WorldWideScience

Sample records for tumoral myeloid precursors

  1. [Myeloid/natural killer cell precursor and myeloid/natural killer cell acute leukemia].

    Science.gov (United States)

    Ni, Ming; Chen, Bao-An

    2014-04-01

    With the popularity of flow cytometry, the classification of leukemia become more detailed. Myeloid/natural killer cell precursor acute leukemia and myeloid/natural killer cell acute leukemias are generally recognized as two kinds of rare leukemias and have poor prognosis. The cells expressed both myeloid and lymphatic antigens in these two leukemia and can not be diagnosed by morphology. The only basis to make a definite diagnosis is their unique Immunophenotyping. The role of CD7 and CD56 in these two leukemia are compelling, in the other hand, as the progress of cell differentiation research, there are many new awareness of NK cell differentiation. In this article, the biological origin, clinical manifestation, diagnosis, treatment and the role of CD7 and CD56 in these two leukemia are briefly summarized.

  2. Myeloid-derived cells in tumors: effects of radiation.

    Science.gov (United States)

    Vatner, Ralph E; Formenti, Silvia C

    2015-01-01

    The discrepancy between the in vitro and in vivo response to radiation is readily explained by the fact that tumors do not exist independently of the host organism; cancer cells grow in the context of a complex microenvironment composed of stromal cells, vasculature, and elements of the immune system. As the antitumor effect of radiotherapy depends in part on the immune system, and myeloid-derived cells in the tumor microenvironment modulate the immune response to tumors, it follows that understanding the effect of radiation on myeloid cells in the tumor is likely to be essential for comprehending the antitumor effects of radiotherapy. In this review, we describe the phenotype and function of these myeloid-derived cells, and stress the complexity of studying this important cell compartment owing to its intrinsic plasticity. With regard to the response to radiation of myeloid cells in the tumor, evidence has emerged demonstrating that it is both model and dose dependent. Deciphering the effects of myeloid-derived cells in tumors, particularly in irradiated tumors, is key for attempting to pharmacologically modulate their actions in the clinic as part of cancer therapy. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. TREM2-transduced myeloid precursors mediate nervous tissue debris clearance and facilitate recovery in an animal model of multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Kazuya Takahashi

    2007-04-01

    Full Text Available BACKGROUND: In multiple sclerosis, inflammation can successfully be prevented, while promoting repair is still a major challenge. Microglial cells, the resident phagocytes of the central nervous system (CNS, are hematopoietic-derived myeloid cells and express the triggering receptor expressed on myeloid cells 2 (TREM2, an innate immune receptor. Myeloid cells are an accessible source for ex vivo gene therapy. We investigated whether myeloid precursor cells genetically modified to express TREM2 affect the disease course of experimental autoimmune encephalomyelitis (EAE, an animal model of multiple sclerosis. METHODS AND FINDINGS: EAE was induced in mice by immunization with a myelin autoantigen. Intravenous application of TREM2-transduced bone marrow-derived myeloid precursor cells at the EAE peak led to an amelioration of clinical symptoms, reduction in axonal damage, and prevention of further demyelination. TREM2-transduced myeloid cells applied intravenously migrated into the inflammatory spinal cord lesions of EAE-diseased mice, showed increased lysosomal and phagocytic activity, cleared degenerated myelin, and created an anti-inflammatory cytokine milieu within the CNS. CONCLUSIONS: Intravenously applied bone marrow-derived and TREM2-tranduced myeloid precursor cells limit tissue destruction and facilitate repair within the murine CNS by clearance of cellular debris during EAE. TREM2 is a new attractive target for promotion of repair and resolution of inflammation in multiple sclerosis and other neuroinflammatory diseases.

  4. Histamine Promotes the Development of Monocyte-Derived Dendritic Cells and Reduces Tumor Growth by Targeting the Myeloid NADPH Oxidase

    Science.gov (United States)

    Wiktorin, Hanna G.; Lenox, Brianna; Ewald Sander, Frida; Aydin, Ebru; Aurelius, Johan; Thorén, Fredrik B.; Ståhlberg, Anders; Hermodsson, Svante; Hellstrand, Kristoffer

    2015-01-01

    The efficiency of immune-mediated clearance of cancer cells is hampered by immunosuppressive mediators in the malignant microenvironment, including NADPH oxidase–derived reactive oxygen species. We aimed at defining the effects of histamine, an inhibitor of the myeloid NADPH oxidase/NOX2, on the development of Ag-presenting dendritic cells (DCs) from myeloid precursors and the impact of these mechanisms for tumor growth. Histamine was found to promote the maturation of human DCs from monocytes by increasing the expression of HLA-DR and costimulatory molecules, which resulted in improved induction of Th cells with Th0 polarity. Experiments using wild-type and NOX2-deficient myelomonoblastic cells showed that histamine facilitated myeloid cell maturation only in cells capable of generating reactive oxygen species. Treatment of mice with histamine reduced the growth of murine EL-4 lymphomas in parallel with an increment of tumor-infiltrating DCs in NOX2-sufficient mice but not in NOX2-deficient (gp91phox−/−) mice. We propose that strategies to target the myeloid NADPH oxidase may facilitate the development of endogenous DCs in cancer. PMID:25870245

  5. New classification of acute myeloid leukemia and precursor-related neoplasms: changes and unsolved issues.

    Science.gov (United States)

    Falini, Brunangelo; Tiacci, Enrico; Martelli, Maria Paola; Ascani, Stefano; Pileri, Stefano A

    2010-10-01

    The World Health Organization (WHO) classification of lympho-hematopoietic neoplasms is increasingly based on genetic criteria. Here, we focus on changes that, as compared to the 2001 edition, were introduced into the 2008 WHO classification of acute myeloid leukemia (AML) and related precursor neoplasms. The category of AML with recurrent genetic abnormalities was expanded to account for 60% of AML by adding three distinct entities, i.e., AML with t(6,9), inv(3), or t(1;22), and two provisional entities, i.e., AML with mutated NPM1 or CEBPA. These changes have greatly modified the approaches to diagnosis and prognostic stratification of AML patients. To emphasize the need of various parameters for diagnosis, including myelodysplasia (MD)-related cytogenetic abnormalities, history of myelodysplasia or myelodysplasia/myeloproliferative neoplasm, and multilineage dysplasia, the category of "AML with multilineage dysplasia" was re-named AML with MD-related changes. Finally, we describe the unique characteristics of myeloid proliferations associated with Down syndrome and blastic plasmacytoid dendritic cell neoplasm.

  6. HSP10 selective preference for myeloid and megakaryocytic precursors in normal human bone marrow

    Directory of Open Access Journals (Sweden)

    F Cappello

    2009-06-01

    Full Text Available Heat shock proteins (HSPs constitute a heterogeneous family of proteins involved in cell homeostasis. During cell life they are involved in harmful insults, as well as in immune and inflammatory reactions. It is known that they regulate gene expression, and cell proliferation, differentiation and death. HSP60 is a mitochondrial chaperonin, highly preserved during evolution, responsible of protein folding. Its function is strictly dependent on HSP10 in both prokaryotic and eukaryotic elements. We investigated the presence and the expression of HSP60 and HSP10 in a series of 20 normal human bone marrow specimens (NHBM by the means of immunohistochemistry. NHBM showed no expression of HSP60, probably due to its being below the detectable threshold, as already demonstrated in other normal human tissues. By contrast, HSP10 showed a selective positivity for myeloid and megakaryocytic lineages. The positivity was restricted to precursor cells, while mature elements were constantly negative.We postulate that HSP10 plays a role in bone marrow cell differentiation other than being a mitochondrial co-chaperonin. The present data emphasize the role of HSP10 during cellular homeostasis and encourage further investigations in this field.

  7. The World Health Organization (WHO) classification of tumors of the hematopoietic and lymphoid tissues: an overview with emphasis on the myeloid neoplasms.

    Science.gov (United States)

    Vardiman, James W

    2010-03-19

    The World Health Organization (WHO) classification of myeloid and lymphoid neoplasms utilizes morphology, immunophenotype, genetics and clinical features to define disease entities of clinical significance. It is a consensus classification in which a number of experts have agreed on the classification and diagnostic criteria. In general, the classification stratifies neoplasms according to their lineage (myeloid, lymphoid, histiocytic/dendritic) and distinguishes neoplasms of precursor cells from those comprised of functionally mature cells. Lymphoid neoplasms are derived from cells that frequently have features that recapitulate stages of normal B-, T-, and NK-cell differentiation and function, so to some extent they can be classified according to the corresponding normal counterpart, although additional features, such as genotype, clinical features and even location of the tumor figure into the final classification listing as well. Five major subgroups of myeloid neoplasms are recognized based mainly on their degree of maturation and biologic properties: myeloproliferative neoplasms (MPNs) which are comprised primarily of mature cells with effective proliferation; myeloid (and lymphoid) neoplasms with eosinophilia and abnormalities of PDGFRA, PDGFRB and FGFR1, defined largely by the finding of significant eosinophilia and specific genetic abnormalities; myelodysplastic/myeloproliferative neoplasms (MDS/MPN), comprised mainly of mature cells with both effective and ineffective proliferation of various lineages; myelodysplastic syndromes (MDS), in which immature and mature cells are found with abnormal, dysplastic and ineffective maturation, and acute myeloid leukemia (AML), comprised of precursor cells with impaired maturation. Genetic abnormalities play an important role as diagnostic criteria for further sub-classification of some myeloid neoplasms, particularly of AML. Although therapy-related MDS and AML (t-MDS/AML) often have genetic defects identical to

  8. Calorie restriction reduces the incidence of radiation-induced myeloid leukemia and spontaneous tumor

    International Nuclear Information System (INIS)

    Yoshida, Kazuko

    1999-01-01

    The host-defense mechanisms against cancers are known to be modulated by changing the environmental factor(s). The spontaneous incidence of myeloid leukemia is about 1% in C3H/He mice, and the incidence increases up to 23.3% when a single dose of radiation, 3 Gy X-ray, is exposed to a whole-body. Since calorie restriction was known to reduce the incidence of spontaneous tumors, a question as to whether such radiation induced-increase of myeloid leukemia would be also decreased by calorie restriction, was aimed to answer to elucidate possible mechanism of radiation-induced myeloid leukemia. By the calorie restriction, the incidence of myeloid leukemia was significantly decreased; it was reduced to 7.9% and 10.7% when restriction was started before (6 weeks old) and after (10 weeks old) irradiation, respectively. In addition, the latent period of the myeloid leukemia in the groups for calorie restriction was significantly extended at a greater extent as compared with the control diet groups. Number of hematopoietic stem cells, the possible target cells for radiation-induced leukemias, in the groups for the calorie restriction demonstrated a significant decrease, especially in the spleen, as compared with that in the control, when the evaluation was made at the time of radiation exposure. Then, we examined whether the decreased number of target cells at the time of exposure is caused by the reduction of radiation-induced myeloid leukemia with caloric restriction. The third restricted groups were fed 65 kcal diet (restricted diet) for the first 4 weeks i.e. from 6 weeks to 10 weeks old, then, the mice were fed with control diet after radiation. The incidence of myeloid leukemia in this group was slightly decreased but did not show statistically significance. Therefore, the caloric restriction seems to be more effective in the promotion stage than the initiation stage on radiation-induced leukemogenesis. It is well known that C3H/He mice develop hepatoma spontaneously

  9. Calorie restriction reduces the incidence of radiation-induced myeloid leukemia and spontaneous tumor

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Kazuko [National Inst. of Radiological Sciences, Chiba (Japan)

    1999-06-01

    The host-defense mechanisms against cancers are known to be modulated by changing the environmental factor(s). The spontaneous incidence of myeloid leukemia is about 1% in C3H/He mice, and the incidence increases up to 23.3% when a single dose of radiation, 3 Gy X-ray, is exposed to a whole-body. Since calorie restriction was known to reduce the incidence of spontaneous tumors, a question as to whether such radiation induced-increase of myeloid leukemia would be also decreased by calorie restriction, was aimed to answer to elucidate possible mechanism of radiation-induced myeloid leukemia. By the calorie restriction, the incidence of myeloid leukemia was significantly decreased; it was reduced to 7.9% and 10.7% when restriction was started before (6 weeks old) and after (10 weeks old) irradiation, respectively. In addition, the latent period of the myeloid leukemia in the groups for calorie restriction was significantly extended at a greater extent as compared with the control diet groups. Number of hematopoietic stem cells, the possible target cells for radiation-induced leukemias, in the groups for the calorie restriction demonstrated a significant decrease, especially in the spleen, as compared with that in the control, when the evaluation was made at the time of radiation exposure. Then, we examined whether the decreased number of target cells at the time of exposure is caused by the reduction of radiation-induced myeloid leukemia with caloric restriction. The third restricted groups were fed 65 kcal diet (restricted diet) for the first 4 weeks i.e. from 6 weeks to 10 weeks old, then, the mice were fed with control diet after radiation. The incidence of myeloid leukemia in this group was slightly decreased but did not show statistically significance. Therefore, the caloric restriction seems to be more effective in the promotion stage than the initiation stage on radiation-induced leukemogenesis. It is well known that C3H/He mice develop hepatoma spontaneously

  10. Myeloid cells in circulation and tumor microenvironment of breast cancer patients.

    Science.gov (United States)

    Toor, Salman M; Syed Khaja, Azharuddin Sajid; El Salhat, Haytham; Faour, Issam; Kanbar, Jihad; Quadri, Asif A; Albashir, Mohamed; Elkord, Eyad

    2017-06-01

    Pathological conditions including cancers lead to accumulation of a morphological mixture of highly immunosuppressive cells termed as myeloid-derived suppressor cells (MDSC). The lack of conclusive markers to identify human MDSC, due to their heterogeneous nature and close phenotypical and functional proximity with other cell subsets, made it challenging to identify these cells. Nevertheless, expansion of MDSC has been reported in periphery and tumor microenvironment of various cancers. The majority of studies on breast cancers were performed on murine models and hence limited literature is available on the relation of MDSC accumulation with clinical settings in breast cancer patients. The aim of this study was to investigate levels and phenotypes of myeloid cells in peripheral blood (n = 23) and tumor microenvironment of primary breast cancer patients (n = 7), compared with blood from healthy donors (n = 21) and paired non-tumor normal breast tissues from the same patients (n = 7). Using multicolor flow cytometric assays, we found that breast cancer patients had significantly higher levels of tumor-infiltrating myeloid cells, which comprised of granulocytes (P = 0.022) and immature cells that lack the expression of markers for fully differentiated monocytes or granulocytes (P = 0.016). Importantly, this expansion was not reflected in the peripheral blood. The immunosuppressive potential of these cells was confirmed by expression of Arginase 1 (ARG1), which is pivotal for T-cell suppression. These findings are important for developing therapeutic modalities to target mechanisms employed by immunosuppressive cells that generate an immune-permissive environment for the progression of cancer.

  11. Silibinin inhibits accumulation of myeloid-derived suppressor cells and tumor growth of murine breast cancer

    International Nuclear Information System (INIS)

    Forghani, Parvin; Khorramizadeh, Mohammad R; Waller, Edmund K

    2014-01-01

    Myeloid-derived suppressor cells (MDSC)s increase in blood and accumulate in the tumor microenvironment of tumor-bearing animals, contributing to immune suppression in cancer. Silibinin, a natural flavonoid from the seeds of milk thistle, has been developed as an anti-inflammatory agent and supportive care agent to reduce the toxicity of cancer chemotherapy. The goals of this study were to evaluate the effect of silibinin on MDSCs in tumor-bearing mice and antitumor activity of silibinin in a mouse model of breast cancer. 4T1 luciferase-transfected mammary carcinoma cells were injected into in the mammary fat pad female BALB/c mice, and female CB17-Prkdc Scid/J mice. Silibinin treatment started on day 4 or day 14 after tumor inoculation continued every other day. Tumor growth was monitored by bioluminescent imaging (BLI) measuring total photon flux. Flow cytometry measured total leukocytes, CD11b + Gr-1 + MDSC, and T cells in the blood and tumors of tumor-bearing mice. The effects of silibinin on 4T1 cell viability in vitro were measured by BLI. Treatment with silibinin increased overall survival in mice harboring tumors derived from the 4T1-luciferase breast cancer cell line, and reduced tumor volumes and numbers of CD11b + Gr-1 + MDSCs in the blood and tumor, and increased the content of T cells in the tumor microenvironment. Silibinin failed to inhibit tumor growth in immunocompromised severe combined immunodeficiency mice, supporting the hypothesis that anticancer effect of silibinin is immune-mediated. The antitumor activity of silibinin requires an intact host immune system and is associated with decreased accumulation of blood and tumor-associated MDSCs

  12. Myeloid leukemias and virally induced lymphomas in miniature inbred swine; development of a large animal tumor model

    Directory of Open Access Journals (Sweden)

    RAIMON eDURAN-STRUUCK

    2015-11-01

    Full Text Available The lack of a large animal transplantable tumor model has limited the study of novel therapeutic strategies for the treatment of liquid cancers. Swine as a species provide a natural option based on their similarities with humans and their already extensive use in biomedical research. Specifically, the MGH miniature swine herd retains unique genetic characteristics that facilitate the study of hematopoietic cell and solid organ transplantation. Spontaneously arising liquid cancers in these swine, specifically myeloid leukemias and B cell lymphomas, closely resemble human malignancies. The ability to establish aggressive tumor cell lines in vitro from these naturally occurring malignancies makes a transplantable tumor model a close reality. Here, we discuss our experience with myeloid and lymphoid tumors in MHC characterized miniature swine and future approaches regarding the development of a large animal transplantable tumor model.

  13. Cutaneous myeloid sarcoma associated with chronic myeloid leukemia*

    OpenAIRE

    Vasconcelos, Erica Rodrigues de Araujo; Bauk, Alexander Richard; Rochael, Mayra Carrijo

    2017-01-01

    Abstract: Myeloid sarcoma is an extramedullary tumor of malignant myeloid cells often associated with acute myeloid leukemia, chronic myeloproliferative disorders and myelodysplastic syndromes. The skin is one of the most commonly affected sites. We report a rare case of cutaneous myeloid sarcoma associated with chronic myeloid leukemia.

  14. Anemia prevalence and treatment practice in patients with non-myeloid tumors receiving chemotherapy

    International Nuclear Information System (INIS)

    Merlini, Laura; Cartenì, Giacomo; Iacobelli, Stefano; Stelitano, Caterina; Airoldi, Mario; Balcke, Peter; Keil, Felix; Haslbauer, Ferdinand; Belton, Laura; Pujol, Beatriz

    2013-01-01

    To describe the prevalence and management of anemia in cancer patients. This cross-sectional, observational survey was conducted in Italy and Austria. Centers prespecified one day, during a 4-month enrollment window, to report specific data collected during normal clinical practice for patients with non-myeloid tumors attending for chemotherapy (±radiotherapy) treatment. The primary endpoint was the prevalence of anemia as determined using a prespecified algorithm: hemoglobin (Hb) ≤10 g/dL on/within 3 days prior to visit; ongoing anemia treatment; physician diagnosis of anemia, together with ≥1 anemia symptom. Between November 18, 2010 and March 18, 2011, data for 1412 patients were collected (Italy n = 1130; Austria n = 282). Most patients (n = 1136; 80%) had solid tumors; 809 (57%) had received ≤3 chemotherapy cycles. The prevalence of anemia was 32% (95% confidence interval: 29.4%–34.2%); 196 patients (14%) were deemed anemic based on Hb ≤10 g/dL, 131 (9%) on ongoing anemia treatment, and 121 (9%) on physician diagnosis/anemia symptom. Overall, 1153 patients (82%) had Hb data; mean (standard deviation [SD]) Hb levels were 11.7 (1.7) g/dL. In total, 456 patients (32%) had anemia symptoms: fatigue (n = 392; 28%), depression (n = 122; 9%), and dyspnea (n = 107; 8%) were most common. Fifty-one patients (4%) had had their current chemotherapy cycle delayed due to anemia. On visit day, or ≤28 days prior, 91 (6%), 188 (13%), and 81 patients (6%) had evidence of whole blood/red blood cell transfusion, erythropoiesis-stimulating agent use, or iron use, respectively. On the prespecified study day, one-third of patients with non-myeloid tumors undergoing chemotherapy were found to be anemic and 13% had evidence of erythropoiesis-stimulating agent use then or in the 28 days prior

  15. Diagnostic confusion resulting from CD56 expression by cutaneous myeloid sarcoma

    Directory of Open Access Journals (Sweden)

    Sheeja T. Pullarkat

    2009-12-01

    Full Text Available Myeloid sarcomas are tumor masses composed of aggregates of malignant myeloid precursors in extramedullary sites including the skin. We report a case of myeloid sarcoma in a patient who presented with an ear lobe mass and facial nerve paralysis. Expression of CD56 by the malignant cells led to an initial misdiagnosis as Merkel cell tumor. Comprehensive pathological evaluation confirmed the diagnosis of myeloid sarcoma with aberrant expression of CD56 and carrying the translocation t(8;21 (q22;q22. Aberrant antigen expression by cutaneous myeloid sarcomas can cause diagnostic confusion with other cutaneous neoplasms. This is especially relevant when myeloid sarcoma is the sole manifestation of acute myeloid leukemia.

  16. Myeloid-Derived Suppressor Cells in the Tumor Microenvironment: Current Knowledge and Future Perspectives.

    Science.gov (United States)

    Ibáñez-Vea, Maria; Zuazo, Miren; Gato, Maria; Arasanz, Hugo; Fernández-Hinojal, Gonzalo; Escors, David; Kochan, Grazyna

    2018-04-01

    The current knowledge on tumor-infiltrating myeloid-derived suppressor cells (MDSCs) is based mainly on the extensive work performed in murine models. Data obtained for human counterparts are generated on the basis of tumor analysis from patient samples. Both sources of information led to determination of the main suppressive mechanisms used by these cell subsets in tumor-bearing hosts. As a result of the identification of protein targets responsible for MDSCs suppressive activity, different therapeutics agents have been used to eliminate/reduce their adverse effect. In the present work, we review the current knowledge on suppressive mechanisms of MDSCs and therapeutic treatments that interfere with their differentiation, expansion or activity. Based on the accumulation of new evidences supporting their importance for tumor progression and metastasis, the interest in these cell types is increasing. We revise the methods of MDSC generation/differentiation ex vivo that may help in overcoming problems associated with limited numbers of cells available from animals and patients for their study.

  17. Tfe3 expression is closely associated to macrophage terminal differentiation of human hematopoietic myeloid precursors

    International Nuclear Information System (INIS)

    Zanocco-Marani, Tommaso; Vignudelli, Tatiana; Gemelli, Claudia; Pirondi, Sara; Testa, Anna; Montanari, Monica; Parenti, Sandra; Tenedini, Elena; Grande, Alexis; Ferrari, Sergio

    2006-01-01

    The MItf-Tfe family of basic helix-loop-helix leucine zipper (bHLH-Zip) transcription factors encodes four family members: MItf, Tfe3, TfeB and TfeC. In vitro, each protein of the family binds DNA in a homo- or heterodimeric form with other family members. Tfe3 is involved in chromosomal translocations recurrent in different tumors and it has been demonstrated, by in vivo studies, that it plays, redundantly with MItf, an important role in the process of osteoclast formation, in particular during the transition from mono-nucleated to multi-nucleated osteoclasts. Since mono-nucleated osteoclasts derive from macrophages we investigated whether Tfe3 might play a role upstream during hematopoietic differentiation. Here we show that Tfe3 is able to induce mono-macrophagic differentiation of U937 cells, in association with a decrease of cell proliferation and an increase of apoptosis. We also show that Tfe3 does not act physiologically during commitment of CD34+ hematopoietic stem cells (HSCs), since it is not able to direct HSCs toward a specific lineage as observed by clonogenic assay, but is a strong actor of terminal differentiation since it allows human primary myeloblasts' maturation toward the macrophage lineage

  18. Myeloid Precursors in the Bone Marrow of Mice after a 30-Day Space Mission on a Bion-M1 Biosatellite.

    Science.gov (United States)

    Sotnezova, E V; Markina, E A; Andreeva, E R; Buravkova, L B

    2017-02-01

    The content of myeloid stem CFU in bone marrow karyocytes from the tibial bone of C57Bl/6 mice was evaluated after a 30-day Bion-M1 pace flight/ground control experiment and subsequent 7-day recovery period. After the space flight, we observed a significant decrease in the number of erythroid progenitors in the bone marrow, including common myeloid precursor - granulocyte, erythrocyte, monocyte/macrophage, megakaryocyte CFU. After 7-day readaptation, CFU level in flight animals did not recover completely. In the ground control, the count of erythroid burst-forming units was higher than in vivarium animals. Comparison of the changes observed in fight and ground experiments demonstrated effects associated space flight factors and manifesting in suppression of the bone marrow erythropoiesis.

  19. Mathematical modeling of tumor-induced immunosuppression by myeloid-derived suppressor cells: Implications for therapeutic targeting strategies.

    Science.gov (United States)

    Shariatpanahi, Seyed Peyman; Shariatpanahi, Seyed Pooya; Madjidzadeh, Keivan; Hassan, Moustapha; Abedi-Valugerdi, Manuchehr

    2018-04-07

    Myeloid-derived suppressor cells (MDSCs) belong to immature myeloid cells that are generated and accumulated during the tumor development. MDSCs strongly suppress the anti-tumor immunity and provide conditions for tumor progression and metastasis. In this study, we present a mathematical model based on ordinary differential equations (ODE) to describe tumor-induced immunosuppression caused by MDSCs. The model consists of four equations and incorporates tumor cells, cytotoxic T cells (CTLs), natural killer (NK) cells and MDSCs. We also provide simulation models that evaluate or predict the effects of anti-MDSC drugs (e.g., l-arginine and 5-Fluorouracil (5-FU)) on the tumor growth and the restoration of anti-tumor immunity. The simulated results obtained using our model were in good agreement with the corresponding experimental findings on the expansion of splenic MDSCs, immunosuppressive effects of these cells at the tumor site and effectiveness of l-arginine and 5-FU on the re-establishment of antitumor immunity. Regarding this latter issue, our predictive simulation results demonstrated that intermittent therapy with low-dose 5-FU alone could eradicate the tumors irrespective of their origins and types. Furthermore, at the time of tumor eradication, the number of CTLs prevailed over that of cancer cells and the number of splenic MDSCs returned to the normal levels. Finally, our predictive simulation results also showed that the addition of l-arginine supplementation to the intermittent 5-FU therapy reduced the time of the tumor eradication and the number of iterations for 5-FU treatment. Thus, the present mathematical model provides important implications for designing new therapeutic strategies that aim to restore antitumor immunity by targeting MDSCs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Identification of myeloid derived suppressor cells in the peripheral blood of tumor bearing dogs.

    Science.gov (United States)

    Sherger, Matthew; Kisseberth, William; London, Cheryl; Olivo-Marston, Susan; Papenfuss, Tracey L

    2012-10-31

    Myeloid derived suppressor cells (MDSCs) are a recently described population of immune cells that significantly contribute to the immunosuppression seen in cancer patients. MDSCs are one of the most important factors that limit the efficacy of cancer immunotherapy (e.g. cancer vaccines) and MDSC levels are increased in cancer in multiple species. Identifying and targeting MDSCs is actively being investigated in the field of human oncology and is increasingly being investigated in veterinary oncology. The treatment of canine cancer not only benefits dogs, but is being used for translational studies evaluating and modifying candidate therapies for use in humans. Thus, it is necessary to understand the immune alterations seen in canine cancer patients which, to date, have been relatively limited. This study investigates the use of commercially available canine antibodies to detect an immunosuppressive (CD11b low/CADO48 low) cell population that is increased in the peripheral blood of tumor-bearing dogs. Commercially available canine antibodies CD11b and CADO48A were used to evaluate white blood cells from the peripheral blood cells of forty healthy control dogs and forty untreated, tumor-bearing dogs. Tumor-bearing dogs had a statistically significant increase in CD11b low/CADO48A low cells (7.9%) as compared to the control dogs (3.6%). Additionally, sorted CD11b low/CADO48A low generated in vitro suppressed the proliferation of canine lymphocytes. The purpose of this study was aimed at identifying potential canine specific markers for identifying MDSCs in the peripheral blood circulation of dogs. This study demonstrates an increase in a unique CD11b low/CADO48A low cell population in tumor-bearing dogs. This immunophenotype is consistent with described phenotypes of MDSCs in other species (i.e. mice) and utilizes commercially available canine-specific antibodies. Importantly, CD11b low/CADO48A low from a tumor environment suppress the proliferation of lymphocytes

  1. Wilms Tumor 1 Gene Mutations in Patients with Cytogenetically Normal Acute Myeloid Leukemia

    Science.gov (United States)

    Aref, Salah; Sharawy, Solafa El; Sabry, Mohamed; Azmy, Emad; Raouf, Dalia Abdel; Menshawy, Nadia El

    2014-01-01

    Objective: This study aimed to assess the prognostic impact of Wilms tumor 1 (WT1) mutations in cytogenetically normal acute myeloid leukemia (CN-AML) among Egyptian patients. Materials and Methods: Exons 1, 2, 3, 7, 8, and 9 of WT1 were screened for mutations in samples from 82 CN-AML patients out of 203 newly diagnosed AML patients, of age ranging from 21 to 74 years, using high-resolution capillary electrophoresis. Results: Eleven patients out of 82 (13.41%) harbored WT1 mutations. Mutations were detected in exon 7 (n=7), exon 9 (n=2), exon 8 (n=1), and exon 3 (n=1), but not in exons 1 or 2. There was no statistically significant difference between the WT1 mutants and wild types as regards age, sex, French-American-British subtypes, and the prevalence of success of induction remission therapy (p=0.966; 28.6% vs. 29.3%). Patients with WT1 mutations had overall survival lower than patients with the wild type (HR=1.38; 95% CI 4.79-6.86; p=0.004). Conclusion: CN-AML patients with WT1 mutations have poor clinical outcome. We recommend molecular testing for WT1 mutations in patients with CN-AML at diagnosis in order to improve risk stratification of those patients. PMID:25035671

  2. Wilms Tumor 1 Gene Mutations in Patients with Cytogenetically Normal Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Salah Aref

    2014-03-01

    Full Text Available OBJECTIVE: This study aimed to assess the prognostic impact of Wilms tumor 1 (WT1 mutations in cytogenetically normal acute myeloid leukemia (CN-AML among Egyptian patients. METHODS: Exons 1, 2, 3, 7, 8, and 9 of WT1 were screened for mutations in samples from 82 CNAML patients out of 203 newly diagnosed AML patients, of age ranging from 21 to 74 years, using high-resolution capillary electrophoresis. RESULTS: Eleven patients out of 82 (13.41% harbored WT1 mutations. Mutations were detected in exon 7 (n=7, exon 9 (n=2, exon 8 (n=1, and exon 3 (n=1, but not in exons 1 or 2. There was no statistically significant difference between the WT1 mutants and wild types as regards age, sex, French-American-British subtypes, and the prevalence of success of induction remission therapy (p=0.966; 28.6% vs. 29.3%. Patients with WT1 mutations had overall survival lower than patients with the wild type (HR=1.38; 95% CI 4.79-6.86; p=0.004. CONCLUSION: CN-AML patients with WT1 mutations have poor clinical outcome. We recommend molecular testing for WT1 mutations in patients with CN-AML at diagnosis in order to improve risk stratification of those patients.

  3. Specific Inhibition of the VEGFR-3 Tyrosine Kinase by SAR131675 Reduces Peripheral and Tumor Associated Immunosuppressive Myeloid Cells

    Energy Technology Data Exchange (ETDEWEB)

    Espagnolle, Nicolas [UMR5273 INSERM U1031/CNRS/EFS StromaLab, Toulouse 31432 (France); Barron, Pauline; Mandron, Marie; Blanc, Isabelle; Bonnin, Jacques [Sanofi Recherche et Développement, Early to Candidate DPU, Toulouse 31036 (France); Agnel, Magali; Kerbelec, Erwan [Molecular Biology Unit, Biologics Department, Sanofi, Vitry-sur-Seine 94400 (France); Herault, Jean Pascal; Savi, Pierre; Bono, Françoise; Alam, Antoine, E-mail: antoine.alam@sanofi.com [Sanofi Recherche et Développement, Early to Candidate DPU, Toulouse 31036 (France)

    2014-02-28

    Myeloid derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) represent prominent components in cancer progression. We previously showed that inhibition of the VEGFR-3 pathway by SAR131675 leads to reduction of TAM infiltration and tumor growth. Here, we found that treatment with SAR131675 prevents the accumulation of immunosuppressive blood and splenic MDSCs which express VEGFR-3, in 4T1 tumor bearing mice. Moreover we showed that soluble factors secreted by tumor cells promote MDSCs proliferation and differentiation into M2 polarized F4/80+ macrophages. In addition, cell sorting and transcriptomic analysis of tumor infiltrating myeloid cells revealed the presence of a heterogeneous population that could be divided into 3 subpopulations: (i) immature cells with a MDSC phenotype (GR1+/CD11b+/F4/80{sup −}); (ii) “immuno-incompetent” macrophages (F4/80{sup high}/CD86{sup neg}/MHCII{sup Low}) strongly expressing M2 markers such as Legumain, CD206 and Mgl1/2 and (iii) “immuno-competent”-M1 like macrophages (F4/80{sup Low}/CD86{sup +}/MHCII{sup High}). SAR131675 treatment reduced MDSCs in lymphoid organs as well as F4/80{sup High} populations in tumors. Interestingly, in the tumor SAR131675 was able to increase the immunocompetent M1 like population (F4/80{sup low}). Altogether these results demonstrate that the specific VEGFR-3 inhibitor SAR131675 exerts its anti tumoral activity by acting on different players that orchestrate immunosuppression and cancer progression in a tumoral context: MDSCs in peripheral lymphoid organs and TAMs infiltrating the tumor.

  4. In vivo RNAi screening for the identification of oncogenes and tumor suppressors in acute myeloid leukemia

    DEFF Research Database (Denmark)

    Ge, Ying

    Acute myeloid leukemia (AML) is an aggressive malignancy characterized by uncontrolled expansion of immature myeloid cells in the hematopoietic tissues. Alternative splicing and epigenetic regulation are two mechanisms implicated in the pathogenesis of AML. In order to identify the essential spli...

  5. Anemia prevalence and treatment practice in patients with non-myeloid tumors receiving chemotherapy

    Directory of Open Access Journals (Sweden)

    Merlini L

    2013-08-01

    Full Text Available Laura Merlini,1 Giacomo Cartenì,2 Stefano Iacobelli,3 Caterina Stelitano,4 Mario Airoldi,5 Peter Balcke,6 Felix Keil,7 Ferdinand Haslbauer,8 Laura Belton,9 Beatriz Pujol10 1Department of Medical Oncology, Ospedale Civile S, Bortolo, Vicenza, 2Department of OncoHematology, Azienda Ospedaliera di Rilievo Nazionale "Antonio Cardarelli", Napoli, 3Department of Medical Oncology, Ospedale Clinicizzato SS Annunziata, Chieti, 4Department of Hematology, Azienda Ospedaliera "Bianchi Melacrino Morelli", Reggio Calabria, 5Department of Medical Oncology, Azienda Ospedaliero Universitaria Le Molinette, Torino, Italy; 61st Medical Department, General Hospital St Pölten and Karl Landsteiner Institute of Oncology, St Pölten, 73rd Medical Department (Hematology and Oncology, Hanusch Krankenhaus der Wiener Gebietskrankenkasse, Vienna, 8Department of Oncology, Landeskrankenhaus Vöcklabruck, Vöcklabruck, Austria; 9Contract biostatistician, Amgen Ltd, Uxbridge, UK; 10Research and Development Haematology/Oncology, Amgen Europe, Zug, Switzerland Purpose: To describe the prevalence and management of anemia in cancer patients. Methods: This cross-sectional, observational survey was conducted in Italy and Austria. Centers prespecified one day, during a 4-month enrollment window, to report specific data collected during normal clinical practice for patients with non-myeloid tumors attending for chemotherapy (±radiotherapy treatment. The primary endpoint was the prevalence of anemia as determined using a prespecified algorithm: hemoglobin (Hb ≤10 g/dL on/within 3 days prior to visit; ongoing anemia treatment; physician diagnosis of anemia, together with ≥1 anemia symptom. Results: Between November 18, 2010 and March 18, 2011, data for 1412 patients were collected (Italy n = 1130; Austria n = 282. Most patients (n = 1136; 80% had solid tumors; 809 (57% had received ≤ 3 chemotherapy cycles. The prevalence of anemia was 32% (95% confidence interval: 29.4%–34

  6. Systemic agonistic anti-CD40 treatment of tumor bearing mice modulates hepatic myeloid suppressive cells and causes immune-mediated liver damage

    Science.gov (United States)

    Medina-Echeverz, José; Ma, Chi; Duffy, Austin; Eggert, Tobias; Hawk, Nga; Kleiner, David E.; Korangy, Firouzeh; Greten, Tim F.

    2015-01-01

    Immune stimulatory monoclonal antibodies are currently evaluated as anti tumor agents. Although overall toxicity appears to be moderate, liver toxicities have been reported and are not completely understood. We studied the effect of systemic CD40 antibody treatment on myeloid cells in spleen and liver. Naïve and tumor-bearing mice were treated systemically with agonistic anti-CD40 antibody. Immune cell subsets in liver and spleen, serum transaminases and liver histologies were analyzed after antibody administration. Nox2−/−, Cd40−/− as well as bone marrow chimeric mice were used to study the mechanism by which agonistic anti-CD40 mediates its effects in vivo. Suppressor function of murine and human tumor-induced myeloid derived suppressive cells was studied upon CD40 ligation. Agonistic CD40 antibody caused liver damage within 24 hours after injection in two unrelated tumor models and mice strains. Using bone marrow chimeras we demonstrated that CD40 antibody-induced hepatitis in tumor-bearing mice was dependent on the presence of CD40-expressing hematopoietic cells. Agonistic CD40 ligation-dependent liver damage was induced by the generation of reactive oxygen species. Furthermore, agonistic CD40 antibody resulted in increased CD80 and CD40 positive liver CD11b+Gr-1+ immature myeloid cells. CD40 ligation on tumor-induced murine and human CD14+HLA-DRlow PBMC from cancer patients reduced their immune suppressor function. Collectively, agonistic CD40 antibody treatment activated tumor-induced, myeloid cells, caused myeloid dependent hepatotoxicity and ameliorated the suppressor function of murine and human MDSC. Collectively, our data suggests that CD40 may mature immunosuppressive myeloid cells and thereby cause liver damage in mice with an accumulation of tumor-induced hepatic MDSC. PMID:25637366

  7. Transcriptomic analysis comparing tumor-associated neutrophils with granulocytic myeloid-derived suppressor cells and normal neutrophils.

    Directory of Open Access Journals (Sweden)

    Zvi G Fridlender

    Full Text Available The role of myeloid cells in supporting cancer growth is well established. Most work has focused on myeloid-derived suppressor cells (MDSC that accumulate in tumor-bearing animals, but tumor-associated neutrophils (TAN are also known to be capable of augmenting tumor growth. However, little is known about their evolution, phenotype, and relationship to naïve neutrophils (NN and to the granulocytic fraction of MDSC (G-MDSC.In the current study, a transcriptomics approach was used in mice to compare these cell types. Our data show that the three populations of neutrophils are significantly different in their mRNA profiles with NN and G-MDSC being more closely related to each other than to TAN. Structural genes and genes related to cell-cytotoxicity (i.e. respiratory burst were significantly down-regulated in TAN. In contrast, many immune-related genes and pathways, including genes related to the antigen presenting complex (e.g. all six MHC-II complex genes, and cytokines (e.g. TNF-α, IL-1-α/β, were up-regulated in G-MDSC, and further up-regulated in TAN. Thirteen of the 25 chemokines tested were markedly up-regulated in TAN compared to NN, including striking up-regulation of chemoattractants for T/B-cells, neutrophils and macrophages.This study characterizes different populations of neutrophils related to cancer, pointing out the major differences between TAN and the other neutrophil populations.

  8. Cell autonomous and microenvironmental regulation of tumor progression in precursor states of multiple myeloma.

    Science.gov (United States)

    Manier, Salomon; Kawano, Yawara; Bianchi, Giada; Roccaro, Aldo M; Ghobrial, Irene M

    2016-07-01

    Multiple myeloma is a plasma cell malignancy evolving in the bone marrow and leading to end organ damage such as bone lesions, cytopenias, and kidney failure. This review delineates recent advances in the molecular mechanisms leading to tumor progression in multiple myeloma. Two different aspects enable tumor expansion: cell autonomous through genomic alterations in the tumor clone and noncell autonomous deregulations in the bone marrow tumor microenvironment. These alterations provide the framework for the continuous progression of multiple myeloma from early precursor conditions such as monoclonal gammopathy of undetermined significance and smoldering multiple myeloma to overt multiple myeloma. In this review, we discuss recent findings in the genomic alterations that occur in the tumor clone such as somatic genomic mutations, copy number variation and chromosomal translocation, and delineate noncell autonomous deregulations in which tumor cells take advantage of a permissive microenvironment to further proliferate. The latter compartment includes interaction with bone marrow stromal cells, osteoblasts, osteoclasts, and immune escape. Understanding the mechanisms that lead tumor progression from early stages to overt multiple myeloma could guide to more effective therapies and therefore prevent disease progression.

  9. Participation of Tumor-Associated Myeloid Cells in Progression of Amelanotic Melanoma (RMM Tumor Line) in F344 Rats, with Particular Reference to MHC Class II- and CD163-Expressing Cells.

    Science.gov (United States)

    Bondoc, A; Golbar, H M; Pervin, M; Katou-Ichikawa, C; Tanaka, M; Izawa, T; Kuwamura, M; Yamate, J

    2017-12-01

    Tumor progression is often influenced by infiltration of myeloid cells; depending on the M1- or M2-like activation status, these cells may have either inhibitory or promoting effects on tumor growth. We investigated the properties of tumor-associated myeloid cells in a previously established homotransplantable amelanotic melanoma (RMM tumor line) in F344 rats. RMM tumor nodules were allowed to reach the sizes of 0.5, 1, 2 and 3 cm, respectively. Immunohistochemistry and flow cytometry was performed for macrophage markers CD68 and CD163, and for the antigen-presenting cell marker, MHC class II. Although no significant change was observed in the number of CD68 + and CD163 + macrophages during RMM progression, the number of MHC class II + antigen-presenting cells was reduced in 3 cm nodules. Real-time RT-PCR of laser microdissection samples obtained from RMM regions rich in MHC class II + cells demonstrated high expressions of M1-like factors: IFN-γ, GM-CSF and IL-12a. Furthermore, fluorescence-activated cell sorting, followed by real-time RT-PCR for CD11b + MHC class II + (myeloid antigen-presenting cells), CD11b + CD163 + (M2 type myeloid cells), CD11b + CD80 + (M1 type myeloid cells) and CD11b + CD11c + (dendritic cells) cells was performed. Based on the levels of inflammation- and tumor progression-related factors, MHC class II + antigen-presenting cells showed polarization towards M1, while CD163 + macrophages, towards M2. CD80 + and CD11c + myeloid cells did not show clear functional polarization. Our results provide novel information on tumor-associated myeloid cells in amelanotic melanoma, and may become useful in further research on melanoma immunity.

  10. Overexpression of Wilms Tumor 1 Gene as a Negative Prognostic Indicator in Acute Myeloid Leukemia

    Science.gov (United States)

    Mi, Ruihua; Ding, Jing; Wang, Xianwei; Hu, Jieying; Fan, Ruihua; Wei, Xudong; Song, Yongping; Zhao, Richard Y.

    2014-01-01

    Chromosomal aberrations are useful in assessing treatment options and clinical outcomes of acute myeloid leukemia (AML) patients. However, 40∼50% of the AML patients showed no chromosomal abnormalities, i.e., with normal cytogenetics aka the CN-AML patients. Testing of molecular aberrations such as FLT3 or NPM1 can help to define clinical outcomes in the CN-AML patients but with various successes. Goal of this study was to test the possibility of Wilms’ tumor 1 (WT1) gene overexpression as an additional molecular biomarker. A total of 103 CN-AML patients, among which 28% had overexpressed WT1, were studied over a period of 38 months. Patient’s response to induction chemotherapy as measured by the complete remission (CR) rate, disease-free survival (DFS) and overall survival (OS) were measured. Our data suggested that WT1 overexpression correlated negatively with the CR rate, DFS and OS. Consistent with previous reports, CN-AML patients can be divided into three different risk subgroups based on the status of known molecular abnormalities, i.e., the favorable (NPM1mt/no FLT3ITD), the unfavorable (FLT3ITD) and the intermediate risk subgroups. The WT1 overexpression significantly reduced the CR, DFS and OS in both the favorable and unfavorable groups. As the results, patients with normal WT1 gene expression in the favorable risk group showed the best clinical outcomes and all survived with complete remission and disease-free survival over the 37 month study period; in contrast, patients with WT1 overexpression in the unfavorable risk group displayed the worst clinical outcomes. WT1 overexpression by itself is an independent and negative indicator for predicting CR rate, DFS and OS of the CN-AML patients; moreover, it increases the statistical power of predicting the same clinical outcomes when it is combined with the NPM1 mt or the FLT3 ITD genotypes that are the good or poor prognostic markers of CN-AML. PMID:24667279

  11. A Hyperactive Signalosome in Acute Myeloid Leukemia Drives Addiction to a Tumor-Specific Hsp90 Species

    Directory of Open Access Journals (Sweden)

    Hongliang Zong

    2015-12-01

    Full Text Available Acute myeloid leukemia (AML is a heterogeneous and fatal disease with an urgent need for improved therapeutic regimens given that most patients die from relapsed disease. Irrespective of mutation status, the development of aggressive leukemias is enabled by increasing dependence on signaling networks. We demonstrate that a hyperactive signalosome drives addiction of AML cells to a tumor-specific Hsp90 species (teHsp90. Through genetic, environmental, and pharmacologic perturbations, we demonstrate a direct and quantitative link between hyperactivated signaling pathways and apoptotic sensitivity of AML to teHsp90 inhibition. Specifically, we find that hyperactive JAK-STAT and PI3K-AKT signaling networks are maintained by teHsp90 and, in fact, gradual activation of these networks drives tumors increasingly dependent on teHsp90. Thus, although clinically aggressive AML survives via signalosome activation, this addiction creates a vulnerability that can be exploited with Hsp90-directed therapy.

  12. Transforming Growth Factor-Beta and Matrix Metalloproteinases: Functional Interactions in Tumor Stroma-Infiltrating Myeloid Cells

    Directory of Open Access Journals (Sweden)

    Jelena Krstic

    2014-01-01

    Full Text Available Transforming growth factor-beta (TGF-β is a pleiotropic factor with several different roles in health and disease. In tumorigenesis, it may act as a protumorigenic factor and have a profound impact on the regulation of the immune system response. Matrix metalloproteinases (MMPs are a family that comprises more than 25 members, which have recently been proposed as important regulators acting in tumor stroma by regulating the response of noncellular and cellular microenvironment. Tumor stroma consists of several types of resident cells and infiltrating cells derived from bone marrow, which together play crucial roles in the promotion of tumor growth and metastasis. In cancer cells, TGF-β regulates MMPs expression, while MMPs, produced by either cancer cells or residents’ stroma cells, activate latent TGF-β in the extracellular matrix, together facilitating the enhancement of tumor progression. In this review we will focus on the compartment of myeloid stroma cells, such as tumor-associated macrophages, neutrophils, and dendritic and mast cells, which are potently regulated by TGF-β and produce large amounts of MMPs. Their interplay and mutual implications in the generation of pro-tumorigenic cancer microenvironment will be analyzed.

  13. Surface Expression of Precursor N-cadherin Promotes Tumor Cell Invasion

    Directory of Open Access Journals (Sweden)

    Deborah Maret

    2010-12-01

    Full Text Available The expression of N-cadherin (NCAD has been shown to correlate with increased tumor cell motility and metastasis. However, NCAD-mediated adhesion is a robust phenomenon and therefore seems to be inconsistent with the “release” from intercellular adhesion required for invasion. We show that in the most invasive melanoma and brain tumor cells, altered posttranslational processing results in abundant nonadhesive precursor N-cadherin (proNCAD at the cell surface, although total NCAD levels remain constant. We demonstrate that aberrantly processed proNCAD promotes cell migration and invasion in vitro. Furthermore, in human tumor specimens, we find high levels of proNCAD as well, supporting an overall conclusion that proNCAD and mature NCAD coexist on these tumor cell surfaces and that it is the ratio between these functionally antagonistic moieties that directly correlates with invasion potential. Our work provides insight into what may be a widespread mechanism for invasion and metastasis and challenges the current dogma of the functional roles played by classic cadherins in tumor progression.

  14. Vorinostat and Decitabine in Treating Patients With Advanced Solid Tumors or Relapsed or Refractory Non-Hodgkin's Lymphoma, Acute Myeloid Leukemia, Acute Lymphocytic Leukemia, or Chronic Myelogenous Leukemia

    Science.gov (United States)

    2014-08-26

    ; Stage IV Small Lymphocytic Lymphoma; Unspecified Adult Solid Tumor, Protocol Specific; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  15. Imaging findings of isolated myeloid sarcoma of the stomach in a nonleukemic child: A case report and literature review

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Kyun; Kim, Jung Hyun; Baek, Hee Jo; Heo, Suk Hee [Dept. of Radiology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju (Korea, Republic of); Kim, Jin Woong; Shin, Sang Soo [Dept. of Radiology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun (Korea, Republic of)

    2017-01-15

    Myeloid sarcoma is an extramedullary solid neoplasm composed of myeloid precursor cells. This tumor usually occurs simultaneously with or following the onset of acute leukemia. Rarely, it can be the first manifestation of acute myeloid leukemia. The tumor can occur anywhere in the body. However, primary involvement of the stomach without evidence of leukemia is exceedingly rare, and to the best of our knowledge, imaging features of isolated myeloid sarcoma of the stomach have not been reported in children. This case illustrates the imaging appearances of isolated myeloid sarcoma that initially manifested as gastric submucosal wall thickening and discusses the differential diagnosis, in a 15-year-old girl without evidence of hematologic malignancy.

  16. Effect of Tumor Necrosis Factor Inhibitor Therapy on Osteoclasts Precursors in Ankylosing Spondylitis.

    Science.gov (United States)

    Perpétuo, Inês P; Raposeiro, Rita; Caetano-Lopes, Joana; Vieira-Sousa, Elsa; Campanilho-Marques, Raquel; Ponte, Cristina; Canhão, Helena; Ainola, Mari; Fonseca, João E

    2015-01-01

    Ankylosing Spondylitis (AS) is characterized by excessive local bone formation and concomitant systemic bone loss. Tumor necrosis factor (TNF) plays a central role in the inflammation of axial skeleton and enthesis of AS patients. Despite reduction of inflammation and systemic bone loss, AS patients treated with TNF inhibitors (TNFi) have ongoing local bone formation. The aim of this study was to assess the effect of TNFi in the differentiation and activity of osteoclasts (OC) in AS patients. 13 AS patients treated with TNFi were analyzed at baseline and after a minimum follow-up period of 6 months. 25 healthy donors were recruited as controls. Blood samples were collected to assess receptor activator of nuclear factor kappa-B ligand (RANKL) surface expression on circulating leukocytes and frequency and phenotype of monocyte subpopulations. Quantification of serum levels of bone turnover markers and cytokines, in vitro OC differentiation assay and qRT-PCR for OC specific genes were performed. RANKL+ circulating lymphocytes (B and T cells) and IL-17A, IL-23 and TGF-β levels were decreased after TNFi treatment. We found no differences in the frequency of the different monocyte subpopulations, however, we found decreased expression of CCR2 and increased expression of CD62L after TNFi treatment. OC number was reduced in patients at baseline when compared to controls. OC specific gene expression was reduced in circulating OC precursors after TNFi treatment. However, when cultured in OC differentiating conditions, OC precursors from AS TNFi-treated patients showed increased activity as compared to baseline. In AS patients, TNFi treatment reduces systemic pro osteoclastogenic stimuli. However, OC precursors from AS patients exposed to TNFi therapy have increased in vitro activity in response to osteoclastogenic stimuli.

  17. Effect of Tumor Necrosis Factor Inhibitor Therapy on Osteoclasts Precursors in Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Inês P. Perpétuo

    2017-01-01

    Full Text Available Objective. Tumor necrosis factor (TNF increases circulating osteoclast (OC precursors numbers by promoting their proliferation and differentiation. The aim of this study was to assess the effect of TNF inhibitors (TNFi on the differentiation and activity of OC in rheumatoid arthritis (RA patients. Methods. Seventeen RA patients treated with TNFi were analyzed at baseline and after a minimum follow-up period of 6 months. Blood samples were collected to assess receptor activator of nuclear factor kappa-B ligand (RANKL surface expression on circulating leukocytes and frequency and phenotype of monocyte subpopulations. Quantification of serum levels of bone turnover markers, in vitro OC differentiation assays, and qRT-PCR for OC specific genes was performed. Results. After TNFi therapy, patients had reduced RANKL surface expression in B-lymphocytes and the frequency of circulating classical CD14brightCD16− monocytes was decreased. Serum levels of sRANKL, sRANKL/OPG ratio, and CTX-I were reduced in RA patients after TNFi treatment. Moreover, after exposure to TNFi, osteoclast differentiation and activity were decreased, as well as the expression of TRAF6 and cathepsin K. Conclusion. We propose that TNFi arrests bone loss and erosion, through two pathways: direct reduction of osteoclast precursor numbers and inhibition of intracellular signaling pathways acting through TRAF6.

  18. Quantitative Multiplex Immunohistochemistry Reveals Myeloid-Inflamed Tumor-Immune Complexity Associated with Poor Prognosis

    Directory of Open Access Journals (Sweden)

    Takahiro Tsujikawa

    2017-04-01

    Full Text Available Here, we describe a multiplexed immunohistochemical platform with computational image processing workflows, including image cytometry, enabling simultaneous evaluation of 12 biomarkers in one formalin-fixed paraffin-embedded tissue section. To validate this platform, we used tissue microarrays containing 38 archival head and neck squamous cell carcinomas and revealed differential immune profiles based on lymphoid and myeloid cell densities, correlating with human papilloma virus status and prognosis. Based on these results, we investigated 24 pancreatic ductal adenocarcinomas from patients who received neoadjuvant GVAX vaccination and revealed that response to therapy correlated with degree of mono-myelocytic cell density and percentages of CD8+ T cells expressing T cell exhaustion markers. These data highlight the utility of in situ immune monitoring for patient stratification and provide digital image processing pipelines to the community for examining immune complexity in precious tissue sections, where phenotype and tissue architecture are preserved to improve biomarker discovery and assessment.

  19. Prognostic impact of Wilms tumor gene mutations in Egyptian patients with acute myeloid leukemia with normal karyotype.

    Science.gov (United States)

    Zidan, Magda Abdel Aziz; Kamal Shaaban, Howyda M; Elghannam, Doaa M

    2014-07-01

    The Wilms' tumor (WT1) gene mutations were detected in patients with most forms of acute leukemia. However, the biological significance and the prognostic impact of WT1 mutation in Egyptian patients with acute myeloid leukemia with normal karyotype (AML-NK) are still uncertain. We aimed to evaluate the incidence and clinical relevance of WT1 gene mutations in acute myeloid leukemia with normal karyotype (AML-NK). Exons 7 and 9 of WT1 were screened in samples from 216 adult NK-AML using polymerase chain reaction single-strand conformation polymorphism techniques. Twenty-three patients (10.6%) harbored WT1 mutations. Younger ages and higher marrow blasts were significantly associated with WT1 mutations (P = 0.006 and 0.003 respectively). Complete remission rates were significantly lower in patients with WT1 mutations than those with WT1 wild-type (P = 0.015). Resistance, relapse, and mortality rates were significantly higher in patients with WT1 mutations than those without (P = 0.041, 0.016, and 0.008 respectively). WT1 mutations were inversely associated with NPM1 mutations (P = 0.007). Patients with WT1 mutations had worse disease-free survival (P < 0.001) and overall survival (P < 0.001) than patients with WT1 wild-type. In multivariable analyses, WT1 mutations independently predicted worse DFS (P < 0.001; hazard ratio [HR] 0.036) and overall survival (P = 0.001; HR = 0.376) when controlling for age, total leukocytic count (TLC), and NPM1 mutational status. In conclusion, WT1 mutations are a negative prognostic indicator in intensively treated patients with AML-NK, may be a part of molecularly based risk assessment and risk-adapted treatment stratification of patients with AML-NK.

  20. Membrane Type-1 Matrix Metalloproteinase Expression in Acute Myeloid Leukemia and Its Upregulation by Tumor Necrosis Factor-α

    Directory of Open Access Journals (Sweden)

    Anna Janowska-Wieczorek

    2012-07-01

    Full Text Available Membrane type-1 matrix metalloproteinase (MT1-MMP has been implicated in tumor invasion, as well as trafficking of normal hematopoietic cells, and acts as a physiologic activator of proMMP-2. In this study we examined MT1-MMP expression in primary acute myeloid leukemia (AML cells. Because tumor necrosis factor (TNF-α is known to be elevated in AML, we also investigated the effect of TNF-α on MT1-MMP expression. We found (i MT1-MMP mRNA expression in 41 out of 43 primary AML samples tested; (ii activation of proMMP-2 in co-cultures of AML cells with normal bone marrow stromal cells; and (iii inhibition of proMMP-2 activation and trans-Matrigel migration of AML cells by gene silencing using MT1-MMP siRNA. Moreover, recombinant human TNF-α upregulated MT1-MMP expression in AML cells resulting in enhanced proMMP-2 activation and trans-Matrigel migration. Thus, AML cells express MT1-MMP and TNF-α enhances it leading to increased MMP-2 activation and most likely contributing to the invasive phenotype. We suggest that MT1-MMP, together with TNF-α, should be investigated as potential therapeutic targets in AML.

  1. Glycolysis regulates the expansion of myeloid-derived suppressor cells in tumor-bearing hosts through prevention of ROS-mediated apoptosis

    Science.gov (United States)

    Jian, Shiou-Ling; Chen, Wei-Wei; Su, Yu-Chia; Su, Yu-Wen; Chuang, Tsung-Hsien; Hsu, Shu-Ching; Huang, Li-Rung

    2017-01-01

    Immunotherapy aiming to rescue or boost antitumor immunity is an emerging strategy for treatment of cancers. The efficacy of immunotherapy is strongly controlled by the immunological milieu of cancer patients. Myeloid-derived suppressor cells (MDSCs) are heterogeneous immature myeloid cell populations with immunosuppressive functions accumulating in individuals during tumor progression. The signaling mechanisms of MDSC activation have been well studied. However, there is little known about the metabolic status of MDSCs and the physiological role of their metabolic reprogramming. In this study, we discovered that myeloid cells upregulated their glycolytic genes when encountered with tumor-derived factors. MDSCs exhibited higher glycolytic rate than their normal cell compartment did, which contributed to the accumulation of the MDSCs in tumor-bearing hosts. Upregulation of glycolysis prevented excess reactive oxygen species (ROS) production by MDSCs, which protected MDSCs from apoptosis. Most importantly, we identified the glycolytic metabolite, phosphoenolpyruvate (PEP), as a vital antioxidant agent able to prevent excess ROS production and therefore contributed to the survival of MDSCs. These findings suggest that glycolytic metabolites have important roles in the modulation of fitness of MDSCs and could be potential targets for anti-MDSC strategy. Targeting MDSCs with analogs of specific glycolytic metabolites, for example, 2-phosphoglycerate or PEP may diminish the accumulation of MDSCs and reverse the immunosuppressive milieu in tumor-bearing individuals. PMID:28492541

  2. Role of phosphatidylinositol clathrin assembly lymphoid-myeloid leukemia (PICALM) in intracellular amyloid precursor protein (APP) processing and amyloid plaque pathogenesis.

    Science.gov (United States)

    Xiao, Qingli; Gil, So-Chon; Yan, Ping; Wang, Yan; Han, Sharon; Gonzales, Ernie; Perez, Ronaldo; Cirrito, John R; Lee, Jin-Moo

    2012-06-15

    One of the pathological hallmarks of Alzheimer disease is the accumulation of amyloid plaques in the extracellular space in the brain. Amyloid plaques are primarily composed of aggregated amyloid β peptide (Aβ), a proteolytic fragment of the transmembrane amyloid precursor protein (APP). For APP to be proteolytically cleaved into Aβ, it must be internalized into the cell and trafficked to endosomes where specific protease complexes can cleave APP. Several recent genome-wide association studies have reported that several single nucleotide polymorphisms (SNPs) in the phosphatidylinositol clathrin assembly lymphoid-myeloid leukemia (PICALM) gene were significantly associated with Alzheimer disease, suggesting a role in APP endocytosis and Aβ generation. Here, we show that PICALM co-localizes with APP in intracellular vesicles of N2a-APP cells after endocytosis is initiated. PICALM knockdown resulted in reduced APP internalization and Aβ generation. Conversely, PICALM overexpression increased APP internalization and Aβ production. In vivo, PICALM was found to be expressed in neurons and co-localized with APP throughout the cortex and hippocampus in APP/PS1 mice. PICALM expression was altered using AAV8 gene transfer of PICALM shRNA or PICALM cDNA into the hippocampus of 6-month-old APP/PS1 mice. PICALM knockdown decreased soluble and insoluble Aβ levels and amyloid plaque load in the hippocampus. Conversely, PICALM overexpression increased Aβ levels and amyloid plaque load. These data indicate that PICALM, an adaptor protein involved in clathrin-mediated endocytosis, regulates APP internalization and subsequent Aβ generation. PICALM contributes to amyloid plaque load in brain likely via its effect on Aβ metabolism.

  3. Role of Phosphatidylinositol Clathrin Assembly Lymphoid-Myeloid Leukemia (PICALM) in Intracellular Amyloid Precursor Protein (APP) Processing and Amyloid Plaque Pathogenesis*

    Science.gov (United States)

    Xiao, Qingli; Gil, So-Chon; Yan, Ping; Wang, Yan; Han, Sharon; Gonzales, Ernie; Perez, Ronaldo; Cirrito, John R.; Lee, Jin-Moo

    2012-01-01

    One of the pathological hallmarks of Alzheimer disease is the accumulation of amyloid plaques in the extracellular space in the brain. Amyloid plaques are primarily composed of aggregated amyloid β peptide (Aβ), a proteolytic fragment of the transmembrane amyloid precursor protein (APP). For APP to be proteolytically cleaved into Aβ, it must be internalized into the cell and trafficked to endosomes where specific protease complexes can cleave APP. Several recent genome-wide association studies have reported that several single nucleotide polymorphisms (SNPs) in the phosphatidylinositol clathrin assembly lymphoid-myeloid leukemia (PICALM) gene were significantly associated with Alzheimer disease, suggesting a role in APP endocytosis and Aβ generation. Here, we show that PICALM co-localizes with APP in intracellular vesicles of N2a-APP cells after endocytosis is initiated. PICALM knockdown resulted in reduced APP internalization and Aβ generation. Conversely, PICALM overexpression increased APP internalization and Aβ production. In vivo, PICALM was found to be expressed in neurons and co-localized with APP throughout the cortex and hippocampus in APP/PS1 mice. PICALM expression was altered using AAV8 gene transfer of PICALM shRNA or PICALM cDNA into the hippocampus of 6-month-old APP/PS1 mice. PICALM knockdown decreased soluble and insoluble Aβ levels and amyloid plaque load in the hippocampus. Conversely, PICALM overexpression increased Aβ levels and amyloid plaque load. These data indicate that PICALM, an adaptor protein involved in clathrin-mediated endocytosis, regulates APP internalization and subsequent Aβ generation. PICALM contributes to amyloid plaque load in brain likely via its effect on Aβ metabolism. PMID:22539346

  4. MYC oncogene in myeloid neoplasias.

    Science.gov (United States)

    Delgado, M Dolores; Albajar, Marta; Gomez-Casares, M Teresa; Batlle, Ana; León, Javier

    2013-02-01

    MYC is a transcription factor that regulates many critical genes for cell proliferation, differentiation, and biomass accumulation. MYC is one of the most prevalent oncogenes found to be altered in human cancer, being deregulated in about 50 % of tumors. Although MYC deregulation has been more frequently associated to lymphoma and lymphoblastic leukemia than to myeloid malignancies, a body of evidence has been gathered showing that MYC plays a relevant role in malignancies derived from the myeloid compartment. The myeloid leukemogenic activity of MYC has been demonstrated in different murine models. Not surprisingly, MYC has been found to be amplified or/and deregulated in the three major types of myeloid neoplasms: acute myeloid leukemia, myelodysplastic syndromes, and myeloproliferative neoplasms, including chronic myeloid leukemia. Here, we review the recent literature describing the involvement of MYC in myeloid tumors.

  5. CD40 dependent exacerbation of immune mediated hepatitis by hepatic CD11b+ Gr-1+ myeloid derived suppressor cells in tumor bearing mice

    Science.gov (United States)

    Kapanadze, Tamar; Medina-Echeverz, José; Gamrekelashvili, Jaba; Weiss, Jonathan M.; Wiltrout, Robert H.; Kapoor, Veena; Hawk, Nga; Terabe, Masaki; Berzofsky, Jay A.; Manns, Michael P.; Wang, Ena; Marincola, Francesco M.; Korangy, Firouzeh; Greten, Tim F.

    2015-01-01

    Immunosuppressive CD11b+Gr-1+ myeloid-derived suppressor cells (MDSC) accumulate in the livers of tumor-bearing mice. We studied hepatic MDSC in two murine models of immune mediated hepatitis. Unexpectedly, treatment of tumor bearing mice with Concanavalin A or α-Galactosylceramide resulted in increased ALT and AST serum levels in comparison to tumor free mice. Adoptive transfer of hepatic MDSC into naïve mice exacerbated Concanavalin A induced liver damage. Hepatic CD11b+Gr-1+ cells revealed a polarized pro-inflammatory gene signature after Concanavalin A treatment. An interferon gamma- dependent up-regulation of CD40 on hepatic CD11b+Gr-1+ cells along with an up-regulation of CD80, CD86, and CD1d after Concanavalin A treatment was observed. Concanavalin A treatment resulted in a loss of suppressor function by tumor-induced CD11b+Gr-1+ MDSC as well as enhanced reactive oxygen species-mediated hepatotoxicity. CD40 knockdown in hepatic MDSC led to increased arginase activity upon Concanavalin A treatment and lower ALT/AST serum levels. Finally, blockade of arginase activity in Cd40−/− tumor-induced myeloid cells resulted in exacerbation of hepatitis and increased reactive oxygen species production in vivo. Our findings indicate that in a setting of acute hepatitis, tumor-induced hepatic MDSC act as pro-inflammatory immune effector cells capable of killing hepatocytes in a CD40-dependent manner. PMID:25616156

  6. Cyclophosphamide-induced myeloid-derived suppressor cell population is immunosuppressive but not identical to myeloid-derived suppressor cells induced by growing TC-1 tumors

    Czech Academy of Sciences Publication Activity Database

    Mikyšková, Romana; Indrová, Marie; Polláková, Veronika; Bieblová, Jana; Šímová, Jana; Reiniš, Milan

    2012-01-01

    Roč. 35, č. 5 (2012), s. 374-384 ISSN 1524-9557 R&D Projects: GA ČR(CZ) GPP301/11/P220; GA ČR GA301/09/1024; GA ČR GA301/07/1410 EU Projects: European Commission(XE) 18933 - CLINIGENE Institutional research plan: CEZ:AV0Z50520514 Institutional support: RVO:68378050 Keywords : myeloid-derived suppressor cells * cyclophosphamide * all-trans-retinoic acid * IL-12 * HPV16 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.463, year: 2012

  7. Protection against HPV-16-Associated Tumors Requires the Activation of CD8+ Effector Memory T Cells and the Control of Myeloid-Derived Suppressor Cells.

    Science.gov (United States)

    Diniz, Mariana O; Sales, Natiely S; Silva, Jamile R; Ferreira, Luís Carlos S

    2016-08-01

    Active anticancer immunotherapeutic approaches have been shown to induce cellular or humoral immune responses in patients, but, thus far, the observed outcomes did not ensure their recommendation for clinical use. The induction of tumor-specific CD8(+) T cells, although required for the clearance of most solid tumors, was shown to be insufficient for the development of a successful immunotherapeutic approach. The suppressive immune environment triggered by tumors, including the expansion of myeloid-derived suppressor cells (MDSC), is detrimental to the development of antitumor immune responses and precludes the generation of more promising clinical outcomes. In this work, we characterized the CD8(+) T-cell population specifically involved in the control of tumor growth and the role of MDSCs after administration of an antitumor therapeutic DNA vaccine targeting human papillomavirus type 16 (HPV-16)-associated tumors. Activation of cytotoxic high-avidity CD8(+) T cells with an effector memory phenotype was found in mice grafted with tumor cells expressing the HPV-16 oncoproteins. In addition, MDSC antibody depletion further enhanced the immunotherapeutic effects of the vaccine, resulting in the complete eradication of tumor cells. Collectively, the current results indicate that the simultaneous control of MDSCs and activation of high-avidity tumor-specific effector memory CD8(+) T cells are key features for tumor protection by immunotherapeutic approaches and deserve further testing under clinical conditions. Mol Cancer Ther; 15(8); 1920-30. ©2016 AACR. ©2016 American Association for Cancer Research.

  8. The tumor suppressive role of miRNA-370 by targeting FoxM1 in acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Zhang Xiaolu

    2012-08-01

    Full Text Available Abstract Background Recent evidence has accumulated that MicroRNA (miRNA dysregulation occurs in the majority of human malignancies including acute myeloid leukemia (AML and may contribute to onco-/leukemo-genesis. Methods The expression levels of miR-370 and FoxM1 were assessed in 48 newly diagnosed AML patients, 40 AML patients in 1st complete remission (CR and 21 healthy controls. Quantitative real-time PCR, western blots, colony formation assay, and β-Galactosidase ( SA-β-Gal staining were used to characterize the changes induced by overexpression or inhibition of miR-370 or FoxM1. Results We found that the down-regulation of miR-370 expression was a frequent event in both leukemia cell lines and primary leukemic cells from patients with de novo AML. Lower levels of miR-370 expression were found in 37 of 48 leukemic samples from AML patients compared to those in bone marrow cells derived from healthy adult individuals. Ectopic expression of miR-370 in HL60 and K562 cells led to cell growth arrest and senescence. In contrast, depletion of miR-370 expression using RNA interference enhanced the proliferation of those leukemic cells. Mechanistically, miR-370 targets the transcription factor FoxM1, a well established oncogenic factor promoting cell cycle progression. Moreover, when HL60 and K562 cells were treated with 5-aza-2′-deoxycytidine, a DNA methylation inhibitor, miR-370 expression was up-regulated, which indicates epigenetic silencing of miR-370 in leukemic cells. Conclusions Taken together, miR-370 may function as a tumor suppressor by targeting FoxM1, and the epigenetic silence of miR-370 thus leads to derepression of FoxM1 expression and consequently contributes to AML development and progression.

  9. CD73 protein as a source of extracellular precursors for sustained NAD+ biosynthesis in FK866-treated tumor cells.

    Science.gov (United States)

    Grozio, Alessia; Sociali, Giovanna; Sturla, Laura; Caffa, Irene; Soncini, Debora; Salis, Annalisa; Raffaelli, Nadia; De Flora, Antonio; Nencioni, Alessio; Bruzzone, Santina

    2013-09-06

    NAD(+) is mainly synthesized in human cells via the "salvage" pathways starting from nicotinamide, nicotinic acid, or nicotinamide riboside (NR). The inhibition with FK866 of the enzyme nicotinamide phosphoribosyltransferase (NAMPT), catalyzing the first reaction in the "salvage" pathway from nicotinamide, showed potent antitumor activity in several preclinical models of solid and hematologic cancers. In the clinical studies performed with FK866, however, no tumor remission was observed. Here we demonstrate that low micromolar concentrations of extracellular NAD(+) or NAD(+) precursors, nicotinamide mononucleotide (NMN) and NR, can reverse the FK866-induced cell death, this representing a plausible explanation for the failure of NAMPT inhibition as an anti-cancer therapy. NMN is a substrate of both ectoenzymes CD38 and CD73, with generation of NAM and NR, respectively. In this study, we investigated the roles of CD38 and CD73 in providing ectocellular NAD(+) precursors for NAD(+) biosynthesis and in modulating cell susceptibility to FK866. By specifically silencing or overexpressing CD38 and CD73, we demonstrated that endogenous CD73 enables, whereas CD38 impairs, the conversion of extracellular NMN to NR as a precursor for intracellular NAD(+) biosynthesis in human cells. Moreover, cell viability in FK866-treated cells supplemented with extracellular NMN was strongly reduced in tumor cells, upon pharmacological inhibition or specific down-regulation of CD73. Thus, our study suggests that genetic or pharmacologic interventions interfering with CD73 activity may prove useful to increase cancer cell sensitivity to NAMPT inhibitors.

  10. [The number of myeloid-derived suppressor cells in the peripheral blood and tumor tissues in patients with gastric cancer and its clinical significance].

    Science.gov (United States)

    Xia, Rui; Wang, Feng; Gao, Tengfei; Wen, Wen; Lu, Binfeng; Zhu, Yibei; Zhang, Xueguang

    2014-07-01

    To investigate the number of myeloid-derived suppressor cells (MDSCs) in peripheral blood, tumor tissue and para-tumor normal tissues in patients with gastric cancer in an attempt to explore the relationship between MDSCs expression and clinicopathologic characteristics. Peripheral blood was collected from 62 gastric cancer patients and 20 healthy volunteers (HC group). Gastric cancer tissues and adjacent normal tissues were obtained from 12 of the 62 gastric cancer patients. HLA-DR⁻ CD33⁺ CD11b⁺ MDSCs were analyzed by flow cytometry. Student's t-test, One-way ANOVA and Mann-Whitney U test were used to explore the correlation between MDSCs expression in peripheral blood and the depth of tumor invasion, degree of differentiation, TNM stage and lymph node metastasis. Compare with the HC group, the number of MDSCs in peripheral blood of newly-diagnosed gastric cancer patients was higher (Pblood of gastric cancer patients was significantly associated with the depth of invasion, degree of differentiation, TNM stage and lymph node metastasis (Ptissues was obviously higher than that of the adjacent tissues in the same patient. The number of MDSCs in peripheral blood from recurrent/metastasis group was obviously higher than that from non-recurrent/metastasis group (Pblood was higher in patients with gastric cancer. MDSCs expression in peripheral blood of gastric cancer patients was closely associated with tumor malignant degree and tumor recurrence/metastasis.

  11. Myeloid cell leukemia-1 is a key molecular target for mithramycin A-induced apoptosis in androgen-independent prostate cancer cells and a tumor xenograft animal model.

    Science.gov (United States)

    Choi, Eun-Sun; Jung, Ji-Youn; Lee, Jin-Seok; Park, Jong-Hwan; Cho, Nam-Pyo; Cho, Sung-Dae

    2013-01-01

    Mithramycin A (Mith) is a natural polyketide that has been used in multiple areas of research including apoptosis of various cancer cells. Here, we examined the critical role of Mith in apoptosis and its molecular mechanism in DU145 and PC3 prostate cancer cells and tumor xenografts. Mith decreased cell growth and induced apoptosis in DU145 and PC-3 cells. Myeloid cell leukemia-1 (Mcl-1) was over-expressed in both cell lines compared to RWPE1 cells. Mith inhibited Mcl-1 protein expression in both cells, but only altered Mcl-1 mRNA levels in PC-3 cells. We also found that Mith reduced Mcl-1 protein levels through both proteasome-dependent protein degradation and the inhibition of protein synthesis in DU145 cells. Studies using siRNA confirmed that the knockdown of Mcl-1 induced apoptosis. Mith significantly suppressed TPA-induced neoplastic cell transformation through the down-regulation of the Mcl-1 protein in JB6 cells, and suppressed the transforming activity of both cell types. Mith also inhibited tumor growth and Mcl-1 levels, in addition to inducing apoptosis, in athymic nude mice bearing DU145 cell xenografts without affecting five normal organs. Therefore, Mith inhibits cell growth and induces apoptosis by suppressing Mcl-1 in both prostate cancer cells and xenograft tumors, and thus is a potent anticancer drug candidate for prostate cancer. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Regulation of tumor necrosis factor gene expression by ionizing radiation in human myeloid leukemia cells and peripheral blood monocytes

    International Nuclear Information System (INIS)

    Sherman, M.L.; Datta, R.; Hallahan, D.E.; Weichselbaum, R.R.; Kufe, D.W.

    1991-01-01

    Previous studies have demonstrated that ionizing radiation induces the expression of certain cytokines, such as TNF alpha/cachectin. However, there is presently no available information regarding the molecular mechanisms responsible for the regulation of cytokine gene expression by ionizing radiation. In this report, we describe the regulation of the TNF gene by ionizing radiation in human myeloid leukemia cells. The increase in TNF transcripts by x rays was both time- and dose-dependent as determined by Northern blot analysis. Similar findings were obtained in human peripheral blood monocytes. Transcriptional run-on analyses have demonstrated that ionizing radiation stimulates the rate of TNF gene transcription. Furthermore, induction of TNF mRNA was increased in the absence of protein synthesis. In contrast, ionizing radiation had little effect on the half-life of TNF transcripts. These findings indicate that the increase in TNF mRNA observed after irradiation is regulated by transcriptional mechanisms and suggest that production of this cytokine by myeloid cells may play a role in the pathophysiologic effects of ionizing radiation

  13. Fallopian tube intraluminal tumor spread from noninvasive precursor lesions: a novel metastatic route in early pelvic carcinogenesis.

    Science.gov (United States)

    Bijron, Jonathan G; Seldenrijk, Cornelis A; Zweemer, Ronald P; Lange, Joost G; Verheijen, René H M; van Diest, Paul J

    2013-08-01

    Pelvic serous carcinoma is usually advanced stage at diagnosis, indicating that abdominal spread occurs early in carcinogenesis. Recent discovery of a precursor sequence in the fallopian tube, culminating in serous tubal intraepithelial carcinoma (STIC), provides an opportunity to study early disease events. This study aims to explore novel metastatic routes in STICs. A BRCA1 mutation carrier (patient A) who presented with a STIC and tubal intraluminal shedding of tumor cells upon prophylactic bilateral salpingo-oophorectomy (PBSO) instigated scrutiny of an additional 23 women who underwent a PBSO and 40 patients with pelvic serous carcinoma involving the tubes. Complete serial sectioning of tubes and ovaries of patient A did not reveal invasive carcinoma, but subsequent staging surgery showed disseminated abdominal disease. STIC, intraluminal tumor cells, and abdominal metastases displayed an identical immunohistochemical profile (p53/WT1/PAX8/PAX2) and TP53 mutation. In 16 serous carcinoma patients (40%) tubal intraluminal tumor cells were found, compared with none in the PBSO group. This is the first description of a STIC, which plausibly metastasized without the presence of invasion through intraluminal shedding of malignant surface epithelial cells in the tube and subsequently spread throughout the peritoneal cavity. These findings warrant a reconsideration of the malignant potential of STICs and indicate that intraluminal shedding could be a risk factor for early intraperitoneal metastasis. Although rare in the absence of invasive cancer, we show that intraluminal shedding of tumor cells in the fallopian tubes from serous carcinoma cases are common and a likely route of abdominal spread.

  14. Myeloid Neoplasms.

    Science.gov (United States)

    Subtil, Antonio

    2017-09-01

    The classification of myeloid neoplasms has undergone major changes and currently relies heavily on genetic abnormalities. Cutaneous manifestations of myeloid neoplasms may be the presenting sign of underlying bone marrow disease. Dermal infiltration by neoplastic cells may occur in otherwise normal skin or in sites of cutaneous inflammation. Leukemia cutis occasionally precedes evidence of blood and/or bone marrow involvement (aleukemic leukemia cutis). Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Deficiency of Kruppel-like factor KLF4 in mammary tumor cells inhibits tumor growth and pulmonary metastasis and is accompanied by compromised recruitment of myeloid-derived suppressor cells

    Science.gov (United States)

    Yu, Fang; Shi, Ying; Wang, Junfeng; Li, Juan; Fan, Daping; Ai, Walden

    2013-01-01

    Increasing evidence indicates that myeloid-derived suppressor cells (MDSCs) negatively regulate immune responses during tumor progression, inflammation and infection. However, the underlying molecular mechanisms of their development and mobilization remain to be fully delineated. Kruppel-like factor KLF4 is a transcription factor that has an oncogenic function in breast cancer development, but its function in tumor microenvironment, a critical component for tumorigenesis, has not been examined. By using a spontaneously metastatic 4T1 breast cancer mouse model and an immunodeficient NOD/SCID mouse model, we demonstrated that KLF4 knockdown delayed tumor development and inhibited pulmonary metastasis, which was accompanied by decreased accumulation of MDSCs in bone marrow, spleens and primary tumors. Mechanistically, we found that KLF4 knockdown resulted in a significant decrease of circulating GM-CSF, an important cytokine for MDSC biology. Consistently, recombinant GM-CSF restored the frequency of MDSCs in purified bone marrow cells incubated with conditioned medium from KLF4 deficient cells. In addition, we identified CXCL5 as a critical mediator to enhance the expression and function of GM-CSF. Reduced CXCL5 expression by KLF4 knockdown in primary tumors and breast cancer cells was correlated with a decreased GM-CSF expression in our mouse models. Finally, we found that CXCL5/CXCR2 axis facilitated MDSC migration and that anti-GM-CSF antibodies neutralized CXCL5-induced accumulation of MDSCs. Taken together, our data suggest that KLF4 modulates maintenance of MDSCs in bone marrow by inducing GM-CSF production via CXCL5 and regulates recruitment of MDSCs into the primary tumors through the CXCL5/CXCR2 axis, both of which contribute to KLF4-mediated mammary tumor development. PMID:23737434

  16. Induction of complete and molecular remissions in acute myeloid leukemia by Wilms' tumor 1 antigen-targeted dendritic cell vaccination.

    NARCIS (Netherlands)

    Tendeloo, V.F. Van; Velde, A. van de; Driessche, A. Van; Cools, N.; Anguille, S.; Ladell, K.; Gostick, E.; Vermeulen, K.; Pieters, K.; Nijs, G.; Stein, B.; Smits, E.L.; Schroyens, W.A.; Gadisseur, A.P.; Vrelust, I.; Jorens, P.G.; Goossens, H.; Vries, I.J.M. de; Price, D.A.; Oji, Y.; Oka, Y.; Sugiyama, H.; Berneman, Z.N.

    2010-01-01

    Active immunization using tumor antigen-loaded dendritic cells holds promise for the adjuvant treatment of cancer to eradicate or control residual disease, but so far, most dendritic cell trials have been performed in end-stage cancer patients with high tumor loads. Here, in a phase I/II trial, we

  17. Use of Wilms Tumor 1 Gene Expression as a Reliable Marker for Prognosis and Minimal Residual Disease Monitoring in Acute Myeloid Leukemia With Normal Karyotype Patients.

    Science.gov (United States)

    Marjanovic, Irena; Karan-Djurasevic, Teodora; Ugrin, Milena; Virijevic, Marijana; Vidovic, Ana; Tomin, Dragica; Suvajdzic Vukovic, Nada; Pavlovic, Sonja; Tosic, Natasa

    2017-05-01

    Acute myeloid leukemia with normal karyotype (AML-NK) represents the largest group of AML patients classified with an intermediate prognosis. A constant need exists to introduce new molecular markers for more precise risk stratification and for minimal residual disease (MRD) monitoring. Quantitative assessment of Wilms tumor 1 (WT1) gene transcripts was performed using real-time polymerase chain reaction. The bone marrow samples were collected at the diagnosis from 104 AML-NK patients and from 34 of these patients during follow-up or disease relapse. We found that overexpression of the WT1 gene (WT1 high status), present in 25.5% of patients, was an independent unfavorable factor for achieving complete remission. WT1 high status was also associated with resistance to therapy and shorter disease-free survival and overall survival. Assessment of the log reduction value of WT1 expression, measured in paired diagnosis/complete remission samples, revealed that patients with a log reduction of < 2 had a tendency toward shorter disease-free survival and overall survival and a greater incidence of disease relapse. Combining WT1 gene expression status with NPM1 and FLT3-ITD mutational status, we found that the tumor behavior of intermediate patients (FLT3-ITD - /NPM1 - double negative) with WT1 high status is almost the same as the tumor behavior of the adverse risk group. WT1 expression status represents a good molecular marker of prognosis, response to treatment, and MRD monitoring. Above all, the usage of the WT1 expression level as an additional marker for more precise risk stratification of AML-NK patients could lead to more adapted, personalized treatment protocols. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Myeloid dendritic cells loaded with dendritic tandem multiple antigenic telomerase reverse transcriptase (hTERT) epitope peptides: a potentially promising tumor vaccine.

    Science.gov (United States)

    Niu, Bai-lin; Du, Hui-min; Shen, Hua-ping; Lian, Zheng-rong; Li, Jin-zheng; Lai, Xing; Wei, Si-dong; Zou, Li-quan; Gong, Jian-ping

    2012-05-14

    Human telomerase reverse transcriptase (hTERT) has been identified as an ideal tumor-associated antigen (TAA). Use of a synthetic hTERT epitope peptide to pulse dendritic cells can induce autologous T cell anti-tumor immune responses, but such responses induced by a single epitope peptide have been shown to be weak and a narrow-spectrum. Here, we designed dendritic tandem multiple antigenic peptides (MAPs) containing the following three hTERT epitope peptides: I540, V461 and L766, which are HLA-A*02-, HLA-A*24- and HLA-RDB1*04/11/15-restricted, respectively. The MAPs and their three single-epitope peptides were obtained through solid-phase synthesis. Healthy volunteers that were HLA-A*02(+)/HLA-DRB1*04(+) and HLA-A*24(+)/HLA-DRB1*15(+) were recruited. Myeloid dendritic cells were isolated by magnetic activated cell sorting and were divided into a MAP-stimulated group (MAP-DC), a group in which the three epitope peptides were mixed and used to stimulate the DCs (MixP-DC) and a no peptide-stimulated group (NoP-DC, control group). All of the DCs were cultured in serum-free medium, pulsed with the corresponding peptides on the 3rd, 5th and 7th days, and co-cultured with autologous lymphocytes when they were mature. The related cytokines were measured via ELISA. The killing effects of cytotoxic T lymphocytes (CTLs) on SW480/A549 tumor cells expressing HLA-A*02(+), HepG2/SMMC-7721 cells expressing HLA-A*24(+) and SKOV3 cells negative for HLA-A*02/A*24 were detected by flow cytometry. Our results indicated that the CTLs induced by the MAP-DCs had the greatest anti-tumor effect. Therefore, the dendritic tandem multiple antigenic hTERT epitope peptides combined with MDCs may represent a powerful, broad-spectrum anti-tumor vaccine. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Transmembrane Tumor Necrosis Factor Controls Myeloid-Derived Suppressor Cell Activity via TNF Receptor 2 and Protects from Excessive Inflammation during BCG-Induced Pleurisy

    Directory of Open Access Journals (Sweden)

    Leslie Chavez-Galan

    2017-08-01

    Full Text Available Pleural tuberculosis (TB is a form of extra-pulmonary TB observed in patients infected with Mycobacterium tuberculosis. Accumulation of myeloid-derived suppressor cells (MDSC has been observed in animal models of TB and in human patients but their role remains to be fully elucidated. In this study, we analyzed the role of transmembrane TNF (tmTNF in the accumulation and function of MDSC in the pleural cavity during an acute mycobacterial infection. Mycobacterium bovis BCG-induced pleurisy was resolved in mice expressing tmTNF, but lethal in the absence of tumor necrosis factor. Pleural infection induced MDSC accumulation in the pleural cavity and functional MDSC required tmTNF to suppress T cells as did pleural wild-type MDSC. Interaction of MDSC expressing tmTNF with CD4 T cells bearing TNF receptor 2 (TNFR2, but not TNFR1, was required for MDSC suppressive activity on CD4 T cells. Expression of tmTNF attenuated Th1 cell-mediated inflammatory responses generated by the acute pleural mycobacterial infection in association with effective MDSC expressing tmTNF and interacting with CD4 T cells expressing TNFR2. In conclusion, this study provides new insights into the crucial role played by the tmTNF/TNFR2 pathway in MDSC suppressive activity required during acute pleural infection to attenuate excessive inflammation generated by the infection.

  20. Liver myeloid-derived suppressor cells expand in response to liver metastases in mice and inhibit the anti-tumor efficacy of anti-CEA CAR-T

    Science.gov (United States)

    Burga, Rachel A.; Thorn, Mitchell; Point, Gary R.; Guha, Prajna; Nguyen, Cang T.; Licata, Lauren A.; DeMatteo, Ronald P.; Ayala, Alfred; Espat, N. Joseph; Junghans, Richard P.; Katz, Steven C.

    2015-01-01

    Chimeric antigen receptor modified T cell (CAR-T) technology, a promising immunotherapeutic tool, has not been applied specifically to treat liver metastases (LM). While CAR-T delivery to LM can be optimized by regional intrahepatic infusion, we propose that liver CD11b+Gr-1+ myeloid-derived suppressor cells (L-MDSC) will inhibit the efficacy of CAR-T in the intrahepatic space. We studied anti-CEA CAR-T in a murine model of CEA+ LM and identified mechanisms through which L-MDSC expand and inhibit CAR-T function. We established CEA+ LM in mice and studied purified L-MDSC and responses to treatment with intrahepatic anti-CEA CAR-T infusions. L-MDSC expanded three-fold in response to LM and their expansion was dependent on GM-CSF, which was produced by tumor cells. L-MDSC utilized PD-L1 to suppress anti-tumor responses through engagement of PD-1 on CAR-T. GM-CSF, in cooperation with STAT3, promoted L-MDSC PD-L1 expression. CAR-T efficacy was rescued when mice received CAR-T in combination with MDSC depletion, GM-CSF neutralization to prevent MDSC expansion, or PD-L1 blockade. As L-MDSC suppressed anti-CEA CAR-T, infusion of anti-CEA CAR-T in tandem with agents targeting L-MDSC is a rational strategy for future clinical trials. PMID:25850344

  1. Application of a global proteomic approach to archival precursor lesions: deleted in malignant brain tumors 1 and tissue transglutaminase 2 are upregulated in pancreatic cancer precursors

    DEFF Research Database (Denmark)

    Cheung, Wang; Darfler, Marlene M; Alvarez, Hector

    2008-01-01

    ,534 peptides corresponding to 523 unique proteins. A subset of 25 proteins was identified that had previously been reported as upregulated in pancreatic cancer. Immunohistochemical analysis for two of these, deleted in malignant brain tumors 1 (DMBT1) and tissue transglutaminase 2 (TGM2), confirmed...

  2. Secondary Leukemia in a non-Hodgkin's Lymphoma Patient Presenting as Myeloid Sarcoma of the Breast

    OpenAIRE

    Pitini, Vincenzo; Arrigo, Carmela; Sauta, Maria Grazia; Altavilla, Giuseppe

    2011-01-01

    As defined by the World Health Organization classification of tumors of hematopoietic and lymphoid tissue, myeloid sarcoma (MS) is a tumor mass of myeloblasts or immature myeloid cells that can arise before, concurrent with, or following acute myeloid leukaemia. We describe a case of secondary leukemia presenting itself as MS of the breast in a patient previously treated for a non-Hodgkin's Lymphoma.

  3. Tumor suppressors BTG1 and IKZF1 cooperate during mouse leukemia development and increase relapse risk in B-cell precursor acute lymphoblastic leukemia patients.

    Science.gov (United States)

    Scheijen, Blanca; Boer, Judith M; Marke, René; Tijchon, Esther; van Ingen Schenau, Dorette; Waanders, Esmé; van Emst, Liesbeth; van der Meer, Laurens T; Pieters, Rob; Escherich, Gabriele; Horstmann, Martin A; Sonneveld, Edwin; Venn, Nicola; Sutton, Rosemary; Dalla-Pozza, Luciano; Kuiper, Roland P; Hoogerbrugge, Peter M; den Boer, Monique L; van Leeuwen, Frank N

    2017-03-01

    Deletions and mutations affecting lymphoid transcription factor IKZF1 (IKAROS) are associated with an increased relapse risk and poor outcome in B-cell precursor acute lymphoblastic leukemia. However, additional genetic events may either enhance or negate the effects of IKZF1 deletions on prognosis. In a large discovery cohort of 533 childhood B-cell precursor acute lymphoblastic leukemia patients, we observed that single-copy losses of BTG1 were significantly enriched in IKZF1 -deleted B-cell precursor acute lymphoblastic leukemia ( P =0.007). While BTG1 deletions alone had no impact on prognosis, the combined presence of BTG1 and IKZF1 deletions was associated with a significantly lower 5-year event-free survival ( P =0.0003) and a higher 5-year cumulative incidence of relapse ( P =0.005), when compared with IKZF1 -deleted cases without BTG1 aberrations. In contrast, other copy number losses commonly observed in B-cell precursor acute lymphoblastic leukemia, such as CDKN2A/B, PAX5, EBF1 or RB1 , did not affect the outcome of IKZF1 -deleted acute lymphoblastic leukemia patients. To establish whether the combined loss of IKZF1 and BTG1 function cooperate in leukemogenesis, Btg1 -deficient mice were crossed onto an Ikzf1 heterozygous background. We observed that loss of Btg1 increased the tumor incidence of Ikzf1 +/- mice in a dose-dependent manner. Moreover, murine B cells deficient for Btg1 and Ikzf1 +/- displayed increased resistance to glucocorticoids, but not to other chemotherapeutic drugs. Together, our results identify BTG1 as a tumor suppressor in leukemia that, when deleted, strongly enhances the risk of relapse in IKZF1 -deleted B-cell precursor acute lymphoblastic leukemia, and augments the glucocorticoid resistance phenotype mediated by the loss of IKZF1 function. Copyright© Ferrata Storti Foundation.

  4. Superior anti-tumor activity of the MDM2 antagonist idasanutlin and the Bcl-2 inhibitor venetoclax in p53 wild-type acute myeloid leukemia models

    Directory of Open Access Journals (Sweden)

    Christian Lehmann

    2016-06-01

    Full Text Available Abstract Background Venetoclax, a small molecule BH3 mimetic which inhibits the anti-apoptotic protein Bcl-2, and idasanutlin, a selective MDM2 antagonist, have both shown activity as single-agent treatments in pre-clinical and clinical studies in acute myeloid leukemia (AML. In this study, we deliver the rationale and molecular basis for the combination of idasanutlin and venetoclax for treatment of p53 wild-type AML. Methods The effect of idasanutlin and venetoclax combination on cell viability, apoptosis, and cell cycle progression was investigated in vitro using established AML cell lines. In vivo efficacy was demonstrated in subcutaneous and orthotopic xenograft models generated in female nude or non-obese diabetic/severe combined immunodeficiency (NOD/SCID mice. Mode-of-action analyses were performed by means of cell cycle kinetic studies, RNA sequencing as well as western blotting experiments. Results Combination treatment with venetoclax and idasanutlin results in synergistic anti-tumor activity compared with the respective single-agent treatments in vitro, in p53 wild-type AML cell lines, and leads to strongly superior efficacy in vivo, in subcutaneous and orthotopic AML models. The inhibitory effects of idasanutlin were cell-cycle dependent, with cells arresting in G1 in consecutive cycles and the induction of apoptosis only evident after cells had gone through at least two cell cycles. Combination treatment with venetoclax removed this dependency, resulting in an acceleration of cell death kinetics. As expected, gene expression studies using RNA sequencing showed significant alterations to pathways associated with p53 signaling and cell cycle arrest (CCND1 pathway in response to idasanutlin treatment. Only few gene expression changes were observed for venetoclax treatment and combination treatment, indicating that their effects are mediated mainly at the post-transcriptional level. Protein expression studies demonstrated that

  5. Precursor States of Brain Tumor Initiating Cell Lines Are Predictive of Survival in Xenografts and Associated with Glioblastoma Subtypes

    Directory of Open Access Journals (Sweden)

    Carlo Cusulin

    2015-07-01

    Full Text Available In glioblastoma multiforme (GBM, brain-tumor-initiating cells (BTICs with cancer stem cell characteristics have been identified and proposed as primordial cells responsible for disease initiation, recurrence, and therapeutic resistance. However, the extent to which individual, patient-derived BTIC lines reflect the heterogeneity of GBM remains poorly understood. Here we applied a stem cell biology approach and compared self-renewal, marker expression, label retention, and asymmetric cell division in 20 BTIC lines. Through cluster analysis, we identified two subgroups of BTIC lines with distinct precursor states, stem- or progenitor-like, predictive of survival after xenograft. Moreover, stem and progenitor transcriptomic signatures were identified, which showed a strong association with the proneural and mesenchymal subtypes, respectively, in the TCGA cohort. This study proposes a different framework for the study and use of BTIC lines and provides precursor biology insights into GBM.

  6. Tumorer

    DEFF Research Database (Denmark)

    Prause, J.U.; Heegaard, S.

    2005-01-01

    oftalmologi, øjenlågstumorer, conjunctivale tumorer, malignt melanom, retinoblastom, orbitale tumorer......oftalmologi, øjenlågstumorer, conjunctivale tumorer, malignt melanom, retinoblastom, orbitale tumorer...

  7. The mouse small eye mutant, Del(2)Sey3H, which deletes the putative tumor suppressor region of the radiation-induced acute myeloid leukemia is susceptible to radiation

    International Nuclear Information System (INIS)

    Nitta, Yumiko; Yoshida, Kazuko; Tanaka, Kimio; Peters, Jo; Cattanach, Bruce M.

    2003-01-01

    Radiation-induced murine acute myeloid leukemia (AML) is characterized by the chromosome 2 deletions. Standing on the hypothesis that an AML suppressor gene would locate on the chromosome 2, a deletion-wide screen was performed on radiation-induced AMLs by the fluorescence in situ hybridization (FISH) method. The hemizugous deletion of the D2Mit15, a marker DNA at the 49.0cM region from the centromere, associated with the AMLs in 97 out of the 105 cases (92.4%). As the deletion region was close to the region of human WAGR syndrome (MIM194072), the mouse small eye mutants could be the animal model for radiation-induced AMLs. The mutant, Del(2)Sey3H (Sey3H) was found to delete around the 49.0cM region by the allelic loss mapping. The Sey3H showed high susceptibility to radiation to develop tumors including the myeloid leukemia with shorter latency. These finding support the existence of a putative tumor suppressor gene responsible for the radiation-leukemogenesis near the D2Mit15 region. (author)

  8. Accumulation of memory precursor CD8 T cells in regressing tumors following combination therapy with vaccine and anti-PD-1 antibody.

    Science.gov (United States)

    Karyampudi, Lavakumar; Lamichhane, Purushottam; Scheid, Adam D; Kalli, Kimberly R; Shreeder, Barath; Krempski, James W; Behrens, Marshall D; Knutson, Keith L

    2014-06-01

    Immunosuppression in the tumor microenvironment blunts vaccine-induced immune effectors. PD-1/B7-H1 is an important inhibitory axis in the tumor microenvironment. Our goal in this study was to determine the effect of blocking this inhibitory axis during and following vaccination against breast cancer. We observed that using anti-PD-1 antibody and a multipeptide vaccine (consisting of immunogenic peptides derived from breast cancer antigens, neu, legumain, and β-catenin) as a combination therapy regimen for the treatment of breast cancer-bearing mice prolonged the vaccine-induced progression-free survival period. This prolonged survival was associated with increase in number of Tc1 and Tc2 CD8 T cells with memory precursor phenotype, CD27+IL-7RhiT-betlo, and decrease in number of PD-1+ dendritic cells (DC) in regressing tumors and enhanced antigen reactivity of tumor-infiltrating CD8 T cells. It was also observed that blockade of PD-1 on tumor DCs enhanced IL-7R expression on CD8 T cells. Taken together, our results suggest that PD-1 blockade enhances breast cancer vaccine efficacy by altering both CD8 T cell and DC components of the tumor microenvironment. Given the recent success of anti-PD-1 monotherapy, our results are encouraging for developing combination therapies for the treatment of patients with cancer in which anti-PD-1 monotherapy alone may be ineffective (i.e., PD-L1-negative tumors). ©2014 American Association for Cancer Research.

  9. Inflammation- and tumor-induced anorexia and weight loss require MyD88 in hematopoietic/myeloid cells but not in brain endothelial or neural cells.

    Science.gov (United States)

    Ruud, Johan; Wilhelms, Daniel Björk; Nilsson, Anna; Eskilsson, Anna; Tang, Yan-Juan; Ströhle, Peter; Caesar, Robert; Schwaninger, Markus; Wunderlich, Thomas; Bäckhed, Fredrik; Engblom, David; Blomqvist, Anders

    2013-05-01

    Loss of appetite is a hallmark of inflammatory diseases. The underlying mechanisms remain undefined, but it is known that myeloid differentiation primary response gene 88 (MyD88), an adaptor protein critical for Toll-like and IL-1 receptor family signaling, is involved. Here we addressed the question of determining in which cells the MyD88 signaling that results in anorexia development occurs by using chimeric mice and animals with cell-specific deletions. We found that MyD88-knockout mice, which are resistant to bacterial lipopolysaccharide (LPS)-induced anorexia, displayed anorexia when transplanted with wild-type bone marrow cells. Furthermore, mice with a targeted deletion of MyD88 in hematopoietic or myeloid cells were largely protected against LPS-induced anorexia and displayed attenuated weight loss, whereas mice with MyD88 deletion in hepatocytes or in neural cells or the cerebrovascular endothelium developed anorexia and weight loss of similar magnitude as wild-type mice. Furthermore, in a model for cancer-induced anorexia-cachexia, deletion of MyD88 in hematopoietic cells attenuated the anorexia and protected against body weight loss. These findings demonstrate that MyD88-dependent signaling within the brain is not required for eliciting inflammation-induced anorexia. Instead, we identify MyD88 signaling in hematopoietic/myeloid cells as a critical component for acute inflammatory-driven anorexia, as well as for chronic anorexia and weight loss associated with malignant disease.

  10. Tumor-altered dendritic cell function: implications for anti-tumor immunity

    Directory of Open Access Journals (Sweden)

    Kristian Michael Hargadon

    2013-07-01

    Full Text Available Dendritic cells are key regulators of both innate and adaptive immunity, and the array of immunoregulatory functions exhibited by these cells is dictated by their differentiation, maturation, and activation status. Although a major role for these cells in the induction of immunity to pathogens has long been appreciated, data accumulated over the last several years has demonstrated that DC are also critical regulators of anti-tumor immune responses. However, despite the potential for stimulation of robust anti-tumor immunity by DC, tumor-altered DC function has been observed in many cancer patients and tumor-bearing animals and is often associated with tumor immune escape. Such dysfunction has significant implications for both the induction of natural anti-tumor immune responses as well as the efficacy of immunotherapeutic strategies that target endogenous DC in situ or that employ exogenous DC as part of anti-cancer immunization maneuvers. In this review, the major types of tumor-altered DC function will be described, with emphasis on recent insights into the mechanistic bases for the inhibition of DC differentiation from hematopoietic precursors, the altered programming of DC precursors to differentiate into myeloid-derived suppressor cells or tumor-associated macrophages, the suppression of DC maturation and activation, and the induction of immunoregulatory DC by tumors, tumor-derived factors, and tumor-associated cells within the milieu of the tumor microenvironment. The impact of these tumor-altered cells on the quality of the overall anti-tumor immune response will also be discussed. Finally, this review will also highlight questions concerning tumor-altered DC function that remain unanswered, and it will address factors that have limited advances in the study of this phenomenon in order to focus future research efforts in the field on identifying strategies for interfering with tumor-associated DC dysfunction and improving DC-mediated anti-tumor

  11. Tumor-altered dendritic cell function: implications for anti-tumor immunity.

    Science.gov (United States)

    Hargadon, Kristian M

    2013-01-01

    Dendritic cells (DC) are key regulators of both innate and adaptive immunity, and the array of immunoregulatory functions exhibited by these cells is dictated by their differentiation, maturation, and activation status. Although a major role for these cells in the induction of immunity to pathogens has long been appreciated, data accumulated over the last several years has demonstrated that DC are also critical regulators of anti-tumor immune responses. However, despite the potential for stimulation of robust anti-tumor immunity by DC, tumor-altered DC function has been observed in many cancer patients and tumor-bearing animals and is often associated with tumor immune escape. Such dysfunction has significant implications for both the induction of natural anti-tumor immune responses as well as the efficacy of immunotherapeutic strategies that target endogenous DC in situ or that employ exogenous DC as part of anti-cancer immunization maneuvers. In this review, the major types of tumor-altered DC function will be described, with emphasis on recent insights into the mechanistic bases for the inhibition of DC differentiation from hematopoietic precursors, the altered programing of DC precursors to differentiate into myeloid-derived suppressor cells or tumor-associated macrophages, the suppression of DC maturation and activation, and the induction of immunoregulatory DC by tumors, tumor-derived factors, and tumor-associated cells within the milieu of the tumor microenvironment. The impact of these tumor-altered cells on the quality of the overall anti-tumor immune response will also be discussed. Finally, this review will also highlight questions concerning tumor-altered DC function that remain unanswered, and it will address factors that have limited advances in the study of this phenomenon in order to focus future research efforts in the field on identifying strategies for interfering with tumor-associated DC dysfunction and improving DC-mediated anti-tumor immunity.

  12. Modeling Myeloid Malignancies Using Zebrafish

    Directory of Open Access Journals (Sweden)

    Kathryn S. Potts

    2017-12-01

    Full Text Available Human myeloid malignancies represent a substantial disease burden to individuals, with significant morbidity and death. The genetic underpinnings of disease formation and progression remain incompletely understood. Large-scale human population studies have identified a high frequency of potential driver mutations in spliceosomal and epigenetic regulators that contribute to malignancies, such as myelodysplastic syndromes (MDS and leukemias. The high conservation of cell types and genes between humans and model organisms permits the investigation of the underlying mechanisms of leukemic development and potential therapeutic testing in genetically pliable pre-clinical systems. Due to the many technical advantages, such as large-scale screening, lineage-tracing studies, tumor transplantation, and high-throughput drug screening approaches, zebrafish is emerging as a model system for myeloid malignancies. In this review, we discuss recent advances in MDS and leukemia using the zebrafish model.

  13. Secondary Leukemia in a non-Hodgkin's Lymphoma Patient Presenting as Myeloid Sarcoma of the Breast

    Directory of Open Access Journals (Sweden)

    Vincenzo Pitini

    2011-01-01

    Full Text Available As defined by the World Health Organization classification of tumors of hematopoietic and lymphoid tissue, myeloid sarcoma (MS is a tumor mass of myeloblasts or immature myeloid cells that can arise before, concurrent with, or following acute myeloid leukaemia. We describe a case of secondary leukemia presenting itself as MS of the breast in a patient previously treated for a non-Hodgkin's Lymphoma.

  14. Predictive role of minimal residual disease and log clearance in acute myeloid leukemia: a comparison between multiparameter flow cytometry and Wilm's tumor 1 levels.

    Science.gov (United States)

    Rossi, Giovanni; Minervini, Maria Marta; Melillo, Lorella; di Nardo, Francesco; de Waure, Chiara; Scalzulli, Potito Rosario; Perla, Gianni; Valente, Daniela; Sinisi, Nicola; Cascavilla, Nicola

    2014-07-01

    In acute myeloid leukemia (AML), the detection of minimal residual disease (MRD) as well as the degree of log clearance similarly identifies patients with poor prognosis. No comparison was provided between the two approaches in order to identify the best one to monitor follow-up patients. In this study, MRD and clearance were assessed by both multiparameter flow cytometry (MFC) and WT1 expression at different time points on 45 AML patients achieving complete remission. Our results by WT1 expression showed that log clearance lower than 1.96 after induction predicted the recurrence better than MRD higher than 77.0 copies WT1/10(4) ABL. Conversely, on MFC, MRD higher than 0.2 % after consolidation was more predictive than log clearance below 2.64. At univariate and multivariate analysis, positive MRD values and log clearance below the optimal cutoffs were associated with a shorter disease-free survival (DFS). At the univariate analysis, positive MRD values were also associated with overall survival (OS). Therefore, post-induction log clearance by WT1 and post-consolidation MRD by MFC represented the most informative approaches to identify the relapse. At the optimal timing of assessment, positive MRD and log-clearance values lower than calculated thresholds similarly predicted an adverse prognosis in AML.

  15. A reevaluation of erythroid predominance in Acute Myeloid Leukemia using the updated WHO 2016 Criteria.

    Science.gov (United States)

    Margolskee, Elizabeth; Mikita, Geoff; Rea, Bryan; Bagg, Adam; Zuo, Zhuang; Sun, Yi; Goswami, Maitrayee; Wang, Sa A; Oak, Jean; Arber, Daniel A; Allen, M Brandon; George, Tracy I; Rogers, Heesun J; Hsi, Eric; Hasserjian, Robert P; Orazi, Attilio

    2018-02-05

    The 2016 WHO update changed the diagnostic criteria for myeloid neoplasms with erythroid predominance, limiting the diagnosis of acute myeloid leukemia to cases with ≥20% blasts in the bone marrow or peripheral blood. Although acute myeloid leukemia with ≥50% erythroid cells has historically been presumed to represent acute myeloid leukemia with myelodysplasia-related changes, this hypothesis has never been systematically examined. We sought to investigate the clinicopathologic, cytogenetic, and molecular features of acute myeloid leukemia with erythroid predominance to subclassify cases as defined by the 2016 WHO. We retrospectively identified patients with ≥50% erythroid precursors and either ≥20% bone marrow blasts or ≥20% peripheral blood blasts at the time of initial diagnosis at seven major academic centers. Laboratory and clinical data were obtained. Patients were then reclassified according to 2016 WHO guidelines. A matched control group was also obtained. We identified 146 patients with acute myeloid leukemia with erythroid predominance (62% M, average age: 62 y, range: 5-93 y). Of these, 91 were acute myeloid leukemia with myelodysplasia-related changes, 20 (14%) were therapy-related myeloid neoplasm, 23 (16%) acute myeloid leukemia, not otherwise specified, and ten acute myeloid leukemia with recurrent cytogenetic/molecular abnormalities. The bone marrow blast count ranged from 9-41%. There was no difference in survival for patients with erythroid predominance compared to patients with acute myeloid leukemia without erythroid proliferations. In a multivariable analysis, cytogenetic risk was the only significant predictor of survival. We find a significantly lower rate of FLT3 and RAS pathway alterations in acute myeloid leukemia with erythroid predominance compared to controls. Our study is one of the first to apply the 2016 WHO guidelines for classification of acute myeloid leukemia. We find acute myeloid leukemia with erythroid

  16. Calreticulin Fragment 39-272 Promotes B16 Melanoma Malignancy through Myeloid-Derived Suppressor Cells In Vivo

    Directory of Open Access Journals (Sweden)

    Xiao-Yan He

    2017-10-01

    Full Text Available Calreticulin (CRT, a multifunctional Ca2+-binding glycoprotein mainly located in the endoplasmic reticulum, is a tumor-associated antigen that has been shown to play protective roles in angiogenesis suppression and anti-tumor immunity. We previously reported that soluble CRT (sCRT was functionally similar to heat shock proteins or damage-associated molecular patterns in terms of ability to activate myeloid cells and elicit strong inflammatory cytokine production. In the present study, B16 melanoma cell lines expressing recombinant CRT fragment 39-272 (sCRT/39-272 in secreted form (B16-CRT, or recombinant enhanced green fluorescence protein (rEGFP (B16-EGFP, were constructed for investigation on the roles of sCRT in tumor development. When s.c. inoculated into C57BL/6 mice, the B16-CRT cells were significantly more aggressive (in terms of solid tumor growth rate than B16-EGFP controls in a TLR4- and myeloid-derived suppressor cells (MDSC-dependent manner. The B16-CRT-bearing mice showed increased Gr1+ MDSC infiltration in tumor tissues, accelerated proliferation of CD11b+Ly6G+Ly6Clow (G-MDSC precursors in bone marrow, and higher percentages of G-MDSCs in spleen and blood, which was mirrored by decreased percentage of dendritic cells (DC in periphery. In in vitro studies, recombinant sCRT/39-272 was able to promote migration and survival of tumor-derived MDSCs via interaction with TLR4, inhibit MDSC differentiation into DC, and also elicit expression of inflammatory proteins S100A8 and S100A9 which are essential for functional maturation and chemotactic migration of MDSCs. Our data provide solid evidence for CRT as a double-edged sword in tumor development.

  17. Decrease of TET2 expression and increase of 5-hmC levels in myeloid sarcomas.

    Science.gov (United States)

    Xiao, Desheng; Shi, Ying; Fu, Chunyan; Jia, Jiantao; Pan, Yu; Jiang, Yiqun; Chen, Ling; Liu, Shuang; Zhou, Wen; Zhou, Jianhua; Tao, Yongguang

    2016-03-01

    Myeloid sarcoma is a tumor mass that consists of myeloblasts or immature myeloid cells at an extramedullary site. Pathological diagnosis is very difficult based on morphology if systemic signs of disease are absent. The subtype of myeloid sarcoma is also minimally identifiable in the histological picture. We investigated 18 paraffin-embedded myeloid sarcoma samples, and our immunohistochemical data confirmed the relevance of some key markers for the diagnosis and subclassification of myeloid sarcoma. CD34 was found as a marker in 67% of the myeloid sarcoma cases, and CD34 was positive in all immature types of myeloid sarcoma. CD68 was found in 83% of the myeloid sarcoma cases, but CD68 was most identified in the differentiated type of myeloid sarcoma. Myeloperoxidase (MPO) was positive in all myeloid sarcomas. Notably, the reactivity of MPO in the blastic subtype was much lower in myeloid sarcomas. CD117 reactivity was found in 67% of myeloid sarcomas. Ten-eleven translocation 2 (TET2) protein exhibited significant negative reactivity in 88% of the cases, and 5-methylcytosine (5-hmC) was significantly positive in the nucleus in 100% of the cases. Our findings indicated that an immunohistochemical panel that included MPO, CD68 and CD34 could be used for the detection of blastic, differentiated and immature types of myeloid sarcoma. Changes in novel epigenetic regulators, including the loss of TET2 and gain of 5-hmC, as characteristics of myeloid malignancies may be useful novel markers of myeloid sarcoma. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Icariin and its derivative, ICT, exert anti-inflammatory, anti-tumor effects, and modulate myeloid derived suppressive cells (MDSCs) functions.

    Science.gov (United States)

    Zhou, Junmin; Wu, Jinfeng; Chen, Xianghong; Fortenbery, Nicole; Eksioglu, Erika; Kodumudi, Krithika N; Pk, Epling-Burnette; Dong, Jingcheng; Djeu, Julie Y; Wei, Sheng

    2011-07-01

    3, 5,7-trihydroxy-4'-methoxy-8-(3-hydroxy-3-methylbutyl)-flavone (ICT) is a novel derivative of Icariin (ICA), the major active ingredient of Herba Epimedii, a herb used in traditional Chinese and alternative medicine. We previously demonstrated its anti-inflammatory effect in murine innate immune cells and activated human PBMCs. We report herein that ICA or ICT treatment reduces the expression of MRP8/MRP14 and toll-like receptor 4 (TLR4) on human PBMCs. Administration of ICA or ICT inhibited tumor growth in 4T1-Neu tumor-bearing mice and considerably decreased MDSC numbers in the spleen of these mice. Further, we saw a restoration of IFN-γ production by CD8+ T cells in tumor bearing mice when treated with ICA or ICT. ICA and ICT significantly decreased the amounts of nitric oxide and reactive oxygen species in MDSC in vivo. When MDSC were treated in vitro with ICT, we saw a significant reduction in the percent of these cells with concomitant differentiation into dendritic cells and macrophages. Concomitant with this cell type conversion was a down-regulation of IL-10, IL-6 and TNF-α production. Decreased expression of S100A8/9 and inhibition of activation of STAT3 and AKT may in part be responsible for the observed results. In conclusion, our results showed that ICA, and more robustly, ICT, directly modulate MDSC signaling and therefore altered the phenotype and function of these cells, in vitro and in vivo. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Myeloid malignancies: mutations, models and management

    International Nuclear Information System (INIS)

    Murati, Anne; Brecqueville, Mandy; Devillier, Raynier; Mozziconacci, Marie-Joelle; Gelsi-Boyer, Véronique; Birnbaum, Daniel

    2012-01-01

    Myeloid malignant diseases comprise chronic (including myelodysplastic syndromes, myeloproliferative neoplasms and chronic myelomonocytic leukemia) and acute (acute myeloid leukemia) stages. They are clonal diseases arising in hematopoietic stem or progenitor cells. Mutations responsible for these diseases occur in several genes whose encoded proteins belong principally to five classes: signaling pathways proteins (e.g. CBL, FLT3, JAK2, RAS), transcription factors (e.g. CEBPA, ETV6, RUNX1), epigenetic regulators (e.g. ASXL1, DNMT3A, EZH2, IDH1, IDH2, SUZ12, TET2, UTX), tumor suppressors (e.g. TP53), and components of the spliceosome (e.g. SF3B1, SRSF2). Large-scale sequencing efforts will soon lead to the establishment of a comprehensive repertoire of these mutations, allowing for a better definition and classification of myeloid malignancies, the identification of new prognostic markers and therapeutic targets, and the development of novel therapies. Given the importance of epigenetic deregulation in myeloid diseases, the use of drugs targeting epigenetic regulators appears as a most promising therapeutic approach

  20. Myeloid malignancies: mutations, models and management

    Directory of Open Access Journals (Sweden)

    Murati Anne

    2012-07-01

    Full Text Available Abstract Myeloid malignant diseases comprise chronic (including myelodysplastic syndromes, myeloproliferative neoplasms and chronic myelomonocytic leukemia and acute (acute myeloid leukemia stages. They are clonal diseases arising in hematopoietic stem or progenitor cells. Mutations responsible for these diseases occur in several genes whose encoded proteins belong principally to five classes: signaling pathways proteins (e.g. CBL, FLT3, JAK2, RAS, transcription factors (e.g. CEBPA, ETV6, RUNX1, epigenetic regulators (e.g. ASXL1, DNMT3A, EZH2, IDH1, IDH2, SUZ12, TET2, UTX, tumor suppressors (e.g. TP53, and components of the spliceosome (e.g. SF3B1, SRSF2. Large-scale sequencing efforts will soon lead to the establishment of a comprehensive repertoire of these mutations, allowing for a better definition and classification of myeloid malignancies, the identification of new prognostic markers and therapeutic targets, and the development of novel therapies. Given the importance of epigenetic deregulation in myeloid diseases, the use of drugs targeting epigenetic regulators appears as a most promising therapeutic approach.

  1. Spontaneous mediastinal myeloid sarcoma in a common marmoset (Callithrix jacchus) and review of the veterinary literature.

    Science.gov (United States)

    Morosco, Danielle T; Cline, Curtis R; Owston, Michael A; Kumar, Shyamesh; Dick, Edward J

    2017-04-01

    Myeloid sarcoma is a rare manifestation of myeloproliferative disorder defined as an extramedullary mass composed of myeloid precursor cells. A 9-month old, female, common marmoset (Callithrix jacchus) had increased respiratory effort. A complete necropsy with histology and immunohistochemistry was performed. The thymus was replaced by a firm, gray-tan mass with a faint green tint, filling over 50% of the thoracic cavity. Sheets of granulocytes, lymphoid cells, nucleated erythrocytes, megakaryocytes, and hematopoietic precursors of indeterminate cell lineage replaced the thymus, perithymic connective tissue, mediastinal adipose tissues, epicardium, and much of the myocardium. The cells demonstrated diffuse strong cytoplasmic immunoreactivity for lysozyme, and strong, multifocal membranous immunoreactivity for CD117. We report the first case of a myeloid sarcoma in a common marmoset (C. jacchus), similar to reported human cases of mediastinal myeloid sarcoma, and present a review of myeloproliferative diseases from the veterinary literature. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Immunodetection of myeloid and plasmacytoid dendritic cells in mammary carcinomas of female dogs

    Directory of Open Access Journals (Sweden)

    Mayara C. Rosolem

    2015-11-01

    Full Text Available ABSTRACT: Dendritic cells have attracted great interest from researchers as they may be used as targets of tumor immune evasion mechanisms. The main objective of this study was to evaluate the relationship between the dendritic cells (DCs subpopulation in simple type mammary carcinomas in female dogs. Two groups of samples were used: the control group consisted of 18 samples of mammary tissue without changes and the tumor group with 26 simple type mammary carcinomas. In these groups, we evaluated the immunodetection of immature and mature myeloid DCs, plasmacytoid DCs and MHC-II. In mammary tumor, mature myeloid DCs predominated in the peritumoral region, while immature myeloid DCs and plasmacytoid DCs were evident in the intratumoral region. Immunostaining of MHC-II was visualized in mammary acini (control group, in tumor cells and inflammatory infiltration associated with tumors. The comparison between the control and tumor groups showed a statistically significant difference between immature myeloid DCs, mature myeloid DCs and plasmacytoid DCs. The immunodetection of MHC-II was not significant when comparing the groups. The predominance of immature DCs in the tumor group is possibly related to an inefficient immune response, promoting the development and survival of tumor cells. The presence of plasmacytoid DCs in the same group suggests a worse prognosis for female dogs with mammary tumors. Therefore, the ability of differentiation of canine dendritic cells could be influenced by neoplastic cells and by the tumor microenvironment.

  3. Diagnostic work-up of acute myeloid leukemia.

    Science.gov (United States)

    Weinberg, Olga K; Sohani, Aliyah R; Bhargava, Parul; Nardi, Valentina

    2017-03-01

    Acute myeloid leukemia (AML) is characterized by a clonal expansion of undifferentiated myeloid precursors resulting in impaired hematopoiesis and bone marrow failure. In 2016, the World Health Organization (WHO) published revisions to the classification of myeloid neoplasms and acute leukemias. Similar to the 2008 classification, the updated classification incorporates clinical features, morphology, immunophenotyping, and cytogenetics, with greater emphasis on molecular genetics, to define disease entities. This brief review addresses the various components of pathologic assessment to establish a diagnosis of AML and to help risk stratify patients, with an emphasis on newer techniques used in the detection of mutations with prognostic significance, as well as assays employed in the evaluation of minimal residual disease following treatment. © 2017 Wiley Periodicals, Inc.

  4. Methimazole Induced Total Myeloid Aplasia with Delayed Recovery Despite Granulocyte Colony Stimulating Factor (G-CSF): Marrow Progenitor Recovery Kinetics.

    Science.gov (United States)

    Sarker, Tania; Özgönenel, Bülent; Gadgeel, Manisha; Buck, Steven; Adhikari, Amita; Ravindranath, Yaddanapudi

    2016-06-01

    An eighteen-year-old female with Graves thyrotoxicosis presented with methimazole-induced agranulocytosis and total myeloid aplasia. The bone marrow at presentation showed complete absence of myeloid precursors and striking plasmacytosis. 16 days later, myeloid precursors were still absent morphologically; however bone marrow flow cytometry and cell culture detected an improvement in myelogenesis, which was soon followed by clinical recovery of agranulocytosis. Neutrophil recovery was delayed until day 22 after cessation of methimazole despite G-CSF use, consistent with a direct toxic effect on committed myeloid cells. Our findings suggest that cell culture and flow cytometric evaluation of bone marrow myeloid progenitors can be used as a guide to anticipate neutrophil recovery.

  5. Tumor suppressors BTG1 and IKZF1 cooperate during mouse leukemia development and increase relapse risk in B-cell precursor acute lymphoblastic leukemia patients

    NARCIS (Netherlands)

    Scheijen, B.; Boer, J.M.A.; Marke, R.; Tijchon, E.J.; Ingen Schenau, D.S. van; Waanders, E.; Emst, L. van; Meer, L.T. van der; Pieters, R.; Escherich, G.; Horstmann, M.A.; Sonneveld, E.; Venn, N.; Sutton, R.; Dalla-Pozza, L.; Kuiper, R.P.; Hoogerbrugge, P.M.; Boer, M.L. Den; Leeuwen, F.N. van

    2017-01-01

    Deletions and mutations affecting lymphoid transcription factor IKZF1 (IKAROS) are associated with an increased relapse risk and poor outcome in B-cell precursor acute lymphoblastic leukemia. However, additional genetic events may either enhance or negate the effects of IKZF1 deletions on prognosis.

  6. Characterization of miRNomes in Acute and Chronic Myeloid

    Directory of Open Access Journals (Sweden)

    Qian Xiong

    2014-04-01

    Full Text Available Myeloid leukemias are highly diverse diseases and have been shown to be associated with microRNA (miRNA expression aberrations. The present study involved an in-depth miRNome analysis of two human acute myeloid leukemia (AML cell lines, HL-60 and THP-1, and one human chronic myeloid leukemia (CML cell line, K562, via massively parallel signature sequencing. mRNA expression profiles of these cell lines that were established previously in our lab facilitated an integrative analysis of miRNA and mRNA expression patterns. miRNA expression profiling followed by differential expression analysis and target prediction suggested numerous miRNA signatures in AML and CML cell lines. Some miRNAs may act as either tumor suppressors or oncomiRs in AML and CML by targeting key genes in AML and CML pathways. Expression patterns of cell type-specific miRNAs could partially reflect the characteristics of K562, HL-60 and THP-1 cell lines, such as actin filament-based processes, responsiveness to stimulus and phagocytic activity. miRNAs may also regulate myeloid differentiation, since they usually suppress differentiation regulators. Our study provides a resource to further investigate the employment of miRNAs in human leukemia subtyping, leukemogenesis and myeloid development. In addition, the distinctive miRNA signatures may be potential candidates for the clinical diagnosis, prognosis and treatment of myeloid leukemias.

  7. Genetics Home Reference: chronic myeloid leukemia

    Science.gov (United States)

    ... Home Health Conditions Chronic myeloid leukemia Chronic myeloid leukemia Printable PDF Open All Close All Enable Javascript ... view the expand/collapse boxes. Description Chronic myeloid leukemia is a slow-growing cancer of the blood- ...

  8. Dual effect of LPS on murine myeloid leukemia cells: Pro-proliferation and anti-proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Lingling [Department of Pediatrics, Jingjiang People' s Hospital, Yangzhou University, Jingjiang 214500 (China); Noncoding RNA Center, Yangzhou University, Yangzhou 225001 (China); Zhao, Yingmin [Department of Pediatrics, Jingjiang People' s Hospital, Yangzhou University, Jingjiang 214500 (China); Gu, Xin; Wang, Jijun; Pang, Lei; Zhang, Yanqing; Li, Yaoyao; Jia, Xiaoqin; Wang, Xin [Noncoding RNA Center, Yangzhou University, Yangzhou 225001 (China); Gu, Jian [Department of Hematology, Yangzhou University School of Clinical Medicine, Yangzhou 225001 (China); Yu, Duonan, E-mail: duonan@yahoo.com [Department of Pediatrics, Jingjiang People' s Hospital, Yangzhou University, Jingjiang 214500 (China); Noncoding RNA Center, Yangzhou University, Yangzhou 225001 (China); Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou 225001 (China); Institute of Comparative Medicine, Yangzhou University, Yangzhou 225001 (China); Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou 225001 (China)

    2016-06-10

    Modification of the bone marrow microenvironment is considered as a promising strategy to control leukemic cell proliferation, diseases progression and relapse after treatment. However, due to the diversity and complexity of the cellular and molecular compartments in the leukemic microenvironment, it is extremely difficult to dissect the role of each individual molecule or cell type in vivo. Here we established an in vitro system to dissect the role of lipopolysaccharide (LPS), stromal cells and endothelial cells in the growth of mouse myeloid tumor cells and B-lymphoma cells. We found that either LPS or bone marrow stromal cells as a feeder layer in culture is required for the proliferation of myeloid tumor cells. Surprisingly, the growth of myeloid leukemic cells on stromal cells is strongly inhibited when coupled with LPS in culture. This opposing effect of LPS, a complete switch from pro-proliferation to antitumor growth is due, at least in part, to the rapidly increased production of interleukin 12, Fas ligand and tissue inhibitor of metalloproteinases-2 from stromal cells stimulated by LPS. These results demonstrate that LPS can either facilitate or attenuate tumor cell proliferation, thus changing the disease course of myeloid leukemias through its direct effect or modulation of the tumor microenvironment. - Highlights: • LPS alone in culture is required for the proliferation of murine myeloid tumor cells. • Bone marrow stromal cells as a feeder layer is also required for the proliferation of myeloid tumor cells. • However, the growth of myeloid tumor cells is inhibited when LPS and stromal cells are both available in culture. • Thus LPS can either facilitate or attenuate tumor growth through its direct effect or modulation of tumor microenvironment.

  9. Dual effect of LPS on murine myeloid leukemia cells: Pro-proliferation and anti-proliferation

    International Nuclear Information System (INIS)

    Yu, Lingling; Zhao, Yingmin; Gu, Xin; Wang, Jijun; Pang, Lei; Zhang, Yanqing; Li, Yaoyao; Jia, Xiaoqin; Wang, Xin; Gu, Jian; Yu, Duonan

    2016-01-01

    Modification of the bone marrow microenvironment is considered as a promising strategy to control leukemic cell proliferation, diseases progression and relapse after treatment. However, due to the diversity and complexity of the cellular and molecular compartments in the leukemic microenvironment, it is extremely difficult to dissect the role of each individual molecule or cell type in vivo. Here we established an in vitro system to dissect the role of lipopolysaccharide (LPS), stromal cells and endothelial cells in the growth of mouse myeloid tumor cells and B-lymphoma cells. We found that either LPS or bone marrow stromal cells as a feeder layer in culture is required for the proliferation of myeloid tumor cells. Surprisingly, the growth of myeloid leukemic cells on stromal cells is strongly inhibited when coupled with LPS in culture. This opposing effect of LPS, a complete switch from pro-proliferation to antitumor growth is due, at least in part, to the rapidly increased production of interleukin 12, Fas ligand and tissue inhibitor of metalloproteinases-2 from stromal cells stimulated by LPS. These results demonstrate that LPS can either facilitate or attenuate tumor cell proliferation, thus changing the disease course of myeloid leukemias through its direct effect or modulation of the tumor microenvironment. - Highlights: • LPS alone in culture is required for the proliferation of murine myeloid tumor cells. • Bone marrow stromal cells as a feeder layer is also required for the proliferation of myeloid tumor cells. • However, the growth of myeloid tumor cells is inhibited when LPS and stromal cells are both available in culture. • Thus LPS can either facilitate or attenuate tumor growth through its direct effect or modulation of tumor microenvironment.

  10. Thermoset precursor

    International Nuclear Information System (INIS)

    Yamamoto, Y.

    1983-04-01

    This invention pertains to a distinctive thermoset precursor which is prepared by mixing a resin composition (A) which can be hardened by ionizing radiation, and a resin composition (B) which can be hardened by heat but cannot be hardened by, or is resistant to, ionizing radiation, and by coating or impregnating a molding or other substrate with a sheet or film of this mixture and irradiating this with an ionizing radiation. The principal components of composition (A) and (B) can be the following: (1) an acrylate or methacrylate and an epoxy resin and an epoxy resin hardener; (2) an unsaturated polyester resin and epoxy resin and an epoxy resin hardener; (3) a diacrylate or dimethacrylate or polyethylene glycol and an epoxy resin; (4) an epoxy acrylates or epoxy methacrylate obtained by the addition reaction of epoxy resin and acrylic or methacrylic acid

  11. Myeloid derived suppressor cells as therapeutic target in hematological malignancies

    Directory of Open Access Journals (Sweden)

    Kim eDe Veirman

    2014-12-01

    Full Text Available Myeloid derived suppressor cells (MDSC are a heterogeneous population of immature myeloid cells that accumulate during pathological conditions such as cancer and are associated with a poor clinical outcome. MDSC expansion hampers the host anti-tumor immune response by inhibition of T cell proliferation, cytokine secretion and recruitment of regulatory T cells. In addition, MDSC exert non-immunological functions including the promotion of angiogenesis, tumor invasion and metastasis. Recent years, MDSC are considered as a potential target in solid tumors and hematological malignancies to enhance the effects of currently used immune modulating agents. This review focuses on the characteristics, distribution, functions, cell-cell interactions and targeting of MDSC in hematological malignancies including multiple myeloma, lymphoma and leukemia.

  12. Identification of Reprogrammed Myeloid Cell Transcriptomes in NSCLC.

    Directory of Open Access Journals (Sweden)

    Anna Durrans

    Full Text Available Lung cancer is the leading cause of cancer related mortality worldwide, with non-small cell lung cancer (NSCLC as the most prevalent form. Despite advances in treatment options including minimally invasive surgery, CT-guided radiation, novel chemotherapeutic regimens, and targeted therapeutics, prognosis remains dismal. Therefore, further molecular analysis of NSCLC is necessary to identify novel molecular targets that impact prognosis and the design of new-targeted therapies. In recent years, tumor "activated/reprogrammed" stromal cells that promote carcinogenesis have emerged as potential therapeutic targets. However, the contribution of stromal cells to NSCLC is poorly understood. Here, we show increased numbers of bone marrow (BM-derived hematopoietic cells in the tumor parenchyma of NSCLC patients compared with matched adjacent non-neoplastic lung tissue. By sorting specific cellular fractions from lung cancer patients, we compared the transcriptomes of intratumoral myeloid compartments within the tumor bed with their counterparts within adjacent non-neoplastic tissue from NSCLC patients. The RNA sequencing of specific myeloid compartments (immature monocytic myeloid cells and polymorphonuclear neutrophils identified differentially regulated genes and mRNA isoforms, which were inconspicuous in whole tumor analysis. Genes encoding secreted factors, including osteopontin (OPN, chemokine (C-C motif ligand 7 (CCL7 and thrombospondin 1 (TSP1 were identified, which enhanced tumorigenic properties of lung cancer cells indicative of their potential as targets for therapy. This study demonstrates that analysis of homogeneous stromal populations isolated directly from fresh clinical specimens can detect important stromal genes of therapeutic value.

  13. Recurrence of acute myeloid leukemia in cryptorchid testis: case report

    Energy Technology Data Exchange (ETDEWEB)

    Góes, Luccas Santos Patto de [Hospital do Servidor Público Municipal de São Paulo, São Paulo, SP (Brazil); Lopes, Roberto Iglesias [Hospital do Servidor Público Municipal de São Paulo, São Paulo, SP (Brazil); Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Campos, Octavio Henrique Arcos [Hospital do Servidor Público Municipal de São Paulo, São Paulo, SP (Brazil); Oliveira, Luiz Carlos Neves de; Sant' Anna, Alexandre Crippa; Dall' Oglio, Marcos Francisco; Srougi, Miguel [Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil)

    2014-07-01

    A 23-year-old male with a history of bone marrow transplant for acute myeloid leukemia. He presented a large mass in the right inguinal region 5 years ago. Upon physical examination, right-sided cryptorchidism was observed. The tumor markers alpha-fetoprotein and beta-HCG were within normalcy range and lactate dehydrogenase was raised. Computed tomography of the abdomen and pelvis revealed right testicular mass in contiguity with the inguinal canal to the ipsilateral retroperitoneum, associated with right hydronephrosis. Due to the risk of germ-cell tumor in undescended testicle, the patient underwent radical right orchiectomy. The pathological examination showed recurrence of acute myeloid leukemia in the testis. He was referred to oncology for adjuvant therapy. Our literature review found no similar cases described.

  14. Acute Myeloid Leukemia in Childhood

    OpenAIRE

    Yöntem, Ahmet; Bayram, İbrahim

    2018-01-01

    Acute leukemia is basically divided intoacute lymphoblastic leukemia and acute myeloid leukemia. About 15-20% ofchildhood leukemia is caused by acute myeloid leukemia.AML is classified according to morphological, cytochemical and immunophenotypiccharacteristics. AML patients may present with various clinical signsand symptoms due to leukemic cell infiltration. Age, gender, race, structuralfeatures of the patient and cytogenetic abnormalities are important factorsaffecting prognosis in AML. Th...

  15. Recurrence of acute myeloid leukemia in cryptorchid testis: case report

    OpenAIRE

    Góes, Luccas Santos Patto de; Lopes, Roberto Iglesias; Campos, Octavio Henrique Arcos; Oliveira, Luiz Carlos Neves de; Sant’Anna, Alexandre Crippa; Dall’Oglio, Marcos Francisco; Srougi, Miguel

    2014-01-01

    A 23-year-old male with a history of bone marrow transplant for acute myeloid leukemia. He presented a large mass in the right inguinal region 5 years ago. Upon physical examination, right-sided cryptorchidism was observed. The tumor markers alpha-fetoprotein and beta-HCG were within normalcy range and lactate dehydrogenase was raised. Computed tomography of the abdomen and pelvis revealed right testicular mass in contiguity with the inguinal canal to the ipsilateral retroperitoneum, associat...

  16. Myeloid Sarcoma after Allogenic Stem Cell Transplantation for Acute Myeloid Leukemia: Successful Consolidation Treatment Approaches in Two Patients

    Directory of Open Access Journals (Sweden)

    Silje Johansen

    2018-01-01

    Full Text Available Myeloid sarcoma is an extramedullary (EM manifestation (i.e., manifestation outside the bone marrow of acute myeloid leukemia (AML; it is assumed to be relatively uncommon and can be the only manifestation of leukemia relapse after allogenic stem cell transplantation (allo-SCT. An EM sarcoma can manifest in any part of the body, although preferentially manifesting in immunological sanctuary sites as a single or multiple tumors. The development of myeloid sarcoma after allo-SCT is associated with certain cytogenetic abnormalities, developing of graft versus host disease (GVHD, and treatment with donor lymphocytes infusion (DLI. It is believed that posttransplant myeloid sarcomas develop because the EM sites evade immune surveillance. We present two patients with EM myeloid sarcoma in the breast and epipharynx, respectively, as the only manifestation of leukemia relapse. Both patients were treated with a combination of local and systemic therapy, with successfully longtime disease-free survival. Based on these two case reports, we give an updated review of the literature and discuss the pathogenesis, diagnosis, and treatment of EM sarcoma as the only manifestation of AML relapse after allo-SCT. There are no standard guidelines for the treatment of myeloid sarcomas in allotransplant recipients. In our opinion, the treatment of these patients needs to be individualized and should include local treatment (i.e., radiotherapy combined with systemic therapy (i.e., chemotherapy, immunotherapy, DLI, or retransplantation. The treatment has to consider both the need for sufficient antileukemic efficiency versus the risk of severe complications due to cumulative toxicity.

  17. Cytokine Networks between Innate Lymphoid Cells and Myeloid Cells

    Directory of Open Access Journals (Sweden)

    Arthur Mortha

    2018-02-01

    Full Text Available Innate lymphoid cells (ILCs are an essential component of the innate immune system in vertebrates. They are developmentally rooted in the lymphoid lineage and can diverge into at least three transcriptionally distinct lineages. ILCs seed both lymphoid and non-lymphoid tissues and are locally self-maintained in tissue-resident pools. Tissue-resident ILCs execute important effector functions making them key regulator in tissue homeostasis, repair, remodeling, microbial defense, and anti-tumor immunity. Similar to T lymphocytes, ILCs possess only few sensory elements for the recognition of non-self and thus depend on extrinsic cellular sensory elements residing within the tissue. Myeloid cells, including mononuclear phagocytes (MNPs, are key sentinels of the tissue and are able to translate environmental cues into an effector profile that instructs lymphocyte responses. The adaptation of myeloid cells to the tissue state thus influences the effector program of ILCs and serves as an example of how environmental signals are integrated into the function of ILCs via a tissue-resident immune cell cross talks. This review summarizes our current knowledge on the role of myeloid cells in regulating ILC functions and discusses how feedback communication between ILCs and myeloid cells contribute to stabilize immune homeostasis in order to maintain the healthy state of an organ.

  18. Knockdown of miR-128a induces Lin28a expression and reverts myeloid differentiation blockage in acute myeloid leukemia.

    Science.gov (United States)

    De Luca, Luciana; Trino, Stefania; Laurenzana, Ilaria; Tagliaferri, Daniela; Falco, Geppino; Grieco, Vitina; Bianchino, Gabriella; Nozza, Filomena; Campia, Valentina; D'Alessio, Francesca; La Rocca, Francesco; Caivano, Antonella; Villani, Oreste; Cilloni, Daniela; Musto, Pellegrino; Del Vecchio, Luigi

    2017-06-01

    Lin28A is a highly conserved RNA-binding protein that concurs to control the balance between stemness and differentiation in several tissue lineages. Here, we report the role of miR-128a/Lin28A axis in blocking cell differentiation in acute myeloid leukemia (AML), a genetically heterogeneous disease characterized by abnormally controlled proliferation of myeloid progenitor cells accompanied by partial or total inability to undergo terminal differentiation. First, we found Lin28A underexpressed in blast cells from AML patients and AML cell lines as compared with CD34+ normal precursors. In vitro transfection of Lin28A in NPM1-mutated OCI-AML3 cell line significantly triggered cell-cycle arrest and myeloid differentiation, with increased expression of macrophage associate genes (EGR2, ZFP36 and ANXA1). Furthermore, miR-128a, a negative regulator of Lin28A, was found overexpressed in AML cells compared with normal precursors, especially in acute promyelocytic leukemia (APL) and in 'AML with maturation' (according to 2016 WHO classification of myeloid neoplasms and acute leukemia). Its forced overexpression by lentiviral infection in OCI-AML3 downregulated Lin28A with ensuing repression of macrophage-oriented differentiation. Finally, knockdown of miR-128a in OCI-AML3 and in APL/AML leukemic cells (by transfection and lentiviral infection, respectively) induced myeloid cell differentiation and increased expression of Lin28A, EGR2, ZFP36 and ANXA1, reverting myeloid differentiation blockage. In conclusion, our findings revealed a new mechanism for AML differentiation blockage, suggesting new strategies for AML therapy based upon miR-128a inhibition.

  19. Low pretreatment levels of myeloid-related protein-8/14 and C-reactive protein predict poor adherence to treatment with tumor necrosis factor inhibitors in juvenile idiopathic arthritis

    DEFF Research Database (Denmark)

    Alberdi-Saugstrup, Mikel; Nielsen, Susan; Mathiessen, Pernille

    2017-01-01

    inhibitor treatment in JIA patients naive to biologics and investigated if baseline myeloid-related protein (MRP)-8/14 and C-reactive protein (CRP) were predictive of treatment response. One hundred fifty-two patients were included in a unicenter observational, prospective study from 2002 to 2015, excluding......, and 90 were achieved by 61, 55, 38, and 10 % of the patients, and 23 % achieved a status of ID. Treatment adherence: 51 % withdrew from treatment due to lack of clinical effect, while 32 % continued treatment or withdrew due to disease remission. Increased MRP-8/14 concentrations at treatment initiation...... was associated with ID after 1 year (OR 1.55, CI 1.06–2.25, p = 0.02). Treatment withdrawal due to lack of effect was associated with low baseline levels of both MRP-8/14 (685 vs. 1235 ng/ml, p 

  20. A Case of Acute Myeloid Leukemia (FAB M2 with Inversion 16 Who Presented with Pelvic Myeloid Sarcoma

    Directory of Open Access Journals (Sweden)

    Mustafa Çakan

    2014-01-01

    Full Text Available Acute leukemias are the most common childhood cancer in all age groups. Acute myeloid leukemias (AML constitute about 15–20% of acute leukemias. Fatigability, pallor, fever, and bleeding are the most common presenting symptoms of AML. Hepatosplenomegaly and lymphadenopathy are commonly encountered during physical examination. In rare instances eruptions due to skin involvement and localized tumor masses (myeloid sarcoma may be found. Myeloid sarcoma is especially seen in AML-M2 subtype. By cytogenetic analysis, in AML-M2 subtype t(8;21 is often seen and it is more probable to find inversion 16 in AML-M4Eos subtype. Herein, we present a 15-year-old girl whose initial symptom was abdominal pain for three days and her pathological sign was a large abdominal mass which was verified by imaging studies and diagnosed as myeloid sarcoma by biopsy. On bone marrow examination, she had diagnosis of AML-M2 and by cytogenetic analysis inversion 16 was positive. She was treated with AML-BFM 2004 protocol and she is being followed up in remission on her ninth month of the maintenance therapy.

  1. Myeloid-Derived Suppressor Cells and Therapeutic Strategies in Cancer

    Directory of Open Access Journals (Sweden)

    Hiroshi Katoh

    2015-01-01

    Full Text Available Development of solid cancer depends on escape from host immunosurveillance. Various types of immune cells contribute to tumor-induced immune suppression, including tumor associated macrophages, regulatory T cells, type 2 NKT cells, and myeloid-derived suppressor cells (MDSCs. Growing body of evidences shows that MDSCs play pivotal roles among these immunosuppressive cells in multiple steps of cancer progression. MDSCs are immature myeloid cells that arise from myeloid progenitor cells and comprise a heterogeneous immune cell population. MDSCs are characterized by the ability to suppress both adaptive and innate immunities mainly through direct inhibition of the cytotoxic functions of T cells and NK cells. In clinical settings, the number of circulating MDSCs is associated with clinical stages and response to treatment in several cancers. Moreover, MDSCs are reported to contribute to chemoresistant phenotype. Collectively, targeting MDSCs could potentially provide a rationale for novel treatment strategies in cancer. This review summarizes recent understandings of MDSCs in cancer and discusses promissing clinical approaches in cancer patients.

  2. IFN regulatory factor 8 represses GM-CSF expression in T cells to affect myeloid cell lineage differentiation.

    Science.gov (United States)

    Paschall, Amy V; Zhang, Ruihua; Qi, Chen-Feng; Bardhan, Kankana; Peng, Liang; Lu, Geming; Yang, Jianjun; Merad, Miriam; McGaha, Tracy; Zhou, Gang; Mellor, Andrew; Abrams, Scott I; Morse, Herbert C; Ozato, Keiko; Xiong, Huabao; Liu, Kebin

    2015-03-01

    During hematopoiesis, hematopoietic stem cells constantly differentiate into granulocytes and macrophages via a distinct differentiation program that is tightly controlled by myeloid lineage-specific transcription factors. Mice with a null mutation of IFN regulatory factor 8 (IRF8) accumulate CD11b(+)Gr1(+) myeloid cells that phenotypically and functionally resemble tumor-induced myeloid-derived suppressor cells (MDSCs), indicating an essential role of IRF8 in myeloid cell lineage differentiation. However, IRF8 is expressed in various types of immune cells, and whether IRF8 functions intrinsically or extrinsically in regulation of myeloid cell lineage differentiation is not fully understood. In this study, we report an intriguing finding that, although IRF8-deficient mice exhibit deregulated myeloid cell differentiation and resultant accumulation of CD11b(+)Gr1(+) MDSCs, surprisingly, mice with IRF8 deficiency only in myeloid cells exhibit no abnormal myeloid cell lineage differentiation. Instead, mice with IRF8 deficiency only in T cells exhibited deregulated myeloid cell differentiation and MDSC accumulation. We further demonstrated that IRF8-deficient T cells exhibit elevated GM-CSF expression and secretion. Treatment of mice with GM-CSF increased MDSC accumulation, and adoptive transfer of IRF8-deficient T cells, but not GM-CSF-deficient T cells, increased MDSC accumulation in the recipient chimeric mice. Moreover, overexpression of IRF8 decreased GM-CSF expression in T cells. Our data determine that, in addition to its intrinsic function as an apoptosis regulator in myeloid cells, IRF8 also acts extrinsically to repress GM-CSF expression in T cells to control myeloid cell lineage differentiation, revealing a novel mechanism that the adaptive immune component of the immune system regulates the innate immune cell myelopoiesis in vivo. Copyright © 2015 by The American Association of Immunologists, Inc.

  3. [Acute myeloid Leukemia].

    Science.gov (United States)

    Braess, Jan

    2016-11-01

    Acute myeloid leukemia (AML) has been genetically characterized extensively and can now be subdivided into 9 to 11 pathogenetically different subtypes according to their profile of driver mutations. In clinical practice karyotyping and molecular analysis of NPM1, cEBPa and FLT3-ITD are required for treatment stratification and potentially genotype specific treatment. Some markers such as NPM1 not only offer prognostic information but can also serve as markers of minimal residual disease and thus have the potential to guide therapy in the future.The basis of curative treatment is intensive combination chemotherapy comprizing cytarabine and an anthracycline ("7 + 3" regimen). The prolonged duration of aplasia can be reduced significantly by accelerated therapy ("S-HAM" regimen). Following achievement of a complete remission patients with a low risk of relapse - based on genetic and clinical features - receive chemotherapy based consolidation therapy whereas high risk patients - and potentially also those with an intermediate risk - receive an allogeneic stem cell transplantation. Whereas adding the rather unspecific tyrosinekinase inhibitor sorafenib to standard treatment in unselected AML patients has not improved overall survival (OS), the addition of midostaurin to standard therapy in the selected group FLT3 mutated patients has resulted in a moderate but significant OS benefit.Real world data show that in patients below 50 years a cure rate of ca. 50 % can be achieved. However less than 10 % of patients above the age of 70 will be alive after five years even after intensive treatment. Therefore when curative and intensive treatment is deemed impossible the therapeutic standard in elderly and unfit patients used to be low-dose cytarabine with an average OS of 4 months. This has now been replaced by a new standard of care of hypomethylating agents - azacytidine and decitabine - which both achieve higher remission rates and show strong trends towards a prolonged OS

  4. Drafting the proteome landscape of myeloid-derived suppressor cells.

    Science.gov (United States)

    Gato, María; Blanco-Luquin, Idoia; Zudaire, Maribel; de Morentin, Xabier Martínez; Perez-Valderrama, Estela; Zabaleta, Aintzane; Kochan, Grazyna; Escors, David; Fernandez-Irigoyen, Joaquín; Santamaría, Enrique

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells that are defined by their myeloid origin, immature state, and ability to potently suppress T-cell responses. They regulate immune responses and the population significantly increases in the tumor microenvironment of patients with glioma and other malignant tumors. For their study, MDSCs are usually isolated from the spleen or directly of tumors from a large number of tumor-bearing mice although promising ex vivo differentiated MDSC production systems have been recently developed. During the last years, proteomics has emerged as a powerful approach to analyze MDSCs proteomes using shotgun-based mass spectrometry (MS), providing functional information about cellular homeostasis and metabolic state at a global level. Here, we will revise recent proteome profiling studies performed in MDSCs from different origins. Moreover, we will perform an integrative functional analysis of the protein compilation derived from these large-scale proteomic studies in order to obtain a comprehensive view of MDSCs biology. Finally, we will also discuss the potential application of high-throughput proteomic approaches to study global proteome dynamics and post-translational modifications (PTMs) during the differentiation process of MDSCs that will greatly boost the identification of novel MDSC-specific therapeutic targets to apply in cancer immunotherapy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Impact Of Mutation-derived Antigens In Immune Recognition Of Hematological Malignancies, Specifically Myeloid Dysplastic Syndromes (MDS)

    DEFF Research Database (Denmark)

    Saini, Sunil Kumar; Dorfmüller, S.; Bjerregaard, Anne-Mette

    2016-01-01

    Mutation-derived neoepitopes have been suggested as a major component for immune recognition of solid tumors with a high mutational load, e.g. Melanoma and Non-Small-Cell Lung Cancer (NSCLC). Myelodysplastic syndromes (MDS) are a heterogeneous group of myeloid neoplasms characterized by increasing...... to the generation of tumor-specific neoepitopes....

  6. Gastric myeloid sarcoma - A report of two cases addressing diagnostic issues

    Directory of Open Access Journals (Sweden)

    Viijaya Gadage

    2011-01-01

    Full Text Available Presented herein are two cases of gastric myeloid sarcoma to highlight the diagnostic conundrum and pointers toward accurate diagnosis in such instances. The first case was a 35-year-old man with an ulceronodular mass in the body of stomach. Multiple biopsies were reported as inconclusive chiefly due to the fact that the lamina propria infiltrate was innocuous and failed to mark with CD20 or CD3. Subsequently the patient had extensive disseminated disease which was recognized as myeloid sarcoma but patient succumbed to the disease soon. The second case was a 25-year-old boy who presented with symptoms of gastric outlet obstruction since 6 months. An endoscopy revealed diffuse gastric wall thickening which on biopsy was recognized as myeloid sarcoma but patient developed intestinal obstruction and required ileal resection for symptomatic relief, postoperative patient never recovered and succumbed to the disease. Both patients had marrow involvement by acute myeloid leukemia (AML-M2 with a normal leukocyte count in peripheral blood. Thus gastric myeloid sarcomas are prone to a delayed diagnosis chiefly due to rarity. Pathologist should think of myeloid sarcoma in a hematolymphoid appearing tumor in stomach that is CD20, CD3 negative, has avid Ki67 and shows an infiltrate chiefly centered in lamina propria.

  7. Characterization of miRNomes in acute and chronic myeloid leukemia cell lines.

    Science.gov (United States)

    Xiong, Qian; Yang, Yadong; Wang, Hai; Li, Jie; Wang, Shaobin; Li, Yanming; Yang, Yaran; Cai, Kan; Ruan, Xiuyan; Yan, Jiangwei; Hu, Songnian; Fang, Xiangdong

    2014-04-01

    Myeloid leukemias are highly diverse diseases and have been shown to be associated with microRNA (miRNA) expression aberrations. The present study involved an in-depth miRNome analysis of two human acute myeloid leukemia (AML) cell lines, HL-60 and THP-1, and one human chronic myeloid leukemia (CML) cell line, K562, via massively parallel signature sequencing. mRNA expression profiles of these cell lines that were established previously in our lab facilitated an integrative analysis of miRNA and mRNA expression patterns. miRNA expression profiling followed by differential expression analysis and target prediction suggested numerous miRNA signatures in AML and CML cell lines. Some miRNAs may act as either tumor suppressors or oncomiRs in AML and CML by targeting key genes in AML and CML pathways. Expression patterns of cell type-specific miRNAs could partially reflect the characteristics of K562, HL-60 and THP-1 cell lines, such as actin filament-based processes, responsiveness to stimulus and phagocytic activity. miRNAs may also regulate myeloid differentiation, since they usually suppress differentiation regulators. Our study provides a resource to further investigate the employment of miRNAs in human leukemia subtyping, leukemogenesis and myeloid development. In addition, the distinctive miRNA signatures may be potential candidates for the clinical diagnosis, prognosis and treatment of myeloid leukemias. Copyright © 2014. Production and hosting by Elsevier Ltd.

  8. Identification of a myeloid-derived suppressor cell cystatin-like protein that inhibits metastasis

    Science.gov (United States)

    Boutté, Angela M.; Friedman, David B.; Bogyo, Matthew; Min, Yongfen; Yang, Li; Lin, P. Charles

    2011-01-01

    Myeloid-derived suppressor cells (MDSCs) are significantly increased in cancer patients and tumor bearing-animals. MDSCs infiltrate into tumors and promote tumor invasion and metastasis. To identify the mediator responsible for the prometastatic property of MDSCs, we used proteomics. We found neutrophilic granule protein (NGP) was decreased >2-fold in MDSCs from metastatic 4T1 tumor-bearing mice compared to nonmetastatic 67NR controls. NGP mRNA levels were decreased in bone marrow and in tumor-infiltrating MDSCs by 45 and 66%, respectively, in 4T1 tumor-bearing mice compared to 67NR controls. Interestingly, 4T1-conditioned medium reduced myeloid cell NGP expression by ∼40%, suggesting that a secreted factor mediates gene reduction. Sequence analysis shows a putative cystatin domain in NGP, and biochemical analysis confirms NGP a novel cathepsin inhibitor. It inhibited cathepsin B activity by nearly 40% in vitro. NGP expression in 4T1 tumor cells suppressed cell invasion, delayed primary tumor growth, and greatly reduced lung metastasis in vivo. A 2.8-fold reduction of cathepsin activity was found in tumors expressing NGP compared to controls. NGP significantly reduced tumor angiogenesis to 12.6 from 19.6 and lymphangiogenesis to 4.6 from 9.1 vessels/field. Necrosis was detectable only in NGP-expressing tumors, and the number of apoptotic cells increased to 22.4 from 8.3 in controls. Taken together, this study identifies a negative regulator of tumor metastasis in MDSCs, NGP, which is down-regulated in metastatic conditions. The finding suggests that malignant tumors promote invasion/metastasis not only through up-regulation of proteases but also down-regulation of protease inhibitors.—Boutté, A. M., Friedman, D. B., Bogyo, M., Min, Y., Yang, L., Lin, P. C. Identification of a myeloid-derived suppressor cell cystatin-like protein that inhibits metastasis. PMID:21518852

  9. Single institute study of FLT3 mutation in acute myeloid leukemia ...

    Indian Academy of Sciences (India)

    FLT3/ITD mutation; p53 tumor suppressor gene; NRAS gene; acute myeloid leukemia (AML); tetraploidy/near-tetraploidy; human genetics. ... Institute of Hematology, Medical School, 11000 Belgrade, Serbia; Institute of Molecular Genetics and Genetic Engineering, Medical School, 11000 Belgrade, Serbia; Institute of ...

  10. Myeloid derived suppressor cells-An overview of combat strategies to increase immunotherapy efficacy

    NARCIS (Netherlands)

    Draghiciu, Oana; Lubbers, Joyce; Nijman, Hans W.; Daemen, Toos

    2015-01-01

    Myeloid-derived suppressor cells (MDSCs) contribute to tumor-mediated immune escape and negatively correlate with overall survival of cancer patients. Nowadays, a variety of methods to target MDSCs are being investigated. Based on the intervention stage of MDSCs, namely development, expansion and

  11. Primary Vaginal Myeloid Sarcoma: A Rare Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Gaurang Modi

    2015-01-01

    Full Text Available Myeloid sarcoma (chloroma, granulocytic sarcoma, or extramedullary myeloid tumour is an extramedullary mass forming neoplasm composed of myeloid precursor cells. It is usually associated with myeloproliferative disorders but very rarely may precede the onset of leukemia. Here, we are presenting a rare case of primary vaginal myeloid sarcoma in a geriatric female patient without initial presentation of acute myeloid leukemia (AML. A 68-year-old female patient with ECOG Performance Score of 1 presented with pervaginal bleeding for 20 days. On colposcopic examination, she was found to have mass in the anterior fornix of vagina. A punch biopsy specimen revealed chloromatous infiltration of the vagina. LCA (leukocyte common antigen, MPO (myeloperoxidase, and c-kit were strongly positive on IHC (immunohistochemistry. The patient’s routine blood investigations were normal including peripheral smear, lactose dehydrogenase, uric acid, 2D echocardiography, conventional cytogenetics, bone marrow aspiration, and biopsy. The patient was given 4 cycles of decitabine (Decitex, manufactured by Sun Pharmaceutical Industries Limited, India, 20 mg/m2 for 5 days at an interval of 28 days. There was a partial response to decitabine according to RECIST criteria. As decitabine therapy was well tolerated, we are continuing in the same way until disease progression without any complications. The patient is undergoing regular follow-up at our centre.

  12. Genetics Home Reference: cytogenetically normal acute myeloid leukemia

    Science.gov (United States)

    ... normal acute myeloid leukemia Cytogenetically normal acute myeloid leukemia Printable PDF Open All Close All Enable Javascript ... expand/collapse boxes. Description Cytogenetically normal acute myeloid leukemia (CN-AML) is one form of a cancer ...

  13. Genetics Home Reference: core binding factor acute myeloid leukemia

    Science.gov (United States)

    ... acute myeloid leukemia Core binding factor acute myeloid leukemia Printable PDF Open All Close All Enable Javascript ... collapse boxes. Description Core binding factor acute myeloid leukemia (CBF-AML) is one form of a cancer ...

  14. Azelaic Acid Exerts Antileukemic Activity in Acute Myeloid Leukemia.

    Science.gov (United States)

    Pan, Yunbao; Liu, Dong; Wei, Yongchang; Su, Dan; Lu, Chenyang; Hu, Yanchao; Zhou, Fuling

    2017-01-01

    Acute myeloid leukemia (AML) is an acute leukemia common in most adults; its prevalence intensifies with age. The overall survival of AML is very poor because of therapeutic resistance. Azelaic acid (AZA) is non-toxic, non-teratogenic, and non-mutagenic and its antitumor effect on various tumor cells is well established; Nonetheless, its therapeutic effects in AML cells are largely unknown. In this study, it was shown that AZA significantly inhibits the cell viability and induces apoptosis in AML cells in a dose-dependent manner. Additionally, AZA suppressed the expression of phosphorylated Akt, Jab1 and Trx, and this suppression was enhanced by treatment with Jab1 siRNA. Furthermore, AZA sensitized AML cells to Ara-c chemotherapy. The suppressive effect of AZA on tumor growth was examined in vivo by subcutaneously inoculated AML cells in a tumor model using nude mice. These findings indicate that AZA is useful as an effective ingredient in antineoplastic activity.

  15. Clinical impact of the immunome in lymphoid malignancies: the role of Myeloid-Derived Suppressor Cells

    Directory of Open Access Journals (Sweden)

    Calogero eVetro

    2015-05-01

    Full Text Available The better definition of the mutual sustainment between neoplastic cells and immune system has been translated from the bench to the bedside acquiring value as prognostic factor. Additionally, it represents a promising tool for improving therapeutic strategies. In this context, myeloid-derived suppressor cells have gained a central role in tumor developing with consequent therapeutic implications. In this review, we will focus on the biological and clinical impact of the study of myeloid-derived suppressor cells in the settings of lymphoid malignancies.

  16. The anti-tumor effect of the quinoline-3-carboxamide tasquinimod: blockade of recruitment of CD11b+ Ly6Chi cells to tumor tissue reduces tumor growth

    International Nuclear Information System (INIS)

    Deronic, Adnan; Leanderson, Tomas; Ivars, Fredrik

    2016-01-01

    Previous work has demonstrated immunomodulatory, anti-tumor, anti-metastatic and anti-angiogenic effects of the small molecule quinoline-3-carboxamide tasquinimod in pre-clinical cancer models. To better understand the anti-tumor effects of tasquinimod in transplantable tumor models, we have evaluated the impact of the compound both on recruitment of myeloid cells to tumor tissue and on tumor-induced myeloid cell expansion as these cells are known to promote tumor development. Mice bearing subcutaneous 4 T1 mammary carcinoma tumors were treated with tasquinimod in the drinking water. A BrdU-based flow cytometry assay was utilized to assess the impact of short-term tasquinimod treatment on myeloid cell recruitment to tumors. Additionally, long-term treatment was performed to study the anti-tumor effect of tasquinimod as well as its effects on splenic myeloid cells and their progenitors. Myeloid cell populations were also immune-depleted by in vivo antibody treatment. Short-term tasquinimod treatment did not influence the proliferation of splenic Ly6C hi and Ly6G hi cells, but instead reduced the influx of Ly6C hi cells to the tumor. Treatment with tasquinimod for various periods of time after tumor inoculation revealed that the anti-tumor effect of this compound mainly operated during the first few days of tumor growth. Similar to tasquinimod treatment, antibody-mediated depletion of Ly6C hi cells within that same time frame, caused reduced tumor growth, thereby confirming a significant role for these cells in tumor development. Additionally, long-term tasquinimod treatment reduced the splenomegaly and expansion of splenic myeloid cells during a later phase of tumor development. In this phase, tasquinimod normalized the tumor-induced alterations in myeloerythroid progenitor cells in the spleen but had only limited impact on the same populations in the bone marrow. Our results indicate that tasquinimod treatment reduces tumor growth by operating early after tumor

  17. Precursors and BRST symmetry

    Science.gov (United States)

    de Boer, Jan; Freivogel, Ben; Kabir, Laurens; Lokhande, Sagar F.

    2017-07-01

    In the AdS/CFT correspondence, bulk information appears to be encoded in the CFT in a redundant way. A local bulk field corresponds to many different non-local CFT operators (precursors). We recast this ambiguity in the language of BRST symmetry, and propose that in the large N limit, the difference between two precursors is a BRST exact and ghost-free term. This definition of precursor ambiguities has the advantage that it generalizes to any gauge theory. Using the BRST formalism and working in a simple model with global symmetries, we re-derive a precursor ambiguity appearing in earlier work. Finally, we show within this model that the obtained ambiguity has the right number of parameters to explain the freedom to localize precursors within different spatial regions of the boundary order by order in the large N expansion.

  18. The Role and Potential Therapeutic Application of Myeloid-Derived Suppressor Cells in Allo- and Autoimmunity

    Directory of Open Access Journals (Sweden)

    Qi Zhang

    2015-01-01

    Full Text Available Myeloid-derived suppressor cells (MDSCs are a heterogeneous population of cells that consists of myeloid progenitor cells and immature myeloid cells. They have been identified as a cell population that may affect the activation of CD4+ and CD8+ T-cells to regulate the immune response negatively, which makes them attractive targets for the treatment of transplantation and autoimmune diseases. Several studies have suggested the potential suppressive effect of MDSCs on allo- and autoimmune responses. Conversely, MDSCs have also been found at various stages of differentiation, accumulating during pathological situations, not only during tumor development but also in a variety of inflammatory immune responses, bone marrow transplantation, and some autoimmune diseases. These findings appear to be contradictory. In this review, we summarize the roles of MDSCs in different transplantation and autoimmune diseases models as well as the potential to target these cells for therapeutic benefit.

  19. CD30 ligand is frequently expressed in human hematopoietic malignancies of myeloid and lymphoid origin.

    Science.gov (United States)

    Gattei, V; Degan, M; Gloghini, A; De Iuliis, A; Improta, S; Rossi, F M; Aldinucci, D; Perin, V; Serraino, D; Babare, R; Zagonel, V; Gruss, H J; Carbone, A; Pinto, A

    1997-03-15

    evidenced that, in addition to circulating and tonsil B cells, a fraction of bone marrow myeloid precursors, erythroblasts, and subsets of megakaryocytes also express CD30L. Finally, we have shown that native CD30L expressed on primary leukemic cells is functionally active by triggering both mitogenic and antiproliferative signals on CD30+ target cells. As opposed to CD30L, only 10 of 181 primary tumors expressed CD30 mRNA or protein, rendering therefore unlikely a CD30-CD30L autocrine loop in human hematopoietic neoplasms. Taken together, our data indicate that CD30L is widely expressed from early to late stages of human hematopoiesis and suggest a regulatory role for this molecule in the interactions of normal and malignant hematopoietic cells with CD30+ immune effectors and/or microenvironmental accessory cells.

  20. Targeting myeloid cells using nanoparticles to improve cancer immunotherapy.

    Science.gov (United States)

    Amoozgar, Zohreh; Goldberg, Michael S

    2015-08-30

    While nanoparticles have traditionally been used to deliver cytotoxic drugs directly to tumors to induce cancer cell death, emerging data suggest that nanoparticles are likely to generate a larger impact on oncology through the delivery of agents that can stimulate antitumor immunity. Tumor-targeted nanocarriers have generally been used to localize chemotherapeutics to tumors and thus decrease off-target toxicity while enhancing efficacy. Challengingly, tumor heterogeneity and evolution render tumor-intrinsic approaches likely to succumb to relapse. The immune system offers exquisite specificity, cytocidal potency, and long-term activity that leverage an adaptive memory response. For this reason, the ability to manipulate immune cell specificity and function would be desirable, and nanoparticles represent an exciting means by which to perform such manipulation. Dendritic cells and tumor-associated macrophages are cells of the myeloid lineage that function as natural phagocytes, so they naturally take up nanoparticles. Dendritic cells direct the specificity and potency of cellular immune responses that can be targeted for cancer vaccines. Herein, we discuss the specific criteria needed for efficient vaccine design, including but not limited to the route of administration, size, morphology, surface charge, targeting ligands, and nanoparticle composition. In contrast, tumor-associated macrophages are critical mediators of immunosuppression whose trans-migratory abilities can be exploited to localize therapeutics to the tumor core and which can be directly targeted for elimination or for repolarization to a tumor suppressive phenotype. It is likely that a combination of targeting dendritic cells to stimulate antitumor immunity and tumor-associated macrophages to reduce immune suppression will impart significant benefits and result in durable antitumor responses. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Tumor-reactive immune cells protect against metastatic tumor and induce immunoediting of indolent but not quiescent tumor cells.

    Science.gov (United States)

    Payne, Kyle K; Keim, Rebecca C; Graham, Laura; Idowu, Michael O; Wan, Wen; Wang, Xiang-Yang; Toor, Amir A; Bear, Harry D; Manjili, Masoud H

    2016-09-01

    Two major barriers to cancer immunotherapy include tumor-induced immune suppression mediated by myeloid-derived suppressor cells and poor immunogenicity of the tumor-expressing self-antigens. To overcome these barriers, we reprogrammed tumor-immune cell cross-talk by combined use of decitabine and adoptive immunotherapy, containing tumor-sensitized T cells and CD25(+) NKT cells. Decitabine functioned to induce the expression of highly immunogenic cancer testis antigens in the tumor, while also reducing the frequency of myeloid-derived suppressor cells and the presence of CD25(+) NKT cells rendered T cells, resistant to remaining myeloid-derived suppressor cells. This combinatorial therapy significantly prolonged survival of animals bearing metastatic tumor cells. Adoptive immunotherapy also induced tumor immunoediting, resulting in tumor escape and associated disease-related mortality. To identify a tumor target that is incapable of escape from the immune response, we used dormant tumor cells. We used Adriamycin chemotherapy or radiation therapy, which simultaneously induce tumor cell death and tumor dormancy. Resultant dormant cells became refractory to additional doses of Adriamycin or radiation therapy, but they remained sensitive to tumor-reactive immune cells. Importantly, we discovered that dormant tumor cells contained indolent cells that expressed low levels of Ki67 and quiescent cells that were Ki67 negative. Whereas the former were prone to tumor immunoediting and escape, the latter did not demonstrate immunoediting. Our results suggest that immunotherapy could be highly effective against quiescent dormant tumor cells. The challenge is to develop combinatorial therapies that could establish a quiescent type of tumor dormancy, which would be the best target for immunotherapy. © The Author(s).

  2. Earthquakes: hydrogeochemical precursors

    Science.gov (United States)

    Ingebritsen, Steven E.; Manga, Michael

    2014-01-01

    Earthquake prediction is a long-sought goal. Changes in groundwater chemistry before earthquakes in Iceland highlight a potential hydrogeochemical precursor, but such signals must be evaluated in the context of long-term, multiparametric data sets.

  3. Monocytes Differentiate to Immune Suppressive Precursors of Metastasis-Associated Macrophages in Mouse Models of Metastatic Breast Cancer

    Directory of Open Access Journals (Sweden)

    Takanori Kitamura

    2018-01-01

    Full Text Available Metastasis-associated macrophages (MAMs play pivotal roles in breast cancer metastasis by promoting extravasation and survival of metastasizing cancer cells. In a metastatic breast cancer mouse model, we previously reported that circulating classical monocytes (C-MOs preferentially migrated into the tumor-challenged lung where they differentiated into MAMs. However, the fate and characteristics of C-MOs in the metastatic site has not been defined. In this study, we identified that adoptively transferred C-MOs (F4/80lowCD11b+Ly6C+ differentiated into a distinct myeloid cell population that is characterized as F4/80highCD11bhighLy6Chigh and gives rise to MAMs (F4/80lowCD11bhighLy6Clow within 18 h after migration into the metastatic lung. In mouse models of breast cancer, the CD11bhighLy6Chigh MAM precursor cells (MAMPCs were commonly found in the metastatic lung, and their accumulation was increased during metastatic tumor growth. The morphology and gene expression profile of MAMPCs were distinct from C-MOs and had greater similarity to MAMs. For example MAMPCs expressed mature macrophage markers such as CD14, CD36, CD64, and CD206 at comparable levels with MAMs, suggesting that MAMPCs have committed to a macrophage lineage in the tumor microenvironment. MAMPCs also expressed higher levels of Arg1, Hmox1, and Stab1 than C-MOs to a comparable level to MAMs. Expression of these MAM-associated genes in MAMPCs was reduced by genetic deletion of colony-stimulating factor 1 receptor (CSF1R. On the other hand, transient CSF1R blockade did not reduce the number of MAMPCs in the metastatic site, suggesting that CSF1 signaling is active in MAMPCs but is not required for their accumulation. Functionally MAMPCs suppressed the cytotoxicity of activated CD8+ T cells in vitro in part through superoxide production. Overall, our results indicate that immediately following migration into the metastatic tumors C-MOs differentiate into immunosuppressive cells that

  4. Amphibian tachykinin precursor.

    Science.gov (United States)

    Li, Jianxu; Liu, Tongguang; Xu, Xueqing; Wang, Xu; Wu, Min; Yang, Hailong; Lai, Ren

    2006-12-01

    The precursor of amphibian tachykinin has not been found although more than 30 tachykinins have been isolated from amphibians since 1964. In this report, two tachykinin-like peptides are identified from the skin secretions of the frog, Odorrana grahami. Their amino acid sequences are DDTEDLANKFIGLM-NH(2) (named tachykinin OG1) and DDASDRAKKFYGLM-NH(2) that is the same with ranamargarin found in Rana margaretae, respectively, with a conserved FXGLM-NH(2) C-terminal consensus motif. By cDNA cloning, their precursors were screened from the skin cDNA library of O. grahami. The precursors are composed of 61 amino acid (aa) residues including a signal peptide followed by an acidic spacer peptide and one copy of mature tachykinin-like peptide. Their overall structure is different from structures of other tachykinin precursors such as human protachykinin 1 precursor containing 143 aa including one copy of substance P (SP) and neurokinin A (NKA), and ascidian tachykinin 1 precursor containing 164 aa including two copies of tachykinin-like peptides. The current results demonstrate that the biosynthesis mode of tachykinins in amphibians is different from other animals.

  5. Technical Advance: Transcription factor, promoter, and enhancer utilization in human myeloid cells.

    Science.gov (United States)

    Joshi, Anagha; Pooley, Christopher; Freeman, Tom C; Lennartsson, Andreas; Babina, Magda; Schmidl, Christian; Geijtenbeek, Teunis; Michoel, Tom; Severin, Jessica; Itoh, Masayoshi; Lassmann, Timo; Kawaji, Hideya; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R R; Rehli, Michael; Hume, David A

    2015-05-01

    The generation of myeloid cells from their progenitors is regulated at the level of transcription by combinatorial control of key transcription factors influencing cell-fate choice. To unravel the global dynamics of this process at the transcript level, we generated transcription profiles for 91 human cell types of myeloid origin by use of CAGE profiling. The CAGE sequencing of these samples has allowed us to investigate diverse aspects of transcription control during myelopoiesis, such as identification of novel transcription factors, miRNAs, and noncoding RNAs specific to the myeloid lineage. We further reconstructed a transcription regulatory network by clustering coexpressed transcripts and associating them with enriched cis-regulatory motifs. With the use of the bidirectional expression as a proxy for enhancers, we predicted over 2000 novel enhancers, including an enhancer 38 kb downstream of IRF8 and an intronic enhancer in the KIT gene locus. Finally, we highlighted relevance of these data to dissect transcription dynamics during progressive maturation of granulocyte precursors. A multifaceted analysis of the myeloid transcriptome is made available (www.myeloidome.roslin.ed.ac.uk). This high-quality dataset provides a powerful resource to study transcriptional regulation during myelopoiesis and to infer the likely functions of unannotated genes in human innate immunity. © The Author(s).

  6. Cytomegalovirus immune evasion of myeloid lineage cells.

    Science.gov (United States)

    Brinkmann, Melanie M; Dağ, Franziska; Hengel, Hartmut; Messerle, Martin; Kalinke, Ulrich; Čičin-Šain, Luka

    2015-06-01

    Cytomegalovirus (CMV) evades the immune system in many different ways, allowing the virus to grow and its progeny to spread in the face of an adverse environment. Mounting evidence about the antiviral role of myeloid immune cells has prompted the research of CMV immune evasion mechanisms targeting these cells. Several cells of the myeloid lineage, such as monocytes, dendritic cells and macrophages, play a role in viral control, but are also permissive for CMV and are naturally infected by it. Therefore, CMV evasion of myeloid cells involves mechanisms that qualitatively differ from the evasion of non-CMV-permissive immune cells of the lymphoid lineage. The evasion of myeloid cells includes effects in cis, where the virus modulates the immune signaling pathways within the infected myeloid cell, and those in trans, where the virus affects somatic cells targeted by cytokines released from myeloid cells. This review presents an overview of CMV strategies to modulate and evade the antiviral activity of myeloid cells in cis and in trans.

  7. Omacetaxine Mepesuccinate for Chronic Myeloid Leukemia.

    Science.gov (United States)

    Rosshandler, Yasmin; Shen, Ann Q; Cortes, Jorge; Khoury, Hanna Jean

    2016-05-01

    Omacetaxine mepesuccinate is approved by the Food and Drug Administration in the United States for the treatment of chronic myeloid leukemia in chronic or accelerated phase resistant to two or more tyrosine kinase inhibitors. This review summarizes the mode of action, pharmacokinetics, efficacy and safety of omacetaxine mepesuccinate. Omacetaxine mepesuccinate has activity in chronic myeloid leukemia, especially in the chronic phase, regardless of the presence of ABL1 kinase domain mutations. Omacetaxine mepesuccinate has distinct but manageable adverse events profile. Omacetaxine mepesuccinate is a treatment option for a subset of patients with refractory chronic myeloid leukemia.

  8. Impact Of Mutation-derived Antigens In Immune Recognition Of Hematological Malignancies, Specifically Myeloid Dysplastic Syndromes (MDS)

    DEFF Research Database (Denmark)

    Saini, Sunil Kumar; Dorfmüller, S.; Bjerregaard, Anne-Mette

    2016-01-01

    Mutation-derived neoepitopes have been suggested as a major component for immune recognition of solid tumors with a high mutational load, e.g. Melanoma and Non-Small-Cell Lung Cancer (NSCLC). Myelodysplastic syndromes (MDS) are a heterogeneous group of myeloid neoplasms characterized by increasing...

  9. Exploring the acute myeloid leukaemias

    Directory of Open Access Journals (Sweden)

    TB Thapa

    2013-10-01

    Full Text Available The acute myeloid leukemias are genetically a diverse group of neoplasm with varied clinical behavior and response to treatment. Advances in immunophenotyping, cytogenetics and molecular genetics have resulted in better understanding of their genesis. Risk stratification of different variants is now emerging. Therapy strategies are now increasingly being developed considering the inherent biological behavior of the different subtypes. It is anticipated that in the future, deeper secrets of these once fatal diseases will be unraveled by advances in newer genomic techniques. It is hoped that future use of gene specific tailored therapy and strategies will result in longer survival in cases showing poorer prognosis at present. DOI: http://dx.doi.org/10.3126/jpn.v3i6.9001 Journal of Pathology of Nepal (2013 Vol. 3, 497-501

  10. The Danish National Chronic Myeloid Neoplasia Registry

    DEFF Research Database (Denmark)

    Bak, Marie; Ibfelt, Else Helene; Stauffer Larsen, Thomas

    2016-01-01

    myeloproliferative neoplasms, chronic myelomonocytic leukemia, and chronic myeloid leukemia. MAIN VARIABLES: Data are collected using standardized registration forms (so far up to four forms per patient), which are consecutively filled out online at time of diagnosis, after 2-year and 5-year follow-ups, and at end......AIM: The Danish National Chronic Myeloid Neoplasia Registry (DCMR) is a population-based clinical quality database, introduced to evaluate diagnosis and treatment of patients with chronic myeloid malignancies. The aim is to monitor the clinical quality at the national, regional, and hospital...... of follow-up. The forms include variables that describe clinical/paraclinical assessments, treatment, disease progression, and survival - disease-specific variables - as well as variables that are identical for all chronic myeloid malignancies. DESCRIPTIVE DATA: By the end of 2014, the DCMR contained data...

  11. Gene expression profiling in acute myeloid leukaemia

    NARCIS (Netherlands)

    de Jonge, H. J. M.; Huls, G.; de Bont, E. S. J. M.

    Acute myeloid leukaemia (AML) is a heterogeneous disease characterised by clonal malignant haematopoiesis with a differentiation arrest and excessive proliferation of leukaemic blasts. Over the past decades, the heterogeneity of AML has been illustrated by evolving classifications based on

  12. Modulation of Tumor Tolerance in Primary Central Nervous System Malignancies

    Directory of Open Access Journals (Sweden)

    Theodore S. Johnson

    2012-01-01

    Full Text Available Central nervous system tumors take advantage of the unique immunology of the CNS and develop exquisitely complex stromal networks that promote growth despite the presence of antigen-presenting cells and tumor-infiltrating lymphocytes. It is precisely this immunological paradox that is essential to the survival of the tumor. We review the evidence for functional CNS immune privilege and the impact it has on tumor tolerance. In this paper, we place an emphasis on the role of tumor-infiltrating myeloid cells in maintaining stromal and vascular quiescence, and we underscore the importance of indoleamine 2,3-dioxygenase activity as a myeloid-driven tumor tolerance mechanism. Much remains to be discovered regarding the tolerogenic mechanisms by which CNS tumors avoid immune clearance. Thus, it is an open question whether tumor tolerance in the brain is fundamentally different from that of peripheral sites of tumorigenesis or whether it simply stands as a particularly strong example of such tolerance.

  13. Vorinostat in Treating Patients With Acute Myeloid Leukemia

    Science.gov (United States)

    2014-04-30

    Adult Acute Erythroid Leukemia (M6); Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Acute Promyelocytic Leukemia (M3); Recurrent Adult Acute Myeloid Leukemia; Refractory Cytopenia With Multilineage Dysplasia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  14. A somatic mutation in erythro-myeloid progenitors causes neurodegenerative disease.

    Science.gov (United States)

    Mass, Elvira; Jacome-Galarza, Christian E; Blank, Thomas; Lazarov, Tomi; Durham, Benjamin H; Ozkaya, Neval; Pastore, Alessandro; Schwabenland, Marius; Chung, Young Rock; Rosenblum, Marc K; Prinz, Marco; Abdel-Wahab, Omar; Geissmann, Frederic

    2017-09-21

    The pathophysiology of neurodegenerative diseases is poorly understood and there are few therapeutic options. Neurodegenerative diseases are characterized by progressive neuronal dysfunction and loss, and chronic glial activation. Whether microglial activation, which is generally viewed as a secondary process, is harmful or protective in neurodegeneration remains unclear. Late-onset neurodegenerative disease observed in patients with histiocytoses, which are clonal myeloid diseases associated with somatic mutations in the RAS-MEK-ERK pathway such as BRAF(V600E), suggests a possible role of somatic mutations in myeloid cells in neurodegeneration. Yet the expression of BRAF(V600E) in the haematopoietic stem cell lineage causes leukaemic and tumoural diseases but not neurodegenerative disease. Microglia belong to a lineage of adult tissue-resident myeloid cells that develop during organogenesis from yolk-sac erythro-myeloid progenitors (EMPs) distinct from haematopoietic stem cells. We therefore hypothesized that a somatic BRAF(V600E) mutation in the EMP lineage may cause neurodegeneration. Here we show that mosaic expression of BRAF(V600E) in mouse EMPs results in clonal expansion of tissue-resident macrophages and a severe late-onset neurodegenerative disorder. This is associated with accumulation of ERK-activated amoeboid microglia in mice, and is also observed in human patients with histiocytoses. In the mouse model, neurobehavioural signs, astrogliosis, deposition of amyloid precursor protein, synaptic loss and neuronal death were driven by ERK-activated microglia and were preventable by BRAF inhibition. These results identify the fetal precursors of tissue-resident macrophages as a potential cell-of-origin for histiocytoses and demonstrate that a somatic mutation in the EMP lineage in mice can drive late-onset neurodegeneration. Moreover, these data identify activation of the MAP kinase pathway in microglia as a cause of neurodegeneration and this offers

  15. Clinical Impact of the Immunome in Lymphoid Malignancies: The Role of Myeloid-Derived Suppressor Cells

    Science.gov (United States)

    Vetro, Calogero; Romano, Alessandra; Ancora, Flavia; Coppolino, Francesco; Brundo, Maria V.; Raccuia, Salvatore A.; Puglisi, Fabrizio; Tibullo, Daniele; La Cava, Piera; Giallongo, Cesarina; Parrinello, Nunziatina L.

    2015-01-01

    The better definition of the mutual sustainment between neoplastic cells and immune system has been translated from the bench to the bedside acquiring value as prognostic factor. Additionally, it represents a promising tool for improving therapeutic strategies. In this context, myeloid-derived suppressor cells (MDSCs) have gained a central role in tumor developing with consequent therapeutic implications. In this review, we will focus on the biological and clinical impact of the study of MDSCs in the settings of lymphoid malignancies. PMID:26052505

  16. Mesenchymal Stem Cells (MSC Regulate Activation of Granulocyte-Like Myeloid Derived Suppressor Cells (G-MDSC in Chronic Myeloid Leukemia Patients.

    Directory of Open Access Journals (Sweden)

    Cesarina Giallongo

    Full Text Available It is well known that mesenchymal stem cells (MSC have a role in promotion of tumor growth, survival and drug-resistance in chronic myeloid leukemia (CML. Recent reports indicated that a subpopulation of myeloid cells, defined as granulocyte-like myeloid-derived suppressor cells (G-MDSC is increased in these patients. So far, the role of MSC in MDSC expansion and activation into the BM microenvironment remains unexplored. To address this question, here we use a specific experimental model in vitro, co-culturing MSC with peripheral blood mononucleated cells (PBMC from normal individuals, in order to generate MSC-educated G-MDSC. Although MSC of healthy donors (HD and CML patients were able to generate the same amount of MDSC, only CML-MSC-educated G-MDSC exhibited suppressive ability on autologous T lymphocytes. In addition, compared with HD-MSC, CML-MSC over-expressed some immunomodulatory factors including TGFβ, IL6 and IL10, that could be involved in MDSC activation. CML-MSC-educated G-MDSC expressed higher levels of ARG1, TNFα, IL1β, COX2 and IL6 than G-MDSC isolated from co-culture with HD-MSC. Our data provide evidence that CML-MSC may play a critical role in tumor microenvironment by orchestrating G-MDSC activation and regulating T lymphocytes-mediated leukemia surveillance, thus contributing to CML immune escape.

  17. Mesenchymal Stem Cells (MSC) Regulate Activation of Granulocyte-Like Myeloid Derived Suppressor Cells (G-MDSC) in Chronic Myeloid Leukemia Patients.

    Science.gov (United States)

    Giallongo, Cesarina; Romano, Alessandra; Parrinello, Nunziatina Laura; La Cava, Piera; Brundo, Maria Violetta; Bramanti, Vincenzo; Stagno, Fabio; Vigneri, Paolo; Chiarenza, Annalisa; Palumbo, Giuseppe Alberto; Tibullo, Daniele; Di Raimondo, Francesco

    2016-01-01

    It is well known that mesenchymal stem cells (MSC) have a role in promotion of tumor growth, survival and drug-resistance in chronic myeloid leukemia (CML). Recent reports indicated that a subpopulation of myeloid cells, defined as granulocyte-like myeloid-derived suppressor cells (G-MDSC) is increased in these patients. So far, the role of MSC in MDSC expansion and activation into the BM microenvironment remains unexplored. To address this question, here we use a specific experimental model in vitro, co-culturing MSC with peripheral blood mononucleated cells (PBMC) from normal individuals, in order to generate MSC-educated G-MDSC. Although MSC of healthy donors (HD) and CML patients were able to generate the same amount of MDSC, only CML-MSC-educated G-MDSC exhibited suppressive ability on autologous T lymphocytes. In addition, compared with HD-MSC, CML-MSC over-expressed some immunomodulatory factors including TGFβ, IL6 and IL10, that could be involved in MDSC activation. CML-MSC-educated G-MDSC expressed higher levels of ARG1, TNFα, IL1β, COX2 and IL6 than G-MDSC isolated from co-culture with HD-MSC. Our data provide evidence that CML-MSC may play a critical role in tumor microenvironment by orchestrating G-MDSC activation and regulating T lymphocytes-mediated leukemia surveillance, thus contributing to CML immune escape.

  18. Precursor Additive Manufacturing Inventions

    Science.gov (United States)

    Roberts, C.; Bourell, D.

    2018-03-01

    Most modern Additive Manufacturing (AM) processes were invented and commercialized in a short period of time spanning 1984-2000. This paper reports on AM processes invented in the 1974-1987 time period, known as precursor AM processes. The critical difference between the two periods is public knowledge and utilization of distributed computing.

  19. Alantolactone selectively ablates acute myeloid leukemia stem and progenitor cells

    Directory of Open Access Journals (Sweden)

    Yahui Ding

    2016-09-01

    Full Text Available Abstract Background The poor outcomes for patients diagnosed with acute myeloid leukemia (AML are largely attributed to leukemia stem cells (LSCs which are difficult to eliminate with conventional therapy and responsible for relapse. Thus, new therapeutic strategies which could selectively target LSCs in clinical leukemia treatment and avoid drug resistance are urgently needed. However, only a few small molecules have been reported to show anti-LSCs activity. Methods The aim of the present study was to identify alantolactone as novel agent that can ablate acute myeloid leukemia stem and progenitor cells from AML patient specimens and evaluate the anticancer activity of alantolactone in vitro and in vivo. Results The present study is the first to demonstrate that alantolactone, a prominent eudesmane-type sesquiterpene lactone, could specifically ablate LSCs from AML patient specimens. Furthermore, in comparison to the conventional chemotherapy drug, cytosine arabinoside (Ara-C, alantolactone showed superior effects of leukemia cytotoxicity while sparing normal hematopoietic cells. Alantolactone induced apoptosis with a dose-dependent manner by suppression of NF-kB and its downstream target proteins. DMA-alantolactone, a water-soluble prodrug of alantolactone, could suppress tumor growth in vivo. Conclusions Based on these results, we propose that alantolactone may represent a novel LSCs-targeted therapy and eudesmane-type sesquiterpene lactones offer a new scaffold for drug discovery towards anti-LSCs agents.

  20. Cutaneous myeloid sarcoma: natural history and biology of an uncommon manifestation of acute myeloid leukemia.

    Science.gov (United States)

    Hurley, M Yadira; Ghahramani, Grant K; Frisch, Stephanie; Armbrecht, Eric S; Lind, Anne C; Nguyen, Tudung T; Hassan, Anjum; Kreisel, Friederike H; Frater, John L

    2013-05-01

    We conducted a retrospective study of patients with cutaneous myeloid sarcoma, from 2 tertiary care institutions. Eighty-three patients presented, with a mean age of 52 years. Diagnosis of myeloid sarcoma in the skin was difficult due to the low frequency of myeloperoxidase and/or CD34+ cases (56% and 19% of tested cases, respectively). Seventy-one of the 83 patients (86%) had ≥ 1 bone marrow biopsy. Twenty-eight (39%) had acute myeloid leukemia with monocytic differentiation. Twenty-three had other de novo acute myeloid leukemia subtypes. Thirteen patients had other myeloid neoplasms, of which 4 ultimately progressed to an acute myeloid leukemia. Seven had no bone marrow malignancy. Ninety-eight percent of the patients received chemotherapy, and approximately 89% died of causes related to their disease. Cutaneous myeloid sarcoma in most cases represents an aggressive manifestation of acute myeloid leukemia. Diagnosis can be challenging due to lack of myeloblast-associated antigen expression in many cases, and difficulty in distinguishing monocyte-lineage blasts from neoplastic and non-neoplastic mature monocytes.

  1. IKKα Promotes Intestinal Tumorigenesis by Limiting Recruitment of M1-like Polarized Myeloid Cells

    Directory of Open Access Journals (Sweden)

    Serkan I. Göktuna

    2014-06-01

    Full Text Available The recruitment of immune cells into solid tumors is an essential prerequisite of tumor development. Depending on the prevailing polarization profile of these infiltrating leucocytes, tumorigenesis is either promoted or blocked. Here, we identify IκB kinase α (IKKα as a central regulator of a tumoricidal microenvironment during intestinal carcinogenesis. Mice deficient in IKKα kinase activity are largely protected from intestinal tumor development that is dependent on the enhanced recruitment of interferon γ (IFNγ-expressing M1-like myeloid cells. In IKKα mutant mice, M1-like polarization is not controlled in a cell-autonomous manner but, rather, depends on the interplay of both IKKα mutant tumor epithelia and immune cells. Because therapies aiming at the tumor microenvironment rather than directly at the mutated cancer cell may circumvent resistance development, we suggest IKKα as a promising target for colorectal cancer (CRC therapy.

  2. A novel application of furazolidone: anti-leukemic activity in acute myeloid leukemia.

    Directory of Open Access Journals (Sweden)

    Xueqing Jiang

    Full Text Available Acute myeloid leukemia (AML is the most common malignant myeloid disorder of progenitor cells in myeloid hematopoiesis and exemplifies a genetically heterogeneous disease. The patients with AML also show a heterogeneous response to therapy. Although all-trans retinoic acid (ATRA has been successfully introduced to treat acute promyelocytic leukemia (APL, it is rather ineffective in non-APL AML. In our present study, 1200 off-patent marketed drugs and natural compounds that have been approved by the Food and Drug Administration (FDA were screened for anti-leukemia activity using the retrovirus transduction/transformation assay (RTTA. Furazolidone (FZD was shown to inhibit bone marrow transformation mediated by several leukemia fusion proteins, including AML1-ETO. Furazolidone has been used in the treatment of certain bacterial and protozoan infections in human and animals for more than sixty years. We investigated the anti-leukemic activity of FZD in a series of AML cells. FZD displayed potent antiproliferative properties at submicromolar concentrations and induced apoptosis in AML cell lines. Importantly, FZD treatment of certain AML cells induced myeloid cell differentiation by morphology and flow cytometry for CD11b expression. Furthermore, FZD treatment resulted in increased stability of tumor suppressor p53 protein in AML cells. Our in vitro results suggest furazolidone as a novel therapeutic strategy in AML patients.

  3. Differential Diagnosis of Isolated Myeloid Sarcoma: A Case Report and Review of the Literature.

    Science.gov (United States)

    Hagen, Patrick A; Singh, Charanjeet; Hart, Melissa; Blaes, Anne H

    2015-06-03

    Myeloid sarcoma (MS) is a rare disease entity identified as a variety of manifestations defined by the occurrence of extramedullary myeloid cell masses with or without bone marrow involvement. This case describes an unusual presentation of isolated MS in a 60-year-old otherwise healthy male, who initially presented to his primary care physician with vague abdominal pain. After extensive workup including three omental biopsies, umbilical core biopsy, and inguinal lymph node biopsy, he was ultimately diagnosed with isolated MS with extensive extramedullary tumor burden. Despite advanced extramedullary disease, peripheral cell counts were normal and bilateral bone marrow biopsies unremarkable with normal cellular lineages, morphology, and cytogenetics. The patient underwent induction chemotherapy and is now greater than 100 days post myeloablative unrelated donor marrow transplantation with no evidence of disease recurrence and 100% donor status with full chimerism. This case demonstrates that making a prompt diagnosis with rapid initiation of treatment in myeloid sarcoma can be challenging due to its varied clinical presentation, cytomorphology, cytochemistry, and cytogenetic overlap with other lymphoid malignancies. Once a diagnosis of MS has been made, moving quickly to induction therapy is important. Several studies have shown that improved overall survival is attained when MS is treated as acute myeloid leukemia and increased survival is noted for patients undergoing bone marrow transplantation. Further prospective studies are needed to elucidate the many remaining questions in regards to the natural history, prognosis, and optimal treatment strategies for this deadly disease.

  4. Minimal Residual Disease in Acute Myeloid Leukemia: Still a Work in Progress?

    Directory of Open Access Journals (Sweden)

    Federico Mosna

    2017-06-01

    Full Text Available Minimal residual disease evaluation refers to a series of molecular and immunophenotypical techniques aimed at detecting submicroscopic disease after therapy. As such, its application in acute myeloid leukemia has greatly increased our ability to quantify treatment response, and to determine the chemosensitivity of the disease, as the final product of the drug schedule, dose intensity, biodistribution, and the pharmakogenetic profile of the patient. There is now consistent evidence for the prognostic power of minimal residual disease evaluation in acute myeloid leukemia, which is complementary to the baseline prognostic assessment of the disease. The focus for its use is therefore shifting to individualize treatment based on a deeper evaluation of chemosensitivity and residual tumor burden. In this review, we will summarize the results of the major clinical studies evaluating minimal residual disease in acute myeloid leukemia in adults in recent years and address the technical and practical issues still hampering the spread of these techniques outside controlled clinical trials. We will also briefly speculate on future developments and offer our point of view, and a word of caution, on the present use of minimal residual disease measurements in “real-life” practice. Still, as final standardization and diffusion of the methods are sorted out, we believe that minimal residual disease will soon become the new standard for evaluating response in the treatment of acute myeloid leukemia.

  5. Pattern of malignant tumors in children: a hospital based study

    International Nuclear Information System (INIS)

    Khan, S.M.; Nasreen, S.; Zai, S.

    2001-01-01

    From 1990 to 1999 data from 32743 cancer patients (males 18502, females 14241) were analyzed to know the frequency of the most common cancers in local and well as well as afghan refugees. There were 3760 children with biopsy proven cancers 2910 belonged to the north-west frontier province (NWFP), while the remaining 850 were Afghan refugees. Among children of NWFP male were 1945 (67%) and 965(33%) females. In Afghan children, males were 570(67%) and females were 280(33%). The most common tumors in children of NWFP were lymphoid leukemia, lymphoma, tumors of the central nervous system (CNS), myeloid leukemia, soft tissue sarcoma wilms, tumours, retinoblastoma, bone tumor neuroblastoma, and ovarian tumors. Whereas Afghan children had Lymphoid leukemia, lymphoma, myeloid leukemia, wilms, tumor, retinoblastoma, tumors of soft tissue bones CNS, neuroblastoma and ovarian tumors. (author)

  6. [Acute myeloid leukemia with bone marrow erythroblastosis: about one case illustrating the new WHO classification (2008)].

    Science.gov (United States)

    Vincenot, Anne; Abarah, Wajed; Frayfer, Jamilé; Mahfouz, Imad; Andre-Kerneis, Elisabeth

    2011-01-01

    We reported here a case of acute myeloid leukaemia (AML) in a 28-year-old male patient, which diagnosis is discussed according to the different classifications. This case focused on some new criteria and changes in the new WHO classification (2008) of AML, especially when erythroid precursors represent over 50% of bone marrow nucleated cells. It also pointed on some gene mutations (NPM1, CEPBA, FLT3, WT1…) and their prognostic features in AML with a normal karyotype, leading to individualize two new provisional entities in the WHO classification of tumours of hematopoietic and lymphoid tissues 2008.

  7. Pam2 lipopeptides systemically increase myeloid-derived suppressor cells through TLR2 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Akira; Shime, Hiroaki, E-mail: shime@med.hokudai.ac.jp; Takeda, Yohei; Azuma, Masahiro; Matsumoto, Misako; Seya, Tsukasa, E-mail: seya-tu@pop.med.hokudai.ac.jp

    2015-02-13

    Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that exhibit potent immunosuppressive activity. They are increased in tumor-bearing hosts and contribute to tumor development. Toll-like receptors (TLRs) on MDSCs may modulate the tumor-supporting properties of MDSCs through pattern-recognition. Pam2 lipopeptides represented by Pam2CSK4 serve as a TLR2 agonist to exert anti-tumor function by dendritic cell (DC)-priming that leads to NK cell activation and cytotoxic T cell proliferation. On the other hand, TLR2 enhances tumor cell progression/invasion by activating tumor-infiltrating macrophages. How MDSCs respond to TLR2 agonists has not yet been determined. In this study, we found intravenous administration of Pam2CSK4 systemically up-regulated the frequency of MDSCs in EG7 tumor-bearing mice. The frequency of tumor-infiltrating MDSCs was accordingly increased in response to Pam2CSK4. MDSCs were not increased by Pam2CSK4 stimuli in TLR2 knockout (KO) mice. Adoptive transfer experiments using CFSE-labeled MDSCs revealed that the TLR2-positive MDSCs survived long in tumor-bearing mice in response to Pam2CSK4 treatment. Since the increased MDSC population sustained immune-suppressive properties, our study suggests that Pam2CSK4-triggered TLR2 activation enhances the MDSC potential and suppress antitumor immune response in tumor microenvironment. - Highlights: • Pam2CSK4 administration induces systemic accumulation of CD11b{sup +}Gr1{sup +} MDSCs. • TLR2 is essential for Pam2CSK4-induced accumulation of CD11b{sup +}Gr1{sup +} MDSCs. • Pam2CSK4 supports survival of CD11b{sup +}Gr1{sup +} MDSCs in vivo.

  8. Uncaria tomentosa stimulates the proliferation of myeloid progenitor cells.

    Science.gov (United States)

    Farias, Iria; do Carmo Araújo, Maria; Zimmermann, Estevan Sonego; Dalmora, Sergio Luiz; Benedetti, Aloisio Luiz; Alvarez-Silva, Marcio; Asbahr, Ana Carolina Cavazzin; Bertol, Gustavo; Farias, Júlia; Schetinger, Maria Rosa Chitolina

    2011-09-01

    The Asháninkas, indigenous people of Peru, use cat's claw (Uncaria tomentosa) to restore health. Uncaria tomentosa has antioxidant activity and works as an agent to repair DNA damage. It causes different effects on cell proliferation depending on the cell type involved; specifically, it can stimulate the proliferation of myeloid progenitors and cause apoptosis of neoplastic cells. Neutropenia is the most common collateral effect of chemotherapy. For patients undergoing cancer treatment, the administration of a drug that stimulates the proliferation of healthy hematopoietic tissue cells is very desirable. It is important to assess the acute effects of Uncaria tomentosa on granulocyte-macrophage colony-forming cells (CFU-GM) and in the recovery of neutrophils after chemotherapy-induced neutropenia, by establishing the correlation with filgrastim (rhG-CSF) treatment to evaluate its possible use in clinical oncology. The in vivo assay was performed in ifosfamide-treated mice receiving oral doses of 5 and 15 mg of Uncaria tomentosa and intraperitoneal doses of 3 and 9 μg of filgrastim, respectively, for four days. Colony-forming cell (CFC) assays were performed with human hematopoietic stem/precursor cells (hHSPCs) obtained from umbilical cord blood (UCB). Bioassays showed that treatment with Uncaria tomentosa significantly increased the neutrophil count, and a potency of 85.2% was calculated in relation to filgrastim at the corresponding doses tested. An in vitro CFC assay showed an increase in CFU-GM size and mixed colonies (CFU-GEMM) size at the final concentrations of 100 and 200 μg extract/mL. At the tested doses, Uncaria tomentosa had a positive effect on myeloid progenitor number and is promising for use with chemotherapy to minimize the adverse effects of this treatment. These results support the belief of the Asháninkas, who have classified Uncaria tomentosa as a 'powerful plant'. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. Diagnosis of chronic myeloid leukemia

    International Nuclear Information System (INIS)

    Demitrovicova, L.; Mikuskova, E.; Copakova, L.; Leitnerova, M.

    2012-01-01

    Chronic myeloid leukemia (CML) was the first cancer associated with the specific chromosomal aberration. Philadelphia chromosome due to translocation (9, 22) is present in 95% cases, fusion gene BCR/ABL is present in 100% cases at the time of diagnosis. Disease has its own characteristics detectable by physical examination, by the examination of blood count and differential and by cytomorhologic examination of bone marrow, however the diagnosis of CML is determined by cytogenetics and molecular genetics. If the diagnosis of Ph+ BCR/ABL positive CML is confirmed, the disease is treated by tyrosine kinase inhibitors (TKI). TKI don´t affect formation of leukemic gene BCR/ABL, but they can stop the action of this gene. The target therapy of tyrosine kinase inhibitors markedly improved the survival of patients with CML by inhibition the proliferation of leukemic clone on the clinically safety level of minimal disease, although probably this treatment cannot cure the CML. Cytogenetics and molecular genetics are very important at the monitoring of residual disease with sensitivity 10 -6 . (author)

  10. Generation of Human Immunosuppressive Myeloid Cell Populations in Human Interleukin-6 Transgenic NOG Mice

    Directory of Open Access Journals (Sweden)

    Asami Hanazawa

    2018-02-01

    Full Text Available The tumor microenvironment contains unique immune cells, termed myeloid-derived suppressor cells (MDSCs, and tumor-associated macrophages (TAMs that suppress host anti-tumor immunity and promote tumor angiogenesis and metastasis. Although these cells are considered a key target of cancer immune therapy, in vivo animal models allowing differentiation of human immunosuppressive myeloid cells have yet to be established, hampering the development of novel cancer therapies. In this study, we established a novel humanized transgenic (Tg mouse strain, human interleukin (hIL-6-expressing NOG mice (NOG-hIL-6 transgenic mice. After transplantation of human hematopoietic stem cells (HSCs, the HSC-transplanted NOG-hIL-6 Tg mice (HSC-NOG-hIL-6 Tg mice showed enhanced human monocyte/macrophage differentiation. A significant number of human monocytes were negative for HLA-DR expression and resembled immature myeloid cells in the spleen and peripheral blood from HSC-NOG-hIL-6 Tg mice, but not from HSC-NOG non-Tg mice. Engraftment of HSC4 cells, a human head and neck squamous cell carcinoma-derived cell line producing various factors including IL-6, IL-1β, macrophage colony-stimulating factor (M-CSF, and vascular endothelial growth factor (VEGF, into HSC-NOG-hIL-6 Tg mice induced a significant number of TAM-like cells, but few were induced in HSC-NOG non-Tg mice. The tumor-infiltrating macrophages in HSC-NOG-hIL-6 Tg mice expressed a high level of CD163, a marker of immunoregulatory myeloid cells, and produced immunosuppressive molecules such as arginase-1 (Arg-1, IL-10, and VEGF. Such cells from HSC-NOG-hIL-6 Tg mice, but not HSC-NOG non-Tg mice, suppressed human T cell proliferation in response to antigen stimulation in in vitro cultures. These results suggest that functional human TAMs can be developed in NOG-hIL-6 Tg mice. This mouse model will contribute to the development of novel cancer immune therapies targeting immunoregulatory

  11. THERAPY-RELATED MYELOID MALIGNANCIES IN MYELOMA

    Directory of Open Access Journals (Sweden)

    Bart Barlogie

    2011-01-01

    Full Text Available

    Therapy related myeloid malignancies are an increasingly recognized treatment complication in patients undergoing therapy for multiple myeloma. The main predisposing factors are the alkylating agents, topoisomerase II inhibitors and radiotherapy, but recently questions have been raised regarding the immunomodulatory agent lenalidomide. Little is known about the new antimyeloma agents in the context of therapy related myeloid malignanices. The duration of treatment and the time from diagnosis are the main contributing factors in alkylating induced myeloid malignancies which occur 5-10 years after treatment, chromosome 5 and 7 abnormalities being the characteristic finding. High dose therapy (HDT does not seem to be a major contributing factor per se in multiple myeloma. In a number of large published series, all the factors related with therapy-induced myelodysplasia were defined prior to HDT. Topoisomerase II inhibitors induce mainly acute leukemias which invariably correlate with dysregulation of the MLL gene. Radiotherapy causes therapy related myelodysplasia if applied in bone marrow producing areas, especially if combined with chemotherapy. Therapy related myeloid malignancies generally herald a poor prognosis. Karyotypic abnormalities seem to be the main prognostic factor. In all cases the risk for therapy related myeloid malignancies drops sharply by 10 years after the treatment.

  12. Nucleophosmin 1 expression in acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Mohammad Davoudi

    2015-09-01

    Full Text Available Nucleophosmin1 is a multifunctional protein that shuttles between nucleus and cytoplasm in some subtypes of acute myeloid leukemias. Mutated Nucleophosmin1 expresses aberrantly in the cytoplasm of the cell and transports from nucleolus to the cytoplasm. It is diagnosed by immunohistochemical techniques, flow cytometry assay and mutational analysis.The aim of this study is to evaluate the effects of Nucleophosmin1 mutation on the clinical presentations, prognosis, diagnosis and the treatment of acute myeloid leukemia. Thirteen articles were extracted from PubMed, Google scholar and Scopus in which the Nucleophosmin1 mutation correlated with gingival hyperplasia, high white blood cell count, lymphadenopathy, high platelet count and other signs and symptoms of myelomonocytic and monocytic acute myeloid leukemias. This mutation is a provisional entity in the classification of acute myeloid leukemia, which influences on the prognosis, clinical course and the treatment of some subtypes of acute myeloid leukemias. Nucleophosmin1 mutation has favorable prognostic value in the absence of other concomitant mutations.

  13. THERAPY-RELATED MYELOID MALIGNANCIES IN MYELOMA

    Directory of Open Access Journals (Sweden)

    Xenofon Papanikolaou

    2011-10-01

    Full Text Available Therapy related myeloid malignancies are an increasingly recognized treatment complication in patients undergoing therapy for multiple myeloma. The main predisposing factors are the alkylating agents, topoisomerase II inhibitors and radiotherapy, but recently questions have been raised regarding the immunomodulatory agent lenalidomide. Little is known about the new antimyeloma agents in the context of therapy related myeloid malignanices. The duration of treatment and the time from diagnosis are the main contributing factors in alkylating induced myeloid malignancies which occur 5-10 years after treatment, chromosome 5 and 7 abnormalities being the characteristic finding. High dose therapy (HDT does not seem to be a major contributing factor per se in multiple myeloma. In a number of large published series, all the factors related with therapy-induced myelodysplasia were defined prior to HDT. Topoisomerase II inhibitors induce mainly acute leukemias which invariably correlate with dysregulation of the MLL gene. Radiotherapy causes therapy related myelodysplasia if applied in bone marrow producing areas, especially if combined with chemotherapy. Therapy related myeloid malignancies generally herald a poor prognosis. Karyotypic abnormalities seem to be the main prognostic factor. In all cases the risk for therapy related myeloid malignancies drops sharply by 10 years after the treatment.

  14. Azelaic Acid Exerts Antileukemic Activity in Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Yunbao Pan

    2017-06-01

    Full Text Available Acute myeloid leukemia (AML is an acute leukemia common in most adults; its prevalence intensifies with age. The overall survival of AML is very poor because of therapeutic resistance. Azelaic acid (AZA is non-toxic, non-teratogenic, and non-mutagenic and its antitumor effect on various tumor cells is well established; Nonetheless, its therapeutic effects in AML cells are largely unknown. In this study, it was shown that AZA significantly inhibits the cell viability and induces apoptosis in AML cells in a dose-dependent manner. Additionally, AZA suppressed the expression of phosphorylated Akt, Jab1 and Trx, and this suppression was enhanced by treatment with Jab1 siRNA. Furthermore, AZA sensitized AML cells to Ara-c chemotherapy. The suppressive effect of AZA on tumor growth was examined in vivo by subcutaneously inoculated AML cells in a tumor model using nude mice. These findings indicate that AZA is useful as an effective ingredient in antineoplastic activity.

  15. Extracellular matrix stiffness causes systematic variations in proliferation and chemosensitivity in myeloid leukemias.

    Science.gov (United States)

    Shin, Jae-Won; Mooney, David J

    2016-10-25

    Extracellular matrix stiffness influences biological functions of some tumors. However, it remains unclear how cancer subtypes with different oncogenic mutations respond to matrix stiffness. In addition, the relevance of matrix stiffness to in vivo tumor growth kinetics and drug efficacy remains elusive. Here, we designed 3D hydrogels with physical parameters relevant to hematopoietic tissues and adapted them to a quantitative high-throughput screening format to facilitate mechanistic investigations into the role of matrix stiffness on myeloid leukemias. Matrix stiffness regulates proliferation of some acute myeloid leukemia types, including MLL-AF9 + MOLM-14 cells, in a biphasic manner by autocrine regulation, whereas it decreases that of chronic myeloid leukemia BCR-ABL + K-562 cells. Although Arg-Gly-Asp (RGD) integrin ligand and matrix softening confer resistance to a number of drugs, cells become sensitive to drugs against protein kinase B (PKB or AKT) and rapidly accelerated fibrosarcoma (RAF) proteins regardless of matrix stiffness when MLL-AF9 and BCR-ABL are overexpressed in K-562 and MOLM-14 cells, respectively. By adapting the same hydrogels to a xenograft model of extramedullary leukemias, we confirm the pathological relevance of matrix stiffness in growth kinetics and drug sensitivity against standard chemotherapy in vivo. The results thus demonstrate the importance of incorporating 3D mechanical cues into screening for anticancer drugs.

  16. Precursor of color superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Kitazawa, M. [Kyoto Univ., Dept. of Physics, Kyoto (Japan); Koide, T.; Kunihiro, T. [Kyoto Univ., Yukawa Institute for Theoretical Physics, Kyoto (Japan); Nemoto, Y. [Brookhaven National Laboratory, RIKEN BNL Research Center, Upton, NY (United States)

    2002-09-01

    We investigate possible precursory phenomena of color superconductivity in quark matter at finite temperature T with use of a simple Nambu-Jona-Lasinio model. It is found that the fluctuating pair field exists with a prominent strength even well above the critical temperature T{sub c}. We show that the collective pair field has a complex energy located in the second Riemann sheet, which approaches the origin as T is lowered to T{sub c}. We discuss the possible relevance of the precursor to the observables to be detected in heavy ion collisions. (author)

  17. Daunorubicin Hydrochloride, Cytarabine and Oblimersen Sodium in Treating Patients With Previously Untreated Acute Myeloid Leukemia

    Science.gov (United States)

    2013-06-04

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  18. Immunosuppressive activity enhances central carbon metabolism and bioenergetics in myeloid-derived suppressor cells in vitro models

    Directory of Open Access Journals (Sweden)

    Hammami Ines

    2012-07-01

    Full Text Available Abstract Background The tumor microenvironment contains a vast array of pro- and anti-inflammatory cytokines that alter myelopoiesis and lead to the maturation of immunosuppressive cells known as myeloid-derived suppressor cells (MDSCs. Incubating bone marrow (BM precursors with a combination of granulocyte-macrophage colony-stimulating factor (GM-CSF and interleukin-6 (IL-6 generated a tumor-infiltrating MDSC-like population that impaired anti-tumor specific T-cell functions. This in vitro experimental approach was used to simulate MDSC maturation, and the cellular metabolic response was then monitored. A complementary experimental model that inhibited L-arginine (L-Arg metabolizing enzymes in MSC-1 cells, an immortalized cell line derived from primary MDSCs, was used to study the metabolic events related to immunosuppression. Results Exposure of BM cells to GM-CSF and IL-6 activated, within 24 h, L-Arg metabolizing enzymes which are responsible for the MDSCs immunosuppressive potential. This was accompanied by an increased uptake of L-glutamine (L-Gln and glucose, the latter being metabolized by anaerobic glycolysis. The up-regulation of nutrient uptake lead to the accumulation of TCA cycle intermediates and lactate as well as the endogenous synthesis of L-Arg and the production of energy-rich nucleotides. Moreover, inhibition of L-Arg metabolism in MSC-1 cells down-regulated central carbon metabolism activity, including glycolysis, glutaminolysis and TCA cycle activity, and led to a deterioration of cell bioenergetic status. The simultaneous increase of cell specific concentrations of ATP and a decrease in ATP-to-ADP ratio in BM-derived MDSCs suggested cells were metabolically active during maturation. Moreover, AMP-activated protein kinase (AMPK was activated during MDSC maturation in GM-CSF and IL-6–treated cultures, as revealed by the continuous increase of AMP-to-ATP ratios and the phosphorylation of AMPK. Likewise, AMPK activity was

  19. Generation of a double binary transgenic zebrafish model to study myeloid gene regulation in response to oncogene activation in melanocytes.

    Science.gov (United States)

    Kenyon, Amy; Gavriouchkina, Daria; Zorman, Jernej; Chong-Morrison, Vanessa; Napolitani, Giorgio; Cerundolo, Vincenzo; Sauka-Spengler, Tatjana

    2018-04-06

    A complex network of inflammatory genes is closely linked to somatic cell transformation and malignant disease. Immune cells and their associated molecules are responsible for detecting and eliminating cancer cells as they establish themselves as the precursors of a tumour. By the time a patient has a detectable solid tumour, cancer cells have escaped the initial immune response mechanisms. Here, we describe the development of a double binary zebrafish model that enables regulatory programming of the myeloid cells as they respond to oncogene-activated melanocytes to be explored, focussing on the initial phase when cells become the precursors of cancer. A hormone-inducible binary system allows for temporal control of expression of different Ras oncogenes ( NRas Q61K , HRas G12V and KRas G12V ) in melanocytes, leading to proliferation and changes in morphology of the melanocytes. This model was coupled to binary cell-specific biotagging models allowing in vivo biotinylation and subsequent isolation of macrophage or neutrophil nuclei for regulatory profiling of their active transcriptomes. Nuclear transcriptional profiling of neutrophils, performed as they respond to the earliest precursors of melanoma in vivo , revealed an intricate landscape of regulatory factors that may promote progression to melanoma, including Serpinb1l4, Fgf1, Fgf6, Cathepsin H, Galectin 1 and Galectin 3. The model presented here provides a powerful platform to study the myeloid response to the earliest precursors of melanoma. © 2018. Published by The Company of Biologists Ltd.

  20. Myeloid Dendritic Cells (DCs) of Mice Susceptible to Paracoccidioidomycosis Suppress T Cell Responses whereas Myeloid and Plasmacytoid DCs from Resistant Mice Induce Effector and Regulatory T Cells

    Science.gov (United States)

    Pina, Adriana; Frank de Araujo, Eliseu; Felonato, Maíra; Loures, Flávio V.; Feriotti, Claudia; Bernardino, Simone; Barbuto, José Alexandre M.

    2013-01-01

    The protective adaptive immune response in paracoccidioidomycosis, a mycosis endemic among humans, is mediated by T cell immunity, whereas impaired T cell responses are associated with severe, progressive disease. The early host response to Paracoccidioides brasiliensis infection is not known since the disease is diagnosed at later phases of infection. Our laboratory established a murine model of infection where susceptible mice reproduce the severe disease, while resistant mice develop a mild infection. This work aimed to characterize the influence of dendritic cells in the innate and adaptive immunity of susceptible and resistant mice. We verified that P. brasiliensis infection induced in bone marrow-derived dendritic cells (DCs) of susceptible mice a prevalent proinflammatory myeloid phenotype that secreted high levels of interleukin-12 (IL-12), tumor necrosis factor alpha, and IL-β, whereas in resistant mice, a mixed population of myeloid and plasmacytoid DCs secreting proinflammatory cytokines and expressing elevated levels of secreted and membrane-bound transforming growth factor β was observed. In proliferation assays, the proinflammatory DCs from B10.A mice induced anergy of naïve T cells, whereas the mixed DC subsets from resistant mice induced the concomitant proliferation of effector and regulatory T cells (Tregs). Equivalent results were observed during pulmonary infection. The susceptible mice displayed preferential expansion of proinflammatory myeloid DCs, resulting in impaired proliferation of effector T cells. Conversely, the resistant mice developed myeloid and plasmacytoid DCs that efficiently expanded gamma interferon-, IL-4-, and IL-17-positive effector T cells associated with increased development of Tregs. Our work highlights the deleterious effect of excessive innate proinflammatory reactions and provides new evidence for the importance of immunomodulation during pulmonary paracoccidioidomycosis. PMID:23340311

  1. Neurological Complications Of Chronic Myeloid Leukaemia: Any ...

    African Journals Online (AJOL)

    Of the five, two (40%) patients presented with bilateral hearing impairment, each beginning with the left ear; one (20%) presented with left ear hearing loss; one ... pathogenetic mechanisms underlying these complications with a view to finding specific treatment measures for worrisome chronic myeloid leukaemia-related ...

  2. Rho GTPase expression in human myeloid cells.

    Directory of Open Access Journals (Sweden)

    Suzanne F G van Helden

    Full Text Available Myeloid cells are critical for innate immunity and the initiation of adaptive immunity. Strict regulation of the adhesive and migratory behavior is essential for proper functioning of these cells. Rho GTPases are important regulators of adhesion and migration; however, it is unknown which Rho GTPases are expressed in different myeloid cells. Here, we use a qPCR-based approach to investigate Rho GTPase expression in myeloid cells.We found that the mRNAs encoding Cdc42, RhoQ, Rac1, Rac2, RhoA and RhoC are the most abundant. In addition, RhoG, RhoB, RhoF and RhoV are expressed at low levels or only in specific cell types. More differentiated cells along the monocyte-lineage display lower levels of Cdc42 and RhoV, while RhoC mRNA is more abundant. In addition, the Rho GTPase expression profile changes during dendritic cell maturation with Rac1 being upregulated and Rac2 downregulated. Finally, GM-CSF stimulation, during macrophage and osteoclast differentiation, leads to high expression of Rac2, while M-CSF induces high levels of RhoA, showing that these cytokines induce a distinct pattern. Our data uncover cell type specific modulation of the Rho GTPase expression profile in hematopoietic stem cells and in more differentiated cells of the myeloid lineage.

  3. ABSTRACT CHRONIC MYELOID LEUKAEMIA IN CENTRAL ...

    African Journals Online (AJOL)

    hi-tech

    2003-09-09

    , USA. .... anaemia (Hb ≤ 9.4g/dl recorded in 86 (57.3%) patients and ..... J.M. Chronic myeloid leukaemia. In. Haematology, Basic Principles and Practice 2nd edn., (ed.), R. Hoffman. Churchill Livingstone, New York, USA.

  4. Treatment strategies in acute myeloid leukemia

    NARCIS (Netherlands)

    Han Li-na, [No Value; Zhou Jin, [No Value; Schuringa, Jan Jacob; Vellenga, Edo

    2011-01-01

    Objective To summarize the risk stratification and current treatment strategies for acute myeloid leukemia (AML) and discuss the role of emerging novel agents that might be applied in future clinical trials. Data sources The data in this article were collected from PubMed database with relevant

  5. Chronic myeloid leukemia presented with priapism: Effective ...

    African Journals Online (AJOL)

    2015-02-01

    Feb 1, 2015 ... Other than the hemoglobinopathies such as sickle cell disorders and the thalassemias, hematological causes of priapism are rare indeed. Priapism has been seen in patients with either cellular (e.g., chronic myeloid leukemia [CML], essential thrombocythemia, polycythemia rubra vera) or plasma‑related ...

  6. Chronic myeloid leukemia: reminiscences and dreams

    Science.gov (United States)

    Mughal, Tariq I.; Radich, Jerald P.; Deininger, Michael W.; Apperley, Jane F.; Hughes, Timothy P.; Harrison, Christine J.; Gambacorti-Passerini, Carlo; Saglio, Giuseppe; Cortes, Jorge; Daley, George Q.

    2016-01-01

    With the deaths of Janet Rowley and John Goldman in December 2013, the world lost two pioneers in the field of chronic myeloid leukemia. In 1973, Janet Rowley, unraveled the cytogenetic anatomy of the Philadelphia chromosome, which subsequently led to the identification of the BCR-ABL1 fusion gene and its principal pathogenetic role in the development of chronic myeloid leukemia. This work was also of major importance to support the idea that cytogenetic changes were drivers of leukemogenesis. John Goldman originally made seminal contributions to the use of autologous and allogeneic stem cell transplantation from the late 1970s onwards. Then, in collaboration with Brian Druker, he led efforts to develop ABL1 tyrosine kinase inhibitors for the treatment of patients with chronic myeloid leukemia in the late 1990s. He also led the global efforts to develop and harmonize methodology for molecular monitoring, and was an indefatigable organizer of international conferences. These conferences brought together clinicians and scientists, and accelerated the adoption of new therapies. The abundance of praise, tributes and testimonies expressed by many serve to illustrate the indelible impressions these two passionate and affable scholars made on so many people’s lives. This tribute provides an outline of the remarkable story of chronic myeloid leukemia, and in writing it, it is clear that the historical triumph of biomedical science over this leukemia cannot be considered without appreciating the work of both Janet Rowley and John Goldman. PMID:27132280

  7. Recurrent Cytogenetic Abnormalities in Acute Myeloid Leukemia.

    Science.gov (United States)

    Yang, John J; Park, Tae Sung; Wan, Thomas S K

    2017-01-01

    The spectrum of chromosomal abnormality associated with leukemogenesis of acute myeloid leukemia (AML) is broad and heterogeneous when compared to chronic myeloid leukemia and other myeloid neoplasms. Recurrent chromosomal translocations such as t(8;21), t(15;17), and inv(16) are frequently detected, but hundreds of other uncommon chromosomal aberrations from AML also exist. This chapter discusses 22 chromosomal abnormalities that are common structural, numerical aberrations, and other important but infrequent (less than 1 %) translocations emphasized in the WHO classification. Brief morphologic, cytogenetic, and clinical characteristics are summarized, so as to provide a concise reference to cancer cytogenetic laboratories. Morphology based on FAB classification is used together with the current WHO classification due to frequent mentioning in a vast number of reference literatures. Characteristic chromosomal aberrations of other myeloid neoplasms such as myelodysplastic syndrome and myeloproliferative neoplasm will be discussed in separate chapters-except for certain abnormalities such as t(9;22) in de novo AML. Gene mutations detected in normal karyotype AML by cutting edge next generation sequencing technology are also briefly mentioned.

  8. Luteoloside Inhibits Proliferation of Human Chronic Myeloid ...

    African Journals Online (AJOL)

    leukemia K562 cells and whether luteoloside induces cell cycle arrest and apoptosis in K562 cells. Methods: Luteoloside's ... for anticancer potential. Keywords: Luteoloside, Myeloid leukemia, Proliferation, Cell cycle arrest, Apoptosis, Anticancer. Tropical ..... central role as the key control point in the mitochondria pathway.

  9. Luteoloside Inhibits Proliferation of Human Chronic Myeloid ...

    African Journals Online (AJOL)

    Purpose: To investigate the effects of luteoloside on the proliferation of human chronic myeloid leukemia K562 cells and whether luteoloside induces cell cycle arrest and apoptosis in K562 cells. Methods: Luteoloside's cytotoxicity was assessed using a cell counting kit. Cell cycle distribution was analysed by flow cytometry ...

  10. Identified EM Earthquake Precursors

    Science.gov (United States)

    Jones, Kenneth, II; Saxton, Patrick

    2014-05-01

    Many attempts have been made to determine a sound forecasting method regarding earthquakes and warn the public in turn. Presently, the animal kingdom leads the precursor list alluding to a transmission related source. By applying the animal-based model to an electromagnetic (EM) wave model, various hypotheses were formed, but the most interesting one required the use of a magnetometer with a differing design and geometry. To date, numerous, high-end magnetometers have been in use in close proximity to fault zones for potential earthquake forecasting; however, something is still amiss. The problem still resides with what exactly is forecastable and the investigating direction of EM. After a number of custom rock experiments, two hypotheses were formed which could answer the EM wave model. The first hypothesis concerned a sufficient and continuous electron movement either by surface or penetrative flow, and the second regarded a novel approach to radio transmission. Electron flow along fracture surfaces was determined to be inadequate in creating strong EM fields, because rock has a very high electrical resistance making it a high quality insulator. Penetrative flow could not be corroborated as well, because it was discovered that rock was absorbing and confining electrons to a very thin skin depth. Radio wave transmission and detection worked with every single test administered. This hypothesis was reviewed for propagating, long-wave generation with sufficient amplitude, and the capability of penetrating solid rock. Additionally, fracture spaces, either air or ion-filled, can facilitate this concept from great depths and allow for surficial detection. A few propagating precursor signals have been detected in the field occurring with associated phases using custom-built loop antennae. Field testing was conducted in Southern California from 2006-2011, and outside the NE Texas town of Timpson in February, 2013. The antennae have mobility and observations were noted for

  11. CXCL17 expression by tumor cells recruits CD11b+Gr1 high F4/80- cells and promotes tumor progression.

    Directory of Open Access Journals (Sweden)

    Aya Matsui

    Full Text Available BACKGROUND: Chemokines are involved in multiple aspects of pathogenesis and cellular trafficking in tumorigenesis. In this study, we report that the latest member of the C-X-C-type chemokines, CXCL17 (DMC/VCC-1, recruits immature myeloid-derived cells and enhances early tumor progression. METHODOLOGY/PRINCIPAL FINDINGS: CXCL17 was preferentially expressed in some aggressive types of gastrointestinal, breast, and lung cancer cells. CXCL17 expression did not impart NIH3T3 cells with oncogenic potential in vitro, but CXCL17-expressing NIH3T3 cells could form vasculature-rich tumors in immunodeficient mice. Our data showed that CXCL17-expressing tumor cells increased immature CD11b(+Gr1(+ myeloid-derived cells at tumor sites in mice and promoted CD31(+ tumor angiogenesis. Extensive chemotactic assays proved that CXCL17-responding cells were CD11b(+Gr1(highF4/80(- cells (≈ 90% with a neutrophil-like morphology in vitro. Although CXCL17 expression could not increase the number of CD11b(+Gr1(+ cells in tumor-burdened SCID mice or promote metastases of low metastatic colon cancer cells, the existence of CXCL17-responding myeloid-derived cells caused a striking enhancement of xenograft tumor formation. CONCLUSIONS/SIGNIFICANCE: These results suggest that aberrant expression of CXCL17 in tumor cells recruits immature myeloid-derived cells and promotes tumor progression through angiogenesis.

  12. Myeloid translocation genes differentially regulate colorectal cancer programs

    Science.gov (United States)

    Parang, Bobak; Bradley, Amber M.; Mittal, Mukul K.; Short, Sarah P.; Thompson, Joshua J.; Barrett, Caitlyn W.; Naik, Rishi D.; Bilotta, Anthony J.; Washington, Mary K.; Revetta, Frank L.; Smith, Jesse J.; Chen, Xi; Wilson, Keith T.; Hiebert, Scott W.; Williams, Christopher S.

    2016-01-01

    Myeloid translocation genes (MTGs), originally identified as chromosomal translocations in acute myelogenous leukemia, are transcriptional corepressors that regulate hematopoietic stem cell programs. Analysis of The Cancer Genome Atlas (TCGA) database revealed that MTGs were mutated in epithelial malignancy and suggested that loss of function might promote tumorigenesis. Genetic deletion of MTGR1 and MTG16 in the mouse has revealed unexpected and unique roles within the intestinal epithelium. Mtgr1−/− mice have progressive depletion of all intestinal secretory cells, and Mtg16−/− mice have a decrease in goblet cells. Furthermore, both Mtgr1−/− and Mtg16−/− mice have increased intestinal epithelial cell proliferation. We thus hypothesized that loss of MTGR1 or MTG16 would modify Apc1638/+-dependent intestinal tumorigenesis. Mtgr1−/− mice, but not Mtg16−/− mice, had a 10-fold increase in tumor multiplicity. This was associated with more advanced dysplasia, including progression to invasive adenocarcinoma, and augmented intratumoral proliferation. Analysis of ChIP-seq datasets for MTGR1 and MTG16 targets indicated that MTGR1 can regulate Wnt and Notch signaling. In support of this, immunohistochemistry and gene expression analysis revealed that both Wnt and Notch signaling pathways were hyperactive in Mtgr1−/− tumors. Furthermore, in human colorectal cancer (CRC) samples MTGR1 was downregulated at both the transcript and protein level. Overall our data indicates that MTGR1 has a context dependent effect on intestinal tumorigenesis. PMID:27270437

  13. Control of Both Myeloid Cell Infiltration and Angiogenesis by CCR1 Promotes Liver Cancer Metastasis Development in Mice

    Directory of Open Access Journals (Sweden)

    Mathieu Paul Rodero

    2013-06-01

    Full Text Available Expression of the CC chemokine receptor 1 (CCR1 by tumor cells has been associated with protumoral activity; however, its role in nontumoral cells during tumor development remains elusive. Here, we investigated the role of CCR1 deletion on stromal and hematopoietic cells in a liver metastasis tumor model. Metastasis development was strongly impaired in CCR1-deficient mice compared to control mice and was associated with reduced liver monocyte infiltration. To decipher the role of myeloid cells, sublethally irradiated mice were reconstituted with CCR1-deficient bone marrow (BM and showed better survival rates than the control reconstituted mice. These results point toward the involvement of CCR1 myeloid cell infiltration in the promotion of tumor burden. In addition, survival rates were extended in CCR1-deficient mice receiving either control or CCR1-deficient BM, indicating that host CCR1 expression on nonhematopoietic cells also supports tumor growth. Finally, we found defective tumor-induced neoangiogenesis (in vitro and in vivo in CCR1-deficient mice. Overall, our results indicate that CCR1 expression by both hematopoietic and nonhematopoietic cells favors tumor aggressiveness. We propose CCR1 as a potential therapeutical target for liver metastasis therapy.

  14. KIR2DS5 is associated with leukemia free survival after HLA identical stem cell transplantation in chronic myeloid leukemia patients.

    NARCIS (Netherlands)

    Meer, A. van der; Schaap, N.P.M.; Schattenberg, A.V.M.B.; Cranenbroek, B. van; Tijssen, H.J.; Joosten, I.

    2008-01-01

    BACKGROUND: Alloreactive NK cells play a role in tumor eradication after allogeneic HLA mismatched stem cell transplantation (SCT). The effect of NK alloreactivity in HLA identical SCT is still under debate and in particular in transplantation for chronic myeloid leukemia (CML) the data are very

  15. Clinical effect of increasing doses of lenalidomide in high-risk myelodysplastic syndrome and acute myeloid leukemia with chromosome 5 abnormalities

    DEFF Research Database (Denmark)

    Möllgård, Lars; Saft, Leonie; Treppendahl, Marianne Bach

    2011-01-01

    Patients with chromosome 5 abnormalities and high-risk myelodysplastic syndromes or acute myeloid leukemia have a poor outcome. We hypothesized that increasing doses of lenalidomide may benefit this group of patients by inhibiting the tumor clone, as assessed by fluorescence in situ hybridization...

  16. Bone tumor

    Science.gov (United States)

    Tumor - bone; Bone cancer; Primary bone tumor; Secondary bone tumor; Bone tumor - benign ... The cause of bone tumors is unknown. They often occur in areas of the bone that grow rapidly. Possible causes include: Genetic defects ...

  17. Risk of acute myeloid leukemia and myelodysplastic syndromes after multiple myeloma and its precursor disease (MGUS)

    OpenAIRE

    Mailankody, Sham; Pfeiffer, Ruth M.; Kristinsson, Sigurdur Y.; Korde, Neha; Bjorkholm, Magnus; Goldin, Lynn R.; Turesson, Ingemar; Landgren, Ola

    2011-01-01

    Using population-based data from Sweden, we identified all multiple myeloma (MM) patients (n = 8740) and 5652 monoclonal gammopathy of undetermined significance (MGUS) patients diagnosed between 1986 and 2005. We calculated standardized incidence rates (SIRs) for all subsequent hematologic and nonhematologic malignancies for MM patients diagnosed before/after 1995 (introduction of high-dose melphalan/autologous stem cell transplantation [HDM-ASCT]) and 2000 (introduction of immunomodulatory d...

  18. Genetically Modified T-cell Immunotherapy in Treating Patients With Relapsed/Refractory Acute Myeloid Leukemia and Persistent/Recurrent Blastic Plasmacytoid Dendritic Cell Neoplasm

    Science.gov (United States)

    2018-03-02

    Adult Acute Myeloid Leukemia in Remission; Acute Biphenotypic Leukemia; Early Relapse of Acute Myeloid Leukemia; Late Relapse of Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Blastic Plasmacytoid Dendritic Cell Neoplasm; Acute Myeloid Leukemia; Adult Acute Lymphoblastic Leukemia; Interleukin-3 Receptor Subunit Alpha Positive; Minimal Residual Disease; Refractory Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  19. Cancer Stem Cell-Secreted Macrophage Migration Inhibitory Factor Stimulates Myeloid Derived Suppressor Cell Function and Facilitates Glioblastoma Immune Evasion

    DEFF Research Database (Denmark)

    Otvos, Balint; Silver, Daniel J; Mulkearns-Hubert, Erin E

    2016-01-01

    populations, including myeloid-derived suppressor cells (MDSCs), which serve to suppress immune system function. We have identified immune-suppressive MDSCs in the brains of GBM patients and found that they were in close proximity to self-renewing cancer stem cells (CSCs). MDSCs were selectively depleted...... that MIF is primarily an indirect promoter of GBM progression, working to suppress immune rejection by activating and protecting immune suppressive MDSCs within the GBM tumor microenvironment. Stem Cells 2016;34:2026-2039....

  20. Myeloid-derived suppressor cells as a Trojan horse: A cellular vehicle for the delivery of oncolytic viruses.

    Science.gov (United States)

    Pan, Ping-Ying; Chen, Hui-Ming; Chen, Shu-Hsia

    2013-08-01

    We have recently demonstrated that oncolytic vesicular stomatitis viruses can be efficiently and selectively delivered to neoplastic lesions by myeloid-derived suppressor cells (MDSCs). Importantly, the loading of viruses onto MDSCs inhibited their immunosuppressive properties and endowed them with immunostimulatory and tumoricidal functions. Our study demonstrates the potential use of MDSCs as a Trojan horse for the tumor-targeted delivery of various anticancer therapeutics.

  1. File list: Pol.Bld.20.AllAg.Leukemia,_Myeloid [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.20.AllAg.Leukemia,_Myeloid mm9 RNA polymerase Blood Leukemia, Myeloid http:...//dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.20.AllAg.Leukemia,_Myeloid.bed ...

  2. File list: Pol.Bld.50.AllAg.Leukemia,_Myeloid [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.50.AllAg.Leukemia,_Myeloid hg19 RNA polymerase Blood Leukemia, Myeloid http...://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bld.50.AllAg.Leukemia,_Myeloid.bed ...

  3. File list: Pol.Bld.10.AllAg.Leukemia,_Myeloid [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.10.AllAg.Leukemia,_Myeloid mm9 RNA polymerase Blood Leukemia, Myeloid http:...//dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.10.AllAg.Leukemia,_Myeloid.bed ...

  4. File list: Pol.Bld.10.AllAg.Leukemia,_Myeloid [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.10.AllAg.Leukemia,_Myeloid hg19 RNA polymerase Blood Leukemia, Myeloid http...://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bld.10.AllAg.Leukemia,_Myeloid.bed ...

  5. File list: Pol.Bld.05.AllAg.Leukemia,_Myeloid [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.05.AllAg.Leukemia,_Myeloid mm9 RNA polymerase Blood Leukemia, Myeloid http:...//dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.05.AllAg.Leukemia,_Myeloid.bed ...

  6. File list: Pol.Bld.20.AllAg.Leukemia,_Myeloid [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.20.AllAg.Leukemia,_Myeloid hg19 RNA polymerase Blood Leukemia, Myeloid http...://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bld.20.AllAg.Leukemia,_Myeloid.bed ...

  7. File list: Pol.Bld.05.AllAg.Leukemia,_Myeloid [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.05.AllAg.Leukemia,_Myeloid hg19 RNA polymerase Blood Leukemia, Myeloid http...://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bld.05.AllAg.Leukemia,_Myeloid.bed ...

  8. File list: Pol.Bld.50.AllAg.Leukemia,_Myeloid [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.50.AllAg.Leukemia,_Myeloid mm9 RNA polymerase Blood Leukemia, Myeloid http:...//dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.50.AllAg.Leukemia,_Myeloid.bed ...

  9. Myeloid derived suppressor cells (MDSCs are increased and exert immunosuppressive activity together with polymorphonuclear leukocytes (PMNs in chronic myeloid leukemia patients.

    Directory of Open Access Journals (Sweden)

    Cesarina Giallongo

    Full Text Available Tumor immune tolerance can derive from the recruitment of suppressor cell population, including myeloid derived suppressor cells (MDSCs, able to inhibit T cells activity. We identified a significantly expanded MDSCs population in chronic myeloid leukemia (CML patients at diagnosis that decreased to normal levels after imatinib therapy. In addition, expression of arginase 1 (Arg1 that depletes microenvironment of arginine, an essential aminoacid for T cell function, resulted in an increase in patients at diagnosis. Purified CML CD11b+CD33+CD14-HLADR- cells markedly suppressed normal donor T cell proliferation in vitro. Comparing CML Gr-MDSCs to autologous polymorphonuclear leukocytes (PMNs we observed a higher Arg1 expression and activity in PMNs, together with an inhibitory effect on T cells in vitro. Our data indicate that CML cells create an immuno-tolerant environment associated to MDSCs expansion with immunosuppressive capacity mediated by Arg1. In addition, we demonstrated for the first time also an immunosuppressive activity of CML PMNs, suggesting a strong potential immune escape mechanism created by CML cells, which control the anti-tumor reactive T cells. MDSCs should be monitored in imatinib discontinuation trials to understand their importance in relapsing patients.

  10. Myeloid Heme Oxygenase-1 Regulates the Acute Inflammatory Response to Zymosan in the Mouse Air Pouch

    Directory of Open Access Journals (Sweden)

    Rita Brines

    2018-01-01

    Full Text Available Heme oxygenase-1 (HO-1 is induced by many stimuli to modulate the activation and function of different cell types during innate immune responses. Although HO-1 has shown anti-inflammatory effects in different systems, there are few data on the contribution of myeloid HO-1 and its role in inflammatory processes is not well understood. To address this point, we have used HO-1M-KO mice with myeloid-restricted deletion of HO-1 to specifically investigate its influence on the acute inflammatory response to zymosan in vivo. In the mouse air pouch model, we have shown an exacerbated inflammation in HO-1M-KO mice with increased neutrophil infiltration accompanied by high levels of inflammatory mediators such as interleukin-1β, tumor necrosis factor-α, and prostaglandin E2. The expression of the degradative enzyme matrix metalloproteinase-3 (MMP-3 was also enhanced. In addition, we observed higher levels of serum MMP-3 in HO-1M-KO mice compared with control mice, suggesting the presence of systemic inflammation. Altogether, these findings demonstrate that myeloid HO-1 plays an anti-inflammatory role in the acute response to zymosan in vivo and suggest the interest of this target to regulate inflammatory processes.

  11. Clinical applications of epigenetic markers and epigenetic profiling in myeloid malignancies.

    Science.gov (United States)

    McDevitt, Michael A

    2012-02-01

    Aberrant DNA methylation is frequent in the myeloid malignancies, particularly myelodysplastic syndrome (MDS) and acute myelogenous leukemia (AML). Promoter CpG methylation is correlated with silencing of tumor-suppressor genes (TSGs) in specific pathways that are also targets of mutation or other mechanisms of inactivation, and is thought to contribute to disease progression and poor prognosis. Epigenetic contributions to myeloid pathogenesis are more complex. Examples include TSG inactivation and oncogenic activation associated with formation of altered chromatin separate from CpG methylation. Epigenetic dysregulation occurs at multiple disease stages and at non-CpG island genomic sites, and also includes genomic hypomethylation and small RNA mechanisms of epigenetic regulation. Identification of recurrent mutations in potential epigenetic regulators, including TET2, IDH1, IDH2, DNMT3A, UTX, and ASXL1, were recently described. Accordingly, therapeutics directed towards epigenetic mechanisms including methylation inhibitors and histone deacetylase (HDAC) inhibitors have had some clinical success when applied to MDS and AML. However, identification of the underlying mechanisms associated with clinical responses and drug resistance remain enigmatic. Remarkably, in spite of significant molecular and translational progress, there are currently no epigenetic biomarkers in widespread clinical use. In this review, we explore the potential applications of epigenetic biomarker discovery, including epigenetic profiling for myeloid malignancy pathogenesis understanding, diagnostic classification, and development of effective treatment paradigms for these generally considered poor prognosis disorders. Copyright © 2012. Published by Elsevier Inc.

  12. Association of Therapy for Autoimmune Disease With Myelodysplastic Syndromes and Acute Myeloid Leukemia.

    Science.gov (United States)

    Ertz-Archambault, Natalie; Kosiorek, Heidi; Taylor, Gretchen E; Kelemen, Katalin; Dueck, Amylou; Castro, Janna; Marino, Robert; Gauthier, Susanne; Finn, Laura; Sproat, Lisa Z; Palmer, Jeanne; Mesa, Ruben A; Al-Kali, Aref; Foran, James; Tibes, Raoul

    2017-07-01

    Therapy-related myeloid neoplasms are a potentially life-threatening consequence of treatment for autoimmune disease (AID) and an emerging clinical phenomenon. To query the association of cytotoxic, anti-inflammatory, and immunomodulating agents to treat patients with AID with the risk for developing myeloid neoplasm. This retrospective case-control study and medical record review included 40 011 patients with an International Classification of Diseases, Ninth Revision, coded diagnosis of primary AID who were seen at 2 centers from January 1, 2004, to December 31, 2014; of these, 311 patients had a concomitant coded diagnosis of myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML). Eighty-six cases met strict inclusion criteria. A case-control match was performed at a 2:1 ratio. Odds ratio (OR) assessment for AID-directed therapies. Among the 86 patients who met inclusion criteria (49 men [57%]; 37 women [43%]; mean [SD] age, 72.3 [15.6] years), 55 (64.0%) had MDS, 21 (24.4%) had de novo AML, and 10 (11.6%) had AML and a history of MDS. Rheumatoid arthritis (23 [26.7%]), psoriasis (18 [20.9%]), and systemic lupus erythematosus (12 [14.0%]) were the most common autoimmune profiles. Median time from onset of AID to diagnosis of myeloid neoplasm was 8 (interquartile range, 4-15) years. A total of 57 of 86 cases (66.3%) received a cytotoxic or an immunomodulating agent. In the comparison group of 172 controls (98 men [57.0%]; 74 women [43.0%]; mean [SD] age, 72.7 [13.8] years), 105 (61.0%) received either agent (P = .50). Azathioprine sodium use was observed more frequently in cases (odds ratio [OR], 7.05; 95% CI, 2.35- 21.13; P myeloid neoplasm. The control and case cohorts had similar systemic exposures by agent category. No association was found for anti-tumor necrosis factor agents. Finally, no timeline was found for the association of drug exposure with the incidence in development of myeloid neoplasm.

  13. How I treat atypical chronic myeloid leukemia.

    Science.gov (United States)

    Gotlib, Jason

    2017-02-16

    Atypical chronic myeloid leukemia, BCR-ABL1 negative (aCML) is a rare myelodysplastic syndrome (MDS)/myeloproliferative neoplasm (MPN) for which no current standard of care exists. The challenges of aCML relate to its heterogeneous clinical and genetic features, high rate of transformation to acute myeloid leukemia, and historically poor survival. Therefore, allogeneic hematopoietic stem cell transplantation should always be an initial consideration for eligible patients with a suitable donor. Nontransplant approaches for treating aCML have otherwise largely relied on adopting treatment strategies used for MDS and MPN. However, such therapies, including hypomethylating agents, are based on a paucity of data. With an eye toward making a more meaningful impact on response rates and modification of the natural history of the disease, progress will rely on enrollment of patients into clinical trials and molecular profiling of individuals so that opportunities for targeted therapy can be exploited. © 2017 by The American Society of Hematology.

  14. Splenic irradiation in chronic myeloid leukemia

    International Nuclear Information System (INIS)

    Hukku, S.; Baboo, H.A.; Venkataratnam, S.; Vidyasagar, M.S.; Patel, N.L.

    1983-01-01

    Results of splenic irradiation as the initial and only method of treatment are reported in 25 patients with chronic myeloid leukemia. Peripheral remission was induced in all the patients. Induction was achieved after a short period of 11 to 30 days in the majority of the patients, the longest period being 40 days. Several patients were in remission 9 months after treatment. The results are compared with those obtained by chemotherapy. Some advantages of splenic irradiation over chemotherapy are emphasized. (Auth.)

  15. Acute myeloid leukaemia presenting as faecal incontinence

    Science.gov (United States)

    Lim, Hoon; Cho, Young Soon; Jang, Pyung Moon; Kim, Ho Jung; Jang, Hye Young

    2007-01-01

    Epidural sacral nerve compression as an initial feature of leukaemia is a rare complication. The findings in a 16‐year‐old boy who presented to an emergency department with symptoms of faecal incontinence are reported herein. Radiological imaging demonstrated soft‐tissue masses in the sacral epidural space. The diagnosis of acute myeloid leukaemia was confirmed on bone marrow aspirate. The characteristics and management of extramedullary leukaemia are discussed. PMID:17452690

  16. [An immunological approach to acute myeloid leukaemia].

    Science.gov (United States)

    González, B; Bueno, D; Rubio, P M; San Román, S; Plaza, D; Sastre, A; García-Miguel, P; Fernández, L; Valentín, J; Martínez, I; Pérez-Martínez, A

    2016-04-01

    Acute myeloid leukaemia (AML) is the second haematological malignancy in the paediatric population, and one of the leading causes of childhood cancer mortality. Survival is currently around 60%, with no improvement in last decades, suggesting that new therapeutic approaches are needed. The anti-leukaemia effect mediated by the lymphocytes and natural killer (NK) cells of the immune system has been established in haematopoietic stem cell transplantation, and also as adoptive immunotherapy after consolidation chemotherapy schemes. A retrospective study was conducted on the clinical characteristics of patients diagnosed and treated for AML in our centre during 1996-2014. The mean fluorescence intensities of HLA-I, MICA/B and ULBP1-4, ligands for NK cell receptors, were also analysed in ten new diagnosed leukaemia cases, five myeloid and five lymphoid. A total of 67 patients were used in this analysis. With a median follow up of 25 months, the event-free survival was 62% (95% CI: 55-67). Secondary AML, non-M3 phenotype, and the absence of favourable cytogenetic markers had a lower survival. The probability of relapse was 38% (95% CI: 31-45). The expression of HLA-I and ULBP-4 was significantly lower in myeloid than in lymphoid blast cells. Our clinical results are similar to those described in the literature. Survival did not significantly change in recent decades, and the likelihood of relapse remains high. Myeloid blasts might be more susceptible to the cytotoxicity of NK cells through their lower expression of HLA-I. NK therapy strategies in minimal disease situation could be effective, as reported by other groups. Copyright © 2015 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.

  17. The presence of tumor associated macrophages in tumor stroma as a prognostic marker for breast cancer patients

    International Nuclear Information System (INIS)

    Medrek, Catharina; Pontén, Fredrik; Jirström, Karin; Leandersson, Karin

    2012-01-01

    Tumor associated macrophages (TAMs) are alternatively activated macrophages that enhance tumor progression by promoting tumor cell invasion, migration and angiogenesis. TAMs have an anti-inflammatory function resembling M2 macrophages. CD163 is regarded as a highly specific monocyte/macrophage marker for M2 macrophages. In this study we evaluated the specificity of using the M2 macrophage marker CD163 as a TAM marker and compared its prognostic value with the more frequently used pan-macrophage marker CD68. We also analyzed the prognostic value of the localization of CD163 + and CD68 + myeloid cells in human breast cancer. The extent of infiltrating CD163 + or CD68 + myeloid cells in tumor nest versus tumor stroma was evaluated by immunohistochemistry in tissue microarrays with tumors from 144 breast cancer cases. Spearman’s Rho and χ 2 tests were used to examine the correlations between CD163 + or CD68 + myeloid cells and clinicopathological parameters. Kaplan Meier analysis and Cox proportional hazards modeling were used to assess the impact of CD163 + and CD68 + myeloid cells in tumor stroma and tumor nest, respectively, on recurrence free survival, breast cancer specific and overall survival. We found that infiltration of CD163 + and CD68 + macrophages into tumor stroma, but not into tumor nest, were of clinical relevance. CD163 + macrophages in tumor stroma positively correlated with higher grade, larger tumor size, Ki67 positivity, estrogen receptor negativity, progesterone receptor negativity, triple-negative/basal-like breast cancer and inversely correlated with luminal A breast cancer. Some CD163 + areas lacked CD68 expression, suggesting that CD163 could be used as a general anti-inflammatory myeloid marker with prognostic impact. CD68 + macrophages in tumor stroma positively correlated to tumor size and inversely correlated to luminal A breast cancer. More importantly, CD68 in tumor stroma was an independent prognostic factor for reduced breast cancer

  18. Mediastinal tumor

    Science.gov (United States)

    Thymoma - mediastinal; Lymphoma - mediastinal ... mediastinal tumors in adults occur in the anterior mediastinum. They are usually cancerous (malignant) lymphomas, germ cell tumors, or thymomas. These tumors are ...

  19. The Danish National Chronic Myeloid Neoplasia Registry

    Directory of Open Access Journals (Sweden)

    Bak M

    2016-10-01

    Full Text Available Marie Bak,1 Else Helene Ibfelt,2 Thomas Stauffer Larsen,3 Dorthe Rønnov-Jessen,4 Niels Pallisgaard,5 Ann Madelung,6 Lene Udby,1 Hans Carl Hasselbalch,1 Ole Weis Bjerrum,7 Christen Lykkegaard Andersen1,7 1Department of Hematology, Zealand University Hospital, University of Copenhagen, Roskilde, 2Research Centre for Prevention and Health, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, 3Department of Hematology, Odense University Hospital, Odense, 4Department of Hematology, Vejle Hospital, Vejle, 5Department of Surgical Pathology, Zealand University Hospital, University of Copenhagen, Roskilde, 6Department of Surgical Pathology, Zealand University Hospital, University of Copenhagen, Næstved, 7Department of Hematology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark Aim: The Danish National Chronic Myeloid Neoplasia Registry (DCMR is a population-based clinical quality database, introduced to evaluate diagnosis and treatment of patients with chronic myeloid malignancies. The aim is to monitor the clinical quality at the national, regional, and hospital departmental levels and serve as a platform for research. Study population: The DCMR has nationwide coverage and contains information on patients diagnosed at hematology departments from January 2010 onward, including patients with essential thrombocythemia, polycythemia vera, myelofibrosis, unclassifiable myeloproliferative neoplasms, chronic myelomonocytic leukemia, and chronic myeloid leukemia. Main variables: Data are collected using standardized registration forms (so far up to four forms per patient, which are consecutively filled out online at time of diagnosis, after 2-year and 5-year follow-ups, and at end of follow-up. The forms include variables that describe clinical/paraclinical assessments, treatment, disease progression, and survival – disease-specific variables – as well as variables that are identical for all chronic myeloid malignancies. Descriptive

  20. SDF-1, DC1/DC2, and Tumor Angiogenesis

    Science.gov (United States)

    2006-04-01

    temperature with anti-CXCL12 antibody (clone K15C, IgG2a, 10 Ag /mL), or control isotype. Antibody binding was detected with biotinylated anti-mouse antibodies...Bronte, V., Serafini, P., Apolloni , E. & Zanovello, P. Tumor- induced immune dysfunctions caused by myeloid suppressor cells. J. Immunother. 24, 431

  1. Mutations of the Spliceosome Complex Genes Occur In Adult Patients but Are Very Rare In Children with Myeloid Neoplasia

    DEFF Research Database (Denmark)

    Hirabayashi, Shinsuke; Moetter, Jessica; Yoshida, Kenichi

    -protein complexes that remove noncoding introns from precursor mRNA. We hypothesized that the disruption of the spliceosome complex might play a driving role in the leukemogenesis in pediatric MDS. Using targeted re-sequencing we investigated the 3 exclusive hotspots of 2 spliceosome genes that were found...... negative. The drastically reduced frequency of spliceosome mutations in pediatric compared to adult myeloid malignancies suggests a different pathogenetic mechanism in childhood disease, and fits well with previous reports that somatic mutations of non-Ras-pathway genes, such as DNMT3A, are less prevalent...

  2. Tumefactive intracranial presentation of precursor B-cell acute lymphoblastic leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Forester, Craig M. [University of Utah, Salt Lake City, UT (United States); Braunreiter, Chi L. [University of Utah, Division of Pediatric Hematology Oncology, Primary Children' s Medical Center, Salt Lake City, UT (United States); Helen DeVos Children' s Hospital, Department of Pediatric Hematology Oncology, Grand Rapids, MI (United States); Yaish, Hasan; Afify, Zeinab [University of Utah, Division of Pediatric Hematology Oncology, Primary Children' s Medical Center, Salt Lake City, UT (United States); Hedlund, Gary L. [Primary Children' s Medical Center, Department of Pediatric Radiology, Salt Lake City, UT (United States)

    2009-11-15

    In children, leukemia is the most common malignancy, and approximately 75% of leukemias are acute lymphoblastic leukemia (ALL). Central nervous system leukemia is found at diagnosis in fewer than 5% of children with ALL. Leukemic intracranial masses have been described with acute myeloid leukemia, but ALL presenting as a mass lesion is rare. We describe a unique case of an intracranial confirmed precursor B cell (pre-B) ALL mass in a 13-year-old girl that was diagnosed by brain CT, MRI and cerebral angiography, and confirmed by biopsy. This report details pertinent history and distinguishing imaging features of an intracranial ALL tumefaction. (orig.)

  3. Tumefactive intracranial presentation of precursor B-cell acute lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Forester, Craig M.; Braunreiter, Chi L.; Yaish, Hasan; Afify, Zeinab; Hedlund, Gary L.

    2009-01-01

    In children, leukemia is the most common malignancy, and approximately 75% of leukemias are acute lymphoblastic leukemia (ALL). Central nervous system leukemia is found at diagnosis in fewer than 5% of children with ALL. Leukemic intracranial masses have been described with acute myeloid leukemia, but ALL presenting as a mass lesion is rare. We describe a unique case of an intracranial confirmed precursor B cell (pre-B) ALL mass in a 13-year-old girl that was diagnosed by brain CT, MRI and cerebral angiography, and confirmed by biopsy. This report details pertinent history and distinguishing imaging features of an intracranial ALL tumefaction. (orig.)

  4. Overexpression of catalase in myeloid cells causes impaired postischemic neovascularization.

    Science.gov (United States)

    Hodara, Roberto; Weiss, Daiana; Joseph, Giji; Velasquez-Castano, Juan C; Landázuri, Natalia; Han, Ji Woong; Yoon, Young-sup; Taylor, W Robert

    2011-10-01

    Myeloid lineage cells (MLCs) such as macrophages are known to play a key role in postischemic neovascularization. However, the role of MLC-derived reactive oxygen species in this process and their specific chemical identity remain unknown. Transgenic mice with MLC-specific overexpression of catalase (Tg(Cat-MLC) mice) were created on a C57BL/6 background. Macrophage catalase activity was increased 3.4-fold compared with wild-type mice. After femoral artery ligation, laser Doppler perfusion imaging revealed impaired perfusion recovery in Tg(Cat-MLC) mice. This was associated with fewer collateral vessels, as assessed by microcomputed tomography angiography, and decreased capillary density. Impaired functional recovery of the ischemic limb was also evidenced by a 50% reduction in spontaneous running activity. The deficient neovascularization was associated with a blunted inflammatory response, characterized by decreased macrophage infiltration of ischemic tissues, and lower mRNA levels of inflammatory markers, such as tumor necrosis factor-α, osteopontin, and matrix mettaloproteinase-9. In vitro macrophage migration was impaired in Tg(Cat-MLC) mice, suggesting a role for H(2)O(2) in regulating the ability of macrophages to infiltrate ischemic tissues. MLC-derived H(2)O(2) plays a key role in promoting neovascularization in response to ischemia and is a necessary factor for the development of ischemia-induced inflammation.

  5. Heterogeneous leukemia stem cells in myeloid blast phase chronic myeloid leukemia

    Science.gov (United States)

    Goardon, Nicolas; Morrison, Heather; Hamblin, Mike; Robinson, Lisa; Clark, Richard E.

    2016-01-01

    Chronic myeloid leukemia (CML) is an excellent model of the multistep processes in cancer. Initiating BCR-ABL mutations are required for the initial phase of the disease (chronic phase, CP-CML). Some CP-CML patients acquire additional mutation(s) that transforms CP-CML to poor prognosis, hard to treat, acute myeloid or lymphoid leukemia or blast phase CML (BP-CML). It is unclear where in the hemopoietic hierarchy additional mutations are acquired in BP-CML, how the hemopoietic hierarchy is altered as a consequence, and the cellular identity of the resulting leukemia-propagating stem cell (LSC) populations. Here, we show that myeloid BP-CML is associated with expanded populations that have the immunophenotype of normal progenitor populations that vary between patients. Serial transplantation in immunodeficient mice demonstrated functional LSCs reside in multiple populations with the immunophenotype of normal progenitor as well as stem cells. Multicolor fluorescence in situ hybridization detected serial acquisition of cytogenetic abnormalities of chromosome 17, associated with transformation to BP-CML, that is detected with equal frequency in all functional LSC compartments. New effective myeloid BP-CML therapies will likely have to target all these LSC populations. PMID:29296933

  6. Extramedullary leukemia in children with acute myeloid leukemia

    DEFF Research Database (Denmark)

    Støve, Heidi Kristine; Sandahl, Julie Damgaard; Abrahamsson, Jonas

    2017-01-01

    BACKGROUND: The prognostic significance of extramedullary leukemia (EML) in childhood acute myeloid leukemia is not clarified. PROCEDURE: This population-based study included 315 children from the NOPHO-AML 2004 trial. RESULTS: At diagnosis, 73 (23%) patients had EML: 39 (12%) had myeloid sarcoma...

  7. Translational Studies in Elderly Patients with Acute Myeloid Leukemia

    NARCIS (Netherlands)

    B. van der Holt (Bronno)

    2007-01-01

    textabstractThe production of blood cells (hematopoiesis) takes place in the bone marrow. Acute myeloid leukemia (AML) is a clonal disease, which is characterized by an increase in the number of myeloid cells in the bone marrow and an arrest in their maturation. This frequently results in a severe

  8. Acute myeloid leukemia: advances in diagnosis and classification.

    Science.gov (United States)

    Hasserjian, R P

    2013-06-01

    Acute myeloid leukemia is an aggressive myeloid neoplasm characterized by ≥20% myeloblasts in the blood or bone marrow. Current treatment strategies for acute myeloid leukemia are based on both patient-related parameters such as age and performance status as well as the intrinsic characteristics of particular disease subtypes. Subtyping of acute myeloid leukemia requires an integration of information from the patient's clinical history (such as any prior preleukemic myeloid neoplasm or cytotoxic potentially leukemogenic therapy), the leukemia morphology, cytogenetic findings, and the mutation status of particular genes (NPM1, FLT3, and CEBPA). In recent years, a barrage of information has become available regarding gene mutations that occur in acute myeloid leukemia and their influence on prognosis. Future therapies for acute myeloid leukemia will increasingly rely on the genetic signatures of individual leukemias and will adjust therapy to the predicted disease aggressiveness as well as employ therapies targeted against particular deregulated genetic pathways. This article reviews current standards for diagnosing and classifying acute myeloid leukemia according to the 2008 WHO Classification. Data that have subsequently accumulated regarding newly characterized gene mutations are also presented. It is anticipated that future leukemia classifications will employ a combination of karyotypic features and the gene mutation pattern to stratify patients to increasingly tailored treatment plans. © 2013 Blackwell Publishing Ltd.

  9. Mesenchymal Transition of High-Grade Breast Carcinomas Depends on Extracellular Matrix Control of Myeloid Suppressor Cell Activity.

    Science.gov (United States)

    Sangaletti, Sabina; Tripodo, Claudio; Santangelo, Alessandra; Castioni, Nadia; Portararo, Paola; Gulino, Alessandro; Botti, Laura; Parenza, Mariella; Cappetti, Barbara; Orlandi, Rosaria; Tagliabue, Elda; Chiodoni, Claudia; Colombo, Mario P

    2016-09-27

    The extracellular matrix (ECM) contributes to the biological and clinical heterogeneity of breast cancer, and different prognostic groups can be identified according to specific ECM signatures. In high-grade, but not low-grade, tumors, an ECM signature characterized by high SPARC expression (ECM3) identifies tumors with increased epithelial-to-mesenchymal transition (EMT), reduced treatment response, and poor prognosis. To better understand how this ECM3 signature is contributing to tumorigenesis, we expressed SPARC in isogenic cell lines and found that SPARC overexpression in tumor cells reduces their growth rate and induces EMT. SPARC expression also results in the formation of a highly immunosuppressive microenvironment, composed by infiltrating T regulatory cells, mast cells, and myeloid-derived suppressor cells (MDSCs). The ability of SPARC to induce EMT depended on the localization and suppressive function of myeloid cells, and inhibition of the suppressive function MDSCs by administration of aminobisphosphonates could revert EMT, rendering SPARC-overexpressing tumor cells sensitive to Doxil. We conclude that that SPARC is regulating the interplay between MDSCs and the ECM to drive the induction of EMT in tumor cells. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. Association of loss of heterozygosity with cytogenetic abnormalities in acute myeloid leukemia and myelodysplastic syndrome

    Directory of Open Access Journals (Sweden)

    R.F. Pinheiro

    2008-07-01

    Full Text Available Deletions on chromosomes 5 and 7 are frequently seen in myelodysplastic syndrome (MDS and acute myeloid leukemia (AML. It is assumed that these deletions indicate loss of tumor suppressor genes on these chromosomes and until these tumor suppressor genes are identified, the functional consequences of these deletions and the molecular basis of these myeloid disorders cannot be completely understood. We evaluated loss of heterozygosity (LOH in 44 patients (18 MDS and 26 AML, diagnosed according to WHO classification criteria at diagnosis, using a four-microsatellite marker panel: an intragenic marker on the 7th intron of gene IRF-1 of the 5q31.1 region and three markers located inside the 7q31.1 region and correlated the LOH with karyotype abnormalities. The microsatellites chosen corresponded to chromosome regions frequently deleted in MDS/AML. The samples with Q (peak area less than or equal to 0.50 were indicative of LOH. The percent of informative samples (i.e., heterozygous for the intragenic microsatellite in gene IRF-1 and in loci D7S486, D7S515 and D7S522 were 66.6, 73.7, 75.5, and 48.8%, respectively. Cytogenetic abnormalities by G-banding were found in 36% (16/44 of the patients (2 of 18 MDS and 14 of 26 AML patients. We found a significantly positive association of the occurrence of LOH with abnormal karyotype (P < 0.05; chi-square test and there were cases with LOH but the karyotype was normal (by G-banding. These data indicate that LOH in different microsatellite markers is possibly an event previous to chromosomal abnormalities in these myeloid neoplasias.

  11. In vivo and in vitro expression of myeloid antigens on B-lineage acute lymphoblastic leukemia cells.

    Science.gov (United States)

    Hara, J; Kawa-Ha, K; Yumura-Yagi, K; Kurahashi, H; Tawa, A; Ishihara, S; Inoue, M; Murayama, N; Okada, S

    1991-01-01

    The expression of myeloid antigens has been extensively examined using two-color analysis in 43 children with B-lineage acute lymphoblastic leukemia (ALL). On pre-culture cells, CD33 expression was frequently observed in CD19+, CD10- B-precursor ALL, and CD14 was expressed only on the cells from B-precursor ALL expressing CD19, CD10 and CD20, and B-ALL. After 2 or 3 days of culture without TPA, CD13 emerged on the cells from 21 of 29 patients irrespective of the presence or the absence of fetal calf serum in the culture. Of four patients with CD10+ B-precursor ALL, which showed no expression of CD13 after culture, two had T-cell associated antigens. Whereas the addition of TPA to the culture enhanced the expression of CD13 on the cells from acute non-lymphocytic leukemia (ANLL), TPA reduced the expression of this antigen on B-precursor cells. These findings suggest that the regulatory mechanism of CD13 expression may be different between B-precursor ALL and ANLL. Co-culture with cycloheximide mostly abrogated the induction of CD13, suggesting that CD13 expression was mainly dependent on de novo protein synthesis.

  12. Dynamics of myeloid cell populations during relapse-preventive immunotherapy in acute myeloid leukemia.

    Science.gov (United States)

    Rydström, Anna; Hallner, Alexander; Aurelius, Johan; Sander, Frida Ewald; Bernson, Elin; Kiffin, Roberta; Thoren, Fredrik Bergh; Hellstrand, Kristoffer; Martner, Anna

    2017-08-01

    Relapse of leukemia in the postchemotherapy phase contributes to the poor prognosis and survival in patients with acute myeloid leukemia (AML). In an international phase IV trial (ClinicalTrials.gov; NCT01347996), 84 patients with AML in first complete remission who had not undergone transplantation received immunotherapy with histamine dihydrochloride (HDC) and low-dose IL-2 with the aim of preventing relapse. The dynamics of myeloid cell counts and expression of activation markers was assessed before and after cycles of immunotherapy and correlated with clinical outcome in terms of relapse risk and survival. During cycles, a pronounced increase in blood eosinophil counts was observed along with a reduction in monocyte and neutrophil counts. A strong reduction of blood monocyte counts during the first HDC/IL-2 treatment cycle predicted leukemia-free survival. The HDC component of the immunotherapy exerts agonist activity at histamine type 2 receptors (H2Rs) that are expressed by myeloid cells. It was observed that the density of H 2 R expression in blood monocytes increased during cycles of immunotherapy and that high monocyte H 2 R expression implied reduced relapse risk and improved overall survival. Several other activation markers, including HLA-DR, CD86, and CD40, were induced in monocytes and dendritic cells during immunotherapy but did not predict clinical outcome. In addition, expression of HLA-ABC increased in all myeloid populations during therapy. A low expression of HLA-ABC was associated with reduced relapse risk. These results suggest that aspects of myeloid cell biology may impact clinical benefit of relapse-preventive immunotherapy in AML. © Society for Leukocyte Biology.

  13. Targeting iron homeostasis induces cellular differentiation and synergizes with differentiating agents in acute myeloid leukemia.

    Science.gov (United States)

    Callens, Celine; Coulon, Séverine; Naudin, Jerome; Radford-Weiss, Isabelle; Boissel, Nicolas; Raffoux, Emmanuel; Wang, Pamella Huey Mei; Agarwal, Saurabh; Tamouza, Houda; Paubelle, Etienne; Asnafi, Vahid; Ribeil, Jean-Antoine; Dessen, Philippe; Canioni, Danielle; Chandesris, Olivia; Rubio, Marie Therese; Beaumont, Carole; Benhamou, Marc; Dombret, Hervé; Macintyre, Elizabeth; Monteiro, Renato C; Moura, Ivan C; Hermine, Olivier

    2010-04-12

    Differentiating agents have been proposed to overcome the impaired cellular differentiation in acute myeloid leukemia (AML). However, only the combinations of all-trans retinoic acid or arsenic trioxide with chemotherapy have been successful, and only in treating acute promyelocytic leukemia (also called AML3). We show that iron homeostasis is an effective target in the treatment of AML. Iron chelating therapy induces the differentiation of leukemia blasts and normal bone marrow precursors into monocytes/macrophages in a manner involving modulation of reactive oxygen species expression and the activation of mitogen-activated protein kinases (MAPKs). 30% of the genes most strongly induced by iron deprivation are also targeted by vitamin D3 (VD), a well known differentiating agent. Iron chelating agents induce expression and phosphorylation of the VD receptor (VDR), and iron deprivation and VD act synergistically. VD magnifies activation of MAPK JNK and the induction of VDR target genes. When used to treat one AML patient refractory to chemotherapy, the combination of iron-chelating agents and VD resulted in reversal of pancytopenia and in blast differentiation. We propose that iron availability modulates myeloid cell commitment and that targeting this cellular differentiation pathway together with conventional differentiating agents provides new therapeutic modalities for AML.

  14. Targeting iron homeostasis induces cellular differentiation and synergizes with differentiating agents in acute myeloid leukemia

    Science.gov (United States)

    Callens, Celine; Coulon, Séverine; Naudin, Jerome; Radford-Weiss, Isabelle; Boissel, Nicolas; Raffoux, Emmanuel; Wang, Pamella Huey Mei; Agarwal, Saurabh; Tamouza, Houda; Paubelle, Etienne; Asnafi, Vahid; Ribeil, Jean-Antoine; Dessen, Philippe; Canioni, Danielle; Chandesris, Olivia; Rubio, Marie Therese; Beaumont, Carole; Benhamou, Marc; Dombret, Hervé; Macintyre, Elizabeth; Monteiro, Renato C.

    2010-01-01

    Differentiating agents have been proposed to overcome the impaired cellular differentiation in acute myeloid leukemia (AML). However, only the combinations of all-trans retinoic acid or arsenic trioxide with chemotherapy have been successful, and only in treating acute promyelocytic leukemia (also called AML3). We show that iron homeostasis is an effective target in the treatment of AML. Iron chelating therapy induces the differentiation of leukemia blasts and normal bone marrow precursors into monocytes/macrophages in a manner involving modulation of reactive oxygen species expression and the activation of mitogen-activated protein kinases (MAPKs). 30% of the genes most strongly induced by iron deprivation are also targeted by vitamin D3 (VD), a well known differentiating agent. Iron chelating agents induce expression and phosphorylation of the VD receptor (VDR), and iron deprivation and VD act synergistically. VD magnifies activation of MAPK JNK and the induction of VDR target genes. When used to treat one AML patient refractory to chemotherapy, the combination of iron-chelating agents and VD resulted in reversal of pancytopenia and in blast differentiation. We propose that iron availability modulates myeloid cell commitment and that targeting this cellular differentiation pathway together with conventional differentiating agents provides new therapeutic modalities for AML. PMID:20368581

  15. DNA Methyltransferase Inhibitors in Myeloid Cancer

    DEFF Research Database (Denmark)

    Ørskov, Andreas Due; Grønbæk, Kirsten

    2017-01-01

    DNA methyltransferase inhibitors, so-called hypomethylating agents (HMAs), are the only drugs approved for the treatment of higher-risk myelodysplastic syndromes and are widely used in this context. However, it is still unclear why some patients respond to HMAs, whereas others do not. Recent...... sequencing efforts have identified molecular disease entities that may be specifically sensitive to these drugs, and many attempts are being made to clarify how HMAs affect the malignant clone during treatment. Here, we review the most recent data on the clinical effects of HMAs in myeloid malignancies....

  16. Aberrant expression of CKLF-like MARVEL transmembrane member 5 (CMTM5) by promoter methylation in myeloid leukemia.

    Science.gov (United States)

    Niu, Jihong; Li, Henan; Zhang, Yao; Li, Jinlan; Xie, Min; Li, Lingdi; Qin, Xiaoying; Qin, Yazhen; Guo, Xiaohuan; Jiang, Qian; Liu, Yanrong; Chen, Shanshan; Huang, Xiaojun; Han, Wenling; Ruan, Guorui

    2011-06-01

    CMTM5 has been shown to exhibit tumor suppressor activities, however, its role in leukemia is unclear. Herein we firstly reported the expression and function of CMTM5 in myeloid leukemia. CMTM5 was down-regulated, or undetectable, in leukemia cell lines and bone marrow cells from leukemia patients with promoter methylation. Ectopic expression of CMTM5-v1 strongly inhibited the proliferation of K562 and MEG-01 cells. In addition, significant negative correlations were observed between CMTM5 and three leukemia-specific fusion genes (AML1-ETO, PML-RARα and BCR/ABL1). CMTM5 expression was up-regulated in patients who had undergone treatment. Therefore, CMTM5 may be involved in the pathomechanism of myeloid leukemias. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Tunneling Nanotubes: Intimate Communication between Myeloid Cells

    Directory of Open Access Journals (Sweden)

    Maeva Dupont

    2018-01-01

    Full Text Available Tunneling nanotubes (TNT are dynamic connections between cells, which represent a novel route for cell-to-cell communication. A growing body of evidence points TNT towards a role for intercellular exchanges of signals, molecules, organelles, and pathogens, involving them in a diverse array of functions. TNT form among several cell types, including neuronal cells, epithelial cells, and almost all immune cells. In myeloid cells (e.g., macrophages, dendritic cells, and osteoclasts, intercellular communication via TNT contributes to their differentiation and immune functions. Importantly, TNT enable myeloid cells to communicate with a targeted neighboring or distant cell, as well as with other cell types, therefore creating a complex variety of cellular exchanges. TNT also contribute to pathogen spread as they serve as “corridors” from a cell to another. Herein, we addressed the complexity of the definition and in vitro characterization of TNT in innate immune cells, the different processes involved in their formation, and their relevance in vivo. We also assess our current understanding of how TNT participate in immune surveillance and the spread of pathogens, with a particular interest for HIV-1. Overall, despite recent progress in this growing research field, we highlight that further investigation is needed to better unveil the role of TNT in both physiological and pathological conditions.

  18. Low expression of miR-196b enhances the expression of BCR-ABL1 and HOXA9 oncogenes in chronic myeloid leukemogenesis.

    Directory of Open Access Journals (Sweden)

    Yue Liu

    Full Text Available MicroRNAs (miRNAs can function as tumor suppressors or oncogene promoters during tumor development. In this study, low levels of expression of miR-196b were detected in patients with chronic myeloid leukemia. Bisulfite genomic sequencing PCR and methylation-specific PCR were used to examine the methylation status of the CpG islands in the miR-196b promoter in K562 cells, patients with leukemia and healthy individuals. The CpG islands showed more methylation in patients with chronic myeloid leukemia compared with healthy individuals (P<0.05, which indicated that low expression of miR-196b may be associated with an increase in the methylation of CpG islands. The dual-luciferase reporter assay system demonstrated that BCR-ABL1 and HOXA9 are the target genes of miR-196b, which was consistent with predictions from bioinformatics software analyses. Further examination of cell function indicated that miR-196b acts to reduce BCR-ABL1 and HOXA9 protein levels, decrease cell proliferation rate and retard the cell cycle. A low level of expression of miR-196b can cause up-regulation of BCR-ABL1 and HOXA9 expression, which leads to the development of chronic myeloid leukemia. MiR-196b may represent an effective target for chronic myeloid leukemia therapy.

  19. Precursor T-cell acute lymphoblastic leukemia presenting with bone marrow necrosis: a case report

    Directory of Open Access Journals (Sweden)

    Khoshnaw Najmaddin SH

    2012-10-01

    Full Text Available Abstract Introduction Bone marrow necrosis is a clinicopathological condition diagnosed most often at postmortem examination, but it is also seen during the course of malignancy and is not always associated with a poor prognosis. The morphological features of bone marrow necrosis are disruption of the normal marrow architecture and necrosis of myeloid tissue and medullary stroma. Non-malignant conditions associated with bone marrow necrosis are sickle cell anemia, infections, drugs (sulfasalazine, interferon α, all-trans retinoic acid, granulocyte colony-stimulating factor and fludarabine, disseminated intravascular coagulation, antiphospholipid antibody syndrome and acute graft versus host diseases. The malignant causes are leukemia, lymphoma and metastatic carcinomas. Herein we report the case of a patient with precursor T-cell acute lymphoblastic leukemia and bone marrow necrosis at initial presentation. Case presentation A 10-year-old Kurdish boy was presented with generalized bone pain and fever of 1 month’s duration which was associated with sweating, easy fatigability, nose bleeding, breathlessness and severe weight loss. On examination, we observed pallor, tachypnea, tachycardia, low blood pressure, fever, petechial hemorrhage, ecchymoses, tortuous dilated veins over the chest and upper part of abdomen, multiple small cervical lymph node enlargements, mildly enlarged spleen, palpable liver and gross abdominal distention. Blood analysis revealed pancytopenia and elevated lactate dehydrogenase and erythrocyte sedimentation rate. Imaging results showed mediastinal widening on a planar chest X-ray and diffuse focal infiltration of the axial bone marrow on magnetic resonance imaging of the lumbosacral vertebrae. Bone marrow aspiration and biopsy examination showed extensive bone marrow necrosis. Immunophenotyping analysis of the bone marrow biopsy confirmed T-cell acute lymphoblastic leukemia, as CD3 and terminal deoxynucleotidyl

  20. LMP1-mediated glycolysis induces myeloid-derived suppressor cell expansion in nasopharyngeal carcinoma

    Science.gov (United States)

    Cai, Ting-Ting; Ye, Shu-Biao; Liu, Yi-Na; He, Jia; Chen, Qiu-Yan; Mai, Hai-Qiang; Zhang, Chuan-Xia; Cui, Jun; Zhang, Xiao-Shi; Zeng, Yi-Xin

    2017-01-01

    Myeloid-derived suppressor cells (MDSCs) are expanded in tumor microenvironments, including that of Epstein–Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC). The link between MDSC expansion and EBV infection in NPC is unclear. Here, we show that EBV latent membrane protein 1 (LMP1) promotes MDSC expansion in the tumor microenvironment by promoting extra-mitochondrial glycolysis in malignant cells, which is a scenario for immune escape initially suggested by the frequent, concomitant detection of abundant LMP1, glucose transporter 1 (GLUT1) and CD33+ MDSCs in tumor sections. The full process has been reconstituted in vitro. LMP1 promotes the expression of multiple glycolytic genes, including GLUT1. This metabolic reprogramming results in increased expression of the Nod-like receptor family protein 3 (NLRP3) inflammasome, COX-2 and P-p65 and, consequently, increased production of IL-1β, IL-6 and GM-CSF. Finally, these changes in the environment of malignant cells result in enhanced NPC-derived MDSC induction. One key step is the physical interaction of LMP1 with GLUT1 to stabilize the GLUT1 protein by blocking its K48-ubiquitination and p62-dependent autolysosomal degradation. This work indicates that LMP1-mediated glycolysis regulates IL-1β, IL-6 and GM-CSF production through the NLRP3 inflammasome, COX-2 and P-p65 signaling pathways to enhance tumor-associated MDSC expansion, which leads to tumor immunosuppression in NPC. PMID:28732079

  1. Persistence of donor-derived protein in host myeloid cells after induced rejection of engrafted allogeneic bone marrow cells

    Science.gov (United States)

    Saito, Toshiki I.; Fujisaki, Joji; Carlson, Alicia L.; Lin, Charles P.; Sykes, Megan

    2014-01-01

    Objective In recipients of allogeneic hematopoietic stem cell transplantation to treat hematologic malignancies, we have unexpectedly observed anti-tumor effects in association with donor cell rejection in both mice and humans. Host-type CD8 T cells were shown to be required for these anti-tumor effects in the murine model. Since sustained host CD8 T cell activation was observed in the murine bone marrow following the disappearance of donor chimerism in the peripheral blood, we hypothesized that donor antigen presentation in the bone marrow might be prolonged. Materials and Methods To assess this hypothesis, we established mixed chimerism with green fluorescence protein (GFP)-positive allogeneic bone marrow cells, induced rejection of the donor cells by giving recipient leukocyte infusions (RLI), and utilized in vivo microscopy to follow GFP-positive cells. Results After peripheral donor leukocytes disappeared, GFP persisted within host myeloid cells surrounding the blood vessels in the bone marrow, suggesting that the host myeloid cells captured donor-derived GFP protein. Conclusions Since the host-versus-graft reaction promotes the induction of anti-tumor responses in this model, this retention of donor-derived protein may play a role in the efficacy of RLI as an anti-tumor therapy. PMID:20167247

  2. Gastrointestinal Stromal Tumor: Diagnosis and Prognosis

    International Nuclear Information System (INIS)

    Martin, M. T.; Olmedilla, P.; Gonzalez, S.; Oliver, J. M.

    2003-01-01

    Gastrointestinal stromal tumors (GIST) are mesenquimal tumors derived from cell precursors. They have the capacity for myogenic and neurogenic differentiation and are characterized by expression of KIT protein /tyrosine kinase growth factor). Clinically, they exhibit various biological behaviors. We present 8 cases of GIST, describing both their radiological manifestation through computerized tomography (CT) and most accepted criteria for benignity and malignancy. We also describe the response of one meta statically diagnosed tumor to tyrosine kinase inhibitor. (Author) 9 refs

  3. Preparation of superconductor precursor powders

    Science.gov (United States)

    Bhattacharya, Raghunath; Blaugher, Richard D.

    1995-01-01

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals, such as nitrate salts of thallium, barium, calcium, and copper, which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of thallium in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  4. Trending analysis of precursor events

    International Nuclear Information System (INIS)

    Watanabe, Norio

    1998-01-01

    The Accident Sequence Precursor (ASP) Program of United States Nuclear Regulatory Commission (U.S.NRC) identifies and categorizes operational events at nuclear power plants in terms of the potential for core damage. The ASP analysis has been performed on yearly basis and the results have been published in the annual reports. This paper describes the trends in initiating events and dominant sequences for 459 precursors identified in the ASP Program during the 1969-94 period and also discusses a comparison with dominant sequences predicted in the past Probabilistic Risk Assessment (PRA) studies. These trends were examined for three time periods, 1969-81, 1984-87 and 1988-94. Although the different models had been used in the ASP analyses for these three periods, the distribution of precursors by dominant sequences show similar trends to each other. For example, the sequences involving loss of both main and auxiliary feedwater were identified in many PWR events and those involving loss of both high and low coolant injection were found in many BWR events. Also, it was found that these dominant sequences were comparable to those determined to be dominant in the predictions by the past PRAs. As well, a list of the 459 precursors identified are provided in Appendix, indicating initiating event types, unavailable systems, dominant sequences, conditional core damage probabilities, and so on. (author)

  5. Synthesis of labelled ecdysone precursors

    International Nuclear Information System (INIS)

    Haag, T.; Hetru, C.; Nakatani, Y.; Luu, B.; Meister, M.; Pichat, L.; Audinot, M.

    1985-01-01

    High specific activity tritiated 3β,14α-dihydroxy-5β-cholest-7-en-6-one, has been prepared using a precursor which permits rapid and easy labelling. This compound is converted to ecdysone under in vitro conditions by insect prothoracic glands, a well known site of ecdysone biosynthesis. (author)

  6. Immune evasion in acute myeloid leukemia: current concepts and future directions.

    Science.gov (United States)

    Teague, Ryan M; Kline, Justin

    2013-08-27

    Immune responses generated against malignant cells have the potential to inhibit tumor growth, or even eliminate transformed cells before a tumor forms. However, immune tolerance mechanisms that normally protect healthy tissues from autoimmune damage pose a formidable barrier to the development of effective anti-tumor immunity. Because malignant cells are derived from self-tissues, the majority of defined tumor antigens are either shared or aberrantly expressed self-proteins. Eliciting productive T cell responses against such proteins is challenging, as most high-affinity, self-reactive T cells are purged during thymic selection. Some T cells capable of tumor antigen recognition escape thymic deletion, but are functionally inhibited by peripheral tolerance mechanisms which limit their ability to attack a developing malignancy. Alternatively, some tumors express antigens derived from mutated self-proteins, viral proteins or self proteins expressed only during embryonic development. These antigens are recognized by the immune system as foreign and could be recognized by a relatively large number of peripheral T cells. Even in this scenario, tumors evade otherwise effective T cell responses by employing potent immunosuppressive mechanisms within their local environment. In the setting for solid malignancies, such as melanoma, a growing number of putative immune evasion mechanisms have been characterized. However, acute myeloid leukemia (AML) is a systemic disease, and the pathways it exploits to subvert the host immune response may be quite different than those of a solid tumor. Much remains unknown regarding the immune escape mechanisms promoted by AML, and whether efforts to thwart tolerance may influence the progression of this disease. Here, we review current concepts of immune evasion in AML, and speculate how potentially effective immunotherapeutic strategies might be developed to reverse immune tolerance in leukemia patients in the future.

  7. Emerging therapies for acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Caner Saygin

    2017-04-01

    Full Text Available Abstract Acute myeloid leukemia (AML is characterized by clinical and biological heterogeneity. Despite the advances in our understanding of its pathobiology, the chemotherapy-directed management has remained largely unchanged in the past 40 years. However, various novel agents have demonstrated clinical activity, either as single agents (e.g., isocitrate dehydrogenase (IDH inhibitors, vadastuximab or in combination with standard induction/consolidation at diagnosis and with salvage regimens at relapse. The classes of agents described in this review include novel cytotoxic chemotherapies (CPX-351 and vosaroxin, epigenetic modifiers (guadecitabine, IDH inhibitors, histone deacetylase (HDAC inhibitors, bromodomain and extraterminal (BET inhibitors, FMS-like tyrosine kinase receptor 3 (FLT3 inhibitors, and antibody-drug conjugates (vadastuximab, as well as cell cycle inhibitors (volasertib, B-cell lymphoma 2 (BCL-2 inhibitors, and aminopeptidase inhibitors. These agents are actively undergoing clinical investigation alone or in combination with available chemotherapy.

  8. Aberrant Gene Expression in Acute Myeloid Leukaemia

    DEFF Research Database (Denmark)

    Bagger, Frederik Otzen

    genes and genetic signatures and for reducing dimensionally of gene expression data. Next, we have used machine-learning methods to predict survival and to assess important predictors based on these results. General application of a number of these methods has been implemented into two public query......Summary Acute Myeloid Leukaemia (AML) is an aggressive cancer of the bone marrow, affecting formation of blood cells during haematopoiesis. This thesis presents investigation of AML using mRNA gene expression profiles (GEP) of samples extracted from the bone marrow of healthy and diseased subjects....... Here GEPs from purified healthy haematopoietic populations, with different levels of differentiation, form the basis for comparison with diseased samples. We present a mathematical transformation of mRNA microarray data to make it possible to compare AML samples, carrying expanded aberrant...

  9. Total body irradiation in chronic myeloid leukemia

    International Nuclear Information System (INIS)

    Advani, S.H.; Dinshaw, K.A.; Nair, C.N.; Ramakrishnan, G.

    1983-01-01

    Total body irradiation (TBI), given as 10 rad daily for five days a week for a total dose of 150 rad has been used in an attempt to control the chronic phase of chronic myeloid leukemia (CML). Thirteen patients with CML received fractionated TBI leading to rapid and good control of WBC count without any adverse reaction. The chronic phase of CML could also be controlled with TBI, even in three patients who were resistant to busulfan. Following TBI, WBC count remained under control for a period of 32 weeks as compared to 40 weeks following vusulfan alone. Repeat TBI was also well tolerated with good response. It appears that TBI is an effective and safe therapy for controlling the chronic phase of CML

  10. Biological treatment and chronic myeloid leukemia

    International Nuclear Information System (INIS)

    Tothova, E.

    2011-01-01

    Notwithstanding the considerable skepticism that prevailed at the beginning of nineties of the last century to the possible clinical significance of inhibitors of tyrosine kinase (TK), Druker et al. (1998) had developed a compound that inhibited the enzymatic activity of Abl protein and, consequently, increased activity of Bcr-Abl oncoprotein, whose presence is characteristic of chronic myeloid leukemia (CML). The TK inhibitor, imatinib mesylate (Glivec) has become the standard first-line therapy for all patients with newly diagnosed CML. Despite its high efficiency, part of patients is not responding to treatment with this preparation or is losing an already achieved response. In this case second-generation or third-generation tyrosine kinase inhibitors (TKIs) could be applied.. The paper presents an overview of treatment options for CML, focusing on biological therapy with TKIs. (author)

  11. Current Management of Childhood Acute Myeloid Leukemia.

    Science.gov (United States)

    Rubnitz, Jeffrey E

    2017-02-01

    The outcome for children with acute myeloid leukemia (AML) has improved significantly over the past 30 years, with complete remission and overall survival rates exceeding 90 and 60%, respectively, in recent clinical trials. However, these improvements have not been achieved by the introduction of new agents. Instead, intensification of standard chemotherapy, more precise risk classification, improvements in supportive care, and the use of minimal residual disease to monitor response to therapy have all contributed to this success. Nevertheless, novel therapies are needed, as the cure rates for many subtypes of childhood AML remain unacceptably low. Here, we briefly review advances in our understanding of the biology and genetics of AML, the results of recent clinical trials, and current recommendations for the treatment of children with AML.

  12. Targeting MTHFD2 in acute myeloid leukemia.

    Science.gov (United States)

    Pikman, Yana; Puissant, Alexandre; Alexe, Gabriela; Furman, Andrew; Chen, Liying M; Frumm, Stacey M; Ross, Linda; Fenouille, Nina; Bassil, Christopher F; Lewis, Caroline A; Ramos, Azucena; Gould, Joshua; Stone, Richard M; DeAngelo, Daniel J; Galinsky, Ilene; Clish, Clary B; Kung, Andrew L; Hemann, Michael T; Vander Heiden, Matthew G; Banerji, Versha; Stegmaier, Kimberly

    2016-06-27

    Drugs targeting metabolism have formed the backbone of therapy for some cancers. We sought to identify new such targets in acute myeloid leukemia (AML). The one-carbon folate pathway, specifically methylenetetrahydrofolate dehydrogenase-cyclohydrolase 2 (MTHFD2), emerged as a top candidate in our analyses. MTHFD2 is the most differentially expressed metabolic enzyme in cancer versus normal cells. Knockdown of MTHFD2 in AML cells decreased growth, induced differentiation, and impaired colony formation in primary AML blasts. In human xenograft and MLL-AF9 mouse leukemia models, MTHFD2 suppression decreased leukemia burden and prolonged survival. Based upon primary patient AML data and functional genomic screening, we determined that FLT3-ITD is a biomarker of response to MTHFD2 suppression. Mechanistically, MYC regulates the expression of MTHFD2, and MTHFD2 knockdown suppresses the TCA cycle. This study supports the therapeutic targeting of MTHFD2 in AML. © 2016 Pikman et al.

  13. Polysialic acid bioengineering of neuronal cells by N-acyl sialic acid precursor treatment.

    Science.gov (United States)

    Pon, Robert A; Biggs, Nancy J; Jennings, Harold J

    2007-03-01

    The inherent promiscuity of the polysialic acid (PSA) biosynthetic pathway has been exploited by the use of exogenous unnatural sialic acid precursor molecules to introduce unnatural modifications into cellular PSA, and has found applications in nervous system development and tumor vaccine studies. The sialic acid precursor molecules N-propionyl- and N-butanoyl-mannosamine (ManPr, ManBu) have been variably reported to affect PSA biosynthesis ranging from complete inhibition to de novo production of modified PSA, thus illustrating the need for further investigation into their effects. In this study, we have used a monoclonal antibody (mAb) 13D9, specific to both N-propionyl-PSA and N-butanoyl-PSA (NPrPSA and NBuPSA), together with flow cytometry, to study precursor-treated tumor cells and NT2 neurons at different stages of their maturation. We report that both ManPr and ManBu sialic acid precursors are metabolized and the resultant unnatural sialic acids are incorporated into de novo surface sialylglycoconjugates in murine and human tumor cells and, for the first time, in human NT2 neurons. Furthermore, neither precursor treatment deleteriously affected endogenous PSA expression; however, with NT2 cells, PSA levels were naturally downregulated as a function of their maturation into polarized neurons independent of sialic acid precursor treatment.

  14. Immortalized myeloid suppressor cells trigger apoptosis in antigen-activated T lymphocytes.

    Science.gov (United States)

    Apolloni, E; Bronte, V; Mazzoni, A; Serafini, P; Cabrelle, A; Segal, D M; Young, H A; Zanovello, P

    2000-12-15

    We described a generalized suppression of CTL anamnestic responses that occurred in mice bearing large tumor nodules or immunized with powerful recombinant viral immunogens. Immune suppression entirely depended on GM-CSF-driven accumulation of CD11b(+)/Gr-1(+) myeloid suppressor cells (MSC) in secondary lymphoid organs. To further investigate the nature and properties of MSC, we immortalized CD11b(+)/Gr-1(+) cells isolated from the spleens of immunosuppressed mice, using a retrovirus encoding the v-myc and v-raf oncogenes. Immortalized cells expressed monocyte/macrophage markers (CD11b, F4/80, CD86, CD11c), but they differed from previously characterized macrophage lines in their capacities to inhibit T lymphocyte activation. Two MSC lines, MSC-1 and MSC-2, were selected based upon their abilities to inhibit Ag-specific proliferative and functional CTL responses. MSC-1 line was constitutively inhibitory, while suppressive functions of MSC-2 line were stimulated by exposure to the cytokine IL-4. Both MSC lines triggered the apoptotic cascade in Ag-activated T lymphocytes by a mechanism requiring cell-cell contact. Some well-known membrane molecules involved in the activation of apoptotic pathways (e.g., TNF-related apoptosis-inducing ligand, Fas ligand, TNF-alpha) were ruled out as candidate effectors for the suppression mechanism. The immortalized myeloid lines represent a novel, useful tool to shed light on the molecules involved in the differentiation of myeloid-related suppressors as well as in the inhibitory pathway they use to control T lymphocyte activation.

  15. Myeloid sarcoma of the rib: An atypical isolated chest finding

    Directory of Open Access Journals (Sweden)

    Antonio Raucci

    2015-03-01

    Systemic treatment was administered and currently neither systemic nor local relapse has been identified. Our experience suggests surgical resection could be a valid treatment in isolated myeloid sarcoma patients.

  16. Genetics of therapy-related myelodysplasia and acute myeloid leukemia

    DEFF Research Database (Denmark)

    Pedersen-Bjergaard, J.; Andersen, Mette Klarskov; Andersen, M.T.

    2008-01-01

    Myelodysplasia (MDS) and acute myeloid leukemia (AML) are heterogeneous, closely associated diseases arising de novo or following chemotherapy with alkylating agents, topoisomerase II inhibitors, or after radiotherapy. Whereas de novo MDS and AML are almost always subclassified according...

  17. Genome wide molecular analysis of minimally differentiated acute myeloid leukemia

    NARCIS (Netherlands)

    F.P.G. Silva (Fernando); I. Almeida (Inês); B. Morolli (Bruno); G. Brouwer-Mandema (Geeske); H. Wessels (Hans); R. Vossen (Rolf); H. Vrieling (Harry); E.W.A. Marijt (Erik); P.J.M. Valk (Peter); J.C. Kluin-Nelemans (Hanneke); W.R. Sperr (Wolfgang); W.D. Ludwig; M. Giphart-Gassler (Micheline)

    2009-01-01

    textabstractBackground: Minimally differentiated acute myeloid leukemia is heterogeneous in karyotype and is defined by immature morphological and molecular characteristics. This originally French-American-British classification is still used in the new World Health Organization classification when

  18. Genome wide molecular analysis of minimally differentiated acute myeloid leukemia

    NARCIS (Netherlands)

    Silva, Fernando P. G.; Almeida, Ines; Morolli, Bruno; Brouwer-Mandema, Geeske; Wessels, Hans; Vossen, Rolf; Vrieling, Harry; Marijt, Erik W. A.; Valk, Peter J. M.; Kluin-Nelemans, Hanneke C.; Sperr, Wolfgang R.; Ludwig, Wolf-Dieter; Giphart-Gassler, Micheline

    2009-01-01

    Background Minimally differentiated acute myeloid leukemia is heterogeneous in karyotype and is defined by immature morphological and molecular characteristics. This originally French-American-British classification is still used in the new World Health Organization classification when other

  19. DACH1 regulates cell cycle progression of myeloid cells through the control of cyclin D, Cdk 4/6 and p21{sup Cip1}

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Woong; Kim, Hyeng-Soo; Kim, Seonggon; Hwang, Junmo; Kim, Young Hun; Lim, Ga Young [School of Life Science and Biotechnology, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Sohn, Wern-Joo [Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu 700-412 (Korea, Republic of); Yoon, Suk-Ran [Cell Therapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Kim, Jae-Young [Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu 700-412 (Korea, Republic of); Park, Tae Sung [Department of Laboratory Medicine, Kyung Hee University School of Medicine, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-702 (Korea, Republic of); Park, Kwon Moo [Department of Anatomy, Kyungpook National University School of Medicine, Daegu 700-422 (Korea, Republic of); Ryoo, Zae Young [School of Life Science and Biotechnology, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Lee, Sanggyu, E-mail: slee@knu.ac.kr [School of Life Science and Biotechnology, Kyungpook National University, Daegu 702-701 (Korea, Republic of)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer DACH1 increases cyclin D, F and Cdk 1, 4, 6 in mouse myeloid progenitor cells. Black-Right-Pointing-Pointer The knockdown of DACH1 blocked the cell cycle progression of HL-60 cells. Black-Right-Pointing-Pointer The novel effect of DACH1 related with cell cycle regulation and leukemogenesis. -- Abstract: The cell-fate determination factor Dachshund, a component of the Retinal Determination Gene Network (RDGN), has a role in breast tumor proliferation through the repression of cyclin D1 and several key regulators of embryonic stem cell function, such as Nanog and Sox2. However, little is known about the role of DACH1 in a myeloid lineage as a cell cycle regulator. Here, we identified the differential expression levels of extensive cell cycle regulators controlled by DACH1 in myeloid progenitor cells. The forced expression of DACH1 induced p27{sup Kip1} and repressed p21{sup Cip1}, which is a pivotal characteristic of the myeloid progenitor. Furthermore, DACH1 significantly increased the expression of cyclin D1, D3, F, and Cdk 1, 4, and 6 in myeloid progenitor cells. The knockdown of DACH1 blocked the cell cycle progression of HL-60 promyeloblastic cells through the decrease of cyclin D1, D3, F, and Cdk 1, 4, and 6 and increase in p21{sup Cip1}, which in turn decreased the phosphorylation of the Rb protein. The expression of Sox2, Oct4, and Klf4 was significantly up-regulated by the forced expression of DACH1 in mouse myeloid progenitor cells.

  20. Irradiated tumor cells of lipopolysaccharide stimulation elicit an enhanced anti-tumor immunity.

    Science.gov (United States)

    Li, Yuli; Shen, Guobo; Nie, Wen; Li, Zhimian; Sang, Yaxiong; Zhang, Binglan; Wei, Yuquan

    2014-11-01

    Lipopolysaccharide (LPS) is a major component of the outer surface membrane of Gram-negative bacteria which has been proved an effective immune enhancer. Here, we investigated the anti-tumor effect of irradiated tumor cells that stimulated by LPS in mouse xenografts models. Tumor cells were irradiated after stimulation with 1 μg/mL LPS for 48 h. The C57BL/6 mice were immunized subcutaneously with irradiated tumor cells. The anti-tumor effect of lymphocytes of immunized mice was investigated. The cytotoxicity of spleen lymphocytes from immunized mice was determined by a standard (51)Cr-release assay. The roles of immune cell subsets in anti-tumor activity were assessed by injected intraperitoneally with monoclonal antibodies. We observed that the vaccine of irradiated tumor cell with LPS-stimulated elicited a stronger protective anti-tumor immunity than other controls. Adoptive transfer of lymphocytes of immunized mice showed that the cellular immune response was involved in the anti-tumor effect. And this effect was achieved by activation of antigen-specific CD8(+) T cell response and reduction of myeloid-derived suppressor cells (MDSCs, Gr1(+) CD11b (+) ), which were confirmed by depletion of immune cell subsets and flow cytometry analysis. In summary, our study showed that stimulation of LPS was able to enhance anti-tumor immunity of vaccination with tumor cells after irradiation treatment, which might be a new strategy for cancer therapy.

  1. Herpes Simplex Virus 1 Interaction with Myeloid Cells In Vivo.

    Science.gov (United States)

    Shivkumar, Maitreyi; Lawler, Clara; Milho, Ricardo; Stevenson, Philip G

    2016-10-01

    Herpes simplex virus 1 (HSV-1) enters mice via olfactory epithelial cells and then colonizes the trigeminal ganglia (TG). Most TG nerve endings are subepithelial, so this colonization implies subepithelial viral spread, where myeloid cells provide an important line of defense. The outcome of infection of myeloid cells by HSV-1 in vitro depends on their differentiation state; the outcome in vivo is unknown. Epithelial HSV-1 commonly infected myeloid cells, and Cre-Lox virus marking showed nose and lung infections passing through LysM-positive (LysM(+)) and CD11c(+) cells. In contrast, subcapsular sinus macrophages (SSMs) exposed to lymph-borne HSV-1 were permissive only when type I interferon (IFN-I) signaling was blocked; normally, their infection was suppressed. Thus, the outcome of myeloid cell infection helped to determine the HSV-1 distribution: subepithelial myeloid cells provided a route of spread from the olfactory epithelium to TG neurons, while SSMs blocked systemic spread. Herpes simplex virus 1 (HSV-1) infects most people and can cause severe disease. This reflects its persistence in nerve cells that connect to the mouth, nose, eye, and face. Established infection seems impossible to clear. Therefore, we must understand how it starts. This is difficult in humans, but mice show HSV-1 entry via the nose and then spread to its preferred nerve cells. We show that this spread proceeds in part via myeloid cells, which normally function in host defense. Myeloid infection was productive in some settings but was efficiently suppressed by interferon in others. Therefore, interferon acting on myeloid cells can stop HSV-1 spread, and enhancing this defense offers a way to improve infection control. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. Genetics of therapy-related myelodysplasia and acute myeloid leukemia

    DEFF Research Database (Denmark)

    Pedersen-Bjergaard, J.; Andersen, Mette Klarskov; Andersen, M.T.

    2008-01-01

    Myelodysplasia (MDS) and acute myeloid leukemia (AML) are heterogeneous, closely associated diseases arising de novo or following chemotherapy with alkylating agents, topoisomerase II inhibitors, or after radiotherapy. Whereas de novo MDS and AML are almost always subclassified according to cytog......Myelodysplasia (MDS) and acute myeloid leukemia (AML) are heterogeneous, closely associated diseases arising de novo or following chemotherapy with alkylating agents, topoisomerase II inhibitors, or after radiotherapy. Whereas de novo MDS and AML are almost always subclassified according...

  3. Novel transforming genes in murine myeloid leukemia

    NARCIS (Netherlands)

    A.M.S. Joosten (Marieke)

    2002-01-01

    textabstractLeukemia is characterised by an accumulation in the bone marrow of non-functional blood cells arrested at a particular stage of differentiation. In the process of normal hematopoiesis, errors may occur as the result of mutations in the DNA of hematopoietic precursor cells. These genetic

  4. Precursor polymer compositions comprising polybenzimidazole

    Energy Technology Data Exchange (ETDEWEB)

    Klaehn, John R.; Peterson, Eric S.; Orme, Christopher J.

    2015-07-14

    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  5. Rapid Assessment of the Heterogeneous Methylation Status of CEBPA in Patients with Acute Myeloid Leukemia by Using High-Resolution Melting Profile

    OpenAIRE

    Lin, Tsung-Chin; Jiang, Sin-Sien; Chou, Wen-Chien; Hou, Hsin-An; Lin, Yu-Min; Chang, Chia-Ling; Hsu, Cherng-An; Tien, Hwei-Fang; Lin, Liang-In

    2011-01-01

    Epigenetic inactivation of tumor-suppressor genes, often in association with aberrant DNA methylation of CpG islands in the promoter region of these genes, is a key factor in tumorigenesis. CCAAT/enhancer binding protein alpha (CEBPA) methylation is a favorable prognostic biomarker for acute myeloid leukemia; however, rather than the complete methylation observed in inherited disorders, CEBPA methylation is heterogeneous. In this study, we established an algorithm called the “methylation inde...

  6. Intracranial Myeloid Sarcoma Metastasis Mimicking Acute Subdural Hematoma

    Directory of Open Access Journals (Sweden)

    Amandip S. Gill

    2017-01-01

    Full Text Available Myeloid sarcoma, a rare consequence of myeloproliferative disorders, is rarely seen in the central nervous system, most commonly in the pediatric population. Although there are a handful of case reports detailing initial presentation of CNS myeloid sarcoma in the adult population, we have been unable to find any reports of CNS myeloid sarcoma presenting as a large mass lesion in a herniating patient. Here, we present the case of a patient transferred to our facility for a very large subdural hematoma. Based on imaging characteristics, it was felt to be a spontaneous hematoma secondary to coagulopathy. No coagulopathy was found. Interestingly, he did have a history of acute myeloid leukemia (AML diagnosed 2 months previously, and intraoperatively he was found to have a confluent white mass invading both the subdural and subarachnoid spaces. There was minimal associated hemorrhage and final pathology showed myeloid sarcoma. This is the first report we are aware of in which CNS myeloid sarcoma presented as a subdural metastasis and also the first report in which we are aware of this etiology causing a herniation syndrome secondary to mass effect.

  7. Functionally identifiable apoptosis-insensitive subpopulations determine chemoresistance in acute myeloid leukemia.

    Science.gov (United States)

    Bhola, Patrick D; Mar, Brenton G; Lindsley, R Coleman; Ryan, Jeremy A; Hogdal, Leah J; Vo, Thanh Trang; DeAngelo, Daniel J; Galinsky, Ilene; Ebert, Benjamin L; Letai, Anthony

    2016-10-03

    Upfront resistance to chemotherapy and relapse following remission are critical problems in leukemia that are generally attributed to subpopulations of chemoresistant tumor cells. There are, however, limited means for prospectively identifying these subpopulations, which hinders an understanding of therapeutic resistance. BH3 profiling is a functional single-cell analysis using synthetic BCL-2 BH3 domain-like peptides that measures mitochondrial apoptotic sensitivity or "priming." Here, we observed that the extent of apoptotic priming is heterogeneous within multiple cancer cell lines and is not the result of experimental noise. Apoptotic priming was also heterogeneous in treatment-naive primary human acute myeloid leukemia (AML) myeloblasts, and this heterogeneity decreased in chemotherapy-treated AML patients. The priming of the most apoptosis-resistant tumor cells, rather than the median priming of the population, best predicted patient response to induction chemotherapy. For several patients, these poorly primed subpopulations of AML tumor cells were enriched for antiapoptotic proteins. Developing techniques to identify and understand these apoptosis-insensitive subpopulations of tumor cells may yield insights into clinical chemoresistance and potentially improve therapeutic outcomes in AML.

  8. Clonal architecture of secondary acute myeloid leukemia defined by single-cell sequencing.

    Directory of Open Access Journals (Sweden)

    Andrew E O Hughes

    2014-07-01

    Full Text Available Next-generation sequencing has been used to infer the clonality of heterogeneous tumor samples. These analyses yield specific predictions-the population frequency of individual clones, their genetic composition, and their evolutionary relationships-which we set out to test by sequencing individual cells from three subjects diagnosed with secondary acute myeloid leukemia, each of whom had been previously characterized by whole genome sequencing of unfractionated tumor samples. Single-cell mutation profiling strongly supported the clonal architecture implied by the analysis of bulk material. In addition, it resolved the clonal assignment of single nucleotide variants that had been initially ambiguous and identified areas of previously unappreciated complexity. Accordingly, we find that many of the key assumptions underlying the analysis of tumor clonality by deep sequencing of unfractionated material are valid. Furthermore, we illustrate a single-cell sequencing strategy for interrogating the clonal relationships among known variants that is cost-effective, scalable, and adaptable to the analysis of both hematopoietic and solid tumors, or any heterogeneous population of cells.

  9. Cyanobacteria from Terrestrial and Marine Sources Contain Apoptogens Able to Overcome Chemoresistance in Acute Myeloid Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Liwei Liu

    2014-04-01

    Full Text Available In this study, we investigated forty cyanobacterial isolates from biofilms, gastropods, brackish water and symbiotic lichen habitats. Their aqueous and organic extracts were used to screen for apoptosis-inducing activity against acute myeloid leukemia cells. A total of 28 extracts showed cytotoxicity against rat acute myeloid leukemia (IPC-81 cells. The design of the screen made it possible to eliminate known toxins, such as microcystins and nodularin, or known metabolites with anti-leukemic activity, such as adenosine and its analogs. A cytotoxicity test on human embryonic kidney (HEK293T fibroblasts indicated that 21 of the 28 extracts containing anti-acute myeloid leukemia (AML activity showed selectivity in favor of leukemia cells. Extracts L26-O and L30-O were able to partly overcome the chemotherapy resistance induced by the oncogenic protein Bcl-2, whereas extract L1-O overcame protection from the deletion of the tumor suppressor protein p53. In conclusion, cyanobacteria are a prolific resource for anti-leukemia compounds that have potential for pharmaceutical applications. Based on the variety of cellular responses, we also conclude that the different anti-leukemic compounds in the cyanobacterial extracts target different elements of the death machinery of mammalian cells.

  10. Oncogenic RAS enables DNA damage- and p53-dependent differentiation of acute myeloid leukemia cells in response to chemotherapy.

    Directory of Open Access Journals (Sweden)

    Mona Meyer

    Full Text Available Acute myeloid leukemia (AML is a clonal disease originating from myeloid progenitor cells with a heterogeneous genetic background. High-dose cytarabine is used as the standard consolidation chemotherapy. Oncogenic RAS mutations are frequently observed in AML, and are associated with beneficial response to cytarabine. Why AML-patients with oncogenic RAS benefit most from high-dose cytarabine post-remission therapy is not well understood. Here we used bone marrow cells expressing a conditional MLL-ENL-ER oncogene to investigate the interaction of oncogenic RAS and chemotherapeutic agents. We show that oncogenic RAS synergizes with cytotoxic agents such as cytarabine in activation of DNA damage checkpoints, resulting in a p53-dependent genetic program that reduces clonogenicity and increases myeloid differentiation. Our data can explain the beneficial effects observed for AML patients with oncogenic RAS treated with higher dosages of cytarabine and suggest that induction of p53-dependent differentiation, e.g. by interfering with Mdm2-mediated degradation, may be a rational approach to increase cure rate in response to chemotherapy. The data also support the notion that the therapeutic success of cytotoxic drugs may depend on their ability to promote the differentiation of tumor-initiating cells.

  11. The MDM-2 Antagonist Nutlin-3 Promotes the Maturation of Acute Myeloid Leukemic Blasts

    Directory of Open Access Journals (Sweden)

    Paola Secchiero

    2007-10-01

    Full Text Available The small-molecule inhibitor of murine double minute (MDM-2, Nutlin-3, induced variable apoptosis in primary acute myeloid leukemia (AML blasts, promoted myeloid maturation of surviving cells, as demonstrated by analysis of CD11 b, CD14 surface antigens, by morphologic examination. Although the best-characterized activity of Nutlin-3 is activation of the p53 pathway, Nutlin-3 induced maturation also in one AML sample characterized by p53 deletion, as well as in the p53-/- human myeloblastic HL-60 cell line. At the molecular level, the maturational activity of Nutlin-3 in HL-60 cells was accompanied by the induction of E2F1 transcription factor, it was significantly counteracted by specific gene knockdown with small interfering RNA for E2F1. Moreover, Nutlin-3, as well as tumor necrosis factor (TNF α, potentiated the maturational activity of recombinant TNF-related apoptosis-inducing lig, (TRAIL in HL-60 cells. However, although TNF-α significantly counteracted the proapoptotic activity of TRAIL, Nutlin-3 did not interfere with the proapoptotic activity of TRAIL. Taken together, these data disclose a novel, potentially relevant therapeutic role for Nutlin-3 in the treatment of both p53 wild-type, p53-/- AML, possibly in association with recombinant TRAIL.

  12. FOXM1 Transcription Factor: A New Component of Chronic Myeloid Leukemia Stem Cell Proliferation Advantage.

    Science.gov (United States)

    Mancini, Manuela; Castagnetti, Fausto; Soverini, Simona; Leo, Elisa; De Benedittis, Caterina; Gugliotta, Gabriele; Rosti, Gianantonio; Bavaro, Luana; De Santis, Sara; Monaldi, Cecilia; Martelli, Margherita; Santucci, Maria Alessandra; Cavo, Michele; Martinelli, Giovanni

    2017-11-01

    FOXM1 transcription factor is a central component of tumor initiation, growth, and progression due to its multiple effects on cell cycle, DNA repair, angiogenesis and invasion, chromatin, protein anabolism, and cell adhesion. Moreover, FOXM1 interacts with β-catenin promoting its nuclear import and transcriptional activation. Here, we show that FOXM1 is involved in the advantage of chronic myeloid leukemia hematopoiesis over the normal counterpart. FOXM1 hyper-activation associated with BCR-ABL1 results from phosphorylation by the fusion protein kinase-dependent activation of Polo-like kinase 1. FOXM1 phosphorylation lets its binding with β-catenin and β-catenin transcriptional activation, a key event for persistence of the leukemic stem cell compartment under tyrosine kinase inhibitor therapy. Polo-like kinase 1 inhibitor BI6727, already advanced for clinical use, breaks β-catenin interaction with FOXM1, hence hampering FOXM1 phosphorylation, β-catenin binding, nuclear import, and downstream signaling. In conclusion, our results support Polo-like kinase 1/FOXM1 axis as a complementary target to eradicate leukemic early progenitor/stem cell compartment in chronic myeloid leukemia. J. Cell. Biochem. 118: 3968-3975, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia.

    Science.gov (United States)

    Arber, Daniel A; Orazi, Attilio; Hasserjian, Robert; Thiele, Jürgen; Borowitz, Michael J; Le Beau, Michelle M; Bloomfield, Clara D; Cazzola, Mario; Vardiman, James W

    2016-05-19

    The World Health Organization (WHO) classification of tumors of the hematopoietic and lymphoid tissues was last updated in 2008. Since then, there have been numerous advances in the identification of unique biomarkers associated with some myeloid neoplasms and acute leukemias, largely derived from gene expression analysis and next-generation sequencing that can significantly improve the diagnostic criteria as well as the prognostic relevance of entities currently included in the WHO classification and that also suggest new entities that should be added. Therefore, there is a clear need for a revision to the current classification. The revisions to the categories of myeloid neoplasms and acute leukemia will be published in a monograph in 2016 and reflect a consensus of opinion of hematopathologists, hematologists, oncologists, and geneticists. The 2016 edition represents a revision of the prior classification rather than an entirely new classification and attempts to incorporate new clinical, prognostic, morphologic, immunophenotypic, and genetic data that have emerged since the last edition. The major changes in the classification and their rationale are presented here. © 2016 by The American Society of Hematology.

  14. The role of Lin28b in myeloid and mast cell differentiation and mast cell malignancy.

    Science.gov (United States)

    Wang, L D; Rao, T N; Rowe, R G; Nguyen, P T; Sullivan, J L; Pearson, D S; Doulatov, S; Wu, L; Lindsley, R C; Zhu, H; DeAngelo, D J; Daley, G Q; Wagers, A J

    2015-06-01

    Mast cells (MCs) are critical components of the innate immune system and important for host defense, allergy, autoimmunity, tissue regeneration and tumor progression. Dysregulated MC development leads to systemic mastocytosis (SM), a clinically variable but often devastating family of hematologic disorders. Here we report that induced expression of Lin28, a heterochronic gene and pluripotency factor implicated in driving a fetal hematopoietic program, caused MC accumulation in adult mice in target organs such as the skin and peritoneal cavity. In vitro assays revealed a skewing of myeloid commitment in LIN28B-expressing hematopoietic progenitors, with increased levels of LIN28B in common myeloid and basophil-MC progenitors altering gene expression patterns to favor cell fate choices that enhanced MC specification. In addition, LIN28B-induced MCs appeared phenotypically and functionally immature, and in vitro assays suggested a slowing of MC terminal differentiation in the context of LIN28B upregulation. Finally, interrogation of human MC leukemia samples revealed upregulation of LIN28B in abnormal MCs from patients with SM. This work identifies Lin28 as a novel regulator of innate immune function and a new protein of interest in MC disease.

  15. Therapeutic reactivation of protein phosphatase 2A in acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Kavitha eRamaswamy

    2015-02-01

    Full Text Available Protein phosphatase 2A (PP2A is a serine/threonine phosphatase that is required for normal cell growth and development. PP2A is a potent tumor suppressor, which is inactivated in cancer cells as a result of genetic deletions and mutations. In myeloid leukemias, genes encoding PP2A subunits are generally intact. Instead, PP2A is functionally inhibited by post-translational modifications of its catalytic C subunit, and interactions with negative regulators by its regulatory B and scaffold A subunits. Here, we review the molecular mechanisms of genetic and functional inactivation of PP2A in human cancers, with a particular focus on human acute myeloid leukemias (AML. By analyzing expression of genes encoding PP2A subunits using transcriptome sequencing, we find that PP2A dysregulation in AML is characterized by silencing and overexpression of distinct A scaffold and B regulatory subunits, respectively. We review the mechanisms of functional PP2A activation by drugs such as fingolimod, forskolin, OP449, and perphenazine. This analysis yields two non-mutually exclusive mechanisms for therapeutic PP2A re-activation: i allosteric activation of the phosphatase activity, and ii stabilization of active holo-enzyme assembly and displacement of negative regulatory factors from A and B subunits. Future studies should allow the development of specific and potent pharmacologic activators of PP2A, and definition of susceptible disease subsets based on specific mechanisms of PP2A dysregulation.

  16. Cell-surface phosphatidylserine regulates osteoclast precursor fusion.

    Science.gov (United States)

    Verma, Santosh K; Leikina, Evgenia; Melikov, Kamran; Gebert, Claudia; Kram, Vardit; Young, Marian F; Uygur, Berna; Chernomordik, Leonid V

    2018-01-05

    Bone-resorbing multinucleated osteoclasts that play a central role in the maintenance and repair of our bones are formed from bone marrow myeloid progenitor cells by a complex differentiation process that culminates in fusion of mononuclear osteoclast precursors. In this study, we uncoupled the cell fusion step from both pre-fusion stages of osteoclastogenic differentiation and the post-fusion expansion of the nascent fusion connections. We accumulated ready-to-fuse cells in the presence of the fusion inhibitor lysophosphatidylcholine and then removed the inhibitor to study synchronized cell fusion. We found that osteoclast fusion required the dendrocyte-expressed seven transmembrane protein (DC-STAMP)-dependent non-apoptotic exposure of phosphatidylserine at the surface of fusion-committed cells. Fusion also depended on extracellular annexins, phosphatidylserine-binding proteins, which, along with annexin-binding protein S100A4, regulated fusogenic activity of syncytin 1. Thus, in contrast to fusion processes mediated by a single protein, such as epithelial cell fusion in Caenorhabditis elegans , the cell fusion step in osteoclastogenesis is controlled by phosphatidylserine-regulated activity of several proteins.

  17. Gastrointestinal Stromal Tumor: Diagnosis and Prognosis; Tumor estromal gastrointestinal: diagnostico y pronostico

    Energy Technology Data Exchange (ETDEWEB)

    Martin, M. T.; Olmedilla, P.; Gonzalez, S.; Oliver, J. M. [Fundacion Hospital de Alcorcon. Madrid (Spain)

    2003-07-01

    Gastrointestinal stromal tumors (GIST) are mesenquimal tumors derived from cell precursors. They have the capacity for myogenic and neurogenic differentiation and are characterized by expression of KIT protein (tyrosine kinase growth factor). Clinically, they exhibit various biological behaviors. We present 8 cases of GIST, describing both their radiological manifestation through computerized tomography (CT) and most accepted criteria for benignity and malignancy. We also describe the response of one meta statically diagnosed tumor to tyrosine kinase inhibitor. (Author) 9 refs.

  18. Tumor vaccines

    International Nuclear Information System (INIS)

    Frank, M.; Ihan, A.

    2006-01-01

    Tumor vaccines have several potential advantages over standard anticancer regiments. They represent highly specific anticancer therapy. Inducing tumor-specific memory T-lymphocytes, they have potential for long-lived antitumor effects. However, clinical trials, in which cancer patients were vaccinated with tumor vaccines, have been so far mainly disappointing. There are many reasons for the inefficiency of tumor vaccines. Most cancer antigens are normal self-molecules to which immune tolerance exists. That is why the population of tumor-specific lymphocytes is represented by a small number of low-affinity T-lymphocytes that induce weak antitumor immune response. Simultaneously, tumors evolve many mechanisms to actively evade immune system, what makes them poorly immunogenic or even tolerogenic. Novel immunotherapeutic strategies are directed toward breaking immune tolerance to tumor antigens, enhancing immunogenicity of tumor vaccines and overcoming mechanisms of tumor escape. There are several approaches, unfortunately, all of them still far away from an ideal tumor vaccine that would reject a tumor. Difficulties in the activation of antitumor immune response by tumor vaccines have led to the development of alternative immunotherapeutic strategies that directly focus on effector mechanisms of immune system (adoptive tumor- specific T-lymphocyte transfer and tumor specific monoclonal antibodies). (author)

  19. Dasatinib in chronic myeloid leukemia: a review

    Directory of Open Access Journals (Sweden)

    Dolly G Aguilera

    2009-03-01

    Full Text Available Dolly G Aguilera1, Apostolia M Tsimberidou21Department of Hematology-Oncology and Stem Cell Transplantation, Children’s Memorial Hospital, Northwestern University, Chicago, IL, USA; 2Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston Texas USAAbstract: Deregulated BCR-ABL tyrosine kinase (TK activity is the molecular marker for chronic myeloid leukemia (CML, which provides an identifiable target for developing therapeutic agents. Imatinib mesylate, a BCR-ABL TK inhibitor, is the frontline therapy for CML. Despite the stunning efficacy of this agent, a small number of patients develop a suboptimal response or resistance to imatinib. In newly diagnosed patients with chronic phase CML, the rate of resistance to imatinib at 4 years was up to 20%, increasing to 70% to 90% for patients in the accelerated/blastic phase. Resistance to imatinib led to the development of novel TK inhibitors such as dasatinib. Several clinical trials have reported more durable complete hematologic and cytogenetic responses with this agent in patients who are resistant or intolerant to imatinib. Dasatinib is well tolerated and has broad efficacy, resulting in durable responses in patients with any BCR-ABL mutation except for T3151 and mutations in codon 317 – most commonly F317L – including mutations that were highly resistant to imatinib, such as L248, Y253, E255, F359, and H396. Dasatinib is recommended for CML in chronic, blastic or accelerated phase that is resistant or intolerant to imatinib. Dasatinib was approved by the FDA at 100 mg once daily as the starting dose in patients with chronic phase CML and at 70 mg twice daily in patients with accelerated or blastic phase CML. Various clinical trial results provided evidence that resistance to one TK inhibitor can be reversed with the use of a different TK inhibitor (TKI. Other second-generation TKIs with activity in CML include nilotinib, bosutinib and

  20. Current Approaches in the Treatment of Relapsed and Refractory Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Nestor R. Ramos

    2015-04-01

    Full Text Available The limited sensitivity of the historical treatment response criteria for acute myeloid leukemia (AML has resulted in a different paradigm for treatment compared with most other cancers presenting with widely disseminated disease. Initial cytotoxic induction chemotherapy is often able to reduce tumor burden to a level sufficient to meet the current criteria for “complete” remission. Nevertheless, most AML patients ultimately die from their disease, most commonly as clinically evident relapsed AML. Despite a variety of available salvage therapy options, prognosis in patients with relapsed or refractory AML is generally poor. In this review, we outline the commonly utilized salvage cytotoxic therapy interventions and then highlight novel investigational efforts currently in clinical trials using both pathway-targeted agents and immunotherapy based approaches. We conclude that there is no current standard of care for adult relapsed or refractory AML other than offering referral to an appropriate clinical trial.

  1. Biting back: BiTE antibodies as a promising therapy for acute myeloid leukemia.

    Science.gov (United States)

    Walter, Roland B

    2014-06-01

    The experience with gemtuzumab ozogamicin has highlighted both the potential value and limitations of antibodies in acute myeloid leukemia (AML). Recently, bispecific T-cell engager (BiTE) antibodies have emerged as a means to harness polyclonal cytotoxic T-cells and cause highly efficient lysis of targeted tumor cells. Promising early results have been obtained with the CD19-directed BiTE antibody, blinatumomab, in patients with acute lymphoblastic leukemia. A first candidate for AML is the CD33/CD3 molecule, AMG 330, for which several recent preclinical studies demonstrated high potency and efficacy in destroying CD33(+) human AML cells. Many questions remain to be addressed, but BiTE antibodies may offer an exciting new tool in a disease for which the outcomes in many patients remain unsatisfactory.

  2. miRNAs in chronic myeloid leukemia: small molecules, essential function.

    Science.gov (United States)

    Litwińska, Zofia; Machaliński, Bogusław

    2017-06-01

    Chronic myeloid leukemia (CML) is a myeloproliferative disorder associated with clonal expansion of cancerous bone marrow stem cells. Tyrosine kinase inhibitors (TKIs) targeting Bcr-Abl oncoprotein are the first-line therapy for most CML patients, however, some are unresponsive to it or develop resistance. Recently, microRNAs (miRNAs) have been implicated in the progression of CML and the development of TKI resistance based on their important regulatory function in cell homeostasis. MicroRNAs are small noncoding RNAs that post-transcriptionally regulate gene expression. Since microRNAs can function either as oncogenes or tumor suppressor genes in leukemogenesis, the potential of using them as therapeutic targets by inhibiting or amplifying their activity, opens up new opportunities for leukemia therapy. In this review, we focus on recent studies on the important roles of microRNAs in the pathogenesis of CML and their relevance as biomarkers for diagnosis, monitoring disease progression, and treatment response.

  3. Unleashing the Guardian: The Targetable BCR-ABL/HAUSP/PML/PTEN Network in Chronic Myeloid Leukemia.

    Science.gov (United States)

    Morotti, Alessandro; Torti, Davide; Carra, Giovanna; Panuzzo, Cristina; Crivellaro, Sabrina; Taulli, Riccardo; Fava, Carmen; Guerrasio, Angelo; Saglio, Giuseppe

    2017-01-01

    The complete eradication of Chronic Myeloid Leukemia is still challenging even in the era of highly selective and potent BCR-ABL tyrosine kinase inhibitors (TKIs). The 'Achilles heel' of TKI-based CML therapy is the inability of TKI to effectively target CML stem cells. Several pathways have been described to induce TKI insensitiveness in quiescent CML stem cells. In this review, we will describe the BCR-ABL/HAUSP/PML/PTEN network, whose signaling mediators converge to regulate the function of the tumor suppressor PTEN. We will also highlight the pharmacological strategies to modulate PTEN functions in order to sustain CML stem cell eradication. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Defining the cellular precursors to human breast cancer

    Science.gov (United States)

    Keller, Patricia J.; Arendt, Lisa M.; Skibinski, Adam; Logvinenko, Tanya; Klebba, Ina; Dong, Shumin; Smith, Avi E.; Prat, Aleix; Perou, Charles M.; Gilmore, Hannah; Schnitt, Stuart; Naber, Stephen P.; Garlick, Jonathan A.; Kuperwasser, Charlotte

    2012-01-01

    Human breast cancers are broadly classified based on their gene-expression profiles into luminal- and basal-type tumors. These two major tumor subtypes express markers corresponding to the major differentiation states of epithelial cells in the breast: luminal (EpCAM+) and basal/myoepithelial (CD10+). However, there are also rare types of breast cancers, such as metaplastic carcinomas, where tumor cells exhibit features of alternate cell types that no longer resemble breast epithelium. Until now, it has been difficult to identify the cell type(s) in the human breast that gives rise to these various forms of breast cancer. Here we report that transformation of EpCAM+ epithelial cells results in the formation of common forms of human breast cancer, including estrogen receptor-positive and estrogen receptor-negative tumors with luminal and basal-like characteristics, respectively, whereas transformation of CD10+ cells results in the development of rare metaplastic tumors reminiscent of the claudin-low subtype. We also demonstrate the existence of CD10+ breast cells with metaplastic traits that can give rise to skin and epidermal tissues. Furthermore, we show that the development of metaplastic breast cancer is attributable, in part, to the transformation of these metaplastic breast epithelial cells. These findings identify normal cellular precursors to human breast cancers and reveal the existence of a population of cells with epidermal progenitor activity within adult human breast tissues. PMID:21940501

  5. Tumors markers

    International Nuclear Information System (INIS)

    Yamaguchi-Mizumoto, N.H.

    1989-01-01

    In order to study blood and cell components alterations (named tumor markers) that may indicate the presence of a tumor, several methods are presented. Aspects as diagnostic, prognostic, therapeutic value and clinical evaluation are discussed. (M.A.C.)

  6. Mammary tumors

    International Nuclear Information System (INIS)

    Weller, R.E.

    1988-10-01

    Mammary neoplasia is one of the more common malignancies affecting domestic species. Despite their importance, they are often over- diagnosed, undertreated and subject to several misconceptions propagated by veterinarians and pet owners alike. Mammary neoplasia is the most frequent tumor type encountered in the female accounting for almost half of all malignancies reported. The canine has the highest incidence of mammary tumors of all domestic species. In the dog, about 65 percent of mammary tumors are benign mixed tumors, and 25 percent are carcinomas. The rest are adenomas, myoepitheliomas, and malignant mixed tumors. The age distribution of mammary tumors closely follows the age distribution of most tumors in the dog. Mammary tumors are rare in dogs 2 years old, but incidence begins to increase sharply at approximately 6 years of age. Median age at diagnosis is about 10 years. No breed predilection has been consistently reported

  7. Clodronate Improves Survival of Transplanted Hoxb8 Myeloid Progenitors with Constitutively Active GMCSFR in Immunocompetent Mice

    Directory of Open Access Journals (Sweden)

    Simon Lee

    2017-12-01

    Full Text Available New methods to produce large numbers of myeloid progenitor cells, precursors to macrophages (MΦs, by maintaining Hoxb8 transcription factor activity1 has reinvigorated interest in MΦ cell therapies. We generated Hoxb8-dependent myeloid progenitors (HDPs by transducing lineage-negative bone marrow cells with a constitutively expressed Hoxb8 flanked by loxP. HDPs proliferate indefinitely and differentiate into MΦ when Hoxb8 is removed by a tamoxifen-inducible Cre. We genetically modified HDPs with a constitutively active GMCSF receptor and the tamoxifen-induced transcription factor IRF8, which we have termed “HDP-on.” The HDP-on proliferates without GMCSF and differentiates into the MΦ upon exposure to tamoxifen and ruxolitinib (GMCSF inhibitor via JAK1/2 blockade. We quantified the biodistribution of HDPs transplanted via intraperitoneal injection into immunodeficient NCG mice with a luciferase reporter; HDPs are detected for 14 days in the peritoneal cavity, liver, spleen, kidney, bone marrow, brain, lung, heart, and blood. In immunocompetent BALB/c mice, HDP-on cells, but not HDPs, are detected 1 day post-transplantation in the peritoneal cavity. Pretreatment of BALB/c mice with liposomal clodronate significantly enhances survival at day 7 for HDPs and HDP-on cells in the peritoneal cavity, spleen, and liver, but cells are undetectable at day 14. Short-term post-transplantation survival of HDPs is significantly improved using HDP-on and liposomal clodronate, opening a path for MΦ-based therapeutics.

  8. Selective Inhibitors of Histone Deacetylases 1 and 2 Synergize with Azacitidine in Acute Myeloid Leukemia.

    Science.gov (United States)

    Min, Chengyin; Moore, Nathan; Shearstone, Jeffrey R; Quayle, Steven N; Huang, Pengyu; van Duzer, John H; Jarpe, Matthew B; Jones, Simon S; Yang, Min

    2017-01-01

    Acute myeloid leukemia (AML) is a heterogeneous group of hematopoietic stem cell disorders characterized by defects in myeloid differentiation and increased proliferation of neoplastic hematopoietic precursor cells. Outcomes for patients with AML remain poor, highlighting the need for novel treatment options. Aberrant epigenetic regulation plays an important role in the pathogenesis of AML, and inhibitors of DNA methyltransferase or histone deacetylase (HDAC) enzymes have exhibited activity in preclinical AML models. Combination studies with HDAC inhibitors plus DNA methyltransferase inhibitors have potential beneficial clinical activity in AML, however the toxicity profiles of non-selective HDAC inhibitors in the combination setting limit their clinical utility. In this work, we describe the preclinical development of selective inhibitors of HDAC1 and HDAC2, which are hypothesized to have improved safety profiles, for combination therapy in AML. We demonstrate that selective inhibition of HDAC1 and HDAC2 is sufficient to achieve efficacy both as a single agent and in combination with azacitidine in preclinical models of AML, including established AML cell lines, primary leukemia cells from AML patient bone marrow samples and in vivo xenograft models of human AML. Gene expression profiling of AML cells treated with either an HDAC1/2 inhibitor, azacitidine, or the combination of both have identified a list of genes involved in transcription and cell cycle regulation as potential mediators of the combinatorial effects of HDAC1/2 inhibition with azacitidine. Together, these findings support the clinical evaluation of selective HDAC1/2 inhibitors in combination with azacitidine in AML patients.

  9. Selective Inhibitors of Histone Deacetylases 1 and 2 Synergize with Azacitidine in Acute Myeloid Leukemia.

    Directory of Open Access Journals (Sweden)

    Chengyin Min

    Full Text Available Acute myeloid leukemia (AML is a heterogeneous group of hematopoietic stem cell disorders characterized by defects in myeloid differentiation and increased proliferation of neoplastic hematopoietic precursor cells. Outcomes for patients with AML remain poor, highlighting the need for novel treatment options. Aberrant epigenetic regulation plays an important role in the pathogenesis of AML, and inhibitors of DNA methyltransferase or histone deacetylase (HDAC enzymes have exhibited activity in preclinical AML models. Combination studies with HDAC inhibitors plus DNA methyltransferase inhibitors have potential beneficial clinical activity in AML, however the toxicity profiles of non-selective HDAC inhibitors in the combination setting limit their clinical utility. In this work, we describe the preclinical development of selective inhibitors of HDAC1 and HDAC2, which are hypothesized to have improved safety profiles, for combination therapy in AML. We demonstrate that selective inhibition of HDAC1 and HDAC2 is sufficient to achieve efficacy both as a single agent and in combination with azacitidine in preclinical models of AML, including established AML cell lines, primary leukemia cells from AML patient bone marrow samples and in vivo xenograft models of human AML. Gene expression profiling of AML cells treated with either an HDAC1/2 inhibitor, azacitidine, or the combination of both have identified a list of genes involved in transcription and cell cycle regulation as potential mediators of the combinatorial effects of HDAC1/2 inhibition with azacitidine. Together, these findings support the clinical evaluation of selective HDAC1/2 inhibitors in combination with azacitidine in AML patients.

  10. An HSEF for murine myeloid leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Bond, V.P.; Cronkite, E.P.; Bullis, J.E. [Brookhaven National Lab., Upton, NY (United States); Wuu, C.S.; Marino, S.A.; Zaider, M. [Columbia Univ., New York, NY (United States). Dept. of Radiation Oncology

    1996-10-01

    In the past decade, a large amount of effort has gone into the development of hit size effectiveness functions (HSEFs), with the ultimate aim of replacing the present absorbed dose-RBE-Q system. However, the absorbed dose determined at the tissue level is incapable of providing information on single hits on (doses to) the single cell. As a result, it is necessary to resort to microdosimetry, which is capable of providing not only the number of hits on cells, but the distribution of hit sizes as well. From this information, an HSEF can be derived. However, to date there have been no sets of data available on animals exposed to radiations of several qualities, and for which microdosimetric data were available. The objective of the present set of experiments was to remedy this situation. Large numbers of mice were exposed to radiations of several different qualities, and were observed throughout their entire lifespan for the appearance of myeloid leukemia. The HSEF developed for this neoplasm is presented and discussed.

  11. An HSEF for murine myeloid leukemia

    International Nuclear Information System (INIS)

    Bond, V.P.; Cronkite, E.P.; Bullis, J.E.; Wuu, C.S.; Marino, S.A.; Zaider, M.

    1996-01-01

    In the past decade, a large amount of effort has gone into the development of hit size effectiveness functions (HSEFs), with the ultimate aim of replacing the present absorbed dose-RBE-Q system. However, the absorbed dose determined at the tissue level is incapable of providing information on single hits on (doses to) the single cell. As a result, it is necessary to resort to microdosimetry, which is capable of providing not only the number of hits on cells, but the distribution of hit sizes as well. From this information, an HSEF can be derived. However, to date there have been no sets of data available on animals exposed to radiations of several qualities, and for which microdosimetric data were available. The objective of the present set of experiments was to remedy this situation. Large numbers of mice were exposed to radiations of several different qualities, and were observed throughout their entire lifespan for the appearance of myeloid leukemia. The HSEF developed for this neoplasm is presented and discussed

  12. Myeloid Sarcoma: The Clinician's Point of View

    Directory of Open Access Journals (Sweden)

    M. Malagola

    2011-01-01

    Full Text Available Myeloid Sarcoma may occur in patients with an acute or chronic myeloproliferative disorder as well as de novo, with no apparent sign or symptom of concomitant haematological disease. The patients are preferentially young male and the site of disease localization may vary from central nervous system to pleura and thorax, with a common involvement of the reticuloendothelial system. The disease often shows chromosomal rearrangements, involving chromosomes 7, 8 and 3 and sometimes a complex karyotype (more than 3 abnormalities is detected at diagnosis. The prognosis of this disease is dismal and only high-dose chemotherapy with autologous or allogeneic stem cells transplantation (auto or allo-SCT may be potentially curative. In the absence of definitive elements that can define the prognosis of extra-medullary localization of “standard risk” AML, Clinicians should pursue the collection of data from different Centres and design of homogeneous treatment strategies, that could integrate standard chemotherapy with specific approaches, such as radiotherapy, transplant procedures or, in selected cases (such as those displaying molecular abnormalities involving protein tyrosine-kinases, molecularly targeted therapies.

  13. The Epigenetic Landscape of Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Emma Conway O’Brien

    2014-01-01

    Full Text Available Acute myeloid leukemia (AML is a genetically heterogeneous disease. Certain cytogenetic and molecular genetic mutations are recognized to have an impact on prognosis, leading to their inclusion in some prognostic stratification systems. Recently, the advent of high-throughput whole genome or exome sequencing has led to the identification of several novel recurrent mutations in AML, a number of which have been found to involve genes concerned with epigenetic regulation. These genes include in particular DNMT3A, TET2, and IDH1/2, involved with regulation of DNA methylation, and EZH2 and ASXL-1, which are implicated in regulation of histones. However, the precise mechanisms linking these genes to AML pathogenesis have yet to be fully elucidated as has their respective prognostic relevance. As massively parallel DNA sequencing becomes increasingly accessible for patients, there is a need for clarification of the clinical implications of these mutations. This review examines the literature surrounding the biology of these epigenetic modifying genes with regard to leukemogenesis and their clinical and prognostic relevance in AML when mutated.

  14. ERYTHEMA NODOSUM REVEALING ACUTE MYELOID LEUKEMIA

    Directory of Open Access Journals (Sweden)

    Chebbi Wafa

    2013-07-01

    Full Text Available Introduction: Erythema nodosum (EN is the most common type of panniculitis. It may be idiopathic or secondary to various etiologies. However, the occurrence of erythema nodosum in malignant hemopathy had rarely been reported. Case report: A 42 year-old woman presented with a four week history of recurrent multiple painful erythematous nodules developed on the lower limbs associated with arthralgia of the ankles and fever. The clinical features of skin lesions with contusiform color evolution allowed establishing the diagnosis of EN. No underlying cause was found. The skin lesions were improved with non-steroidal anti-inflammatory drugs and colchicine. Three months later, the patient consulted for recurrence of EN associated with fever, inflammatory polyarthralgia and hepatosplenomegaly. The peripheral blood count revealed pancytopenia. A bone marrow examination confirmed the diagnosis of acute myeloid leukemia type 2. Initiation of chemotherapy was followed by the complete disappearance of skin lesions of EN. Conclusion: Paraneoplastic erythema nodosum is a rare entity. In the literature, a few cases of association with leukemia have been reported. Exploration for solid neoplasms or hemopathy in case of recurrent EN or resistance to conventional treatment should be systematic

  15. Novel therapeutic options in Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Michael Medinger

    2016-01-01

    Full Text Available Acute myeloid leukemia (AML is a biologically complex and molecularly and clinically heterogeneous disease, and its incidence is increasing as the population ages. Cytogenetic anomalies and mutation testing remain important prognostic tools for tailoring treatment after induction therapy. Despite major advances in understanding the genetic landscape of AML and its impact on the pathophysiology and biology of the disease, as well as the rapid development of new drugs, standard treatment options have not experienced major changes during the past three decades. Especially for patients with intermediate or high-risk AML, which often show relapse. Allogeneic hematopoietic stem cell transplantation (HSCT remains the best chance for cure. Here we review the state of the art therapy of AML, with special focus on new developments in immunotherapies and cellular therapies including HSCT and particularly discuss the impact of new conditioning and haplo-identical donor regimens for HSCT, post-transplant strategies for preventing and treating relapse, and emerging novel therapeutic options.

  16. Molecular Genetic Markers in Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Sophia Yohe

    2015-03-01

    Full Text Available Genetics play an increasingly important role in the risk stratification and management of acute myeloid leukemia (AML patients. Traditionally, AML classification and risk stratification relied on cytogenetic studies; however, molecular detection of gene mutations is playing an increasingly important role in classification, risk stratification, and management of AML. Molecular testing does not take the place of cytogenetic testing results, but plays a complementary role to help refine prognosis, especially within specific AML subgroups. With the exception of acute promyelocytic leukemia, AML therapy is not targeted but the intensity of therapy is driven by the prognostic subgroup. Many prognostic scoring systems classify patients into favorable, poor, or intermediate prognostic subgroups based on clinical and genetic features. Current standard of care combines cytogenetic results with targeted testing for mutations in FLT3, NPM1, CEBPA, and KIT to determine the prognostic subgroup. Other gene mutations have also been demonstrated to predict prognosis and may play a role in future risk stratification, although some of these have not been confirmed in multiple studies or established as standard of care. This paper will review the contribution of cytogenetic results to prognosis in AML and then will focus on molecular mutations that have a prognostic or possible therapeutic impact.

  17. Unfavorable-risk acute myeloid leukemia dissected.

    Science.gov (United States)

    Strickland, Stephen A; Mohan, Sanjay R; Savona, Michael R

    2016-03-01

    Acute myeloid leukemia (AML) is an immensely heterogeneous disease based on the presence of varying combinations of morphologic, immunophenotypic, genetic, and molecular characteristics identified among those diagnosed with this disease. Although current therapeutic strategies provide a reasonable likelihood of achieving a complete remission for the majority of patients, relapse rates and subsequent disease-related mortality remain unacceptably high. Improved methods of risk stratification are needed to better identify patients at considerable risk of relapse in hopes of allowing for early therapeutic intervention and/or intensification that may lead to a higher likelihood of cure. The current status of risk stratification of AML and emerging technologies with potential to improve prognostic classification and outcomes are summarized in this review. Refinement of our understanding of the impact of current pretreatment AML cytogenetic, immunophenotypic, and molecular aberrations to predict outcomes and guide therapeutic decision-making is ongoing. Emerging data suggest that incorporation of the degree of posttreatment response and/or the detection of minimal residual disease can improve the accuracy of risk stratification for individual patients. Although pretreatment disease characteristics remain the hallmark of prognostication for AML patients, posttreatment parameters such as minimal residual disease assessment and degree of response to therapy possess the ability to further refine our identification of patients with unfavorable disease and thereby influence decisions regarding therapeutic planning.

  18. Myeloid Leukemia while on Dasatinib Therapy

    Directory of Open Access Journals (Sweden)

    Monika Conchon

    2010-01-01

    Full Text Available Here we report the case of an 18-year-old woman with chronic myeloid leukemia (CML who became pregnant while undergoing treatment with dasatinib. Before pregnancy, she received imatinib mesylate therapy but could not tolerate the treatment. The regimen was then changed to dasatinib at a dose of 70 mg b.i.d. While she was in hematological remission and on dasatinib therapy, she became pregnant. The unplanned pregnancy was identified after the patient had experienced four weeks of amenorrhea. Because the patient elected to continue the pregnancy to term, dasatinib was stopped immediately. Meanwhile, CML hematological relapse occurred and then she was treated with interferon- (IFN- (9 million IU/day throughout the pregnancy without a complete hematological response. She successfully gave birth to a male baby at 33 weeks by cesarean section delivery with no sequelae or malformations. Although this experience is limited to a single patient, it provides a useful contribution for counselling patients inadvertently exposed to dasatinib during pregnancy.

  19. Alternative Donor Transplantation for Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Nelli Bejanyan

    2015-06-01

    Full Text Available Allogeneic hematopoietic cell transplantation (allo-HCT is a potentially curative therapy for adult patients with acute myeloid leukemia (AML, but its use for consolidation therapy after first remission with induction chemotherapy used to be limited to younger patients and those with suitable donors. The median age of AML diagnosis is in the late 60s. With the introduction of reduced-intensity conditioning (RIC, many older adults are now eligible to receive allo-HCT, including those who are medically less fit to receive myeloablative conditioning. Furthermore, AML patients commonly have no human leukocyte antigen (HLA-identical or medically suitable sibling donor available to proceed with allo-HCT. Technical advances in donor matching, suppression of alloreactivity, and supportive care have made it possible to use alternative donors, such as unrelated umbilical cord blood (UCB and partially HLA-matched related (haploidentical donors. Outcomes after alternative donor allo-HCT are now approaching the outcomes observed for conventional allo-HCT with matched related and unrelated donors. Thus, with both UCB and haploidentical donors available, lack of donor should rarely be a limiting factor in offering an allo-HCT to adults with AML.

  20. l-Asparaginase-mediated downregulation of c-Myc promotes 1,25(OH)2 D3 -induced myeloid differentiation in acute myeloid leukemia cells.

    Science.gov (United States)

    Song, Ju Han; Park, Eunchong; Kim, Myun Soo; Cho, Kyung-Min; Park, Su-Ho; Lee, Arim; Song, Jiseon; Kim, Hyeoung-Joon; Koh, Jeong-Tae; Kim, Tae Sung

    2017-05-15

    Treatment of acute myeloid leukemia (AML) largely depends on chemotherapy, but current regimens have been unsatisfactory for long-term remission. Although differentiation induction therapy utilizing 1,25(OH) 2 D 3 (VD3) has shown great promise for the improvement of AML treatment efficacy, severe side effects caused by its supraphysiological dose limit its clinical application. Here we investigated the combinatorial effect of l-asparaginase (ASNase)-mediated amino acid depletion and the latent alternation of VD3 activity on the induction of myeloid differentiation. ASNase treatment enhanced VD3-driven phenotypic and functional differentiation of three-different AML cell lines into monocyte/macrophages, along with c-Myc downregulation. Using gene silencing with shRNA and a chemical blocker, we found that reduced c-Myc is a critical factor for improving VD3 efficacy. c-Myc-dependent inhibition of mTORC1 signaling and induction of autophagy were involved in the enhanced AML cell differentiation. In addition, in a postculture of AML cells after each treatment, ASNase supports the antileukemic effect of VD3 by inhibiting cell growth and inducing apoptosis. Finally, we confirmed that the administration of ASNase significantly improved VD3 efficacy in the prolongation of survival time in mice bearing tumor xenograft. Our results are the first to demonstrate the extended application of ASNase, which is currently used for acute lymphoid leukemia, in VD3-mediated differentiation induction therapy for AML, and suggest that this drug combination may be a promising novel strategy for curing AML. © 2017 UICC.

  1. Leukemia Associated Antigens: Their Dual Role as Biomarkers and Immunotherapeutic Targets for Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Michael Schmitt

    2007-01-01

    Full Text Available Leukemia associated antigens (LAAs are being increasingly identified by methods such as cytotoxic T-lymphocyte (CTL cloning, serological analysis of recombinant cDNA expression libraries (SEREX and mass spectrometry (MS. In additional, large scale screening techniques such as microarray, single nucleotide polymorphisms (SNPs, serial analysis of gene expression (SAGE and 2-dimensional gel electrophoresis (2-DE have expanded our understanding of the role that tumor antigens play in the biological processes which are perturbed in acute myeloid leukemia (AML. It has become increasingly apparent that these antigens play a dual role, not only as targets for immunotherapy, but also as biomarkers of disease state, stage, response to treatment and survival. We need biomarkers to enable the identification of the patients who are most likely to benefit from specific treatments (conventional and/or novel and to help clinicians and scientists improve clinical end points and treatment design. Here we describe the LAAs identified in AML, to date, which have already been shown to play a dual role as biomarkers of AML disease.Abbreviations: AML: acute myeloid leukemia; APL: acute promyelocytic leukemia; ATRA: all-trans-retinoic acid; B-CLL: B-cell chronic lymphocytic leukemia; CT: cancer-testis; CTL: cytotoxic T-lymphocyte; FAB: French-American-British; HI: hypusination inhibitors; HSP: heat shock protein; ITD: internal tandem duplication; LAA: leukemia associated antigen; MDS: myelodysplastic syndrome; MGEA6: meningioma antigen 6; MPD: myeloproliferative disease; MS: mass spectrometry; NK: natural killer; PRAME: preferentially expressed antigen of melanoma; PRTN3: proteinase 3; RAGE-1: renal antigen 1; RHAMM: receptor for hyaluronic acid-mediated motility; RQ-PCR: real-time PCR; SAGE: serial analysis of gene expression; SCT: stem cell transplant; SEREX: serological analysis of recombinant cDNA expression libraries; SNPs: single nucleotide polymorphisms; UPD

  2. Myeloid derived suppressor cells in multiple myeloma: preclinical research and translational opportunities

    Directory of Open Access Journals (Sweden)

    Cirino eBotta

    2014-12-01

    Full Text Available Immunosuppressive cells have been reported to play an important role in tumor progression mainly because of their capability to promote immune-escape, angiogenesis and metastasis. Among them, myeloid derived suppressor cells (MDSCs have been recently identified as immature myeloid cells, induced by tumor-associated inflammation, able to impair both innate and adaptive immunity. While murine MDSCs are usually identified by the expression of CD11b and Gr-1, human MDSCs represent a more heterogeneous population characterized by the expression of CD33 and CD11b, low or no HLA-DR and variable CD14 and CD15. In particular, the last two may alternatively identify monocyte-like or granulocyte-like MDSC subsets with different immunosuppressive properties. Recently, a substantial increase of MDSCs has been found in peripheral blood and bone marrow (BM of multiple myeloma (MM patients with a role in disease progression and/or drug resistance. Preclinical models recapitulating the complexity of the MM-related BM microenvironment (BMM are major tools for the study of the interactions between MM cells and cells of the BMM (including MDSCs and for the development of new agents targeting MM-associated immune suppressive cells.This review will focus on current strategies for human MDSCs generation and investigation of their immunosuppressive function in vitro and in vivo, taking into account the relevant relationship occurring within the MM-BMM. We will then provide trends in MDSC-associated research and suggest potential application for the treatment of MM.

  3. An Immature Myeloid/Myeloid-Suppressor Cell Response Associated with Necrotizing Inflammation Mediates Lethal Pulmonary Tularemia.

    Directory of Open Access Journals (Sweden)

    Sivakumar Periasamy

    2016-03-01

    Full Text Available Inhalation of Francisella tularensis (Ft causes acute and fatal pneumonia. The lung cytokine milieu favors exponential Ft replication, but the mechanisms underlying acute pathogenesis and death remain unknown. Evaluation of the sequential and systemic host immune response in pulmonary tularemia reveals that in contrast to overwhelming bacterial burden or cytokine production, an overt innate cellular response to Ft drives tissue pathology and host mortality. Lethal infection with Ft elicits medullary and extra-medullary myelopoiesis supporting recruitment of large numbers of immature myeloid cells and MDSC to the lungs. These cells fail to mature and die, leading to subsequent necrotic lung damage, loss of pulmonary function, and host death that is partially dependent upon immature Ly6G+ cells. Acceleration of this process may account for the rapid lethality seen with Ft SchuS4. In contrast, during sub-lethal infection with Ft LVS the pulmonary cellular response is characterized by a predominance of mature neutrophils and monocytes required for protection, suggesting a required threshold for lethal bacterial infection. Further, eliciting a mature phagocyte response provides transient, but dramatic, innate protection against Ft SchuS4. This study reveals that the nature of the myeloid cell response may be the primary determinant of host mortality versus survival following Francisella infection.

  4. Spinal tumors

    International Nuclear Information System (INIS)

    Goethem, J.W.M. van; Hauwe, L. van den; Oezsarlak, Oe.; Schepper, A.M.A. de; Parizel, P.M.

    2004-01-01

    Spinal tumors are uncommon lesions but may cause significant morbidity in terms of limb dysfunction. In establishing the differential diagnosis for a spinal lesion, location is the most important feature, but the clinical presentation and the patient's age and gender are also important. Magnetic resonance (MR) imaging plays a central role in the imaging of spinal tumors, easily allowing tumors to be classified as extradural, intradural-extramedullary or intramedullary, which is very useful in tumor characterization. In the evaluation of lesions of the osseous spine both computed tomography (CT) and MR are important. We describe the most common spinal tumors in detail. In general, extradural lesions are the most common with metastasis being the most frequent. Intradural tumors are rare, and the majority is extramedullary, with meningiomas and nerve sheath tumors being the most frequent. Intramedullary tumors are uncommon spinal tumors. Astrocytomas and ependymomas comprise the majority of the intramedullary tumors. The most important tumors are documented with appropriate high quality CT or MR images and the characteristics of these tumors are also summarized in a comprehensive table. Finally we illustrate the use of the new World Health Organization (WHO) classification of neoplasms affecting the central nervous system

  5. Urogenital tumors

    Energy Technology Data Exchange (ETDEWEB)

    Weller, R.E.

    1994-03-01

    An overview is provided for veterinary care of urogenital tumors in companion animals, especially the dog. Neoplasms discussed include tumors of the kidney, urinary bladder, prostate, testis, ovary, vagina, vulva and the canine transmissible venereal tumor. Topics addressed include description, diagnosis and treatment.

  6. Brain Tumors

    Science.gov (United States)

    A brain tumor is a growth of abnormal cells in the tissues of the brain. Brain tumors can be benign, with no cancer cells, ... cancer cells that grow quickly. Some are primary brain tumors, which start in the brain. Others are ...

  7. Biomarkers in Bone Marrow Samples From Pediatric Patients With High-Risk Acute Myeloid Leukemia

    Science.gov (United States)

    2016-05-17

    Childhood Acute Basophilic Leukemia; Childhood Acute Eosinophilic Leukemia; Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Recurrent Childhood Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  8. BCL11A expression in acute phase chronic myeloid leukemia.

    Science.gov (United States)

    Yin, Jiawei; Zhang, Fan; Tao, Huiquan; Ma, Xiao; Su, Guangsong; Xie, Xiaoli; Xu, Zhongjuan; Zheng, Yanwen; Liu, Hong; He, Chao; Mao, Zhengwei Jenny; Wang, Zhiwei; Chang, Weirong; Gale, Robert Peter; Wu, Depei; Yin, Bin

    2016-08-01

    Chronic myeloid leukemia (CML) has chronic and acute phases. In chronic phase myeloid differentiation is preserved whereas in acute phase myeloid differentiation is blocked. Acute phase CML resembles acute myeloid leukemia (AML). Chronic phase CML is caused by BCR-ABL1. What additional mutation(s) cause transition to acute phase is unknown and may differ in different persons with CML. BCL11A encodes a transcription factor and is aberrantly-expressed in several haematological and solid neoplasms. We analyzed BCL11A mRNA levels in subjects with chronic and acute phase CML. BCL11A transcript levels were increased in subjects with CML in acute phase compared with those in normals and in subjects in chronic phase including some subjects studied in both phases. BCL11A mRNA levels were correlated with percent bone marrow blasts and significantly higher in lymphoid versus myeloid blast crisis. Differentiation of K562 with butyric acid, a CML cell line, decreased BCL11A mRNA levels. Cytology and flow cytometry analyses showed that ectopic expression of BCL11A in K562 cells blocked differentiation. These data suggest BCL11A may operate in transformation of CML from chronic to acute phase in some persons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Outcomes following splenectomy in patients with myeloid neoplasms.

    Science.gov (United States)

    Rialon, Kristy L; Speicher, Paul J; Ceppa, Eugene P; Rendell, Victoria R; Vaslef, Steven N; Beaven, Anne; Tyler, Douglas S; Blazer, Dan G

    2015-03-15

    Myeloid neoplasms are classified into five major categories. These patients may develop splenomegaly and require splenectomy to alleviate mechanical symptoms, to ameliorate transfusion-dependent cytopenias, or to enhance stem cell transplantation. The objective of this study was to determine which clinical variables significantly impacted morbidity, mortality, and survival in patients with myeloid neoplasms undergoing splenectomy, and to determine if operative outcomes have improved over time. The records of all patients with myeloid neoplasms undergoing splenectomy from 1993 to 2010 were retrospectively reviewed. Eighty-nine patients (n = 89) underwent splenectomy for myeloid neoplasms. Over half of patients who had symptoms preoperatively had resolution of their symptoms post-splenectomy. The morbidity rate was 38%, with the most common complications being bleeding (14%) or infection (20%). Thirty-day mortality rate was 18% and median survival after splenectomy was 278 days. Decreased survival was associated with a diagnosis of myelodysplastic syndrome/myeloproliferative neoplasm, anemia, abnormal white blood cell count, and hypoalbuminemia. Patients who underwent stem cell transplantation did not show an increased risk for morbidity or mortality. Patients with myeloid neoplasms have a poor prognosis after splenectomy and the decision to operate is a difficult one, associated with high morbidity and mortality. © 2014 Wiley Periodicals, Inc.

  10. Hypermethylation of the GATA binding protein 4 (GATA4) promoter in Chinese pediatric acute myeloid leukemia.

    Science.gov (United States)

    Tao, Yan-Fang; Fang, Fang; Hu, Shao-Yan; Lu, Jun; Cao, Lan; Zhao, Wen-Li; Xiao, Pei-Fang; Li, Zhi-Heng; Wang, Na-Na; Xu, Li-Xiao; Du, Xiao-Juan; Sun, Li-Chao; Li, Yan-Hong; Li, Yi-Ping; Xu, Yun-Yun; Ni, Jian; Wang, Jian; Feng, Xing; Pan, Jian

    2015-10-21

    Acute myeloid leukemia (AML) is the second-most common form of leukemia in children. Aberrant DNA methylation patterns are a characteristic feature of AML. GATA4 has been suggested to be a tumor suppressor gene regulated by promoter hypermethylation in various types of human cancers although the expression and promoter methylation of GATA4 in pediatric AML is still unclear. Transcriptional expression levels of GATA4 were evaluated by semi-quantitative and real-time PCR. Methylation status was investigated by methylation-specific PCR (MSP) and bisulfate genomic sequencing (BGS). The prognostic significance of GATA4 expression and promoter methylation was assessed in 105 cases of Chinese pediatric acute myeloid leukemia patients with clinical follow-up records. MSP and BGS analysis showed that the GATA4 gene promoter is hypermethylated in AML cells, such as the HL-60 and MV4-11 human myeloid leukemia cell lines. 5-Aza treatment significantly upregulated GATA4 expression in HL-60 and MV4-11 cells. Aberrant methylation of GATA4 was observed in 15.0 % (3/20) of the normal bone marrow control samples compared to 56.2 % (59/105) of the pediatric AML samples. GATA4 transcript levels were significantly decreased in AML patients (33.06 ± 70.94; P = 0.011) compared to normal bone marrow/idiopathic thrombocytopenic purpura controls (116.76 ± 105.39). GATA4 promoter methylation was correlated with patient leukocyte counts (WBC, white blood cells) (P = 0.035) and minimal residual disease MRD (P = 0.031). Kaplan-Meier survival analysis revealed significantly shorter overall survival time in patients with GATA4 promoter methylation (P = 0.014). Epigenetic inactivation of GATA4 by promoter hypermethylation was observed in both AML cell lines and pediatric AML samples; our study implicates GATA4 as a putative tumor suppressor gene in pediatric AML. In addition, our findings imply that GATA4 promoter methylation is correlated with WBC and MRD. Kaplan

  11. Hypermethylation of the GATA binding protein 4 (GATA4) promoter in Chinese pediatric acute myeloid leukemia

    International Nuclear Information System (INIS)

    Tao, Yan-Fang; Fang, Fang; Hu, Shao-Yan; Lu, Jun; Cao, Lan; Zhao, Wen-Li; Xiao, Pei-Fang; Li, Zhi-Heng; Wang, Na-Na; Xu, Li-Xiao; Du, Xiao-Juan; Sun, Li-Chao; Li, Yan-Hong; Li, Yi-Ping; Xu, Yun-Yun; Ni, Jian; Wang, Jian; Feng, Xing; Pan, Jian

    2015-01-01

    Acute myeloid leukemia (AML) is the second-most common form of leukemia in children. Aberrant DNA methylation patterns are a characteristic feature of AML. GATA4 has been suggested to be a tumor suppressor gene regulated by promoter hypermethylation in various types of human cancers although the expression and promoter methylation of GATA4 in pediatric AML is still unclear. Transcriptional expression levels of GATA4 were evaluated by semi-quantitative and real-time PCR. Methylation status was investigated by methylation-specific PCR (MSP) and bisulfate genomic sequencing (BGS). The prognostic significance of GATA4 expression and promoter methylation was assessed in 105 cases of Chinese pediatric acute myeloid leukemia patients with clinical follow-up records. MSP and BGS analysis showed that the GATA4 gene promoter is hypermethylated in AML cells, such as the HL-60 and MV4-11 human myeloid leukemia cell lines. 5-Aza treatment significantly upregulated GATA4 expression in HL-60 and MV4-11 cells. Aberrant methylation of GATA4 was observed in 15.0 % (3/20) of the normal bone marrow control samples compared to 56.2 % (59/105) of the pediatric AML samples. GATA4 transcript levels were significantly decreased in AML patients (33.06 ± 70.94; P = 0.011) compared to normal bone marrow/idiopathic thrombocytopenic purpura controls (116.76 ± 105.39). GATA4 promoter methylation was correlated with patient leukocyte counts (WBC, white blood cells) (P = 0.035) and minimal residual disease MRD (P = 0.031). Kaplan-Meier survival analysis revealed significantly shorter overall survival time in patients with GATA4 promoter methylation (P = 0.014). Epigenetic inactivation of GATA4 by promoter hypermethylation was observed in both AML cell lines and pediatric AML samples; our study implicates GATA4 as a putative tumor suppressor gene in pediatric AML. In addition, our findings imply that GATA4 promoter methylation is correlated with WBC and MRD. Kaplan-Meier survival analysis

  12. IL4-induced gene 1 promotes tumor growth by shaping the immune microenvironment in melanoma.

    Science.gov (United States)

    Bod, Lloyd; Lengagne, Renée; Wrobel, Ludovic; Ramspott, Jan Philipp; Kato, Masashi; Avril, Marie-Françoise; Castellano, Flavia; Molinier-Frenkel, Valérie; Prévost-Blondel, Armelle

    2017-01-01

    Amino acid catabolizing enzymes emerged as a crucial mechanism used by tumors to dampen immune responses. The L-phenylalanine oxidase IL-4 induced gene 1 (IL4I1) is expressed by tumor-associated myeloid cells of most solid tumors, including melanoma. We previously provided the only evidence that IL4I1 accelerates tumor growth by limiting the CD8 + T cell mediated immune response, in a mouse model of melanoma cell transplantation. Here, we explored the role of IL4I1 in Ret mice, a spontaneous model of melanoma. We found that IL4I1 was expressed by CD11b + myeloid cells and that its activity correlated with disease aggressiveness. IL4I1 did not enhance tumor cell proliferation or angiogenesis, but orchestrated the remodeling of the immune compartment within the primary tumor. Indeed, the inactivation of IL4I1 limited the recruitment of polymorphonuclear myeloid-derived suppressor cells and enhanced the infiltration by Th1 and cytotoxic T cells, thus delaying tumor development and metastatic dissemination. Accordingly, human primary melanomas that were poorly infiltrated by IL4I1 + cells exhibited a higher density of CD8 + T cells. Collectively, our findings strengthen the rationale for therapeutic targeting of IL4I1 as one of the key immune regulators.

  13. Location of tumor affects local and distant immune cell type and number.

    Science.gov (United States)

    Hensel, Jonathan A; Khattar, Vinayak; Ashton, Reading; Lee, Carnellia; Siegal, Gene P; Ponnazhagan, Selvarangan

    2017-03-01

    Tumors comprise heterogeneous populations of cells, including immune infiltrates that polarize during growth and metastasis. Our preclinical studies on breast cancer (BCa) identified functional differences in myeloid-derived suppressor cells based on tumor microenvironment (TME), prompting variations in host immune response to tumor growth, and dissemination based on tissue type. In order to understand if such variations existed among other immune cells, and if such alteration occurs in response to tumor growth at the primary site or due to bone dissemination, we characterized immune cells, examining localized growth and in the tibia. In addition, immune cells from the spleen were examined from animals of both tumor locations by flow cytometry. The study demonstrates that location of tumor, and not simply the tumor itself, has a definitive role in regulating immune effectors. Among all immune cells characterized, macrophages were decreased and myeloid dendritic cell were increased in both tumor locations. This difference was more evident in subcutaneous tumors. Additionally, spleens from mice with subcutaneous tumors contained greater increases in both macrophages and myeloid dendritic cells than in mice with bone tumors. Furthermore, in subcutaneous tumors there was an increase in CD4 + and CD8 + T-cell numbers, which was also observed in their spleens. These data indicate that alterations in tumor-reactive immune cells are more pronounced at the primary site, and exert a similar change at the major secondary lymphoid organ than in the bone TME. These findings could provide translational insight into designing therapeutic strategies that account for location of metastatic foci.

  14. Elucidation of Altered Pathways in Tumor-Initiating Cells of Triple-Negative Breast Cancer

    DEFF Research Database (Denmark)

    Christensen, Anne G.; Ehmsen, Sidse; Terp, Mikkel G.

    2017-01-01

    nontumorigenic counterparts with pro-apoptotic proteins, such as Bcl2-associated agonist of cell death (BAD), FAS-associated death domain protein (FADD), and myeloid differentiation primary response protein (MYD88), downregulated in tumor-initiating epithelial-like cells. Functional studies confirmed...

  15. File list: Unc.Bld.10.AllAg.Leukemia,_Myeloid [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.10.AllAg.Leukemia,_Myeloid mm9 Unclassified Blood Leukemia, Myeloid SRX4674...80 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Bld.10.AllAg.Leukemia,_Myeloid.bed ...

  16. File list: Oth.Bld.50.AllAg.Leukemia,_Myeloid [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.50.AllAg.Leukemia,_Myeloid mm9 TFs and others Blood Leukemia, Myeloid SRX76...0020,SRX760019,SRX760021,SRX760022,SRX275703,SRX275705 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.50.AllAg.Leukemia,_Myeloid.bed ...

  17. File list: NoD.Bld.05.AllAg.Leukemia,_Myeloid [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Bld.05.AllAg.Leukemia,_Myeloid mm9 No description Blood Leukemia, Myeloid http:...//dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Bld.05.AllAg.Leukemia,_Myeloid.bed ...

  18. File list: NoD.Bld.20.AllAg.Leukemia,_Myeloid [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Bld.20.AllAg.Leukemia,_Myeloid hg19 No description Blood Leukemia, Myeloid http...://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Bld.20.AllAg.Leukemia,_Myeloid.bed ...

  19. File list: InP.Bld.50.AllAg.Leukemia,_Myeloid [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.50.AllAg.Leukemia,_Myeloid hg19 Input control Blood Leukemia, Myeloid SRX11...2549,SRX112548 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Bld.50.AllAg.Leukemia,_Myeloid.bed ...

  20. File list: Unc.Bld.50.AllAg.Leukemia,_Myeloid [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.50.AllAg.Leukemia,_Myeloid hg19 Unclassified Blood Leukemia, Myeloid SRX203...058,SRX203057,SRX203059,SRX080044,SRX080043 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.50.AllAg.Leukemia,_Myeloid.bed ...

  1. File list: His.Bld.20.AllAg.Leukemia,_Myeloid [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.20.AllAg.Leukemia,_Myeloid mm9 Histone Blood Leukemia, Myeloid SRX1527580,S...RX760024,SRX760023,SRX467479,SRX467478,SRX1527582,SRX1527581 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.20.AllAg.Leukemia,_Myeloid.bed ...

  2. File list: InP.Bld.50.AllAg.Leukemia,_Myeloid [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.50.AllAg.Leukemia,_Myeloid mm9 Input control Blood Leukemia, Myeloid SRX467...481,SRX275704,SRX275706,SRX1527583,SRX1527585,SRX760026,SRX1527584,SRX760025 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Bld.50.AllAg.Leukemia,_Myeloid.bed ...

  3. File list: Unc.Bld.20.AllAg.Leukemia,_Myeloid [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.20.AllAg.Leukemia,_Myeloid mm9 Unclassified Blood Leukemia, Myeloid SRX4674...80 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Bld.20.AllAg.Leukemia,_Myeloid.bed ...

  4. File list: Unc.Bld.10.AllAg.Leukemia,_Myeloid [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.10.AllAg.Leukemia,_Myeloid hg19 Unclassified Blood Leukemia, Myeloid SRX203...058,SRX203057,SRX203059,SRX080043,SRX080044 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.10.AllAg.Leukemia,_Myeloid.bed ...

  5. File list: Oth.Bld.05.AllAg.Leukemia,_Myeloid [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.05.AllAg.Leukemia,_Myeloid mm9 TFs and others Blood Leukemia, Myeloid SRX76...0019,SRX760021,SRX760022,SRX275705,SRX760020,SRX275703 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.05.AllAg.Leukemia,_Myeloid.bed ...

  6. File list: Unc.Bld.20.AllAg.Leukemia,_Myeloid [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.20.AllAg.Leukemia,_Myeloid hg19 Unclassified Blood Leukemia, Myeloid SRX203...058,SRX203057,SRX203059,SRX080044,SRX080043 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.20.AllAg.Leukemia,_Myeloid.bed ...

  7. File list: InP.Bld.20.AllAg.Leukemia,_Myeloid [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.20.AllAg.Leukemia,_Myeloid mm9 Input control Blood Leukemia, Myeloid SRX467...481,SRX275706,SRX275704,SRX1527585,SRX1527583,SRX1527584,SRX760026,SRX760025 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Bld.20.AllAg.Leukemia,_Myeloid.bed ...

  8. File list: NoD.Bld.50.AllAg.Leukemia,_Myeloid [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Bld.50.AllAg.Leukemia,_Myeloid mm9 No description Blood Leukemia, Myeloid http:...//dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Bld.50.AllAg.Leukemia,_Myeloid.bed ...

  9. File list: Unc.Bld.50.AllAg.Leukemia,_Myeloid [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.50.AllAg.Leukemia,_Myeloid mm9 Unclassified Blood Leukemia, Myeloid SRX4674...80 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Bld.50.AllAg.Leukemia,_Myeloid.bed ...

  10. File list: His.Bld.10.AllAg.Leukemia,_Myeloid [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.10.AllAg.Leukemia,_Myeloid mm9 Histone Blood Leukemia, Myeloid SRX467479,SR...X1527580,SRX1527582,SRX1527581,SRX760023,SRX760024,SRX467478 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.10.AllAg.Leukemia,_Myeloid.bed ...

  11. File list: Unc.Bld.05.AllAg.Leukemia,_Myeloid [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.05.AllAg.Leukemia,_Myeloid mm9 Unclassified Blood Leukemia, Myeloid SRX4674...80 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Bld.05.AllAg.Leukemia,_Myeloid.bed ...

  12. File list: NoD.Bld.50.AllAg.Leukemia,_Myeloid [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Bld.50.AllAg.Leukemia,_Myeloid hg19 No description Blood Leukemia, Myeloid http...://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Bld.50.AllAg.Leukemia,_Myeloid.bed ...

  13. File list: Unc.Bld.05.AllAg.Leukemia,_Myeloid [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.05.AllAg.Leukemia,_Myeloid hg19 Unclassified Blood Leukemia, Myeloid SRX203...058,SRX203057,SRX203059,SRX080043,SRX080044 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.05.AllAg.Leukemia,_Myeloid.bed ...

  14. File list: His.Bld.50.AllAg.Leukemia,_Myeloid [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.50.AllAg.Leukemia,_Myeloid mm9 Histone Blood Leukemia, Myeloid SRX760024,SR...X760023,SRX467478,SRX467479,SRX1527582,SRX1527580,SRX1527581 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.50.AllAg.Leukemia,_Myeloid.bed ...

  15. File list: InP.Bld.10.AllAg.Leukemia,_Myeloid [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.10.AllAg.Leukemia,_Myeloid hg19 Input control Blood Leukemia, Myeloid SRX11...2548,SRX112549 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Bld.10.AllAg.Leukemia,_Myeloid.bed ...

  16. File list: His.Bld.05.AllAg.Leukemia,_Myeloid [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.05.AllAg.Leukemia,_Myeloid mm9 Histone Blood Leukemia, Myeloid SRX467479,SR...X1527580,SRX1527582,SRX1527581,SRX760023,SRX760024,SRX467478 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.05.AllAg.Leukemia,_Myeloid.bed ...

  17. File list: InP.Bld.20.AllAg.Leukemia,_Myeloid [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.20.AllAg.Leukemia,_Myeloid hg19 Input control Blood Leukemia, Myeloid SRX11...2548,SRX112549 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Bld.20.AllAg.Leukemia,_Myeloid.bed ...

  18. File list: NoD.Bld.05.AllAg.Leukemia,_Myeloid [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Bld.05.AllAg.Leukemia,_Myeloid hg19 No description Blood Leukemia, Myeloid http...://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Bld.05.AllAg.Leukemia,_Myeloid.bed ...

  19. File list: NoD.Bld.10.AllAg.Leukemia,_Myeloid [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Bld.10.AllAg.Leukemia,_Myeloid hg19 No description Blood Leukemia, Myeloid http...://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Bld.10.AllAg.Leukemia,_Myeloid.bed ...

  20. File list: NoD.Bld.20.AllAg.Leukemia,_Myeloid [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Bld.20.AllAg.Leukemia,_Myeloid mm9 No description Blood Leukemia, Myeloid http:...//dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Bld.20.AllAg.Leukemia,_Myeloid.bed ...

  1. Reproducibility and prognostic significance of morphologic dysplasia in de novo acute myeloid leukemia.

    Science.gov (United States)

    Weinberg, Olga K; Pozdnyakova, Olga; Campigotto, Federico; DeAngelo, Daniel J; Stone, Richard M; Neuberg, Donna; Hasserjian, Robert P

    2015-07-01

    The 2008 WHO classification of acute myeloid leukemia includes a category of acute myeloid leukemia with myelodysplasia-related changes; however, the significance of multilineage dysplasia alone is controversial and its reproducibility has not been evaluated in acute myeloid leukemia. We performed an in-depth analysis of morphologic dysplasia in 159 de novo acute myeloid leukemia cases lacking myelodysplasia-related cytogenetic abnormalities. Using the 2008 WHO criteria, there were 89 acute myeloid leukemia-not otherwise specified (56%) and 43 acute myeloid leukemia with myelodysplasia-related changes (27%), while 27 cases were ambiguous as to myelodysplasia-related changes status due to limited maturing cells (acute myeloid leukemia-not evaluable, 17%). On multivariable analysis, neither acute myeloid leukemia with myelodysplasia-related changes nor acute myeloid leukemia-not evaluable showed significantly different event-free survival compared with acute myeloid leukemia-not otherwise specified in the 137 patients treated with induction chemotherapy. When individual dysplastic features were analyzed, only micromegakaryocytes and hypogranulated myeloid cells emerged as factors significantly associated with shorter event-free survival in a multivariable analysis that included the other significant covariates of age, white blood count, platelet count, abnormal karyotype and stem-cell transplantation. Our findings indicate that the current 2008 WHO definition of multilineage dysplasia in acute myeloid leukemia in its current form is not optimal, and that the use of a more restricted definition of morphologic dysplasia results in more relevant risk stratification that is independent of other conventional prognostic factors.

  2. Ubiquitin Conjugation Probed by Inflammation in Myeloid-Derived Suppressor Cell Extracellular Vesicles.

    Science.gov (United States)

    Adams, Katherine R; Chauhan, Sitara; Patel, Divya B; Clements, Virginia K; Wang, Yan; Jay, Steven M; Edwards, Nathan J; Ostrand-Rosenberg, Suzanne; Fenselau, Catherine

    2018-01-05

    Ubiquitinated proteins carried by the extracellular vesicles (EV) released by myeloid-derived suppressor cells (MDSC) have been investigated using proteomic strategies to examine the effect of tumor-associated inflammation. EV were collected from MDSC directly following isolation from tumor-bearing mice with low and high inflammation. Among the 1092 proteins (high inflammation) and 925 proteins (low inflammation) identified, more than 50% were observed as ubiquitinated proteoforms. More than three ubiquitin-attachment sites were characterized per ubiquitinated protein, on average. Multiple ubiquitination sites were identified in the pro-inflammatory proteins S100 A8 and S100 A9, characteristic of MDSC and in histones and transcription regulators among other proteins. Spectral counting and pathway analysis suggest that ubiquitination occurs independently of inflammation. Some ubiquitinated proteins were shown to cause the migration of MDSC, which has been previously connected with immune suppression and tumor progression. Finally, MDSC EV are found collectively to carry all the enzymes required to catalyze ubiquitination, and the hypothesis is presented that a portion of the ubiquitinated proteins are produced in situ.

  3. Murine Th9 cells promote the survival of myeloid dendritic cells in cancer immunotherapy.

    Science.gov (United States)

    Park, Jungsun; Li, Haiyan; Zhang, Mingjun; Lu, Yong; Hong, Bangxing; Zheng, Yuhuan; He, Jin; Yang, Jing; Qian, Jianfei; Yi, Qing

    2014-08-01

    Dendritic cells (DCs) are professional antigen-presenting cells to initiate immune responses, and DC survival time is important for affecting the strength of T-cell responses. Interleukin (IL)-9-producing T-helper (Th)-9 cells play an important role in anti-tumor immunity. However, it is unclear how Th9 cells communicate with DCs. In this study, we investigated whether murine Th9 cells affected the survival of myeloid DCs. DCs derived from bone marrow of C57BL/6 mice were cocultured with Th9 cells from OT-II mice using transwell, and the survival of DCs was examined. DCs cocultured with Th9 cells had longer survival and fewer apoptotic cells than DCs cultured alone in vitro. In melanoma B16-OVA tumor-bearing mice, DCs conditioned by Th9 cells lived longer and induced stronger anti-tumor response than control DCs did in vivo. Mechanistic studies revealed that IL-3 but not IL-9 secreted by Th9 cells was responsible for the prolonged survival of DCs. IL-3 upregulated the expression of anti-apoptotic protein Bcl-xL and activated p38, ERK and STAT5 signaling pathways in DCs. Taken together, our data provide the first evidence that Th9 cells can promote the survival of DCs through IL-3, and will be helpful for designing Th9 cell immunotherapy and more effective DC vaccine for human cancers.

  4. Myeloid-derived suppressor cells in cancer cachexia syndrome: a new explanation for an old problem.

    Science.gov (United States)

    Winfield, Robert D; Delano, Matthew J; Pande, Kalyan; Scumpia, Philip O; Laface, Drake; Moldawer, Lyle L

    2008-01-01

    Cachexia accompanies many chronic inflammatory diseases, including cancer. Lean tissue wasting is only one component of the cancer cachexia response, which also includes anemia, anorexia, a hepatic acute phase protein response, and increased susceptibility to secondary infections. The etiologies of cancer cachexia are multifactorial and include an overproduction of inflammatory mediators, including cytokines produced by inappropriate activation of innate immunity. However, anticytokine therapies have generally not been seriously considered for cancer cachexia, in large part because of the overlapping activities of several inflammatory cytokines and the inability to prospectively identify the contributions of individual mediators. In contrast, recent evidence has focused on an immature myeloid cell population that expands dramatically in the tumors and secondary lymphoid organs of animals with some actively growing tumors. These immature GR-1(+)CD11b(+) cells are metabolically active and secrete large quantities of inflammatory cytokines and chemokines with the potential to produce cachexia. Their expansion is temporally associated with the development of cachexia. Future studies are required to determine whether therapeutic efforts intended to block the expansion of these cells can prevent the lean tissue wasting that accompanies active tumor growth.

  5. C-type natriuretic peptide and its precursor

    DEFF Research Database (Denmark)

    Lippert, Solvej; Iversen, Peter; Brasso, Klaus

    2015-01-01

    AIM: Seminal plasma offer a more organ-specific matrix for markers in prostatic disease. We hypothesized that C-type natriuretic peptide (CNP) expression may constitute such a new target. METHODS: Patients with benign prostatic hyperplasia, clinically localized and metastatic prostate cancer were...... examined for CNP and CNP precursor (proCNP) concentrations in blood and seminal plasma. Furthermore, CNP and the CNP receptor (NPR-B) mRNA contents in tissue from prostate and seminal vesicles were analyzed by qPCR. RESULTS: CNP and NPR-B concentrations decreased with increasing tumor burden (p = 0.......0027 and p = 0.0096, respectively). In contrast, seminal plasma CNP and proCNP concentrations were markedly increased with increased tumor burden (p prostate cancer....

  6. An AML1-ETO/miR-29b-1 regulatory circuit modulates phenotypic properties of acute myeloid leukemia cells.

    Science.gov (United States)

    Zaidi, Sayyed K; Perez, Andrew W; White, Elizabeth S; Lian, Jane B; Stein, Janet L; Stein, Gary S

    2017-06-20

    Acute myeloid leukemia (AML) is characterized by an aggressive clinical course and frequent cytogenetic abnormalities that include specific chromosomal translocations. The 8;21 chromosomal rearrangement disrupts the key hematopoietic RUNX1 transcription factor, and contributes to leukemia through recruitment of co-repressor complexes to RUNX1 target genes, altered subnuclear localization, and deregulation of the myeloid gene regulatory program. However, a role of non-coding microRNAs (miRs) in t(8;21)-mediated leukemogenesis is minimally understood. We present evidence of an interplay between the tumor suppressor miR-29b-1 and the AML1-ETO (also designated RUNX1-RUNX1T1) oncogene that is encoded by the t(8;21). We find that AML1-ETO and corepressor NCoR co-occupy the miR-29a/b-1 locus and downregulate its expression in leukemia cells. Conversely, re-introduction of miR-29b-1 in leukemia cells expressing AML1-ETO causes significant downregulation at the protein level through direct targeting of the 3' untranslated region of the chimeric transcript. Restoration of miR-29b-1 expression in leukemia cells results in decreased cell growth and increased apoptosis. The AML1-ETO-dependent differentiation block and transcriptional program are partially reversed by miR-29b-1. Our findings establish a novel regulatory circuit between the tumor-suppressive miR-29b-1 and the oncogenic AML1-ETO that controls the leukemic phenotype in t(8;21)-carrying acute myeloid leukemia.

  7. Tumor immunology

    International Nuclear Information System (INIS)

    Otter, W. den

    1987-01-01

    Tumor immunology, the use of immunological techniques for tumor diagnosis and approaches to immunotherapy of cancer are topics covered in this multi-author volume. Part A, 'Tumor Immunology', deals with present views on tumor-associated antigens, the initiation of immune reactions of tumor cells, effector cell killing, tumor cells and suppression of antitumor immunity, and one chapter dealing with the application of mathematical models in tumor immunology. Part B, 'Tumor Diagnosis and Imaging', concerns the use of markers to locate the tumor in vivo, for the histological diagnosis, and for the monitoring of tumor growth. In Part C, 'Immunotherapy', various experimental approaches to immunotherapy are described, such as the use of monoclonal antibodies to target drugs, the use of interleukin-2 and the use of drugs inhibiting suppression. In the final section, the evaluation, a pathologist and a clinician evaluate the possibilities and limitations of tumor immunology and the extent to which it is useful for diagnosis and therapy. refs.; figs.; tabs

  8. Splenectomy suppresses growth and metastasis of hepatocellular carcinoma through decreasing myeloid-derived suppressor cells in vivo.

    Science.gov (United States)

    Long, Xin; Wang, Jian; Zhao, Jian-Ping; Liang, Hui-Fang; Zhu, Peng; Cheng, Qi; Chen, Qian; Wu, Yan-Hui; Zhang, Zhan-Guo; Zhang, Bi-Xiang; Chen, Xiao-Ping

    2016-10-01

    The function of the spleen in tumor development has been investigated for years. The relationship of the spleen with hepatocellular carcinoma (HCC), a huge health burden worldwide, however, remains unknown. The present study aimed to examine the effect of splenectomy on the development of HCC and the possible mechanism. Mouse hepatic carcinoma lines H22 and Hepa1-6 as well as BALB/c and C57 mice were used to establish orthotopic and metastatic mouse models of liver cancer. Mice were divided into four groups, including control group, splenectomy control group (S group), tumor group (T group) and tumor plus splenectomy group (T+S group). Tumor growth, metastases and overall survival were assessed at determined time points. Meanwhile, myeloid-derived suppressor cells (MDSCs) were isolated from the peripheral blood (PB), the spleen and liver tumors, and then measured by flow cytometery. It was found that liver cancer led to splenomegaly, and increased the percentage of MDSCs in the PB and spleen in the mouse models. Splenectomy inhibited the growth and progression of liver cancer and prolonged the overall survival time of orthotopic and metastatic models, which was accompanied by decreased proportion of MDSCs in the PB and tumors of liver cancer-bearing mouse. It was suggested that splenectomy could be considered an adjuvant therapy to treat liver cancer.

  9. Extramedullary Myeloid Cell Tumour Presenting As Leukaemia Cutis

    Directory of Open Access Journals (Sweden)

    Thappa Devinder Mohan

    2002-01-01

    Full Text Available We herewith report a case of extramedullary myeloid cell tumour presenting as leukaemia cutis for its rarity. It occurred in a 50 year old male patient who presented to us with a 40 days history of painless raised solid skin swellings over the trunk. Histopathological examination of the skin biopsy and bone marrow biopsy showed features suggestive of non-Hodgkin’s lymphoma. Immunophenotyping on skin biopsy specimens and bone marrow biopsy found tumour cells expressing CD43 and Tdt but were negative for CD3 and CD20. These features were consistent with extramedullary myeloid cell tumour involving skin and subcutis (cutaneous manifestation of acute myeloid leukaemia.

  10. Monosomal karyotype in myeloid neoplasias: a literature review.

    Science.gov (United States)

    Anelli, Luisa; Pasciolla, Crescenza; Zagaria, Antonella; Specchia, Giorgina; Albano, Francesco

    2017-01-01

    In 2008, the concept of the monosomal karyotype (MK) in adult acute myeloid leukemia (AML) patients was introduced, defined by the presence of a chromosomal aberration pattern characterized by the presence of at least two autosomal monosomies or of one monosomy plus one or more structural aberrations (not including loss of a chromosome). We present a systematic review of the literature about the influence of the MK on the outcome of patients affected by myeloid malignancies (AML, myelodysplastic syndromes, and primary myelofibrosis). For this review, a comprehensive literature search using the term "monosomal karyotype" was performed, considering articles listed in MEDLINE. This analysis of the literature confirms the negative prognostic impact on survival of the MK in myeloid neoplasias. The detrimental effect of MK on AML patients' outcome is independent of other variables, including adverse cytogenetic features, supporting the identification of this entity as a challenging subgroup of patients with distinct biologic and clinical features.

  11. Expression of CD71 by flow cytometry in acute leukemias: More often seen in acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Amit Pande

    2016-01-01

    Full Text Available Background: CD71 is a marker that has been usually used for identifying dysplasia in the erythroid series. We have tried to evaluate the expression of CD71 in various types of acute leukemias. Materials and Methods: We studied 48 patients of acute leukemia, of which 25 were acute myeloid leukemia (AML, 13 were precursor B-acute lymphoblastic leukemia (B-ALL, 8 were T-ALL, and 2 were mixed phenotype acute leukemia (T/myeloid as per the WHO classification. Results: We found that the expression of CD71 was most prevalent in AMLs (84%, followed by T-ALL (50% and least in B-ALL (30%. Conclusion: This finding clearly shows the higher expression of CD71 in AMLs compared to other common type of leukemias, such as B- and T-ALL. We suggest that the high expression of CD71 in AMLs could be used as a diagnostic marker and may also be used for minimal residual disease analysis after further studies in posttreatment scenario. This study is the first of its kind in the South Asian population.

  12. Expression of CD71 by flow cytometry in acute leukemias: More often seen in acute myeloid leukemia.

    Science.gov (United States)

    Pande, Amit; Dorwal, Pranav; Jain, Dharmendra; Tyagi, Neetu; Mehra, Simmi; Sachdev, Ritesh; Raina, Vimarsh

    2016-01-01

    CD71 is a marker that has been usually used for identifying dysplasia in the erythroid series. We have tried to evaluate the expression of CD71 in various types of acute leukemias. We studied 48 patients of acute leukemia, of which 25 were acute myeloid leukemia (AML), 13 were precursor B-acute lymphoblastic leukemia (B-ALL), 8 were T-ALL, and 2 were mixed phenotype acute leukemia (T/myeloid) as per the WHO classification. We found that the expression of CD71 was most prevalent in AMLs (84%), followed by T-ALL (50%) and least in B-ALL (30%). This finding clearly shows the higher expression of CD71 in AMLs compared to other common type of leukemias, such as B- and T-ALL. We suggest that the high expression of CD71 in AMLs could be used as a diagnostic marker and may also be used for minimal residual disease analysis after further studies in posttreatment scenario. This study is the first of its kind in the South Asian population.

  13. Premarital precursors of marital infidelity.

    Science.gov (United States)

    Allen, Elizabeth S; Rhoades, Galena Kline; Stanley, Scott M; Markman, Howard J; Williams, Tamara; Melton, Jessica; Clements, Mari L

    2008-06-01

    Premarital precursors of infidelity were evaluated in a sample of 72 couples (N = 144) who were taking part in a longitudinal study of marriage. Premarital self-report and observational data were compared for couples who experienced infidelity and those who did not experience infidelity in the first years of marriage. Couples in which the male engaged in marital infidelity were characterized, premaritally, by significantly lower male sexual satisfaction, lower male positive communication, and higher female invalidation, whereas couples in which the female went on to engage in infidelity were characterized, premaritally, by significantly lower levels of female positive communication, higher levels of male and female negative communication, and higher levels of male and female invalidation. Implications of the findings for future research on the prediction and prevention of infidelity are discussed.

  14. Identification of a common microdeletion cluster in 7q21.3 subband among patients with myeloid leukemia and myelodysplastic syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Asou, Hiroya; Matsui, Hirotaka; Ozaki, Yuko; Nagamachi, Akiko; Nakamura, Megumi; Aki, Daisuke [Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553 (Japan); Inaba, Toshiya, E-mail: tinaba@hiroshima-u.ac.jp [Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553 (Japan)

    2009-05-29

    Monosomy 7 and interstitial deletions in the long arm of chromosome 7 (-7/7q-) is a common nonrandom chromosomal abnormality found frequently in myeloid disorders including acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), and juvenile myelomonocytic leukemia (JMML). Using a short probe-based microarray comparative genomic hybridization (mCGH) technology, we identified a common microdeletion cluster in 7q21.3 subband, which is adjacent to 'hot deletion region' thus far identified by conventional methods. This common microdeletion cluster contains three poorly characterized genes; Samd9, Samd9L, and a putative gene LOC253012, which we named Miki. Gene copy number assessment of three genes by real-time PCR revealed heterozygous deletion of these three genes in adult patients with AML and MDS at high frequency, in addition to JMML patients. Miki locates to mitotic spindles and centrosomes and downregulation of Miki by RNA interference induced abnormalities in mitosis and nuclear morphology, similar to myelodysplasia. In addition, a recent report indicated Samd9 as a tumor suppressor. These findings indicate the usefulness of the short probe-based CGH to detect microdeletions. The three genes located to 7q21.3 would be candidates for myeloid tumor-suppressor genes on 7q.

  15. Development of A Chimeric Antigen Receptor Targeting C-Type Lectin-Like Molecule-1 for Human Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Eduardo Laborda

    2017-10-01

    Full Text Available The treatment of patients with acute myeloid leukemia (AML with targeted immunotherapy is challenged by the heterogeneity of the disease and a lack of tumor-exclusive antigens. Conventional immunotherapy targets for AML such as CD33 and CD123 have been proposed as targets for chimeric antigen receptor (CAR-engineered T-cells (CAR-T-cells, a therapy that has been highly successful in the treatment of B-cell leukemia and lymphoma. However, CD33 and CD123 are present on hematopoietic stem cells, and targeting with CAR-T-cells has the potential to elicit long-term myelosuppression. C-type lectin-like molecule-1 (CLL1 or CLEC12A is a myeloid lineage antigen that is expressed by malignant cells in more than 90% of AML patients. CLL1 is not expressed by healthy Hematopoietic Stem Cells (HSCs, and is therefore a promising target for CAR-T-cell therapy. Here, we describe the development and optimization of an anti-CLL1 CAR-T-cell with potent activity on both AML cell lines and primary patient-derived AML blasts in vitro while sparing healthy HSCs. Furthermore, in a disseminated mouse xenograft model using the CLL1-positive HL60 cell line, these CAR-T-cells completely eradicated tumor, thus supporting CLL1 as a promising target for CAR-T-cells to treat AML while limiting myelosuppressive toxicity.

  16. Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia

    DEFF Research Database (Denmark)

    Saglio, Giuseppe; Kim, Dong-Wook; Issaragrisil, Surapol

    2010-01-01

    Nilotinib has been shown to be a more potent inhibitor of BCR-ABL than imatinib. We evaluated the efficacy and safety of nilotinib, as compared with imatinib, in patients with newly diagnosed Philadelphia chromosome-positive chronic myeloid leukemia (CML) in the chronic phase.......Nilotinib has been shown to be a more potent inhibitor of BCR-ABL than imatinib. We evaluated the efficacy and safety of nilotinib, as compared with imatinib, in patients with newly diagnosed Philadelphia chromosome-positive chronic myeloid leukemia (CML) in the chronic phase....

  17. NUP98/11p15 translocations affect CD34+ cells in myeloid and T lymphoid leukemias.

    Science.gov (United States)

    Crescenzi, Barbara; Nofrini, Valeria; Barba, Gianluca; Matteucci, Caterina; Di Giacomo, Danika; Gorello, Paolo; Beverloo, Berna; Vitale, Antonella; Wlodarska, Iwona; Vandenberghe, Peter; La Starza, Roberta; Mecucci, Cristina

    2015-07-01

    We assessed lineage involvement by NUP98 translocations in myelodysplastic syndromes (MDS), acute myeloid leukaemia (AML), and T-cell acute lymphoblastic leukaemia (T-ALL). Single cell analysis by FICTION (Fluorescence Immunophenotype and Interphase Cytogenetics as a Tool for Investigation of Neoplasms) showed that, despite diverse partners, i.e. NSD1, DDX10, RAP1GDS1, and LNP1, NUP98 translocations always affected a CD34+/CD133+ hematopoietic precursor. Interestingly the abnormal clone included myelomonocytes, erythroid cells, B- and T- lymphocytes in MDS/AML and only CD7+/CD3+ cells in T-ALL. The NUP98-RAP1GDS1 affected different hematopoietic lineages in AML and T-ALL. Additional specific genomic events, were identified, namely FLT3 and CEBPA mutations in MDS/AML, and NOTCH1 mutations and MYB duplication in T-ALL. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Detection of an Abnormal Myeloid Clone by Flow Cytometry in Familial Platelet Disorder With Propensity to Myeloid Malignancy

    Science.gov (United States)

    Ok, Chi Young; Leventaki, Vasiliki; Wang, Sa A.; Dinardo, Courtney; Medeiros, L. Jeffrey; Konoplev, Sergej

    2016-01-01

    Objectives To report aberrant myeloblasts detected by flow cytometry immunophenotypic studies in an asymptomatic patient with familial platelet disorder with propensity to myeloid malignancy, a rare autosomal dominant disease caused by germline heterozygous mutations in Runt-related transcription factor 1. Methods Morphologic evaluation, flow cytometry immunophenotypic studies, nanofluidics-based qualitative multiplex reverse transcriptase polymerase chain reaction, Sanger sequencing, and next-generation sequencing-based mutational hotspot analysis of 53 genes were performed on bone marrow biopsy and aspirate samples. Results Flow cytometry immunophenotypic analysis showed 0.6% CD34+ blasts with an abnormal immunophenotype: CD13 increased, CD33+, CD38 decreased, CD117 increased, and CD123 increased. Conclusions The acquisition of new phenotypic aberrancies in myeloblasts as detected by flow cytometry immunophenotypic studies might be a harbinger of impending myelodysplastic syndrome or acute myeloid leukemia in a patient with familial platelet disorder with propensity to myeloid malignancy. PMID:26800764

  19. 1994 Accident sequence precursor program results

    International Nuclear Information System (INIS)

    Belles, R.J.; Cletcher, J.W.; Copinger, D.A.

    1996-01-01

    The Accident Sequence Precursor (ASP) Program involves the systematic review and evaluation of operational events that have occurred at light-water reactors to identify and categorize precursors to potential severe core damage accident sequences. The results of the ASP Program are published in an annual report. The most recent report, which contains the analyses of the precursors for 1994, is NUREG/CR-4674, Vols. 21 and 22, Precursors to Potential Severe Core Damage Accidents: 1994, A Status Report, published in December 1995. This article provides an overview of the ASP review and evaluation process and a summary of the results for 1994. 12 refs., 2 figs., 4 tabs

  20. Transformation from atypical chronic myeloid leukemia to chronic myelomonocytic leukemia as progression of myeloid neoplasm with platelet-derived growth factor ß rearrangement.

    Science.gov (United States)

    Shi, Xue; Su, Zhan; Zhao, Chunting; Feng, Xianqi

    2015-01-01

    Myeloid neoplasms associated with platelet-derived growth factor b (PDGFRB) rearrangement usually keep only one morphologic type unless blast crisis. We describe a unique case of hematological features transformation from atypical chronic myeloid leukemia to chronic myelomonocytic leukemia, and imatinib showed no clinical therapeutic effects. The phenomenon indicates that different types of myeloid neoplasms associated with PDGFRB rearrangement can transform into one another with the progression of the disease, and to some extent, this transformation suggests the aggravation of disease.

  1. Tumor vaccines:

    OpenAIRE

    Frank, Mojca; Ihan, Alojz

    2006-01-01

    Tumor vaccines have several potential advantages over standard anticancer regirrcents. They represent highly specific anticancer therapy. Inducing tumor-specific memory T-lymphocytes, they have potential for long-lived antitumor effects. However, clinical trials, in which cancer patients were vaccinated with tccmor aaccines, have been so far mainly disappointing. There are many reasons for the inefficiency of tumor vaccines. Most cancer antigens are normal self-molecules to which imrrtune tol...

  2. Prophylactic DNA vaccine targeting Foxp3+ regulatory T cells depletes myeloid-derived suppressor cells and improves anti-melanoma immune responses in a murine model.

    Science.gov (United States)

    Namdar, Afshin; Mirzaei, Reza; Memarnejadian, Arash; Boghosian, Roobina; Samadi, Morteza; Mirzaei, Hamid Reza; Farajifard, Hamid; Zavar, Mehdi; Azadmanesh, Kayhan; Elahi, Shokrollah; Noorbakhsh, Farshid; Rezaei, Abbas; Hadjati, Jamshid

    2018-03-01

    Regulatory T cells (Treg) and myeloid-derived suppressor cells (MDSC) are the two important and interactive immunosuppressive components of the tumor microenvironment that hamper anti-tumor immune responses. Therefore, targeting these two populations together might be beneficial for overcoming immune suppression in the tumor microenvironment. We have recently shown that prophylactic Foxp3 DNA/recombinant protein vaccine (Foxp3 vaccine) promotes immunity against Treg in tumor-free conditions. In the present study, we investigated the immune modulatory effects of a prophylactic regimen of the redesigned Foxp3 vaccine in the B16F10 melanoma model. Our results indicate that Foxp3 vaccination continuously reduces Treg population in both the tumor site and the spleen. Surprisingly, Treg reduction was associated with a significant decrease in the frequency of MDSC, both in the spleen and in the tumor environment. Furthermore, Foxp3 vaccination resulted in a significant reduction of arginase-1(Arg-1)-induced nitric oxide synthase (iNOS), reactive oxygen species (ROS) and suppressed MDSC activity. Moreover, this concurrent depletion restored production of inflammatory cytokine IFN-γ and enhanced tumor-specific CTL response, which subsequently resulted in the reduction of tumor growth and the improved survival rate of vaccinated mice. In conclusion, our results revealed that Foxp3 vaccine promotes an immune response against tumor by targeting both Treg and MDSC, which could be exploited as a potential immunotherapy approach.

  3. Transcription factor, promoter, and enhancer utilization in human myeloid cells

    NARCIS (Netherlands)

    Joshi, Anagha; Pooley, Christopher; Freeman, Tom C.; Lennartsson, Andreas; Babina, Magda; Schmidl, Christian; Geijtenbeek, Teunis; Michoel, Tom; Severin, Jessica; Itoh, Masayoshi; Lassmann, Timo; Kawaji, Hideya; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R. R.; Rehli, Michael; Hume, David A.

    2015-01-01

    The generation of myeloid cells from their progenitors is regulated at the level of transcription by combinatorial control of key transcription factors influencing cell-fate choice. To unravel the global dynamics of this process at the transcript level, we generated transcription profiles for 91

  4. Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia

    DEFF Research Database (Denmark)

    Saglio, Giuseppe; Kim, Dong-Wook; Issaragrisil, Surapol

    2010-01-01

    Nilotinib has been shown to be a more potent inhibitor of BCR-ABL than imatinib. We evaluated the efficacy and safety of nilotinib, as compared with imatinib, in patients with newly diagnosed Philadelphia chromosome-positive chronic myeloid leukemia (CML) in the chronic phase....

  5. Soluble Triggering Receptor Expressed on Myeloid Cells-1 as a ...

    African Journals Online (AJOL)

    Soluble Triggering Receptor Expressed on Myeloid Cells-1 as a marker to differentiate septic from aseptic meningitis in children: comparison with procalcitonin and ... Procalcitonin (PCT) was suggested by many researchers as a sensitive marker for early diagnosis of septic meningitis but with varying discriminative power.

  6. Therapy related Acute Myeloid Leukaemia 8 Years after Treatment ...

    African Journals Online (AJOL)

    Hodgkin's Disease (HD) is a curable malignancy even in Nigeria, our limitations in health care delivery notwithstanding. However, secondary malignancies especially Acute Myeloid Leukaemia (AML) may occur as late complications following alkylating cytotoxic drugs therapy, with or without radiotherapy. This is a case ...

  7. Priapism as an initial presentation of chronic myeloid leukaemia ...

    African Journals Online (AJOL)

    ... the idiopathic types are believed to be associated with an initial prolonged sexual stimulation. Two case reports illustrating the possibility of such cases being the first presentation of myeloproliferative disorder are thus presented. Keywords: Chronic myeloid leukaemia, Priapism, Presentation Sahel Medical Journal Vol.

  8. The Branching Point in Erythro-Myeloid Differentiation

    NARCIS (Netherlands)

    Perié, Leïla; Duffy, Ken R; Kok, Lianne; de Boer, Rob J|info:eu-repo/dai/nl/074214152; Schumacher, Ton N

    2015-01-01

    Development of mature blood cell progenies from hematopoietic stem cells involves the transition through lineage-restricted progenitors. The first branching point along this developmental process is thought to separate the erythro-myeloid and lymphoid lineage fate by yielding two intermediate

  9. Myeloid sarcoma developing in pre-existing pyoderma gangrenosum

    DEFF Research Database (Denmark)

    Kristensen, Ida Bruun; Møller, Hanne; Kjaerskov, Mette Wanscher

    2009-01-01

    We report here a case of pyoderma gangrenosum in a patient with myelodysplastic syndrome developing into myeloid sarcoma as a sign of transformation to acute leukaemia. The patient was treated successfully with intensive chemotherapy and achieved complete remission, and her otherwise expanding...

  10. Atypical chronic myeloid leukemia in a German Shepherd Dog.

    Science.gov (United States)

    Marino, Christina L; Tran, Jimmy N S N; Stokol, Tracy

    2017-05-01

    A 4-y-old neutered male German Shepherd Dog was presented with a 3-d duration of lethargy, restlessness, and vomiting. Physical examination revealed generalized lymphadenopathy, pale mucous membranes, systolic heart murmur, dehydration, and fever. Hematologic abnormalities included moderate-to-marked leukocytosis, characterized by neutrophilia with a left shift to progranulocytes and 2% presumptive myeloid blasts, marked anemia that was nonregenerative, and marked thrombocytopenia. Dysplasia was evident in neutrophils and platelets. Bone marrow examination revealed marked myeloid and megakaryocytic hyperplasia with 7% blasts, erythroid hypoplasia, and trilineage dysplasia. Flow cytometric analysis confirmed that bone marrow cells were mostly of neutrophil lineage, with reduced expression of common leukocyte antigens (CD45, CD18) and neutrophil-specific antigen. Bone marrow cells were cytogenetically analyzed for the breakpoint cluster region-Abelson oncogene using multicolor fluorescent in situ hybridization. The genetic aberration was present in 7% of cells, which was a negative result (>10% of cells is considered positive). Euthanasia was elected. Histologic examination showed extensive infiltration of multiple organs by neoplastic myeloid cells, with effacement of lymph node and splenic architecture. The final diagnosis was atypical chronic myeloid leukemia (aCML), an uncommon myeloproliferative disorder with features of myelodysplastic syndromes (dysplasia) and chronic leukemia (neutrophilic leukocytosis with chronic neutrophilic leukemia, and chronic myelomonocytic leukemia.

  11. Myeloid neoplasms in the World Health Organization 2016 classification.

    Science.gov (United States)

    Asou, Norio

    In the 2016 revision of the World Health Organization (WHO) classification, the categories of myeloid neoplasms have not been revised significantly from the 2008 fourth edition. However, recent discovery of molecular abnormalities provides a new perspective regarding the diagnostic and prognostic markers. In myeloproliferative neoplasms, the identification of CALR gene mutation, in addition to the JAK2 and MPL mutations, has impacted the diagnostic criteria. In myelodysplastic syndromes and acute myeloid leukemia, in addition to alterations in the transcription factors and signal transduction pathways, discovery of gene mutations in the epigenetic regulators that are involved in DNA methylation, histone modification, cohesin complex, and RNA splicing, by comprehensive genetic analyses, has improved our understanding of the pathobiology of these diseases. Moreover, recent large-scale sequencing studies have revealed the acquisition of clonal somatic mutations, in the myeloid neoplasm-associated genes of the hematopoietic cells. Such mutations were detected in people with normal blood cell counts, without any apparent disease. Presence of these mutations confers an increased risk for subsequent hematological neoplasms, indicating the concept of clonal hematopoiesis of indeterminate potential. This updated WHO classification incorporates the criteria of new clinical, prognostic, morphologic, immunophenotypic, and genetic findings in myeloid neoplasms.

  12. Proteomic profile of acute myeloid leukaemia: A review update

    African Journals Online (AJOL)

    pathophysiology of acute myeloid leukaemia (AML) through proteome expressions, thus confirming the viability of ..... affected by acute lymphoid leukaemia) were .... these cells resistant to FTY-720 increase the expression of miR-191-5p and a suppression of. miR-142-3pcan be attributable to reduction of the. B subunit.

  13. Ploidy and clinical characteristics of childhood acute myeloid leukemia

    DEFF Research Database (Denmark)

    Sandahl, Julie Damgaard; Kjeldsen, Eigil; Abrahamsson, Jonas

    2014-01-01

    We report the first large series (n = 596) of pediatric acute myeloid leukemia (AML) focusing on modal numbers (MN) from the population-based NOPHO-AML trials. Abnormal karyotypes were present in 452 cases (76%) and numerical aberrations were present in 40% (n = 237) of all pediatric AML. Among...

  14. Interferon alpha for treatment of chronic myeloid leukemia

    DEFF Research Database (Denmark)

    Simonsson, Bengt; Hjorth-Hansen, Henrik; Bjerrum, Ole Weis

    2011-01-01

    Treatment of chronic myeloid leukemia (CML) with interferon-alpha (IFN-a) was introduced in the early 1980s. Several clinical trials showed a survival advantage for patients treated with IFN-a compared to conventional chemotherapy. Some patients achieved longstanding complete cytogenetic remissions...

  15. Occupational exposure to solvents and acute myeloid leukemia

    DEFF Research Database (Denmark)

    Talibov, Madar; Lehtinen-Jacks, Susanna; Martinsen, Jan Ivar

    2014-01-01

    OBJECTIVE: The aim of the current study was to assess the relation between occupational exposure to solvents and the risk of acute myeloid leukemia (AML). METHODS: Altogether, this study comprises 15 332 incident cases of AML diagnosed in Finland, Norway, Sweden and Iceland from 1961-2005 and 76...

  16. Tuberculosis complicating imatinib treatment for chronic myeloid leukaemia

    NARCIS (Netherlands)

    Daniels, J. M. A.; Vonk-Noordegraaf, A.; Janssen, J. J. W. M.; Postmus, P. E.; van Altena, R.

    Although imatinib is not considered a predisposing factor for tuberculosis (TB), the present case report describes three patients in whom imatinib treatment for chronic myeloid leukaemia was complicated by TB. This raises the question of whether imatinib increases susceptibility to TB. There are

  17. nanoparticles synthesized by citrate precursor m

    African Journals Online (AJOL)

    user

    Abstract. Ni0.5M0.5Fe2O4 (M = Co, Cu) ferrite nanoparticles were synthesized using citrate precursor method. The citrate precursor was annealed at temperatures 400oC, 450oC, 500oC and 550oC. The annealed powders were characterized using X-ray diffractometer. (XRD) and vibrating sample magnetometer (VSM).

  18. Rapid synthesis of macrocycles from diol precursors

    DEFF Research Database (Denmark)

    Wingstrand, Magnus; Madsen, Charlotte Marie; Clausen, Mads Hartvig

    2009-01-01

    A method for the formation of synthetic macrocycles with different ring sizes from diols is presented. Reacting a simple diol precursor with electrophilic reagents leads to a cyclic carbonate, sulfite or phosphate in a single step in 25-60% yield. Converting the cyclization precursor to a bis-ele...

  19. [Compound K suppresses myeloid-derived suppressor cells in a mouse model bearing CT26 colorectal cancer xenograft].

    Science.gov (United States)

    Wang, Rong; Li, Yalin; Wang, Wuzhou; Zhou, Meijuan; Cao, Zhaohui

    2015-05-01

    To investigate the effect of ginseng-derived compound K (C-K) on apoptosis, immunosuppressive activity, and pro-inflammatory cytokine production of myeloid-derived suppressor cells (MDSCs) from mice bearing colorectal cancer xenograft. Flow-sorted bone marrow MDSCs from Balb/c mice bearing CT26 tumor xenograft were treated with either C-K or PBS for 96 h and examined for apoptosis with Annexin V/7-AAD, Cox-2 and Arg-1 expressions using qRT-PCR, and supernatant IL-1β, IL-6, and IL-17 levels with ELISA. C-K- or PBS-treated MDSCs were subcutaneously implanted along with CT26 tumor cells in WT Balb/c mice, and the tumor size and morphology were evaluated 21 days later. C-K treatment significantly increased the percentages of early and late apoptotic MDSCs in vitro (Pimmunosuppresive effect of MDSCs to inhibit tumor cell proliferation in mice, which suggests a new strategy of tumor therapy by targeting MDSCs.

  20. HMGB1 enhances immune suppression by facilitating the differentiation and suppressive activity of myeloid-derived suppressor cells.

    Science.gov (United States)

    Parker, Katherine H; Sinha, Pratima; Horn, Lucas A; Clements, Virginia K; Yang, Huan; Li, Jianhua; Tracey, Kevin J; Ostrand-Rosenberg, Suzanne

    2014-10-15

    Chronic inflammation often precedes malignant transformation and later drives tumor progression. Likewise, subversion of the immune system plays a role in tumor progression, with tumoral immune escape now well recognized as a crucial hallmark of cancer. Myeloid-derived suppressor cells (MDSC) are elevated in most individuals with cancer, where their accumulation and suppressive activity are driven by inflammation. Thus, MDSCs may define an element of the pathogenic inflammatory processes that drives immune escape. The secreted alarmin HMGB1 is a proinflammatory partner, inducer, and chaperone for many proinflammatory molecules that MDSCs develop. Therefore, in this study, we examined HMGB1 as a potential regulator of MDSCs. In murine tumor systems, HMGB1 was ubiquitous in the tumor microenvironment, activating the NF-κB signal transduction pathway in MDSCs and regulating their quantity and quality. We found that HMGB1 promotes the development of MDSCs from bone marrow progenitor cells, contributing to their ability to suppress antigen-driven activation of CD4(+) and CD8(+) T cells. Furthermore, HMGB1 increased MDSC-mediated production of IL-10, enhanced crosstalk between MDSCs and macrophages, and facilitated the ability of MDSCs to downregulate expression of the T-cell homing receptor L-selectin. Overall, our results revealed a pivotal role for HMGB1 in the development and cancerous contributions of MDSCs. ©2014 American Association for Cancer Research.

  1. The interrelationships of mathematical precursors in kindergarten.

    Science.gov (United States)

    Cirino, Paul T

    2011-04-01

    This study evaluated the interrelations among cognitive precursors across quantitative, linguistic, and spatial attention domains that have been implicated for math achievement in young children. The dimensionality of the quantity precursors was evaluated in 286 kindergarteners via latent variable techniques, and the contribution of precursors from each domain was established for small sums addition. Results showed a five-factor structure for the quantity precursors, with the major distinction being between nonsymbolic and symbolic tasks. The overall model demonstrated good fit and strong predictive power (R(2)=55%) for addition number combinations. Linguistic and spatial attention domains showed indirect relationships with outcomes, with their effects mediated by symbolic quantity measures. These results have implications for the measurement of mathematical precursors and yield promise for predicting future math performance. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Tumoral tracers

    International Nuclear Information System (INIS)

    Camargo, E.E.

    1979-01-01

    Direct tumor tracers are subdivided in the following categories:metabolite tracers, antitumoral tracers, radioactive proteins and cations. Use of 67 Ga-citrate as a clinically important tumoral tracer is emphasized and gallium-67 whole-body scintigraphy is discussed in detail. (M.A.) [pt

  3. Carcinoid Tumors

    Science.gov (United States)

    ... spread to other parts of the body. Doctors don't know what causes the mutations that can lead to carcinoid tumors. But they know that carcinoid tumors develop in neuroendocrine cells. Neuroendocrine cells are found in various organs throughout the body. They perform some nerve cell ...

  4. Animal tumors

    International Nuclear Information System (INIS)

    Gillette, E.L.

    1983-01-01

    There are few trained veterinary radiation oncologists and the expense of facilities has limited the extent to which this modality is used. In recent years, a few cobalt teletherapy units and megavoltage x-ray units have been employed in larger veterinary institutions. In addition, some radiation oncologists of human medical institutions are interested and willing to cooperate with veterinarians in the treatment of animal tumors. Carefully designed studies of the response of animal tumors to new modalities serve two valuable purposes. First, these studies may lead to improved tumor control in companion animals. Second, these studies may have important implications to the improvement of therapy of human tumors. Much remains to be learned of animal tumor biology so that appropriate model systems can be described for such studies. Many of the latter studies can be sponsored by agencies interested in the improvement of cancer management

  5. Dendritic Cell-Based Immunotherapy for Myeloid Leukemias

    Science.gov (United States)

    Schürch, Christian M.; Riether, Carsten; Ochsenbein, Adrian F.

    2013-01-01

    Acute and chronic myeloid leukemia (AML, CML) are hematologic malignancies arising from oncogene-transformed hematopoietic stem/progenitor cells known as leukemia stem cells (LSCs). LSCs are selectively resistant to various forms of therapy including irradiation or cytotoxic drugs. The introduction of tyrosine kinase inhibitors has dramatically improved disease outcome in patients with CML. For AML, however, prognosis is still quite dismal. Standard treatments have been established more than 20 years ago with only limited advances ever since. Durable remission is achieved in less than 30% of patients. Minimal residual disease (MRD), reflected by the persistence of LSCs below the detection limit by conventional methods, causes a high rate of disease relapses. Therefore, the ultimate goal in the treatment of myeloid leukemia must be the eradication of LSCs. Active immunotherapy, aiming at the generation of leukemia-specific cytotoxic T cells (CTLs), may represent a powerful approach to target LSCs in the MRD situation. To fully activate CTLs, leukemia antigens have to be successfully captured, processed, and presented by mature dendritic cells (DCs). Myeloid progenitors are a prominent source of DCs under homeostatic conditions, and it is now well established that LSCs and leukemic blasts can give rise to “malignant” DCs. These leukemia-derived DCs can express leukemia antigens and may either induce anti-leukemic T cell responses or favor tolerance to the leukemia, depending on co-stimulatory or -inhibitory molecules and cytokines. This review will concentrate on the role of DCs in myeloid leukemia immunotherapy with a special focus on their generation, application, and function and how they could be improved in order to generate highly effective and specific anti-leukemic CTL responses. In addition, we discuss how DC-based immunotherapy may be successfully integrated into current treatment strategies to promote remission and potentially cure myeloid leukemias

  6. Blood Outgrowth Endothelial Cells Increase Tumor Growth Rates and Modify Tumor Physiology: Relevance for Therapeutic Targeting

    International Nuclear Information System (INIS)

    Pagan, Jonathan; Przybyla, Beata; Jamshidi-Parsian, Azemat; Gupta, Kalpna; Griffin, Robert J.

    2013-01-01

    Endothelial cell precursors from human peripheral blood have been shown to home to areas of neovascularization and may assist tumor growth by increasing or fortifying blood vessel growth. In the present study, the influence of these cells on tumor growth and physiology was investigated and the role of these cells as a therapeutic target or in determining treatment sensitivity was tested. After isolation from human blood and expansion in vitro, actively growing cells with verified endothelial phenotype (Blood Outgrowth Endothelial Cell, BOEC) were injected i.v. into tumor bearing mice for three consecutive days. The growth rate was significantly enhanced in relatively small RERF human lung tumors (i.e., less than 150 mm 3 ) grown in immunocompromised mice by an average of 1.5-fold while it had no effect when injections were given to animals bearing larger tumors. There were no signs of toxicity or unwanted systemic effects. We also observed evidence of increased perfusion, vessel number, response to 15 Gy radiation and oxygenation in RERF tumors of animals injected with BOECs compared to control tumors. In addition, FSaII murine fibrosarcoma tumors were found to grow faster upon injection of BOECs. When FSaII tumors were subjected to a partial thermal ablation treatment using high intensity focused ultrasound (HIFU) there was consistently elevated detection of fluorescently labeled and i.v. injected endothelial precursors in the tumor when analyzed with optical imaging and/or histological preparations. Importantly, we also observed that BOECs treated with the novel anti-angiogenic peptide anginex in-vitro, show decreased proliferation and increased sensitivity to radiation. In vivo, the normal increase in FSaII tumor growth induced by injected BOECs was blunted by the addition of anginex treatment. It appears that endothelial precursors may significantly contribute to tumor vessel growth, tumor progression and/or repair of tumor damage and may improve the

  7. Excess circulating alternatively activated myeloid (M2 cells accelerate ALS progression while inhibiting experimental autoimmune encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Ilan Vaknin

    Full Text Available Circulating immune cells including autoreactive T cells and monocytes have been documented as key players in maintaining, protecting and repairing the central nervous system (CNS in health and disease. Here, we hypothesized that neurodegenerative diseases might be associated, similarly to tumors, with increased levels of circulating peripheral myeloid derived suppressor cells (MDSCs, representing a subset of suppressor cells that often expand under pathological conditions and inhibit possible recruitment of helper T cells needed for fighting off the disease.We tested this working hypothesis in amyotrophic lateral sclerosis (ALS and its mouse model, which are characterized by a rapid progression once clinical symptoms are evident. Adaptive transfer of alternatively activated myeloid (M2 cells, which homed to the spleen and exhibited immune suppressive activity in G93A mutant superoxide dismutase-1 (mSOD1 mice at a stage before emergence of disease symptoms, resulted in earlier appearance of disease symptoms and shorter life expectancy. The same protocol mitigated the inflammation-induced disease model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE, which requires circulating T cells for disease induction. Analysis of whole peripheral blood samples obtained from 28 patients suffering from sporadic ALS (sALS, revealed a two-fold increase in the percentage of circulating MDSCs (LIN(-/LowHLA-DR(-CD33(+ compared to controls.Taken together, these results emphasize the distinct requirements for fighting the inflammatory neurodegenerative disease, multiple sclerosis, and the neurodegenerative disease, ALS, though both share a local inflammatory component. Moreover, the increased levels of circulating MDSCs in ALS patients indicates the operation of systemic mechanisms that might lead to an impairment of T cell reactivity needed to overcome the disease conditions within the CNS. This high level of suppressive immune cells might

  8. Modulating glioma-mediated myeloid-derived suppressor cell development with sulforaphane.

    Directory of Open Access Journals (Sweden)

    Ravi Kumar

    Full Text Available Glioblastoma is the most common primary tumor of the brain and has few long-term survivors. The local and systemic immunosuppressive environment created by glioblastoma allows it to evade immunosurveillance. Myeloid-derived suppressor cells (MDSCs are a critical component of this immunosuppression. Understanding mechanisms of MDSC formation and function are key to developing effective immunotherapies. In this study, we developed a novel model to reliably generate human MDSCs from healthy-donor CD14+ monocytes by culture in human glioma-conditioned media. Monocytic MDSC frequency was assessed by flow cytometry and confocal microscopy. The resulting MDSCs robustly inhibited T cell proliferation. A cytokine array identified multiple components of the GCM potentially contributing to MDSC generation, including Monocyte Chemoattractive Protein-1, interleukin-6, interleukin-8, and Macrophage Migration Inhibitory Factor (MIF. Of these, Macrophage Migration Inhibitory Factor is a particularly attractive therapeutic target as sulforaphane, a naturally occurring MIF inhibitor derived from broccoli sprouts, has excellent oral bioavailability. Sulforaphane inhibits the transformation of normal monocytes to MDSCs by glioma-conditioned media in vitro at pharmacologically relevant concentrations that are non-toxic to normal leukocytes. This is associated with a corresponding increase in mature dendritic cells. Interestingly, sulforaphane treatment had similar pro-inflammatory effects on normal monocytes in fresh media but specifically increased immature dendritic cells. Thus, we have used a simple in vitro model system to identify a novel contributor to glioblastoma immunosuppression for which a natural inhibitor exists that increases mature dendritic cell development at the expense of myeloid-derived suppressor cells when normal monocytes are exposed to glioma conditioned media.

  9. Heme oxygenase-1: A new druggable target in the management of chronic and acute myeloid leukemia.

    Science.gov (United States)

    Salerno, Loredana; Romeo, Giuseppe; Modica, Maria N; Amata, Emanuele; Sorrenti, Valeria; Barbagallo, Ignazio; Pittalà, Valeria

    2017-12-15

    Heme oxygenase-1 (HO-1) is the enzyme catalyzing the rate-limiting oxidative degradation of cellular heme into free iron, carbon monoxide (CO), and biliverdin, which is then rapidly converted into bilirubin. By means of these catabolic end-products and by removal of pro-oxidant heme, HO-1 exerts antioxidant, antiapoptotic, and immune-modulating effects, leading to overall cytoprotective and beneficial functions in mammalian cells. Therefore, HO-1 is considered a survival molecule in various stress-related conditions. By contrast, growing evidence suggests that HO-1 is a survival-enhancing molecule also in various solid and blood cancers, such as various types of leukemia, promoting carcinogenesis, tumor progression, and chemo-resistance. Among leukemias, chronic myeloid leukemia (CML) is currently therapeutically well treated with tyrosine kinase inhibitors (TKIs) such as Imatinib (IM) and its congeners; nevertheless, resistance to all kinds of current drugs persist in a number of patients. Moreover, treatment outcomes for acute myeloid leukemia (AML) remain unsatisfactory, despite progress in chemotherapy and hematopoietic stem cell transplantation. Therefore, identification of new eligible targets that may improve leukemias therapy is of general interest. Several recent papers prove that inhibition of HO-1 through HO-1 inhibitors as well as modulation of other pathways involving HO-1 by a number of different new or known molecules, are critical for leukemia treatment. This review summarizes the current understanding of the pro-tumorigenic role of HO-1 and its potential as a molecular target for the treatment of leukemias. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Circulating endothelial cells are increased in chronic myeloid leukemia blast crisis

    Directory of Open Access Journals (Sweden)

    C.R.T. Godoy

    2015-06-01

    Full Text Available We measured circulating endothelial precursor cells (EPCs, activated circulating endothelial cells (aCECs, and mature circulating endothelial cells (mCECs using four-color multiparametric flow cytometry in the peripheral blood of 84 chronic myeloid leukemia (CML patients and 65 healthy controls; and vascular endothelial growth factor (VEGF by quantitative real-time PCR in 50 CML patients and 32 healthy controls. Because of an increase in mCECs, the median percentage of CECs in CML blast crisis (0.0146% was significantly higher than in healthy subjects (0.0059%, P0.05. In addition, VEGF gene expression was significantly higher in all phases of CML: 0.245 in blast crisis, 0.320 in the active phase, and 0.330 in chronic phase patients than it was in healthy subjects (0.145. In conclusion, CML in blast crisis had increased levels of CECs and VEGF gene expression, which may serve as markers of disease progression and may become targets for the management of CML.

  11. The plasma lipidome in acute myeloid leukemia at diagnosis in relation to clinical disease features.

    Science.gov (United States)

    Pabst, Thomas; Kortz, Linda; Fiedler, Georg M; Ceglarek, Uta; Idle, Jeffrey R; Beyoğlu, Diren

    2017-06-01

    Early studies established that certain lipids were lower in acute myeloid leukemia (AML) cells than normal leukocytes. Because lipids are now known to play an important role in cell signaling and regulation of homeostasis, and are often perturbed in malignancies, we undertook a comprehensive lipidomic survey of plasma from AML patients at time of diagnosis and also healthy blood donors. Plasma lipid profiles were measured using three mass spectrometry platforms in 20 AML patients and 20 healthy blood donors. Data were collected on total cholesterol and fatty acids, fatty acid amides, glycerolipids, phospholipids, sphingolipids, cholesterol esters, coenzyme Q10 and eicosanoids. We observed a depletion of plasma total fatty acids and cholesterol, but an increase in certain free fatty acids with the observed decline in sphingolipids, phosphocholines, triglycerides and cholesterol esters probably driven by enhanced fatty acid oxidation in AML cells. Arachidonic acid and precursors were elevated in AML, particularly in patients with high bone marrow (BM) or peripheral blasts and unfavorable prognostic risk. PGF2α was also elevated, in patients with low BM or peripheral blasts and with a favorable prognostic risk. A broad panoply of lipid classes is altered in AML plasma, pointing to disturbances of several lipid metabolic interconversions, in particular in relation to blast cell counts and prognostic risk. These data indicate potential roles played by lipids in AML heterogeneity and disease outcome. Enhanced catabolism of several lipid classes increases prognostic risk while plasma PGF2α may be a marker for reduced prognostic risk in AML.

  12. Pancreatic adenocarcinoma exerts systemic effects on the peripheral blood myeloid and plasmacytoid dendritic cells: an indicator of disease severity?

    International Nuclear Information System (INIS)

    Tjomsland, Vegard; Larsson, Marie; Sandström, Per; Spångeus, Anna; Messmer, Davorka; Emilsson, Johan; Falkmer, Ursula; Falkmer, Sture; Magnusson, Karl-Eric; Borch, Kurt

    2010-01-01

    Dendritic cells (DCs) isolated from tumor bearing animals or from individuals with solid tumors display functional abnormalities and the DC impairment has emerged as one mechanism for tumor evasion from the control of the immune system. Ductal pancreatic adenocarcinoma (PDAC), the most common pancreatic cancer, is recognized as a very aggressive cancer type with a mortality that almost matches the rate of incidence. We examined the systemic influence ductal pancreatic adenocarcinoma (PDAC) exerted on levels of peripheral blood DCs and inflammatory mediators in comparison to the effects exerted by other pancreatic tumors, chronic pancreatitis, and age-matched controls. All groups examined, including PDAC, had decreased levels of myeloid DCs (MDC) and plasmacytoid DCs (PDC) and enhanced apoptosis in these cells as compared to controls. We found elevated levels of PGE2 and CXCL8 in subjects with PDAC, and chronic pancreatitis. Levels of these inflammatory factors were in part restored in PDAC after tumor resection, whereas the levels of DCs were impaired in the majority of these patients ~12 weeks after tumor removal. Our results prove that solid pancreatic tumors, including PDAC, systemically affect blood DCs. The impairments do not seem to be tumor-specific, since similar results were obtained in subjects with chronic pancreatitis. Furthermore, we found that PDAC patients with a survival over 2 years had significant higher levels of blood DCs compared to patients with less than one year survival. Our findings points to the involvement of inflammation in the destruction of the blood MDCs and PDCs. Furthermore, the preservation of the blood DCs compartment in PDAC patients seems to benefit their ability to control the disease and survival

  13. C-type lectin-like molecule-1: a novel myeloid cell surface marker associated with acute myeloid leukemia

    NARCIS (Netherlands)

    Bakker, Alexander B. H.; van den Oudenrijn, Sonja; Bakker, Arjen Q.; Feller, Nicole; van Meijer, Marja; Bia, Judith A.; Jongeneelen, Mandy A. C.; Visser, Therese J.; Bijl, Nora; Geuijen, Cecilia A. W.; Marissen, Wilfred E.; Radosevic, Katarina; Throsby, Mark; Schuurhuis, Gerrit Jan; Ossenkoppele, Gert J.; de Kruif, John; Goudsmit, Jaap; Kruisbeek, Ada M.

    2004-01-01

    Acute myeloid leukemia (AML) has a poor prognosis due to treatment-resistant relapses. A humanized anti-CD33 antibody (Mylotarg) showed a limited response rate in relapsed AML. To discover novel AML antibody targets, we selected a panel of single chain Fv fragments using phage display technology

  14. Concomitant tumor and autoantigen vaccination supports renal cell carcinoma rejection.

    Science.gov (United States)

    Herbert, Nicolás; Haferkamp, Axel; Schmitz-Winnenthal, Hubertus F; Zöller, Margot

    2010-07-15

    Efficient tumor vaccination frequently requires adjuvant. Concomitant induction of an autoimmune response is discussed as a means to strengthen a weak tumor Ag-specific response. We asked whether the efficacy of dendritic cell (DC) vaccination with the renal cell carcinoma Ags MAGE-A9 (MAGE9) and G250 could be strengthened by covaccination with the renal cell carcinoma autoantigen GOLGA4. BALB/c mice were vaccinated with DC loaded with MHC class I-binding peptides of MAGE9 or G250 or tumor lysate, which sufficed for rejection of low-dose RENCA-MAGE9 and RENCA-G250 tumor grafts, but only retarded tumor growth at 200 times the tumor dose at which 100% of animals will develop a tumor. Instead, 75-100% of mice prevaccinated concomitantly with Salmonella typhimurium transformed with GOLGA4 cDNA in a eukaryotic expression vector rejected 200 times the tumor dose at which 100% of animals will develop tumor. In a therapeutic setting, the survival rate increased from 20-40% by covaccination with S. typhimurium-GOLGA4. Autoantigen covaccination significantly strengthened tumor Ag-specific CD4(+) and CD8(+) T cell expansion, particularly in peptide-loaded DC-vaccinated mice. Covaccination was accompanied by an increase in inflammatory cytokines, boosted IL-12 and IFN-gamma expression, and promoted a high tumor Ag-specific CTL response. Concomitant autoantigen vaccination also supported CCR6, CXCR3, and CXCR4 upregulation and T cell recruitment into the tumor. It did not affect regulatory T cells, but slightly increased myeloid-derived suppressor cells. Thus, tumor cell eradication was efficiently strengthened by concomitant induction of an immune response against a tumor Ag and an autoantigen expressed by the tumor cell. Activation of autoantigen-specific Th cells strongly supports tumor-specific Th cells and thereby CTL activation.

  15. Myeloid-Derived Suppressor Cells: Possible Link Between Chronic Obstrucive Pulmonary Disease and Lung Cancer.

    Science.gov (United States)

    Scrimini, Sergio; Pons, Jaume; Sauleda, Jaume

    2016-01-01

    Chronic obstructive pulmonary disease (COPD) and lung cancer (LC) are prevalent diseases and are a leading cause of morbidity and mortality worldwide. There is strong evidence to show that COPD is an independent risk factor for LC. Chronic inflammation plays a significant pathogenic role in COPD comorbidities, particularly in LC. On the one hand, cellular and molecular inflammatory mediators promote carcinogenesis and, on the other, chronic inflammation impairs the capacity of the immune system to identify and destroy pre-malignant and malignant cells, a process known as tumor immune surveillance. This altered antitumor immunity is due in part to the expansion of myeloid-derived suppressor cells (MDSC), which are characterized by an ability to suppress the antitumor activity of T-cells by down-regulation of the T-cell receptor ζ chain (TCRζ) through the catabolism of L-arginine. COPD and LC patients share a common pattern of expansion and activation of circulating MDSC associated with TCRζ downregulation and impaired peripheral T-cell function. The objectives of this study were to review the evidence on the association between COPD and LC and to analyze how MDSC accumulation may alter tumor immune surveillance in COPD, and therefore, promote LC development. Copyright © 2015 SEPAR. Published by Elsevier Espana. All rights reserved.

  16. Epigenetic dysregulation in chronic myeloid leukaemia: A myriad of mechanisms and therapeutic options.

    Science.gov (United States)

    Koschmieder, Steffen; Vetrie, David

    2017-08-02

    The onset of global epigenetic changes in chromatin that drive tumor proliferation and heterogeneity is a hallmark of many forms of cancer. Identifying the epigenetic mechanisms that govern these changes and developing therapeutic approaches to modulate them, is a well-established avenue pursued in translational cancer medicine. Chronic myeloid leukemia (CML) arises clonally when a hematopoietic stem cell (HSC) acquires the capacity to produce the constitutively active tyrosine kinase BCR-ABL1 fusion protein which drives tumor development. Treatment with tyrosine kinase inhibitors (TKI) that target BCR-ABL1 has been transformative in CML management but it does not lead to cure in the vast majority of patients. Thus novel therapeutic approaches are required and these must target changes to biological pathways that are aberrant in CML - including those that occur when epigenetic mechanisms are altered. These changes may be due to alterations in DNA or histones, their biochemical modifications and requisite 'writer' proteins, or to dysregulation of various types of non-coding RNAs that collectively function as modulators of transcriptional control and DNA integrity. Here, we review the evidence for subverted epigenetic mechanisms in CML and how these impact on a diverse set of biological pathways, on disease progression, prognosis and drug resistance. We will also discuss recent progress towards developing epigenetic therapies that show promise to improve CML patient care and may lead to improved cure rates. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Factors Influencing the Differentiation of Human Monocytic Myeloid-Derived Suppressor Cells Into Inflammatory Macrophages

    Directory of Open Access Journals (Sweden)

    Defne Bayik

    2018-03-01

    Full Text Available Monocytic myeloid-derived suppressor cells (mMDSC accumulate within tumors where they create an immunosuppressive milieu that inhibits the activity of cytotoxic T and NK cells thereby allowing cancers to evade immune elimination. The toll-like receptors 7/8 agonist R848 induces human mMDSC to mature into inflammatory macrophage (MACinflam. This work demonstrates that TNFα, IL-6, and IL-10 produced by maturing mMDSC are critical to the generation of MACinflam. Neutralizing any one of these cytokines significantly inhibits R848-dependent mMDSC differentiation. mMDSC cultured in pro-inflammatory cytokine IFNγ or the combination of TNFα plus IL-6 differentiate into MACinflam more efficiently than those treated with R848. These mMDSC-derived macrophages exert anti-tumor activity by killing cancer cells. RNA-Seq analysis of the genes expressed when mMDSC differentiate into MACinflam indicates that TNFα and the transcription factors NF-κB and STAT4 are major hubs regulating this process. These findings support the clinical evaluation of R848, IFNγ, and/or TNFα plus IL-6 for intratumoral therapy of established cancers.

  18. Naturally death-resistant precursor cells revealed as the origin of retinoblastoma

    DEFF Research Database (Denmark)

    Trinh, Emmanuelle; Lazzerini Denchi, Eros; Helin, Kristian

    2004-01-01

    The molecular mechanisms and the cell-of-origin leading to retinoblastoma are not well defined. In this issue of Cancer Cell, Bremner and colleagues describe the first inheritable model of retinoblastoma, revealing that loss of the pocket proteins pRb and p107 deregulates cell cycle exit in retinal...... precursors. The authors show that a subset of these precursors contain an inherent resistance to apoptosis, and that while most terminally differentiate, some are likely to acquire additional mutations, leading to tumor formation. Thus, this work defines the cell-of-origin of retinoblastoma and suggests...... that mutations giving increased proliferative capacity are required for retinoblastoma development....

  19. Gene transfer to pre-hematopoietic and committed hematopoietic precursors in the early mouse Yolk Sac: a comparative study between in situ electroporation and retroviral transduction

    Directory of Open Access Journals (Sweden)

    Lécluse Yann

    2007-07-01

    Full Text Available Abstract Background Hematopoietic development in vertebrate embryos results from the sequential contribution of two pools of precursors independently generated. While intra-embryonic precursors harbour the features of hematopoietic stem cells (HSC, precursors formed earlier in the yolk sac (YS display limited differentiation and self-renewal potentials. The mechanisms leading to the generation of the precursors in both sites are still largely unknown, as are the molecular basis underlying their different potential. A possible approach to assess the role of candidate genes is to transfer or modulate their expression/activity in both sites. We thus designed and compared transduction protocols to target either native extra-embryonic precursors, or hematopoietic precursors. Results One transduction protocol involves transient modification of gene expression through in situ electroporation of the prospective blood islands, which allows the evolution of transfected mesodermal cells in their "normal" environment, upon organ culture. Following in situ electroporation of a GFP reporter construct into the YS cavity of embryos at post-streak (mesodermal/pre-hematopoietic precursors or early somite (hematopoietic precursors stages, high GFP expression levels as well as a good preservation of cell viability is observed in YS explants. Moreover, the erythro-myeloid progeny typical of the YS arises from GFP+ mesodermal cells or hematopoietic precursors, even if the number of targeted precursors is low. The second approach, based on retroviral transduction allows a very efficient transduction of large precursor numbers, but may only be used to target 8 dpc YS hematopoietic precursors. Again, transduced cells generate a progeny quantitatively and qualitatively similar to that of control YS. Conclusion We thus provide two protocols whose combination may allow a thorough study of both early and late events of hematopoietic development in the murine YS. In situ

  20. p53 Gene (NY-CO-13 Levels in Patients with Chronic Myeloid Leukemia: The Role of Imatinib and Nilotinib

    Directory of Open Access Journals (Sweden)

    Hayder M. Al-kuraishy

    2018-01-01

    Full Text Available The p53 gene is also known as tumor suppressor p53. The main functions of the p53 gene are an anticancer effect and cellular genomic stability via various pathways including activation of DNA repair, induction of apoptosis, and arresting of cell growth at the G1/S phase. Normally, the p53 gene is inactivated by mouse double minute 2 proteins (mdm2, but it is activated in chronic myeloid leukemia (CML. Tyrosine kinase inhibitors are effective chemotherapeutic agents in the management of CML. The purpose of the present study was to evaluate the differential effect of imatinib and nilotinib on p53 gene serum levels in patients with CML. A total number of 60 patients with chronic myeloid leukemia with ages ranging from 47 to 59 years were recruited from the Iraqi Hematology Center. They started with tyrosine kinase inhibitors as first-line chemotherapy. They were divided into two groups—Group A, 29 patients treated with imatinib and Group B, 31 patients treated with nilotinib—and compared with 28 healthy subjects for evaluation p53 serum levels regarding the selective effect of either imatinib or nilotinib. There were significantly (p < 0.01 high p53 gene serum levels in patients with CML (2.135 ± 1.44 ng/mL compared to the control (0.142 ± 0.11 ng/mL. Patients with CML that were treated with either imatinib or nilotinib showed insignificant differences in most of the hematological profile (p > 0.05 whereas, p53 serum levels were high (3.22 ± 1.99 ng/mL in nilotinib-treated patients and relatively low (1.18 ± 0.19 ng/mL in imatinib-treated patients (p = 0.0001. Conclusions: Nilotinib is more effective than imatinib in raising p53 serum levels in patients with chronic myeloid leukemia.

  1. Resident microglia, and not peripheral macrophages, are the main source of brain tumor mononuclear cells.

    Science.gov (United States)

    Müller, Annett; Brandenburg, Susan; Turkowski, Kati; Müller, Susanne; Vajkoczy, Peter

    2015-07-15

    Gliomas consist of multiple cell types, including an abundant number of microglia and macrophages, whereby their impact on tumor progression is controversially discussed. To understand their unique functions and consequently manipulate either microglia or macrophages in therapeutic approaches, it is essential to discriminate between both cell populations. Because of the lack of specific markers, generally total body irradiated chimeras with labeled bone marrow cells were used to identify infiltrated cells within the brain. However, total body irradiation (TBI) affects the blood-brain barrier integrity, which in turn potentially facilitates immune cell infiltration. In this study, changes on the blood-brain barrier were avoided using head-protected irradiation (HPI). Head protection and total body irradiated chimeras exhibited similar reconstitution levels of the myeloid cell lineage in the blood, enabling the comparable analyses of brain infiltrates. We demonstrate that the HPI model impeded a massive unspecific influx of donor-derived myeloid cells into naive as well as tumor-bearing brains. Moreover, experimental artifacts such as an enlarged distribution of infiltrated cells and fourfold increased tumor volumes are prevented in head-protected chimeras. In addition, our data evidenced for the first time that microglia are able to up-regulate CD45 and represent an inherent part of the CD45(high) population in the tumor context. All in all, HPI allowed for the unequivocal distinction between microglia and macrophages without alterations of tumor biology and consequently permits a detailed and realistic description of the myeloid cell composition in gliomas. © 2014 UICC.

  2. Overview of Methods Able to Overcome Impediments to tumor Drug Delivery with Special Attention to Tumor Interstitial Fluid.

    Directory of Open Access Journals (Sweden)

    Gianfranco eBaronzio

    2015-07-01

    Full Text Available Every drug used to treat cancer (chemotherapeutics, immunologic, monoclonal antibodies, nanoparticles, radionuclides must reach the targeted cells through the tumor environment at adequate concentrations, in order to exert their cell-killing effects. For any of these agents to reach the goal cells they must overcome a number of impediments created by the tumor microenvironment, beginning with tumor interstitial fluid pressure (TIFP and a multifactorial increase in composition of the extracellular matrix (ECM. A primary modifier of tumor microenvironment is hypoxia, which increases the production of growth factors such as vascular endothelial growth factor (VEGF and platelet-derived growth factor (PDGF. These growth factors released by both tumor cells and bone marrow recruited myeloid cells (MDS, form abnormal vasculature characterized by vessels that are tortuous and more permeable. Increased leakiness combined with increased inflammatory byproducts accumulates fluid within the tumor mass [tumor interstitial fluid (TIF], ultimately creating an increased pressure (TIFP. Fibroblasts are also up-regulated by the tumor microenvironment, and deposit fibers that further augment the density of the extracellular matrix (ECM, thus, further worsening the TIFP. Increased TIFP with the ECM are the major obstacles to adequate drug delivery. By decreasing TIFP and decreasing ECM density, we can expect an associated rise in drug concentration within the tumor itself. In this overview we will describe all the methods (drugs, nutraceuticals, physical methods of treatment able to lower TIFP and to modify ECM that can be used for increasing drug concentration within the tumor tissue.

  3. Synthesis and structures of metal chalcogenide precursors

    Science.gov (United States)

    Hepp, Aloysius F.; Duraj, Stan A.; Eckles, William E.; Andras, Maria T.

    1990-01-01

    The reactivity of early transition metal sandwich complexes with sulfur-rich molecules such as dithiocarboxylic acids was studied. Researchers recently initiated work on precursors to CuInSe2 and related chalcopyrite semiconductors. Th every high radiation tolerance and the high absorption coefficient of CuInSe2 makes this material extremely attractive for lightweight space solar cells. Their general approach in early transition metal chemistry, the reaction of low-valent metal complexes or metal powders with sulfur and selenium rich compounds, was extended to the synthesis of chalcopyrite precursors. Here, the researchers describe synthesis, structures, and and routes to single molecule precursors to metal chalcogenides.

  4. Immune Consequences of Decreasing Tumor Vasculature with Antiangiogenic Tyrosine Kinase Inhibitors in Combination with Therapeutic Vaccines

    Science.gov (United States)

    Farsaci, Benedetto; Donahue, Renee N.; Coplin, Michael A.; Grenga, Italia; Lepone, Lauren M.; Molinolo, Alfredo A.; Hodge, James W.

    2014-01-01

    This study investigated the effects on the tumor microenvironment of combining antiangiogenic tyrosine kinase inhibitors (TKI) with therapeutic vaccines, and in particular, how vascular changes affect tumor-infiltrating immune cells. We conducted studies using a TKI (sunitinib or sorafenib) in combination with recombinant vaccines in 2 murine tumor models: colon carcinoma (MC38-CEA) and breast cancer (4T1). Tumor vasculature was measured by immunohistochemistry using 3 endothelial cell markers: CD31 (mature), CD105 (immature/proliferating), and CD11b (monocytic). We assessed oxygenation, tight junctions, compactness, and pressure within tumors, along with the frequency and phenotype of tumor-infiltrating T lymphocytes (TIL), myeloid-derived suppressor cells (MDSC), and tumor-associated macrophages (TAM) following treatment with antiangiogenic TKIs alone, vaccine alone, or the combination of a TKI with vaccine. The combined regimen decreased tumor vasculature, compactness, tight junctions, and pressure, leading to vascular normalization and increased tumor oxygenation. This combination therapy also increased TILs, including tumor antigen-specific CD8 T cells, and elevated the expression of activation markers FAS-L, CXCL-9, CD31, and CD105 in MDSCs and TAMs, leading to reduced tumor volumes and an increase in the number of tumor-free animals. The improved antitumor activity induced by combining antiangiogenic TKIs with vaccine may be the result of activated lymphoid and myeloid cells in the tumor microenvironment, resulting from vascular normalization, decreased tumor-cell density, and the consequent improvement in vascular perfusion and oxygenation. Therapies that alter tumor architecture can thus have a dramatic impact on the effectiveness of cancer immunotherapy. PMID:25092771

  5. Myeloid antigens in childhood lymphoblastic leukemia:clinical data point to regulation of CD66c distinct from other myeloid antigens

    Directory of Open Access Journals (Sweden)

    Madzo Jozef

    2005-04-01

    Full Text Available Abstract Background Aberrant expression of myeloid antigens (MyAgs on acute lymphoblastic leukemia (ALL cells is a well-documented phenomenon, although its regulating mechanisms are unclear. MyAgs in ALL are interpreted e.g. as hallmarks of early differentiation stage and/or lineage indecisiveness. Granulocytic marker CD66c – Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6 is aberrantly expressed on ALL with strong correlation to genotype (negative in TEL/AML1 and MLL/AF4, positive in BCR/ABL and hyperdiploid cases. Methods In a cohort of 365 consecutively diagnosed Czech B-precursor ALL patients, we analyze distribution of MyAg+ cases and mutual relationship among CD13, CD15, CD33, CD65 and CD66c. The most frequent MyAg (CD66c is studied further regarding its stability from diagnosis to relapse, prognostic significance and regulation of surface expression. For the latter, flow cytometry, Western blot and quantitative RT-PCR on sorted cells is used. Results We show CD66c is expressed in 43% patients, which is more frequent than other MyAgs studied. In addition, CD66c expression negatively correlates with CD13 (p Conclusion In contrast to general notion we show that different MyAgs in lymphoblastic leukemia represent different biological circumstances. We chose the most frequent and tightly genotype-associated MyAg CD66c to show its stabile expression in patients from diagnosis to relapse, which differs from what is known on the other MyAgs. Surface expression of CD66c is regulated at the gene transcription level, in contrast to previous reports.

  6. New Chimeric Antigen Receptor Design for Solid Tumors

    Directory of Open Access Journals (Sweden)

    Yuedi Wang

    2017-12-01

    Full Text Available In recent years, chimeric antigen receptor (CAR T-cell therapy has become popular in immunotherapy, particularly after its tremendous success in the treatment of lineage-restricted hematologic cancers. However, the application of CAR T-cell therapy for solid tumors has not reached its full potential because of the lack of specific tumor antigens and inhibitory factors in suppressive tumor microenvironment (TME (e.g., programmed death ligand-1, myeloid-derived suppressor cells, and transforming growth factor-β. In this review, we include some limitations in CAR design, such as tumor heterogeneity, indefinite spatial distance between CAR T-cell and its target cell, and suppressive TME. We also summarize some new approaches to overcome these hurdles, including targeting neoantigens and/or multiple antigens at once and depleting some inhibitory factors.

  7. Tumor Markers

    Science.gov (United States)

    ... only a small number of people will test positive for the disease who do not have it—in other words, it will result in very few false-positive results. Although tumor markers are extremely useful in ...

  8. Tumor Grade

    Science.gov (United States)

    ... Peer Review and Funding Outcomes Step 4: Award Negotiation & Issuance Manage Your Award Grants Management Contacts Monitoring ... may require immediate or more aggressive treatment. The importance of tumor grade in planning treatment and determining ...

  9. ATP/P2X7 axis modulates myeloid-derived suppressor cell functions in neuroblastoma microenvironment.

    Science.gov (United States)

    Bianchi, G; Vuerich, M; Pellegatti, P; Marimpietri, D; Emionite, L; Marigo, I; Bronte, V; Di Virgilio, F; Pistoia, V; Raffaghello, L

    2014-03-20

    Tumor microenvironment of solid tumors is characterized by a strikingly high concentration of adenosine and ATP. Physiological significance of this biochemical feature is unknown, but it has been suggested that it may affect infiltrating immune cell responses and tumor progression. There is increasing awareness that many of the effects of extracellular ATP on tumor and inflammatory cells are mediated by the P2X7 receptor (P2X7R). Aim of this study was to investigate whether: (i) extracellular ATP is a component of neuroblastoma (NB) microenvironment, (ii) myeloid-derived suppressor cells (MDSCs) express functional P2X7R and (iii) the ATP/P2X7R axis modulates MDSC functions. Our results show that extracellular ATP was detected in NB microenvironment in amounts that increased in parallel with tumor progression. The percentage of CD11b(+)/Gr-1(+) cells was higher in NB-bearing mice compared with healthy animals. Within the CD11b/Gr-1(+) population, monocytic MDSCs (M-MDSCs) produced higher levels of reactive oxygen species (ROS), arginase-1 (ARG-1), transforming growth factor-β1 (TGF-β1) and stimulated more potently in vivo tumor growth, as compared with granulocytic MDSCs (G-MDSCs). P2X7R of M-MDSCs was localized at the plasma membrane, coupled to increased functionality, upregulation of ARG-1, TGF-β1 and ROS. Quite surprisingly, the P2X7R in primary MDSCs as well as in the MSC-1 and MSC-2 lines was uncoupled from cytotoxicity. This study describes a novel scenario in which MDSC immunosuppressive functions are modulated by the ATP-enriched tumor microenvironment.

  10. Granulocytic sarcoma in a patient with chronic myeloid leukaemia in complete haematological, cytogenetic and molecular remission.

    Science.gov (United States)

    Kittai, Adam; Yu, Eun-Mi; Tabbara, Imad

    2014-12-23

    Granulocytic sarcoma, also known as myeloid sarcoma, is an extramedullary tumour composed of immature myeloid cells. Granulocytic sarcoma is typically found in patients with acute myeloid leukaemia, accelerated phase or blast crisis of chronic myeloid leukaemia, myelodysplastic syndrome, or as an isolated event without bone marrow involvement. We present a case of granulocytic sarcoma in a patient with chronic myeloid leukaemia in the setting of complete haematological, molecular and cytogenetic remission. Our patient was first treated with imatinib for chronic-phase chronic myeloid leukaemia. After maintaining remission for 42 months, he developed a granulocytic sarcoma in his spine. In this case report, we describe our case, along with the three other cases reported in the literature. In addition to being a rare diagnosis, this case demonstrates the importance of being vigilant in diagnosing the cause of back pain and atypical symptoms in patients with a history of leukaemia. 2014 BMJ Publishing Group Ltd.

  11. The role of peptide and DNA vaccines in myeloid leukemia immunotherapy

    Directory of Open Access Journals (Sweden)

    Lin Chen

    2013-02-01

    Full Text Available Abstract While chemotherapy and targeted therapy are successful in inducing the remission of myeloid leukemia as acute myeloid leukemia (AML and chronic myeloid leukemia (CML, the disease remains largely incurable. This observation is likely due to the drug resistance of leukemic cells, which are responsible for disease relapse. Myeloid leukemia vaccines may most likely be beneficial for eradicating minimal residual disease after treatment with chemotherapy or targeted therapy. Several targeted immunotherapies using leukemia vaccines have been heavily investigated in clinical and preclinical trials. This review will focus on peptides and DNA vaccines in the context of myeloid leukemias, and optimal strategies for enhancing the efficacy of vaccines based on myeloid leukemia immunization are also summarized.

  12. Biochemical Removal of HAP Precursors From Coal

    Energy Technology Data Exchange (ETDEWEB)

    Olson, G.; Tucker, L.; Richards, J.

    1997-07-01

    This project addresses DOE`s interest in advanced concepts for controlling emissions of air toxics from coal-fired utility boilers. We are determining the feasibility of developing a biochemical process for the precombustion removal of substantial percentages of 13 inorganic hazardous air pollutant (HAP) precursors from coal. These HAP precursors are Sb, As, Be, Cd, Cr, Cl, Co, F, Pb, Hg, Mn, Ni, and Se. Although rapid physical coal cleaning is done routinely in preparation plants, biochemical processes for removal of HAP precursors from coal potentially offer advantages of deeper cleaning, more specificity, and less coal loss. Compared to chemical processes for coal cleaning, biochemical processes potentially offer lower costs and milder process conditions. Pyrite oxidizing bacteria, most notably Thiobacillusferrooxidans, are being evaluated in this project for their ability to remove HAP precursors from U.S. coals.

  13. Precursor Parameter Identification for IGBT Prognostics

    Data.gov (United States)

    National Aeronautics and Space Administration — Precursor parameters have been identified to enable development of a prognostic approach for insulated gate bipolar transistors (IGBT). The IGBT were subjected to...

  14. Probabilistic precursor analysis - an application of PSA

    International Nuclear Information System (INIS)

    Hari Prasad, M.; Gopika, V.; Sanyasi Rao, V.V.S.; Vaze, K.K.

    2011-01-01

    Incidents are inevitably part of the operational life of any complex industrial facility, and it is hard to predict how various contributing factors combine to cause the outcome. However, it should be possible to detect the existence of latent conditions that, together with the triggering failure(s), result in abnormal events. These incidents are called precursors. Precursor study, by definition, focuses on how a particular event might have adversely developed. This paper focuses on the events which can be analyzed to assess their potential to develop into core damage situation and looks into extending Probabilistic Safety Assessment techniques to precursor studies and explains the benefits through a typical case study. A preliminary probabilistic precursor analysis has been carried out for a typical NPP. The major advantages of this approach are the strong potential for augmenting event analysis which is currently carried out purely on deterministic basis. (author)

  15. Biochemical Removal of HAP Precursors From Coal

    International Nuclear Information System (INIS)

    Olson, G.; Tucker, L.; Richards, J.

    1997-07-01

    This project addresses DOE's interest in advanced concepts for controlling emissions of air toxics from coal-fired utility boilers. We are determining the feasibility of developing a biochemical process for the precombustion removal of substantial percentages of 13 inorganic hazardous air pollutant (HAP) precursors from coal. These HAP precursors are Sb, As, Be, Cd, Cr, Cl, Co, F, Pb, Hg, Mn, Ni, and Se. Although rapid physical coal cleaning is done routinely in preparation plants, biochemical processes for removal of HAP precursors from coal potentially offer advantages of deeper cleaning, more specificity, and less coal loss. Compared to chemical processes for coal cleaning, biochemical processes potentially offer lower costs and milder process conditions. Pyrite oxidizing bacteria, most notably Thiobacillusferrooxidans, are being evaluated in this project for their ability to remove HAP precursors from U.S. coals

  16. Precursor analyses for German nuclear power plants

    International Nuclear Information System (INIS)

    Babst, Siegfried; Gaenssmantel, Gerhard; Stueck, Reinhard

    2009-01-01

    Precursor analysis is an internationally recognized method for quantifying the safety-relevance of operational events in nuclear power plants. Precursors are operational events in nuclear power plants which had no serious impact, but which could have led to serious impacts, if additional malfunctions had occurred. Examples of such operational events are component failures or transients, for example, the loss of main feedwater. On the basis of the probabilities for the occurrence of additional malfunctions or initiating events precursor analyses determine the probability with which these additional malfunctions during the event occurred would have led to core damage. This conditional probability is a measure for the safety relevance of the operational event occurred. Events, for which the probability of core damages is > 10 -6 , are internationally classified as ''precursor''. (orig.)

  17. Curcumin down-regulates DNA methyltransferase 1 and plays an anti-leukemic role in acute myeloid leukemia.

    Directory of Open Access Journals (Sweden)

    Jianhua Yu

    Full Text Available Bioactive components from dietary supplements such as curcumin may represent attractive agents for cancer prevention or treatment. DNA methylation plays a critical role in acute myeloid leukemia (AML development, and presents an excellent target for treatment of this disease. However, it remains largely unknown how curcumin, a component of the popular Indian spice turmeric, plays a role in DNA hypomethylation to reactivate silenced tumor suppressor genes and to present a potential treatment option for AML. Here we show that curcumin down-regulates DNMT1 expression in AML cell lines, both in vitro and in vivo, and in primary AML cells ex vivo. Mechanistically, curcumin reduced the expression of positive regulators of DNMT1, p65 and Sp1, which correlated with a reduction in binding of these transcription factors to the DNMT1 promoter in AML cell lines. This curcumin-mediated down-regulation of DNMT1 expression was concomitant with p15(INK4B tumor suppressor gene reactivation, hypomethylation of the p15(INK4B promoter, G1 cell cycle arrest, and induction of tumor cell apoptosis in vitro. In mice implanted with the human AML MV4-11 cell line, administration of curcumin resulted in remarkable suppression of AML tumor growth. Collectively, our data indicate that curcumin shows promise as a potential treatment for AML, and our findings provide a basis for future studies to test the clinical efficacy of curcumin - whether used as a single agent or as an adjuvant - for AML treatment.

  18. Azacitidine augments expansion of regulatory T cells after allogeneic stem cell transplantation in patients with acute myeloid leukemia (AML).

    Science.gov (United States)

    Goodyear, Oliver C; Dennis, Mike; Jilani, Nadira Y; Loke, Justin; Siddique, Shamyla; Ryan, Gordon; Nunnick, Jane; Khanum, Rahela; Raghavan, Manoj; Cook, Mark; Snowden, John A; Griffiths, Mike; Russell, Nigel; Yin, John; Crawley, Charles; Cook, Gordon; Vyas, Paresh; Moss, Paul; Malladi, Ram; Craddock, Charles F

    2012-04-05

    Strategies that augment a GVL effect without increasing the risk of GVHD are required to improve the outcome after allogeneic stem cell transplantation (SCT). Azacitidine (AZA) up-regulates the expression of tumor Ags on leukemic blasts in vitro and expands the numbers of immunomodulatory T regulatory cells (Tregs) in animal models. Reasoning that AZA might selectively augment a GVL effect, we studied the immunologic sequelae of AZA administration after allogeneic SCT. Twenty-seven patients who had undergone a reduced intensity allogeneic transplantation for acute myeloid leukemia were treated with monthly courses of AZA, and CD8(+) T-cell responses to candidate tumor Ags and circulating Tregs were measured. AZA after transplantation was well tolerated, and its administration was associated with a low incidence of GVHD. Administration of AZA increased the number of Tregs within the first 3 months after transplantation compared with a control population (P = .0127). AZA administration also induced a cytotoxic CD8(+) T-cell response to several tumor Ags, including melanoma-associated Ag 1, B melanoma antigen 1, and Wilm tumor Ag 1. These data support the further examination of AZA after transplantation as a mechanism of augmenting a GVL effect without a concomitant increase in GVHD.

  19. Planar half-cell shaped precursor body

    DEFF Research Database (Denmark)

    2015-01-01

    The invention relates to a half-cell shaped precursor body of either anode type or cathode type, the half-cell shaped precursor body being prepared to be free sintered to form a sintered or pre-sintered half-cell being adapted to be stacked in a solid oxide fuel cell stack. The obtained half......-cell has an improved planar shape, which remains planar also after a sintering process and during temperature fluctuations....

  20. Combined Loss of Tet1 and Tet2 Promotes B Cell, but Not Myeloid Malignancies, in Mice

    Directory of Open Access Journals (Sweden)

    Zhigang Zhao

    2015-11-01

    Full Text Available TET1/2/3 are methylcytosine dioxygenases that regulate cytosine hydroxymethylation. Tet1/2 are abundantly expressed in HSC/HPCs and are implicated in hematological malignancies. Tet2 deletion in mice causes myeloid malignancies, while Tet1-null mice develop B cell lymphoma after an extended period of latency. Interestingly, TET1/2 are often concomitantly downregulated in acute B-lymphocytic leukemia. Here, we investigated the overlapping and non-redundant functions of Tet1/2 using Tet1/2 double-knockout (DKO mice. DKO and Tet2−/− HSC/HPCs show overlapping and unique 5hmC and 5mC profiles. DKO mice exhibit strikingly decreased incidence and delayed onset of myeloid malignancies in comparison to Tet2−/− mice and in contrast develop lethal B cell malignancies. Transcriptome analysis of DKO tumors reveals expression changes in many genes dysregulated in human B cell malignancies, including LMO2, BCL6, and MYC. These results highlight the critical roles of TET1/2 individually and together in the pathogenesis of hematological malignancies.

  1. Hepatic myeloid sarcoma preceding acute megakaryoblastic leukemia with t(1;22 in an infant: Case report

    Directory of Open Access Journals (Sweden)

    Zeynep Canan Özdemir

    2016-10-01

    Full Text Available Myeloid sarcoma (MS is the tumor of immature myeloid cells involving extramedullary sites. Liver involvement of MS is rare in infant. Three months old female infant presented with hepatosplenomegaly and bicytopenia. Repeated bone marrow aspiration detected no blasts and flow cytometric analysis was normal. Abdominal magnetic resonance imaging revealed multiple nodular lesions in the liver. The biopsy results were consistent with MS. She presented with paleness and fever 8 months later. She had ongoing deep anemia, thrombocytopenia and hepatosplenomegaly. Bone marrow biopsy showed blast cell infiltration with 20% cells positive for CD61. The bone marrow karyotype investigation revealed complex quadruplet-translocation with the 46, X, t(X; 11; 22; 1 [15]/46, XX [1] karyotype. AML M7 was diagnosed and chemotherapy started. MS may occur as initial manifestation of AML with t(1;22 which is often associated with marrow fibrosis making sampling difficult. Hence cytogenetic analysis is of paramount importance in making an accurate diagnosis.

  2. The potassium channel Ether à go-go is a novel prognostic factor with functional relevance in acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Stühmer Walter

    2010-01-01

    Full Text Available Abstract Background The voltage-gated potassium channel hEag1 (KV10.1 has been related to cancer biology. The physiological expression of the human channel is restricted to the brain but it is frequently and abundantly expressed in many solid tumors, thereby making it a promising target for a specific diagnosis and therapy. Because chronic lymphatic leukemia has been described not to express hEag1, it has been assumed that the channel is not expressed in hematopoietic neoplasms in general. Results Here we show that this assumption is not correct, because the channel is up-regulated in myelodysplastic syndromes, chronic myeloid leukemia and almost half of the tested acute myeloid leukemias in a subtype-dependent fashion. Most interestingly, channel expression strongly correlated with increasing age, higher relapse rates and a significantly shorter overall survival. Multivariate Cox regression analysis revealed hEag1 expression levels in AML as an independent predictive factor for reduced disease-free and overall survival; such an association had not been reported before. As a functional correlate, specific hEag1 blockade inhibited the proliferation and migration of several AML cell lines and primary cultured AML cells in vitro. Conclusion Our observations implicate hEag1 as novel target for diagnostic, prognostic and/or therapeutic approaches in AML.

  3. Methylenetetrahydrofolate reductase polymorphisms in myeloid leukemia patients from Northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Cynara Gomes Barbosa

    2008-01-01

    Full Text Available Methylenetetrahydrofolate reductase (MTHFR: EC 1.5.1.20 polymorphisms are associated to acute lymphoid leukemia in different populations. We used the polymerase chain reaction and the restriction fragment length polymorphism method (PCR-RFLP to investigate MTHFR C677T and A1298C polymorphism frequencies in 67 patients with chronic myeloid leukemia (CML, 27 with acute myeloid leukemia FAB subtype M3 (AML-M3 and 100 apparently healthy controls. The MTHFR mutant allele frequencies were as follows: CML = 17.2% for C677T, 21.6% for A1298C; AML-M3 = 22.2% for C677T, 24.1% for A1298C; and controls = 20.5% for C677T, 21% for A1298C. Taken together, our results provide evidence that MTHFR polymorphisms have no influence on the development of CML or AML-M3.

  4. Myeloid Neoplasias: What Molecular Analyses Are Telling Us

    Science.gov (United States)

    Gutiyama, Luciana M.; Coutinho, Diego F.; Lipkin, Marina V.; Zalcberg, Ilana R.

    2012-01-01

    In the last decades, cytogenetic and molecular characterizations of hematological disorders at diagnosis and followup have been most valuable for guiding therapeutic decisions and prognosis. Genetic and epigenetic alterations detected by different procedures have been associated to different cancer types and are considered important indicators for disease classification, differential diagnosis, prognosis, response, and individualization of therapy. The search for new biomarkers has been revolutionized by high-throughput technologies. At this point, it seems that we have overcome technological barriers, but we are still far from sorting the biological puzzle. Evidence based on translational research is required for validating novel genetic and epigenetic markers for routine clinical practice. We herein discuss the importance of genetic abnormalities and their molecular pathways in acute myeloid leukemia, myelodysplastic syndromes, and myeloproliferative neoplasms. We also discuss how novel genomic abnormalities may interact and reassess concepts and classifications of myeloid neoplasias. PMID:23056961

  5. Tumor Types: Understanding Brain Tumors

    Science.gov (United States)

    Search Menu Facebook Twitter YouTube Flickr Instagram LinkedIn Brain Tumor Information | News & Blog Our Mission Our History Mission Leadership & Staff Financials Careers News & Blog Contact Us Donate Now Our Impact Our Impact Recent News News & ...

  6. Allogeneic stem cell transplantation in acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Natasha Ali

    2012-11-01

    Full Text Available We report a case series of 12 patients with acute myeloid leukemia who underwent allogeneic stem cell transplant with a matched related donor. Male to female ratio was 1:1. The main complication post-transplant was graft-versus-host disease (n=7 patients. Transplant-related mortality involved one patient; cause of death was multi-organ failure. After a median follow up of 36.0±11.3 months, overall survival was 16%.

  7. Reprogramming Tumor-Associated Macrophages by Antibody Targeting Inhibits Cancer Progression and Metastasis

    Directory of Open Access Journals (Sweden)

    Anna-Maria Georgoudaki

    2016-05-01

    Full Text Available Tumors are composed of multiple cell types besides the tumor cells themselves, including innate immune cells such as macrophages. Tumor-associated macrophages (TAMs are a heterogeneous population of myeloid cells present in the tumor microenvironment (TME. Here, they contribute to immunosuppression, enabling the establishment and persistence of solid tumors as well as metastatic dissemination. We have found that the pattern recognition scavenger receptor MARCO defines a subtype of suppressive TAMs and is linked to clinical outcome. An anti-MARCO monoclonal antibody was developed, which induces anti-tumor activity in breast and colon carcinoma, as well as in melanoma models through reprogramming TAM populations to a pro-inflammatory phenotype and increasing tumor immunogenicity. This anti-tumor activity is dependent on the inhibitory Fc-receptor, FcγRIIB, and also enhances the efficacy of checkpoint therapy. These results demonstrate that immunotherapies using antibodies designed to modify myeloid cells of the TME represent a promising mode of cancer treatment.

  8. Impact of peripheral myeloid cells on amyloid-β pathology in Alzheimer's disease-like mice.

    Science.gov (United States)

    Prokop, Stefan; Miller, Kelly R; Drost, Natalia; Handrick, Susann; Mathur, Vidhu; Luo, Jian; Wegner, Anja; Wyss-Coray, Tony; Heppner, Frank L

    2015-10-19

    Although central nervous system-resident microglia are believed to be ineffective at phagocytosing and clearing amyloid-β (Aβ), a major pathological hallmark of Alzheimer's disease (AD), it has been suggested that peripheral myeloid cells constitute a heterogeneous cell population with greater Aβ-clearing capabilities. Here, we demonstrate that the conditional ablation of resident microglia in CD11b-HSVTK (TK) mice is followed by a rapid repopulation of the brain by peripherally derived myeloid cells. We used this system to directly assess the ability of peripheral macrophages to reduce Aβ plaque pathology and therefore depleted and replaced the pool of resident microglia with peripherally derived myeloid cells in Aβ-carrying APPPS1 mice crossed to TK mice (APPPS1;TK). Despite a nearly complete exchange of resident microglia with peripheral myeloid cells, there was no significant change in Aβ burden or APP processing in APPPS1;TK mice. Importantly, however, newly recruited peripheral myeloid cells failed to cluster around Aβ deposits. Even additional anti-Aβ antibody treatment aimed at engaging myeloid cells with amyloid plaques neither directed peripherally derived myeloid cells to amyloid plaques nor altered Aβ burden. These data demonstrate that mere recruitment of peripheral myeloid cells to the brain is insufficient in substantially clearing Aβ burden and suggest that specific additional triggers appear to be required to exploit the full potential of myeloid cell-based therapies for AD. © 2015 Prokop et al.

  9. Atypical Chronic Myeloid Leukemia in Two Pediatric Patients.

    Science.gov (United States)

    Freedman, Jason L; Desai, Ami V; Bailey, L Charles; Aplenc, Richard; Burnworth, Bettina; Zehentner, Barbara K; Teachey, David T; Wertheim, Gerald

    2016-01-01

    Atypical chronic myeloid leukemia, BCR-ABL1-negative, (aCML) is a rare myeloid neoplasm. Recent adult data suggest the leukemic cells in a subset of patients are dependent on JAK/STAT signaling and harbor CSF3R-activating mutations. We hypothesized that, similar to adult patients, the presence of CSF3R-activating mutations would be clinically relevant in pediatric myeloid neoplasms as patients would be sensitive to the JAK inhibitor, ruxolitinib. We report two cases of morphologically similar pediatric aCML, BCR-ABL1-negative based on WHO 2008 criteria. One patient had CSF3R-activating mutation (T618I) and demonstrated a robust response to ruxolitinib, which was used to bridge to a successful stem cell transplant. The other patient did not have a CSF3R-activating mutation and succumbed to refractory disease pediatric aCML and demonstrates the efficacy of ruxolitinib in a pediatric malignancy. As the third documented case successfully treating aCML with ruxolitinib, this case highlights the importance of prompt CSF3R sequencing analysis for myeloproliferative and myelodysplastic/myeloproliferative neoplasms. © 2015 Wiley Periodicals, Inc.

  10. Mediastinal tumors

    International Nuclear Information System (INIS)

    Canizares, Claudio; Araujo, Ivan; Rodriguez, Amparo; Robles, Wilson; Simba, Catalina

    2005-01-01

    In our practice the mediastinal tumors are infrequent. The mediastinum is the portion of the thoracic cavity that contains numerous organs and structures which makes a crossroad for the diagnostic process. Within which congenital cysts, inflammatory and benign tumors, malignant neoplasms may develop. In the superior compartment are found: thymoma and thymic cysts, germ cell tumors, thyroid lesions, parathyroid adenomas, malignant lymphomas, paragangliomas, hemangiomas, lipomas, and inflammatory lesions such as fibrosing mediastinitis. In the middle portion: pericardial cysts, bronchial cysts, malignant lymphomas. In the posterior region: neurogenic tumors such as Shawnomas, neurofibromas, ganglioneuroblastomas, neuroblastomas, paragangliomas, and gastro enteric cysts. We describe two cases. One of a female patient with a prominent tumor in the anterior compartment of the mediastinum, detected by the x-ray films. Initially a cardiac lesion was excluded by echographic, angiographic studies. The biopsy exhibited a prominent fibrosis that suggested fibrosing mediastinitis (sclerosing). Whoever the immunohistochemical phenotype was positive for lambda chains, determining the diagnosis of lymphoma. The other case is of a young male with a thymoma associated to a pure red cell aplasia, which was the initial clinical symptom. Computerized tomography and thyroid scintigraphy was used. (The author)

  11. Rare myeloid sarcoma/acute myeloid leukemia with adrenal mass after allogeneic mobilization peripheral blood stem cell transplantation

    International Nuclear Information System (INIS)

    Wang, Ya-Fei; Li, Qian; Xu, Wen-Gui; Xiao, Jian-Yu; Pang, Qing-Song; Yang, Qing; Zhang, Yi-Zuo

    2013-01-01

    Myeloid sarcoma (MS) is a rare hematological neoplasm that develops either de novo or concurrently with acute myeloid leukemia (AML). This neoplasm can also be an initial manifestation of relapse in a previously treated AML that is in remission. A 44-year-old male patient was diagnosed with testis MS in a local hospital in August 2010. After one month, bone marrow biopsy and aspiration confirmed the diagnosis of AML. Allogeneic mobilization peripheral blood stem cell transplantation was performed, with the sister of the patient as donor, after complete remission (CR) was achieved by chemotherapy. Five months after treatment, an adrenal mass was detected by positron emission tomography-computed tomography (PET-CT). Radiotherapy was performed for the localized mass after a multidisciplinary team (MDT) discussion. The patient is still alive as of May 2013, with no evidence of recurrent MS or leukemia

  12. Imaging of brain tumors

    International Nuclear Information System (INIS)

    Gaensler, E.H.L.

    1995-01-01

    The contents are diagnostic approaches, general features of tumors -hydrocephalus, edema, attenuation and/or intensity value, hemorrhage, fat, contrast enhancement, intra-axial supratentorial tumors - tumors of glial origin, oligodendrogliomas, ependymomas, subependymomas, subependymal giant cell astrocytomas, choroid plexus papilloma; midline tumors - colloid cysts, craniopharyngiomas; pineal region tumors and miscellaneous tumors i.e. primary intracerebral lymphoma, primitive neuroectodermal tumors, hemangioblastomas; extraaxial tumors - meningiomas; nerve sheath tumors -schwannomas, epidermoids, dermoids, lipomas, arachnoid cysts; metastatic tumors (8 refs.)

  13. Precursors of ovarian cancer in the fallopian tube: serous tubal intraepithelial carcinoma--an update.

    Science.gov (United States)

    Zeppernick, Felix; Meinhold-Heerlein, Ivo; Shih, Ie-Ming

    2015-01-01

    Ovarian tumors comprise a wide variety of entities. The largest group, epithelial ovarian carcinoma, can be classified into two main groups, type I and type II tumors. Recent advances in the understanding of ovarian cancer development have resulted in the finding of 'serous tubal intraepithelial carcinoma', which is believed to represent the precursor lesion in high-grade serous ovarian carcinoma. In this review, lines of evidence for this are discussed and possible future implications for clinical and research settings are outlined. © 2014 The Authors. Journal of Obstetrics and Gynaecology Research © 2014 Japan Society of Obstetrics and Gynecology.

  14. VSTM-v1, a potential myeloid differentiation antigen that is downregulated in bone marrow cells from myeloid leukemia patients

    OpenAIRE

    Xie, Min; Li, Ting; Li, Ning; Li, Jinlan; Yao, Qiumei; Han, Wenling; Ruan, Guorui

    2015-01-01

    Leukocyte differentiation antigens often represent important markers for the diagnosis, classification, prognosis, and therapeutic targeting of myeloid leukemia. Herein, we report a potential leukocyte differentiation antigen gene VSTM1 (V-set and transmembrane domain-containing 1) that was downregulated in bone marrow cells from leukemia patients and exhibited a higher degree of promoter methylation. The expression level of its predominant encoded product, VSTM1-v1, was positively correlated...

  15. Monocytic myeloid-derived suppressor cells as prognostic factor in chronic myeloid leukaemia patients treated with dasatinib.

    Science.gov (United States)

    Giallongo, Cesarina; Parrinello, Nunziatina L; La Cava, Piera; Camiolo, Giuseppina; Romano, Alessandra; Scalia, Marina; Stagno, Fabio; Palumbo, Giuseppe A; Avola, Roberto; Li Volti, Giovanni; Tibullo, Daniele; Di Raimondo, Francesco

    2018-02-01

    Myeloid suppressor cells are a heterogeneous group of myeloid cells that are increased in patients with chronic myeloid leukaemia (CML) inducing T cell tolerance. In this study, we found that therapy with tyrosine kinase inhibitors (TKI) decreased the percentage of granulocytic MDSC, but only patients treated with dasatinib showed a significant reduction in the monocytic subset (M-MDSC). Moreover, a positive correlation was observed between number of persistent M-MDSC and the value of major molecular response in dasatinib-treated patients. Serum and exosomes from patients with CML induced conversion of monocytes from healthy volunteers into immunosuppressive M-MDSC, suggesting a bidirectional crosstalk between CML cells and MDSC. Overall, we identified M-MDSC as prognostic factors in patients treated with dasatinib. It might be of interest to understand whether MDSC may be a candidate predictive markers of relapse risk following TKI discontinuation, suggesting their potential significance as practice of precision medicine. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  16. Targeting myeloid-derived suppressor cells augments antitumor activity against lung cancer

    Directory of Open Access Journals (Sweden)

    Srivastava MK

    2012-10-01

    Full Text Available Minu K Srivastava,1,2 Li Zhu,1,2 Marni Harris-White,2 Min Huang,1–3 Maie St John,1,3 Jay M Lee,1,3 Ravi Salgia,4 Robert B Cameron,1,3,5 Robert Strieter,6 Steven Dubinett,1–3 Sherven Sharma1–31Department of Medicine, UCLA Lung Cancer Research Program, David Geffen School of Medicine at UCLA, Los Angeles, CA, 2Molecular Gene Medicine Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, 3Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, 4Department of Medicine, University of Chicago, Chicago, IL, 5Department of Surgery, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, 6Department of Medicine, University of Virginia, Charlottesville, VA, USAAbstract: Lung cancer evades host immune surveillance by dysregulating inflammation. Tumors and their surrounding stromata produce growth factors, cytokines, and chemokines that recruit, expand, and/or activate myeloid-derived suppressor cells (MDSCs. MDSCs regulate immune responses and are frequently found in malignancy. In this review the authors discuss tumor-MDSC interactions that suppress host antitumor activities and the authors' recent findings regarding MDSC depletion that led to improved therapeutic vaccination responses against lung cancer. Despite the identification of a repertoire of tumor antigens, hurdles persist for immune-based anticancer therapies. It is likely that combined therapies that address the multiple immune deficits in cancer patients will be required for effective therapy. MDSCs play a major role in the suppression of T-cell activation and they sustain tumor growth, proliferation, and metastases. Regulation of MDSC recruitment, differentiation or expansion, and inhibition of the MDSC suppressive function with pharmacologic agents will be useful in the control of cancer growth and progression. Pharmacologic agents that regulate MDSCs may be more effective when combined with

  17. MEK Inhibitor MEK162, Idarubicin, and Cytarabine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    Science.gov (United States)

    2017-12-04

    Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  18. Transformation from atypical chronic myeloid leukemia to chronic myelomonocytic leukemia as progression of myeloid neoplasm with platelet-derived growth factor ß rearrangement

    Directory of Open Access Journals (Sweden)

    Xue Shi

    2015-01-01

    Full Text Available Myeloid neoplasms associated with platelet-derived growth factor b (PDGFRB rearrangement usually keep only one morphologic type unless blast crisis. We describe a unique case of hematological features transformation from atypical chronic myeloid leukemia to chronic myelomonocytic leukemia, and imatinib showed no clinical therapeutic effects. The phenomenon indicates that different types of myeloid neoplasms associated with PDGFRB rearrangement can transform into one another with the progression of the disease, and to some extent, this transformation suggests the aggravation of disease.

  19. KRAS (G12D Cooperates with AML1/ETO to Initiate a Mouse Model Mimicking Human Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Shanmin Zhao

    2014-01-01

    Full Text Available Background/Aims: It has been demonstrated that KRAS mutations represent about 90% of cancer-associated mutations, and that KRAS mutations play an essential role in neoplastic transformation. Cancer-associated RAS mutations occur frequently in acute myeloid leukemia (AML, suggesting a functional role for Ras in leukemogenesis. Methods: We successfully established a mouse model of human leukemia by transplanting bone marrow cells co-transfected with the K-ras (G12D mutation and AML1/ETO fusion protein. Results: Mice transplanted with AML/ETO+KRAS co-transduced cells had the highest mortality rate than mice transplanted with AML/ETO- or KRAS-transduced cells (115d vs. 150d. Upon reaching a terminal disease stage, EGFP-positive cells dominated their spleen, lymph nodes, peripheral blood and central nervous system tissue. Immunophenotyping, cytologic analyses revealed that AML/ETO+KRAS leukemias predominantly contained immature myeloid precursors (EGFP+/c-Kit+/Mac-1-/Gr-1-. Histologic analyses revealed that massive leukemic infiltrations were closely packed in dense sheets that effaced the normal architecture of spleen and thymus in mice transplanted with AML1/ETO + KRAS co-transduced cells. K-ras mRNA and protein expression were upregulated in bone marrow cells of the K-ras group and AML1/ETO + Kras group. The phosphorylation of MEK/ERK was significantly enhanced in the AML1/ETO + Kras group. The similar results of the AML1/ETO + Nras group were consistent with those reported previously. Conclusion: Co-transduction of KrasG12D and AML1/ETO induces acute monoblastic leukemia. Since expression of mutant K-ras alone was insufficient to induce leukemia, this model may be useful for investigating the multi-step leukemogenesis model of human leukemia.

  20. Production and Functional Characterization of Murine Osteoclasts Differentiated from ER-Hoxb8-Immortalized Myeloid Progenitor Cells.

    Directory of Open Access Journals (Sweden)

    Frank Zach

    Full Text Available In vitro differentiation into functional osteoclasts is routinely achieved by incubation of embryonic stem cells, induced pluripotent stem cells, or primary as well as cryopreserved spleen and bone marrow-derived cells with soluble receptor activator of nuclear factor kappa-B ligand and macrophage colony-stimulating factor. Additionally, osteoclasts can be derived from co-cultures with osteoblasts or by direct administration of soluble receptor activator of nuclear factor kappa-B ligand to RAW 264.7 macrophage lineage cells. However, despite their benefits for osteoclast-associated research, these different methods have several drawbacks with respect to differentiation yields, time and animal consumption, storage life of progenitor cells or the limited potential for genetic manipulation of osteoclast precursors. In the present study, we therefore established a novel protocol for the differentiation of osteoclasts from murine ER-Hoxb8-immortalized myeloid stem cells. We isolated and immortalized bone marrow cells from wild type and genetically manipulated mouse lines, optimized protocols for osteoclast differentiation and compared these cells to osteoclasts derived from conventional sources. In vitro generated ER-Hoxb8 osteoclasts displayed typical osteoclast characteristics such as multi-nucleation, tartrate-resistant acid phosphatase staining of supernatants and cells, F-actin ring formation and bone resorption activity. Furthermore, the osteoclast differentiation time course was traced on a gene expression level. Increased expression of osteoclast-specific genes and decreased expression of stem cell marker genes during differentiation of osteoclasts from ER-Hoxb8-immortalized myeloid progenitor cells were detected by gene array and confirmed by semi-quantitative and quantitative RT-PCR approaches. In summary, we established a novel method for the quantitative production of murine bona fide osteoclasts from ER-Hoxb8 stem cells generated from

  1. Pituitary Tumors

    Science.gov (United States)

    ... nursing, or cause a man to lose his sex drive or lower his sperm count. Pituitary tumors often go undiagnosed because their symptoms resemble those of so many other more common diseases. × Definition The pituitary is a small, bean-sized gland ...

  2. Nephrogenic tumors

    International Nuclear Information System (INIS)

    Wiesbauer, P.

    2008-01-01

    Nephroblastomas are the most common malignant renal tumors in childhood. According to the guidelines of the SIOP (Societe Internationale d'Oncologie Pediatrique) and GPOH (Gesellschaft fuer Paediatrische Onkologie und Haematologie) pre-operative chemotherapy can be started without histological confirmation and thus initial imaging studies, in particular ultrasound, play an outstanding role for diagnostic purposes

  3. A tumor profile in Edwards syndrome (trisomy 18).

    Science.gov (United States)

    Satgé, Daniel; Nishi, Motoi; Sirvent, Nicolas; Vekemans, Michel

    2016-09-01

    Constitutional trisomy 18 causes Edwards syndrome, which is characterized by intellectual disability and a particular set of malformations. Although this condition carries high mortality during prenatal and early postnatal life, some of the rare infants who survive the first months develop benign and malignant tumors. To determine the tumor profile associated with Edwards syndrome, we performed a systematic review of the literature. This review reveals a tumor profile differing from those of Down (trisomy 21) and Patau (trisomy 13) syndromes. The literature covers 45 malignancies: 29 were liver cancers, mainly hepatoblastomas found in Japanese females; 13 were kidney tumors, predominantly nephroblastomas; 1 was neuroblastoma; 1 was a Hodgkin disease; and 1 was acute myeloid leukemia in an infant with both trisomy 18 and type 1 neurofibromatosis. No instances of the most frequent malignancies of early life-cerebral tumors, germ cell tumors, or leukemia--are reported in children with pure trisomy 18. Tumor occurrence does not appear to correlate with body weight, tissue growth, or cancer genes mapping to chromosome 18. Importantly, the most recent clinical histories report successful treatment; this raises ethical concerns about cancer treatment in infants with Edwards syndrome. In conclusion, knowledge of the Edwards' syndrome tumor profile will enable better clinical surveillance in at-risk organs (i.e., liver, kidney). This knowledge also provides clues to understanding oncogenesis, including the probably reduced frequency of some neoplasms in infants and children with this genetic condition. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. The new deal: a potential role for secreted vesicles in innate immunity and tumor progression.

    Science.gov (United States)

    Benito-Martin, Alberto; Di Giannatale, Angela; Ceder, Sophia; Peinado, Héctor

    2015-01-01

    Tumors must evade the immune system to survive and metastasize, although the mechanisms that lead to tumor immunoediting and their evasion of immune surveillance are far from clear. The first line of defense against metastatic invasion is the innate immune system that provides immediate defense through humoral immunity and cell-mediated components, mast cells, neutrophils, macrophages, and other myeloid-derived cells that protect the organism against foreign invaders. Therefore, tumors must employ different strategies to evade such immune responses or to modulate their environment, and they must do so prior metastasizing. Exosomes and other secreted vesicles can be used for cell-cell communication during tumor progression by promoting the horizontal transfer of information. In this review, we will analyze the role of such extracellular vesicles during tumor progression, summarizing the role of secreted vesicles in the crosstalk between the tumor and the innate immune system.

  5. Tumors Alter Inflammation and Impair Dermal Wound Healing in Female Mice

    Science.gov (United States)

    Pyter, Leah M.; Husain, Yasmin; Calero, Humberto; McKim, Daniel B.; Lin, Hsin-Yun; Godbout, Jonathan P.; Sheridan, John F.; Engeland, Christopher G.; Marucha, Phillip T.

    2016-01-01

    Tissue repair is an integral component of cancer treatment (e.g., due to surgery, chemotherapy, radiation). Previous work has emphasized the immunosuppressive effects of tumors on adaptive immunity and has shown that surgery incites cancer metastases. However, the extent to which and how tumors may alter the clinically-relevant innate immune process of wound healing remains an untapped potential area of improvement for treatment, quality of life, and ultimately, mortality of cancer patients. In this study, 3.5 mm full-thickness dermal excisional wounds were placed on the dorsum of immunocompetent female mice with and without non-malignant flank AT-84 murine oral squamous cell carcinomas. Wound closure rate, inflammatory cell number and inflammatory signaling in wounds, and circulating myeloid cell concentrations were compared between tumor-bearing and tumor-free mice. Tumors delayed wound closure, suppressed inflammatory signaling, and altered myeloid cell trafficking in wounds. An in vitro scratch “wounding” assay of adult dermal fibroblasts treated with tumor cell-conditioned media supported the in vivo findings. This study demonstrates that tumors are sufficient to disrupt fundamental and clinically-relevant innate immune functions. The understanding of these underlying mechanisms provides potential for therapeutic interventions capable of improving the treatment of cancer while reducing morbidities and mortality. PMID:27548621

  6. Synergistic interaction of Smac mimetic and IFNα to trigger apoptosis in acute myeloid leukemia cells.

    Science.gov (United States)

    Bake, Vanessa; Roesler, Stefanie; Eckhardt, Ines; Belz, Katharina; Fulda, Simone

    2014-12-28

    Therapeutic targeting of inhibitor of apoptosis (IAP) proteins by small-molecule inhibitors such as Smac mimetic is considered as a promising anticancer strategy to elicit apoptosis. Recent advances have renewed the interest in exploiting the antileukemic activity of interferon (IFN)α for the treatment of acute myeloid leukemia (AML). Here, we identify a novel synergistic interaction of the Smac mimetic BV6 and IFNα to trigger cell death in AML cells. Calculation of combination index (CI) confirms the synergism of BV6 and IFNα. In contrast to AML cells, no synergistic toxicity of BV6 and IFNα at equimolar concentrations is found against normal peripheral blood lymphocytes. BV6 and IFNα act in concert to stimulate expression of tumor necrosis factor (TNF)α and its secretion into the supernatant, thereby initiating an autocrine/paracrine TNFα/TNF receptor 1 (TNFR1) loop that drives cell death by BV6 and IFNα. Consistently, pharmacological inhibition of TNFα by the TNFα-blocking antibody Enbrel or genetic silencing of TNFR1 significantly reduces BV6/IFNα-induced cell death. In addition, BV6/IFNα-induced cell death depends on interferon regulatory factor (IRF)1, since RNA interference-imposed knockdown of IRF1 significantly rescues cell death. In conclusion, the identification of a novel synergistic antileukemic combination of Smac mimetic and IFNα has important implications for the development of innovative treatment strategies in AML. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. HLA-G molecules and clinical outcome in Chronic Myeloid Leukemia.

    Science.gov (United States)

    Caocci, Giovanni; Greco, Marianna; Arras, Marcella; Cusano, Roberto; Orrù, Sandro; Martino, Bruno; Abruzzese, Elisabetta; Galimberti, Sara; Mulas, Olga; Trucas, Marcello; Littera, Roberto; Lai, Sara; Carcassi, Carlo; La Nasa, Giorgio

    2017-10-01

    The human leukocyte antigen-G (HLA-G) gene encodes a tolerogenic protein known to promote tumor immune-escape. We investigated HLA-G polymorphisms and soluble molecules (sHLA-G) in 68 chronic myeloid leukemia (CML) patients. Patients with G*01:01:01 or G*01:01:02 allele had higher value of sHLA-G compared to G*01:01:03 (109.2±39.5 vs 39.9±8.8 units/ml; p=0.03), and showed lower event free survival (EFS) (62.3% vs 90.0%; p=0.02). The G*01:01:03 allele was associated with higher rates and earlier achievement of deep molecular response (MR) 4.5 (100% vs 65%, median of 8 vs 58 months, p=0.001). HLA-G alleles with higher secretion of sHLA-G seem associated with lower EFS, possibly because of an inhibitory effect on the immune system. Conversely, lower levels of sHLA-G promoted achievement of MR 4.5 , suggesting increased cooperation with immune system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Inhibition of SRC family kinases reduces myeloid-derived suppressor cells in head and neck cancer.

    Science.gov (United States)

    Mao, Liang; Deng, Wei-Wei; Yu, Guang-Tao; Bu, Lin-Lin; Liu, Jian-Feng; Ma, Si-Rui; Wu, Lei; Kulkarni, Ashok B; Zhang, Wen-Feng; Sun, Zhi-Jun

    2017-03-01

    SRC family kinases (SFKs), a group of nonreceptor tyrosine kinases, modulate multiple cellular functions, such as cell proliferation, differentiation and metabolism. SFKs display aberrant activity in progressive stages of human cancers. However, the precise role of SFKs in the head and neck squamous cell carcinoma (HNSCC) signaling network is far from clear. In this study, we found that the inhibition of SFKs activity by dasatinib effectively reduced the tumor size and population of MDSCs in the HNSCC mouse model. Molecular analysis indicates that phosphorylation of LYN, rather than SRC, was inhibited by dasatinib treatment. Next, we analyzed LYN expression by immunostaining and found that it was overexpressed in the human HNSCC specimens. Moreover, LYN expression in stromal cells positively correlated with myeloid-derived suppressor cells (MDSCs) makers CD11b and CD33 in human HNSCC. The dual positive expression of LYN in epithelial and stromal cells (EPI + SRT + ) was associated with unfavorable overall survival of HNSCC patients. These findings indicate that SFKs may be a potential target for an effective immunotherapy of HNSCC by decreasing MDSCs and moreover, LYN will have an impact on such therapeutic strategy. © 2016 UICC.

  9. The role of HOXB2 and HOXB3 in acute myeloid leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Lindblad, Oscar [Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund (Sweden); Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund (Sweden); Department of Hematology and Vascular Disorders, Skåne University Hospital, Lund (Sweden); Chougule, Rohit A.; Moharram, Sausan A. [Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund (Sweden); Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund (Sweden); Kabir, Nuzhat N. [Laboratory of Computational Biochemistry, KN Biomedical Research Institute, Barisal (Bangladesh); Sun, Jianmin [Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund (Sweden); Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund (Sweden); Kazi, Julhash U. [Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund (Sweden); Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund (Sweden); Laboratory of Computational Biochemistry, KN Biomedical Research Institute, Barisal (Bangladesh); Rönnstrand, Lars, E-mail: lars.ronnstrand@med.lu.se [Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund (Sweden); Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund (Sweden)

    2015-11-27

    Acute myeloid leukemia (AML) is a heterogeneous aggressive disease and the most common form of adult leukemia. Mutations in the type III receptor tyrosine kinase FLT3 are found in more than 30% of AML patients. Drugs against FLT3 have been developed for the treatment of AML, but they lack specificity, show poor response and lead to the development of a resistant phenotype upon treatment. Therefore, a deeper understanding of FLT3 signaling will facilitate identification of additional pharmacological targets in FLT3-driven AML. In this report, we identify HOXB2 and HOXB3 as novel regulators of oncogenic FLT3-ITD-driven AML. We show that HOXB2 and HOXB3 expression is upregulated in a group of AML patients carrying FLT3-ITD. Overexpression of HOXB2 or HOXB3 in mouse pro-B cells resulted in decreased FLT3-ITD-dependent cell proliferation as well as colony formation and increased apoptosis. Expression of HOXB2 or HOXB3 resulted in a significant decrease in FLT3-ITD-induced AKT, ERK, p38 and STAT5 phosphorylation. Our data suggest that HOXB2 and HOXB3 act as tumor suppressors in FLT3-ITD driven AML.

  10. [Identification of novel pathogenic gene mutations in pediatric acute myeloid leukemia by whole-exome resequencing].

    Science.gov (United States)

    Shiba, Norio

    2015-12-01

    A new class of gene mutations, identified in the pathogenesis of adult acute myeloid leukemia (AML), includes DNMT3A, IDH1/2, TET2 and EZH2. However, these mutations are rare in pediatric AML cases, indicating that pathogeneses differ between adult and pediatric forms of AML. Meanwhile, the recent development of massively parallel sequencing technologies has provided a new opportunity to discover genetic changes across entire genomes or proteincoding sequences. In order to reveal a complete registry of gene mutations, we performed whole exome resequencing of paired tumor-normal specimens from 19 pediatric AML cases using Illumina HiSeq 2000. In total, 80 somatic mutations or 4.2 mutations per sample were identified. Many of the recurrent mutations identified in this study involved previously reported targets in AML, such as FLT3, CEBPA, KIT, CBL, NRAS, WT1 and EZH2. On the other hand, several genes were newly identified in the current study, including BCORL1 and major cohesin components such as SMC3 and RAD21. Whole exome resequencing revealed a complex array of gene mutations in pediatric AML genomes. Our results indicate that a subset of pediatric AML represents a discrete entity that could be discriminated from its adult counterpart, in terms of the spectrum of gene mutations.

  11. Regulatory T cells-derived IL-35 promotes the growth of adult acute myeloid leukemia blasts.

    Science.gov (United States)

    Tao, Qianshan; Pan, Ying; Wang, Yiping; Wang, Huiping; Xiong, Shudao; Li, Qing; Wang, Jia; Tao, Lili; Wang, Zhitao; Wu, Fan; Zhang, Rui; Zhai, Zhimin

    2015-11-15

    Tumor immune escape mechanism mediated by CD4+CD25+regulatory T cells (Tregs) is a key factor in the pathogenesis of acute myeloid leukemia (AML). IL-35, as a novel inhibitory cytokine, is produced by Tregs specially and regulates functions of Tregs in murine. However, IL-35 expression of Tregs in human is still disputed, and its role in AML is yet to be elucidated. In this study, we found that IL-35 was expressed highly in peripheral blood plasma of adult patients with AML and significantly correlated with the clinical stages of malignancy. Tregs-derived from adult AML patients produced IL-35 in a stimulation-dependent manner. IL-35 promoted AML blasts immune escape by expanding Tregs and inhibiting CD4+CD25-effector T cells (Teffs). Furthermore, IL-35 directly promoted the proliferation of AML blasts and reduced the apoptosis of AML blasts. Together, our study demonstrates that IL-35-derived from Tregs promotes the growth of adult AML blasts, suggesting that IL-35 has an important role in the pathogenesis of AML. © 2015 UICC.

  12. Expansion of Myeloid-Derived Suppressor Cells in Patients with Acute Coronary Syndrome

    Directory of Open Access Journals (Sweden)

    Yan-ge Wang

    2015-01-01

    Full Text Available Aim: The aim of this study was to explore whether the circulating frequency and function of myeloid-derived suppressor cells (MDSCs are altered in patients with acute coronary syndrome (ACS. Methods: The frequency of MDSCs in peripheral blood was determined by flow cytometry, and mRNA expression in purified MDSCs was analyzed by real-time reverse transcription polymerase chain reaction (RT-PCR. The suppressive function of MDSCs isolated from different groups was also determined. The plasma levels of certain cytokines were determined using Bio-Plex Pro™ Human Cytokine Assays. Results: The frequency of circulating CD14+HLA-DR-/low MDSCs; arginase-1 (Arg-1 expression; and plasma levels of interleukin (IL-1β, IL-6, tumor necrosis factor (TNF-α, and IL-33 were markedly increased in ACS patients compared to stable angina (SA or control patients. Furthermore, MDSCs from ACS patients were more potent suppressors of T-cell proliferation and IFN-γ production than those from the SA or control groups at ratios of 1:4 and 1:2; this effect was partially mediated by Arg-1. In addition, the frequency of MDSCs was positively correlated with plasma levels of IL-6, IL-33, and TNF-α. Conclusions: We observed an increased frequency and suppressive function of MDSCs in ACS patients, a result that may provide insights into the mechanisms involved in ACS.

  13. Loss of Snail2 favors skin tumor progression by promoting the recruitment of myeloid progenitors

    DEFF Research Database (Denmark)

    Villarejo, Ana; Molina-Ortiz, Patricia; Montenegro, Yenny

    2015-01-01

    Snail2 is a zinc finger transcription factor involved in driving epithelial to mesenchymal transitions. Snail2 null mice are viable, but display defects in melanogenesis, gametogenesis and hematopoiesis, and are markedly radiosensitive. Here, using mouse genetics, we have studied the contribution...

  14. Anemia prevalence and treatment practice in patients with non-myeloid tumors receiving chemotherapy

    OpenAIRE

    Merlini, Laura; Carten?, Giacomo; Iacobelli, Stefano; Stelitano, Caterina; Airoldi, Mario; Balcke, Peter; Keil, Felix; Haslbauer, Ferdinand; Belton, Laura; Pujol, Beatriz

    2013-01-01

    Laura Merlini,1 Giacomo Cartenì,2 Stefano Iacobelli,3 Caterina Stelitano,4 Mario Airoldi,5 Peter Balcke,6 Felix Keil,7 Ferdinand Haslbauer,8 Laura Belton,9 Beatriz Pujol10 1Department of Medical Oncology, Ospedale Civile S, Bortolo, Vicenza, 2Department of OncoHematology, Azienda Ospedaliera di Rilievo Nazionale "Antonio Cardarelli", Napoli, 3Department of Medical Oncology, Ospedale Clinicizzato SS Annunziata, Chieti, 4Department of Hematology, Azienda Ospedali...

  15. The zebrafish spi1 promoter drives myeloid-specific expression in stable transgenic fish

    NARCIS (Netherlands)

    Ward, AC; McPhee, DO; Condron, MM; Varma, S; Cody, SH; Onnebo, SMN; Paw, BH; Zon, LI; Lieschke, GJ

    2003-01-01

    The spi1 (pu.1) gene has recently been identified as a useful marker of early myeloid cells in zebrafish. To enhance the versatility of this organism as a model for studying myeloid development, the promoter of this gene has been isolated and characterized. Transient transgenesis revealed that a 5.3

  16. Response-guided induction therapy in pediatric acute myeloid leukemia with excellent remission rate

    DEFF Research Database (Denmark)

    Abrahamsson, Jonas; Forestier, Erik; Heldrup, Jesper

    2011-01-01

    To evaluate the early treatment response in children with acute myeloid leukemia (AML) using a response-guided induction strategy that includes idarubicin in the first course.......To evaluate the early treatment response in children with acute myeloid leukemia (AML) using a response-guided induction strategy that includes idarubicin in the first course....

  17. Acquired mutations in ASXL1 in acute myeloid leukemia: Prevalence and prognostic value

    NARCIS (Netherlands)

    M. Pratcorona (Marta); S. Abbas (Saman); M.A. Sanders (Mathijs); J.E. Koenders (Jasper); F.G. Kavelaars (François); C.A.J. Erpelinck-Verschueren (C. A J); A. Zeilemakers (Annelieke); B. Löwenberg (Bob); P.J.M. Valk (Peter)

    2012-01-01

    textabstractSomatic mutations in the additional sex comb-like 1 (ASXL1) gene have been described in various types of myeloid malignancies, including acute myeloid leukemia. Analysis of novel markers, such as ASXL1 mutations, in independent clinical trials is indispensable before considering them for

  18. Absence of mutations in the RET gene in acute myeloid leukemia

    NARCIS (Netherlands)

    Visser, M; Hofstra, RMW; Stulp, RP; Wu, Y; Buys, CHCM; Willemze, R; Landegent, JE

    Expression of the tyrosine kinase receptor RET has previously been detected in normal hematopoietic cells, and especially in cells of the myeloid lineage. Furthermore, RET was shown to be differentially expressed in acute myeloid leukemia (AML), a disease characterized by excessive cell growth and

  19. Tissue type plasminogen activator regulates myeloid-cell dependent neoangiogenesis during tissue regeneration

    DEFF Research Database (Denmark)

    Ohki, Makiko; Ohki, Yuichi; Ishihara, Makoto

    2010-01-01

    tissue regeneration is not well understood. Bone marrow (BM)-derived myeloid cells facilitate angiogenesis during tissue regeneration. Here, we report that a serpin-resistant form of tPA by activating the extracellular proteases matrix metalloproteinase-9 and plasmin expands the myeloid cell pool...

  20. Genome-Wide CRISPR-Cas9 Screen Identifies MicroRNAs That Regulate Myeloid Leukemia Cell Growth.

    Directory of Open Access Journals (Sweden)

    Jared Wallace

    Full Text Available Mammalian microRNA expression is dysregulated in human cancer. However, the functional relevance of many microRNAs in the context of tumor biology remains unclear. Using CRISPR-Cas9 technology, we performed a global loss-of-function screen to simultaneously test the functions of individual microRNAs and protein-coding genes during the growth of a myeloid leukemia cell line. This approach identified evolutionarily conserved human microRNAs that suppress or promote cell growth, revealing that microRNAs are extensively integrated into the molecular networks that control tumor cell physiology. miR-155 was identified as a top microRNA candidate promoting cellular fitness, which we confirmed with two distinct miR-155-targeting CRISPR-Cas9 lentiviral constructs. Further, we performed anti-correlation functional profiling to predict relevant microRNA-tumor suppressor gene or microRNA-oncogene interactions in these cells. This analysis identified miR-150 targeting of p53, a connection that was experimentally validated. Taken together, our study describes a powerful genetic approach by which the function of individual microRNAs can be assessed on a global level, and its use will rapidly advance our understanding of how microRNAs contribute to human disease.

  1. Report on Fukushima Daiichi NPP precursor events

    International Nuclear Information System (INIS)

    2014-01-01

    The main questions to be answered by this report were: The Fukushima Daiichi NPP accident, could it have been prevented? If there is a next severe accident, may it be prevented? To answer the first question, the report addressed several aspects. First, the report investigated whether precursors to the Fukushima Daiichi NPP accident existed in the operating experience; second, the reasons why these precursors did not evolve into a severe accident. Third, whether lessons learned from these precursor events were adequately considered by member countries; and finally, if the operating experience feedback system needs to be improved, based on the previous analysis. To address the second question which is much more challenging, the report considered precursor events identified through a search and analysis of the IRS database and also precursors events based on risk significance. Both methods can point out areas where further work may be needed, even if it depends heavily on design and site-specific factors. From the operating experience side, more efforts are needed to ensure timely and full implementation of lessons learnt from precursor events. Concerning risk considerations, a combined use of risk precursors and operating experience may drive to effective changes to plants to reduce risk. The report also contains a short description and evaluation of selected precursors that are related to the course of the Fukushima Daiichi NPP accident. The report addresses the question whether operating experience feedback can be effectively used to identify plant vulnerabilities and minimize potential for severe core damage accidents. Based on several of the precursor events national or international in-depth evaluations were started. The vulnerability of NPPs due to external and internal flooding has clearly been addressed. In addition to the IRS based investigation, the WGRISK was asked to identify important precursor events based on risk significance. These precursors have

  2. Program death-1 signaling and regulatory T cells collaborate to resist the function of adoptively transferred cytotoxic T lymphocytes in advanced acute myeloid leukemia.

    Science.gov (United States)

    Zhou, Qing; Munger, Meghan E; Highfill, Steven L; Tolar, Jakub; Weigel, Brenda J; Riddle, Megan; Sharpe, Arlene H; Vallera, Daniel A; Azuma, Miyuki; Levine, Bruce L; June, Carl H; Murphy, William J; Munn, David H; Blazar, Bruce R

    2010-10-07

    Tumor-induced immune defects can weaken host immune response and permit tumor cell growth. In a systemic model of murine acute myeloid leukemia (AML), tumor progression resulted in increased regulatory T cells (Treg) and elevation of program death-1 (PD-1) expression on CD8(+) cytotoxic T cells (CTLs) at the tumor site. PD-1 knockout mice were more resistant to AML despite the presence of similar percentage of Tregs compared with wild type. In vitro, intact Treg suppression of CD8(+) T-cell responses was dependent on PD-1 expression by T cells and Tregs and PD-L1 expression by antigen-presenting cells. In vivo, the function of adoptively transferred AML-reactive CTLs was reduced by AML-associated Tregs. Anti-PD-L1 monoclonal antibody treatment increased the proliferation and function of CTLs at tumor sites, reduced AML tumor burden, and resulted in long-term survivors. Treg depletion followed by PD-1/PD-L1 blockade showed superior efficacy for eradication of established AML. These data demonstrated that interaction between PD-1 and PD-L1 can facilitate Treg-induced suppression of T-effector cells and dampen the antitumor immune response. PD-1/PD-L1 blockade coupled with Treg depletion represents an important new approach that can be readily translated into the clinic to improve the therapeutic efficacy of adoptive AML-reactive CTLs in advanced AML disease.

  3. The skin as a window to the blood: Cutaneous manifestations of myeloid malignancies.

    Science.gov (United States)

    Li, Alvin W; Yin, Emily S; Stahl, Maximilian; Kim, Tae Kon; Panse, Gauri; Zeidan, Amer M; Leventhal, Jonathan S

    2017-11-01

    Cutaneous manifestations of myeloid malignancies are common and have a broad range of presentations. These skin findings are classified as specific, due to direct infiltration by malignant hematopoietic cells, or non-specific. Early recognition and diagnosis can have significant clinical implications, as skin manifestations may be the first indication of underlying hematologic malignancy, can reflect the immune status and stage of disease, and cutaneous reactions may occur from conventional and targeted agents used to treat myeloid disease. In addition, infections with cutaneous involvement are common in immunocompromised patients with myeloid disease. Given the varying presentations, dermatologic findings associated with myeloid malignancies can pose diagnostic challenges for hematologists and dermatologists. In this clinical review intended for the practicing hematologist/oncologist, we discuss the presentation, diagnosis, treatment, and prognostic value of the most common cutaneous manifestations associated with myeloid malignancies using illustrative macro- and microscopic figures and with a special emphasis on practical considerations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Ovarian granulocytic sarcoma: a case report and magnetic resonance imaging findings; Sarcoma granulocitico no ovario: relato de caso e achados na ressonancia magnetica

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Licia Pacheco [Hospital Geral de Fortaleza (HGF), CE (Brazil). Servico de Diagnostico por Imagem], e-mail: licia_p@hotmail.com; Silveira, Claudio Regis Sampaio [Hospital Geral de Fortaleza (HGF), CE (Brazil). Servico de Radiologia; Costa, Fabricio da Silva [Universidade Estadual do Ceara (UECE), CE (Brazil); Monte, Hipolito [Hospital Monte Klinikum, Fortaleza, CE (Brazil)

    2008-12-15

    Granulocytic sarcoma (chloroma) is a tumor consisting of myeloid precursors in an extramedullary site. It is complication of both acute and chronic myelogenous leukemias. Although the lesion can occur at any site, ovarian involvement is rare. We report a case of ovary tumor associated with acute myeloid leukaemia and its imaging appearance on magnetic resonance. (author)

  5. CHRONIC MYELOID LEUKEMIA EXPECTED RELAPSE'S CLINICAL-LABORATORY INDEXES.

    Science.gov (United States)

    Kirtava, T; Ghirdaladze, D; Vatsadze, T

    2017-06-01

    Today Chronic Myeloid Leukemia (CML) relapse's final assessment and monitoring in the whole world is implemented by BCR-ABL gene quantitative detection - during the polymerase chain reaction (by PSR means). Implementation of this monitoring materially and technically is not often available and remission during years is being assessed using monthly clinical-laboratory data. Proceeding from this, the goal of our work was to find the clinical-laboratory features, indicating the expected relapse and require the urgent molecular research carry out. In order to find the clinical-hematologic indicators of the Chronic Myeloid Leukemia expected relapse, BCR-ABL gene quantitative determination using the PSR method after the Imatinib treatment was done in 64 patients with CML who had remission (duration 0,5-14 years). The retrospective analyses of clinical-laboratory data was also held before the research. According to the molecular research results, we have set the risk groups of the patients - low, moderate and high risk groups. In the groups we have found the clinical-laboratory changes, existed before the research. We have held the comparative analyses of the molecular research in groups and the clinical-laboratory changes in them. As a result, we have established, that moderate anemia (expressed often during the whole remission period among the patients of all three risk groups) does not indicate the expected relapse and that in the Chronic Myeloid Leukemia remission period the expected relapse indicator could be the patient's Imatinib irregular intakes, non-systemic treatment and high, inexplicable progressive thrombocytosis in peripheral blood. These factors indicate the necessity to hold the urgent molecular research in order to define the post-treatment tactics.

  6. Post-transplant outcome in chronic myeloid leukemia

    International Nuclear Information System (INIS)

    Raza, S.; Ullah, K.; Ahmed, P.; Kamal, M.K.

    2008-01-01

    To determine post-transplant survival in chronic myeloid leukaemia patients undergoing allogeneic stem cell transplant. All patients of chronic myeloid leukaemia in chronic phase having HLA identical donor and age under 55 years, normal hepatic, renal and cardiac functions with good performance status were selected. Patients in accelerated phase or blast crisis, poor performance status, impaired hepatic, renal, cardiac functions or pregnancy were excluded. Survival was calculated from the date of transplant to death or last follow-up according to Kaplan-Meier and Cox (proportional hazard) regression analysis methods. Thirty seven patients with chronic myeloid leukaemia underwent allogeneic stem cell transplant from HLA identical sibling donors. Thirty two patients were male and five were females. Median age of patients was 28 years. All patients and donors were CMV positive. Post-transplant complications encountered were acute GvHD (Grade II-IV) (n=13, 35.1%), chronic GvHD in 18.9% (n=7), Veno Occlusive Disease (VOD) in 5.4% (n=2), acute renal failure in 2.7% (n=1), haemorrhagic cystitis in 2.7% (n=1), bacterial infections in 40.5% (n=15), fungal infections in 16.2% (n=6), CMV infection in 5.4% (n=2), tuberculosis in 5.4% (n=2), Herpes Zoster infection 2.7% (n=1) and relapse in 2.7% (n=1). Mortality was observed in 27% (n=10). Major causes of mortality were GvHD, VOD, septicemia, CMV infection and disseminated Aspergillosis. Overall Disease Free Survival (DFS) was 73% with a median duration of follow-up of 47.4 + 12 months. DFS was 81% in standard risk and 54.5% in high-risk group. Results of allogeneic stem cell transplant in standard risk group CML patients were good and comparable with other international centres, however, results in high-risk CML patients need further improvement, although, number of patients in this group is small. (author)

  7. RhoA: A therapeutic target for chronic myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Molli Poonam R

    2012-03-01

    Full Text Available Abstract Background Chronic Myeloid Leukemia (CML is a malignant pluripotent stem cells disorder of myeloid cells. In CML patients, polymorphonuclear leukocytes (PMNL the terminally differentiated cells of myeloid series exhibit defects in several actin dependent functions such as adhesion, motility, chemotaxis, agglutination, phagocytosis and microbicidal activities. A definite and global abnormality was observed in stimulation of actin polymerization in CML PMNL. Signalling molecules ras and rhoGTPases regulate spatial and temporal polymerization of actin and thus, a broad range of physiological processes. Therefore, status of these GTPases as well as actin was studied in resting and fMLP stimulated normal and CML PMNL. Methods To study expression of GTPases and actin, Western blotting and flow cytometry analysis were done, while spatial expression and colocalization of these proteins were studied by using laser confocal microscopy. To study effect of inhibitors on cell proliferation CCK-8 assay was done. Significance of differences in expression of proteins within the samples and between normal and CML was tested by using Wilcoxon signed rank test and Mann-Whitney test, respectively. Bivariate and partial correlation analyses were done to study relationship between all the parameters. Results In CML PMNL, actin expression and its architecture were altered and stimulation of actin polymerization was absent. Differences were also observed in expression, organization or stimulation of all the three GTPases in normal and CML PMNL. In normal PMNL, ras was the critical GTPase regulating expression of rhoGTPases and actin and actin polymerization. But in CML PMNL, rhoA took a central place. In accordance with these, treatment with rho/ROCK pathway inhibitors resulted in specific growth inhibition of CML cell lines. Conclusions RhoA has emerged as the key molecule responsible for functional defects in CML PMNL and therefore can be used as a

  8. Genomics of Acute Myeloid Leukemia Diagnosis and Pathways.

    Science.gov (United States)

    Bullinger, Lars; Döhner, Konstanze; Döhner, Hartmut

    2017-03-20

    In recent years, our understanding of the molecular pathogenesis of myeloid neoplasms, including acute myeloid leukemia (AML), has been greatly advanced by genomics discovery studies that use novel high-throughput sequencing techniques. AML, similar to most other cancers, is characterized by multiple somatically acquired mutations that affect genes of different functional categories, a complex clonal architecture, and disease evolution over time. Patterns of mutations seem to follow specific and temporally ordered trajectories. Mutations in genes encoding epigenetic modifiers, such as DNMT3A, ASXL1, TET2, IDH1, and IDH2, are commonly acquired early and are present in the founding clone. The same genes are frequently found to be mutated in elderly individuals along with clonal expansion of hematopoiesis that confers an increased risk for the development of hematologic cancers. Furthermore, such mutations may persist after therapy, lead to clonal expansion during hematologic remission, and eventually lead to relapsed disease. In contrast, mutations involving NPM1 or signaling molecules (eg, FLT3, RAS) typically are secondary events that occur later during leukemogenesis. Genetic data are now being used to inform disease classification, risk stratification, and clinical care of patients. Two new provisional entities, AML with mutated RUNX1 and AML with BCR- ABL1, have been included in the current update of the WHO classification of myeloid neoplasms and AML, and mutations in three genes- RUNX1, ASXL1, and TP53-have been added in the risk stratification of the 2017 European LeukemiaNet recommendations for AML. Integrated evaluation of baseline genetics and assessment of minimal residual disease are expected to further improve risk stratification and selection of postremission therapy. Finally, the identification of disease alleles will guide the development and use of novel molecularly targeted therapies.

  9. Targeting BCL2 Family in Human Myeloid Dendritic Cells: A Challenge to Cure Diseases with Chronic Inflammations Associated with Bone Loss

    Directory of Open Access Journals (Sweden)

    Selma Olsson Åkefeldt

    2013-01-01

    Full Text Available Rheumatoid arthritis (RA and Langerhans cell histiocytosis (LCH are common and rare diseases, respectively. They associate myeloid cell recruitment and survival in inflammatory conditions with tissue destruction and bone resorption. Manipulating dendritic cell (DC, and, especially, regulating their half-life and fusion, is a challenge. Indeed, these myeloid cells display pathogenic roles in both diseases and may be an important source of precursors for differentiation of osteoclasts, the bone-resorbing multinucleated giant cells. We have recently documented that the proinflammatory cytokine IL-17A regulates long-term survival of DC by inducing BCL2A1 expression, in addition to the constitutive MCL1 expression. We summarize bibliography of the BCL2 family members and their therapeutic targeting, with a special emphasis on MCL1 and BCL2A1, discussing their potential impact on RA and LCH. Our recent knowledge in the survival pathway, which is activated to perform DC fusion in the presence of IL-17A, suggests that targeting MCL1 and BCL2A1 in infiltrating DC may affect the clinical outcomes in RA and LCH. The development of new therapies, interfering with MCL1 and BCL2A1 expression, to target long-term surviving inflammatory DC should be translated into preclinical studies with the aim to increase the well-being of patients with RA and LCH.

  10. Gynecomastia during imatinib mesylate treatment for gastrointestinal stromal tumor: a rare adverse event

    OpenAIRE

    Liu, HeLi; Liao, GuoQing; Yan, ZhongShu

    2011-01-01

    Abstract Background Imatinib mesylate has been the standard therapeutic treatment for chronic myeloid leukemia, advanced and metastatic gastrointestinal stromal tumor (GIST). It is well tolerated with mild adverse effects. Gynecomastia development during the course of treatment has been rarely reported. Methods Ninety-eight patients with advanced or recurrent GIST were treated with imatinib mesylate. Among the fifty-seven male patients six developed gynecomastia during the treatment. The lesi...

  11. Esophageal Candidiasis as the Initial Manifestation of Acute Myeloid Leukemia.

    Science.gov (United States)

    Komeno, Yukiko; Uryu, Hideki; Iwata, Yuko; Hatada, Yasumasa; Sakamoto, Jumpei; Iihara, Kuniko; Ryu, Tomiko

    2015-01-01

    A 47-year-old woman presented with persistent dysphagia. A gastroendoscopy revealed massive esophageal candidiasis, and oral miconazole was prescribed. Three weeks later, she returned to our hospital without symptomatic improvement. She was febrile, and blood tests showed leukocytosis (137,150 /μL, blast 85%), anemia and thrombocytopenia. She was diagnosed with acute myeloid leukemia (AML). She received chemotherapy and antimicrobial agents. During the recovery from the nadir, bilateral ocular candidiasis was detected, suggesting the presence of preceding candidemia. Thus, esophageal candidiasis can be an initial manifestation of AML. Thorough examination to detect systemic candidiasis is strongly recommended when neutropenic patients exhibit local candidiasis prior to chemotherapy.

  12. Comorbidity and performance status in acute myeloid leukemia patients

    DEFF Research Database (Denmark)

    Østgård, Lene Sofie Granfeldt; Nørgaard, J M; Sengeløv, H

    2015-01-01

    As the world population ages, the comorbidity burden in acute myeloid leukemia (AML) patients increases. Evidence on how to integrate comorbidity measures into clinical decision-making is sparse. We determined the prognostic impact of comorbidity and World Health Organization Performance Status (...... with an increased short- and long-term mortality (adjusted 90 day MR, PS⩾2=3.43 (95%CI=2.30-5.13); adjusted 91 day-3 year MR=1.35 (95%CI=1.06-1.74)). We propose that more patients with comorbidity may benefit from intensive chemotherapy....

  13. Complexity on Acute Myeloid Leukemia mRNA Transcript Variant

    Directory of Open Access Journals (Sweden)

    Carlo Cattani

    2011-01-01

    Full Text Available This paper deals with the sequence analysis of acute myeloid leukemia mRNA. Six transcript variants of mlf1 mRNA, with more than 2000 bps, are analyzed by focusing on the autocorrelation of each distribution. Through the correlation matrix, some patches and similarities are singled out and commented, with respect to similar distributions. The comparison of Kolmogorov fractal dimension will be also given in order to classify the six variants. The existence of a fractal shape, patterns, and symmetries are discussed as well.

  14. Tyrosine Kinase Inhibitor Treatment for Newly Diagnosed Chronic Myeloid Leukemia.

    Science.gov (United States)

    Radich, Jerald P; Mauro, Michael J

    2017-08-01

    Chronic myeloid leukemia (CML) is a myeloproliferative disorder that accounts for approximately 10% of new cases of leukemia. The introduction of tyrosine kinase inhibitors has led to a reduction in mortalities. Thus, the estimated prevalence of CML is increasing. The National Comprehensive Cancer Network and the European Leukemia Net guidelines incorporate frequent molecular monitoring of the fusion BCR-ABL transcript to ensure that patients reach and keep treatment milestones. Most patients with CML are diagnosed in the chronic phase, and approximately 10% to 30% of these patients will at some time in their course meet definition criteria of resistance to imatinib. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. A case report of acute myeloid leukemia and neurofibromatosis 1

    Directory of Open Access Journals (Sweden)

    Chiara Sartor

    2013-07-01

    Full Text Available We report a case of a 65-year old patient affected by neurofibromatosis 1, documented by the presence of germ-line mutation on the NF1 gene, who developed various hyperproliferative malignant and benign diseases. He was brought to our attention for the diagnosis of acute myeloid leukemia revealed by major fatigue and dyspnea. The disease characteristics at diagnosis were hyperleukocytosis and complex karyotype with the inversion of the chromosome 16, classifying as a high-risk leukemia. The association between leukemia and neurofibromatosis 1 is controversial and needs to be further investigated. Nevertheless, such patients present a wide number of comorbidities that make therapeutic strategies most difficult.

  16. Dasatinib. En ny tyrosinkinaseinhibitor til behandling af kronisk myeloid leukaemi

    DEFF Research Database (Denmark)

    Bjerrum, Ole Weis; Dufva, Inge Høgh; Stentoft, Jesper

    2008-01-01

    Chronic myeloid leukaemia is characterized by an abnormal tyrosin kinase in the cytoplasm of the clonal cells. The enzyme is derived from a fusion gene on the Philadelphia-chromosome, evolved by a translocation between chromosomes 9 and 22. Understanding the biology of the tyrosin kinase led to t...... to targeted therapy, inhibiting the ATP-binding site by a small molecule--imatinib (Glivec). A novel 2nd generation tyrosin kinase inhibitor--dasatinib (Sprycel)--is now available in cases of insufficient response or intolerance to imatinib. Udgivelsesdato: 2008-Jan-28...

  17. Current trends in molecular diagnostics of chronic myeloid leukemia.

    Science.gov (United States)

    Vinhas, Raquel; Cordeiro, Milton; Pedrosa, Pedro; Fernandes, Alexandra R; Baptista, Pedro V

    2017-08-01

    Nearly 1.5 million people worldwide suffer from chronic myeloid leukemia (CML), characterized by the genetic translocation t(9;22)(q34;q11.2), involving the fusion of the Abelson oncogene (ABL1) with the breakpoint cluster region (BCR) gene. Early onset diagnosis coupled to current therapeutics allow for a treatment success rate of 90, which has focused research on the development of novel diagnostics approaches. In this review, we present a critical perspective on current strategies for CML diagnostics, comparing to gold standard methodologies and with an eye on the future trends on nanotheranostics.

  18. Genital Infection as a First Sign of Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Naoki Oiso

    2010-02-01

    Full Text Available Fournier’s gangrene is a life-threatening disorder caused by aerobic and anaerobic bacterial infection. We report a case of genital infection as the initial warning sign of acute myeloid leukemia. We were able to prevent progression to Fournier’s gangrene in our patient by immediate intensive therapy with incision, blood transfusions and intravenous administration of antibiotics. This case suggests that hematologists and dermatologists should keep in mind that genital infection can be a first sign of hematologic malignancy.

  19. Alternative group V precursors for CVD applications

    Science.gov (United States)

    Lum, R. M.; Klingert, J. K.

    1991-01-01

    The chemical vapor deposition (CVD) techniques used to grow III/V semiconductors films, such as metalorganic vapor phase epitaxy (MOVPE), hydride VPE, chemical beam epitaxy (CBE) and gas source molecular beam epitaxy (GS-MBE), all use hydrides (AsH 3 and PH 3) as the Group V source. However, the hydrides are extremely toxic gases which are stored under high pressure (200-2000 psi). To reduce the safety hazards associated with these gases, alternative Group V precursors have been investigated. Organoarsenic and phosphorous compounds have received the most attention as replacements for AsH 3 and PH 3 because they are typically low vapor pressure liquids, and thus present significantly lower exposure risks than the hydrides. For AsH 3 these have included the methyl, ethyl and butyl-based derivatives RnAsH 3- n, with varying degrees ( n = 1-3) of hydrogen atom substitution. In this paper the growth properties, thermochemistry and toxicity of the various alkylarsine precursors are compared with arsine. Data are presented on the impact of the thermochemistry of these compounds on film electrical properties, and on the effects of precursor composition and purity on overall film quality. The suitability of alternative As-precursors for device applications is demonstrated, and selection criteria are presented for the most effective alkylarsine compound for a particular CVD growth process.

  20. Biochemical Removal of HAP Precursors from Coal

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Gregory J

    1997-05-12

    Column biooxidation tests with Kentucky coal confirmed results of earlier shake flask tests showing significant removal from the coal of arsenic, selenium, cobalt, manganese, nickel and cadmium. Rates of pyrite biooxidation in Kentucky coal were only slightly more than half the rates found previously for Indiana and Pittsburgh coals. Removal of pyrite from Pittsburgh coal by ferric ion oxidation slows markedly as ferrous ions accumulate in solution, requiring maintenance of high redox potentials in processes designed for removal of pyrite and hazardous air pollutant (HAP) precursors by circulation of ferric solutions through coal. The pyrite oxidation rates obtained in these tests were used by Unifield Engineering to support the conceptual designs for alternative pyrite and HAP precursor bioleaching processes for the phase 2 pilot plant. Thermophilic microorganisms were tested to determine if mercury could be mobilized from coal under elevated growth temperatures. There was no evidence for mercury removal from coal under these conditions. However, the activity of the organisms may have liberated mercury physically. It is also possible that the organisms dissolved mercury and it readsorbed to the clay preferentially. Both of these possibilities are undergoing further testing. The Idaho National Engineering and Environmental Laboratory's (INEEL) slurry column reactor was operated and several batches of feed coal, product coal, waste solids and leach solutions were submitted to LBL for HAP precursor analysis. Results to date indicate significant removal of mercury, arsenic and other HAP precursors in the combined physical-biological process.

  1. Sol-gel precursors and products thereof

    Science.gov (United States)

    Warren, Scott C.; DiSalvo, Jr., Francis J.; Weisner, Ulrich B.

    2017-02-14

    The present invention provides a generalizable single-source sol-gel precursor capable of introducing a wide range of functionalities to metal oxides such as silica. The sol-gel precursor facilitates a one-molecule, one-step approach to the synthesis of metal-silica hybrids with combinations of biological, catalytic, magnetic, and optical functionalities. The single-source precursor also provides a flexible route for simultaneously incorporating functional species of many different types. The ligands employed for functionalizing the metal oxides are derived from a library of amino acids, hydroxy acids, or peptides and a silicon alkoxide, allowing many biological functionalities to be built into silica hybrids. The ligands can coordinate with a wide range of metals via a carboxylic acid, thereby allowing direct incorporation of inorganic functionalities from across the periodic table. Using the single-source precursor a wide range of functionalized nanostructures such as monolith structures, mesostructures, multiple metal gradient mesostructures and Stober-type nanoparticles can be synthesized. ##STR00001##

  2. Janus microgels produced from functional precursor polymers.

    Science.gov (United States)

    Seiffert, Sebastian; Romanowsky, Mark B; Weitz, David A

    2010-09-21

    Micrometer-sized Janus particles of many kinds can be formed using droplet microfluidics, but in existing methods, the microfluidic templating is strongly coupled to the material synthesis, since droplet solidification occurs through rapid polymerization right after droplet formation. This circumstance limits independent control of the material properties and the morphology of the resultant particles. In this paper, we demonstrate a microfluidic technique to produce functional Janus microgels from prefabricated, cross-linkable precursor polymers. This approach separates the polymer synthesis from the particle gelation, thus allowing the microfluidic droplet templating and the functionalization of the matrix polymer to be performed and controlled in two independent steps. We use microfluidic devices to emulsify semidilute solutions of cross-linkable, chemically modified or unmodified poly(N-isopropylacrylamide) precursors and solidify the drops via polymer-analogous gelation. The resultant microgel particles exhibit two distinguishable halves which contain most of the modified precursors, and the unmodified matrix polymer separates these materials. The spatial distribution of the modified precursors across the particles can be controlled by the flow rates during the microfluidic experiments. We also form hollow microcapsules with two different sides (Janus shells) using double emulsion droplets as templates, and we produce Janus microgels that are loaded with a ferromagnetic additive which allows remote actuation of the microgels.

  3. Precursor Dependent Structural Properties and Antibacterial Activity ...

    Indian Academy of Sciences (India)

    71

    The antibacterial activity of the synthesized CuO were studied against human pathogens like Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacterial strains which are proved to be efficient and precursor dependent. The minimum inhibitory concentration of CuO against E. coli and S. aureus were found to.

  4. Julian del Casal Precursor of Modernism?

    Directory of Open Access Journals (Sweden)

    Onelio Olivera Blanco

    2009-06-01

    Full Text Available This article deals with Modernism as literary school at the end of the XIX century, and its most important representatives. The authors give some elements that in their opinion could be taken into consideration so as to consider Julián del Casal as the legitimate precursor of this literary school in the Hispano-American literature.

  5. In Vitro and In Vivo Antitumor Effect of Anti-CD33 Chimeric Receptor-Expressing EBV-CTL against CD33+ Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    A. Dutour

    2012-01-01

    Full Text Available Genetic engineering of T cells with chimeric T-cell receptors (CARs is an attractive strategy to treat malignancies. It extends the range of antigens for adoptive T-cell immunotherapy, and major mechanisms of tumor escape are bypassed. With this strategy we redirected immune responses towards the CD33 antigen to target acute myeloid leukemia. To improve in vivo T-cell persistence, we modified human Epstein Barr Virus-(EBV- specific cytotoxic T cells with an anti-CD33.CAR. Genetically modified T cells displayed EBV and HLA-unrestricted CD33 bispecificity in vitro. In addition, though showing a myeloablative activity, they did not irreversibly impair the clonogenic potential of normal CD34+ hematopoietic progenitors. Moreover, after intravenous administration into CD33+ human acute myeloid leukemia-bearing NOD-SCID mice, anti-CD33-EBV-specific T cells reached the tumor sites exerting antitumor activity in vivo. In conclusion, targeting CD33 by CAR-modified EBV-specific T cells may provide additional therapeutic benefit to AML patients as compared to conventional chemotherapy or transplantation regimens alone.

  6. Upregulation of microRNA-100 predicts poor prognosis in patients with pediatric acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Kuai W

    2012-09-01

    Full Text Available Jin Bai,1 Aiping Guo,2 Ze Hong,3 Wenxia Kuai31Department of Pediatrics, Huai'an Hospital to Xuzhou Medical College and Huai'an Second People's Hospital, Huai'an, China; 2Department of Pediatrics, Chuzhou Hospital, Huai'an, China; 3Department of Pediatrics, Huai'an First People's Hospital, Huai'an, ChinaObjective: MicroRNA-100 (miR-100, a small noncoding RNA molecule, acts as a tumor suppressor or an oncogene in different cancers. The aberrant expression of this microRNA has been demonstrated as a frequent event in adult patients with acute myeloid leukemia (AML, but little is known for pediatric AML. The aim of this study was to investigate the expression and clinical significance of miR-100 in pediatric AML.Methods: The expression levels of miR-100 in bone marrow mononuclear cells were detected by real-time quantitative polymerase chain reaction in a cohort of 106 patients with de novo pediatric AML. The prognostic values of miR-100 in pediatric AML were also analyzed.Results: Compared with normal controls, upregulation of miR-100 in the bone marrow of pediatric AML patients with statistically significant differences (P < 0.001 was found. The expression levels of miR-100 were found to be significantly higher in pediatric AML patients with extramedullary disease, with the French–American–British classification subtype M7, and with unfavorable day 7 response to induction chemotherapy (P = 0.008, 0.001 and 0.01, respectively. Moreover, both univariate and multivariate analyses revealed that miR-100 upregulation was associated with poorer relapse-free and overall survival in pediatric AML patients.Conclusion: This is the first report demonstrating the upregulation of miR-100 in pediatric AML, and its association with poor relapse-free and overall survival. These results suggest that miR-100 upregulation may be used as an unfavorable prognostic marker in pediatric AML.Keywords: pediatric acute myeloid leukemia, microRNA-100, real

  7. Adrenal Gland Tumors: Statistics

    Science.gov (United States)

    ... Gland Tumor: Statistics Request Permissions Adrenal Gland Tumor: Statistics Approved by the Cancer.Net Editorial Board , 03/ ... primary adrenal gland tumor is very uncommon. Exact statistics are not available for this type of tumor ...

  8. Brain Tumor Symptoms

    Science.gov (United States)

    ... Brain Anatomy Brain Tumor Symptoms Headaches Seizures Memory Depression Mood Swings & Cognitive Changes Fatigue Other Symptoms Diagnosis Types of Tumors Risk Factors Brain Tumor Statistics Brain Tumor Dictionary Webinars Anytime Learning About Us ...

  9. Understanding Brain Tumors

    Science.gov (United States)

    ... to Know About Brain Tumors . What is a Brain Tumor? A brain tumor is an abnormal growth
 ... Tumors” from Frankly Speaking Frankly Speaking About Cancer: Brain Tumors Download the full book Questions to ask ...

  10. Correlation between frequencies of blood monocytic myeloid-derived suppressor cells, regulatory T cells and negative prognostic markers in patients with castration-resistant metastatic prostate cancer

    DEFF Research Database (Denmark)

    Idorn, Manja; Køllgaard, Tania; Kongsted, Per

    2014-01-01

    in establishing an immune suppressive environment in patients with PC. Moreover, correlation of M-MDSC frequency with known prognostic markers and the observed impact on OS could reflect a possible role in tumor progression. Further insight into the generation and function of MDSC and their interplay with Tregs......Myeloid-derived suppressor cells (MDSC) are believed to play a role in immune suppression and subsequent failure of T cells to mount an efficient anti-tumor response, by employing both direct T-cell inhibition as well as induction of regulatory T cells (Tregs). Investigating the frequency...... with known negative prognostic markers in patients with PC including elevated levels of lactate dehydrogenase and prostate-specific antigen. Accordingly, high levels of M-MDSC were associated with a shorter median overall survival. Our data strongly suggest that M-MDSC, possibly along with Tregs, play a role...

  11. HDAC inhibitors repress BARD1 isoform expression in acute myeloid leukemia cells via activation of miR-19a and/or b.

    Directory of Open Access Journals (Sweden)

    Ilaria Lepore

    Full Text Available Over the past years BARD1 (BRCA1-associated RING domain 1 has been considered as both a BRCA1 (BReast Cancer susceptibility gene 1, early onset interactor and tumor suppressor gene mutated in breast and ovarian cancers. Despite its role as a stable heterodimer with BRCA1, increasing evidence indicates that BARD1 also has BRCA1-independent oncogenic functions. Here, we investigate BARD1 expression and function in human acute myeloid leukemias and its modulation by epigenetic mechanism(s and microRNAs. We show that the HDACi (histone deacetylase inhibitor Vorinostat reduces BARD1 mRNA levels by increasing miR-19a and miR-19b expression levels. Moreover, we identify a specific BARD1 isoform, which might act as tumor diagnostic and prognostic markers.

  12. ELF5 Drives Lung Metastasis in Luminal Breast Cancer through Recruitment of Gr1+ CD11b+ Myeloid-Derived Suppressor Cells.

    Directory of Open Access Journals (Sweden)

    David Gallego-Ortega

    2015-12-01

    Full Text Available During pregnancy, the ETS transcription factor ELF5 establishes the milk-secreting alveolar cell lineage by driving a cell fate decision of the mammary luminal progenitor cell. In breast cancer, ELF5 is a key transcriptional determinant of tumor subtype and has been implicated in the development of insensitivity to anti-estrogen therapy. In the mouse mammary tumor virus-Polyoma Middle T (MMTV-PyMT model of luminal breast cancer, induction of ELF5 levels increased leukocyte infiltration, angiogenesis, and blood vessel permeability in primary tumors and greatly increased the size and number of lung metastasis. Myeloid-derived suppressor cells, a group of immature neutrophils recently identified as mediators of vasculogenesis and metastasis, were recruited to the tumor in response to ELF5. Depletion of these cells using specific Ly6G antibodies prevented ELF5 from driving vasculogenesis and metastasis. Expression signatures in luminal A breast cancers indicated that increased myeloid cell invasion and inflammation were correlated with ELF5 expression, and increased ELF5 immunohistochemical staining predicted much shorter metastasis-free and overall survival of luminal A patients, defining a group who experienced unexpectedly early disease progression. Thus, in the MMTV-PyMT mouse mammary model, increased ELF5 levels drive metastasis by co-opting the innate immune system. As ELF5 has been previously implicated in the development of antiestrogen resistance, this finding implicates ELF5 as a defining factor in the acquisition of the key aspects of the lethal phenotype in luminal A breast cancer.

  13. The Genetic Evolution of Melanoma from Precursor Lesions.

    Science.gov (United States)

    Shain, A Hunter; Yeh, Iwei; Kovalyshyn, Ivanka; Sriharan, Aravindhan; Talevich, Eric; Gagnon, Alexander; Dummer, Reinhard; North, Jeffrey; Pincus, Laura; Ruben, Beth; Rickaby, William; D'Arrigo, Corrado; Robson, Alistair; Bastian, Boris C

    2015-11-12

    The pathogenic mutations in melanoma have been largely catalogued; however, the order of their occurrence is not known. We sequenced 293 cancer-relevant genes in 150 areas of 37 primary melanomas and their adjacent precursor lesions. The histopathological spectrum of these areas included unequivocally benign lesions, intermediate lesions, and intraepidermal or invasive melanomas. Precursor lesions were initiated by mutations of genes that are known to activate the mitogen-activated protein kinase pathway. Unequivocally benign lesions harbored BRAF V600E mutations exclusively, whereas those categorized as intermediate were enriched for NRAS mutations and additional driver mutations. A total of 77% of areas of intermediate lesions and melanomas in situ harbored TERT promoter mutations, a finding that indicates that these mutations are selected at an unexpectedly early stage of the neoplastic progression. Biallelic inactivation of CDKN2A emerged exclusively in invasive melanomas. PTEN and TP53 mutations were found only in advanced primary melanomas. The point-mutation burden increased from benign through intermediate lesions to melanoma, with a strong signature of the effects of ultraviolet radiation detectable at all evolutionary stages. Copy-number alterations became prevalent only in invasive melanomas. Tumor heterogeneity became apparent in the form of genetically distinct subpopulations as melanomas progressed. Our study defined the succession of genetic alterations during melanoma progression, showing distinct evolutionary trajectories for different melanoma subtypes. It identified an intermediate category of melanocytic neoplasia, characterized by the presence of more than one pathogenic genetic alteration and distinctive histopathological features. Finally, our study implicated ultraviolet radiation as a major factor in both the initiation and progression of melanoma. (Funded by the National Institutes of Health and others.).

  14. Clinical features in accelerated phase of chronic myeloid leukemia

    International Nuclear Information System (INIS)

    Naqi, N.; Ayub, M.

    2001-01-01

    Objective: To identify the clinical indicators of accelerated phase in chronic myeloid leukemia (CML) diagnosed on hematological findings. Design: An observational and prospective study. Place and Duration of Study: The study was conducted at Oncology department of Combined Military Hospital, Rawalpindi and Armed Forces Institute of Pathology from April 1998 to April 1999. Subjects and Methods: The study on 51 patients of Philadelphia positive CML in chronic phase and on hydroxyurea therapy were carried out. Clinical features and hematological parameters in the peripheral blood examination were recorded and statistical analysis carried out to document reliable clinically indicators of accelerated phase of CML in reference to those reported in the literature. Results: Clinical, presence of unexplained fever, re-enlargement of spleen after successful regression with hydroxyurea therapy, and bleeding diathesis were found to be statistically significant pointers of progression into accelerated phase of CML. In the hematological features, with the exception of peripheral basophilia, the findings in the peripheral blood were consistent with those reported in the literature. Conclusion: It is concluded that the occurrences of the clinical features in the follow-up of chronic myeloid leukemia patients herald the accelerated phase of the disease. (author)

  15. Bone marrow transplantation for patients with chronic myeloid leukemia

    International Nuclear Information System (INIS)

    Goldman, J.M.; Apperley, J.F.; Jones, L.

    1986-01-01

    Between February 1981 and December 1984 we treated 52 patients with chronic myeloid leukemia in the chronic phase and 18 patients with more advanced disease by high-dose chemoradiotherapy followed by allogeneic bone marrow transplantation using marrow cells from HLA-identical sibling donors. In addition, the 40 patients who had not previously undergone splenectomy received radiotherapy to the spleen. To prevent graft versus host disease, cyclosporine was given either alone or in conjunction with donor marrow depleted of T cells. Of the 52 patients treated in the chronic phase, 38 are alive after a median follow-up of 25 months (range, 7 to 50); the actuarial survival at two years was 72%, and the actuarial risk of relapse was 7%. Of the 18 patients with more advanced disease, 4 have survived; the actuarial two-year survival was 18%, and the actuarial risk of relapse was 42%. We conclude that the probability of cure is highest if transplantation is performed while the patient remains in the chronic phase of chronic myeloid leukemia. T-cell depletion may have reduced the incidence and severity of graft versus host disease. The value of irradiation to the spleen before transplantation has not been established

  16. Targeting DNA vaccines to myeloid cells using a small peptide.

    Science.gov (United States)

    Ye, Chunting; Choi, Jang Gi; Abraham, Sojan; Shankar, Premlata; Manjunath, N

    2015-01-01

    Targeting DNA vaccines to dendritic cells (DCs) greatly enhances immunity. Although several approaches have been used to target protein Ags to DCs, currently there is no method that targets DNA vaccines directly to DCs. Here, we show that a small peptide derived from the rabies virus glycoprotein fused to protamine residues (RVG-P) can target DNA to myeloid cells, including DCs, which results in enhanced humoral and T-cell responses. DCs targeted with a DNA vaccine encoding the immunodominant vaccinia B8R gene via RVG-P were able to restimulate vaccinia-specific memory T cells in vitro. Importantly, a single i.v. injection of B8R gene bound to RVG-P was able to prime a vaccinia-specific T-cell response that was able to rapidly clear a subsequent vaccinia challenge in mice. Moreover, delivery of DNA in DCs was enough to induce DC maturation and efficient Ag presentation without the need for adjuvants. Finally, immunization of mice with a DNA-vaccine encoding West Nile virus (WNV) prM and E proteins via RVG-P elicited high titers of WNV-neutralizing Abs that protected mice from lethal WNV challenge. Thus, RVG-P provides a reagent to target DNA vaccines to myeloid cells and elicit robust T-cell and humoral immune responses. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Collaborative Efforts Driving Progress in Pediatric Acute Myeloid Leukemia.

    Science.gov (United States)

    Zwaan, C Michel; Kolb, Edward A; Reinhardt, Dirk; Abrahamsson, Jonas; Adachi, Souichi; Aplenc, Richard; De Bont, Eveline S J M; De Moerloose, Barbara; Dworzak, Michael; Gibson, Brenda E S; Hasle, Henrik; Leverger, Guy; Locatelli, Franco; Ragu, Christine; Ribeiro, Raul C; Rizzari, Carmelo; Rubnitz, Jeffrey E; Smith, Owen P; Sung, Lillian; Tomizawa, Daisuke; van den Heuvel-Eibrink, Marry M; Creutzig, Ursula; Kaspers, Gertjan J L

    2015-09-20

    Diagnosis, treatment, response monitoring, and outcome of pediatric acute myeloid leukemia (AML) have made enormous progress during the past decades. Because AML is a rare type of childhood cancer, with an incidence of approximately seven occurrences per 1 million children annually, national and international collaborative efforts have evolved. This overview describes these efforts and includes a summary of the history and contributions of each of the main collaborative pediatric AML groups worldwide. The focus is on translational and clinical research, which includes past, current, and future clinical trials. Separate sections concern acute promyelocytic leukemia, myeloid leukemia of Down syndrome, and relapsed AML. A plethora of novel antileukemic agents that have emerged, including new classes of drugs, are summarized as well. Finally, an important aspect of the treatment of pediatric AML--supportive care--and late effects are discussed. The future is bright, with a wide range of emerging innovative therapies and with more and more international collaboration that ultimately aim to cure all children with AML, with fewer adverse effects and without late effects. © 2015 by American Society of Clinical Oncology.

  18. Expression profile of CREB knockdown in myeloid leukemia cells

    International Nuclear Information System (INIS)

    Pellegrini, Matteo; Cheng, Jerry C; Voutila, Jon; Judelson, Dejah; Taylor, Julie; Nelson, Stanley F; Sakamoto, Kathleen M

    2008-01-01

    The cAMP Response Element Binding Protein, CREB, is a transcription factor that regulates cell proliferation, differentiation, and survival in several model systems, including neuronal and hematopoietic cells. We demonstrated that CREB is overexpressed in acute myeloid and leukemia cells compared to normal hematopoietic stem cells. CREB knockdown inhibits leukemic cell proliferation in vitro and in vivo, but does not affect long-term hematopoietic reconstitution. To understand downstream pathways regulating CREB, we performed expression profiling with RNA from the K562 myeloid leukemia cell line transduced with CREB shRNA. By combining our expression data from CREB knockdown cells with prior ChIP data on CREB binding we were able to identify a list of putative CREB regulated genes. We performed extensive analyses on the top genes in this list as high confidence CREB targets. We found that this list is enriched for genes involved in cancer, and unexpectedly, highly enriched for histone genes. Furthermore, histone genes regulated by CREB were more likely to be specifically expressed in hematopoietic lineages. Decreased expression of specific histone genes was validated in K562, TF-1, and primary AML cells transduced with CREB shRNA. We have identified a high confidence list of CREB targets in K562 cells. These genes allow us to begin to understand the mechanisms by which CREB contributes to acute leukemia. We speculate that regulation of histone genes may play an important role by possibly altering the regulation of DNA replication during the cell cycle

  19. Collaborative Efforts Driving Progress in Pediatric Acute Myeloid Leukemia

    Science.gov (United States)

    Zwaan, C. Michel; Kolb, Edward A.; Reinhardt, Dirk; Abrahamsson, Jonas; Adachi, Souichi; Aplenc, Richard; De Bont, Eveline S.J.M.; De Moerloose, Barbara; Dworzak, Michael; Gibson, Brenda E.S.; Hasle, Henrik; Leverger, Guy; Locatelli, Franco; Ragu, Christine; Ribeiro, Raul C.; Rizzari, Carmelo; Rubnitz, Jeffrey E.; Smith, Owen P.; Sung, Lillian; Tomizawa, Daisuke; van den Heuvel-Eibrink, Marry M.; Creutzig, Ursula; Kaspers, Gertjan J.L.

    2015-01-01

    Diagnosis, treatment, response monitoring, and outcome of pediatric acute myeloid leukemia (AML) have made enormous progress during the past decades. Because AML is a rare type of childhood cancer, with an incidence of approximately seven occurrences per 1 million children annually, national and international collaborative efforts have evolved. This overview describes these efforts and includes a summary of the history and contributions of each of the main collaborative pediatric AML groups worldwide. The focus is on translational and clinical research, which includes past, current, and future clinical trials. Separate sections concern acute promyelocytic leukemia, myeloid leukemia of Down syndrome, and relapsed AML. A plethora of novel antileukemic agents that have emerged, including new classes of drugs, are summarized as well. Finally, an important aspect of the treatment of pediatric AML—supportive care—and late effects are discussed. The future is bright, with a wide range of emerging innovative therapies and with more and more international collaboration that ultimately aim to cure all children with AML, with fewer adverse effects and without late effects. PMID:26304895

  20. Current diagnosis and treatment for pediatric acute myeloid leukemia.

    Science.gov (United States)

    Shiba, Norio

    2017-01-01

    Acute myeloid leukemia (AML) is a complex disease caused by chromosomal aberrations, mutations, epigenetic modifications, and the deregulated expression of genes, leading to increased myeloid cell proliferation and decreased hematopoietic progenitor cell differentiation. Although most of these aberrations are correlated with prognosis, accurate risk stratification remains a challenge even after incorporating these molecular markers. Currently, some genetic mutations that allow risk stratification have been identified in adult AML, including DNMT3A and IDH1/2. However, these mutations are rare in pediatric AML cases, indicating that a different pathogenesis may exist between adult and pediatric AML. To reveal further details of pediatric AML pathogenesis, the authors performed whole-exome sequencing and whole-transcriptome analysis using massively parallel sequencing technologies in addition to gene expression array. We found that PRDM16 and EVI1-overexpressing patients had significantly worse overall survival and event-free survival, and these overexpressed genes were useful for stratifying patients with FLT3-ITD positive and/or normal karyotype. In order to further this work and establish more appropriate risk classification and molecular target drug development, target validation clinical studies are needed and expected.

  1. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations.

    Science.gov (United States)

    Lindsley, R Coleman; Mar, Brenton G; Mazzola, Emanuele; Grauman, Peter V; Shareef, Sarah; Allen, Steven L; Pigneux, Arnaud; Wetzler, Meir; Stuart, Robert K; Erba, Harry P; Damon, Lloyd E; Powell, Bayard L; Lindeman, Neal; Steensma, David P; Wadleigh, Martha; DeAngelo, Daniel J; Neuberg, Donna; Stone, Richard M; Ebert, Benjamin L

    2015-02-26

    Acute myeloid leukemia (AML) can develop after an antecedent myeloid malignancy (secondary AML [s-AML]), after leukemogenic therapy (therapy-related AML [t-AML]), or without an identifiable prodrome or known exposure (de novo AML). The genetic basis of these distinct pathways of AML development has not been determined. We performed targeted mutational analysis of 194 patients with rigorously defined s-AML or t-AML and 105 unselected AML patients. The presence of a mutation in SRSF2, SF3B1, U2AF1, ZRSR2, ASXL1, EZH2, BCOR, or STAG2 was >95% specific for the diagnosis of s-AML. Analysis of serial samples from individual patients revealed that these mutations occur early in leukemogenesis and often persist in clonal remissions. In t-AML and elderly de novo AML populations, these alterations define a distinct genetic subtype that shares clinicopathologic properties with clinically confirmed s-AML and highlights a subset of patients with worse clinical outcomes, including a lower complete remission rate, more frequent reinduction, and decreased event-free survival. This trial was registered at www.clinicaltrials.gov as #NCT00715637. © 2015 by The American Society of Hematology.

  2. Myeloid extracellular vesicles: messengers from the demented brain

    Directory of Open Access Journals (Sweden)

    Annamaria eNigro

    2016-01-01

    Full Text Available Blood-borne monocyte derived cells play a pivotal, initially unrecognized, role in most central nervous system disorders, including diseases initially classified as purely neurodegenerative (i.e. AD, PD, and ALS. Their trafficking to the brain and spinal cord has been extensively studied in classical neuroinflammatory disorders such as multiple sclerosis. Central nervous system resident myeloid cells, namely microglia and perivascular macrophages, also are in the spotlight of investigations on neurological disorders. Myeloid cells, such as infiltrating macrophages and microglia, have been described as having both protective and destructive features in neurological disorders, thus identification of their functional phenotype during disease evolution would be of paramount importance. Extracellular vesicles, namely exosomes and shed vesicles, are released by virtually any cell type and can be detected and identified in terms of cell origin in biological fluids. They therefore constitute an ideal tool to access information on cells residing in an inaccessible site such as the brain. We will review here available information on extracellular vesicles detection in neurological disorders with special emphasis on neurodegenerative diseases.

  3. Cyclosporine, Pravastatin Sodium, Etoposide, and Mitoxantrone Hydrochloride in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    Science.gov (United States)

    2017-06-27

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  4. Splenectomy inhibits non-small cell lung cancer growth by modulating anti-tumor adaptive and innate immune response

    Science.gov (United States)

    Levy, Liran; Mishalian, Inbal; Bayuch, Rachel; Zolotarov, Lida; Michaeli, Janna; Fridlender, Zvi G

    2015-01-01

    It has been shown that inhibitors of the immune system reside in the spleen and inhibit the endogenous antitumor effects of the immune system. We hypothesized that splenectomy would inhibit the growth of relatively large non-small lung cancer (NSCLC) tumors by modulating the systemic inhibition of the immune system, and in particular Myeloid Derived Suppressor Cells (MDSC). The effect of splenectomy was evaluated in several murine lung cancer models. We found that splenectomy reduces tumor growth and the development of lung metastases, but only in advanced tumors. In immune-deficient NOD-SCID mice the effect of splenectomy on tumor growth and metastatic spread disappeared. Splenectomy significantly reduced the presence of MDSC, and especially monocytic-MDSC in the circulation and inside the tumor. Specific reduction of the CCR2+ subset of monocytic MDSC was demonstrated, and the importance of the CCL2-CCR2 axis was further shown by a marked reduction in CCL2 following splenectomy. These changes were followed by changes in the macrophages contents of the tumors to become more antitumorigenic, and by increased activation of CD8+ Cytotoxic T-cells (CTL). By MDSC depletion, and adoptive transfer of MDSCs, we demonstrated that the effect of splenectomy on tumor growth was substantially mediated by MDSC cells. We conclude that the spleen is an important contributor to tumor growth and metastases, and that splenectomy can blunt this effect by depletion of MDSC, changing the amount and characteristics of myeloid cells and enhancing activation of CTL. PMID:26137413

  5. Modifying factors on development of myeloid leukemia with X-ray

    International Nuclear Information System (INIS)

    Yoshida, K.; Nemoto, K.; Nishimura, M.; Sado, T.

    1992-01-01

    We examined the modifying factors of radiation induced myeloid leukemogenesis. The effects of glucocorticoids and inflammatory response were examined in terms of their exacerbating influence on leukemogenesis, as both these factors strongly participate in hematopoiesis. The incidence of myeloid leukemia was 23.3% and 12% in male and female mice, respectively, after 2.84Gy irradiation. However, the administration of prednisolone acetate significantly increased the incidence of myeloid leukemia from 23.3 to 38.5%. Such enhancing effects were also observed with inflammatory response (35.9% in male, 26% in female mice). These results demonstrated that prednisolone and inflammatory reaction act in the promotion of radiation induced myeloid leukemia. We have also been performing experiments of calorie restriction as a suppressive factor of radiation induced myeloid leukemogenesis. Such restriction has so far resulted in a decreased incidence of myeloid leukemia, and therefore the latent period of myeloid leukemia may at least be delayed in comparison with a regular control diet. (author)

  6. Lumbar Myeloid Cell Trafficking into Locomotor Networks after Thoracic Spinal Cord Injury

    Science.gov (United States)

    Hansen, Christopher N.; Norden, Diana M.; Faw, Timothy D.; Deibert, Rochelle; S.Wohleb, Eric; Sheridan, John F.; P.Godbout, Jonathan; Basso, D. Michele

    2016-01-01

    Spinal cord injury (SCI) promotes inflammation along the neuroaxis that jeopardizes plasticity, intrinsic repair and recovery. While inflammation at the injury site is well-established, less is known within remote spinal networks. The presence of bone marrow-derived immune (myeloid) cells in these areas may further impede functional recovery. Previously, high levels of the gelatinase, matrix metalloproteinase-9 (MMP-9) occurred within the lumbar enlargement after thoracic SCI and impeded activity-dependent recovery. Since SCI-induced MMP-9 potentially increases vascular permeability, myeloid cell infiltration may drive inflammatory toxicity in locomotor networks. Therefore, we examined neurovascular reactivity and myeloid cell infiltration in the lumbar cord after thoracic SCI. We show evidence of region-specific recruitment of myeloid cells into the lumbar but not cervical region. Myeloid infiltration occurred with concomitant increases in chemoattractants (CCL2) and cell adhesion molecules (ICAM-1) around lumbar vasculature 24 hours and 7 days post injury. Bone marrow GFP chimeric mice established robust infiltration of bone marrow-derived myeloid cells into the lumbar gray matter 24 hours after SCI. This cell infiltration occurred when the blood-spinal cord barrier was intact, suggesting active recruitment across the endothelium. Myeloid cells persisted as ramified macrophages at 7 days post injury in parallel with increased inhibitory GAD67 labeling. Importantly, macrophage infiltration required MMP-9. PMID:27191729

  7. Silencing of HMGA2 reverses retardance of cell differentiation in human myeloid leukaemia.

    Science.gov (United States)

    Tan, Li; Xu, Hongfa; Chen, Guoshu; Wei, Xiaoping; Yu, Baodan; Ye, Jingmei; Xu, Lihua; Tan, Huo

    2018-02-06

    High-mobility group AT-hook 2 (HMGA2) may serve as an architectural transcription factor, and it can regulate a range of normal biological processes including proliferation and differentiation. Upregulation of HMGA2 expression is correlated to the undifferentiated phenotype of immature leukaemic cells. However, the underlying mechanism of HMGA2-dependent myeloid differentiation blockage in leukaemia is unknown. To reveal the role and mechanism of HMGA2 in differentiation arrest of myeloid leukaemia cells, the quantitative expression of HMGA2 and homeobox A9 (HOXA9) was analysed by real-time PCR (qRT-PCR). The regulatory function of HMGA2 in blockage of differentiation in human myeloid leukaemia was investigated through in vitro assays (XTT assay, May-Grünwald-Giemsa, flow cytometry analysis and western blot). We found that the expression of HMGA2 and HOXA9 was reduced during the process of granulo-monocytic maturation of acute myeloid leukaemia (AML) cells, knockdown of HMGA2 promotes terminal (granulocytic and monocytic) differentiation of myeloid leukaemia primary blasts and cell lines, and HOXA9 was significantly downregulated in leukaemic cells with knockdown of HMGA2. Downregulation of HOXA9 in myeloid leukaemia cells led to increased differentiation capacity in vitro. Our data suggest that increased expression of HMGA2 represents a possible new mechanism of myeloid differentiation blockage of leukaemia. Aberrant expression of HMGA2 may enhance HOXA9-dependent leukaemogenesis and myeloid leukaemia phenotype. Disturbance of the HMGA2-HOXA9 pathway is probably a therapeutic strategy in myeloid leukaemia.

  8. Understanding Animal Detection of Precursor Earthquake Sounds.

    Science.gov (United States)

    Garstang, Michael; Kelley, Michael C

    2017-08-31

    We use recent research to provide an explanation of how animals might detect earthquakes before they occur. While the intrinsic value of such warnings is immense, we show that the complexity of the process may result in inconsistent responses of animals to the possible precursor signal. Using the results of our research, we describe a logical but complex sequence of geophysical events triggered by precursor earthquake crustal movements that ultimately result in a sound signal detectable by animals. The sound heard by animals occurs only when metal or other surfaces (glass) respond to vibrations produced by electric currents induced by distortions of the earth's electric fields caused by the crustal movements. A combination of existing measurement systems combined with more careful monitoring of animal response could nevertheless be of value, particularly in remote locations.

  9. Investigations on precursor measures for aeroelastic flutter

    Science.gov (United States)

    Venkatramani, J.; Sarkar, Sunetra; Gupta, Sayan

    2018-04-01

    Wind tunnel experiments carried out on a pitch-plunge aeroelastic system in the presence of fluctuating flows reveal that flutter instability is presaged by a regime of intermittency. It is observed that as the flow speed gradually increases towards the flutter speed, there appears intermittent bursts of periodic oscillations which become more frequent as the wind speed increases and eventually the dynamics transition into fully developed limit cycle oscillations, marking the onset of flutter. The signature from these intermittent oscillations are exploited to develop measures that forewarn a transition to flutter and can serve as precursors. This study investigates a suite of measures that are obtained directly from the time history of measurements and are hence model independent. The dependence of these precursors on the size of the measured data set and the time required for their computation is investigated. These measures can be useful in structural health monitoring of aeroelastic structures.

  10. Metabolic Precursors to Amphetamine and Methamphetamine.

    Science.gov (United States)

    Cody, J D

    1993-12-01

    Analysis and interpretation of amphetamine results is a challenging process made difficult by a number of factors. One of the complications comes from determination of the origin of amphetamine or methamphetamine in a sample. Given the relatively rare occasions that either of these two drugs are prescribed, legal prescription of one of these drugs is seldom a reason for positive findings. A number of other precursor compounds are metabolized by the body to amphetamine or methamphetamine, many of which could be used for legitimate reasons. Fourteen different metabolic precursors of amphetamine or methamphetamine are included in this review. They are amphetaminil, benzphetamine, clobenzorex, deprenyl, dimethylamphetamine, ethylamphetamine, famprofazone, fencamine, fenethylline, fenproporex, furfenorex, mefenorex, mesocarb, and prenylamine. Medical use, metabolism, analysis, and interpretation are described to afford sufficient information to evaluate the possible involvement of these drugs in positive amphetamine or methamphetamine results. Copyright © 1993 Central Police University.

  11. Postnatal administration of memantine rescues TNF-α-induced decreased hippocampal precursor proliferation.

    Science.gov (United States)

    Wang, Zhongke; He, Xie; Fan, Xiaotang

    2018-01-01

    Pro-inflammatory cytokine exposure in early postnatal life triggers clear neurotoxic effects on the developing hippocampus. Tumor necrosis factor alpha (TNF-α) is one of the inflammatory mediators and is a potent inhibitor of neurogenesis. Memantine (MEM) is an uncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist that has been demonstrated to increase the proliferation of hippocampal progenitor cells. However, the effects of MEM on TNF-α-mediated impairment of hippocampal precursor proliferation remain unclear. In this study, mice were exposed to TNF-α and later treated with MEM to evaluate its protective effects on TNF-α-mediated toxicity during hippocampal development. The results indicated that brief exposure to TNF-α on postnatal days 3 and 5 resulted in a significant impairment of hippocampal precursor proliferation and a depletion of hippocampal neural precursor cells (NPCs). This effect was attenuated by MEM treatment. We further confirmed that MEM treatment reversed the TNF-α-induced microglia activation and up-regulation of hippocampal NF-κB, MCP-1 and IL-6 mRNA levels, which may be related to the proliferation and maintenance of NPCs. Overall, our results suggest that MEM treatment protects against TNF-α-induced repression of hippocampal precursor proliferation in postnatal mice by partially attenuating neuroinflammatory responses. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. PRECURSORS OF EARTHQUAKES: VLF SIGNALSIONOSPHERE IONOSPHERE RELATION

    Directory of Open Access Journals (Sweden)

    Mustafa ULAS

    2013-01-01

    Full Text Available lot of people have died because of earthquakes every year. Therefore It is crucial to predict the time of the earthquakes reasonable time before it had happed. This paper presents recent information published in the literature about precursors of earthquakes. The relationships between earthquakes and ionosphere are targeted to guide new researches in order to study further to find novel prediction methods.

  13. Radiation response of rodent neural precursor cells

    International Nuclear Information System (INIS)

    Limoli, C.L.; Fike, J.R.

    2003-01-01

    Full text: Therapeutic irradiation of the brain can cause cognitive dysfunction that is not treatable or well understood. Several lines of evidence from our laboratory suggest that radiation induced inhibition of neurogenesis in the hippocampus may be involved. To understand the mechanisms underlying these observations, we initiated studies using neural precursor cells isolated from the adult rat hippocampus. Cells were cultured exponentially and analyzed for acute (0-24h) and chronic (3-33 day) changes in apoptosis and oxidative stress following exposure to X-rays. Oxidative stress was measured using a dye sensitive to reactive oxygen species (ROS) and apoptosis was measured using annexin V binding; each endpoint was quantified by fluorescent automated cell sorting (FACS). Following exposure to X-rays, neural precursor cells exhibit a dose-responsive increase in the level of ROS and apoptosis over acute and chronic time frames. ROS and apoptosis were maximal at 12h, increasing 35 and 37% respectively over that of unirradiated controls. ROS and apoptosis peaked again at 24h, increasing 31 and 21% respectively over controls. Chronic levels of ROS and apoptosis were persistently elevated in a dose-dependent manner. ROS showed significant increases (34-180%) over a 3-4 week interval, while increases in apoptosis were less dramatic, rising 45% by week one before dropping to background. Irradiation of rat neural precursor cells was associated with an increase in p53 protein levels, and the activation of G1/S and G2/M checkpoints. These data suggest that the apoptotic and ROS responses may be tied to p53 dependent regulation of cell cycle control and stress activated pathways. We propose that oxidative stress plays a critical role in the radiation response of neural precursor cells, and discuss how this might contribute to the inhibition of neurogenesis and the cognitive impairment observed in the irradiated CNS

  14. Delayed neutron emission, theory and precursor systematics

    International Nuclear Information System (INIS)

    Jahnsen, T.; Pappas, A.C.; Tunaal, T.

    1968-01-01

    Information on the properties of observed delayed neutron precursor and emitters is reviewed. As far as possible emphasis is laid on charge, mass, half-life, β-energetics, neutron-branching, levels, spin and neutron energy spectra. The theory of delayed neutron emission given by Bohr and Wheeler and later refined is presented and analysed with respect to its potentialities and limitations. Even if the theory gives a good general picture of the process itself, it has not been possible to develop it to such detail as would be necessary for satisfactory delayed neutron precursor systematics. Consequently, the systematics which are available today are based mainly on energetics as criteria, and suggest a wide range (in charge and mass) of precursors, much wider than anticipated, earlier or even now, from those that have already been identified. Nevertheless systematics have their use in a search for precursors and have in recent years resulted in a substantial increase in the member of known species. The process is analysed step by step (i.e. matrix element, Fermi function, level density, spin distribution, ''the energy and the angular momentum paths'', and neutron-to-total width). Improvements are suggested that would give rise to a more realistic treatment, and outlines are given for guiding future work. Emphasis is put onto that experimental and theoretical information which must be obtained before a satisfactory and advanced theoretical treatment can be obtained. Some attempts made along these lines are presented. Their importance in the estimate of P n values and shapes of neutron spectra are shown and discussed. For the latter the more different factors (i.e. |M| 2 , ω(E,J), Γ n / Γ tot , J, π, levels, etc.) are considered, the more evidence is obtained for a ''piling up'' of the neutron spectrum towards low energies. Finally the importance is stressed of detailed delayed neutron studies for considering nuclear structure phenomena. (author)

  15. Delayed Neutron Emission, Theory and Precursor Systematica

    International Nuclear Information System (INIS)

    Jahnsen, T.; Pappas, A.C.; Tunaal, T.

    1968-01-01

    Information on the properties of observed delayed neutron precursor; and emitters is reviewed. As far as possible emphasis is laid on charge, mass, half-life, β-energetics, neutron-branching, levels, spin and neutron energy spectra. The theory of delayed neutron emission given by Bohr and Wheeler and later refined is presented and analysed with respect to its potentialities and limitations. Even if the theory gives a good general picture of the process itself, it has not been possible to develop it to such detail as would be necessary for satisfactory delayed neutron precursor systematics. Consequently, the systematics which are available today are based mainly on energetics as criteria, and suggest a wide range (in charge and mass) of precursors, much wider than anticipated, earlier or even now, from those that have already been identified. Nevertheless systematics have their use in a search for precursors and have in recent years resulted in a substantial increase in the member of known species. The process is analysed step by step (i.e. matrix element, Fermi function, level density, spin distribution, the energy and the angular momentum paths , and neutron-to-total width). Improvements are suggested that would give rise to a more realistic treatment, and outlines are given for guiding future work. Emphasis is put onto that experimental and theoretical information which must be obtained before a satisfactory and advanced theoretical treatment can be obtained. Some attempts made along these lines are presented. Their importance in the estimate of Pn values and shapes of neutron spectra are shown and discussed. For the latter the more different factors (i.e. |M| 2 , ω(E, J), Γ n /Γ tot , J, π, levels, etc.) are considered, the more evidence is obtained for a 'piling up' of the neutron spectrum towards low energies. Finally the importance is stressed of detailed delayed neutron studies for considering nuclear structure phenomena. (author)

  16. Non-leukemic myeloid sarcoma involving the vulva, vagina, and cervix: a case report and literature review

    Directory of Open Access Journals (Sweden)

    Yu Y

    2015-12-01

    Full Text Available Yuan Yu,1 Xuemei Qin,1 Shuxin Yan,1 Wenxia Wang,2 Yanlin Sun,3 Maohong Zhang1 1Department of Hematology, 2Department of Gynecology, 3Department of Pathology, Qilu Hospital, Shandong University, Jinan, People’s Republic of China Abstract: Myeloid sarcoma (MS is defined as a tumor mass consisting of myeloid blast with or without maturation occurring at an anatomical site other than bone marrow with normal architectural effacement. It can also precede the onset of leukemia which is called non-leukemic MS. Non-leukemic MS is a kind of rare disease and easy to be misdiagnosed as other common malignancies due to the rarity and nonspecific manifestation. We herein report an unusual case of non-leukemic MS involving the vulva, vagina, and cervix in a female patient. The bone marrow aspiration and biopsy of the patient revealed no hematological abnormality. Immunohistochemical staining of the biopsies was strongly positive for myeloperoxidase, CD68, leukocyte common antigen (LCA, CD117, CD34, CD38, CD79a, and negative for cytokeratin (CK, epithelial memberane antigen (EMA, CD2, CD3, CD20, CD5, CD138. Then a diagnosis of non-leukemic MS was made. Unfortunately, our patient received only one cycle of chemotherapy consisting of cytosine arabinoside and daunorubicin, then refused any further treatment and died 4 months after diagnosis. Although systemic chemotherapy is widely accepted to be a promising strategy, its benefit still needs to be further assessed. Certain questions still need to be answered for this disease: 1 Why can approximately 20% of the patients with non-leukemic MS remain disease-free after local therapy alone? 2 How many cycles of chemotherapy are needed for these patients after achievement of complete remission? 3 What are the prognostic or risk factors in these patients who have no abnormality of karyotype, fusion genes, or gene mutation to predict responsiveness to chemotherapy and outcome? 4 What is the risk factor for relapse? The

  17. Identification of de Novo Fanconi Anemia in Younger Patients With Newly Diagnosed Acute Myeloid Leukemia

    Science.gov (United States)

    2016-05-13

    Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Fanconi Anemia; Refractory Anemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Refractory Anemia With Ringed Sideroblasts; Secondary Myelodysplastic Syndromes; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  18. Acute myeloid leukaemia presenting as bilateral proptosis in a young child

    Directory of Open Access Journals (Sweden)

    Charudutt Kalamkar

    2016-06-01

    Full Text Available Myeloid sarcoma is an extramedullary manifestation of acute myeloid leukaemia (AML. Aims We are reporting a paediatric case presenting with bilateral proptosis, which we were able to diagnose with peripheral blood smear (PBS examination. Methods Case Report Results This case highlights the utility of simple routinely available PBS test in diagnosing this rare disease. Conclusion Our case highlights the importance of haemogram and peripheral blood smear in the initial evaluation of proptosis. Correct diagnosis of this rare entity is vital especially in cases where (myeloid sarcoma MS is the presenting feature of AML.

  19. Myeloid Neoplasms with Germline Predisposition: A New Provisional Entity Within the World Health Organization Classification.

    Science.gov (United States)

    Czuchlewski, David R; Peterson, LoAnn C

    2016-03-01

    The forthcoming update of the World Health Organization (WHO) classification of hematopoietic neoplasms will feature "Myeloid Neoplasms with Germline Predisposition" as a new provisional diagnostic entity. This designation will be applied to some cases of acute myeloid leukemia and myelodysplastic syndrome arising in the setting of constitutional mutations that render patients susceptible to the development of myeloid malignancies. For the diagnostic pathologist, recognizing these cases and confirming the diagnosis will demand a sophisticated grasp of clinical genetics and molecular techniques. This article presents a concise review of this new provisional WHO entity, including strategies for clinical practice. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Cellular Kinetics of Perivascular MSC Precursors

    Directory of Open Access Journals (Sweden)

    William C. W. Chen

    2013-01-01

    Full Text Available Mesenchymal stem/stromal cells (MSCs and MSC-like multipotent stem/progenitor cells have been widely investigated for regenerative medicine and deemed promising in clinical applications. In order to further improve MSC-based stem cell therapeutics, it is important to understand the cellular kinetics and functional roles of MSCs in the dynamic regenerative processes. However, due to the heterogeneous nature of typical MSC cultures, their native identity and anatomical localization in the body have remained unclear, making it difficult to decipher the existence of distinct cell subsets within the MSC entity. Recent studies have shown that several blood-vessel-derived precursor cell populations, purified by flow cytometry from multiple human organs, give rise to bona fide MSCs, suggesting that the vasculature serves as a systemic reservoir of MSC-like stem/progenitor cells. Using individually purified MSC-like precursor cell subsets, we and other researchers have been able to investigate the differential phenotypes and regenerative capacities of these contributing cellular constituents in the MSC pool. In this review, we will discuss the identification and characterization of perivascular MSC precursors, including pericytes and adventitial cells, and focus on their cellular kinetics: cell adhesion, migration, engraftment, homing, and intercellular cross-talk during tissue repair and regeneration.