chemokine receptor CXCR4.

    NARCIS (Netherlands)

    Demmer, O.; Dijkgraaf, I.; Schumacher, U.; Marinelli, L.; Cosconati, S.; Gourni, E.; Wester, H.J.; Kessler, H.

    2011-01-01

    The chemokine receptor CXCR4 is a critical regulator of inflammation and immune surveillance, and it is specifically implicated in cancer metastasis and HIV-1 infection. On the basis of the observation that several of the known antagonists remarkably share a C(2) symmetry element, we constructed

  16. Partial functional complementation between human and mouse cytomegalovirus chemokine receptor homologues

    DEFF Research Database (Denmark)

    Farrell, Helen E; Abraham, Alexander M; Cardin, Rhonda D

    2011-01-01

    The human cytomegalovirus (CMV) proteins US28 and UL33 are homologous to chemokine receptors (CKRs). Knockout of the mouse CMV M33 protein (UL33 homologue) results in substantial attenuation of salivary gland infection/replication and reduced efficiency of reactivation from tissue explants. M33...

  17. Molecular determinants of receptor binding and signaling by the CX3C chemokine fractalkine

    DEFF Research Database (Denmark)

    Mizoue, L S; Sullivan, S K; King, D S

    2001-01-01

    , but not all, pathways required for migration. Fractalkine also binds the human cytomegalovirus receptor US28, and analysis of the mutants indicates that US28 recognizes many of the same epitopes of fractalkine as CX3CR1. Comparison of the binding surfaces of fractalkine and the CC chemokine MCP-1 reveals...

  18. Dengue virus requires the CC-chemokine receptor CCR5 for replication and infection development.

    Science.gov (United States)

    Marques, Rafael E; Guabiraba, Rodrigo; Del Sarto, Juliana L; Rocha, Rebeca F; Queiroz, Ana Luiza; Cisalpino, Daniel; Marques, Pedro E; Pacca, Carolina C; Fagundes, Caio T; Menezes, Gustavo B; Nogueira, Maurício L; Souza, Danielle G; Teixeira, Mauro M

    2015-08-01

    Dengue is a mosquito-borne disease that affects millions of people worldwide yearly. Currently, there is no vaccine or specific treatment available. Further investigation on dengue pathogenesis is required to better understand the disease and to identify potential therapeutic targets. The chemokine system has been implicated in dengue pathogenesis, although the specific role of chemokines and their receptors remains elusive. Here we describe the role of the CC-chemokine receptor CCR5 in Dengue virus (DENV-2) infection. In vitro experiments showed that CCR5 is a host factor required for DENV-2 replication in human and mouse macrophages. DENV-2 infection induces the expression of CCR5 ligands. Incubation with an antagonist prevents CCR5 activation and reduces DENV-2 positive-stranded (+) RNA inside macrophages. Using an immunocompetent mouse model of DENV-2 infection we found that CCR5(-/-) mice were resistant to lethal infection, presenting at least 100-fold reduction of viral load in target organs and significant reduction in disease severity. This phenotype was reproduced in wild-type mice treated with CCR5-blocking compounds. Therefore, CCR5 is a host factor required for DENV-2 replication and disease development. Targeting CCR5 might represent a therapeutic strategy for dengue fever. These data bring new insights on the association between viral infections and the chemokine receptor CCR5. © 2015 John Wiley & Sons Ltd.

  19. CXC and CC chemokines induced in human renal epithelial cells by inflammatory cytokines

    Czech Academy of Sciences Publication Activity Database

    Thornburn, E.; Kolesar, L.; Brabcová, E.; Petříčková, Kateřina; Petříček, Miroslav; Jarešová, M.; Slavcev, A.; Stříž, I.

    2009-01-01

    Roč. 117, č. 7 (2009), s. 477-487 ISSN 0903-4641 Institutional research plan: CEZ:AV0Z50200510 Keywords : Epithelial cells * chemokines * transplantation Subject RIV: EE - Microbiology, Virology Impact factor: 1.745, year: 2009

  20. Structure, function and physiological consequences of virally encoded chemokine seven transmembrane receptors

    NARCIS (Netherlands)

    Rosenkilde, M.M.; Smit, M.J.; Waldhoer, M.

    2008-01-01

    A number of human and animal herpes viruses encode G-protein coupled receptors with seven transmembrane (7TM) segments - most of which are clearly related to human chemokine receptors. It appears, that these receptors are used by the virus for immune evasion, cellular transformation, tissue

  1. CXCR3 and CCR5 chemokines in induced sputum from patients with COPD.

    Science.gov (United States)

    Costa, Claudia; Rufino, Rogerio; Traves, Suzanne L; Lapa E Silva, Jose Roberto; Barnes, Peter J; Donnelly, Louise E

    2008-01-01

    COPD is associated with increased numbers of CD4(+) and CD8(+) lymphocytes and macrophages in the small airways and lung parenchyma. The chemokines regulating T-cell recruitment into the lung are unknown but may involve CXCR3 and CCR5 chemoattractants. The aims of this study were to determine the concentrations of CXCR3 chemokines CXCL9, CXCL10, CXCL11, and the CCR5 chemokine CCL5 in induced sputum from patients with COPD, smokers, and nonsmokers, and to examine the relationship between chemokine expression, inflammatory cells, and airway obstruction. Differential cell counts were performed and concentrations of CXCL9, CXCL10, CXCL11, and CCL5 were measured in induced sputum from nonsmokers (n = 18), smokers (n = 20), and COPD patients (n = 35) using an enzyme-linked immunosorbent assay. Concentrations of CXCL9, CXCL10, CXCL11, and CCL5 were significantly increased in the sputum of patients with COPD when compared with nonsmokers but not smokers without obstruction: CXCL9 (median, 14.3 pg/mL; interquartile range [IQR], 6.5 to 99.3; vs median, 1.4 pg/mL; IQR, 0 to 10.4 [p < 0.001]; vs 8.5 pg/mL; IQR, 0 to 16.0, respectively); CXCL10 (16.9 pg/mL; IQR, 6.2 to 148.8; vs 3.7 pg/mL; IQR, 0 to 18.8 [p < 0.05]; vs 11.3 pg/mL; IQR, 3.7 to 46.7); CXCL11 (58.1 pg/mL; IQR, 34.5 to 85.3; vs 33.5 pg/mL; IQR, 23.2 to 49.7 [p < 0.05]; vs 49.8 pg/mL; IQR, 32.6 to 105.6); and CCL5 (59.9 pg/mL; IQR, 57.1 to 67.8; vs 33.5 pg/mL; IQR, 31.6 to 36.9 [p < 0.001]). CCL5 in sputum from smokers was also significantly increased compared with that from nonsmokers (median, 63.0 pg/mL; IQR, 60.8 to70.2; p < 0.001). There was a negative correlation between FEV(1) percentage of predicted, FEV(1)/FVC ratio, and percentage of macrophages, and all the chemokines analyzed. Neutrophil numbers correlated positively with the concentrations of chemokines. CXCR3 chemokines and CCL5 are increased in sputum from COPD patients compared with nonsmokers, and may be important in COPD pathogenesis.

  2. Solution structure of the complex between poxvirus-encoded CC chemokine inhibitor vCCI and human MIP-1β

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Li; DeRider, Michele; McCornack, Milissa A.; Jao, Chris; Isern, Nancy G.; Ness, Traci; Moyer, Richard; Liwang, Patricia J.

    2006-09-19

    Chemokines (chemotactic cytokines) comprise a large family of proteins that recruit and activate leukocytes, giving chemokines a major role in both the immune response and inflammation-related diseases. The poxvirus-encoded viral CC chemokine inhibitor (vCCI) binds to many CC chemokines with high affinity, acting as a potent inhibitor of chemokine action. We have used heteronuclear multidimensional NMR to determine the first structure of an orthopoxvirus vCCI in complex with a human CC chemokine MIP-1β. vCCI binds to the chemokine with 1:1 stoichiometry, using residues from its β-sheet II to interact with the a surface of MIP-1β that includes the N-terminus, the following residues in the so-called N-loop20’s region, and the 40’s loop. This structure reveals a general strategy of vCCI for selective chemokine binding, as vCCI appears to interact most stronglyinteracts most directly with residues that are conserved among a subset of CC chemokines, but are not conservednot among the other chemokine subfamilies. This structure reveals a general strategy of vCCI for selective chemokine binding. Chemokines play critical roles in the immune system, causing chemotaxis of a variety of cells to sites of infection and inflammation, as well as mediating cell homing and immune system development 1(Baggiolini 2001). To date, about 50 chemokines have been identified, and these small proteins (7-14 kDa) are believed to function by binding with endothelial or matrix glycosaminoglycans to form a concentration gradient that is then sensed by high affinity, 7-transmembrane domain G-protein coupled chemokine receptors on the surface of immune cells surface. The chemokine system is critical for host defense in healthy individuals, butand can also lead to diseases including asthma, arthritis, and atherosclerosis in the case of malfunction, often due to inappropriate inflammation and subsequent tissue damage 2(Gerard and Rollins 2001). There are four subfamilies of chemokines, CC

  3. Permanent magnetic ferrite based power-tunable metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guanqiao; Lan, Chuwen [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Gao, Rui [High Temperature Thermochemistry Laboratory, Department of Mining and Materials Engineering, McGill University, Montreal, Quebec H3A 0C5 (Canada); Zhou, Ji, E-mail: zhouji@tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2017-08-15

    Highlights: • Power-tunable metamaterials based on barium permanent magnetic ferrite have been proposed and fabricated. • It is observed that resonant frequency of the array shifts upon altering the output power. • This kind of power-tunable behavior is due to the temperature rise as a result of FMR-induced heat buildup. • This work offers a practical idea to tune ferrite metamaterials besides magneto-tunability and thermal-tunability. - Abstract: Power-tunable metamaterials based on barium permanent magnetic ferrite have been proposed and fabricated in this research. Scattering parameter measurements confirm a shift in resonant frequency in correlation to changes in incident electromagnetic power within microwave frequency band. The tunable phenomenon represented by a blue-shift in transmission spectra in the metamaterials array can be attributed to a decrease in saturation magnetization resulting from FMR-induced temperature elevation upon resonant conditions. This power-dependent behavior offers a simple and practical route towards dynamically fine-tunable ferrite metamaterials.

  4. Rationally designed chemokine-based toxin targeting the viral G protein-coupled receptor US28 potently inhibits cytomegalovirus infection in vivo

    DEFF Research Database (Denmark)

    Spiess, Katja; Jeppesen, Mads G.; Malmgaard-Clausen, Mikkel

    2015-01-01

    to target the human viral pathogen, human cytomegalovirus (HCMV), on the basis of its expression of the 7TM G protein-coupled chemokine receptor US28. The virus origin of US28 provides an exceptional chemokine-binding profile with high selectivity and improved binding for the CX3C chemokine, CX3CL1...

  5. Design of Hilbert transformers with tunable THz bandwidths using a reconfigurable integrated optical FIR filter

    Science.gov (United States)

    Ngo, Nam Quoc; Song, Yufeng; Lin, Bo

    2011-02-01

    We present the design and analysis of a wideband and tunable optical Hilbert transformer (OHT) using a tunable waveguide-based finite-impulse response (FIR) filter structure by using the digital filter design method and the Remez algorithm. The tunable Nth-order waveguide-based FIR filter, which simply consists of N delay lines, N tunable couplers, N tunable phase shifters and a combiner, can be tuned, by thermally adjusting the tunable couplers and tunable phase shifters, to tune the bandwidth of an OHT using silica-based planar lightwave circuit (PLC) technology. To demonstrate the effectiveness of the method, the simulation results have an excellent agreement with the theoretical predictions. The tunable OHT can function as a wideband and tunable 90° phase shifter and thus has many potential applications. The two unique features of wideband characteristic (up to ~ 2 THz) and tunable bandwidth (THz tuning range) of the proposed OHT cannot be obtained from the existing OHTs.

  6. Vitamin D limits chemokine expression in adipocytes and macrophage migration in vitro and in male mice.

    Science.gov (United States)

    Karkeni, Esma; Marcotorchino, Julie; Tourniaire, Franck; Astier, Julien; Peiretti, Franck; Darmon, Patrice; Landrier, Jean-François

    2015-05-01

    Vitamin D (VD) displays immunoregulatory effects and reduces adipocyte inflammation, which may participate to a reduction of adipose tissue macrophage infiltration in the context of obesity-associated low-grade inflammation. These observations have been described mainly in vitro, through the evaluation of a limited number of inflammatory markers. Here, we studied the effects of 1,25 dihydroxy-VD on chemokine network expression in adipocytes (by transcriptomic approach), and we confirm the physiological relevance of these data in vivo, by demonstrating the effect of VD on cytokine and chemokine gene expression as well as on macrophage infiltration in adipose tissue. 1,25 dihydroxy-VD down-regulated (-1.3- to -10.8-fold) the mRNA expression of 29 chemokines and limited macrophage migration in TNFα-conditioned adipocyte medium (1.5-fold; P < .05). This effect was associated with a reduction in p65 and IκB (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha) phosphorylation (2-fold compared with TNFα; P < .05). The effects of VD were confirmed in mice injected ip with lipopolysaccharide (acute inflammation) and diet-induced obese mice (metabolic inflammation), where the levels of mRNA encoding proinflammatory cytokines and chemokines (∼2-fold) were reduced in adipocytes (acute and metabolic inflammation) and adipose tissue and that macrophage infiltration was also inhibited in the adipose tissue of obese mice (metabolic inflammation). Altogether, these results showed that VD displayed a global immunoregulatory impact on adipocytes, notably via the inhibition of chemokine expression and macrophage infiltration in inflamed adipose tissue.

  7. Systematic review of the neurobiological relevance of chemokines to psychiatric disorders

    Directory of Open Access Journals (Sweden)

    Michael eStuart

    2015-09-01

    Full Text Available Psychiatric disorders are highly prevalent and disabling conditions of increasing public health relevance. Much recent research has focused on the role of cytokines in the pathophysiology of psychiatric disorders; however the related family of immune proteins designated chemokines has been relatively neglected. Chemokines were originally identified as having chemotactic function on immune cells, however recent evidence has begun to elucidate novel, brain-specific functions of these proteins of relevance to the mechanisms of psychiatric disorders. A systematic review of both human and animal literature in the PubMed and Google Scholar databases was undertaken. After application of all inclusion and exclusion criteria, 157 references were remained for the review. Some early mechanistic evidence does associate select chemokines with the neurobiological processes, including neurogenesis, modulation of the neuroinflammatory response, regulation of the HPA axis, and modulation of neurotransmitter systems. This early evidence however does not clearly demonstrate any specificity for a certain psychiatric disorder, but is primarily relevant to mechanisms which are shared across disorders. Notable exceptions include CCL11 which has recently been shown to impair hippocampal function in aging - of distinct relevance to Alzheimer’s disease and depression in the elderly, and prenatal exposure to CXCL8 that may disrupt early neurodevelopmental periods predisposing to schizophrenia. Pro-inflammatory chemokines, such as CCL2, CCL7, CCL8, CCL12, CCL13, have been shown to drive chemotaxis of pro-inflammatory cells to the inflamed or injured CNS. Likewise, CX3CL has been implicated in promoting glial cells activation, proinflammatory cytokines secretion, expression of ICAM-1 and recruitment of CD4+ T-cells into the CNS during neuroinflammatory processes. With further translational research, chemokines may present novel diagnostic and/or therapeutic targets in

  8. Systematic Review of the Neurobiological Relevance of Chemokines to Psychiatric Disorders.

    Science.gov (United States)

    Stuart, Michael J; Singhal, Gaurav; Baune, Bernhard T

    2015-01-01

    Psychiatric disorders are highly prevalent and disabling conditions of increasing public health relevance. Much recent research has focused on the role of cytokines in the pathophysiology of psychiatric disorders; however, the related family of immune proteins designated chemokines has been relatively neglected. Chemokines were originally identified as having chemotactic function on immune cells; however, recent evidence has begun to elucidate novel, brain-specific functions of these proteins of relevance to the mechanisms of psychiatric disorders. A systematic review of both human and animal literature in the PubMed and Google Scholar databases was undertaken. After application of all inclusion and exclusion criteria, 157 references were remained for the review. Some early mechanistic evidence does associate select chemokines with the neurobiological processes, including neurogenesis, modulation of the neuroinflammatory response, regulation of the hypothalamus-pituitary-adrenal axis, and modulation of neurotransmitter systems. This early evidence however does not clearly demonstrate any specificity for a certain psychiatric disorder, but is primarily relevant to mechanisms which are shared across disorders. Notable exceptions include CCL11 that has recently been shown to impair hippocampal function in aging - of distinct relevance to Alzheimer's disease and depression in the elderly, and pre-natal exposure to CXCL8 that may disrupt early neurodevelopmental periods predisposing to schizophrenia. Pro-inflammatory chemokines, such as CCL2, CCL7, CCL8, CCL12, and CCL13, have been shown to drive chemotaxis of pro-inflammatory cells to the inflamed or injured CNS. Likewise, CX3CL has been implicated in promoting glial cells activation, pro-inflammatory cytokines secretion, expression of ICAM-1, and recruitment of CD4+ T-cells into the CNS during neuroinflammatory processes. With further translational research, chemokines may present novel diagnostic and

  9. Identification of Potential Therapeutic Targets Among CXC Chemokines in Breast Tumor Microenvironment Using Integrative Bioinformatics Analysis

    Directory of Open Access Journals (Sweden)

    Erbao Chen

    2018-02-01

    Full Text Available Background/Aims: Breast cancer is a common cause of cancer mortality throughout the world. The cross-talk between cancer cells and interstitial cells exerts significant effects on neoplasia and tumor development and is modulated in part by chemokines. CXC is one of four chemokine families involved in mediating survival, angiogenesis, and immunosensitization by chemoattracting leukocytes, and it incentivizes tumor cell growth, invasion and metastasis in the tumor microenvironment. However, the differential expression profiles and prognostic values of these chemokines remains to be elucidated. Methods: In this study, we compared transcriptional CXC chemokines and survival data of patients with breast carcinoma (BC using the ONCOMINE dataset, Kaplan-Meier Plotter, TCGA and cBioPortal. Results: We discovered increased mRNA levels for CXCL8/10/11/16/17, whereas mRNA expression of CXCL1/2/3/4/5/6/7/12/14 was lower in BC patients compared to non-tumor tissues. Kaplan-Meier plots revealed that high mRNA levels of CXCL1/2/3/4/5/6/7/12/14 correlate with relapse-free survival (RFS in all types of BC patients. Conversely, high CXCL8/10/11 predicted worse RFS in BC patients. Significantly, high transcription levels of CXCL9/12/13/14 conferred an overall survival (OS advantage in BC patients, while high levels of CXCL8 demonstrated shorter OS in all BC sufferers. Conclusions: Integrative bioinformatics analysis suggests that CXCL8/12/14 are potential suitable targets for precision therapy in BC patients compared to other CXC chemokines.

  10. Identification of Potential Therapeutic Targets Among CXC Chemokines in Breast Tumor Microenvironment Using Integrative Bioinformatics Analysis.

    Science.gov (United States)

    Chen, Erbao; Qin, Xuan; Peng, Ke; Xu, Xiaojing; Li, Wei; Cheng, Xi; Tang, Cheng; Cui, Yuehong; Wang, Zhiming; Liu, Tianshu

    2018-02-23

    Breast cancer is a common cause of cancer mortality throughout the world. The cross-talk between cancer cells and interstitial cells exerts significant effects on neoplasia and tumor development and is modulated in part by chemokines. CXC is one of four chemokine families involved in mediating survival, angiogenesis, and immunosensitization by chemoattracting leukocytes, and it incentivizes tumor cell growth, invasion and metastasis in the tumor microenvironment. However, the differential expression profiles and prognostic values of these chemokines remains to be elucidated. In this study, we compared transcriptional CXC chemokines and survival data of patients with breast carcinoma (BC) using the ONCOMINE dataset, Kaplan-Meier Plotter, TCGA and cBioPortal. We discovered increased mRNA levels for CXCL8/10/11/16/17, whereas mRNA expression of CXCL1/2/3/4/5/6/7/12/14 was lower in BC patients compared to non-tumor tissues. Kaplan-Meier plots revealed that high mRNA levels of CXCL1/2/3/4/5/6/7/12/14 correlate with relapse-free survival (RFS) in all types of BC patients. Conversely, high CXCL8/10/11 predicted worse RFS in BC patients. Significantly, high transcription levels of CXCL9/12/13/14 conferred an overall survival (OS) advantage in BC patients, while high levels of CXCL8 demonstrated shorter OS in all BC sufferers. Integrative bioinformatics analysis suggests that CXCL8/12/14 are potential suitable targets for precision therapy in BC patients compared to other CXC chemokines. © 2018 The Author(s). Published by S. Karger AG, Basel.

  11. Autism with intellectual disability is associated with increased levels of maternal cytokines and chemokines during gestation.

    Science.gov (United States)

    Jones, K L; Croen, L A; Yoshida, C K; Heuer, L; Hansen, R; Zerbo, O; DeLorenze, G N; Kharrazi, M; Yolken, R; Ashwood, P; Van de Water, J

    2017-02-01

    Immune abnormalities have been described in some individuals with autism spectrum disorders (ASDs) as well as their family members. However, few studies have directly investigated the role of prenatal cytokine and chemokine profiles on neurodevelopmental outcomes in humans. In the current study, we characterized mid-gestational serum profiles of 22 cytokines and chemokines in mothers of children with ASD (N=415), developmental delay (DD) without ASD (N=188), and general population (GP) controls (N=428) using a bead-based multiplex technology. The ASD group was further divided into those with intellectual disabilities (developmental/cognitive and adaptive composite score<70) (ASD+ID, N=184) and those without (composite score⩾70) (ASD-noID, N=201). Levels of cytokines and chemokines were compared between groups using multivariate logistic regression analyses, adjusting for maternal age, ethnicity, birth country and weight, as well as infant gender, birth year and birth month. Mothers of children with ASD+ID had significantly elevated mid-gestational levels of numerous cytokines and chemokines, such as granulocyte macrophage colony-stimulating factor, interferon-γ, interleukin-1α (IL-1α) and IL-6, compared with mothers of children with either ASD-noID, those with DD, or GP controls. Conversely, mothers of children with either ASD-noID or with DD had significantly lower levels of the chemokines IL-8 and monocyte chemotactic protein-1 compared with mothers of GP controls. This observed immunologic distinction between mothers of children with ASD+ID from mothers of children with ASD-noID or DD suggests that the intellectual disability associated with ASD might be etiologically distinct from DD without ASD. These findings contribute to the ongoing efforts toward identification of early biological markers specific to subphenotypes of ASD.

  12. LEVELS OF ANGIOGENESIS-REGULATORY CHEMOKINES IN THE SYNOVIAL FLUID OF PATIENTS WITH RHEUMATOID ARTHRITIS

    Directory of Open Access Journals (Sweden)

    D. A. Zhebrun

    2015-01-01

    Full Text Available The role of chemokines in the immunopathogenesis of rheumatoid arthritis (RA has been actively investigated in recent years. Angiogenic and angiostatic chemokines are important mediators of angiogenesis in the development and extent of pannus. Peripheral blood and synovial fluid (SF is a major biomaterial in clinical and immunological studies. At the same time, it is the SF test that may yield the most informative results since that gives an idea of the processes that occur locally within a joint. Objective: to perform a comparative analysis of the levels of a number of CXC, CC, and CX3C chemokines in the SF of patients with RA, osteoarthritis (OA, and joint injuries. Subjects and methods. The multiplex analysis using xMAP technology (Luminex, USA was used to analyze levels of CXC, CC, and CX3C chemokines in SF and serum of patients with RA (n = 20, OA (n = 9 and controls (n = 9. Results and discussion. The SF levels of CCL24/eotaxin-2, as well as those of the angiostatic chemokines CXCL9/MIG, CXCL10/IP10, CXCL11/ITAC, and CXCL13/BCA-1 were higher in the RA group than in the control and OA groups. There was a direct correlation between SF levels of CCL5/RANTES and DAS28, as well as patient global disease activity assessment on visual analogue scale, and that between the level of CCL2/MCP-1 in the SF and that of anticyclic citrullinated peptide (anti-CCP antibodies in the serum. The SF concentrations of CXCL5/ENA78 and CXCL7/NAP-2 were shown to depend on the presence of serum anti-CCP. Serum CXCL13/BCA-1 levels were higher in RA than those in OA, as that of CXCL7/NAP-2 than in the control group.

  13. Migration and chemokine receptor pattern of colitis-preventing DX5+NKT cells.

    Science.gov (United States)

    Hornung, Matthias; Werner, Jens M; Farkas, Stefan; Schlitt, Hans J; Geissler, Edward K

    2011-11-01

    DX5(+)NKT cells are a subpopulation of NKT cells expressing both T cell receptor and NK cell markers that show an immune-regulating function. Transferred DX5(+)NKT cells from immune competent Balb/c mice can prevent or reduce induced colitis in severe combined immunodeficient (SCID) mice. Here, we investigated the in vivo migration of DX5(+)NKT cells and their corresponding chemokine receptor patterns. DX5(+)NKT cells were isolated from spleens of Balb/c mice and transferred into Balb/c SCID mice. After 2 and 8 days, in vivo migration was examined using in vivo microscopy. In addition, the chemokine receptor pattern was analyzed with fluorescence-activated cell sorting (FACS) and the migration assay was performed. Our results show that labeled DX5(+)NKT cells were primarily detectable in mesenteric lymph nodes and spleen after transfer. After 8 days, DX5(+)NKT cells were observed in the colonic tissues, especially the appendix. FACS analysis of chemokine receptors in DX5(+)NKT cells revealed expression of CCR3, CCR6, CCR9, CXCR3, CXCR4, and CXCR6, but no CCR5, CXCR5, or the lymphoid homing receptor CCR7. Stimulation upregulated especially CCR7 expression, and chemokine receptor patterns were different between splenic and liver DX5(+)NKT cells. These data indicate that colitis-preventing DX5(+)NKT cells need to traffic through lymphoid organs to execute their immunological function at the site of inflammation. Furthermore, DX5(+)NKT cells express a specific chemokine receptor pattern with an upregulation of the lymphoid homing receptor CCR7 after activation.

  14. Tunable Microwave Component Technologies for SatCom-Platforms

    Science.gov (United States)

    Maune, Holger; Jost, Matthias; Wiens, Alex; Weickhmann, Christian; Reese, Roland; Nikfalazar, Mohammad; Schuster, Christian; Franke, Tobias; Hu, Wenjuan; Nickel, Matthias; Kienemund, Daniel; Prasetiadi, Ananto Eka; Jakoby, Rolf

    2017-03-01

    Modern communication platforms require a huge amount of switched RF component banks especially made of different filters and antennas to cover all operating frequencies and bandwidth for the targeted services and application scenarios. In contrast, reconfigurable devices made of tunable components lead to a considerable reduction in complexity, size, weight, power consumption, and cost. This paper gives an overview of suitable technologies for tunable microwave components especially for SatCom applications. Special attention is given to tunable components based on functional materials such as barium strontium titanate (BST) and liquid crystal (LC).

  15. Co-extruded mechanically tunable multilayer elastomer laser

    Science.gov (United States)

    Crescimanno, Michael; Mao, Guilin; Andrews, James; Singer, Kenneth; Baer, Eric; Hiltner, Anne; Song, Hyunmin; Shakya, Bijayandra

    2011-04-01

    We have fabricated and studied mechanically tunable elastomer dye lasers constructed in large area sheets by a single-step layer-multiplying co-extrusion process. The laser films consist of a central dye-doped (Rhodamine-6G) elastomer layer between two 128-layer distributed Bragg reflector (DBR) films comprised of alternating elastomer layers with different refractive indices. The central gain layer is formed by folding the coextruded DBR film to enclose a dye-doped skin layer. By mechanically stretching the elastomer laser film from 0% to 19%, a tunable miniature laser source was obtained with ˜50 nm continuous tunability from red to green.

  16. Microwave photonic comb filter with ultra-fast tunability.

    Science.gov (United States)

    Jiang, H Y; Yan, L S; Pan, Y; Pan, W; Luo, B; Zou, X H; Eggleton, B J

    2015-11-01

    A microwave comb filter with ultra-fast tunability is proposed based on the fundamental delay-line microwave photonic filter. The central frequency of the passband or stopband in such a filter can be rapidly adjusted, along with the independent tunability of the free spectral range (FSR). Experimental results show that the central frequency of the transfer function is electronically tuned with a frequency difference of half of the FSR at a speed of <100  ps. Such high-speed tunability is vital for high-speed microwave switching, frequency hopping, cognitive radio, and next-generation radar systems.

  17. Tunable plasmonic lattices of silver nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Andrea; Sinsermsuksakul, Prasert; Yang, Peidong

    2008-02-18

    Silver nanocrystals are ideal building blocks for plasmonicmaterials that exhibit a wide range of unique and potentially usefuloptical phenomena. Individual nanocrystals display distinct opticalscattering spectra and can be assembled into hierarchical structures thatcouple strongly to external electromagnetic fields. This coupling, whichis mediated by surface plasmons, depends on their shape and arrangement.Here we demonstrate the bottom-up assembly of polyhedral silvernanocrystals into macroscopic two-dimensional superlattices using theLangmuir-Blodgett technique. Our ability to control interparticlespacing, density, and packing symmetry allows for tunability of theoptical response over the entire visible range. This assembly strategyoffers a new, practical approach to making novel plasmonic materials forapplication in spectroscopic sensors, sub-wavelength optics, andintegrated devices that utilize field enhancement effects.

  18. Tunable Magnetic Resonance in Microwave Spintronics Devices

    Science.gov (United States)

    Chen, Yunpeng; Fan, Xin; Xie, Yunsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.

    2015-01-01

    Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe based tunable microwave spintronics devices, which is 10X higher than conventional methods.

  19. MEMS tunable grating micro-spectrometer

    Science.gov (United States)

    Tormen, Maurizio; Lockhart, R.; Niedermann, P.; Overstolz, T.; Hoogerwerf, A.; Mayor, J.-M.; Pierer, J.; Bosshard, C.; Ischer, R.; Voirin, G.; Stanley, R. P.

    2017-11-01

    The interest in MEMS based Micro-Spectrometers is increasing due to their potential in terms of flexibility as well as cost, low mass, small volume and power savings. This interest, especially in the Near-Infrared and Mid- Infrared, ranges from planetary exploration missions to astronomy, e.g. the search for extra solar planets, as well as to many other terrestrial fields of application such as, industrial quality and surface control, chemical analysis of soil and water, detection of chemical pollutants, exhausted gas analysis, food quality control, process control in pharmaceuticals, to name a few. A compact MEMS-based Spectrometer for Near- Infrared and Mid-InfraRed operation have been conceived, designed and demonstrated. The design based on tunable MEMS blazed grating, developed in the past at CSEM [1], achieves state of the art results in terms of spectral resolution, operational wavelength range, light throughput, overall dimensions, and power consumption.

  20. Switchable and Tunable Aerodynamic Drag on Cylinders

    Science.gov (United States)

    Guttag, Mark; Lopéz Jiménez, Francisco; Upadhyaya, Priyank; Kumar, Shanmugam; Reis, Pedro

    We report results on the performance of Smart Morphable Surfaces (Smporhs) that can be mounted onto cylindrical structures to actively reduce their aerodynamic drag. Our system comprises of an elastomeric thin shell with a series of carefully designed subsurface cavities that, once depressurized, lead to a dramatic deformation of the surface topography, on demand. Our design is inspired by the morphology of the giant cactus (Carnegiea gigantea) which possesses an array of axial grooves, thought to help reduce aerodynamic drag, thereby enhancing the structural robustness of the plant under wind loading. We perform systematic wind tunnel tests on cylinders covered with our Smorphs and characterize their aerodynamic performance. The switchable and tunable nature of our system offers substantial advantages for aerodynamic performance when compared to static topographies, due to their operation over a wider range of flow conditions.

  1. Tunable Q-Factor RF Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Balcazar, Mario D. [Fermilab; Yonehara, Katsuya [Fermilab; Moretti, Alfred [Fermilab; Kazakevitch, Gregory [Fermilab

    2018-01-01

    Intense neutrino beam is a unique probe for researching beyond the standard model. Fermilab is the main institution to produce the most powerful and widespectrum neutrino beam. From that respective, a radiation robust beam diagnostic system is a critical element in order to maintain the quality of the neutrino beam. Within this context, a novel radiation-resistive beam profile monitor based on a gasfilled RF cavity is proposed. The goal of this measurement is to study a tunable Qfactor RF cavity to determine the accuracy of the RF signal as a function of the quality factor. Specifically, measurement error of the Q-factor in the RF calibration is investigated. Then, the RF system will be improved to minimize signal error.

  2. Compact microstrip bandpass filter with tunable notch

    DEFF Research Database (Denmark)

    Christensen, Silas; Zhurbenko, Vitaliy; Johansen, Tom Keinicke

    2014-01-01

    notch filter ensures an attenuation level of 19.3 dB to 27.3 dB in the frequency range from 360–480 MHz. The measured passband ripple of the combined filter is less than 0.5 dB, while the insertion loss for the simplest design is less than 1.7 dB only 10 MHz from the notch frequency. Even though......Two different designs combining a bandpass and a notch filter are developed to operate in the receiving band from 350–470 MHz. The bandpass filter is designed from a simple structure, by use of only four short circuited stubs and a half wavelength transmission line connecting the stubs. The tunable...... the wavelength on the selected substrate (εr = 3.55) is approximately 45 cm, the outer dimensions of the final filter only measure 10×10 cm2....

  3. Stakeholder acceptance analysis: Tunable hybrid plasma

    International Nuclear Information System (INIS)

    Peterson, T.

    1995-12-01

    This report resents evaluations, recommendations, and requirements concerning Tunable Hybrid Plasma (THP) derived from a three-year program of stake holder involvement. THP destroys volatile organic compounds by directing a moderate energy electron beam into a flow of air containing organic contaminants. This report is for technology developers and for those responsible for making decisions about the use of technology to remediate contamination by volatile organic compounds. Stakeholders' perspectives help those responsible for technology deployment make good decisions concerning the acceptability and applicability of THP to the remediation problems the face. In addition, this report presents data requirements for the technology's field demonstration defined by stakeholders associated with the Hanford site in Washington State, as well as detailed comments on THP from stakeholders from four other sites throughout the western United States

  4. Camphor soot: a tunable light emitter

    Science.gov (United States)

    Swapna, M. S.; Saritha Devi, H. V.; Sankararaman, S.

    2018-01-01

    The work in this paper is the first report on the green synthesis of the blue light emitter from waxy, flammable solid collected from Cinnamomum camphora by controlled combustion for photonic applications. Analysis with field emission scanning electron microscope and high-resolution transmission electron microscope provides the morphology, whereas the thermogravimetric analysis gives the thermal stability of the soot. The optical and structural characterizations are done by recording UV-Visible, Photoluminescent, and Raman Spectrum. The CIE plot and the power spectrum of the sample show a blue emission at an excitation of 350 nm at room temperature with a quantum yield of 46.15%. The dependence of luminescent behavior on temperature and excitation wavelength reveals that the material is a tunable blue emitter. This green synthesis of the blue light emitter is highly significant, when the world is in search of a simple, phosphor-free, non-toxic, cost-effective material with good quantum efficiency.

  5. Tunable Gas Sensing Gels by Cooperative Assembly.

    Science.gov (United States)

    Hussain, Abid; Semeano, Ana T S; Palma, Susana I C J; Pina, Ana S; Almeida, José; Medrado, Bárbara F; Pádua, Ana C C S; Carvalho, Ana L; Dionísio, Madalena; Li, Rosamaria W C; Gamboa, Hugo; Ulijn, Rein V; Gruber, Jonas; Roque, Ana C A

    2017-07-19

    The cooperative assembly of biopolymers and small molecules can yield functional materials with precisely tunable properties. Here, the fabrication, characterization, and use of multicomponent hybrid gels as selective gas sensors are reported. The gels are composed of liquid crystal droplets self-assembled in the presence of ionic liquids, which further coassemble with biopolymers to form stable matrices. Each individual component can be varied and acts cooperatively to tune gels' structure and function. The unique molecular environment in hybrid gels is explored for supramolecular recognition of volatile compounds. Gels with distinct compositions are used as optical and electrical gas sensors, yielding a combinatorial response conceptually mimicking olfactory biological systems, and tested to distinguish volatile organic compounds and to quantify ethanol in automotive fuel. The gel response is rapid, reversible, and reproducible. These robust, versatile, modular, pliant electro-optical soft materials possess new possibilities in sensing triggered by chemical and physical stimuli.

  6. Strain-tunable quantum dot devices

    International Nuclear Information System (INIS)

    Rastelli, A.; Trotta, R.; Zallo, E.; Atkinson, P.; Magerl, E.; Ding, F.; Plumhof, J.D.; Kumar, S.; Doerr, K.; Schmidt, O.G.

    2011-01-01

    We introduce a new class of quantum dot-based devices, in which the semiconductor structures are integrated on top of piezoelectric actuators. This combination allows on one hand to study in detail the effects produced by variable strains (up to about 0.2%) on the excitonic emission of single quantum dots and on the other to manipulate their electronic- and optical properties to achieve specific requirements. In fact, by combining strain with electric fields we are able to obtain (i) independent control of emission energy and charge-state of a QD, (II) wavelength-tunable single-QD light-emitting diodes and (III) frequency-stabilized sources of single photons at predefined wavelengths. Possible future extensions and applications of this technology will be discussed.

  7. Electronic thermometry in tunable tunnel junction

    Energy Technology Data Exchange (ETDEWEB)

    Maksymovych, Petro

    2016-03-15

    A tunable tunnel junction thermometry circuit includes a variable width tunnel junction between a test object and a probe. The junction width is varied and a change in thermovoltage across the junction with respect to the change in distance across the junction is determined. Also, a change in biased current with respect to a change in distance across the junction is determined. A temperature gradient across the junction is determined based on a mathematical relationship between the temperature gradient, the change in thermovoltage with respect to distance and the change in biased current with respect to distance. Thermovoltage may be measured by nullifying a thermoelectric tunneling current with an applied voltage supply level. A piezoelectric actuator may modulate the probe, and thus the junction width, to vary thermovoltage and biased current across the junction. Lock-in amplifiers measure the derivatives of the thermovoltage and biased current modulated by varying junction width.

  8. Negative stiffness honeycombs as tunable elastic metamaterials

    Science.gov (United States)

    Goldsberry, Benjamin M.; Haberman, Michael R.

    2018-03-01

    Acoustic and elastic metamaterials are media with a subwavelength structure that behave as effective materials displaying atypical effective dynamic properties. These material systems are of interest because the design of their sub-wavelength structure allows for direct control of macroscopic wave dispersion. One major design limitation of most metamaterial structures is that the dynamic response cannot be altered once the microstructure is manufactured. However, the ability to modify wave propagation in the metamaterial with an external stimulus is highly desirable for numerous applications and therefore remains a significant challenge in elastic metamaterials research. In this work, a honeycomb structure composed of a doubly periodic array of curved beams, known as a negative stiffness honeycomb (NSH), is analyzed as a tunable elastic metamaterial. The nonlinear static elastic response that results from large deformations of the NSH unit cell leads to a large variation in linear elastic wave dispersion associated with infinitesimal motion superposed on the externally imposed pre-strain. A finite element model is utilized to model the static deformation and subsequent linear wave motion at the pre-strained state. Analysis of the slowness surface and group velocity demonstrates that the NSH exhibits significant tunability and a high degree of anisotropy which can be used to guide wave energy depending on static pre-strain levels. In addition, it is shown that partial band gaps exist where only longitudinal waves propagate. The NSH therefore behaves as a meta-fluid, or pentamode metamaterial, which may be of use for applications of transformation elastodynamics such as cloaking and gradient index lens devices.

  9. A novel optogenetically tunable frequency modulating oscillator.

    Directory of Open Access Journals (Sweden)

    Tarun Mahajan

    Full Text Available Synthetic biology has enabled the creation of biological reconfigurable circuits, which perform multiple functions monopolizing a single biological machine; Such a system can switch between different behaviours in response to environmental cues. Previous work has demonstrated switchable dynamical behaviour employing reconfigurable logic gate genetic networks. Here we describe a computational framework for reconfigurable circuits in E.coli using combinations of logic gates, and also propose the biological implementation. The proposed system is an oscillator that can exhibit tunability of frequency and amplitude of oscillations. Further, the frequency of operation can be changed optogenetically. Insilico analysis revealed that two-component light systems, in response to light within a frequency range, can be used for modulating the frequency of the oscillator or stopping the oscillations altogether. Computational modelling reveals that mixing two colonies of E.coli oscillating at different frequencies generates spatial beat patterns. Further, we show that these oscillations more robustly respond to input perturbations compared to the base oscillator, to which the proposed oscillator is a modification. Compared to the base oscillator, the proposed system shows faster synchronization in a colony of cells for a larger region of the parameter space. Additionally, the proposed oscillator also exhibits lesser synchronization error in the transient period after input perturbations. This provides a strong basis for the construction of synthetic reconfigurable circuits in bacteria and other organisms, which can be scaled up to perform functions in the field of time dependent drug delivery with tunable dosages, and sets the stage for further development of circuits with synchronized population level behaviour.

  10. Tunable lasers for waste management photochemistry applications

    International Nuclear Information System (INIS)

    Finch, F.T.

    1978-09-01

    A review of lasers with potential photochemical applications in waste management indicates that dye lasers, as a class, can provide tunable laser output through the visible and near-uv regions of the spectrum of most interest to photochemistry. Many variables can affect the performance of a specific dye laser, and the interactions of these variables, at the current state of the art, are complex. The recent literature on dye-laser characteristics has been reviewed and summarized, with emphasis on those parameters that most likely will affect the scaling of dye lasers in photochemical applications. Current costs are reviewed and correlated with output power. A new class of efficient uv lasers that appear to be scalable in both energy output and pulse rate, based on rare-gas halide excimers and similar molecules, is certain to find major applications in photochemistry. Because the most important developments are too recent to be adequately described in the literature or are the likely outcome of current experiments, the basic physics underlying the class of excimer lasers is described. Specific cost data are unavailable, but these new gas lasers should reflect costs similar to those of existing gas lasers, in particular, the pulsed CO 2 lasers. To complete the survey of tunable-laser characteristics, the technical characteristics of the various classes of lasers in the ir are summarized. Important developments in ir laser technology are being accelerated by isotope-separation research, but, initially at least, this portion of the spectrum is least likely to receive emphasis in waste-management-oriented photochemistry

  11. Low molecular weight hyaluronan mediated CD44 dependent induction of IL-6 and chemokines in human dermal fibroblasts potentiates innate immune response.

    Science.gov (United States)

    Vistejnova, Lucie; Safrankova, Barbora; Nesporova, Kristina; Slavkovsky, Rastislav; Hermannova, Martina; Hosek, Petr; Velebny, Vladimir; Kubala, Lukas

    2014-12-01

    Complex regulation of the wound healing process involves multiple interactions among stromal tissue cells, inflammatory cells, and the extracellular matrix. Low molecular weight hyaluronan (LMW HA) derived from the degradation of high molecular weight hyaluronan (HMW HA) is suggested to activate cells involved in wound healing through interaction with HA receptors. In particular, receptor CD44 is suggested to mediate cell response to HA of different MW, being the main cell surface HA receptor in stromal tissue and immune cells. However, the response of dermal fibroblasts, the key players in granulation tissue formation within the wound healing process, to LMW HA and their importance for the activation of immune cells is unclear. In this study we show that LMW HA (4.3kDa) induced pro-inflammatory cytokine IL-6 and chemokines IL-8, CXCL1, CXCL2, CXCL6 and CCL8 gene expression in normal human dermal fibroblasts (NHDF) that was further confirmed by increased levels of IL-6 and IL-8 in cell culture supernatants. Conversely, NHDF treated by HMW HA revealed a tendency to decrease the gene expression of these cytokine and chemokines when compared to untreated control. The blockage of CD44 expression by siRNA resulted in the attenuation of IL-6 and chemokines expression in LMW HA treated NHDF suggesting the involvement of CD44 in LMW HA mediated NHDF activation. The importance of pro-inflammatory mediators produced by LMW HA triggered NHDF was evaluated by significant activation of blood leukocytes exhibited as increased production of IL-6 and TNF-α. Conclusively, we demonstrated a pro-inflammatory response of dermal fibroblasts to LMW HA that was transferred to leukocytes indicating the significance of LMW HA in the inflammatory process development during the wound healing process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. High levels of CC-chemokine expression and downregulated levels of CCR5 during HIV-1/HTLV-1 and HIV-1/HTLV-2 coinfections.

    Science.gov (United States)

    Oo, Z; Barrios, C S; Castillo, L; Beilke, M A

    2015-05-01

    The human T-cell lymphotropic virus type 1 (HTLV-1) and HTLV-2 are common copathogens among Human Immunodeficiency Virus (HIV)-infected individuals. HTLV-2 may confer a survival benefit among patients with HIV-1/HTLV-2 coinfections, along with lower plasma HIV-1 levels and delayed rates of CD4(+) T-cell decline. These effects have been attributed to the ability of the HTLV-2 viral transactivating Tax2 protein to induce the production of high levels of antiviral CC-chemokines and to downregulate expression of the CCR5 receptor, resulting in impaired entry of HIV-1 into CD4(+) T-cells. This study investigated the innate immunity of coinfected HIV/HTLV individuals by testing the ability of patient PBMCs to produce CC-chemokines in association CCR5 receptor modulation. The cellular proliferative responses of HIV/HTLV coinfected versus HIV monoinfected individuals were also evaluated. Higher levels of MIP-1α, MIP-1β, and RANTES (P HIV-1/HTLV-2 coinfected group compared to HIV-1 monoinfected population. Upregulated levels of RANTES were shown in HIV-1/HTLV-1 after 1 and 3 days of culture (P HIV-1/HTLV-2 coinfected individuals showed significant CCR5 downregulation after 1 and 3 days of culture compared to lymphocytes from HIV-1 and uninfected groups (P CCR5-positive cells were found in HIV-1/HTLV-1 coinfected after 3 days of incubation (P HIV-1/HTLV-1 group compared to HIV-1 alone (P HIV-1 via stimulation of CC-chemokines and receptors, potentially modifying CCR5/HIV-1 binding and HIV-1 progression in coinfected individuals. © 2015 Wiley Periodicals, Inc.

  13. High-Q Tunable Microwave Superconducting Strip-Line Filters

    National Research Council Canada - National Science Library

    Anderson, Dean; Rehrig, Paul; Lanagan, Mike; Furman, Eugene; Xi, Xiaoxing

    2005-01-01

    The objective of the Phase II SBIR project was to develop high Q, tunable microwave filters by using a cryogenic piezoelectric actuator to mechanically tune a high temperature superconducting (HTS) resonator...

  14. Compact Tunable High-Efficiency Entangled Photon Source, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — MagiQ proposes to develop a compact tunable high-efficiency low-power-consumption entangled photon source. The source, based on inter-Fabry-Perot-cavity Spontaneous...

  15. Eye and sensor protection from tunable laser beams

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.H.; Garrett, W.R.; DiCillo, J.J.; Phillips, R.C. (Oak Ridge National Lab., TN (United States)); Payne, M.G. (Georgia Southern Univ., Statesboro, GA (United States)); Templeton, D. (Army Tank-Automotive Command, Warren, MI (United States))

    1993-01-01

    We describe successes achieved in two different approaches to the problem of providing eye protection to personnel and sensor protection to devices in combat vehicles from perceived threats from tunable, visible laser beams.

  16. Eye and sensor protection from tunable laser beams

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.H.; Garrett, W.R.; DiCillo, J.J.; Phillips, R.C. [Oak Ridge National Lab., TN (United States); Payne, M.G. [Georgia Southern Univ., Statesboro, GA (United States); Templeton, D. [Army Tank-Automotive Command, Warren, MI (United States)

    1993-06-01

    We describe successes achieved in two different approaches to the problem of providing eye protection to personnel and sensor protection to devices in combat vehicles from perceived threats from tunable, visible laser beams.

  17. Novel Tunable Dye Laser for Lidar Detection, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A tunable dye laser for Lidar detection will be fabricated based on the innovative dye-doped Holographic Polymer Dispersed Liquid Crystals (HPDLC) technology. The...

  18. Scaling issues in ferroelectric barium strontium titanate tunable planar capacitors.

    Science.gov (United States)

    Lam, Peter G; Haridasan, Vrinda; Feng, Zhiping; Steer, Michael B; Kingon, Angus I; Maria, Jon-Paul

    2012-02-01

    We report on the geometric limits associated with tunability of interdigitated capacitors, specifically regarding the impact of a parasitic non-tunable component that necessarily accompanies a ferroelectric surface capacitor, and can dominate the voltage-dependent response as capacitor dimensions are reduced to achieve the small capacitance values required for impedance matching in the X band. We present a case study of simple gap capacitors prepared and characterized as a function of gap width (i.e., the distance between electrodes) and gap length (i.e., the edge-to-edge gap distance). Our series of measurements reveals that for gap widths in the micrometer range, as gap lengths are reduced to meet sub-picofarad capacitance values, the non-tunable parasitic elements limit the effective tunability. These experimental measurements are supported by a companion set of microwave models that clarify the existence of parallel parasitic elements.

  19. New Temperature-Insensitive Electronically-Tunable Grounded Capacitor Simulator

    OpenAIRE

    Muhammad Taher Abuelma'atti; Muhammad Haroon Khan

    1996-01-01

    A new circuit for simulating a grounded capacitor is presented. The circuit uses one operationalamplifier (OA), three operational-transconductance amplifiers (OTAs), and one capacitor. The realized capacitor is temperature-insensitive and electronically tunable. Experimental results are included.

  20. Stirling-Cycle Cooling For Tunable Diode Laser

    Science.gov (United States)

    Durso, Santo S.; May, Randy D.; Tuchscherer, Matthew A.; Webster, Christopher R.

    1991-01-01

    Miniature Stirling-cycle cooler effective in continously cooling PbSnTe tunable diode laser to stable operating temperature near 80 K. Simplifies laboratory diode-laser spectroscopy and instruments for use aboard aircraft and balloons.

  1. Spectral and Radiometric Calibration using Tunable Lasers Project

    Data.gov (United States)

    National Aeronautics and Space Administration —  SIRCUS-based calibration relies on a set of monitoring radiometers and tunable laser sources to provide an absolute radiometric calibration that can approach...

  2. Designed synthesis of tunable amorphous carbon nanotubes (a ...

    Indian Academy of Sciences (India)

    Administrator

    Page 1. Electronic Supplementary Material. Graphical abstract. Designed synthesis of tunable amorphous carbon nanotubes (a-CNTs) by a novel route and their oxidation resistance properties by Longlong. Xu et al (pp 1397–1402).

  3. Extended Tunability in a Two-Chip VECSEL (Postprint)

    National Research Council Canada - National Science Library

    Fan, Li; Fallahi, Mahmoud; Zakharian, Aramais R; Hader, Joerg; Moloney, Jerome V; Bedford, Robert; Murray, James T; Stolz, Wolfgang; Koch, Stephan W

    2007-01-01

    We demonstrate a widely tunable vertical-external cavity surface-emitting laser (VECSEL) with a W-shaped cavity, in which two VECSEL chips serve as fold mirrors and a birefringent filter is inserted at Brewster's angle...

  4. An extract of Phellinus linteus grown on germinated brown rice inhibits inflammation markers in RAW264.7 macrophages by suppressing inflammatory cytokines, chemokines, and mediators and up-regulating antioxidant activity.

    Science.gov (United States)

    Park, Hye-Jin; Han, Eun Su; Park, Dong Ki; Lee, Chan; Lee, Ki Won

    2010-12-01

    The immunomodulatory activity of an organic extract of Phellinus linteus grown on slightly germinated brown rice (PBR) was previously demonstrated. Here, we investigated the possible anti-inflammatory activity of the PBR extract by analyzing its effect on the expression of macrophage-derived cytokines, chemokines, and mediator genes that participate in immune and inflammatory responses and diseases. The extract profoundly inhibited the induction of cytokines and chemokines, including tumor necrosis factor-α, chemokine (C-X-C motif) ligand-10, granulocyte-macrophage colony-stimulating factor, and interleukin-6, in lipopolysaccharide (LPS)-stimulated RAW264.7 mouse macrophage cells. It also greatly inhibited LPS-stimulated production of nitric oxide (NO) and prostaglandin E(2) in RAW264.7 cells by suppressing the expression of inducible NO synthase and cyclooxygenase-2. PBR extract inhibited NO production with a twofold lower half-maximal inhibitory concentration value than P. linteus extract. To elucidate the underlying mechanism of action, we examined the effect of the PBR extract on the LPS-induced phosphorylation of mitogen-activated protein kinases (MAPKs) in RAW264.7 cells. PBR extract greatly inhibited extracellular signal-regulated kinase and c-Jun N-terminal kinase phosphorylation and slightly inhibited p38 MAPK phosphorylation. It also significantly increased intracellular glutathione peroxidase activity and heme oxygenase-1 protein expression. Thus, the PBR extract has anti-inflammatory activity in LPS-stimulated RAW264.7 cells by virtue of its ability to suppress the production of inflammatory cytokines and chemokines via inhibition of MAPK activation and up-regulation of antioxidant activities.

  5. Optimal design of tunable phononic bandgap plates under equibiaxial stretch

    International Nuclear Information System (INIS)

    Hedayatrasa, Saeid; Abhary, Kazem; Uddin, M S; Guest, James K

    2016-01-01

    Design and application of phononic crystal (PhCr) acoustic metamaterials has been a topic with tremendous growth of interest in the last decade due to their promising capabilities to manipulate acoustic and elastodynamic waves. Phononic controllability of waves through a particular PhCr is limited only to the spectrums located within its fixed bandgap frequency. Hence the ability to tune a PhCr is desired to add functionality over its variable bandgap frequency or for switchability. Deformation induced bandgap tunability of elastomeric PhCr solids and plates with prescribed topology have been studied by other researchers. Principally the internal stress state and distorted geometry of a deformed phononic crystal plate (PhP) changes its effective stiffness and leads to deformation induced tunability of resultant modal band structure. Thus the microstructural topology of a PhP can be altered so that specific tunability features are met through prescribed deformation. In the present study novel tunable PhPs of this kind with optimized bandgap efficiency-tunability of guided waves are computationally explored and evaluated. Low loss transmission of guided waves throughout thin walled structures makes them ideal for fabrication of low loss ultrasound devices and structural health monitoring purposes. Various tunability targets are defined to enhance or degrade complete bandgaps of plate waves through macroscopic tensile deformation. Elastomeric hyperelastic material is considered which enables recoverable micromechanical deformation under tuning finite stretch. Phononic tunability through stable deformation of phononic lattice is specifically required and so any topology showing buckling instability under assumed deformation is disregarded. Nondominated sorting genetic algorithm (GA) NSGA-II is adopted for evolutionary multiobjective topology optimization of hypothesized tunable PhP with square symmetric unit-cell and relevant topologies are analyzed through finite

  6. Tunable pulse-shaping with gated graphene nanoribbons

    DEFF Research Database (Denmark)

    Prokopeva, Ludmila; Emani, Naresh K.; Boltasseva, Alexandra

    2014-01-01

    We propose a pulse-shaper made of gated graphene nanoribbons. Simulations demonstrate tunable control over the shapes of transmitted and reflected pulses using the gating bias. Initial fabrication and characterization of graphene elements is also discussed.......We propose a pulse-shaper made of gated graphene nanoribbons. Simulations demonstrate tunable control over the shapes of transmitted and reflected pulses using the gating bias. Initial fabrication and characterization of graphene elements is also discussed....

  7. Tunability response in exponentially graded ferroelectrics: A TIM model approach

    Energy Technology Data Exchange (ETDEWEB)

    Vivas C, H., E-mail: hvivasc@unal.edu.co [Grupo de Propiedades Opticas de los Materiales, Departamento de Fisica, Bloque Y, Universidad Nacional de Colombia, Manizales A.A. 127 (Colombia); Jurado, J.F.; Vargas-Hernandez, C. [Grupo de Propiedades Opticas de los Materiales, Departamento de Fisica, Bloque Y, Universidad Nacional de Colombia, Manizales A.A. 127 (Colombia)

    2012-02-01

    Relative dielectric function response associate to a non-homogeneous layered ferroelectric system is calculated in the framework of the Mean Field Approximation (MFA) for the Transverse Ising Model (TIM). Analytical self-consistent expressions for the average polarization, dielectric susceptibility, and tunability percentage are outlined and solved for different configurations and sizes. It is found that exponentially graded ferroelectrics magnify the tunability response for stronger interlayer coupling and it reaches its saturation value for smaller intensities of the applied electric field.

  8. Adaptive IR Sensing Based on Advanced Nanostructures with Tunable Kinetics

    Science.gov (United States)

    2015-11-05

    AFRL-AFOSR-VA-TR-2015-0360 ADAPTIVE IR SENSING BASED ON ADVANCED NANOSTRUCTURES WITH TUNABLE KINETICS Vladimir Mitin RESEARCH FOUNDATION OF STATE...1 August 2010 - 31 July 2015 4. TITLE AND SUBTITLE Adaptive IR Sensing Based on Advanced Nanostructures with Tunable Kinetics 5a. CONTRACT NUMBER...engineering, and technological basis for further development of IR nanomaterials with nanoscale potential profile that can be effectively controlled by

  9. Optically controlled tunable dispersion compensators based on pumped fiber gratings.

    Science.gov (United States)

    Shu, Xuewen; Sugden, Kate; Bennion, Ian

    2011-08-01

    We demonstrate optically tunable dispersion compensators based on pumping fiber Bragg gratings made in Er/Yb codoped fiber. The tunable dispersion for a chirped grating and also a uniform-period grating was successfully demonstrated in the experiment. The dispersion of the chirped grating was tuned from 900 to 1990 ps/nm and also from -600 to -950 ps/nm in the experiment. © 2011 Optical Society of America

  10. Freely tunable broadband polarization rotator for terahertz waves.

    Science.gov (United States)

    Fan, Ren-Hao; Zhou, Yu; Ren, Xiao-Ping; Peng, Ru-Wen; Jiang, Shang-Chi; Xu, Di-Hu; Xiong, Xiang; Huang, Xian-Rong; Wang, Mu

    2015-02-18

    A freely tunable polarization rotator for broadband terahertz waves is demonstrated using a three-rotating-layer metallic grating structure, which can conveniently rotate the polarization of a linearly polarized terahertz wave to any desired direction with nearly perfect conversion efficiency. This low-cost, high-efficiency, and freely tunable device has potential applications as material analysis, wireless communication, and THz imaging. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Magnetically tunable superconductor filters using yttrium iron garnet films

    International Nuclear Information System (INIS)

    Tsutsumi, Makoto; Fukusako, Takeshi; Shimasaki, Hitoshi

    1995-01-01

    Magnetically tunable superconducting single-resonator filters using YIG films have been demonstrated experimentally. Tunability of 400 MHz at a center frequency of 6 GHz was achieved for a half wavelength microstrip comprising a YIG-YBCO-MgO composite structure. The reason why the quality factor of the filter is relatively low is possibly due to an increase of the magnetic linewidth ΔH at liquid nitrogen temperature. The theory on dispersion relation of the filter is also presented

  12. Tunable defect mode realized by graphene-based photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jiahui; Chen, Wan, E-mail: dhtyyobdc@126.com; Lv, Bo

    2016-04-29

    In this literature, we propose an active terahertz 1D photonic crystal, which consists of silicon layers and air layers. A graphene sheet is embedded at the interface between dielectric and air. Tunable photonic band gap is realized by changing the Fermi level of graphene. Transmission Matrix Method is utilized to explain the influence of the graphene layer. We also demonstrate that a dielectric slab attached with a thin sheet made of single-negative metamaterial acts like a pure dielectric slab with a thinner thickness. A tunable blue shift of the band gap can be realized by simply applying different chemical potentials on the graphene sheet. This feature can be utilized for the design of tunable high-gain antenna array and force generator in terahertz band. - Highlights: • A novel PhC embedded with grapheme sheets is presented, tunable defect is realized. • The mechanism of the tunable defect is explained using the change of equivalent thickness. • The electromagnetic force of a slab is calculated, which indicates the structure can serve as a tunable force generator.

  13. Tunable IR differential absorption lidar for remote sensing of chemicals

    Science.gov (United States)

    Prasad, Coorg R.; Kabro, Pierre; Mathur, Savyasachee L.

    1999-10-01

    Standoff sensors for rapid remote detection of chemical emissions from either clandestine chemical production sites, chemical and biological warfare agents, concealed internal combustion engine emissions or rocket propellants from missiles are required for several DoD applications. The differential absorption lidar (DIAL) operating in the infrared wavelengths has established itself as a very effective tool for rapidly detecting many of the chemicals, with sufficient sensitivity with a range of several kilometers. The wavelengths required for this task lie within the atmospheric window regions 3 to 5 micrometers and 8 to 12 micrometers . We are currently developing a differential absorption lidar (DIAL) tunable in the 3 to 5 micrometers range for detecting low concentrations of chemical species with high sensitivity (5 ppb) and accuracy (error measurements for greater than 5 km range. We have successfully established the feasibility of an innovative frequency agile laser source which is the crucial component of the infrared DIAL. A diode-pumped ytterbium YAG laser was built for pumping and rapidly tuning an optical parametric oscillator (OPO) over the mid-infra red region. Good performance (5 mJ/pulse) of the laser and low threshold wide infra red tuning of OPO (2.2 - 3.1 micrometers ) were demonstrated. The simulated performance of the topographical IR-DIAL showed that 5 ppb concentration can be measured at 5 km range with a 35 cm telescope.

  14. Macromolecular Coating Enables Tunable Selectivity in a Porous PDMS Matrix.

    Science.gov (United States)

    Winkeljann, Benjamin; Käsdorf, Benjamin T; Boekhoven, Job; Lieleg, Oliver

    2018-02-01

    Whether for laboratory use or clinical practice, many fields in Life Sciences require selective filtering. However, most existing filter systems lack the ability to easily tune their filtration behavior. Two key elements for efficient filtering are a high surface-to-volume ratio and the presence of suitable chemical groups which establish selectivity. In this study, an artificial PDMS-based capillary system with highly tunable selectivity properties is presented. The high surface-to-volume ratio of this filter system is generated by first embedding sugar fibers into a synthetic polymer matrix and then dissolving these fibers from the cured polymer. To functionalize this filter, the inner surface of the capillaries is coated with purified or synthetic macromolecules. Depending on the type of macromolecule used for filter functionalization, selective sieving is observed based on steric hindrance, electrostatic binding, electrostatic repulsion, or specific binding interactions. Furthermore, it is demonstrated that enzymes can be immobilized in the capillary system which allows for performing multiple cycles of enzymatic reactions with the same batch of enzymes and without the need to separate the enzymes from their reaction products. In addition to lab-scale filtration and enzyme immobilization applications demonstrated here, the functionalized porous PDMS matrix may also be used to test binding interactions between different molecules. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Chemokines (RANTES and MCP-1) and chemokine-receptors (CCR2 and CCR5) gene polymorphisms in Alzheimer's and Parkinson's disease.

    Science.gov (United States)

    Huerta, Cecilia; Alvarez, Victoria; Mata, Ignacio F; Coto, Eliecer; Ribacoba, René; Martínez, Carmen; Blázquez, Marta; Guisasola, Luis M; Salvador, Carlos; Lahoz, Carlos H; Peña, Joaquín

    2004-11-11

    Parkinson's disease (PD) is a complex disorder characterized by the progressive degeneration of dopaminergic neurons in the midbrain. Late-onset Alzheimer's disease (LOAD) is the most common cause of dementia in the elderly, affecting about 5% of the population older than 65 years. Several works have demonstrated the involvement of inflammation in the pathogenesis of both, PD and LOAD. Genetic susceptibility to develop PD and LOAD has also been widely recognised. Thus, functional polymorphisms at the genes encoding inflammatory proteins could influence the overall risk of developing these neurodegenerative disorders. We examined whether DNA-polymorphisms at the genes encoding chemokines MCP-1 (-2518 A/G) and RANTES (-403 A/G), and chemokine receptors 5 (CCR5, Delta32) and 2 (CCR2,V64I), were associated with the risk and/or the clinical outcome of LOAD and PD. A total of 200 PD, 326 LOAD, and 370 healthy controls were genotyped for the four polymorphisms, and genotype frequencies statistically compared. We did not find significant differences in the frequencies of the different genotypes between both groups of patients and controls. We conclude that the four DNA polymorphisms, which have been associated with several immuno-modulated diseases, did not contribute to the risk of PD or LOAD.

  16. Quantitative analysis of the secretion of the MCP family of chemokines by muscle cells

    DEFF Research Database (Denmark)

    Henningsen, Jeanette; Pedersen, Bente Klarlund; Kratchmarova, Irina

    2011-01-01

    The plasticity of skeletal muscle allows the body to adapt to various physiological demands such as growth, exercise and tissue regeneration and repair. The secreted factors from muscle exert their action via auto-, para-, and endocrine mechanisms, thereby influencing the maintenance of total body...... by other tissues are still very limited. In order to comprehensively characterize the low abundant low molecular weight secreted proteins during the course of muscle differentiation we used a mass spectrometry-based proteomics strategy. The application of the triple encoding Stable Isotope Labeling...... by Amino acids in Cell culture (SILAC) method for quantitative analysis resulted in the identification and generation of quantitative profiles of 59 growth factors and cytokines, including 9 classical chemokines. The members of the CC chemokine family of proteins such as monocyte chemotactic proteins 1, 2...

  17. Strong Expression of Chemokine Receptor CXCR4 by Renal Cell Carcinoma Correlates with Advanced Disease

    Directory of Open Access Journals (Sweden)

    Thomas C. Wehler

    2008-01-01

    Full Text Available Diverse chemokines and their receptors have been associated with tumor growth, tumor dissemination, and local immune escape. In different tumor entities, the level of chemokine receptor CXCR4 expression has been linked with tumor progression and decreased survival. The aim of this study was to evaluate the influence of CXCR4 expression on the progression of human renal cell carcinoma. CXCR4 expression of renal cell carcinoma was assessed by immunohistochemistry in 113 patients. Intensity of CXCR4 expression was correlated with both tumor and patient characteristics. Human renal cell carcinoma revealed variable intensities of CXCR4 expression. Strong CXCR4 expression of renal cell carcinoma was significantly associated with advanced T-status (P=.039, tumor dedifferentiation (P = .0005, and low hemoglobin (P = .039. In summary, strong CXCR4 expression was significantly associated with advanced dedifferentiated renal cell carcinoma.

  18. Chemokine expression by glial cells directs leukocytes to sites of axonal injury in the CNS

    DEFF Research Database (Denmark)

    Babcock, Alicia A; Kuziel, William A; Rivest, Serge

    2003-01-01

    Innate responses in the CNS are critical to first line defense against infection and injury. Leukocytes migrate to inflammatory sites in response to chemokines. We studied leukocyte migration and glial chemokine expression within the denervated hippocampus in response to axonal injury caused...... by entorhinodentate lesions. A population of Mac1/CD11b+ CD45high macrophages (distinct from CD45low microglia) was specifically detected within the lesion-reactive hippocampus by 12 hr after injury. Significant infiltration by CD3+ T cells did not occur in the denervated hippocampus until 24 hr after axotomy...... hr after axotomy, whereas MCP-1/CCL2 was significantly induced before leukocyte infiltration occurred. Neither T cells nor macrophages infiltrated the denervated hippocampus of CCR2-deficient mice, arguing for a critical role for the CCR2 ligand MCP-1/CCL2 in leukocyte migration. Both T cells...

  19. The chemokine receptor CCR5 Δ32 allele in natalizumab-treated multiple sclerosis

    DEFF Research Database (Denmark)

    Møller, M; Søndergaard, H B; Koch-Henriksen, N

    2014-01-01

    OBJECTIVE: The chemokine receptor CCR5 may be important for the recruitment of pathogenic T cells to the CNS in multiple sclerosis (MS). We hypothesized that this chemokine receptor might still be important for T-cell migration during treatment with anti-very late antigen (VLA)-4 antibody. We...... therefore analysed whether natalizumab-treated MS patients carrying the CCR5 Δ32 deletion allele, which results in reduced expression of CCR5 on the cell surface, had lower disease activity. METHODS: CCR5 Δ32 was analysed in 212 natalizumab-treated MS patients. RESULTS: CCR5 Δ32 status had no significant...... impact on the frequency of relapses 1 year prior to natalizumab treatment or during the first 48 weeks of treatment. The multiple sclerosis severity score (MSSS) was significantly lower at baseline in patients carrying CCR5 Δ32 (P = 0.031). CONCLUSIONS: CCR5 Δ32 is not associated with lower disease...

  20. Molecular interaction of a potent nonpeptide agonist with the chemokine receptor CCR8

    DEFF Research Database (Denmark)

    Jensen, Pia C; Nygaard, Rie; Thiele, Stefanie

    2007-01-01

    Most nonpeptide antagonists for CC-chemokine receptors share a common pharmacophore with a centrally located, positively charged amine that interacts with the highly conserved glutamic acid (Glu) located in position 6 of transmembrane helix VII (VII:06). We present a novel CCR8 nonpeptide agonist......, 8-[3-(2-methoxyphenoxy)benzyl]-1-phenethyl-1,3,8-triaza-spiro[4.5]decan-4-one (LMD-009), that also contains a centrally located, positively charged amine. LMD-009 selectively stimulated CCR8 among the 20 identified human chemokine receptors. It mediated chemotaxis, inositol phosphate accumulation......-binding pockets of CCR8 uncovered that the binding of LMD-009 and of four analogs [2-(1-(3-(2-methoxyphenoxy)benzyl)-4-hydroxypiperidin-4-yl)benzoic acid (LMD-584), N-ethyl-2-4-methoxybenzenesulfonamide (LMD-902), N-(1-(3-(2-methoxyphenoxy)benzyl)piperidin-4-yl)-2-phenyl-4-(pyrrolidin-1yl)butanamide (LMD-268...

  1. Analysis of the antimicrobial activities of a chemokine-derived peptide (CDAP-4) on Pseudomonas aeruginosa

    International Nuclear Information System (INIS)

    Martinez-Becerra, Francisco; Silva, Daniel-Adriano; Dominguez-Ramirez, Lenin; Mendoza-Hernandez, Guillermo; Lopez-Vidal, Yolanda; Soldevila, Gloria; Garcia-Zepeda, Eduardo A.

    2007-01-01

    Chemokines are key molecules involved in the control of leukocyte trafficking. Recently, a novel function as antimicrobial proteins has been described. CCL13 is the only member of the MCP chemokine subfamily displaying antimicrobial activity. To determine Key residues involved in its antimicrobial activity, CCL13 derived peptides were synthesized and tested against several bacterial strains, including Pseudomonas aeruginosa. One of these peptides, corresponding to the C-terminal region of CCL13 (CDAP-4) displayed good antimicrobial activity. Electron microscopy studies revealed remarkable morphological changes after CDAP-4 treatment. By computer modeling, CDAP-4 in α helical configuration generated a positive electrostatic potential that extended beyond the surface of the molecule. This feature is similar to other antimicrobial peptides. Altogether, these findings indicate that the antimicrobial activity was displayed by CCL13 resides to some extent at the C-terminal region. Furthermore, CDAP-4 could be considered a good antimicrobial candidate with a potential use against pathogens including P. aeruginosa

  2. Low prevalence of antibodies and other plasma factors binding to CC chemokines and IL-2 in HIV-positive patients

    DEFF Research Database (Denmark)

    Meyer, C N; Svenson, M; Schade Larsen, C

    2000-01-01

    Neutralizing cytokine antibodies are found in healthy and diseased individuals, including patients treated with recombinant cytokines. Identification of CCR-5 as co-receptor for HIV has focused interest on CC chemokines and their potential therapeutic use. Chemokine-binding components in plasma...... of HIV-infected patients were therefore assessed by radioimmunoassay and radioreceptor assay. IgG from 4/505 HIV patients and 9/2000 healthy controls (p>0.05) bound rMIP-1alpha and rMIP-1beta, but not rRANTES. No other plasma factors bound the chemokines. The antibodies inhibited receptor binding of both...... chemokines. There was no association between presence of antibodies and disease stage or HIV progression rate. Three of 11 patients treated with rIL-2 developed IgG antibodies suppressing cellular binding and growth promotion of rIL-2. Hence, circulating factors, including antibodies MIP-1alpha/MIP-1beta...

  3. Melatonin reduces the expression of chemokines in rat with trinitrobenzene sulfonic acid-induced colitis

    International Nuclear Information System (INIS)

    Li, Jun H.; Zhou, W.; Liu, K.; Li, Hong X.; Wang, L.

    2008-01-01

    Objective was to investigate the effect of melatonin on the colon inflammatory injury of rats with colitis and determine whether this effect is associated with inhibition of chemoattractant molecules interleukins (IL-8) and monocyte chemoattractant protein (MCP)-1.The study was designed and implemented in JingMen No.1 People's Hospital, HuBei Province, from May 2006 to April 2007. It involved 72 animals divided into 6 groups of 12 each: normal group, model group, 5-aminosalisalicylic acid group, and melatonin group (dose of 2.5, 5.0 and 10.0mg/kg). Rat colitis model was established by 2, 4, 6-trinitrobenzene sulfonic acid (TNBS) enema. Interleukin-8 and MCP-1 proteins in colon tissue were examined by immunohistochemistry and western blot. The messenger-RNA expressions of chemokines were determined by reverse transcription polymerase chain reaction analysis. Trinitrobenzene sulfonic acid enema resulted in pronounced pathological changes of colonic mucosa in model rats, which were in accordance with the significantly elevated Myeloperoxidase activity. Expressions of chemokines were up-regulated in colitis. Melatonin treatment reduced colonic lesions and improved colitis symptom, and decreased the protein and mRNA expressions of IL-8 and MCP-1 significantly in colon tissues of rats with colitis. Chemokines IL-8 and MCP-1 are elevated in mucosal tissues in colitis and play an important role in the perpetuation of tissue destructive inflammatory process; melatonin reduces colonic inflammatory injury of rats colitis through down-regulating the expressions of chemokines. Melatonin can be considered as a novel therapeutic alternative for the treatment of inflammatory bowel disease. (author)

  4. Chemokine regulation in response to beryllium exposure in human peripheral blood mononuclear and dendritic cells

    International Nuclear Information System (INIS)

    Hong-Geller, Elizabeth; Pardington, Paige E.; Cary, Robert B.; Sauer, Nancy N.; Gupta, Goutam

    2006-01-01

    Exposure to beryllium (Be) induces a delayed-type hypersensitivity immune reaction in the lungs of susceptible individuals, which leads to the onset of Be sensitivity and Chronic Beryllium Disease (CBD). Although some mechanistic aspects of CBD have begun to be characterized, very little is known about the molecular mechanisms by which Be activates the host immune response. To gain insight into the cellular response to Be exposure, we have performed global microarray analysis using a mixture of peripheral blood mononuclear and dendritic cells (PBMC/DCs) from a non-CBD source to identify genes that are specifically upregulated in response to BeSO 4 stimulation, compared to a control metal salt, Al 2 (SO 4 ) 3 . We identified a number of upregulated immunomodulatory genes, including several chemokines in the MIP-1 and GRO families. Using PBMC/DCs from three different donors, we demonstrate that BeSO 4 stimulation generally exhibits an increased rate of both chemokine mRNA transcription and release compared to Al 2 (SO 4 ) 3 exposure, although variations among the individual donors do exist. We show that MIP-1α and MIP-1β neutralizing antibodies can partially inhibit the ability of BeSO 4 to stimulate cell migration of PBMC/DCs in vitro. Finally, incubation of PBMC/DCs with BeSO 4 altered the binding of the transcription factor RUNX to the MIP-1α promoter consensus sequence, indicating that Be can regulate chemokine gene activation. Taken together, these results suggest a model in which Be stimulation of PBMC/DCs can modulate the expression and release of different chemokines, leading to the migration of lymphocytes to the lung and the formation of a localized environment for development of Be disease in susceptible individuals

  5. Chemokine regulation in response to beryllium exposure in human peripheral blood mononuclear and dendritic cells.

    Science.gov (United States)

    Hong-Geller, Elizabeth; Pardington, Paige E; Cary, Robert B; Sauer, Nancy N; Gupta, Goutam

    2006-02-01

    Exposure to beryllium (Be) induces a delayed-type hypersensitivity immune reaction in the lungs of susceptible individuals, which leads to the onset of Be sensitivity and Chronic Beryllium Disease (CBD). Although some mechanistic aspects of CBD have begun to be characterized, very little is known about the molecular mechanisms by which Be activates the host immune response. To gain insight into the cellular response to Be exposure, we have performed global microarray analysis using a mixture of peripheral blood mononuclear and dendritic cells (PBMC/DCs) from a non-CBD source to identify genes that are specifically upregulated in response to BeSO(4) stimulation, compared to a control metal salt, Al(2)(SO(4))(3). We identified a number of upregulated immunomodulatory genes, including several chemokines in the MIP-1 and GRO families. Using PBMC/DCs from three different donors, we demonstrate that BeSO(4) stimulation generally exhibits an increased rate of both chemokine mRNA transcription and release compared to Al(2)(SO(4))(3) exposure, although variations among the individual donors do exist. We show that MIP-1 alpha and MIP-1 beta neutralizing antibodies can partially inhibit the ability of BeSO(4) to stimulate cell migration of PBMC/DCs in vitro. Finally, incubation of PBMC/DCs with BeSO(4) altered the binding of the transcription factor RUNX to the MIP-1 alpha promoter consensus sequence, indicating that Be can regulate chemokine gene activation. Taken together, these results suggest a model in which Be stimulation of PBMC/DCs can modulate the expression and release of different chemokines, leading to the migration of lymphocytes to the lung and the formation of a localized environment for development of Be disease in susceptible individuals.

  6. Cytokines and Chemokines as Regulators of Skeletal Muscle Inflammation: Presenting the Case of Duchenne Muscular Dystrophy

    OpenAIRE

    De Paepe, Boel; De Bleecker, Jan L.

    2013-01-01

    Duchenne muscular dystrophy is a severe inherited muscle disease that affects 1 in 3500 boys worldwide. Infiltration of skeletal muscle by inflammatory cells is an important facet of disease pathophysiology and is strongly associated with disease severity in the individual patient. In the chronic inflammation that characterizes Duchenne muscle, cytokines and chemokines are considered essential activators and recruiters of inflammatory cells. In addition, they provide potential beneficiary eff...

  7. The DRF motif of CXCR6 as chemokine receptor adaptation to adhesion.

    Directory of Open Access Journals (Sweden)

    Andrea Koenen

    Full Text Available The CXC-chemokine receptor 6 (CXCR6 is a class A GTP-binding protein-coupled receptor (GPCRs that mediates adhesion of leukocytes by interacting with the transmembrane cell surface-expressed chemokine ligand 16 (CXCL16, and also regulates leukocyte migration by interacting with the soluble shed variant of CXCL16. In contrast to virtually all other chemokine receptors with chemotactic activity, CXCR6 carries a DRF motif instead of the typical DRY motif as a key element in receptor activation and G protein coupling. In this work, modeling analyses revealed that the phenylalanine F3.51 in CXCR6 might have impact on intramolecular interactions including hydrogen bonds by this possibly changing receptor function. Initial investigations with embryonic kidney HEK293 cells and further studies with monocytic THP-1 cells showed that mutation of DRF into DRY does not influence ligand binding, receptor internalization, receptor recycling, and protein kinase B (AKT signaling. Adhesion was slightly decreased in a time-dependent manner. However, CXCL16-induced calcium signaling and migration were increased. Vice versa, when the DRY motif of the related receptor CX3CR1 was mutated into DRF the migratory response towards CX3CL1 was diminished, indicating that the presence of a DRF motif generally impairs chemotaxis in chemokine receptors. Transmembrane and soluble CXCL16 play divergent roles in homeostasis, inflammation, and cancer, which can be beneficial or detrimental. Therefore, the DRF motif of CXCR6 may display a receptor adaptation allowing adhesion and cell retention by transmembrane CXCL16 but reducing the chemotactic response to soluble CXCL16. This adaptation may avoid permanent or uncontrolled recruitment of inflammatory cells as well as cancer metastasis.

  8. CONTENTS OF CHEMOKINES AND CYTOKINES IN PERITONEAL FLUID FROM THE PATIENTS WITH ENDOMETRIOSIS OF VARIOUS SEVERITY

    Directory of Open Access Journals (Sweden)

    D. I. Sokolov

    2007-01-01

    Full Text Available Abstract. Endometriosis is a disease accompanied by development of heterotopic endometrial foci at the peritoneum, proliferation of endothelial cells, and inflammatory reaction. Aiming to specify the dynamics of inflammatory process in endometriosis of different severity, as well as significance of chemokines and cytokines in angiogenesis and inflammation, we determined concentrations of RANTES, IL-8, IP-10, MIG, MCP-1 chemokines, as well as IL-4, IL-6 and IL-10 cytokines in peritoneal fluid from patients by endometriosis. Forty women at reproductive age with an endometriosis have been observed. Among them, endometriosis grade I-II was registered in 20 cases, whereas grade III-IV has been confirmed in 20 women. Twenty-two women without evidence of endometriosis referred to diagnostic laparoscopy for pregnancy planning, comprised a control group. Diagnosis of endometriosis was based upon endoscopic findings and results of histological research. Severity grade of endometriosis was estimated according to R-AFS classification. Sampling of peritoneal fluid was carried out when performing surgical laparoscopies. Concentrations of chemokines and cytokines were determined by flow cytometry techniques, using BD Cytometric Bead Array test kits and FACStrack flow cytometer. The amounts of RANTES in peritoneal fluid were higher in grade I-II endometriosis, in comparison with grade III-IV endometriosis and control samples. Concentrations of IP-10, IL-8, МСР-1, MIG, IL-6, and IL-4 were higher than in control group and correlated with severity of the disease. IL-10 was not detectable in peritoneal fluid of the patients with endometriosis. These results suggest a significant role of the mentioned cytokines and chemokines that may promote invasion of endometrial cells, growth of heterotopic endometrioid locuses, development of vascular bed and induction of inflammatory processes, in development and progression of endometriosis.

  9. A streptococcal protease that degrades CXC chemokines and impairs bacterial clearance from infected tissues

    OpenAIRE

    Hidalgo-Grass, Carlos; Mishalian, Inbal; Dan-Goor, Mary; Belotserkovsky, Ilia; Eran, Yoni; Nizet, Victor; Peled, Amnon; Hanski, Emanuel

    2006-01-01

    Group A Streptococcus (GAS) causes the life-threatening infection in humans known as necrotizing fasciitis (NF). Infected subcutaneous tissues from an NF patient and mice challenged with the same GAS strain possessed high bacterial loads but a striking paucity of infiltrating polymorphonuclear leukocytes (PMNs). Impaired PMN recruitment was attributed to degradation of the chemokine IL-8 by a GAS serine peptidase. Here, we use bioinformatics approach coupled with target mutagenesis to identif...

  10. Oligonucleotide fishing for STAT6: cross-talk between IL-4 and chemokines

    DEFF Research Database (Denmark)

    Eriksen, K W; Nielsen, M; Kaltoft, K

    2001-01-01

    Signal transducer and activator of transcription 6 (STAT6) is essential for the biological activities of interleukin-4 (IL-4) and the development of allergic responses in mice. Here we report on a sensitive and specific assay for STAT6 activation in response to IL-4. We took advantage of double-s...... activation, whereas other chemokines and cytokines do not. In conclusion, our data show that oligonucleotide fishing is a supplementary tool for studying cytokine cross-talk at a genomic level....

  11. Iroquois homeobox 2 suppresses cellular motility and chemokine expression in breast cancer cells

    International Nuclear Information System (INIS)

    Werner, Stefan; Stamm, Hauke; Pandjaitan, Mutiha; Kemming, Dirk; Brors, Benedikt; Pantel, Klaus; Wikman, Harriet

    2015-01-01

    Disseminated tumor cells (DTCs) can be detected using ultrasensitive immunocytochemical assays and their presence in the bone marrow can predict the subsequent occurrence of overt metastasis formation and metastatic relapse. Using expression profiling on early stage primary breast tumors, low IRX2 expression was previously shown to be associated with the presence of DTCs in the bone marrow, suggesting a possible role of IRX2 in the early steps of metastasis formation. The purpose of this study is to gain insights into the significance of IRX2 protein function in the progression of breast cancer. To assess the physiological relevance of IRX2 in breast cancer, we evaluated IRX2 expression in a large breast cancer cohort (n = 1992). Additionally, constitutive IRX2 over expression was established in BT-549 and Hs578T breast cancer cell lines. Subsequently we analyzed whether IRX2 overexpression effects chemokine secretion and cellular motility of these cells. Low IRX2 mRNA expression was found to correlate with high tumor grade, positive lymph node status, negative hormone receptor status, and basal type of primary breast tumors. Also in cell lines low IRX2 expression was associated with mainly basal breast cancer cell lines. The functional studies show that overexpression of the IRX2 transcription factor in basal cell lines suppressed secretion of the pro-metastatic chemokines and inhibited cellular motility but did not influence cell proliferation. Our results imply that the IRX2 transcription factor might represent a novel metastasis associated protein that acts as a negative regulator of cellular motility and as a repressor of chemokine expression. Loss of IRX2 expression could therefore contribute to early hematogenous dissemination of breast cancer by sustaining chemokine secretion and enabling mobilization of tumor cells. The online version of this article (doi:10.1186/s12885-015-1907-4) contains supplementary material, which is available to authorized users

  12. Impaired chemokine-induced migration during T-cell development in the absence of Jak 3.

    Science.gov (United States)

    Soldevila, Gloria; Licona, Ileana; Salgado, Alfonso; Ramírez, Marcela; Chávez, Ramsés; García-Zepeda, Eduardo

    2004-06-01

    The arrival of bone marrow T-cell progenitors to the thymus, and the directed migration of thymocytes, are thought to be regulated by the expression of chemokines and their receptors. Recent data has shown that the Jak/Stat signalling pathway is involved in chemokine receptor signalling. We have investigated the role of Jak 3 in chemokine-mediated signalling in the thymus using Jak 3(-/-) mice. These mice show defects in T-cell development, as well as in peripheral T-cell function, resulting in a hypoplastic thymus and an altered T-cell homeostasis. Here we demonstrate, for the first time, that bone marrow progenitors and thymocytes from Jak 3(-/-) mice have decreased chemotactic responses to CXCL12 and CCL25. We also show that Jak 3 is involved in signalling through CCR9 and CXCR4, and that specific inhibition of Jak 3 in wild-type progenitors and thymocytes decreases their chemotactic responses towards CCL25 and CXCL12. Finally, quantitative reverse transcription-polymerase chain reaction analysis showed that thymocytes from Jak 3(-/-) mice express similar levels of CXCR4 and CCR9 compared to wild-type mice. Altogether, deficient CCL25- and CXCL12-induced migration could result in a homing defect of T-cell progenitors to the thymus, as well as in a deficient thymocyte migration through the thymic stroma. Our results strongly suggest that the absence of Jak 3 affects T-cell development, not only through an impaired interleukin-7 receptor (IL-7R)-mediated signalling, but also through impaired chemokine-mediated responses, which are crucial for thymocyte migration and differentiation.

  13. Laser absorption spectroscopy using lead salt and quantum cascade tunable lasers

    Science.gov (United States)

    Namjou-Khales, Khosrow

    A new class of analytic instruments based on the detection of chemical species through their spectroscopic absorption 'fingerprint' is emerging based on the use of tunable semiconductor lasers as the excitation source. Advantages of this approach include compact device size, in-line measurement capability, and large signal-bandwidth product. To realize these advantages will require the marriage of laser devices with broad tunability in the infrared spectral range with sophisticated signal processing techniques. Currently, commercial devices based on short wavelength telecommunications type lasers exist but there is potential for much more versatile instruments based on longer wavelength operation. This thesis is divided into two parts. In the first part I present a theoretical analysis and experimental characterization of frequency and wavelength modulation spectroscopy using long wavelength infrared tunable lasers. The experimental measurements were carried out using commercially available lead salt lasers and excellent agreement is found between theoretically predicted performance and experimental verification. The lead salt laser has several important drawbacks as a source in practical instrumentation. In the second part of the thesis I report on the use of the quantum cascade (QC) laser for use in sensitive absorption spectroscopy. The QC laser is a new type of tunable device developed at Bell Laboratories. It features broad infrared tunability, single mode distributed feedback operation, and near room temperature lasing. Using the modulation techniques developed originally for the lead salt lasers, the QC laser was used to detect Nsb2O and other small molecules with absorption features near 8 mum wavelength. The noise equivalent absorption for our measurements was 5× 10sp{-5}/sqrt{Hz} which corresponds to a detection limit of ˜0.25 ppm-m/sqrt{Hz} for Nsb2O. The QC laser sensitivity was found to be limited by excess amplitude modulation in the detection

  14. Novel Chemokine-Based Immunotoxins for Potent and Selective Targeting of Cytomegalovirus Infected Cells

    Directory of Open Access Journals (Sweden)

    Katja Spiess

    2017-01-01

    Full Text Available Immunotoxins as antiviral therapeutics are largely unexplored but have promising prospective due to their high selectivity potential and their unparalleled efficiency. One recent example targeted the virus-encoded G protein-coupled receptor US28 as a strategy for specific and efficient treatment of human cytomegalovirus (HCMV infections. US28 is expressed on virus-infected cells and scavenge chemokines by rapid internalization. The chemokine-based fusion-toxin protein (FTP consisted of a variant (F49A of CX3CL1 specifically targeting US28 linked to the catalytic domain of Pseudomonas exotoxin A (PE. Here, we systematically seek to improve F49A-FTP by modifications in its three structural domains; we generated variants with (1 altered chemokine sequence (K14A, F49L, and F49E, (2 shortened and elongated linker region, and (3 modified toxin domain. Only F49L-FTP displayed higher selectivity in its binding to US28 versus CX3CR1, the endogenous receptor for CX3CL1, but this was not matched by a more selective killing of US28-expressing cells. A longer linker and different toxin variants decreased US28 affinity and selective killing. Thereby, F49A-FTP represents the best candidate for HCMV treatment. Many viruses encode internalizing receptors suggesting that not only HCMV but also, for instance, Epstein-Barr virus and Kaposi’s sarcoma-associated herpesvirus may be targeted by FTPs.

  15. Optogenetic control of chemokine receptor signal and T-cell migration

    Science.gov (United States)

    Xu, Yuexin; Hyun, Young-Min; Lim, Kihong; Lee, Hyunwook; Cummings, Ryan J.; Gerber, Scott A.; Bae, Seyeon; Cho, Thomas Yoonsang; Lord, Edith M.; Kim, Minsoo

    2014-01-01

    Adoptive cell transfer of ex vivo-generated immune-promoting or tolerogenic T cells to either enhance immunity or promote tolerance in patients has been used with some success. However, effective trafficking of the transferred cells to the target tissue sites is the main barrier to achieving successful clinical outcomes. Here we developed a strategy for optically controlling T-cell trafficking using a photoactivatable (PA) chemokine receptor. Photoactivatable-chemokine C-X-C motif receptor 4 (PA-CXCR4) transmitted intracellular CXCR4 signals in response to 505-nm light. Localized activation of PA-CXCR4 induced T-cell polarization and directional migration (phototaxis) both in vitro and in vivo. Directing light onto the melanoma was sufficient to recruit PA-CXCR4–expressing tumor-targeting cytotoxic T cells and improved the efficacy of adoptive T-cell transfer immunotherapy, with a significant reduction in tumor growth in mice. These findings suggest that the use of photoactivatable chemokine receptors allows remotely controlled leukocyte trafficking with outstanding spatial resolution in tissues and may be feasible in other cell transfer therapies. PMID:24733886

  16. Impact of blood processing variations on Natural Killer cell frequency, activation, chemokine receptor expression and function

    Science.gov (United States)

    Naranbhai, Vivek; Bartman, Pat; Ndlovu, Dudu; Ramkalawon, Pamela; Ndung’u, Thumbi; Wilson, Douglas; Altfeld, Marcus; Carr, William H

    2011-01-01

    Understanding the role of natural killer (NK) cells in human disease pathogenesis is crucial and necessitates study of patient samples directly ex vivo. Manipulation of whole blood by density gradient centrifugation or delays in sample processing due to shipping, however, may lead to artifactual changes in immune response measures. Here, we assessed the impact of density gradient centrifugation and delayed processing of both whole blood and peripheral blood mononuclear cells (PBMC) at multiple timepoints (2–24 hrs) on flow cytometric measures of NK cell frequency, activation status, chemokine receptor expression, and effector functions. We found that density gradient centrifugation activated NK cells and modified chemokine receptor expression. Delays in processing beyond 8 hours activated NK cells in PBMC but not in whole blood. Likewise, processing delays decreased chemokine receptor (CCR4 and CCR7) expression in both PBMC and whole blood. Finally, delays in processing PBMC were associated with a decreased ability of NK cells to degranulate (as measured by CD107a expression) or secrete cytokines (IFN-γ and TNF-α). In summary, our findings suggest that density gradient centrifugation and delayed processing of PBMC can alter measures of clinically relevant NK cell characteristics including effector functions; and therefore should be taken into account in designing clinical research studies. PMID:21255578

  17. Altered release of chemokines by phagocytes from fibromyalgia patients: a pilot study.

    Science.gov (United States)

    García, Juan José; Carvajal-Gil, Julián; Guerrero-Bonmatty, Rafael

    2016-01-01

    Fibromyalgia (FM) is a syndrome characterized by widespread chronic pain and is associated with elevated systemic inflammatory biomarkers, and an elevated innate cellular response. The aim of this study was to determine if fibromyalgia patients have altered ability to release pro-inflammatory chemokines by isolated neutrophils and monocytes. The study participants were women diagnosed with FM (n = 6) and a control group of healthy women (HW) (n = 6). Supernatant concentrations of eotaxin (CCL11), human macrophage-derived chemokine (MDC) (CCL22) and growth regulated-oncogene (GRO-α) (CXCL1) released by both monocytes and neutrophils either resting or stimulated by LPS were determined by ELISA and compared between the FM and HW groups. Both resting and activated monocytes from FM patients released more eotaxin, MDC and GRO-α than those from HW. However, there were no significant differences in the release of chemokines from neutrophils of FM patients and the ones from healthy women. In conclusion, monocytes from women with FM are deregulated, releasing higher amounts of eotaxin, MDC and GRO-α than healthy individuals. This fact does not occur in neutrophils from women with FM. © The Author(s) 2015.

  18. Spread of Psoriasiform Inflammation to Remote Tissues Is Restricted by the Atypical Chemokine Receptor ACKR2.

    Science.gov (United States)

    Shams, Kave; Wilson, Gillian J; Singh, Mark; van den Bogaard, Ellen H; Le Brocq, Michelle L; Holmes, Susan; Schalkwijk, Joost; Burden, A David; McKimmie, Clive S; Graham, Gerard J

    2017-01-01

    Elucidating the poorly defined mechanisms by which inflammatory lesions are spatially restricted in vivo is of critical importance in understanding skin disease. Chemokines are the principal regulators of leukocyte migration and are essential in the initiation and maintenance of inflammation. The membrane-bound psoriasis-associated atypical chemokine receptor 2 (ACKR2) binds, internalizes and degrades most proinflammatory CC-chemokines. Here we investigate the role of ACKR2 in limiting the spread of cutaneous psoriasiform inflammation to sites that are remote from the primary lesion. Circulating factors capable of regulating ACKR2 function at remote sites were identified and examined using a combination of clinical samples, relevant primary human cell cultures, in vitro migration assays, and the imiquimod-induced model of psoriasiform skin inflammation. Localized inflammation and IFN-γ together up-regulate ACKR2 in remote tissues, protecting them from the spread of inflammation. ACKR2 controls inflammatory T-cell chemotaxis and positioning within the skin, preventing an epidermal influx that is associated with lesion development. Our results have important implications for our understanding of how spatial restriction is imposed on the spread of inflammatory lesions and highlight systemic ACKR2 induction as a therapeutic strategy in the treatment and prevention of psoriasis and potentially a broad range of other immune-mediated diseases. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Involvement of CCR-2 chemokine receptor activation in ischemic preconditioning and postconditioning of brain in mice.

    Science.gov (United States)

    Rehni, Ashish K; Singh, Thakur Gurjeet

    2012-10-01

    The present study has been designed to investigate the potential role of CCR-2 chemokine receptor in ischemic preconditioning as well as postconditioning induced reversal of ischemia-reperfusion injury in mouse brain. Bilateral carotid artery occlusion of 17 min followed by reperfusion for 24h was employed in present study to produce ischemia and reperfusion induced cerebral injury in mice. Cerebral infarct size was measured using triphenyltetrazolium chloride staining. Memory was evaluated using elevated plus-maze test and Morris water maze test. Rota rod test was employed to assess motor incoordination. Bilateral carotid artery occlusion followed by reperfusion produced cerebral infarction and impaired memory and motor co-ordination. Three preceding episodes of bilateral carotid artery occlusion for 1 min and reperfusion of 1 min were employed to elicit ischemic preconditioning of brain, while three episodes of bilateral carotid artery occlusion for 10s and reperfusion of 10s immediately after the completion of were employed to elicit ischemic postconditioning of brain. Both prior ischemic preconditioning as well as ischemic postconditioning immediately after global cerebral ischemia prevented markedly ischemia-reperfusion-induced cerebral injury as measured in terms of infarct size, loss of memory and motor coordination. RS 102895, a selective CCR-2 chemokine receptor antagonist, attenuated the neuroprotective effect of both the ischemic preconditioning as well as postconditioning. It is concluded that the neuroprotective effect of both ischemic preconditioning as well as ischemic postconditioning may involve the activation of CCR-2 chemokine receptors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. CXCL12 chemokine expression suppresses human pancreatic cancer growth and metastasis.

    Directory of Open Access Journals (Sweden)

    Ishan Roy

    Full Text Available Pancreatic ductal adenocarcinoma is an unsolved health problem with nearly 75% of patients diagnosed with advanced disease and an overall 5-year survival rate near 5%. Despite the strong link between mortality and malignancy, the mechanisms behind pancreatic cancer dissemination and metastasis are poorly understood. Correlative pathological and cell culture analyses suggest the chemokine receptor CXCR4 plays a biological role in pancreatic cancer progression. In vivo roles for the CXCR4 ligand CXCL12 in pancreatic cancer malignancy were investigated. CXCR4 and CXCR7 were consistently expressed in normal and cancerous pancreatic ductal epithelium, established cell lines, and patient-derived primary cancer cells. Relative to healthy exocrine ducts, CXCL12 expression was pathologically repressed in pancreatic cancer tissue specimens and patient-derived cell lines. To test the functional consequences of CXCL12 silencing, pancreatic cancer cell lines stably expressingthe chemokine were engineered. Consistent with a role for CXCL12 as a tumor suppressor, cells producing the chemokine wereincreasingly adherent and migration deficient in vitro and poorly metastatic in vivo, compared to control cells. Further, CXCL12 reintroduction significantly reduced tumor growth in vitro, with significantly smaller tumors in vivo, leading to a pronounced survival advantage in a preclinical model. Together, these data demonstrate a functional tumor suppressive role for the normal expression of CXCL12 in pancreatic ducts, regulating both tumor growth andcellulardissemination to metastatic sites.