WorldWideScience

Sample records for tumor-targeted intracellular delivery

  1. Brain tumor-targeted drug delivery strategies

    Directory of Open Access Journals (Sweden)

    Xiaoli Wei

    2014-06-01

    Full Text Available Despite the application of aggressive surgery, radiotherapy and chemotherapy in clinics, brain tumors are still a difficult health challenge due to their fast development and poor prognosis. Brain tumor-targeted drug delivery systems, which increase drug accumulation in the tumor region and reduce toxicity in normal brain and peripheral tissue, are a promising new approach to brain tumor treatments. Since brain tumors exhibit many distinctive characteristics relative to tumors growing in peripheral tissues, potential targets based on continuously changing vascular characteristics and the microenvironment can be utilized to facilitate effective brain tumor-targeted drug delivery. In this review, we briefly describe the physiological characteristics of brain tumors, including blood–brain/brain tumor barriers, the tumor microenvironment, and tumor stem cells. We also review targeted delivery strategies and introduce a systematic targeted drug delivery strategy to overcome the challenges.

  2. Tumor Targeting and Drug Delivery by Anthrax Toxin

    Directory of Open Access Journals (Sweden)

    Christopher Bachran

    2016-07-01

    Full Text Available Anthrax toxin is a potent tripartite protein toxin from Bacillus anthracis. It is one of the two virulence factors and causes the disease anthrax. The receptor-binding component of the toxin, protective antigen, needs to be cleaved by furin-like proteases to be activated and to deliver the enzymatic moieties lethal factor and edema factor to the cytosol of cells. Alteration of the protease cleavage site allows the activation of the toxin selectively in response to the presence of tumor-associated proteases. This initial idea of re-targeting anthrax toxin to tumor cells was further elaborated in recent years and resulted in the design of many modifications of anthrax toxin, which resulted in successful tumor therapy in animal models. These modifications include the combination of different toxin variants that require activation by two different tumor-associated proteases for increased specificity of toxin activation. The anthrax toxin system has proved to be a versatile system for drug delivery of several enzymatic moieties into cells. This highly efficient delivery system has recently been further modified by introducing ubiquitin as a cytosolic cleavage site into lethal factor fusion proteins. This review article describes the latest developments in this field of tumor targeting and drug delivery.

  3. Tumor Targeting and Drug Delivery by Anthrax Toxin.

    Science.gov (United States)

    Bachran, Christopher; Leppla, Stephen H

    2016-07-01

    Anthrax toxin is a potent tripartite protein toxin from Bacillus anthracis. It is one of the two virulence factors and causes the disease anthrax. The receptor-binding component of the toxin, protective antigen, needs to be cleaved by furin-like proteases to be activated and to deliver the enzymatic moieties lethal factor and edema factor to the cytosol of cells. Alteration of the protease cleavage site allows the activation of the toxin selectively in response to the presence of tumor-associated proteases. This initial idea of re-targeting anthrax toxin to tumor cells was further elaborated in recent years and resulted in the design of many modifications of anthrax toxin, which resulted in successful tumor therapy in animal models. These modifications include the combination of different toxin variants that require activation by two different tumor-associated proteases for increased specificity of toxin activation. The anthrax toxin system has proved to be a versatile system for drug delivery of several enzymatic moieties into cells. This highly efficient delivery system has recently been further modified by introducing ubiquitin as a cytosolic cleavage site into lethal factor fusion proteins. This review article describes the latest developments in this field of tumor targeting and drug delivery.

  4. [The development of novel tumor targeting delivery strategy].

    Science.gov (United States)

    Gao, Hui-le; Jiang, Xin-guo

    2016-02-01

    Tumor is one of the most serious threats for human being. Although many anti-tumor drugs are approved for clinical use, the treatment outcome is still modest because of the poor tumor targeting efficiency and low accumulation in tumor. Therefore, it is important to deliver anti-tumor drug into tumor efficiently, elevate drug concentration in tumor tissues and reduce the drug distribution in normal tissues. And it has been one of the most attractive directions of pharmaceutical academy and industry. Many kinds of strategies, especially various nanoparticulated drug delivery systems, have been developed to address the critical points of complex tumor microenvironment, which are partially or mostly satisfied for tumor treatment. In this paper, we carefully reviewed the novel targeting delivery strategies developed in recent years. The most powerful method is passive targeting delivery based on the enhanced permeability and retention(EPR) effect, and most commercial nanomedicines are based on the EPR effect. However, the high permeability and retention require different particle sizes, thus several kinds of size-changeable nanoparticles are developed, such as size reducible particles and assemble particles, to satisfy the controversial requirement for particle size and enhance both tumor retention and penetration. Surface charge reversible nanoparticles also shows a high efficiency because the anionic charge in blood circulation and normal organs decrease the unintended internalization. The charge can change into positive in tumor microenvironment, facilitating drug uptake by tumor cells. Additionally, tumor microenvironment responsive drug release is important to decrease drug side effect, and many strategies are developed, such as p H sensitive release and enzyme sensitive release. Except the responsive nanoparticles, shaping tumor microenvironment could attenuate the barriers in drug delivery, for example, decreasing tumor collagen intensity and normalizing tumor

  5. Tumor target amplification: Implications for nano drug delivery systems.

    Science.gov (United States)

    Seidi, Khaled; Neubauer, Heidi A; Moriggl, Richard; Jahanban-Esfahlan, Rana; Javaheri, Tahereh

    2018-04-10

    Tumor cells overexpress surface markers which are absent from normal cells. These tumor-restricted antigenic signatures are a fundamental basis for distinguishing on-target from off-target cells for ligand-directed targeting of cancer cells. Unfortunately, tumor heterogeneity impedes the establishment of a solid expression pattern for a given target marker, leading to drastic changes in quality (availability) and quantity (number) of the target. Consequently, a subset of cancer cells remains untargeted during the course of treatment, which subsequently promotes drug-resistance and cancer relapse. Since target inefficiency is only problematic for cancer treatment and not for treatment of other pathological conditions such as viral/bacterial infections, target amplification or the generation of novel targets is key to providing eligible antigenic markers for effective targeted therapy. This review summarizes the limitations of current ligand-directed targeting strategies and provides a comprehensive overview of tumor target amplification strategies, including self-amplifying systems, dual targeting, artificial markers and peptide modification. We also discuss the therapeutic and diagnostic potential of these approaches, the underlying mechanism(s) and established methodologies, mostly in the context of different nanodelivery systems, to facilitate more effective ligand-directed cancer cell monitoring and targeting. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Chondroitin sulfate-functionalized polyamidoamine as a tumor-targeted carrier for miR-34a delivery.

    Science.gov (United States)

    Chen, Wenqi; Liu, Yong; Liang, Xiao; Huang, Yu; Li, Quanshun

    2017-07-15

    Chondroitin sulfate (CS) was modified on a polyamidoamine dendrimer (PAMAM) through Michael addition to construct a tumor-targeted carrier CS-PAMAM for miR-34a delivery. The derivative CS-PAMAM was demonstrated to achieve an efficient cellular uptake of miR-34a in a CD44-dependent endocytosis way and further facilitate the endosomal escape of miR-34a after 4h. Through the miR-34a delivery, obvious inhibition of cell proliferation could be detected which was attributed to the enhancement of cell apoptosis and cell cycle arrest, and meanwhile the cell migration and invasion has been observed to be inhibited. Finally, the intravenous injection of CS-PAMAM/miR-34a formulation into mice bearing human lung adenocarcinoma cell A549 xenografts could efficiently inhibit the tumor growth and induce the tumor apoptosis owing to the enhanced accumulation of miR-34a in tumor tissue. Overall, CS-PAMAM is potential to be used as a tumor-targeted oligonucleotide carrier for achieving tumor gene therapy. The cationic dendrimer PAMAM was modified by chondroitin sulfate (CS) through Michael addition to construct a tumor-targeted carrier CS-PAMAM for miR-34a delivery. The introduction of CS could achieve an efficient cellular uptake and intracellular transfection of miR-34a in a CD44-dependent endocytosis manner. The miR-34a delivery could execute the anti-proliferation activity by simultaneously inducing cell apoptosis and cell cycle arrest, and also the anti-migration activity. The CS-PAMAM-mediated systemic delivery of miR-34a showed significant inhibition of tumor growth and induction of tumor apoptosis using a mice model of subcutaneously implanted tumors. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Liposomal Tumor Targeting in Drug Delivery Utilizing MMP-2- and MMP-9-Binding Ligands

    Directory of Open Access Journals (Sweden)

    Oula Penate Medina

    2011-01-01

    Full Text Available Nanotechnology offers an alternative to conventional treatment options by enabling different drug delivery and controlled-release delivery strategies. Liposomes being especially biodegradable and in most cases essentially nontoxic offer a versatile platform for several different delivery approaches that can potentially enhance the delivery and targeting of therapies to tumors. Liposomes penetrate tumors spontaneously as a result of fenestrated blood vessels within tumors, leading to known enhanced permeability and subsequent drug retention effects. In addition, liposomes can be used to carry radioactive moieties, such as radiotracers, which can be bound at multiple locations within liposomes, making them attractive carriers for molecular imaging applications. Phage display is a technique that can deliver various high-affinity and selectivity peptides to different targets. In this study, gelatinase-binding peptides, found by phage display, were attached to liposomes by covalent peptide-PEG-PE anchor creating a targeted drug delivery vehicle. Gelatinases as extracellular targets for tumor targeting offer a viable alternative for tumor targeting. Our findings show that targeted drug delivery is more efficient than non-targeted drug delivery.

  8. Novel tumor-targeting, self-assembling peptide nanofiber as a carrier for effective curcumin delivery

    Directory of Open Access Journals (Sweden)

    Liu J

    2013-12-01

    Full Text Available Jianfeng Liu, Jinjian Liu, Hongyan Xu, Yumin Zhang, Liping Chu, Qingfen Liu, Naling Song, Cuihong YangTianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, People's Republic of ChinaAbstract: The poor aqueous solubility and low bioavailability of curcumin restrict its clinical application for cancer treatment. In this study, a novel tumor-targeting nanofiber carrier was developed to improve the solubility and tumor-targeting ability of curcumin using a self-assembled Nap-GFFYG-RGD peptide. The morphologies of the peptide nanofiber and the curcumin-encapsulated nanofiber were visualized by transmission electron microscopy. The tumor-targeting activity of the curcumin-encapsulated Nap-GFFYG-RGD peptide nanofiber (f-RGD-Cur was studied in vitro and in vivo, using Nap-GFFYG-RGE peptide nanofiber (f-RGE-Cur as the control. Curcumin was encapsulated into the peptide nanofiber, which had a diameter of approximately 10–20 nm. Curcumin showed sustained-release behavior from the nanofibers in vitro. f-RGD-Cur showed much higher cellular uptake in αvβ3 integrin-positive HepG2 liver carcinoma cells than did non-targeted f-RGE-Cur, thereby leading to significantly higher cytotoxicity. Ex vivo studies further demonstrated that curcumin could accumulate markedly in mouse tumors after administration of f-RGD-Cur via the tail vein. These results indicate that Nap-GFFYG-RGD peptide self-assembled nanofibers are a promising hydrophobic drug delivery system for targeted treatment of cancer.Keywords: nanofiber, tumor-targeting, self-assembling, curcumin, drug delivery

  9. [Advances of tumor targeting peptides drug delivery system with pH-sensitive activities].

    Science.gov (United States)

    Ma, Yin-yun; Li, Li; Huang, Hai-feng; Gou, San-hu; Ni, Jing-man

    2016-05-01

    The pH-sensitive peptides drug delivery systems, which target to acidic extracellular environment of tumor tissue, have many advantages in drug delivery. They exhibit a high specificity to tumor and low cytotoxicity, which significantly increase the efficacy of traditional anti-cancer drugs. In recent years the systems have received a great attention. The pH-sensitive peptides drug delivery systems can be divided into five types according to the difference in pH-responsive mechanism,type of peptides and carrier materials. This paper summarizes the recent progresses in the field with a focus on the five types of pH-sensitive peptides in drug delivery systems. This may provide a guideline to design and application of tumor targeting drugs.

  10. Multiple cues on the physiochemical, mesenchymal, and intracellular trafficking interactions with nanocarriers to maximize tumor target efficiency

    Directory of Open Access Journals (Sweden)

    Kim SW

    2015-06-01

    Full Text Available Sang-Woo Kim, Dongwoo Khang Nanomedicine Laboratory, Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, South Korea Abstract: Over the past 60 years, numerous medical strategies have been employed to overcome neoplasms. In fact, with the exception of lung, bronchial, and pancreatic cancers, the 5-year survival rate of most cancers currently exceeds 70%. However, the quality of life of patients during chemotherapy remains unsatisfactory despite the increase in survival rate. The side effects of current chemotherapies stem from poor target efficiency at tumor sites due to the uncontrolled biodistribution of anticancer agents (ie, conventional or current approved nanodrugs. This review discusses the effective physiochemical factors for determining biodistribution of nanocarriers and, ultimately, increasing tumor-targeting probability by avoiding the reticuloendothelial system. Second, stem cell-conjugated nanotherapeutics was addressed to maximize the tumor searching ability and to inhibit tumor growth. Lastly, physicochemical material properties of anticancer nanodrugs were discussed for targeting cellular organelles with modulation of drug-release time. A better understanding of suggested topics will increase the tumor-targeting ability of anticancer drugs and, ultimately, promote the quality of life of cancer patients during chemotherapy. Keywords: cancer, anticancer nanodrugs, mesenchymal stem cell, intracellular trafficking

  11. RGD-modified lipid disks as drug carriers for tumor targeted drug delivery

    Science.gov (United States)

    Gao, Jie; Xie, Cao; Zhang, Mingfei; Wei, Xiaoli; Yan, Zhiqiang; Ren, Yachao; Ying, Man; Lu, Weiyue

    2016-03-01

    Melittin, the major component of the European bee venom, is a potential anticancer candidate due to its lytic properties. However, in vivo applications of melittin are limited due to its main side effect, hemolysis, especially when applied through intravenous administration. The polyethylene glycol-stabilized lipid disk is a novel type of nanocarrier, and the rim of lipid disks has a high affinity to amphiphilic peptides. In our study, a c(RGDyK) modified lipid disk was developed as a tumor targeted drug delivery system for melittin. Cryo-TEM was used to confirm the shape and size of lipid disks with or without c(RGDyK) modification. In vitro and in vivo hemolysis analyses revealed that the hemolysis effect significantly decreased after melittin associated with lipid disks. Importantly, the results of our in vivo biodistribution and tumor growth inhibitory experiments showed that c(RGDyK) modification increased the distribution of lipid disks in the tumor and the anticancer efficacy of melittin loaded lipid disks. Thus, we successfully achieved a targeted drug delivery system for melittin and other amphiphilic peptides with a good therapeutic effect and low side effects.

  12. Hybrid protein-inorganic nanoparticles: From tumor-targeted drug delivery to cancer imaging.

    Science.gov (United States)

    Elzoghby, Ahmed O; Hemasa, Ayman L; Freag, May S

    2016-12-10

    Recently, a great interest has been paid to the development of hybrid protein-inorganic nanoparticles (NPs) for drug delivery and cancer diagnostics in order to combine the merits of both inorganic and protein nanocarriers. This review primarily discusses the most outstanding advances in the applications of the hybrids of naturally-occurring proteins with iron oxide, gadolinium, gold, silica, calcium phosphate NPs, carbon nanotubes, and quantum dots in drug delivery and cancer imaging. Various strategies that have been utilized for the preparation of protein-functionalized inorganic NPs and the mechanisms involved in the drug loading process are discussed. How can the protein functionalization overcome the limitations of colloidal stability, poor dispersibility and toxicity associated with inorganic NPs is also investigated. Moreover, issues relating to the influence of protein hybridization on the cellular uptake, tumor targeting efficiency, systemic circulation, mucosal penetration and skin permeation of inorganic NPs are highlighted. A special emphasis is devoted to the novel approaches utilizing the protein-inorganic nanohybrids in combined cancer therapy, tumor imaging, and theranostic applications as well as stimuli-responsive drug release from the nanohybrids. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. An effective tumor-targeting strategy utilizing hypoxia-sensitive siRNA delivery system for improved anti-tumor outcome.

    Science.gov (United States)

    Kang, Lin; Fan, Bo; Sun, Ping; Huang, Wei; Jin, Mingji; Wang, Qiming; Gao, Zhonggao

    2016-10-15

    Hypoxia is a feature of most solid tumors, targeting hypoxia is considered as the best validated yet not extensively exploited strategy in cancer therapy. Here, we reported a novel tumor-targeting strategy using a hypoxia-sensitive siRNA delivery system. In the study, 2-nitroimidazole (NI), a hydrophobic component that can be converted to hydrophilic 2-aminoimidazole (AI) through bioreduction under hypoxic conditions, was conjugated to the alkylated polyethyleneimine (bPEI1.8k-C6) to form amphiphilic bPEI1.8k-C6-NI polycations. bPEI1.8k-C6-NI could self-assemble into micelle-like aggregations in aqueous, which contributed to the improved stability of the bPEI1.8k-C6-NI/siRNA polyplexes, resulted in increased cellular uptake. After being transported into the hypoxic tumor cells, the selective nitro-to-amino reduction would cause structural change and elicit a relatively loose structure to facilitate the siRNA dissociation in the cytoplasm, for enhanced gene silencing efficiency ultimately. Therefore, the conflict between the extracellular stability and the intracellular siRNA release ability of the polyplexes was solved by introducing the hypoxia-responsive unit. Consequently, the survivin-targeted siRNA loaded polyplexes shown remarkable anti-tumor effect not only in hypoxic cells, but also in tumor spheroids and tumor-bearing mice, indicating that the hypoxia-sensitive siRNA delivery system had great potential for tumor-targeted therapy. Hypoxia is one of the most remarkable features of most solid tumors, and targeting hypoxia is considered as the best validated strategy in cancer therapy. However, in the past decades, there were few reports about using this strategy in the drug delivery system, especially in siRNA delivery system. Therefore, we constructed a hypoxia-sensitive siRNA delivery system utilizing a hypoxia-responsive unit, 2-nitroimidazole, by which the unavoidable conflict between improved extracellular stability and promoted intracellular si

  14. Physico-Chemical Strategies to Enhance Stability and Drug Retention of Polymeric Micelles for Tumor-Targeted Drug Delivery

    NARCIS (Netherlands)

    Shi, Y.; Lammers, Twan Gerardus Gertudis Maria; Storm, Gerrit; Hennink, W.E.

    2017-01-01

    Polymeric micelles (PM) have been extensively used for tumor-targeted delivery of hydrophobic anti-cancer drugs. The lipophilic core of PM is naturally suitable for loading hydrophobic drugs and the hydrophilic shell endows them with colloidal stability and stealth properties. Decades of research on

  15. Hyaluronate tethered, "smart" multiwalled carbon nanotubes for tumor-targeted delivery of doxorubicin.

    Science.gov (United States)

    Datir, Satyajit R; Das, Manasmita; Singh, Raman Preet; Jain, Sanyog

    2012-11-21

    The present study reports the optimized synthesis, physicochemical characterization, and biological evaluation of a novel, multiwalled carbon nanotube-hyaluronic acid (MWCNT-HA) conjugate, complexed with an anticancer agent, Doxorubicin (DOX) via π-π stacking interaction. The therapeutic conjugate was concomitantly labeled with a near-infrared fluorescent dye, Alexa-Flour-647 (AF-647), and radiotracer Technetium-99m ((99m)Tc) to track its whereabouts both in vitro and in vivo via optical and scintigraphic imaging techniques. Covalent functionalization of MWCNTs with HA facilitated their internalization into human lung adenocarcinoma, A549 cells via hyaluronan receptors (HR) mediated endocytosis. Internalized nanotubes showed lysosomal trafficking, followed by low pH-triggered DOX release under endolysosomal conditions. Consequently, DOX-loaded HA-MWCNTs exhibited 3.2 times higher cytotoxicity and increased apoptotic activity than free DOX in equivalent concentrations. Organ distribution studies in Ehlrich ascites tumor (EAT) bearing mice model indicated that tumor specific localization of (99m)Tc-MWCNT-HA-DOX is significantly higher than both free drug and nontargeted MWCNTs. Pharmacodynamic studies in chemically breast-cancer-induced rats showed that the tumor-growth inhibitory effect of HA-MWCNT-DOX was 5 times higher than free DOX in equivalent concentration. DOX delivered through HA-MWCNTs was devoid of any detectable cardiotoxity, hepatotoxicity, or nephrotoxicity. All these promising attributes make HA-MWCNTs a "smart" platform for tumor-targeted delivery of anticancer agents.

  16. Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery

    Science.gov (United States)

    Kesharwani, Prashant; Iyer, Arun K.

    2015-01-01

    Advances in the application of nanotechnology in medicine have given rise to multifunctional smart nanocarriers that can be engineered with tunable physicochemical characteristics to deliver one or more therapeutic agent(s) safely and selectively to cancer cells, including intracellular organelle-specific targeting. Dendrimers having properties resembling biomolecules, with well-defined 3D nanopolymeric architectures, are emerging as a highly attractive class of drug and gene delivery vector. The presence of numerous peripheral functional groups on hyperbranched dendrimers affords efficient conjugation of targeting ligands and biomarkers that can recognize and bind to receptors overexpressed on cancer cells for tumor-cell-specific delivery. The present review compiles the recent advances in dendrimer-mediated drug and gene delivery to tumors by passive and active targeting principles with illustrative examples. PMID:25555748

  17. Nanoparticles for intracellular-targeted drug delivery

    International Nuclear Information System (INIS)

    Paulo, Cristiana S O; Pires das Neves, Ricardo; Ferreira, Lino S

    2011-01-01

    Nanoparticles (NPs) are very promising for the intracellular delivery of anticancer and immunomodulatory drugs, stem cell differentiation biomolecules and cell activity modulators. Although initial studies in the area of intracellular drug delivery have been performed in the delivery of DNA, there is an increasing interest in the use of other molecules to modulate cell activity. Herein, we review the latest advances in the intracellular-targeted delivery of short interference RNA, proteins and small molecules using NPs. In most cases, the drugs act at different cellular organelles and therefore the drug-containing NPs should be directed to precise locations within the cell. This will lead to the desired magnitude and duration of the drug effects. The spatial control in the intracellular delivery might open new avenues to modulate cell activity while avoiding side-effects.

  18. Novel functionalized nanoparticles for tumor-targeting co-delivery of doxorubicin and siRNA to enhance cancer therapy

    Directory of Open Access Journals (Sweden)

    Xia Y

    2017-12-01

    Full Text Available Yu Xia, Tiantian Xu, Changbing Wang, Yinghua Li, Zhengfang Lin, Mingqi Zhao, Bing Zhu Central Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China Abstract: Human homeobox protein (Nanog is highly expressed in most cancer cells and has gradually emerged as an excellent target in cancer therapy, owing to its regulation of cancer cell proliferation, metastasis and apoptosis. In this study, we prepared tumor-targeting functionalized selenium nanoparticles (RGDfC-SeNPs to load chemotherapeutic doxorubicin (DOX and Nanog siRNA. Herein, RGDfC peptide was used as a tumor-targeting moiety which could specifically bind to αvβ3 integrins overexpressed on various cancer cells. The sizes of RGDfC-SeNPs@DOX nanoparticles (~12 nm were confirmed by both dynamic light scattering and transmission electron microscopy. The chemical structure of RGDfC-SeNPs@DOX was characterized via Fourier-transform infrared spectroscopy. The RGDfC-SeNPs@DOX was compacted with siRNA (anti-Nanog by electrostatic interaction to fabricate the RGDfC-SeNPs@DOX/siRNA complex. The RGDfC-SeNPs@DOX/siRNA complex nanoparticles could efficiently enter into HepG2 cells via clathrin-associated endocytosis, and showed high gene transfection efficiency that resulted in enhanced gene silencing. The in vivo biodistribution experiment indicated that RGDfC-SeNPs@DOX/siRNA nanoparticles were capable of specifically accumulating in the tumor site. Furthermore, treatment with RGDfC-SeNPs@DOX/siRNA resulted in a more significant anticancer activity than the free DOX, RGDfC-SeNPs@DOX or RGDfC-SeNPs/siRNA in vitro and in vivo. In summary, this study shows a novel type of DOX and siRNA co-delivery system, thereby providing an alternative route for cancer treatment. Keywords: nanoparticles, tumor targeting, drug delivery, doxorubicin, Nanog siRNA

  19. Dual tumor-targeted poly(lactic-co-glycolic acid–polyethylene glycol–folic acid nanoparticles: a novel biodegradable nanocarrier for secure and efficient antitumor drug delivery

    Directory of Open Access Journals (Sweden)

    Chen J

    2017-08-01

    Full Text Available Jia Chen,1,2,* Qi Wu,1,* Li Luo,1 Yi Wang,1 Yuan Zhong,1 Han-Bin Dai,1 Da Sun,1,3 Mao-Ling Luo,4 Wei Wu,1 Gui-Xue Wang1 1Key Laboratory for Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Chongqing University, Chongqing, 2Institute of Laboratory Animals, Sichuan Academy of Medical Science, Sichuan Provincial People’s Hospital, Chengdu, 3Institute of Life Sciences, Wenzhou University, Wenzhou, 4School of Medicine, Wuhan University, Wuhan, China *These authors contributed equally to this work Abstract: Further specific target-ability development of biodegradable nanocarriers is extremely important to promote their security and efficiency in antitumor drug-delivery applications. In this study, a facilely prepared poly(lactic-co-glycolic acid (PLGA–polyethylene glycol (PEG–folic acid (FA copolymer was able to self-assemble into nanoparticles with favorable hydrodynamic diameters of around 100 nm and negative surface charge in aqueous solution, which was expected to enhance intracellular antitumor drug delivery by advanced dual tumor-target effects, ie, enhanced permeability and retention induced the passive target, and FA mediated the positive target. Fluorescence-activated cell-sorting and confocal laser-scanning microscopy results confirmed that doxorubicin (model drug loaded into PLGA-PEG-FA nanoparticles was able to be delivered efficiently into tumor cells and accumulated at nuclei. In addition, all hemolysis, 3-(4,5-dimethylthiazol-2-yl-5-(3-carboxymethoxyphenyl-2-(4-sulfophenyl-2H-tetrazolium, and zebrafish-development experiments demonstrated that PLGA-PEG-FA nanoparticles were biocompatible and secure for biomedical applications, even at high polymer concentration (0.1 mg/mL, both in vitro and in vivo. Therefore, PLGA-PEG-FA nanoparticles provide a feasible controlled-release platform for secure and efficient antitumor drug

  20. A RNA-DNA Hybrid Aptamer for Nanoparticle-Based Prostate Tumor Targeted Drug Delivery

    Directory of Open Access Journals (Sweden)

    John C. Leach

    2016-03-01

    Full Text Available The side effects of radio- and chemo-therapy pose long-term challenges on a cancer patient’s health. It is, therefore, highly desirable to develop more effective therapies that can specifically target carcinoma cells without damaging normal and healthy cells. Tremendous efforts have been made in the past to develop targeted drug delivery systems for solid cancer treatment. In this study, a new aptamer, A10-3-J1, which recognizes the extracellular domain of the prostate specific membrane antigen (PSMA, was designed. A super paramagnetic iron oxide nanoparticle-aptamer-doxorubicin (SPIO-Apt-Dox was fabricated and employed as a targeted drug delivery platform for cancer therapy. This DNA RNA hybridized aptamer antitumor agent was able to enhance the cytotoxicity of targeted cells while minimizing collateral damage to non-targeted cells. This SPIO-Apt-Dox nanoparticle has specificity to PSMA+ prostate cancer cells. Aptamer inhibited nonspecific uptake of membrane-permeable doxorubic to the non-target cells, leading to reduced untargeted cytotoxicity and endocytic uptake while enhancing targeted cytotoxicity and endocytic uptake. The experimental results indicate that the drug delivery platform can yield statistically significant effectiveness being more cytotoxic to the targeted cells as opposed to the non-targeted cells.

  1. hTe exciting potential of nanotherapy in brain-tumor targeted drug delivery approaches

    Institute of Scientific and Technical Information of China (English)

    Vivek Agrahari

    2017-01-01

    Delivering therapeutics to the central nervous system (CNS) and brain-tumor has been a major challenge. hTe current standard treatment approaches for the brain-tumor comprise of surgical resection followed by immunotherapy, radiotherapy, and chemotherapy. However, the current treatments are limited in provid-ing signiifcant beneifts to the patients and despite recent technological advancements; brain-tumor is still challenging to treat. Brain-tumor therapy is limited by the lack of effective and targeted strategies to deliver chemotherapeutic agents across the blood-brain barrier (BBB). hTe BBB is the main obstacle that must be overcome to allow compounds to reach their targets in the brain. Recent advances have boosted the nan-otherapeutic approaches in providing an attractive strategy in improving the drug delivery across the BBB and into the CNS. Compared to conventional formulations, nanoformulations offer signiifcant ad vantages in CNS drug delivery approaches. Considering the above facts, in this review, the physiological/anatomical features of the brain-tumor and the BBB are brielfy discussed. hTe drug transport mechanisms at the BBB are outlined. hTe approaches to deliver chemotherapeutic drugs across the CNS into the brain-tumor using nanocarriers are summarized. In addition, the challenges that need to be addressed in nanotherapeutic ap-proaches for their enhanced clinical application in brain-tumor therapy are discussed.

  2. The exciting potential of nanotherapy in brain-tumor targeted drug delivery approaches

    Directory of Open Access Journals (Sweden)

    Vivek Agrahari

    2017-01-01

    Full Text Available Delivering therapeutics to the central nervous system (CNS and brain-tumor has been a major challenge. The current standard treatment approaches for the brain-tumor comprise of surgical resection followed by immunotherapy, radiotherapy, and chemotherapy. However, the current treatments are limited in providing significant benefits to the patients and despite recent technological advancements; brain-tumor is still challenging to treat. Brain-tumor therapy is limited by the lack of effective and targeted strategies to deliver chemotherapeutic agents across the blood-brain barrier (BBB. The BBB is the main obstacle that must be overcome to allow compounds to reach their targets in the brain. Recent advances have boosted the nanotherapeutic approaches in providing an attractive strategy in improving the drug delivery across the BBB and into the CNS. Compared to conventional formulations, nanoformulations offer significant advantages in CNS drug delivery approaches. Considering the above facts, in this review, the physiological/anatomical features of the brain-tumor and the BBB are briefly discussed. The drug transport mechanisms at the BBB are outlined. The approaches to deliver chemotherapeutic drugs across the CNS into the brain-tumor using nanocarriers are summarized. In addition, the challenges that need to be addressed in nanotherapeutic approaches for their enhanced clinical application in brain-tumor therapy are discussed.

  3. Liposomes containing alkylated methotrexate analogues for phospholipase A(2) mediated tumor targeted drug delivery

    DEFF Research Database (Denmark)

    Kaasgaard, Thomas; Andresen, Thomas Lars; Jensen, Simon Skøde

    2009-01-01

    of alkylated compounds in liposomes, it was demonstrated that the MTX-analogue partitioned into the water phase and thereby became available for cell uptake. It was concluded that liposomes containing alkylated MTX-analogues show promise as a drug delivery system, although the MTX-analogue needs to be more......Two lipophilic methotrexate analogues have been synthesized and evaluated for cytotoxicity against KATO III and HT-29 human colon cancer cells. Both analogues contained a C-16-alkyl chain attached to the gamma-carboxylic acid and one of the analogues had an additional benzyl group attached...... cytotoxicity was incorporated into liposomes that were designed to be particularly Susceptible to a liposome degrading enzyme, secretory phospholipase A(2) (sPLA(2)), which is found in high concentrations in tumors of several different cancer types. Liposome incorporation was investigated by differential...

  4. Cationic polymers for intracellular delivery of proteins

    NARCIS (Netherlands)

    Coué, G.M.J.P.C.; Engbersen, Johannes F.J.; Samal, Sangram; Dubruel, Peter

    2015-01-01

    Many therapeutic proteins exert their pharmaceutical action inside the cytoplasm or onto individual organelles inside the cell. Intracellular protein delivery is considered to be the most direct, fastest and safest approach for curing gene-deficiency diseases, enhancing vaccination and triggering

  5. pH-Responsive Tumor-Targetable Theranostic Nanovectors Based on Core Crosslinked (CCL Micelles with Fluorescence and Magnetic Resonance (MR Dual Imaging Modalities and Drug Delivery Performance

    Directory of Open Access Journals (Sweden)

    Sidan Tian

    2016-06-01

    Full Text Available The development of novel theranostic nanovectors is of particular interest in treating formidable diseases (e.g., cancers. Herein, we report a new tumor-targetable theranostic agent based on core crosslinked (CCL micelles, possessing tumor targetable moieties and fluorescence and magnetic resonance (MR dual imaging modalities. An azide-terminated diblock copolymer, N3-POEGMA-b-P(DPA-co-GMA, was synthesized via consecutive atom transfer radical polymerization (ATRP, where OEGMA, DPA, and GMA are oligo(ethylene glycolmethyl ether methacrylate, 2-(diisopropylaminoethyl methacrylate, and glycidyl methacrylate, respectively. The resulting diblock copolymer was further functionalized with DOTA(Gd (DOTA is 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakisacetic acid or benzaldehyde moieties via copper(I-catalyzed alkyne-azide cycloaddition (CuAAC chemistry, resulting in the formation of DOTA(Gd-POEGMA-b-P(DPA-co-GMA and benzaldehyde-POEGMA-b-P(DPA-co-GMA copolymers. The resultant block copolymers co-assembled into mixed micelles at neutral pH in the presence of tetrakis[4-(2-mercaptoethoxyphenyl]ethylene (TPE-4SH, which underwent spontaneous crosslinking reactions with GMA residues embedded within the micellar cores, simultaneously switching on TPE fluorescence due to the restriction of intramolecular rotation. Moreover, camptothecin (CPT was encapsulated into the crosslinked cores at neutral pH, and tumor-targeting pH low insertion peptide (pHLIP, sequence: AEQNPIYWARYADWLFTTPLLLLDLALLVDADEGTCG moieties were attached to the coronas through the Schiff base chemistry, yielding a theranostic nanovector with fluorescence and MR dual imaging modalities and tumor-targeting capability. The nanovectors can be efficiently taken up by A549 cells, as monitored by TPE fluorescence. After internalization, intracellular acidic pH triggered the release of loaded CPT, killing cancer cells in a selective manner. On the other hand, the nanovectors labeled with DOTA

  6. Brain Tumor Targeting of Magnetic Nanoparticles for Potential Drug Delivery: Effect of Administration Route and Magnetic Field Topography

    Science.gov (United States)

    Chertok, Beata; David, Allan E.; Yang, Victor C.

    2011-01-01

    Our previous studies demonstrated feasibility of magnetically-mediated retention of iron-oxide nanoparticles in brain tumors after intravascular administration. The purpose of this study was to elucidate strategies for further improvement of this promising approach. In particular, we explored administration of the nanoparticles via a non-occluded carotid artery as a way to increase the passive exposure of tumor vasculature to nanoparticles for subsequent magnetic entrapment. However, aggregation of nanoparticles in the afferent vasculature interfered with tumor targeting. The magnetic setup employed in our experiments was found to generate a relatively uniform magnetic flux density over a broad range, exposing the region of the afferent vasculature to high magnetic force. To overcome this problem, the magnetic setup was modified with a 9-mm diameter cylindrical NdFeB magnet to exhibit steeper magnetic field topography. Six-fold reduction of the magnetic force at the injection site, achieved with this modification, alleviated the aggregation problem under the conditions of intact carotid blood flow. Using this setup, carotid administration was found to present 1.8-fold increase in nanoparticle accumulation in glioma compared to the intravenous route at 350 mT. This increase was found to be in reasonable agreement with the theoretically estimated 1.9-fold advantage of carotid administration, Rd. The developed approach is expected to present an even greater advantage when applied to drug-loaded nanoparticles exhibiting higher values of Rd. PMID:21763736

  7. Cytocompatible chitosan-graft-mPEG-based 5-fluorouracil-loaded polymeric nanoparticles for tumor-targeted drug delivery.

    Science.gov (United States)

    Antoniraj, M Gover; Ayyavu, Mahesh; Henry, Linda Jeeva Kumari; Nageshwar Rao, Goutham; Natesan, Subramanian; Sundar, D Sathish; Kandasamy, Ruckmani

    2018-03-01

    Biodegradable materials like chitosan (CH) and methoxy polyethylene glycol (mPEG) are widely being used as drug delivery carriers for various therapeutic applications. In this study, copolymer (CH-g-mPEG) of CH and carboxylic acid terminated mPEG was synthesized by carbodiimide-mediated acid amine reaction. The resultant hydrophilic copolymer was characterized by Fourier transform infrared spectroscopy and 1 H NMR studies, revealing its relevant functional bands and proton peaks, respectively. Blank polymeric nanoparticles (B-PNPs) and 5-fluorouracil loaded polymeric nanoparticles (5-FU-PNPs) were formulated by ionic gelation method. Furthermore, folic acid functionalized FA-PNPs and FA-5-FU-PNPs were prepared for folate receptor-targeted drug delivery. FA-5-FU-PNPs were characterized by particle size, zeta potential, and in vitro drug release studies, resulting in 197.7 nm, +29.9 mv, and sustained drug release of 88% in 24 h, respectively. Cytotoxicity studies were performed for FA-PNPs and FA-5-FU-PNPs in MCF-7 cell line, which exhibited a cell viability of 80 and 41%, respectively. In vitro internalization studies were carried out for 5-FU-PNPs and FA-5-FU-PNPs which demonstrated increased cellular uptake of FA-5-FU-PNPs by receptor-mediated transport. Significant (p drug delivery, thereby influencing better therapeutic effect.

  8. Efficient intracellular delivery and improved biocompatibility of colloidal silver nanoparticles towards intracellular SERS immuno-sensing.

    Science.gov (United States)

    Bhardwaj, Vinay; Srinivasan, Supriya; McGoron, Anthony J

    2015-06-21

    High throughput intracellular delivery strategies, electroporation, passive and TATHA2 facilitated diffusion of colloidal silver nanoparticles (AgNPs) are investigated for cellular toxicity and uptake using state-of-art analytical techniques. The TATHA2 facilitated approach efficiently delivered high payload with no toxicity, pre-requisites for intracellular applications of plasmonic metal nanoparticles (PMNPs) in sensing and therapeutics.

  9. Biodegradable multiblock polymers based on N-(2-hydroxypropyl)methacrylamide designed as drug carriers for tumor-targeted delivery

    Czech Academy of Sciences Publication Activity Database

    Mužíková, Gabriela; Pola, Robert; Laga, Richard; Pechar, Michal

    2016-01-01

    Roč. 217, č. 15 (2016), s. 1690-1703 ISSN 1022-1352 R&D Projects: GA ČR(CZ) GA14-12742S; GA ČR(CZ) GA16-17207S; GA MŠk(CZ) LO1507; GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 Keywords : biodegradable polymers * click chemistry * drug delivery systems Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.500, year: 2016

  10. Folate-decorated chitosan/doxorubicin poly(butyl)cyanoacrylate nanoparticles for tumor-targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Duan Jinghua [Xiangya Hospital, Central South University, Hepatobiliary and Enteric Surgery Research Center (China); Liu Mujun [Central South University, School of Biological Science and Technology (China); Zhang Yangde; Zhao Jinfeng; Pan Yifeng [Xiangya Hospital, Central South University, Hepatobiliary and Enteric Surgery Research Center (China); Yang Xiyun, E-mail: bax_2007@126.com [Central South University, School of Metallurgical Science and Engineering (China)

    2012-03-15

    A novel chitosan coated poly(butyl cyanoacrylate) (PBCA) nanoparticles loaded doxorubicin (DOX) were synthesized and then conjugated with folic acid to produce a folate-targeted drug carrier for tumor-specific drug delivery. Prepared nanoparticles were surface modified by folate for targeting cancer cells, which is confirmed by FTIR spectroscopy and characterized for shape, size, and zeta potential measurements. The size and zeta potential of prepared DOX-PBCA nanoparticles (DOX-PBCA NPs) were almost 174 {+-} 8.23 nm and +23.14 {+-} 4.25 mV, respectively with 46.8 {+-} 3.32% encapsulation capacity. The transmission electron microscopy study revealed that preparation allowed the formation of spherical nanometric and homogeneous. Fluorescent microscopy imaging and flow cytometry analysis revealed that DOX-PBCA NPs were endocytosed into MCF-7 cells through the interaction with overexpressed folate receptors on the surface of the cancer cells. The results demonstrate that folate-conjugated DOX-PBCA NPs drug delivery system could provide increased therapeutic benefit by delivering the encapsulated drug to the folate receptor positive cancer cells.

  11. Polyethylene glycol-conjugated chondroitin sulfate A derivative nanoparticles for tumor-targeted delivery of anticancer drugs.

    Science.gov (United States)

    Lee, Jae-Young; Park, Ju-Hwan; Lee, Jeong-Jun; Lee, Song Yi; Chung, Suk-Jae; Cho, Hyun-Jong; Kim, Dae-Duk

    2016-10-20

    Polyethylene glycol (PEG)-decorated chondroitin sulfate A-deoxycholic acid (CSD) nanoparticles (NPs) were fabricated for the selective delivery of doxorubicin (DOX) to ovarian cancer. CSD-PEG was synthesized via amide bond formation between the NH2 group of methoxypolyethylene glycol amine and the COOH group of CSD. CSD-PEG/DOX NPs with a 247nm mean diameter, negative zeta potential, and >90% drug encapsulation efficiency were prepared. Sustained and pH-dependent DOX release profiles from CSD-PEG NPs were observed in dissolution tests. Endocytosis of NPs by SKOV-3 cells (CD44 receptor-positive human ovarian cancer cells), based on the CSA-CD44 receptor interaction, was determined by flow cytometry and confocal laser scanning microscopy (CLSM) studies. PEGylation of NPs also resulted in reduced drug clearance (CL) in vivo and improved relative bioavailability, compared to non-PEGylated NPs, as determined by the pharmacokinetic study performed after intravenous administration in rats. Developed CSD-PEG NPs can be a promising delivery vehicle for the therapy of CD44 receptor-expressing ovarian cancers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Supporting Data for Multifunctional all-in-one drug delivery systems for tumor targeting and sequential release of three different anti-tumor drugs

    Directory of Open Access Journals (Sweden)

    Guowei Wu

    2016-06-01

    Full Text Available Although nanoparticulate drug delivery systems (NDDSs can preferentially accumulate in tumors, active targeting by targeting ligands (e.g. monoclonal antibody is necessary for increasing its targeting efficacy in vivo. We conjugated mAb198.3 on the SiO2@AuNP system surface to make it obtain active targeting efficacy. The FAT1 targeting capability of SiO2@AuNP system is the first issue to be solved. Thus, flow cytometry analysis was attempted to demonstrate that the SiO2@AuNP system could bind to native FAT1 molecules on the surface of Colo205 cells. Also, together with the drug release behavior study of self-decomposable SiO2 NPs, the continuous morphological evolution needed to be clarified. Therefore, to characterize the morphological evolution in vitro, we analyzed the morphology of inner self-decomposable NPs in different time intervals using transmission electron microscopy (TEM. A more comprehensive analysis of this data may be obtained from the article “Multifunctional all-in-one drug delivery systems for tumor targeting and sequential release of three different anti-tumor drugs” in Biomaterials.

  13. Development of PLGA-lipid nanoparticles with covalently conjugated indocyanine green as a versatile nanoplatform for tumor-targeted imaging and drug delivery

    Directory of Open Access Journals (Sweden)

    Xin Y

    2016-11-01

    course of the treatment (1 month. The results obtained demonstrate the versatility of the NPs, featuring stable fluorescence and tumor-targeting characteristics, with promising future applications in cancer therapy. Keywords: indocyanine green, resveratrol, near-infrared nanoprobe, tumor targeting, fluorescence imaging, drug delivery 

  14. Intracellular Protein Delivery for treating Breast Cancer

    Science.gov (United States)

    2013-06-01

    concentration increases, but not as dramatic as cytoplamic fractions possible due to slower nuclear transport than cellular internalization. The nucleus...polymers, dendrimers , and hydrogels for drug delivery. Pharmaceutical research 29, 902-921. Wilson, J.M. (2005). Gendicine: the first commercial gene...sequences were not ccessible to the transport machinery. In stark contrast, hen HeLa cells were treated with S S Rho—APO NC, strong ed fluorescence of

  15. An efficient PEGylated liposomal nanocarrier containing cell-penetrating peptide and pH-sensitive hydrazone bond for enhancing tumor-targeted drug delivery

    Directory of Open Access Journals (Sweden)

    Ding Y

    2015-10-01

    Full Text Available Yuan Ding,1,* Dan Sun,1,* Gui-Ling Wang,1 Hong-Ge Yang,1 Hai-Feng Xu,1 Jian-Hua Chen,2 Ying Xie,1,3 Zhi-Qiang Wang4 1Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 2School of Medicine, Jianghan University, Wuhan, 3State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, People’s Republic of China; 4Department of Chemistry and Biochemistry, Kent State University Geauga, Burton, OH, USA *These authors contributed equally to this work Abstract: Cell-penetrating peptides (CPPs as small molecular transporters with abilities of cell penetrating, internalization, and endosomal escape have potential prospect in drug delivery systems. However, a bottleneck hampering their application is the poor specificity for cells. By utilizing the function of hydration shell of polyethylene glycol (PEG and acid sensitivity of hydrazone bond, we constructed a kind of CPP-modified pH-sensitive PEGylated liposomes (CPPL to improve the selectivity of these peptides for tumor targeting. In CPPL, CPP was directly attached to liposome surfaces via coupling with stearate (STR to avoid the hindrance of PEG as a linker on the penetrating efficiency of CPP. A PEG derivative by conjugating PEG with STR via acid-degradable hydrazone bond (PEG2000-Hz-STR, PHS was synthesized. High-performance liquid chromatography and flow cytometry demonstrated that PHS was stable at normal neutral conditions and PEG could be completely cleaved from liposome surface to expose CPP under acidic environments in tumor. An optimal CPP density on liposomes was screened to guaranty a maximum targeting efficiency on tumor cells as well as not being captured by normal cells that consequently lead to a long circulation in blood. In vitro and in vivo studies indicated, in 4 mol% CPP of lipid modified system, that CPP exerted higher efficiency on internalizing the liposomes into

  16. 2011 Rita Schaffer lecture: nanoparticles for intracellular nucleic acid delivery.

    Science.gov (United States)

    Green, Jordan J

    2012-07-01

    Nanoparticles are a promising technology for delivery of new types of therapeutics. A polymer library approach has allowed engineering of polymeric particles that are particularly effective for the delivery of DNA and siRNA to human cells. Certain chemical structural motifs, degradable linkages, hydrophobicity, and biophysical properties are key for successful intracellular delivery. Small differences to biomaterial structure, and especially the type of degradable linkage in the polymers, can be critical for successful delivery of siRNA vs. DNA. Furthermore, subtle changes to biomaterial structure can facilitate cell-type gene delivery specificity between human brain cancer cells and healthy cells as well as between human retinal endothelial cells and epithelial cells. These polymeric nanoparticles are effective for nucleic acid delivery in a broad range of human cell types and have applications to regenerative medicine, ophthalmology, and cancer among many other biomedical research areas.

  17. Facilitating Intracellular Drug Delivery by Ultrasound-Activated Microbubbles

    NARCIS (Netherlands)

    Lammertink, BHA

    2017-01-01

    The goal of this thesis was to investigate the combination of ultrasound and microbubbles (USMB) for intracellular delivery of (model) drugs in vitro. We have focused on clinically approved drugs, i.e. cisplatin, and microbubbles, i.e. SonoVue™, to facilitate clinical translation. In addition, model

  18. Vector-free intracellular delivery by reversible permeabilization.

    Directory of Open Access Journals (Sweden)

    Shirley O'Dea

    Full Text Available Despite advances in intracellular delivery technologies, efficient methods are still required that are vector-free, can address a wide range of cargo types and can be applied to cells that are difficult to transfect whilst maintaining cell viability. We have developed a novel vector-free method that uses reversible permeabilization to achieve rapid intracellular delivery of cargos with varying composition, properties and size. A permeabilizing delivery solution was developed that contains a low level of ethanol as the permeabilizing agent. Reversal of cell permeabilization is achieved by temporally and volumetrically controlling the contact of the target cells with this solution. Cells are seeded in conventional multi-well plates. Following removal of the supernatant, the cargo is mixed with the delivery solution and applied directly to the cells using an atomizer. After a short incubation period, permeabilization is halted by incubating the cells in a phosphate buffer saline solution that dilutes the ethanol and is non-toxic to the permeabilized cells. Normal culture medium is then added. The procedure lasts less than 5 min. With this method, proteins, mRNA, plasmid DNA and other molecules have been delivered to a variety of cell types, including primary cells, with low toxicity and cargo functionality has been confirmed in proof-of-principle studies. Co-delivery of different cargo types has also been demonstrated. Importantly, delivery occurs by diffusion directly into the cytoplasm in an endocytic-independent manner. Unlike some other vector-free methods, adherent cells are addressed in situ without the need for detachment from their substratum. The method has also been adapted to address suspension cells. This delivery method is gentle yet highly reproducible, compatible with high throughput and automated cell-based assays and has the potential to enable a broad range of research, drug discovery and clinical applications.

  19. Liposome-based Formulation for Intracellular Delivery of Functional Proteins

    Directory of Open Access Journals (Sweden)

    Benoît Chatin

    2015-01-01

    Full Text Available The intracellular delivery of biologically active protein represents an important emerging strategy for both fundamental and therapeutic applications. Here, we optimized in vitro delivery of two functional proteins, the β-galactosidase (β-gal enzyme and the anti-cytokeratin8 (K8 antibody, using liposome-based formulation. The guanidinium-cholesterol cationic lipid bis (guanidinium-tren-cholesterol (BGTC (bis (guanidinium-tren-cholesterol combined to the colipid dioleoyl phosphatidylethanolamine (DOPE (dioleoyl phosphatidylethanolamine was shown to efficiently deliver the β-gal intracellularly without compromising its activity. The lipid/protein molar ratio, protein amount, and culture medium were demonstrated to be key parameters affecting delivery efficiency. The protein itself is an essential factor requiring selection of the appropriate cationic lipid as illustrated by low K8 binding activity of the anti-K8 antibody using guanidinium-based liposome. Optimization of various lipids led to the identification of the aminoglycoside lipid dioleyl succinyl paromomycin (DOSP associated with the imidazole-based helper lipid MM27 as a potent delivery system for K8 antibody, achieving delivery in 67% of HeLa cells. Cryo-transmission electron microscopy showed that the structure of supramolecular assemblies BGTC:DOPE/β-gal and DOSP:MM27/K8 were different depending on liposome types and lipid/protein molar ratio. Finally, we observed that K8 treatment with DOSP:MM27/K8 rescues the cyclic adenosine monophosphate (cAMP-dependent chloride efflux in F508del-CFTR expressing cells, providing a new tool for the study of channelopathies.

  20. Poking cells for efficient vector-free intracellular delivery

    Science.gov (United States)

    Wang, Ying; Yang, Yang; Yan, Li; Kwok, So Ying; Li, Wei; Wang, Zhigang; Zhu, Xiaoyue; Zhu, Guangyu; Zhang, Wenjun; Chen, Xianfeng; Shi, Peng

    2014-07-01

    Techniques for introducing foreign molecules and materials into living cells are of great value in cell biology research. A major barrier for intracellular delivery is to cross the cell membrane. Here we demonstrate a novel platform utilizing diamond nanoneedle arrays to facilitate efficient vector-free cytosolic delivery. Using our technique, cellular membrane is deformed by an array of nanoneedles with a force on the order of a few nanonewtons. We show that this technique is applicable to deliver a broad range of molecules and materials into different types of cells, including primary neurons in adherent culture. Especially, for delivering plasmid DNAs into neurons, our technique produces at least eightfold improvement (~45% versus ~1-5%) in transfection efficiency with a dramatically shorter experimental protocol, when compared with the commonly used lipofection approach. It is anticipated that our technique will greatly benefit basic research in cell biology and also a wide variety of clinical applications.

  1. Bioreducible Lipid-like Nanoparticles for Intracellular Protein Delivery

    Science.gov (United States)

    Arellano, Carlos Luis

    Protein-based therapy is one of the most direct ways to manipulate cell function and treat human disease. Although protein therapeutics has made its way to clinical practice, with five of the top fifteen global pharmaceuticals being peptide or protein-based drugs, one common limitation is that the effects of protein therapy are only achieved through the targeting of cell surface receptors and intracellular domains. Due to the impermeability of the cell membrane to most foreign materials, entire classes of potentially therapeutic proteins cannot thoroughly be studied without a safe and efficient method of transporting proteins into the cytosol. We report the use of a combinatorially-designed bioreducible lipid-like material (termed "lipidoid") - based protein delivery platform for the transfection of human cancer cell lines. Lipidoid nanoparticles are synthesized through a thin film dispersion method. The degradation of the bioreducible nanoparticles was observed when exposed to glutathione, a highly reductive compound present in the cytosol. We demonstrate that the nanoparticles are capable of transfecting a dose-dependent concentration of our model protein, beta-galactosidase into HeLa cells. Furthermore, formulations of the lipidoid containing the cytotoxic proteins saporin and RNase-A are both capable of inhibiting tumor cell proliferation as observed in in vitro treatment of different human cancer cell lines. There was no observed loss in protein activity after lyophilization and long--term storage, indicating the potential of pre-clinical applications. Overall, we demonstrate an effective approach to protein formulation and intracellular delivery. We believe that our formulations will lead to the study of a whole class of previously untapped therapeutics that may generate new solutions for previously untreatable diseases.

  2. 3D Porous Chitosan-Alginate Scaffolds as an In Vitro Model for Evaluating Nanoparticle-Mediated Tumor Targeting and Gene Delivery to Prostate Cancer.

    Science.gov (United States)

    Wang, Kui; Kievit, Forrest M; Florczyk, Stephen J; Stephen, Zachary R; Zhang, Miqin

    2015-10-12

    Cationic nanoparticles (NPs) for targeted gene delivery are conventionally evaluated using 2D in vitro cultures. However, this does not translate well to corresponding in vivo studies because of the marked difference in NP behavior in the presence of the tumor microenvironment. In this study, we investigated whether prostate cancer (PCa) cells cultured in three-dimensional (3D) chitosan-alginate (CA) porous scaffolds could model cationic NP-mediated gene targeted delivery to tumors in vitro. We assessed in vitro tumor cell proliferation, formation of tumor spheroids, and expression of marker genes that promote tumor malignancy in CA scaffolds. The efficacy of NP-targeted gene delivery was evaluated in PCa cells in 2D cultures, PCa tumor spheroids grown in CA scaffolds, and PCa tumors in a mouse TRAMP-C2 flank tumor model. PCa cells cultured in CA scaffolds grew into tumor spheroids and displayed characteristics of higher malignancy as compared to those in 2D cultures. Significantly, targeted gene delivery was only observed in cells cultured in CA scaffolds, whereas cells cultured on 2D plates showed no difference in gene delivery between targeted and nontarget control NPs. In vivo NP evaluation confirmed targeted gene delivery, indicating that only CA scaffolds correctly modeled NP-mediated targeted delivery in vivo. These findings suggest that CA scaffolds serve as a better in vitro platform than 2D cultures for evaluation of NP-mediated targeted gene delivery to PCa.

  3. Development of viral nanoparticles for efficient intracellular delivery

    Science.gov (United States)

    Wu, Zhuojun; Chen, Kevin; Yildiz, Ibrahim; Dirksen, Anouk; Fischer, Rainer; Dawson, Philip E.; Steinmetz, Nicole F.

    2012-05-01

    Viral nanoparticles (VNPs) based on plant viruses such as Cowpea mosaic virus (CPMV) can be used for a broad range of biomedical applications because they present a robust scaffold that allows functionalization by chemical conjugation and genetic modification, thereby offering an efficient drug delivery platform that can target specific cells and tissues. VNPs such as CPMV show natural affinity to cells; however, cellular uptake is inefficient. Here we show that chemical modification of the CPMV surface with a highly reactive, specific and UV-traceable hydrazone linker allows bioconjugation of polyarginine (R5) cell penetrating peptides (CPPs), which can overcome these limitations. The resulting CPMV-R5 particles were taken up into a human cervical cancer cell line (HeLa) more efficiently than native particles. Uptake efficiency was dependent on the density of R5 peptides on the surface of the VNP; particles displaying 40 R5 peptides per CPMV (denoted as CPMV-R5H) interact strongly with the plasma membrane and are taken up into the cells via an energy-dependent mechanism whereas particles displaying 10 R5 peptides per CPMV (CPMV-R5L) are only slowly taken up. The fate of CPMV-R5 versus native CPMV particles within cells was evaluated in a co-localization time course study. It was indicated that the intracellular localization of CPMV-R5 and CPMV differs; CPMV remains trapped in Lamp-1 positive endolysosomes over long time frames; in contrast, 30-50% of the CPMV-R5 particles transitioned from the endosome into other cellular vesicles or compartments. Our data provide the groundwork for the development of efficient drug delivery formulations based on CPMV-R5.Viral nanoparticles (VNPs) based on plant viruses such as Cowpea mosaic virus (CPMV) can be used for a broad range of biomedical applications because they present a robust scaffold that allows functionalization by chemical conjugation and genetic modification, thereby offering an efficient drug delivery platform

  4. High efficiency diffusion molecular retention tumor targeting.

    Directory of Open Access Journals (Sweden)

    Yanyan Guo

    Full Text Available Here we introduce diffusion molecular retention (DMR tumor targeting, a technique that employs PEG-fluorochrome shielded probes that, after a peritumoral (PT injection, undergo slow vascular uptake and extensive interstitial diffusion, with tumor retention only through integrin molecular recognition. To demonstrate DMR, RGD (integrin binding and RAD (control probes were synthesized bearing DOTA (for (111 In(3+, a NIR fluorochrome, and 5 kDa PEG that endows probes with a protein-like volume of 25 kDa and decreases non-specific interactions. With a GFP-BT-20 breast carcinoma model, tumor targeting by the DMR or i.v. methods was assessed by surface fluorescence, biodistribution of [(111In] RGD and [(111In] RAD probes, and whole animal SPECT. After a PT injection, both probes rapidly diffused through the normal and tumor interstitium, with retention of the RGD probe due to integrin interactions. With PT injection and the [(111In] RGD probe, SPECT indicated a highly tumor specific uptake at 24 h post injection, with 352%ID/g tumor obtained by DMR (vs 4.14%ID/g by i.v.. The high efficiency molecular targeting of DMR employed low probe doses (e.g. 25 ng as RGD peptide, which minimizes toxicity risks and facilitates clinical translation. DMR applications include the delivery of fluorochromes for intraoperative tumor margin delineation, the delivery of radioisotopes (e.g. toxic, short range alpha emitters for radiotherapy, or the delivery of photosensitizers to tumors accessible to light.

  5. An NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme responsive nanocarrier based on mesoporous silica nanoparticles for tumor targeted drug delivery in vitro and in vivo

    Science.gov (United States)

    Gayam, Srivardhan Reddy; Venkatesan, Parthiban; Sung, Yi-Ming; Sung, Shuo-Yuan; Hu, Shang-Hsiu; Hsu, Hsin-Yun; Wu, Shu-Pao

    2016-06-01

    The synthesis and characterization of an NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme responsive nanocarrier based on mesoporous silica nanoparticles (MSNPs) for on-command delivery applications has been described in this paper. Gatekeeping of MSNPs is achieved by the integration of mechanically interlocked rotaxane nanovalves on the surface of MSNPs. The rotaxane nanovalve system is composed of a linear stalk anchoring on the surface of MSNPs, an α-cyclodextrin ring that encircles it and locks the payload ``cargo'' molecules in the mesopores, and a benzoquinone stopper incorporated at the end of the stalk. The gate opening and controlled release of the cargo are triggered by cleavage of the benzoquinone stopper using an endogenous NQO1 enzyme. In addition to having efficient drug loading and controlled release mechanisms, this smart biocompatible carrier system showed obvious uptake and consequent release of the drug in tumor cells, could selectively induce the tumor cell death and enhance the capability of inhibition of tumor growth in vivo. The controlled drug delivery system demonstrated its use as a potential theranostic material.The synthesis and characterization of an NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme responsive nanocarrier based on mesoporous silica nanoparticles (MSNPs) for on-command delivery applications has been described in this paper. Gatekeeping of MSNPs is achieved by the integration of mechanically interlocked rotaxane nanovalves on the surface of MSNPs. The rotaxane nanovalve system is composed of a linear stalk anchoring on the surface of MSNPs, an α-cyclodextrin ring that encircles it and locks the payload ``cargo'' molecules in the mesopores, and a benzoquinone stopper incorporated at the end of the stalk. The gate opening and controlled release of the cargo are triggered by cleavage of the benzoquinone stopper using an endogenous NQO1 enzyme. In addition to having efficient drug loading and controlled release mechanisms, this

  6. Tumor-targeting magnetic lipoplex delivery of short hairpin RNA suppresses IGF-1R overexpression of lung adenocarcinoma A549 cells in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chunmao; Ding, Chao; Kong, Minjian [Department of Cardiothoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009 (China); Dong, Aiqiang, E-mail: dr_dongaiqiang@sina.com [Department of Cardiothoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009 (China); Qian, Jianfang; Jiang, Daming; Shen, Zhonghua [Department of Cardiothoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009 (China)

    2011-07-08

    Highlights: {yields} We compared lipofection with magnetofection about difference of transfection efficiency on delivery a therapeutic gene in vitro and in vivo. {yields} We investigated the difference of shRNA induced by magnetofection and lipofection into A549 cell and subcutaneous tumor to knockdown IGF-1R overexpressed in A549 cell and A549 tumor. {yields} We investigated in vivo shRNA silenced IGF-1R overexpression 24, 48, and 72 h after shRNA intravenous injection into tumor-bearing mice by way of magnetofection and lipofection. {yields} Our results showed that magnetofection could achieve therapeutic gene targeted delivery into special site, which contributed to targeted gene therapy of lung cancers. -- Abstract: Liposomal magnetofection potentiates gene transfection by applying a magnetic field to concentrate magnetic lipoplexes onto target cells. Magnetic lipoplexes are self-assembling ternary complexes of cationic lipids with plasmid DNA associated with superparamagnetic iron oxide nanoparticles (SPIONs). Type1insulin-like growth factor receptor (IGF-1R), an important oncogene, is frequently overexpressed in lung cancer and mediates cancer cell proliferation and tumor growth. In this study, we evaluated the transfection efficiency (percentage of transfected cells) and therapeutic potential (potency of IGF-1R knockdown) of liposomal magnetofection of plasmids expressing GFP and shRNAs targeting IGF-1R (pGFPshIGF-1Rs) in A549 cells and in tumor-bearing mice as compared to lipofection using Lipofectamine 2000. Liposomal magnetofection provided a threefold improvement in transgene expression over lipofection and transfected up to 64.1% of A549 cells in vitro. In vitro, IGF-1R specific-shRNA transfected by lipofection inhibited IGF-1R protein by 56.1 {+-} 6% and by liposomal magnetofection by 85.1 {+-} 3%. In vivo delivery efficiency of the pGFPshIGF-1R plasmid into the tumor was significantly higher in the liposomal magnetofection group than in the

  7. Tumor-targeting magnetic lipoplex delivery of short hairpin RNA suppresses IGF-1R overexpression of lung adenocarcinoma A549 cells in vitro and in vivo

    International Nuclear Information System (INIS)

    Wang, Chunmao; Ding, Chao; Kong, Minjian; Dong, Aiqiang; Qian, Jianfang; Jiang, Daming; Shen, Zhonghua

    2011-01-01

    Highlights: → We compared lipofection with magnetofection about difference of transfection efficiency on delivery a therapeutic gene in vitro and in vivo. → We investigated the difference of shRNA induced by magnetofection and lipofection into A549 cell and subcutaneous tumor to knockdown IGF-1R overexpressed in A549 cell and A549 tumor. → We investigated in vivo shRNA silenced IGF-1R overexpression 24, 48, and 72 h after shRNA intravenous injection into tumor-bearing mice by way of magnetofection and lipofection. → Our results showed that magnetofection could achieve therapeutic gene targeted delivery into special site, which contributed to targeted gene therapy of lung cancers. -- Abstract: Liposomal magnetofection potentiates gene transfection by applying a magnetic field to concentrate magnetic lipoplexes onto target cells. Magnetic lipoplexes are self-assembling ternary complexes of cationic lipids with plasmid DNA associated with superparamagnetic iron oxide nanoparticles (SPIONs). Type1insulin-like growth factor receptor (IGF-1R), an important oncogene, is frequently overexpressed in lung cancer and mediates cancer cell proliferation and tumor growth. In this study, we evaluated the transfection efficiency (percentage of transfected cells) and therapeutic potential (potency of IGF-1R knockdown) of liposomal magnetofection of plasmids expressing GFP and shRNAs targeting IGF-1R (pGFPshIGF-1Rs) in A549 cells and in tumor-bearing mice as compared to lipofection using Lipofectamine 2000. Liposomal magnetofection provided a threefold improvement in transgene expression over lipofection and transfected up to 64.1% of A549 cells in vitro. In vitro, IGF-1R specific-shRNA transfected by lipofection inhibited IGF-1R protein by 56.1 ± 6% and by liposomal magnetofection by 85.1 ± 3%. In vivo delivery efficiency of the pGFPshIGF-1R plasmid into the tumor was significantly higher in the liposomal magnetofection group than in the lipofection group. In vivo IGF-1R

  8. Thermo-sensitive liposomes loaded with doxorubicin and lysine modified single-walled carbon nanotubes as tumor-targeting drug delivery system.

    Science.gov (United States)

    Zhu, Xiali; Xie, Yingxia; Zhang, Yingjie; Huang, Heqing; Huang, Shengnan; Hou, Lin; Zhang, Huijuan; Li, Zhi; Shi, Jinjin; Zhang, Zhenzhong

    2014-11-01

    This report focuses on the thermo-sensitive liposomes loaded with doxorubicin and lysine-modified single-walled carbon nanotube drug delivery system, which was designed to enhance the anti-tumor effect and reduce the side effects of doxorubicin. Doxorubicin-lysine/single-walled carbon nanotube-thermo-sensitive liposomes was prepared by reverse-phase evaporation method, the mean particle size was 232.0 ± 5.6 nm, and drug entrapment efficiency was 86.5 ± 3.7%. The drug release test showed that doxorubicin released more quickly at 42℃ than at 37℃. Compared with free doxorubicin, doxorubicin-lysine/single-walled carbon nanotube-thermo-sensitive liposomes could efficiently cross the cell membranes and afford higher anti-tumor efficacy on the human hepatic carcinoma cell line (SMMC-7721) cells in vitro. For in vivo experiments, the relative tumor volumes of the sarcomaia 180-bearing mice in thermo-sensitive liposomes group and doxorubicin group were significantly smaller than those of N.S. group. Meanwhile, the combination of near-infrared laser irradiation at 808 nm significantly enhanced the tumor growth inhibition both on SMMC-7721 cells and the sarcomaia 180-bearing mice. The quality of life such as body weight, mental state, food and water intake of sarcomaia 180 tumor-bearing mice treated with doxorubicin-lysine/single-walled carbon nanotube-thermo-sensitive liposomes were much higher than those treated with doxorubicin. In conclusion, doxorubicin-lysine/single-walled carbon nanotube-thermo-sensitive liposomes combined with near-infrared laser irradiation at 808 nm may potentially provide viable clinical strategies for targeting delivery of anti-cancer drugs. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  9. Tumor-targeting magnetic lipoplex delivery of short hairpin RNA suppresses IGF-1R overexpression of lung adenocarcinoma A549 cells in vitro and in vivo.

    Science.gov (United States)

    Wang, Chunmao; Ding, Chao; Kong, Minjian; Dong, Aiqiang; Qian, Jianfang; Jiang, Daming; Shen, Zhonghua

    2011-07-08

    Liposomal magnetofection potentiates gene transfection by applying a magnetic field to concentrate magnetic lipoplexes onto target cells. Magnetic lipoplexes are self-assembling ternary complexes of cationic lipids with plasmid DNA associated with superparamagnetic iron oxide nanoparticles (SPIONs). Type1 insulin-like growth factor receptor (IGF-1R), an important oncogene, is frequently overexpressed in lung cancer and mediates cancer cell proliferation and tumor growth. In this study, we evaluated the transfection efficiency (percentage of transfected cells) and therapeutic potential (potency of IGF-1R knockdown) of liposomal magnetofection of plasmids expressing GFP and shRNAs targeting IGF-1R (pGFPshIGF-1Rs) in A549 cells and in tumor-bearing mice as compared to lipofection using Lipofectamine 2000. Liposomal magnetofection provided a threefold improvement in transgene expression over lipofection and transfected up to 64.1% of A549 cells in vitro. In vitro, IGF-1R specific-shRNA transfected by lipofection inhibited IGF-1R protein by 56.1±6% and by liposomal magnetofection by 85.1±3%. In vivo delivery efficiency of the pGFPshIGF-1R plasmid into the tumor was significantly higher in the liposomal magnetofection group than in the lipofection group. In vivo IGF-1R specific-shRNA by lipofection inhibited IGF-1R protein by an average of 43.8±5.3%; that by liposomal magnetofection inhibited IGF-1R protein by 43.4±5.7%, 56.3±9.6%, and 72.2±6.8%, at 24, 48, and 72 h, respectively, after pGFPshIGF-1R injection. Our findings indicate that liposomal magnetofection may be a promising method that allows the targeting of gene therapy to lung cancer. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Preparation, Characterization, and Optimization of Folic Acid-Chitosan-Methotrexate Core-Shell Nanoparticles by Box-Behnken Design for Tumor-Targeted Drug Delivery.

    Science.gov (United States)

    Naghibi Beidokhti, Hamid Reza; Ghaffarzadegan, Reza; Mirzakhanlouei, Sasan; Ghazizadeh, Leila; Dorkoosh, Farid Abedin

    2017-01-01

    The objective of this study was to investigate the combined influence of independent variables in the preparation of folic acid-chitosan-methotrexate nanoparticles (FA-Chi-MTX NPs). These NPs were designed and prepared for targeted drug delivery in tumor. The NPs of each batch were prepared by coaxial electrospray atomization method and evaluated for particle size (PS) and particle size distribution (PSD). The independent variables were selected to be concentration of FA-chitosan, ratio of shell solution flow rate to core solution flow rate, and applied voltage. The process design of experiments (DOE) was obtained with three factors in three levels by Design expert software. Box-Behnken design was used to select 15 batches of experiments randomly. The chemical structure of FA-chitosan was examined by FTIR. The NPs of each batch were collected separately, and morphologies of NPs were investigated by field emission scanning electron microscope (FE-SEM). The captured pictures of all batches were analyzed by ImageJ software. Mean PS and PSD were calculated for each batch. Polynomial equation was produced for each response. The FE-SEM results showed the mean diameter of the core-shell NPs was around 304 nm, and nearly 30% of the produced NPs are in the desirable range. Optimum formulations were selected. The validation of DOE optimization results showed errors around 2.5 and 2.3% for PS and PSD, respectively. Moreover, the feasibility of using prepared NPs to target tumor extracellular pH was shown, as drug release was greater in the pH of endosome (acidic medium). Finally, our results proved that FA-Chi-MTX NPs were active against the human epithelial cervical cancer (HeLa) cells.

  11. Functionalized linear poly(amidoamine)s are efficient vectors for intracellular protein delivery

    NARCIS (Netherlands)

    Coué, G.M.J.P.C.; Engbersen, Johannes F.J.

    2011-01-01

    An effective intracellular protein delivery system was developed based on functionalized linear poly(amidoamine)s (PAAs) that form self-assembled cationic nanocomplexes with oppositely charged proteins. Three differently functionalized PAAs were synthesized, two of these having repetitive disulfide

  12. Reducible poly(amido ethylenimine)s designed for triggered intracellular gene delivery

    NARCIS (Netherlands)

    Christensen, Lane V.; Christensen, L.; Chang, Chien-Wen; Kim, Won Jong; Kim, Sung Wan; Zhong, Zhiyuan; Lin, C.; Engbersen, Johannes F.J.; Feijen, Jan

    2006-01-01

    Poly(amido ethylenimine) polymers, a new type of peptidomimetic polymer, containing multiple disulfide bonds (SS-PAEIs) designed to degrade after delivery of plasmid DNA (pDNA) into the cell were synthesized and investigated as new carriers for triggered intracellular gene delivery. More

  13. Engineered nonviral nanocarriers for intracellular gene delivery applications

    International Nuclear Information System (INIS)

    Ojea-Jiménez, Isaac; Puntes, Victor F; Tort, Olivia; Lorenzo, Julia

    2012-01-01

    The efficient delivery of nucleic acids into mammalian cells is a central aspect of cell biology and of medical applications, including cancer therapy and tissue engineering. Non-viral chemical methods have been received with great interest for transfecting cells. However, further development of nanocarriers that are biocompatible, efficient and suitable for clinical applications is still required. In this paper, the different material platforms for gene delivery are comparatively addressed, and the mechanisms of interaction with biological systems are discussed carefully. (paper)

  14. Synthesis of star-branched PLA-b-PMPC copolymer micelles as long blood circulation vectors to enhance tumor-targeted delivery of hydrophobic drugs in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Long, Li-xia [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science & Engineering, Tianjin University, Tianjin 300072 (China); Zhao, Jin, E-mail: zhaojin@tju.edu.cn [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science & Engineering, Tianjin University, Tianjin 300072 (China); Li, Ke; He, Li-gang; Qian, Xiao-ming; Liu, Chao-yong; Wang, Li-mei; Yang, Xin-qi [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science & Engineering, Tianjin University, Tianjin 300072 (China); Sun, Jinjin [Department of General Surgery, The Second Hospital of Tianjin Medical University, Tianjin 300211 (China); Ren, Yu [Tianjin Research Center of Basic Medical Science, Tianjin Medical University, Tianjin 300070 (China); Kang, Chun-sheng, E-mail: kang97061@yahoo.com [Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052 (China); Yuan, Xu-bo, E-mail: xbyuan@tju.edu.cn [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science & Engineering, Tianjin University, Tianjin 300072 (China)

    2016-09-01

    Star-branched amphiphilic copolymer nanocarriers with high-density zwitterionic shell show great promise in drug delivery due to their controllable small size and excellent anti-biofouling properties. This gives the hydrophobic cargo with high stability and long blood circulation in vivo. In the present study, star-branched polylactic acid and poly(2-methacryloyloxyethyl phosphorylcholine) copolymers with (AB{sub 3}){sub 3}–type architecture (PLA-b-PMPC{sub 3}){sub 3} were conceived as drug vectors, and the copolymers were synthesized by an “arm-first” approach via the combination of ring opening polymerization (ROP), atom transfer radical polymerization (ATRP) and the click reaction. The self-assembled star-branched copolymer micelles (sCPM) had an average diameter of about 64.5 nm and exhibited an ultra-hydrophilic surface with an ultralow water contact angle of about 12.7°, which efficiently suppressed the adhesion of serum proteins. In vivo experiments showed that the sCPM loading strongly enhanced the blood circulation time of DiI and the plasma half-life of DiI in sCPM was 19.3 h. The relative accumulation concentration in tumor of DiI delivered by sCPM was 2.37-fold higher than that of PLA-PEG, at 4 h after intravenous injection. These results demonstrated that the star-branched copolymer (PLA-b-PMPC{sub 3}){sub 3} is a promising alternative carrier material for intravenous delivery versus classic PEG-modified strategies. - Highlights: • Star-branched amphiphilic copolymer micelles (sCPM) with zwitterionic shells were prepared. • sCPM possess an ultra-hydrophilic surface and thus inhibited the protein absorption. • sCPM can effectively prolong the cargo’s plasma circulation time. • sCPM can enhance the cargo’s passive tumor-targeted delivery.

  15. Carbon Nanotube Arrays for Intracellular Delivery and Biological Applications

    Science.gov (United States)

    Golshadi, Masoud

    Introducing nucleic acids into mammalian cells is a crucial step to elucidate biochemical pathways, modify gene expression in immortalized cells, primary cells, and stem cells, and intoduces new approaches for clinical diagnostics and therapeutics. Current gene transfer technologies, including lipofection, electroporation, and viral delivery, have enabled break-through advances in basic and translational science to enable derivation and programming of embryonic stem cells, advanced gene editing using CRISPR (Clustered regularly interspaced short palindromic repeats), and development of targeted anti-tumor therapy using chimeric antigen receptors in T-cells (CAR-T). Despite these successes, current transfection technologies are time consuming and limited by the inefficient introduction of test molecules into large populations of target cells, and the cytotoxicity of the techniques. Moreover, many cell types cannot be consistently transfected by lipofection or electroporation (stem cells, T-cells) and viral delivery has limitations to the size of experimental DNA that can be packaged. In this dissertation, a novel coverslip-like platform consisting of an array of aligned hollow carbon nanotubes (CNTs) embedded in a sacrificial template is developed that enhances gene transfer capabilities, including high efficiency, low toxicity, in an expanded range of target cells, with the potential to transfer mixed combinations of protein and nucleic acids. The CNT array devices are fabricated by a scalable template-based manufacturing method using commercially available membranes, eliminating the need for nano-assembly. High efficient transfection has been demonstrated by delivering various cargos (nanoparticles, dye and plasmid DNA) into populations of cells, achieving 85% efficiency of plasmid DNA delivery into immortalized cells. Moreover, the CNT-mediated transfection of stem cells shows 3 times higher efficiency compared to current lipofection methods. Evaluating the cell

  16. Intracellular Delivery of Nanomaterials via an Inertial Microfluidic Cell Hydroporator.

    Science.gov (United States)

    Deng, Yanxiang; Kizer, Megan; Rada, Miran; Sage, Jessica; Wang, Xing; Cheon, Dong-Joo; Chung, Aram J

    2018-04-11

    The introduction of nanomaterials into cells is an indispensable process for studies ranging from basic biology to clinical applications. To deliver foreign nanomaterials into living cells, traditionally endocytosis, viral and lipid nanocarriers or electroporation are mainly employed; however, they critically suffer from toxicity, inconsistent delivery, and low throughput and are time-consuming and labor-intensive processes. Here, we present a novel inertial microfluidic cell hydroporator capable of delivering a wide range of nanomaterials to various cell types in a single-step without the aid of carriers or external apparatus. The platform inertially focuses cells into the channel center and guides cells to collide at a T-junction. Controlled compression and shear forces generate transient membrane discontinuities that facilitate passive diffusion of external nanomaterials into the cell cytoplasm while maintaining high cell viability. This hydroporation method shows superior delivery efficiency, is high-throughput, and has high controllability; moreover, its extremely simple and low-cost operation provides a powerful and practical strategy in the applications of cellular imaging, biomanufacturing, cell-based therapies, regenerative medicine, and disease diagnosis.

  17. Bioreducible poly(amidoamine)s as carriers for intracellular protein delivery to intestinal cells

    NARCIS (Netherlands)

    Cohen, S.; Coué, G.M.J.P.C.; Beno, D.; Korenstein, R.; Engbersen, Johannes F.J.

    2012-01-01

    An effective intracellular protein delivery system was developed based on linear poly(amidoamine)s (PAAs) that form self-assembled cationic nanocomplexes with oppositely charged proteins. Two differently functionalized PAAs were synthesized by Michael-type polyaddition of 4-amino-1-butanol (ABOL) to

  18. Polymeric nanoparticles affect the intracellular delivery, antiretroviral activity and cytotoxicity of the microbicide drug candidate dapivirine.

    Science.gov (United States)

    das Neves, José; Michiels, Johan; Ariën, Kevin K; Vanham, Guido; Amiji, Mansoor; Bahia, Maria Fernanda; Sarmento, Bruno

    2012-06-01

    To assess the intracellular delivery, antiretroviral activity and cytotoxicity of poly(ε-caprolactone) (PCL) nanoparticles containing the antiretroviral drug dapivirine. Dapivirine-loaded nanoparticles with different surface properties were produced using three surface modifiers: poloxamer 338 NF (PEO), sodium lauryl sulfate (SLS) and cetyl trimethylammonium bromide (CTAB). The ability of nanoparticles to promote intracellular drug delivery was assessed in different cell types relevant for vaginal HIV transmission/microbicide development. Also, antiretroviral activity of nanoparticles was determined in different cell models, as well as their cytotoxicity. Dapivirine-loaded nanoparticles were readily taken up by different cells, with particular kinetics depending on the cell type and nanoparticles, resulting in enhanced intracellular drug delivery in phagocytic cells. Different nanoparticles showed similar or improved antiviral activity compared to free drug. There was a correlation between increased antiviral activity and increased intracellular drug delivery, particularly when cell models were submitted to a single initial short-course treatment. PEO-PCL and SLS-PCL nanoparticles consistently showed higher selectivity index values than free drug, contrasting with high cytotoxicity of CTAB-PCL. These results provide evidence on the potential of PCL nanoparticles to affect in vitro toxicity and activity of dapivirine, depending on surface engineering. Thus, this formulation approach may be a promising strategy for the development of next generation microbicides.

  19. Bioreducible poly(amidoamine)s with charge-reversel properties for intracellular protein delivery

    NARCIS (Netherlands)

    Coué, G.M.J.P.C.; Engbersen, Johannes F.J.; Hennink, W.E.; Engbersen, J.F.J.

    2010-01-01

    An effective intracellular protein delivery system was developed using bioreducible disulfide-containing poly(amidoamine)s with negatively charged citraconic side groups that can give charge-reversal upon pH decrease. These water-soluble and linear polymers efficiently self-assemble with proteins

  20. Controlled release and intracellular protein delivery from mesoporous silica nanoparticles.

    Science.gov (United States)

    Deodhar, Gauri V; Adams, Marisa L; Trewyn, Brian G

    2017-01-01

    Protein therapeutics are promising candidates for disease treatment due to their high specificity and minimal adverse side effects; however, targeted protein delivery to specific sites has proven challenging. Mesoporous silica nanoparticles (MSN) have demonstrated to be ideal candidates for this application, given their high loading capacity, biocompatibility, and ability to protect host molecules from degradation. These materials exhibit tunable pore sizes, shapes and volumes, and surfaces which can be easily functionalized. This serves to control the movement of molecules in and out of the pores, thus entrapping guest molecules until a specific stimulus triggers release. In this review, we will cover the benefits of using MSN as protein therapeutic carriers, demonstrating that there is great diversity in the ways MSN can be used to service proteins. Methods for controlling the physical dimensions of pores via synthetic conditions, applications of therapeutic protein loaded MSN materials in cancer therapies, delivering protein loaded MSN materials to plant cells using biolistic methods, and common stimuli-responsive functionalities will be discussed. New and exciting strategies for controlled release and manipulation of proteins are also covered in this review. While research in this area has advanced substantially, we conclude this review with future challenges to be tackled by the scientific community. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Intracellular Delivery of Nanobodies for Imaging of Target Proteins in Live Cells.

    Science.gov (United States)

    Röder, Ruth; Helma, Jonas; Preiß, Tobias; Rädler, Joachim O; Leonhardt, Heinrich; Wagner, Ernst

    2017-01-01

    Cytosolic delivery of nanobodies for molecular target binding and fluorescent labeling in living cells. Fluorescently labeled nanobodies were formulated with sixteen different sequence-defined oligoaminoamides. The delivery of formulated anti-GFP nanobodies into different target protein-containing HeLa cell lines was investigated by flow cytometry and fluorescence microscopy. Nanoparticle formation was analyzed by fluorescence correlation spectroscopy. The initial oligomer screen identified two cationizable four-arm structured oligomers (734, 735) which mediate intracellular nanobody delivery in a receptor-independent (734) or folate receptor facilitated (735) process. The presence of disulfide-forming cysteines in the oligomers was found critical for the formation of stable protein nanoparticles of around 20 nm diameter. Delivery of labeled GFP nanobodies or lamin nanobodies to their cellular targets was demonstrated by fluorescence microscopy including time lapse studies. Two sequence-defined oligoaminoamides with or without folate for receptor targeting were identified as effective carriers for intracellular nanobody delivery, as exemplified by GFP or lamin binding in living cells. Due to the conserved nanobody core structure, the methods should be applicable for a broad range of nanobodies directed to different intracellular targets.

  2. Intracellular Protein Delivery System Using a Target-Specific Repebody and Translocation Domain of Bacterial Exotoxin.

    Science.gov (United States)

    Kim, Hee-Yeon; Kang, Jung Ae; Ryou, Jeong-Hyun; Lee, Gyeong Hee; Choi, Dae Seong; Lee, Dong Eun; Kim, Hak-Sung

    2017-11-17

    With the high efficacy of protein-based therapeutics and plenty of intracellular drug targets, cytosolic protein delivery in a cell-specific manner has attracted considerable attention in the field of precision medicine. Herein, we present an intracellular protein delivery system based on a target-specific repebody and the translocation domain of Pseudomonas aeruginosa exotoxin A. The delivery platform was constructed by genetically fusing an EGFR-specific repebody as a targeting moiety to the translocation domain, while a protein cargo was fused to the C-terminal end of the delivery platform. The delivery platform was revealed to efficiently translocate a protein cargo to the cytosol in a target-specific manner. We demonstrate the utility and potential of the delivery platform by showing a remarkable tumor regression with negligible toxicity in a xenograft mice model when gelonin was used as the cytotoxic protein cargo. The present platform can find wide applications to the cell-selective cytosolic delivery of diverse proteins in many areas.

  3. Delivery of rifampicin-chitin nanoparticles into the intracellular compartment of polymorphonuclear leukocytes.

    Science.gov (United States)

    Smitha, K T; Nisha, N; Maya, S; Biswas, Raja; Jayakumar, R

    2015-03-01

    Polymorphonuclear leukocytes (PMNs) provide the primary host defence against invading pathogens by producing reactive oxygen species (ROS) and microbicidal products. However, few pathogens can survive for a prolonged period of time within the PMNs. Additionally their intracellular lifestyle within the PMNs protect themselves from the additional lethal action of host immune systems such as antibodies and complements. Antibiotic delivery into the intracellular compartments of PMNs is a major challenge in the field of infectious diseases. In order to deliver antibiotics within the PMNs and for the better treatment of intracellular bacterial infections we synthesized rifampicin (RIF) loaded amorphous chitin nanoparticles (RIF-ACNPs) of 350±50 nm in diameter. RIF-ACNPs nanoparticles are found to be non-hemolytic and non-toxic against a variety of host cells. The release of rifampicin from the prepared nanoparticles was ∼60% in 24 h, followed by a sustained pattern till 72 h. The RIF-ACNPs nanoparticles showed 5-6 fold enhanced delivery of RIF into the intracellular compartments of PMNs. The RIF-ACNPs showed anti-microbial activity against Escherichia coli, Staphylococcus aureus and a variety of other bacteria. In summary, our results suggest that RIF-ACNPs could be used to treat a variety of intracellular bacterial infections. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Highly Efficient Intracellular Protein Delivery by Cationic Polyethyleneimine-Modified Gelatin Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ming-Ju Chou

    2018-02-01

    Full Text Available Intracellular protein delivery may provide a safe and non-genome integrated strategy for targeting abnormal or specific cells for applications in cell reprogramming therapy. Thus, highly efficient intracellular functional protein delivery would be beneficial for protein drug discovery. In this study, we generated a cationic polyethyleneimine (PEI-modified gelatin nanoparticle and evaluated its intracellular protein delivery ability in vitro and in vivo. The experimental results showed that the PEI-modified gelatin nanoparticle had a zeta potential of approximately +60 mV and the particle size was approximately 135 nm. The particle was stable at different biological pH values and temperatures and high protein loading efficiency was observed. The fluorescent image results revealed that large numbers of particles were taken up into the mammalian cells and escaped from the endosomes into the cytoplasm. In a mouse C26 cell-xenograft cancer model, particles accumulated in cancer cells. In conclusion, the PEI-modified gelatin particle may provide a biodegradable and highly efficient protein delivery system for use in regenerative medicine and cancer therapy.

  5. Direct and sustained intracellular delivery of exogenous molecules using acoustic-transfection with high frequency ultrasound

    Science.gov (United States)

    Yoon, Sangpil; Kim, Min Gon; Chiu, Chi Tat; Hwang, Jae Youn; Kim, Hyung Ham; Wang, Yingxiao; Shung, K. Kirk

    2016-02-01

    Controlling cell functions for research and therapeutic purposes may open new strategies for the treatment of many diseases. An efficient and safe introduction of membrane impermeable molecules into target cells will provide versatile means to modulate cell fate. We introduce a new transfection technique that utilizes high frequency ultrasound without any contrast agents such as microbubbles, bringing a single-cell level targeting and size-dependent intracellular delivery of macromolecules. The transfection apparatus consists of an ultrasonic transducer with the center frequency of over 150 MHz and an epi-fluorescence microscope, entitled acoustic-transfection system. Acoustic pulses, emitted from an ultrasonic transducer, perturb the lipid bilayer of the cell membrane of a targeted single-cell to induce intracellular delivery of exogenous molecules. Simultaneous live cell imaging using HeLa cells to investigate the intracellular concentration of Ca2+ and propidium iodide (PI) and the delivery of 3 kDa dextran labeled with Alexa 488 were demonstrated. Cytosolic delivery of 3 kDa dextran induced via acoustic-transfection was manifested by diffused fluorescence throughout whole cells. Short-term (6 hr) cell viability test and long-term (40 hr) cell tracking confirmed that the proposed approach has low cell cytotoxicity.

  6. Biological macromolecules based targeted nanodrug delivery systems for the treatment of intracellular infections.

    Science.gov (United States)

    Aparna, V; Shiva, M; Biswas, Raja; Jayakumar, R

    2018-04-15

    Intracellular infections are tricky to treat, the reason being the poor penetration of antibiotics/antimycotics into the microbial niche (host cell). Macrophages are primary targets of facultative and obligate intracellular bacteria/fungi to be abused as host cells. The need for drugs with better intracellular penetration led to the development of endocytosable drug carriers, which can cross the cell membrane of the host cells (macrophages) by imitating the entry path of the pathogens. Therefore, the drugs can be targeted to macrophages ensuring enhanced therapeutic effect. This review discusses the exploitation of various nanocarriers for targeted delivery of drugs to the macrophages in the last two decades. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Tumor-targeting peptides from combinatorial libraries*

    Science.gov (United States)

    Liu, Ruiwu; Li, Xiaocen; Xiao, Wenwu; Lam, Kit S.

    2018-01-01

    Cancer is one of the major and leading causes of death worldwide. Two of the greatest challenges infighting cancer are early detection and effective treatments with no or minimum side effects. Widespread use of targeted therapies and molecular imaging in clinics requires high affinity, tumor-specific agents as effective targeting vehicles to deliver therapeutics and imaging probes to the primary or metastatic tumor sites. Combinatorial libraries such as phage-display and one-bead one-compound (OBOC) peptide libraries are powerful approaches in discovering tumor-targeting peptides. This review gives an overview of different combinatorial library technologies that have been used for the discovery of tumor-targeting peptides. Examples of tumor-targeting peptides identified from each combinatorial library method will be discussed. Published tumor-targeting peptide ligands and their applications will also be summarized by the combinatorial library methods and their corresponding binding receptors. PMID:27210583

  8. Carbohydrate plasma expanders for passive tumor targeting

    DEFF Research Database (Denmark)

    Hoffmann, Stefan; Caysa, Henrike; Kuntsche, Judith

    2013-01-01

    The objective of this study was to investigate the suitability of carbohydrate plasma volume expanders as a novel polymer platform for tumor targeting. Many synthetic polymers have already been synthesized for targeted tumor therapy, but potential advantages of these carbohydrates include inexpen...... was characterized in human colon carcinoma xenograft bearing nude mice. A tumor specific accumulation of HES 450 was observed, which proves it’s potential as carrier for passive tumor targeting....

  9. Arginine-rich intracellular delivery peptides noncovalently transport protein into living cells

    International Nuclear Information System (INIS)

    Wang, Y.-H.; Chen, C.-P.; Chan, M.-H.; Chang, M.; Hou, Y.-W.; Chen, H.-H.; Hsu, H.-R.; Liu, Kevin; Lee, H.-J.

    2006-01-01

    Plasma membranes of plant or animal cells are generally impermeable to peptides or proteins. Many basic peptides have previously been investigated and covalently cross-linked with cargoes for cellular internalization. In the current study, we demonstrate that arginine-rich intracellular delivery (AID) peptides are able to deliver fluorescent proteins or β-galactosidase enzyme into animal and plant cells, as well as animal tissue. Cellular internalization and transdermal delivery of protein could be mediated by effective and nontoxic AID peptides in a neither fusion protein nor conjugation fashion. Therefore, noncovalent AID peptides may provide a useful strategy to have active proteins function in living cells and tissues in vivo

  10. Active Intracellular Delivery of a Cas9/sgRNA Complex Using Ultrasound-Propelled Nanomotors.

    Science.gov (United States)

    Hansen-Bruhn, Malthe; de Ávila, Berta Esteban-Fernández; Beltrán-Gastélum, Mara; Zhao, Jing; Ramírez-Herrera, Doris E; Angsantikul, Pavimol; Vesterager Gothelf, Kurt; Zhang, Liangfang; Wang, Joseph

    2018-03-01

    Direct and rapid intracellular delivery of a functional Cas9/sgRNA complex using ultrasound-powered nanomotors is reported. The Cas9/sgRNA complex is loaded onto the nanomotor surface through a reversible disulfide linkage. A 5 min ultrasound treatment enables the Cas9/sgRNA-loaded nanomotors to directly penetrate through the plasma membrane of GFP-expressing B16F10 cells. The Cas9/sgRNA is released inside the cells to achieve highly effective GFP gene knockout. The acoustic Cas9/sgRNA-loaded nanomotors display more than 80 % GFP knockout within 2 h of cell incubation compared to 30 % knockout using static nanowires. More impressively, the nanomotors enable highly efficient knockout with just 0.6 nm of the Cas9/sgRNA complex. This nanomotor-based intracellular delivery method thus offers an attractive route to overcome physiological barriers for intracellular delivery of functional proteins and RNAs, thus indicating considerable promise for highly efficient therapeutic applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The encapsulation and intracellular delivery of trehalose using a thermally responsive nanocapsule

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Wujie; He Xiaoming [Department of Mechanical Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208 (United States); Rong Jianhua; Wang Qian [Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208 (United States)], E-mail: xmhe@sc.edu

    2009-07-08

    The thermally responsive wall permeability of an empty core-shell structured Pluronic nanocapsule (together with its temperature dependent size and surface charge) was successfully utilized for encapsulation, intracellular delivery, and controlled release of trehalose, a highly hydrophilic small (M{sub W} = 342 D) molecule (a disaccharide of glucose) that is exceptional for long-term stabilization of biologicals (particularly at ambient temperatures). It was found that trehalose can be physically encapsulated in the nanocapsule using a soaking-freeze-drying-heating procedure. The nanocapsule is capable of physically withholding trehalose with negligible release in hours for cellular uptake at 37 deg. C when its wall permeability is low. A quick release of the encapsulated sugar can be achieved by thermally cycling the nanocapsule between 37 and 22 deg. C (or lower). A significant amount of trehalose (up to 0.3 M) can be delivered into NIH 3T3 fibroblasts by incubating the cells with the trehalose-encapsulated nanocapsules at 37 deg. C for 40 min. Moreover, cytotoxicity of the nanocapsule for the purpose of intracellular delivery of trehalose was found to be negligible. Altogether, the thermally responsive nanocapsule is effective for intracellular delivery of trehalose, which is critical for the long-term stabilization of mammalian cells at ambient temperatures and the eventual success of modern cell-based medicine.

  12. Intracellular Protein Delivery and Gene Transfection by Electroporation Using a Microneedle Electrode Array

    Science.gov (United States)

    Choi, Seong-O; Kim, Yeu-Chun; Lee, Jeong Woo; Park, Jung-Hwan

    2012-01-01

    The impact of many biopharmaceuticals, including protein- and gene-based therapies, has been limited by the need for better methods of delivery into cells within tissues. Here, we present intracellular delivery of molecules and transfection with plasmid DNA by electroporation using a novel microneedle electrode array designed for targeted treatment of skin and other tissue surfaces. The microneedle array is molded out of polylactic acid. Electrodes and circuitry required for electroporation are applied to the microneedle array surface by a new metal-transfer micromolding method. The microneedle array maintains mechanical integrity after insertion into pig cadaver skin and is able to electroporate human prostate cancer cells in vitro. Quantitative measurements show that increasing electroporation pulse voltage increases uptake efficiency of calcein and bovine serum albumin, whereas increasing pulse length has lesser effects over the range studied. Uptake of molecules by up to 50 % of cells and transfection of 12 % of cells with a gene for green fluorescent protein is demonstrated at high cell viability. We conclude that the microneedle electrode array is able to electroporate cells, resulting in intracellular uptake of molecules, and has potential applications to improve intracellular delivery of proteins, DNA and other biopharmaceuticals. PMID:22328093

  13. Enhanced Intracellular Delivery and Tissue Retention of Nanoparticles by Mussel-Inspired Surface Chemistry.

    Science.gov (United States)

    Chen, Kai; Xu, Xiaoqiu; Guo, Jiawei; Zhang, Xuelin; Han, Songling; Wang, Ruibing; Li, Xiaohui; Zhang, Jianxiang

    2015-11-09

    Nanomaterials have been broadly studied for intracellular delivery of diverse compounds for diagnosis or therapy. Currently it remains challenging for discovering new biomolecules that can prominently enhance cellular internalization and tissue retention of nanoparticles (NPs). Herein we report for the first time that a mussel-inspired engineering approach may notably promote cellular uptake and tissue retention of NPs. In this strategy, the catechol moiety is covalently anchored onto biodegradable NPs. Thus, fabricated NPs can be more effectively internalized by sensitive and multidrug resistant tumor cells, as well as some normal cells, resulting in remarkably potentiated in vitro activity when an antitumor drug is packaged. Moreover, the newly engineered NPs afford increased tissue retention post local or oral delivery. This biomimetic approach is promising for creating functional nanomaterials for drug delivery, vaccination, and cell therapy.

  14. Generic Delivery of Payload of Nanoparticles Intracellularly via Hybrid Polymer Capsules for Bioimaging Applications

    Science.gov (United States)

    Sami, Haider; Maparu, Auhin K.; Kumar, Ashok; Sivakumar, Sri

    2012-01-01

    Towards the goal of development of a generic nanomaterial delivery system and delivery of the ‘as prepared’ nanoparticles without ‘further surface modification’ in a generic way, we have fabricated a hybrid polymer capsule as a delivery vehicle in which nanoparticles are loaded within their cavity. To this end, a generic approach to prepare nanomaterials-loaded polyelectrolyte multilayered (PEM) capsules has been reported, where polystyrene sulfonate (PSS)/polyallylamine hydrochloride (PAH) polymer capsules were employed as nano/microreactors to synthesize variety of nanomaterials (metal nanoparticles; lanthanide doped inorganic nanoparticles; gadolinium based nanoparticles, cadmium based nanoparticles; different shapes of nanoparticles; co-loading of two types of nanoparticles) in their hollow cavity. These nanoparticles-loaded capsules were employed to demonstrate generic delivery of payload of nanoparticles intracellularly (HeLa cells), without the need of individual nanoparticle surface modification. Validation of intracellular internalization of nanoparticles-loaded capsules by HeLa cells was ascertained by confocal laser scanning microscopy. The green emission from Tb3+ was observed after internalization of LaF3:Tb3+(5%) nanoparticles-loaded capsules by HeLa cells, which suggests that nanoparticles in hybrid capsules retain their functionality within the cells. In vitro cytotoxicity studies of these nanoparticles-loaded capsules showed less/no cytotoxicity in comparison to blank capsules or untreated cells, thus offering a way of evading direct contact of nanoparticles with cells because of the presence of biocompatible polymeric shell of capsules. The proposed hybrid delivery system can be potentially developed to avoid a series of biological barriers and deliver multiple cargoes (both simultaneous and individual delivery) without the need of individual cargo design/modification. PMID:22649489

  15. Generic delivery of payload of nanoparticles intracellularly via hybrid polymer capsules for bioimaging applications.

    Directory of Open Access Journals (Sweden)

    Haider Sami

    Full Text Available Towards the goal of development of a generic nanomaterial delivery system and delivery of the 'as prepared' nanoparticles without 'further surface modification' in a generic way, we have fabricated a hybrid polymer capsule as a delivery vehicle in which nanoparticles are loaded within their cavity. To this end, a generic approach to prepare nanomaterials-loaded polyelectrolyte multilayered (PEM capsules has been reported, where polystyrene sulfonate (PSS/polyallylamine hydrochloride (PAH polymer capsules were employed as nano/microreactors to synthesize variety of nanomaterials (metal nanoparticles; lanthanide doped inorganic nanoparticles; gadolinium based nanoparticles, cadmium based nanoparticles; different shapes of nanoparticles; co-loading of two types of nanoparticles in their hollow cavity. These nanoparticles-loaded capsules were employed to demonstrate generic delivery of payload of nanoparticles intracellularly (HeLa cells, without the need of individual nanoparticle surface modification. Validation of intracellular internalization of nanoparticles-loaded capsules by HeLa cells was ascertained by confocal laser scanning microscopy. The green emission from Tb(3+ was observed after internalization of LaF(3:Tb(3+(5% nanoparticles-loaded capsules by HeLa cells, which suggests that nanoparticles in hybrid capsules retain their functionality within the cells. In vitro cytotoxicity studies of these nanoparticles-loaded capsules showed less/no cytotoxicity in comparison to blank capsules or untreated cells, thus offering a way of evading direct contact of nanoparticles with cells because of the presence of biocompatible polymeric shell of capsules. The proposed hybrid delivery system can be potentially developed to avoid a series of biological barriers and deliver multiple cargoes (both simultaneous and individual delivery without the need of individual cargo design/modification.

  16. Intracellular localisation of proteins to specific cellular areas by nanocapsule mediated delivery.

    Science.gov (United States)

    Wang, Huabin; Chen, Ligang; Sun, Xianchao; Fu, Ailing

    2017-09-01

    Nanocapsules are promising carriers with great potential for intracellular protein transport. Although many studies have intended to improve cell uptake efficacy, there is an increasing interest in understanding of subcellular distribution of cargoes inside cells, which is essential for purposeful delivery of biomolecules into specific sites within cells. Herein, we interrogate the intracellular localisation of exogenous proteins, including fluorescein isothiocyanate (FITC)-labelled bovine serum albumin (BSA) and green fluorescent protein (GFP), mediated by specially designed nanocapsules. The results show that the designed nanocapsules can deliver the two types of fluorescent proteins into different cellular destinations (cytosol, nucleus or the whole cell), depending on the composition of nanocapsules. Meanwhile, several impact factors that influence the distribution of proteins in cells have also been investigated, and the results suggest that the localisation of capsule-mediated proteins in cells is strongly affected by the surface properties of nanocapsules, the types of stabilisers and proteins, and environmental temperatures. The rational control of intracellular localised delivery of exogenous proteins as we demonstrated in this study might open new avenues to obtain desired magnitude of drug effects for modulating cell activity.

  17. Molecular design and nanoparticle-mediated intracellular delivery of functional proteins to target cellular pathways

    Science.gov (United States)

    Shah, Dhiral Ashwin

    Intracellular delivery of specific proteins and peptides represents a novel method to influence stem cells for gain-of-function and loss-of-function. Signaling control is vital in stem cells, wherein intricate control of and interplay among critical pathways directs the fate of these cells into either self-renewal or differentiation. The most common route to manipulate cellular function involves the introduction of genetic material such as full-length genes and shRNA into the cell to generate (or prevent formation of) the target protein, and thereby ultimately alter cell function. However, viral-mediated gene delivery may result in relatively slow expression of proteins and prevalence of oncogene insertion into the cell, which can alter cell function in an unpredictable fashion, and non-viral delivery may lead to low efficiency of genetic delivery. For example, the latter case plagues the generation of induced pluripotent stem cells (iPSCs) and hinders their use for in vivo applications. Alternatively, introducing proteins into cells that specifically recognize and influence target proteins, can result in immediate deactivation or activation of key signaling pathways within the cell. In this work, we demonstrate the cellular delivery of functional proteins attached to hydrophobically modified silica (SiNP) nanoparticles to manipulate specifically targeted cell signaling proteins. In the Wnt signaling pathway, we have targeted the phosphorylation activity of glycogen synthase kinase-3beta (GSK-3beta) by designing a chimeric protein and delivering it in neural stem cells. Confocal imaging indicates that the SiNP-chimeric protein conjugates were efficiently delivered to the cytosol of human embryonic kidney cells and rat neural stem cells, presumably via endocytosis. This uptake impacted the Wnt signaling cascade, indicated by the elevation of beta-catenin levels, and increased transcription of Wnt target genes, such as c-MYC. The results presented here suggest that

  18. Mesoporous silica nanorods toward efficient loading and intracellular delivery of siRNA

    Science.gov (United States)

    Chen, Lijue; She, Xiaodong; Wang, Tao; Shigdar, Sarah; Duan, Wei; Kong, Lingxue

    2018-02-01

    The technology of RNA interference (RNAi) that uses small interfering RNA (siRNA) to silence the gene expression with complementary messenger RNA (mRNA) sequence has great potential for the treatment of cancer in which certain genes were usually found overexpressed. However, the carry and delivery of siRNA to the target site in the human body can be challenging for this technology to be used clinically to silence the cancer-related gene expression. In this work, rod shaped mesoporous silica nanoparticles (MSNs) were developed as siRNA delivery system for specific intracellular delivery. The rod MSNs with an aspect ratio of 1.5 had a high surface area of 934.28 m2/g and achieved a siRNA loading of more than 80 mg/g. With the epidermal growth factor (EGF) grafted on the surface of the MSNs, siRNA can be delivered to the epidermal growth factor receptor (EGFR) overexpressed colorectal cancer cells with high intracellular concentration compared to MSNs without EGF and lead to survivin gene knocking down to less than 30%.

  19. Polycaprolactone/maltodextrin nanocarrier for intracellular drug delivery: formulation, uptake mechanism, internalization kinetics, and subcellular localization.

    Science.gov (United States)

    Korang-Yeboah, Maxwell; Gorantla, Yamini; Paulos, Simon A; Sharma, Pankaj; Chaudhary, Jaideep; Palaniappan, Ravi

    2015-01-01

    Prostate cancer (PCa) disease progression is associated with significant changes in intracellular and extracellular proteins, intracellular signaling mechanism, and cancer cell phenotype. These changes may have direct impact on the cellular interactions with nanocarriers; hence, there is the need for a much-detailed understanding, as nanocarrier cellular internalization and intracellular sorting mechanism correlate directly with bioavailability and clinical efficacy. In this study, we report the differences in the rate and mechanism of cellular internalization of a biocompatible polycaprolactone (PCL)/maltodextrin (MD) nanocarrier system for intracellular drug delivery in LNCaP, PC3, and DU145 PCa cell lines. PCL/MD nanocarriers were designed and characterized. PCL/MD nanocarriers significantly increased the intracellular concentration of coumarin-6 and fluorescein isothiocyanate-labeled bovine serum albumin, a model hydrophobic and large molecule, respectively. Fluorescence microscopy and flow cytometry analysis revealed rapid internalization of the nanocarrier. The extent of nanocarrier cellular internalization correlated directly with cell line aggressiveness. PCL/MD internalization was highest in PC3 followed by DU145 and LNCaP, respectively. Uptake in all PCa cell lines was metabolically dependent. Extraction of endogenous cholesterol by methyl-β-cyclodextrin reduced uptake by 75%±4.53% in PC3, 64%±6.01% in LNCaP, and 50%±4.50% in DU145, indicating the involvement of endogenous cholesterol in cellular internalization. Internalization of the nanocarrier in LNCaP was mediated mainly by macropinocytosis and clathrin-independent pathways, while internalization in PC3 and DU145 involved clathrin-mediated endocytosis, clathrin-independent pathways, and macropinocytosis. Fluorescence microscopy showed a very diffused and non-compartmentalized subcellular localization of the PCL/MD nanocarriers with possible intranuclear localization and minor colocalization in

  20. Integrating Protein Engineering and Bioorthogonal Click Conjugation for Extracellular Vesicle Modulation and Intracellular Delivery.

    Directory of Open Access Journals (Sweden)

    Ming Wang

    Full Text Available Exosomes are small, cell-secreted vesicles that transfer proteins and genetic information between cells. This intercellular transmission regulates many physiological and pathological processes. Therefore, exosomes have emerged as novel biomarkers for disease diagnosis and as nanocarriers for drug delivery. Here, we report an easy-to-adapt and highly versatile methodology to modulate exosome composition and conjugate exosomes for intracellular delivery. Our strategy combines the metabolic labeling of newly synthesized proteins or glycan/glycoproteins of exosome-secreting cells with active azides and bioorthogonal click conjugation to modify and functionalize the exosomes. The azide-integrated can be conjugated to a variety of small molecules and proteins and can efficiently deliver conjugates into cells. The metabolic engineering of exosomes diversifies the chemistry of exosomes and expands the functions that can be introduced into exosomes, providing novel, powerful tools to study the roles of exosomes in biology and expand the biomedical potential of exosomes.

  1. A new technique for reversible permeabilization of live cells for intracellular delivery of quantum dots

    International Nuclear Information System (INIS)

    Medepalli, Krishnakiran; Alphenaar, Bruce W; Keynton, Robert S; Sethu, Palaniappan

    2013-01-01

    A major challenge with the use of quantum dots (QDs) for cellular imaging and biomolecular delivery is the attainment of QDs freely dispersed inside the cells. Conventional methods such as endocytosis, lipids based delivery and electroporation are associated with delivery of QDs in vesicles and/or as aggregates that are not monodispersed. In this study, we demonstrate a new technique for reversible permeabilization of cells to enable the introduction of freely dispersed QDs within the cytoplasm. Our approach combines osmosis driven fluid transport into cells achieved by creating a hypotonic environment and reversible permeabilization using low concentrations of cell permeabilization agents like Saponin. Our results confirm that highly efficient endocytosis-free intracellular delivery of QDs can be accomplished using this method. The best results were obtained when the cells were treated with 50 μg ml −1 Saponin in a hypotonic buffer at a 3:2 physiological buffer:DI water ratio for 5 min at 4 ° C. (paper)

  2. pH-Sensitive nanoparticles as smart carriers for selective intracellular drug delivery to tumor.

    Science.gov (United States)

    Li, Xin-Xin; Chen, Jing; Shen, Jian-Min; Zhuang, Ran; Zhang, Shi-Qi; Zhu, Zi-Yun; Ma, Jing-Bo

    2018-05-05

    Herein, a smart pH-sensitive nanoparticle (DGL-PEG-Tat-KK-DMA-DOX) was prepared to achieve the selective intracellular drug delivery. In this nanoparticle, a PEG-grafted cell penetrating peptide (PEG-Tat-KK) was designed and acted as the cell penetrating segment. By introducing the pH-sensitive amide bonds between the peptide and blocking agent (2,3-dimethylmaleic anhydride, DMA), the controllable moiety (PEG-Tat-KK-DMA) endowed the nanoparticle with a charge-switchable shell and temporarily blocked penetrating function, thus improving the specific internalization. Besides, dendrigraft poly-L-lysine (DGL) used as the skeleton can greatly improve the drug loading because of the highly dendritic framework. Under the stimuli of acidic pH, this nanoparticle exhibited a remarkable charge-switchable property. The drug release showed an expected behavior with little release in the neutral pH media but relatively fast release in the acidic media. The in vitro experiments revealed that the cellular uptake and cytotoxicity were significantly enhanced after the pH was decreased. In vivo biodistribution and antitumor research indicated that the nanoparticle had noteworthy specificity and antitumor efficacy with a tumor inhibition rate of 79.7%. These results verified this nanoparticle could efficiently improve the selective intracellular delivery and possessed a great potential in tumor treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Preparation and characterization of vinculin-targeted polymer-lipid nanoparticle as intracellular delivery vehicle.

    Science.gov (United States)

    Wang, Junping; Ornek-Ballanco, Ceren; Xu, Jiahua; Yang, Weiguo; Yu, Xiaojun

    2013-01-01

    Intracellular delivery vehicles have been extensively investigated as these can serve as an effective tool in studying the cellular mechanism, by delivering functional protein to specific locations of the cells. In the current study, a polymer-lipid nanoparticle (PLN) system was developed as an intracellular delivery vehicle specifically targeting vinculin, a focal adhesion protein associated with cellular adhesive structures, such as focal adhesions and adherens junctions. The PLNs possessed an average size of 106 nm and had a positively charged surface. With a lower encapsulation efficiency 32% compared with poly(lactic-co-glycolic) acid (PLGA) nanoparticles (46%), the PLNs showed the sustained release profile of model drug BSA, while PLGA nanoparticles demonstrated an initial burst-release property. Cell-uptake experiments using mouse embryonic fibroblasts cultured in fibrin-fibronectin gels observed, under confocal microscope, that the anti-vinculin conjugated PLNs could successfully ship the cargo to the cytoplasm of fibroblasts, adhered to fibronectin-fibrin. With the use of cationic lipid, the unconjugated PLNs were shown to have high gene transfection efficiency. Furthermore, the unconjugated PLNs had nuclear-targeting capability in the absence of nuclear-localization signals. Therefore, the PLNs could be manipulated easily via different type of targeting ligands and could potentially be used as a powerful tool for cellular mechanism study, by delivering drugs to specific cellular organelles.

  4. Intracellular responsive dual delivery by endosomolytic polyplexes carrying DNA anchored porous silicon nanoparticles.

    Science.gov (United States)

    Shahbazi, Mohammad-Ali; Almeida, Patrick Vingadas; Correia, Alexandra; Herranz-Blanco, Barbara; Shrestha, Neha; Mäkilä, Ermei; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2017-03-10

    Bioresponsive cytosolic nanobased multidelivery has been emerging as an enormously challenging novel concept due to the intrinsic protective barriers of the cells and hardly controllable performances of nanomaterials. Here, we present a new paradigm to advance nano-in-nano integration technology amenable to create multifunctional nanovehicles showing considerable promise to overcome restrictions of intracellular delivery, solve impediments of endosomal localization and aid effectual tracking of nanoparticles. A redox responsive intercalator chemistry comprised of cystine and 9-aminoacridine is designed as a cross-linker to cap carboxylated porous silicon nanoparticles with DNA. These intelligent nanocarriers are then encapsulated within novel one-pot electrostatically complexed nano-networks made of a zwitterionic amino acid (cysteine), an anionic bioadhesive polymer (poly(methyl vinyl ether-alt-maleic acid)) and a cationic endosomolytic polymer (polyethyleneimine). This combined nanocomposite is successfully tested for the co-delivery of hydrophobic (sorafenib) or hydrophilic (calcein) molecules loaded within the porous core, and an imaging agent covalently integrated into the polyplex shell by click chemistry. High loading capacity, low cyto- and hemo-toxicity, glutathione responsive on-command drug release, and superior cytosolic delivery are shown as achievable key features of the proposed formulation. Overall, formulating drug molecules, DNA and imaging agents, without any interference, in a physico-chemically optimized carrier may open a path towards broad applicability of these cost-effective multivalent nanocomposites for treating different diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Polymeric nanoparticles for the intracellular delivery of paclitaxel in lung and breast cancer

    Science.gov (United States)

    Zubris, Kimberly Ann Veronica

    Nanoparticles are useful for addressing many of the difficulties encountered when administering therapeutic compounds. Nanoparticles are able to increase the solubility of hydrophobic drugs, improve pharmacokinetics through sustained release, alter biodistribution, protect sensitive drugs from low pH environments or enzymatic alteration, and, in some cases, provide targeting of the drug to the desired tissues. The use of functional nanocarriers can also provide controlled intracellular delivery of a drug. To this end, we have developed functional pH-responsive expansile nanoparticles for the intracellular delivery of paclitaxel. The pH-responsiveness of these nanoparticles occurs due to a hydrophobic to hydrophilic transition of the polymer occurring under mildly acidic conditions. These polymeric nanoparticles were systematically evaluated for the delivery of paclitaxel in vitro and in vivo to improve local therapy for lung and breast cancers. Nanoparticles were synthesized using a miniemulsion polymerization process and were subsequently characterized and found to swell when exposed to acidic environments. Paclitaxel was successfully encapsulated within the nanoparticles, and the particles exhibited drug release at pH 5 but not at pH 7.4. In addition, the uptake of nanoparticles was observed using flow cytometry, and the anticancer efficacy of the paclitaxel-loaded nanoparticles was measured using cancer cell lines in vitro. The potency of the paclitaxel-loaded nanoparticles was close to that of free drug, demonstrating that the drug was effectively delivered by the particles and that the particles could act as an intracellular drug depot. Following in vitro characterization, murine in vivo studies demonstrated the ability of the paclitaxel-loaded responsive nanoparticles to delay recurrence of lung cancer and to prevent establishment of breast cancer in the mammary fat pads with higher efficacy than paclitaxel alone. In addition, the ability of nanoparticles to

  6. Intracellular Delivery of Proteins with Cell-Penetrating Peptides for Therapeutic Uses in Human Disease.

    Science.gov (United States)

    Dinca, Ana; Chien, Wei-Ming; Chin, Michael T

    2016-02-22

    Protein therapy exhibits several advantages over small molecule drugs and is increasingly being developed for the treatment of disorders ranging from single enzyme deficiencies to cancer. Cell-penetrating peptides (CPPs), a group of small peptides capable of promoting transport of molecular cargo across the plasma membrane, have become important tools in promoting the cellular uptake of exogenously delivered proteins. Although the molecular mechanisms of uptake are not firmly established, CPPs have been empirically shown to promote uptake of various molecules, including large proteins over 100 kiloDaltons (kDa). Recombinant proteins that include a CPP tag to promote intracellular delivery show promise as therapeutic agents with encouraging success rates in both animal and human trials. This review highlights recent advances in protein-CPP therapy and discusses optimization strategies and potential detrimental effects.

  7. Enhanced intracellular delivery and antibacterial efficacy of enrofloxacin-loaded docosanoic acid solid lipid nanoparticles against intracellular Salmonella.

    Science.gov (United States)

    Xie, Shuyu; Yang, Fei; Tao, Yanfei; Chen, Dongmei; Qu, Wei; Huang, Lingli; Liu, Zhenli; Pan, Yuanhu; Yuan, Zonghui

    2017-01-23

    Enrofloxacin-loaded docosanoic acid solid lipid nanoparticles (SLNs) with different physicochemical properties were developed to enhance activity against intracellular Salmonella. Their cellular uptake, intracellular elimination and antibacterial activity were studied in RAW 264.7 cells. During the experimental period, SLN-encapsulated enrofloxacin accumulated in the cells approximately 27.06-37.71 times more efficiently than free drugs at the same extracellular concentration. After incubation for 0.5 h, the intracellular enrofloxacin was enhanced from 0.336 to 1.147 μg/mg of protein as the sizes of nanoparticles were increased from 150 to 605 nm, and from 0.960 to 1.147 μg/mg of protein when the charge was improved from -8.1 to -24.9 mv. The cellular uptake was more significantly influenced by the size than it was by the charge, and was not affected by whether the charge was positive or negative. The elimination of optimal SLN-encapsulated enrofloxacin from the cells was significantly slower than that of free enrofloxacin after removing extracellular drug. The inhibition effect against intracellular Salmonella CVCC541 of 0.24 and 0.06 μg/mL encapsulated enrofloxacin was stronger than 0.6 μg/mL free drug after all of the incubation periods and at 48 h, respectively. Docosanoic acid SLNs are thus considered as a promising carrier for intracellular bacterial treatment.

  8. Development of a custom biological scaffold for investigating ultrasound-mediated intracellular delivery

    Energy Technology Data Exchange (ETDEWEB)

    Bui, Loan [Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010 (United States); Aleid, Adham [Department of Biomedical Technology, King Saud University, Riyadh 12372 (Saudi Arabia); Alassaf, Ahmad [Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146 (United States); Department of Medical Equipment Technology, Majmaah University, Majmaah City 11952 (Saudi Arabia); Wilson, Otto C.; Raub, Christopher B. [Department of Biomedical Engineering, Catholic University of America, Washington, DC 20064 (United States); Frenkel, Victor, E-mail: vfrenkel@som.umaryland.edu [Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201 (United States)

    2017-01-01

    In vitro investigations of ultrasound mediated, intracellular drug and gene delivery (i.e. sonoporation) are typically carried out in cells cultured in standard plastic well plates. This creates conditions that poorly resemble in vivo conditions, as well as generating unwanted ultrasound phenomena that may confound the interpretation of results. Here, we present our results in the development of a biological scaffold for sonoporation studies. The scaffolds were comprised of cellulose fibers coated with chitosan and gelatin. Scaffold formulation was optimized for adherence and proliferation of mouse fibroblasts in terms of the ratio and relative concentration of the two constituents. The scaffolds were also shown to significantly reduce ultrasound reflections compared to the plastic well plates. A custom treatment chamber was designed and built, and the occurrence of acoustic cavitation in the chamber during the ultrasound treatments was detected; a requirement for the process of sonoporation. Finally, experiments were carried out to optimize the ultrasound exposures to minimize cellular damage. Ultrasound exposure was then shown to enable the uptake of 100 nm fluorescently labeled polystyrene nanoparticles in suspension into the cells seeded on scaffolds, compared to incubation of cell-seeded scaffolds with nanoparticles alone. These preliminary results set the basis for further development of this platform. They also provide motivation for the development of similar platforms for the controlled investigation of other ultrasound mediated cell and tissue therapies. - Highlights: • A custom, biological scaffold was developed, comprised of chitosan and gelatin. • The scaffold formulation was optimized for adhesion and proliferation of fibroblasts. • Investigations showed the scaffolds to be less reflective to ultrasound than plastic well plates. • The scaffolds were found to be suitable for investigations of ultrasound mediated intracellular nanoparticle

  9. GFP expression by intracellular gene delivery of GFP-coding fragments using nanocrystal quantum dots

    International Nuclear Information System (INIS)

    Hoshino, Akiyoshi; Manabe, Noriyoshi; Fujioka, Kouki; Hanada, Sanshiro; Yamamoto, Kenji; Yasuhara, Masato; Kondo, Akihiko

    2008-01-01

    Gene therapy is an attractive approach to supplement a deficient gene function. Although there has been some success with specific gene delivery using various methods including viral vectors and liposomes, most of these methods have a limited efficiency or also carry a risk for oncogenesis. We herein report that quantum dots (QDs) conjugated with nuclear localizing signal peptides (NLSP) successfully introduced gene-fragments with promoter elements, which promoted the expression of the enhanced green fluorescent protein (eGFP) gene in mammalian cells. The expression of eGFP protein was observed when the QD/gene-construct was added to the culture media. The gene-expression efficiency varied depending on multiple factors around QDs, such as (1) the reading direction of the gene-fragments, (2) the quantity of gene-fragments attached on the surface of the QD-constructs, (3) the surface electronic charges varied according to the structure of the QD/gene-constructs, and (4) the particle size of QD/gene complex varied according to the structure and amounts of gene-fragments. Using this QD/gene-construct system, eGFP protein could be detected 28 days after the gene-introduction whereas the fluorescence of QDs had disappeared. This system therefore provides another method for the intracellular delivery of gene-fragments without using either viral vectors or specific liposomes.

  10. Biodegradable "Smart" Polyphosphazenes with Intrinsic Multifunctionality as Intracellular Protein Delivery Vehicles.

    Science.gov (United States)

    Martinez, Andre P; Qamar, Bareera; Fuerst, Thomas R; Muro, Silvia; Andrianov, Alexander K

    2017-06-12

    A series of biodegradable drug delivery polymers with intrinsic multifunctionality have been designed and synthesized utilizing a polyphosphazene macromolecular engineering approach. Novel water-soluble polymers, which contain carboxylic acid and pyrrolidone moieties attached to an inorganic phosphorus-nitrogen backbone, were characterized by a suite of physicochemical methods to confirm their structure, composition, and molecular sizes. All synthesized polyphosphazenes displayed composition-dependent hydrolytic degradability in aqueous solutions at neutral pH. Their formulations were stable at lower temperatures, potentially indicating adequate shelf life, but were characterized by accelerated degradation kinetics at elevated temperatures, including 37 °C. It was found that synthesized polyphosphazenes are capable of environmentally triggered self-assembly to produce nanoparticles with narrow polydispersity in the size range of 150-700 nm. Protein loading capacity of copolymers has been validated via their ability to noncovalently bind avidin without altering biological functionality. Acid-induced membrane-disruptive activity of polyphosphazenes has been established with an onset corresponding to the endosomal pH range and being dependent on polymer composition. The synthesized polyphosphazenes facilitated cell-surface interactions followed by time-dependent, vesicular-mediated, and saturable internalization of a model protein cargo into cancer cells, demonstrating the potential for intracellular delivery.

  11. Surface bioengineering of diatomite based nanovectors for efficient intracellular uptake and drug delivery

    Science.gov (United States)

    Terracciano, Monica; Shahbazi, Mohammad-Ali; Correia, Alexandra; Rea, Ilaria; Lamberti, Annalisa; de Stefano, Luca; Santos, Hélder A.

    2015-11-01

    Diatomite is a natural porous silica material of sedimentary origin. Due to its peculiar properties, it can be considered as a valid surrogate of synthetic porous silica for nano-based drug delivery. In this work, we exploit the potential of diatomite nanoparticles (DNPs) for drug delivery with the aim of developing a successful dual-biofunctionalization method by polyethylene glycol (PEG) coverage and cell-penetrating peptide (CPP) bioconjugation, to improve the physicochemical and biological properties of the particles, to enhance the intracellular uptake in cancer cells, and to increase the biocompatibility of 3-aminopropyltriethoxysilane (APT) modified-DNPs. DNPs-APT-PEG-CPP showed hemocompatibility for up to 200 μg mL-1 after 48 h of incubation with erythrocytes, with a hemolysis value of only 1.3%. The cytotoxicity of the modified-DNPs with a concentration up to 200 μg mL-1 and incubation with MCF-7 and MDA-MB-231 breast cancer cells for 24 h, demonstrated that PEGylation and CPP-bioconjugation can strongly reduce the cytotoxicity of DNPs-APT. The cellular uptake of the modified-DNPs was also evaluated using the above mentioned cancer cell lines, showing that the CPP-bioconjugation can considerably increase the DNP cellular uptake. Moreover, the dual surface modification of DNPs improved both the loading of a poorly water-soluble anticancer drug, sorafenib, with a loading degree up to 22 wt%, and also enhanced the drug release profiles in aqueous solutions. Overall, this work demonstrates that the biofunctionalization of DNPs is a promising platform for drug delivery applications in cancer therapy as a result of its enhanced stability, biocompatibility, cellular uptake, and drug release profiles.Diatomite is a natural porous silica material of sedimentary origin. Due to its peculiar properties, it can be considered as a valid surrogate of synthetic porous silica for nano-based drug delivery. In this work, we exploit the potential of diatomite nanoparticles

  12. Surface bioengineering of diatomite based nanovectors for efficient intracellular uptake and drug delivery.

    Science.gov (United States)

    Terracciano, Monica; Shahbazi, Mohammad-Ali; Correia, Alexandra; Rea, Ilaria; Lamberti, Annalisa; De Stefano, Luca; Santos, Hélder A

    2015-12-21

    Diatomite is a natural porous silica material of sedimentary origin. Due to its peculiar properties, it can be considered as a valid surrogate of synthetic porous silica for nano-based drug delivery. In this work, we exploit the potential of diatomite nanoparticles (DNPs) for drug delivery with the aim of developing a successful dual-biofunctionalization method by polyethylene glycol (PEG) coverage and cell-penetrating peptide (CPP) bioconjugation, to improve the physicochemical and biological properties of the particles, to enhance the intracellular uptake in cancer cells, and to increase the biocompatibility of 3-aminopropyltriethoxysilane (APT) modified-DNPs. DNPs-APT-PEG-CPP showed hemocompatibility for up to 200 μg mL(-1) after 48 h of incubation with erythrocytes, with a hemolysis value of only 1.3%. The cytotoxicity of the modified-DNPs with a concentration up to 200 μg mL(-1) and incubation with MCF-7 and MDA-MB-231 breast cancer cells for 24 h, demonstrated that PEGylation and CPP-bioconjugation can strongly reduce the cytotoxicity of DNPs-APT. The cellular uptake of the modified-DNPs was also evaluated using the above mentioned cancer cell lines, showing that the CPP-bioconjugation can considerably increase the DNP cellular uptake. Moreover, the dual surface modification of DNPs improved both the loading of a poorly water-soluble anticancer drug, sorafenib, with a loading degree up to 22 wt%, and also enhanced the drug release profiles in aqueous solutions. Overall, this work demonstrates that the biofunctionalization of DNPs is a promising platform for drug delivery applications in cancer therapy as a result of its enhanced stability, biocompatibility, cellular uptake, and drug release profiles.

  13. In vivo imaging of passively tumor targeted polymer carrier and the enzymatically cleavable drug model

    Czech Academy of Sciences Publication Activity Database

    Pola, Robert; Heinrich, A. K.; Mueller, T.; Kostka, Libor; Mäder, K.; Pechar, Michal; Etrych, Tomáš

    2017-01-01

    Roč. 6, 4 (Suppl) (2017), s. 90 ISSN 2325-9604. [International Conference and Exhibition on Nanomedicine and Drug Delivery. 29.05.2017-31.05.2017, Osaka] R&D Projects: GA MZd(CZ) NV16-28594A Institutional support: RVO:61389013 Keywords : polymer drug carrier * tumor targeting * enzymatic release Subject RIV: FD - Oncology ; Hematology

  14. Rapid tissue regeneration induced by intracellular ATP delivery-A preliminary mechanistic study.

    Directory of Open Access Journals (Sweden)

    Harshini Sarojini

    Full Text Available We have reported a new phenomenon in acute wound healing following the use of intracellular ATP delivery-extremely rapid tissue regeneration, which starts less than 24 h after surgery, and is accompanied by massive macrophage trafficking, in situ proliferation, and direct collagen production. This unusual process bypasses the formation of the traditional provisional extracellular matrix and significantly shortens the wound healing process. Although macrophages/monocytes are known to play a critical role in the initiation and progression of wound healing, their in situ proliferation and direct collagen production in wound healing have never been reported previously. We have explored these two very specific pathways during wound healing, while excluding confounding factors in the in vivo environment by analyzing wound samples and performing in vitro studies. The use of immunohistochemical studies enabled the detection of in situ macrophage proliferation in ATP-vesicle treated wounds. Primary human macrophages and Raw 264.7 cells were used for an in vitro study involving treatment with ATP vesicles, free Mg-ATP alone, lipid vesicles alone, Regranex, or culture medium. Collagen type 1α 1, MCP-1, IL-6, and IL-10 levels were determined by ELISA of the culture supernatant. The intracellular collagen type 1α1 localization was determined with immunocytochemistry. ATP-vesicle treated wounds showed high immunoreactivity towards BrdU and PCNA antigens, indicating in situ proliferation. Most of the cultured macrophages treated with ATP-vesicles maintained their classic phenotype and expressed high levels of collagen type 1α1 for a longer duration than was observed with cells treated with Regranex. These studies provide the first clear evidence of in situ macrophage proliferation and direct collagen production during wound healing. These findings provide part of the explanation for the extremely rapid tissue regeneration, and this treatment may hold

  15. Nanodiamonds act as Trojan horse for intracellular delivery of metal ions to trigger cytotoxicity.

    Science.gov (United States)

    Zhu, Ying; Zhang, Yu; Shi, Guosheng; Yang, Jinrong; Zhang, Jichao; Li, Wenxin; Li, Aiguo; Tai, Renzhong; Fang, Haiping; Fan, Chunhai; Huang, Qing

    2015-02-05

    Nanomaterials hold great promise for applications in the delivery of various molecules with poor cell penetration, yet its potential for delivery of metal ions is rarely considered. Particularly, there is limited insight about the cytotoxicity triggered by nanoparticle-ion interactions. Oxidative stress is one of the major toxicological mechanisms for nanomaterials, and we propose that it may also contribute to nanoparticle-ion complexes induced cytotoxicity. To explore the potential of nanodiamonds (NDs) as vehicles for metal ion delivery, we used a broad range of experimental techniques that aimed at getting a comprehensive assessment of cell responses after exposure of NDs, metal ions, or ND-ion mixture: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, Trypan blue exclusion text, optical microscope observation, synchrotron-based scanning transmission X-ray microscopy (STXM) and micro X-ray fluorescence (μXRF) microscopy, inductively coupled plasma-mass spectrometry (ICP-MS), reactive oxygen species (ROS) assay and transmission electron microscopy (TEM) observation. In addition, theoretical calculation and molecular dynamics (MD) computation were used to illustrate the adsorption properties of different metal ion on NDs as well as release profile of ion from ND-ion complexes at different pH values. The adsorption capacity of NDs for different metal ions was different, and the adsorption for Cu2+ was the most strong among divalent metal ions. These different ND-ion complexes then had different cytotoxicity by influencing the subsequent cellular responses. Detailed investigation of ND-Cu2+ interaction showed that the amount of released Cu2+ from ND-Cu2+ complexes at acidic lysosomal conditions was much higher than that at neutral conditions, leading to the elevation of intracellular ROS level, which triggered cytotoxicity. By theoretical approaches, we demonstrated that the functional carbon surface and cluster structures of NDs made them

  16. Study of Mesoporous Silica Nanoparticles' (MSNs) intracellular trafficking and their application as drug delivery vehicles

    Science.gov (United States)

    Yanes, Rolando Eduardo

    Mesoporous silica nanoparticles (MSNs) are attractive drug delivery vehicle candidates due to their biocompatibility, stability, high surface area and efficient cellular uptake. In this dissertation, I discuss three aspects of MSNs' cellular behavior. First, MSNs are targeted to primary and metastatic cancer cell lines, then their exocytosis from cancer cells is studied, and finally they are used to recover intracellular proteins. Targeting of MSNs to primary cancer cells is achieved by conjugating transferrin on the surface of the mesoporous framework, which resulted in enhancement of nanoparticle uptake and drug delivery efficacy in cells that overexpress the transferrin receptor. Similarly, RGD peptides are used to target metastatic cancer cell lines that over-express integrin alphanubeta3. A circular RGD peptide is bound to the surface of MSNs and the endocytosis and cell killing efficacy of camptothecin loaded nanoparticles is significantly improved in cells that express the target receptor. Besides targeting, I studied the ultimate fate of phosphonate coated mesoporous silica nanoparticles inside cells. I discovered that the nanoparticles are exocytosed from cells through lysosomal exocytosis. The nanoparticles are exocytosed in intact form and the time that they remain inside the cells is affected by the surface properties of the nanoparticles and the type of cells. Cells that have a high rate of lysosomal exocytosis excrete the nanoparticles rapidly, which makes them more resistant to drug loaded nanoparticles because the amount of drug that is released inside the cell is limited. When the exocytosis of MSNs is inhibited, the cell killing efficacy of nanoparticles loaded with camptothecin is enhanced. The discovery that MSNs are exocytosed by cells led to a study to determine if proteins could be recovered from the exocytosed nanoparticles. The procedure to isolate exocytosed zinc-doped iron core MSNs and identify the proteins bound to them was developed

  17. Intracellular delivery of nanomaterials for sub-cellular imaging and tracking of biomolecules

    Science.gov (United States)

    Medepalli, Krishna Kiran

    . Confocal microscopy and flow cytometric studies are performed to characterize the interactions. Results from this acute immune response study demonstrate the biocompatibility of SWCNTs in whole blood and also confirm the cellular delivery of single stranded DNA. The second part of the research is on colloidal quantum dots (QDs): nanometer sized semiconductor crystals typically between 1 nm to 20 nm in diameter. In addition to being size comparable with many biological systems, and having large surface area for multiple biomolecules attachment, they possess high resistance to chemical and photo degradation, tunable emission based on size and composition which makes them excellent candidates for cellular delivery and imaging. The main objectives of this research was to demonstrate the use of QDs for cellular imaging as well as targeted biomolecule delivery by conjugating the QDs with an antibody to a functional protein and delivery into live cells. Conventional techniques deliver QDs as aggregates, however, a major challenge in the use of QDs for cellular imaging and biomolecule delivery is achieving freely dispersed QDs inside the cells. In this research, a new technique to deliver monodispersed QDs inside live cells was developed. The approach combines osmosis driven fluid transport into cells achieved by creating hypotonic environment and reversible permeabilization using low concentrations of cell permeabilization agents like Saponin. The results confirm that highly efficient endocytosis-free intracellular delivery of QDs can be accomplished using this method. Confocal microscopy is used to image the QDs inside the cells and flow cytometry is used for quantifying the fluorescence. To demonstrate targeted delivery, QDs are conjugated to the antibody of a protein: the nuclear transcriptional factor, NFkB (Nuclear Factor kappa-light chain-enhancer of activated B cells) using EDC/sulfo NHS chemistry methods. NFkB is a family of proteins with 5 different subunits and is

  18. Near-Infrared Light Activation of Proteins Inside Living Cells Enabled by Carbon Nanotube-Mediated Intracellular Delivery.

    Science.gov (United States)

    Li, He; Fan, Xinqi; Chen, Xing

    2016-02-01

    Light-responsive proteins have been delivered into the cells for controlling intracellular events with high spatial and temporal resolution. However, the choice of wavelength is limited to the UV and visible range; activation of proteins inside the cells using near-infrared (NIR) light, which has better tissue penetration and biocompatibility, remains elusive. Here, we report the development of a single-walled carbon nanotube (SWCNT)-based bifunctional system that enables protein intracellular delivery, followed by NIR activation of the delivered proteins inside the cells. Proteins of interest are conjugated onto SWCNTs via a streptavidin-desthiobiotin (SA-DTB) linkage, where the protein activity is blocked. SWCNTs serve as both a nanocarrier for carrying proteins into the cells and subsequently a NIR sensitizer to photothermally cleave the linkage and release the proteins. The released proteins become active and exert their functions inside the cells. We demonstrated this strategy by intracellular delivery and NIR-triggered nuclear translocation of enhanced green fluorescent protein, and by intracellular delivery and NIR-activation of a therapeutic protein, saporin, in living cells. Furthermore, we showed that proteins conjugated onto SWCNTs via the SA-DTB linkage could be delivered to the tumors, and optically released and activated by using NIR light in living mice.

  19. Transferrin-facilitated lipofection gene delivery strategy: characterization of the transfection complexes and intracellular trafficking.

    Science.gov (United States)

    Joshee, Nirmal; Bastola, Dhundy R; Cheng, Pi-Wan

    2002-11-01

    We previously showed that mixing transferrin with a cationic liposome prior to the addition of DNA, greatly enhanced the lipofection efficiency. Here, we report characterization of the transfection complexes in formulations prepared with transferrin, lipofectin, and DNA (pCMVlacZ) in various formulations. DNA in all the formulations that contain lipofectin was resistant to DNase I treatment. Transfection experiments performed in Panc 1 cells showed that the standard formulation, which was prepared by adding DNA to a mixture of transferrin and lipofectin, yielded highest transfection efficiency. There was no apparent difference in zeta potential among these formulations, but the most efficient formulation contained complexes with a mean diameter of three to four times that of liposome and the complexes in other gene delivery formulations. Transmission electron microscopic examination of the standard transfection complexes formulated using gold-labeled transferrin showed extended circular DNA decorated with transferrin as compared to extensively condensed DNA found in lipofectin-DNA complexes and heterogeneous structures in other formulations. By confocal microscopy, DNA and transferrin were found to colocalize at the perinuclear space and in the nucleus, suggesting cotransportation intracellularly, including nuclear transport. We propose that transferrin enhances the transfection efficiency of the standard lipofection formulation by preventing DNA condensation, and facilitating endocytosis and nuclear targeting.

  20. Intracellular delivery of oligonucleotides in Helicobacter pylori by fusogenic liposomes in the presence of gastric mucus.

    Science.gov (United States)

    Santos, Rita S; Dakwar, George R; Zagato, Elisa; Brans, Toon; Figueiredo, Céu; Raemdonck, Koen; Azevedo, Nuno F; De Smedt, Stefaan C; Braeckmans, Kevin

    2017-09-01

    The rising antimicrobial resistance contributes to 25000 annual deaths in Europe. This threat to the public health can only be tackled if novel antimicrobials are developed, combined with a more precise use of the currently available antibiotics through the implementation of fast, specific, diagnostic methods. Nucleic acid mimics (NAMs) that are able to hybridize intracellular bacterial RNA have the potential to become such a new class of antimicrobials and additionally could serve as specific detection probes. However, an essential requirement is that these NAMs should be delivered into the bacterial cytoplasm, which is a particular challenge given the fact that they are charged macromolecules. We consider these delivery challenges in relation to the gastric pathogen Helicobacter pylori, the most frequent chronic infection worldwide. In particular, we evaluate if cationic fusogenic liposomes are suitable carriers to deliver NAMs across the gastric mucus barrier and the bacterial envelope. Our study shows that DOTAP-DOPE liposomes post-PEGylated with DSPE-PEG (DSPE Lpx) can indeed successfully deliver NAMs into Helicobacter pylori, while offering protection to the NAMs from binding and inactivation in gastric mucus isolated from pigs. DSPE Lpx thus offer exciting new possibilities for in vivo diagnosis and treatment of Helicobacter pylori infections. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Intracellular drug delivery nanocarriers of glutathione-responsive degradable block copolymers having pendant disulfide linkages.

    Science.gov (United States)

    Khorsand, Behnoush; Lapointe, Gabriel; Brett, Christopher; Oh, Jung Kwon

    2013-06-10

    Self-assembled micelles of amphiphilic block copolymers (ABPs) with stimuli-responsive degradation (SRD) properties have a great promise as nanotherapeutics exhibiting enhanced release of encapsulated therapeutics into targeted cells. Here, thiol-responsive degradable micelles based on a new ABP consisting of a pendant disulfide-labeled methacrylate polymer block (PHMssEt) and a hydrophilic poly(ethylene oxide) (PEO) block were investigated as effective intracellular nanocarriers of anticancer drugs. In response to glutathione (GSH) as a cellular trigger, the cleavage of pendant disulfide linkages in hydrophobic PHMssEt blocks of micellar cores caused the destabilization of self-assembled micelles due to change in hydrophobic/hydrophilic balance. Such GSH-triggered micellar destabilization changed their size distribution with an appearance of large aggregates and led to enhanced release of encapsulated anticancer drugs. Cell culture results from flow cytometry and confocal laser scanning microscopy for cellular uptake as well as cell viability measurements for high anticancer efficacy suggest that new GSH-responsive degradable PEO-b-PHMssEt micelles offer versatility in multifunctional drug delivery applications.

  2. Magnetic lipid nanoparticles loading doxorubicin for intracellular delivery: Preparation and characteristics

    International Nuclear Information System (INIS)

    Ying Xiaoying; Du Yongzhong; Hong Linghong; Yuan Hong; Hu Fuqiang

    2011-01-01

    Tumor intracellular delivery is an effective route for targeting chemotherapy to enhance the curative effect and minimize the side effect of a drug. In this study, the magnetic lipid nanoparticles with an uptake ability by tumor cells were prepared dispersing ferroso-ferric oxide nanoparticles in aqueous phase using oleic acid (OA) as a dispersant, and following the solvent dispersion of lipid organic solution. The obtained nanoparticles with 200 nm volume average diameter and -30 mV surface zeta potential could be completely removed by external magnetic field from aqueous solution. Using doxorubicin (DOX) as a model drug, the drug-loaded magnetic lipid nanoparticles were investigated in detail, such as the effects of OA, drug and lipid content on volume average diameter, zeta potential, drug encapsulation efficiency, drug loading, and in vitro drug release. The drug loading capacity and encapsulation efficiency were enhanced with increasing drug or lipid content, reduced with increasing OA content. The in vitro drug release could be controlled by changing drug or lipid content. Cellular uptake by MCF-7 cells experiment presented the excellent internalization ability of the prepared magnetic lipid nanoparticles. These results evidenced that the present magnetic lipid nanoparticles have potential for targeting therapy of antitumor drugs. - Research highlights: → A simple solvent diffusion method was developed to prepare magnetic lipid nanoparticles. → The doxorubicin-loaded magnetic lipid nanoparticles could be controlled by preparation recipe. → Magnetic lipid nanoparticles had internalization ability into tumor cells.

  3. Rapid granulation tissue regeneration by intracellular ATP delivery--a comparison with Regranex.

    Directory of Open Access Journals (Sweden)

    Jeffrey D Howard

    Full Text Available This study tests a new intracellular ATP delivery technique for tissue regeneration and compares its efficacy with that of Regranex. Twenty-seven adult New Zealand white rabbits each underwent minimally invasive surgery to render one ear ischemic. Eight wounds were then created: four on the ischemic and four on the normal ear. Two wounds on one side of each ear were treated with Mg-ATP encapsulated lipid vesicles (ATP-vesicles while the two wounds on the other side were treated with Regranex. Wound healing time was shorter when ATP-vesicles were used. The most striking finding was that new tissue growth started to appear in less than 1 day when ATP-vesicles were used. The growth continued and covered the wound area within a few days, without the formation of a provisional matrix. Regranex-treated wounds did not have this growth pattern. In wounds treated by ATP-vesicles, histologic studies revealed extremely rich macrophage accumulation, along with active proliferating cell nuclear antigen (PCNA and positive BrdU staining, indicating in situ macrophage proliferation. Human macrophage culture suggested direct collagen production. These results support an entirely new healing process, which seems to have combined the conventional hemostasis, inflammation, and proliferation phases into a single one, thereby eliminating the lag time usually seen during healing process.

  4. Functionalization of 3D scaffolds with protein-releasing biomaterials for intracellular delivery.

    Science.gov (United States)

    Seras-Franzoso, Joaquin; Steurer, Christoph; Roldán, Mònica; Vendrell, Meritxell; Vidaurre-Agut, Carla; Tarruella, Anna; Saldaña, Laura; Vilaboa, Nuria; Parera, Marc; Elizondo, Elisa; Ratera, Imma; Ventosa, Nora; Veciana, Jaume; Campillo-Fernández, Alberto J; García-Fruitós, Elena; Vázquez, Esther; Villaverde, Antonio

    2013-10-10

    Appropriate combinations of mechanical and biological stimuli are required to promote proper colonization of substrate materials in regenerative medicine. In this context, 3D scaffolds formed by compatible and biodegradable materials are under continuous development in an attempt to mimic the extracellular environment of mammalian cells. We have here explored how novel 3D porous scaffolds constructed by polylactic acid, polycaprolactone or chitosan can be decorated with bacterial inclusion bodies, submicron protein particles formed by releasable functional proteins. A simple dipping-based decoration method tested here specifically favors the penetration of the functional particles deeper than 300μm from the materials' surface. The functionalized surfaces support the intracellular delivery of biologically active proteins to up to more than 80% of the colonizing cells, a process that is slightly influenced by the chemical nature of the scaffold. The combination of 3D soft scaffolds and protein-based sustained release systems (Bioscaffolds) offers promise in the fabrication of bio-inspired hybrid matrices for multifactorial control of cell proliferation in tissue engineering under complex architectonic setting-ups. © 2013.

  5. Preparation, in vitro and in vivo evaluation of polymeric nanoparticles based on hyaluronic acid-poly(butyl cyanoacrylate and D-alpha-tocopheryl polyethylene glycol 1000 succinate for tumor-targeted delivery of morin hydrate

    Directory of Open Access Journals (Sweden)

    Abbad S

    2015-01-01

    Full Text Available Sarra Abbad,1,2 Cheng Wang,1 Ayman Yahia Waddad,1 Huixia Lv,1 Jianping Zhou11Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China; 2Department of Pharmacy, Abou Bekr Belkaid University, Tlemcen, AlgeriaAbstract: Herein, we describe the preparation of a targeted cellular delivery system for morin hydrate (MH, based on a low-molecular-weight hyaluronic acid-poly(butyl cyanoacrylate (HA-PBCA block copolymer. In order to enhance the therapeutic effect of MH, D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS was mixed with HA-PBCA during the preparation process. The MH-loaded HA-PBCA “plain” nanoparticle (MH-PNs and HA-PBCA/TPGS “mixed” nanoparticles (MH-MNs were concomitantly characterized in terms of loading efficiency, particle size, zeta potential, critical aggregation concentration, and morphology. The obtained MH-PNs and MH-MNs exhibited a spherical morphology with a negative zeta potential and a particle size less than 200 nm, favorable for drug targeting. Remarkably, the addition of TPGS resulted in about 1.6-fold increase in drug-loading. The in vitro cell viability experiment revealed that MH-MNs enhanced the cytotoxicity of MH in A549 cells compared with MH solution and MH-PNs. Furthermore, blank MNs containing TPGS exhibited selective cytotoxic effects against cancer cells without diminishing the viability of normal cells. In addition, the cellular uptake study indicated that MNs resulted in 2.28-fold higher cellular uptake than that of PNs, in A549 cells. The CD44 receptor competitive inhibition and the internalization pathway studies suggested that the internalization mechanism of the nanoparticles was mediated mainly by the CD44 receptors through a clathrin-dependent endocytic pathway. More importantly, MH-MNs exhibited a higher in vivo antitumor potency and induced more tumor cell apoptosis than did MH-PNs, following intravenous administration to S180 tumor-bearing mice

  6. Fabrication of doxorubicin nanoparticles by controlled antisolvent precipitation for enhanced intracellular delivery.

    Science.gov (United States)

    Tam, Yu Tong; To, Kenneth Kin Wah; Chow, Albert Hee Lum

    2016-03-01

    Over-expression of ATP-binding cassette transporters is one of the most important mechanisms responsible for multidrug resistance. Here, we aimed to develop a stable polymeric nanoparticle system by flash nanoprecipitation (FNP) for enhanced anticancer drug delivery into drug resistant cancer cells. As an antisolvent precipitation process, FNP works best for highly lipophilic solutes (logP>6). Thus we also aimed to evaluate the applicability of FNP to drugs with relatively low lipophilicity (logP=1-2). To this end, doxorubicin (DOX), an anthracycline anticancer agent and a P-gp substrate with a logP of 1.3, was selected as a model drug for the assessment. DOX was successfully incorporated into the amphiphilic diblock copolymer, polyethylene glycol-b-polylactic acid (PEG-b-PLA), by FNP using a four-stream multi-inlet vortex mixer. Optimization of key processing parameters and co-formulation with the co-stabilizer, polyvinylpyrrolidone, yielded highly stable, roughly spherical DOX-loaded PEG-b-PLA nanoparticles (DOX.NP) with mean particle size below 100nm, drug loading up to 14%, and drug encapsulation efficiency up to 49%. DOX.NP exhibited a pH-dependent drug release profile with higher cumulative release rate at acidic pHs. Surface analysis of DOX.NP by XPS revealed an absence of DOX on the particle surface, indicative of complete drug encapsulation. While there were no significant differences in cytotoxic effect on P-gp over-expressing LCC6/MDR cell line between DOX.NP and free DOX in buffered aqueous media, DOX.NP exhibited a considerably higher cellular uptake and intracellular retention after efflux. The apparent lack of cytotoxicity enhancement with DOX.NP may be attributable to its slow DOX release inside the cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Integrated nanotechnology platform for tumor-targeted multimodal imaging and therapeutic cargo release.

    Science.gov (United States)

    Hosoya, Hitomi; Dobroff, Andrey S; Driessen, Wouter H P; Cristini, Vittorio; Brinker, Lina M; Staquicini, Fernanda I; Cardó-Vila, Marina; D'Angelo, Sara; Ferrara, Fortunato; Proneth, Bettina; Lin, Yu-Shen; Dunphy, Darren R; Dogra, Prashant; Melancon, Marites P; Stafford, R Jason; Miyazono, Kohei; Gelovani, Juri G; Kataoka, Kazunori; Brinker, C Jeffrey; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2016-02-16

    A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared, thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. These results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications.

  8. Ingenious pH-sensitive dextran/mesoporous silica nanoparticles based drug delivery systems for controlled intracellular drug release.

    Science.gov (United States)

    Zhang, Min; Liu, Jia; Kuang, Ying; Li, Qilin; Zheng, Di-Wei; Song, Qiongfang; Chen, Hui; Chen, Xueqin; Xu, Yanglin; Li, Cao; Jiang, Bingbing

    2017-05-01

    In this work, dextran, a polysaccharide with excellent biocompatibility, is applied as the "gatekeeper" to fabricate the pH-sensitive dextran/mesoporous silica nanoparticles (MSNs) based drug delivery systems for controlled intracellular drug release. Dextran encapsulating on the surface of MSNs is oxidized by NaIO 4 to obtain three kinds of dextran dialdehydes (PADs), which are then coupled with MSNs via pH-sensitive hydrazone bond to fabricate three kinds of drug carriers. At pH 7.4, PADs block the pores to prevent premature release of anti-cancer drug doxorubicin hydrochloride (DOX). However, in the weakly acidic intracellular environment (pH∼5.5) the hydrazone can be ruptured; and the drug can be released from the carriers. The drug loading capacity, entrapment efficiency and release rates of the drug carriers can be adjusted by the amount of NaIO 4 applied in the oxidation reaction. And from which DOX@MSN-NH-N=C-PAD 10 is chosen as the most satisfactory one for the further in vitro cytotoxicity studies and cellular uptake studies. The results demonstrate that DOX@MSN-NH-N=C-PAD 10 with an excellent pH-sensitivity can enter HeLa cells to release DOX intracellular due to the weakly acidic pH intracellular and kill the cells. In our opinion, the ingenious pH-sensitive drug delivery systems have application potentials for cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The Binary Toxin CDT of Clostridium difficile as a Tool for Intracellular Delivery of Bacterial Glucosyltransferase Domains

    Directory of Open Access Journals (Sweden)

    Lara-Antonia Beer

    2018-06-01

    Full Text Available Binary toxins are produced by several pathogenic bacteria. Examples are the C2 toxin from Clostridium botulinum, the iota toxin from Clostridium perfringens, and the CDT from Clostridium difficile. All these binary toxins have ADP-ribosyltransferases (ADPRT as their enzymatically active component that modify monomeric actin in their target cells. The binary C2 toxin was intensively described as a tool for intracellular delivery of allogenic ADPRTs. Here, we firstly describe the binary toxin CDT from C. difficile as an effective tool for heterologous intracellular delivery. Even 60 kDa glucosyltransferase domains of large clostridial glucosyltransferases can be delivered into cells. The glucosyltransferase domains of five tested large clostridial glucosyltransferases were successfully introduced into cells as chimeric fusions to the CDTa adapter domain (CDTaN. Cell uptake was demonstrated by the analysis of cell morphology, cytoskeleton staining, and intracellular substrate glucosylation. The fusion toxins were functional only when the adapter domain of CDTa was N-terminally located, according to its native orientation. Thus, like other binary toxins, the CDTaN/b system can be used for standardized delivery systems not only for bacterial ADPRTs but also for a variety of bacterial glucosyltransferase domains.

  10. Tumor targeting using liposomal antineoplastic drugs

    Directory of Open Access Journals (Sweden)

    Jörg Huwyler

    2008-03-01

    Full Text Available Jörg Huwyler1, Jürgen Drewe2, Stephan Krähenbühl21University of Applied Sciences Northwestern Switzerland, Institute of Pharma Technology, Muttenz, Switzerland; 2Department of Research and Division of Clinical Pharmacology, University Hospital Basel, Basel, SwitzerlandAbstract: During the last years, liposomes (microparticulate phospholipid vesicles have beenused with growing success as pharmaceutical carriers for antineoplastic drugs. Fields of application include lipid-based formulations to enhance the solubility of poorly soluble antitumordrugs, the use of pegylated liposomes for passive targeting of solid tumors as well as vector-conjugated liposomal carriers for active targeting of tumor tissue. Such formulation and drug targeting strategies enhance the effectiveness of anticancer chemotherapy and reduce at the same time the risk of toxic side-effects. The present article reviews the principles of different liposomal technologies and discusses current trends in this field of research.Keywords: tumor targeting, antineoplastic drugs, liposomes, pegylation, steric stabilization, immunoliposomes

  11. Directed antigen delivery as a vaccine strategy for an intracellular bacterial pathogen

    Science.gov (United States)

    Bouwer, H. G. Archie; Alberti-Segui, Christine; Montfort, Megan J.; Berkowitz, Nathan D.; Higgins, Darren E.

    2006-03-01

    We have developed a vaccine strategy for generating an attenuated strain of an intracellular bacterial pathogen that, after uptake by professional antigen-presenting cells, does not replicate intracellularly and is readily killed. However, after degradation of the vaccine strain within the phagolysosome, target antigens are released into the cytosol for endogenous processing and presentation for stimulation of CD8+ effector T cells. Applying this strategy to the model intracellular pathogen Listeria monocytogenes, we show that an intracellular replication-deficient vaccine strain is cleared rapidly in normal and immunocompromised animals, yet antigen-specific CD8+ effector T cells are stimulated after immunization. Furthermore, animals immunized with the intracellular replication-deficient vaccine strain are resistant to lethal challenge with a virulent WT strain of L. monocytogenes. These studies suggest a general strategy for developing safe and effective, attenuated intracellular replication-deficient vaccine strains for stimulation of protective immune responses against intracellular bacterial pathogens. CD8+ T cell | replication-deficient | Listeria monocytogenes

  12. Tumor Targeting and Drug Delivery by Anthrax Toxin

    OpenAIRE

    Bachran, Christopher; Leppla, Stephen H.

    2016-01-01

    Anthrax toxin is a potent tripartite protein toxin from Bacillus anthracis. It is one of the two virulence factors and causes the disease anthrax. The receptor-binding component of the toxin, protective antigen, needs to be cleaved by furin-like proteases to be activated and to deliver the enzymatic moieties lethal factor and edema factor to the cytosol of cells. Alteration of the protease cleavage site allows the activation of the toxin selectively in response to the presence of tumor-associ...

  13. Improved cytotoxicity of paclitaxel loaded in nanosized lipid carriers by intracellular delivery

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Jing, E-mail: joemj1005@163.com, E-mail: miaojing@zju.edu.cn [Zhejiang University, Department of Pharmacy, the First Affiliated Hospital, College of Medicine (China); Du, Yongzhong; Yuan, Hong [Zhejiang University, College of Pharmaceutical Sciences (China); Zhang, Xingguo; Li, Qian; Rao, Yuefeng [Zhejiang University, Department of Pharmacy, the First Affiliated Hospital, College of Medicine (China); Zhao, Mengdan [Zhejiang University, Women’s Hospital, College of Medicine (China); Hu, Fuqiang, E-mail: hufq@zju.edu.cn [Zhejiang University, College of Pharmaceutical Sciences (China)

    2015-01-15

    Nanosized lipid carriers (NLC) can improve the limited drug-loading (DL) capacity and drug expulsion during storage, and adjust the drug release profile of solid lipid nanoparticles (SLN). In this study, Paclitaxel (PTX)-loaded NLC were prepared by solvent diffusion method using monostearin as solid lipid and oleic acid (OA) as liquid lipid matrix. The blank NLC with different OA content (the size range was from 89.5 ± 7.4 to 160.2 ± 34.6 nm) showed smaller size than the blank SLN (the size was 272.7 ± 43.6 nm), while the PTX-loaded NLC (the size range was from 481.3 ± 29.8 to 561.7 ± 38.3 nm) showed little bigger size, higher DL capacity, and faster drug in vitro release rate comparing with SLN (the size was 437.3 ± 68.2 nm). The 50 % cellular growth inhibitions (IC{sub 50}) of PTX-loaded NLC with 0, 5, 10, and 20 wt % OA were 0.92 ± 0.06, 0.69 ± 0.04, 0.25 ± 0.02, and 0.12 ± 0.02 µg mL{sup −1}, respectively, while the IC{sub 50} of Taxol{sup TM} was 1.72 ± 0.09 µg mL{sup −1}. For analyzing cellular drug effect, cellular uptakes of fluorescent NLC and intracellular drug concentration were investigated. As the incorporation of OA into solid lipid matrix could accelerate both the cellular uptake and the PTX delivery, loaded by NLC, the cytotoxicity of PTX could be enhanced, and further enhanced by increasing OA content in NLC.

  14. Improved cytotoxicity of paclitaxel loaded in nanosized lipid carriers by intracellular delivery

    International Nuclear Information System (INIS)

    Miao, Jing; Du, Yongzhong; Yuan, Hong; Zhang, Xingguo; Li, Qian; Rao, Yuefeng; Zhao, Mengdan; Hu, Fuqiang

    2015-01-01

    Nanosized lipid carriers (NLC) can improve the limited drug-loading (DL) capacity and drug expulsion during storage, and adjust the drug release profile of solid lipid nanoparticles (SLN). In this study, Paclitaxel (PTX)-loaded NLC were prepared by solvent diffusion method using monostearin as solid lipid and oleic acid (OA) as liquid lipid matrix. The blank NLC with different OA content (the size range was from 89.5 ± 7.4 to 160.2 ± 34.6 nm) showed smaller size than the blank SLN (the size was 272.7 ± 43.6 nm), while the PTX-loaded NLC (the size range was from 481.3 ± 29.8 to 561.7 ± 38.3 nm) showed little bigger size, higher DL capacity, and faster drug in vitro release rate comparing with SLN (the size was 437.3 ± 68.2 nm). The 50 % cellular growth inhibitions (IC 50 ) of PTX-loaded NLC with 0, 5, 10, and 20 wt % OA were 0.92 ± 0.06, 0.69 ± 0.04, 0.25 ± 0.02, and 0.12 ± 0.02 µg mL −1 , respectively, while the IC 50 of Taxol TM was 1.72 ± 0.09 µg mL −1 . For analyzing cellular drug effect, cellular uptakes of fluorescent NLC and intracellular drug concentration were investigated. As the incorporation of OA into solid lipid matrix could accelerate both the cellular uptake and the PTX delivery, loaded by NLC, the cytotoxicity of PTX could be enhanced, and further enhanced by increasing OA content in NLC

  15. pH-Switch Nanoprecipitation of Polymeric Nanoparticles for Multimodal Cancer Targeting and Intracellular Triggered Delivery of Doxorubicin.

    Science.gov (United States)

    Herranz-Blanco, Bárbara; Shahbazi, Mohammad-Ali; Correia, Alexandra R; Balasubramanian, Vimalkumar; Kohout, Tomáš; Hirvonen, Jouni; Santos, Hélder A

    2016-08-01

    Theranostic nanoparticles are emerging as potent tools for noninvasive diagnosis, treatment, and monitoring of solid tumors. Herein, an advanced targeted and multistimuli responsive theranostic platform is presented for the intracellular triggered delivery of doxorubicin. The system consists of a polymeric-drug conjugate solid nanoparticle containing encapsulated superparamagnetic iron oxide nanoparticles (IO@PNP) and decorated with a tumor homing peptide, iRGD. The production of this nanosystem is based on a pH-switch nanoprecipitation method in organic-free solvents, making it ideal for biomedical applications. The nanosystem shows sufficient magnetization saturation for magnetically guided therapy along with reduced cytotoxicity and hemolytic effects. IO@PNP are largely internalized by endothelial and metastatic cancer cells and iRGD decorated IO@PNP moderately enhance their internalization into endothelial cells, while no enhancement is found for the metastatic cancer cells. Poly(ethylene glycol)-block-poly(histidine) with pH-responsive and proton-sponge properties promotes prompt lysosomal escape once the nanoparticles are endocyted. In addition, the polymer-doxorubicin conjugate solid nanoparticles show both intracellular lysosomal escape and efficient translocation of doxorubicin to the nuclei of the cells via cleavage of the amide bond. Overall, IO@PNP-doxorubicin and the iRGD decorated counterpart demonstrate to enhance the toxicity of doxorubicin in cancer cells by improving the intracellular delivery of the drug carried in the IO@PNP. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Cell internalizable and intracellularly degradable cationic polyurethane micelles as a potential platform for efficient imaging and drug delivery.

    Science.gov (United States)

    Ding, Mingming; Zeng, Xin; He, Xueling; Li, Jiehua; Tan, Hong; Fu, Qiang

    2014-08-11

    A cell internalizable and intracellularly degradable micellar system, assembled from multiblock polyurethanes bearing cell-penetrating gemini quaternary ammonium pendent groups in the side chain and redox-responsive disulfide linkages throughout the backbone, was developed for potential magnetic resonance imaging (MRI) and drug delivery. The nanocarrier is featured as a typical "cleavable core-internalizable shell-protective corona" architecture, which exhibits small size, positive surface charge, high loading capacity, and reduction-triggered destabilization. Furthermore, it can rapidly enter tumor cells and release its cargo in response to an intracellular level of glutathione, resulting in enhanced drug efficacy in vitro. The magnetic micelles loaded with superparamagnetic iron oxide (SPIO) nanoparticles demonstrate excellent MRI contrast enhancement, with T2 relaxivity found to be affected by the morphology of SPIO-clustering inside the micelle core. The multifunctional carrier with good cytocompatibility and nontoxic degradation products can serve as a promising theranostic candidate for efficient intracellular delivery of anticancer drugs and real-time monitoring of therapeutic effect.

  17. Advancing theranostics with tumor-targeting peptides for precision otolaryngology

    Directory of Open Access Journals (Sweden)

    Chadwick L. Wright

    2016-06-01

    Full Text Available Worldwide, about 600,000 head and neck squamous cell carcinoma (HNSCC are detected annually, many of which involve high risk human papilloma virus (HPV. Surgery is the primary and desired first treatment option. Following surgery, the existence of cancer cells at the surgical margin is strongly associated with eventual recurrence of cancer and a poor outcome. Despite improved surgical methods (robotics, microsurgery, endoscopic/laparoscopic, and external imaging, surgeons rely only on their vision and touch to locate tumors during surgery. Diagnostic imaging systems like computed tomography (CT, magnetic resonance imaging (MRI, single-photon emission computed tomography (SPECT and positron-emission tomography (PET are too large, slow and costly to use efficiently during most surgeries and, ultrasound imaging, while fast and portable, is not cancer specific. This purpose of this article is to review the fundamental technologies that will radically advance Precision Otolaryngology practices to the benefit of patients with HNSCC. In particular, this article will address the potential for tumor-targeting peptides to enable more precise diagnostic imaging while simultaneously advancing new therapeutic paradigms for next generation image-guided surgery, tumor-specific chemotherapeutic delivery and tumor-selective targeted radiotherapy (i.e., theranostic. Keywords: Squamous cell carcinoma, Peptide, Optical surgical navigation, Diagnostic imaging, Theranostic

  18. Killing of intracellular Mycobacterium tuberculosis by receptor-mediated drug delivery

    International Nuclear Information System (INIS)

    Majumdar, S.; Basu, S.K.

    1991-01-01

    p-Aminosalicylic acid (PAS) conjugated to maleylated bovine serum albumin (MBSA) was taken up efficiently through high-affinity MBSA-binding sites on macrophages. Binding of the radiolabeled conjugate to cultured mouse peritoneal macrophages at 4 degrees C was competed for by MBSA but not by PAS. At 37 degrees C, the radiolabeled conjugate was rapidly degraded by the macrophages, leading to release of acid-soluble degradation products in the medium. The drug conjugate was nearly 100 times as effective as free PAS in killing the intracellular mycobacteria in mouse peritoneal macrophages infected in culture with Mycobacterium tuberculosis. The killing of intracellular mycobacteria mediated by the drug conjugate was effectively prevented by simultaneous addition of excess MBSA (100 micrograms/ml) or chloroquine (3 microM) to the medium, whereas these agents did not affect the microbicidal action of free PAS. These results suggest that (i) uptake of the PAS-MBSA conjugate was mediated by cell surface receptors on macrophages which recognize MBSA and (ii) lysosomal hydrolysis of the internalized conjugate resulted in intracellular release of a pharmacologically active form of the drug, which led to selective killing of the M. tuberculosis harbored by mouse macrophages infected in culture. This receptor-mediated modality of delivering drugs to macrophages could contribute to greater therapeutic efficacy and minimization of toxic side effects in the management of tuberculosis and other intracellular mycobacterial infections

  19. Self-assembled nanocomplexes of anionic pullulan and polyallylamine for DNA and pH-sensitive intracellular drug delivery

    Science.gov (United States)

    Vora, Lalit; Tyagi, Monica; Patel, Ketan; Gupta, Sanjay; Vavia, Pradeep

    2014-12-01

    The amalgamation of chemotherapy and gene therapy is promising treatment option for cancer. In this study, novel biocompatible self-assembled nanocomplexes (NCs) between carboxylmethylated pullulan t335 (CMP) with polyallylamine (CMP-PAA NCs) were developed for plasmid DNA (pDNA) and pH-sensitive doxorubicin (DOX) delivery. DOX was conjugated to CMP (DOX-CMP) via hydrazone and confirmed by FTIR and 1H-NMR. In vitro release studies of pH-sensitive DOX-CMP conjugate showed 23 and 85 % release after 48 h at pH 7.4 (physiological pH) and pH 5 (intracellular/tumoral pH), respectively. The CMP-PAA NCs or DOX-CMP-PAA NCs self-assembled into a nanosized (successful cellular uptake of DOX-CMP-PAA NCs in HEK293 cells. Thus, NCs hold great potential for targeted pDNA and pH-sensitive intratumoral drug delivery.

  20. The effects of collagen-rich extracellular matrix on the intracellular delivery of glycol chitosan nanoparticles in human lung fibroblasts.

    Science.gov (United States)

    Yhee, Ji Young; Yoon, Hong Yeol; Kim, Hyunjoon; Jeon, Sangmin; Hergert, Polla; Im, Jintaek; Panyam, Jayanth; Kim, Kwangmeyung; Nho, Richard Seonghun

    2017-01-01

    Recent progress in nanomedicine has shown a strong possibility of targeted therapy for obstinate chronic lung diseases including idiopathic pulmonary fibrosis (IPF). IPF is a fatal lung disease characterized by persistent fibrotic fibroblasts in response to type I collagen-rich extracellular matrix. As a pathological microenvironment is important in understanding the biological behavior of nanoparticles, in vitro cellular uptake of glycol chitosan nanoparticles (CNPs) in human lung fibroblasts was comparatively studied in the presence or absence of type I collagen matrix. Primary human lung fibroblasts from non-IPF and IPF patients (n=6/group) showed significantly increased cellular uptake of CNPs (>33.6-78.1 times) when they were cultured on collagen matrix. To elucidate the underlying mechanism of enhanced cellular delivery of CNPs in lung fibroblasts on collagen, cells were pretreated with chlorpromazine, genistein, and amiloride to inhibit clathrin-mediated endocytosis, caveolae-mediated endocytosis, and macropinocytosis, respectively. Amiloride pretreatment remarkably reduced the cellular uptake of CNPs, suggesting that lung fibroblasts mainly utilize the macropinocytosis-dependent mechanism when interacted with collagen. In addition, the internalization of CNPs was predominantly suppressed by a phosphoinositide 3-kinase (PI3K) inhibitor in IPF fibroblasts, indicating that enhanced PI3K activity associated with late-stage macropinocytosis can be particularly important for the enhanced cellular delivery of CNPs in IPF fibroblasts. Our study strongly supports the concept that a pathological microenvironment which surrounds lung fibroblasts has a significant impact on the intracellular delivery of nanoparticles. Based on the property of enhanced intracellular delivery of CNPs when fibroblasts are made to interact with a collagen-rich matrix, we suggest that CNPs may have great potential as a drug-carrier system for targeting fibrotic lung fibroblasts.

  1. Enhanced antitumor effects of novel intracellular delivery of an active form of menaquinone-4, menahydroquinone-4, into hepatocellular carcinoma.

    Science.gov (United States)

    Setoguchi, Shuichi; Watase, Daisuke; Matsunaga, Kazuhisa; Matsubara, Misa; Kubo, Yohei; Kusuda, Mariko; Nagata-Akaho, Nami; Enjoji, Munechika; Nakashima, Manabu; Takeshita, Morishige; Karube, Yoshiharu; Takata, Jiro

    2015-02-01

    Reduced cellular uptake of menaquinone-4 (MK-4), a vitamin K2 homolog, in human hepatocellular carcinoma (HCC) limits its usefulness as a safe long-term antitumor agent for recurrent HCC and produces des-γ-carboxy prothrombin (DCP). We hypothesized that effective delivery of menahydroquinone-4 (MKH), the active form of MK-4 for γ-glutamyl carboxylation, into HCC cells is critical for regulating HCC growth, and may enable it to be applied as a safe antitumor agent. In this study, we verified this hypothesis using menahydroquinone-4 1,4-bis-N,N-dimethylglycinate hydrochloride (MKH-DMG), a prodrug of MKH, and demonstrated its effectiveness. Intracellular delivery of MKH and subsequent growth inhibition of PLC/PRF/5 and Hep3B (DCP-positive) and SK-Hep-1 (DCP-negative) cells after MKH-DMG administration were determined and compared with MK-4. The activity of MKH-DMG against tumor progression in the liver alongside DCP formation was determined in a spleen-liver metastasis mouse model. MKH-DMG exhibited greater intracellular delivery of MKH in vitro (AUC0-72 hour of MKH) and increased growth-inhibitory activity against both DCP-positive and DCP-negative HCC cell lines. The phenomena of MKH delivery into cells in parallel with simultaneous growth inhibition suggested that MKH is the active form for growth inhibition of HCC cells. Cell-cycle arrest was determined to be involved in the growth inhibition mechanisms of MKH-DMG. Furthermore, MKH-DMG showed significant inhibition of tumor progression in the liver, and a substantial decrease in plasma DCP levels in the spleen-liver metastasis mouse model. Our results suggest that MKH-DMG is a promising new candidate antitumor agent for safe long-term treatment of HCC. ©2014 American Association for Cancer Research.

  2. Intracellular cargo delivery by virus capsid protein-based vehicles: From nano to micro.

    Science.gov (United States)

    Gao, Ding; Lin, Xiu-Ping; Zhang, Zhi-Ping; Li, Wei; Men, Dong; Zhang, Xian-En; Cui, Zong-Qiang

    2016-02-01

    Cellular delivery is an important concern for the efficiency of medicines and sensors for disease diagnoses and therapy. However, this task is quite challenging. Self-assembly virus capsid proteins might be developed as building blocks for multifunctional cellular delivery vehicles. In this work, we found that SV40 VP1 (Simian virus 40 major capsid protein) could function as a new cell-penetrating protein. The VP1 protein could carry foreign proteins into cells in a pentameric structure. A double color structure, with red QDs (Quantum dots) encapsulated by viral capsids fused with EGFP, was created for imaging cargo delivery and release from viral capsids. The viral capsids encapsulating QDs were further used for cellular delivery of micron-sized iron oxide particles (MPIOs). MPIOs were efficiently delivered into live cells and controlled by a magnetic field. Therefore, our study built virus-based cellular delivery systems for different sizes of cargos: protein molecules, nanoparticles, and micron-sized particles. Much research is being done to investigate methods for efficient and specific cellular delivery of drugs, proteins or genetic material. In this article, the authors describe their approach in using self-assembly virus capsid proteins SV40 VP1 (Simian virus 40 major capsid protein). The cell-penetrating behavior provided excellent cellular delivery and should give a new method for biomedical applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Size-Dependent Regulation of Intracellular Trafficking of Polystyrene Nanoparticle-Based Drug-Delivery Systems.

    Science.gov (United States)

    Wang, Ting; Wang, Lu; Li, Xiaoming; Hu, Xingjie; Han, Yuping; Luo, Yao; Wang, Zejun; Li, Qian; Aldalbahi, Ali; Wang, Lihua; Song, Shiping; Fan, Chunhai; Zhao, Yun; Wang, Maolin; Chen, Nan

    2017-06-07

    Nanoparticles (NPs) have shown great promise as intracellular imaging probes or nanocarriers and are increasingly being used in biomedical applications. A detailed understanding of how NPs get "in and out" of cells is important for developing new nanomaterials with improved selectivity and less cytotoxicity. Both physical and chemical characteristics have been proven to regulate the cellular uptake of NPs. However, the exocytosis process and its regulation are less explored. Herein, we investigated the size-regulated endocytosis and exocytosis of carboxylated polystyrene (PS) NPs. PS NPs with a smaller size were endocytosed mainly through the clathrin-dependent pathway, whereas PS NPs with a larger size preferred caveolae-mediated endocytosis. Furthermore, our results revealed exocytosis of larger PS NPs and tracked the dynamic process at the single-particle level. These results indicate that particle size is a key factor for the regulation of intracellular trafficking of NPs and provide new insight into the development of more effective cellular nanocarriers.

  4. Tumor-targeted nanomedicines for cancer theranostics

    Science.gov (United States)

    Lammers, Twan; Shi, Yang

    2017-01-01

    Chemotherapeutic drugs have multiple drawbacks, including severe side effects and suboptimal therapeutic efficacy. Nanomedicines assist in improving the biodistribution and the target accumulation of chemotherapeutic drugs, and are therefore able to enhance the balance between efficacy and toxicity. Multiple different types of nanomedicines have been evaluated over the years, including liposomes, polymer-drug conjugates and polymeric micelles, which rely on strategies such as passive targeting, active targeting and triggered release for improved tumor-directed drug delivery. Based on the notion that tumors and metastases are highly heterogeneous, it is important to integrate imaging properties in nanomedicine formulations in order to enable non-invasive and quantitative assessment of targeting efficiency. By allowing for patient pre-selection, such next generation nanotheranostics are useful for facilitating clinical translation and personalizing nanomedicine treatments. PMID:27865762

  5. Intracellular Delivery of a Planar DNA Origami Structure by the Transferrin-Receptor Internalization Pathway

    DEFF Research Database (Denmark)

    Schaffert, David Henning; Okholm, Anders Hauge; Sørensen, Rasmus Schøler

    2016-01-01

    DNA origami provides rapid access to easily functionalized, nanometer-sized structures making it an intriguing platform for the development of defined drug delivery and sensor systems. Low cellular uptake of DNA nanostructures is a major obstacle in the development of DNA-based delivery platforms....... Herein, significant strong increase in cellular uptake in an established cancer cell line by modifying a planar DNA origami structure with the iron transport protein transferrin (Tf) is demonstrated. A variable number of Tf molecules are coupled to the origami structure using a DNA-directed, site...... on the origami surface....

  6. Intracellular delivery of poly(I:C) induces apoptosis of fibroblast-like synoviocytes via an unknown dsRNA sensor

    Energy Technology Data Exchange (ETDEWEB)

    Karpus, Olga N.; Hsiao, Cheng-Chih; Kort, Hanneke de; Tak, Paul P.; Hamann, Jörg, E-mail: j.hamann@amc.uva.nl

    2016-08-26

    Fibroblast-like synoviocytes (FLS) express functional membranous and cytoplasmic sensors for double-stranded (ds)RNA. Notably, FLS undergo apoptosis upon transfection with the synthetic dsRNA analog poly(I:C). We here studied the mechanism of intracellular poly(I:C) recognition and subsequent cell death in FLS. FLS responded similarly to poly(I:C) or 3pRNA transfection; however, only intracellular delivery of poly(I:C) induced significant cell death, accompanied by upregulation of pro-apoptotic proteins Puma and Noxa, caspase 3 cleavage, and nuclear segregation. Knockdown of the DExD/H-box helicase MDA5 did not affect the response to intracellular poly(I:C); in contrast, knockdown of RIG-I abrogated the response to 3pRNA. Knockdown of the downstream adaptor proteins IPS, STING, and TRIF or inhibition of TBK1 did not affect the response to intracellular poly(I:C), while knockdown of IFNAR blocked intracellular poly(I:C)-mediated signaling and cell death. We conclude that a so far unknown intracellular sensor recognizes linear dsRNA and induces apoptosis in FLS. - Highlights: • Intracellular poly(I:C) and 3pRNA evoke immune responses in FLS. • Only intracellular delivery of poly(I:C) induces FLS apoptosis. • FLS do not require MDA5 for their response to intracellular poly(I:C). • FLS respond to intracellular poly(I:C) independent of IPS and STING. • An unknown intracellular sensor recognizes linear dsRNA in FLS.

  7. Preparation of Biodegradable Oligo(lactides-Grafted Dextran Nanogels for Efficient Drug Delivery by Controlling Intracellular Traffic

    Directory of Open Access Journals (Sweden)

    Yuichi Ohya

    2018-05-01

    Full Text Available Nanogels, nanometer-sized hydrogel particles, have great potential as drug delivery carriers. To achieve effective drug delivery to the active sites in a cell, control of intracellular traffic is important. In this study, we prepared nanogels composed of dextran with oligolactide (OLA chains attached via disulfide bonds (Dex-g-SS-OLA that collapse under the reductive conditions of the cytosol to achieve efficient drug delivery. In addition, we introduced galactose (Gal residues on the nanogels, to enhance cellular uptake by receptor-mediated endocytosis, and secondary oligo-amine (tetraethylenepentamine groups, to aid in escape from endosomes via proton sponge effects. The obtained Dex-g-SS-OLA with attached Gal residues and tetraethylenepentamine (EI4 groups, EI4/Gal-Dex-g-SS-OLA, formed a nanogel with a hydrodynamic diameter of ca. 203 nm in phosphate-buffered solution. The collapse of the EI4/Gal-Dex-g-SS-OLA nanogels under reductive conditions was confirmed by a decrease in the hydrodynamic diameter in the presence of reductive agents. The specific uptake of the hydrogels into HepG2 cells and their intercellular behavior were investigated by flow cytometry and confocal laser scanning microscopy using fluorescence dye-labeled nanogels. Escape from the endosome and subsequent collapse in the cytosol of the EI4/Gal-Dex-g-SS-OLA were observed. These biodegradable nanogels that collapse under reductive conditions in the cytosol should have great potential as efficient drug carriers in, for example, cancer chemotherapy.

  8. Role of Cell-Penetrating Peptides in Intracellular Delivery of Peptide Nucleic Acids Targeting Hepadnaviral Replication

    DEFF Research Database (Denmark)

    Ndeboko, Benedicte; Ramamurthy, Narayan; Lemamy, Guy Joseph

    2017-01-01

    Peptide nucleic acids (PNAs) are potentially attractive antisense agents against hepatitis B virus (HBV), although poor cellular uptake limits their therapeutic application. In the duck HBV (DHBV) model, we evaluated different cell-penetrating peptides (CPPs) for delivery to hepatocytes of a PNA...

  9. Intracellular responsive dual delivery by endosomolytic polyplexes carrying DNA anchored porous silicon nanoparticles

    DEFF Research Database (Denmark)

    Shahbazi, Mohammad Ali; Almeida, Patrick Vingadas; Correia, Alexandra

    2017-01-01

    -alt-maleic acid)) and a cationic endosomolytic polymer (polyethyleneimine). This combined nanocomposite is successfully tested for the co-delivery of hydrophobic (sorafenib) or hydrophilic (calcein) molecules loaded within the porous core, and an imaging agent covalently integrated into the polyplex shell...

  10. Reduction-sensitive polymer-shell-coated nanogels for intracellular delivery of antigens

    NARCIS (Netherlands)

    Li, Dandan; Chen, Yinan|info:eu-repo/dai/nl/377279048; Mastrobattista, Enrico|info:eu-repo/dai/nl/228061105; Van Nostrum, Cornelus F.|info:eu-repo/dai/nl/134498690; Hennink, Wim E.|info:eu-repo/dai/nl/070880409; Vermonden, Tina|info:eu-repo/dai/nl/275124517

    2017-01-01

    Nowadays, layer-by-layer assembled microsized particles receive interest as drug delivery systems. In the present study, we report nanosized hydrogels loaded with a protein antigen that are coated with a disulfide cross-linked polymer shell. These disulfide bonds are stable in the nonreducing

  11. Enhanced intracellular delivery of a model drug using microbubbles produced by a microfluidic device.

    Science.gov (United States)

    Dixon, Adam J; Dhanaliwala, Ali H; Chen, Johnny L; Hossack, John A

    2013-07-01

    Focal drug delivery to a vessel wall facilitated by intravascular ultrasound and microbubbles holds promise as a potential therapy for atherosclerosis. Conventional methods of microbubble administration result in rapid clearance from the bloodstream and significant drug loss. To address these limitations, we evaluated whether drug delivery could be achieved with transiently stable microbubbles produced in real time and in close proximity to the therapeutic site. Rat aortic smooth muscle cells were placed in a flow chamber designed to simulate physiological flow conditions. A flow-focusing microfluidic device produced 8 μm diameter monodisperse microbubbles within the flow chamber, and ultrasound was applied to enhance uptake of a surrogate drug (calcein). Acoustic pressures up to 300 kPa and flow rates up to 18 mL/s were investigated. Microbubbles generated by the flow-focusing microfluidic device were stabilized with a polyethylene glycol-40 stearate shell and had either a perfluorobutane (PFB) or nitrogen gas core. The gas core composition affected stability, with PFB and nitrogen microbubbles exhibiting half-lives of 40.7 and 18.2 s, respectively. Calcein uptake was observed at lower acoustic pressures with nitrogen microbubbles (100 kPa) than with PFB microbubbles (200 kPa) (p 3). In addition, delivery was observed at all flow rates, with maximal delivery (>70% of cells) occurring at a flow rate of 9 mL/s. These results demonstrate the potential of transiently stable microbubbles produced in real time and in close proximity to the intended therapeutic site for enhancing localized drug delivery. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  12. Intracellular Delivery of a Planar DNA Origami Structure by the Transferrin-Receptor Internalization Pathway.

    Science.gov (United States)

    Schaffert, David H; Okholm, Anders H; Sørensen, Rasmus S; Nielsen, Jesper S; Tørring, Thomas; Rosen, Christian B; Kodal, Anne Louise B; Mortensen, Michael R; Gothelf, Kurt V; Kjems, Jørgen

    2016-05-01

    DNA origami provides rapid access to easily functionalized, nanometer-sized structures making it an intriguing platform for the development of defined drug delivery and sensor systems. Low cellular uptake of DNA nanostructures is a major obstacle in the development of DNA-based delivery platforms. Herein, significant strong increase in cellular uptake in an established cancer cell line by modifying a planar DNA origami structure with the iron transport protein transferrin (Tf) is demonstrated. A variable number of Tf molecules are coupled to the origami structure using a DNA-directed, site-selective labeling technique to retain ligand functionality. A combination of confocal fluorescence microscopy and quantitative (qPCR) techniques shows up to 22-fold increased cytoplasmic uptake compared to unmodified structures and with an efficiency that correlates to the number of transferrin molecules on the origami surface. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A smart multifunctional nanocomposite for intracellular targeted drug delivery and self-release

    International Nuclear Information System (INIS)

    Wang Chan; Tao Shengyang; Hu Tao; Yang Jingbang; Meng Changgong; Lv Piping; Wei Wei

    2011-01-01

    A multifunctional 'all-in-one' nanocomposite is fabricated using a colloid, template and surface-modification method. This material encompasses magnetic induced target delivery, cell uptake promotion and controlled drug release in one system. The nanocomposite is characterized by scanning electron microscopy, transmission electron microscopy, x-ray diffraction, N 2 adsorption and vibrating sample magnetometry. The prepared material has a diameter of 350-400 nm, a high surface area of 420.29 m 2 g -1 , a pore size of 1.91 nm and a saturation magnetization of 32 emu g -1 . Doxorubicin (DOX) is loaded in mesopores and acid-sensitive blockers are introduced onto the orifices of the mesopores by a Schiff base linker to implement pH-dependent self-release. Folate was also introduced to improve DOX targeted delivery and endocytosis. The linkers remained intact to block pores with ferrocene valves and inhibit the diffusion of DOX at neutral pH. However, in lysosomes of cancer cells, which have a weak acidic pH, hydrolysis of the Schiff base group removes the nanovalves and allows the trapped DOX to be released. These processes are demonstrated by UV-visible absorption spectra, confocal fluorescence microscopy images and methyl thiazolyl tetrazolium assays in vitro, which suggest that the smart nanocomposite successfully integrates targeted drug delivery with internal stimulus induced self-release and is a potentially useful material for nanobiomedicine.

  14. A smart multifunctional nanocomposite for intracellular targeted drug delivery and self-release

    Science.gov (United States)

    Wang, Chan; Lv, Piping; Wei, Wei; Tao, Shengyang; Hu, Tao; Yang, Jingbang; Meng, Changgong

    2011-10-01

    A multifunctional 'all-in-one' nanocomposite is fabricated using a colloid, template and surface-modification method. This material encompasses magnetic induced target delivery, cell uptake promotion and controlled drug release in one system. The nanocomposite is characterized by scanning electron microscopy, transmission electron microscopy, x-ray diffraction, N2 adsorption and vibrating sample magnetometry. The prepared material has a diameter of 350-400 nm, a high surface area of 420.29 m2 g - 1, a pore size of 1.91 nm and a saturation magnetization of 32 emu g - 1. Doxorubicin (DOX) is loaded in mesopores and acid-sensitive blockers are introduced onto the orifices of the mesopores by a Schiff base linker to implement pH-dependent self-release. Folate was also introduced to improve DOX targeted delivery and endocytosis. The linkers remained intact to block pores with ferrocene valves and inhibit the diffusion of DOX at neutral pH. However, in lysosomes of cancer cells, which have a weak acidic pH, hydrolysis of the Schiff base group removes the nanovalves and allows the trapped DOX to be released. These processes are demonstrated by UV-visible absorption spectra, confocal fluorescence microscopy images and methyl thiazolyl tetrazolium assays in vitro, which suggest that the smart nanocomposite successfully integrates targeted drug delivery with internal stimulus induced self-release and is a potentially useful material for nanobiomedicine.

  15. A smart multifunctional nanocomposite for intracellular targeted drug delivery and self-release

    Energy Technology Data Exchange (ETDEWEB)

    Wang Chan; Tao Shengyang; Hu Tao; Yang Jingbang; Meng Changgong [School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning (China); Lv Piping; Wei Wei, E-mail: taosy@dlut.edu.cn [National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing (China)

    2011-10-14

    A multifunctional 'all-in-one' nanocomposite is fabricated using a colloid, template and surface-modification method. This material encompasses magnetic induced target delivery, cell uptake promotion and controlled drug release in one system. The nanocomposite is characterized by scanning electron microscopy, transmission electron microscopy, x-ray diffraction, N{sub 2} adsorption and vibrating sample magnetometry. The prepared material has a diameter of 350-400 nm, a high surface area of 420.29 m{sup 2} g{sup -1}, a pore size of 1.91 nm and a saturation magnetization of 32 emu g{sup -1}. Doxorubicin (DOX) is loaded in mesopores and acid-sensitive blockers are introduced onto the orifices of the mesopores by a Schiff base linker to implement pH-dependent self-release. Folate was also introduced to improve DOX targeted delivery and endocytosis. The linkers remained intact to block pores with ferrocene valves and inhibit the diffusion of DOX at neutral pH. However, in lysosomes of cancer cells, which have a weak acidic pH, hydrolysis of the Schiff base group removes the nanovalves and allows the trapped DOX to be released. These processes are demonstrated by UV-visible absorption spectra, confocal fluorescence microscopy images and methyl thiazolyl tetrazolium assays in vitro, which suggest that the smart nanocomposite successfully integrates targeted drug delivery with internal stimulus induced self-release and is a potentially useful material for nanobiomedicine.

  16. Kinetics of lipid-nanoparticle-mediated intracellular mRNA delivery and function

    Science.gov (United States)

    Zhdanov, Vladimir P.

    2017-10-01

    mRNA delivery into cells forms the basis for one of the new and promising ways to treat various diseases. Among suitable carriers, lipid nanoparticles (LNPs) with a size of about 100 nm are now often employed. Despite high current interest in this area, the understanding of the basic details of LNP-mediated mRNA delivery and function is limited. To clarify the kinetics of mRNA release from LNPs, the author uses three generic models implying (i) exponential, (ii) diffusion-controlled, and (iii) detachment-controlled kinetic regimes, respectively. Despite the distinct differences in these kinetics, the associated transient kinetics of mRNA translation to the corresponding protein and its degradation are shown to be not too sensitive to the details of the mRNA delivery by LNPs (or other nanocarriers). In addition, the author illustrates how this protein may temporarily influence the expression of one gene or a few equivalent genes. The analysis includes positive or negative regulation of the gene transcription via the attachment of the protein without or with positive or negative feedback in the gene expression. Stable, bistable, and oscillatory schemes have been scrutinized in this context.

  17. Atomic force microscopy for cellular level manipulation: imaging intracellular structures and DNA delivery through a membrane hole.

    Science.gov (United States)

    Afrin, Rehana; Zohora, Umme Salma; Uehara, Hironori; Watanabe-Nakayama, Takahiro; Ikai, Atsushi

    2009-01-01

    The atomic force microscope (AFM) is a versatile tool for imaging, force measurement and manipulation of proteins, DNA, and living cells basically at the single molecular level. In the cellular level manipulation, extraction, and identification of mRNA's from defined loci of a cell, insertion of plasmid DNA and pulling of membrane proteins, for example, have been reported. In this study, AFM was used to create holes at defined loci on the cell membrane for the investigation of viability of the cells after hole creation, visualization of intracellular structure through the hole and for targeted gene delivery into living cells. To create large holes with an approximate diameter of 5-10 microm, a phospholipase A(2) coated bead was added to the AFM cantilever and the bead was allowed to touch the cell surface for approximately 5-10 min. The evidence of hole creation was obtained mainly from fluorescent image of Vybrant DiO labeled cell before and after the contact with the bead and the AFM imaging of the contact area. In parallel, cells with a hole were imaged by AFM to reveal intracellular structures such as filamentous structures presumably actin fibers and mitochondria which were identified with fluorescent labeling with rhodamine 123. Targeted gene delivery was also attempted by inserting an AFM probe that was coated with the Monster Green Fluorescent Protein phMGFP Vector for transfection of the cell. Following targeted transfection, the gene expression of green fluorescent protein (GFP) was observed and confirmed by the fluorescence microscope. Copyright (c) 2009 John Wiley & Sons, Ltd.

  18. Intracellular delivery of peptide nucleic acid and organic molecules using zeolite-L nanocrystals.

    Science.gov (United States)

    Bertucci, Alessandro; Lülf, Henning; Septiadi, Dedy; Manicardi, Alex; Corradini, Roberto; De Cola, Luisa

    2014-11-01

    The design and synthesis of smart nanomaterials can provide interesting potential applications for biomedical purposes from bioimaging to drug delivery. Manufacturing multifunctional systems in a way to carry bioactive molecules, like peptide nucleic acids able to recognize specific targets in living cells, represents an achievement towards the development of highly selective tools for both diagnosis and therapeutics. This work describes a very first example of the use of zeolite nanocrystals as multifunctional nanocarriers to deliver simultaneously PNA and organic molecules into living cells. Zeolite-L nanocrystals are functionalized by covalently attaching the PNA probes onto the surface, while the channel system is filled with fluorescent guest molecules. The cellular uptake of the PNA/Zeolite-L hybrid material is then significantly increased by coating the whole system with a thin layer of biodegradable poly-L-lysine. The delivery of DAPI as a model drug molecule, inserted into the zeolite pores, is also demonstrated to occur in the cells, proving the multifunctional ability of the system. Using this zeolite nanosystem carrying PNA probes designed to target specific RNA sequences of interest in living cells could open new possibilities for theranostic and gene therapy applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Intracellular delivery of potential therapeutic genes: prospects in cancer gene therapy.

    Science.gov (United States)

    Bakhtiar, Athirah; Sayyad, Mustak; Rosli, Rozita; Maruyama, Atsushi; Chowdhury, Ezharul H

    2014-01-01

    Conventional therapies for malignant cancer such as chemotherapy and radiotherapy are associated with poor survival rates owing to the development of cellular resistance to cancer drugs and the lack of targetability, resulting in unwanted adverse effects on healthy cells and necessitating the lowering of therapeutic dose with consequential lower efficacy of the treatment. Gene therapy employing different types of viral and non-viral carriers to transport gene(s) of interest and facilitating production of the desirable therapeutic protein(s) has tremendous prospects in cancer treatments due to the high-level of specificity in therapeutic action of the expressed protein(s) with diminished off-target effects, although cancer cell-specific delivery of transgene(s) still poses some challenges to be addressed. Depending on the potential therapeutic target genes, cancer gene therapy could be categorized into tumor suppressor gene replacement therapy, immune gene therapy and enzyme- or prodrug-based therapy. This review would shed light on the current progress of delivery of potentially therapeutic genes into various cancer cells in vitro and animal models utilizing a variety of viral and non-viral vectors.

  20. Folate mediated self-assembled phytosterol-alginate nanoparticles for targeted intracellular anticancer drug delivery.

    Science.gov (United States)

    Wang, Jianting; Wang, Ming; Zheng, Mingming; Guo, Qiong; Wang, Yafan; Wang, Heqing; Xie, Xiangrong; Huang, Fenghong; Gong, Renmin

    2015-05-01

    Self-assembled core/shell nanoparticles (NPs) were synthesized from water-soluble alginate substituted by hydrophobic phytosterols. Folate, a cancer-cell-specific ligand, was conjugated to the phytosterol-alginate (PA) NPs for targeting folate-receptor-overexpressing cancer cells. The physicochemical properties of folate-phytosterol-alginate (FPA) NPs were characterized by nuclear magnetic resonance, transmission electron microscopy, dynamic light scattering, electrophoretic light scattering, and fluorescence spectroscopy. Doxorubicin (DOX), an anticancer drug, was entrapped inside prepared NPs by dialysis method. The identification of prepared FPA NPs to folate-receptor-overexpressing cancer cells (KB cells) was confirmed by cytotoxicity and folate competition assays. Compared to the pure DOX and DOX/PA NPs, the DOX/FPA NPs had lower IC50 value to KB cells because of folate-receptor-mediated endocytosis process and the cytotoxicity of DOX/FPA NPs to KB cells could be competitively inhibited by free folate. The cellular uptake and internalization of pure DOX and DOX/FPA NPs was confirmed by confocal laser scanning microscopy image and the higher intracellular uptake of drug for DOX/FPA NPs over pure DOX was observed. The FPA NPs had the potential as a promising carrier to target drugs to cancer cells overexpressing folate receptors and avoid cytotoxicity to normal tissues. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Self-assembled nanocomplexes of anionic pullulan and polyallylamine for DNA and pH-sensitive intracellular drug delivery

    International Nuclear Information System (INIS)

    Vora, Lalit; Tyagi, Monica; Patel, Ketan; Gupta, Sanjay; Vavia, Pradeep

    2014-01-01

    The amalgamation of chemotherapy and gene therapy is promising treatment option for cancer. In this study, novel biocompatible self-assembled nanocomplexes (NCs) between carboxylmethylated pullulan t335 (CMP) with polyallylamine (CMP–PAA NCs) were developed for plasmid DNA (pDNA) and pH-sensitive doxorubicin (DOX) delivery. DOX was conjugated to CMP (DOX–CMP) via hydrazone and confirmed by FTIR and 1 H-NMR. In vitro release studies of pH-sensitive DOX–CMP conjugate showed 23 and 85 % release after 48 h at pH 7.4 (physiological pH) and pH 5 (intracellular/tumoral pH), respectively. The CMP–PAA NCs or DOX–CMP–PAA NCs self-assembled into a nanosized (<250 nm) spherical shape as confirmed by DLS and TEM. The hemolysis and cytotoxicity study indicated that the CMP–PAA NCs did not show cytotoxicity in comparison with plain polyallylamine. Gel retardation assay showed complete binding of pDNA with CMP–PAA NCs at 1:2 weight ratio. CMP–PAA NCs/pDNA showed significantly higher transfection in HEK293 cells compared to PAA/pDNA complexes. Confocal imaging demonstrated successful cellular uptake of DOX–CMP–PAA NCs in HEK293 cells. Thus, NCs hold great potential for targeted pDNA and pH-sensitive intratumoral drug delivery

  2. pH-sensitive degradable nanoparticles for highly efficient intracellular delivery of exogenous protein

    Directory of Open Access Journals (Sweden)

    Xu D

    2013-09-01

    Full Text Available Dan Xu,1 Fei Wu,1 Yinghui Chen,2,* Liangming Wei,3,* Weien Yuan1,* 1School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 2Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, 3Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai, People's Republic of China*These authors contributed equally to this workBackground: Encapsulating exogenous proteins into a nanosized particulate system for delivery into cells is a great challenge. To address this issue, we developed a novel nanoparticle delivery method that differs from the nanoparticles reported to date because its core was composed of cross-linked dextran glassy nanoparticles which had pH in endosome-responsive environment and the protein was loaded in the core of cross-linked dextran glassy nanoparticles.Methods: In this study, dextran in a poly(ethylene glycol aqueous two-phase system created a different chemical environment in which proteins were encapsulated very efficiently (84.3% and 89.6% for enhanced green fluorescent protein and bovine serum albumin, respectively by thermodynamically favored partition. The structures of the nanoparticles were confirmed by confocal laser scanning microscopy and scanning electron microscopy.Results: The nanoparticles had a normal size distribution and a mean diameter of 186 nm. MTT assays showed that the nanoparticles were nontoxic up to a concentration of 2000 µg/mL in human hepatocarcinoma cell line SMMC-7721, HeLa, and BRL-3A cells. Of note, confocal laser scanning microscopy studies showed that nanoparticles loaded with fluorescein isothiocyanate-bovine serum albumin were efficiently delivered and released proteins into the cytoplasm of HeLa cells. Flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling assays showed that nanoparticles with a functional protein (apoptin efficiently induced

  3. Vitamin E Phosphate Nucleoside Prodrugs: A Platform for Intracellular Delivery of Monophosphorylated Nucleosides

    Directory of Open Access Journals (Sweden)

    Richard Daifuku

    2018-02-01

    Full Text Available Vitamin E phosphate (VEP nucleoside prodrugs are designed to bypass two mechanisms of tumor resistance to therapeutic nucleosides: nucleoside transport and kinase downregulation. Certain isoforms of vitamin E (VE have shown activity against solid and hematologic tumors and result in chemosensitization. Because gemcitabine is one of the most common chemotherapeutics for the treatment of cancer, it was used to demonstrate the constructs utility. Four different VE isoforms were conjugated with gemcitabine at the 5′ position. Two of these were δ-tocopherol-monophosphate (MP gemcitabine (NUC050 and δ-tocotrienol-MP gemcitabine (NUC052. NUC050 was shown to be able to deliver gemcitabine-MP intracellularly by a nucleoside transport independent mechanism. Its half-life administered IV in mice was 3.9 h. In a mouse xenograft model of non-small cell lung cancer (NSCLC NCI-H460, NUC050 at a dose of 40 mg/kg IV qwk × 4 resulted in significant inhibition to tumor growth on days 11–31 (p < 0.05 compared to saline control (SC. Median survival was 33 days (NUC050 vs. 25.5 days (SC ((hazard ratio HR = 0.24, p = 0.017. Further, NUC050 significantly inhibited tumor growth compared to historic data with gemcitabine at 135 mg/kg IV q5d × 3 on days 14–41 (p < 0.05. NUC052 was administered at a dose of 40 mg/kg IV qwk × 2 followed by 50 mg/kg qwk × 2. NUC052 resulted in inhibition to tumor growth on days 14–27 (p < 0.05 and median survival was 34 days (HR = 0.27, p = 0.033. NUC050 and NUC052 have been shown to be safe and effective in a mouse xenograft of NSCLC.

  4. Synthetic mimetics of the endogenous gastrointestinal nanomineral: Silent constructs that trap macromolecules for intracellular delivery.

    Science.gov (United States)

    Pele, Laetitia C; Haas, Carolin T; Hewitt, Rachel E; Robertson, Jack; Skepper, Jeremy; Brown, Andy; Hernandez-Garrido, Juan Carlos; Midgley, Paul A; Faria, Nuno; Chappell, Helen; Powell, Jonathan J

    2017-02-01

    Amorphous magnesium-substituted calcium phosphate (AMCP) nanoparticles (75-150nm) form constitutively in large numbers in the mammalian gut. Collective evidence indicates that they trap and deliver luminal macromolecules to mucosal antigen presenting cells (APCs) and facilitate gut immune homeostasis. Here, we report on a synthetic mimetic of the endogenous AMCP and show that it has marked capacity to trap macromolecules during formation. Macromolecular capture into AMCP involved incorporation as shown by STEM tomography of the synthetic AMCP particle with 5nm ultra-fine iron (III) oxohydroxide. In vitro, organic cargo-loaded synthetic AMCP was taken up by APCs and tracked to lysosomal compartments. The AMCP itself did not regulate any gene, or modify any gene regulation by its cargo, based upon whole genome transcriptomic analyses. We conclude that synthetic AMCP can efficiently trap macromolecules and deliver them to APCs in a silent fashion, and may thus represent a new platform for antigen delivery. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Hyaluronic acid-functionalized single-walled carbon nanotubes as tumor-targeting MRI contrast agent

    Directory of Open Access Journals (Sweden)

    Hou L

    2015-07-01

    Full Text Available Lin Hou,* Huijuan Zhang,* Yating Wang, Lili Wang, Xiaomin Yang, Zhenzhong ZhangSchool of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China*These authors contributed equally to this workAbstract: A tumor-targeting carrier, hyaluronic acid (HA-functionalized single-walled carbon nanotubes (SWCNTs, was explored to deliver magnetic resonance imaging (MRI contrast agents (CAs targeting to the tumor cells specifically. In this system, HA surface modification for SWCNTs was simply accomplished by amidation process and could make this nanomaterial highly hydrophilic. Cellular uptake was performed to evaluate the intracellular transport capabilities of HA-SWCNTs for tumor cells and the uptake rank was HA-SWCNTs> SWCNTs owing to the presence of HA, which was also evidenced by flow cytometry. The safety evaluation of this MRI CAs was investigated in vitro and in vivo. It revealed that HA-SWCNTs could stand as a biocompatible nanocarrier and gadolinium (Gd/HA-SWCNTs demonstrated almost no toxicity compared with free GdCl3. Moreover, GdCl3 bearing HA-SWCNTs could significantly increase the circulation time for MRI. Finally, to investigate the MRI contrast enhancing capabilities of Gd/HA-SWCNTs, T1-weighted MR images of tumor-bearing mice were acquired. The results suggested Gd/HA-SWCNTs had the highest tumor-targeting efficiency and T1-relaxivity enhancement, indicating HA-SWCNTs could be developed as a tumor-targeting carrier to deliver the CAs, GdCl3, for the identifiable diagnosis of tumor.Keywords: gadolinium, magnetic resonance, SWCNTs, hyaluronic acid, contrast agent

  6. Intelligent layered nanoflare: ``lab-on-a-nanoparticle'' for multiple DNA logic gate operations and efficient intracellular delivery

    Science.gov (United States)

    Yang, Bin; Zhang, Xiao-Bing; Kang, Li-Ping; Huang, Zhi-Mei; Shen, Guo-Li; Yu, Ru-Qin; Tan, Weihong

    2014-07-01

    DNA strand displacement cascades have been engineered to construct various fascinating DNA circuits. However, biological applications are limited by the insufficient cellular internalization of naked DNA structures, as well as the separated multicomponent feature. In this work, these problems are addressed by the development of a novel DNA nanodevice, termed intelligent layered nanoflare, which integrates DNA computing at the nanoscale, via the self-assembly of DNA flares on a single gold nanoparticle. As a ``lab-on-a-nanoparticle'', the intelligent layered nanoflare could be engineered to perform a variety of Boolean logic gate operations, including three basic logic gates, one three-input AND gate, and two complex logic operations, in a digital non-leaky way. In addition, the layered nanoflare can serve as a programmable strategy to sequentially tune the size of nanoparticles, as well as a new fingerprint spectrum technique for intelligent multiplex biosensing. More importantly, the nanoflare developed here can also act as a single entity for intracellular DNA logic gate delivery, without the need of commercial transfection agents or other auxiliary carriers. By incorporating DNA circuits on nanoparticles, the presented layered nanoflare will broaden the applications of DNA circuits in biological systems, and facilitate the development of DNA nanotechnology.DNA strand displacement cascades have been engineered to construct various fascinating DNA circuits. However, biological applications are limited by the insufficient cellular internalization of naked DNA structures, as well as the separated multicomponent feature. In this work, these problems are addressed by the development of a novel DNA nanodevice, termed intelligent layered nanoflare, which integrates DNA computing at the nanoscale, via the self-assembly of DNA flares on a single gold nanoparticle. As a ``lab-on-a-nanoparticle'', the intelligent layered nanoflare could be engineered to perform a variety of

  7. Intracellular co-delivery of Sr ion and phenamil drug through mesoporous bioglass nanocarriers synergizes BMP signaling and tissue mineralization.

    Science.gov (United States)

    Lee, Jung-Hwan; Mandakhbayar, Nandin; El-Fiqi, Ahmed; Kim, Hae-Won

    2017-09-15

    Inducing differentiation and maturation of resident multipotent stem cells (MSCs) is an important strategy to regenerate hard tissues in mal-calcification conditions. Here we explore a co-delivery approach of therapeutic molecules comprised of ion and drug through a mesoporous bioglass nanoparticle (MBN) for this purpose. Recently, MBN has offered unique potential as a nanocarrier for hard tissues, in terms of high mesoporosity, bone bioactivity (and possibly degradability), tunable delivery of biomolecules, and ionic modification. Herein Sr ion is structurally doped to MBN while drug Phenamil is externally loaded as a small molecule activator of BMP signaling, for the stimulation of osteo/odontogenesis and mineralization of human MSCs derived from dental pulp. The Sr-doped MBN (85Si:10Ca:5Sr) sol-gel processed presents a high mesoporosity with a pore size of ∼6nm. In particular, Sr ion is released slowly at a daily rate of ∼3ppm per mg nanoparticles for up to 7days, a level therapeutically effective for cellular stimulation. The Sr-MBN is internalized to most MSCs via an ATP dependent macropinocytosis within hours, increasing the intracellular levels of Sr, Ca and Si ions. Phenamil is loaded maximally ∼30% into Sr-MBN and then released slowly for up to 7days. The co-delivered molecules (Sr ion and Phenamil drug) have profound effects on the differentiation and maturation of cells, i.e., significantly enhancing expression of osteo/odontogenic genes, alkaline phosphatase activity, and mineralization of cells. Of note, the stimulation is a result of a synergism of Sr and Phenamil, through a Trb3-dependent BMP signaling pathway. This biological synergism is further evidenced in vivo in a mal-calcification condition involving an extracted tooth implantation in dorsal subcutaneous tissues of rats. Six weeks post operation evidences the osseous-dentinal hard tissue formation, which is significantly stimulated by the Sr/Phenamil delivery, based on histomorphometric

  8. Pore forming polyalkylpyridinium salts from marine sponges versus synthetic lipofection systems: distinct tools for intracellular delivery of cDNA and siRNA.

    Science.gov (United States)

    McLaggan, Debra; Adjimatera, Noppadon; Sepcić, Kristina; Jaspars, Marcel; MacEwan, David J; Blagbrough, Ian S; Scott, Roderick H

    2006-01-16

    Haplosclerid marine sponges produce pore forming polyalkylpyridinium salts (poly-APS), which can be used to deliver macromolecules into cells. The aim of this study was to investigate the delivery of DNA, siRNA and lucifer yellow into cells mediated by poly-APS and its potential mechanisms as compared with other lipofection systems (lipofectamine and N4,N9-dioleoylspermine (LipoGen)). DNA condensation was evaluated and HEK 293 and HtTA HeLa cells were used to investigate pore formation and intracellular delivery of cDNA, siRNA and lucifer yellow. Poly-APS and LipoGen were both found to be highly efficient DNA condensing agents. Fura-2 calcium imaging was used to measure calcium transients indicative of cell membrane pore forming activity. Calcium transients were evoked by poly-APS but not LipoGen and lipofectamine. The increases in intracellular calcium produced by poly-APS showed temperature sensitivity with greater responses being observed at 12 degrees C compared to 21 degrees C. Similarly, delivery of lucifer yellow into cells with poly-APS was enhanced at lower temperatures. Transfection with cDNA encoding for the expression enhanced green fluorescent protein was also evaluated at 12 degrees C with poly-APS, lipofectamine and LipoGen. Intracellular delivery of siRNA was achieved with knockdown in beta-actin expression when lipofectamine and LipoGen were used as transfection reagents. However, intracellular delivery of siRNA was not achieved with poly-APS. Poly-APS mediated pore formation is critical to its activity as a transfection reagent, but lipofection systems utilise distinct mechanisms to enable delivery of DNA and siRNA into cells.

  9. Pore forming polyalkylpyridinium salts from marine sponges versus synthetic lipofection systems: distinct tools for intracellular delivery of cDNA and siRNA

    Directory of Open Access Journals (Sweden)

    Blagbrough Ian S

    2006-01-01

    Full Text Available Abstract Background Haplosclerid marine sponges produce pore forming polyalkylpyridinium salts (poly-APS, which can be used to deliver macromolecules into cells. The aim of this study was to investigate the delivery of DNA, siRNA and lucifer yellow into cells mediated by poly-APS and its potential mechanisms as compared with other lipofection systems (lipofectamine and N4,N9-dioleoylspermine (LipoGen. DNA condensation was evaluated and HEK 293 and HtTA HeLa cells were used to investigate pore formation and intracellular delivery of cDNA, siRNA and lucifer yellow. Results Poly-APS and LipoGen were both found to be highly efficient DNA condensing agents. Fura-2 calcium imaging was used to measure calcium transients indicative of cell membrane pore forming activity. Calcium transients were evoked by poly-APS but not LipoGen and lipofectamine. The increases in intracellular calcium produced by poly-APS showed temperature sensitivity with greater responses being observed at 12°C compared to 21°C. Similarly, delivery of lucifer yellow into cells with poly-APS was enhanced at lower temperatures. Transfection with cDNA encoding for the expression enhanced green fluorescent protein was also evaluated at 12°C with poly-APS, lipofectamine and LipoGen. Intracellular delivery of siRNA was achieved with knockdown in beta-actin expression when lipofectamine and LipoGen were used as transfection reagents. However, intracellular delivery of siRNA was not achieved with poly-APS. Conclusion Poly-APS mediated pore formation is critical to its activity as a transfection reagent, but lipofection systems utilise distinct mechanisms to enable delivery of DNA and siRNA into cells.

  10. Development and characterization of chitosan-PEG-TAT nanoparticles for the intracellular delivery of siRNA

    Directory of Open Access Journals (Sweden)

    Malhotra M

    2013-05-01

    monodispersed and of <100 nm in size, exhibiting maximum cell transfection ability and very low cytotoxicity. Thus, this research may be of significance in translocating biotherapeutic molecules for intracellular delivery applications.Keywords: chemical conjugation, peptide, transfection, polymer, synthesis, in-vitro

  11. Identification of a boron nitride nanosphere-binding peptide for the intracellular delivery of CpG oligodeoxynucleotides

    Science.gov (United States)

    Zhang, Huijie; Yamazaki, Tomohiko; Zhi, Chunyi; Hanagata, Nobutaka

    2012-09-01

    CpG oligonucleotides (CpG ODNs) interact with Toll-like receptor 9 (TLR9), which results in the induction of immunostimulatory cytokines. We delivered CpG ODNs intracellularly using boron nitride nanospheres (BNNS). To enhance the loading capacity of CpG ODNs on BNNS, we used a phage display technique to identify a 12-amino acid peptide designated as BP7, with specific affinity for BNNS, and used it as a linker to load CpG ODNs on BNNS. The tyrosine residue (Y) at the eighth position from the N-terminus played a crucial role in the affinity of BP7 to BNNS. BNNS that bound BP7 (BNNS-BP7) were taken up by cells and showed no cytotoxicity, and CpG ODNs were successfully crosslinked with BP7 to create BP7-CpG ODN conjugates. Using BP7 as a linker, the loading efficiency of CpG ODNs on BNNS increased 5-fold compared to the direct binding of CpG ODNs to BNNS. Furthermore, the BP7-CpG ODN conjugate-loaded BNNS had a greater capacity to induce interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) production from peripheral blood mononuclear cells (PBMCs) than that of CpG ODNs directly loaded on BNNS. The higher amount of cytokine induction by BP7-CpG ODN conjugate-loaded BNNS may be attributed to a higher loading capacity and stronger binding to BNNS of the linker BP7. The greater functionality of BP7-conjugated CpG ODNs on BNNS expands the potential of BNNS for drug delivery applications.CpG oligonucleotides (CpG ODNs) interact with Toll-like receptor 9 (TLR9), which results in the induction of immunostimulatory cytokines. We delivered CpG ODNs intracellularly using boron nitride nanospheres (BNNS). To enhance the loading capacity of CpG ODNs on BNNS, we used a phage display technique to identify a 12-amino acid peptide designated as BP7, with specific affinity for BNNS, and used it as a linker to load CpG ODNs on BNNS. The tyrosine residue (Y) at the eighth position from the N-terminus played a crucial role in the affinity of BP7 to BNNS. BNNS that bound BP7

  12. Functionalizing Ascl1 with Novel Intracellular Protein Delivery Technology for Promoting Neuronal Differentiation of Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Robinson, Meghan; Chapani, Parv; Styan, Tara; Vaidyanathan, Ranjani; Willerth, Stephanie Michelle

    2016-08-01

    Pluripotent stem cells can become any cell type found in the body. Accordingly, one of the major challenges when working with pluripotent stem cells is producing a highly homogenous population of differentiated cells, which can then be used for downstream applications such as cell therapies or drug screening. The transcription factor Ascl1 plays a key role in neural development and previous work has shown that Ascl1 overexpression using viral vectors can reprogram fibroblasts directly into neurons. Here we report on how a recombinant version of the Ascl1 protein functionalized with intracellular protein delivery technology (Ascl1-IPTD) can be used to rapidly differentiate human induced pluripotent stem cells (hiPSCs) into neurons. We first evaluated a range of Ascl1-IPTD concentrations to determine the most effective amount for generating neurons from hiPSCs cultured in serum free media. Next, we looked at the frequency of Ascl1-IPTD supplementation in the media on differentiation and found that one time supplementation is sufficient enough to trigger the neural differentiation process. Ascl1-IPTD was efficiently taken up by the hiPSCs and enabled rapid differentiation into TUJ1-positive and NeuN-positive populations with neuronal morphology after 8 days. After 12 days of culture, hiPSC-derived neurons produced by Ascl1-IPTD treatment exhibited greater neurite length and higher numbers of branch points compared to neurons derived using a standard neural progenitor differentiation protocol. This work validates Ascl1-IPTD as a powerful tool for engineering neural tissue from pluripotent stem cells.

  13. An effective intracellular delivery system of monoclonal antibody for treatment of tumors: erythrocyte membrane-coated self-associated antibody nanoparticles

    Science.gov (United States)

    Gao, Lipeng; Han, Lin; Ding, Xiaoling; Xu, Jiaojiao; Wang, Jing; Zhu, Jianzhong; Lu, Weiyue; Sun, Jihong; Yu, Lei; Yan, Zhiqiang; Wang, Yiting

    2017-08-01

    Antibody-based drugs have attracted much attention for their targeting ability, high efficacy and low toxicity. But it is difficult for those intrabodies, a kind of antibody whose targets are intracellular biomarkers, to become effective drugs due to the lack of intracellular delivery strategy and their short circulation time in blood. Human telomerase reverse transcriptase (hTERT), an important biomarker for tumors, is expressed only in cytoplasm instead of on cell membrane. In this study, the anti-hTERT blocking monoclonal antibody (mAb), as the model intrabody, was used to prepare nanoparticles (NPs), followed by the encapsulation of erythrocyte membrane (EM), to obtain the EM-coated anti-hTERT mAb NPs delivery system. The final NPs showed a z-average hydrodynamic diameter of about 197.3 nm. The in vitro cellular uptake by HeLa cells confirmed that compared with free anti-hTERT mAb, the EM-coated anti-hTERT mAb NPs exhibited a significantly increased uptake by tumor cells. Besides, the pharmacokinetic study confirmed that the EM encapsulation can remarkably prolong the circulation time and increase the area under curve (AUC) of NPs in blood. The EM-coated anti-hTERT mAb NPs exhibited a remarkably decreased uptake by macrophages than uncoated NPs, which may be responsible for the prolonged circulation time and increased AUC. Furthermore, the frozen section of tumor tissue was performed and proved that the EM-coated anti-hTERT mAb NPs can be more effectively accumulated in tumor tissues than the free mAb and uncoated NPs. In summary, this study indicated that EM-coated anti-hTERT mAb NPs are an effective delivery system for the long circulation and intracellular delivery of an intrabody, and make it possible for the intracellular biomarkers to become the potential targets of drugs.

  14. Canine parvovirus-like particles, a novel nanomaterial for tumor targeting

    Directory of Open Access Journals (Sweden)

    Destito Giuseppe

    2006-02-01

    Full Text Available Abstract Specific targeting of tumor cells is an important goal for the design of nanotherapeutics for the treatment of cancer. Recently, viruses have been explored as nano-containers for specific targeting applications, however these systems typically require modification of the virus surface using chemical or genetic means to achieve tumor-specific delivery. Interestingly, there exists a subset of viruses with natural affinity for receptors on tumor cells that could be exploited for nanotechnology applications. For example, the canine parvovirus (CPV utilizes transferrin receptors (TfRs for binding and cell entry into canine as well as human cells. TfRs are over-expressed by a variety of tumor cells and are widely being investigated for tumor-targeted drug delivery. We explored whether the natural tropism of CPV to TfRs could be harnessed for targeting tumor cells. Towards this goal, CPV virus-like particles (VLPs produced by expression of the CPV-VP2 capsid protein in a baculovirus expression system were examined for attachment of small molecules and delivery to tumor cells. Structural modeling suggested that six lysines per VP2 subunit are presumably addressable for bioconjugation on the CPV capsid exterior. Between 45 and 100 of the possible 360 lysines/particle could be routinely derivatized with dye molecules depending on the conjugation conditions. Dye conjugation also demonstrated that the CPV-VLPs could withstand conditions for chemical modification on lysines. Attachment of fluorescent dyes neither impaired binding to the TfRs nor affected internalization of the 26 nm-sized VLPs into several human tumor cell lines. CPV-VLPs therefore exhibit highly favorable characteristics for development as a novel nanomaterial for tumor targeting.

  15. Glucosylated polyethylenimine as a tumor-targeting gene carrier.

    Science.gov (United States)

    Park, In-Kyu; Cook, Seung-Eun; Kim, You-Kyoung; Kim, Hyun-Woo; Cho, Myung-Haing; Jeong, Hwan-Jeong; Kim, Eun-Mi; Nah, Jae-Woon; Bom, Hee-Seung; Cho, Chong-Su

    2005-11-01

    Glucosylated polyethylenimine (GPEI) was synthesized as a tumor-targeting gene carrier through facilitative glucose metabolism by tumor glucose transporter. Particle sizes of GPEI/DNA complex increased in proportion to glucose content of GPEI, whereas surface charge of the complex was not dependent on glucosylation, partially due to inefficient shielding of the short hydrophilic group introduced. GPEI with higher glucosylation (36 mol-%) had no cytotoxic effect on cells even at polymer concentrations higher than 200 microg/mL. Compared to unglucosylated PEI, glucosylation induced less than one-order decrease of transfection efficiency. Transfection of GPEI/DNA complex into tumor cells possibly occurred through specific interaction between glucose-related cell receptors and glucose moiety of GPEI. Gamma imaging technique revealed GPEI/DNA complex was distributed in liver, spleen, and tumors.

  16. Intracellular siRNA delivery dynamics of integrin-targeted, PEGylated chitosan-poly(ethylene imine) hybrid nanoparticles

    DEFF Research Database (Denmark)

    Ragelle, Héloïse; Colombo, Stefano; Pourcelle, Vincent

    2015-01-01

    chitosan-poly(ethylene imine) hybrid nanoparticles. The amount of intracellular siRNA delivered by αvβ3-targeted versus non-targeted nanoparticles was quantified in the human non-small cell lung carcinoma cell line H1299 expressing enhanced green fluorescent protein (EGFP) using a stem-loop reverse...... that these nanoparticles might end up in late endosomes or lysosomes without releasing their cargo to the cell cytoplasm. Thus, the silencing efficiency of the chitosan-based nanoparticles is strongly dependent on the uptake and the intracellular trafficking in H1299 EGFP cells, which is critical information towards...

  17. Effect of introduction of chondroitin sulfate into polymer-peptide conjugate responding to intracellular signals

    Science.gov (United States)

    Tomiyama, Tetsuro; Toita, Riki; Kang, Jeong-Hun; Koga, Haruka; Shiosaki, Shujiro; Mori, Takeshi; Niidome, Takuro; Katayama, Yoshiki

    2011-09-01

    We recently developed a novel tumor-targeted gene delivery system responding to hyperactivated intracellular signals. Polymeric carrier for gene delivery consists of hydrophilic neutral polymer as main chains and cationic peptide substrate for target enzyme as side chains, and was named polymer-peptide conjugate (PPC). Introduction of chondroitin sulfate (CS), which induces receptor-medicated endocytosis, into polymers mainly with a high cationic charge density such as polyethylenimine can increase tumor-targeted gene delivery. In the present study, we examined whether introduction of CS into PPC containing five cationic amino acids can increase gene expression in tumor cells. Size and zeta potential of plasmid DNA (pDNA)/PPC/CS complex were <200 nm and between -10 and -15 mV, respectively. In tumor cell experiments, pDNA/PPC/CS complex showed lower stability and gene regulation, compared with that of pDNA/PPC. Moreover, no difference in gene expression was identified between positive and negative polymer. These results were caused by fast disintegration of pDNA/PPC/CS complexes in the presence of serum. Thus, we suggest that introduction of negatively charged CS into polymers with a low charge density may lead to low stability and gene regulation of complexes.

  18. Delivery of Optical Contrast Agents using Triton-X100, Part 1: Reversible permeabilization of live cells for intracellular labeling

    OpenAIRE

    van de Ven, Anne L; Adler-Storthz, Karen; Richards-Kortum, Rebecca

    2009-01-01

    Effective delivery of optical contrast agents into live cells remains a significant challenge. We sought to determine whether Triton-X100, a detergent commonly used for membrane isolation and protein purification, could be used to effectively and reversibly permeabilize live cells for delivery of targeted optical contrast agents. Although Triton-X100 is widely recognized as a good cell permeabilization agent, no systematic study has evaluated the efficiency, reproducibility, and reversibility...

  19. Hydrophobic and electrostatic interactions between cell penetrating peptides and plasmid DNA are important for stable non-covalent complexation and intracellular delivery.

    Science.gov (United States)

    Upadhya, Archana; Sangave, Preeti C

    2016-10-01

    Cell penetrating peptides are useful tools for intracellular delivery of nucleic acids. Delivery of plasmid DNA, a large nucleic acid, poses a challenge for peptide mediated transport. The paper investigates and compares efficacy of five novel peptide designs for complexation of plasmid DNA and subsequent delivery into cells. The peptides were designed to contain reported DNA condensing agents and basic cell penetrating sequences, octa-arginine (R 8 ) and CHK 6 HC coupled to cell penetration accelerating peptides such as Bax inhibitory mutant peptide (KLPVM) and a peptide derived from the Kaposi fibroblast growth factor (kFGF) membrane translocating sequence. A tryptophan rich peptide, an analogue of Pep-3, flanked with CH 3 on either ends was also a part of the study. The peptides were analysed for plasmid DNA complexation, protection of peptide-plasmid DNA complexes against DNase I, serum components and competitive ligands by simple agarose gel electrophoresis techniques. Hemolysis of rat red blood corpuscles (RBCs) in the presence of the peptides was used as a measure of peptide cytotoxicity. Plasmid DNA delivery through the designed peptides was evaluated in two cell lines, human cervical cancer cell line (HeLa) and (NIH/3 T3) mouse embryonic fibroblasts via expression of the secreted alkaline phosphatase (SEAP) reporter gene. The importance of hydrophobic sequences in addition to cationic sequences in peptides for non-covalent plasmid DNA complexation and delivery has been illustrated. An alternative to the employment of fatty acid moieties for enhanced gene transfer has been proposed. Comparison of peptides for plasmid DNA complexation and delivery of peptide-plasmid DNA complexes to cells estimated by expression of a reporter gene, SEAP. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  20. Melanin targeting for intracellular drug delivery: Quantification of bound and free drug in retinal pigment epithelial cells.

    Science.gov (United States)

    Rimpelä, Anna-Kaisa; Hagström, Marja; Kidron, Heidi; Urtti, Arto

    2018-05-31

    Melanin binding affects drug distribution and retention in pigmented ocular tissues, thereby affecting drug response, duration of activity and toxicity. Therefore, it is a promising possibility for drug targeting and controlled release in the pigmented cells and tissues. Intracellular unbound drug concentrations determine pharmacological and toxicological actions, but analyses of unbound vs. total drug concentrations in pigmented cells are lacking. We studied intracellular binding and cellular drug uptake in pigmented retinal pigment epithelial cells and in non-pigmented ARPE-19 cells with five model drugs (chloroquine, propranolol, timolol, diclofenac, methotrexate). The unbound drug fractions in pigmented cells were 0.00016-0.73 and in non-pigmented cells 0.017-1.0. Cellular uptake (i.e. distribution ratio Kp), ranged from 1.3 to 6300 in pigmented cells and from 1.0 to 25 in non-pigmented cells. Values for intracellular bioavailability, F ic , were similar in both cells types (although larger variation in pigmented cells). In vitro melanin binding parameters were used to predict intracellular unbound drug fraction and cell uptake. Comparison of predictions with experimental data indicates that other factors (e.g. ion-trapping, lipophilicity-related binding to other cell components) also play a role. Melanin binding is a major factor that leads to cellular uptake and unbound drug fractions of a range of 3-4 orders of magnitude indicating that large reservoirs of melanin bound drug can be generated in the cells. Understanding melanin binding has important implications on retinal drug targeting, efficacy and toxicity. Copyright © 2017. Published by Elsevier B.V.

  1. Fabrication of a nanocarrier system through self-assembly of plasma protein and its tumor targeting

    International Nuclear Information System (INIS)

    Gong Guangming; Zhi Feng; Wang Kaikai; Tang Xiaolei; Yuan Ahu; Zhao Lili; Ding Dawei; Hu Yiqiao

    2011-01-01

    Human serum albumin (HSA) nanoparticles hold great promise as a nanocarrier system for targeted drug delivery. The objective of this study was to explore the possibility of preparing size controllable albumin nanoparticles using the disulfide bond breaking reagent β-mercaptoethanol (β-ME). The results showed that the protein concentration and temperature had positive effects on the sizes of the albumin nanoparticles, while pH had a negative effect on the rate of nanoparticle formation. The addition of β-ME induced changes in HSA secondary structure and exposed the hydrophobic core of HSA, leading to the formation of nanoparticles. Human serum albumin nanoparticles could be internalized by MCF-7 cells and mainly accumulated in cytoplasm. After injection in tumor bearing mice, the HSA nanoparticles accumulated in tumor tissues, demonstrating the targeting ability of the nanoparticles. Therefore, human serum albumin can be fabricated into nanoparticles by breaking the disulfide bonds and these nanoparticles exhibit high tumor targeting ability. Human serum albumin nanoparticles could be ideal for the targeted delivery of pharmacologically active substances.

  2. Enhancing the effect of radionuclide tumor targeting, using lysosomotropic weak bases

    International Nuclear Information System (INIS)

    Sundberg, Asa Liljegren; Steffen, Ann-Charlott

    2007-01-01

    Purpose: The aim of the present study was to investigate if treatment with lysosomotropic weak bases could increase the intracellular retention of radiohalogens and thereby increase the therapeutic effect of radionuclide tumor targeting. Methods and Materials: Four different lysosomotropic bases, chloroquine, ammonium chloride, amantadine, and thioridazine, were investigated for their ability to increase radiohalogen retention in vitro. The two most promising substances, chloroquine and ammonium chloride, were studied in several cell lines (A431, U343MGaCl2:6, SKOV-3, and SKBR-3) in combination with radiolabeled epidermal growth factor (EGF) or the HER2 binding affibody (Z HER2:4 ) 2 . Results: The uptake and retention of radionuclides was found to be substantially increased by simultaneous treatment with the lysosomotropic bases. The effect was, however, more pronounced in the epidermal growth factor:epidermal growth factor receptor (EGF:EGFR) system than in the (Z HER2:4 ) 2 :HER2 system. The therapeutic effect of ammonium chloride treatment combined with 211 At-EGF was also studied. The effect obtained after combined treatment was found to be much better than after 211 At-EGF treatment alone. Conclusions: The encouraging results from the present study indicate that the use of lysosomotropic weak bases is a promising approach for increasing the therapeutic effect of radionuclide targeting with radiohalogens

  3. Intracellular protein delivery activity of peptides derived from insulin-like growth factor binding proteins 3 and 5

    International Nuclear Information System (INIS)

    Goda, Natsuko; Tenno, Takeshi; Inomata, Kosuke; Shirakawa, Masahiro; Tanaka, Toshiki; Hiroaki, Hidekazu

    2008-01-01

    Insulin-like growth factor binding proteins (IGFBPs) have various IGF-independent cellular activities, including receptor-independent cellular uptake followed by transcriptional regulation, although mechanisms of cellular entry remain unclear. Herein, we focused on their receptor-independent cellular entry mechanism in terms of protein transduction domain (PTD) activity, which is an emerging technique useful for clinical applications. The peptides of 18 amino acid residues derived from IGFBP-3 and IGFBP-5, which involve heparin-binding regions, mediated cellular delivery of an exogenous protein into NIH3T3 and HeLa cells. Relative protein delivery activities of IGFBP-3/5-derived peptides were approximately 20-150% compared to that of the HIV-Tat peptide, a potent PTD. Heparin inhibited the uptake of the fusion proteins with IGFBP-3 and IGFBP-5, indicating that the delivery pathway is heparin-dependent endocytosis, similar to that of HIV-Tat. The delivery of GST fused to HIV-Tat was competed by either IGFBP-3 or IGFBP-5-derived synthetic peptides. Therefore, the entry pathways of the three PTDs are shared. Our data has shown a new approach for designing protein delivery systems using IGFBP-3/5 derived peptides based on the molecular mechanisms of IGF-independent activities of IGFBPs

  4. Chirality-dependent cellular uptake of chiral nanocarriers and intracellular delivery of different amounts of guest molecules

    Science.gov (United States)

    Kehr, Nermin Seda; Jose, Joachim

    2017-12-01

    We demonstrate the organic molecules loaded and chiral polymers coated periodic mesoporous organosilica (PMO) to generate chiral nanocarriers that we used to study chirality-dependent cellular uptake in serum and serum-free media and the subsequent delivery of different amounts of organic molecules into cells. Our results show that the amount of internalized PMO and thus the transported amount of organic molecules by nanocarrier PMO into cells was chirality dependent and controlled by hard/soft protein corona formation on the PMO surfaces. Therefore, this study demonstrate that chiral porous nanocarriers could potentially be used as advanced drug delivery systems which are able to use the specific chiral surface-protein interactions to influence/control the amount of (bio)active molecules delivered to cells in drug delivery and/or imaging applications.

  5. Bioconjugated PLGA-4-arm-PEG branched polymeric nanoparticles as novel tumor targeting carriers

    International Nuclear Information System (INIS)

    Ding Hong; Yong, Ken-Tye; Roy, Indrajit; Hu Rui; Zhao Lingling; Law, Wing-Cheung; Ji Wei; Liu Liwei; Bergey, Earl J; Prasad, Paras N; Wu Fang; Zhao Weiwei

    2011-01-01

    In this study, we have developed a novel carrier, micelle-type bioconjugated PLGA-4-arm-PEG branched polymeric nanoparticles (NPs), for the detection and treatment of pancreatic cancer. These NPs contained 4-arm-PEG as corona, and PLGA as core, the particle surface was conjugated with cyclo(arginine-glycine-aspartate) (cRGD) as ligand for in vivo tumor targeting. The hydrodynamic size of the NPs was determined to be 150-180 nm and the critical micellar concentration (CMC) was estimated to be 10.5 mg l -1 . Our in vitro study shows that these NPs by themselves had negligible cytotoxicity to human pancreatic cancer (Panc-1) and human glioblastoma (U87) cell lines. Near infrared (NIR) microscopy and flow cytometry demonstrated that the cRGD conjugated PLGA-4-arm-PEG polymeric NPs were taken up more efficiently by U87MG glioma cells, over-expressing the α v β 3 integrin, when compared with the non-targeted NPs. Whole body imaging showed that the cRGD conjugated PLGA-4-arm-PEG branched polymeric NPs had the highest accumulation in the pancreatic tumor site of mice at 48 h post-injection. Physical, hematological, and pathological assays indicated low in vivo toxicity of this NP formulation. These studies on the ability of these bioconjugated PLGA-4-arm-PEG polymeric NPs suggest that the prepared polymeric NPs may serve as a promising platform for detection and targeted drug delivery for pancreatic cancer.

  6. Premature drug release of polymeric micelles and its effects on tumor targeting.

    Science.gov (United States)

    Miller, Tobias; Breyer, Sandra; van Colen, Gwenaelle; Mier, Walter; Haberkorn, Uwe; Geissler, Simon; Voss, Senta; Weigandt, Markus; Goepferich, Achim

    2013-03-10

    Based on the enhanced permeability and retention (EPR) effect, nanoparticles are believed to accumulate in tumors. In this conjunction, the stability of drug encapsulation is assumed to be sufficient. For clarification purposes, PEGylated poly-(D,L-lactic acid) (PEG-PDLLA) micelles which incorporated the hydrophobic model drug dechloro-4-iodo-fenofibrate (IFF) were investigated. H2N-PEG-PDLLA was synthesized, coupled to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and labeled with 111-indium. From this polymeric species, mixed micelles with H3CO-PEG-PDLLA were prepared which encapsulated the 125-iodine or 131-iodine labeled drug IFF. Bioimaging and biodistribution experiments in healthy and AR42J-tumor bearing mice were carried out to quantify the uptake of the drug and its carrier in single organs. As a result, upon injection of this system, a rapid dissociation of the polymeric carrier and the incorporated drug (system allowed for successful solubilization of the hydrophobic drug by physical incorporation into micelles whereas the tumor targeting properties of the drug delivery system could not be sufficiently shown. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Tunable Nanocarrier Morphologies from Glycopolypeptide-based Amphiphilic Biocompatible Star Copolymers and Their Carbohydrate Specific Intracellular Delivery

    KAUST Repository

    Pati, Debasis

    2015-12-21

    Nano-carriers with carbohydrates on the surface represent a very interesting class of drug delivery vehicles since carbohydrates are involved in bio-molecular recognition events in vivo. We have synthesized biocompatible miktoarm star copolymers comprising glycopolypeptide and poly(ε-caprolactone) chains, using ring opening polymerization and ‘click chemistry’. The amphiphilic copolymers were self-assembled in water into morphologies such as nanorods, polymersomes and micelles with carbohydrates displayed on the surface. We demonstrate that, the formation of nanostructure could be tuned by chain length of the blocks and was not affected by the type of sugar residue. These nanostructures were characterized in detail using a variety of techniques such as TEM, AFM, cryogenic electron microscopy, spectrally resolved fluorescence imaging and dye encapsulation techniques. We show that it is possible to sequester both hydrophobic as well as hydrophilic dyes within the nanostructures. Finally, we show that these non-cytotoxic manno-sylated rods and polymersomes were selectively and efficiently taken up by MDA-MB-231 breast cancer cells demonstrating their potential as nanocarriers for drug delivery.

  8. Intracellular antioxidants dissolve man-made antioxidant nanoparticles: using redox vulnerability of nanoceria to develop a responsive drug delivery system.

    Science.gov (United States)

    Muhammad, Faheem; Wang, Aifei; Qi, Wenxiu; Zhang, Shixing; Zhu, Guangshan

    2014-01-01

    Regeneratable antioxidant property of nanoceria has widely been explored to minimize the deleterious influences of reactive oxygen species. Limited information is, however, available regarding the biological interactions and subsequent fate of nanoceria in body fluids. This study demonstrates a surprising dissolution of stable and ultrasmall (4 nm) cerium oxide nanoparticles (CeO2 NPs) in response to biologically prevalent antioxidant molecules (glutathione, vitamin C). Such a redox sensitive behavior of CeO2 NPs is subsequently exploited to design a redox responsive drug delivery system for transporting anticancer drug (camptothecin). Upon exposing the CeO2 capped and drug loaded nanoconstruct to vitamin c or glutathione, dissolution-accompanied aggregation of CeO2 nanolids unleashes the drug molecules from porous silica to achieve a significant anticancer activity. Besides stimuli responsive drug delivery, immobilization of nanoceria onto the surface of mesoporous silica also facilitates us to gain a basic insight into the biotransformation of CeO2 in physiological mediums.

  9. Peptidomimetics with beta-peptoid resudies as carriers for intracellular delivery of small interfering RNA (siRNA)

    DEFF Research Database (Denmark)

    Foged, Camilla

    cytometry. We conclude that simple complex formation via electrostatic interactions between siRNA and the cationic peptidomimetics is not sufficient for the delivery of siRNA to the RNA interference (RNAi) pathway in the cytoplasm. We are currently testing chemical conjugates of si...... prepared by mixing and characterized with respect to size and surface charge. At ratios of peptide nitrogen to siRNA phosphate (N/P) of 1 and below, particles with narrow size distributions (poly dispersity indexes lower than 0.11) ranging from approximately 100 to 350 nm were formed, and they showed...... a negative zeta potential (-24 to -31 mV). At higher N/P ratios, larger aggregates with zeta potential close to neutral were formed. However, the complexes were not able to silence the expression of enhanced green fluorescent protein (EGFP) in HeLa-cells stably expressing EGFP, which was measured by flow...

  10. Multifunctional pH-sensitive magnetic nanoparticles for simultaneous imaging, sensing and targeted intracellular anticancer drug delivery

    International Nuclear Information System (INIS)

    Banerjee, Shashwat S; Chen, D-H

    2008-01-01

    A novel multifunctional magnetic nanocarrier was fabricated for synchronous cancer therapy and sensing. The nanocarrier, programed to display a response to environmental stimuli (pH value), was synthesized by coupling doxorubicin (DOX) to adipic dihydrazide-grafted gum arabic modified magnetic nanoparticles (ADH-GAMNP) via the hydrolytically degradable pH-sensitive hydrazone bond. The resultant nanocarrier, DOX-ADH-GAMNP, had a mean diameter of 13.8 nm and the amount of DOX coupled was about 6.52 mg g -1 . Also, it exhibited pH triggered release of DOX in an acidic environment (pH 5.0) but was relatively stable at physiological pH (pH 7.4). Furthermore, both GAMNP and DOX were found to possess fluorescence properties when excited in the near-infrared region due to the two-photon absorption mechanism. The coupling of DOX to GAMNP resulted in a reversible self-quenching of fluorescence through the fluorescence resonant energy transfer (FRET) between the donor GAMNP and acceptor DOX. The release of DOX from DOX-ADH-GAMNP when exposed to acidic media indicated the recovery of fluorescence from both GAMNP and DOX. The change in the fluorescence intensity of DOX-ADH-GAMNP on the release of DOX can act as a potential sensor to sense the delivery of the drug. The analysis of zeta potential and plasmon absorbance in different pH conditions also confirmed the pH sensitivity of the product. This multifunctional nanocarrier is a significant breakthrough in developing a drug delivery vehicle that combines drug targeting as well as sensing and therapy at the same time.

  11. Nano-sized metabolic precursors for heterogeneous tumor-targeting strategy using bioorthogonal click chemistry in vivo.

    Science.gov (United States)

    Lee, Sangmin; Jung, Seulhee; Koo, Heebeom; Na, Jin Hee; Yoon, Hong Yeol; Shim, Man Kyu; Park, Jooho; Kim, Jong-Ho; Lee, Seulki; Pomper, Martin G; Kwon, Ick Chan; Ahn, Cheol-Hee; Kim, Kwangmeyung

    2017-12-01

    Herein, we developed nano-sized metabolic precursors (Nano-MPs) for new tumor-targeting strategy to overcome the intrinsic limitations of biological ligands such as the limited number of biological receptors and the heterogeneity in tumor tissues. We conjugated the azide group-containing metabolic precursors, triacetylated N-azidoacetyl-d-mannosamine to generation 4 poly(amidoamine) dendrimer backbone. The nano-sized dendrimer of Nano-MPs could generate azide groups on the surface of tumor cells homogeneously regardless of cell types via metabolic glycoengineering. Importantly, these exogenously generated 'artificial chemical receptors' containing azide groups could be used for bioorthogonal click chemistry, regardless of phenotypes of different tumor cells. Furthermore, in tumor-bearing mice models, Nano-MPs could be mainly localized at the target tumor tissues by the enhanced permeation and retention (EPR) effect, and they successfully generated azide groups on tumor cells in vivo after an intravenous injection. Finally, we showed that these azide groups on tumor tissues could be used as 'artificial chemical receptors' that were conjugated to bioorthogonal chemical group-containing liposomes via in vivo click chemistry in heterogeneous tumor-bearing mice. Therefore, overall results demonstrated that our nano-sized metabolic precursors could be extensively applied to new alternative tumor-targeting technique for molecular imaging and drug delivery system, regardless of the phenotype of heterogeneous tumor cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Nano-Engineered Mesenchymal Stem Cells Increase Therapeutic Efficacy of Anticancer Drug Through True Active Tumor Targeting.

    Science.gov (United States)

    Layek, Buddhadev; Sadhukha, Tanmoy; Panyam, Jayanth; Prabha, Swayam

    2018-06-01

    Tumor-targeted drug delivery has the potential to improve therapeutic efficacy and mitigate non-specific toxicity of anticancer drugs. However, current drug delivery approaches rely on inefficient passive accumulation of the drug carrier in the tumor. We have developed a unique, truly active tumor-targeting strategy that relies on engineering mesenchymal stem cells (MSC) with drug-loaded nanoparticles. Our studies using the A549 orthotopic lung tumor model show that nano-engineered MSCs carrying the anticancer drug paclitaxel (PTX) home to tumors and create cellular drug depots that release the drug payload over several days. Despite significantly lower doses of PTX, nano-engineered MSCs resulted in significant inhibition of tumor growth and superior survival. Anticancer efficacy of nano-engineered MSCs was confirmed in immunocompetent C57BL/6 albino female mice bearing orthotopic Lewis Lung Carcinoma (LL/2-luc) tumors. Furthermore, at doses that resulted in equivalent therapeutic efficacy, nano-engineered MSCs had no effect on white blood cell count, whereas PTX solution and PTX nanoparticle treatments caused leukopenia. Biodistribution studies showed that nano-engineered MSCs resulted in greater than 9-fold higher AUC lung of PTX (1.5 μg.day/g) than PTX solution and nanoparticles (0.2 and 0.1 μg.day/g tissue, respectively) in the target lung tumors. Furthermore, the lung-to-liver and the lung-to-spleen ratios of PTX were several folds higher for nano-engineered MSCs relative to those for PTX solution and nanoparticle groups, suggesting that nano-engineered MSCs demonstrate significantly less off-target deposition. In summary, our results demonstrate that nano-engineered MSCs can serve as an efficient carrier for tumor-specific drug delivery and significantly improved anti-cancer efficacy of conventional chemotherapeutic drugs. Mol Cancer Ther; 17(6); 1196-206. ©2018 AACR . ©2018 American Association for Cancer Research.

  13. Enhanced anticancer efficacy of paclitaxel through multistage tumor-targeting liposomes modified with RGD and KLA peptides

    Directory of Open Access Journals (Sweden)

    Sun J

    2017-02-01

    Full Text Available Jiawei Sun,1 Lei Jiang,2 Yi Lin,3 Ethan Michael Gerhard,4 Xuehua Jiang,1 Li Li,3 Jian Yang,4 Zhongwei Gu3 1West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 2Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu, 3National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, People’s Republic of China; 4Department of Biomedical Engineering Materials Research Institute, The Huck Institutes of The Life Sciences, The Pennsylvania State University, University Park, PA, USA Abstract: Mitochondria serve as both “energy factories” and “suicide weapon stores” of cells. Targeted delivery of cytotoxic drugs to the mitochondria of tumor cells and tumor vascular cells is a promising strategy to improve the efficacy of chemotherapy. Here, multistage tumor-targeting liposomes containing two targeted peptide-modified lipids, cRGD-PEG2000-DSPE and KLA-PEG2000-DSPE, were developed for encapsulation of the anticancer drug paclitaxel (PTX, RGD-KLA/PTX-Lips. Compared with Taxol (free PTX, RGD/PTX-Lips and KLA/PTX-Lips, the half-maximal inhibitory concentration (IC50 value of RGD-KLA/PTX-Lips in vitro was 1.9-, 36.7- and 22.7-fold lower with 4T1 cells, respectively, because of higher levels of cellular uptake. Similar results were also observed with human umbilical vascular endothelial cells (HUVECs. An apoptosis assay showed that the total apoptotic ratio of RGD-KLA/PTX-Lips was the highest because of the mitochondria-targeted drug delivery and the activation of mitochondrial apoptosis pathways, as evidenced by visible mitochondrial localization, decreased mitochondrial membrane potential, release of cytochrome c and increased activities of caspase-9 and caspase-3. The strongest tumor growth inhibition (TGI; 80.6% and antiangiogenesis effects without systemic toxicity were also observed in RGD-KLA/PTX-Lip-treated 4T1 tumor xenograft BALB/c mice. In conclusion, these multistage

  14. Stimuli-responsive protamine-based biodegradable nanocapsules for enhanced bioavailability and intracellular delivery of anticancer agents

    Energy Technology Data Exchange (ETDEWEB)

    Radhakrishnan, Krishna; Thomas, Midhun B.; Pulakkat, Sreeranjini [Indian Institute of Science, Department of Materials Engineering (India); Gnanadhas, Divya P.; Chakravortty, Dipshikha [Indian Institute of Science, Department of Microbiology and Cell Biology (India); Raichur, Ashok M., E-mail: amr@materials.iisc.ernet.in [Indian Institute of Science, Department of Materials Engineering (India)

    2015-08-15

    Enzyme- and pH-responsive polyelectrolyte nanocapsules having diameters in the range of 200 ± 20 nm were fabricated by means of Layer-by-Layer assembly of biopolymers, protamine, and heparin, and then loaded with anticancer drug doxorubicin. The incorporation of the FDA-approved peptide drug protamine as a wall component rendered the capsules responsive to enzyme stimuli. The stimuli-responsive drug release from these nanocapsules was evaluated, and further modulation of capsule permeability to avoid premature release was demonstrated by crosslinking the wall components. The interaction of the nanocapsules with cancer cells was studied using MCF-7 breast cancer cells. These capsules were readily internalized and disintegrated inside the cells, culminating in the release of the loaded doxorubicin and subsequent cell death as observed by confocal microscopy and MTT Assay. The bioavailability studies performed using BALB/c mice revealed that the encapsulated doxorubicin exhibited enhanced bioavailability compared to free doxorubicin. Our results indicate that this stimuli-responsive system fabricated from clinically used FDA-approved molecules and exhibiting minimal premature release has great potential for drug-delivery applications.

  15. Three Antagonistic Cyclic di-GMP-Catabolizing Enzymes Promote Differential Dot/Icm Effector Delivery and Intracellular Survival at the Early Steps of Legionella pneumophila Infection

    Science.gov (United States)

    Allombert, Julie; Lazzaroni, Jean-Claude; Baïlo, Nathalie; Gilbert, Christophe; Charpentier, Xavier; Doublet, Patricia

    2014-01-01

    Legionella pneumophila is an intracellular pathogen which replicates within protozoan cells and can accidently infect alveolar macrophages, causing an acute pneumonia in humans. The second messenger cyclic di-GMP (c-di-GMP) has been shown to play key roles in the regulation of various bacterial processes, including virulence. While investigating the function of the 22 potential c-di-GMP-metabolizing enzymes of the L. pneumophila Lens strain, we found three that directly contribute to its ability to infect both protozoan and mammalian cells. These three enzymes display diguanylate cyclase (Lpl0780), phosphodiesterase (Lpl1118), and bifunctional diguanylate cyclase/phosphodiesterase (Lpl0922) activities, which are all required for the survival and intracellular replication of L. pneumophila. Mutants with deletions of the corresponding genes are efficiently taken up by phagocytic cells but are partially defective for the escape of the Legionella-containing vacuole (LCV) from the host degradative endocytic pathway and result in lower survival. In addition, Lpl1118 is required for efficient endoplasmic reticulum recruitment to the LCV. Trafficking and biogenesis of the LCV are dependent upon the orchestrated actions of several type 4 secretion system Dot/Icm effectors proteins, which exhibit differentially altered translocation in the three mutants. While translocation of some effectors remained unchanged, others appeared over- and undertranslocated. A general translocation offset of the large repertoire of Dot/Icm effectors may be responsible for the observed defects in the trafficking and biogenesis of the LCV. Our results suggest that L. pneumophila uses cyclic di-GMP signaling to fine-tune effector delivery and ensure effective evasion of the host degradative pathways and establishment of a replicative vacuole. PMID:24379287

  16. Redox-sensitive self-assembled nanoparticles based on alpha-tocopherol succinate-modified heparin for intracellular delivery of paclitaxel.

    Science.gov (United States)

    Yang, Xiaoye; Cai, Xiaoqing; Yu, Aihua; Xi, Yanwei; Zhai, Guangxi

    2017-06-15

    indicated the developed redox-sensitive nanoparticles were promising as intracellular drug delivery vehicles for cancer treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Engineering of magnetic DNA nanoparticles for tumor-targeted therapy

    International Nuclear Information System (INIS)

    Hosseinkhani, Hossein; Chen Yiru; He Wenjie; Hong Poda; Yu, Dah-Shyong; Domb, Abraham J.

    2013-01-01

    This study aims to engineer novel targeted delivery system composed of magnetic DNA nanoparticles to be effective as an efficient targeted gene therapy vehicle for tumor therapy. A polysaccharide, dextran, was chosen as the vector of plasmid DNA-encoded NK4 that acts as an HGF-antagonist and anti-angiogenic regulator for inhibitions of tumor growth, invasion, and metastasis. Spermine (Sm) was chemically introduced to the hydroxyl groups of dextran to obtain dextran-Sm. When Fe 2+ solution was added to the mixture of dextran-Sm and a plasmid DNA, homogenous DNA nanoparticles were formed via chemical metal coordination bonding with average size of 230 nm. Characterization of DNA nanoparticles was performed via dynamic light scattering measurement, electrophoretic light scattering measurement, as well as transmission electron microscope. DNA nanoparticles effectively condensed plasmid DNA into nanoparticles and enhanced the stability of DNA, while significantly improved transfection efficiency in vitro and tumor accumulation in vivo. In addition, magnetic DNA nanoparticles exhibited high efficiency in antitumor therapy with regards to tumor growth as well as survival of animals evaluated in the presence of external magnetic field. We conclude that the magnetic properties of these DNA nanoparticles would enhance the tracking of non-viral gene delivery systems when administrated in vivo in a test model. These findings suggest that DNA nanoparticles effectively deliver DNA to tumor and thereby inhibiting tumor growth.

  18. Engineering of magnetic DNA nanoparticles for tumor-targeted therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinkhani, Hossein, E-mail: hosseinkhani@yahoo.com [Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology (Taiwan Tech) (China); Chen Yiru [National Yang-Ming University, Department of Biomedical Engineering (China); He Wenjie; Hong Poda [Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology (Taiwan Tech) (China); Yu, Dah-Shyong [Nanomedicine Research Center, National Defense Medical Center (China); Domb, Abraham J. [Institute of Drug Research, The Center for Nanoscience and Nanotechnology, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem (Israel)

    2013-01-15

    This study aims to engineer novel targeted delivery system composed of magnetic DNA nanoparticles to be effective as an efficient targeted gene therapy vehicle for tumor therapy. A polysaccharide, dextran, was chosen as the vector of plasmid DNA-encoded NK4 that acts as an HGF-antagonist and anti-angiogenic regulator for inhibitions of tumor growth, invasion, and metastasis. Spermine (Sm) was chemically introduced to the hydroxyl groups of dextran to obtain dextran-Sm. When Fe{sup 2+} solution was added to the mixture of dextran-Sm and a plasmid DNA, homogenous DNA nanoparticles were formed via chemical metal coordination bonding with average size of 230 nm. Characterization of DNA nanoparticles was performed via dynamic light scattering measurement, electrophoretic light scattering measurement, as well as transmission electron microscope. DNA nanoparticles effectively condensed plasmid DNA into nanoparticles and enhanced the stability of DNA, while significantly improved transfection efficiency in vitro and tumor accumulation in vivo. In addition, magnetic DNA nanoparticles exhibited high efficiency in antitumor therapy with regards to tumor growth as well as survival of animals evaluated in the presence of external magnetic field. We conclude that the magnetic properties of these DNA nanoparticles would enhance the tracking of non-viral gene delivery systems when administrated in vivo in a test model. These findings suggest that DNA nanoparticles effectively deliver DNA to tumor and thereby inhibiting tumor growth.

  19. Recent Trends in Multifunctional Liposomal Nanocarriers for Enhanced Tumor Targeting

    Directory of Open Access Journals (Sweden)

    Federico Perche

    2013-01-01

    Full Text Available Liposomes are delivery systems that have been used to formulate a vast variety of therapeutic and imaging agents for the past several decades. They have significant advantages over their free forms in terms of pharmacokinetics, sensitivity for cancer diagnosis and therapeutic efficacy. The multifactorial nature of cancer and the complex physiology of the tumor microenvironment require the development of multifunctional nanocarriers. Multifunctional liposomal nanocarriers should combine long blood circulation to improve pharmacokinetics of the loaded agent and selective distribution to the tumor lesion relative to healthy tissues, remote-controlled or tumor stimuli-sensitive extravasation from blood at the tumor’s vicinity, internalization motifs to move from tumor bounds and/or tumor intercellular space to the cytoplasm of cancer cells for effective tumor cell killing. This review will focus on current strategies used for cancer detection and therapy using liposomes with special attention to combination therapies.

  20. Bioconjugated PLGA-4-arm-PEG branched polymeric nanoparticles as novel tumor targeting carriers

    Energy Technology Data Exchange (ETDEWEB)

    Ding Hong; Yong, Ken-Tye; Roy, Indrajit; Hu Rui; Zhao Lingling; Law, Wing-Cheung; Ji Wei; Liu Liwei; Bergey, Earl J; Prasad, Paras N [Department of Chemistry, Institute for Lasers, Photonics and Biophotonics, University at Buffalo, State University of New York, Buffalo, NY 14260 (United States); Wu Fang [Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260 (United States); Zhao Weiwei, E-mail: bergeye@buffalo.edu, E-mail: pnprasad@buffalo.edu [Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, NY 14215 (United States)

    2011-04-22

    In this study, we have developed a novel carrier, micelle-type bioconjugated PLGA-4-arm-PEG branched polymeric nanoparticles (NPs), for the detection and treatment of pancreatic cancer. These NPs contained 4-arm-PEG as corona, and PLGA as core, the particle surface was conjugated with cyclo(arginine-glycine-aspartate) (cRGD) as ligand for in vivo tumor targeting. The hydrodynamic size of the NPs was determined to be 150-180 nm and the critical micellar concentration (CMC) was estimated to be 10.5 mg l{sup -1}. Our in vitro study shows that these NPs by themselves had negligible cytotoxicity to human pancreatic cancer (Panc-1) and human glioblastoma (U87) cell lines. Near infrared (NIR) microscopy and flow cytometry demonstrated that the cRGD conjugated PLGA-4-arm-PEG polymeric NPs were taken up more efficiently by U87MG glioma cells, over-expressing the {alpha}{sub v{beta}3} integrin, when compared with the non-targeted NPs. Whole body imaging showed that the cRGD conjugated PLGA-4-arm-PEG branched polymeric NPs had the highest accumulation in the pancreatic tumor site of mice at 48 h post-injection. Physical, hematological, and pathological assays indicated low in vivo toxicity of this NP formulation. These studies on the ability of these bioconjugated PLGA-4-arm-PEG polymeric NPs suggest that the prepared polymeric NPs may serve as a promising platform for detection and targeted drug delivery for pancreatic cancer.

  1. Ultrasound-mediated method for rapid delivery of nano-particles into cells for intracellular surface-enhanced Raman spectroscopy and cancer cell screening

    International Nuclear Information System (INIS)

    Feng, Shangyuan; Li, Zhihua; Chen, Guannan; Huang, Shaohua; Huang, Zufang; Li, Yongzeng; Lin, Juqiang; Chen, Rong; Lin, Duo; Zeng, Haishan

    2015-01-01

    Surface-enhanced Raman spectroscopy (SERS) is a powerful technology for providing finger-printing information of cells. A big challenge has been the long time duration and inefficient uptake of metal nano-particles into living cells as substrate for SERS analysis. Herein, a simple method (based on ultrasound) for the rapid transfer of silver nanoparticles (NPs) into living cells for intracellular SERS spectroscopy was presented. In this study, the ultrasound-mediated method for NP delivery overcame the shortcoming of ‘passive uptake’, and achieved quick acquisition of reproducible SERS spectra from living human nasopharyngeal carcinoma cell lines (C666 and CNE1) and normal nasopharyngeal cell line (NP69). Tentative assignment of the Raman bands in the measured SERS spectra showed cancer cell specific biomolecular differences, including significantly lower DNA concentrations and higher protein concentrations in cancerous nasopharyngeal cells as compared to those of normal cells. Combined with PCA–LDA multivariate analysis, ultrasound-mediated cell SERS spectroscopy differentiated the cancerous cells from the normal nasopharyngeal cells with high diagnostic accuracy (98.7%), demonstrating great potential for high-throughput cancer cell screening applications. (paper)

  2. Quantitative modeling of the dynamics and intracellular trafficking of far-red light-activatable prodrugs: implications in stimuli-responsive drug delivery system.

    Science.gov (United States)

    Li, Mengjie; Thapa, Pritam; Rajaputra, Pallavi; Bio, Moses; Peer, Cody J; Figg, William D; You, Youngjae; Woo, Sukyung

    2017-12-01

    The combination of photodynamic therapy (PDT) with anti-tumor agents is a complimentary strategy to treat local cancers. We developed a unique photosensitizer (PS)-conjugated paclitaxel (PTX) prodrug in which a PS is excited by near-infrared wavelength light to site-specifically release PTX while generating singlet oxygen (SO) to effectively kill cancer cells with both PTX and SO. The aim of the present study was to identify the determinants influencing the combined efficacy of this light-activatable prodrug, especially the bystander killing effects from released PTX. Using PS-conjugated PTX as a model system, we developed a quantitative mathematical model describing the intracellular trafficking. Dynamics of the prodrug and the model predictions were verified with experimental data using human cancer cells in vitro. The sensitivity analysis suggested that parameters related to extracellular concentration of released PTX, prodrug uptake, target engagement, and target abundance are critical in determining the combined killing efficacy of the prodrug. We found that released PTX cytotoxicity was most sensitive to the retention time of the drug in extracellular space. Modulating drug internalization and conjugating the agents targeted to abundant receptors may provide a new strategy for maximizing the killing capacity of the far-red light-activatable prodrug system. These results provide guidance for the design of the PDT combination study in vivo and have implications for other stimuli-responsive drug delivery systems.

  3. Applications of polymeric micelles with tumor targeted in chemotherapy

    International Nuclear Information System (INIS)

    Ding Hui; Wang Xiaojun; Zhang Song; Liu Xinli

    2012-01-01

    Polymeric micelles (PMs) have gained more progress as a carrier system with the quick development of biological and nanoparticle techniques. In particular, PMs with smart targeting can deliver anti-cancer drugs directly into tumor cells at a sustained rate. PMs with core–shell structure (with diameters of 10 ∼ 100 nm) have been prepared by a variety of biodegradable and biocompatible polymers via a self-assembly process. The preparation of polymeric micelles with stimuli-responsive block copolymers or modification of target molecules on polymeric micelles’ surface are able to significantly improve the efficiency of drug delivery. Polymeric micelles, which have been considered as a novel promising drug carrier for cancer therapeutics, are rapidly evolving and being introduced in an attempt to overcome several limitations of traditional chemotherapeutics, including water solubility, tumor-specific accumulation, anti-tumor efficacy, and non-specific toxicity. This review describes the preparation of polymeric micelles and the targeted modification which greatly enhance the effects of chemotherapeutic agents.

  4. Fluorine-Containing Taxoid Anticancer Agents and Their Tumor-Targeted Drug Delivery

    OpenAIRE

    Seitz, Joshua; Vineberg, Jacob G.; Zuniga, Edison S.; Ojima, Iwao

    2013-01-01

    A long-standing problem of conventional chemotherapy is the lack of tumor-specific treatments. Traditional chemotherapy relies on the premise that rapidly proliferating cancer cells are more likely to be killed by a cytotoxic agent. In reality, however, cytotoxic agents have very little or no specificity, which leads to systemic toxicity, causing undesirable severe side effects. Consequently, various “molecularly targeted cancer therapies” have been developed for use in specific cancers, incl...

  5. Tumor targeted delivery of doxorubicin in malignant peripheral nerve sheath tumors.

    Directory of Open Access Journals (Sweden)

    A B Madhankumar

    Full Text Available Peripheral nerve sheath tumors are benign tumors that have the potential to transform into malignant peripheral nerve sheath tumors (MPNSTs. Interleukin-13 receptor alpha 2 (IL13Rα2 is a cancer associated receptor expressed in glioblastoma and other invasive cancers. We analyzed IL13Rα2 expression in several MPNST cell lines including the STS26T cell line, as well as in several peripheral nerve sheath tumors to utilize the IL13Rα2 receptor as a target for therapy. In our studies, we demonstrated the selective expression of IL13Rα2 in several peripheral nerve sheath tumors by immunohistochemistry (IHC and immunoblots. We established a sciatic nerve MPNST mouse model in NIH III nude mice using a luciferase transfected STS26T MPNST cell line. Similarly, analysis of the mouse sciatic nerves after tumor induction revealed significant expression of IL13Rα2 by IHC when compared to a normal sciatic nerve. IL13 conjugated liposomal doxorubicin was formulated and shown to bind and internalized in the MPNST cell culture model demonstrating cytotoxic effect. Our subsequent in vivo investigation in the STS26T MPNST sciatic nerve tumor model indicated that IL13 conjugated liposomal doxorubicin (IL13LIPDXR was more effective in inhibiting tumor progression compared to unconjugated liposomal doxorubicin (LIPDXR. This further supports that IL13 receptor targeted nanoliposomes is a potential approach for treating MPNSTs.

  6. Polymeric nanomedicines for image-guided drug delivery and tumor-targeted combination therapy

    Czech Academy of Sciences Publication Activity Database

    Lammers, T.; Šubr, Vladimír; Ulbrich, Karel; Hennink, W. E.; Storm, G.; Kiessling, F.

    2010-01-01

    Roč. 5, č. 3 (2010), s. 197-212 ISSN 1748-0132 R&D Projects: GA MŠk 1M0505 Institutional research plan: CEZ:AV0Z40500505 Keywords : nanomedicine s * drug targeting * polymer Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 11.750, year: 2010

  7. Preparation of a folate-mediated tumor targeting ultraparamagnetic polymeric micelles and its in vitro experimental study

    International Nuclear Information System (INIS)

    Hong Guobin; Zhou Jingxing; Shen Jun; Liang Biling; Yuan Renxu; Shuai Xintao

    2008-01-01

    Objective: To evaluate the tumor targeting characteristic of the Folate-SPIO-DOX- Micelles by in vitro studies, and to test the feasibility of monitor tumor targeting using it and clinical MRI. Methods: The polymeric micelles, Folate-SPIO-DOXO-Micelles were prepared. The in vitro tumor cell targeting efficacy of these folate modified and DOX or SPIO-loaded micelles (Folate-SPIO-DOX- MiceUes) was evaluated by observing the cellular uptake of micelles by human hepatic carcinoma cells (Bel 7402 cells) which overexpressed folate surface receptors. Cell suspensions were incubated with Folate-SPIO- DOXO-Micelles for 1 h. Prussian blue staining was performed to show intracellular irons. Flow cytometry was used to further quantify the cellular uptake of the nanoparticles into Bel 7402 cells. MRI was performed to show the signal intensity changes by using T 2 WI sequences at a clinical 1.5 T MR system. Results Prussian blue staining showed much more intracellular iron in cells incubated with Folate-SPIO-DOX- Micelles than the cells incubated with the non-targeting SPIO-DOX-Micelles. As revealed by flow cytometry, the mean fluorescence intensity of cells in the folate group and the non-folate group were 117.88 and 46. 33, respectively. The T 2 signal intensity in MRI of cells treated with the folate targeting micelles decreased significantly(when the concentration of SPIO in cell culture medium was 5, 10, 20, 40, and 80 μg/ml, respectively, T 2 signal intensity decreased by -5.02%, -23.58%, -45.89%, -70.34%, and -92.41%, respectively). In contrast, T 2 signal intensity did not show obvious decrease for cells treated with the folate-free micelles (when the concentration of SPIO in cell culture medium was at 5, 10, 20, 40, and 80 μg/ml, respectively, T 2 signal intensity decreased by -3.77%, -2.16%, -2.18%, -2.74% and -19.77%, respectively). Conclusion: The polymeric micelles, Folate-SPIO-DOX-Micelles has good targeting ability to the hepatic carcinoma cells in vitro, and

  8. Passive versus active tumor targeting using RGD- and NGR-modified polymeric nanomedicines

    NARCIS (Netherlands)

    Kunjachan, Sijumon; Pola, Robert; Gremse, Felix; Theek, Benjamin; Ehling, Josef; Moeckel, Diana; Hermanns-Sachweh, Benita; Pechar, Michal; Ulbrich, Karel; Hennink, Wim E.; Storm, Gert; Lederle, Wiltrud; Kiessling, Fabian; Lammers, Twan

    2014-01-01

    Enhanced permeability and retention (EPR) and the (over-) expression of angiogenesis-related surface receptors are key features of tumor blood vessels. As a consequence, EPR-mediated passive and Arg-Gly-Asp (RGD) and Asn-Gly-Arg (NGR) based active tumor targeting have received considerable attention

  9. A tumor-targeting p53 nanodelivery system limits chemoresistance to temozolomide prolonging survival in a mouse model of glioblastoma multiforme.

    Science.gov (United States)

    Kim, Sang-Soo; Rait, Antonina; Kim, Eric; Pirollo, Kathleen F; Chang, Esther H

    2015-02-01

    Development of temozolomide (TMZ) resistance contributes to the poor prognosis for glioblastoma multiforme (GBM) patients. It was previously demonstrated that delivery of exogenous wild-type tumor suppressor gene p53 via a tumor-targeted nanocomplex (SGT-53) which crosses the blood-brain barrier could sensitize highly TMZ-resistant GBM tumors to TMZ. Here we assessed whether SGT-53 could inhibit development of TMZ resistance. SGT-53 significantly chemosensitized TMZ-sensitive human GBM cell lines (U87 and U251), in vitro and in vivo. Furthermore, in an intracranial GBM tumor model, two cycles of concurrent treatment with systemically administered SGT-53 and TMZ inhibited tumor growth, increased apoptosis and most importantly, significantly prolonged median survival. In contrast TMZ alone had no significant effect on median survival compared to a single cycle of TMZ. These results suggest that combining SGT-53 with TMZ appears to limit development of TMZ resistance, prolonging its anti-tumor effect and could be a more effective therapy for GBM. Using human glioblastoma multiforma cell lines, this research team demonstrated that the delivery of exogenous wild-type tumor suppressor gene p53 via a tumor-targeted nanocomplex limited the development of temozolomide resistance and prolonged its anti-tumor effect, which may enable future human application of this or similar techniques. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. PET Imaging of 64Cu-DOTA-scFv-Anti-PSMA Lipid Nanoparticles (LNPs): Enhanced Tumor Targeting over Anti-PSMA scFv or Untargeted LNPs

    Science.gov (United States)

    Wong, Patty; Li, Lin; Chea, Junie; Delgado, Melissa K.; Crow, Desiree; Poku, Erasmus; Szpikowska, Barbara; Bowles, Nicole; Channappa, Divya; Colcher, David; Wong, Jeffrey Y.C.; Shively, John E.; Yazaki, Paul J.

    2017-01-01

    Introduction Single chain (scFv) antibodies are ideal targeting ligands due to their modular structure, high antigen specificity and affinity. These monovalent ligands display rapid tumor targeting but have limitations due to their fast urinary clearance. Methods An anti-prostate membrane antigen (PSMA) scFv with a site-specific cysteine was expressed and evaluated in a prostate cancer xenograft model by Cu-64 PET imaging. To enhance tumor accumulation, the scFv-cys was conjugated to the co-polymer DSPE-PEG-maleimide that spontaneously assembled into a homogeneous multivalent lipid nanoparticle (LNP). Results The targeted LNP exhibited a 2-fold increase in tumor uptake compared to the scFv alone using two different thiol ester chemistries. The anti-PSMA scFv-LNP exhibited a 1.6 fold increase in tumor targeting over the untargeted LNP. Conclusions The targeted anti-PSMA scFv-LNP showed enhanced tumor accumulation over the scFv alone or the untargeted DOTA-micelle providing evidence for the development of this system for drug delivery. Advances in Knowledge and implications for patient care Anti-tumor scFv antibody fragments have not achieved their therapeutic potential due to their fast blood clearance. Conjugation to a LNP enables multivalency to the tumor antigen as well as increased molecular size for chemotherapy drug delivery. PMID:28126683

  11. PET imaging of 64Cu-DOTA-scFv-anti-PSMA lipid nanoparticles (LNPs): Enhanced tumor targeting over anti-PSMA scFv or untargeted LNPs

    International Nuclear Information System (INIS)

    Wong, Patty; Li, Lin; Chea, Junie; Delgado, Melissa K.; Crow, Desiree; Poku, Erasmus; Szpikowska, Barbara; Bowles, Nicole; Channappa, Divya; Colcher, David; Wong, Jeffrey Y.C.; Shively, John E.; Yazaki, Paul J.

    2017-01-01

    Introduction: Single chain (scFv) antibodies are ideal targeting ligands due to their modular structure, high antigen specificity and affinity. These monovalent ligands display rapid tumor targeting but have limitations due to their fast urinary clearance. Methods: An anti-prostate membrane antigen (PSMA) scFv with a site-specific cysteine was expressed and evaluated in a prostate cancer xenograft model by Cu-64 PET imaging. To enhance tumor accumulation, the scFv-cys was conjugated to the co-polymer DSPE-PEG-maleimide that spontaneously assembled into a homogeneous multivalent lipid nanoparticle (LNP). Results: The targeted LNP exhibited a 2-fold increase in tumor uptake compared to the scFv alone using two different thiol ester chemistries. The anti-PSMA scFv-LNP exhibited a 1.6 fold increase in tumor targeting over the untargeted LNP. Conclusions: The targeted anti-PSMA scFv-LNP showed enhanced tumor accumulation over the scFv alone or the untargeted DOTA-micelle providing evidence for the development of this system for drug delivery. Advances in knowledge and implications for patient care: Anti-tumor scFv antibody fragments have not achieved their therapeutic potential due to their fast blood clearance. Conjugation to an LNP enables multivalency to the tumor antigen as well as increased molecular size for chemotherapy drug delivery.

  12. Mesenchymal Stem Cell-Based Tumor-Targeted Gene Therapy in Gastrointestinal Cancer

    OpenAIRE

    Bao, Qi; Zhao, Yue; Niess, Hanno; Conrad, Claudius; Schwarz, Bettina; Jauch, Karl-Walter; Huss, Ralf; Nelson, Peter J.; Bruns, Christiane J.

    2012-01-01

    Mesenchymal stem (or stromal) cells (MSCs) are nonhematopoietic progenitor cells that can be obtained from bone marrow aspirates or adipose tissue, expanded and genetically modified in vitro, and then used for cancer therapeutic strategies in vivo. Here, we review available data regarding the application of MSC-based tumor-targeted therapy in gastrointestinal cancer, provide an overview of the general history of MSC-based gene therapy in cancer research, and discuss potential problems associa...

  13. In vivo tumor targeting of gold nanoparticles: effect of particle type and dosing strategy.

    Science.gov (United States)

    Puvanakrishnan, Priyaveena; Park, Jaesook; Chatterjee, Deyali; Krishnan, Sunil; Tunnell, James W

    2012-01-01

    Gold nanoparticles (GNPs) have gained significant interest as nanovectors for combined imaging and photothermal therapy of tumors. Delivered systemically, GNPs preferentially accumulate at the tumor site via the enhanced permeability and retention effect, and when irradiated with near infrared light, produce sufficient heat to treat tumor tissue. The efficacy of this process strongly depends on the targeting ability of the GNPs, which is a function of the particle's geometric properties (eg, size) and dosing strategy (eg, number and amount of injections). The purpose of this study was to investigate the effect of GNP type and dosing strategy on in vivo tumor targeting. Specifically, we investigated the in vivo tumor-targeting efficiency of pegylated gold nanoshells (GNSs) and gold nanorods (GNRs) for single and multiple dosing. We used Swiss nu/nu mice with a subcutaneous tumor xenograft model that received intravenous administration for a single and multiple doses of GNS and GNR. We performed neutron activation analysis to quantify the gold present in the tumor and liver. We performed histology to determine if there was acute toxicity as a result of multiple dosing. Neutron activation analysis results showed that the smaller GNRs accumulated in higher concentrations in the tumor compared to the larger GNSs. We observed a significant increase in GNS and GNR accumulation in the liver for higher doses. However, multiple doses increased targeting efficiency with minimal effect beyond three doses of GNPs. These results suggest a significant effect of particle type and multiple doses on increasing particle accumulation and on tumor targeting ability.

  14. Styrene-maleic acid-copolymer conjugated zinc protoporphyrin as a candidate drug for tumor-targeted therapy and imaging.

    Science.gov (United States)

    Fang, Jun; Tsukigawa, Kenji; Liao, Long; Yin, Hongzhuan; Eguchi, Kanami; Maeda, Hiroshi

    2016-01-01

    Previous studies indicated the potential of zinc protoporphyrin (ZnPP) as an antitumor agent targeting to the tumor survival factor heme oxygenase-1, and/or for photodynamic therapy (PDT). In this study, to achieve tumor-targeted delivery, styrene-maleic acid-copolymer conjugated ZnPP (SMA-ZnPP) was synthesized via amide bond, which showed good water solubility, having ZnPP loading of 15%. More importantly, it forms micelles in aqueous solution with a mean particle size of 111.6 nm, whereas it has an apparent Mw of 65 kDa. This micelle formation was not detracted by serum albumin, suggesting it is stable in circulation. Further SMA-ZnPP conjugate will behave as an albumin complex in blood with much larger size (235 kDa) by virtue of the albumin binding property of SMA. Consequently, SMA-ZnPP conjugate exhibited prolonged circulating retention and preferential tumor accumulation by taking advantage of enhanced permeability and retention (EPR) effect. Clear tumor imaging was thus achieved by detecting the fluorescence of ZnPP. In addition, the cytotoxicity and PDT effect of SMA-ZnPP conjugate was confirmed in human cervical cancer HeLa cells. Light irradiation remarkably increased the cytotoxicity (IC50, from 33 to 5 μM). These findings may provide new options and knowledge for developing ZnPP based anticancer theranostic drugs.

  15. Protein kinase A inhibition modulates the intracellular routing of gene delivery vehicles in HeLa cells, leading to productive transfection

    NARCIS (Netherlands)

    Rehman, Zia Ur; Hoekstra, Dick; Zuhorn, Inge S.

    2011-01-01

    Cellular entry of nanoparticles for drug- and gene delivery relies on various endocytic pathways, including clathrin-and caveolae-mediated endocytosis. To improve delivery, i.e., the therapeutic and/or cell biological impact, current efforts are aimed at avoiding processing of the carriers along the

  16. Overcoming drug resistance of MCF-7/ADR cells by altering intracellular distribution of doxorubicin via MVP knockdown with a novel siRNA polyamidoamine-hyaluronic acid complex.

    Science.gov (United States)

    Han, Min; Lv, Qing; Tang, Xin-Jiang; Hu, Yu-Lan; Xu, Dong-Hang; Li, Fan-Zhu; Liang, Wen-Quan; Gao, Jian-Qing

    2012-10-28

    Drug resistance is one of the critical reasons leading to failure in chemotherapy. Enormous studies have been focused on increasing intracellular drug accumulation through inhibiting P-glycoprotein (Pgp). Meanwhile, we found that major vault protein (MVP) may be also involved in drug resistance of human breast cancer MCF-7/ADR cells by transporting doxorubicin (DOX) from the action target (i.e. nucleus) to cytoplasma. Herein polyamidoamine (PAMAM) dendrimers was functionalized by a polysaccharide hyaluronic acid (HA) to effectively deliver DOX as well as MVP targeted small-interfering RNA (MVP-siRNA) to down regulate MVP expression and improve DOX chemotherapy in MCF-7/ADR cells. In comparison with DOX solution (IC50=48.5 μM), an enhanced cytotoxicity could be observed for DOX PAMAM-HA (IC50=11.3 μM) as well as enhanced tumor target, higher intracellular accumulation, increased blood circulating time and less in vivo toxicity. Furthermore, codelivery of siRNA and DOX by PAMAM-HA exhibited satisfactory gene silencing effect as well as enhanced stability and efficient intracellular delivery of siRNA, which allowed DOX access to nucleus and induced subsequent much more cytotoxicity than siRNA absent case as a result of MVP knockdown. This observation highlights a promising application of novel nanocarrier PAMAM-HA, which could co-deliver anticancer drug and siRNA, in reversing drug resistance by altering intracellular drug distribution. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Mesenchymal Stem Cell-Based Tumor-Targeted Gene Therapy in Gastrointestinal Cancer

    Science.gov (United States)

    Bao, Qi; Zhao, Yue; Niess, Hanno; Conrad, Claudius; Schwarz, Bettina; Jauch, Karl-Walter; Huss, Ralf; Nelson, Peter J.

    2012-01-01

    Mesenchymal stem (or stromal) cells (MSCs) are nonhematopoietic progenitor cells that can be obtained from bone marrow aspirates or adipose tissue, expanded and genetically modified in vitro, and then used for cancer therapeutic strategies in vivo. Here, we review available data regarding the application of MSC-based tumor-targeted therapy in gastrointestinal cancer, provide an overview of the general history of MSC-based gene therapy in cancer research, and discuss potential problems associated with the utility of MSC-based therapy such as biosafety, immunoprivilege, transfection methods, and distribution in the host. PMID:22530882

  18. Enhanced solubility and targeted delivery of curcumin by lipopeptide micelles.

    Science.gov (United States)

    Liang, Ju; Wu, Wenlan; Lai, Danyu; Li, Junbo; Fang, Cailin

    2015-01-01

    A lipopeptide (LP)-containing KKGRGDS as the hydrophilic heads and lauric acid (C12) as the hydrophobic tails has been designed and prepared by standard solid-phase peptide synthesis technique. LP can self-assemble into spherical micelles with the size of ~30 nm in PBS (phosphate buffer saline) (pH 7.4). Curcumin-loaded LP micelles were prepared in order to increase the water solubility, sustain the releasing rate, and improve the tumor targeted delivery of curcumin. Water solubility, cytotoxicity, in vitro release behavior, and intracellular uptake of curcumin-loaded LP micelles were investigated. The results showed that LP micelles can increase the water solubility of curcumin 1.1 × 10(3) times and sustain the release of curcumin in a low rate. Curcumin-loaded LP micelles showed much higher cell inhibition than free curcumin on human cervix carcinoma (HeLa) and HepG2 cells. When incubating these curcumin-loaded micelles with HeLa and COS7 cells, due to the over-expression of integrins on cancer cells, the micelles can efficiently use the tumor-targeting function of RGD (functionalized peptide sequences: Arg-Gly-Asp) sequence to deliver the drug into HeLa cells, and better efficiency of the self-assembled LP micelles for curcumin delivery than crude curcumin was also confirmed by LCSM (laser confocal scanning microscope) assays. Combined with the enhanced solubility and higher cell inhibition, LP micelles reported in this study may be promising in clinical application for targeted curcumin delivery.

  19. PEGylated chitosan grafted with polyamidoaminedendron as tumor-targeted magnetic resonance imaging contrast agent

    International Nuclear Information System (INIS)

    Guangyue Zu; Xiaoyan Tong; Yi Cao; Ye Kuang; Yajie Zhang; Min Liu; Renjun Pei

    2017-01-01

    Macromolecular contrast agents labeled with targeting ligands are now receiving growing interest in tumor-targeted magnetic resonance imaging. In this study, a macromolecular contrast agent based on PEGylated chitosan was synthesized and characterized, and its application as an MRI contrast agent was then demonstrated both in vitro and in vivo. First, the chitosan backbone was partially grafted with poly(ethylene glycol), which was used to improve the in vivo stability, followed by modifying with azide groups. Second, alkynyl-terminated PAMAM dendron modified with gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA) was synthesized and conjugated onto the chitosan backbone through click chemistry. Finally, the obtained mCA was further functionalized with folic acid to improve the target specificity. The obtained FA labeled mCA exhibited higher relaxivity (9.53 mM"-"1.s"-"1) relative to Gd-DTPA (4.25 mM"-"1.s"-"1) and showed negligible toxicity as determined by the WST assay. In vivo MRI results suggested that a relatively high signal enhancement was observed in the tumor region, which made it a promising candidate for tumor-targeted MRI CA. (authors)

  20. In vivo tomographic imaging with fluorescence and MRI using tumor-targeted dual-labeled nanoparticles

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2013-12-01

    Full Text Available Yue Zhang,1 Bin Zhang,1 Fei Liu,1,2 Jianwen Luo,1,3 Jing Bai1 1Department of Biomedical Engineering, School of Medicine, 2Tsinghua-Peking Center for Life Sciences, 3Center for Biomedical Imaging Research, Tsinghua University, Beijing, People's Republic of China Abstract: Dual-modality imaging combines the complementary advantages of different modalities, and offers the prospect of improved preclinical research. The combination of fluorescence imaging and magnetic resonance imaging (MRI provides cross-validated information and direct comparison between these modalities. Here, we report on the application of a novel tumor-targeted, dual-labeled nanoparticle (NP, utilizing iron oxide as the MRI contrast agent and near infrared (NIR dye Cy5.5 as the fluorescent agent. Results of in vitro experiments verified the specificity of the NP to tumor cells. In vivo tumor targeting and uptake of the NPs in a mouse model were visualized by fluorescence and MR imaging collected at different time points. Quantitative analysis was carried out to evaluate the efficacy of MRI contrast enhancement. Furthermore, tomographic images were also acquired using both imaging modalities and cross-validated information of tumor location and size between these two modalities was revealed. The results demonstrate that the use of dual-labeled NPs can facilitate the dual-modal detection of tumors, information cross-validation, and direct comparison by combing fluorescence molecular tomography (FMT and MRI. Keywords: dual-modality, fluorescence molecular tomography (FMT, magnetic resonance imaging (MRI, nanoparticle

  1. Anti-EGFR-iRGD recombinant protein conjugated silk fibroin nanoparticles for enhanced tumor targeting and antitumor efficiency

    Directory of Open Access Journals (Sweden)

    Bian X

    2016-05-01

    Full Text Available Xinyu Bian,* Puyuan Wu,* Huizi Sha, Hanqing Qian, Qing Wang, Lei Cheng, Yang Yang, Mi Yang, Baorui LiuComprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, People’s Republic of China*These authors contributed equally to this workAbstract: In this study, we report a novel kind of targeting with paclitaxel (PTX-loaded silk fibroin nanoparticles conjugated with iRGD–EGFR nanobody recombinant protein (anti-EGFR-iRGD. The new nanoparticles (called A-PTX-SF-NPs were prepared using the carbodiimide-mediated coupling procedure and their characteristics were evaluated. The cellular cytotoxicity and cellular uptake of A-PTX-SF-NPs were also investigated. The results in vivo suggested that NPs conjugated with the recombinant protein exhibited more targeting and anti-neoplastic property in cells with high EGFR expression. In the in vivo antitumor efficacy assay, the A-PTX-SF-NPs group showed slower tumor growth and smaller tumor volumes than PTX-SF-NPs in a HeLa xenograft mouse model. A real-time near-infrared fluorescence imaging study showed that A-PTX-SF-NPs could target the tumor more effectively. These results suggest that the anticancer activity and tumor targeting of A-PTX-SF-NPs were superior to those of PTX-SF-NPs and may have the potential to be used for targeted delivery for tumor therapies. Keywords: EGFR, nanobody, iRGD, recombinant protein, targeting drug carriers, antitumor efficiency

  2. Tumor-targeted inhibition by a novel strategy - mimoretrovirus expressing siRNA targeting the Pokemon gene.

    Science.gov (United States)

    Tian, Zhiqiang; Wang, Huaizhi; Jia, Zhengcai; Shi, Jinglei; Tang, Jun; Mao, Liwei; Liu, Hongli; Deng, Yijing; He, Yangdong; Ruan, Zhihua; Li, Jintao; Wu, Yuzhang; Ni, Bing

    2010-12-01

    Pokemon gene has crucial but versatile functions in cell differentiation, proliferation and tumorigenesis. It is a master regulator of the ARF-HDM2-p53 and Rb-E2F pathways. The facts that the expression of Pokemon is essential for tumor formation and many kinds of tumors over-express the Pokemon gene make it an attractive target for therapeutic intervention for cancer treatment. In this study, we used an RNAi strategy to silence the Pokemon gene in a cervical cancer model. To address the issues involving tumor specific delivery and durable expression of siRNA, we applied the Arg-Gly-Asp (RGD) peptide ligand and polylysine (K(18)) fusion peptide to encapsulate a recombinant retrovirus plasmid expressing a siRNA targeting the Pokemon gene and produced the 'mimoretrovirus'. At charge ratio 2.0 of fusion peptide/plasmid, the mimoretrovirus formed stable and homogenous nanoparticles, and provided complete DNase I protection and complete gel retardation. This nanoparticle inhibited SiHa cell proliferation and invasion, while it promoted SiHa cell apoptosis. The binding of the nanoparticle to SiHa cells was mediated via the RGD-integrin α(v)β(3) interaction, as evidenced by the finding that unconjugated RGD peptide inhibited this binding significantly. This tumor-targeting mimoretrovirus exhibited excellent anti-tumor capacity in vivo in a nude mouse model. Moreover, the mimoretrovirus inhibited tumor growth with a much higher efficiency than recombinant retrovirus expressing siRNA or the K(18)/P4 nanoparticle lacking the RGD peptide. Results suggest that the RNAi/RGD-based mimoretrovirus developed in this study represents a novel anti-tumor strategy that may be applicable to most research involving cancer therapy and, thus, has promising potential as a cervical cancer treatment.

  3. Enhanced tumor targeting of cRGD peptide-conjugated albumin nanoparticles in the BxPC-3 cell line.

    Science.gov (United States)

    Yu, Xinzhe; Song, Yunlong; Di, Yang; He, Hang; Fu, Deliang; Jin, Chen

    2016-08-12

    The emerging albumin nanoparticle brings new hope for the delivery of antitumor drugs. However, a lack of robust tumor targeting greatly limits its application. In this paper, cyclic arginine-glycine-aspartic-conjugated, gemcitabine-loaded human serum albumin nanoparticles (cRGD-Gem-HSA-NPs) were successfully prepared, characterized, and tested in vitro in the BxPC-3 cell line. Initially, 4-N-myristoyl-gemcitabine (Gem-C14) was formed by conjugating myristoyl to the 4-amino group of gemcitabine. Then, cRGD-HSA was synthesized using sulfosuccinimidyl-(4-N-maleimidomethyl)cyclohexane-1-carboxylate (Sulfo-SMCC) cross-linkers. Finally, cRGD-Gem-HSA-NPs were formulated based on the nanoparticle albumin-bound (nab) technology. The resulting NPs were characterized for particle size, zeta potential, morphology, encapsulation efficiency, and drug loading efficiency. In vitro cellular uptake and inhibition studies were conducted to compare Gem-HSA-NPs and cRGD-Gem-HSA-NPs in a human pancreatic cancer cell line (BxPC-3). The cRGD-Gem-HSA-NPs exhibited an average particle size of 160 ± 23 nm. The encapsulation rate and drug loading rate were approximately 83 ± 5.6% and 11 ± 4.2%, respectively. In vitro, the cRGD-anchored NPs exhibited a significantly greater affinity for the BxPC-3 cells compared to non-targeted NPs and free drug. The cRGD-Gem-HSA-NPs also showed the strongest inhibitory effect in the BxPC-3 cells among all the analyzed groups. The improved efficacy of cRGD-Gem-HSA-NPs in the BxPC-3 cell line warrants further in vivo investigations.

  4. Polyethylene Glycol Modified, Cross-Linked Starch Coated Iron Oxide Nanoparticles for Enhanced Magnetic Tumor Targeting

    Science.gov (United States)

    Cole, Adam J.; David, Allan E.; Wang, Jianxin; Galbán, Craig J.; Hill, Hannah L.; Yang, Victor C.

    2010-01-01

    While successful magnetic tumor targeting of iron oxide nanoparticles has been achieved in a number of models, the rapid blood clearance of magnetically suitable particles by the reticuloendothelial system (RES) limits their availability for targeting. This work aimed to develop a long-circulating magnetic iron oxide nanoparticle (MNP) platform capable of sustained tumor exposure via the circulation and, thus, enhanced magnetic tumor targeting. Aminated, cross-linked starch (DN) and aminosilane (A) coated MNPs were successfully modified with 5 kDa (A5, D5) or 20 kDa (A20, D20) polyethylene glycol (PEG) chains using simple N-Hydroxysuccinimide (NHS) chemistry and characterized. Identical PEG-weight analogues between platforms (A5 & D5, A20 & D20) were similar in size (140–190 nm) and relative PEG labeling (1.5% of surface amines – A5/D5, 0.4% – A20/D20), with all PEG-MNPs possessing magnetization properties suitable for magnetic targeting. Candidate PEG-MNPs were studied in RES simulations in vitro to predict long-circulating character. D5 and D20 performed best showing sustained size stability in cell culture medium at 37°C and 7 (D20) to 10 (D5) fold less uptake in RAW264.7 macrophages when compared to previously targeted, unmodified starch MNPs (D). Observations in vitro were validated in vivo, with D5 (7.29 hr) and D20 (11.75 hr) showing much longer half-lives than D (0.12 hr). Improved plasma stability enhanced tumor MNP exposure 100 (D5) to 150 (D20) fold as measured by plasma AUC0-∞ Sustained tumor exposure over 24 hours was visually confirmed in a 9L-glioma rat model (12 mg Fe/kg) using magnetic resonance imaging (MRI). Findings indicate that both D5 and D20 are promising MNP platforms for enhanced magnetic tumor targeting, warranting further study in tumor models. PMID:21176955

  5. A Functional Iron Oxide Nanoparticles Modified with PLA-PEG-DG as Tumor-Targeted MRI Contrast Agent.

    Science.gov (United States)

    Xiong, Fei; Hu, Ke; Yu, Haoli; Zhou, Lijun; Song, Lina; Zhang, Yu; Shan, Xiuhong; Liu, Jianping; Gu, Ning

    2017-08-01

    Tumor targeting could greatly promote the performance of magnetic nanomaterials as MRI (Magnetic Resonance Imaging) agent for tumor diagnosis. Herein, we reported a novel magnetic nanoparticle modified with PLA (poly lactic acid)-PEG (polyethylene glycol)-DG (D-glucosamine) as Tumor-targeted MRI Contrast Agent. In this work, we took use of the D-glucose passive targeting on tumor cells, combining it on PLA-PEG through amide reaction, and then wrapped the PLA-PEG-DG up to the Fe 3 O 4 @OA NPs. The stability and anti phagocytosis of Fe 3 O 4 @OA@PLA-PEG-DG was tested in vitro; the MRI efficiency and toxicity was also detected in vivo. These functional magnetic nanoparticles demonstrated good biocompatibility and stability both in vitro and in vivo. Cell experiments showed that Fe 3 O 4 @OA@PLA-PEG-DG nanoparticles exist good anti phagocytosis and high targetability. In vivo MRI images showed that the contrast effect of Fe 3 O 4 @OA@PLA-PEG-DG nanoparticles prevailed over the commercial non tumor-targeting magnetic nanomaterials MRI agent at a relatively low dose. The DG can validly enhance the tumor-targetting effect of Fe 3 O 4 @OA@PLA-PEG nanoparticle. Maybe MRI agents with DG can hold promise as tumor-targetting development in the future.

  6. Oligo-branched peptides for tumor targeting: from magic bullets to magic forks.

    Science.gov (United States)

    Falciani, Chiara; Pini, Alessandro; Bracci, Luisa

    2009-02-01

    Selective targeting of tumor cells is the final goal of research and drug discovery for cancer diagnosis, imaging and therapy. After the invention of hybridoma technology, the concept of magic bullet was introduced into the field of oncology, referring to selective killing of tumor cells, by specific antibodies. More recently, small molecules and peptides have also been proposed as selective targeting agents. We analyze the state of the art of tumor-selective agents that are presently available and tested in clinical settings. A novel approach based on 'armed' oligo-branched peptides as tumor targeting agents, is discussed and compared with existing tumor-selective therapies mediated by antibodies, small molecules or monomeric peptides. Oligo-branched peptides could be novel drugs that combine the advantages of antibodies and small molecules.

  7. Multifunctional nanosheets based on folic acid modified manganese oxide for tumor-targeting theranostic application

    Science.gov (United States)

    Hao, Yongwei; Wang, Lei; Zhang, Bingxiang; Zhao, Hongjuan; Niu, Mengya; Hu, Yujie; Zheng, Cuixia; Zhang, Hongling; Chang, Junbiao; Zhang, Zhenzhong; Zhang, Yun

    2016-01-01

    It is highly desirable to develop smart nanocarriers with stimuli-responsive drug-releasing and diagnostic-imaging functions for cancer theranostics. Herein, we develop a reduction and pH dual-responsive tumor theranostic platform based on degradable manganese dioxide (MnO2) nanosheets. The MnO2 nanosheets with a size of 20-60 nm were first synthesized and modified with (3-Aminopropyl) trimethoxysilane (APTMS) to get amine-functionalized MnO2, and then functionalized by NH2-PEG2000-COOH (PEG). The tumor-targeting group, folic acid (FA), was finally conjugated with the PEGylated MnO2 nanosheets. Then, doxorubicin (DOX), a chemotherapeutic agent, was loaded onto the modified nanosheets through a physical adsorption, which was designated as MnO2-PEG-FA/DOX. The prepared MnO2-PEG-FA/DOX nanosheets with good biocompatibility can not only efficiently deliver DOX to tumor cells in vitro and in vivo, leading to enhanced anti-tumor efficiency, but can also respond to a slightly acidic environment and high concentration of reduced glutathione (GSH), which caused degradation of MnO2 into manganese ions enabling magnetic resonance imaging (MRI). The longitudinal relaxation rate r 1 was 2.26 mM-1 s-1 at pH 5.0 containing 2 mM GSH. These reduction and pH dual-responsive biodegradable nanosheets combining efficient MRI and chemotherapy provide a novel and promising platform for tumor-targeting theranostic application.

  8. Conjugate of biotin with silicon(IV) phthalocyanine for tumor-targeting photodynamic therapy.

    Science.gov (United States)

    Li, Ke; Qiu, Ling; Liu, Qingzhu; Lv, Gaochao; Zhao, Xueyu; Wang, Shanshan; Lin, Jianguo

    2017-09-01

    In order to improve the efficacy of photodynamic therapy (PDT), biotin was axially conjugated with silicon(IV) phthalocyanine (SiPc) skeleton to develop a new tumor-targeting photosensitizer SiPc-biotin. The target compound SiPc-biotin showed much higher binding affinity toward BR-positive (biotin receptor overexpressed) HeLa human cervical carcinoma cells than its precursor SiPc-pip. However, when the biotin receptors of HeLa cells were blocked by free biotin, >50% uptake of SiPc-biotin was suppressed, demonstrating that SiPc-biotin could selectively accumulate in BR-positive cancer cells via the BR-mediated internalization. The confocal fluorescence images further confirmed the target binding ability of SiPc-biotin. As a consequence of specificity of SiPc-biotin toward BR-positive HeLa cells, the photodynamic effect was also largely dependent on the BR expression level of HeLa cells. The photodynamic activities of SiPc-biotin against HeLa cells were dramatically reduced when the biotin receptors were blocked by the free biotin (IC 50 : 0.18μM vs. 0.46μM). It is concluded that SiPc-biotin can selectively damage BR-positive cancer cells under irradiation. Furthermore, the dark toxicity of SiPc-biotin toward human normal liver cell lines LO2 was much lower than that of its precursor SiPc-pip. The targeting photodynamic activity and low dark toxicity suggest that SiPc-biotin is a promising photosensitizer for tumor-targeting photodynamic therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Innovations that influence the pharmacology of monoclonal antibody guided tumor targeting

    International Nuclear Information System (INIS)

    Schlom, J.; Hand, P.H.; Greiner, J.W.; Colcher, D.; Shrivastav, S.; Carrasquillo, J.A.; Reynolds, J.C.; Larson, S.M.; Raubitschek, A.

    1990-01-01

    Tumor targeting by monoclonal antibodies (MAbs) can be enhanced by (a) increasing the percentage of injected dose taken up by the tumor and/or (b) increasing the tumor:nontumor ratios. Several groups have demonstrated that one can increase tumor to nontumor ratios by the use of antibody fragments or the administration of second antibodies. Several other modalities are also possible: (a) the use of recombinant interferons to up-regulate the expression of specific tumor associated antigens such as carcinoembryonic antigen or TAG-72 on the surface of carcinoma cells and thus increase MAb tumor binding has proved successful in both in vitro and in vivo studies; (b) the intracavitary administration of MAbs. Recent studies have demonstrated that when radiolabeled B72.3 is administered i.p. to patients with carcinoma of the peritoneal cavity, it localizes tumor masses with greater efficiency than does concurrent i.v. administered antibody. Studies involving the comparative pharmacology of intracavitary administration of radiolabeled MAb in patients and several animal models will be discussed; (c) it has been reported that prior exposure of hepatoma to external beam radiation will increase radiolabeled MAb tumor targeting. We and others have not been able to duplicate this phenomenon with a human colon cancer xenograft model and radiolabeled MAbs to two different colon carcinoma associated antigens. The possible reasons for these differences will be discussed; (d) the cloning and expression of recombinant MAbs with human constant regions and subsequent size modification constructs will also undoubtedly alter the pharmacology of MAb tumor binding in both diagnostic and therapeutic applications. 66 references

  10. A comparison of prostate tumor targeting strategies using magnetic resonance imaging-targeted, transrectal ultrasound-guided fusion biopsy.

    Science.gov (United States)

    Martin, Peter R; Cool, Derek W; Fenster, Aaron; Ward, Aaron D

    2018-03-01

    Magnetic resonance imaging (MRI)-targeted, three-dimensional (3D) transrectal ultrasound (TRUS)-guided prostate biopsy aims to reduce the 21-47% false-negative rate of clinical two-dimensional (2D) TRUS-guided systematic biopsy, but continues to yield false-negative results. This may be improved via needle target optimization, accounting for guidance system errors and image registration errors. As an initial step toward the goal of optimized prostate biopsy targeting, we investigated how needle delivery error impacts tumor sampling probability for two targeting strategies. We obtained MRI and 3D TRUS images from 49 patients. A radiologist and radiology resident assessed these MR images and contoured 81 suspicious regions, yielding tumor surfaces that were registered to 3D TRUS. The biopsy system's root-mean-squared needle delivery error (RMSE) and systematic error were modeled using an isotropic 3D Gaussian distribution. We investigated two different prostate tumor-targeting strategies using (a) the tumor's centroid and (b) a ring in the lateral-elevational plane. For each simulation, targets were spaced at equal arc lengths on a ring with radius equal to the systematic error magnitude. A total of 1000 biopsy simulations were conducted for each tumor, with RMSE and systematic error magnitudes ranging from 1 to 6 mm. The difference in median tumor sampling probability and probability of obtaining a 50% core involvement was determined for ring vs centroid targeting. Our simulation results indicate that ring targeting outperformed centroid targeting in situations where systematic error exceeds RMSE. In these instances, we observed statistically significant differences showing 1-32% improvement in sampling probability due to ring targeting. Likewise, we observed statistically significant differences showing 1-39% improvement in 50% core involvement probability due to ring targeting. Our results suggest that the optimal targeting scheme for prostate biopsy depends on

  11. Improved tumor targeting of anti-HER2 nanobody through N-succinimidyl 4-guanidinomethyl-3-iodobenzoate radiolabeling.

    Science.gov (United States)

    Pruszynski, Marek; Koumarianou, Eftychia; Vaidyanathan, Ganesan; Revets, Hilde; Devoogdt, Nick; Lahoutte, Tony; Lyerly, H Kim; Zalutsky, Michael R

    2014-04-01

    Nanobodies are approximately 15-kDa proteins based on the smallest functional fragments of naturally occurring heavy chain-only antibodies and represent an attractive platform for the development of molecularly targeted agents for cancer diagnosis and therapy. Because the human epidermal growth factor receptor type 2 (HER2) is overexpressed in breast and ovarian carcinoma, as well as in other malignancies, HER2-specific Nanobodies may be valuable radiodiagnostics and therapeutics for these diseases. The aim of the present study was to evaluate the tumor-targeting potential of anti-HER2 5F7GGC Nanobody after radioiodination with the residualizing agent N-succinimidyl 4-guanidinomethyl 3-(125/131)I-iodobenzoate (*I-SGMIB). The 5F7GGC Nanobody was radiolabeled using *I-SGMIB and, for comparison, with N(ε)-(3-*I-iodobenzoyl)-Lys(5)-N(α)-maleimido-Gly(1)-GEEEK (*I-IB-Mal-d-GEEEK), another residualizing agent, and by direct radioiodination using IODO-GEN ((125)I-Nanobody). The 3 labeled Nanobodies were evaluated in affinity measurements, and paired-label internalization assays were performed on HER2-expressing BT474M1 breast carcinoma cells and in paired-label tissue distribution measurements in mice bearing subcutaneous BT474M1 xenografts. *I-SGMIB-Nanobody was produced in 50.4% ± 3.6% radiochemical yield and exhibited a dissociation constant of 1.5 ± 0.5 nM. Internalization assays demonstrated that intracellular retention of radioactivity was up to 1.5-fold higher for *I-SGMIB-Nanobody than for coincubated (125)I-Nanobody or *I-IB-Mal-d-GEEEK-Nanobody. Peak tumor uptake for *I-SGMIB-Nanobody was 24.50% ± 9.89% injected dose/g at 2 h, 2- to 4-fold higher than observed with other labeling methods, and was reduced by 90% with trastuzumab blocking, confirming the HER2 specificity of localization. Moreover, normal-organ clearance was fastest for *I-SGMIB-Nanobody, such that tumor-to-normal-organ ratios greater than 50:1 were reached by 24 h in all tissues except lungs

  12. Host cell interactions of outer membrane vesicle-associated virulence factors of enterohemorrhagic Escherichia coli O157: Intracellular delivery, trafficking and mechanisms of cell injury

    Science.gov (United States)

    Greune, Lilo; Jarosch, Kevin-André; Steil, Daniel; Zhang, Wenlan; He, Xiaohua; Lloubes, Roland; Fruth, Angelika; Kim, Kwang Sik; Schmidt, M. Alexander; Dobrindt, Ulrich; Mellmann, Alexander; Karch, Helge

    2017-01-01

    Outer membrane vesicles (OMVs) are important tools in bacterial virulence but their role in the pathogenesis of infections caused by enterohemorrhagic Escherichia coli (EHEC) O157, the leading cause of life-threatening hemolytic uremic syndrome, is poorly understood. Using proteomics, electron and confocal laser scanning microscopy, immunoblotting, and bioassays, we investigated OMVs secreted by EHEC O157 clinical isolates for virulence factors cargoes, interactions with pathogenetically relevant human cells, and mechanisms of cell injury. We demonstrate that O157 OMVs carry a cocktail of key virulence factors of EHEC O157 including Shiga toxin 2a (Stx2a), cytolethal distending toxin V (CdtV), EHEC hemolysin, and flagellin. The toxins are internalized by cells via dynamin-dependent endocytosis of OMVs and differentially separate from vesicles during intracellular trafficking. Stx2a and CdtV-B, the DNase-like CdtV subunit, separate from OMVs in early endosomes. Stx2a is trafficked, in association with its receptor globotriaosylceramide within detergent-resistant membranes, to the Golgi complex and the endoplasmic reticulum from where the catalytic Stx2a A1 fragment is translocated to the cytosol. CdtV-B is, after its retrograde transport to the endoplasmic reticulum, translocated to the nucleus to reach DNA. CdtV-A and CdtV-C subunits remain OMV-associated and are sorted with OMVs to lysosomes. EHEC hemolysin separates from OMVs in lysosomes and targets mitochondria. The OMV-delivered CdtV-B causes cellular DNA damage, which activates DNA damage responses leading to G2 cell cycle arrest. The arrested cells ultimately die of apoptosis induced by Stx2a and CdtV via caspase-9 activation. By demonstrating that naturally secreted EHEC O157 OMVs carry and deliver into cells a cocktail of biologically active virulence factors, thereby causing cell death, and by performing first comprehensive analysis of intracellular trafficking of OMVs and OMV-delivered virulence factors

  13. Mapping the intracellular distribution of carbon nanotubes after targeted delivery to carcinoma cells using confocal Raman imaging as a label-free technique

    International Nuclear Information System (INIS)

    Lamprecht, C; Unterauer, B; Plochberger, B; Brameshuber, M; Hinterdorfer, P; Ebner, A; Gierlinger, N; Hild, S; Heister, E

    2012-01-01

    The uptake of carbon nanotubes (CNTs) by mammalian cells and their distribution within cells is being widely studied in recent years due to their increasing use for biomedical purposes. The two main imaging techniques used are confocal fluorescence microscopy and transmission electron microscopy (TEM). The former, however, requires labeling of the CNTs with fluorescent dyes, while the latter is a work-intensive technique that is unsuitable for in situ bio-imaging. Raman spectroscopy, on the other hand, presents a direct, straightforward and label-free alternative. Confocal Raman microscopy can be used to image the CNTs inside cells, exploiting the strong Raman signal connected to different vibrational modes of the nanotubes. In addition, cellular components, such as the endoplasmic reticulum and the nucleus, can be mapped. We first validate our method by showing that only when using the CNTs’ G band for intracellular mapping accurate results can be obtained, as mapping of the radial breathing mode (RBM) only shows a small fraction of CNTs. We then take a closer look at the exact localization of the nanotubes inside cells after folate receptor-mediated endocytosis and show that, after 8-10 h incubation, the majority of CNTs are localized around the nucleus. In summary, Raman imaging has enormous potential for imaging CNTs inside cells, which is yet to be fully realized. (paper)

  14. Advanced drug and gene delivery systems based on functional biodegradable polycarbonates and copolymers

    NARCIS (Netherlands)

    Chen, Wei; Meng, Fenghua; Cheng, R.; Deng, C.; Feijen, Jan; Zhong, Zhiyuan

    2014-01-01

    Biodegradable polymeric nanocarriers are one of the most promising systems for targeted and controlled drug and gene delivery. They have shown several unique advantages such as excellent biocompatibility, prolonged circulation time, passive tumor targeting via the enhanced permeability and retention

  15. In vitro study of novel gadolinium-loaded liposomes guided by GBI-10 aptamer for promising tumor targeting and tumor diagnosis by magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Gu MJ

    2015-08-01

    Full Text Available Meng-Jie Gu,1,* Kun-Feng Li,1,* Lan-Xin Zhang,1 Huan Wang,1 Li-Si Liu,2 Zhuo-Zhao Zheng,2 Nan-Yin Han,1 Zhen-Jun Yang,1 Tian-Yuan Fan1 1State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 2Department of Radiology, Peking University Third Hospital, Beijing, People’s Republic of China *These authors contributed equally to this work Abstract: Novel gadolinium-loaded liposomes guided by GBI-10 aptamer were developed and evaluated in vitro to enhance magnetic resonance imaging (MRI diagnosis of tumor. Nontargeted gadolinium-loaded liposomes were achieved by incorporating amphipathic material, Gd (III [N,N-bis-stearylamidomethyl-N'-amidomethyl] diethylenetriamine tetraacetic acid, into the liposome membrane using lipid film hydration method. GBI-10, as the targeting ligand, was then conjugated onto the liposome surface to get GBI-10-targeted gadolinium-loaded liposomes (GTLs. Both nontargeted gadolinium-loaded liposomes and GTLs displayed good dispersion stability, optimal size, and zeta potential for tumor targeting, as well as favorable imaging properties with enhanced relaxivity compared with a commercial MRI contrast agent (CA, gadopentetate dimeglumine. The use of GBI-10 aptamer in this liposomal system was intended to result in increased accumulation of gadolinium at the periphery of C6 glioma cells, where the targeting extracellular matrix protein tenascin-C is overexpressed. Increased cellular binding of GTLs to C6 cells was confirmed by confocal microscopy, flow cytometry, and MRI, demonstrating the promise of this novel delivery system as a carrier of MRI contrast agent for the diagnosis of tumor. These studies provide a new strategy furthering the development of nanomedicine for both diagnosis and therapy of tumor. Keywords: magnetic resonance imaging, gadolinium, liposomes, tenascin-C, GBI-10 aptamer, tumor targeting

  16. Tumor-targeted polymeric nanostructured lipid carriers with precise ratiometric control over dual-drug loading for combination therapy in non-small-cell lung cancer.

    Science.gov (United States)

    Liang, Yan; Tian, Baocheng; Zhang, Jing; Li, Keke; Wang, Lele; Han, Jingtian; Wu, Zimei

    2017-01-01

    Gemcitabine (GEM) and paclitaxel (PTX) are effective combination anticancer agents against non-small-cell lung cancer (NSCLC). At the present time, a main challenge of combination treatment is the precision of control that will maximize the combined effects. Here, we report a novel method to load GEM (hydrophilic) and PTX (hydrophobic) into simplex tumor-targeted nanostructured lipid carriers (NLCs) for accurate control of the ratio of the two drugs. We covalently preconjugated the dual drugs through a hydrolyzable ester linker to form drug conjugates. N -acetyl-d-glucosamine (NAG) is a glucose receptor-targeting ligand. We added NAG to the formation of NAG-NLCs. In general, synthesis of poly(6- O -methacryloyl-d-galactopyranose)-GEM/PTX (PMAGP-GEM/PTX) conjugates was demonstrated, and NAG-NLCs were prepared using emulsification and solvent evaporation. NAG-NLCs displayed sphericity with an average diameter of 120.3±1.3 nm, a low polydispersity index of 0.233±0.04, and accurate ratiometric control over the two drugs. A cytotoxicity assay showed that the NAG-NLCs had better antitumor activity on NSCLC cells than normal cells. There was an optimal ratio of the two drugs, exhibiting the best cytotoxicity and combinatorial effects among all the formulations we tested. In comparison with both the free-drug combinations and separately nanopackaged drug conjugates, PMAGP-GEM/PTX NAG-NLCs (3:1) exhibited superior synergism. Flow cytometry and confocal laser scanning microscopy showed that NAG-NLCs exhibited higher uptake efficiency in A549 cells via glucose receptor-mediated endocytosis. This combinatorial delivery system settles problems with ratiometric coloading of hydrophilic and hydrophobic drugs for tumor-targeted combination therapy to achieve maximal anticancer efficacy in NSCLC.

  17. Degradable gene delivery systems based on Pluronics-modified low-molecular-weight polyethylenimine: preparation, characterization, intracellular trafficking, and cellular distribution

    Directory of Open Access Journals (Sweden)

    Ding X

    2012-02-01

    Full Text Available Wei Fan1,2,*, Xin Wu1,*, Baoyue Ding3,*, Jing Gao4, Zhen Cai1, Wei Zhang1, Dongfeng Yin1, Xiang Wang1, Quangang Zhu1, Jiyong Liu1, Xueying Ding4, Shen Gao1 1Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, 2Department of Pharmaceutics, The 425th Hospital of PLA, Sanya, 3Department of Pharmaceutics, Medical College of Jiaxing University, Jiaxing, 4Department of Pharmaceutics, School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China*These authors contributed equally to this workBackground: Cationic copolymers consisting of polycations linked to nonionic amphiphilic block polymers have been evaluated as nonviral gene delivery systems, and a large number of different polymers and copolymers of linear, branched, and dendrimeric architectures have been tested in terms of their suitability and efficacy for in vitro and in vivo transfection. However, the discovery of new potent materials still largely relies on empiric approaches rather than a rational design. The authors investigated the relationship between the polymers' structures and their biological performance, including DNA compaction, toxicity, transfection efficiency, and the effect of cellular uptake.Methods: This article reports the synthesis and characterization of a series of cationic copolymers obtained by grafting polyethyleneimine with nonionic amphiphilic surfactant polyether-Pluronic® consisting of hydrophilic ethylene oxide and hydrophobic propylene oxide blocks. Transgene expression, cytotoxicity, localization of plasmids, and cellular uptake of these copolymers were evaluated following in vitro transfection of HeLa cell lines with various individual components of the copolymers.Results: Pluronics can exhibit biological activity including effects on enhancing DNA cellular uptake, nuclear translocation, and gene expression. The Pluronics with a higher hydrophilic-lipophilic balance value lead to

  18. Identification of a Short Cell-Penetrating Peptide from Bovine Lactoferricin for Intracellular Delivery of DNA in Human A549 Cells.

    Directory of Open Access Journals (Sweden)

    Betty R Liu

    Full Text Available Cell-penetrating peptides (CPPs have been shown to deliver cargos, including protein, DNA, RNA, and nanomaterials, in fully active forms into live cells. Most of the CPP sequences in use today are based on non-native proteins that may be immunogenic. Here we demonstrate that the L5a CPP (RRWQW from bovine lactoferricin (LFcin, stably and noncovalently complexed with plasmid DNA and prepared at an optimal nitrogen/phosphate ratio of 12, is able to efficiently enter into human lung cancer A549 cells. The L5a CPP delivered a plasmid containing the enhanced green fluorescent protein (EGFP coding sequence that was subsequently expressed in cells, as revealed by real-time PCR and fluorescent microscopy at the mRNA and protein levels, respectively. Treatment with calcium chloride increased the level of gene expression, without affecting CPP-mediated transfection efficiency. Zeta-potential analysis revealed that positively electrostatic interactions of CPP/DNA complexes correlated with CPP-mediated transport. The L5a and L5a/DNA complexes were not cytotoxic. This biomimetic LFcin L5a represents one of the shortest effective CPPs and could be a promising lead peptide with less immunogenic for DNA delivery in gene therapy.

  19. Identification of a Short Cell-Penetrating Peptide from Bovine Lactoferricin for Intracellular Delivery of DNA in Human A549 Cells.

    Science.gov (United States)

    Liu, Betty R; Huang, Yue-Wern; Aronstam, Robert S; Lee, Han-Jung

    2016-01-01

    Cell-penetrating peptides (CPPs) have been shown to deliver cargos, including protein, DNA, RNA, and nanomaterials, in fully active forms into live cells. Most of the CPP sequences in use today are based on non-native proteins that may be immunogenic. Here we demonstrate that the L5a CPP (RRWQW) from bovine lactoferricin (LFcin), stably and noncovalently complexed with plasmid DNA and prepared at an optimal nitrogen/phosphate ratio of 12, is able to efficiently enter into human lung cancer A549 cells. The L5a CPP delivered a plasmid containing the enhanced green fluorescent protein (EGFP) coding sequence that was subsequently expressed in cells, as revealed by real-time PCR and fluorescent microscopy at the mRNA and protein levels, respectively. Treatment with calcium chloride increased the level of gene expression, without affecting CPP-mediated transfection efficiency. Zeta-potential analysis revealed that positively electrostatic interactions of CPP/DNA complexes correlated with CPP-mediated transport. The L5a and L5a/DNA complexes were not cytotoxic. This biomimetic LFcin L5a represents one of the shortest effective CPPs and could be a promising lead peptide with less immunogenic for DNA delivery in gene therapy.

  20. Enhancing intracellular taxane delivery: current role and perspectives of nanoparticle albumin-bound paclitaxel in the treatment of advanced breast cancer.

    Science.gov (United States)

    Guarneri, Valentina; Dieci, Maria Vittoria; Conte, Pierfranco

    2012-02-01

    Docetaxel and paclitaxel are among the most active agents for the treatment of breast cancer. These first-generation taxanes are extremely hydrophobic; therefore, solvents are needed for its parenteral administration. Albumin nanoparticle technology allows for the transportation of such hydrophobic drugs without the need of potentially toxic solvents. Nab-paclitaxel can be administered without premedication, in a shorter infusion time and without the need for a special infusion set. Moreover, this technology allows the selective delivery of larger amounts of anticancer drug to tumors, by exploiting endogenous albumin pathways. An overview of the albumin nanoparticle technology, from a clinical perspective, is reported in this paper. The preclinical and clinical development of nab-paclitaxel is reviewed, in the context of available therapies for advanced breast cancer, with a focus on safety data. Preclinical and clinical data on the prognostic and predictive role of SPARC (secreted protein, acidic and rich in cysteine) are also reported. Nab-paclitaxel is approved at present for the treatment of metastatic breast cancer, after the failure of first-line standard therapy, when anthracyclines are not indicated. Efficacy and safety data, along with a more convenient administration, confirm the potential for nab-paclitaxel to become a reference taxane in breast cancer treatment.

  1. Poly(ethylene glycol-block-poly(ε-caprolactone– and phospholipid-based stealth nanoparticles with enhanced therapeutic efficacy on murine breast cancer by improved intracellular drug delivery

    Directory of Open Access Journals (Sweden)

    He XD

    2015-03-01

    Full Text Available Xiaodan He,1 Li Li,2 Hong Su,1 Dinglun Zhou,3 Hongmei Song,4 Ling Wang,1 Xuehua Jiang1 1West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, People’s Republic of China; 2National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, People’s Republic of China; 3West China School of Public Health, Sichuan University, Chengdu, Sichuan, People’s Republic of China; 4HitGen Ltd., Chengdu, Sichuan, People’s Republic of China Background: Effective anticancer drug delivery to the tumor site without rapid body clearance is a prerequisite for successful chemotherapy. 1,2-distearoyl-sn-glycero-3-phospho-ethanolamine-N-(methoxy[polyethyleneglycol]-2000 (DSPE-PEG2000 has been widely used in the preparation of stealth liposomes. Although PEG chains can efficiently preserve liposomes from rapid clearance by the reticuloendothelial system (RES, its application has been hindered by poor cellular uptake and unsatisfactory therapeutic effect.Methods: To address the dilemma, we presented a facile approach to fabricate novel stealth nanoparticles generated by poly(ethylene glycol-block-poly(ε-caprolactone (PEG-b-PCL, soybean phosphatidylcholine (SPC, and cholesterol, namely LPPs (L represented lipid and PP represented PEG-b-PCL, for the delivery of anticancer drug paclitaxel (PTX. LPPs were prepared using the thin film hydration method. Two PEG-b-PCL polymers with different molecular weights (MW; PEG2000-b-PCL2000, MW: 4,000 Da and PEG5000-b-PCL5000, MW: 10,000 Da were used to fabricate stealth nanoparticles. Conventional PEGylated liposome (LDP2000, L represented lipid and DP2000 represented DSPE-PEG2000 composed of SPC, cholesterol, and DSPE-PEG2000 was used as the control. The physical properties, cellular uptake, endocytosis pathway, cytotoxicity, pharmacokinetics, tumor accumulation, and anticancer efficacy of free PTX, PTX-loaded LPPs, and LDP2000 were systemically investigated after injection into 4T1

  2. In vivo tumor targeting and imaging with engineered trivalent antibody fragments containing collagen-derived sequences.

    Directory of Open Access Journals (Sweden)

    Angel M Cuesta

    Full Text Available There is an urgent need to develop new and effective agents for cancer targeting. In this work, a multivalent antibody is characterized in vivo in living animals. The antibody, termed "trimerbody", comprises a single-chain antibody (scFv fragment connected to the N-terminal trimerization subdomain of collagen XVIII NC1 by a flexible linker. As indicated by computer graphic modeling, the trimerbody has a tripod-shaped structure with three highly flexible scFv heads radially outward oriented. Trimerbodies are trimeric in solution and exhibited multivalent binding, which provides them with at least a 100-fold increase in functional affinity than the monovalent scFv. Our results also demonstrate the feasibility of producing functional bispecific trimerbodies, which concurrently bind two different ligands. A trimerbody specific for the carcinoembryonic antigen (CEA, a classic tumor-associated antigen, showed efficient tumor targeting after systemic administration in mice bearing CEA-positive tumors. Importantly, a trimerbody that recognizes an angiogenesis-associated laminin epitope, showed excellent tumor localization in several cancer types, including fibrosarcomas and carcinomas. These results illustrate the potential of this new antibody format for imaging and therapeutic applications, and suggest that some laminin epitopes might be universal targets for cancer targeting.

  3. A Tumor-Targeted Nanodelivery System to Improve Early MRI Detection of Cancer

    Directory of Open Access Journals (Sweden)

    Kathleen F. Pirollo

    2006-01-01

    Full Text Available The development of improvements in magnetic resonance imaging (MRI that would enhance sensitivity, leading to earlier detection of cancer and visualization of metastatic disease, is an area of intense exploration. We have devised a tumor-targeting, liposomal nanodelivery platform for use in gene medicine. This systemically administered nanocomplex has been shown to specifically and efficiently deliver both genes and oligonucleotides to primary and metastatic tumor cells, resulting in significant tumor growth inhibition and even tumor regression. Here we examine the effect on MRI of incorporating conventional MRI contrast agent Magnevist® into our anti-transferrin receptor single-chain antibody (TfRscFv liposomal complex. Both in vitro and in an in vivo orthotopic mouse model of pancreatic cancer, we show increased resolution and image intensity with the complexed Magnevist®. Using advanced microscopy techniques (scanning electron microscopy and scanning probe microscopy, we also established that the Magnevist® is in fact encapsulated by the liposome in the complex and that the complex still retains its nanodimensional size. These results demonstrate that this TfRscFv-liposome-Magnevist® nanocomplex has the potential to become a useful tool in early cancer detection.

  4. Development of tumor-targeted near infrared probes for fluorescence guided surgery.

    Science.gov (United States)

    Kelderhouse, Lindsay E; Chelvam, Venkatesh; Wayua, Charity; Mahalingam, Sakkarapalayam; Poh, Scott; Kularatne, Sumith A; Low, Philip S

    2013-06-19

    Complete surgical resection of malignant disease is the only reliable method to cure cancer. Unfortunately, quantitative tumor resection is often limited by a surgeon's ability to locate all malignant disease and distinguish it from healthy tissue. Fluorescence-guided surgery has emerged as a tool to aid surgeons in the identification and removal of malignant lesions. While nontargeted fluorescent dyes have been shown to passively accumulate in some tumors, the resulting tumor-to-background ratios are often poor, and the boundaries between malignant and healthy tissues can be difficult to define. To circumvent these problems, our laboratory has developed high affinity tumor targeting ligands that bind to receptors that are overexpressed on cancer cells and deliver attached molecules selectively into these cells. In this study, we explore the use of two tumor-specific targeting ligands (i.e., folic acid that targets the folate receptor (FR) and DUPA that targets prostate specific membrane antigen (PSMA)) to deliver near-infrared (NIR) fluorescent dyes specifically to FR and PSMA expressing cancers, thereby rendering only the malignant cells highly fluorescent. We report here that all FR- and PSMA-targeted NIR probes examined bind cultured cancer cells in the low nanomolar range. Moreover, upon intravenous injection into tumor-bearing mice with metastatic disease, these same ligand-NIR dye conjugates render receptor-expressing tumor tissues fluorescent, enabling their facile resection with minimal contamination from healthy tissues.

  5. Analysis and modeling of localized heat generation by tumor-targeted nanoparticles (Monte Carlo methods)

    Science.gov (United States)

    Sanattalab, Ehsan; SalmanOgli, Ahmad; Piskin, Erhan

    2016-04-01

    We investigated the tumor-targeted nanoparticles that influence heat generation. We suppose that all nanoparticles are fully functionalized and can find the target using active targeting methods. Unlike the commonly used methods, such as chemotherapy and radiotherapy, the treatment procedure proposed in this study is purely noninvasive, which is considered to be a significant merit. It is found that the localized heat generation due to targeted nanoparticles is significantly higher than other areas. By engineering the optical properties of nanoparticles, including scattering, absorption coefficients, and asymmetry factor (cosine scattering angle), the heat generated in the tumor's area reaches to such critical state that can burn the targeted tumor. The amount of heat generated by inserting smart agents, due to the surface Plasmon resonance, will be remarkably high. The light-matter interactions and trajectory of incident photon upon targeted tissues are simulated by MIE theory and Monte Carlo method, respectively. Monte Carlo method is a statistical one by which we can accurately probe the photon trajectories into a simulation area.

  6. Enzymatically and reductively degradable α-amino acid-based poly(ester amide)s: synthesis, cell compatibility, and intracellular anticancer drug delivery.

    Science.gov (United States)

    Sun, Huanli; Cheng, Ru; Deng, Chao; Meng, Fenghua; Dias, Aylvin A; Hendriks, Marc; Feijen, Jan; Zhong, Zhiyuan

    2015-02-09

    biomedical technology in particular controlled drug delivery applications.

  7. Multifunctional triblock co-polymer mP3/4HB-b-PEG-b-lPEI for efficient intracellular siRNA delivery and gene silencing.

    Science.gov (United States)

    Zhou, Li; Chen, Zhifei; Wang, Feifei; Yang, Xiuqun; Zhang, Biliang

    2013-04-01

    A non-viral siRNA carrier composed of mono-methoxy-poly (3-hydroxybutyrate-co-4-hydroxybutyrate)-block-polyethylene glycol-block-linear polyethyleneimine (mP3/4HB-b-PEG-b-lPEI) was synthesized using 1800 Da linear polyethyleneimine and evaluated for siRNA delivery. Our study demonstrated that siRNA could be efficiently combined with mP3/4HB-b-PEG-b-lPEI (mAG) co-polymer and was protected from nuclease degradation. The combined siRNA were released from the complexes easily under heparin competition. The particle size of the mAG/siRNA complexes was 158 nm, with a ζ-potential of around 28 mV. Atomic force microscopy images displayed spherical and homogeneously distributed complexes. The mAG block co-polymer displayed low cytotoxicity and efficient cellular uptake of Cy3-siRNA in A549 cells by flow cytometry and confocal microscopy. In vitro transfection efficiency of the block co-polymer was assessed using siRNA against luciferase in cultured A549-Luc, HeLa-Luc, HLF-Luc, A375-Luc and MCF-7-Luc cells. A higher transfection efficiency and lower cytotoxicity was obtained by mAG block co-polymer in five cell lines. Furthermore, a remarkable improvement in luciferase gene silencing efficiency of the mAG complex (up to 90-95%) over that of Lipofectamine™ 2000 (70-82%) was observed in HLF-Luc and A375-Luc cells. Additionally, a mAG/p65-siRNA complex also showed a better capability than Lipofectamine™ 2000/p65-siRNA complex to drastically reduce the p65 mRNA level down to 10-16% in HeLa, U251 and HUVEC cells at an N/P ratio of 70. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  8. GLUT1-mediated selective tumor targeting with fluorine containing platinum(II) glycoconjugates.

    Science.gov (United States)

    Liu, Ran; Fu, Zheng; Zhao, Meng; Gao, Xiangqian; Li, Hong; Mi, Qian; Liu, Pengxing; Yang, Jinna; Yao, Zhi; Gao, Qingzhi

    2017-06-13

    Increased glycolysis and overexpression of glucose transporters (GLUTs) are physiological characteristics of human malignancies. Based on the so-called Warburg effect, 18flurodeoxyglucose-positron emission tomography (FDG-PET) has successfully developed as clinical modality for the diagnosis and staging of many cancers. To leverage this glucose transporter mediated metabolic disparity between normal and malignant cells, in the current report, we focus on the fluorine substituted series of glucose, mannose and galactose-conjugated (trans-R,R-cyclohexane-1,2-diamine)-2-flouromalonato-platinum(II) complexes for a comprehensive evaluation on their selective tumor targeting. Besides highly improved water solubility, these sugar-conjugates presented improved cytotoxicity than oxaliplatin in glucose tranporters (GLUTs) overexpressing cancer cell lines and exhibited no cross-resistance to cisplatin. For the highly water soluble glucose-conjugated complex (5a), two novel in vivo assessments were conducted and the results revealed that 5a was more efficacious at a lower equitoxic dose (70% MTD) than oxaliplatin (100% MTD) in HT29 xenograft model, and it was significantly more potent than oxaliplatin in leukemia-bearing DBA/2 mice as well even at equimolar dose levels (18% vs 90% MTD). GLUT inhibitor mediated cell viability analysis, GLUT1 knockdown cell line-based cytotoxicity evaluation, and platinum accumulation study demonstrated that the cellular uptake of the sugar-conjugates was regulated by GLUT1. The higher intrinsic DNA reactivity of the sugar-conjugates was confirmed by kinetic study of platinum(II)-guanosine adduct formation. The mechanistic origin of the antitumor effect of the fluorine complexes was found to be forming the bifunctional Pt-guanine-guanine (Pt-GG) intrastrand cross-links with DNA. The results provide a rationale for Warburg effect targeted anticancer drug design.

  9. Recombinant expression and purification of a tumor-targeted toxin in Bacillus anthracis

    International Nuclear Information System (INIS)

    Bachran, Christopher; Abdelazim, Suzanne; Fattah, Rasem J.; Liu, Shihui; Leppla, Stephen H.

    2013-01-01

    Highlights: ► Non-infectious and protease-deficient Bacillus anthracis protein expression system. ► Successful expression and purification of a tumor-targeted fusion protein drug. ► Very low endotoxin contamination of purified protein. ► Efficient protein secretion simplifies purification. ► Functional anti-tumor fusion protein purified. -- Abstract: Many recombinant therapeutic proteins are purified from Escherichia coli. While expression in E. coli is easily achieved, some disadvantages such as protein aggregation, formation of inclusion bodies, and contamination of purified proteins with the lipopolysaccharides arise. Lipopolysaccharides have to be removed to prevent inflammatory responses in patients. Use of the Gram-positive Bacillus anthracis as an expression host offers a solution to circumvent these problems. Using the multiple protease-deficient strain BH460, we expressed a fusion of the N-terminal 254 amino acids of anthrax lethal factor (LFn), the N-terminal 389 amino acids of diphtheria toxin (DT389) and human transforming growth factor alpha (TGFα). The resulting fusion protein was constitutively expressed and successfully secreted by B. anthracis into the culture supernatant. Purification was achieved by anion exchange chromatography and proteolytic cleavage removed LFn from the desired fusion protein (DT389 fused to TGFα). The fusion protein showed the intended specific cytotoxicity to epidermal growth factor receptor-expressing human head and neck cancer cells. Final analyses showed low levels of lipopolysaccharides, originating most likely from contamination during the purification process. Thus, the fusion to LFn for protein secretion and expression in B. anthracis BH460 provides an elegant tool to obtain high levels of lipopolysaccharide-free recombinant protein.

  10. 188Re labeling and biodistribution of magnetic nanoparticles for the tumor targeting

    International Nuclear Information System (INIS)

    Li Guiping; Zhang Hui; Wang Yongxian; Zhang Chunfu

    2006-01-01

    Objective: To prepare 188 Re labeled monoclonal antibody (Herceptin)-coated magnetic nanoparticles for tumor targeting and to study its biodistribution in mice. Methods: Herceptin and histidine were covalently linked to the amine group upon silica-coated magnetic nanoparticles modified by N-[3-(trimethyoxysilyl)prowl]-ethylenediamine using glutaraldehyde method. The Herceptin-coated magnetic nanoparticles and Herceptin were radiolabeled with 188 Re by a direct labelling method, whereas the histidine-coated magnetic nanoparticles was radiolabeled with 188 Re using fac-[ 188 Re(CO) 3 (H 2 0) 3 ] + as a precursor. The labelling efficiency and immunoreactivity as well as labelling stability were determined. Also, the biodistribution of 188 Re-magnetic and 188 Re-Herceptin-magnetic nanoparticles were observed in mice. Results: Herceptin-coated magnetic nanoparticles was characterized by transmission electron microscope (TEM) with diameter about 60 nm, while histidine-coated magnetic nanoparticles about 30 nm. The labeling efficiency for 188 Re-Herceptin, 188 Re-magnetic nanoparticles and 188 Re-Herceptin-magnetic nanoparticles were all > 90% and had a better stability in vitro. The immunoreactivity of Herceptin linked to magnetic nanoparticles was still high. The biodistribution in mice was shown that 188 Re-magnetic nanoparticles and 188 Re-Herceptin- magnetic nanoparticles had higher radioactivity levels in blood. Magnetic nanoparticles with diameter of 30 or 60 nm had a long half-life in blood stream and were accumulated in liver. Conclusion: The efficiency and stability of labelling Herceptin-coated magnetic nanoparticles and labelling magnetic nanoparticles with 188 Re are suitable for in vivo study in tumor-beating nude mice models. (authors)

  11. Photoacoustic imaging of tumor targeting with biotin conjugated nanostructured phthalocyanine assemblies

    Science.gov (United States)

    Lee, Seunghyun; Li, Xingshu; Lee, Dayoung; Yoon, Juyoung; Kim, Chulhong

    2018-02-01

    Visualizing biological markers and delivering bioactive agents to living organisms are important to biological research. In recent decades, photoacoustic imaging (PAI) has been significantly improved in the area of molecular imaging, which provides high-resolution volume imaging with high optical absorption contrast. To demonstrate the ability of nanoprobes to target tumors using PAI, we synthesize convertible nanostructured agents with strong photothermal and photoacoustic properties and linked the nanoprobe with biotin to target tumors in small animal model. Interestingly, these nanoprobes allow partial to disassemble in the presence of targeted proteins that switchable photoactivity, thus the nanoprobes provides a fluorescent-cancer imaging with high signal-to-background ratios. The proposed nanoprobe produce a much stronger PA signal compared to the same concentration of methylene blue (MB), which is widely used in clinical study and contrast agent for PAI. The biotin conjugated nanoprobe has high selectivity for biotin receptor positive cancer cells such as A549 (human lung cancer). Then we subsequently examined the PA properties of the nanoprobe that are inherently suitable for in vivo PAI. After injecting of the nanoprobe via intravenous method, we observed the mice's whole body by PA imaging and acquired the PA signal near the cancer. The PA signal increased linearly with time after injection and the fluorescence signal near the cancer was confirmed by fluorescence imaging. The ability to target a specific cancer of the nanoprobe was well verified by PA imaging. This study provides valuable perspective on the advancement of clinical translations and in the design of tumor-targeting phototheranostic agents that could act as new nanomedicines.

  12. Recombinant expression and purification of a tumor-targeted toxin in Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Bachran, Christopher; Abdelazim, Suzanne; Fattah, Rasem J.; Liu, Shihui [National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 (United States); Leppla, Stephen H., E-mail: sleppla@niaid.nih.gov [National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Non-infectious and protease-deficient Bacillus anthracis protein expression system. Black-Right-Pointing-Pointer Successful expression and purification of a tumor-targeted fusion protein drug. Black-Right-Pointing-Pointer Very low endotoxin contamination of purified protein. Black-Right-Pointing-Pointer Efficient protein secretion simplifies purification. Black-Right-Pointing-Pointer Functional anti-tumor fusion protein purified. -- Abstract: Many recombinant therapeutic proteins are purified from Escherichia coli. While expression in E. coli is easily achieved, some disadvantages such as protein aggregation, formation of inclusion bodies, and contamination of purified proteins with the lipopolysaccharides arise. Lipopolysaccharides have to be removed to prevent inflammatory responses in patients. Use of the Gram-positive Bacillus anthracis as an expression host offers a solution to circumvent these problems. Using the multiple protease-deficient strain BH460, we expressed a fusion of the N-terminal 254 amino acids of anthrax lethal factor (LFn), the N-terminal 389 amino acids of diphtheria toxin (DT389) and human transforming growth factor alpha (TGF{alpha}). The resulting fusion protein was constitutively expressed and successfully secreted by B. anthracis into the culture supernatant. Purification was achieved by anion exchange chromatography and proteolytic cleavage removed LFn from the desired fusion protein (DT389 fused to TGF{alpha}). The fusion protein showed the intended specific cytotoxicity to epidermal growth factor receptor-expressing human head and neck cancer cells. Final analyses showed low levels of lipopolysaccharides, originating most likely from contamination during the purification process. Thus, the fusion to LFn for protein secretion and expression in B. anthracis BH460 provides an elegant tool to obtain high levels of lipopolysaccharide-free recombinant protein.

  13. Change of tumor target volume during waiting time for intensity-modulated radiotherapy (IMRT) in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Chen Bo; Yi Junlin; Gao Li; Xu Guozhen; Huang Xiaodong; Zhang Zhong; Luo Jingwei; Li Suyan

    2007-01-01

    Objective: To determine the influence of change in tumor target volume of nasopharyngeal carcinoma (NPC) while waiting for intensity modulated radiation therapy (IMRT). Methods: From March 2005 to December 2005, 31 patients with nasopharyngeal carcinoma received IMRT as the initial treatment at the Cancer Hospital of Chinese Academic of Medical Sciences. The original simulation CT scan was acquired before IMRT planning. A second CT scan was acquired before the start of radiotherapy. Wait- ing time was defined as the duration between CT simulation and start of radiotherapy. CT-CT fusion was used to minimize the error of delineation between the first tumor target volume (GTV) and the second tumor target volume (sGTV). Tumor target volume was calculated by treatment planning system. T test was carried out to analyse the difference between GTV and sGTV. Pearson correlation and multivariate linear regression was used to analyse the influence factor of the change betweent GTV and sGTV. Results: Median waiting time was 18 days (range, 9-27 days). There were significant differences between GTV and sGTV of both primary tumor (P=0.009) and metastatic lymphoma (P=0.005 ). Both Pearson correlation and multivariate linear regression showed that the change of primary tumor target volume had significant correlation with the first tumor target volume but had no significant correlation with the waiting time, sex, age, T stage and N stage (1992 Chinese Fuzhou Staging Classification). Conclusions: Within the range of the waiting time ob- served in our study, large volume primary tumor would have had a significant increase in volume, but whether the therapeutic effect would be influenced or not would need to be proved by study of large number of cases. Patients with large volume tumor should be considered to reduce the influence of waiting time by enlarging gross target volume and clinical targe volume and by neoadjuveant chemotherapy. For avoiding the unnecessary high-dose to normal

  14. Improved tumor-targeting MRI contrast agents: Gd(DOTA) conjugates of a cycloalkane-based RGD peptide

    International Nuclear Information System (INIS)

    Park, Ji-Ae; Lee, Yong Jin; Ko, In Ok; Kim, Tae-Jeong; Chang, Yongmin; Lim, Sang Moo; Kim, Kyeong Min; Kim, Jung Young

    2014-01-01

    Highlights: • Development of improved tumor-targeting MRI contrast agents. • To increase the targeting ability of RGD, we developed cycloalkane-based RGD peptides. • Gd(DOTA) conjugates of cycloalkane-based RGD peptide show improved tumor signal enhancement in vivo MR images. - Abstract: Two new MRI contrast agents, Gd-DOTA-c(RGD-ACP-K) (1) and Gd-DOTA-c(RGD-ACH-K) (2), which were designed by incorporating aminocyclopentane (ACP)- or aminocyclohexane (ACH)-carboxylic acid into Gd-DOTA (gadolinium-tetraazacyclo dodecanetetraacetic acid) and cyclic RGDK peptides, were synthesized and evaluated for tumor-targeting ability in vitro and in vivo. Binding affinity studies showed that both 1 and 2 exhibited higher affinity for integrin receptors than cyclic RGDyK peptides, which were used as a reference. These complexes showed high relaxivity and good stability in human serum and have the potential to improve target-specific signal enhancement in vivo MR images

  15. Improved tumor-targeting MRI contrast agents: Gd(DOTA) conjugates of a cycloalkane-based RGD peptide

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji-Ae, E-mail: jpark@kirams.re.kr [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Yong Jin; Ko, In Ok [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Tae-Jeong; Chang, Yongmin [Institute of Biomedical Engineering, Kyungpook National University, Daegu (Korea, Republic of); Lim, Sang Moo [Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Kyeong Min [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Jung Young, E-mail: jykim@kirams.re.kr [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2014-12-12

    Highlights: • Development of improved tumor-targeting MRI contrast agents. • To increase the targeting ability of RGD, we developed cycloalkane-based RGD peptides. • Gd(DOTA) conjugates of cycloalkane-based RGD peptide show improved tumor signal enhancement in vivo MR images. - Abstract: Two new MRI contrast agents, Gd-DOTA-c(RGD-ACP-K) (1) and Gd-DOTA-c(RGD-ACH-K) (2), which were designed by incorporating aminocyclopentane (ACP)- or aminocyclohexane (ACH)-carboxylic acid into Gd-DOTA (gadolinium-tetraazacyclo dodecanetetraacetic acid) and cyclic RGDK peptides, were synthesized and evaluated for tumor-targeting ability in vitro and in vivo. Binding affinity studies showed that both 1 and 2 exhibited higher affinity for integrin receptors than cyclic RGDyK peptides, which were used as a reference. These complexes showed high relaxivity and good stability in human serum and have the potential to improve target-specific signal enhancement in vivo MR images.

  16. Smart Nanoparticles Undergo Phase Transition for Enhanced Cellular Uptake and Subsequent Intracellular Drug Release in a Tumor Microenvironment.

    Science.gov (United States)

    Ye, Guihua; Jiang, Yajun; Yang, Xiaoying; Hu, Hongxiang; Wang, Beibei; Sun, Lu; Yang, Victor C; Sun, Duxin; Gao, Wei

    2018-01-10

    Inefficient cellular uptake and intracellular drug release at the tumor site are two major obstacles limiting the antitumor efficacy of nanoparticle delivery systems. To overcome both problems, we designed a smart nanoparticle that undergoes phase transition in a tumor microenvironment (TME). The smart nanoparticle is generated using a lipid-polypetide hybrid nanoparticle, which comprises a PEGylated lipid monolayer shell and a pH-sensitive hydrophobic poly-l-histidine core and is loaded with the antitumor drug doxorubicin (DOX). The smart nanoparticle undergoes a two-step phase transition at two different pH values in the TME: (i) At the TME (pH e : 7.0-6.5), the smart nanoparticle swells, and its surface potential turns from negative to neutral, facilitating the cellular uptake; (ii) After internalization, at the acid endolysosome (pH endo : 6.5-4.5), the smart nanoparticle dissociates and induces endolysosome escape to release DOX into the cytoplasm. In addition, a tumor-penetrating peptide iNRG was modified on the surface of the smart nanoparticle as a tumor target moiety. The in vitro studies demonstrated that the iNGR-modified smart nanoparticles promoted cellular uptake in the acidic environment (pH 6.8). The in vivo studies showed that the iNGR-modified smart nanoparticles exerted more potent antitumor efficacy against late-stage aggressive breast carcinoma than free DOX. These data suggest that the smart nanoparticles may serve as a promising delivery system for sequential uptake and intracellular drug release of antitumor agents. The easy preparation of these smart nanoparticles may also have advantages in the future manufacture for clinical trials and clinical use.

  17. Macromolecular pHPMA-based nanoparticles with cholesterol for solid tumor targeting: behavior in HSA protein environment

    Czech Academy of Sciences Publication Activity Database

    Zhang, X.; Niebuur, B.-J.; Chytil, Petr; Etrych, Tomáš; Filippov, Sergey K.; Kikhney, A.; Wieland, D. C. F.; Svergun, D. I.; Papadakis, C. M.

    2018-01-01

    Roč. 19, č. 2 (2018), s. 470-480 ISSN 1525-7797 R&D Projects: GA ČR(CZ) GC15-10527J; GA MZd(CZ) NV16-28594A; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : polymer carriers * N-(2-hydroxypropyl)methacrylamide * tumor targeting Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 5.246, year: 2016

  18. Passive tumor targeting of polymer therapeutics: in vivo imaging of both the polymer carrier and the enzymatically cleavable drug model

    Czech Academy of Sciences Publication Activity Database

    Pola, Robert; Heinrich, A. K.; Mueller, T.; Kostka, Libor; Mäder, K.; Pechar, Michal; Etrych, Tomáš

    2016-01-01

    Roč. 16, č. 11 (2016), s. 1577-1582 ISSN 1616-5187 R&D Projects: GA ČR(CZ) GA15-02986S; GA ČR(CZ) GA16-17207S; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : polymer drug carriers * tumor targeting * enzymatic release Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.238, year: 2016

  19. High molecular weight chitosan derivative polymeric micelles encapsulating superparamagnetic iron oxide for tumor-targeted magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Xiao Y

    2015-02-01

    Full Text Available Yunbin Xiao,1,* Zuan Tao Lin,2,* Yanmei Chen,1 He Wang,1 Ya Li Deng,2 D Elizabeth Le,3 Jianguo Bin,1 Meiyu Li,1 Yulin Liao,1 Yili Liu,1 Gangbiao Jiang,2 Jianping Bin1 1State Key Laboratory of Organ Failure Research, Division of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China; 2Department of Pharmaceutical Engineering, South China Agricultural University, Guangzhou, People’s Republic of China; 3Cardiovascular Division, Oregon Health and Science University, Portland, OR, USA *These authors contributed equally to this work Abstract: Magnetic resonance imaging (MRI contrast agents based on chitosan derivatives have great potential for diagnosing diseases. However, stable tumor-targeted MRI contrast agents using micelles prepared from high molecular weight chitosan derivatives are seldom reported. In this study, we developed a novel tumor-targeted MRI vehicle via superparamagnetic iron oxide nanoparticles (SPIONs encapsulated in self-aggregating polymeric folate-conjugated N-palmitoyl chitosan (FAPLCS micelles. The tumor-targeting ability of FAPLCS/SPIONs was demonstrated in vitro and in vivo. The results of dynamic light scattering experiments showed that the micelles had a relatively narrow size distribution (136.60±3.90 nm and excellent stability. FAPLCS/SPIONs showed low cytotoxicity and excellent biocompatibility in cellular toxicity tests. Both in vitro and in vivo studies demonstrated that FAPLCS/SPIONs bound specifically to folate receptor-positive HeLa cells, and that FAPLCS/SPIONs accumulated predominantly in established HeLa-derived tumors in mice. The signal intensities of T2-weighted images in established HeLa-derived tumors were reduced dramatically after intravenous micelle administration. Our study indicates that FAPLCS/SPION micelles can potentially serve as safe and effective MRI contrast agents for detecting tumors that overexpress folate receptors. Keywords: superparamagnetic

  20. Intracellular Protein Delivery for Treating Breast Cancer

    Science.gov (United States)

    2014-08-01

    les prepare likely here the numbe of relative action, we lick reactio itive protein nce spectra o ieties onto ancer target lp-His- Trp - ressed...While protein transduction domain (PTD)-fused apoptin has been delivered to cells(Sun et al., 2009; Tavassoli et al., 2004), this approach suffers from...forms the central spoke of the wheel- like structure (Figure 1b), with the larger MBP portion distributes around the apoptin. The planar arrangement

  1. Intracellular Protein Delivery for Treating Breast Cancer

    Science.gov (United States)

    2014-08-01

    machinery. In stark contrast, hen HeLa cells were treated with S S Rho—APO NC, strong ed fluorescence of rhodamine was present in the nuclei, esulting...limit (>2500mm3) within 12 days. n sharp contrast, tumor growth was significantly delayed hen treated with S S APO NC (Fig. 4a). Fixed tumor tis- ues...estimation of that each nano molecules throu l groups. ting ligands g” of cycloocty ed nanocapsule targeting ligand ing hormone (L eu -Arg-Pro-NH that

  2. Tumor-targeted polymeric nanostructured lipid carriers with precise ratiometric control over dual-drug loading for combination therapy in non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    Liang Y

    2017-03-01

    Full Text Available Yan Liang,1 Baocheng Tian,1 Jing Zhang,1 Keke Li,1 Lele Wang,1 Jingtian Han,1,* Zimei Wu2,* 1School of Pharmacy, Binzhou Medical University, 2School of Pharmacy, Yantai University, Yantai, China *These authors contributed equally to this work Abstract: Gemcitabine (GEM and paclitaxel (PTX are effective combination anticancer agents against non-small-cell lung cancer (NSCLC. At the present time, a main challenge of combination treatment is the precision of control that will maximize the combined effects. Here, we report a novel method to load GEM (hydrophilic and PTX (hydrophobic into simplex tumor-targeted nanostructured lipid carriers (NLCs for accurate control of the ratio of the two drugs. We covalently preconjugated the dual drugs through a hydrolyzable ester linker to form drug conjugates. N-acetyl-D-glucosamine (NAG is a glucose receptor-targeting ligand. We added NAG to the formation of NAG-NLCs. In general, synthesis of poly(6-O-methacryloyl-d-galactopyranose–GEM/PTX (PMAGP-GEM/PTX conjugates was demonstrated, and NAG-NLCs were prepared using emulsification and solvent evaporation. NAG-NLCs displayed sphericity with an average diameter of 120.3±1.3 nm, a low polydispersity index of 0.233±0.04, and accurate ratiometric control over the two drugs. A cytotoxicity assay showed that the NAG-NLCs had better antitumor activity on NSCLC cells than normal cells. There was an optimal ratio of the two drugs, exhibiting the best cytotoxicity and combinatorial effects among all the formulations we tested. In comparison with both the free-drug combinations and separately nanopackaged drug conjugates, PMAGP-GEM/PTX NAG-NLCs (3:1 exhibited superior synergism. Flow cytometry and confocal laser scanning microscopy showed that NAG-NLCs exhibited higher uptake efficiency in A549 cells via glucose receptor-mediated endocytosis. This combinatorial delivery system settles problems with ratiometric coloading of hydrophilic and hydrophobic drugs for tumor-targeted

  3. RGD-modified poly(D,L-lactic acid nanoparticles enhance tumor targeting of oridonin

    Directory of Open Access Journals (Sweden)

    Xu J

    2012-01-01

    -PLA-NPs or ORI solution. Consistent with these observations, ORI-PLA-RGD-NPs showed greater antitumor efficacy than ORI-PLA-RGD-NPs or ORI solution, as reflected by the decreased tumor growth and the prolonged survival time of mice bearing H22 tumors.Conclusion: The tumor-targeting efficiency and subsequent antitumor efficacy of ORI is increased by incorporation into ORI-PLA-RGD-NPs.Keywords: ORI, antitumor activity, RGD, poly(D,L-lactic acid, nanoparticles

  4. Recent Developments in Active Tumor Targeted Multifunctional Nanoparticles for Combination Chemotherapy in Cancer Treatment and Imaging

    Science.gov (United States)

    Glasgow, Micah D. K.; Chougule, Mahavir B.

    2016-01-01

    Nanotechnology and combination therapy are two major fields that show great promise in the treatment of cancer. The delivery of drugs via nanoparticles helps to improve drug’s therapeutic effectiveness while reducing adverse side effects associated with high dosage by improving their pharmacokinetics. Taking advantage of molecular markers over-expressing on tumor tissues compared to normal cells, an “active” molecular marker targeted approach would be beneficial for cancer therapy. These actively targeted nanoparticles would increase drug concentration at the tumor site, improving efficacy while further reducing chemo-resistance. The multidisciplinary approach may help to improve the overall efficacy in cancer therapy. This review article summarizes recent developments of targeted multifunctional nanoparticles in the delivery of various drugs for a combinational chemotherapy approach to cancer treatment and imaging. PMID:26554150

  5. Long-circulating DNA lipid nanocapsules as new vector for passive tumor targeting.

    OpenAIRE

    Morille , Marie; Montier , Tristan; Legras , Pierre; Carmoy , Nathalie; Brodin , Priscille; Pitard , Bruno; Benoît , Jean-Pierre; Passirani , Catherine

    2010-01-01

    International audience; Systemic gene delivery systems are needed for therapeutic application to organs that are inaccessible by percutaneous injection. Currently, the main objective is the development of a stable and non-toxic vector that can encapsulate and deliver foreign genetic material to target cells. To this end, DNA, complexed with cationic lipids i.e. DOTAP/DOPE, was encapsulated into lipid nanocapsules (LNCs) leading to the formation of stable nanocarriers (DNA LNCs) with a size in...

  6. Biodegradable micellar HPMA-based polymer-drug conjugates with betulinic acid for passive tumor targeting

    Czech Academy of Sciences Publication Activity Database

    Lomkova, Ekaterina A.; Chytil, Petr; Janoušková, Olga; Mueller, T.; Lucas, H.; Filippov, Sergey K.; Trhlíková, Olga; Aleshunin, P. A.; Skorik, Y. A.; Ulbrich, Karel; Etrych, Tomáš

    2016-01-01

    Roč. 17, č. 11 (2016), s. 3493-3507 ISSN 1525-7797 R&D Projects: GA MŠk(CZ) LO1507; GA MŠk(CZ) LQ1604; GA ČR(CZ) GA15-02986S Institutional support: RVO:61389013 Keywords : N-(2-hydroxypropyl)methacrylamide (HPMA) * polymeric micelles * drug delivery Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.246, year: 2016

  7. Nanobody-Based Delivery Systems for Diagnosis and Targeted Tumor Therapy

    Directory of Open Access Journals (Sweden)

    Yaozhong Hu

    2017-11-01

    Full Text Available The development of innovative targeted therapeutic approaches are expected to surpass the efficacy of current forms of treatments and cause less damage to healthy cells surrounding the tumor site. Since the first development of targeting agents from hybridoma’s, monoclonal antibodies (mAbs have been employed to inhibit tumor growth and proliferation directly or to deliver effector molecules to tumor cells. However, the full potential of such a delivery strategy is hampered by the size of mAbs, which will obstruct the targeted delivery system to access the tumor tissue. By serendipity, a new kind of functional homodimeric antibody format was discovered in camelidae, known as heavy-chain antibodies (HCAbs. The cloning of the variable domain of HCAbs produces an attractive minimal-sized alternative for mAbs, referred to as VHH or nanobodies (Nbs. Apart from their dimensions in the single digit nanometer range, the unique characteristics of Nbs combine a high stability and solubility, low immunogenicity and excellent affinity and specificity against all possible targets including tumor markers. This stimulated the development of tumor-targeted therapeutic strategies. Some autonomous Nbs have been shown to act as antagonistic drugs, but more importantly, the targeting capacity of Nbs has been exploited to create drug delivery systems. Obviously, Nb-based targeted cancer therapy is mainly focused toward extracellular tumor markers, since the membrane barrier prevents antibodies to reach the most promising intracellular tumor markers. Potential strategies, such as lentiviral vectors and bacterial type 3 secretion system, are proposed to deliver target-specific Nbs into tumor cells and to block tumor markers intracellularly. Simultaneously, Nbs have also been employed for in vivo molecular imaging to diagnose diseased tissues and to monitor the treatment effects. Here, we review the state of the art and focus on recent developments with Nbs as

  8. Bilayered near-infrared fluorescent nanoparticles based on low molecular weight PEI for tumor-targeted in vivo imaging

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hao; Li, Ke [Xi’an Jiaotong University, Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology (China); Xu, Liang [The University of Kansas, Department of Molecular Biosciences (United States); Wu, Daocheng, E-mail: wudaocheng@mail.xjtu.edu.cn [Xi’an Jiaotong University, Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology (China)

    2014-12-15

    To improve the tumor fluorescent imaging results in vivo, bilayered nanoparticles encapsulating a lipophilic near-infrared (NIR) fluorescent dye 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindotri-carbocyanine iodide (DiR) were prepared using low molecular weight stearic acid-grafted polyethyleneimine and hyaluronic acid (DiR-PgSHA nanoparticles), which were investigated as a novel NIR fluorescent nano-probe for in vivo tumor-targeted optical imaging. These nanoparticles were characterized by transmission electron microscopy (TEM), infrared (IR) spectra, UV-visual absorption, and fluorescent emission spectra. Their cytotoxicity in vitro and hepatotoxicity in vivo were tested by MTT assay and histological study, respectively. In vivo NIR fluorescence imaging of the DiR-PgSHA nanoparticles was performed using a Carestream imaging system. The DiR-PgSHA nanoparticles were sphere shaped with a diameter of approximately 50 nm according to the TEM images. The DiR-PgSHA nanoparticles had a low cytotoxicity in vitro according to the MTT assay and low hepatotoxicity in vivo as determined in histological studies. The fluorescent emission of DiR-PgSHA nanoparticles was stable in pH values of 5–9 in solution, with only slight blue-shifts of the emission maxima at the basic pH range. The DiR-PgSHA nanoparticles exhibited a substantial tumor-targeting ability in the optical imaging with the use of tumor-bearing mice. These results demonstrated that the DiR-PgSHA nanoparticle is an excellent biocompatible nano-probe for in vivo tumor-targeted NIR fluorescence imaging with a potential for clinical applications.

  9. Bilayered near-infrared fluorescent nanoparticles based on low molecular weight PEI for tumor-targeted in vivo imaging

    International Nuclear Information System (INIS)

    Liu, Hao; Li, Ke; Xu, Liang; Wu, Daocheng

    2014-01-01

    To improve the tumor fluorescent imaging results in vivo, bilayered nanoparticles encapsulating a lipophilic near-infrared (NIR) fluorescent dye 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindotri-carbocyanine iodide (DiR) were prepared using low molecular weight stearic acid-grafted polyethyleneimine and hyaluronic acid (DiR-PgSHA nanoparticles), which were investigated as a novel NIR fluorescent nano-probe for in vivo tumor-targeted optical imaging. These nanoparticles were characterized by transmission electron microscopy (TEM), infrared (IR) spectra, UV-visual absorption, and fluorescent emission spectra. Their cytotoxicity in vitro and hepatotoxicity in vivo were tested by MTT assay and histological study, respectively. In vivo NIR fluorescence imaging of the DiR-PgSHA nanoparticles was performed using a Carestream imaging system. The DiR-PgSHA nanoparticles were sphere shaped with a diameter of approximately 50 nm according to the TEM images. The DiR-PgSHA nanoparticles had a low cytotoxicity in vitro according to the MTT assay and low hepatotoxicity in vivo as determined in histological studies. The fluorescent emission of DiR-PgSHA nanoparticles was stable in pH values of 5–9 in solution, with only slight blue-shifts of the emission maxima at the basic pH range. The DiR-PgSHA nanoparticles exhibited a substantial tumor-targeting ability in the optical imaging with the use of tumor-bearing mice. These results demonstrated that the DiR-PgSHA nanoparticle is an excellent biocompatible nano-probe for in vivo tumor-targeted NIR fluorescence imaging with a potential for clinical applications

  10. Dual actions of albumin packaging and tumor targeting enhance the antitumor efficacy and reduce the cardiotoxicity of doxorubicin in vivo

    Directory of Open Access Journals (Sweden)

    Zheng K

    2015-08-01

    Full Text Available Ke Zheng,1 Rui Li,2 Xiaolei Zhou,2 Ping Hu,2 Yaxin Zhang,2 Yunmei Huang,3 Zhuo Chen,2 Mingdong Huang2 1College of Chemistry, Fuzhou University, Fuzhou, People’s Republic of China; 2State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, People’s Republic of China; 3Fujian Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, People’s Republic of China Abstract: Doxorubicin (DOX is an effective chemotherapy drug used to treat different types of cancers. However, DOX has severe side effects, especially life-threatening cardiotoxicity. We herein report a new approach to reduce the toxicity of DOX by embedding DOX inside human serum albumin (HSA. HSA is further fused by a molecular biology technique with a tumor-targeting agent, amino-terminal fragment of urokinase (ATF. ATF binds with a high affinity to urokinase receptor, which is a cell-surface receptor overexpressed in many types of tumors. The as-prepared macromolecule complex (ATF–HSA:DOX was not as cytotoxic as free DOX to cells in vitro, and was mainly localized in cell cytosol in contrast to DOX that was localized in cell nuclei. However, in tumor-bearing mice, ATF–HSA:DOX was demonstrated to have an enhanced tumor-targeting and antitumor efficacy compared with free DOX. More importantly, histopathological examinations of the hearts from the mice treated with ATF–HSA:DOX showed a significantly reduced cardiotoxicity compared with hearts from mice treated with free DOX. These results demonstrate the feasibility of this approach in reducing the cardiotoxicity of DOX while strengthening its antitumor efficacy. Such a tumor-targeted albumin packaging strategy can also be applied to other antitumor drugs. Keywords: amino-terminal fragment of urokinase, urokinase receptor, drug carrier, human serum albumin, doxorubicin, cytotoxicity

  11. Biological Evaluation of 99mTc-HYNIC-EDDA/tricine-(Ser)-D4 Peptide for Tumor Targeting.

    Science.gov (United States)

    Kazemi, Ziba; Zahmatkesh, Mona Haddad; Abedi, Seyed Mohammad; Hosseinimehr, Seyed Jalal

    2017-08-24

    D4 small peptide (Leu-Ala-Arg-Leu-Leu-Thr) was selected as an appropriate agent for specific targeting of epidermal growth factor receptor (EGFR). The aim of study was to investigate the 99mTc-labeled D4 peptide for non-small cell lung tumor targeting. HYNIC-(Ser)3-D4 peptide was labeled with 99mTc using mixture of tricine and ethylenediamine diacetic acid (EDDA) as co-ligands. The in vitro cellular uptake of radiolabeled peptide was evaluated by blocking test on human non-small cell lung cancer (A-549) cell line and its biodistribution was evaluated in A-549 xenografted nude mice. This conjugated peptide was labeled with 99mTc in high radiochemical purity and it was highly stable in buffer and serum. The un-blocked to blocked cellular radioactivity ratio was 4- fold that showed a specific binding of this radiolabeled peptide on A-549 cell. Animal biodistribution in A-549 xenografted nude mice showed rapid clearance from blood and other non-target organs. Tumor uptake values as %ID/g (percentage of injection dose per gram of tissue) were 2.47% and 1.30% at 1 and 4 h after injection. This study showed the 99mTc-EDDA/tricine-HYNIC-(Ser)3-D4 peptide had tumor targeting on the non-small cell lung tumor. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. A pre-protective strategy for precise tumor targeting and efficient photodynamic therapy with a switchable DNA/upconversion nanocomposite.

    Science.gov (United States)

    Yu, Zhengze; Ge, Yegang; Sun, Qiaoqiao; Pan, Wei; Wan, Xiuyan; Li, Na; Tang, Bo

    2018-04-14

    Tumor-specific targeting based on folic acid (FA) is one of the most common and significant approaches in cancer therapy. However, the expression of folate receptors (FRs) in normal tissues will lead to unexpected targeting and unsatisfactory therapeutic effect. To address this issue, we develop a pre-protective strategy for precise tumor targeting and efficient photodynamic therapy (PDT) using a switchable DNA/upconversion nanocomposite, which can be triggered in the acidic tumor microenvironment. The DNA/upconversion nanocomposite is composed of polyacrylic acid (PAA) coated upconversion nanoparticles (UCNPs), the surface of which is modified using FA and chlorin e6 (Ce6) functionalized DNA sequences with different lengths. Initially, FA on the shorter DNA was protected by a longer DNA to prevent the bonding to FRs on normal cells. Once reaching the acidic tumor microenvironment, C base-rich longer DNA forms a C-quadruplex, resulting in the exposure of the FA groups and the bonding of FA and FRs on cancer cell membranes to achieve precise targeting. Simultaneously, the photosensitizer chlorin e6 (Ce6) gets close to the surface of UCNPs, enabling the excitation of Ce6 to generate singlet oxygen ( 1 O 2 ) under near infrared light via Förster resonance energy transfer (FRET). In vivo experiments indicated that higher tumor targeting efficiency was achieved and the tumor growth was greatly inhibited through the pre-protective strategy.

  13. In Vivo Tumor Targeting by the B-Subunit of Shiga Toxin

    Directory of Open Access Journals (Sweden)

    Thomas Viel

    2008-11-01

    Full Text Available Delivery of drugs to the appropriate target cells would improve efficacy and reduce potential side effects. The nontoxic B-subunit of the intestinal pathogen-produced Shiga toxin (STxB binds specifically to the glycosphingolipid Gb3, overex-pressed in membranes of certain tumor cells, and enters these cells through the retrograde pathway. Therefore, STxB binding to Gb3 receptors may be useful for cell-specific vectorization or imaging purposes. Here we labeled STxB with a fluorophore to evaluate its potential as an in vivo cell-specific targeting reagent in two different models of human colorectal carcinoma. Fluorescent STxB was administered systemically to xenografted nude mice, and its biodistribution was studied by optical imaging. The use of fluorescent STxB allowed the combination of the macroscopic observations with analyses at the cellular level using confocal microscopy. After administration, the fluorescent STxB was slowly eliminated by renal excretion. However, it accumulated in the tumor area. Furthermore, STxB was demonstrated to enter the Gb3-expressing tumoral cells, as well as the epithelial cells of the neovascularization and the monocytes and macrophages surrounding the xenografts.

  14. Long-circulating DNA lipid nanocapsules as new vector for passive tumor targeting.

    Science.gov (United States)

    Morille, Marie; Montier, Tristan; Legras, Pierre; Carmoy, Nathalie; Brodin, Priscille; Pitard, Bruno; Benoît, Jean-Pierre; Passirani, Catherine

    2010-01-01

    Systemic gene delivery systems are needed for therapeutic application to organs that are inaccessible by percutaneous injection. Currently, the main objective is the development of a stable and non-toxic vector that can encapsulate and deliver foreign genetic material to target cells. To this end, DNA, complexed with cationic lipids i.e. DOTAP/DOPE, was encapsulated into lipid nanocapsules (LNCs) leading to the formation of stable nanocarriers (DNA LNCs) with a size inferior to 130 nm. Amphiphilic and flexible poly (ethylene glycol) (PEG) polymer coatings [PEG lipid derivative (DSPE-mPEG(2000)) or F108 poloxamer] at different concentrations were selected to make DNA LNCs stealthy. Some of these coated lipid nanocapsules were able to inhibit complement activation and were not phagocytized in vitro by macrophagic THP-1 cells whereas uncoated DNA LNCs accumulated in the vacuolar compartment of THP-1 cells. These results correlated with a significant increase of in vivo circulation time in mice especially for DSPE-mPEG(2000) 10 mm and an early half-life time (t(1/2) of distribution) 5-fold greater than for non-coated DNA LNCs (7.1 h vs 1.4 h). Finally, a tumor accumulation assessed by in vivo fluorescence imaging system was evidenced for these coated LNCs as a passive targeting without causing any hepatic damage.

  15. Magnetic tumor targeting of β-glucosidase immobilized iron oxide nanoparticles

    Science.gov (United States)

    Zhou, Jie; Zhang, Jian; David, Allan E.; Yang, Victor C.

    2013-09-01

    Directed enzyme/prodrug therapy (DEPT) has promising application for cancer therapy. However, most current DEPT strategies face shortcomings such as the loss of enzyme activity during preparation, low delivery and transduction efficiency in vivo and difficultly of monitoring. In this study, a novel magnetic directed enzyme/prodrug therapy (MDEPT) was set up by conjugating β-glucosidase (β-Glu) to aminated, starch-coated, iron oxide magnetic iron oxide nanoparticles (MNPs), abbreviated as β-Glu-MNP, using glutaraldehyde as the crosslinker. This β-Glu-MNP was then characterized in detail by size distribution, zeta potential, FTIR spectra, TEM, SQUID and magnetophoretic mobility analysis. Compared to free enzyme, the conjugated β-Glu on MNPs retained 85.54% ± 6.9% relative activity and showed much better temperature stability. The animal study results showed that β-Glu-MNP displays preferable pharmacokinetics characteristics in relation to MNPs. With an adscititious magnetic field on the surface of a tumor, a significant quantity of β-Glu-MNP was selectively delivered into a subcutaneous tumor of a glioma-bearing mouse. Remarkably, the enzyme activity of the delivered β-Glu in tumor lesions showed as high as 20.123±5.022 mU g-1 tissue with 2.14 of tumor/non-tumor β-Glu activity.

  16. The folate receptor as a molecular target for tumor-selective radionuclide delivery

    International Nuclear Information System (INIS)

    Ke, C.-Y.; Mathias, Carla J.; Green, Mark A.

    2003-01-01

    The cell-membrane folate receptor is a potential molecular target for tumor-selective drug delivery, including radiolabeled folate-chelate conjugates for diagnostic imaging. We review here some background on the folate receptor as tumor-associated molecular target for drug delivery, and briefly survey the literature on tumor-targeting with radiolabeled folate-chelate conjugates

  17. Preparation of magnetic nanoparticles and their application to magnetic targeting drug delivery

    International Nuclear Information System (INIS)

    Li Guiping; Wang Yongxian

    2006-01-01

    Magnetic nanoparticles barrier is a novel kind of drug delivery system for magnetic targeting drugs, which can effectively deliver the drug to a tumor target site and increase therapeutic benefit, with the side effects minimized. This article summarizes the most outstanding papers on the of magnetic nanoparticles used as the targeting drug's delivery systems. (authors)

  18. On-line cone beam CT image guidance for vocal cord tumor targeting

    International Nuclear Information System (INIS)

    Osman, Sarah O.S.; Boer, Hans C.J. de; Astreinidou, Eleftheria; Gangsaas, Anne; Heijmen, Ben J.M.; Levendag, Peter C.

    2009-01-01

    Background and purpose: We are developing a technique for highly focused vocal cord irradiation in early glottic carcinoma to optimally treat a target volume confined to a single cord. This technique, in contrast with the conventional methods, aims at sparing the healthy vocal cord. As such a technique requires sub-mm daily targeting accuracy to be effective, we investigate the accuracy achievable with on-line kV-cone beam CT (CBCT) corrections. Materials and methods: CBCT scans were obtained in 10 early glottic cancer patients in each treatment fraction. The grey value registration available in X-ray volume imaging (XVI) software (Elekta, Synergy) was applied to a volume of interest encompassing the thyroid cartilage. After application of the thus derived corrections, residue displacements with respect to the planning CT scan were measured at clearly identifiable relevant landmarks. The intra- and inter-observer variations were also measured. Results: While before correction the systematic displacements of the vocal cords were as large as 2.4 ± 3.3 mm (cranial-caudal population mean ± SD Σ), daily CBCT registration and correction reduced these values to less than 0.2 ± 0.5 mm in all directions. Random positioning errors (SD σ) were reduced to less than 1 mm. Correcting only for translations and not for rotations did not appreciably affect this accuracy. The residue random displacements partly stem from intra-observer variations (SD = 0.2-0.6 mm). Conclusion: The use of CBCT for daily image guidance in combination with standard mask fixation reduced systematic and random set-up errors of the vocal cords to <1 mm prior to the delivery of each fraction dose. Thus, this facilitates the high targeting precision required for a single vocal cord irradiation.

  19. iRGD-modified lipid–polymer hybrid nanoparticles loaded with isoliquiritigenin to enhance anti-breast cancer effect and tumor-targeting ability

    Directory of Open Access Journals (Sweden)

    Gao F

    2017-06-01

    Full Text Available Fei Gao,1–3 Jinming Zhang,3 Chaomei Fu,3 Xiaoming Xie,4 Fu Peng,1–3 Jieshu You,1,2 Hailin Tang,1,2,4 Zhiyu Wang,5 Peng Li,6 Jianping Chen1–3 1School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, 2Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, 3College of Pharmacy, Chengdu University of Chinese Medicine, Chengdu, 4Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 5Department of Mammary Disease, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 6State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People’s Republic of China Abstract: Isoliquiritigenin (ISL, a natural anti-breast cancer dietary compound, has poor delivery characteristics and low bioavailability. In order to promote the therapeutic outcome of ISL, a tumor-targeting lipid–polymer hybrid nanoparticle (NP system modified by tumor-homing iRGD peptides has been developed. The hybrid NPs were prepared by a modified single-step nanoprecipitation method to encapsulate ISL. iRGD peptides were anchored on the surface by a postinsertion method (ISL-iRGD NPs. The stable lipid–polymer structure of ISL-iRGD NPs, with high encapsulation and loading efficiency, was confirmed. Compared to free ISL and non-iRGD-modified counterparts, ISL-iRGD NPs showed higher cytotoxicity and cell apoptosis against the different type of breast cancer cells. This was attributable to higher cellular accumulation mediated by the iRGD-integrin recognition and the nanoscale effect. More importantly, based on the active tumor-tissue accumulation by iRGD peptides and the prolonged in vivo circulation by the stealth nanostructure, ISL-iRGD NPs displayed higher tumor-growth inhibition efficiency in 4T1-bearing breast-tumor mouse

  20. Dosimetric evaluation of a moving tumor target in intensity-modulated radiation therapy (IMRT) for lung cancer patients

    Science.gov (United States)

    Kim, Sung Kyu; Kang, Min Kyu; Yea, Ji Woon; Oh, Se An

    2013-07-01

    Immobilization plays an important role in intensity-modulated radiation therapy (IMRT). The application of IMRT in lung cancer patients is very difficult due to the movement of the tumor target. Patient setup in radiation treatment demands high accuracy because IMRT employs a treatment size of a 1mm pixel unit. Hence, quality assurance of the dose delivered to patients must be at its highest. The radiation dose was evaluated for breathing rates of 9, 14, and 18 breaths per minute (bpm) for tumor targets moving up and down by 1.0 cm and 1.5 cm. The dose of the moving planned target volume (PTV) was measured by using a thermo-luminescent dosimeter (TLD) and Gafchromic™ EBT film. The measurement points were 1.0 cm away from the top, the bottom and the left and the right sides of the PTV center. The evaluated dose differences ranged from 94.2 to 103.8%, from 94.4 to 105.4%, and from 90.7 to 108.5% for 9, 14 and 18 bpm, respectively, for a tumor movement of 1.0 cm. The mean values of the doses were 101.4, 99.9, and 99.5% for 9, 14 and 18 bpm, respectively, for a tumor movement of 1.0 cm. Meanwhile, the evaluated dose differences ranged from 93.6 to 105.8%, from 95.9 to 111.5%, and from 96.2 to 111.7% for 9, 14 and 18 bpm, respectively, for a tumor movement of 1.5 cm. The mean values of the doses were 102.3, 103.4, and 103.1% for 9, 14 and 18 bpm, respectively, for a tumor movement of 1.5 cm. Therefore, we suggest that IMRT can be used in the treatment of lung cancer patients with vertical target movements within the range of 1.0 to 1.5 cm.

  1. Long-circulating and passively tumor-targeted polymer-drug conjugates improve the efficacy and reduce the toxicity of radiochemotherapy

    Czech Academy of Sciences Publication Activity Database

    Lammers, T.; Šubr, Vladimír; Ulbrich, Karel; Peschke, P.; Huber, P. E.; Hennink, W. E.; Storm, G.; Kiessling, F.

    2010-01-01

    Roč. 12, č. 9 (2010), B413-B421 ISSN 1438-1656 R&D Projects: GA MŠk 1M0505 Institutional research plan: CEZ:AV0Z40500505 Keywords : HPMA copolymers * targeting * tumor targeting Subject RIV: EI - Biotechnology ; Bionics Impact factor: 1.746, year: 2010

  2. Tumor targeted gene therapy

    International Nuclear Information System (INIS)

    Kang, Joo Hyun

    2006-01-01

    Knowledge of molecular mechanisms governing malignant transformation brings new opportunities for therapeutic intervention against cancer using novel approaches. One of them is gene therapy based on the transfer of genetic material to an organism with the aim of correcting a disease. The application of gene therapy to the cancer treatment had led to the development of new experimental approaches such as suicidal gene therapy, inhibition of oncogenes and restoration of tumor-suppressor genes. Suicidal gene therapy is based on the expression in tumor cells of a gene encoding an enzyme that converts a prodrug into a toxic product. Representative suicidal genes are Herpes simplex virus type 1 thymidine kinase (HSV1-tk) and cytosine deaminase (CD). Especially, physicians and scientists of nuclear medicine field take an interest in suicidal gene therapy because they can monitor the location and magnitude, and duration of expression of HSV1-tk and CD by PET scanner

  3. Improved decision making for prioritizing tumor targeting antibodies in human xenografts: Utility of fluorescence imaging to verify tumor target expression, antibody binding and optimization of dosage and application schedule.

    Science.gov (United States)

    Dobosz, Michael; Haupt, Ute; Scheuer, Werner

    2017-01-01

    Preclinical efficacy studies of antibodies targeting a tumor-associated antigen are only justified when the expression of the relevant antigen has been demonstrated. Conventionally, antigen expression level is examined by immunohistochemistry of formalin-fixed paraffin-embedded tumor tissue section. This method represents the diagnostic "gold standard" for tumor target evaluation, but is affected by a number of factors, such as epitope masking and insufficient antigen retrieval. As a consequence, variances and discrepancies in histological staining results can occur, which may influence decision-making and therapeutic outcome. To overcome these problems, we have used different fluorescence-labeled therapeutic antibodies targeting human epidermal growth factor receptor (HER) family members and insulin-like growth factor-1 receptor (IGF1R) in combination with fluorescence imaging modalities to determine tumor antigen expression, drug-target interaction, and biodistribution and tumor saturation kinetics in non-small cell lung cancer xenografts. For this, whole-body fluorescence intensities of labeled antibodies, applied as a single compound or antibody mixture, were measured in Calu-1 and Calu-3 tumor-bearing mice, then ex vivo multispectral tumor tissue analysis at microscopic resolution was performed. With the aid of this simple and fast imaging method, we were able to analyze the tumor cell receptor status of HER1-3 and IGF1R, monitor the antibody-target interaction and evaluate the receptor binding sites of anti-HER2-targeting antibodies. Based on this, the most suitable tumor model, best therapeutic antibody, and optimal treatment dosage and application schedule was selected. Predictions drawn from obtained imaging data were in excellent concordance with outcome of conducted preclinical efficacy studies. Our results clearly demonstrate the great potential of combined in vivo and ex vivo fluorescence imaging for the preclinical development and characterization of

  4. 99mTc-HYNIC-(tricine/EDDA)-FROP peptide for MCF-7 breast tumor targeting and imaging.

    Science.gov (United States)

    Ahmadpour, Sajjad; Noaparast, Zohreh; Abedi, Seyed Mohammad; Hosseinimehr, Seyed Jalal

    2018-02-19

    Breast cancer is the most common malignancy among women in the world. Development of novel tumor-specific radiopharmaceuticals for early breast tumor diagnosis is highly desirable. In this study we developed 99m Tc-HYNIC-(tricine/EDDA)-Lys-FROP peptide with the ability of specific binding to MCF-7 breast tumor. The FROP-1 peptide was conjugated with the bifunctional chelator hydrazinonicotinamide (HYNIC) and labeled with 99m Tc using tricine/EDDA co-ligand. The cellular specific binding of 99m Tc-HYNIC-FROP was evaluated on different cell lines as well as with blocking experiment on MCF-7 (human breast adenocarcinoma). The tumor targeting and imaging of this labeled peptide were performed on MCF-7 tumor bearing mice. Radiochemical purity for 99m Tc-HYNIC-(tricine/EDDA)-FROP was 99% which was determined with ITLC method. This radiolabeled peptide showed high stability in normal saline and serum about 98% which was monitored with HPLC method. In saturation binding experiments, the binding constant (K d ) to MCF-7 cells was determined to be 158 nM. Biodistribution results revealed that the 99m Tc-HYNIC-FROP was mainly exerted from urinary route. The maximum tumor uptake was found after 30 min post injection (p.i.); however maximum tumor/muscle ratio was seen at 15 min p.i. The tumor uptake of this labeled peptide was specific and blocked by co-injection of excess FROP. According to the planar gamma imaging result, tumor was clearly visible due to the tumor uptake of 99m Tc-HYNIC-(tricine/EDDA)-FROP in mouse after 15 min p.i. The 99m Tc-HYNIC-(tricine/EDDA)-FROP is considered a promising probe with high specific binding to MCF-7 breast cancer cells.

  5. Synthesis and Bioevaluation of Iodine-131 Directly Labeled Cyclic RGD-PEGylated Gold Nanorods for Tumor-Targeted Imaging

    Directory of Open Access Journals (Sweden)

    Yingying Zhang

    2017-01-01

    Full Text Available Introduction. Radiolabeled gold nanoparticles play an important role in biomedical application. The aim of this study was to prepare iodine-131 (131I-labeled gold nanorods (GNRs conjugated with cyclic RGD and evaluate its biological characteristics for targeted imaging of integrin αvβ3-expressing tumors. Methods. HS-PEG(5000-COOH molecules were applied to replace CTAB covering the surface of bare GNRs for better biocompatibility, and c(RGDfK peptides were conjugated onto the carboxyl terminal of GNR-PEG-COOH via EDC/NHS coupling reactions. The nanoconjugate was characterized, and 131I was directly tagged on the surface of GNRs via AuI bonds for SPECT/CT imaging. We preliminarily studied the characteristics of the probe and its feasibility for tumor-targeting SPECT/CT imaging. Results. The [131I]GNR-PEG-cRGD probe was prepared in a simple and rapid manner and was stable in both PBS and fetal bovine serum. It targeted selectively and could be taken up by tumor cells mainly via integrin αvβ3-receptor-mediated endocytosis. In vivo imaging, biodistribution, and autoradiography results showed evident tumor uptake in integrin αvβ3-expressing tumors. Conclusions. These promising results showed that this smart nanoprobe can be used for angiogenesis-targeted SPECT/CT imaging. Furthermore, the nanoprobe possesses a remarkable capacity for highly efficient photothermal conversion in the near-infrared region, suggesting its potential as a multifunctional theranostic agent.

  6. In vivo tumor targeting and imaging with anti-vascular endothelial growth factor antibody-conjugated dextran-coated iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Hsieh WJ

    2012-06-01

    sections of tumor tissues stained for the iron constituent of the NPs with Prussian blue revealed a strong blue reaction in the tumors of anti-VEGF-NP-treated mice, but only a weak reaction in mice injected with NPs. In both groups, at all time points, Prussian blue-stained liver and spleen sections showed only light staining, while stained cells were rarely detected in kidney and lung sections. Transmission electron microscopy showed that many more electron-dense particles were present in endothelial cells, tumor cells, and extracellular matrix in tumor tissues in mice injected with anti-VEGF-NPs than in NP-injected mice.Conclusion: These results demonstrated in vivo tumor targeting and efficient accumulation of anti-VEGF-NPs in tumor tissues after systemic delivery in a colon cancer model, showing that anti-VEGF-NPs have potential for use as a molecular-targeted tumor imaging agent in vivo.Keywords: nanoparticles, vascular endothelial growth factor, colon tumor, magnetic resonance imaging, transmission electron microscopy

  7. β-cyclodextrin functionalized poly (5-amidoisophthalicacid) grafted Fe{sub 3}O{sub 4} magnetic nanoparticles: A novel biocompatible nanocomposite for targeted docetaxel delivery

    Energy Technology Data Exchange (ETDEWEB)

    Tarasi, Roghayeh [Department of Chemistry, University of Zanjan, P.O. Box 45195-313, Zanjan (Iran, Islamic Republic of); Khoobi, Mehdi [Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Niknejad, Hassan [Department of Tissue Engineering, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ramazani, Ali [Department of Chemistry, University of Zanjan, P.O. Box 45195-313, Zanjan (Iran, Islamic Republic of); Ma’mani, Leila [Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj (Iran, Islamic Republic of); Bahadorikhalili, Saeed [Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Shafiee, Abbas, E-mail: ashafiee@ams.ac.ir [Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2016-11-01

    Thiol-lactam initiated radical polymerization (TLIRP) was successfully employed to prepare poly-N−5-acrylamidoisophthalicacid grafted onto Fe{sub 3}O{sub 4} magnetic nanoparticles (MNPs@PAIP). β-Cyclodextrin (CD) was then conjugated to the carboxylic groups of the prepared MNPs via carbodiimide activation. Subsequently, tumor-targeting folic acid (FA) was attached to the hydroxyl groups of CD on the surface of the latter MNPs to increase the site-specific intracellular delivery. The prepared MNPs were fully characterized by FTIR, VSM, TGA, XRD, FE-SEM and TEM. Docetaxel (DTX) as hydrophobic anticancer drug was loaded via host-guest inclusion complexation with CD and the release profile of the system was studied at different pH. The effect of MNPs on the cell viability was evaluated for the human embryonic kidney normal cell line (HEK293) as well as HeLa and MDA-MB-231 cancerous cell lines and the results did not show any apparent cytotoxic effect. In comparison, DTX loaded MNPs reduced the growth of HeLa and MDA-MB-231 cells more than free DTX. Intracellular uptake ability of DTX loaded MNPs was also studied using fluorescent microscopy and showed cellular uptake about 90% after 4 h treatment. - Highlights: • MNPs@PAIP-CD-FA nanoparticles as a carrier of Doctexal have excellent physical properties. • These nanoparticles are superparamagnetic, biocompatible and non-toxic. • The constructed nanocarrier showed suitable loading capacity and entrapment efficiency.

  8. pH- and ion-sensitive polymers for drug delivery.

    Science.gov (United States)

    Yoshida, Takayuki; Lai, Tsz Chung; Kwon, Glen S; Sako, Kazuhiro

    2013-11-01

    Drug delivery systems (DDSs) are important for effective, safe, and convenient administration of drugs. pH- and ion-responsive polymers have been widely employed in DDS for site-specific drug release due to their abilities to exploit specific pH- or ion-gradients in the human body. Having pH-sensitivity, cationic polymers can mask the taste of drugs and release drugs in the stomach by responding to gastric low pH. Anionic polymers responsive to intestinal high pH are used for preventing gastric degradation of drug, colon drug delivery and achieving high bioavailability of weak basic drugs. Tumor-targeted DDSs have been developed based on polymers with imidazole groups or poly(β-amino ester) responsive to tumoral low pH. Polymers with pH-sensitive chemical linkages, such as hydrazone, acetal, ortho ester and vinyl ester, pH-sensitive cell-penetrating peptides and cationic polymers undergoing pH-dependent protonation have been studied to utilize the pH gradient along the endocytic pathway for intracellular drug delivery. As ion-sensitive polymers, ion-exchange resins are frequently used for taste-masking, counterion-responsive drug release and sustained drug release. Polymers responding to ions in the saliva and gastrointestinal fluids are also used for controlled drug release in oral drug formulations. Stimuli-responsive DDSs are important for achieving site-specific and controlled drug release; however, intraindividual, interindividual and intercellular variations of pH should be considered when designing DDSs or drug products. Combination of polymers and other components, and deeper understanding of human physiology are important for development of pH- and ion-sensitive polymeric DDS products for patients.

  9. pH- and ion-sensitive polymers for drug delivery

    Science.gov (United States)

    Yoshida, Takayuki; Lai, Tsz Chung; Kwon, Glen S; Sako, Kazuhiro

    2013-01-01

    Introduction Drug delivery systems (DDSs) are important for effective, safe, and convenient administration of drugs. pH- and ion-responsive polymers have been widely employed in DDS for site-specific drug release due to their abilities to exploit specific pH- or ion-gradients in the human body. Areas covered Having pH-sensitivity, cationic polymers can mask the taste of drugs and release drugs in the stomach by responding to gastric low pH. Anionic polymers responsive to intestinal high pH are used for preventing gastric degradation of drug, colon drug delivery and achieving high bioavailability of weak basic drugs. Tumor-targeted DDSs have been developed based on polymers with imidazole groups or poly(β-amino ester) responsive to tumoral low pH. Polymers with pH-sensitive chemical linkages, such as hydrazone, acetal, ortho ester and vinyl ester, pH-sensitive cell-penetrating peptides and cationic polymers undergoing pH-dependent protonation have been studied to utilize the pH gradient along the endocytic pathway for intracellular drug delivery. As ion-sensitive polymers, ion-exchange resins are frequently used for taste-masking, counterion-responsive drug release and sustained drug release. Polymers responding to ions in the saliva and gastrointestinal fluids are also used for controlled drug release in oral drug formulations. Expert opinion Stimuli-responsive DDSs are important for achieving site-specific and controlled drug release; however, intraindividual, interindividual and intercellular variations of pH should be considered when designing DDSs or drug products. Combination of polymers and other components, and deeper understanding of human physiology are important for development of pH- and ion-sensitive polymeric DDS products for patients. PMID:23930949

  10. Anionic clay as the drug delivery vehicle: tumor targeting function of layered double hydroxide-methotrexate nanohybrid in C33A orthotopic cervical cancer model

    Directory of Open Access Journals (Sweden)

    Choi G

    2016-01-01

    Full Text Available Goeun Choi,1 Huiyan Piao,1 Zeid A Alothman,2 Ajayan Vinu,3 Chae-Ok Yun,4 Jin-Ho Choy1 1Center for Intelligent Nano-Bio Materials, Department of Chemistry and Nano Science, Ewha Womans University, Seoul, Korea; 2Advanced Materials Research Chair, Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia; 3Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia; 4Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea Abstract: Methotrexate (MTX, an anticancer agent, was successfully intercalated into the anionic clay, layered double hydroxides to form a new nanohybrid drug. The coprecipitation and subsequent hydrothermal method were used to prepare chemically, structurally, and morphologically well-defined two-dimensional drug-clay nanohybrid. The resulting two-dimensional drug-clay nanohybrid showed excellent colloidal stability not only in deionized water but also in an electrolyte solution of Dulbecco’s Modified Eagle’s Medium with 10% fetal bovine serum, in which the average particle size in colloid and the polydispersity index were determined to be around 100 and 0.250 nm, respectively. The targeting property of the nanohybrid drug was confirmed by evaluating the tumor-to-blood and tumor-to-liver ratios of the MTX with anionic clay carrier, and these ratios were compared to those of free MTX in the C33A orthotopic cervical cancer model. The biodistribution studies indicated that the mice treated with the former showed 3.5-fold higher tumor-to-liver ratio and fivefold higher tumor-to-blood ratio of MTX than those treated with the latter at 30 minutes postinjection. Keywords: anionic clay, biodistribution, cervical cancer, colloidal stability, layered double hydroxide, methotrexate 

  11. Anionic clay as the drug delivery vehicle: tumor targeting function of layered double hydroxide-methotrexate nanohybrid in C33A orthotopic cervical cancer model.

    Science.gov (United States)

    Choi, Goeun; Piao, Huiyan; Alothman, Zeid A; Vinu, Ajayan; Yun, Chae-Ok; Choy, Jin-Ho

    2016-01-01

    Methotrexate (MTX), an anticancer agent, was successfully intercalated into the anionic clay, layered double hydroxides to form a new nanohybrid drug. The coprecipitation and subsequent hydrothermal method were used to prepare chemically, structurally, and morphologically well-defined two-dimensional drug-clay nanohybrid. The resulting two-dimensional drug-clay nanohybrid showed excellent colloidal stability not only in deionized water but also in an electrolyte solution of Dulbecco's Modified Eagle's Medium with 10% fetal bovine serum, in which the average particle size in colloid and the polydispersity index were determined to be around 100 and 0.250 nm, respectively. The targeting property of the nanohybrid drug was confirmed by evaluating the tumor-to-blood and tumor-to-liver ratios of the MTX with anionic clay carrier, and these ratios were compared to those of free MTX in the C33A orthotopic cervical cancer model. The biodistribution studies indicated that the mice treated with the former showed 3.5-fold higher tumor-to-liver ratio and fivefold higher tumor-to-blood ratio of MTX than those treated with the latter at 30 minutes postinjection.

  12. Macromolecular HPMA-based nanoparticles with cholesterol for solid-tumor targeting: detailed study of the inner structure of a highly efficient drug delivery system

    Czech Academy of Sciences Publication Activity Database

    Filippov, Sergey K.; Chytil, Petr; Konarev, P. V.; Dyakonova, M.; Papadakis, C. M.; Zhigunov, Alexander; Pleštil, Josef; Štěpánek, Petr; Etrych, Tomáš; Ulbrich, Karel; Svergun, D. I.

    2012-01-01

    Roč. 13, č. 8 (2012), s. 2594-2604 ISSN 1525-7797 R&D Projects: GA MŠk ME09059; GA AV ČR IAAX00500803; GA ČR GAP108/12/0640 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : HPMA * cholesterol * SAXS Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.371, year: 2012

  13. Development of a flexible and potent hypoxia-inducible promoter for tumor-targeted gene expression in attenuated Salmonella

    NARCIS (Netherlands)

    Mengesha, Asferd; Dubois, Ludwig; Lambin, Philippe; Landuyt, Willy; Chiu, Roland K; Wouters, Bradly G; Theys, Jan

    To increase the potential of attenuated Salmonella as gene delivery vectors for cancer treatment, we developed a hypoxia-inducible promoter system to limit gene expression specifically to the tumor. This approach is envisaged to not only increase tumor specificity, but also to target those cells

  14. Tumor-targeted Nanobullets: Anti-EGFR nanobody-liposomes loaded with anti-IGF-1R kinase inhibitor for cancer treatment.

    Science.gov (United States)

    van der Meel, Roy; Oliveira, Sabrina; Altintas, Isil; Haselberg, Rob; van der Veeken, Joris; Roovers, Rob C; van Bergen en Henegouwen, Paul M P; Storm, Gert; Hennink, Wim E; Schiffelers, Raymond M; Kok, Robbert J

    2012-04-30

    The epidermal growth factor receptor (EGFR) is a validated target for anti-cancer therapy and several EGFR inhibitors are used in the clinic. Over the years, an increasing number of studies have reported on the crosstalk between EGFR and other receptors that can contribute to accelerated cancer development or even acquisition of resistance to anti-EGFR therapies. Combined targeting of EGFR and insulin-like growth factor 1 receptor (IGF-1R) is a rational strategy to potentiate anti-cancer treatment and possibly retard resistance development. In the present study, we have pursued this by encapsulating the kinase inhibitor AG538 in anti-EGFR nanobody-liposomes. The thus developed dual-active nanobody-liposomes associated with EGFR-(over)expressing cells in an EGFR-specific manner and blocked both EGFR and IGF-1R activation, due to the presence of the EGFR-blocking nanobody EGa1 and the anti-IGF-1R kinase inhibitor AG538 respectively. AG538-loaded nanobody-liposomes induced a strong inhibition of tumor cell proliferation even upon short-term exposure followed by a drug-free wash-out period. Therefore, AG538-loaded nanobody-liposomes are a promising anti-cancer formulation due to efficient intracellular delivery of AG538 in combination with antagonistic and downregulating properties of the EGa1 nanobody-liposomes. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Self-assembled nanoparticles based on the c(RGDfk peptide for the delivery of siRNA targeting the VEGFR2 gene for tumor therapy

    Directory of Open Access Journals (Sweden)

    Liu L

    2014-07-01

    Full Text Available Li Liu,1 Xiaoxia Liu,1 Qian Xu,1 Ping Wu,2 Xialin Zuo,3 Jingjing Zhang,1 Houliang Deng,1 Zhuomin Wu,1 Aimin Ji1 1Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China; 2Department of Pharmacy, Chengdu Integrated TCM & Western Medicine Hospital, Chengdu, People’s Republic of China; 3Institute of Neurosciences and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, People’s Republic of China Abstract: The clinical application of small interfering RNA (siRNA has been restricted by their poor intracellular uptake, low serum stability, and inability to target specific cells. During the last several decades, a great deal of effort has been devoted to exploring materials for siRNA delivery. In this study, biodegradable, tumor-targeted, self-assembled peptide nanoparticles consisting of cyclo(Arg–Gly–Asp–d–Phe–Lys-8–amino–3,6–dioxaoctanoic acid–β–maleimidopropionic acid (hereafter referred to as RPM were found to be an effective siRNA carrier both in vitro and in vivo. The nanoparticles were characterized based on transmission electron microscopy, circular dichroism spectra, and dynamic light scattering. In vitro analyses showed that the RPM/VEGFR2-siRNA exhibited negligible cytotoxicity and induced effective gene silencing. Delivery of the RPM/VEGFR2 (zebrafish-siRNA into zebrafish embryos resulted in inhibition of neovascularization. Administration of RPM/VEGFR2 (mouse-siRNA to tumor-bearing nude mice led to a significant inhibition of tumor growth, a marked reduction of vessels, and a downregulation of VEGFR2 (messenger RNA and protein in tumor tissue. Furthermore, the levels of IFN-α, IFN-γ, IL-12, and IL-6 in mouse serum, assayed via enzyme-linked immunosorbent assay, did not indicate any immunogenicity of the RPM/VEGFR2

  16. Potential Development of Tumor-Targeted Oral Anti-Cancer Prodrugs: Amino Acid and Dipeptide Monoester Prodrugs of Gemcitabine.

    Science.gov (United States)

    Tsume, Yasuhiro; Drelich, Adam J; Smith, David E; Amidon, Gordon L

    2017-08-10

    One of the main obstacles for cancer therapies is to deliver medicines effectively to target sites. Since stroma cells are developed around tumors, chemotherapeutic agents have to go through stroma cells in order to reach tumors. As a method to improve drug delivery to the tumor site, a prodrug approach for gemcitabine was adopted. Amino acid and dipeptide monoester prodrugs of gemcitabine were synthesized and their chemical stability in buffers, resistance to thymidine phosphorylase and cytidine deaminase, antiproliferative activity, and uptake/permeability in HFF cells as a surrogate to stroma cells were determined and compared to their parent drug, gemcitabine. The activation of all gemcitabine prodrugs was faster in pancreatic cell homogenates than their hydrolysis in buffer, suggesting enzymatic action. All prodrugs exhibited great stability in HFF cell homogenate, enhanced resistance to glycosidic bond metabolism by thymidine phosphorylase, and deamination by cytidine deaminase compared to their parent drug. All gemcitabine prodrugs exhibited higher uptake in HFF cells and better permeability across HFF monolayers than gemcitabine, suggesting a better delivery to tumor sites. Cell antiproliferative assays in Panc-1 and Capan-2 pancreatic ductal cell lines indicated that the gemcitabine prodrugs were more potent than their parent drug gemcitabine. The transport and enzymatic profiles of gemcitabine prodrugs suggest their potential for delayed enzymatic bioconversion and enhanced resistance to metabolic enzymes, as well as for enhanced drug delivery to tumor sites, and cytotoxic activity in cancer cells. These attributes would facilitate the prolonged systemic circulation and improved therapeutic efficacy of gemcitabine prodrugs.

  17. Regional Delivery of Chimeric Antigen Receptor-Engineered T Cells Effectively Targets HER2+ Breast Cancer Metastasis to the Brain.

    Science.gov (United States)

    Priceman, Saul J; Tilakawardane, Dileshni; Jeang, Brook; Aguilar, Brenda; Murad, John P; Park, Anthony K; Chang, Wen-Chung; Ostberg, Julie R; Neman, Josh; Jandial, Rahul; Portnow, Jana; Forman, Stephen J; Brown, Christine E

    2018-01-01

    Purpose: Metastasis to the brain from breast cancer remains a significant clinical challenge, and may be targeted with CAR-based immunotherapy. CAR design optimization for solid tumors is crucial due to the absence of truly restricted antigen expression and potential safety concerns with "on-target off-tumor" activity. Here, we have optimized HER2-CAR T cells for the treatment of breast to brain metastases, and determined optimal second-generation CAR design and route of administration for xenograft mouse models of breast metastatic brain tumors, including multifocal and leptomeningeal disease. Experimental Design: HER2-CAR constructs containing either CD28 or 4-1BB intracellular costimulatory signaling domains were compared for functional activity in vitro by measuring cytokine production, T-cell proliferation, and tumor killing capacity. We also evaluated HER2-CAR T cells delivered by intravenous, local intratumoral, or regional intraventricular routes of administration using in vivo human xenograft models of breast cancer that have metastasized to the brain. Results: Here, we have shown that HER2-CARs containing the 4-1BB costimulatory domain confer improved tumor targeting with reduced T-cell exhaustion phenotype and enhanced proliferative capacity compared with HER2-CARs containing the CD28 costimulatory domain. Local intracranial delivery of HER2-CARs showed potent in vivo antitumor activity in orthotopic xenograft models. Importantly, we demonstrated robust antitumor efficacy following regional intraventricular delivery of HER2-CAR T cells for the treatment of multifocal brain metastases and leptomeningeal disease. Conclusions: Our study shows the importance of CAR design in defining an optimized CAR T cell, and highlights intraventricular delivery of HER2-CAR T cells for treating multifocal brain metastases. Clin Cancer Res; 24(1); 95-105. ©2017 AACR . ©2017 American Association for Cancer Research.

  18. Proton pump inhibition and cancer therapeutics: A specific tumor targeting or it is a phenomenon secondary to a systemic buffering?

    Science.gov (United States)

    Spugnini, Enrico; Fais, Stefano

    2017-04-01

    One of the unsolved mysteries in oncology includes the strategies that cancer cells adopt to cope with an adverse microenvironment. However, we knew, from the Warburg's discovery that through their metabolism based on sugar fermentation, cancer cells acidify their microenvironment and this progressive acidification induces a selective pressure, leading to the development of very malignant cells entirely armed to survive in the hostile microenvironment generated by their own metabolism. In the last decades a primordial role for proton exchangers has been supported as a key tumor advantage in facing off the acidic milieu. Proton exchangers do not allow intracellular acidification through a continuous elimination of H+ either outside the cells or within the internal vacuoles. This article wants to comment a translational process through that led to the preclinical demonstration that a class of proton pump inhibitors (PPI) exploited worldwide for peptic ulcer treatment and gastroprotection are indeed powerful chemosensitizers as well. In this process we achieved the clinical proof of concept that PPI may well be included in new anti-cancer strategies with a solid background and rationale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effect of radiotherapy and hyperthermia on the tumor accumulation of HPMA copolymer-based drug delivery systems

    Czech Academy of Sciences Publication Activity Database

    Lammers, T.; Peschke, P.; Kühnlein, R.; Šubr, Vladimír; Ulbrich, Karel; Debus, J.; Huber, P. E.; Hennink, W. E.; Storm, G.

    2007-01-01

    Roč. 117, č. 3 (2007), s. 333-341 ISSN 0168-3659 R&D Projects: GA ČR GA204/05/2255 Institutional research plan: CEZ:AV0Z40500505 Keywords : HPMA * drug delivery * tumor targeting Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.756, year: 2007

  20. Biodegradable polymers for targeted delivery of anti-cancer drugs.

    Science.gov (United States)

    Doppalapudi, Sindhu; Jain, Anjali; Domb, Abraham J; Khan, Wahid

    2016-06-01

    Biodegradable polymers have been used for more than three decades in cancer treatment and have received increased interest in recent years. A range of biodegradable polymeric drug delivery systems designed for localized and systemic administration of therapeutic agents as well as tumor-targeting macromolecules has entered into the clinical phase of development, indicating the significance of biodegradable polymers in cancer therapy. This review elaborates upon applications of biodegradable polymers in the delivery and targeting of anti-cancer agents. Design of various drug delivery systems based on biodegradable polymers has been described. Moreover, the indication of polymers in the targeted delivery of chemotherapeutic drugs via passive, active targeting, and localized drug delivery are also covered. Biodegradable polymer-based drug delivery systems have the potential to deliver the payload to the target and can enhance drug availability at desired sites. Systemic toxicity and serious side effects observed with conventional cancer therapeutics can be significantly reduced with targeted polymeric systems. Still, there are many challenges that need to be met with respect to the degradation kinetics of the system, diffusion of drug payload within solid tumors, targeting tumoral tissue and tumor heterogeneity.

  1. In vivo tumor-targeted dual-modal fluorescence/CT imaging using a nanoprobe co-loaded with an aggregation-induced emission dye and gold nanoparticles.

    Science.gov (United States)

    Zhang, Jimei; Li, Chan; Zhang, Xu; Huo, Shuaidong; Jin, Shubin; An, Fei-Fei; Wang, Xiaodan; Xue, Xiangdong; Okeke, C I; Duan, Guiyun; Guo, Fengguang; Zhang, Xiaohong; Hao, Jifu; Wang, Paul C; Zhang, Jinchao; Liang, Xing-Jie

    2015-02-01

    As an intensely studied computed tomography (CT) contrast agent, gold nanoparticle has been suggested to be combined with fluorescence imaging modality to offset the low sensitivity of CT. However, the strong quenching of gold nanoparticle on fluorescent dyes requires complicated design and shielding to overcome. Herein, we report a unique nanoprobe (M-NPAPF-Au) co-loading an aggregation-induced emission (AIE) red dye and gold nanoparticles into DSPE-PEG(2000) micelles for dual-modal fluorescence/CT imaging. The nanoprobe was prepared based on a facile method of "one-pot ultrasonic emulsification". Surprisingly, in the micelles system, fluorescence dye (NPAPF) efficiently overcame the strong fluorescence quenching of shielding-free gold nanoparticles and retained the crucial AIE feature. In vivo studies demonstrated the nanoprobe had superior tumor-targeting ability, excellent fluorescence and CT imaging effects. The totality of present studies clearly indicates the significant potential application of M-NPAPF-Au as a dual-modal non-invasive fluorescence/X-ray CT nanoprobe for in vivo tumor-targeted imaging and diagnosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. The epithelial cell cytoskeleton and intracellular trafficking. I. Shiga toxin B-subunit system: retrograde transport, intracellular vectorization, and more.

    Science.gov (United States)

    Johannes, Ludger

    2002-07-01

    Many intracellular transport routes are still little explored. This is particularly true for retrograde transport between the plasma membrane and the endoplasmic reticulum. Shiga toxin B subunit has become a powerful tool to study this pathway, and recent advances on the molecular mechanisms of transport in the retrograde route and on its physiological function(s) are summarized. Furthermore, it is discussed how the study of retrograde transport of Shiga toxin B subunit allows one to design new methods for the intracellular delivery of therapeutic compounds.

  3. Stochastic models of intracellular transport

    KAUST Repository

    Bressloff, Paul C.; Newby, Jay M.

    2013-01-01

    mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the motion of an overdamped Brownian particle. On the other hand, active transport requires chemical energy, usually

  4. Evaluation of cytotoxic and tumor targeting capability of (177)Lu-DOTATATE-nanoparticles: a trailblazing strategy in peptide receptor radionuclide therapy.

    Science.gov (United States)

    Arora, Geetanjali; Dubey, Priyanka; Shukla, Jaya; Ghosh, Sourabh; Bandopadhyaya, Gurupad

    2016-06-01

    We propose an innovative strategy of nanoparticle-mediated-peptide receptor radionuclide therapy (PRRT) employing PLGA-nanoparticles together with anti-β-hCG antibodies that can protect kidneys from radiation damage while simultaneously enhancing its tumor targeting and cytotoxic ability for somatostatin receptor (SSR) positive tumors. PEG-coated-(177)Lu-DOTATATE-PLGA-nanoparticles (PEG-LuD-NP) were formulated and characterized. In vitro toxicity of these particles was tested on human glioblastoma cell line U87MG over a radiation dose range of 19-78 Gy, using MTT assay and flow cytometry. To further enhance cytotoxicity and test the feasibility of active tumor targeting, apoptosis-inducing anti-β-hCG monoclonal antibodies were employed in vitro, after confirming expression of β-hCG on U87MG. In vivo tumor targeting ability of these particles, in comparison to uncoated particles and un-encapsulated (177)Lu-DOTATATE, was assessed by intravenous administration in tumor-induced wistar rats. Rats were first imaged in a gamma camera followed by euthanasia for organ extraction and counting in gamma counter. The particles were spherical in shape with mean diameter of 300 nm. Highest cytotoxicity that could be achieved with PEG-LuD-NP, on radio-resistant U87MG cells, was 35.8 % due to complex cellular response triggered by ionizing radiation. Interestingly, synergistic action of antibodies and PEG-LuD-NP doubled the cytotoxicity (80 %). PEG-LuD-NP showed the highest tumor uptake (4.3 ± 0.46 % ID/g) as compared to (177)Lu-DOTATATE (3.5 ± 0.31 %) and uncoated-(177)Lu-DOTATATE-nanoparticles (3.4 ± 0.35 %) in tumor-inoculated wistar rats (p targeting SSR positive tumors for enhanced cytoxicity and reduced renal radiation dose associated with conventional PRRT. To our knowledge of literature, this is the first study to establish in vitro and in vivo efficacy profile of nanoparticles in PRRT providing a stepping-stone for undergoing and future research

  5. Ex vivo cytosolic delivery of functional macromolecules to immune cells.

    Directory of Open Access Journals (Sweden)

    Armon Sharei

    Full Text Available Intracellular delivery of biomolecules, such as proteins and siRNAs, into primary immune cells, especially resting lymphocytes, is a challenge. Here we describe the design and testing of microfluidic intracellular delivery systems that cause temporary membrane disruption by rapid mechanical deformation of human and mouse immune cells. Dextran, antibody and siRNA delivery performance is measured in multiple immune cell types and the approach's potential to engineer cell function is demonstrated in HIV infection studies.

  6. Nanobodies: Chemical Functionalization Strategies and Intracellular Applications

    Science.gov (United States)

    Schumacher, Dominik; Helma, Jonas; Schneider, Anselm F. L.; Leonhardt, Heinrich

    2018-01-01

    Abstract Nanobodies can be seen as next‐generation tools for the recognition and modulation of antigens that are inaccessible to conventional antibodies. Due to their compact structure and high stability, nanobodies see frequent usage in basic research, and their chemical functionalization opens the way towards promising diagnostic and therapeutic applications. In this Review, central aspects of nanobody functionalization are presented, together with selected applications. While early conjugation strategies relied on the random modification of natural amino acids, more recent studies have focused on the site‐specific attachment of functional moieties. Such techniques include chemoenzymatic approaches, expressed protein ligation, and amber suppression in combination with bioorthogonal modification strategies. Recent applications range from sophisticated imaging and mass spectrometry to the delivery of nanobodies into living cells for the visualization and manipulation of intracellular antigens. PMID:28913971

  7. Nanobodies: Chemical Functionalization Strategies and Intracellular Applications.

    Science.gov (United States)

    Schumacher, Dominik; Helma, Jonas; Schneider, Anselm F L; Leonhardt, Heinrich; Hackenberger, Christian P R

    2018-02-23

    Nanobodies can be seen as next-generation tools for the recognition and modulation of antigens that are inaccessible to conventional antibodies. Due to their compact structure and high stability, nanobodies see frequent usage in basic research, and their chemical functionalization opens the way towards promising diagnostic and therapeutic applications. In this Review, central aspects of nanobody functionalization are presented, together with selected applications. While early conjugation strategies relied on the random modification of natural amino acids, more recent studies have focused on the site-specific attachment of functional moieties. Such techniques include chemoenzymatic approaches, expressed protein ligation, and amber suppression in combination with bioorthogonal modification strategies. Recent applications range from sophisticated imaging and mass spectrometry to the delivery of nanobodies into living cells for the visualization and manipulation of intracellular antigens. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  8. Multifunctional nanosheets based on hyaluronic acid modified graphene oxide for tumor-targeting chemo-photothermal therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Lin; Feng, Qianhua; Wang, Yating; Zhang, Huijuan; Jiang, Guixiang; Yang, Xiaomin; Ren, Junxiao; Zhu, Xiali; Shi, Yuyang; Zhang, Zhenzhong, E-mail: zhangzz-pharm@163.com [Zhengzhou University, School of Pharmaceutical Sciences (China)

    2015-03-15

    Graphene oxide (GO) with strong optical absorption in the near-infrared (NIR) region has shown great potential both in photothermal therapy and drug delivery. In this work, hyaluronic acid (HA)-functionalized GO (HA-GO) was successfully synthesized and controlled loading of mitoxantrone (MIT) onto HA-GO via π–π stacking interaction was investigated. The results revealed that drug-loaded nanosheets with high loading efficiency of 45 wt% exhibited pH-sensitive responses to tumor environment. Owing to the receptor-mediated endocytosis, cellular uptake analysis of HA-GO showed enhanced internalization. In vivo optical imaging test demonstrated that HA-GO nanosheets could enhance the targeting ability and residence time in tumor site. Moreover, the anti-tumor activity of free MIT, MIT/GO, and MIT/HA-GO in combination with NIR laser was investigated using human MCF-7 cells. In vitro cytotoxicity study revealed that HA-GO could stand as a biocompatible nanocarrier and MIT/HA-GO demonstrated remarkably higher toxicity than free MIT and MIT/GO, with IC{sub 50} of 0.79 µg ml{sup −1}. Tumor cell-killing potency was enhanced when MIT/HA-GO were combined with NIR irradiation, and the IC{sub 50} of MIT/HA-GO plus laser irradiation was 0.38 µg ml{sup −1}. In vivo, MIT/HA-GO plus NIR laser irradiation with the tumor growth inhibition of 93.52 % displayed greater anti-tumor effect compared with free MIT and MIT/GO with or without laser irradiation. Therefore, the MIT/HA-GO nanosheets may potentially be useful for further development of synergistic cancer therapy.

  9. Single quantum dot tracking reveals the impact of nanoparticle surface on intracellular state.

    Science.gov (United States)

    Zahid, Mohammad U; Ma, Liang; Lim, Sung Jun; Smith, Andrew M

    2018-05-08

    Inefficient delivery of macromolecules and nanoparticles to intracellular targets is a major bottleneck in drug delivery, genetic engineering, and molecular imaging. Here we apply live-cell single-quantum-dot imaging and tracking to analyze and classify nanoparticle states after intracellular delivery. By merging trajectory diffusion parameters with brightness measurements, multidimensional analysis reveals distinct and heterogeneous populations that are indistinguishable using single parameters alone. We derive new quantitative metrics of particle loading, cluster distribution, and vesicular release in single cells, and evaluate intracellular nanoparticles with diverse surfaces following osmotic delivery. Surface properties have a major impact on cell uptake, but little impact on the absolute cytoplasmic numbers. A key outcome is that stable zwitterionic surfaces yield uniform cytosolic behavior, ideal for imaging agents. We anticipate that this combination of quantum dots and single-particle tracking can be widely applied to design and optimize next-generation imaging probes, nanoparticle therapeutics, and biologics.

  10. CPP-Assisted Intracellular Drug Delivery, What Is Next?

    Directory of Open Access Journals (Sweden)

    Junxiao Ye

    2016-11-01

    Full Text Available For the past 20 years, we have witnessed an unprecedented and, indeed, rather miraculous event of how cell-penetrating peptides (CPPs, the naturally originated penetrating enhancers, help overcome the membrane barrier that has hindered the access of bio-macromolecular compounds such as genes and proteins into cells, thereby denying their clinical potential to become potent anti-cancer drugs. By taking the advantage of the unique cell-translocation property of these short peptides, various payloads of proteins, nucleic acids, or even nanoparticle-based carriers were delivered into all cell types with unparalleled efficiency. However, non-specific CPP-mediated cell penetration into normal tissues can lead to widespread organ distribution of the payloads, thereby reducing the therapeutic efficacy of the drug and at the same time increasing the drug-induced toxic effects. In view of these challenges, we present herein a review of the new designs of CPP-linked vehicles and strategies to achieve highly effective yet less toxic chemotherapy in combating tumor oncology.

  11. Intracellular Delivery of siRNA by Polycationic Superparamagnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Betzaida Castillo

    2012-01-01

    Full Text Available The siRNA transfection efficiency of nanoparticles (NPs, composed of a superparamagnetic iron oxide core modified with polycationic polymers (poly(hexamethylene biguanide or branched polyethyleneimine, were studied in CHO-K1 and HeLa cell lines. Both NPs demonstrated to be good siRNA transfection vehicles, but unmodified branched polyethyleneimine (25 kD was superior on both cell lines. However, application of an external magnetic field during transfection (magnetofection increased the efficiency of the superparamagnetic NPs. Furthermore, our results reveal that these NPs are less toxic towards CHO-K1 cell lines than the unmodified polycationic-branched polyethyleneimine (PEI. In general, the external magnetic field did not alter the cell’s viability nor it disrupted the cell membranes, except for the poly(hexamethylene biguanide-modified NP, where it was observed that in CHO-K1 cells application of the external magnetic field promoted membrane damage. This paper presents new polycationic superparamagnetic NPs as promising transfection vehicles for siRNA and demonstrates the advantages of magnetofection.

  12. Peptide-mediated intracellular delivery of quantum dots

    DEFF Research Database (Denmark)

    Lagerholm, B Christoffer

    2007-01-01

    Quantum dots (QDs) have received a great amount of interest for use as fluorescent labels in biological applications. QDs are brightly fluorescent and very photostable, satisfying even imaging applications that require single molecule detection at high repetition rates over long periods of time...

  13. Tumor-targeting properties of 90Y- and 177Lu-labeled α-melanocyte stimulating hormone peptide analogues in a murine melanoma model

    International Nuclear Information System (INIS)

    Miao Yubin; Hoffman, Timothy J.; Quinn, Thomas P.

    2005-01-01

    The purpose of this study was to compare the tumor-targeting properties of 90 Y-DOTA-Re(Arg 11 )CCMSH and 177 Lu-DOTA-Re(Arg 11 )CCMSH in a murine melanoma mouse model. Methods: The in vitro properties of cellular internalization and retention of 90 Y-DOTA-Re(Arg 11 )CCMSH and 177 Lu-DOTA-Re(Arg 11 )CCMSH were studied in B16/F1 murine melanoma cells. The pharmacokinetics of 90 Y-DOTA-Re(Arg 11 )CCMSH and 177 Lu-DOTA-Re(Arg 11 )CCMSH were determined in B16/F1 melanoma-bearing C57 mice. Results: 90 Y-DOTA-Re(Arg 11 )CCMSH and 177 Lu-DOTA-Re(Arg 11 )CCMSH exhibited fast cellular internalization and extended cellular retention in B16/F1 cells. High receptor-mediated tumor uptake and retention coupled with fast whole-body clearance of 90 Y-DOTA-Re(Arg 11 )CCMSH and 177 Lu-DOTA-Re(Arg 11 )CCMSH were demonstrated in B16/F1 tumor-bearing C57 mice. The tumor uptakes of 90 Y-DOTA-Re(Arg 11 )CCMSH and 177 Lu-DOTA-Re(Arg 11 )CCMSH were 25.70±4.64 and 14.48±0.85 %ID/g at 2 h, and 14.09±2.73 and 17.68±3.32 %ID/g at 4 h postinjection. There was little activity accumulated in normal organs except for kidney. Conclusions: High tumor-targeting properties of 90 Y-DOTA-Re(Arg 11 )CCMSH and 177 Lu-DOTA-Re(Arg 11 )CCMSH highlighted their potential as radiopharmaceuticals for targeted radionuclide therapy of melanoma in further investigations

  14. Delivery presentations

    Science.gov (United States)

    Pregnancy - delivery presentation; Labor - delivery presentation; Occiput posterior; Occiput anterior; Brow presentation ... The mother can walk, rock, and try different delivery positions during labor to help encourage the baby ...

  15. Insecticide resistance and intracellular proteases.

    Science.gov (United States)

    Wilkins, Richard M

    2017-12-01

    Pesticide resistance is an example of evolution in action with mechanisms of resistance arising from mutations or increased expression of intrinsic genes. Intracellular proteases have a key role in maintaining healthy cells and in responding to stressors such as pesticides. Insecticide-resistant insects have constitutively elevated intracellular protease activity compared to corresponding susceptible strains. This increase was shown for some cases originally through biochemical enzyme studies and subsequently putatively by transcriptomics and proteomics methods. Upregulation and expression of proteases have been characterised in resistant strains of some insect species, including mosquitoes. This increase in proteolysis results in more degradation products (amino acids) of intracellular proteins. These may be utilised in the resistant strain to better protect the cell from stress. There are changes in insect intracellular proteases shortly after insecticide exposure, suggesting a role in stress response. The use of protease and proteasome inhibitors or peptide mimetics as synergists with improved application techniques and through protease gene knockdown using RNA interference (possibly expressed in crop plants) may be potential pest management strategies, in situations where elevated intracellular proteases are relevant. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. NAD+-Glycohydrolase Promotes Intracellular Survival of Group A Streptococcus.

    Directory of Open Access Journals (Sweden)

    Onkar Sharma

    2016-03-01

    Full Text Available A global increase in invasive infections due to group A Streptococcus (S. pyogenes or GAS has been observed since the 1980s, associated with emergence of a clonal group of strains of the M1T1 serotype. Among other virulence attributes, the M1T1 clone secretes NAD+-glycohydrolase (NADase. When GAS binds to epithelial cells in vitro, NADase is translocated into the cytosol in a process mediated by streptolysin O (SLO, and expression of these two toxins is associated with enhanced GAS intracellular survival. Because SLO is required for NADase translocation, it has been difficult to distinguish pathogenic effects of NADase from those of SLO. To resolve the effects of the two proteins, we made use of anthrax toxin as an alternative means to deliver NADase to host cells, independently of SLO. We developed a novel method for purification of enzymatically active NADase fused to an amino-terminal fragment of anthrax toxin lethal factor (LFn-NADase that exploits the avid, reversible binding of NADase to its endogenous inhibitor. LFn-NADase was translocated across a synthetic lipid bilayer in vitro in the presence of anthrax toxin protective antigen in a pH-dependent manner. Exposure of human oropharyngeal keratinocytes to LFn-NADase in the presence of protective antigen resulted in cytosolic delivery of NADase activity, inhibition of protein synthesis, and cell death, whereas a similar construct of an enzymatically inactive point mutant had no effect. Anthrax toxin-mediated delivery of NADase in an amount comparable to that observed during in vitro infection with live GAS rescued the defective intracellular survival of NADase-deficient GAS and increased the survival of SLO-deficient GAS. Confocal microscopy demonstrated that delivery of LFn-NADase prevented intracellular trafficking of NADase-deficient GAS to lysosomes. We conclude that NADase mediates cytotoxicity and promotes intracellular survival of GAS in host cells.

  17. Influence of intracellular acidosis on contractile function in the working rat heart

    International Nuclear Information System (INIS)

    Jeffrey, F.M.H.; Malloy, C.R.; Radda, G.K.

    1987-01-01

    The decrease in myocardial contractility during ischemia, hypoxia, and extracellular acidosis has been attributed to intracellular acidosis. Previous studies of the relationship between pH and contractile state have utilized respiratory or metabolic acidosis to alter intracellular pH. The authors developed a model in the working perfused rat heart to study the effects of intracellular acidosis with normal external pH and optimal O 2 delivery. Intracellular pH and high-energy phosphates were monitored by 31 P nuclear magnetic resonance spectroscopy. Hearts were perfused to a steady state with a medium containing 10 mM NH 4 Cl. Acidosis induced a substantial decrease in aortic flow and stroke volume which was associated with little change in peak systolic pressure. It was concluded that (1) for the same intracellular acidosis the influence on tension development was more pronounced with a combined extra- and intracellular acidosis than with an isolated intracellular acidosis, and (2) stroke volume at constant preload was impaired by intracellular acidosis even though changes in developed pressure were minimal. These observations suggest that isolated intracellular acidosis has adverse effects on diastolic compliance and/or relaxation

  18. A theranostic nanoplatform: magneto-gold@fluorescence polymer nanoparticles for tumor targeting T1&T2-MRI/CT/NIR fluorescence imaging and induction of genuine autophagy mediated chemotherapy.

    Science.gov (United States)

    Wang, Guannan; Qian, Kun; Mei, Xifan

    2018-06-14

    Multifunctional nanoparticles, bearing low toxicity and tumor-targeting properties, coupled with multifunctional diagnostic imaging and enhanced treatment efficacy, have drawn tremendous attention due to their enormous potential for medical applications. Herein, we report a new kind of biocompatible and tumor-targeting magneto-gold@fluorescent polymer nanoparticle (MGFs-LyP-1), which is based on ultra-small magneto-gold (Fe 3 O 4 -Au) nanoparticles and NIR emissive fluorescent polymers by a solvent-mediated method. This kind of nanoparticle could be taken up efficiently and simultaneously serve for in vivo tumor targeting T 1 &T 2 -MRI/CT/near infrared (NIR) fluorescence bioimaging. Furthermore, the nanoparticles exhibit small size, higher tumor targeting accumulation, excellent cytocompatibility for long-term tracking, and no disturbing cell proliferation and differentiation. Moreover, clear and convincing evidence proves that as-synthesized MGFs-LyP-1 could elicit genuine autophagy via inducing autophagosome formation, which offers a definite synergistic effect to enhance cancer therapy with doxorubicin (DOX) at a nontoxic concentration through enhancement of the autophagy flux. Meanwhile, the as-prepared nanoparticles could be rapidly cleared from mice without any obvious organ impairment. The results indeed reveal a promising prospect of an MGFs-LyP-1 contrast agent with low toxicity and high efficiency for promising application in biomedicine.

  19. Tumor-targeting Salmonella typhimurium A1-R is a highly effective general therapeutic for undifferentiated soft tissue sarcoma patient-derived orthotopic xenograft nude-mouse models.

    Science.gov (United States)

    Igarashi, Kentaro; Kawaguchi, Kei; Kiyuna, Tasuku; Miyake, Kentaro; Miyake, Masuyo; Singh, Arun S; Eckardt, Mark A; Nelson, Scott D; Russell, Tara A; Dry, Sarah M; Li, Yunfeng; Yamamoto, Norio; Hayashi, Katsuhiro; Kimura, Hiroaki; Miwa, Shinji; Tsuchiya, Hiroyuki; Singh, Shree Ram; Eilber, Fritz C; Hoffman, Robert M

    2018-03-18

    Undifferentiated soft tissue sarcoma (USTS) is a recalcitrant and heterogeneous subgroup of soft tissue sarcoma with high risk of metastasis and recurrence. Due to heterogeneity of USTS, there is no reliably effective first-line therapy. We have generated tumor-targeting Salmonella typhimurium A1-R (S. typhimurium A1-R), which previously showed strong efficacy on single patient-derived orthotopic xenograft (PDOX) models of Ewing's sarcoma and follicular dendritic cell sarcoma. In the present study, tumor resected from 4 patients with a biopsy-proven USTS (2 undifferentiated pleomorphic sarcoma [UPS], 1 undifferentiated sarcoma not otherwise specified [NOS] and 1 undifferentiated spindle cell sarcoma [USS]) were grown orthotopically in the biceps femoris muscle of mice to establish PDOX models. One USS model and one UPS model were doxorubicin (DOX) resistant. One UPS and the NOS model were partially sensitive to DOX. DOX is first-line therapy for these diseases. S. typhimurium A1-R arrested tumor growth all 4 models. In addition to arresting tumor growth in each case, S. typhimurium A1-R was significantly more efficacious than DOX in each case, thereby surpassing first-line therapy. These results suggest that S. typhimurium A1-R can be a general therapeutic for USTS and possibly sarcoma in general. Published by Elsevier Inc.

  20. Stochastic models of intracellular transport

    KAUST Repository

    Bressloff, Paul C.

    2013-01-09

    The interior of a living cell is a crowded, heterogenuous, fluctuating environment. Hence, a major challenge in modeling intracellular transport is to analyze stochastic processes within complex environments. Broadly speaking, there are two basic mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the motion of an overdamped Brownian particle. On the other hand, active transport requires chemical energy, usually in the form of adenosine triphosphate hydrolysis, and can be direction specific, allowing biomolecules to be transported long distances; this is particularly important in neurons due to their complex geometry. In this review a wide range of analytical methods and models of intracellular transport is presented. In the case of diffusive transport, narrow escape problems, diffusion to a small target, confined and single-file diffusion, homogenization theory, and fractional diffusion are considered. In the case of active transport, Brownian ratchets, random walk models, exclusion processes, random intermittent search processes, quasi-steady-state reduction methods, and mean-field approximations are considered. Applications include receptor trafficking, axonal transport, membrane diffusion, nuclear transport, protein-DNA interactions, virus trafficking, and the self-organization of subcellular structures. © 2013 American Physical Society.

  1. Characterization of Leptin Intracellular Trafficking

    Directory of Open Access Journals (Sweden)

    E Walum

    2009-12-01

    Full Text Available Leptin is produced by adipose tissue, and its concentration in plasma is related to the amount of fat in the body. The leptin receptor (OBR is a member of the class I cytokine receptor family and several different isoforms, produced by alternative mRNA splicing are found in many tissues, including the hypothalamus. The two predominant isoforms includes a long form (OBRl with an intracellular domain of 303 amino acids and a shorter form (OBRs with an intracellular domain of 34 amino acids. Since OBRl is mainly expressed in the hypotalamus, it has been suggested to be the main signalling form. The peripheral production of leptin by adipocyte tissue and its effects as a signal of satiety in the central nervous system imply that leptin gains access to regions of the brain regulating in energy balance by crossing the blood-brain barrier. In an attempt to characterize the intracellular transport of leptin, we have followed binding internalization and degradation of leptin in HEK293 cells. We have also monitored the intracellular transport pathway of fluorescent conjugated leptin in HEK293 cells. Phenylarsine oxide, a general inhibitor of endocytosis, as well as incubation at mild hypertonic conditions, prevented the uptake of leptin, confirming a receptor-mediated internalization process. When internalized, 125I-leptin was rapidly accumulated inside the cells and reached a maximum after 10 min. After 70 minutes about 40-50% of total counts in each time point were found in the medium as TCA-soluble material. Leptin sorting, at the level of early endosomes, did not seem to involve recycling endosomes, since FITC-leptin was sorted from Cy3- transferrin containing compartments at 37°C. At 45 minutes of continuos internalization, FITC-leptin appeared mainly accumulated in late endocytic structures colocalizing with internalized rhodamine coupled epidermial growth factor (EGF and the lysosomal marker protein lamp-1. The transport of leptin was also shown

  2. Tumor-Targeting Salmonella typhimurium A1-R in Combination with Trastuzumab Eradicates HER-2-Positive Cervical Cancer Cells in Patient-Derived Mouse Models.

    Directory of Open Access Journals (Sweden)

    Yukihiko Hiroshima

    Full Text Available We have previously developed mouse models of HER-2-positive cervical cancer. Tumors in nude mice had histological structures similar to the original tumor and were stained by anti-HER-2 antibody in the same pattern as the patient's cancer. We have also previously developed tumor-targeting Salmonella typhimurium A1-R and have demonstrated its efficacy against patient-derived tumor mouse models, both alone and in combination. In the current study, we determined the efficacy of S. typhimurium A1-R in combination with trastuzumab on a patient-cancer nude-mouse model of HER-2 positive cervical cancer. Mice were randomized to 5 groups and treated as follows: (1 no treatment; (2 carboplatinum (30 mg/kg, ip, weekly, 5 weeks; (3 trastuzumab (20 mg/kg, ip, weekly, 5 weeks; (4 S. typhimurium A1-R (5 × 107 CFU/body, ip, weekly, 5 weeks; (5 S. typhimurium A1-R (5 × 107 CFU/body, ip, weekly, 5 weeks + trastuzumab (20 mg/kg, ip, weekly, 5 weeks. All regimens had significant efficacy compared to the untreated mice. The relative tumor volume of S. typhimurium A1-R + trastuzumab-treated mice was smaller compared to trastuzumab alone (p = 0.007 and S. typhimurium A1-R alone (p = 0.039. No significant body weight loss was found compared to the no treatment group except for carboplatinum-treated mice (p = 0.021. Upon histological examination, viable tumor cells were not detected, and replaced by stromal cells in the tumors treated with S. typhimurium A1-R + trastuzumab. The results of the present study suggest that S. typhimurium A1-R and trastuzumab in combination are highly effective against HER-2-expressing cervical cancer.

  3. Tumor-targeting Salmonella typhimurium A1-R Inhibits Osteosarcoma Angiogenesis in the In Vivo Gelfoam® Assay Visualized by Color-coded Imaging.

    Science.gov (United States)

    Kiyuna, Tasuku; Tome, Yasunori; Uehara, Fuminari; Murakami, Takashi; Zhang, Yong; Zhao, Ming; Kanaya, Fuminori; Hoffman, Robert M

    2018-01-01

    We previously developed a color-coded imaging model that can quantify the length of nascent blood vessels using Gelfoam® implanted in nestin-driven green fluorescent protein (ND-GFP) nude mice. In this model, nascent blood vessels selectively express GFP. We also previously showed that osteosarcoma cells promote angiogenesis in this assay. We have also previously demonstrated the tumor-targeting bacteria Salmonella typhimurium A1-R (S. typhimurium A1-R) can inhibit or regress all tested tumor types in mouse models. The aim of the present study was to determine if S. typhimurium A1-R could inhibit osteosarcoma angiogenesis in the in vivo Gelfoam® color-coded imaging assay. Gelfoam® was implanted subcutaneously in ND-GFP nude mice. Skin flaps were made 7 days after implantation and 143B-RFP human osteosarcoma cells expressing red fluorescent protein (RFP) were injected into the implanted Gelfoam. After establishment of tumors in the Gelfoam®, control-group mice were treated with phosphate buffered saline via tail-vein injection (iv) and the experimental group was treated with S. typhimurium A1-R iv Skin flaps were made at day 7, 14, 21, and 28 after implantation of the Gelfoam® to allow imaging of vascularization in the Gelfoam® using a variable-magnification small-animal imaging system and confocal fluorescence microscopy. Nascent blood vessels expressing ND-GFP extended into the Gelfoam® over time in both groups. However, the extent of nascent blood-vessel growth was significantly inhibited by S. typhimurium A1-R treatment by day 28. The present results indicate S. typhimurium A1-R has potential for anti-angiogenic targeted therapy of osteosarcoma. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  4. Intracellular localization and dynamics of Hypericin loaded PLLA nanocarriers by image correlation spectroscopy

    OpenAIRE

    Penjweini, Rozhin; Deville, Sarah; D'Olieslaeger, Lien; Berden, Mandy; Ameloot, Marcel; Ethirajan, Anitha

    2015-01-01

    The study of cell-nanoparticle interactions is an important aspect for understanding drug delivery using nanocarriers. In this regard, advances in fluorescence based microscopy are useful for the investigation of temporal and spatial behavior of nanoparticles (NPs) within the intracellular environment. In this work, we focus on the delivery of the naturally-occurring hydrophobic photosensitizer Hypericin in human lung carcinoma A549 cells by using biodegradable poly L-lactic acid NPs. For the...

  5. Electron Microscopy of Intracellular Protozoa

    Science.gov (United States)

    1988-12-20

    Classification) " ELECTRON MICROSCOPY OF INTRACELLULAR PROTOZOA 12. PERSONAL AUTHOR(S) Aikawa, Masamichi 13a. TYPE OF REPORT I13b. TIME COVERED 114...authors suggest that anti-CS protein antibody is important in reducing the prevalence of malaria with increasing age among persons in such areas and... Hygine 33, 220-226. 0Giudice, G.D., Engers, H.D., Tougne, C., Biro, S.S., Weiss, N., Verdini, A.S., Pessi, A., Degremont, A.A., Freyvogel, T.A., Lambert

  6. Intracellular trafficking of superparamagnetic iron oxide nanoparticles conjugated with TAT peptide: 3-dimensional electron tomography analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nair, Baiju G.; Fukuda, Takahiro; Mizuki, Toru; Hanajiri, Tatsuro [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan); Maekawa, Toru, E-mail: maekawa@toyo.jp [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan)

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer We study the intracellular localisation of TAT-SPIONs using 3-D electron tomography. Black-Right-Pointing-Pointer 3-D images of TAT-SPIONs in a cell are clearly shown. Black-Right-Pointing-Pointer Release of TAT-SPIONs from endocytic vesicles into the cytoplasm is clearly shown. -- Abstract: Internalisation of nanoparticles conjugated with cell penetrating peptides is a promising approach to various drug delivery applications. Cell penetrating peptides such as transactivating transcriptional activator (TAT) peptides derived from HIV-1 proteins are effective intracellular delivery vectors for a wide range of nanoparticles and pharmaceutical agents thanks to their amicable ability to enter cells and minimum cytotoxicity. Although different mechanisms of intracellular uptake and localisation have been proposed for TAT conjugated nanoparticles, it is necessary to visualise the particles on a 3-D plane in order to investigate the actual intracellular uptake and localisation. Here, we study the intracellular localisation and trafficking of TAT peptide conjugated superparamagnetic ion oxide nanoparticles (TAT-SPIONs) using 3-D electron tomography. 3-D tomograms clearly show the location of TAT-SPIONs in a cell and their slow release from the endocytic vesicles into the cytoplasm. The present methodology may well be utilised for further investigations of the behaviours of nanoparticles in cells and eventually for the development of nano drug delivery systems.

  7. Intracellular trafficking of superparamagnetic iron oxide nanoparticles conjugated with TAT peptide: 3-dimensional electron tomography analysis

    International Nuclear Information System (INIS)

    Nair, Baiju G.; Fukuda, Takahiro; Mizuki, Toru; Hanajiri, Tatsuro; Maekawa, Toru

    2012-01-01

    Highlights: ► We study the intracellular localisation of TAT-SPIONs using 3-D electron tomography. ► 3-D images of TAT-SPIONs in a cell are clearly shown. ► Release of TAT-SPIONs from endocytic vesicles into the cytoplasm is clearly shown. -- Abstract: Internalisation of nanoparticles conjugated with cell penetrating peptides is a promising approach to various drug delivery applications. Cell penetrating peptides such as transactivating transcriptional activator (TAT) peptides derived from HIV-1 proteins are effective intracellular delivery vectors for a wide range of nanoparticles and pharmaceutical agents thanks to their amicable ability to enter cells and minimum cytotoxicity. Although different mechanisms of intracellular uptake and localisation have been proposed for TAT conjugated nanoparticles, it is necessary to visualise the particles on a 3-D plane in order to investigate the actual intracellular uptake and localisation. Here, we study the intracellular localisation and trafficking of TAT peptide conjugated superparamagnetic ion oxide nanoparticles (TAT-SPIONs) using 3-D electron tomography. 3-D tomograms clearly show the location of TAT-SPIONs in a cell and their slow release from the endocytic vesicles into the cytoplasm. The present methodology may well be utilised for further investigations of the behaviours of nanoparticles in cells and eventually for the development of nano drug delivery systems.

  8. Spatiotemporal Control of Doxorubicin Delivery from “Stealth-Like” Prodrug Micelles

    Science.gov (United States)

    Kong, Li; Schneider, Gregory F.; Campbell, Frederick

    2017-01-01

    In the treatment of cancer, targeting of anticancer drugs to the tumor microenvironment is highly desirable. Not only does this imply accurate tumor targeting but also minimal drug release en route to the tumor and maximal drug release once there. Here we describe high-loading, “stealth-like” doxorubicin micelles as a pro-drug delivery system, which upon light activation, leads to burst-like doxorbicin release. Through this approach, we show precise spatiotemporal control of doxorubicin delivery to cells in vitro. PMID:28937592

  9. Pathogenic mechanisms of intracellular bacteria.

    Science.gov (United States)

    Niller, Hans Helmut; Masa, Roland; Venkei, Annamária; Mészáros, Sándor; Minarovits, Janos

    2017-06-01

    We wished to overview recent data on a subset of epigenetic changes elicited by intracellular bacteria in human cells. Reprogramming the gene expression pattern of various host cells may facilitate bacterial growth, survival, and spread. DNA-(cytosine C5)-methyltransferases of Mycoplasma hyorhinis targeting cytosine-phosphate-guanine (CpG) dinucleotides and a Mycobacterium tuberculosis methyltransferase targeting non-CpG sites methylated the host cell DNA and altered the pattern of gene expression. Gene silencing by CpG methylation and histone deacetylation, mediated by cellular enzymes, also occurred in M. tuberculosis-infected macrophages. M. tuberculosis elicited cell type-specific epigenetic changes: it caused increased DNA methylation in macrophages, but induced demethylation, deposition of euchromatic histone marks and activation of immune-related genes in dendritic cells. A secreted transposase of Acinetobacter baumannii silenced a cellular gene, whereas Mycobacterium leprae altered the epigenotype, phenotype, and fate of infected Schwann cells. The 'keystone pathogen' oral bacterium Porphyromonas gingivalis induced local DNA methylation and increased the level of histone acetylation in host cells. These epigenetic changes at the biofilm-gingiva interface may contribute to the development of periodontitis. Epigenetic regulators produced by intracellular bacteria alter the epigenotype and gene expression pattern of host cells and play an important role in pathogenesis.

  10. Polymer-Mediated Delivery of siRNAs to Hepatocellular Carcinoma: Variables Affecting Specificity and Effectiveness

    Directory of Open Access Journals (Sweden)

    Rossella Farra

    2018-03-01

    Full Text Available Despite the advances in anticancer therapies, their effectiveness for many human tumors is still far from being optimal. Significant improvements in treatment efficacy can come from the enhancement of drug specificity. This goal may be achieved by combining the use of therapeutic molecules with tumor specific effects and delivery carriers with tumor targeting ability. In this regard, nucleic acid-based drug (NABD and particularly small interfering RNAs (siRNAs, are attractive molecules due to the possibility to be engineered to target specific tumor genes. On the other hand, polymeric-based delivery systems are emerging as versatile carriers to generate tumor-targeted delivery systems. Here we will focus on the most recent findings in the selection of siRNA/polymeric targeted delivery systems for hepatocellular carcinoma (HCC, a human tumor for which currently available therapeutic approaches are poorly effective. In addition, we will discuss the most attracting and, in our opinion, promising siRNA-polymer combinations for HCC in relation to the biological features of HCC tissue. Attention will be also put on the mathematical description of the mechanisms ruling siRNA-carrier delivery, this being an important aspect to improve effectiveness reducing the experimental work.

  11. Albumin-based drug delivery

    DEFF Research Database (Denmark)

    Larsen, Maja Thim; Kuhlmann, Matthias; Hvam, Michael Lykke

    2016-01-01

    The effectiveness of a drug is dependent on accumulation at the site of action at therapeutic levels, however, challenges such as rapid renal clearance, degradation or non-specific accumulation requires drug delivery enabling technologies. Albumin is a natural transport protein with multiple ligand...... binding sites, cellular receptor engagement, and a long circulatory half-life due to interaction with the recycling neonatal Fc receptor. Exploitation of these properties promotes albumin as an attractive candidate for half-life extension and targeted intracellular delivery of drugs attached by covalent...... conjugation, genetic fusions, association or ligand-mediated association. This review will give an overview of albumin-based products with focus on the natural biological properties and molecular interactions that can be harnessed for the design of a next-generation drug delivery platform....

  12. MR imaging of intracellular and extracellular deoxyhemoglobin

    International Nuclear Information System (INIS)

    Janick, P.A.; Grossman, R.I.; Asakura, T.

    1989-01-01

    MR imaging was performed on varying concentrations of intracellular and extracellular deoxyhemoglobin as well as varying proportions of deoxyhemoglobin and oxyhemoglobin in vitro at 1.5T with use of standard spin-echo and gradient-refocused spin sequences. This study indicates that susceptibility-induced T2 shortening occurs over a broad range of intracellular deoxyhemoglobin concentrations (maximal at hematocrits between 20% and 45%), reflecting diffusional effects at the cellular level. T2* gradient-echo imaging enhances the observed hypointensity in images of intracellular deoxyhemoglobin. The characteristic MR appearance of acute hemotomas can be modeled by the behavior of intracellular and extracellular deoxyhemoglobin and oxyhemoglobin

  13. Preclinical evaluation of isostructural Tc-99m- and Re-188-folate-Gly-Gly-Cys-Glu for folate receptor-positive tumor targeting.

    Science.gov (United States)

    Kim, Woo Hyoung; Kim, Chang Guhn; Kim, Myoung Hyoun; Kim, Dae-Weung; Park, Cho Rong; Park, Ji Yong; Lee, Yun-Sang; Youn, Hyewon; Kang, Keon Wook; Jeong, Jae Min; Chung, June-Key

    2016-06-01

    -188-folate-GGCE. The tumor uptake of these molecules was completely suppressed when excess free folate was co-administered. Isostructural Tc-99m- and Re-188-folate-GGCE showed high and FR-specific uptake by tumors and generally favorable tumor:normal organ ratios. The tumor targeting capabilities of Tc-99m- and Re-188-folate-GGCE were clearly evident on serial imaging studies. This isostructural pair may have potential diagnostic and theranostic applications for FR-positive tumors.

  14. Dynamics of intracellular information decoding

    International Nuclear Information System (INIS)

    Kobayashi, Tetsuya J; Kamimura, Atsushi

    2011-01-01

    A variety of cellular functions are robust even to substantial intrinsic and extrinsic noise in intracellular reactions and the environment that could be strong enough to impair or limit them. In particular, of substantial importance is cellular decision-making in which a cell chooses a fate or behavior on the basis of information conveyed in noisy external signals. For robust decoding, the crucial step is filtering out the noise inevitably added during information transmission. As a minimal and optimal implementation of such an information decoding process, the autocatalytic phosphorylation and autocatalytic dephosphorylation (aPadP) cycle was recently proposed. Here, we analyze the dynamical properties of the aPadP cycle in detail. We describe the dynamical roles of the stationary and short-term responses in determining the efficiency of information decoding and clarify the optimality of the threshold value of the stationary response and its information-theoretical meaning. Furthermore, we investigate the robustness of the aPadP cycle against the receptor inactivation time and intrinsic noise. Finally, we discuss the relationship among information decoding with information-dependent actions, bet-hedging and network modularity

  15. Dynamics of intracellular information decoding.

    Science.gov (United States)

    Kobayashi, Tetsuya J; Kamimura, Atsushi

    2011-10-01

    A variety of cellular functions are robust even to substantial intrinsic and extrinsic noise in intracellular reactions and the environment that could be strong enough to impair or limit them. In particular, of substantial importance is cellular decision-making in which a cell chooses a fate or behavior on the basis of information conveyed in noisy external signals. For robust decoding, the crucial step is filtering out the noise inevitably added during information transmission. As a minimal and optimal implementation of such an information decoding process, the autocatalytic phosphorylation and autocatalytic dephosphorylation (aPadP) cycle was recently proposed. Here, we analyze the dynamical properties of the aPadP cycle in detail. We describe the dynamical roles of the stationary and short-term responses in determining the efficiency of information decoding and clarify the optimality of the threshold value of the stationary response and its information-theoretical meaning. Furthermore, we investigate the robustness of the aPadP cycle against the receptor inactivation time and intrinsic noise. Finally, we discuss the relationship among information decoding with information-dependent actions, bet-hedging and network modularity.

  16. Secretome of obligate intracellular Rickettsia

    Science.gov (United States)

    Gillespie, Joseph J.; Kaur, Simran J.; Rahman, M. Sayeedur; Rennoll-Bankert, Kristen; Sears, Khandra T.; Beier-Sexton, Magda; Azad, Abdu F.

    2014-01-01

    The genus Rickettsia (Alphaproteobacteria, Rickettsiales, Rickettsiaceae) is comprised of obligate intracellular parasites, with virulent species of interest both as causes of emerging infectious diseases and for their potential deployment as bioterrorism agents. Currently, there are no effective commercially available vaccines, with treatment limited primarily to tetracycline antibiotics, although others (e.g. josamycin, ciprofloxacin, chloramphenicol, and azithromycin) are also effective. Much of the recent research geared toward understanding mechanisms underlying rickettsial pathogenicity has centered on characterization of secreted proteins that directly engage eukaryotic cells. Herein, we review all aspects of the Rickettsia secretome, including six secretion systems, 19 characterized secretory proteins, and potential moonlighting proteins identified on surfaces of multiple Rickettsia species. Employing bioinformatics and phylogenomics, we present novel structural and functional insight on each secretion system. Unexpectedly, our investigation revealed that the majority of characterized secretory proteins have not been assigned to their cognate secretion pathways. Furthermore, for most secretion pathways, the requisite signal sequences mediating translocation are poorly understood. As a blueprint for all known routes of protein translocation into host cells, this resource will assist research aimed at uniting characterized secreted proteins with their apposite secretion pathways. Furthermore, our work will help in the identification of novel secreted proteins involved in rickettsial ‘life on the inside’. PMID:25168200

  17. After Delivery

    Science.gov (United States)

    ... Rights Employment Discrimination Health Care Professionals Law Enforcement Driver's License For Lawyers Food & Fitness Home Food MyFoodAdvisor ... A Listen En Español After Delivery After your baby arrives, your body begins to recover from the ...

  18. HYPERTHERMIA, INTRACELLULAR FREE CALCIUM AND CALCIUM IONOPHORES

    NARCIS (Netherlands)

    STEGE, GJJ; WIERENGA, PK; KAMPINGA, HH; KONINGS, AWT

    1993-01-01

    It is shown that heat-induced increase of intracellular calcium does not correlate with hyperthermic cell killing. Six different cell lines were investigated; in four (EAT, HeLa S3, L5178Y-R and L5178Y-S) heat treatments killing 90% of the cells did not affect the levels of intracellular free

  19. Fully glutathione degradable waterborne polyurethane nanocarriers: Preparation, redox-sensitivity, and triggered intracellular drug release

    Energy Technology Data Exchange (ETDEWEB)

    Omrani, Ismail; Babanejad, Niloofar; Shendi, Hasan Kashef; Nabid, Mohammad Reza, E-mail: m-nabid@sbu.ac.ir

    2017-01-01

    Polyurethanes are important class of biomaterials that are extensively used in medical devices. In spite of their easy synthesis, polyurethanes that are fully degradable in response to the intracellular reducing environment are less explored for controlled drug delivery. Herein, a novel glutathione degradable waterborne polyurethane (WPU) nanocarrier for redox triggered intracellular delivery of a model lipophilic anticancer drug, doxorubicin (DOX) is reported. The WPU was prepared from polyaddition reaction of isophorone diisocyanate (IPDI) and a novel linear polyester polyol involving disulfide linkage, disulfide labeled chain extender, dimethylolpropionic acid (DMPA) using dibutyltin dilaurate (DBTDL) as a catalyst. The resulting polyurethane self-assembles into nanocarrier in water. The dynamic light scattering (DLS) measurements and scanning electron microscope (SEM) revealed fast swelling and disruption of nanocarriers under an intracellular reduction-mimicking environment. The in vitro release studies showed that DOX was released in a controlled and redox-dependent manner. MTT assays showed that DOX-loaded WPU had a high in vitro antitumor activity in both HDF noncancer cells and MCF- 7 cancer cells. In addition, it is found that the blank WPU nanocarriers are nontoxic to HDF and MCF-7 cells even at a high concentration of 2 mg/mL. Hence, nanocarriers based on disulfide labeled WPU have appeared as a new class of biocompatible and redox-degradable nanovehicle for efficient intracellular drug delivery. - Highlights: • A novel fully glutathione degradable waterborne polyurethane was developed. • The waterborne nanocarrier with disulfide bonds in both hard and soft segment were developed for redox-triggered intracellular delivery of DOX. • The polyester diol bearing disulfide bonds in the backbone was prepared by a polycondensation polymerization reaction.

  20. Intracellular localization of Arabidopsis sulfurtransferases.

    Science.gov (United States)

    Bauer, Michael; Dietrich, Christof; Nowak, Katharina; Sierralta, Walter D; Papenbrock, Jutta

    2004-06-01

    Sulfurtransferases (Str) comprise a group of enzymes widely distributed in archaea, eubacteria, and eukaryota which catalyze the transfer of a sulfur atom from suitable sulfur donors to nucleophilic sulfur acceptors. In all organisms analyzed to date, small gene families encoding Str proteins have been identified. The gene products were localized to different compartments of the cells. Our interest concerns the localization of Str proteins encoded in the nuclear genome of Arabidopsis. Computer-based prediction methods revealed localization in different compartments of the cell for six putative AtStrs. Several methods were used to determine the localization of the AtStr proteins experimentally. For AtStr1, a mitochondrial localization was demonstrated by immunodetection in the proteome of isolated mitochondria resolved by one- and two-dimensional gel electrophoresis and subsequent blotting. The respective mature AtStr1 protein was identified by mass spectrometry sequencing. The same result was obtained by transient expression of fusion constructs with the green fluorescent protein in Arabidopsis protoplasts, whereas AtStr2 was exclusively localized to the cytoplasm by this method. Three members of the single-domain AtStr were localized in the chloroplasts as demonstrated by transient expression of green fluorescent protein fusions in protoplasts and stomata, whereas the single-domain AtStr18 was shown to be cytoplasmic. The remarkable subcellular distribution of AtStr15 was additionally analyzed by transmission electron immunomicroscopy using a monospecific antibody against green fluorescent protein, indicating an attachment to the thylakoid membrane. The knowledge of the intracellular localization of the members of this multiprotein family will help elucidate their specific functions in the organism.

  1. Intracellular calcium homeostasis and signaling.

    Science.gov (United States)

    Brini, Marisa; Calì, Tito; Ottolini, Denis; Carafoli, Ernesto

    2013-01-01

    Ca(2+) is a universal carrier of biological information: it controls cell life from its origin at fertilization to its end in the process of programmed cell death. Ca(2+) is a conventional diffusible second messenger released inside cells by the interaction of first messengers with plasma membrane receptors. However, it can also penetrate directly into cells to deliver information without the intermediation of first or second messengers. Even more distinctively, Ca(2+) can act as a first messenger, by interacting with a plasma membrane receptor to set in motion intracellular signaling pathways that involve Ca(2+) itself. Perhaps the most distinctive property of the Ca(2+) signal is its ambivalence: while essential to the correct functioning of cells, Ca(2+) becomes an agent that mediates cell distress, or even (toxic) cell death, if its concentration and movements inside cells are not carefully tuned. Ca(2+) is controlled by reversible complexation to specific proteins, which could be pure Ca(2+) buffers, or which, in addition to buffering Ca(2+), also decode its signal to pass it on to targets. The most important actors in the buffering of cell Ca(2+) are proteins that transport it across the plasma membrane and the membrane of the organelles: some have high Ca(2+) affinity and low transport capacity (e.g., Ca(2+) pumps), others have opposite properties (e.g., the Ca(2+) uptake system of mitochondria). Between the initial event of fertilization, and the terminal event of programmed cell death, the Ca(2+) signal regulates the most important activities of the cell, from the expression of genes, to heart and muscle contraction and other motility processes, to diverse metabolic pathways involved in the generation of cell fuels.

  2. Semiconductor quantum dots as Förster resonance energy transfer donors for intracellularly-based biosensors

    Science.gov (United States)

    Field, Lauren D.; Walper, Scott A.; Susumu, Kimihiro; Oh, Eunkeu; Medintz, Igor L.; Delehanty, James B.

    2017-02-01

    Förster resonance energy transfer (FRET)-based assemblies currently comprise a significant portion of intracellularly based sensors. Although extremely useful, the fluorescent protein pairs typically utilized in such sensors are still plagued by many photophysical issues including significant direct acceptor excitation, small changes in FRET efficiency, and limited photostability. Luminescent semiconductor nanocrystals or quantum dots (QDs) are characterized by many unique optical properties including size-tunable photoluminescence, broad excitation profiles coupled to narrow emission profiles, and resistance to photobleaching, which can cumulatively overcome many of the issues associated with use of fluorescent protein FRET donors. Utilizing QDs for intracellular FRET-based sensing still requires significant development in many areas including materials optimization, bioconjugation, cellular delivery and assay design and implementation. We are currently developing several QD-based FRET sensors for various intracellular applications. These include sensors targeting intracellular proteolytic activity along with those based on theranostic nanodevices for monitoring drug release. The protease sensor is based on a unique design where an intracellularly expressed fluorescent acceptor protein substrate assembles onto a QD donor following microinjection, forming an active complex that can be monitored in live cells over time. In the theranostic configuration, the QD is conjugated to a carrier protein-drug analogue complex to visualize real-time intracellular release of the drug from its carrier in response to an external stimulus. The focus of this talk will be on the design, properties, photophysical characterization and cellular application of these sensor constructs.

  3. Ciprofloxacin nano-niosomes for targeting intracellular infections: an in vitro evaluation

    International Nuclear Information System (INIS)

    Akbari, Vajihe; Abedi, Daryoush; Pardakhty, Abbas; Sadeghi-Aliabadi, Hojjat

    2013-01-01

    In order to propose non-ionic surfactant vesicles (niosomes) for the treatment of intracellular infections, a remote loading method (active drug encapsulation) followed by sonication was used to prepare nano-niosome formulations containing ciprofloxacin (CPFX). Size analysis, size distribution and zeta potentials of niosomes were evaluated and then their antimicrobial activity, cellular uptake, cytotoxicity, intracellular distribution, and antibacterial activity against intracellular Staphylococcus aureus infection of murine macrophage-like, J774, cells were investigated in comparison to free drug. Our findings reveal that size and composition of the niosome formula can influence their in vitro biological properties. Vesicles in the 300–600 nm size range were phagocytosed to a greater degree by macrophages in comparison to other size vesicles. The minimum inhibitory concentrations (MICs) of CPFX-loaded niosomes were two to eightfold lower than MICs of free CPFX. In addition, niosome encapsulation of CPFX provided high intracellular antimicrobial activities while free CPFX is ineffective for eradicating intracellular forms of S. aureus. Encapsulation of CPFX in niosomes generally decreased its in vitro cytotoxicity. Our results show that niosomes are suitable drug delivery systems with good efficacy and safety properties to be proposed for drug targeting against intracellular infections.

  4. Ciprofloxacin nano-niosomes for targeting intracellular infections: an in vitro evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Vajihe; Abedi, Daryoush [Isfahan University of Medical Sciences, Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Research Center, Faculty of Pharmacy (Iran, Islamic Republic of); Pardakhty, Abbas [Kerman University of Medical Sciences, Pharmaceutics Research Center (Iran, Islamic Republic of); Sadeghi-Aliabadi, Hojjat, E-mail: sadeghi@pharm.mui.ac.ir [Isfahan University of Medical Sciences, Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Research Center, Faculty of Pharmacy (Iran, Islamic Republic of)

    2013-04-15

    In order to propose non-ionic surfactant vesicles (niosomes) for the treatment of intracellular infections, a remote loading method (active drug encapsulation) followed by sonication was used to prepare nano-niosome formulations containing ciprofloxacin (CPFX). Size analysis, size distribution and zeta potentials of niosomes were evaluated and then their antimicrobial activity, cellular uptake, cytotoxicity, intracellular distribution, and antibacterial activity against intracellular Staphylococcus aureus infection of murine macrophage-like, J774, cells were investigated in comparison to free drug. Our findings reveal that size and composition of the niosome formula can influence their in vitro biological properties. Vesicles in the 300-600 nm size range were phagocytosed to a greater degree by macrophages in comparison to other size vesicles. The minimum inhibitory concentrations (MICs) of CPFX-loaded niosomes were two to eightfold lower than MICs of free CPFX. In addition, niosome encapsulation of CPFX provided high intracellular antimicrobial activities while free CPFX is ineffective for eradicating intracellular forms of S. aureus. Encapsulation of CPFX in niosomes generally decreased its in vitro cytotoxicity. Our results show that niosomes are suitable drug delivery systems with good efficacy and safety properties to be proposed for drug targeting against intracellular infections.

  5. In vivo EPR imaging of differential tumor targeting using cis-3,4-di(acetoxymethoxycarbonyl)-2,2,5,5-tetramethyl-1-pyrrolidinyloxyl

    Science.gov (United States)

    Redler, Gage; Barth, Eugene D.; Bauer, Kenneth S.; Kao, Joseph P.Y.; Rosen, Gerald M.; Halpern, Howard J.

    2015-01-01

    Purpose EPR spectroscopy promises quantitative images of important physiologic markers of animal tumors and normal tissues, such as pO2, pH, and thiol redox status. These parameters of tissue function are conveniently reported by tailored nitroxides. For defining tumor physiology, it is vital that nitroxides are selectively localized in tumors relative to normal tissue. Furthermore, these paramagnetic species should be specifically taken up by cells of the tumor, thereby reporting on both the site of tumor formation and the physiological status of the tissue. This study investigates the tumor localization of the novel nitroxide, cis-3,4-di(acetoxymethoxycarbonyl)-2,2,5,5-tetramethyl-1-pyrrolidinyloxyl 3 relative to the corresponding di-acid 4. Methods We obtained images of nitroxide 3 infused intravenously into C3H mice bearing 0.5-cm3 FSa fibrosarcoma on the leg, and compared these with images of similar tumors infused with nitroxide 4. Results The ratio of spectral intensity from within the tumor-bearing region to that of normal tissue was higher in the mice injected with 3 relative to 4. Conclusion This establishes the possibility of tumor imaging with a nitroxide with intracellular distribution and provides the basis for EPR images of animal models to investigate the relationship between crucial aspects of tumor microenvironment and malignancy and its response to therapy. PMID:23776127

  6. Preparation, radioiodination and in vitro evaluation of a nido-carborane-dextran conjugate, a potential residualizing label for tumor targeting proteins and peptides

    International Nuclear Information System (INIS)

    Tolmachev, V.; Bruskin, A.; Uppsala University; Sjoeberg, S.; Carlsson, J.; Lundqvist, H.

    2004-01-01

    Polysaccharides are not degradable by proteolytic enzymes in lysosomes and do not diffuse through cellular membranes. Thus, attached to an internalizing, targeting protein, such polysaccharide linkers, will remain intracellularly after protein degradation. They can be labeled with halogens and provide then a so called residualizing label. Such an approach improves tumor-to-non-tumor radioactivity ratio and, consequently, the results of radionuclide diagnostics and therapy. A new approach to obtain a stable halogenation of the polysaccharide dextran using 7-(3-amino-propyl)-7,8-dicarba-nido-undecaborate (-) (ANC) is presented. Dextran T10 was partially oxidized by metaperiodate, and ANC was coupled to dextran by reductive amination. The conjugate was then labeled with 125 I using either Chloramine-T or IodoGen as oxidants. Labeling efficiency was 69-85%. Stability of the label was evaluated in rat liver homogenates. Under these conditions, the ANC-dextran conjugate was found to be more stable than labeled albumin, which was used as a control protein. (author)

  7. Biological synthesis and characterization of intracellular gold ...

    Indian Academy of Sciences (India)

    thods of reduction of metal ions using plants or microorganisms are often ... have several advantages over bacteria, they are often pre- ferred. ... in static condition for a period of 7 days. ... work was focused on the production of intracellular gold.

  8. Mycobacterium intracellulare Infection Mimicking Progression of Scleroderma

    DEFF Research Database (Denmark)

    Krabbe, Simon; Engelhart, Merete; Thybo, Sören

    2017-01-01

    This case report describes a patient with scleroderma who developed Mycobacterium intracellulare infection, which for more than a year mimicked worsening of her connective tissue disorder. The patient was diagnosed with scleroderma based on puffy fingers that developed into sclerodactyly, abnormal......, unfortunately with significant scarring. Immunodeficiency testing was unremarkable. In summary, an infection with Mycobacterium intracellulare was mistaken for an unusually severe progression of scleroderma....

  9. Closed-Loop Noninvasive Ultrasound Glucose Sensing and Insulin Delivery

    Science.gov (United States)

    2007-09-01

    mechanism suggests that ultrasound interacts with the structured lipids within the intracellular channels of the stratum corneum to permeabilize the...R. Prausnitz, “Mechanism of intracellular delivery by acoustic cavitation ,” Ultrasound Med. Biol. 32, 915–924 2006. 14E. Maione, K. K. Shung, R. J...result of cavitation (11– 14). Low frequency ultrasound is capable of generating microbubbles in the water and tissue. These bubbles allow water

  10. Tumor-targeted delivery of IL-2 by NKG2D leads to accumulation of antigen-specific CD8+ T cells in the tumor loci and enhanced anti-tumor effects.

    Directory of Open Access Journals (Sweden)

    Tae Heung Kang

    Full Text Available Interleukin-2 (IL-2 has been shown to promote tumor-specific T-cell proliferation and differentiation but systemic administration of IL-2 results in significant toxicity. Therefore, a strategy that can specifically deliver IL-2 to the tumor location may alleviate concerns of toxicity. Because NKG2D ligands have been shown to be highly expressed in many cancer cells but not in healthy cells, we reason that a chimeric protein consisting of NKG2D linked to IL-2 will lead to the specific targeting of IL-2 to the tumor location. Therefore, we created chimeric proteins consisting of NKG2D linked to Gaussia luciferase (GLuc; a marker protein or IL-2 to form NKG2D-Fc-GLuc and NKG2D-Fc-IL2, respectively. We demonstrated that NKG2D linked to GLuc was able to deliver GLuc to the tumor location in vivo. Furthermore, we showed that TC-1 tumor-bearing mice intramuscularly injected with DNA encoding NKG2D-Fc-IL2, followed by electroporation, exhibited an increased number of luciferase-expressing E7-specific CD8+ T cells at the tumor location. More importantly, treatment with the DNA construct encoding NKG2D-Fc-IL2 significantly enhanced the therapeutic anti-tumor effects generated by intradermal vaccination with therapeutic HPV DNA in tumor-bearing mice. Therefore, by linking NKG2D to IL2, we are able to specifically deliver IL-2 to the tumor location, enhancing antigen-specific T-cell immune response and controlling tumor growth. Our approach represents a platform technology to specifically deliver proteins of interest to tumor loci.

  11. Taming the Wildness of "Trojan-Horse" Peptides by Charge-Guided Masking and Protease-Triggered Demasking for the Controlled Delivery of Antitumor Agents.

    Science.gov (United States)

    Shi, Nian-Qiu; Qi, Xian-Rong

    2017-03-29

    Cell-penetrating peptide (CPP), also called "Trojan Horse" peptide, has become a successful approach to deliver various payloads into cells for achieving the intracellular access. However, the "Trojan Horse" peptide is too wild, not just to "Troy", but rather widely distributed in the body. Thus, there is an urgent need to tame the wildness of "Trojan Horse" peptide for targeted delivery of antineoplastic agents to the tumor site. To achieve this goal, we exploit a masked CPP-doxorubicin conjugate platform for targeted delivery of chemotherapeutic drugs using charge-guided masking and protease-triggered demasking strategies. In this platform, the cell-penetrating function of the positively CPP (d-form nonaarginine) is abrogated by a negatively shielding peptide (masked CPP), and between them is a cleavable substrate peptide by the protease (MMP-2/9). Protease-triggered demasking would occur when the masked CPP reached the MMP-2/9-riched tumor. The CPP-doxorubicin conjugate (CPP-Dox) and the masked CPP-Dox conjugate (mCPP-Dox) were used as models for the evaluation of masking and demasking processes. It was found that exogenous MMP-2/9 could effectively trigger the reversion of CPP-cargo in this conjugate, and this trigger adhered to the Michaelis-Menten kinetics profile. This conjugate was sensitive to the trigger of endogenous MMP-2/9 and could induce enhanced cytotoxicity toward MMP-2/9-rich tumor cells. In vivo antitumor efficacy revealed that this masked conjugate had considerable antitumor activity and could inhibit the tumor growth at a higher level relative to CPP-cargo. Low toxicity in vivo showed the noticeably decreased wildness of this conjugate toward normal tissues and more controllable entry of antitumor agents into "Troy". On the basis of analyses in vitro and in vivo, this mCPP-cargo conjugate delivery system held an improved selectivity toward MMP-2/9-rich tumors and would be a promising strategy for tumor-targeted treatment.

  12. Imaging the intracellular degradation of biodegradable polymer nanoparticles

    Directory of Open Access Journals (Sweden)

    Anne-Kathrin Barthel

    2014-10-01

    Full Text Available In recent years, the development of smart drug delivery systems based on biodegradable polymeric nanoparticles has become of great interest. Drug-loaded nanoparticles can be introduced into the cell interior via endocytotic processes followed by the slow release of the drug due to degradation of the nanoparticle. In this work, poly(L-lactic acid (PLLA was chosen as the biodegradable polymer. Although common degradation of PLLA has been studied in various biological environments, intracellular degradation processes have been examined only to a very limited extent. PLLA nanoparticles with an average diameter of approximately 120 nm were decorated with magnetite nanocrystals and introduced into mesenchymal stem cells (MSCs. The release of the magnetite particles from the surface of the PLLA nanoparticles during the intracellular residence was monitored by transmission electron microscopy (TEM over a period of 14 days. It was demonstrated by the release of the magnetite nanocrystals from the PLLA surface that the PLLA nanoparticles do in fact undergo degradation within the cell. Furthermore, even after 14 days of residence, the PLLA nanoparticles were found in the MSCs. Additionally, the ultrastructural TEM examinations yield insight into the long term intercellular fate of these nanoparticles. From the statistical analysis of ultrastructural details (e.g., number of detached magnetite crystals, and the number of nanoparticles in one endosome, we demonstrate the importance of TEM studies for such applications in addition to fluorescence studies (flow cytometry and confocal laser scanning microscopy.

  13. Modeling nanoparticle uptake and intracellular distribution using stochastic process algebras

    Energy Technology Data Exchange (ETDEWEB)

    Dobay, M. P. D., E-mail: maria.pamela.david@physik.uni-muenchen.de; Alberola, A. Piera; Mendoza, E. R.; Raedler, J. O., E-mail: joachim.raedler@physik.uni-muenchen.de [Ludwig-Maximilians University, Faculty of Physics, Center for NanoScience (Germany)

    2012-03-15

    Computational modeling is increasingly important to help understand the interaction and movement of nanoparticles (NPs) within living cells, and to come to terms with the wealth of data that microscopy imaging yields. A quantitative description of the spatio-temporal distribution of NPs inside cells; however, it is challenging due to the complexity of multiple compartments such as endosomes and nuclei, which themselves are dynamic and can undergo fusion and fission and exchange their content. Here, we show that stochastic pi calculus, a widely-used process algebra, is well suited for mapping surface and intracellular NP interactions and distributions. In stochastic pi calculus, each NP is represented as a process, which can adopt various states such as bound or aggregated, as well as be passed between processes representing location, as a function of predefined stochastic channels. We created a pi calculus model of gold NP uptake and intracellular movement and compared the evolution of surface-bound, cytosolic, endosomal, and nuclear NP densities with electron microscopy data. We demonstrate that the computational approach can be extended to include specific molecular binding and potential interaction with signaling cascades as characteristic for NP-cell interactions in a wide range of applications such as nanotoxicity, viral infection, and drug delivery.

  14. Modeling nanoparticle uptake and intracellular distribution using stochastic process algebras

    International Nuclear Information System (INIS)

    Dobay, M. P. D.; Alberola, A. Piera; Mendoza, E. R.; Rädler, J. O.

    2012-01-01

    Computational modeling is increasingly important to help understand the interaction and movement of nanoparticles (NPs) within living cells, and to come to terms with the wealth of data that microscopy imaging yields. A quantitative description of the spatio-temporal distribution of NPs inside cells; however, it is challenging due to the complexity of multiple compartments such as endosomes and nuclei, which themselves are dynamic and can undergo fusion and fission and exchange their content. Here, we show that stochastic pi calculus, a widely-used process algebra, is well suited for mapping surface and intracellular NP interactions and distributions. In stochastic pi calculus, each NP is represented as a process, which can adopt various states such as bound or aggregated, as well as be passed between processes representing location, as a function of predefined stochastic channels. We created a pi calculus model of gold NP uptake and intracellular movement and compared the evolution of surface-bound, cytosolic, endosomal, and nuclear NP densities with electron microscopy data. We demonstrate that the computational approach can be extended to include specific molecular binding and potential interaction with signaling cascades as characteristic for NP-cell interactions in a wide range of applications such as nanotoxicity, viral infection, and drug delivery.

  15. Modeling nanoparticle uptake and intracellular distribution using stochastic process algebras

    Science.gov (United States)

    Dobay, M. P. D.; Alberola, A. Piera; Mendoza, E. R.; Rädler, J. O.

    2012-03-01

    Computational modeling is increasingly important to help understand the interaction and movement of nanoparticles (NPs) within living cells, and to come to terms with the wealth of data that microscopy imaging yields. A quantitative description of the spatio-temporal distribution of NPs inside cells; however, it is challenging due to the complexity of multiple compartments such as endosomes and nuclei, which themselves are dynamic and can undergo fusion and fission and exchange their content. Here, we show that stochastic pi calculus, a widely-used process algebra, is well suited for mapping surface and intracellular NP interactions and distributions. In stochastic pi calculus, each NP is represented as a process, which can adopt various states such as bound or aggregated, as well as be passed between processes representing location, as a function of predefined stochastic channels. We created a pi calculus model of gold NP uptake and intracellular movement and compared the evolution of surface-bound, cytosolic, endosomal, and nuclear NP densities with electron microscopy data. We demonstrate that the computational approach can be extended to include specific molecular binding and potential interaction with signaling cascades as characteristic for NP-cell interactions in a wide range of applications such as nanotoxicity, viral infection, and drug delivery.

  16. Quantification of the Force of Nanoparticle-Cell Membrane Interactions and Its Influence on Intracellular Trafficking of Nanoparticles

    Science.gov (United States)

    Vasir, Jaspreet K.; Labhasetwar, Vinod

    2008-01-01

    Understanding the interaction of nanoparticles (NPs) with the cell membrane and their trafficking through cells is imperative to fully explore the use of NPs for efficient intracellular delivery of therapeutics. Here, we report a novel method of measuring the force of NP-cell membrane interactions using atomic force microscopy (AFM). Poly(dl-lactide co-glycolide, PLGA) NPs functionalized with poly-l-lysine were used as a model system, to demonstrate that this force determines the adhesive interaction of NPs with the cell membrane and in turn the extent of cellular uptake of NPs, and hence that of the encapsulated therapeutic. Cellular uptake of NPs was monitored using AFM imaging, and the dynamics of their intracellular distribution was quantified using confocal microscopy. Results demonstrated that the functionalized NPs have a five-fold greater force of adhesion with the cell membrane and the time-lapse AFM images show their rapid internalization than unmodified NPs. The intracellular trafficking study showed that the functionalized NPs escape more rapidly and efficiently from late endosomes than unmodified NPs and result in 10-fold higher intracellular delivery of the encapsulated model protein. The findings described herein enhance our basic understanding of the NP-cell membrane interaction on the basis of physical phenomena that could have wider applications in developing efficient nanocarrier systems for intracellular delivery of therapeutics. PMID:18692238

  17. Cathepsin-Mediated Cleavage of Peptides from Peptide Amphiphiles Leads to Enhanced Intracellular Peptide Accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Acar, Handan [Institute; Department; Samaeekia, Ravand [Institute; Department; Schnorenberg, Mathew R. [Institute; Department; Medical; Sasmal, Dibyendu K. [Institute; Huang, Jun [Institute; Tirrell, Matthew V. [Institute; Institute; LaBelle, James L. [Department

    2017-08-24

    Peptides synthesized in the likeness of their native interaction domain(s) are natural choices to target protein protein interactions (PPIs) due to their fidelity of orthostatic contact points between binding partners. Despite therapeutic promise, intracellular delivery of biofunctional peptides at concentrations necessary for efficacy remains a formidable challenge. Peptide amphiphiles (PAs) provide a facile method of intracellular delivery and stabilization of bioactive peptides. PAs consisting of biofunctional peptide headgroups linked to hydrophobic alkyl lipid-like tails prevent peptide hydrolysis and proteolysis in circulation, and PA monomers are internalized via endocytosis. However, endocytotic sequestration and steric hindrance from the lipid tail are two major mechanisms that limit PA efficacy to target intracellular PPIs. To address these problems, we have constructed a PA platform consisting of cathepsin-B cleavable PAs in which a selective p53-based inhibitory peptide is cleaved from its lipid tail within endosomes, allowing for intracellular peptide accumulation and extracellular recycling of the lipid moiety. We monitor for cleavage and follow individual PA components in real time using a resonance energy transfer (FRET)-based tracking system. Using this platform, components in real time using a Forster we provide a better understanding and quantification of cellular internalization, trafficking, and endosomal cleavage of PAs and of the ultimate fates of each component.

  18. The non-peptidic part determines the internalization mechanism and intracellular trafficking of peptide amphiphiles.

    Directory of Open Access Journals (Sweden)

    Dimitris Missirlis

    Full Text Available BACKGROUND: Peptide amphiphiles (PAs are a class of amphiphilic molecules able to self-assemble into nanomaterials that have shown efficient in vivo targeted delivery. Understanding the interactions of PAs with cells and the mechanisms of their internalization and intracellular trafficking is critical in their further development for therapeutic delivery applications. METHODOLOGY/PRINCIPAL FINDINGS: PAs of a novel, cell- and tissue-penetrating peptide were synthesized possessing two different lipophilic tail architectures and their interactions with prostate cancer cells were studied in vitro. Cell uptake of peptides was greatly enhanced post-modification. Internalization occurred via lipid-raft mediated endocytosis and was common for the two analogs studied. On the contrary, we identified the non-peptidic part as the determining factor of differences between intracellular trafficking and retention of PAs. PAs composed of di-stearyl lipid tails linked through poly(ethylene glycol to the peptide exhibited higher exocytosis rates and employed different recycling pathways compared to ones consisting of di-palmitic-coupled peptides. As a result, cell association of the former PAs decreased with time. CONCLUSIONS/SIGNIFICANCE: Control over peptide intracellular localization and retention is possible by appropriate modification with synthetic hydrophobic tails. We propose this as a strategy to design improved peptide-based delivery systems.

  19. Assisted Vaginal Delivery

    Science.gov (United States)

    ... Education & Events Advocacy For Patients About ACOG Assisted Vaginal Delivery Home For Patients Search FAQs Assisted Vaginal ... Vaginal Delivery FAQ192, February 2016 PDF Format Assisted Vaginal Delivery Labor, Delivery, and Postpartum Care What is ...

  20. Enzymatically triggered multifunctional delivery system based on hyaluronic acid micelles

    KAUST Repository

    Deng, Lin

    2012-01-01

    Tumor targetability and stimuli responsivity of drug delivery systems (DDS) are key factors in cancer therapy. Implementation of multifunctional DDS can afford targetability and responsivity at the same time. Herein, cholesterol molecules (Ch) were coupled to hyaluronic acid (HA) backbones to afford amphiphilic conjugates that can self-assemble into stable micelles. Doxorubicin (DOX), an anticancer drug, and superparamagnetic iron oxide (SPIO) nanoparticles (NPs), magnetic resonance imaging (MRI) contrast agents, were encapsulated by Ch-HA micelles and were selectively released in the presence of hyaluronidase (Hyals) enzyme. Cytotoxicity and cell uptake studies were done using three cancer cell lines (HeLa, HepG2 and MCF7) and one normal cell line (WI38). Higher Ch-HA micelles uptake was seen in cancer cells versus normal cells. Consequently, DOX release was elevated in cancer cells causing higher cytotoxicity and enhanced cell death. © 2012 The Royal Society of Chemistry.

  1. Premature delivery

    Directory of Open Access Journals (Sweden)

    Bernardita Donoso Bernales

    2012-09-01

    Full Text Available Preterm delivery is the single most important cause of perinatal morbidity and mortality. In Chile, preterm births have increased in the past decade, although neonatal morbidity and mortality attributable to it shows a downward trend, thanks to improvements in neonatal care of premature babies, rather than the success of obstetric preventive and therapeutic strategies. This article describes clinical entities, disease processes and conditions that constitute predisposing factors of preterm birth, as well as an outline for the prevention and clinical management of women at risk of preterm birth.

  2. Investigating Internalization and Intracellular Trafficking of GPCRs

    DEFF Research Database (Denmark)

    Foster, Simon R; Bräuner-Osborne, Hans

    2017-01-01

    for signal transduction. One of the major mechanisms for GPCR regulation involves their endocytic trafficking, which serves to internalize the receptors from the plasma membrane and thereby attenuate G protein-dependent signaling. However, there is accumulating evidence to suggest that GPCRs can signal...... independently of G proteins, as well as from intracellular compartments including endosomes. It is in this context that receptor internalization and intracellular trafficking have attracted renewed interest within the GPCR field. In this chapter, we will review the current understanding and methodologies...

  3. PLGA Nanoparticles for Ultrasound-Mediated Gene Delivery to Solid Tumors

    Directory of Open Access Journals (Sweden)

    Marxa Figueiredo

    2012-01-01

    Full Text Available This paper focuses on novel approaches in the field of nanotechnology-based carriers utilizing ultrasound stimuli as a means to spatially target gene delivery in vivo, using nanoparticles made with either poly(lactic-co-glycolic acid (PLGA or other polymers. We specifically discuss the potential for gene delivery by particles that are echogenic (amenable to destruction by ultrasound composed either of polymers (PLGA, polystyrene or other contrast agent materials (Optison, SonoVue microbubbles. The use of ultrasound is an efficient tool to further enhance gene delivery by PLGA or other echogenic particles in vivo. Echogenic PLGA nanoparticles are an attractive strategy for ultrasound-mediated gene delivery since this polymer is currently approved by the US Food and Drug Administration for drug delivery and diagnostics in cancer, cardiovascular disease, and also other applications such as vaccines and tissue engineering. This paper will review recent successes and the potential of applying PLGA nanoparticles for gene delivery, which include (a echogenic PLGA used with ultrasound to enhance local gene delivery in tumors or muscle and (b PLGA nanoparticles currently under development, which could benefit in the future from ultrasound-enhanced tumor targeted gene delivery.

  4. Tumor-Targeting Salmonella typhimurium A1-R Promotes Tumoricidal CD8+ T Cell Tumor Infiltration and Arrests Growth and Metastasis in a Syngeneic Pancreatic-Cancer Orthotopic Mouse Model.

    Science.gov (United States)

    Murakami, Takashi; Hiroshima, Yukihiko; Zhang, Yong; Zhao, Ming; Kiyuna, Tasuku; Hwang, Ho Kyoung; Miyake, Kentaro; Homma, Yuki; Mori, Ryutaro; Matsuyama, Ryusei; Chishima, Takashi; Ichikawa, Yasushi; Tanaka, Kuniya; Bouvet, Michael; Endo, Itaru; Hoffman, Robert M

    2018-01-01

    The present study determined the effect of the tumor-targeting strain Salmonella typhimurium A1-R (S. typhimurium A1-R) on CD8 + tumor-infiltrating lymphocytes (TILs) in a syngeneic pancreatic-cancer orthotopic mouse model. The effect of tumor-targeting S. typhimurium A1-R on CD8 + TILs was determined on the Pan02 murine pancreatic-adenocarcinoma implanted orthotopically in the pancreatic tail of C57BL/6 immunocompromised mice. Three weeks after orthotopic implantation, mice were randomized as follows G1: untreated control group (n = 8); and G2: S. typhimurium A1-R-treatment group (n = 8, 1 × 10 7 colony forming units [CFU]/body, iv, weekly, 3 weeks). On the 22nd day from initial treatment, all mice were sacrificed and tumors were harvested. The tumor-volume ratio was defined as ratio of tumor volume on the 22nd day relative to the 1st day. The tumor volume ratio was significantly lower in the S. typhimurium A1-R-treated group (G2) (3.0 ± 2.8) than the untreated control (G1) (39.9 ± 30.7, P R-treated mice (G2). Six mice in G1 had peritoneal dissemination, whereas no mice showed peritoneal dissemination in G2 (P R promotes CD8 + T cell infiltration and inhibition of tumor growth and metastasis. J. Cell. Biochem. 119: 634-639, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Intelligent "Peptide-Gathering Mechanical Arm" Tames Wild "Trojan-Horse" Peptides for the Controlled Delivery of Cancer Nanotherapeutics.

    Science.gov (United States)

    Shi, Nian-Qiu; Li, Yan; Zhang, Yong; Shen, Nan; Qi, Ling; Wang, Shu-Ran; Qi, Xian-Rong

    2017-12-06

    Cell-penetrating peptides (CPPs), also called "Trojan-Horse" peptides, have been used for facilitating intracellular delivery of numerous diverse cargoes and even nanocarriers. However, the lack of targeting specificity ("wildness" or nonselectivity) of CPP-nanocarriers remains an intractable challenge for many in vivo applications. In this work, we used an intelligent "peptide-gathering mechanical arm" (Int PMA) to curb CPPs' wildness and enhance the selectivity of R 9 -liposome-based cargo delivery for tumor targeting. The peptide NGR, serving as a cell-targeting peptide for anchoring, and peptide PLGLAG, serving as a substrate peptide for deanchoring, were embedded in the Int PMA motif. The Int PMA construct was designed to be sensitive to tumor microenvironmental stimuli, including aminopeptidase N (CD13) and matrix metalloproteinases (MMP-2/9). Moreover, Int PMA could be specifically recognized by tumor tissues via CD13-mediated anchoring and released for cell entry by MMP-2/9-mediated deanchoring. To test the Int PMA design, a series of experiments were conducted in vitro and in vivo. Functional conjugates Int PMA-R 9 -poly(ethylene glycol) (PEG) 2000 -distearoylphosphatidyl-ethanolamine (DSPE) and R 9 -PEG 2000 -DSPE were synthesized by Michael addition reaction and were characterized by thin-layer chromatography and matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. The Int PMA-R 9 -modified doxorubicin-loaded liposomes (Int PMA-R 9 -Lip-DOX) exhibited a proper particle diameter (approximately 155 nm) with in vitro sustained release characteristics. Cleavage assay showed that Int PMA-R 9 peptide molecules could be cleaved by MMP-2/9 for completion of deanchoring. Flow cytometry and confocal microscopy studies indicated that Int PMA-R 9 -Lip-DOX can respond to both endogenous and exogenous stimuli in the presence/absence of excess MMP-2/9 and MMP-2/9 inhibitor (GM6001) and effectively function under competitive receptor

  6. Multi-small molecule conjugations as new targeted delivery carriers for tumor therapy

    Directory of Open Access Journals (Sweden)

    Shan L

    2015-09-01

    Full Text Available Lingling Shan,1 Ming Liu,2 Chao Wu,1 Liang Zhao,1 Siwen Li,3 Lisheng Xu,1 Wengen Cao,1 Guizhen Gao,1 Yueqing Gu3 1Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou, People’s Republic of China; 2Department of Biology, University of South Dakota, Vermillion, SD, USA; 3Department of Biomedical Engineering, School of Life Science and Technology, China Pharmaceutical University, Nanjing, People’s Republic of China Abstract: In response to the challenges of cancer chemotherapeutics, including poor physicochemical properties, low tumor targeting ability, and harmful side effects, we developed a new tumor-targeted multi-small molecule drug delivery platform. Using paclitaxel (PTX as a model therapeutic, we prepared two prodrugs, ie, folic acid-fluorescein-5(6-isothiocyanate-arginine-paclitaxel (FA-FITC-Arg-PTX and folic acid-5-aminofluorescein-glutamic-paclitaxel (FA-5AF-Glu-PTX, composed of folic acid (FA, target, amino acids (Arg or Glu, linker, and fluorescent dye (fluorescein in vitro or near-infrared fluorescent dye in vivo in order to better understand the mechanism of PTX prodrug targeting. In vitro and acute toxicity studies demonstrated the low toxicity of the prodrug formulations compared with the free drug. In vitro and in vivo studies indicated that folate receptor-mediated uptake of PTX-conjugated multi-small molecule carriers induced high antitumor activity. Notably, compared with free PTX and with PTX-loaded macromolecular carriers from our previous study, this multi-small molecule-conjugated strategy improved the water solubility, loading rate, targeting ability, antitumor activity, and toxicity profile of PTX. These results support the use of multi-small molecules as tumor-targeting drug delivery systems. Keywords: multi-small molecules, paclitaxel, prodrugs, targeting, tumor therapy

  7. Molecular detection and characterization of sustainable intracellular ...

    African Journals Online (AJOL)

    3Centre for Biopolymer and Bio-Molecular Research, Athlone College of Technology, Republic of Ireland. ... cells was associated with the elongation of micro-villar extension that ... Keywords: Intracellular contaminants, cell cultures, bacteria culture, pre-clinical studies. ... production work involving culture technology.

  8. Spatial Cytoskeleton Organization Supports Targeted Intracellular Transport

    Science.gov (United States)

    Hafner, Anne E.; Rieger, Heiko

    2018-03-01

    The efficiency of intracellular cargo transport from specific source to target locations is strongly dependent upon molecular motor-assisted motion along the cytoskeleton. Radial transport along microtubules and lateral transport along the filaments of the actin cortex underneath the cell membrane are characteristic for cells with a centrosome. The interplay between the specific cytoskeleton organization and the motor performance realizes a spatially inhomogeneous intermittent search strategy. In order to analyze the efficiency of such intracellular search strategies we formulate a random velocity model with intermittent arrest states. We evaluate efficiency in terms of mean first passage times for three different, frequently encountered intracellular transport tasks: i) the narrow escape problem, which emerges during cargo transport to a synapse or other specific region of the cell membrane, ii) the reaction problem, which considers the binding time of two particles within the cell, and iii) the reaction-escape problem, which arises when cargo must be released at a synapse only after pairing with another particle. Our results indicate that cells are able to realize efficient search strategies for various intracellular transport tasks economically through a spatial cytoskeleton organization that involves only a narrow actin cortex rather than a cell body filled with randomly oriented actin filaments.

  9. Biological synthesis and characterization of intracellular gold ...

    Indian Academy of Sciences (India)

    In the present study, Aspergillus fumigatus was used for the intracellular synthesis of gold nanoparticles. Stable nanoparticles were produced when an aqueous solution of chloroauric acid (HAuCl4) was reduced by A. fumigatus biomass as the reducing agent. Production of nanoparticles was confirmed by the colour ...

  10. Optimizing Nanoelectrode Arrays for Scalable Intracellular Electrophysiology.

    Science.gov (United States)

    Abbott, Jeffrey; Ye, Tianyang; Ham, Donhee; Park, Hongkun

    2018-03-20

    Electrode technology for electrophysiology has a long history of innovation, with some decisive steps including the development of the voltage-clamp measurement technique by Hodgkin and Huxley in the 1940s and the invention of the patch clamp electrode by Neher and Sakmann in the 1970s. The high-precision intracellular recording enabled by the patch clamp electrode has since been a gold standard in studying the fundamental cellular processes underlying the electrical activities of neurons and other excitable cells. One logical next step would then be to parallelize these intracellular electrodes, since simultaneous intracellular recording from a large number of cells will benefit the study of complex neuronal networks and will increase the throughput of electrophysiological screening from basic neurobiology laboratories to the pharmaceutical industry. Patch clamp electrodes, however, are not built for parallelization; as for now, only ∼10 patch measurements in parallel are possible. It has long been envisioned that nanoscale electrodes may help meet this challenge. First, nanoscale electrodes were shown to enable intracellular access. Second, because their size scale is within the normal reach of the standard top-down fabrication, the nanoelectrodes can be scaled into a large array for parallelization. Third, such a nanoelectrode array can be monolithically integrated with complementary metal-oxide semiconductor (CMOS) electronics to facilitate the large array operation and the recording of the signals from a massive number of cells. These are some of the central ideas that have motivated the research activity into nanoelectrode electrophysiology, and these past years have seen fruitful developments. This Account aims to synthesize these findings so as to provide a useful reference. Summing up from the recent studies, we will first elucidate the morphology and associated electrical properties of the interface between a nanoelectrode and a cellular membrane

  11. Au nanoinjectors for electrotriggered gene delivery into the cell nucleus.

    Science.gov (United States)

    Kang, Mijeong; Kim, Bongsoo

    2015-01-01

    Intracellular delivery of exogenous materials is an essential technique required for many fundamental biological researches and medical treatments. As our understanding of cell structure and function has been improved and diverse therapeutic agents with a subcellular site of action have been continuously developed, there is a demand to enhance the performance of delivering devices. Ideal intracellular delivery devices should convey various kinds of exogenous materials without deteriorating cell viability regardless of cell type and, furthermore, precisely control the location and the timing of delivery as well as the amount of delivered materials for advanced researches.In this chapter the development of a new intracellular delivery device, a nanoinjector made of a Au (gold) nanowire (a Au nanoinjector) is described in which delivery is triggered by external application of an electric pulse. As a model study, a gene was delivered directly into the nucleus of a neuroblastoma cell, and successful delivery without cell damage was confirmed by the expression of the delivered gene. The insertion of a Au nanoinjector directly into a cell can be generally applied to any kind of cell, and a high degree of surface modification of Au allows attachment of diverse materials such as proteins, small molecules, or nanoparticles as well as genes on Au nanoinjectors. This expands their applicability, and it is expected that they will provide important information on the effects of delivered exogenous materials and consequently contribute to the development of related therapeutic or clinical technologies.

  12. Transferrin receptor-targeted pH-sensitive micellar system for diminution of drug resistance and targetable delivery in multidrug-resistant breast cancer

    Directory of Open Access Journals (Sweden)

    Gao W

    2017-02-01

    Full Text Available Wei Gao,1 Guihua Ye,1 Xiaochuan Duan,1 Xiaoying Yang,1 Victor C Yang1,2 1Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics, School of Pharmacy, Tianjin Medical University, Tianjin, People’s Republic of China; 2Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA Abstract: The emergence of drug resistance is partially associated with overproduction of transferrin receptor (TfR. To overcome multidrug resistance (MDR and achieve tumor target delivery, we designed a novel biodegradable pH-sensitive micellar system modified with HAIYPRH, a TfR ligand (7pep. First, the polymers poly(l-histidine-coupled polyethylene glycol-2000 (PHIS-PEG2000 and 7pep-modified 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-polyethylene glycol-2000 (7pep-DSPE-PEG2000 were synthesized, and the mixed micelles were prepared by blending of PHIS-PEG2000 and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-polyethylene glycol-2000 (DSPE-PEG2000 or 7pep-DSPE-PEG2000 (7-pep HD micelles. The micelles exhibited good size uniformity, high encapsulation efficiency, and a low critical micelle concentration. By changing the polymer ratio in the micellar formulation, the pH response range was specially tailored to pH ~6.0. When loaded with antitumor drug doxorubicin (DOX, the micelle showed an acid pH-triggering drug release profile. The cellular uptake and cytotoxicity study demonstrated that 7-pep HD micelles could significantly enhance the intracellular level and antitumor efficacy of DOX in multidrug-resistant cells (MCF-7/Adr, which attributed to the synergistic effect of poly(l-histidine-triggered endolysosom escape and TfR-mediated endocytosis. Most importantly, the in vivo imaging study confirmed the targetability of 7-pep HD micelles to MDR tumor. These findings indicated that 7-pep HD micelles would be a promising drug delivery system in the treatment of drug

  13. Newborn Analgesia Mediated by Oxytocin during Delivery

    Science.gov (United States)

    Mazzuca, Michel; Minlebaev, Marat; Shakirzyanova, Anastasia; Tyzio, Roman; Taccola, Giuliano; Janackova, Sona; Gataullina, Svetlana; Ben-Ari, Yehezkel; Giniatullin, Rashid; Khazipov, Rustem

    2011-01-01

    The mechanisms controlling pain in newborns during delivery are poorly understood. We explored the hypothesis that oxytocin, an essential hormone for labor and a powerful neuromodulator, exerts analgesic actions on newborns during delivery. Using a thermal tail-flick assay, we report that pain sensitivity is two-fold lower in rat pups immediately after birth than 2 days later. Oxytocin receptor antagonists strongly enhanced pain sensitivity in newborn, but not in 2-day-old rats, whereas oxytocin reduced pain at both ages suggesting an endogenous analgesia by oxytocin during delivery. Similar analgesic effects of oxytocin, measured as attenuation of pain-vocalization induced by electrical whisker pad stimulation, were also observed in decerebrated newborns. Oxytocin reduced GABA-evoked calcium responses and depolarizing GABA driving force in isolated neonatal trigeminal neurons suggesting that oxytocin effects are mediated by alterations of intracellular chloride. Unlike GABA signaling, oxytocin did not affect responses mediated by P2X3 and TRPV1 receptors. In keeping with a GABAergic mechanism, reduction of intracellular chloride by the diuretic NKCC1 chloride co-transporter antagonist bumetanide mimicked the analgesic actions of oxytocin and its effects on GABA responses in nociceptive neurons. Therefore, endogenous oxytocin exerts an analgesic action in newborn pups that involves a reduction of the depolarizing action of GABA on nociceptive neurons. Therefore, the same hormone that triggers delivery also acts as a natural pain killer revealing a novel facet of the protective actions of oxytocin in the fetus at birth. PMID:21519396

  14. On the intracellular release mechanism of hydrophobic cargo and its relation to the biodegradation behavior of mesoporous silica nanocarriers.

    Science.gov (United States)

    von Haartman, Eva; Lindberg, Desiré; Prabhakar, Neeraj; Rosenholm, Jessica M

    2016-12-01

    The intracellular release mechanism of hydrophobic molecules from surface-functionalized mesoporous silica nanoparticles was studied in relation to the biodegradation behavior of the nanocarrier, with the purpose of determining the dominant release mechanism for the studied drug delivery system. To be able to follow the real-time intracellular release, a hydrophobic fluorescent dye was used as model drug molecule. The in vitro release of the dye was investigated under varying conditions in terms of pH, polarity, protein and lipid content, presence of hydrophobic structures and ultimately, in live cancer cells. Results of investigating the drug delivery system show that the degradation and drug release mechanisms display a clear interdependency in simple aqueous solvents. In pure aqueous media, the cargo release was primarily dependent on the degradation of the nanocarrier, while in complex media, mimicking intracellular conditions, the physicochemical properties of the cargo molecule itself and its interaction with the carrier and/or surrounding media were found to be the main release-governing factors. Since the material degradation was retarded upon loading with hydrophobic guest molecules, the cargo could be efficiently delivered into live cancer cells and released intracellularly without pronounced premature release under extracellular conditions. From a rational design point of view, pinpointing the interdependency between these two processes can be of paramount importance considering future applications and fundamental understanding of the drug delivery system. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Carrier-free, functionalized pure drug nanorods as a novel cancer-targeted drug delivery platform

    International Nuclear Information System (INIS)

    Li Yanan; An Feifei; Zhang Xiaohong; Yang Yinlong; Liu Zhuang; Zhang Xiujuan

    2013-01-01

    A one-dimensional drug delivery system (1D DDS) is highly attractive since it has distinct advantages such as enhanced drug efficiency and better pharmacokinetics. However, drugs in 1D DDSs are all encapsulated in inert carriers, and problems such as low drug loading content and possible undesirable side effects caused by the carriers remain a serious challenge. In this paper, a novel, carrier-free, pure drug nanorod-based, tumor-targeted 1D DDS has been developed. Drugs are first prepared as nanorods and then surface functionalized to achieve excellent water dispersity and stability. The resulting drug nanorods show enhanced internalization rates mainly through energy-dependent endocytosis, with the shape-mediated nanorod (NR) diffusion process as a secondary pathway. The multiple endocytotic mechanisms lead to significantly improved drug efficiency of functionalized NRs with nearly ten times higher cytotoxicity than those of free molecules and unfunctionalized NRs. A targeted drug delivery system can be readily achieved through surface functionalization with targeting group linked amphipathic surfactant, which exhibits significantly enhanced drug efficacy and discriminates between cell lines with high selectivity. These results clearly show that this tumor-targeting DDS demonstrates high potential toward specific cancer cell lines. (paper)

  16. Overcoming T. gondii infection and intracellular protein nanocapsules as biomaterials for ultrasonically controlled drug release.

    Science.gov (United States)

    Aw, M S; Paniwnyk, L

    2017-09-26

    One of the pivotal matters of concern in intracellular drug delivery is the preparation of biomaterials containing drugs that are compatible with the host target. Nanocapsules for oral delivery are found to be suitable candidates for targeting Toxoplasma gondii (T. gondii), a maneuvering and smart protozoic parasite found across Europe and America that causes a subtle but deadly infection. To overcome this disease, there is much potential of integrating protein-based cells into bioinspired nanocompartments such as via biodegradable cross-linked disulfide polyelectrolyte nanoparticles. The inner membrane vesicle system of these protein-drugs is not as simple as one might think. It is a complex transport network that includes sequential pathways, namely, endocytosis, exocytosis and autophagy. Unfortunately, the intracellular trafficking routes for nanoparticles in cells have not been extensively and intensively investigated. Hence, there lies the need to create robust protein nanocapsules for precise tracing and triggering of drug release to combat this protozoic disease. Protein nanocapsules have the advantage over other biomaterials due to their biocompatibility, use of natural ingredients, non-invasiveness, patient compliance, cost and time effectiveness. They also offer low maintenance, non-toxicity to healthy cells and a strictly defined route toward intracellular elimination through controlled drug delivery within the therapeutic window. This review covers the unprecedented opportunities that exist for constructing advanced nanocapsules to meet the growing needs arising from many therapeutic fields. Their versatile use includes therapeutic ultrasound for tumor imaging, recombinant DNA, ligand and functional group binding, the delivery of drugs and peptides via protein nanocapsules and polyelectrolytes, ultrasound-(US)-aided drug release through the gastrointestinal (GI) tract, and the recent progress in targeting tumor cells and a vast range of cancer therapies

  17. Intracellular Crosslinking of Filoviral Nucleoproteins with Xintrabodies Restricts Viral Packaging

    Directory of Open Access Journals (Sweden)

    Tamarand Lee Darling

    2017-09-01

    intracellular NP using relatively small amounts of dimeric sdAb to restrict NP packaging. The stoichiometry and ease of application of the approach would likely benefit from transitioning away from intracellular expression of crosslinking sdAb to exogenous delivery of antibody. By retuning sdAb specificity, the approach of crosslinking highly conserved regions of assembly critical proteins may well be applicable to inhibiting replication processes of a broad spectrum of viruses.

  18. Delivery of Cargo to Lysosomes Using GNeosomes.

    Science.gov (United States)

    Hamill, Kristina M; Wexselblatt, Ezequiel; Tong, Wenyong; Esko, Jeffrey D; Tor, Yitzhak

    2017-01-01

    Liposomes have been used to improve the intracellular delivery of a variety of cargos. Encapsulation of cargos in liposomes leads to improved plasma half-lives and minimized degradation. Here, we present a method for improving the selective delivery of liposomes to the lysosomes using a guanidinylated neomycin (GNeo) transporter. The method for synthesizing GNeo-lipids, incorporating them into liposomes, and the enhanced lysosomal delivery of encapsulated cargo are presented. GNeo-liposomes, termed GNeosomes, are capable of delivering a fluorescent dye to the lysosomes of Chinese hamster ovary cells as shown using confocal microscopy. GNeosomes can also be used to deliver therapeutic quantities of lysosomal enzymes to fibroblasts isolated from patients with a lysosomal storage disorder.

  19. Dynamics of gradient formation by intracellular shuttling

    Energy Technology Data Exchange (ETDEWEB)

    Berezhkovskii, Alexander M. [Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892 (United States); Shvartsman, Stanislav Y. [Department of Chemical and Biological Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544 (United States)

    2015-08-21

    A number of important cellular functions rely on the formation of intracellular protein concentration gradients. Experimental studies discovered a number of mechanisms for the formation of such gradients. One of the mechanisms relies on the intracellular shuttling of a protein that interconverts between the two states with different diffusivities, under the action of two enzymes, one of which is localized to the plasma membrane, whereas the second is uniformly distributed in the cytoplasm. Recent work reported an analytical solution for the steady state gradient in this mechanism, obtained in the framework of a one-dimensional reaction-diffusion model. Here, we study the dynamics in this model and derive analytical expressions for the Laplace transforms of the time-dependent concentration profiles in terms of elementary transcendental functions. Inverting these transforms numerically, one can obtain time-dependent concentration profiles of the two forms of the protein.

  20. Leishmania hijacking of the macrophage intracellular compartments.

    Science.gov (United States)

    Liévin-Le Moal, Vanessa; Loiseau, Philippe M

    2016-02-01

    Leishmania spp., transmitted to humans by the bite of the sandfly vector, are responsible for the three major forms of leishmaniasis, cutaneous, diffuse mucocutaneous and visceral. Leishmania spp. interact with membrane receptors of neutrophils and macrophages. In macrophages, the parasite is internalized within a parasitophorous vacuole and engages in a particular intracellular lifestyle in which the flagellated, motile Leishmania promastigote metacyclic form differentiates into non-motile, metacyclic amastigote form. This phenomenon is induced by Leishmania-triggered events leading to the fusion of the parasitophorous vacuole with vesicular members of the host cell endocytic pathway including recycling endosomes, late endosomes and the endoplasmic reticulum. Maturation of the parasitophorous vacuole leads to the intracellular proliferation of the Leishmania amastigote forms by acquisition of host cell nutrients while escaping host defense responses. © 2015 FEBS.

  1. Reduction of intracellular glutathione content and radiosensitivity

    International Nuclear Information System (INIS)

    Vos, O.; Schans, G.P. van der; Roos-Verheij, W.S.D.

    1986-05-01

    The intracellular glutathione (GSH) content in HeLa, CHO and V79 cells was reduced by incubating the cells in growth medium containing buthionine sulfoximine (BSO) or diethyl maleate (DEM). Clonogenicity, single strand DNA breaks (ssb) and double strand DNA breaks (dsb) were used as criteria for radiation induced damage after X- or γ irradiation. In survival experiments DEM gave a slightly larger sensitization although it gave a smaller reduction of the intracellular GSH. In general, sensitization was larger for dsb than for ssb, also the reduction of the OER was generally larger for dsb than for ssb. This may be due to the higher dose rate in case of dsb experiments resulting in a higher rate of radiochemical oxygen consumption. In general, no effect was found on post-irradiation repair of ssb and dsb. (Auth.)

  2. Reduction of intracellular glutathione content and radiosensitivity

    International Nuclear Information System (INIS)

    Vos, O.; Schans, G.P. van der; Roos-Verheij, W.S.D.

    1986-01-01

    The intracellular glutathione (GSH) content of HeLa, CHO and V79 cells was reduced by incubating the cells in growth medium containing buthionine sulphoximine or diethyl maleate (DEM). Clonogenicity, single-strand DNA breaks (ssb) and double-strand DNA breaks (dsb) were used as criteria for radiation-induced damage after X- or γ-irradiation. In survival experiments, DEM gave a slightly larger sensitization although it gave a smaller reduction of the intracellular GSH. In general, sensitization was larger for dsb than for ssb, also the reduction of the o.e.r. was generally larger for dsb than for ssb. This may be due to the higher dose rate in case of dsb experiments resulting in a higher rate of radiochemical oxygen consumption. In general, no effect was found on post-irradiation repair of ssb and dsb. (author)

  3. Intracellular mechanisms of solar water disinfection

    Science.gov (United States)

    Castro-Alférez, María; Polo-López, María Inmaculada; Fernández-Ibáñez, Pilar

    2016-12-01

    Solar water disinfection (SODIS) is a zero-cost intervention measure to disinfect drinking water in areas of poor access to improved water sources, used by more than 6 million people in the world. The bactericidal action of solar radiation in water has been widely proven, nevertheless the causes for this remain still unclear. Scientific literature points out that generation of reactive oxygen species (ROS) inside microorganisms promoted by solar light absorption is the main reason. For the first time, this work reports on the experimental measurement of accumulated intracellular ROS in E. coli during solar irradiation. For this experimental achievement, a modified protocol based on the fluorescent probe dichlorodihydrofluorescein diacetate (DCFH-DA), widely used for oxidative stress in eukaryotic cells, has been tested and validated for E. coli. Our results demonstrate that ROS and their accumulated oxidative damages at intracellular level are key in solar water disinfection.

  4. Intracellular serpins, firewalls and tissue necrosis.

    Science.gov (United States)

    Marciniak, Stefan J; Lomas, David A

    2008-02-01

    Luke and colleagues have recently attributed a new role to a member of the serpin superfamily of serine proteinase inhibitors. They have used Caenorhabditis elegans to show that an intracellular serpin is crucial for maintaining lysosomal integrity. We examine the role of this firewall in preventing necrosis and attempt to integrate this with current theories of stress-induced protein degradation. We discuss how mutant serpins cause disease either through polymerization or now, perhaps, by unleashing necrosis.

  5. Fluorescent nanoparticles for intracellular sensing: A review

    International Nuclear Information System (INIS)

    Ruedas-Rama, Maria J.; Walters, Jamie D.; Orte, Angel; Hall, Elizabeth A.H.

    2012-01-01

    Highlights: ► Analytical applications of fluorescent nanoparticles (NPs) in intracellular sensing. ► Critical review on performance of QDots, metal NPs, silica NPs, and polymer NPs. ► Highlighted potential of fluorescence lifetime imaging microscopy (FLIM). - Abstract: Fluorescent nanoparticles (NPs), including semiconductor NPs (Quantum Dots), metal NPs, silica NPs, polymer NPs, etc., have been a major focus of research and development during the past decade. The fluorescent nanoparticles show unique chemical and optical properties, such as brighter fluorescence, higher photostability and higher biocompatibility, compared to classical fluorescent organic dyes. Moreover, the nanoparticles can also act as multivalent scaffolds for the realization of supramolecular assemblies, since their high surface to volume ratio allow distinct spatial domains to be functionalized, which can provide a versatile synthetic platform for the implementation of different sensing schemes. Their excellent properties make them one of the most useful tools that chemistry has supplied to biomedical research, enabling the intracellular monitoring of many different species for medical and biological purposes. In this review, we focus on the developments and analytical applications of fluorescent nanoparticles in chemical and biological sensing within the intracellular environment. The review also points out the great potential of fluorescent NPs for fluorescence lifetime imaging microscopy (FLIM). Finally, we also give an overview of the current methods for delivering of fluorescent NPs into cells, where critically examine the benefits and liabilities of each strategy.

  6. Fluorescent nanoparticles for intracellular sensing: A review

    Energy Technology Data Exchange (ETDEWEB)

    Ruedas-Rama, Maria J., E-mail: mjruedas@ugr.esmailto [Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Campus Cartuja, 18071, Granada (Spain); Walters, Jamie D. [Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, UK CB2 1QT (United Kingdom); Orte, Angel [Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Campus Cartuja, 18071, Granada (Spain); Hall, Elizabeth A.H., E-mail: lisa.hall@biotech.cam.ac.uk [Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT (United Kingdom)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer Analytical applications of fluorescent nanoparticles (NPs) in intracellular sensing. Black-Right-Pointing-Pointer Critical review on performance of QDots, metal NPs, silica NPs, and polymer NPs. Black-Right-Pointing-Pointer Highlighted potential of fluorescence lifetime imaging microscopy (FLIM). - Abstract: Fluorescent nanoparticles (NPs), including semiconductor NPs (Quantum Dots), metal NPs, silica NPs, polymer NPs, etc., have been a major focus of research and development during the past decade. The fluorescent nanoparticles show unique chemical and optical properties, such as brighter fluorescence, higher photostability and higher biocompatibility, compared to classical fluorescent organic dyes. Moreover, the nanoparticles can also act as multivalent scaffolds for the realization of supramolecular assemblies, since their high surface to volume ratio allow distinct spatial domains to be functionalized, which can provide a versatile synthetic platform for the implementation of different sensing schemes. Their excellent properties make them one of the most useful tools that chemistry has supplied to biomedical research, enabling the intracellular monitoring of many different species for medical and biological purposes. In this review, we focus on the developments and analytical applications of fluorescent nanoparticles in chemical and biological sensing within the intracellular environment. The review also points out the great potential of fluorescent NPs for fluorescence lifetime imaging microscopy (FLIM). Finally, we also give an overview of the current methods for delivering of fluorescent NPs into cells, where critically examine the benefits and liabilities of each strategy.

  7. Intracellular Cholesterol Trafficking and Impact in Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Fabian Arenas

    2017-11-01

    Full Text Available Cholesterol is a critical component of membrane bilayers where it plays key structural and functional roles by regulating the activity of diverse signaling platforms and pathways. Particularly enriched in brain, cholesterol homeostasis in this organ is singular with respect to other tissues and exhibits a heterogeneous regulation in distinct brain cell populations. Due to the key role of cholesterol in brain physiology and function, alterations in cholesterol homeostasis and levels have been linked to brain diseases and neurodegeneration. In the case of Alzheimer disease (AD, however, this association remains unclear with evidence indicating that either increased or decreased total brain cholesterol levels contribute to this major neurodegenerative disease. Here, rather than analyzing the role of total cholesterol levels in neurodegeneration, we focus on the contribution of intracellular cholesterol pools, particularly in endolysosomes and mitochondria through its trafficking via specialized membrane domains delineated by the contacts between endoplasmic reticulum and mitochondria, in the onset of prevalent neurodegenerative diseases such as AD, Parkinson disease, and Huntington disease as well as in lysosomal disorders like Niemann-Pick type C disease. We dissect molecular events associated with intracellular cholesterol accumulation, especially in mitochondria, an event that results in impaired mitochondrial antioxidant defense and function. A better understanding of the mechanisms involved in the distribution of cholesterol in intracellular compartments may shed light on the role of cholesterol homeostasis disruption in neurodegeneration and may pave the way for specific intervention opportunities.

  8. A bacteriophage endolysin that eliminates intracellular streptococci

    Science.gov (United States)

    Shen, Yang; Barros, Marilia; Vennemann, Tarek; Gallagher, D Travis; Yin, Yizhou; Linden, Sara B; Heselpoth, Ryan D; Spencer, Dennis J; Donovan, David M; Moult, John; Fischetti, Vincent A; Heinrich, Frank; Lösche, Mathias; Nelson, Daniel C

    2016-01-01

    PlyC, a bacteriophage-encoded endolysin, lyses Streptococcus pyogenes (Spy) on contact. Here, we demonstrate that PlyC is a potent agent for controlling intracellular Spy that often underlies refractory infections. We show that the PlyC holoenzyme, mediated by its PlyCB subunit, crosses epithelial cell membranes and clears intracellular Spy in a dose-dependent manner. Quantitative studies using model membranes establish that PlyCB interacts strongly with phosphatidylserine (PS), whereas its interaction with other lipids is weak, suggesting specificity for PS as its cellular receptor. Neutron reflection further substantiates that PlyC penetrates bilayers above a PS threshold concentration. Crystallography and docking studies identify key residues that mediate PlyCB–PS interactions, which are validated by site-directed mutagenesis. This is the first report that a native endolysin can traverse epithelial membranes, thus substantiating the potential of PlyC as an antimicrobial for Spy in the extracellular and intracellular milieu and as a scaffold for engineering other functionalities. DOI: http://dx.doi.org/10.7554/eLife.13152.001 PMID:26978792

  9. Assisted delivery with forceps

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000509.htm Assisted delivery with forceps To use the sharing features on ... called vacuum assisted delivery . When is a Forceps Delivery Needed? Even after your cervix is fully dilated ( ...

  10. Intracellular trafficking pathways of Cx43 gap junction channels.

    Science.gov (United States)

    Epifantseva, Irina; Shaw, Robin M

    2018-01-01

    Gap Junction (GJ) channels, including the most common Connexin 43 (Cx43), have fundamental roles in excitable tissues by facilitating rapid transmission of action potentials between adjacent cells. For instance, synchronization during each heartbeat is regulated by these ion channels at the cardiomyocyte cell-cell border. Cx43 protein has a short half-life, and rapid synthesis and timely delivery of those proteins to particular subdomains are crucial for the cellular organization of gap junctions and maintenance of intracellular coupling. Impairment in gap junction trafficking contributes to dangerous complications in diseased hearts such as the arrhythmias of sudden cardiac death. Of recent interest are the protein-protein interactions with the Cx43 carboxy-terminus. These interactions have significant impact on the full length Cx43 lifecycle and also contribute to trafficking of Cx43 as well as possibly other functions. We are learning that many of the known non-canonical roles of Cx43 can be attributed to the recently identified six endogenous Cx43 truncated isoforms which are produced by internal translation. In general, alternative translation is a new leading edge for proteome expansion and therapeutic drug development. This review highlights recent mechanisms identified in the trafficking of gap junction channels, involvement of other proteins contributing to the delivery of channels to the cell-cell border, and understanding of possible roles of the newly discovered alternatively translated isoforms in Cx43 biology. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Cholera toxin subunit B-mediated intracellular trafficking of mesoporous silica nanoparticles toward the endoplasmic reticulum

    Science.gov (United States)

    Walker, William Andrew

    In recent decades, pharmaceutical research has led to the development of numerous treatments for human disease. Nanoscale delivery systems have the potential to maximize therapeutic outcomes by enabling target specific delivery of these therapeutics. The intracellular localization of many of these materials however, is poorly controlled, leading to sequestration in degradative cellular pathways and limiting the efficacy of their payloads. Numerous proteins, particularly bacterial toxins, have evolved mechanisms to subvert the degradative mechanisms of the cell. Here, we have investigated a possible strategy for shunting intracellular delivery of encapsulated cargoes from these pathways by modifying mesoporous silica nanoparticles (MSNs) with the well-characterized bacterial toxin Cholera toxin subunit B (CTxB). Using established optical imaging methods we investigated the internalization, trafficking, and subcellular localization of our modified MSNs in an in vitro animal cell model. We then attempted to demonstrate the practical utility of this approach by using CTxB-modified mesoporous silica nanoparticles to deliver propidium iodide, a membrane-impermeant fluorophore.

  12. Study of interactions between cells and microbubbles in high speed centrifugation field for biomolecule delivery.

    Science.gov (United States)

    He, Chuan; Chen, Jie

    2014-01-01

    Biomolecule delivery has a very wide range of applications in biology and medicine. In this study, a microbubble based delivery method was developed. In a high centrifugation field, cells deform and collide with microbubbles to induce intracellular pathways on cell membranes. As a result, biomaterials can then easily enter cells. Experimental results show that this delivery method can achieve high delivery efficiency. Simulation results showed that cells with more deformed structure experienced higher strain on cell membranes than cells with less deformed structure. The models can help explain how centrifugation affects cell membrane permeability. By controlling cell morphology and its mechanical properties, high biomolecule delivery efficiency can be achieved.

  13. T cells enhance gold nanoparticle delivery to tumors in vivo

    Science.gov (United States)

    Kennedy, Laura C.; Bear, Adham S.; Young, Joseph K.; Lewinski, Nastassja A.; Kim, Jean; Foster, Aaron E.; Drezek, Rebekah A.

    2011-12-01

    Gold nanoparticle-mediated photothermal therapy (PTT) has shown great potential for the treatment of cancer in mouse studies and is now being evaluated in clinical trials. For this therapy, gold nanoparticles (AuNPs) are injected intravenously and are allowed to accumulate within the tumor via the enhanced permeability and retention (EPR) effect. The tumor is then irradiated with a near infrared laser, whose energy is absorbed by the AuNPs and translated into heat. While reliance on the EPR effect for tumor targeting has proven adequate for vascularized tumors in small animal models, the efficiency and specificity of tumor delivery in vivo, particularly in tumors with poor blood supply, has proven challenging. In this study, we examine whether human T cells can be used as cellular delivery vehicles for AuNP transport into tumors. We first demonstrate that T cells can be efficiently loaded with 45 nm gold colloid nanoparticles without affecting viability or function (e.g. migration and cytokine production). Using a human tumor xenograft mouse model, we next demonstrate that AuNP-loaded T cells retain their capacity to migrate to tumor sites in vivo. In addition, the efficiency of AuNP delivery to tumors in vivo is increased by more than four-fold compared to injection of free PEGylated AuNPs and the use of the T cell delivery system also dramatically alters the overall nanoparticle biodistribution. Thus, the use of T cell chaperones for AuNP delivery could enhance the efficacy of nanoparticle-based therapies and imaging applications by increasing AuNP tumor accumulation.

  14. Uncertainces in tumor target definition using PET

    International Nuclear Information System (INIS)

    Kirov, A.

    2013-01-01

    Full text: Introduction: PET entered into the clinics for radiation therapy as a means of displaying the metabolically active part of the tumor. However this advantage, PET has a number of shortcomings that prevent its use for precise determination of the tumor boundaries. What you will learn: The aim of the lecture is to present: the requirements for the accuracy of the determination of tumor boundaries in radiation therapy; the main phenomena which bring uncertainty using PET and a brief overview of methods for segmentation of tumors and their problems

  15. Diaminobenzidine photoconversion is a suitable tool for tracking the intracellular location of fluorescently labelled nanoparticles at transmission electron microscopy

    Directory of Open Access Journals (Sweden)

    M. Malatesta

    2012-04-01

    Full Text Available Chitosan-based nanoparticles (NPs deserve particular attention as suitable drug carriers in the field of pharmaceutics, since they are able to protect the encapsulated drugs and/or improve their efficacy by making them able to cross biological barriers (such as the blood-brain barrier and reach their intracellular target sites. Understanding the intracellular location of NPs is crucial for designing drug delivery strategies. In this study, fluorescently-labelled chitosan NPs were administered in vitro to a neuronal cell line, and diaminobenzidine (DAB photoconversion was applied to correlate fluorescence and transmission electron microscopy to precisely describe the NPs intracellular fate. This technique allowed to demonstrate that chitosan NPs easily enter neuronal cells, predominantly by endocytosis; they were found both inside membrane-bounded vesicles and free in the cytosol, and were observed to accumulate around the cell nucleus.

  16. Azithromycin effectiveness against intracellular infections of Francisella

    Directory of Open Access Journals (Sweden)

    Mann Barbara J

    2010-04-01

    Full Text Available Abstract Background Macrolide antibiotics are commonly administered for bacterial respiratory illnesses. Azithromycin (Az is especially noted for extremely high intracellular concentrations achieved within macrophages which is far greater than the serum concentration. Clinical strains of Type B Francisella (F. tularensis have been reported to be resistant to Az, however our laboratory Francisella strains were found to be sensitive. We hypothesized that different strains/species of Francisella (including Type A may have different susceptibilities to Az, a widely used and well-tolerated antibiotic. Results In vitro susceptibility testing of Az confirmed that F. tularensis subsp. holarctica Live Vaccine Strain (LVS (Type B was not sensitive while F. philomiragia, F. novicida, and Type A F. tularensis (NIH B38 and Schu S4 strain were susceptible. In J774A.1 mouse macrophage cells infected with F. philomiragia, F. novicida, and F. tularensis LVS, 5 μg/ml Az applied extracellularly eliminated intracellular Francisella infections. A concentration of 25 μg/ml Az was required for Francisella-infected A549 human lung epithelial cells, suggesting that macrophages are more effective at concentrating Az than epithelial cells. Mutants of RND efflux components (tolC and ftlC in F. novicida demonstrated less sensitivity to Az by MIC than the parental strain, but the tolC disc-inhibition assay demonstrated increased sensitivity, indicating a complex role for the outer-membrane transporter. Mutants of acrA and acrB mutants were less sensitive to Az than the parental strain, suggesting that AcrAB is not critical for the efflux of Az in F. novicida. In contrast, F. tularensis Schu S4 mutants ΔacrB and ΔacrA were more sensitive than the parental strain, indicating that the AcrAB may be important for Az efflux in F. tularensis Schu S4. F. novicida LPS O-antigen mutants (wbtN, wbtE, wbtQ and wbtA were found to be less sensitive in vitro to Az compared to the wild

  17. Internalization, Trafficking, Intracellular Processing and Actions of Antibody-Drug Conjugates.

    Science.gov (United States)

    Xu, Shi

    2015-11-01

    This review discusses the molecular mechanism involved in the targeting and delivery of antibody-drug conjugates (ADCs), the new class of biopharmaceuticals mainly designed for targeted cancer therapy. this review goes over major progress in preclinical and clinical studies of ADCs, in the past 5 years. The pharmacokinetics and pharmacodynamics of ADCs involve multiple mechanisms, including internalization of ADCs by target cells, intracellular trafficking, release of conjugated drugs, and payload. These mechanisms actually jointly determine the efficacy of ADCs. Therefore, the optimization of ADCs should take them as necessary rationales.

  18. Aptamers for Targeted Drug Delivery

    Directory of Open Access Journals (Sweden)

    Partha Ray

    2010-05-01

    Full Text Available Aptamers are a class of therapeutic oligonucleotides that form specific three-dimensional structures that are dictated by their sequences. They are typically generated by an iterative screening process of complex nucleic acid libraries employing a process termed Systemic Evolution of Ligands by Exponential Enrichment (SELEX. SELEX has traditionally been performed using purified proteins, and cell surface receptors may be challenging to purify in their properly folded and modified conformations. Therefore, relatively few aptamers have been generated that bind cell surface receptors. However, improvements in recombinant fusion protein technology have increased the availability of receptor extracellular domains as purified protein targets, and the development of cell-based selection techniques has allowed selection against surface proteins in their native configuration on the cell surface. With cell-based selection, a specific protein target is not always chosen, but selection is performed against a target cell type with the goal of letting the aptamer choose the target. Several studies have demonstrated that aptamers that bind cell surface receptors may have functions other than just blocking receptor-ligand interactions. All cell surface proteins cycle intracellularly to some extent, and many surface receptors are actively internalized in response to ligand binding. Therefore, aptamers that bind cell surface receptors have been exploited for the delivery of a variety of cargoes into cells. This review focuses on recent progress and current challenges in the field of aptamer-mediated delivery.

  19. Transdermal drug delivery

    OpenAIRE

    Prausnitz, Mark R.; Langer, Robert

    2008-01-01

    Transdermal drug delivery has made an important contribution to medical practice, but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. First-generation transdermal delivery systems have continued their steady increase in clinical use for delivery of small, lipophilic, low-dose drugs. Second-generation delivery systems using chemical enhancers, non-cavitational ultrasound and iontophoresis have also resulted in clinical products; the ability ...

  20. Intracellular bacteria: the origin of dinoflagellate toxicity.

    Science.gov (United States)

    Silva, E S

    1990-01-01

    Dinoflagellate blooms of the same species have been registered either as toxic or nontoxic and, in the latter case, toxicity may be of different types. A hypothesis has been formulated according to which the bacteria having in some way taken part in the toxin formation are either inside the dinoflagellate cell or in the nutritive liquid. The presence of intracellular bacteria in those microorganisms has been studied mainly in material from cultures, a few from the sea, and several strains were isolated from different species. Experiments with crossed inoculations have shown that the bacterial strain from Gonyaulax tamarensis caused the cells of some other species to become toxic. From nontoxic clonal cultures of Prorocentrum balticum, Glenodinium foliaceum, and Gyrodinium instriatum, after inoculation of that bacterial strain, cultures were obtained whose cell extracts showed the same kind of toxicity as G. tamarensis. No toxic action could be found in the extracts of the bacterial cells form the assayed strains. The interference of intracellular bacteria in the metabolism of dinoflagellates must be the main cause of their toxicity.

  1. Fluorescent nanoparticles for intracellular sensing: a review.

    Science.gov (United States)

    Ruedas-Rama, Maria J; Walters, Jamie D; Orte, Angel; Hall, Elizabeth A H

    2012-11-02

    Fluorescent nanoparticles (NPs), including semiconductor NPs (Quantum Dots), metal NPs, silica NPs, polymer NPs, etc., have been a major focus of research and development during the past decade. The fluorescent nanoparticles show unique chemical and optical properties, such as brighter fluorescence, higher photostability and higher biocompatibility, compared to classical fluorescent organic dyes. Moreover, the nanoparticles can also act as multivalent scaffolds for the realization of supramolecular assemblies, since their high surface to volume ratio allow distinct spatial domains to be functionalized, which can provide a versatile synthetic platform for the implementation of different sensing schemes. Their excellent properties make them one of the most useful tools that chemistry has supplied to biomedical research, enabling the intracellular monitoring of many different species for medical and biological purposes. In this review, we focus on the developments and analytical applications of fluorescent nanoparticles in chemical and biological sensing within the intracellular environment. The review also points out the great potential of fluorescent NPs for fluorescence lifetime imaging microscopy (FLIM). Finally, we also give an overview of the current methods for delivering of fluorescent NPs into cells, where critically examine the benefits and liabilities of each strategy. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Mechanisms of cellular invasion by intracellular parasites.

    Science.gov (United States)

    Walker, Dawn M; Oghumu, Steve; Gupta, Gaurav; McGwire, Bradford S; Drew, Mark E; Satoskar, Abhay R

    2014-04-01

    Numerous disease-causing parasites must invade host cells in order to prosper. Collectively, such pathogens are responsible for a staggering amount of human sickness and death throughout the world. Leishmaniasis, Chagas disease, toxoplasmosis, and malaria are neglected diseases and therefore are linked to socio-economical and geographical factors, affecting well-over half the world's population. Such obligate intracellular parasites have co-evolved with humans to establish a complexity of specific molecular parasite-host cell interactions, forming the basis of the parasite's cellular tropism. They make use of such interactions to invade host cells as a means to migrate through various tissues, to evade the host immune system, and to undergo intracellular replication. These cellular migration and invasion events are absolutely essential for the completion of the lifecycles of these parasites and lead to their for disease pathogenesis. This review is an overview of the molecular mechanisms of protozoan parasite invasion of host cells and discussion of therapeutic strategies, which could be developed by targeting these invasion pathways. Specifically, we focus on four species of protozoan parasites Leishmania, Trypanosoma cruzi, Plasmodium, and Toxoplasma, which are responsible for significant morbidity and mortality.

  3. [Intracellular signaling mechanisms in thyroid cancer].

    Science.gov (United States)

    Mondragón-Terán, Paul; López-Hernández, Luz Berenice; Gutiérrez-Salinas, José; Suárez-Cuenca, Juan Antonio; Luna-Ceballos, Rosa Isela; Erazo Valle-Solís, Aura

    2016-01-01

    Thyroid cancer is the most common malignancy of the endocrine system, the papillary variant accounts for 80-90% of all diagnosed cases. In the development of papillary thyroid cancer, BRAF and RAS genes are mainly affected, resulting in a modification of the system of intracellular signaling proteins known as «protein kinase mitogen-activated» (MAPK) which consist of «modules» of internal signaling proteins (Receptor/Ras/Raf/MEK/ERK) from the cell membrane to the nucleus. In thyroid cancer, these signanling proteins regulate diverse cellular processes such as differentiation, growth, development and apoptosis. MAPK play an important role in the pathogenesis of thyroid cancer as they are used as molecular biomarkers for diagnostic, prognostic and as possible therapeutic molecular targets. Mutations in BRAF gene have been correlated with poor response to treatment with traditional chemotherapy and as an indicator of poor prognosis. To review the molecular mechanisms involved in intracellular signaling of BRAF and RAS genes in thyroid cancer. Molecular therapy research is in progress for this type of cancer as new molecules have been developed in order to inhibit any of the components of the signaling pathway (RET/PTC)/Ras/Raf/MEK/ERK; with special emphasis on the (RET/PTC)/Ras/Raf section, which is a major effector of ERK pathway. Copyright © 2016 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  4. Evaluation of carrier-mediated siRNA delivery

    DEFF Research Database (Denmark)

    Colombo, Stefano; Nielsen, Hanne Mørck; Foged, Camilla

    2013-01-01

    RNA delivery. An in vitro cell culture model system expressing enhanced green fluorescent protein (EGFP) was used to develop the assay, which was based on the intracellular quantification of a full-length double-stranded Dicer substrate siRNA by stem-loop RT qPCR. The result is a well-documented protocol......RNA delivered by use of carriers remains an analytical challenge. The purpose of the present study was to optimize and validate an analytical protocol based on stem-loop reverse transcription quantitative polymerase chain reaction (RT qPCR) to quantitatively monitor the carrier-mediated intracellular si...

  5. Peptides for Specific Intracellular Delivery and Targeting of Nanoparticles: Implications for Developing Nanoparticle-Mediated Drug Delivery

    Science.gov (United States)

    2010-01-01

    less in size and span an array of compositions including met- als, semiconductor quantum dots (QDs), oxides, polymers , vesicles (e.g., micelles...93,98] Polymers Poly(lactic-co-glycolic acid), poly(amido amine) and dendrimers Biocompatibility, biodegradability and controlled release High drug...Secondary interactions Covalent atachment to surface ligand Thiolated peptide Biotinylated peptide Aminated peptide Sulfo-NHS Tetravalent streptavidin

  6. Hybrid Nanomaterial Complexes for Advanced Phage-guided Gene Delivery

    Directory of Open Access Journals (Sweden)

    Teerapong Yata

    2014-01-01

    Full Text Available Developing nanomaterials that are effective, safe, and selective for gene transfer applications is challenging. Bacteriophages (phage, viruses that infect bacteria only, have shown promise for targeted gene transfer applications. Unfortunately, limited progress has been achieved in improving their potential to overcome mammalian cellular barriers. We hypothesized that chemical modification of the bacteriophage capsid could be applied to improve targeted gene delivery by phage vectors into mammalian cells. Here, we introduce a novel hybrid system consisting of two classes of nanomaterial systems, cationic polymers and M13 bacteriophage virus particles genetically engineered to display a tumor-targeting ligand and carry a transgene cassette. We demonstrate that the phage complex with cationic polymers generates positively charged phage and large aggregates that show enhanced cell surface attachment, buffering capacity, and improved transgene expression while retaining cell type specificity. Moreover, phage/polymer complexes carrying a therapeutic gene achieve greater cancer cell killing than phage alone. This new class of hybrid nanomaterial platform can advance targeted gene delivery applications by bacteriophage.

  7. Intracellular targeting of mercaptoundecahydrododecaborate (BSH) to malignant glioma by transferrin-PEG liposomes for boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Doi, Atsushi; Miyatake, Shin-ichi; Iida, Kyouko

    2006-01-01

    Malignant glioma is one of the most difficult tumor to control with usual therapies. In our institute, we select boron neutron capture therapy (BNCT) as an adjuvant radiation therapy after surgical resection. This therapy requires the selective delivery of high concentration of 10 B to malignant tumor tissue. In this study, we focused on a tumor-targeting 10 B delivery system (BDS) for BNCT that uses transferrin-conjugated polyethylene-glycol liposome encapsulating BSH (TF-PEG liposome-BSH) and compared 10 B uptake of the tumor among BSH, PEG liposome-BSH and TF-PEG liposome-BSH. In vitro, we analyzed 10 B concentration of the cultured human U87Δ glioma cells incubated in medium containing 20 μg 10 B/ml derived from each BDS by inductively coupled plasma atomic emission spectrometry (ICP-AES). In vivo, human U87Δ glioma-bearing nude mice were administered with each BDS (35mg 10 B/kg) intravenously. We analyzed 10 B concentration of tumor, normal brain and blood by ICP-AES. The TF-PEG liposome-BSH showed higher absolute concentration more than the other BDS. Moreover, TF-PEG liposome-BSH decreased 10 B concentration in blood and normal tissue while it maintained high 10 B concentration in tumor tissue for a couple of days. This showed the TF-PEG liposome-BSH caused the selective delivery of high concentration of 10 B to malignant tumor tissue. The TF-PEG liposome-BSH is more potent BDS for BNCT to obtain absolute high 10 B concentration and good contrast between tumor and normal tissue than BSH and PEG liposome-BSH. (author)

  8. Transdermal drug delivery

    Science.gov (United States)

    Prausnitz, Mark R.; Langer, Robert

    2009-01-01

    Transdermal drug delivery has made an important contribution to medical practice, but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. First-generation transdermal delivery systems have continued their steady increase in clinical use for delivery of small, lipophilic, low-dose drugs. Second-generation delivery systems using chemical enhancers, non-cavitational ultrasound and iontophoresis have also resulted in clinical products; the ability of iontophoresis to control delivery rates in real time provides added functionality. Third-generation delivery systems target their effects to skin’s barrier layer of stratum corneum using microneedles, thermal ablation, microdermabrasion, electroporation and cavitational ultrasound. Microneedles and thermal ablation are currently progressing through clinical trials for delivery of macromolecules and vaccines, such as insulin, parathyroid hormone and influenza vaccine. Using these novel second- and third-generation enhancement strategies, transdermal delivery is poised to significantly increase impact on medicine. PMID:18997767

  9. New mechanisms for non-porative ultrasound stimulation of cargo delivery to cell cytosol with targeted perfluorocarbon nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Soman, N R; Marsh, J N; Lanza, G M; Wickline, S A [Washington University School of Medicine, Consortium for Translational Research in Advanced Imaging and Nanomedicine, CTRAIN, Campus Box 8215, St Louis, MO 63110 (United States)], E-mail: saw@wuphys.wustl.edu

    2008-05-07

    The cell membrane constitutes a major barrier for non-endocytotic intracellular delivery of therapeutic molecules from drug delivery vehicles. Existing approaches to breaching the cell membrane include cavitational ultrasound (with microbubbles), electroporation and cell-penetrating peptides. We report the use of diagnostic ultrasound for intracellular delivery of therapeutic bulky cargo with the use of molecularly targeted liquid perfluorocarbon (PFC) nanoparticles. To demonstrate the concept, we used a lipid with a surrogate polar head group, nanogold-DPPE, incorporated into the nanoparticle lipid monolayer. Melanoma cells were incubated with nanogold particles and this was followed by insonication with continuous wave ultrasound (2.25 MHz, 5 min, 0.6 MPa). Cells not exposed to ultrasound showed gold particles partitioned only in the outer bilayer of the cell membrane with no evidence of the intracellular transit of nanogold. However, the cells exposed to ultrasound exhibited numerous nanogold-DPPE components inside the cell that appeared polarized inside intracellular vesicles demonstrating cellular uptake and trafficking. Further, ultrasound-exposed cells manifested no incorporation of calcein or the release of lactate dehydrogenase. These observations are consistent with a mechanism that suggests that ultrasound is capable of stimulating the intracellular delivery of therapeutic molecules via non-porative mechanisms. Therefore, non-cavitational adjunctive ultrasound offers a novel paradigm in intracellular cargo delivery from PFC nanoparticles.

  10. New mechanisms for non-porative ultrasound stimulation of cargo delivery to cell cytosol with targeted perfluorocarbon nanoparticles

    International Nuclear Information System (INIS)

    Soman, N R; Marsh, J N; Lanza, G M; Wickline, S A

    2008-01-01

    The cell membrane constitutes a major barrier for non-endocytotic intracellular delivery of therapeutic molecules from drug delivery vehicles. Existing approaches to breaching the cell membrane include cavitational ultrasound (with microbubbles), electroporation and cell-penetrating peptides. We report the use of diagnostic ultrasound for intracellular delivery of therapeutic bulky cargo with the use of molecularly targeted liquid perfluorocarbon (PFC) nanoparticles. To demonstrate the concept, we used a lipid with a surrogate polar head group, nanogold-DPPE, incorporated into the nanoparticle lipid monolayer. Melanoma cells were incubated with nanogold particles and this was followed by insonication with continuous wave ultrasound (2.25 MHz, 5 min, 0.6 MPa). Cells not exposed to ultrasound showed gold particles partitioned only in the outer bilayer of the cell membrane with no evidence of the intracellular transit of nanogold. However, the cells exposed to ultrasound exhibited numerous nanogold-DPPE components inside the cell that appeared polarized inside intracellular vesicles demonstrating cellular uptake and trafficking. Further, ultrasound-exposed cells manifested no incorporation of calcein or the release of lactate dehydrogenase. These observations are consistent with a mechanism that suggests that ultrasound is capable of stimulating the intracellular delivery of therapeutic molecules via non-porative mechanisms. Therefore, non-cavitational adjunctive ultrasound offers a novel paradigm in intracellular cargo delivery from PFC nanoparticles

  11. New mechanisms for non-porative ultrasound stimulation of cargo delivery to cell cytosol with targeted perfluorocarbon nanoparticles

    Science.gov (United States)

    Soman, N. R.; Marsh, J. N.; Lanza, G. M.; Wickline, S. A.

    2008-05-01

    The cell membrane constitutes a major barrier for non-endocytotic intracellular delivery of therapeutic molecules from drug delivery vehicles. Existing approaches to breaching the cell membrane include cavitational ultrasound (with microbubbles), electroporation and cell-penetrating peptides. We report the use of diagnostic ultrasound for intracellular delivery of therapeutic bulky cargo with the use of molecularly targeted liquid perfluorocarbon (PFC) nanoparticles. To demonstrate the concept, we used a lipid with a surrogate polar head group, nanogold-DPPE, incorporated into the nanoparticle lipid monolayer. Melanoma cells were incubated with nanogold particles and this was followed by insonication with continuous wave ultrasound (2.25 MHz, 5 min, 0.6 MPa). Cells not exposed to ultrasound showed gold particles partitioned only in the outer bilayer of the cell membrane with no evidence of the intracellular transit of nanogold. However, the cells exposed to ultrasound exhibited numerous nanogold-DPPE components inside the cell that appeared polarized inside intracellular vesicles demonstrating cellular uptake and trafficking. Further, ultrasound-exposed cells manifested no incorporation of calcein or the release of lactate dehydrogenase. These observations are consistent with a mechanism that suggests that ultrasound is capable of stimulating the intracellular delivery of therapeutic molecules via non-porative mechanisms. Therefore, non-cavitational adjunctive ultrasound offers a novel paradigm in intracellular cargo delivery from PFC nanoparticles.

  12. MRI-guided targeting delivery of doxorubicin with reduction-responsive lipid-polymer hybrid nanoparticles

    Directory of Open Access Journals (Sweden)

    Wu B

    2017-09-01

    Full Text Available Bo Wu,1,2 Shu-Ting Lu,1 Kai Deng,2 Hui Yu,2 Can Cui,2 Yang Zhang,2 Ming Wu,2 Ren-Xi Zhuo,2 Hai-Bo Xu,1 Shi-Wen Huang2 1Department of Radiology, Zhongnan Hospital of Wuhan University, 2Key Laboratory of Biomedical Polymers, Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, People’s Republic of China Abstract: In recent years, there has been increasing interest in developing a multifunctional nanoscale platform for cancer monitoring and chemotherapy. However, there is still a big challenge for current clinic contrast agents to improve their poor tumor selectivity and response. Herein, we report a new kind of Gd complex and folate-coated redox-sensitive lipid-polymer hybrid nanoparticle (Gd-FLPNP for tumor-targeted magnetic resonance imaging and therapy. Gd-FLPNPs can simultaneously accomplish diagnostic imaging, and specific targeting and controlled release of doxorubicin (DOX. They exhibit good monodispersity, excellent size stability, and a well-defined core-shell structure. Paramagnetic nanoparticles based on gadolinium-diethylenetriaminepentaacetic acid-bis-cetylamine have paramagnetic properties with an approximately two-fold enhancement in the longitudinal relaxivity compared to clinical used Magnevist. For targeted and reduction-sensitive drug delivery, Gd-FLPNPs released DOX faster and enhanced cell uptake in vitro, and exhibited better antitumor effect both in vitro and in vivo. Keywords: redox-sensitive, tumor-targeted, gadolinium, contrast agents, PLGA

  13. Self-Assembled Nanocarriers Based on Amphiphilic Natural Polymers for Anti- Cancer Drug Delivery Applications.

    Science.gov (United States)

    Sabra, Sally; Abdelmoneem, Mona; Abdelwakil, Mahmoud; Mabrouk, Moustafa Taha; Anwar, Doaa; Mohamed, Rania; Khattab, Sherine; Bekhit, Adnan; Elkhodairy, Kadria; Freag, May; Elzoghby, Ahmed

    2017-01-01

    Micellization provides numerous merits for the delivery of water insoluble anti-cancer therapeutic agents including a nanosized 'core-shell' drug delivery system. Recently, hydrophobically-modified polysaccharides and proteins are attracting much attention as micelle forming polymers to entrap poorly soluble anti-cancer drugs. By virtue of their small size, the self-assembled micelles can passively target tumor tissues via enhanced permeation and retention effect (EPR). Moreover, the amphiphilic micelles can be exploited for active-targeted drug delivery by attaching specific targeting ligands to the outer micellar hydrophilic surface. Here, we review the conjugation techniques, drug loading methods, physicochemical characteristics of the most important amphiphilic polysaccharides and proteins used as anti-cancer drug delivery systems. Attention focuses on the mechanisms of tumor-targeting and enhanced anti-tumor efficacy of the encapsulated drugs. This review will highlight the remarkable advances of hydrophobized polysaccharide and protein micelles and their potential applications as anti-cancer drug delivery nanosystems. Micellar nanocarriers fabricated from amphiphilic natural polymers hold great promise as vehicles for anti-cancer drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Ascorbyl palmitate/d-α-tocopheryl polyethylene glycol 1000 succinate monoester mixed micelles for prolonged circulation and targeted delivery of compound K for antilung cancer therapy in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2017-01-01

    Full Text Available Youwen Zhang, Deyin Tong, Daobiao Che, Bing Pei, Xiaodong Xia, Gaofeng Yuan, Xin Jin Department of Hospital Pharmacy, The First Hospital of Suqian, Suqian, People’s Republic of China Abstract: The roles of ginsenoside compound K (CK in inhibiting tumor have been widely recognized in recent years. However, low water solubility and significant P-gp efflux have restricted its application. In this study, CK ascorbyl palmitate (AP/d-α-tocopheryl polyethylene glycol 1000 succinate monoester (TPGS mixed micelles were prepared as a delivery system to increase the absorption and targeted antitumor effect of CK. Consequently, the solubility of CK increased from 35.2±4.3 to 1,463.2±153.3 µg/mL. Furthermore, in an in vitro A549 cell model, CK AP/TPGS mixed micelles significantly inhibited cell growth, induced G0/G1 phase cell cycle arrest, induced cell apoptosis, and inhibited cell migration compared to free CK, all indicating that the developed micellar delivery system could increase the antitumor effect of CK in vitro. Both in vitro cellular fluorescence uptake and in vivo near-infrared imaging studies indicated that AP/TPGS mixed micelles can promote cellular uptake and enhance tumor targeting. Moreover, studies in the A549 lung cancer xenograft mouse model showed that CK AP/TPGS mixed micelles are an efficient tumor-targeted drug delivery system with an effective antitumor effect. Western blot analysis further confirmed that the marked antitumor effect in vivo could likely be due to apoptosis promotion and P-gp efflux inhibition. Therefore, these findings suggest that the AP/TPGS mixed micellar delivery system could be an efficient delivery strategy for enhanced tumor targeting and antitumor effects. Keywords: ginsenoside CK, ascorbyl palmitate, TPGS, mixed micelles, anti-tumor therapy

  15. Natural material-decorated mesoporous silica nanoparticle container for multifunctional membrane-controlled targeted drug delivery

    Directory of Open Access Journals (Sweden)

    Hu Y

    2017-11-01

    Full Text Available Yan Hu,1 Lei Ke,2 Hao Chen,1 Ma Zhuo,1 Xinzhou Yang,1 Dan Zhao,1 Suying Zeng,1 Xincai Xiao1 1Department of Pharmaceutics, School of Pharmaceutical Science, South-Central University for Nationalities, 2Department of Medicinal Chemistry, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China Abstract: To avoid the side effects caused by nonspecific targeting, premature release, weak selectivity, and poor therapeutic efficacy of current nanoparticle-based systems used for drug delivery, we fabricated natural material-decorated nanoparticles as a multifunctional, membrane-controlled targeted drug delivery system. The nanocomposite material coated with a membrane was biocompatible and integrated both specific tumor targeting and responsiveness to stimulation, which improved transmission efficacy and controlled drug release. Mesoporous silica nanoparticles (MSNs, which are known for their biocompatibility and high drug-loading capacity, were selected as a model drug container and carrier. The membrane was established by the polyelectrolyte composite method from chitosan (CS which was sensitive to the acidic tumor microenvironment, folic acid-modified CS which recognizes the folate receptor expressed on the tumor cell surface, and a CD44 receptor-targeted polysaccharide hyaluronic acid. We characterized the structure of the nanocomposite as well as the drug release behavior under the control of the pH-sensitive membrane switch and evaluated the antitumor efficacy of the system in vitro. Our results provide a basis for the design and fabrication of novel membrane-controlled nanoparticles with improved tumor-targeting therapy. Keywords: multifunctional, membrane-controlled, natural materials, mesoporous silica nanoparticles, targeted drug delivery

  16. Drosophila VAMP7 regulates Wingless intracellular trafficking.

    Science.gov (United States)

    Gao, Han; He, Fang; Lin, Xinhua; Wu, Yihui

    2017-01-01

    Drosophila Wingless (Wg) is a morphogen that determines cell fate during development. Previous studies have shown that endocytic pathways regulate Wg trafficking and signaling. Here, we showed that loss of vamp7, a gene required for vesicle fusion, dramatically increased Wg levels and decreased Wg signaling. Interestingly, we found that levels of Dally-like (Dlp), a glypican that can interact with Wg to suppress Wg signaling at the dorsoventral boundary of the Drosophila wing, were also increased in vamp7 mutant cells. Moreover, Wg puncta in Rab4-dependent recycling endosomes were Dlp positive. We hypothesize that VAMP7 is required for Wg intracellular trafficking and the accumulation of Wg in Rab4-dependent recycling endosomes might affect Wg signaling.

  17. Intracellular pH in sperm physiology.

    Science.gov (United States)

    Nishigaki, Takuya; José, Omar; González-Cota, Ana Laura; Romero, Francisco; Treviño, Claudia L; Darszon, Alberto

    2014-08-01

    Intracellular pH (pHi) regulation is essential for cell function. Notably, several unique sperm ion transporters and enzymes whose elimination causes infertility are either pHi dependent or somehow related to pHi regulation. Amongst them are: CatSper, a Ca(2+) channel; Slo3, a K(+) channel; the sperm-specific Na(+)/H(+) exchanger and the soluble adenylyl cyclase. It is thus clear that pHi regulation is of the utmost importance for sperm physiology. This review briefly summarizes the key components involved in pHi regulation, their characteristics and participation in fundamental sperm functions such as motility, maturation and the acrosome reaction. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Intracellular Signalling by C-Peptide

    Directory of Open Access Journals (Sweden)

    Claire E. Hills

    2008-01-01

    Full Text Available C-peptide, a cleavage product of the proinsulin molecule, has long been regarded as biologically inert, serving merely as a surrogate marker for insulin release. Recent findings demonstrate both a physiological and protective role of C-peptide when administered to individuals with type I diabetes. Data indicate that C-peptide appears to bind in nanomolar concentrations to a cell surface receptor which is most likely to be G-protein coupled. Binding of C-peptide initiates multiple cellular effects, evoking a rise in intracellular calcium, increased PI-3-kinase activity, stimulation of the Na+/K+ ATPase, increased eNOS transcription, and activation of the MAPK signalling pathway. These cell signalling effects have been studied in multiple cell types from multiple tissues. Overall these observations raise the possibility that C-peptide may serve as a potential therapeutic agent for the treatment or prevention of long-term complications associated with diabetes.

  19. Intracellular sphingosine releases calcium from lysosomes.

    Science.gov (United States)

    Höglinger, Doris; Haberkant, Per; Aguilera-Romero, Auxiliadora; Riezman, Howard; Porter, Forbes D; Platt, Frances M; Galione, Antony; Schultz, Carsten

    2015-11-27

    To elucidate new functions of sphingosine (Sph), we demonstrate that the spontaneous elevation of intracellular Sph levels via caged Sph leads to a significant and transient calcium release from acidic stores that is independent of sphingosine 1-phosphate, extracellular and ER calcium levels. This photo-induced Sph-driven calcium release requires the two-pore channel 1 (TPC1) residing on endosomes and lysosomes. Further, uncaging of Sph leads to the translocation of the autophagy-relevant transcription factor EB (TFEB) to the nucleus specifically after lysosomal calcium release. We confirm that Sph accumulates in late endosomes and lysosomes of cells derived from Niemann-Pick disease type C (NPC) patients and demonstrate a greatly reduced calcium release upon Sph uncaging. We conclude that sphingosine is a positive regulator of calcium release from acidic stores and that understanding the interplay between Sph homeostasis, calcium signaling and autophagy will be crucial in developing new therapies for lipid storage disorders such as NPC.

  20. [Limbic encephalitis with antibodies against intracellular antigens].

    Science.gov (United States)

    Morita, Akihiko; Kamei, Satoshi

    2010-04-01

    Limbic encephalitis is a paraneoplastic syndrome that is often associated with small cell lung cancer (SCLC), breast cancer, testicular tumors, teratoma, Hodgkin's lymphoma and thymoma. The common clinical manifestations of limbic encephalitis are subacute onset, cognitive dysfunction, seizures and psychiatric symptoms. Paraneoplastic neurological disorders are considered to occur because of cytotoxic T cell responses and antibodies against target neuronal proteins that are usually expressed by an underlying tumor. The main intracellular antigens related to limbic encephalitis are Hu, Ma2, and less frequently CV2/CRMP5 and amphiphysin. The anti-Hu antibody, which is involved in cerebellar degeneration and extensive or multifocal encephalomyelitis such as limbic encephalitis is closely associated with a history of smoking and SCLC. The anti-Ma2 antibody is associated with encephalitis of the limbic system, hypothalamus and brain-stem. For this reason, some patients with limbic encephalitis have sleep disorders (including REM sleep abnormalities), severe hypokinesis and gaze palsy in addition to limbic dysfunction. In men aged less than 50 years, anti-Ma2 antibody encephalitis is almost always associated with testicular germ-cell tumors that are occasionally difficult to detect. In older men and women, the most common tumors are non-SCLC and breast cancer. Limbic encephalitis associated with cell-surface antigens (e.g., voltage-gated potassium channels, NMDA receptors) is mediated by antibodies and often improves after a reduction in the antibody titer and after tumor resection. Patients with antibodies against intracellular antigens, except for those with anti-Ma2 antibodies and testicular tumors, are less responsive. Early diagnosis and treatment with immunotherapy, tumor resection or both are important for improving or stabilizing the condition of limbic encephalitis.

  1. Atazanavir intracellular concentrations remain stable during pregnancy in HIV-infected patients.

    Science.gov (United States)

    Focà, Emanuele; Calcagno, Andrea; Bonito, Andrea; Simiele, Marco; Domenighini, Elisabetta; D'Avolio, Antonio; Quiros Roldan, Eugenia; Trentini, Laura; Casari, Salvatore; Di Perri, Giovanni; Castelli, Francesco; Bonora, Stefano

    2017-11-01

    Atazanavir (300 mg) boosted by ritonavir (100 mg) is the preferred third drug in pregnancy. However, there is still discordance on atazanavir dose increase during the third trimester. To evaluate plasma and intracellular atazanavir and ritonavir concentrations in HIV-infected women during pregnancy and after delivery. This was an observational study. HIV-infected pregnant patients treated with atazanavir/ritonavir plus either tenofovir/emtricitabine or abacavir/lamivudine had been prospectively enrolled after having signed a written informed consent form. Plasma and intracellular atazanavir and ritonavir Ctrough (24 ± 3 h after drug intake) were measured at each visit during the first, second and third trimesters and post-partum using validated HPLC-MS and HPLC-photodiode array methods (with direct evaluation of cellular volume). Data are described as median (IQR) and compared through non-parametric tests. Twenty-five patients were enrolled; at baseline, the median age was 32 years (27-35). All patients had plasma HIV RNA  0.05). This is the first demonstration that intracellular atazanavir exposure remains unchanged during pregnancy supporting the standard 300/100 mg atazanavir/ritonavir dosing throughout pregnancy. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Single-cell intracellular nano-pH probes†

    OpenAIRE

    Özel, Rıfat Emrah; Lohith, Akshar; Mak, Wai Han; Pourmand, Nader

    2015-01-01

    Within a large clonal population, such as cancerous tumor entities, cells are not identical, and the differences between intracellular pH levels of individual cells may be important indicators of heterogeneity that could be relevant in clinical practice, especially in personalized medicine. Therefore, the detection of the intracellular pH at the single-cell level is of great importance to identify and study outlier cells. However, quantitative and real-time measurements of the intracellular p...

  3. eDelivery

    Data.gov (United States)

    US Agency for International Development — eDelivery provides the electronic packaging and delivery of closed and complete OPM investigation files to government agencies, including USAID, in a secure manner....

  4. Vacuum-assisted delivery

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000514.htm Vacuum-assisted delivery To use the sharing features on this page, ... through the birth canal. When is Vacuum-assisted Delivery Needed? Even after your cervix is fully dilated ( ...

  5. Efficient intracellular delivery of 5-fluorodeoxyuridine into colon cancer cells by targeted immunoliposomes

    NARCIS (Netherlands)

    Koning, GA; Kamps, JAAM; Scherphof, GL

    2002-01-01

    Immunoliposomes, liposomes with monoclonal antibodies attached, are being developed for targeting the anti-cancer drug 5-fluoro-2'-deoxyuridine (FUdR) to colon cancer cells. A monoclonal antibody against the rat colon carcinoma CC531 was covalently coupled to liposomes containing a dipalmitoylated

  6. Improved intracellular delivery of glucocerebrosidase mediated by the HIV-1 TAT protein transduction domain

    International Nuclear Information System (INIS)

    Lee, Kyun Oh; Luu, Nga; Kaneski, Christine R.; Schiffmann, Raphael; Brady, Roscoe O.; Murray, Gary J.

    2005-01-01

    Enzyme replacement therapy (ERT) for Gaucher disease designed to target glucocerebrosidase (GC) to macrophages via mannose-specific endocytosis is very effective in reversing hepatosplenomegaly, and normalizing hematologic parameters but is less effective in improving bone and lung involvement and ineffective in brain. Recombinant GCs containing an in-frame fusion to the HIV-1 trans-activator protein transduction domain (TAT) were expressed in eukaryotic cells in order to obtain active, normally glycosylated GC fusion proteins for enzyme uptake studies. Despite the absence of mannose-specific endocytic receptors on the plasma membranes of various fibroblasts, the recombinant GCs with C-terminal TAT fusions were readily internalized by these cells. Immunofluorescent confocal microscopy demonstrated the recombinant TAT-fusion proteins with a mixed endosomal and lysosomal localization. Thus, TAT-modified GCs represent a novel strategy for a new generation of therapeutic enzymes for ERT for Gaucher disease

  7. Paclitaxel Encapsulated in Halloysite Clay Nanotubes for Intestinal and Intracellular Delivery.

    Science.gov (United States)

    Yendluri, Raghuvara; Lvov, Yuri; de Villiers, Melgardt M; Vinokurov, Vladimir; Naumenko, Ekaterina; Tarasova, Evgenya; Fakhrullin, Rawil

    2017-10-01

    Naturally formed halloysite tubules have a length of 1 μm and lumens with a diameter of 12-15 nm which can be loaded with drugs. Halloysite's biocompatibility allows for its safe delivering to cells at a concentration of up to 0.5 mg/mL. We encapsulated the anticancer drug paclitaxel in halloysite and evaluated the drug release kinetics in simulated gastric and intestinal conditions. To facilitate maximum drug release in intestinal tract, halloysite tubes were coated with the pH-responsive polymer poly(methacrylic acid-co-methyl methacrylate). Release kinetics indicated a triggered drug release pattern at higher pH, corresponding to digestive tract environment. Tablets containing halloysite, loaded with paclitaxel, as a compression excipient were formulated with drug release occurring at a sustained rate. In vitro anticancer effects of paclitaxel-loaded halloysite nanotubes were evaluated on human cancer cells. In all the treated cell samples, polyploid nuclei of different sizes and fragmented chromatin were observed, indicating a high therapeutic effect of halloysite formulated paclitaxel. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  8. Selective intracellular delivery of dexamethasone into activated endothelial cells using an E-selectin-directed immunoconjugate

    NARCIS (Netherlands)

    Kok, RJ; Asgeirsdottir, SA; Melgert, BN; Moolenaar, TJM; Koning, GA; van Luyn, MJA; Meijer, DKF; Molema, G

    2002-01-01

    In chronic inflammatory diseases, the endothelium is an attractive target for pharmacological intervention because it plays an important role in leukocyte recruitment. Hence, inhibition of endothelial cell activation and consequent leukocyte infiltration may improve therapeutic outcome in these

  9. Reduction-sensitive dextran nanogels aimed for intracellular delivery of antigens

    NARCIS (Netherlands)

    Li, Dandan; Kordalivand, Neda; Fransen, Marieke F.; Ossendorp, Ferry; Raemdonck, Koen; Vermonden, Tina; Hennink, Wim E.; Van Nostrum, Cornelus F.

    2015-01-01

    Targeting of antigens to dendritic cells (DCs) to induce strong cellular immune response can be established by loading in a nano-sized carrier and keeping the antigen associated with the particles until they are internalized by DCs. In the present study, a model antigen (ovalbumin, OVA) is

  10. A prodrug strategy based on chitosan for efficient intracellular anticancer drug delivery

    International Nuclear Information System (INIS)

    Chen, Cheng; Zhou, Jiang-Ling; Han, Xue; Song, Fei; Wang, Xiu-Li; Wang, Yu-Zhong

    2014-01-01

    Doxorubicin (DOX), one of the most widely used anticancer drugs, is restricted in clinical application due to its severe side effects and inefficient cellular uptake. To overcome the drawbacks, herein, an endosomal pH-activated prodrug was designed and fabricated by conjugating DOX with chitosan via an acid-cleavable hydrazone bond. The resulting DOX conjugates can self-assemble into nano-sized particles, which were very stable and presented no burst release of DOX at a neutral pH condition. Notably, the nanoparticles exhibited excellent cell uptake properties and a remarkable drug accumulation in tumor cells. Once internalized into the cells, moreover, DOX can be fast released from the nanoparticles, and the release mechanism changed from the anomalous transport at pH 7.4 to the combination pattern of diffusion- and erosion-controlled release at pH 6.0 or 5.0. The prodrugs showed obvious cytotoxicity for HeLa cells with fairly low IC 50 values, offering a new platform for targeted cancer therapy. (papers)

  11. Effective intracellular delivery of oligonucleotides in order to make sense of antisense

    NARCIS (Netherlands)

    Shi, FX; Hoekstra, D

    2004-01-01

    For more than two decades, antisense oligonucleotides (ODNs) have been used to modulate gene expression for the purpose of applications in cell biology and for development of novel sophisticated medical therapeutics. Conceptually, the antisense approach represents an elegant strategy, involving the

  12. Human DMBT1-Derived Cell-Penetrating Peptides for Intracellular siRNA Delivery

    DEFF Research Database (Denmark)

    Tuttolomondo, Martina; Casella, Cinzia; Hansen, Pernille Lund

    2017-01-01

    tumor 1) is a pattern recognition molecule that interacts with polyanions and recognizes and aggregates bacteria. Taking advantage of these properties, we investigated whether specific synthetic DMBT1-derived peptides could be used to formulate nanoparticles for siRNA administration. Using......-potential, circular dichroism, dynamic light scattering, and transmission electron microscopy revealed negatively charged nanoparticles with an average diameter of 10-800 nm, depending on the reaction conditions, and a spherical or rice-shaped morphology, depending on the peptide and β-helix conformation. We...

  13. Stearylated cycloarginine nanosystems for intracellular delivery - simulations, formulation and proof of concept

    Czech Academy of Sciences Publication Activity Database

    Dhawan, V.; Magarkar, Aniket; Joshi, G.; Makhija, D.; Jain, A.; Shah, J.; Reddy, B. V. V.; Krishnapriya, M.; Róg, T.; Bunker, A.; Jagtap, A.; Nagarsenker, M.

    2016-01-01

    Roč. 6, č. 114 (2016), s. 113538-113550 ISSN 2046-2069 Institutional support: RVO:61388963 Keywords : cell-penetrating peptides * anti-angiogenic therapy * molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.108, year: 2016

  14. pH/redox dual-sensitive dextran nanogels for enhanced intracellular drug delivery.

    Science.gov (United States)

    Curcio, Manuela; Diaz-Gomez, Luis; Cirillo, Giuseppe; Concheiro, Angel; Iemma, Francesca; Alvarez-Lorenzo, Carmen

    2017-08-01

    pH/redox dual-responsive nanogels (DEX-SS) were prepared by precipitation polymerization of methacrylated dextran (DEXMA), 2-aminoethylmethacrylate (AEMA) and N,N'-bis(acryloyl)cystamine (BAC), and then loaded with methotrexate (MTX). Nanogels were spherical and exhibited homogeneous size distribution (460nm, PDI<0.30) as observed using dynamic light scattering (DLS) and scanning electron microscopy (SEM). DEX-SS were sensitive to the variations of pH and redox environment. Nanogels incubated in buffer pH 5.0 containing 10mM glutathione (GSH) synergistically increased the mean diameter and the PDI to 750nm and 0.42, respectively. In vitro release experiments were performed at pH 7.4 and 5.0 with and without GSH. The cumulative release of MTX in pH 5.0 medium with 10mMGSH was 5-fold higher than that recorded at pH 7.4 without GSH. Fibroblasts and tumor cells were used to tests the effects of blank DEX-SS and MTX@DEX-SS nanogels on cell viability. Remarkable influence of pH on nanogels internalization into HeLa cells was evidenced by means of confocal microscopy and flow cytometry. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. High Turnover of Tissue Factor Enables Efficient Intracellular Delivery of Antibody-Drug Conjugates

    DEFF Research Database (Denmark)

    de Goeij, Bart E.C.G.; Satijn, D.; Freitag, C. M.

    2015-01-01

    specificities. TF-ADC demonstrated effective killing against tumor cell lines with variable levels of target expression. In xenograft models, TF-ADC was relatively potent in reducing tumor growth compared with EGFR-and HER2-ADCs. We hypothesize that the constant turnover of TF on tumor cells makes this protein...

  16. Influence of serum albumin on intracellular delivery of drug-loaded hyaluronan polymeric micelles

    Czech Academy of Sciences Publication Activity Database

    Nešporová, K.; Sogorková, J.; Smejkalova, D.; Kulhánek, J.; Huerta-Angeles, G.; Kubala, Lukáš; Velebný, V.

    2016-01-01

    Roč. 511, č. 1 (2016), s. 638-647 ISSN 0378-5173 Institutional support: RVO:68081707 Keywords : Polymeric micelle * Hyaluronan * Fatty acid Subject RIV: BO - Biophysics Impact factor: 3.649, year: 2016

  17. Articulating feedstock delivery device

    Science.gov (United States)

    Jordan, Kevin

    2013-11-05

    A fully articulable feedstock delivery device that is designed to operate at pressure and temperature extremes. The device incorporates an articulating ball assembly which allows for more accurate delivery of the feedstock to a target location. The device is suitable for a variety of applications including, but not limited to, delivery of feedstock to a high-pressure reaction chamber or process zone.

  18. [Development of a Novel Liposomal DDS by Manipulating Pharmacokinetics and Intracellular Trafficking for Drug Therapy and Nucleic Acid Medicine].

    Science.gov (United States)

    Hatakeyama, Hiroto

    2018-01-01

     Nucleic acid therapy is expected to be a next generation medicine. We recently developed a multifunctional envelope-type nano device (MEND) for use as a novel delivery system. The modification of polyethylene glycol (PEG), i.e., PEGylation, is useful for achieving the delivery of MENDs to tumors via an enhanced permeability and retention (EPR) effect. However, PEGylation strongly inhibits the cellular uptake and endosomal escape of MEND, which results in significant loss of action, and therefore lost effectiveness, of the cargo therapeutic. For successful nucleic acid delivery in cancer treatment, the crucial problem associated with the use of PEG, known as the "PEG dilemma", must be solved. In this review, we describe the development and application of MEND in overcoming the PEG dilemma based on manipulating both the pharmacokinetics and intracellular trafficking of cellular uptake and endosomal release using a cleavable PEG lipid, a pH-sensitive fusogenic peptide, and a pH-sensitive cationic lipid. We also developed dual-ligand liposomes with a controlled diameter of around 300 nm, then modified these with a specific ligand and a cell penetrating peptide designed to target the neovasculature of tumors. Dual-ligand liposomes could induce an anti-tumor effect in drug resistant tumors by delivering drugs to tumor blood vessels, rather than to the cancer cells themselves. Here, we review our recent efforts to develop a novel liposomal drug delivery system (DDS) by manipulating pharmacokinetics and intracellular trafficking for drug therapy and nucleic acid medicine.

  19. Emerging Technologies of Polymeric Nanoparticles in Cancer Drug Delivery

    Directory of Open Access Journals (Sweden)

    Erik Brewer

    2011-01-01

    Full Text Available Polymeric nanomaterials have the potential to improve upon present chemotherapy delivery methods. They successfully reduce side effects while increasing dosage, increase residence time in the body, offer a sustained and tunable release, and have the ability to deliver multiple drugs in one carrier. However, traditional nanomaterial formulations have not produced highly therapeutic formulations to date due to their passive delivery methods and lack of rapid drug release at their intended site. In this paper, we have focused on a few “smart” technologies that further enhance the benefits of typical nanomaterials. Temperature and pH-responsive drug delivery devices were reviewed as methods for triggering release of encapsulating drugs, while aptamer and ligand conjugation were discussed as methods for targeted and intracellular delivery, with emphases on in vitro and in vivo works for each method.

  20. Emerging Technologies of Polymeric Nanoparticles in Cancer Drug Delivery

    International Nuclear Information System (INIS)

    Brewer, E.; Coleman, J.; Lowman, A.

    2011-01-01

    Polymeric nanomaterials have the potential to improve upon present chemotherapy delivery methods. They successfully reduce side effects while increasing dosage, increase residence time in the body, offer a sustained and tunable release, and have the ability to deliver multiple drugs in one carrier. However, traditional nanomaterial formulations have not produced highly therapeutic formulations to date due to their passive delivery methods and lack of rapid drug release at their intended site. In this paper, we have focused on a few smart technologies that further enhance the benefits of typical nanomaterials. Temperature and pH-responsive drug delivery devices were reviewed as methods for triggering release of encapsulating drugs, while aptamer and ligand conjugation were discussed as methods for targeted and intracellular delivery, with emphases on in vitro and in vivo works for each method.

  1. Rapid endosomal escape of prickly nanodiamonds: implications for gene delivery

    Science.gov (United States)

    Chu, Zhiqin; Miu, Kaikei; Lung, Pingsai; Zhang, Silu; Zhao, Saisai; Chang, Huan-Cheng; Lin, Ge; Li, Quan

    2015-06-01

    The prickly nanodiamonds easily entered cells via endocytosis followed by unique intracellular translocation characteristics—quick endosomal escape followed by stable residence in cytoplasm. Endosomal membrane rupturing is identified as the major route of nanodiamonds’ escaping the vesicle confinement and to the cytoplasm. Little cytotoxicity is observed to associate with the nanodiamonds’ cytosolic release. Such features enable its application for gene delivery, which requires both effective cellular uptake and cytosolic release of the gene. Taking green fluorescent protein gene as an example, we demonstrate the successful cytosolic delivery and expression of such a gene using the prickly nanodiamonds as carrier.

  2. Rapid endosomal escape of prickly nanodiamonds: implications for gene delivery

    Science.gov (United States)

    Chu, Zhiqin; Miu, Kaikei; Lung, Pingsai; Zhang, Silu; Zhao, Saisai; Chang, Huan-Cheng; Lin, Ge; Li, Quan

    2015-01-01

    The prickly nanodiamonds easily entered cells via endocytosis followed by unique intracellular translocation characteristics—quick endosomal escape followed by stable residence in cytoplasm. Endosomal membrane rupturing is identified as the major route of nanodiamonds’ escaping the vesicle confinement and to the cytoplasm. Little cytotoxicity is observed to associate with the nanodiamonds’ cytosolic release. Such features enable its application for gene delivery, which requires both effective cellular uptake and cytosolic release of the gene. Taking green fluorescent protein gene as an example, we demonstrate the successful cytosolic delivery and expression of such a gene using the prickly nanodiamonds as carrier. PMID:26123532

  3. Rapid endosomal escape of prickly nanodiamonds: implications for gene delivery.

    Science.gov (United States)

    Chu, Zhiqin; Miu, Kaikei; Lung, Pingsai; Zhang, Silu; Zhao, Saisai; Chang, Huan-Cheng; Lin, Ge; Li, Quan

    2015-06-30

    The prickly nanodiamonds easily entered cells via endocytosis followed by unique intracellular translocation characteristics—quick endosomal escape followed by stable residence in cytoplasm. Endosomal membrane rupturing is identified as the major route of nanodiamonds' escaping the vesicle confinement and to the cytoplasm. Little cytotoxicity is observed to associate with the nanodiamonds' cytosolic release. Such features enable its application for gene delivery, which requires both effective cellular uptake and cytosolic release of the gene. Taking green fluorescent protein gene as an example, we demonstrate the successful cytosolic delivery and expression of such a gene using the prickly nanodiamonds as carrier.

  4. WE-G-BRE-07: Proton Therapy Enhanced by Tumor-Targeting Gold Nanoparticles: A Pilot in Vivo Experiment at The Proton Therapy Center at MD Anderson Cancer Center

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, T; Grant, J; Wolfe, A; Gillin, M; Krishnan, S [MD Anderson Cancer Ctr., Houston, TX (United States)

    2014-06-15

    Purpose: Assess tumor-growth delay and survival in a mouse model of prostate cancer treated with tumor-targeting gold nanoparticles (AuNPs) and proton therapy. Methods: We first examined the accumulation of targeting nanoparticles within prostate tumors by imaging AuNPs with ultrasound-guided photoacoustics at 24h after the intravenous administration of goserelin-conjugated AuNPs (gAuNP) in three mice. Nanoparticles were also imaged at the cellular level with TEM in PC3 cells incubated with gAuNP for 24h. Pegylated AuNPs (pAuNP) were also imaged in vivo and in vitro for comparison. PC3 cells were then implanted subcutaneously in nude mice; 51mice with 8–10mm tumors were included. AuNPs were injected intravenously at 0.2%w/w final gold concentration 24h before irradiation. A special jig was designed to facilitate tumor irradiation perpendicular to the proton beam. Proton energy was set to 180MeV, the radiation field was 18×18cm{sup 2}, and 9cm or 13.5cm thick solid-water compensators were used to position the tumors at either the beam entrance (BE) or the SOBP. Physical doses of 5Gy were delivered to all tumors on a patient beam line at MD Anderson's Proton Therapy Center. Results: The photoacoustic experiment reveled that our nanoparticles leak from the tumor-feeding vasculature and accumulate within the tumor volume over time. Additionally, TEM images showed gAuNP are internalized in cancer cells, accumulating within the cytoplasm, whereas pAuNP are not. Tumor-growth was delayed by 11 or 32days in mice receiving gAuNP irradiated at the BE or the SOBP, relative to proton radiation alone. Survival curves (ongoing experiment) reveal that gAuNPs improved survival by 36% or 74% for tumors irradiated at the BE or SOBP. Conclusion: These important, albeit preliminary, in vivo findings reveal nanoparticles to be potent sensitizers to proton therapy. Further, conjugation of AuNPs to tumor-specific antigens that promote enhanced cellular internalization improved

  5. LIPID SYNTHESIS, INTRACELLULAR TRANSPORT, AND SECRETION

    Science.gov (United States)

    Stein, Olga; Stein, Yechezkiel

    1967-01-01

    In the mammary glands of lactating albino mice injected intravenously with 9, 10-oleic acid-3H or 9, 10-palmitic acid-3H, it has been shown that the labeled fatty acids are incorporated into mammary gland glycerides. The labeled lipid in the mammary gland 1 min after injection was in esterified form (> 95%), and the radioautographic reaction was seen over the rough endoplasmic reticulum and over lipid droplets, both intracellular and intraluminal. At 10–60 min after injection, the silver grains were concentrated predominantly over lipid droplets. There was no concentration of radioactivity over the granules in the Golgi apparatus, at any time interval studied. These findings were interpreted to indicate that after esterification of the fatty acid into glycerides in the rough endoplasmic reticulum an in situ aggregation of lipid occurs, with acquisition of droplet form. The release of the lipid into the lumen proceeds directly and not through the Golgi apparatus, in contradistinction to the mode of secretion of casein in the mammary gland or of lipoprotein in the liver. The presence of strands of endoplasmic reticulum attached to intraluminal lipid droplets provides a structural counterpart to the milk microsomes described in ruminant milk. PMID:6033535

  6. Endothelial remodelling and intracellular calcium machinery.

    Science.gov (United States)

    Moccia, F; Tanzi, F; Munaron, L

    2014-05-01

    Rather being an inert barrier between vessel lumen and surrounding tissues, vascular endothelium plays a key role in the maintenance of cardiovascular homeostasis. The de-endothelialization of blood vessels is regarded as the early event that results in the onset of severe vascular disorders, including atherosclerosis, acute myocardial infarction, brain stroke, and aortic aneurysm. Restoration of the endothelial lining may be accomplished by the activation of neighbouring endothelial cells (ECs) freed by contact inhibition and by circulating endothelial progenitor cells (EPCs). Intracellular Ca(2+) signalling is essential to promote wound healing: however, the molecular underpinnings of the Ca(2+) response to injury are yet to be fully elucidated. Similarly, the components of the Ca(2+) toolkit that drive EPC incorporation into denuded vessels are far from being fully elucidated. The present review will survey the current knowledge on the role of Ca(2+) signalling in endothelial repair and in EPC activation. We propose that endothelial regeneration might be boosted by intraluminal release of specific Ca(2+) channel agonists or by gene transfer strategies aiming to enhance the expression of the most suitable Ca(2+) channels at the wound site. In this view, connexin (Cx) channels/hemichannels and store-operated Ca(2+) entry (SOCE) stand amid the most proper routes to therapeutically induce the regrowth of denuded vessels. Cx stimulation might trigger the proliferative and migratory behaviour of ECs facing the lesion site, whereas activation of SOCE is likely to favour EPC homing to the wounded vessel.

  7. Intracellular events regulating cross-presentation

    Directory of Open Access Journals (Sweden)

    Peter eCresswell

    2012-06-01

    Full Text Available Cross-presentation plays a fundamental role in the induction of CD8-T cell immunity. However, although more than three decades have passed since its discovery, surprisingly little is known about the exact mechanisms involved. Here we give an overview of the components involved at different stages of this process. First, antigens must be internalized into the cross-presenting cell. The involvement of different receptors, method of antigen uptake, and nature of the antigen can influence intracellular trafficking and access to the cross-presentation pathway. Once antigens access the endocytic system, different requirements for endosomal/phagosomal processing arise, such as proteolysis and reduction of disulfide bonds. The majority of cross-presented peptides are generated by proteasomal degradation. Therefore, antigens must cross a membrane barrier in a manner analogous to the fate of misfolded proteins in the endoplasmic reticulum (ER that are retrotranslocated into the cytosol for degradation. Indeed, some components of the ER-associated degradation (ERAD machinery have been implicated in cross-presentation. Further complicating the matter, endosomal and phagosomal compartments have been suggested as alternative sites to the ER for loading of peptides on MHC class I molecules. Finally, the antigen presenting cells involved, particularly dendritic cell subsets and their state of maturation, influence the efficiency of cross-presentation.

  8. Intracellular recording from a spider vibration receptor.

    Science.gov (United States)

    Gingl, Ewald; Burger, Anna-M; Barth, Friedrich G

    2006-05-01

    The present study introduces a new preparation of a spider vibration receptor that allows intracellular recording of responses to natural mechanical or electrical stimulation of the associated mechanoreceptor cells. The spider vibration receptor is a lyriform slit sense organ made up of 21 cuticular slits located on the distal end of the metatarsus of each walking leg. The organ is stimulated when the tarsus receives substrate vibrations, which it transmits to the organ's cuticular structures, reducing the displacement to about one tenth due to geometrical reasons. Current clamp recording was used to record action potentials generated by electrical or mechanical stimuli. Square pulse stimulation identified two groups of sensory cells, the first being single-spike cells which generated only one or two action potentials and the second being multi-spike cells which produced bursts of action potentials. When the more natural mechanical sinusoidal stimulation was applied, differences in adaptation rate between the two cell types remained. In agreement with prior extracellular recordings, both cell types showed a decrease in the threshold tarsus deflection with increasing stimulus frequency. Off-responses to mechanical stimuli have also been seen in the metatarsal organ for the first time.

  9. On the Computing Potential of Intracellular Vesicles.

    Science.gov (United States)

    Mayne, Richard; Adamatzky, Andrew

    2015-01-01

    Collision-based computing (CBC) is a form of unconventional computing in which travelling localisations represent data and conditional routing of signals determines the output state; collisions between localisations represent logical operations. We investigated patterns of Ca2+-containing vesicle distribution within a live organism, slime mould Physarum polycephalum, with confocal microscopy and observed them colliding regularly. Vesicles travel down cytoskeletal 'circuitry' and their collisions may result in reflection, fusion or annihilation. We demonstrate through experimental observations that naturally-occurring vesicle dynamics may be characterised as a computationally-universal set of Boolean logical operations and present a 'vesicle modification' of the archetypal CBC 'billiard ball model' of computation. We proceed to discuss the viability of intracellular vesicles as an unconventional computing substrate in which we delineate practical considerations for reliable vesicle 'programming' in both in vivo and in vitro vesicle computing architectures and present optimised designs for both single logical gates and combinatorial logic circuits based on cytoskeletal network conformations. The results presented here demonstrate the first characterisation of intracelluar phenomena as collision-based computing and hence the viability of biological substrates for computing.

  10. UAV Delivery Monitoring System

    Directory of Open Access Journals (Sweden)

    San Khin Thida

    2018-01-01

    Full Text Available UAV-based delivery systems are increasingly being used in the logistics field, particularly to achieve faster last-mile delivery. This study develops a UAV delivery system that manages delivery order assignments, autonomous flight operation, real time control for UAV flights, and delivery status tracking. To manage the delivery item assignments, we apply the concurrent scheduler approach with a genetic algorithm. The present paper describes real time flight data based on a micro air vehicle communication protocol (MAVLink. It also presents the detailed hardware components used for the field tests. Finally, we provide UAV component analysis to choose the suitable components for delivery in terms of battery capacity, flight time, payload weight and motor thrust ratio.

  11. Modeling HIV-1 intracellular replication: two simulation approaches

    NARCIS (Netherlands)

    Zarrabi, N.; Mancini, E.; Tay, J.; Shahand, S.; Sloot, P.M.A.

    2010-01-01

    Many mathematical and computational models have been developed to investigate the complexity of HIV dynamics, immune response and drug therapy. However, there are not many models which consider the dynamics of virus intracellular replication at a single level. We propose a model of HIV intracellular

  12. Intracellular Drug Bioavailability: Effect of Neutral Lipids and Phospholipids.

    Science.gov (United States)

    Treyer, Andrea; Mateus, André; Wiśniewski, Jacek R; Boriss, Hinnerk; Matsson, Pär; Artursson, Per

    2018-06-04

    Intracellular unbound drug concentrations are the pharmacologically relevant concentrations for targets inside cells. Intracellular drug concentrations are determined by multiple processes, including the extent of drug binding to intracellular structures. The aim of this study was to evaluate the effect of neutral lipid (NL) and phospholipid (PL) levels on intracellular drug disposition. The NL and/or PL content of 3T3-L1 cells were enhanced, resulting in phenotypes (in terms of morphology and proteome) reminiscent of adipocytes (high NL and PL) or mild phospholipidosis (only high PL). Intracellular bioavailability ( F ic ) was then determined for 23 drugs in these cellular models and in untreated wild-type cells. A higher PL content led to higher intracellular drug binding and a lower F ic . The induction of NL did not further increase drug binding but led to altered F ic due to increased lysosomal pH. Further, there was a good correlation between binding to beads coated with pure PL and intracellular drug binding. In conclusion, our results suggest that PL content is a major determinant of drug binding in cells and that PL beads may constitute a simple alternative to estimating this parameter. Further, the presence of massive amounts of intracellular NLs did not influence drug binding significantly.

  13. Analysis of Intracellular Metabolites from Microorganisms: Quenching and Extraction Protocols.

    Science.gov (United States)

    Pinu, Farhana R; Villas-Boas, Silas G; Aggio, Raphael

    2017-10-23

    Sample preparation is one of the most important steps in metabolome analysis. The challenges of determining microbial metabolome have been well discussed within the research community and many improvements have already been achieved in last decade. The analysis of intracellular metabolites is particularly challenging. Environmental perturbations may considerably affect microbial metabolism, which results in intracellular metabolites being rapidly degraded or metabolized by enzymatic reactions. Therefore, quenching or the complete stop of cell metabolism is a pre-requisite for accurate intracellular metabolite analysis. After quenching, metabolites need to be extracted from the intracellular compartment. The choice of the most suitable metabolite extraction method/s is another crucial step. The literature indicates that specific classes of metabolites are better extracted by different extraction protocols. In this review, we discuss the technical aspects and advancements of quenching and extraction of intracellular metabolite analysis from microbial cells.

  14. Analysis of Intracellular Metabolites from Microorganisms: Quenching and Extraction Protocols

    Directory of Open Access Journals (Sweden)

    Farhana R. Pinu

    2017-10-01

    Full Text Available Sample preparation is one of the most important steps in metabolome analysis. The challenges of determining microbial metabolome have been well discussed within the research community and many improvements have already been achieved in last decade. The analysis of intracellular metabolites is particularly challenging. Environmental perturbations may considerably affect microbial metabolism, which results in intracellular metabolites being rapidly degraded or metabolized by enzymatic reactions. Therefore, quenching or the complete stop of cell metabolism is a pre-requisite for accurate intracellular metabolite analysis. After quenching, metabolites need to be extracted from the intracellular compartment. The choice of the most suitable metabolite extraction method/s is another crucial step. The literature indicates that specific classes of metabolites are better extracted by different extraction protocols. In this review, we discuss the technical aspects and advancements of quenching and extraction of intracellular metabolite analysis from microbial cells.

  15. Imaging and controlling intracellular reactions: Lysosome transport as a function of diameter and the intracellular synthesis of conducting polymers

    Science.gov (United States)

    Payne, Christine

    2014-03-01

    Eukaryotic cells are the ultimate complex environment with intracellular chemical reactions regulated by the local cellular environment. For example, reactants are sequestered into specific organelles to control local concentration and pH, motor proteins transport reactants within the cell, and intracellular vesicles undergo fusion to bring reactants together. Current research in the Payne Lab in the School of Chemistry and Biochemistry at Georgia Tech is aimed at understanding and utilizing this complex environment to control intracellular chemical reactions. This will be illustrated using two examples, intracellular transport as a function of organelle diameter and the intracellular synthesis of conducting polymers. Using single particle tracking fluorescence microscopy, we measured the intracellular transport of lysosomes, membrane-bound organelles, as a function of diameter as they underwent transport in living cells. Both ATP-dependent active transport and diffusion were examined. As expected, diffusion scales with the diameter of the lysosome. However, active transport is unaffected suggesting that motor proteins are insensitive to cytosolic drag. In a second example, we utilize intracellular complexity, specifically the distinct micro-environments of different organelles, to carry out chemical reactions. We show that catalase, found in the peroxisomes of cells, can be used to catalyze the polymerization of the conducting polymer PEDOT:PSS. More importantly, we have found that a range of iron-containing biomolecules are suitable catalysts with different iron-containing biomolecules leading to different polymer properties. These experiments illustrate the advantage of intracellular complexity for the synthesis of novel materials.

  16. Intracellular Localization of Arabidopsis Sulfurtransferases1

    Science.gov (United States)

    Bauer, Michael; Dietrich, Christof; Nowak, Katharina; Sierralta, Walter D.; Papenbrock, Jutta

    2004-01-01

    Sulfurtransferases (Str) comprise a group of enzymes widely distributed in archaea, eubacteria, and eukaryota which catalyze the transfer of a sulfur atom from suitable sulfur donors to nucleophilic sulfur acceptors. In all organisms analyzed to date, small gene families encoding Str proteins have been identified. The gene products were localized to different compartments of the cells. Our interest concerns the localization of Str proteins encoded in the nuclear genome of Arabidopsis. Computer-based prediction methods revealed localization in different compartments of the cell for six putative AtStrs. Several methods were used to determine the localization of the AtStr proteins experimentally. For AtStr1, a mitochondrial localization was demonstrated by immunodetection in the proteome of isolated mitochondria resolved by one- and two-dimensional gel electrophoresis and subsequent blotting. The respective mature AtStr1 protein was identified by mass spectrometry sequencing. The same result was obtained by transient expression of fusion constructs with the green fluorescent protein in Arabidopsis protoplasts, whereas AtStr2 was exclusively localized to the cytoplasm by this method. Three members of the single-domain AtStr were localized in the chloroplasts as demonstrated by transient expression of green fluorescent protein fusions in protoplasts and stomata, whereas the single-domain AtStr18 was shown to be cytoplasmic. The remarkable subcellular distribution of AtStr15 was additionally analyzed by transmission electron immunomicroscopy using a monospecific antibody against green fluorescent protein, indicating an attachment to the thylakoid membrane. The knowledge of the intracellular localization of the members of this multiprotein family will help elucidate their specific functions in the organism. PMID:15181206

  17. Intracellular signaling by diffusion: can waves of hydrogen peroxide transmit intracellular information in plant cells?

    DEFF Research Database (Denmark)

    Vestergaard, Christian L.; Flyvbjerg, Henrik; Møller, Ian Max

    2012-01-01

    of the physical and biochemical conditions in plant cells. As model system, we use a H(2)O(2) signal originating at the plasma membrane (PM) and spreading through the cytosol. We consider two maximally simple types of signals, isolated pulses and harmonic oscillations. First we consider the basic limits......Amplitude- and frequency-modulated waves of Ca(2+) ions transmit information inside cells. Reactive Oxygen Species (ROS), specifically hydrogen peroxide, have been proposed to have a similar role in plant cells. We consider the feasibility of such an intracellular communication system in view...

  18. Cationic Bolaamphiphiles for Gene Delivery

    Science.gov (United States)

    Tan, Amelia Li Min; Lim, Alisa Xue Ling; Zhu, Yiting; Yang, Yi Yan; Khan, Majad

    2014-05-01

    Advances in medical research have shed light on the genetic cause of many human diseases. Gene therapy is a promising approach which can be used to deliver therapeutic genes to treat genetic diseases at its most fundamental level. In general, nonviral vectors are preferred due to reduced risk of immune response, but they are also commonly associated with low transfection efficiency and high cytotoxicity. In contrast to viral vectors, nonviral vectors do not have a natural mechanism to overcome extra- and intracellular barriers when delivering the therapeutic gene into cell. Hence, its design has been increasingly complex to meet challenges faced in targeting of, penetration of and expression in a specific host cell in achieving more satisfactory transfection efficiency. Flexibility in design of the vector is desirable, to enable a careful and controlled manipulation of its properties and functions. This can be met by the use of bolaamphiphile, a special class of lipid. Unlike conventional lipids, bolaamphiphiles can form asymmetric complexes with the therapeutic gene. The advantage of having an asymmetric complex lies in the different purposes served by the interior and exterior of the complex. More effective gene encapsulation within the interior of the complex can be achieved without triggering greater aggregation of serum proteins with the exterior, potentially overcoming one of the great hurdles faced by conventional single-head cationic lipids. In this review, we will look into the physiochemical considerations as well as the biological aspects of a bolaamphiphile-based gene delivery system.

  19. Project delivery system (PDS)

    CERN Document Server

    2001-01-01

    As business environments become increasingly competitive, companies seek more comprehensive solutions to the delivery of their projects. "Project Delivery System: Fourth Edition" describes the process-driven project delivery systems which incorporates the best practices from Total Quality and is aligned with the Project Management Institute and ISO Quality Standards is the means by which projects are consistently and efficiently planned, executed and completed to the satisfaction of clients and customers.

  20. New perspective in the assessment of total intracellular magnesium

    Directory of Open Access Journals (Sweden)

    Azzurra Sargenti

    2014-01-01

    Full Text Available Magnesium (Mg is essential for biological processes, but its cellular homeostasis has not been thoroughly elucidated, mainly because of the inadequacy of the available techniques to map intracellular Mg distribution. Recently, particular interest has been raised by a new family of fluorescent probes, diaza-18-crown-hydroxyquinoline (DCHQ, that shows remarkably high affinity and specificity for Mg, thus permitting the detection of the total intracellular Mg. The data obtained by fluori- metric and cytofluorimetric assays performed with DCHQ5 are in good agreement with atomic absorption spectroscopy, confirming that DCHQ5 probe allows both qualitative and quantitative determination of total intracellular Mg.

  1. Engineering intracellular active transport systems as in vivo biomolecular tools.

    Energy Technology Data Exchange (ETDEWEB)

    Bachand, George David; Carroll-Portillo, Amanda

    2006-11-01

    applications. Further development could potentially enable selective capture of intracellular antigens, targeted delivery of therapeutic agents, or disruption of the transport systems and consequently the infection and pathogenesis cycle of biothreat agents.

  2. Nano-aggregates: emerging delivery tools for tumor therapy.

    Science.gov (United States)

    Sharma, Vinod Kumar; Jain, Ankit; Soni, Vandana

    2013-01-01

    A plethora of formulation techniques have been reported in the literature for site-specific targeting of water-soluble and -insoluble anticancer drugs. Along with other vesicular and particulate carrier systems, nano-aggregates have recently emerged as a novel supramolecular colloidal carrier with promise for using poorly water-soluble drugs in molecular targeted therapies. Nano-aggregates possess some inherent properties such as size in the nanometers, high loading efficiency, and in vivo stability. Nano-aggregates can provide site-specific drug delivery via either a passive or active targeting mechanism. Nano-aggregates are formed from a polymer-drug conjugated amphiphilic block copolymer. They are suitable for encapsulation of poorly water-soluble drugs by covalent conjugation as well as physical encapsulation. Because of physical encapsulation, a maximum amount of drug can be loaded in nano-aggregates, which helps to achieve a sufficiently high drug concentration at the target site. Active transport can be achieved by conjugating a drug with vectors or ligands that bind specifically to receptors being overexpressed in the tumor cells. In this review, we explore synthesis and tumor targeting potential of nano-aggregates with active and passive mechanisms, and we discuss various characterization parameters, ex vivo studies, biodistribution studies, clinical trials, and patents.

  3. Studies related to antibody-mediated boron delivery for BNCT

    International Nuclear Information System (INIS)

    Hawthorne, M.F.; Varadarajan, A.; Paxton, R.J.; Beatty, B.G.; Curtis, F.L.

    1992-01-01

    Of the many methods of selective boron delivery to tumor presently under consideration the use of boron-labeled tumor-targeted monoclonal antibodies (Mabs) and their immunoreactive fragments appears to offer the most general, but complex, approach. Assuming that tumor cells generally carry 10 6 characteristic antigenic sites of any one type and that there are approximately 10 9 cells per gram of tumor, one calculates that about 600 10 B atoms must be attached to each individual Mab molecule (if all antigenic sites are complexed) for each 10 ppm of 10 B supplied to tumor. Rather than randomly attack IgG Mab molecules with a large number of relatively small boron-containing conjugation reagent molecules the authors have chosen to assemble a series of discrete, precisely synthesized oligomeric reagents ('trailers') each of which contains a fixed number of B-atoms up to approximately 200. These oligomeric reagents would carry a radioactive or fluorescent group for analytical purposes attached to a terminal-NH 2 group of their chain and the remaining -COOH terminus would be free for conjugation with the lysine var-epsilon-NH 2 groups of Mab protein. Two types of oligomeric trailer reagents are envisioned; hydrophilic peptides and polyamides

  4. Ultrasound-sensitive nanoparticle aggregates for targeted drug delivery.

    Science.gov (United States)

    Papa, Anne-Laure; Korin, Netanel; Kanapathipillai, Mathumai; Mammoto, Akiko; Mammoto, Tadanori; Jiang, Amanda; Mannix, Robert; Uzun, Oktay; Johnson, Christopher; Bhatta, Deen; Cuneo, Garry; Ingber, Donald E

    2017-09-01

    Here we describe injectable, ultrasound (US)-responsive, nanoparticle aggregates (NPAs) that disintegrate into slow-release, nanoscale, drug delivery systems, which can be targeted to selective sites by applying low-energy US locally. We show that, unlike microbubble based drug carriers which may suffer from stability problems, the properties of mechanical activated NPAs, composed of polymer nanoparticles, can be tuned by properly adjusting the polymer molecular weight, the size of the nanoparticle precursors as well as the percentage of excipient utilized to hold the NPA together. We then apply this concept to practice by fabricating NPAs composed of nanoparticles loaded with Doxorubicin (Dox) and tested their ability to treat tumors via ultrasound activation. Mouse studies demonstrated significantly increased efficiency of tumor targeting of the US-activated NPAs compared to PLGA nanoparticle controls (with or without US applied) or intact NPAs. Importantly, when the Dox-loaded NPAs were injected and exposed to US energy locally, this increased ability to concentrate nanoparticles at the tumor site resulted in a significantly greater reduction in tumor volume compared to tumors treated with a 20-fold higher dose of the free drug. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Intracellular Route of Canine Parvovirus Entry

    Science.gov (United States)

    Vihinen-Ranta, Maija; Kalela, Anne; Mäkinen, Päivi; Kakkola, Laura; Marjomäki, Varpu; Vuento, Matti

    1998-01-01

    The present study was designed to investigate the endocytic pathway involved in canine parvovirus (CPV) infection. Reduced temperature (18°C) or the microtubule-depolymerizing drug nocodazole was found to inhibit productive infection of canine A72 cells by CPV and caused CPV to be retained in cytoplasmic vesicles as indicated by immunofluorescence microscopy. Consistent with previously published results, these data indicate that CPV enters a host cell via an endocytic route and further suggest that microtubule-dependent delivery of CPV to late endosomes is required for productive infection. Cytoplasmic microinjection of CPV particles was used to circumvent the endocytosis and membrane fusion steps in the entry process. Microinjection experiments showed that CPV particles which were injected directly into the cytoplasm, thus avoiding the endocytic pathway, were unable to initiate progeny virus production. CPV treated at pH 5.0 prior to microinjection was unable to initiate virus production, showing that factors of the endocytic route other than low pH are necessary for the initiation of infection by CPV. PMID:9420290

  6. Cytosolic antibody delivery by lipid-sensitive endosomolytic peptide

    Science.gov (United States)

    Akishiba, Misao; Takeuchi, Toshihide; Kawaguchi, Yoshimasa; Sakamoto, Kentarou; Yu, Hao-Hsin; Nakase, Ikuhiko; Takatani-Nakase, Tomoka; Madani, Fatemeh; Gräslund, Astrid; Futaki, Shiroh

    2017-08-01

    One of the major obstacles in intracellular targeting using antibodies is their limited release from endosomes into the cytosol. Here we report an approach to deliver proteins, which include antibodies, into cells by using endosomolytic peptides derived from the cationic and membrane-lytic spider venom peptide M-lycotoxin. The delivery peptides were developed by introducing one or two glutamic acid residues into the hydrophobic face. One peptide with the substitution of leucine by glutamic acid (L17E) was shown to enable a marked cytosolic liberation of antibodies (immunoglobulins G (IgGs)) from endosomes. The predominant membrane-perturbation mechanism of this peptide is the preferential disruption of negatively charged membranes (endosomal membranes) over neutral membranes (plasma membranes), and the endosomolytic peptide promotes the uptake by inducing macropinocytosis. The fidelity of this approach was confirmed through the intracellular delivery of a ribosome-inactivation protein (saporin), Cre recombinase and IgG delivery, which resulted in a specific labelling of the cytosolic proteins and subsequent suppression of the glucocorticoid receptor-mediated transcription. We also demonstrate the L17E-mediated cytosolic delivery of exosome-encapsulated proteins.

  7. Intracellular trafficking of new anticancer therapeutics: antibody–drug conjugates

    Science.gov (United States)

    Kalim, Muhammad; Chen, Jie; Wang, Shenghao; Lin, Caiyao; Ullah, Saif; Liang, Keying; Ding, Qian; Chen, Shuqing; Zhan, Jinbiao

    2017-01-01

    Antibody–drug conjugate (ADC) is a milestone in targeted cancer therapy that comprises of monoclonal antibodies chemically linked to cytotoxic drugs. Internalization of ADC takes place via clathrin-mediated endocytosis, caveolae-mediated endocytosis, and pinocytosis. Conjugation strategies, endocytosis and intracellular trafficking optimization, linkers, and drugs chemistry present a great challenge for researchers to eradicate tumor cells successfully. This inventiveness of endocytosis and intracellular trafficking has given considerable momentum recently to develop specific antibodies and ADCs to treat cancer cells. It is significantly advantageous to emphasize the endocytosis and intracellular trafficking pathways efficiently and to design potent engineered conjugates and biological entities to boost efficient therapies enormously for cancer treatment. Current studies illustrate endocytosis and intracellular trafficking of ADC, protein, and linker strategies in unloading and also concisely evaluate practically applicable ADCs. PMID:28814834

  8. Intracellular trafficking of new anticancer therapeutics: antibody-drug conjugates.

    Science.gov (United States)

    Kalim, Muhammad; Chen, Jie; Wang, Shenghao; Lin, Caiyao; Ullah, Saif; Liang, Keying; Ding, Qian; Chen, Shuqing; Zhan, Jinbiao

    2017-01-01

    Antibody-drug conjugate (ADC) is a milestone in targeted cancer therapy that comprises of monoclonal antibodies chemically linked to cytotoxic drugs. Internalization of ADC takes place via clathrin-mediated endocytosis, caveolae-mediated endocytosis, and pinocytosis. Conjugation strategies, endocytosis and intracellular trafficking optimization, linkers, and drugs chemistry present a great challenge for researchers to eradicate tumor cells successfully. This inventiveness of endocytosis and intracellular trafficking has given considerable momentum recently to develop specific antibodies and ADCs to treat cancer cells. It is significantly advantageous to emphasize the endocytosis and intracellular trafficking pathways efficiently and to design potent engineered conjugates and biological entities to boost efficient therapies enormously for cancer treatment. Current studies illustrate endocytosis and intracellular trafficking of ADC, protein, and linker strategies in unloading and also concisely evaluate practically applicable ADCs.

  9. EVIDENCE FOR THE MACROPHAGE INDUCING GENE IN MYCOBACTERIUM INTRACELLULARE

    Science.gov (United States)

    Background: The Mycobacterium avium Complex (MAC) includes the species M. avium (MA), M. intracellulare (MI), and possibly others. Organisms belonging to the MAC are phylogenetically closely related, opportunistic pathogens. The macrophage inducing gene (mig) is the only well-des...

  10. Self-assembled pentablock copolymers for selective and sustained gene delivery

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bingqi [Iowa State Univ., Ames, IA (United States)

    2011-05-15

    The poly(diethylaminoethyl methacrylate) (PDEAEM) - Pluronic F127 - PDEAEM pentablock copolymer (PB) gene delivery vector system has been found to possess an inherent selectivity in transfecting cancer cells over non-cancer cells in vitro, without attaching any targeting ligands. In order to understand the mechanism of this selective transfection, three possible intracellular barriers to transfection were investigated in both cancer and non-cancer cells. We concluded that escape from the endocytic pathway served as the primary intracellular barrier for PB-mediated transfection. Most likely, PB vectors were entrapped and rendered non-functional in acidic lysosomes of non-cancer cells, but survived in less acidic lysosomes of cancer cells. The work highlights the importance of identifying intracellular barriers for different gene delivery systems and provides a new paradigm for designing targeting vectors based on intracellular differences between cell types, rather than through the use of targeting ligands. The PB vector was further developed to simultaneously deliver anticancer drugs and genes, which showed a synergistic effect demonstrated by significantly enhanced gene expression in vitro. Due to the thermosensitive gelation behavior, the PB vector packaging both drug and gene was also investigated for its in vitro sustained release properties by using polyethylene glycol diacrylate as a barrier gel to mimic the tumor matrix in vivo. Overall, this work resulted in the development of a gene delivery vector for sustained and selective gene delivery to tumor cells for cancer therapy.

  11. The dual roles of red blood cells in tissue oxygen delivery

    DEFF Research Database (Denmark)

    Jensen, Frank Bo

    2009-01-01

    Vertebrate red blood cells (RBCs) seem to serve tissue oxygen delivery in two distinct ways. Firstly, RBCs enable the adequate transport of O2 between respiratory surfaces and metabolizing tissues by means of their high intracellular concentration of hemoglobin (Hb), appropriate allosteric...

  12. Method for Targeted Therapeutic Delivery of Proteins into Cells | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The Protein Expression Laboratory at the National Cancer Institute in Frederick, MD is seeking statements of capability or interest from parties interested in collaborative research to further develop a platform technology for the targeted intra-cellular delivery of proteins using virus-like particles (VLPs).

  13. Biotin-Conjugated Multilayer Poly [D,L-lactide-co-glycolide]-Lecithin-Polyethylene Glycol Nanoparticles for Targeted Delivery of Doxorubicin.

    Science.gov (United States)

    Dai, Yu; Xing, Han; Song, Fuling; Yang, Yue; Qiu, Zhixia; Lu, Xiaoyu; Liu, Qi; Ren, Shuangxia; Chen, Xijing; Li, Ning

    2016-09-01

    Multilayer nanoparticle combining the merits of liposome and polymer nanoparticle has been designed for the targeted delivery of doxorubicin (DOX) in cancer treatment. In this study, DOX-PLGA-lecithin-PEG-biotin nanoparticles (DOX-PLPB-NPs) were fabricated and functionalized with biotin for specific tumor targeting. Under the transmission electron microscopy observation, the lipid layer was found to be coated on the polymer core. The physical characteristics of PLPB-NPs were also evaluated. The confocal laser scanning microscopy confirmed the cellular uptake of nanoparticles and targeted delivery PLPB-NPs. The in vitro release experiment demonstrated a pH-depending release of DOX from drug-loaded PLPB-NPs. Cytotoxicity studies in HepG2 cells and in vivo antitumor experiment in tumor-bearing mice both proved DOX-PLPB-NPs showed the best inhibition effect of tumor proliferation. In biodistribution studies, DOX-PLPB-NPs showed a higher DOX concentration than free DOX and DOX-PLGA-lecithin-PEG nanoparticles (DOX-PLP-NPs) in tumor site, especially in 24 h, and the lowest DOX level in normal organs. The results were coincident with the strongest antitumor ability showed among in vivo antitumor experiment. Histopathology analysis demonstrated that DOX-PLPB-NPs exhibited the strongest antitumor ability and lowest cardiotoxicity. In brief, the PLPB-NPs were proved to be an efficient delivery system for tumor-targeting treatment. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  14. Data for automated, high-throughput microscopy analysis of intracellular bacterial colonies using spot detection

    DEFF Research Database (Denmark)

    Ernstsen, Christina Lundgaard; Login, Frédéric H.; Jensen, Helene Halkjær

    2017-01-01

    Quantification of intracellular bacterial colonies is useful in strategies directed against bacterial attachment, subsequent cellular invasion and intracellular proliferation. An automated, high-throughput microscopy-method was established to quantify the number and size of intracellular bacteria...

  15. 6. Home deliveries

    African Journals Online (AJOL)

    Sitwala

    determine factors associated with home deliveries. Main outcome ... deliver at home than a health facility compared to those who .... regression analysis, women who had four years of schooling or .... by report bias, the burden of home deliveries is a real challenge .... Journal of Econometrics 1987; 36: 185-204. 14. Michelo ...

  16. Global Delivery Models

    DEFF Research Database (Denmark)

    Manning, Stephan; Larsen, Marcus M.; Bharati, Pratyush

    2013-01-01

    This article examines antecedents and performance implications of global delivery models (GDMs) in global business services. GDMs require geographically distributed operations to exploit both proximity to clients and time-zone spread for efficient service delivery. We propose and empirically show...

  17. Health care delivery systems.

    NARCIS (Netherlands)

    Stevens, F.; Zee, J. van der

    2007-01-01

    A health care delivery system is the organized response of a society to the health problems of its inhabitants. Societies choose from alternative health care delivery models and, in doing so, they organize and set goals and priorities in such a way that the actions of different actors are effective,

  18. Global Delivery Models

    DEFF Research Database (Denmark)

    Manning, Stephan; Møller Larsen, Marcus; Bharati, Pratyush

    -zone spread allowing for 24/7 service delivery and access to resources. Based on comprehensive data we show that providers are likely to establish GDM configurations when clients value access to globally distributed talent pools and speed of service delivery, and in particular when services are highly...

  19. Intracellular sodium hydrogen exchange inhibition and clinical myocardial protection.

    Science.gov (United States)

    Mentzer, Robert M; Lasley, Robert D; Jessel, Andreas; Karmazyn, Morris

    2003-02-01

    Although the mechanisms underlying ischemia/reperfusion injury remain elusive, evidence supports the etiologic role of intracellular calcium overload and oxidative stress induced by reactive oxygen species. Activation of the sodium hydrogen exchanger (NHE) is associated with intracellular calcium accumulation. Inhibition of the NHE-1 isoform may attenuate the consequences of this injury. Although there is strong preclinical and early clinical evidence that NHE inhibitors may be cardioprotective, definitive proof of this concept in humans awaits the results of ongoing clinical trials.

  20. Uptake and intracellular activity of AM-1155 in phagocytic cells.

    Science.gov (United States)

    Yamamoto, T; Kusajima, H; Hosaka, M; Fukuda, H; Oomori, Y; Shinoda, H

    1996-01-01

    The uptake and intracellular activity of AM-1155 in murine J774.1 macrophages and human polymorphonuclear leukocytes were investigated. AM-1155 penetrated phagocytic cells rapidly and reversibly, although the penetration process was not affected by metabolic inhibitors such as sodium fluoride, cyanide m-chlorophenylhydrazone, or ouabain or by nucleoside transport system inhibitors such as adenosine. The intracellular concentration-to-extracellular concentration ratio of AM-1155 in both cell types of phagocytes ranged from 5 to 7. These ratios were almost equal to those for sparfloxacin. The intracellular activity of AM-1155 in J774.1 macrophages, examined with Staphylococcus aureus 209P as a test bacterium, was dependent on the extracellular concentration. AM-1155 at a concentration of 1 microgram/ml reduced the number of viable cells of S. aureus ingested by more than 90%. The intracellular activity of AM-1155 was more potent than those of sparfloxacin, ofloxacin, ciprofloxacin, flomoxef, and erythromycin. These results suggest that the potent intracellular activity of AM-1155 might mainly be due to the high intracellular concentration and its potent in vitro activity. PMID:9124835

  1. Epithelial Cell Gene Expression Induced by Intracellular Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Xianglu Li

    2009-01-01

    Full Text Available HEp-2 cell monolayers were cocultured with intracellular Staphylococcus aureus, and changes in gene expression were profiled using DNA microarrays. Intracellular S. aureus affected genes involved in cellular stress responses, signal transduction, inflammation, apoptosis, fibrosis, and cholesterol biosynthesis. Transcription of stress response and signal transduction-related genes including atf3, sgk, map2k1, map2k3, arhb, and arhe was increased. In addition, elevated transcription of proinflammatory genes was observed for tnfa, il1b, il6, il8, cxcl1, ccl20, cox2, and pai1. Genes involved in proapoptosis and fibrosis were also affected at transcriptional level by intracellular S. aureus. Notably, intracellular S. aureus induced strong transcriptional down-regulation of several cholesterol biosynthesis genes. These results suggest that epithelial cells respond to intracellular S. aureus by inducing genes affecting immunity and in repairing damage caused by the organism, and are consistent with the possibility that the organism exploits an intracellular environment to subvert host immunity and promote colonization.

  2. Salmonella modulation of host cell gene expression promotes its intracellular growth.

    Directory of Open Access Journals (Sweden)

    Sebastian Hannemann

    Full Text Available Salmonella Typhimurium has evolved a complex functional interface with its host cell largely determined by two type III secretion systems (T3SS, which through the delivery of bacterial effector proteins modulate a variety of cellular processes. We show here that Salmonella Typhimurium infection of epithelial cells results in a profound transcriptional reprogramming that changes over time. This response is triggered by Salmonella T3SS effector proteins, which stimulate unique signal transduction pathways leading to STAT3 activation. We found that the Salmonella-stimulated changes in host cell gene expression are required for the formation of its specialized vesicular compartment that is permissive for its intracellular replication. This study uncovers a cell-autonomous process required for Salmonella pathogenesis potentially opening up new avenues for the development of anti-infective strategies that target relevant host pathways.

  3. Salmonella modulation of host cell gene expression promotes its intracellular growth.

    Science.gov (United States)

    Hannemann, Sebastian; Gao, Beile; Galán, Jorge E

    2013-01-01

    Salmonella Typhimurium has evolved a complex functional interface with its host cell largely determined by two type III secretion systems (T3SS), which through the delivery of bacterial effector proteins modulate a variety of cellular processes. We show here that Salmonella Typhimurium infection of epithelial cells results in a profound transcriptional reprogramming that changes over time. This response is triggered by Salmonella T3SS effector proteins, which stimulate unique signal transduction pathways leading to STAT3 activation. We found that the Salmonella-stimulated changes in host cell gene expression are required for the formation of its specialized vesicular compartment that is permissive for its intracellular replication. This study uncovers a cell-autonomous process required for Salmonella pathogenesis potentially opening up new avenues for the development of anti-infective strategies that target relevant host pathways.

  4. Albumin-based drug delivery: harnessing nature to cure disease.

    Science.gov (United States)

    Larsen, Maja Thim; Kuhlmann, Matthias; Hvam, Michael Lykke; Howard, Kenneth A

    2016-01-01

    The effectiveness of a drug is dependent on accumulation at the site of action at therapeutic levels, however, challenges such as rapid renal clearance, degradation or non-specific accumulation requires drug delivery enabling technologies. Albumin is a natural transport protein with multiple ligand binding sites, cellular receptor engagement, and a long circulatory half-life due to interaction with the recycling neonatal Fc receptor. Exploitation of these properties promotes albumin as an attractive candidate for half-life extension and targeted intracellular delivery of drugs attached by covalent conjugation, genetic fusions, association or ligand-mediated association. This review will give an overview of albumin-based products with focus on the natural biological properties and molecular interactions that can be harnessed for the design of a next-generation drug delivery platform.

  5. Molecular features contributing to virus-independent intracellular localization and dynamic behavior of the herpesvirus transport protein US9.

    Directory of Open Access Journals (Sweden)

    Manuela Pedrazzi

    Full Text Available Reaching the right destination is of vital importance for molecules, proteins, organelles, and cargoes. Thus, intracellular traffic is continuously controlled and regulated by several proteins taking part in the process. Viruses exploit this machinery, and viral proteins regulating intracellular transport have been identified as they represent valuable tools to understand and possibly direct molecules targeting and delivery. Deciphering the molecular features of viral proteins contributing to (or determining this dynamic phenotype can eventually lead to a virus-independent approach to control cellular transport and delivery. From this virus-independent perspective we looked at US9, a virion component of Herpes Simplex Virus involved in anterograde transport of the virus inside neurons of the infected host. As the natural cargo of US9-related vesicles is the virus (or its parts, defining its autonomous, virus-independent role in vesicles transport represents a prerequisite to make US9 a valuable molecular tool to study and possibly direct cellular transport. To assess the extent of this autonomous role in vesicles transport, we analyzed US9 behavior in the absence of viral infection. Based on our studies, Us9 behavior appears similar in different cell types; however, as expected, the data we obtained in neurons best represent the virus-independent properties of US9. In these primary cells, transfected US9 mostly recapitulates the behavior of US9 expressed from the viral genome. Additionally, ablation of two major phosphorylation sites (i.e. Y32Y33 and S34ES36 have no effect on protein incorporation on vesicles and on its localization on both proximal and distal regions of the cells. These results support the idea that, while US9 post-translational modification may be important to regulate cargo loading and, consequently, virion export and delivery, no additional viral functions are required for US9 role in intracellular transport.

  6. Multiple-Targeted Graphene-based Nanocarrier for Intracellular Imaging of mRNAs

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ying; Li, Zhaohui; Liu, Misha; Hu, Dehong; Lin, Yuehe; Li, Jinghong

    2017-08-29

    Simultaneous detection and imaging of multiple intracellular messenger RNA (mRNAs) hold great significant for early cancer diagnostics and preventive medicine development. Herein, we propose a multiple-targeted graphene oxide (GO) nanocarrier that can simultaneously detect and image different type mRNAs in living cells. First of all, in vitro detection of multiple targets have been realized successfully based on the multiple-targeted GO nanocarrier with linear relationship ranging from 3 nM to 200 nM, as well as sensitive detection limit of 1.84 nM for manganese superoxide dismutase (Mn-SOD) mRNA and 2.45 nM for β-actin mRNA. Additionally, this nanosensing platform composed of fluorescent labeled single strand DNA probes and GO nanocarrier can identify Mn-SOD mRNA and endogenous mRNA of β-actin in living cancer cells, showing rapid response, high specificity, nuclease stability, and good biocompatibility during the cell imaging. Thirdly, changes of the expression levels of mRNA in living cells before or after the drug treatment can be monitored successfully. By using multiple ssDNA as probes and GO nanocarrier as the cellular delivery cargo, the proposed simultaneous multiple-targeted sensing platform will be of great potential as a powerful tool for intracellular trafficking process from basic research to clinical diagnosis.

  7. Intracellular CXCR4+ cell targeting with T22-empowered protein-only nanoparticles

    Science.gov (United States)

    Unzueta, Ugutz; Céspedes, María Virtudes; Ferrer-Miralles, Neus; Casanova, Isolda; Cedano, Juan; Corchero, José Luis; Domingo-Espín, Joan; Villaverde, Antonio; Mangues, Ramón; Vázquez, Esther

    2012-01-01

    Background Cell-targeting peptides or proteins are appealing tools in nanomedicine and innovative medicines because they increase the local drug concentration and reduce potential side effects. CXC chemokine receptor 4 (CXCR4) is a cell surface marker associated with several severe human pathologies, including colorectal cancer, for which intracellular targeting agents are currently missing. Results Four different peptides that bind CXCR4 were tested for their ability to internalize a green fluorescent protein-based reporter nanoparticle into CXCR4+ cells. Among them, only the 18 mer peptide T22, an engineered segment derivative of polyphemusin II from the horseshoe crab, efficiently penetrated target cells via a rapid, receptor-specific endosomal route. This resulted in accumulation of the reporter nanoparticle in a fully fluorescent and stable form in the perinuclear region of the target cells, without toxicity either in cell culture or in an in vivo model of metastatic colorectal cancer. Conclusion Given the urgent demand for targeting agents in the research, diagnosis, and treatment of CXCR4-linked diseases, including colorectal cancer and human immunodeficiency virus infection, T22 appears to be a promising tag for the intracellular delivery of protein drugs, nanoparticles, and imaging agents. PMID:22923991

  8. Nanomedicine: towards development of patient-friendly drug-delivery systems for oncological applications

    Directory of Open Access Journals (Sweden)

    Ranganathan R

    2012-02-01

    Full Text Available Ramya Ranganathan1,*, Shruthilaya Madanmohan1,*, Akila Kesavan1, Ganga Baskar1, Yoganathan Ramia Krishnamoorthy2, Roy Santosham3, D Ponraju4, Suresh Kumar Rayala2, Ganesh Venkatraman1 1Department of Human Genetics, Sri Ramachandra University, Porur, 2Department of Biotechnology, Indian Institute of Technology, Madras, 3Department of Radiology and Imaging Sciences, Sri Ramachandra University, Porur, Chennai, 4Safety Engineering Division, Nuclear and Engineering Safety Group, Indira Gandhi Center for Atomic Research, Kalpakkam, India*Authors contributed equally to this workAbstract: The focus on nanotechnology in cancer treatment and diagnosis has intensified due to the serious side effects caused by anticancer agents as a result of their cytotoxic actions on normal cells. This nonspecific action of chemotherapy has awakened a need for formulations capable of definitive targeting with enhanced tumor-killing. Nanooncology, the application of nanobiotechnology to the management of cancer, is currently the most important area of nanomedicine. Currently several nanomaterial-based drug-delivery systems are in vogue and several others are in various stages of development. Tumor-targeted drug-delivery systems are envisioned as magic bullets for cancer therapy and several groups are working globally for development of robust systems.Keywords: patient-friendly, drug-delivery systems, cancer, nanomedicine

  9. Polymeric composite membranes for temperature and pH-responsive delivery of doxorubicin hydrochloride

    Directory of Open Access Journals (Sweden)

    Sahar Mohamaddoust Aliabadi

    2015-07-01

    Full Text Available Objective(s: Nowadays hydrogels are one of the upcoming classes of polymer-based controlled-release drug delivery systems. Temperature and pH-responsive delivery systems have drawn much attention because some diseases reveal themselves by a change in temperature and/or pH. The objective of this work is to prepare and characterize composite membrane using responsive nanoparticles into a polymer matrix. Materials and Methods: These nanoparticles were made of the copolymer poly (N-isopropylacrylamide-co-methaçrylic acid by an aqueous dispersion polymerization process and are responsible for dual sensitivity to temperature and pH. Morphology study with SEM, swelling behavior with Dynamic Light Scattering Technique, in vitro drug release behavior with side-by-side Diffusion Cells were also investigated in this paper. Doxorubicin hydrochloride was used as a model solute. Results:The study on the release of doxorubicin hydrochloride showed that the release rate was higher at pH 5 than pH 7.4, increased with the increase of temperature. Nevertheless, ionic strength only poses a minor direct effect at higher pH. Conclusion:Such system may be potentially used as a tumor-targeting doxorubicin hydrochloride delivery in the body.

  10. The effect of particle shape on cellular interaction and drug delivery applications of micro- and nanoparticles.

    Science.gov (United States)

    Jindal, Anil B

    2017-10-30

    Encapsulation of therapeutic agents in nanoparticles offers several benefits including improved bioavailability, site specific delivery, reduced toxicity and in vivo stability of proteins and nucleotides over conventional delivery options. These benefits are consequence of distinct in vivo pharmacokinetic and biodistribution profile of nanoparticles, which is dictated by the complex interplay of size, surface charge and surface hydrophobicity. Recently, particle shape has been identified as a new physical parameter which has exerted tremendous impact on cellular uptake and biodistribution, thereby in vivo performance of nanoparticles. Improved therapeutic efficacy of anticancer agents using non-spherical particles is the recent development in the field. Additionally, immunological response of nanoparticles was also altered when antigens were loaded in non-spherical nanovehicles. The apparent impact of particle shape inspired the new research in the field of drug delivery. The present review therefore details the research in this field. The review focuses on methods of fabrication of particles of non-spherical geometries and impact of particle shape on cellular uptake, biodistribution, tumor targeting and production of immunological responses. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. What Is a Cesarean Delivery?

    Science.gov (United States)

    ... Twitter Pinterest Email Print What is a cesarean delivery? A cesarean delivery is a surgical procedure in which a fetus ... 32.2% of U.S. births were by cesarean delivery. 2 The CDC also found that the number ...

  12. TRANSDERMAL DRUG DELIVERY SYSTEM: REVIEW

    OpenAIRE

    Vishvakarama Prabhakar; Agarwal Shivendra; Sharma Ritika; Saurabh Sharma

    2012-01-01

    Various new technologies have been developed for the transdermal delivery of some important drugs. Today about 74% of drugs are taken orally and are found not to be as effective as desired. To improve such characters transdermal drug delivery system was emerged. Drug delivery through the skin to achieve a systemic effect of a drug is commonly known as transdermal drug delivery and differs from traditional topical drug delivery. Transdermal drug delivery systems (TDDS) are dosage forms involve...

  13. Advancement in integrin facilitated drug delivery.

    Science.gov (United States)

    Arosio, Daniela; Casagrande, Cesare

    2016-02-01

    The research of integrin-targeted anticancer agents has recorded important advancements in ingenious design of delivery systems, based either on the prodrug approach, or on nanoparticle carriers, but for now, none of these has reached a clinical stage of development. Past work in this area has been extensively reviewed by us and others. Thus, the purpose and scope of the present review is to survey the advancement reported in the last 3years, with focus on innovative delivery systems that appear to afford openings for future developments. These systems exploit the labelling with conventional and novel integrin ligands for targeting the interface of cancer cells and of endothelial cells involved in cancer angiogenesis, with the proteins of the extracellular matrix, in the circulation, in tissues, and in tumour stroma, as the site of progression and metastatic evolution of the disease. Furthermore, these systems implement the expertise in the development of nanomedicines to the purpose of achieving preferential biodistribution and uptake in cancer tissues, internalisation in cancer cells, and release of the transported drugs at intracellular sites. The assessment of the value of controlling these factors, and their combination, for future developments requires support of biological testing in appropriate mechanistic models, but also imperatively demand confirmation in therapeutically relevant in vivo models for biodistribution, efficacy, and lack of off-target effects. Thus, among many studies, we have tried to point out the results supported by relevant in vivo studies, and we have emphasised in specific sections those addressing the medical needs of drug delivery to brain tumours, as well as the delivery of oligonucleotides modulating gene-dependent pathological mechanism. The latter could constitute the basis of a promising third branch in the therapeutic armamentarium against cancer, in addition to antibody-based agents and to cytotoxic agents. Copyright © 2015

  14. Lentiviral Delivery of Proteins for Genome Engineering.

    Science.gov (United States)

    Cai, Yujia; Mikkelsen, Jacob Giehm

    2016-01-01

    Viruses have evolved to traverse cellular barriers and travel to the nucleus by mechanisms that involve active transport through the cytoplasm and viral quirks to resist cellular restriction factors and innate immune responses. Virus-derived vector systems exploit the capacity of viruses to ferry genetic information into cells, and now - more than three decades after the discovery of HIV - lentiviral vectors based on HIV-1 have become instrumental in biomedical research and gene therapies that require genomic insertion of transgenes. By now, the efficacy of lentiviral gene delivery to stem cells, cells of the immune system including T cells, hepatic cells, and many other therapeutically relevant cell types is well established. Along with nucleic acids, HIV-1 virions carry the enzymatic tools that are essential for early steps of infection. Such capacity to package enzymes, even proteins of nonviral origin, has unveiled new ways of exploiting cellular intrusion of HIV-1. Based on early findings demonstrating the packaging of heterologous proteins into virus particles as part of the Gag and GagPol polypeptides, we have established lentiviral protein transduction for delivery of DNA transposases and designer nucleases. This strategy for delivering genome-engineering proteins facilitates high enzymatic activity within a short time frame and may potentially improve the safety of genome editing. Exploiting the full potential of lentiviral vectors, incorporation of foreign protein can be combined with the delivery of DNA transposons or a donor sequence for homology-directed repair in so-called 'all-in-one' lentiviral vectors. Here, we briefly describe intracellular restrictions that may affect lentiviral gene and protein delivery and review the current status of lentiviral particles as carriers of tool kits for genome engineering.

  15. Targeted delivery of immunotoxin by antibody to ganglioside GD3: a novel drug delivery route for tumor cells.

    Directory of Open Access Journals (Sweden)

    Vanina Torres Demichelis

    Full Text Available Gangliosides are sialic acid-containing glycolipids expressed on plasma membranes from nearly all vertebrate cells. The expression of ganglioside GD3, which plays essential roles in normal brain development, decreases in adults but is up regulated in neuroectodermal and epithelial derived cancers. R24 antibody, directed against ganglioside GD3, is a validated tumor target which is specifically endocytosed and accumulated in endosomes. Here, we exploit the internalization feature of the R24 antibody for the selective delivery of saporin, a ribosome-inactivating protein, to GD3-expressing cells [human (SK-Mel-28 and mouse (B16 melanoma cells and Chinese hamster ovary (CHO-K1 cells]. This immunotoxin showed a specific cytotoxicity on tumor cells grew on 2D monolayers, which was further evident by the lack of any effect on GD3-negative cells. To estimate the potential antitumor activity of R24-saporin complex, we also evaluated the effect of the immunotoxin on the clonogenic growth of SK-Mel-28 and CHO-K1(GD3+ cells cultured in attachment-free conditions. A drastic growth inhibition (>80-90% of the cell colonies was reached after 3 days of immunotoxin treatment. By the contrary, colonies continue to growth at the same concentration of the immuntoxin, but in the absence of R24 antibody, or in the absence of both immunotoxin and R24, undoubtedly indicating the specificity of the effect observed. Thus, the ganglioside GD3 emerge as a novel and attractive class of cell surface molecule for targeted delivery of cytotoxic agents and, therefore, provides a rationale for future therapeutic intervention in cancer.

  16. Intracellular disposition of chitosan nanoparticles in macrophages: intracellular uptake, exocytosis, and intercellular transport

    Directory of Open Access Journals (Sweden)

    Jiang LQ

    2017-08-01

    Full Text Available Li Qun Jiang,1 Ting Yu Wang,1 Thomas J Webster,2 Hua-Jian Duan,1 Jing Ying Qiu,1 Zi Ming Zhao,1 Xiao Xing Yin,1,* Chun Li Zheng3,* 1Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, People’s Republic of China; 2Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 3School of Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China *These authors contributed equally to this work Abstract: Biodegradable nanomaterials have been widely used in numerous medical fields. To further improve such efforts, this study focused on the intracellular disposition of chitosan nanoparticles (CsNPs in macrophages, a primary cell of the mononuclear phagocyte system (MPS. Such interactions with the MPS determine the nanoparticle retention time in the body and consequently play a significant role in their own clinical safety. In this study, various dye-labeled CsNPs (about 250 nm were prepared, and a murine macrophage cell line (RAW 264.7 was selected as a model macrophage. The results showed two mechanisms of macrophage incorporation of CsNPs, ie, a clathrin-mediated endocytosis pathway (the primary and phagocytosis. Following internalization, the particles partly dissociated in the cells, indicating cellular digestion of the nanoparticles. It was proved that, after intracellular uptake, a large proportion of CsNPs were exocytosed within 24 h; this excretion induced a decrease in fluorescence intensity in cells by 69%, with the remaining particles possessing difficulty being cleared. Exocytosis could be inhibited by both wortmannin and vacuolin-1, indicating that CsNP uptake was mediated by lysosomal and multivesicular body pathways, and after exocytosis, the reuptake of CsNPs by neighboring cells was verified by further experiments. This study, thus, elucidated the fate of CsNPs in macrophages as well as identified cellular disposition

  17. Dual-layered nanogel-coated hollow lipid/polypeptide conjugate assemblies for potential pH-triggered intracellular drug release.

    Directory of Open Access Journals (Sweden)

    Wen-Hsuan Chiang

    Full Text Available To achieve effective intracellular anticancer drug delivery, the polymeric vesicles supplemented with the pH-responsive outlayered gels as a delivery system of doxorubicin (DOX were developed from self-assembly of the lipid/polypeptide adduct, distearin grafted poly(γ-glutamic acid (poly(γ-GA, followed by sequential deposition of chitosan and poly(γ-GA-co-γ-glutamyl oxysuccinimide-g-monomethoxy poly(ethylene glycol in combination with in situ covalent cross-linking on assembly surfaces. The resultant gel-caged polymeric vesicles (GCPVs showed superior performance in regulating drug release in response to the external pH change. Under typical physiological conditions (pH 7.4 and 37 °C at which the γ-GA/DOX ionic pairings remained mostly undisturbed, the dense outlayered gels of GCPVs significantly reduced the premature leakage of the uncomplexed payload. With the environmental pH being reduced from pH 7.4 to 4.7, the drug liberation was appreciably promoted by the massive disruption of the ionic γ-GA/DOX complexes along with the significant swelling of nanogel layers upon the increased protonation of chitosan chain segments. After being internalized by HeLa cells via endocytosis, GCPVs exhibited cytotoxic effect comparable to free DOX achieved by rapidly releasing the payload in intracellular acidic endosomes and lysosomes. This strongly implies the great promise of such unique GCPVs as an intracellular drug delivery carrier for potential anticancer treatment.

  18. Vaginal delivery - discharge

    Science.gov (United States)

    Pregnancy - discharge after vaginal delivery ... You may have bleeding from your vagina for up to 6 weeks. Early on, you may pass some small clots when you first get up. Bleeding will slowly become ...

  19. Bribes for Faster Delivery

    OpenAIRE

    Sanyal, Amal

    2000-01-01

    The paper models the practice of charging bribes for faster delivery of essential services in third world countries. It then examines the possibility of curbing corruption by supervision, and secondly, by introducing competition among delivery agents. It is argued that a supervisory solution eludes the problem because no hard evidence of the reduction of corruption can be established for this type of offenses. It is also shown that using more than one supplier cannot eliminate the practice, a...

  20. Relevance of intracellular polarity to accuracy of eukaryotic chemotaxis

    International Nuclear Information System (INIS)

    Hiraiwa, Tetsuya; Nishikawa, Masatoshi; Shibata, Tatsuo; Nagamatsu, Akihiro; Akuzawa, Naohiro

    2014-01-01

    Eukaryotic chemotaxis is usually mediated by intracellular signals that tend to localize at the front or back of the cell. Such intracellular polarities frequently require no extracellular guidance cues, indicating that spontaneous polarization occurs in the signal network. Spontaneous polarization activity is considered relevant to the persistent motions in random cell migrations and chemotaxis. In this study, we propose a theoretical model that connects spontaneous intracellular polarity and motile ability in a chemoattractant solution. We demonstrate that the intracellular polarity can enhance the accuracy of chemotaxis. Chemotactic accuracy should also depend on chemoattractant concentration through the concentration-dependent correlation time in the polarity direction. Both the polarity correlation time and the chemotactic accuracy depend on the degree of responsiveness to the chemical gradient. We show that optimally accurate chemotaxis occurs at an intermediate responsiveness of intracellular polarity. Experimentally, we find that the persistence time of randomly migrating Dictyostelium cells depends on the chemoattractant concentration, as predicted by our theory. At the optimum responsiveness, this ameboid cell can enhance its chemotactic accuracy tenfold. (paper)

  1. Intracellular calcium levels can regulate Importin-dependent nuclear import

    International Nuclear Information System (INIS)

    Kaur, Gurpreet; Ly-Huynh, Jennifer D.; Jans, David A.

    2014-01-01

    Highlights: • High intracellular calcium inhibits Impα/β1- or Impβ1-dependent nuclear protein import. • The effect of Ca 2+ on nuclear import does not relate to changes in the nuclear pore. • High intracellular calcium can result in mislocalisation of Impβ1, Ran and RCC1. - Abstract: We previously showed that increased intracellular calcium can modulate Importin (Imp)β1-dependent nuclear import of SRY-related chromatin remodeling proteins. Here we extend this work to show for the first time that high intracellular calcium inhibits Impα/β1- or Impβ1-dependent nuclear protein import generally. The basis of this relates to the mislocalisation of the transport factors Impβ1 and Ran, which show significantly higher nuclear localization in contrast to various other factors, and RCC1, which shows altered subnuclear localisation. The results here establish for the first time that intracellular calcium modulates conventional nuclear import through direct effects on the nuclear transport machinery

  2. Intracellular transport of fat-soluble vitamins A and E.

    Science.gov (United States)

    Kono, Nozomu; Arai, Hiroyuki

    2015-01-01

    Vitamins are compounds that are essential for the normal growth, reproduction and functioning of the human body. Of the 13 known vitamins, vitamins A, D, E and K are lipophilic compounds and are therefore called fat-soluble vitamins. Because of their lipophilicity, fat-soluble vitamins are solubilized and transported by intracellular carrier proteins to exert their actions and to be metabolized properly. Vitamin A and its derivatives, collectively called retinoids, are solubilized by intracellular retinoid-binding proteins such as cellular retinol-binding protein (CRBP), cellular retinoic acid-binding protein (CRABP) and cellular retinal-binding protein (CRALBP). These proteins act as chaperones that regulate the metabolism, signaling and transport of retinoids. CRALBP-mediated intracellular retinoid transport is essential for vision in human. α-Tocopherol, the main form of vitamin E found in the body, is transported by α-tocopherol transfer protein (α-TTP) in hepatic cells. Defects of α-TTP cause vitamin E deficiency and neurological disorders in humans. Recently, it has been shown that the interaction of α-TTP with phosphoinositides plays a critical role in the intracellular transport of α-tocopherol and is associated with familial vitamin E deficiency. In this review, we summarize the mechanisms and biological significance of the intracellular transport of vitamins A and E. © 2014 The Authors. Traffic published by John Wiley & Sons Ltd.

  3. Exploring anti-bacterial compounds against intracellular Legionella.

    Directory of Open Access Journals (Sweden)

    Christopher F Harrison

    Full Text Available Legionella pneumophila is a ubiquitous fresh-water bacterium which reproduces within its erstwhile predators, environmental amoeba, by subverting the normal pathway of phagocytosis and degradation. The molecular mechanisms which confer resistance to amoeba are apparently conserved and also allow replication within macrophages. Thus, L. pneumophila can act as an 'accidental' human pathogen and cause a severe pneumonia known as Legionnaires' disease. The intracellular localisation of L. pneumophila protects it from some antibiotics, and this fact must be taken into account to develop new anti-bacterial compounds. In addition, the intracellular lifestyle of L. pneumophila may render the bacteria susceptible to compounds diminishing bacterial virulence and decreasing intracellular survival and replication of this pathogen. The development of a single infection cycle intracellular replication assay using GFP-producing L. pneumophila and Acanthamoebacastellanii amoeba is reported here. This fluorescence-based assay allows for continuous monitoring of intracellular replication rates, revealing the effect of bacterial gene deletions or drug treatment. To examine how perturbations of the host cell affect L. pneumophila replication, several known host-targeting compounds were tested, including modulators of cytoskeletal dynamics, vesicle scission and Ras GTPase localisation. Our results reveal a hitherto unrealized potential antibiotic property of the β-lactone-based Ras depalmitoylation inhibitor palmostatin M, but not the closely related inhibitor palmostatin B. Further characterisation indicated that this compound caused specific growth inhibition of Legionella and Mycobacterium species, suggesting that it may act on a common bacterial target.

  4. Surveillance for Intracellular Antibody by Cytosolic Fc Receptor TRIM21

    Directory of Open Access Journals (Sweden)

    William A. McEwan

    2016-11-01

    Full Text Available TRIM21 has emerged as an atypical Fc receptor that is broadly conserved and widely expressed in the cytoplasm of mammalian cells. Viruses that traffic surface-bound antibodies into the cell during infection recruit TRIM21 via a high affinity interaction between Fc and TRIM21 PRYSPRY domain. Following binding of intracellular antibody, TRIM21 acts as both antiviral effector and sensor for innate immune signalling. These activities serve to reduce viral replication by orders of magnitude in vitro and contribute to host survival during in vivo infection. Neutralization occurs rapidly after detection and requires the activity of the ubiquitin-proteasome system. The microbial targets of this arm of intracellular immunity are still being identified: TRIM21 activity has been reported following infection by several non-enveloped viruses and intracellular bacteria. These findings extend the sphere of influence of antibodies to the intracellular domain and have broad implications for immunity. TRIM21 has been implicated in the chronic auto-immune condition systemic lupus erythematosus and is itself an auto-antigen in Sjögren’s syndrome. This review summarises our current understanding of TRIM21’s role as a c