WorldWideScience

Sample records for tumor proliferation invasion

  1. Indirubin inhibits cell proliferation, migration, invasion and angiogenesis in tumor-derived endothelial cells

    Directory of Open Access Journals (Sweden)

    Li Z

    2018-05-01

    Full Text Available Zhuohong Li, Chaofu Zhu, Baiping An, Yu Chen, Xiuyun He, Lin Qian, Lan Lan, Shijie Li Department of Oncology, The Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China Purpose: Hepatocellular carcinoma is one of the most predominant malignancies with high fatality rate and its incidence is rising at an alarming rate because of its resistance to radio- and chemotherapy. Indirubin is the major active anti-tumor ingredient of a traditional Chinese herbal medicine. The present study aimed to analyze the effects of indirubin on cell proliferation, migration, invasion, and angiogenesis of tumor-derived endothelial cells (Td-EC. Methods: Td-EC were derived from human umbilical vein endothelial cells (HUVEC by treating HUVEC with the conditioned medium of human liver cancer cell line HepG2. Cell proliferation, migration, invasion, and angiogenesis were assessed by MTT, wound healing, in vitro cell invasion, and in vitro tube formation assay. Results: Td-EC were successfully obtained from HUVEC cultured with 50% culture supernatant from serum-starved HepG2 cells. Indirubin significantly inhibited Td-EC proliferation in a dose- and time-dependent manner. Indirubin also inhibited Td-EC migration, invasion, and angiogenesis. However, indirubin’s effects were weaker on HUVEC than Td-EC. Conclusion: Indirubin significantly inhibited Td-EC proliferation, migration, invasion, and angiogenesis. Keywords: indirubin, Td-EC, proliferation, migration, invasion, angiogenesis

  2. Endostatin induces proliferation of oral carcinoma cells but its effect on invasion is modified by the tumor microenvironment

    Energy Technology Data Exchange (ETDEWEB)

    Alahuhta, Ilkka [Research Group of Cancer and Translational Medicine, Faculty of Medicine, University of Oulu (Finland); Medical Research Center, Oulu University Hospital, Oulu (Finland); Aikio, Mari [Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu (Finland); Oulu Center for Cell-Matrix Research, University of Oulu (Finland); Väyrynen, Otto; Nurmenniemi, Sini [Research Group of Cancer and Translational Medicine, Faculty of Medicine, University of Oulu (Finland); Medical Research Center, Oulu University Hospital, Oulu (Finland); Suojanen, Juho [Department of Oral and Maxillo-facial Diseases, University of Helsinki, Helsinki University Central Hospital (Finland); Teppo, Susanna [Research Group of Cancer and Translational Medicine, Faculty of Medicine, University of Oulu (Finland); Medical Research Center, Oulu University Hospital, Oulu (Finland); Pihlajaniemi, Taina; Heljasvaara, Ritva [Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu (Finland); Oulu Center for Cell-Matrix Research, University of Oulu (Finland); Salo, Tuula [Research Group of Cancer and Translational Medicine, Faculty of Medicine, University of Oulu (Finland); Medical Research Center, Oulu University Hospital, Oulu (Finland); Department of Oral and Maxillo-facial Diseases, University of Helsinki, Helsinki University Central Hospital (Finland); Department of Oral Diagnosis, School of Dentistry, State University of Campinas, Piracicaba, Sao Paolo (Brazil); Nyberg, Pia, E-mail: pia.nyberg@oulu.fi [Research Group of Cancer and Translational Medicine, Faculty of Medicine, University of Oulu (Finland); Medical Research Center, Oulu University Hospital, Oulu (Finland)

    2015-08-01

    The turnover of extracellular matrix liberates various cryptic molecules with novel biological activities. Endostatin is an endogenous angiogenesis inhibitor that is derived from the non-collagenous domain of collagen XVIII. Although there are a large number of studies on its anti-tumor effects, the molecular mechanisms are not yet completely understood, and the reasons why endostatin has not been successful in clinical trials are unclear. Research has mostly focused on its anti-angiogenic effect in tumors. Here, we aimed to elucidate how endostatin affects the behavior of aggressive tongue HSC-3 carcinoma cells that were transfected to overproduce endostatin. Endostatin inhibited the invasion of HSC-3 cells in a 3D collagen–fibroblast model. However, it had no effect on invasion in a human myoma organotypic model, which lacks vital fibroblasts. Recombinant endostatin was able to reduce the Transwell migration of normal fibroblasts, but had no effect on carcinoma associated fibroblasts. Surprisingly, endostatin increased the proliferation and decreased the apoptosis of cancer cells in organotypic models. Also subcutaneous tumors overproducing endostatin grew bigger, but showed less local invasion in nude mice xenografts. We conclude that endostatin affects directly to HSC-3 cells increasing their proliferation, but its net effect on cancer invasion seem to depend on the cellular composition and interactions of tumor microenvironment. - Highlights: • Endostatin affects not only angiogenesis, but also carcinoma cells and fibroblasts. • Endostatin increased carcinoma cell proliferation, but decreased 3D invasion. • The invasion inhibitory effect was sensitive to the microenvironment composition. • Fibroblasts may be a factor regulating the fluctuating roles of endostatin.

  3. Lentivirus mediated RNA interference of EMMPRIN (CD147) gene inhibits the proliferation, matrigel invasion and tumor formation of breast cancer cells.

    Science.gov (United States)

    Yang, Jing; Wang, Rong; Li, Hongjiang; Lv, Qing; Meng, Wentong; Yang, Xiaoqin

    2016-07-08

    Overexpression of extracellular matrix metalloproteinase inducer (EMMPRIN) or cluster of differentiation 147 (CD147), a glycoprotein enriched on the plasma membrane of tumor cells, promotes proliferation, invasion, metastasis, and survival of malignant tumor cells. In this study, we sought to examine the expression of EMMPRIN in breast tumors, and to identify the potential roles of EMMPRIN on breast cancer cells. EMMPRIN expression in breast cancer tissues was assessed by immunohistochemistry. We used a lentivirus vector-based RNA interference (RNAi) approach expressing short hairpin RNA (shRNA) to knockdown EMMPRIN gene in breast cancer cell lines MDA-MB-231 and MCF-7. In vitro, Cell proliferative, invasive potential were determined by Cell Counting Kit (CCK-8), cell cycle analysis and matrigel invasion assay, respectively. In vivo, tumorigenicity was monitored by inoculating tumor cells into breast fat pad of female nude mice. EMMPRIN was over-expressed in breast tumors and breast cancer cell lines. Down-regulation of EMMPRIN by lentivirus vector-based RNAi led to decreased cell proliferative, decreased matrigel invasion in vitro, and attenuated tumor formation in vivo. High expression of EMMPRIN plays a crucial role in breast cancer cell proliferation, matrigel invasion and tumor formation.

  4. Effect of hGC-MSCs from human gastric cancer tissue on cell proliferation, invasion and epithelial-mesenchymal transition in tumor tissue of gastric cancer tumor-bearing mice.

    Science.gov (United States)

    Song, Lin; Zhou, Xin; Jia, Hong-Jun; Du, Mei; Zhang, Jin-Ling; Li, Liang

    2016-08-01

    To study the effect of hGC-MSCs from human gastric cancer tissue on cell proliferation, invasion and epithelial-mesenchymal transition in tumor tissue of gastric cancer tumor-bearing mice. BABL/c nude mice were selected as experimental animals and gastric cancer tumor-bearing mice model were established by subcutaneous injection of gastric cancer cells, randomly divided into different intervention groups. hGC-MSCs group were given different amounts of gastric cancer cells for subcutaneous injection, PBS group was given equal volume of PBS for subcutaneous injection. Then tumor tissue volume were determined, tumor-bearing mice were killed and tumor tissues were collected, mRNA expression of proliferation, invasion, EMT-related molecules were determined. 4, 8, 12, 16, 20 d after intervention, tumor tissue volume of hGC-MSCs group were significantly higher than those of PBS group and the more the number of hGC-MSCs, the higher the tumor tissue volume; mRNA contents of Ki-67, PCNA, Bcl-2, MMP-2, MMP-7, MMP-9, MMP-14, N-cadherin, vimentin, Snail and Twist in tumor tissue of hGC-MSCs group were higher than those of PBS group, and mRNA contents of Bax, TIMP1, TIMP2 and E-cadherin were lower than those of PBS group. hGC-MSCs from human gastric cancer tissue can promote the tumor growth in gastric cancer tumor-bearing mice, and the molecular mechanism includes promoting cell proliferation, invasion and epithelial-mesenchymal transition. Copyright © 2016 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  5. RNAi-mediated silencing of CD147 inhibits tumor cell proliferation, invasion and increases chemosensitivity to cisplatin in SGC7901 cells in vitro

    Directory of Open Access Journals (Sweden)

    Zhu Chan

    2010-06-01

    Full Text Available Abstract Background CD147 is a widely distributed cell surface glycoprotein that belongs to the Ig superfamily. CD147 has been implicated in numerous physiological and pathological activities. Enriched on the surface of many tumor cells, CD147 promotes tumor growth, invasion, metastasis and angiogenesis and confers resistance to some chemotherapeutic drugs. In this study, we investigated the possible role of CD147 in the progression of gastric cancer. Methods Short hairpin RNA (shRNA expressing vectors targeting CD147 were constructed and transfected into human gastric cancer cells SGC7901 and CD147 expression was monitored by quantitative realtime RT-PCR and Western blot. Cell proliferation, the activities of MMP-2 and MMP-9, the invasive potential and chemosensitivity to cisplatin of SGC7901 cells were determined by MTT, gelatin zymography, Transwell invasion assay and MTT, respectively. Results Down-regulation of CD147 by RNAi approach led to decreased cell proliferation, MMP-2 and MMP-9 activities and invasive potential of SGC7901 cells as well as increased chemosensitivity to cisplatin. Conclusion CD147 involves in proliferation, invasion and chemosensitivity of human gastric cancer cell line SGC7901, indicating that CD147 may be a promising therapeutic target for gastric cancer.

  6. Human tumor cell proliferation evaluated using manganese-enhanced MRI.

    Directory of Open Access Journals (Sweden)

    Rod D Braun

    Full Text Available Tumor cell proliferation can depend on calcium entry across the cell membrane. As a first step toward the development of a non-invasive test of the extent of tumor cell proliferation in vivo, we tested the hypothesis that tumor cell uptake of a calcium surrogate, Mn(2+ [measured with manganese-enhanced MRI (MEMRI], is linked to proliferation rate in vitro.Proliferation rates were determined in vitro in three different human tumor cell lines: C918 and OCM-1 human uveal melanomas and PC-3 prostate carcinoma. Cells growing at different average proliferation rates were exposed to 1 mM MnCl(2 for one hour and then thoroughly washed. MEMRI R(1 values (longitudinal relaxation rates, which have a positive linear relationship with Mn(2+ concentration, were then determined from cell pellets. Cell cycle distributions were determined using propidium iodide staining and flow cytometry. All three lines showed Mn(2+-induced increases in R(1 compared to cells not exposed to Mn(2+. C918 and PC-3 cells each showed a significant, positive correlation between MEMRI R(1 values and proliferation rate (p≤0.005, while OCM-1 cells showed no significant correlation. Preliminary, general modeling of these positive relationships suggested that pellet R(1 for the PC-3 cells, but not for the C918 cells, could be adequately described by simply accounting for changes in the distribution of the cell cycle-dependent subpopulations in the pellet.These data clearly demonstrate the tumor-cell dependent nature of the relationship between proliferation and calcium influx, and underscore the usefulness of MEMRI as a non-invasive method for investigating this link. MEMRI is applicable to study tumors in vivo, and the present results raise the possibility of evaluating proliferation parameters of some tumor types in vivo using MEMRI.

  7. A Rare Cutaneous Adnexal Tumor: Malignant Proliferating Trichilemmal Tumor

    Directory of Open Access Journals (Sweden)

    Omer Alici

    2015-01-01

    Full Text Available Proliferating trichilemmal tumors (PTTs are neoplasms derived from the outer root sheath of the hair follicle. These tumors, which commonly affect the scalp of elderly women, rarely demonstrate malignant transformation. Although invasion of the tumors into neighboring tissues and being accompanied with anaplasia and necrosis are accepted as findings of malignancy, histological features may not always be sufficient to identify these tumors. The clinical behavior of the tumor may be incompatible with its histological characteristics. Squamous-cell carcinoma should certainly be considered in differential diagnosis because of its similarity in morphological appearance with PTT. Immunostaining for CD34, P53, and Ki-67 is a useful adjuvant diagnostic method that can be used in differential diagnosis aside from morphological findings. In this study, we aimed to present the case of a 52-year-old female patient with clinicopathological features. We reported a low-grade malignant proliferating trichilemmal tumor in this patient and detected no relapse or metastasis in a 24-month period of follow-up.

  8. MicroRNA-199 suppresses cell proliferation, migration and invasion by downregulating RGS17 in hepatocellular carcinoma.

    Science.gov (United States)

    Zhang, Wei; Qian, Sheng; Yang, Guowei; Zhu, Liang; Zhou, Bo; Wang, Jianhua; Liu, Rong; Yan, Zhiping; Qu, Xudong

    2018-06-15

    Hepatocellular carcinoma (HCC), the most common primary tumor of the liver, has a poor prognosis and shows rapid progression. MicroRNAs (miRNAs) play important roles in carcinogenesis and tumor progression. Regulators of G-protein signaling (RGS) are critical for defining G-protein-dependent signal fidelity. RGS17 plays an important role in the regulation of cancer cell proliferation, migration and invasion. Here, we showed that miR-199 was downregulated in a hepatocarcinoma cell line. Overexpression of miR-199 significantly suppressed HCC cell proliferation, migration, and invasion in vitro. RGS17 overexpression promoted HCC cell proliferation, migration, and invasion, and reversed the miR-199 mediated inhibition of proliferation, migration, and invasion. Dual-fluorescence reporter experiments confirmed that miR-199 downregulated RGS17 by direct interaction with the 3'-UTR of RGS17 mRNA. In vivo studies showed that miR-199 overexpression significantly inhibited the growth of tumors. Taken together, the results suggested that miR-199 inhibited tumor growth and metastasis by targeting RGS17. Published by Elsevier B.V.

  9. Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals

    Science.gov (United States)

    Gupta, Subash C.; Kim, Ji Hye; Prasad, Sahdeo

    2010-01-01

    Almost 25 centuries ago, Hippocrates, the father of medicine, proclaimed “Let food be thy medicine and medicine be thy food.” Exploring the association between diet and health continues today. For example, we now know that as many as 35% of all cancers can be prevented by dietary changes. Carcinogenesis is a multistep process involving the transformation, survival, proliferation, invasion, angiogenesis, and metastasis of the tumor and may take up to 30 years. The pathways associated with this process have been linked to chronic inflammation, a major mediator of tumor progression. The human body consists of about 13 trillion cells, almost all of which are turned over within 100 days, indicating that 70,000 cells undergo apoptosis every minute. Thus, apoptosis/cell death is a normal physiological process, and it is rare that a lack of apoptosis kills the patient. Almost 90% of all deaths due to cancer are linked to metastasis of the tumor. How our diet can prevent cancer is the focus of this review. Specifically, we will discuss how nutraceuticals, such as allicin, apigenin, berberine, butein, caffeic acid, capsaicin, catechin gallate, celastrol, curcumin, epigallocatechin gallate, fisetin, flavopiridol, gambogic acid, genistein, plumbagin, quercetin, resveratrol, sanguinarine, silibinin, sulforaphane, taxol, γ-tocotrienol, and zerumbone, derived from spices, legumes, fruits, nuts, and vegetables, can modulate inflammatory pathways and thus affect the survival, proliferation, invasion, angiogenesis, and metastasis of the tumor. Various cell signaling pathways that are modulated by these agents will also be discussed. PMID:20737283

  10. Correlation of thyroid papillary carcinoma CEUS characteristics with cancer cell proliferation and invasion

    Directory of Open Access Journals (Sweden)

    Jing Wan

    2017-04-01

    Full Text Available Objective: To study the correlation of thyroid papillary carcinoma CEUS characteristics with cancer cell proliferation and invasion. Methods: A total of 128 patients with thyroid papillary carcinoma who received surgical treatment in the hospital between May 2013 and May 2016 were collected, CEUS was used to make clear the peak intensity (PI and area under the curve (AUC of tumor tissue and surrounding normal tissue, and the median of PI and AUC was referred to further divide the patients into high PI group and low PI group as well as high AUC group and low AUC group, 64 cases in each group. Fluorescent quantitative PCR was used to determine proliferation and invasion gene mRNA expression in tumor tissues. Results: PI and AUC levels in tumor tissue were lower than those in surrounding normal tissue; proliferation genes EZH2, Livin, hTERT, HMGA1 and Wip1 mRNA expression of low PI group were higher than those of high PI group, and invasion gene Ki-67 mRNA expression was higher than that of high PI group while P53 and MRP-1 mRNA expression were lower than those of high PI group; proliferation genes EZH2, Livin, hTERT, HMGA1 and Wip1 mRNA expression of low AUC group were higher than those of high AUC group, and invasion gene Ki-67 mRNA expression was higher than that of high AUC group while P53 and MRP-1 mRNA expression were lower than those of high AUC group. Conclusion: Thyroid papillary carcinoma CEUS parameters PI and AUC levels can quantifiably reflect the cancer cell proliferation and invasion activity.

  11. AgNOR Count in Resting Cells (Resting NOR Is a New Prognostic Marker in Invasive Bladder Tumor

    Directory of Open Access Journals (Sweden)

    Mitsuro Tomobe

    2001-01-01

    Full Text Available Purpose: We have previously demonstrated that the AgNOR count in proliferating cells is a predictor of tumor recurrence in superficial bladder tumor (J. Urol. 162 (1999, 63–68. In the present study, we evaluate the type of AgNOR associated with cell cycles as a prognostic factor in invasive bladder tumor using a double staining technique employing both AgNOR and MIB-1 labelling. Materials and methods: Forty-four paraffin sections of invasive bladder tumors were stained simultaneously with AgNOR and MIB-1. The number of AgNORs in proliferating (MIB-1 positive or resting (MIB-1 negative cells were counted from a total of 100 nuclei. Correlations between MIB-1 associated AgNOR count and clinicopathological parameters were statistically analyzed. Results: The AgNOR count in proliferating cells (proliferating NOR was significantly higher than that in resting cells (resting NOR (p < 0.01. The resting NOR in tumors with distant metastases was significantly higher than that in tumors without metastases (p < 0.05. Patients with a low resting NOR tumor had a better prognosis than those with a high resting NOR tumor, whereas the proliferating NOR was not associated with survival. Survival analysis revealed that the resting NOR was the most powerful prognostic marker in patients with invasive bladder tumor (p < 0.05. Conclusions: Resting NOR had a predictive value in the prognosis of patients with invasive bladder tumor. Keywords: Transitional cell carcinoma, invasive, resting cell, AgNORs, MIB-1

  12. Establishment and Characterization of a Tumor Stem Cell-Based Glioblastoma Invasion Model.

    Directory of Open Access Journals (Sweden)

    Stine Skov Jensen

    Full Text Available Glioblastoma is the most frequent and malignant brain tumor. Recurrence is inevitable and most likely connected to tumor invasion and presence of therapy resistant stem-like tumor cells. The aim was therefore to establish and characterize a three-dimensional in vivo-like in vitro model taking invasion and tumor stemness into account.Glioblastoma stem cell-like containing spheroid (GSS cultures derived from three different patients were established and characterized. The spheroids were implanted in vitro into rat brain slice cultures grown in stem cell medium and in vivo into brains of immuno-compromised mice. Invasion was followed in the slice cultures by confocal time-lapse microscopy. Using immunohistochemistry, we compared tumor cell invasion as well as expression of proliferation and stem cell markers between the models.We observed a pronounced invasion into brain slice cultures both by confocal time-lapse microscopy and immunohistochemistry. This invasion closely resembled the invasion in vivo. The Ki-67 proliferation indexes in spheroids implanted into brain slices were lower than in free-floating spheroids. The expression of stem cell markers varied between free-floating spheroids, spheroids implanted into brain slices and tumors in vivo.The established invasion model kept in stem cell medium closely mimics tumor cell invasion into the brain in vivo preserving also to some extent the expression of stem cell markers. The model is feasible and robust and we suggest the model as an in vivo-like model with a great potential in glioma studies and drug discovery.

  13. Interference with PSMB4 Expression Exerts an Anti-Tumor Effect by Decreasing the Invasion and Proliferation of Human Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Yu-Chen Cheng

    2018-01-01

    Full Text Available Background/Aims: Glioblastoma (GBM is a malignant brain tumor with a poor prognosis. Proteasome subunit beta type-4 (PSMB4 is an essential subunit that contributes to the assembly of the 20S proteasome complex. However, the role of PSMB4 in glioblastomas remains to be clarified. The aim of this study was to investigate the role of PSMB4 in GBM tumor progression. Methods: We first analyzed the PSMB4 protein and mRNA expression in 80 clinical brain specimens and 77 datasets from the National Center for Biotechnology Information (NCBI Gene Expression Omnibus (GEO database. Next, we inhibited the PSMB4 expression by siRNA in cellular and animal models to explore PSMB4’s underlying mechanisms. The cell survival after siPSMB4 transfection was assayed by MTT assay. Annexin V and propidium iodide staining was used to monitor the apoptosis by flow cytometric analysis. Moreover, the migration and invasion were evaluated by wound healing and Transwell assays. The expression of migration-related and invasion-related proteins after PSMB4 inhibition was detected by Western blotting. In addition, an orthotropic xenograft mouse model was used to assay the effect of PSMB4 knockdown in the in vivo study. Results: Basis on the results of bioinformatics study, glioma patients with higher PSMB4 expression had a shorter survival time than those with lower PSMB4 expression. The staining of clinical brain tissues showed elevated PSMB4 expression in GBM tissues compared with normal brain tissues. The PSMB4 inhibition decreased proliferation, migration and invasion abilities in human GBM cells. Downregulated PSMB4 resulted in cell cycle arrest and apoptosis in vitro. In an orthotropic xenograft mouse model, the glioma tumors progression was reduced when PSMB4 was down-regulated. The decreased PSMB4 enhanced the anti-tumor effect of temozolomide (TMZ on tumor growth. In addition, the absence of PSMB4 decreased the expression of phosphorylated focal adhesion kinase and

  14. Effect of cetuximab combined with paclitaxel + cisplatin neoadjuvant chemotherapy on esophageal cancer cell proliferation and invasion

    Directory of Open Access Journals (Sweden)

    Yu-Lin Zhao

    2017-07-01

    Full Text Available Objective: To study the effect of cetuximab combined with paclitaxel + cisplatin neoadjuvant chemotherapy on esophageal cancer cell proliferation and invasion. Methods: A total of 62 patients with esophageal cancer who were treated in the hospital between January 2015 and December 2016 were collected and divided into control group and observation group according to random number table, with 31 cases in each group. Control group of patients received paclitaxel + cisplatin neoadjuvant chemotherapy + surgery, and observation group of patients accepted cetuximab combined with paclitaxel + cisplatin neoadjuvant chemotherapy + surgery. The differences in proliferation and invasion gene expression in the tumor tissue were compared between two groups of patients before and after chemotherapy. Results: Before chemotherapy, differences in proliferation and invasion gene expression in tumor tissue were not statistically significant between two groups of patients. After chemotherapy, proproliferation genes FOXA1, ABCE1, USP39 and Nestin mRNA expression in tumor tissue of observation group were significantly lower than those of control group; anti-proliferation genes PETN, KLF4, TSLC1 and AnnexinA2 mRNA expression were significantly higher than those of control group; pro-invasion genes γ-synuclein, CXCR4 and Snail mRNA expression were significantly lower than those of control group; anti-invasion genes CIAPIN1, Fez and Lrig1 mRNA expression were significantly higher than that of control group. Conclusions: Cetuximab combined with paclitaxel + cisplatin neoadjuvant chemotherapy can effectively inhibit the malignant degree of esophageal cancer cells and inhibit its proliferation and invasion.

  15. NFATC3-PLA2G15 Fusion Transcript Identified by RNA Sequencing Promotes Tumor Invasion and Proliferation in Colorectal Cancer Cell Lines.

    Science.gov (United States)

    Jang, Jee-Eun; Kim, Hwang-Phill; Han, Sae-Won; Jang, Hoon; Lee, Si-Hyun; Song, Sang-Hyun; Bang, Duhee; Kim, Tae-You

    2018-06-14

    This study was designed to identify novel fusion transcripts (FTs) and their functional significance in colorectal cancer lines. We performed paired-end RNA sequencing of 28 colorectal cancer (CRC) cell lines. FT candidates were identified using TopHat-fusion, ChimeraScan, and FusionMap tools and further experimental validation was conducted through reverse transcription-polymerase chain reaction and Sanger sequencing. FT was depleted in human CRC line and the effects on cell proliferation, cell migration, and cell invasion were analyzed. 1,380 FT candidates were detected through bioinformatics filtering. We selected 6 candidate FTs, including 4 inter-chromosomal and 2 intra-chromosomal FTs and each FT was found in at least 1 of the 28 cell lines. Moreover, when we tested 19 pairs of CRC tumor and adjacent normal tissue samples, NFATC3-PLA2G15 FT was found in 2. Knockdown of NFATC3-PLA2G15 using siRNA reduced mRNA expression of epithelial-mesenchymal transition (EMT) markers such as vimentin, twist, and fibronectin and increased mesenchymal-epithelial transition markers of E-cadherin, claudin-1, and FOXC2 in colo-320 cell line harboring NFATC3-PLA2G15 FT. The NFATC3-PLA2G15 knockdown also inhibited invasion, colony formation capacity, and cell proliferation. These results suggest that that NFATC3-PLA2G15 FTs may contribute to tumor progression by enhancing invasion by EMT and proliferation.

  16. Establishment and Characterization of a Tumor Stem Cell-Based Glioblastoma Invasion Model

    DEFF Research Database (Denmark)

    Jensen, Stine Skov; Meyer, Morten; Petterson, Stine Asferg

    2016-01-01

    AIMS: Glioblastoma is the most frequent and malignant brain tumor. Recurrence is inevitable and most likely connected to tumor invasion and presence of therapy resistant stem-like tumor cells. The aim was therefore to establish and characterize a three-dimensional in vivo-like in vitro model taking...... invasion and tumor stemness into account. METHODS: Glioblastoma stem cell-like containing spheroid (GSS) cultures derived from three different patients were established and characterized. The spheroids were implanted in vitro into rat brain slice cultures grown in stem cell medium and in vivo into brains...... of immuno-compromised mice. Invasion was followed in the slice cultures by confocal time-lapse microscopy. Using immunohistochemistry, we compared tumor cell invasion as well as expression of proliferation and stem cell markers between the models. RESULTS: We observed a pronounced invasion into brain slice...

  17. Inhibition of Zoledronic Acid on Cell Proliferation and Invasion of Lung Cancer Cell Line 95D

    Directory of Open Access Journals (Sweden)

    Mingming LI

    2009-03-01

    Full Text Available Background and objective Abnormal proliferation and metastasis is the basic characteristic of malignant tumors. The aim of this work is to explore the effects of zoledronic acid on cell proliferation and invasion in lung cancer cell line 95D. Methods The effect of zoledrnic acid (ZOL on proliferation of lung cancer cell line 95D was detected by MTT. The expression of proliferation and invasion-relation genes and proteins were detected by Western blot, RT-PCR and immunofluorescence. Changes of invasion of lung cancer cell numbers were measured by polycarbonates coated with Matrigel. Results ZOL could inhibit the proliferation of lung cancer cell line 95D in vitro in a time-dependant and a dose-dependant manner. With time extending after ZOL treated, the mRNA expresion of VEGF, MMP9, MMP2 and protein expression of VEGF, MMP9, ERK1/ ERK2 were decreased. The results of Tanswell invasion showed the numbers of invasive cells were significantly reduced in 95D cells treated with ZOL 4 d and 6 d later. Conclusion ZOL could inhibit cell proliferation and invasion of lung cancer cell line 95D.

  18. Deregulation of a STAT3-IL8 Signaling Pathway Promotes Human Glioblastoma Cell Proliferation and Invasiveness

    Science.gov (United States)

    de la Iglesia, Núria; Konopka, Genevieve; Lim, Kah Leong; Nutt, Catherine L.; Bromberg, Jacqueline F.; Frank, David A.; Mischel, Paul S.; Louis, David N.; Bonni, Azad

    2009-01-01

    Inactivation of the tumor suppressor PTEN is recognized as a major event in the pathogenesis of the brain tumor glioblastoma. However, the mechanisms by which PTEN loss specifically impacts the malignant behavior of glioblastoma cells including their proliferation and propensity for invasiveness remain poorly understood. Genetic studies suggest that the transcription factor STAT3 harbors a PTEN-regulated tumor suppressive function in mouse astrocytes. Here, we report that STAT3 plays a critical tumor suppressive role in PTEN-deficient human glioblastoma cells. Endogenous STAT3 signaling is specifically inhibited in PTEN-deficient glioblastoma cells. Strikingly, reactivation of STAT3 in PTEN-deficient glioblastoma cells inhibits their proliferation, invasiveness, and ability to spread on myelin. We also identify the chemokine IL8 as a novel target gene of STAT3 in human glioblastoma cells. Activated STAT3 occupies the endogenous IL8 promoter and directly represses IL8 transcription. Consistent with these results, IL8 is upregulated in PTEN-deficient human glioblastoma tumors. Importantly, IL8 repression mediates STAT3-inhibition of glioblastoma cell proliferation, invasiveness, and spreading on myelin. Collectively, our findings uncover a novel link between STAT3 and IL8 whose deregulation plays a key role in the malignant behavior of PTEN-deficient glioblastoma cells. These studies suggest that STAT3 activation or IL8 inhibition may have potential in patient-tailored treatment of PTEN-deficient brain tumors. PMID:18524891

  19. Expression of Caspase-1 in breast cancer tissues and its effects on cell proliferation, apoptosis and invasion.

    Science.gov (United States)

    Sun, Yanxia; Guo, Yingzhen

    2018-05-01

    The present study aimed to detect the expression of Caspase-1 in the tumor tissues and tumor-adjacent tissues of patients with breast cancer, and to investigate the effects of Caspase-1 on the proliferation, apoptosis and invasion of breast cancer cells. Reverse transcription-quantitative polymerase chain reaction was used to detect Caspase-1 mRNA expression in breast cancer tissues and tumor-adjacent tissues from patients. Additionally, the human breast cancer MDA-MB-231 cell line was treated with the Caspase-1 small molecule inhibitor Ac-YVAD-CMK, following which the changes to Caspase-1 protein expression were detected via western blotting. The MTT method detected the changes to cell proliferation, flow cytometry detected the rate of apoptosis, and a Transwell assay was employed to assess invasion. Caspase-1 mRNA expression was significantly decreased in the breast cancer tissues of patients, compared with in the tumor-adjacent tissues, a difference that was statistically significant (P<0.05). Treatment with the Ac-YVAD-CMK markedly decreased the protein expression of Caspase-1 in MDA-MB-231 cells, and the difference was statistically significant (P<0.05). Following this treatment of Ac-YVAD-CMK cells, the proliferation and invasion abilities markedly increased, while the apoptotic levels significantly decreased (P<0.05). In conclusion, the expression of Caspase-1 is low in breast cancer tissues, which may promote the proliferation and invasion of breast cancer cells and could be closely associated with the occurrence and development of breast cancer.

  20. Podoplanin as Key Player of Tumor Progression and Lymph Vessel Proliferation in Ovarian Cancer.

    Science.gov (United States)

    Cobec, Ionut Marcel; Sas, Ioan; Pirtea, Laurențiu; Cimpean, Anca Maria; Moatar, Aurica Elisabeta; Ceaușu, Raluca Amalia; Raica, Marius

    2016-10-01

    Podoplanin plays a key role in tumor progression and metastasis. We evaluated lymphatics proliferation rate and podoplanin expression in tumor cells of ovarian carcinoma. Seventy-five paraffin-embedded specimens of ovarian cancer were immunohistochemically assessed in order to quantify peritumoral (LMVDP) and intratumoral (LMVDT) lymphatic microvessel density of proliferating lymphatics and for podoplanin variability in tumor cells. LMVDT correlated with proliferating tumor vessels located in the peritumoral area (p=0.024) and with the number of mature vessels located in the intratumoral area (p<0.0001), while LMVDP correlated with peritumoral mature vessels (p<0.000l). Proliferating tumor cells at the invasive front were highly positive for podoplanin. To the best of our knowledge, this study represents the first assessment of lymphatic endothelial cell proliferation correlated with podoplanin expression in tumor cells from ovarian cancer. Our data support podoplanin as a potential target that may help reduce ovarian cancer dissemination and lymphatic metastasis. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  1. Tumor cell proliferation kinetics and tumor growth rate

    Energy Technology Data Exchange (ETDEWEB)

    Tubiana, M

    1989-01-01

    The present knowledge on the growth rate and the proliferation kinetics of human tumor is based on the measurement of the tumor doubling times (DT) in several hundred patients and on the determination of the proportion of proliferating cells with radioactive thymidine or by flow cytometry in large numbers of patients. The results show that the DT of human tumor varies widely, from less than one week to over one year with a median value of approximately 2 months. The DTs are significantly correlated with the histological type. They depend upon (1) the duration of the cell cycle whose mean duration is 2 days with small variations from tumor to tumor, (2) the proportion of proliferating cells and consequently the cell birth rate which varies widely among tumors and which is significantly correlated to the DT, (3) the cell loss factors which also vary widely and which are the greatest when proliferation is most intensive. These studies have several clinical implications: (a) they have further increased our understanding of the natural history of human tumor, (b) they have therapeutic implications since tumor responsiveness and curability by radiation and drugs are strongly influenced by the cell kinetic parameters of the tumor, (c) the proportion of proliferating cells is of great prognostic value in several types of human cancers. The investigation of the molecular defects, which are correlated with the perturbation of control of cell proliferation, should lead to significant fundamental and therapeutic advances. (orig.).

  2. Roles of TRPM8 Ion Channels in Cancer: Proliferation, Survival, and Invasion

    Directory of Open Access Journals (Sweden)

    Nelson S. Yee

    2015-10-01

    Full Text Available The goal of this article is to provide a critical review of the transient receptor potential melastatin-subfamily member 8 (TRPM8 in cancers, with an emphasis on its roles in cellular proliferation, survival, and invasion. The TRPM8 ion channels regulate Ca²⁺ homeostasis and function as a cellular sensor and transducer of cold temperature. Accumulating evidence has demonstrated that TRPM8 is aberrantly expressed in a variety of malignant solid tumors. Clinicopathological analysis has shown that over-expression of TRPM8 correlates with tumor progression. Experimental data have revealed important roles of TRPM8 channels in cancer cells proliferation, survival, and invasion, which appear to be dependent on the cancer type. Recent reports have begun to reveal the signaling mechanisms that mediate the biological roles of TRPM8 in tumor growth and metastasis. Determining the mechanistic roles of TRPM8 in cancer is expected to elucidate the impact of thermal and chemical stimuli on the formation and progression of neoplasms. Translational research and clinical investigation of TRPM8 in malignant diseases will help exploit these ion channels as molecular biomarkers and therapeutic targets for developing precision cancer medicine.

  3. β-Catenin promotes cell proliferation, migration, and invasion but induces apoptosis in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Yang CM

    2017-02-01

    Full Text Available Chun-ming Yang,1 Shan Ji,2 Yan Li,3 Li-ye Fu,3 Tao Jiang,3 Fan-dong Meng31Department of Urology, The First Affiliated Hospital, China Medical University, 2Department of Endocrinology, The Fifth People’s Hospital of Shenyang, 3Department of Biotherapy, Cancer Research Institute, The First Affiliated Hospital, China Medical University, Shenyang, ChinaAbstract: β-Catenin (CTNNB1 gene coding protein is a component of the Wnt signaling pathway that has been shown to play an important role in the formation of certain cancers. Abnormal accumulation of CTNNB1 contributes to most cancers. This research studied the involvement of β-catenin in renal cell carcinoma (RCC cell proliferation, apoptosis, migration, and invasion. Proliferation, cell cycle, and apoptosis were analyzed by using Cell Counting Kit-8 and by flow cytometry. Migration and invasion assays were measured by transwell analysis. Real-time polymerase chain reaction and Western blot analysis were used to detect the expression of CTNNB1, ICAM-1, VCAM-1, CXCR4, and CCL18 in RCC cell lines. It was found that CTNNB1 knockdown inhibited cell proliferation, migration, and invasion and induced apoptosis of A-498 cells. CTNNB1 overexpression promoted cell proliferation, migration, and invasion and inhibited apoptosis of 786-O cells. Moreover, knockdown of CTNNB1 decreased the levels of ICAM-1, VCAM-1, CXCR4, and CCL18 expression, but CTNNB1 overexpression increased the expression of ICAM-1, VCAM-1, CXCR4, and CCL18. Further in vivo tumor formation study in nude mice indicated that inhibition of CTNNB1 delayed the progress of tumor formation through inhibiting PCNA and Ki67 expression. These results indicate that CTNNB1 could act as an oncogene and may serve as a promising therapeutic strategy for RCC.Keywords: kidney cancer, oncogene, β-catenin, survival time, tumor migration-related protein

  4. EGCG Inhibits Proliferation, Invasiveness and Tumor Growth by Up-Regulation of Adhesion Molecules, Suppression of Gelatinases Activity, and Induction of Apoptosis in Nasopharyngeal Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Chih-Yeu Fang

    2015-01-01

    Full Text Available (−-Epigallocatechin-3-gallate (EGCG, a major green tea polyphenol, has been shown to inhibit the proliferation of a variety of tumor cells. Epidemiological studies have shown that drinking green tea can reduce the incidence of nasopharyngeal carcinoma (NPC, yet the underlying mechanism is not well understood. In this study, the inhibitory effect of EGCG was tested on a set of Epstein Barr virus-negative and -positive NPC cell lines. Treatment with EGCG inhibited the proliferation of NPC cells but did not affect the growth of a non-malignant nasopharyngeal cell line, NP460hTert. Moreover, EGCG treated cells had reduced migration and invasive properties. The expression of the cell adhesion molecules E-cadherin and β-catenin was found to be up-regulated by EGCG treatment, while the down-regulation of matrix metalloproteinases (MMP-2 and MMP-9 were found to be mediated by suppression of extracellular signal-regulated kinase (ERK phosphorylation and AP-1 and Sp1 transactivation. Spheroid formation by NPC cells in suspension was significantly inhibited by EGCG. Oral administration of EGCG was capable of suppressing tumor growth in xenografted mice bearing NPC tumors. Treatment with EGCG was found to elevate the expression of p53 and p21, and eventually led to apoptosis of NPC cells via caspase 3 activation. The nuclear translocation of NF-κB and β-catenin was also suppressed by EGCG treatment. These results indicate that EGCG can inhibit the proliferation and invasiveness, and induce apoptosis, of NPC cells, making it a promising agent for chemoprevention or adjuvant therapy of NPC.

  5. RNAi-mediated knockdown of pituitary tumor-transforming gene-1 (PTTG1) suppresses the proliferation and invasive potential of PC3 human prostate cancer cells

    International Nuclear Information System (INIS)

    Huang, S.Q.; Liao, Q.J.; Wang, X.W.; Xin, D.Q.; Chen, S.X.; Wu, Q.J.; Ye, G.

    2012-01-01

    Pituitary tumor-transforming gene-1 (PTTG1) is a proto-oncogene that promotes tumorigenesis and metastasis in numerous cell types and is overexpressed in a variety of human tumors. We have demonstrated that PTTG1 expression was up-regulated in both human prostate cancer specimens and prostate cancer cell lines. For a more direct assessment of the function of PTTG1 in prostate tumorigenesis, RNAi-mediated knockdown was used to selectively decrease PTTG1 expression in PC3 human prostate tumor cells. After three weeks of selection, colonies stably transfected with PTTG1-targeted RNAi (the knockdown PC3 cell line) or empty vector (the control PC3 cell line) were selected and expanded to investigate the role of PTTG1 expression in PC3 cell growth and invasion. Cell proliferation rate was significantly slower (28%) in the PTTG1 knockdown line after 6 days of growth as indicated by an MTT cell viability assay (P < 0.05). Similarly, a soft agar colony formation assay revealed significantly fewer (66.7%) PTTG1 knockdown PC3 cell colonies than control colonies after three weeks of growth. In addition, PTTG1 knockdown resulted in cell cycle arrest at G1 as indicated by fluorescence-activated cell sorting. The PTTG1 knockdown PC3 cell line also exhibited significantly reduced migration through Matrigel in a transwell assay of invasive potential, and down-regulation of PTTG1 could lead to increased sensitivity of these prostate cancer cells to a commonly used anticancer drug, taxol. Thus, PTTG1 expression is crucial for PC3 cell proliferation and invasion, and could be a promising new target for prostate cancer therapy

  6. Invasive lobular carcinoma co-existing with benign phylloides tumor

    Directory of Open Access Journals (Sweden)

    S Shrestha

    2014-04-01

    Full Text Available Phylloides tumor constitutes less than 1% of all breast tumors and 2 - 3% of fibroepithelial breast tumors. Several histological parameters should be evaluated, including stromal cellularity, atypia, mitoses, stromal overgrowth, infiltrative borders, and presence or absence of necrosis. Here we report a case of a 60 years- old female who presented with left breast lump. Fine needle aspiration cytology was done which suggested epithelial hyperplasia with fibrocystic changes. Biopsy was performed which showed predominance of stromal hypercellularity with proliferation of spindle cells (no atypia, mitosis and stromal overgrowth were noticed. However, a focus showed proliferation of discohesive tumor cells arranged singly and in single file. A diagnosis of benign phylloides tumor with foci of invasive lobular carcinoma was made. The diagnosis was confirmed with IHC which showed intense 80%positivity for estrogen and progesterone receptor and spindle cells showing positivity for bcl-2. In situ lobular carcinoma component was not observed. DOI: http://dx.doi.org/10.3126/jpn.v4i7.10321   Journal of Pathology of Nepal (2014 Vol. 4, 597-599

  7. Long Noncoding RNA Taurine-Upregulated Gene 1 Promotes Cell Proliferation and Invasion in Gastric Cancer via Negatively Modulating miRNA-145-5p.

    Science.gov (United States)

    Ren, Kewei; Li, Zhen; Li, Yahua; Zhang, Wenzhe; Han, Xinwei

    2017-05-24

    Long noncoding RNA (lncRNA) taurine-upregulated gene 1 (TUG1) is involved in the development and carcinogenesis of various tumors, suggesting the diagnostic potential of TUG1 in these cancers. However, the exact role of TUG1 and its underlying mechanism in gastric cancer (GC) remain unknown. In this study, the expression of TUG1 and miR-145-5p in GC cell lines and nonmalignant gastric epithelial cell lines was detected by qRT-PCR. BGC-823 and SGC-7901 cells were transfected with si-TUG1, pcDNA 3.1-TUG1, miR-145-5p mimics, or matched controls. The biological function of TUG1 and miR-145-5p in GC cell proliferation and invasion in vitro and tumor growth in vivo was investigated by MTT assay, Transwell invasion assay, and tumor xenograft experiments. The regulating relationship between TUG1 and miR-145-5 was confirmed by luciferase reporter assay. The results showed that TUG1 was significantly overexpressed and miR-145-5p was dramatically downregulated in GC cell lines. TUG1 knockdown strikingly inhibited cell proliferation and invasion in vitro and markedly suppressed tumor growth in vivo. Furthermore, TUG1 could directly bind to miR-145-5p and repress miR-145-5p expression. TUG1 overexpression significantly relieved the inhibition on GC cell proliferation and invasion in vitro and tumor growth in vivo, mediated by miR-145-5p overexpression. In conclusion, TUG1 promotes cell proliferation and invasion in GC via negatively modulating miRNA-145-5p, which undoubtedly contributes to understanding the mechanism of GC occurrence and development.

  8. GM-CSF enhances tumor invasion by elevated MMP-2, -9, and -26 expression

    International Nuclear Information System (INIS)

    Gutschalk, Claudia M; Yanamandra, Archana K; Linde, Nina; Meides, Alice; Depner, Sofia; Mueller, Margareta M

    2013-01-01

    Granulocyte–macrophage colony-stimulating factor (GM-CSF) promotes tumor progression in different tumor models in an autocrine and paracrine manner. However, at the same time GM-CSF is used in cancer therapies to ameliorate neutropenia. We have previously shown in GM-CSF and G-CSF expressing or negative skin or head and neck squamous cell carcinoma that GM-CSF expression is associated with a highly angiogenic and invasive tumor phenotype. To determine the functional contribution of GM-CSF to tumor invasion, we stably transfected a GM-CSF negative colon adenocarcinoma cell line HT-29 with GM-CSF or treated the same cell line with exogenous GM-CSF. While GM-CSF overexpression and treatment reduced tumor cell proliferation and tumor growth in vitro and in vivo, respectively, it contributed to tumor progression. Together with an enhanced migratory capacity in vitro, we observed a striking increase in tumor cell invasion into the surrounding tissue concomitant with the induction of an activated tumor stroma in GM-CSF overexpressing or GM-CSF treated tumors. In a complex 3D in vitro model, enhanced GM-CSF expression was associated with a discontinued basement membrane deposition that might be mediated by the increased expression and activation of MMP-2, -9, and -26. Treatment with GM-CSF blocking antibodies reversed this effect. The increased presence and activity of these tumor cell derived proteases was confirmed in vivo. Here, expression of MMP-26 protein was predominantly located in pre- and early-invasive areas suggesting MMP-26 expression as an early event in promoting GM-CSF dependent tumor invasion

  9. Molecular aspects of tumor cell migration and invasion

    Directory of Open Access Journals (Sweden)

    Giuseppina Bozzuto

    2010-03-01

    Full Text Available Cell migration and invasion are crucial steps in many physiological events. However, they are also implicated in the physiopathology of many diseases, such as cancer. To spread through the tissues, tumor cells use mechanisms that involve several molecular actors: adhesion receptor families, receptor tyrosine kinases, cytoskeleton proteins, adapter and signalling proteins interplay in a complex scenario. The balance of cellular signals for proliferation and survival responses also regulates migratory behaviours of tumor cells. To complicate the scene of crime drug resistance players can interfere thus worsening this delicate situation. The complete understanding of this molecular jungle is an impossible mission: some molecular aspects are reviewed in this paper.

  10. Curcumin Suppresses In Vitro Proliferation and Invasion of Human Prostate Cancer Stem Cells by Modulating DLK1-DIO3 Imprinted Gene Cluster MicroRNAs.

    Science.gov (United States)

    Zhang, Hu; Zheng, Jiajia; Shen, Hongliang; Huang, Yongyi; Liu, Te; Xi, Hao; Chen, Chuan

    2018-01-01

    Curcumin can suppress human prostate cancer (HuPCa) cell proliferation and invasion. However, it is not known whether curcumin can inhibit HuPCa stem cell (HuPCaSC) proliferation and invasion. We used methyl thiazolyl tetrazolium and Transwell assays to examine the proliferation and invasion of the HuPCaSC lines DU145 and 22Rv1 following curcumin or dimethyl sulfoxide (control) treatment. The microRNA (miRNA) expression levels in the DLK1-DIO3 imprinted genomic region in the cells and in tumor tissues from patients with PCa were examined using microarray and quantitative PCR. The median inhibitory concentration of curcumin for HuPCa cells significantly inhibited HuPCaSC proliferation and invasion in vitro. The miR-770-5p and miR-1247 expression levels in the DLK1-DIO3 imprinted gene cluster were significantly different between the curcumin-treated and control HuPCaSCs. Overexpression of these positive miRNAs significantly increased the inhibition rates of miR-770-5p- and miR-1247-transfected HuPCaSCs compared to the control miR-Mut-transfected HuPCaSCs. Lastly, low-tumor grade PCa tissues had higher miR-770-5p and miR-1247 expression levels than high-grade tumor tissues. Curcumin can suppress HuPCaSC proliferation and invasion in vitro by modulating specific miRNAs in the DLK1-DIO3 imprinted gene cluster.

  11. Notch1 is required for hypoxia-induced proliferation, invasion and chemoresistance of T-cell acute lymphoblastic leukemia cells

    Directory of Open Access Journals (Sweden)

    Zou Jie

    2013-01-01

    Full Text Available Abstract Background Notch1 is a potent regulator known to play an oncogenic role in many malignancies including T-cell acute lymphoblastic leukemia (T-ALL. Tumor hypoxia and increased hypoxia-inducible factor-1α (HIF-1α activity can act as major stimuli for tumor aggressiveness and progression. Although hypoxia-mediated activation of the Notch1 pathway plays an important role in tumor cell survival and invasiveness, the interaction between HIF-1α and Notch1 has not yet been identified in T-ALL. This study was designed to investigate whether hypoxia activates Notch1 signalling through HIF-1α stabilization and to determine the contribution of hypoxia and HIF-1α to proliferation, invasion and chemoresistance in T-ALL. Methods T-ALL cell lines (Jurkat, Sup-T1 transfected with HIF-1α or Notch1 small interference RNA (siRNA were incubated in normoxic or hypoxic conditions. Their potential for proliferation and invasion was measured by WST-8 and transwell assays. Flow cytometry was used to detect apoptosis and assess cell cycle regulation. Expression and regulation of components of the HIF-1α and Notch1 pathways and of genes related to proliferation, invasion and apoptosis were assessed by quantitative real-time PCR or Western blot. Results Hypoxia potentiated Notch1 signalling via stabilization and activation of the transcription factor HIF-1α. Hypoxia/HIF-1α-activated Notch1 signalling altered expression of cell cycle regulatory proteins and accelerated cell proliferation. Hypoxia-induced Notch1 activation increased the expression of matrix metalloproteinase-2 (MMP2 and MMP9, which increased invasiveness. Of greater clinical significance, knockdown of Notch1 prevented the protective effect of hypoxia/HIF-1α against dexamethasone-induced apoptosis. This sensitization correlated with losing the effect of hypoxia/HIF-1α on Bcl-2 and Bcl-xL expression. Conclusions Notch1 signalling is required for hypoxia/HIF-1α-induced proliferation

  12. Olive phenolics as c-Met inhibitors: (--Oleocanthal attenuates cell proliferation, invasiveness, and tumor growth in breast cancer models.

    Directory of Open Access Journals (Sweden)

    Mohamed R Akl

    Full Text Available Dysregulation of the Hepatocyte growth factor (HGF/c-Met signaling axis upregulates diverse tumor cell functions, including cell proliferation, survival, scattering and motility, epithelial-to-mesenchymal transition (EMT, angiogenesis, invasion, and metastasis. (--Oleocanthal is a naturally occurring secoiridoid from extra-virgin olive oil, which showed antiproliferative and antimigratory activity against different cancer cell lines. The aim of this study was to characterize the intracellular mechanisms involved in mediating the anticancer effects of (--oleocanthal treatment and the potential involvement of c-Met receptor signaling components in breast cancer. Results showed that (--oleocanthal inhibits the growth of human breast cancer cell lines MDA-MB-231, MCF-7 and BT-474 while similar treatment doses were found to have no effect on normal human MCF10A cell growth. In addition, (--oleocanthal treatment caused a dose-dependent inhibition of HGF-induced cell migration, invasion and G1/S cell cycle progression in breast cancer cell lines. Moreover, (--oleocanthal treatment effects were found to be mediated via inhibition of HGF-induced c-Met activation and its downstream mitogenic signaling pathways. This growth inhibitory effect is associated with blockade of EMT and reduction in cellular motility. Further results from in vivo studies showed that (--oleocanthal treatment suppressed tumor cell growth in an orthotopic model of breast cancer in athymic nude mice. Collectively, the findings of this study suggest that (--oleocanthal is a promising dietary supplement lead with potential for therapeutic use to control malignancies with aberrant c-Met activity.

  13. Silencing of CXCR4 inhibits tumor cell proliferation and neural invasion in human hilar cholangiocarcinoma.

    Science.gov (United States)

    Tan, Xin-Yu; Chang, Shi; Liu, Wei; Tang, Hui-Huan

    2014-03-01

    To evaluate the expression of CXC motif chemokine receptor 4 (CXCR4) in the tissues of patients with hilar cholangiocarcinoma (hilar-CCA) and to investigate the cell proliferation and frequency of neural invasion (NI) influenced by RNAi-mediated CXCR4 silencing. An immunohistochemical technique was used to detect the expression of CXCR4 in 41 clinical tissues, including hilar-CCA, cholangitis, and normal bile duct tissues. The effects of small interference RNA (siRNA)-mediated CXCR4 silencing were detected in the hilar-CCA cell line QBC939. Cell proliferation was determined by MTT. Expression of CXCR4 was monitored by quantitative real time polymerase chain reaction and Western blot analysis. The NI ability of hilar-CCA cells was evaluated using a perineural cell and hilar-CCA cell coculture migration assay. The expression of CXCR4 was significantly induced in clinical hilar-CCA tissue. There was a positive correlation between the expression of CXCR4 and lymph node metastasis/NI in hilar-CCA patients (philar-CCA. CXCR4 is involved in the invasion and proliferation of human hilar-CCA cell line QBC939, indicating that CXCR4 could be a promising therapeutic target for hilar-CCA.

  14. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Yijing; Tang, Huijuan; Guo, Yan; Guo, Jing; Huang, Bangxing; Fang, Fang; Cai, Jing, E-mail: caijingmmm@hotmail.com; Wang, Zehua, E-mail: zehuawang@163.net

    2015-09-10

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs.

  15. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    International Nuclear Information System (INIS)

    Chu, Yijing; Tang, Huijuan; Guo, Yan; Guo, Jing; Huang, Bangxing; Fang, Fang; Cai, Jing; Wang, Zehua

    2015-01-01

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs

  16. Tumor microenvironment in invasive lobular carcinoma: possible therapeutic targets.

    Science.gov (United States)

    Nakagawa, Saki; Miki, Yasuhiro; Miyashita, Minoru; Hata, Shuko; Takahashi, Yayoi; Rai, Yoshiaki; Sagara, Yasuaki; Ohi, Yasuyo; Hirakawa, Hisashi; Tamaki, Kentaro; Ishida, Takanori; Watanabe, Mika; Suzuki, Takashi; Ohuchi, Noriaki; Sasano, Hironobu

    2016-01-01

    Invasive ductal and lobular carcinomas (IDC and ILC) are the two most common histological types of breast cancer, and have been considered to develop from terminal duct lobular unit but their molecular, pathological, and clinical features are markedly different between them. These differences could be due to different mechanisms of carcinogenesis and tumor microenvironment, especially cancer-associated fibroblasts (CAFs) but little has been explored in this aspect. Therefore, in this study, we evaluated the status of angiogenesis, maturation of intratumoral microvessels, and proliferation of CAFs using immunohistochemistry and PCR array analysis to explore the differences of tumor microenvironment between ILC and IDC. We studied grade- and age-matched, luminal-like ILC and IDC. We immunolocalized CD34 and αSMA for an evaluation of CAFs and CD31, Vasohibin-1, a specific marker of proliferative endothelial cells and nestin, a marker of pericytes for studying the status of proliferation and maturation of intratumoral microvessel. We also performed PCR array analysis to evaluate angiogenic factors in tumor stromal components. The number of CAFs, microvessel density, and vasohibin-1/CD31 positive ratio were all significantly higher in ILC than IDC but nestin immunoreactivity in intratumoral microvessel was significantly lower in ILC. These results did indicate that proliferation of CAFs and endothelial cells was more pronounced in ILC than IDC but newly formed microvessels were less mature than those in IDC. PCR array analysis also revealed that IGF-1 expression was higher in ILC than IDC. This is the first study to demonstrate the differences of tumor microenvironment including CAFs and proliferation and maturation of intratumoral vessels between ILC and IDC.

  17. URG11 Regulates Prostate Cancer Cell Proliferation, Migration, and Invasion

    Directory of Open Access Journals (Sweden)

    Bin Pan

    2018-01-01

    Full Text Available Upregulated gene 11 (URG11, a new gene upregulated by hepatitis B virus X protein, is involved in the development and progression of several tumors, including liver, stomach, lung, and colon cancers. However, the role of URG11 in prostate cancer remains yet to be elucidated. By determined expression in human prostate cancer tissues, URG11 was found significantly upregulated and positively correlated with the severity of prostate cancer, compared with that in benign prostatic hyperplasia tissues. Further, the mRNA and protein levels of URG11 were significantly upregulated in human prostate cancer cell lines (DU145, PC3, and LNCaP, compared with human prostate epithelial cell line (RWPE-1. Moreover, by the application of siRNA against URG11, the proliferation, migration, and invasion of prostate cancer cells were markedly inhibited. Genetic knockdown of URG11 also induced cell cycle arrest at G1/S phase, induced apoptosis, and decreased the expression level of β-catenin in prostate cancer cells. Overexpression of URG11 promoted the expression of β-catenin, the growth, the migration, and invasion ability of prostate cancer cells. Taken together, this study reveals that URG11 is critical for the proliferation, migration, and invasion in prostate cancer cells, providing the evidence of URG11 to be a novel potential therapeutic target of prostate cancer.

  18. Destructive impact of t-lymphocytes, NK and mast cells on basal cell layers: implications for tumor invasion

    International Nuclear Information System (INIS)

    Yuan, Hongyan; Hsiao, Yi-Hsuan; Zhang, Yiyu; Wang, Jinlian; Yin, Chao; Shen, Rong; Su, Yiping

    2013-01-01

    Our previous studies have suggested that the primary impact of immune cell infiltration into the normal or pre-invasive tissue component is associated with the physical destruction of epithelial capsules, which may promote tumor progression and invasion. Our current study attempted to further verify our previous observations and determine the primary type(s) of infiltrating immune cells and the possible mechanism associated with physical destructions of the epithelial capsules. In total, the study was conducted with 250 primary breast and prostate tumors, the primary immune cell of cytotoxic T-lymphocytes (CTL), Natural killer cells (NK) and Mast cells were analyzed by immunohistochemistry, fluorescent labeling and apoptosis assay. qRT-PCR was used for gene expression analysis. Our current study assessed the physical disruption of these immune cells and potential impact on the epithelial capsule of human breast and prostate tumors. Our study yield several clinically-relevant findings that have not been studied before. (1) A vast majority of these infiltrating immune cells are distributed in the normal-appearing or pre-invasive tissue components rather than in invasive cancer tissues. (2) These cells often form rings or semilunar structures that either surround focally-disrupted basal cell layers or physically attach to the basal cells. (3) Basal cells physically associated with these immune cells generally displayed distinct signs of degeneration, including substantially elevated apoptosis, necrosis, and reduced tumor suppressor p63 expression. In contrast, luminal cells overlying focally disrupted basal cell layers had a substantially increased proliferation rate and elevated expression of stem cell markers compared to their adjacent morphologically similar counterparts that overlie a non-disrupted capsule. Our findings suggest that at the early stage of tumor invasion, CTL, NK and Mast cells are the main types of tumor infiltrating immune cells involved in focal

  19. Gremlin-1 induces BMP-independent tumor cell proliferation, migration, and invasion.

    Directory of Open Access Journals (Sweden)

    Minsoo Kim

    Full Text Available Gremlin-1, a bone morphogenetic protein (BMP antagonist, is overexpressed in various cancerous tissues but its role in carcinogenesis has not been established. Here, we report that gremlin-1 binds various cancer cell lines and this interaction is inhibited by our newly developed gremlin-1 antibody, GRE1. Gremlin-1 binding to cancer cells was unaffected by the presence of BMP-2, BMP-4, and BMP-7. In addition, the binding was independent of vascular endothelial growth factor receptor-2 (VEGFR2 expression on the cell surface. Addition of gremlin-1 to A549 cells induced a fibroblast-like morphology and decreased E-cadherin expression. In a scratch wound healing assay, A549 cells incubated with gremlin-1 or transfected with gremlin-1 showed increased migration, which was inhibited in the presence of the GRE1 antibody. Gremlin-1 transfected A549 cells also exhibited increased invasiveness as well as an increased growth rate. These effects were also inhibited by the addition of the GRE1 antibody. In conclusion, this study demonstrates that gremlin-1 directly interacts with cancer cells in a BMP- and VEGFR2-independent manner and can induce cell migration, invasion, and proliferation.

  20. [Inhibitory effect of baicalein on the proliferation and invasion of osteosarcoma cells and mechanism].

    Science.gov (United States)

    Tang, Zhibin; Li, Chun; Chen, Zhiwei

    2015-03-01

    To explore the effect of baicalein on the proliferation and invasion of osteosarcoma cells and its related mechanism. Osteosarcoma MG-63 cells that were cultured in vitro were respectively treated with 20 μL culture medium (control group), dehydrated alcohol (0 μmol/L baicalein group), 100 and 200 μmol/L baicalein solution for 48 hours. Cell proliferation was analyzed by MTT assay. The cell invasion ability was detected using Transwell(TM) invasion assay. The expression of ezrin mRNA was examined by real-time quantitative PCR. The expressions of ezrin protein and p-ezrin protein were measured using Western blotting. Apoptosis index (AI) was determined by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL). The inhibitory rates of cell proliferation significantly increased in 100 and 200 μmol/L baicalein groups as compared with 0 μmol/L baicalein group. Moreover, that was higher in 200 μmol/L baicalein group than in 100 μmol/L baicalein group. In comparison with control and 0 μmol/L baicalein groups, the mean cell numbers of permeated membrane and levels of ezrin mRNA, ezrin protein and p-ezrin protein gradually decreased, but AI was gradually elevated with the increase of baicalein concentrations, whereas there was no significant difference in these indicators between 0 μmol/L baicalein group and control group. Baicalein can inhibit the proliferation and invasion of osteosarcoma MG-63 cells. The mechanism may be associated with the inhibited expression and activity of ezrin protein and the promoted tumor cell apoptosis.

  1. A novel pre-clinical in vivo mouse model for malignant brain tumor growth and invasion.

    Science.gov (United States)

    Shelton, Laura M; Mukherjee, Purna; Huysentruyt, Leanne C; Urits, Ivan; Rosenberg, Joshua A; Seyfried, Thomas N

    2010-09-01

    Glioblastoma multiforme (GBM) is a rapidly progressive disease of morbidity and mortality and is the most common form of primary brain cancer in adults. Lack of appropriate in vivo models has been a major roadblock to developing effective therapies for GBM. A new highly invasive in vivo GBM model is described that was derived from a spontaneous brain tumor (VM-M3) in the VM mouse strain. Highly invasive tumor cells could be identified histologically on the hemisphere contralateral to the hemisphere implanted with tumor cells or tissue. Tumor cells were highly expressive for the chemokine receptor CXCR4 and the proliferation marker Ki-67 and could be identified invading through the pia mater, the vascular system, the ventricular system, around neurons, and over white matter tracts including the corpus callosum. In addition, the brain tumor cells were labeled with the firefly luciferase gene, allowing for non-invasive detection and quantitation through bioluminescent imaging. The VM-M3 tumor has a short incubation time with mortality occurring in 100% of the animals within approximately 15 days. The VM-M3 brain tumor model therefore can be used in a pre-clinical setting for the rapid evaluation of novel anti-invasive therapies.

  2. The effects of CD147 on the cell proliferation, apoptosis, invasion, and angiogenesis in glioma.

    Science.gov (United States)

    Yin, Haoyuan; Shao, Ying; Chen, Xuan

    2017-01-01

    To analyze the effects of extracellular matrix metalloproteinase inducer (CD147) on glioma proliferation, apoptosis, invasion, and angiogenesis. Tissue samples were obtained from 101 glioma cases while normal brain tissues were obtained from 30 brain injury cases. Immunohistochemical assay was performed to detect the expressions of CD147, CD34, and VEGF in tissue samples. QRT-PCR was performed to detect the relative expression of CD147 mRNA in human glioma cell lines. CD147 siRNA was transfected into glioma cell line U251. Cell proliferation, apoptosis, invasion, and angiogenesis were tested by MTT, flow cytometry, Transwell assay, and vasculogenic mimicry assay, respectively. Expressions of relative proteins were analyzed with western blot. CD147 was positively expressed with the percentage of 0, 37.5, 44.8, 67.9, and 85.7 % in normal tissues and glioma tissues with WHO grades I-IV, respectively, and the scores of MVDand VEGF were associated with the expression of CD147. CD147 was significantly upregulated in the human glioma cell lines (P CD147 suppressed cell proliferation, blocked cell cycle, induced apoptosis, inhibited cell invasion and angiogenesis in glioma cells in vitro. The expression of CD147 was significantly associated with WHO tumor grade and angiogenesis; silencing of CD147 contributed to inhibition of glioma proliferation, invasion, and angiogenesis. Our study provided firm evidence that CD 147 is a potential glioma target for anti-angiogenic therapies.

  3. Activation of IRE1α-XBP1 pathway induces cell proliferation and invasion in colorectal carcinoma

    International Nuclear Information System (INIS)

    Jin, Chun; Jin, Zhao; Chen, Nian-zhao; Lu, Min; Liu, Chang-bao; Hu, Wan-Le; Zheng, Chen-guo

    2016-01-01

    Cell proliferation and tumor metastasis are considered as the main reasons for death in colorectal carcinoma (CRC). IRE1α-XBP1 pathway is the most conserved UPR pathways, which are activated during ER stress caused by the accumulation of unfolded or misfolded protein in the lumen of ER. Here, we demonstrated the critical role of IRE1α-XBP1 pathway and underlying molecular mechanism in cell proliferation and tumor metastasis in CRC. By the use of tissue microarray analysis of samples from 119 patients with CRC, IRE1α was determined to be an independent predictor of overall survival as higher expression of IRE1α in CRC patients showed lower survival rates (p = 0.0041). RNA interference and ectopic expression of IRE1α were applied to determine the molecular effects of IRE1α in CRC cells. The silencing of IRE1α inhibited the proliferation and blocked the invasion of CRC cells in vitro, while ectopic expression of IRE1α in turn promoted cell proliferation and invasion. IRE1α-XBP1 pathway regulated the mitosis of CRC cells through the directly binding of XBP1s to Cyclin D1 promoter to activate Cyclin D1 expression. Our results reveal that IRE1α-XBP1 pathway plays an important role in tumor progression and epithelial-to-mesenchymal transition (EMT), and IRE1α could be employed as a novel prognostic marker and a promising therapeutic target for CRC. - Highlights: • IRE1 was determined to be an independent predictor of overall survival in CRC patient. • IRE1-XBP1 pathway promoted CRC cell proliferation through regulating Cyclin D1 expression. • IRE1-XBP1 pathway played important role in EMT of CRC cells.

  4. Activation of IRE1α-XBP1 pathway induces cell proliferation and invasion in colorectal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Chun [Department of Coloproctology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000 (China); Jin, Zhao [Department of Coloproctology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou 325000 (China); Chen, Nian-zhao [Department of Medicine, The Chinese Medicine Hospital of Wenzhou, Wenzhou 325000 (China); Lu, Min; Liu, Chang-bao; Hu, Wan-Le [Department of Coloproctology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000 (China); Zheng, Chen-guo, E-mail: zhengchenguo80@163.com [Department of Coloproctology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000 (China)

    2016-01-29

    Cell proliferation and tumor metastasis are considered as the main reasons for death in colorectal carcinoma (CRC). IRE1α-XBP1 pathway is the most conserved UPR pathways, which are activated during ER stress caused by the accumulation of unfolded or misfolded protein in the lumen of ER. Here, we demonstrated the critical role of IRE1α-XBP1 pathway and underlying molecular mechanism in cell proliferation and tumor metastasis in CRC. By the use of tissue microarray analysis of samples from 119 patients with CRC, IRE1α was determined to be an independent predictor of overall survival as higher expression of IRE1α in CRC patients showed lower survival rates (p = 0.0041). RNA interference and ectopic expression of IRE1α were applied to determine the molecular effects of IRE1α in CRC cells. The silencing of IRE1α inhibited the proliferation and blocked the invasion of CRC cells in vitro, while ectopic expression of IRE1α in turn promoted cell proliferation and invasion. IRE1α-XBP1 pathway regulated the mitosis of CRC cells through the directly binding of XBP1s to Cyclin D1 promoter to activate Cyclin D1 expression. Our results reveal that IRE1α-XBP1 pathway plays an important role in tumor progression and epithelial-to-mesenchymal transition (EMT), and IRE1α could be employed as a novel prognostic marker and a promising therapeutic target for CRC. - Highlights: • IRE1 was determined to be an independent predictor of overall survival in CRC patient. • IRE1-XBP1 pathway promoted CRC cell proliferation through regulating Cyclin D1 expression. • IRE1-XBP1 pathway played important role in EMT of CRC cells.

  5. RNAi Knockdown of Hypoxia-Inducible Factor-1α Decreased the Proliferation, Migration, and Invasion of Hypoxic Hepatocellular Carcinoma Cells.

    Science.gov (United States)

    Chen, ChengShi; Liu, Rong; Wang, JianHua; Yan, ZhiPing; Qian, Sheng; Zhang, Wei

    2015-04-01

    The obstruction of hepatic arterial blood flow results in tumor tissue hypoxia and elevated expression of hypoxia-inducible factor-1alpha (HIF-1α). Our study evaluated whether lentivirus-mediated short interference RNA against HIF-1α inhibits proliferation, invasion, and migration of hepatocellular carcinoma (HCC) cells under hypoxia. RNA interference knockdown of HIF-1α was achieved by HIF-1α-directed lentiviral shRNA, in a rat HCC cell line cultured under hypoxia condition for varying length of times. The expression levels of HIF-1α and vascular endothelial growth factor were examined using reverse transcription polymerase chain reaction and western blot analyses. Cell proliferation, migration, and invasion were measured by cell viability, transwell migration, and invasion assays, respectively. Inhibition of HIF-1α expression by shRNA suppressed vascular endothelial growth factor mRNA and protein levels under both normoxia and hypoxia. It also suppressed cell migration and invasion, which were enhanced under hypoxic conditions. RNAi knockdown of HIF-1α further suppressed hypoxia-mediated inhibition of the cell proliferation. These data suggest that shRNA of HIF-1α could antagonize the hypoxia-mediated increase in hepatic cancer cell migration and invasion, and synergize with hypoxia to inhibit the cell proliferation in HCC cells.

  6. CT evaluation of gastric cancer. Depth of tumor invasion and pancreas invasion

    International Nuclear Information System (INIS)

    Banba, Yoshihisa; Kanazawa, Tadayoshi; Seto, Hikaru

    1998-01-01

    To compare the internal structure of tumor and the contiguous organ configuration on computed tomography (CT) with the depth of tumor invasion on the pathological specimen. Sixty-four gastric cancers depicted on incremental dynamic CT were classified according to the internal structure of the tumor, and correlated with the depth of tumor invasion. In addition, the cancers were classified according to the contiguous pancreatic configuration, and correlated with the degree of pancreatic invasion. Eleven tumors with thickened gastric wall consisting of both a thick inner layer of high attenuation and a thin outer layer of low attenuation (two-layered tumor with a thin outer layer) did not invade the serosa: mucosa (n=5) and submucosa (n=6). Of 59 gastric cancers with a regular margin to the contiguous pancreas, pancreatic invasion was absent in 58 and present in one. Pancreatic invasion was present in all of five gastric cancers with an irregular margin. Our results indicate that two-layered gastric tumors with a thin outer layer never invade the serosa. Furthermore, pancreatic invasion is predicted only when the margin of the contiguous pancreas is irregular. (author)

  7. Non-invasive assessment of vessel morphology and function in tumors by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Kiessling, Fabian; Jugold, Manfred; Woenne, Eva C.; Brix, Gunnar

    2007-01-01

    The switch to an angiogenic phenotype is an important precondition for tumor growth, invasion and spread. Since newly formed vessels are characterized by structural, functional and molecular abnormalities, they offer promising targets for tumor diagnosis and therapy. Previous studies indicate that MRI is valuable to assess vessel morphology and function. It can be used to distinguish between benign and malignant lesions and to improve delineation of proliferating areas within heterogeneous tumors. In addition, tracer kinetic analysis of contrast-enhanced image series allows the estimation of well-defined physiological parameters such as blood volume, blood flow and vessel permeability. Frequently, changes of these parameters during cytostatic, anti-angiogenic and radiation therapy precede tumor volume reduction. Moreover, target-specific MRI techniques can be used to elucidate the expression of angiogenic markers at the molecular level. This review summarizes strategies for non-invasive characterization of tumor vascularization by functional and molecular MRI, hereby introducing representative preclinical and clinical applications. (orig.)

  8. miR-129 suppresses tumor cell growth and invasion by targeting PAK5 in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Jian [Department II of Interventional Radiology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438 (China); Qu, Shuping [Department II of Special Medical Care, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438 (China); Li, Xiaowei; Zhong, Jiaming; Chen, Xiaoxia [Department II of Interventional Radiology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438 (China); Qu, Zengqiang, E-mail: drquzengqiang@163.com [Department II of Interventional Radiology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438 (China); Wu, Dong, E-mail: wudongstc@126.com [Department II of Special Medical Care, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438 (China)

    2015-08-14

    Emerging evidence suggests that microRNAs (miRNAs) play important roles in regulating HCC development and progression; however, the mechanisms by which their specific functions and mechanisms remained to be further explored. miR-129 has been reported in gastric cancers, lung cancer and colon cancer. In this study, we disclosed a new tumor suppresser function of miR-129 in HCC. We also found the downregulation of miR-129 occurred in nearly 3/4 of the tumors examined (56/76) compared with adjacent nontumorous tissues, which was more importantly, correlated to the advanced stage and vascular invasion. We then demonstrated that miR-129 overexpression attenuated HCC cells proliferation and invasion, inducing apoptosis in vitro. Moreover, we used miR-129 antagonist and found that anti-miR-129 promoted HCC cells malignant phenotypes. Mechanistically, our further investigations revealed that miR-129 suppressed cell proliferation and invasion by targeting the 3’-untranslated region of PAK5, as well as miR-129 silencing up-regulated PAK5 expression. Moreover, miR-129 expression was inversely correlated with PAK5 expression in 76 cases of HCC samples. RNA interference of PAK5 attenuated anti-miR-129 mediated cell proliferation and invasion in HCC cells. Taken together, these results demonstrated that miR-129 suppressed tumorigenesis and progression by directly targeting PAK5, defining miR-129 as a potential treatment target for HCC. - Highlights: • Decreased of miR-129 is found in HCC and associated with advanced stage and metastasis. • miR-129 suppresses proliferation and invasion of HCC cells. • miR-129 directly targets the 3′ UTR of PAK5 and diminishes PAK5 expression. • PAK5 is involved in miR-129 mediated suppression functions.

  9. CSF-1R as an inhibitor of apoptosis and promoter of proliferation, migration and invasion of canine mammary cancer cells

    Science.gov (United States)

    2013-01-01

    Background Tumor-associated macrophages (TAMs) have high impact on the cancer development because they can facilitate matrix invasion, angiogenesis, and tumor cell motility. It gives cancer cells the capacity to invade normal tissues and metastasize. The signaling of colony-stimulating factor-1 receptor (CSF-1R) which is an important regulator of proliferation and differentiation of monocytes and macrophages regulates most of the tissue macrophages. However, CSF-1R is expressed also in breast epithelial tissue during some physiological stages i.g.: pregnancy and lactation. Its expression has been also detected in various cancers. Our previous study has showed the expression of CSF-1R in all examined canine mammary tumors. Moreover, it strongly correlated with grade of malignancy and ability to metastasis. This study was therefore designed to characterize the role of CSF-1R in canine mammary cancer cells proliferation, apoptosis, migration, and invasion. As far as we know, the study presented hereby is a pioneering experiment in this field of veterinary medicine. Results We showed that csf-1r silencing significantly increased apoptosis (Annexin V test), decreased proliferation (measured as Ki67 expression) and decreased migration (“wound healing” assay) of canine mammary cancer cells. Treatment of these cells with CSF-1 caused opposite effect. Moreover, csf-1r knock-down changed growth characteristics of highly invasive cell lines on Matrigel matrix, and significantly decreased the ability of these cells to invade matrix. CSF-1 treatment increased invasion of cancer cells. Conclusion The evidence of the expression and functional role of the CSF-1R in canine mammary cancer cells indicate that CSF-1R targeting may be a good therapeutic approach. PMID:23561040

  10. Forkhead box K2 inhibits the proliferation, migration, and invasion of human glioma cells and predicts a favorable prognosis.

    Science.gov (United States)

    Wang, Bo; Zhang, XueBin; Wang, Wei; Zhu, ZhiZhong; Tang, Fan; Wang, Dong; Liu, Xi; Zhuang, Hao; Yan, XiaoLing

    2018-01-01

    Forkhead box K2 (FOXK2) is a member of the forkhead box family of transcription factors. Recently, researchers discovered that overexpression of FOXK2 inhibits the proliferation and metastasis of breast cancer, non-small cell lung cancer, and colorectal cancer, and is related to the clinical prognosis. However, in hepatocellular carcinoma, FOXK2 results in the opposite phenotypes. Currently, the contribution of FOXK2 to glioma pathogenesis is not clear. We evaluated the expression of FOXK2 in 151 glioma patients using immunohistochemistry assays. The associations among the expression of FOXK2, clinicopathological parameters, and the prognosis of glioma patients were statistically analyzed. We downregulated and upregulated the level of FOXK2 in glioma cells by transfections with small interfering RNA and plasmids. Then, we investigated the effects on tumor cell behavior in vitro by Cell Counting Kit-8 assays, colony-formation assay, transwell assay, and the epithelial-to-mesenchymal transition (EMT) biomarker levels. The clinical data showed that expression of FOXK2 gradually decreased with increasing World Health Organization (WHO) grades and a low level of FOXK2 indicates a poor prognosis. FOXK2 expression is negatively correlated with Ki67 expression and the WHO degree but is not correlated with other clinicopathological parameters, including sex, age, Karnofsky Performance Status, tumor diameter, O -6-methylguanine-DNA methyltransferase, and glutathione S -transferase pi. FOXK2 knockdown enhances glioma cell proliferation, migration, invasion, and EMT process, and, in contrast, FOXK2 overexpression inhibits glioma cell proliferation, migration, invasion, and the EMT process. Expression of FOXK2 gradually decreases with increasing WHO grades. FOXK2 inhibits tumor proliferation, migration, and invasion. FOXK2 is a critical mediator of the EMT process.

  11. BAG3 regulates cell proliferation, migration, and invasion in human colorectal cancer.

    Science.gov (United States)

    Shi, Huiyong; Xu, Haidong; Li, Zengjun; Zhen, Yanan; Wang, Bin; Huo, Shoujun; Xiao, Ruixue; Xu, Zhongfa

    2016-04-01

    Bcl2-associated athanogene 3 (BAG3) has been reported to be elevated in various tumors. However, it is unclear whether BAG3 has a functional role in the initiation and progression of colorectal cancer (CRC). Here, we collected CRC samples and cell lines to validate the pathway by using gene and protein assays. RT-PCR showed that the expression of BAG3 mRNA in CRC tissues was obviously higher than that in non-tumor tissues (p BAG3 was found in most CRC tissues and strongly correlated with TNM stage (p = 0.001), differentiation (p = 0.003), and metastasis (p = 0.010). Low expression of BAG3 in HCT-8 significantly reduced cellular proliferation, migration, and invasion. The analysis of in vitro cell showed that HCT-8 cells were exposed to si-BAG3, and its growth was inhibited depending on modulation of cell cycle G1/S checkpoints and cell cycle regulators, involving cyclin D1, cyclin A2, and cyclin B1. Furthermore, suppression of the epithelial-mesenchymal transition (EMT) by si-BAG3 is linked to the decreased expression of E-cadherin and the increased expression of N-cadherin, vimentin, and MMP9. In conclusion, in the present study, we demonstrated that BAG3 overexpression plays a critical role in cell proliferation, migration, and invasion of colorectal cancer. Our data suggests targeted inhibition of BAG3 may be useful for patients with CRC.

  12. MicroRNA-127-3p inhibits proliferation and invasion by targeting SETD8 in human osteosarcoma cells

    International Nuclear Information System (INIS)

    Zhang, Jun; Hou, Wengen; Chai, Mingxiang; Zhao, Hongxing; Jia, Jinling; Sun, Xiaohui; Zhao, Bin; Wang, Ran

    2016-01-01

    MicroRNAs (miRNAs) play an essential role in cancer development. Several studies have indicated that miRNAs mediate tumorigenesis processes, such as, inflammation, proliferation, apoptosis and invasion. In the present study, we focused on the influence of the miR-127-3p on the proliferation, migration and invasion of osteosarcoma (OS). MiR-127-3p was found at reduced levels in OS tissues and cell lines. Overexpression of miR-127-3p in the OS cell lines significantly inhibited the cell proliferation, migration and invasion; however, inhibition of miR-127-3p increased the proliferation, migration and invasion of OS in vitro. SETD8 was identified as a direct target of miR-127-3p, and SETD8 expression decreased post miR-127-3p overexpression, while SETD8 overexpression could reverse the potential influence of miR-127-3p on the migration and invasion of OS cells. MiR-127-3p is suggested to act mainly via the suppression of SETD8 expression. Overall, the results revealed that miR-127-3p acts as a tumor suppressor and that its down-regulation in cancer may contribute to OS progression and metastasis, suggesting that miR-127-3p could be a potential therapeutic target in the treatment of OS. - Highlights: • MiR-127-3p is decreased in osteosarcoma tissues and cell lines. • MiR-127-3p overexpression suppresses cell migration and invasion in MG63 and U2OS. • SETD8 overexpression abolishes the roles of miR-127-3p in osteosarcoma.

  13. Protein-bound polysaccharide from Phellinus linteus inhibits tumor growth, invasion, and angiogenesis and alters Wnt/β-catenin in SW480 human colon cancer cells

    Directory of Open Access Journals (Sweden)

    Park Hae-Duck

    2011-07-01

    Full Text Available Abstract Background Polysaccharides extracted from the Phellinus linteus (PL mushroom are known to possess anti-tumor effects. However, the molecular mechanisms responsible for the anti-tumor properties of PL remain to be explored. Experiments were carried out to unravel the anticancer effects of PL. Methods The anti-cancer effects of PL were examined in SW480 colon cancer cells by evaluating cell proliferation, invasion and matrix metallo-proteinase (MMP activity. The anti-angiogenic effects of PL were examined by assessing human umbilical vein endothelial cell (HUVEC proliferation and capillary tube formation. The in vivo effect of PL was evaluated in an athymic nude mouse SW480 tumor engraft model. Results PL (125-1000 μg/mL significantly inhibited cell proliferation and decreased β-catenin expression in SW480 cells. Expression of cyclin D1, one of the downstream-regulated genes of β-catenin, and T-cell factor/lymphocyte enhancer binding factor (TCF/LEF transcription activity were also significantly reduced by PL treatment. PL inhibited in vitro invasion and motility as well as the activity of MMP-9. In addition, PL treatment inhibited HUVEC proliferation and capillary tube formation. Tumor growth of SW480 cells implanted into nude mice was significantly decreased as a consequence of PL treatment, and tumor tissues from treated animals showed an increase in the apoptotic index and a decrease in β-catenin expression. Moreover, the proliferation index and microvessel density were significantly decreased. Conclusions These data suggest that PL suppresses tumor growth, invasion, and angiogenesis through the inhibition of Wnt/β-catenin signaling in certain colon cancer cells.

  14. Wnt activation affects proliferation, invasiveness and radiosensitivity in medulloblastoma.

    Science.gov (United States)

    Salaroli, Roberta; Ronchi, Alice; Buttarelli, Francesca Romana; Cortesi, Filippo; Marchese, Valeria; Della Bella, Elena; Renna, Cristiano; Baldi, Caterina; Giangaspero, Felice; Cenacchi, Giovanna

    2015-01-01

    Medulloblastomas (MBs) associated with the Wnt activation represent a subgroup with a favorable prognosis, but it remains unclear whether Wnt activation confers a less aggressive phenotype and/or enhances radiosensitivity. To investigate this issue, we evaluated the biological behavior of an MB cell line, UW228-1, stably transfected with human β-catenin cDNA encoding a nondegradable form of β-catenin (UW-B) in standard culture conditions and after radiation treatment. We evaluated the expression, transcriptional activity, and localization of β-catenin in the stably transfected cells using immunofluorescence and WB. We performed morphological analysis using light and electron microscopy. We then analyzed changes in the invasiveness, growth, and mortality in standard culture conditions and after radiation. We demonstrated that (A) Wnt activation inhibited 97 % of the invasion capability of the cells, (B) the growth of the UW-B cells was statistically significantly lower than that of all the other control cells (p < 0.01), (C) the mortality of irradiated UW-B cells was statistically significantly higher than that of the controls and their nonirradiated counterparts (p < 0.05), and (D) morphological features of neuronal differentiation were observed in the Wnt-activated cells. In tissue samples, the Ki-67 labeling index (LI) was lower in β-catenin-positive samples compared to non-β-catenin positive ones. The Ki-67 LI median (LI = 40) of the nuclear β-catenin-positive tumor samples was lower than that of non-nuclear β-catenin-positive samples (LI = 50), but the difference was not statistically significant. Overall, our data suggest that activation of the Wnt pathway reduces the proliferation and invasion of MBs and increases the tumor's radiosensitivity.

  15. Effect of microRNA-135a on Cell Proliferation, Migration, Invasion, Apoptosis and Tumor Angiogenesis Through the IGF-1/PI3K/Akt Signaling Pathway in Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Zhou, Yufei; Li, Shaoxia; Li, Jiangtao; Wang, Dongfeng; Li, Quanxing

    2017-01-01

    This study explored the ability of microRNA-135a (miR-135a) to influence cell proliferation, migration, invasion, apoptosis and tumor angiogenesis through the IGF-1/PI3K/Akt signaling pathway in non-small cell lung cancer (NSCLC). NSCLC tissues and adjacent normal tissues were collected from 138 NSCLC patients. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression levels of miR-135a and IGF-1, PI3K, Akt, VEGF, bFGF and IL-8 mRNA; western blotting was used to determine the expression levels of IGF-1, PI3K and Akt protein; and enzyme-linked immunosorbent assay (ELISA) was used to analyze the expression levels of VEGF, bFGF and IL-8 protein. Human NSCLC cell lines (A549, H460, and H1299) and the human bronchial epithelial cell line (HBE) were selected. A549 cells were assigned to blank, negative control (NC), miR-135a mimics, miR-135a inhibitors, IGF-1 siRNA and miR-135a inhibitors + IGF-1 siRNA groups. The following were performed: an MTT assay to assess cell proliferation, a scratch test to detect cell migration, a Transwell assay to measure cell invasion, and a flow cytometry to analyze cell apoptosis. The expression level of miR-135a was lower while those of IGF-1, PI3K and Akt mRNA were higher in NSCLC tissues than in the adjacent normal tissues. Dual-luciferase reporter assay indicated IGF-1 as a target of miR-135a. The in vitro results showed that compared with the blank group, cell proliferation, migration and invasion were suppressed, mRNA and protein levels of IGF-1, PI3K, Akt, VEGF, bFGF and IL-8 were reduced, and cell apoptosis was enhanced in the miR-135a mimics and IGF-1 siRNA groups. Compared with the IGF-1 siRNA group, cells in the miR-135a inhibitors + IGF-1 siRNA group demonstrated increased cell proliferation, migration and invasion, elevated mRNA and protein levels of IGF-1, PI3K, Akt, VEGF, bFGF and IL-8 and reduced cell apoptosis. These findings indicated that miR-135a promotes cell apoptosis and inhibits

  16. Focal degeneration of basal cells and the resultant auto-immunoreactions: a novel mechanism for prostate tumor progression and invasion.

    Science.gov (United States)

    Man, Yan-Gao; Gardner, William A

    2008-01-01

    The development of human prostate cancer is believed to be a multistep process, progressing sequentially from normal, to hyperplasia, to prostatic intraepithelial neoplasia (PIN), and to invasive and metastatic lesions. High grade PIN has been generally considered as the direct precursor of invasive lesions, and the progression of PIN is believed to be triggered primarily, if not solely, by the overproduction of proteolytic enzymes predominately by cancer cells, which result in the degradation of the basement membrane. These theories, however, are hard to reconcile with two main facts: (1) only about 30% untreated PIN progress to invasive stage, while none of the current approaches could accurately identify the specific PIN or individuals at greater risk for progression, and (2) results from recent world-wide clinical trials with a wide variety of proteolytic enzyme inhibitors have been very disappointing, casting doubt on the validity of the proteolytic enzyme theory. Since over 90% of prostate cancer-related deaths result from invasion-related illness and the incidence of PIN could be up to 16.5-25% in routine or ultrasound guided prostate biopsy, there is an urgent need to uncover the intrinsic mechanism of prostate tumor invasion. Promoted by the facts that the basal cell population is the source of several tumor suppressors and the absence of the basal cell layer is the most distinct feature of invasive lesions, our recent studies have intended to identify the early alterations of basal cell layers and their impact on tumor invasion using multidisciplinary approaches. Our studies revealed that a subset of pre-invasive tumors contained focal disruptions (the absence of basal cells resulting in a gap greater than the combined size of at least three epithelial cells) in surrounding basal cell layers. Compared to their non-disrupted counterparts, focally disrupted basal cell layers had several unique features: (1) significantly lower proliferation; (2

  17. Acidity generated by the tumor microenvironment drives local invasion.

    Science.gov (United States)

    Estrella, Veronica; Chen, Tingan; Lloyd, Mark; Wojtkowiak, Jonathan; Cornnell, Heather H; Ibrahim-Hashim, Arig; Bailey, Kate; Balagurunathan, Yoganand; Rothberg, Jennifer M; Sloane, Bonnie F; Johnson, Joseph; Gatenby, Robert A; Gillies, Robert J

    2013-03-01

    The pH of solid tumors is acidic due to increased fermentative metabolism and poor perfusion. It has been hypothesized that acid pH promotes local invasive growth and metastasis. The hypothesis that acid mediates invasion proposes that H(+) diffuses from the proximal tumor microenvironment into adjacent normal tissues where it causes tissue remodeling that permits local invasion. In the current work, tumor invasion and peritumoral pH were monitored over time using intravital microscopy. In every case, the peritumoral pH was acidic and heterogeneous and the regions of highest tumor invasion corresponded to areas of lowest pH. Tumor invasion did not occur into regions with normal or near-normal extracellular pH. Immunohistochemical analyses revealed that cells in the invasive edges expressed the glucose transporter-1 and the sodium-hydrogen exchanger-1, both of which were associated with peritumoral acidosis. In support of the functional importance of our findings, oral administration of sodium bicarbonate was sufficient to increase peritumoral pH and inhibit tumor growth and local invasion in a preclinical model, supporting the acid-mediated invasion hypothesis. Cancer Res; 73(5); 1524-35. ©2012 AACR. ©2012 AACR.

  18. In Situ Malignant Transformation and Progenitor-Mediated Cell Budding: Two Different Pathways for Breast Ductal and Lobular Tumor Invasion

    Directory of Open Access Journals (Sweden)

    Yan-gao Man, Mina Izadjoo, Guohong Song, Alexander Stojadinovic

    2011-01-01

    Full Text Available The human breast lobular and ductal structures and the derived tumors from these structures differ substantial in their morphology, microenvironment, biological presentation, functions, and clinical prognosis. Based on these differences, we have proposed that pre-invasive lobular tumors may progress to invasive lesions through “in situ malignant transformation”, in which the entire myoepithelial cell layer within a given lobule or lobular clusters undergoes extensive degeneration and disruptions, which allows the entire epithelial cell population associated with these myoepithelial cell layers directly invade the stroma or vascular structures. In contrast, pre-invasive ductal tumors may invade the stroma or vascular structures through “progenitor-mediated cell budding”, in which focal myoepithelial cell degeneration-induced aberrant leukocyte infiltration causes focal disruptions in the tumor capsules, which selectively favor monoclonal proliferation of the overlying tumor stem cells or a biologically more aggressive cell clone. Our current study attempted to provide more direct morphological and immunohistochemical data that are consistent with our hypotheses.

  19. Carvacrol suppresses proliferation and invasion in human oral squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Dai W

    2016-04-01

    Full Text Available Wei Dai,1,2 Changfu Sun,1,2 Shaohui Huang,1,2 Qing Zhou1,21Department of Oromaxillofacial-Head and Neck Surgery, 2Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning, People’s Republic of ChinaAbstract: Carvacrol, a component of thyme oil, as a novel antitumor agent, has been implicated in several types of cancer cells. However, the mechanisms underlying the effect of carvacrol in human oral squamous cell carcinoma (OSCC remain unclear. Here, we report that carvacrol significantly inhibits tumor cell proliferation, metastasis and invasion, and induces apoptosis in OSCC. Our results demonstrated that the molecular mechanisms of the effect of carvacrol in Tca-8113 induces G1/S cell cycle arrest through downregulation of CDK regulator CCND1 and CDK4, and upregulation of CDK inhibitor P21. Further analysis demonstrated that carvacrol also inhibited Tca-8113 cells’ clone formation in clonogenic cell survival assay. Student’s t-test (two-tailed was used to compare differences between groups, and the significance level was P<0.01. Then, treatment of Tca-8113 cells with carvacrol resulted in downregulation of Bcl-2, Cox2, and upregulation of Bax. Carvacrol significantly inhibited the migration and invasion of human OSCC cells by blocking the phosphorylation of FAK and MMP-9 and MMP-2, transcription factor ZEB1, and β-catenin proteins’ expression. Taken together, these results provide novel insights into the mechanism of carvacrol and suggest potential therapeutic strategies for human OSCC.Keywords: carvacrol, proliferation, metastasis and invasion, oral squamous cell carcinoma

  20. Knockdown of ZFR suppresses cell proliferation and invasion of human pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Xiaolan Zhao

    Full Text Available BACKGROUND: Zinc finger RNA binding protein (ZFR is involved in the regulation of growth and cancer development. However, little is known about ZFR function in pancreatic cancer. METHODS: Herein, to investigate whether ZFR is involved in tumor growth, Oncomine microarray data was firstly used to evaluate ZFR gene expression in human pancreatic tumors. Then short hairpin RNA (shRNA targeting ZFR was designed and delivered into PANC-1 pancreatic cancer cells to knock down ZFR expression. Cell viability, cell proliferation and cell cycle analysis after ZFR knockdown were determined by MTT, colony forming and FACS, respectively. In addition, cell migration and invasion were assessed using the Transwell system. RESULTS: The expression of ZFR was significantly higher in pancreatic tumors than normal pancreas tissues by Oncomine database analysis. Knockdown of ZFR by shRNA-expressing lentivirus significantly decreased the viability and invasion ability of pancreatic cancer cells. Moreover, FACS analysis showed that knockdown of ZFR in PANC-1 cells caused a significant cell cycle arrest at G0/G1 phase. Furthermore, knockdown of ZFR decreased the levels of CDK2, CDK4, CyclinA and CyclinD1 and enhanced the expression of p27, which has evidenced by qRT-PCR and Western blot analysis. CONCLUSIONS: Knockdown of ZFR might provide a novel alternative to targeted therapy of pancreatic cancer and deserves further investigation.

  1. Loss of TRPV2 Homeostatic Control of Cell Proliferation Drives Tumor Progression

    Directory of Open Access Journals (Sweden)

    Sonia Liberati

    2014-02-01

    Full Text Available Herein we evaluate the involvement of the TRPV2 channel, belonging to the Transient Receptor Potential Vanilloid channel family (TRPVs, in development and progression of different tumor types. In normal cells, the activation of TRPV2 channels by growth factors, hormones, and endocannabinoids induces a translocation of the receptor from the endosomal compartment to the plasma membrane, which results in abrogation of cell proliferation and induction of cell death. Consequently, loss or inactivation of TRPV2 signaling (e.g., glioblastomas, induces unchecked proliferation, resistance to apoptotic signals and increased resistance to CD95-induced apoptotic cell death. On the other hand, in prostate cancer cells, Ca2+-dependent activation of TRPV2 induced by lysophospholipids increases the invasion of tumor cells. In addition, the progression of prostate cancer to the castration-resistant phenotype is characterized by de novo TRPV2 expression, with higher TRPV2 transcript levels in patients with metastatic cancer. Finally, TRPV2 functional expression in tumor cells can also depend on the presence of alternative splice variants of TRPV2 mRNA that act as dominant-negative mutant of wild-type TRPV2 channels, by inhibiting its trafficking and translocation to the plasma membrane. In conclusion, as TRP channels are altered in human cancers, and their blockage impair tumor progression, they appear to be a very promising targets for early diagnosis and chemotherapy.

  2. Swelling-induced chloride current in glioblastoma proliferation, migration, and invasion.

    Science.gov (United States)

    Wong, Raymond; Chen, Wenliang; Zhong, Xiao; Rutka, James T; Feng, Zhong-Ping; Sun, Hong-Shuo

    2018-01-01

    Glioblastoma (GBM) remains as the most common and aggressive brain tumor. The survival of GBM has been linked to the aberrant activation of swelling-induced chloride current I Cl,swell . In this study, we investigated the effects of I Cl,swell on cell viability, proliferation, and migration in the human GBM cell lines, U251 and U87, using a combination of patch clamp electrophysiology, MTT, colony formation, wound healing assays and Western immunoblotting. First, we showed that the specific inhibitor of I Cl,swell , DCPIB, potently reduced the I Cl,swell in U87 cells. Next, in both U87 and U251 cells, we found that DCPIB reduced GBM viability, proliferation, colony formation, migration, and invasion. In addition, our Western immunoblot assay showed that DCPIB-treated U251 cells had a reduction in JAK2, STAT3, and Akt phosphorylation, thus, suggesting that DCPIB potentially suppresses GBM functions through inhibition of the JAK2/STAT3 and PI3K/Akt signaling pathways. Therefore, the I Cl,swell may be a potential drug target for GBM. © 2017 Wiley Periodicals, Inc.

  3. Lysophosphatidic acid (LPA) effects on endometrial carcinoma in vitro proliferation, invasion, and matrix metalloproteinase activity.

    Science.gov (United States)

    Wang, Feng-qiang; Ariztia, Edgardo V; Boyd, Leslie R; Horton, Faith R; Smicun, Yoel; Hetherington, Jessica A; Smith, Phillip J; Fishman, David A

    2010-04-01

    Lysophosphatidic acid (LPA) has potent growth-regulatory effect in many cell types and has been linked to the in vivo tumor growth and metastasis in several malignancies. The goal of this study was to assess the regulation of (EC) microenvironment by LPA through the examination of its effect on cell proliferation, migration, invasion, uPA activity, and matrix metalloproteinase (MMP) secretion/activation. All experiments were performed in vitro using an EC cell line, HEC-1A. Cell proliferation was determined using the Promega MTS proliferation assay following 48 h of exposures to different concentrations of LPA (0.1, 1.0 and 10.0 microM). Cell invasion was assessed using a modified Boyden chamber assay with collagen I coated on the membrane. HEC-1A motility was examined by Boyden chamber migration assay as well as the scratch wound closure assay on type I collagen. MMP secretion/activation in HEC-1A conditioned medium was detected by gelatin zymography. MMP-7 mRNA expression was determined using real-time PCR. uPA activity was measured using a coupled colorimetric assay. LPA, at the concentrations of 0.1 and 1.0 microM, significantly induced the proliferation of HEC-1A cells (p0.05). Gelatin zymogram showed that HEC-1A cells secreted high levels of MMP-7, while MMP-2 and MMP-9 are barely detectable. In addition, LPA significantly enhanced uPA activity in HEC-1A conditioned medium in a concentration-dependent manner. LPA is a potent modulator of cellular proliferation and invasion for EC cells. It also has the capacity to stimulate the secretion/activity of uPA and MMP-7. Those results suggest that LPA is a bioactive modulator of EC microenvironment and may have a distinct regulation mechanism as observed in epithelial ovarian cancer. Copyright 2009. Published by Elsevier Inc.

  4. Tumor-Infiltrating Immune Cells Promoting Tumor Invasion and Metastasis: Existing Theories

    Directory of Open Access Journals (Sweden)

    Yan-gao Man, Alexander Stojadinovic, Jeffrey Mason, Itzhak Avital, Anton Bilchik, Bjoern Bruecher, Mladjan Protic, Aviram Nissan, Mina Izadjoo, Xichen Zhang, Anahid Jewett

    2013-01-01

    Full Text Available It is a commonly held belief that infiltration of immune cells into tumor tissues and direct physical contact between tumor cells and infiltrated immune cells is associated with physical destructions of the tumor cells, reduction of the tumor burden, and improved clinical prognosis. An increasing number of studies, however, have suggested that aberrant infiltration of immune cells into tumor or normal tissues may promote tumor progression, invasion, and metastasis. Neither the primary reason for these contradictory observations, nor the mechanism for the reported diverse impact of tumor-infiltrating immune cells has been elucidated, making it difficult to judge the clinical implications of infiltration of immune cells within tumor tissues. This mini-review presents several existing hypotheses and models that favor the promoting impact of tumor-infiltrating immune cells on tumor invasion and metastasis, and also analyzes their strength and weakness.

  5. Celastrol inhibits chondrosarcoma proliferation, migration and invasion through suppression CIP2A/c-MYC signaling pathway

    Directory of Open Access Journals (Sweden)

    Jinhui Wu

    2017-05-01

    Full Text Available Chondrosarcomas (CS is the second most frequent tumors of cartilage origin. A small compound extracted from Thunder God Vine (Tripterygium wilfordii Hook. F. called celastrol can directly bound CIP2A protein and effectively inhibit cell proliferation and induce apoptosis in several cancer cells. However, little knowledge is concern about the important role of CIP2A in CS patients and the therapeutic value of celastrol on CS. Our results showed that CIP2A and c-MYC were verified to be oncoproteins by detecting their mRNA and protein expression in 10 human CS tissues by qRT-PCR and Western blots. After treatment of celastrol, the proliferation, migration and invasion were significantly inhibited; whereas the apoptosis was largely induced in human CS cell lines. In addition, celastrol inhibited the expression of CIP2A, c-MYC, and suppressed apoptotic proteins BAX and caspase-8 in human CS cells, on the other hand, it induced the expression of antiapoptotic protein Bcl-2. Finally, knockdown of CIP2A also inhibited the migration and invasion and induced apoptosis of human CS cells. To sum up, we found that celastrol had effects on inhibiting proliferation, migration, invasion and inducing apoptosis through suppression CIP2A/c-MYC signaling pathway in vitro, which may provide a new therapeutic regimen for CS.

  6. CtBP2 overexpression promotes tumor cell proliferation and invasion in gastric cancer and is associated with poor prognosis.

    Science.gov (United States)

    Dai, Faxiang; Xuan, Yi; Jin, Jie-Jie; Yu, Shengjia; Long, Zi-Wen; Cai, Hong; Liu, Xiao-Wen; Zhou, Ye; Wang, Ya-Nong; Chen, Zhong; Huang, Hua

    2017-04-25

    C-terminal binding protein-2 (CtBP2), a transcriptional corepressor, has been reported to correlate with tumorigenesis and progression and predict a poor prognosis in several human cancers. However, few studies on CtBP2 in gastric cancer (GC) have been performed. In this research, we evaluated the correlations between CtBP2 expression and the clinicopathological characteristics, as well as prognosis of GC patients. The effects of silencing CtBP2 expression on GC cells biology activity were also assessed. The results showed that CtBP2 was overexpressed in GC tissues and closely correlated with poor differentiation, advanced tumor stage and poor prognosis in GC patients. CtBP2 induced epithelial-to-mesenchymal transition (EMT) and repressed PTEN to increase proliferation rate, migration, and invasion in GC cells. Silencing CtBP2 inhibited GC growth in nude mice model. In conclusion, CtBP2 is overexpressed in GC and may accelerate GC tumorigenesis and metastasis, which could represent an independent prognostic marker and promising therapeutic target for GC.

  7. Dural invasion of meningiomas adjacent to the tumor margin on Gd-DTPA-enhanced MR images: histopathologic correlation

    International Nuclear Information System (INIS)

    Hutzelmann, A.; Palmie, S.; Freund, M.; Heller, M.; Buhl, R.

    1998-01-01

    In intracranial meningiomas a flat, contrast-enhancing, dural structure adjacent to the tumor can occasionally be observed on gadolinium-DTPA-enhanced MR images. We wished to evaluate whether there is a correlation between MR images and meningeal invasion of intracranial meningiomas. The study included 54 patients with intracranial meningioma and the meningeal sign. MR studies included T2-weighted and gadolinium-DTPA-enhanced T1-weighted images in axial, coronal, and sagittal planes. Histopathologic examinations were done on the meningiomas adjacent to the dura mater. The meningeal sign on MRI was observed from 2 up to 35 mm from the main tumor mass in 31 (57 %) of the 54 patients. In 20 of these 31 the histopathologic examination showed tumor invasion, while 11 patients had no tumor invasion but tissue proliferation, hypervascularity, and vascular dilatation. Seven of the 23 meningiomas without the meningeal sign had histologically proven infiltration of the adjacent dura. MR imaging is not able to determine definitive whether or not there is dural infiltration of the meningiomas. In conclusion, resection of the tumor with a wide margin is necessary to achieve complete excision of meningioma and to avoid recurrence. (orig.)

  8. Effects of Mechanical Properties on Tumor Invasion: Insights from a Cellular Model

    KAUST Repository

    Li, YZ

    2014-08-01

    Understanding the regulating mechanism of tumor invasion is of crucial importance for both fundamental cancer research and clinical applications. Previous in vivo experiments have shown that invasive cancer cells dissociate from the primary tumor and invade into the stroma, forming an irregular invasive morphology. Although cell movements involved in tumor invasion are ultimately driven by mechanical forces of cell-cell interactions and tumor-host interactions, how these mechanical properties affect tumor invasion is still poorly understood. In this study, we use a recently developed two-dimensional cellular model to study the effects of mechanical properties on tumor invasion. We study the effects of cell-cell adhesions as well as the degree of degradation and stiffness of extracellular matrix (ECM). Our simulation results show that cell-cell adhesion relationship must be satisfied for tumor invasion. Increased adhesion to ECM and decreased adhesion among tumor cells result in invasive tumor behaviors. When this invasive behavior occurs, ECM plays an important role for both tumor morphology and the shape of invasive cancer cells. Increased stiffness and stronger degree of degradation of ECM promote tumor invasion, generating more aggressive tumor invasive morphologies. It can also generate irregular shape of invasive cancer cells, protruding towards ECM. The capability of our model suggests it a useful tool to study tumor invasion and might be used to propose optimal treatment in clinical applications.

  9. p75 Neurotrophin Receptor Cleavage by α- and γ-Secretases Is Required for Neurotrophin-mediated Proliferation of Brain Tumor-initiating Cells*

    Science.gov (United States)

    Forsyth, Peter A.; Krishna, Niveditha; Lawn, Samuel; Valadez, J. Gerardo; Qu, Xiaotao; Fenstermacher, David A.; Fournier, Michelle; Potthast, Lisa; Chinnaiyan, Prakash; Gibney, Geoffrey T.; Zeinieh, Michele; Barker, Philip A.; Carter, Bruce D.; Cooper, Michael K.; Kenchappa, Rajappa S.

    2014-01-01

    Malignant gliomas are highly invasive, proliferative, and resistant to treatment. Previously, we have shown that p75 neurotrophin receptor (p75NTR) is a novel mediator of invasion of human glioma cells. However, the role of p75NTR in glioma proliferation is unknown. Here we used brain tumor-initiating cells (BTICs) and show that BTICs express neurotrophin receptors (p75NTR, TrkA, TrkB, and TrkC) and their ligands (NGF, brain-derived neurotrophic factor, and neurotrophin 3) and secrete NGF. Down-regulation of p75NTR significantly decreased proliferation of BTICs. Conversely, exogenouous NGF stimulated BTIC proliferation through α- and γ-secretase-mediated p75NTR cleavage and release of its intracellular domain (ICD). In contrast, overexpression of the p75NTR ICD induced proliferation. Interestingly, inhibition of Trk signaling blocked NGF-stimulated BTIC proliferation and p75NTR cleavage, indicating a role of Trk in p75NTR signaling. Further, blocking p75NTR cleavage attenuated Akt activation in BTICs, suggesting role of Akt in p75NTR-mediated proliferation. We also found that p75NTR, α-secretases, and the four subunits of the γ-secretase enzyme were elevated in glioblastoma multiformes patients. Importantly, the ICD of p75NTR was commonly found in malignant glioma patient specimens, suggesting that the receptor is activated and cleaved in patient tumors. These results suggest that p75NTR proteolysis is required for BTIC proliferation and is a novel potential clinical target. PMID:24519935

  10. p75 neurotrophin receptor cleavage by α- and γ-secretases is required for neurotrophin-mediated proliferation of brain tumor-initiating cells.

    Science.gov (United States)

    Forsyth, Peter A; Krishna, Niveditha; Lawn, Samuel; Valadez, J Gerardo; Qu, Xiaotao; Fenstermacher, David A; Fournier, Michelle; Potthast, Lisa; Chinnaiyan, Prakash; Gibney, Geoffrey T; Zeinieh, Michele; Barker, Philip A; Carter, Bruce D; Cooper, Michael K; Kenchappa, Rajappa S

    2014-03-21

    Malignant gliomas are highly invasive, proliferative, and resistant to treatment. Previously, we have shown that p75 neurotrophin receptor (p75NTR) is a novel mediator of invasion of human glioma cells. However, the role of p75NTR in glioma proliferation is unknown. Here we used brain tumor-initiating cells (BTICs) and show that BTICs express neurotrophin receptors (p75NTR, TrkA, TrkB, and TrkC) and their ligands (NGF, brain-derived neurotrophic factor, and neurotrophin 3) and secrete NGF. Down-regulation of p75NTR significantly decreased proliferation of BTICs. Conversely, exogenouous NGF stimulated BTIC proliferation through α- and γ-secretase-mediated p75NTR cleavage and release of its intracellular domain (ICD). In contrast, overexpression of the p75NTR ICD induced proliferation. Interestingly, inhibition of Trk signaling blocked NGF-stimulated BTIC proliferation and p75NTR cleavage, indicating a role of Trk in p75NTR signaling. Further, blocking p75NTR cleavage attenuated Akt activation in BTICs, suggesting role of Akt in p75NTR-mediated proliferation. We also found that p75NTR, α-secretases, and the four subunits of the γ-secretase enzyme were elevated in glioblastoma multiformes patients. Importantly, the ICD of p75NTR was commonly found in malignant glioma patient specimens, suggesting that the receptor is activated and cleaved in patient tumors. These results suggest that p75NTR proteolysis is required for BTIC proliferation and is a novel potential clinical target.

  11. MiR-203 controls proliferation, migration and invasive potential of prostate cancer cell lines

    DEFF Research Database (Denmark)

    Viticchiè, Giuditta; Lena, Anna Maria; Latina, Alessia

    2011-01-01

    Prostate cancers show a slow progression from a local lesion (primary tumor) to a metastatic and hormone-resistant phenotype. After an initial step of hyperplasia, in a high percentage of cases a neoplastic transformation event occurs that, less frequently, is followed by epithelial to mesenchymal...... cell lines compared to normal epithelial prostatic cells. Overexpression of miR-203 in brain or bone metastatic prostate cell lines (DU145 and PC3) is sufficient to induce a mesenchymal to epithelial transition with inhibition of cell proliferation, migration and invasiveness. We have identified CKAP2...

  12. Placenta-specific protein 1 promotes cell proliferation and invasion in non-small cell lung cancer

    Science.gov (United States)

    Yang, Li; Zha, Tian-Qi; He, Xiang; Chen, Liang; Zhu, Quan; Wu, Wei-Bing; Nie, Feng-Qi; Wang, Qian; Zang, Chong-Shuang; Zhang, Mei-Ling; He, Jing; Li, Wei; Jiang, Wen; Lu, Kai-Hua

    2018-01-01

    Pulmonary carcinoma-associated proteins have emerged as crucial players in governing fundamental biological processes such as cell proliferation, apoptosis and metastasis in human cancers. Placenta-specific protein 1 (PLAC1) is a cancer-related protein, which is activated and upregulated in a variety of malignant tissues, including prostate cancer, gastric adenocarcinoma, colorectal, epithelial ovarian and breast cancer. However, its biological role and clinical significance in non-small cell lung cancer (NSCLC) development and progression are still unknown. In the present study, we found that PLAC1 was significantly upregulated in NSCLC tissues, and its expression level was associated with advanced pathological stage and it was also correlated with shorter progression-free survival of lung cancer patients. Furthermore, knockdown of PLAC1 expression by siRNA inhibited cell proliferation, induced apoptosis and impaired invasive ability in NSCLC cells partly via regulation of epithelial-mesenchymal transition (EMT)-related protein expression. Our findings present that increased PLAC1 could be identified as a negative prognostic biomarker in NSCLC and regulate cell proliferation and invasion. Thus, we conclusively demonstrated that PLAC1 plays a key role in NSCLC development and progression, which may provide novel insights on the function of tumor-related gene-driven tumorigenesis. PMID:29138842

  13. Downregulation of CD147 expression by RNA interference inhibits HT29 cell proliferation, invasion and tumorigenicity in vitro and in vivo.

    Science.gov (United States)

    Li, Rui; Pan, Yuqin; He, Bangshun; Xu, Yeqiong; Gao, Tianyi; Song, Guoqi; Sun, Huiling; Deng, Qiwen; Wang, Shukui

    2013-12-01

    We investigated the effect of CD147 silencing on HT29 cell proliferation and invasion. We constructed a novel short hairpin RNA (shRNA) expression vector pYr-mir30-shRNA. The plasmid was transferred to HT29 cells. The expression of CD147, MCT1 (lactate transporters monocarboxylate transporter 1) and MCT4 (lactate transporters monocarboxylate transporter 4) were monitored by quantitative PCR and western blotting, respectively. The MMP-2 (matrix metalloproteinase-2) and MMP-9 (matrix metalloproteinase-9) activities were determined by gelatin zymography assay, while the intracellular lactate concentration was determined by the lactic acid assay kit. WST-8 assay was used to determine the HT29 cell proliferation and the chemosensitivity. Invasion assay was used to determine the invasion of HT29 cells. In addition, we established a colorectal cancer model, and detected CD147 expression in vivo. The results showed that the expression of CD147 and MCT1 was significantly reduced at both mRNA and protein levels, and also the activity of MMP-2 and MMP-9 was reduced. The proliferation and invasion were decreased, but chemosensitivity to cisplatin was increased. In vivo, the CD147 expression was also significantly decreased, and reduced the tumor growth after CD147 gene silencing. The results demonstrated that silencing of CD147 expression inhibited the proliferation and invasion, suggesting CD147 silencing might be an adjuvant gene therapy strategy to chemotherapy.

  14. Investigating mechanisms of alkalinization for reducing primary breast tumor invasion.

    Science.gov (United States)

    Robey, Ian F; Nesbit, Lance A

    2013-01-01

    The extracellular pH (pHe) of many solid tumors is acidic as a result of glycolytic metabolism and poor perfusion. Acidity promotes invasion and enhances metastatic potential. Tumor acidity can be buffered by systemic administration of an alkaline agent such as sodium bicarbonate. Tumor-bearing mice maintained on sodium bicarbonate drinking water exhibit fewer metastases and survive longer than untreated controls. We predict this effect is due to inhibition of tumor invasion. Reducing tumor invasion should result in fewer circulating tumor cells (CTCs). We report that bicarbonate-treated MDA-MB-231 tumor-bearing mice exhibited significantly lower numbers of CTCs than untreated mice (P cancer where systemic alkalinization slows the rate of invasion.

  15. Cell kinetics of irradiated experimental tumors: cell transition from the non-proliferating to the proliferating pool

    International Nuclear Information System (INIS)

    Potmesil, M.; Goldfeder, A.

    1980-01-01

    In murine mammary carcinomas, parenchymal tumor cells with dense nucleoli traverse the cell cycle and divide, thus constituting the proliferating pool. Cells with trabeculate or ring-shaped nucleoli either proceed slowly through G 1 phase or are arrested in it. The role of these non-proliferating, G 1 phase-confined cells in tumor regeneration was studied in vivo after a subcurative dose of X-irradiation in two transplantable tumor lines. Tumor-bearing mice were continuously injected with methyl[ 3 H]thymidine before and after irradiation. Finally, the labeling was discontinued, mice injected with vincristine sulfate and cells arrested in metaphase were accumulated over 10-hrs. Two clearly delineated groups of vincristine-arrested mitoses emerged in autoradiograms prepared from tumor tissue at the time of starting tumor regrowth: one group with the silver-grain counts corresponding to the background level, the other with heavily labeled mitoses. As the only source of unlabeled mitoses was unlabeled G 1 phase-confined cells persisting in the tumor, this indicated cell transition from the non-proliferating to the proliferating pool, which took place in the initial phase of the tumor regrowth. Unlabeled progenitors have apparently remained in G 1 phase for at least 5-12 days after irradiation. (author)

  16. Role of fascin in the proliferation and invasiveness of esophageal carcinoma cells

    International Nuclear Information System (INIS)

    Xie, J.J.; Xu, L.Y.; Zhang, H.H.; Cai, W.J.; Mai, R.Q.; Xie, Y.M.; Yang, Z.M.; Niu, Y.D.; Shen, Z.Y.; Li, E.M.

    2005-01-01

    Fascin, an actin-bundling protein, induces membrane protrusions and increases cell motility in various transformed cells. The overexpression of fascin in esophageal squamous cell carcinoma (ESCC) has been described only recently, but the roles and mechanism still remained unclear. Here, by using RNA interference (RNAi), we have stably silenced the expression of the fascin in EC109 cells, an ESCC cell line. Down-regulation of fascin resulted in a suppression of cell proliferation and as well as a decrease in cell invasiveness. Furthermore, we revealed that fascin might have functions in regulating tumor growth in vivo. The effect of fascin on cell invasiveness correlated with the activation of matrix metalloproteases such as MMP-2 and MMP-9. We examined that fascin down-expression also led to a decrease of c-erbB-2 and β-catenin at the protein level. These results suggested that fascin might play crucial roles in regulating neoplasm progression of ESCC

  17. Inhibition of proliferation, migration and invasion of human non ...

    African Journals Online (AJOL)

    Purpose: To determine the effect of phlomisoside F (PMF) on the proliferation, migration and invasion of human non-small cell lung cancer cell line A549 and explore the possible mechanisms. Methods: The anti-proliferative effect of PMF on A549 cells was determined by CCK-8. Subsequently, migration and invasion were ...

  18. Molecular imaging of proliferation with [{sup 18}F]FLT-PET; Molekulare Bildgebung der Proliferation mit [{sup 18}F]FLT-PET

    Energy Technology Data Exchange (ETDEWEB)

    Buck, A.K.; Herrmann, K.; Schwaiger, M.; Wester, H.J. [Klinikum rechts der Isar, Technische Univ. Muenchen (Germany). Nuklearmedizinische Klinik und Poliklinik; Dechow, T.; Graf, N. [Klinikum rechts der Isar, Technische Univ. Muenchen (Germany). Medizinische Klinik III, Haematologi/Onkologie

    2009-06-15

    An increased proliferation fraction is a hallmark of malignant cells and a specific feature of malignant tumors which potentially allows more specific tumor imaging compared to increased glucose consumption (FDG-PET). The majority of therapeutic approaches aim at inhibition of proliferation or induction of apoptosis. Accordingly, non-invasive assessment of the proliferation fraction is also of interest for monitoring response to treatment and to early detect resistance to a specific kind of therapy. In clinical studies it has been demonstrated that the radiotracer 3'-deoxy-3'-[{sup 18}F]fluorothymidine (FLT) accumulates specifically in malignant tumors. Regression analysis of tumoral FLT-uptake and immunohistochemically detected proliferation fraction (PCNA, Ki-67) resulted in a significant correlation (e.g., in lung cancer, correlation coefficient r=0.87, p<0.0001). The possibility to non-invasively assess the proliferation fraction with FLT-PET has been shown in a variety of solid cancers. Compared to the standard radiotracer FDG, superior demonstration of the proliferative activity using FLT as the tracer has been demonstrated. On the other hand, accumulation of FLT was significantly lower compared to FDG. Malignant tumors with low proliferation rates did not present with increased FLT-uptake resulting in a reduced sensitivity. In lung cancer for example, the sensitivity was 86% of FLT-PET compared to 100% of FDG-PET. Also, regarding detection of locoregional lymph node metastases or distant metastases, FDG-PET was shown to have a higher sensitivity. Due to the reduced sensitivity, there is no advantage of specific imaging of tumor proliferation regarding tumor staging. In malignant lymphoma, FLT was similar effective for tumor staging as compared to FDG-PET. In a pilot study comprising 34 patients, both tracers showed a similar sensitivity regarding detection of lymphoma. An observed specificity of 100% indicates that FLT-PET represents a diagnostic

  19. Promotion of Tumor Invasion by Cooperation of Granulocytes and Macrophages Activated by Anti-tumor Antibodies

    Directory of Open Access Journals (Sweden)

    Emilio Barbera-Guillem

    1999-11-01

    Full Text Available We investigated the potential role of anti-tumor antibodies and tumor antigens in the formation of immune complexes which promote matrix degradation and angiogenesis. B-cell deficient or B-cell depleted mice showed a reduction in tumor invasion and metastasis. In vitro invasion assays and in vivo models of metastasis showed that anti-sTn antibodies and sTn tumor antigens form complexes which induce granulocytes and macrophages together to mediate tumor invasion and metastasis by processes including extracellular matrix degradation and angiogenesis. These results suggest the existence of a tumor promoting role of a B-cell immune response induced by shed tumor associated antigens of solid, nonlymphoid tumors.

  20. Cyclin-dependent kinase inhibitor 3 is overexpressed in hepatocellular carcinoma and promotes tumor cell proliferation

    International Nuclear Information System (INIS)

    Xing, Chunyang; Xie, Haiyang; Zhou, Lin; Zhou, Wuhua; Zhang, Wu; Ding, Songming; Wei, Bajin; Yu, Xiaobo; Su, Rong; Zheng, Shusen

    2012-01-01

    Highlights: ► CDKN3 is commonly overexpressed in HCC and is associated with poor clinical outcome. ► Overexpression of CDKN3 could stimulate the proliferation of HCC cells by promoting G1/S transition. ► CDKN3 could inhibit the expression of p21 in HCC cells. ► Overexpression of CDKN3 has no effect on apoptosis and invasion of HCC cells. ► We identified 61 genes co-expressed with CDKN3, and BIRC5 was located at the center of the co-expression network. -- Abstract: Cyclin-dependent kinase inhibitor 3 (CDKN3) belongs to the protein phosphatases family and has a dual function in cell cycling. The function of this gene has been studied in several kinds of cancers, but its role in human hepatocellular carcinoma (HCC) remains to be elucidated. In this study, we found that CDKN3 was frequently overexpressed in both HCC cell lines and clinical samples, and this overexpression was correlated with poor tumor differentiation and advanced tumor stage. Functional studies showed that overexpression of CDKN3 could promote cell proliferation by stimulating G1-S transition but has no impact on cell apoptosis and invasion. Microarray-based co-expression analysis identified a total of 61 genes co-expressed with CDKN3, with most of them involved in cell proliferation, and BIRC5 was located at the center of CDKN3 co-expression network. These results suggest that CDKN3 acts as an oncogene in human hepatocellular carcinoma and antagonism of CDKN3 may be of interest for the treatment of HCC.

  1. Adipose tissue-derived stem cells promote pancreatic cancer cell proliferation and invasion

    International Nuclear Information System (INIS)

    Ji, S.Q.; Cao, J.; Zhang, Q.Y.; Li, Y.Y.; Yan, Y.Q.; Yu, F.X.

    2013-01-01

    To explore the effects of adipose tissue-derived stem cells (ADSCs) on the proliferation and invasion of pancreatic cancer cells in vitro and the possible mechanism involved, ADSCs were cocultured with pancreatic cancer cells, and a cell counting kit (CCK-8) was used to detect the proliferation of pancreatic cancer cells. ELISA was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. RT-PCR was performed to detect the expression of the chemokine receptor CXCR4 in pancreatic cancer cells and ADSCs. An in vitro invasion assay was used to measure invasion of pancreatic cancer cells. SDF-1 was detected in the supernatants of ADSCs, but not in pancreatic cancer cells. Higher CXCR4 mRNA levels were detected in the pancreatic cancer cell lines compared with ADSCs (109.3±10.7 and 97.6±7.6 vs 18.3±1.7, respectively; P<0.01). In addition, conditioned medium from ADSCs promoted the proliferation and invasion of pancreatic cancer cells, and AMD3100, a CXCR4 antagonist, significantly downregulated these growth-promoting effects. We conclude that ADSCs can promote the proliferation and invasion of pancreatic cancer cells, which may involve the SDF-1/CXCR4 axis

  2. Adipose tissue-derived stem cells promote pancreatic cancer cell proliferation and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Ji, S.Q.; Cao, J. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Zhang, Q.Y.; Li, Y.Y. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China); Yan, Y.Q. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Yu, F.X. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China)

    2013-09-27

    To explore the effects of adipose tissue-derived stem cells (ADSCs) on the proliferation and invasion of pancreatic cancer cells in vitro and the possible mechanism involved, ADSCs were cocultured with pancreatic cancer cells, and a cell counting kit (CCK-8) was used to detect the proliferation of pancreatic cancer cells. ELISA was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. RT-PCR was performed to detect the expression of the chemokine receptor CXCR4 in pancreatic cancer cells and ADSCs. An in vitro invasion assay was used to measure invasion of pancreatic cancer cells. SDF-1 was detected in the supernatants of ADSCs, but not in pancreatic cancer cells. Higher CXCR4 mRNA levels were detected in the pancreatic cancer cell lines compared with ADSCs (109.3±10.7 and 97.6±7.6 vs 18.3±1.7, respectively; P<0.01). In addition, conditioned medium from ADSCs promoted the proliferation and invasion of pancreatic cancer cells, and AMD3100, a CXCR4 antagonist, significantly downregulated these growth-promoting effects. We conclude that ADSCs can promote the proliferation and invasion of pancreatic cancer cells, which may involve the SDF-1/CXCR4 axis.

  3. RNA interference targeting CD147 inhibits the proliferation, invasiveness, and metastatic activity of thyroid carcinoma cells by down-regulating glycolysis

    Science.gov (United States)

    Huang, Peng; Chang, Shi; Jiang, Xiaolin; Su, Juan; Dong, Chao; Liu, Xu; Yuan, Zhengtai; Zhang, Zhipeng; Liao, Huijun

    2015-01-01

    A high rate of glycolytic flux, even in the presence of oxygen, is a key metabolic hallmark of cancer cells. Lactate, the end product of glycolysis, decreases the extracellular pH and contributes to the proliferation, invasiveness and metastasis of tumor cells. CD147 play a crucial role in tumorigenicity, invasion and metastasis; and CD147 also interacts strongly and specifically with monocarboxylate transporter1 (MCT1) that mediates the transport of lactate. The objective of this study was to determine whether CD147 is involved, via its association with MCT1 to transport lactate, in glycolysis, contributing to the progression of thyroid carcinoma. The expression levels of CD147 in surgical specimens of normal thyroid, nodular goiter (NG), well-differentiated thyroid carcinoma (WDTC), and undifferentiated thyroid carcinoma (UDTC) were determined using immunohistochemical techniques. The effects of CD147 silencing on cell proliferation, invasiveness, metastasis, co-localization with MCT1, glycolysis rate and extracellular pH of thyroid cancer cells (WRO and FRO cell lines) were measured after CD147 was knocked-down using siRNA targeting CD147. Immunohistochemical analysis of thyroid carcinoma (TC) tissues revealed significant increases in signal for CD147 compared with normal tissue or NG, while UDTC expressed remarkably higher levels of CD147 compared with WDTC. Furthermore, silencing of CD147 in TC cells clearly abrogated the expression of MCT1 and its co-localization with CD147 and dramatically decreased both the glycolysis rate and extracellular pH. Thus, cell proliferation, invasiveness, and metastasis were all significantly decreased by siRNA. These results demonstrate in vitro that the expression of CD147 correlates with the degree of dedifferentiation of thyroid cancer, and show that CD147 interacts with MCT1 to regulate tumor cell glycolysis, resulting in the progression of thyroid carcinoma. PMID:25755717

  4. miR-367 regulation of DOC-2/DAB2 interactive protein promotes proliferation, migration and invasion of osteosarcoma cells.

    Science.gov (United States)

    Cai, Wei; Jiang, Haitao; Yu, Yifan; Xu, Yong; Zuo, Wenshan; Wang, Shouguo; Su, Zhen

    2017-11-01

    Recently, miR-367 is reported to exert either oncogenic or tumor suppressive effects in human malignancies. Recent study reports that miR-367 is up-regulated in OS tissues and cell lines, and abrogates adriamycin-induced apoptosis. The clinical significance of miR-367 and its function in OS need further investigation. In our study, miR-367 expression in OS was markedly elevated compared with corresponding non-tumor tissues. High miR-367 expression was associated with malignant clinical features and poor prognosis of OS patients. In accordance, the levels of miR-367 were dramatically up-regulated in OS cells. Loss of miR-367 expression in Saos-2 cells obviously inhibited the proliferation, migration and invasion of cancer cells in vitro. Meanwhile, miR-367 restoration promoted these malignant behaviors of MG-63 cells. Mechanistically, miR-367 negatively regulated DOC-2/DAB2 interactive protein (DAB2IP) abundance in OS cells. Hereby, DAB2IP was recognized as a direct target gene of miR-367 in OS. DAB2IP mRNA level was down-regulated and inversely correlated with miR-367 expression in OS specimens. DAB2IP overexpression prohibited proliferation, migration and invasion in Saos-2 cells, while DAB2IP knockdown showed promoting effects on proliferation, migration and invasion of MG-63 cells. Furthermore, the role of miR-367 might be mediated by DAB2IP-regulated phosphorylation of ERK and AKT in OS cells. To conclude, miR-367 may function as a biomarker for prediction of prognosis and a target for OS therapy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Blocking the proliferation of human tumor cell lines by peptidase inhibitors from Bauhinia seeds.

    Science.gov (United States)

    Nakahata, Adriana Miti; Mayer, Barbara; Neth, Peter; Hansen, Daiane; Sampaio, Misako Uemura; Oliva, Maria Luiza Vilela

    2013-03-01

    In cancer tumors, growth, invasion, and formation of metastasis at a secondary site play a pivotal role, participating in diverse processes in the development of the pathology, such as degradation of extracellular matrix. Bauhinia seeds contain relatively large quantities of peptidase inhibitors, and two Bauhinia inhibitors were obtained in a recombinant form from the Bauhinia bauhinioides species, B. bauhinoides cruzipain inhibitor, which is a cysteine and serine peptidase inhibitor, and B. bauhinioides kallikrein inhibitor, which is a serine peptidase inhibitor. While recombinant B. bauhinoides cruzipain inhibitor inhibits human neutrophil elastase cathepsin G and the cysteine proteinase cathepsin L, recombinant B. bauhinioides kallikrein inhibitor inhibits plasma kallikrein and plasmin. The effects of recombinant B. bauhinoides cruzipain inhibitor and recombinant B. bauhinioides kallikrein inhibitor on the viability of tumor cell lines with a distinct potential of growth from the same tissue were compared to those of the clinical cytotoxic drug 5-fluorouracil. At 12.5 µM concentration, recombinant B. bauhinoides cruzipain inhibitor and recombinant B. bauhinioides kallikrein inhibitor were more efficient than 5-fluorouracil in inhibiting MKN-28 and Hs746T (gastric), HCT116 and HT29 (colorectal), SkBr-3 and MCF-7 (breast), and THP-1 and K562 (leukemia) cell lines. Additionally, recombinant B. bauhinoides cruzipain inhibitor inhibited 40 % of the migration of Hs746T, the most invasive gastric cell line, while recombinant B. bauhinioides kallikrein inhibitor did not affect cell migration. Recombinant B. bauhinioides kallikrein inhibitor and recombinant B. bauhinoides cruzipain inhibitor, even at high doses, did not affect hMSC proliferation while 5-fluorouracil greatly reduced the proliferation rates of hMSCs. Therefore, both recombinant B. bauhinoides cruzipain inhibitor and recombinant B. bauhinioides kallikrein inhibitor might be considered for further studies

  6. Identification of glucocorticoid-induced leucine zipper as a key regulator of tumor cell proliferation in epithelial ovarian cancer

    Directory of Open Access Journals (Sweden)

    Fernandez Hervé

    2009-10-01

    Full Text Available Abstract Background Little is known about the molecules that contribute to tumor progression of epithelial ovarian cancer (EOC, currently a leading cause of mortality from gynecological malignancies. Glucocorticoid-Induced Leucine Zipper (GILZ, an intracellular protein widely expressed in immune tissues, has been reported in epithelial tissues and controls some of key signaling pathways involved in tumorigenesis. However, there has been no report on GILZ in EOC up to now. The objectives of the current study were to examine the expression of GILZ in EOC and its effect on tumor cell proliferation. Results GILZ expression was measured by immunohistochemical staining in tissue sections from 3 normal ovaries, 7 benign EOC and 50 invasive EOC. GILZ was not detected on the surface epithelium of normal ovaries and benign tumors. In contrast, it was expressed in the cytoplasm of tumor cells in 80% EOC specimens. GILZ immunostaining scores correlated positively to the proliferation marker Ki-67 (Spearman test in univariate analysis, P P Conclusion The present study is the first to identify GILZ as a molecule produced by ovarian cancer cells that promotes cell cycle progression and proliferation. Our findings clearly indicate that GILZ activates AKT, a crucial signaling molecule in tumorigenesis. GILZ thus appears as a potential key molecule in EOC.

  7. Tensile Forces Originating from Cancer Spheroids Facilitate Tumor Invasion.

    Directory of Open Access Journals (Sweden)

    Katarzyna S Kopanska

    Full Text Available The mechanical properties of tumors and the tumor environment provide important information for the progression and characterization of cancer. Tumors are surrounded by an extracellular matrix (ECM dominated by collagen I. The geometrical and mechanical properties of the ECM play an important role for the initial step in the formation of metastasis, presented by the migration of malignant cells towards new settlements as well as the vascular and lymphatic system. The extent of this cell invasion into the ECM is a key medical marker for cancer prognosis. In vivo studies reveal an increased stiffness and different architecture of tumor tissue when compared to its healthy counterparts. The observed parallel collagen organization on the tumor border and radial arrangement at the invasion zone has raised the question about the mechanisms organizing these structures. Here we study the effect of contractile forces originated from model tumor spheroids embedded in a biomimetic collagen I matrix. We show that contractile forces act immediately after seeding and deform the ECM, thus leading to tensile radial forces within the matrix. Relaxation of this tension via cutting the collagen does reduce invasion, showing a mechanical relation between the tensile state of the ECM and invasion. In turn, these results suggest that tensile forces in the ECM facilitate invasion. Furthermore, simultaneous contraction of the ECM and tumor growth leads to the condensation and reorientation of the collagen at the spheroid's surface. We propose a tension-based model to explain the collagen organization and the onset of invasion by forces originating from the tumor.

  8. MR imaging assessment of direct hepatic invasion by adjacent tumors

    International Nuclear Information System (INIS)

    Moeser, P.M.; Karstaedt, N.; Wolfman, N.T.; Bechtold, R.E.

    1986-01-01

    The proper staging of right renal and adrenal tumors requires accurate prediction of hepatic invasion. The authors retrospectively reviewed MR studies of 35 patients with right renal or adrenal masses to assess the utility of MR imaging in predicting direct hepatic invasion. Twenty-three patients were selected for study on the basis of absence of the fat plane between tumor and liver. Hepatic signal and tumor-liver interface characteristics were used to predict invasion. In 14 patients with renal tumors, absence of abnormal signal from hepatic parenchyma correlated well with absence of invasion, but the presence of abnormal hepatic signal did not necessarily indicate hepatic invasion. Inversion-recovery pulse sequences optimally demonstrated abnormal hepatic signal as well as the tumor-liver interface. The authors are currently reviewing the studies in the nine patients with adrenal masses

  9. Differentiated thyroid carcinomas: prediction of tumor invasion with MR imaging

    International Nuclear Information System (INIS)

    Takashima, S.; Takayama, F.; Wang, Q.; Kawakami, S.; Saito, A.; Sone, S.; Kobayashi, S.

    2000-01-01

    Purpose: To assess diagnostic accuracy for tumor invasion of surrounding organs by measurement of tumor circumferences on MR images in patients with differentiated thyroid carcinomas. Material and Methods: Surgical and MR imaging findings in 50 patients with differentiated thyroid carcinoma (43 primary, 7 recurrent lesions) were retrospectively reviewed. The degrees of circumference of tumor encroachment to the organs were measured, and the measurements and morphologic diagnosis of tumor invasion made by a head and neck radiologist were compared with surgical and pathologic findings using receiver operating characteristic curves. Results: Diagnosis of tumor invasion by the radiologist was superior to the measurements of the carotid artery and cartilage, while the reverse was true for the trachea and esophagus. However, no statistical differences were noted between them for each structure. Optimal thresholds for tumor invasion were 90 deg or more for the cartilage (94% accuracy) and esophagus (86% accuracy), 135 deg or more for the trachea (86% accuracy), and 225 deg or more for the carotid artery (90% accuracy). Conclusion: Tumor invasion was more accurately diagnosed by measurement of tumor circumferences of each organ on MR images

  10. Leukocyte-associated immunoglobulin-like receptor-1 expressed in epithelial ovarian cancer cells and involved in cell proliferation and invasion

    International Nuclear Information System (INIS)

    Cao, Qizhi; Fu, Aili; Yang, Shude; He, Xiaoli; Wang, Yue; Zhang, Xiaoshu; Zhou, Jiadi; Luan, Xiying; Yu, Wenzheng; Xue, Jiangnan

    2015-01-01

    Previous studies have shown that leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is expressed on most types of hamatopoietic cells and negatively regulate immune response, but the roles of LAIR-1 in tumor of the non-hematopoietic lineage have not been determined. Despite advances in therapy of epithelial ovarian cancer (EOC), many questions relating to EOC pathogenesis remain unanswered. The aim of this study was to investigate the clinical significance of LAIR-1 expression in EOC and explore the possible association between LAIR-1 and cancer. In this study, a tissue microarray containing 78 ovarian cancer cases was stained following a standard immunohistochemical protocol for LAIR-1 and the correlation of LAIR-1 expression with clinicopathologic features was assessed. LAIR-1 was detected to express in tumor cells of ovarian cancer tissues (73.1%) and EOC cell lines COC1 and HO8910, not in normal ovarian tissues. In addition, LAIR-1 expression correlates significantly with tumor grade (p = 0.004). Furthermore, down-regulation of LAIR-1 in HO8910 cells increased cell proliferation, colony formation and cell invasion. These data suggest that LAIR-1 has a relevant impact on EOC progression and may be helpful for a better understanding of molecular pathogenesis of cancer. - Highlights: • LAIR-1 is expressed in epithelial ovarian cancer cells. • LAIR-1 expression correlates significantly with tumor grade. • Down-regulation of LAIR-1 expression increased cell proliferation and invasion. • LAIR-1 may be a novel candidate for cancer diagnosis and therapy

  11. Investigating Mechanisms of Alkalinization for Reducing Primary Breast Tumor Invasion

    Directory of Open Access Journals (Sweden)

    Ian F. Robey

    2013-01-01

    Full Text Available The extracellular pH (pHe of many solid tumors is acidic as a result of glycolytic metabolism and poor perfusion. Acidity promotes invasion and enhances metastatic potential. Tumor acidity can be buffered by systemic administration of an alkaline agent such as sodium bicarbonate. Tumor-bearing mice maintained on sodium bicarbonate drinking water exhibit fewer metastases and survive longer than untreated controls. We predict this effect is due to inhibition of tumor invasion. Reducing tumor invasion should result in fewer circulating tumor cells (CTCs. We report that bicarbonate-treated MDA-MB-231 tumor-bearing mice exhibited significantly lower numbers of CTCs than untreated mice (. Tumor pHe buffering may reduce optimal conditions for enzymes involved in tumor invasion such as cathepsins and matrix metalloproteases (MMPs. To address this, we tested the effect of transient alkalinization on cathepsin and MMP activity using enzyme activatable fluorescence agents in mice bearing MDA-MB-231 mammary xenografts. Transient alkalinization significantly reduced the fluorescent signal of protease-specific activatable agents in vivo (. Alkalinization, however, did not affect expression of carbonic anhydrase IX (CAIX. The findings suggest a possible mechanism in a live model system for breast cancer where systemic alkalinization slows the rate of invasion.

  12. MicroRNA-613 represses prostate cancer cell proliferation and invasion through targeting Frizzled7

    International Nuclear Information System (INIS)

    Ren, Wei; Li, Chan; Duan, Wanli; Du, Shuangkuan; Yang, Fan; Zhou, Jiancheng; Xing, Junping

    2016-01-01

    A growing number of studies have indicated that microRNAs (miRNAs) are critical regulators of carcinogenesis and cancer progression and may serve as potential therapeutic tools for cancer therapy. Frizzled7 (Fzd7), the most important receptor of the Wnt signaling pathway, is extensively involved in cancer development and progression. However, the role of Fzd7 in prostate cancer remains unclear. In this study, we aimed to explore the expression of Fzd7 in prostate cancer and test whether modulating Fzd7 expression by miR-613 would have an impact on prostate cancer cell proliferation and invasion. We found that Fzd7 was highly expressed in prostate cancer cell lines. Through bioinformatics analysis, Fzd7 was predicted as a target gene of miR-613, which was validated by dual-luciferase reporter assays, real-time quantitative polymerase chain reaction and Western blot analysis. By gain of function experiments, we showed that overexpression of miR-613 significantly suppressed prostate cancer cell proliferation and invasion. Furthermore, miR-613 overexpression markedly downregulated the Wnt signaling pathway. Through a rescue experiment, we showed that overexpression of Fzd7 could abrogate the inhibitory effect of miR-613 on cell proliferation and invasion as well as Wnt signaling. Additionally, these results were further strengthened by data showing that miR-613 was significantly downregulated in prostate cancer tissues, exhibiting an inverse correlation with Fzd7 expression. In conclusion, our study suggests that miR-613 functions as a tumor suppressor, partially through targeting Fzd7, and is a potential therapeutic target for prostate cancer. - Highlights: • Fzd7 was highly expressed in prostate cancer. • Fzd7 was predicted as a target gene of miR-613. • MiR-613 negatively regulated prostate cancer by Fzd7. • MiR-613 inversely correlated with Fzd7 in prostate cancer.

  13. MicroRNA-613 represses prostate cancer cell proliferation and invasion through targeting Frizzled7

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Wei [Medical College of Xi' an Jiao Tong University, Xi' an 710061 (China); Department of Urology, Shaanxi Provincial People' s Hospital, The Third Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710068 (China); Li, Chan [Department of Ophthalmology, Shaanxi Provincial People' s Hospital, The Third Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710068 (China); Duan, Wanli; Du, Shuangkuan; Yang, Fan; Zhou, Jiancheng [Department of Urology, Shaanxi Provincial People' s Hospital, The Third Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710068 (China); Xing, Junping, E-mail: junpingxing@163.com [Department of Urology, The First Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710061 (China)

    2016-01-15

    A growing number of studies have indicated that microRNAs (miRNAs) are critical regulators of carcinogenesis and cancer progression and may serve as potential therapeutic tools for cancer therapy. Frizzled7 (Fzd7), the most important receptor of the Wnt signaling pathway, is extensively involved in cancer development and progression. However, the role of Fzd7 in prostate cancer remains unclear. In this study, we aimed to explore the expression of Fzd7 in prostate cancer and test whether modulating Fzd7 expression by miR-613 would have an impact on prostate cancer cell proliferation and invasion. We found that Fzd7 was highly expressed in prostate cancer cell lines. Through bioinformatics analysis, Fzd7 was predicted as a target gene of miR-613, which was validated by dual-luciferase reporter assays, real-time quantitative polymerase chain reaction and Western blot analysis. By gain of function experiments, we showed that overexpression of miR-613 significantly suppressed prostate cancer cell proliferation and invasion. Furthermore, miR-613 overexpression markedly downregulated the Wnt signaling pathway. Through a rescue experiment, we showed that overexpression of Fzd7 could abrogate the inhibitory effect of miR-613 on cell proliferation and invasion as well as Wnt signaling. Additionally, these results were further strengthened by data showing that miR-613 was significantly downregulated in prostate cancer tissues, exhibiting an inverse correlation with Fzd7 expression. In conclusion, our study suggests that miR-613 functions as a tumor suppressor, partially through targeting Fzd7, and is a potential therapeutic target for prostate cancer. - Highlights: • Fzd7 was highly expressed in prostate cancer. • Fzd7 was predicted as a target gene of miR-613. • MiR-613 negatively regulated prostate cancer by Fzd7. • MiR-613 inversely correlated with Fzd7 in prostate cancer.

  14. MicroRNA-215 suppresses cell proliferation, migration and invasion of colon cancer by repressing Yin-Yang 1

    International Nuclear Information System (INIS)

    Chen, Zehong; Han, Siqi; Huang, Wensheng; Wu, Jialin; Liu, Yuyi; Cai, Shirong; He, Yulong; Wu, Suijing; Song, Wu

    2016-01-01

    Colorectal cancer is one of the most common malignant tumors worldwide with rising incidence. MicroRNAs are small non-coding RNAs that implicate in multiple physiological or pathological processes. The aberrant expression of miRNA-215 (miR-215) has been illustrated in various types of cancers. However, the expression of miR-215 in human colon cancer and the biological roles of it remain largely unknown. We conducted this study to explore the expression and the function of miR-215 in human colon cancer. The results showed that miR-215 was remarkably downregulated in colon cancer tissues and cell lines. Overexpression of miR-215 by miR-215 mimic significantly inhibited colon cancer cell proliferation, migration and invasion while knockdown of miR-215 by miR-215 inhibitor exerted reverse effects. Furthermore, we newly identified Yin-Yang 1(YY1) as a direct target of miR-215 which could rescue the effects of miR-215 on colon cancer cells. In summary, our investigation revealed that miR-215 was downregulated in colon cancer and it suppressed colon cancer cell proliferation, migration and invasion by directly targeting YY1. - Highlights: • MiR-215 expression was decreased in colon cancer tissues and cell lines. • Mir-215 inhibited colon cancer cell proliferation, migration and invasion. • MiR-215 targeted YY1 directly. • The effects of miR-215 on colon cancer cells were mediated by YY1.

  15. miR-206 inhibits cell proliferation, migration, and invasion by targeting BAG3 in human cervical cancer.

    Science.gov (United States)

    Wang, Yingying; Tian, Yongjie

    2018-01-02

    miR-206 and bcl2-associated athanogene 3 (BAG3) have been suggested as important regulators in various cancer types. However, the biological role of miR-206 and BAG3 in cervical cancer (CC) remains unclear. Here, we investigated the expressions and mechanisms of miR-206 and BAG3 in cervical cancer using in vitro and in vivo assays. In the present study, miR-206 expression was expressed at a lower level in CC tissues and cells than adjacent normal tissues and NEEC cells. By contrast, BAG3 mRNA and protein were expressed at higher levels in CC tissues and cells. Furthermore, miR-206 overexpression repressed cell proliferation, migration and invasion in vitro, and the 3'-untranslated region (3'-UTR) of BAG3 was a direct target of miR-206. miR-206 overexpression also inhibited EGFR, Bcl-2 and MMP2/9 protein expression, but promoted Bax protein expression. Besides, BAG3 over-expression partially abrogated miR-206-inhibited cell proliferation and invasion, while BAG3 silencing enhanced miR206-mediated inhibition. In vivo assay revealed that miR-206 repressed tumor growth in nude mice xenograft model. In conclusion, miR-206 inhibits cell proliferation, migration, and invasion by targeting BAG3 in human cervical cancer. Thus, miR-206-BAG3 can be used as a useful target for cervical cancer.

  16. Invasive Glioblastoma Cells Acquire Stemness and Increased Akt Activation

    Directory of Open Access Journals (Sweden)

    Jennifer R. Molina

    2010-06-01

    Full Text Available Glioblastoma multiforme (GBM is the most frequent and most aggressive brain tumor in adults. The dismal prognosis is due to postsurgery recurrences arising from escaped invasive tumor cells. The signaling pathways activated in invasive cells are under investigation, and models are currently designed in search for therapeutic targets. We developed here an in vivo model of human invasive GBM in mouse brain from a GBM cell line with moderate tumorigenicity that allowed simultaneous primary tumor growth and dispersal of tumor cells in the brain parenchyma. This strategy allowed for the first time the isolation and characterization of matched sets of tumor mass (Core and invasive (Inv cells. Both cell populations, but more markedly Inv cells, acquired stem cell markers, neurosphere renewal ability, and resistance to rapamycin-induced apoptosis relative to parental cells. The comparative phenotypic analysis between Inv and Core cells showed significantly increased tumorigenicity in vivo and increased invasion with decreased proliferation in vitro for Inv cells. Examination of a large array of signaling pathways revealed extracellular signal-regulated kinase (Erk down-modulation and Akt activation in Inv cells and an opposite profile in Core cells. Akt activation correlated with the increased tumorigenicity, stemness, and invasiveness, whereas Erk activation correlated with the proliferation of the cells. These results underscore complementary roles of the Erk and Akt pathways for GBM proliferation and dispersal and raise important implications for a concurrent inhibitory therapy.

  17. The miR-383-LDHA axis regulates cell proliferation, invasion and glycolysis in hepatocellular cancer

    Directory of Open Access Journals (Sweden)

    Zhixiong Fang

    2017-02-01

    Full Text Available Objective(s: To explore the correlation between expression patterns and functions of miR-383 and LDHA in hepatocellular cancer (HCC. Materials and Methods: We detected the expression of miR-383 and LDHA in 30 HCC tissues and their matched adjacent normal tissues using qRT-PCR. Then we performed MTT assay, foci formation assay, transwell migration assay, glucose uptake assay and lactate production assay to explore the function of miR-383 in cell proliferation, invasion and glycolysis in HCC cell lines. Luciferase reporter assay was used to explore whether LDHA was a target gene of miR-383. Western blot and qRT-PCR were used to further confirm LDHA was targeted by miR-383. Then the above functional experiments were repeated to see whether the function of LDHA could be inhibited by miR-383. Results: The results of qRT-PCR showed that miR-383 was down-regulated in HCC tissues compared with their matched adjacent normal tissues. Functional experiments showed that overexpression of miR-383 significantly suppressed cell proliferation, invasion and glycolysis. Luciferase reporter assay showed LDHA was a target gene of miR-383 and expression of LDHA was inversely correlated with that of miR-383 in HCC. Besides, increased cell proliferation, invasion and glycolysis triggered by LDHA could be inhibited by overexpression of miR-383 in HCC cell lines. Conclusion: Our study proved that miR-383 is down-regulated in HCC and acts as a tumor suppressor through targeting LDHA. Targeting the miR-383-LDHA axis might be a promising strategy in HCC treatment.

  18. Reduced miR-433 expression is associated with advanced stages and early relapse of colorectal cancer and restored miR-433 expression suppresses the migration, invasion and proliferation of tumor cells in vitro and in nude mice.

    Science.gov (United States)

    Zhang, Jian; Zhang, Lei; Zhang, Tong; Dong, Xin-Min; Zhu, Yu; Chen, Long-Hua

    2018-05-01

    The expression of microRNA (miR-433) is altered in various types of human cancer. The present study analyzed the prognostic and biological value of miR-433 expression in colorectal cancer using reverse transcription-quantitative polymerase chain reaction in 125 colorectal tissue specimens (including a test cohort of 40 cases of paired colorectal cancer and adjacent normal mucosae and a confirmation cohort of 85 cases of stage I-III colorectal cancer). In vitro and nude mouse xenograft experiments were subsequently used to assess the effects of miR-433 expression on the regulation of colorectal cancer cell proliferation, adhesion, migration, and invasion. The data indicated that miR-433 expression was significantly downregulated in colorectal cancer tissues in the test and confirmation patient cohorts and that low miR-433 expression was associated with advanced tumor stage and early relapse. Furthermore, the restoration of miR-433 expression was able to significantly inhibit the proliferation of tumor cells by inducing G1-S cell cycle arrest, suppressing cyclinD1 and CDK4 expression, and markedly inhibited the migratory and invasive capacities of tumor cells in vitro . The restoration of miR-433 expression or liposome-based delivery of miR-433 mimics suppressed the growth of colorectal cancer cell xenografts in nude mice. In conclusion, miR-433 may be a putative tumor suppressor in colorectal cancer, and the detection of low miR-433 expression will be investigated in further studies as a putative biomarker for the detection of early relapse in patients with colorectal cancer.

  19. Transarticular invasion of the sacroiliac joints by malignant pelvic bone tumors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hwang Woo; Huh, Jin Do; Kim, Seong Min; Cho, Young Duk [College of Medicine, Kosin Univ., Pusan (Korea, Republic of); Cho, Kil Ho [College of Medicine, Yeungnam Univ., Daegu (Korea, Republic of)

    2002-03-01

    To describe modes of transarticular invasion, with reference to the size and location of a tumor, the anatomic characteristics of invaded cartilage,and the existence of ankylosis in SI joint. Eleven histologically confirmed malignant pelvic bone tumors involving transarticular invasion of sacroiliac joints, were retrospectively analysed. Transarticular invasion of a joint was defined as involvement of its opposing bones. The anatomic site and size of the tumors were analysed, and invaded sacroiliac joint was divided into upper, middle and lower parts on the basis of the anatomic characteristics of the intervening cartilage: synovial hyaline or fibrous ligamentous. the existence of ankylosis was determined, and transarticular invasion directly across a joint was classified as direct invasion. Extension of tumors around a joint from its periphery to the opposing bone were considered as indirect invasion. All tumors were located near the sacroiliac joint, eight at the ilium and three at the sacrum. Six invasions were indirect and five were direct. Average tumor area was larger in indirect cases than in direct: 191.8 cm{sup 2} vs. 69.6 cm{sup 2}. In all indirect invasions, a huge soft tissue mass abutted onto the peripheral portion of the sacroiliac joint. In five of six cases of indirect transarticular invasion, the upper part of the joint posteriorly located fibrous ligamentous cartilage. In the other, the lower part was invaded, and this involved a detour around the joint space, avoiding the invasion of intervening cartilage. Ankylosis occurred in one of the indirect cases. Among the five cases of direct invasion, there was invasion of the posteriorly located ligamentous fibrous cartilage in three without ankylosis. In the other two cases, involving ankylosis, the synovial hyaline cartilage was invaded directly at the lower part of the joint. Transarticular invasions of sacroiliac joint via fibrous cartilage are most common. Ankylosis of the sacroiliac joint

  20. Transarticular invasion of the sacroiliac joints by malignant pelvic bone tumors

    International Nuclear Information System (INIS)

    Lee, Hwang Woo; Huh, Jin Do; Kim, Seong Min; Cho, Young Duk; Cho, Kil Ho

    2002-01-01

    To describe modes of transarticular invasion, with reference to the size and location of a tumor, the anatomic characteristics of invaded cartilage,and the existence of ankylosis in SI joint. Eleven histologically confirmed malignant pelvic bone tumors involving transarticular invasion of sacroiliac joints, were retrospectively analysed. Transarticular invasion of a joint was defined as involvement of its opposing bones. The anatomic site and size of the tumors were analysed, and invaded sacroiliac joint was divided into upper, middle and lower parts on the basis of the anatomic characteristics of the intervening cartilage: synovial hyaline or fibrous ligamentous. the existence of ankylosis was determined, and transarticular invasion directly across a joint was classified as direct invasion. Extension of tumors around a joint from its periphery to the opposing bone were considered as indirect invasion. All tumors were located near the sacroiliac joint, eight at the ilium and three at the sacrum. Six invasions were indirect and five were direct. Average tumor area was larger in indirect cases than in direct: 191.8 cm 2 vs. 69.6 cm 2 . In all indirect invasions, a huge soft tissue mass abutted onto the peripheral portion of the sacroiliac joint. In five of six cases of indirect transarticular invasion, the upper part of the joint posteriorly located fibrous ligamentous cartilage. In the other, the lower part was invaded, and this involved a detour around the joint space, avoiding the invasion of intervening cartilage. Ankylosis occurred in one of the indirect cases. Among the five cases of direct invasion, there was invasion of the posteriorly located ligamentous fibrous cartilage in three without ankylosis. In the other two cases, involving ankylosis, the synovial hyaline cartilage was invaded directly at the lower part of the joint. Transarticular invasions of sacroiliac joint via fibrous cartilage are most common. Ankylosis of the sacroiliac joint facilitates

  1. Fentanyl inhibits proliferation and invasion of colorectal cancer via β-catenin

    Science.gov (United States)

    Zhang, Xiu-Lai; Chen, Min-Li; Zhou, Sheng-Li

    2015-01-01

    Background and aim: Fentanyl is widely used for relieving pain and narcotizing in cancer patients. However, there are few published reports regarding the effects of fentanyl on tumor control and treatment. Here we investigated the effects of fentanyl on tumor growth and cell invasion in the human colorectal carcinoma (HCT116) cells. Methods: Nude mice xenografts of HCT116 cells were established to assess the inhibition effect on tumor growth by fentanyl. MTT and Transwell were employed to determine the cell survival rate and cell invasion, respectively. MicroRNAs and mRNAs expression were quantified by real-time PCR. β-catenin and matrix metalloproteinases (MMP-2 and MMP-9) expression were assayed by western blotting. β-Catenin-specific small interfering RNA (Si-β-catenin) and miR-182 mimics were transfected in cells to investigate the mechanism underlying the effects of fentanyl on the colorectal tumor and HCT116 cells. Results: Treatment with fentanyl inhibited the tumor growth and HCT116 cells invasion. Fentanyl also downregulated the expression of β-catenin and miR-182 in both xenograft tumors and HCT116 cells, and decreased the protein level of MMP-9 in HCT116 cells. Downregulation of β-Catenin resulted in the decrease of miR-182 expression in colorectal cells. In addition, the overexpression of miR-182 reversed the effect of fentanyl on MMP-9 expression and cell invasion of HCT116 cells. Conclusions: The current study demonstrated that the inhibition of tumor growth and cell invasion in colorectal cancer by fentanyl is probably due to downregulation of miR-182 and MMP-9 expression by β-catenin. PMID:25755709

  2. miR-613 inhibits proliferation and invasion of breast cancer cell via VEGFA

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Junzhao; Yuan, Peng; Mao, Qixin [Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan (China); Lu, Peng [Gastrointestinal Surgery Department, People' s Hospital of Zhengzhou, Henan (China); Xie, Tian; Yang, Hanzhao [Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan (China); Wang, Chengzheng, E-mail: wangchengzheng@126.com [Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan (China)

    2016-09-09

    MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. However, the role of microRNAs in breast cancer, has remained elusive. Here, we identified that miR-613 inhibits breast cancer cell proliferation by negatively regulates its target gene VEGFA. In breast cancer cell lines, CCK-8 proliferation assay indicated that the cell proliferation was inhibited by miR-613, while miR-613 inhibitor significantly promoted the cell proliferation. Transwell assay showed that miR-613 mimics significantly inhibited the migration and invasion of breast cancer cells, whereas miR-613 inhibitors significantly increased cell migration and invasion. Luciferase assays confirmed that miR-613 directly bound to the 3′ untranslated region of VEGFA, and western blotting showed that miR-613 suppressed the expression of VEGFA at the protein levels. This study indicated that miR-613 negatively regulates VEGFA and inhibits proliferation and invasion of breast cancer cell lines. Thus, miR-613 may represent a potential therapeutic molecule for breast cancer intervention.

  3. miR-34a Inhibits Proliferation and Invasion of Bladder Cancer Cells by Targeting Orphan Nuclear Receptor HNF4G

    Directory of Open Access Journals (Sweden)

    Huaibin Sun

    2015-01-01

    Full Text Available miR-34a is a member of the miR-34 family and acts as a tumor suppressor in bladder cancer. This study explored the regulative role of miR-34a on an orphan nuclear receptor HNF4G, which has a well-confirmed role in bladder tumor growth and invasion. qRT-PCR analysis was applied to measure miR-34a expression in two tumorigenic bladder cancer cell lines 5637 and T24 and one normal human urothelial cell line SV-HUC-1. Luciferase assay was performed to verify the putative binding between miR-34a and HNF4G. The influence of miR-34a-HNF4G axis on cell viability, colony formation, and invasion was assessed with loss- and gain-of-function analysis. This study observed that the miR-34a expressions in 5637 and T24 cells were significantly lower than in SV-HUC-1, while the muscle invasive cell sublines 5637-M and T24-M had even lower miR-34a expression than in the nonmuscle invasive sublines. HNF4G has a 3′-UTR binding site with miR-34a and is a direct downstream target of miR-34a. miR-34a can directly downregulate the expression of HNF4G and thus inhibit tumor cell viability, colony formation, and invasion. Therefore, miR-34a-HNF4G axis is an important pathway modulating cell viability, proliferation, and invasion of bladder cancer cells.

  4. In vitro effect of lysophosphatidic acid on proliferation, invasion and ...

    African Journals Online (AJOL)

    Purpose: To evaluate the effect of lysophosphatidic acid (LPA) on the proliferation, invasion and migration ability of 3AO, SKOV3 and CAOV3 human ovarian cancer cell lines. Methods: SKOV3, 3AO and CAOV3 cell lines were respectively treated with LPA. Changes in the proliferation rate of these cell lines were observed ...

  5. Role of HLA-G1 in trophoblast cell proliferation, adhesion and invasion

    International Nuclear Information System (INIS)

    Jiang, Feng; Zhao, Hongxi; Wang, Li; Guo, Xinyu; Wang, Xiaohong; Yin, Guowu; Hu, Yunsheng; Li, Yi; Yao, Yuanqing

    2015-01-01

    Trophoblast cells are important in embryo implantation and fetomaternal tolerance. HLA-G is specifically expressed at the maternal–fetal interface and is a regulator in pregnancy. The aim of the present study was to detect the effect of HLA-G1 on trophoblast cell proliferation, adhesion, and invasion. Human trophoblast cell lines (JAR and HTR-8/SVneo cells) were infected with HLA-G1-expressing lentivirus. After infection, HLA-G1 expression of the cells was detected by western blotting. Cell proliferation was detected by the BrdU assay. The cell cycle and apoptosis of JAR and HTR-8/SVneo cells was measured by flow cytometry (FCM). The invasion of the cells under different conditions was detected by the transwell invasion chamber assay. HLA-G1 didn't show any significant influence on the proliferation, apoptosis, adhesion, and invasion of trophocytes in normal culture conditions. However, HLA-G1 inhibited JAR and HTR-8/SVneo cells invasion induced by hepatocyte growth factor (HGF) under normal oxygen conditions. In conditions of hypoxia, HLA-G1 couldn't inhibit the induction of cell invasion by HGF. HLA-G1 is not an independent factor for regulating the trophocytes. It may play an indirect role in embryo implantation and formation of the placenta. - Highlights: • HLA-G1 could not influence trophocytes under normal conditions. • HLA-G1 inhibited cell invasion induced by HGF under normal oxygen condition. • HLA-G1 could not influence cell invasion under hypoxia conditions

  6. Role of HLA-G1 in trophoblast cell proliferation, adhesion and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Feng, E-mail: jiangfeng1161@163.com [Department of Gynecology and Obstetrics, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Baqiao District, Xi' an 710038 (China); Zhao, Hongxi [Department of Gynecology and Obstetrics, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Baqiao District, Xi' an 710038 (China); Wang, Li [Department of Gynecology and Obstetrics, The Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853 (China); Guo, Xinyu [Assisted Reproductive Center, General Hospital of Guangzhou Military Command, Guangzhou 510010 (China); Wang, Xiaohong; Yin, Guowu [Department of Gynecology and Obstetrics, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Baqiao District, Xi' an 710038 (China); Hu, Yunsheng [Department of Orthopedics, Tangdu Hospital, The Fourth Military Medical University, Xi' an 710038 (China); Li, Yi [Department of Gynecology and Obstetrics, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Baqiao District, Xi' an 710038 (China); Yao, Yuanqing, E-mail: yuanqingyaoxa@163.com [Department of Gynecology and Obstetrics, The Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853 (China)

    2015-02-27

    Trophoblast cells are important in embryo implantation and fetomaternal tolerance. HLA-G is specifically expressed at the maternal–fetal interface and is a regulator in pregnancy. The aim of the present study was to detect the effect of HLA-G1 on trophoblast cell proliferation, adhesion, and invasion. Human trophoblast cell lines (JAR and HTR-8/SVneo cells) were infected with HLA-G1-expressing lentivirus. After infection, HLA-G1 expression of the cells was detected by western blotting. Cell proliferation was detected by the BrdU assay. The cell cycle and apoptosis of JAR and HTR-8/SVneo cells was measured by flow cytometry (FCM). The invasion of the cells under different conditions was detected by the transwell invasion chamber assay. HLA-G1 didn't show any significant influence on the proliferation, apoptosis, adhesion, and invasion of trophocytes in normal culture conditions. However, HLA-G1 inhibited JAR and HTR-8/SVneo cells invasion induced by hepatocyte growth factor (HGF) under normal oxygen conditions. In conditions of hypoxia, HLA-G1 couldn't inhibit the induction of cell invasion by HGF. HLA-G1 is not an independent factor for regulating the trophocytes. It may play an indirect role in embryo implantation and formation of the placenta. - Highlights: • HLA-G1 could not influence trophocytes under normal conditions. • HLA-G1 inhibited cell invasion induced by HGF under normal oxygen condition. • HLA-G1 could not influence cell invasion under hypoxia conditions.

  7. MicroRNA-96 Promotes Tumor Invasion in Colorectal Cancer via RECK.

    Science.gov (United States)

    Iseki, Yasuhito; Shibutani, Masatsune; Maeda, Kiyoshi; Nagahara, Hisashi; Fukuoka, Tatsunari; Matsutani, Shinji; Hirakawa, Kosei; Ohira, Masaichi

    2018-04-01

    miR-96 is reported to inhibit reversion cysteine-rich Kazal motif (RECK), which is associated with tumor invasion, in solid cancer types (e.g. breast cancer, non-small cell lung cancer, esophageal cancer). The purpose of this study is to clarify whether miR-96 is similarly associated with tumor invasion in colorectal cancer. We performed western blotting to investigate the expression of RECK when miR-96 mimics or inhibitors were transferred into HCT-116 colorectal cancer cells. The RECK mRNA level was assessed by a reverse transcription polymerase chain reaction. An invasion assay was used to evaluate tumor invasion. The expression of RECK was inhibited by the transfection of miR-96 mimics. RECK mRNA level was reduced by miR-96 mimics and increased by miR-96 inhibitor. In the invasion assay, miR-96 mimics were shown to promote tumor invasion. miR-96 may be associated with tumor invasion through inhibition of RECK expression in colorectal cancer. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  8. Downregulation of the long non-coding RNA taurine-upregulated gene 1 inhibits glioma cell proliferation and invasion and promotes apoptosis.

    Science.gov (United States)

    Zhao, Zhijun; Wang, Bin; Hao, Junhai; Man, Weitao; Chang, Yongkai; Ma, Shunchang; Hu, Yeshuai; Liu, Fusheng; Yang, Jun

    2018-03-01

    Expression of the long non-coding RNA taurine-upregulated gene 1 (TUG1) is associated with various aggressive tumors. The present study aimed to investigate the biological function of TUG1 in regulating apoptosis, proliferation, invasion and cell cycle distribution in human glioma U251 cells. Lentivirus-mediated TUG1-specific microRNA was transfected into U251 cells to abrogate the expression of TUG1. Flow cytometry analysis was used to examine the cell cycle distribution and apoptosis of U251 cells. Cellular proliferation was examined using Cell Counting Kit-8 (CCK-8) assays and invasion was examined by Transwell assays. The apoptotic rate of cells in the TUG1-knockdown group was significantly higher than in the negative control (NC) group (11.58 vs. 9.14%, PTUG1-knockdown group was lower compared with that of the NC group. A Transwell invasion assay was performed, which revealed that the number of invaded cells from the TUG1-knockdown group was the less compared with that of the NC group. In addition, the G 0 /G 1 phase population was significantly increased within the treated group (44.85 vs. 38.45%, PTUG1 may inhibit proliferation and invasion, and promote glioma U251 cell apoptosis. In addition, knockdown of TUG1 may have an effect on cell cycle arrest. The data presented in the current study indicated that TUG1 may be a novel therapeutic target for glioma.

  9. Mechanisms of Glioma Formation: Iterative Perivascular Glioma Growth and Invasion Leads to Tumor Progression, VEGF-Independent Vascularization, and Resistance to Antiangiogenic Therapy

    Directory of Open Access Journals (Sweden)

    Gregory J. Baker

    2014-07-01

    Full Text Available As glioma cells infiltrate the brain they become associated with various microanatomic brain structures such as blood vessels, white matter tracts, and brain parenchyma. How these distinct invasion patterns coordinate tumor growth and influence clinical outcomes remain poorly understood. We have investigated how perivascular growth affects glioma growth patterning and response to antiangiogenic therapy within the highly vascularized brain. Orthotopically implanted rodent and human glioma cells are shown to commonly invade and proliferate within brain perivascular space. This form of brain tumor growth and invasion is also shown to characterize de novo generated endogenous mouse brain tumors, biopsies of primary human glioblastoma (GBM, and peripheral cancer metastasis to the human brain. Perivascularly invading brain tumors become vascularized by normal brain microvessels as individual glioma cells use perivascular space as a conduit for tumor invasion. Agent-based computational modeling recapitulated biological perivascular glioma growth without the need for neoangiogenesis. We tested the requirement for neoangiogenesis in perivascular glioma by treating animals with angiogenesis inhibitors bevacizumab and DC101. These inhibitors induced the expected vessel normalization, yet failed to reduce tumor growth or improve survival of mice bearing orthotopic or endogenous gliomas while exacerbating brain tumor invasion. Our results provide compelling experimental evidence in support of the recently described failure of clinically used antiangiogenics to extend the overall survival of human GBM patients.

  10. Effects of Src on Proliferation and Invasion of Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Rui ZHENG

    2011-04-01

    Full Text Available Background and objective It has been proven that Src played pivotal roles in carcinogenesis, cancer progression and metastasis. The aim of this study is to explore the roles of Src phosphorylation on lung cancer cells. Methods Western blot and immunoprecipitation was used to detect the expression and phosphorylation of Src in lung cancer cells. MTT and Boyden chamber assay was used to examine the effects of inhibition of Src phosphorylation on proliferation and invasion of lung cancer cells in vitro, respectively. Results pp60src was expressed in all lung cancer cell lines in this study. All 5 non-small cell lung cancer (NSCLC cell lines had increased autophosphorylated tyrosine-418, while nearly no phosphorylated Src in small cell lung cancer SBC5 cell line was detected. The effect of inhibition of Src tyrosine kinase on cell proliferation varied among the lung cancer cell lines. Submicromolar Src tyrosine kinase inhibitor (≤1 μM remarkably suppressed the proliferation of PC-9 and A549 cells in a dose dependent manner (P < 0.05, while the same concentration of Src tyrosine kinase inhibitor had no significant effect on proliferation of H226, PC14PE6 and RERFLCOK cells. Invasiveness of lung cancer cells was significantly suppressed by Src tyrosine kinase in a dose-dependent manner (P < 0.05. Conclusion Phosphorylation of Src, but not over-expression, plays a pivotal role in proliferation and invasion of NSCLC cell lines in vitro.

  11. miR-367 promotes proliferation and invasion of hepatocellular carcinoma cells by negatively regulating PTEN

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiangrui, E-mail: mengxiangruibb2008@163.com [Oncology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou (China); Lu, Peng [Gastrointestinal Surgery Department, People' s Hospital of Zhengzhou, Zhengzhou (China); Fan, Qingxia [Oncology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou (China)

    2016-01-29

    MicroRNAs play important roles in the carcinogenesis of many types of cancers by inhibiting gene expression at posttranscriptional level. However, the roles of microRNAs in hepatocellular carcinoma, are still unclear. Here, we identified that miR-367 promotes hepatocellular carcinoma (HCC) cell proliferation by negatively regulates its target gene PTEN. The expression of miR-367 and PTEN are significantly inverse correlated in 35 HCC patients. In HCC cell line, CCK-8 proliferation assay indicated that the cell proliferation was promoted by miR-367, while miR-367 inhibitor significantly inhibited the cell proliferation. Transwell assay showed that miR-367 mimics significantly promoted the migration and invasion of HCC cells, whereas miR-367 inhibitors significantly reduced cell migration and invasion. Luciferase assays confirmed that miR-367 directly bound to the 3'untranslated region of PTEN, and western blotting showed that miR-367 suppressed the expression of PTEN at the protein levels. This study indicated that miR-367 negatively regulates PTEN and promotes proliferation and invasion of HCC cells. Thus, miR-367 may represent a potential therapeutic target for HCC intervention. - Highlights: • miR-367 mimics promote the proliferation and invasion of HCC cells. • miR-367 inhibitors inhibit the proliferation and invasion of HCC cells. • miR-367 targets 3′UTR of PTEN in HCC cells. • miR-367 negatively regulates PTEN in HCC cells.

  12. SU-F-T-497: Spatiotemporally Optimal, Personalized Prescription Scheme for Glioblastoma Patients Using the Proliferation and Invasion Glioma Model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, M; Rockhill, J; Phillips, M [University Washington, Seattle, WA (United States)

    2016-06-15

    Purpose: To investigate a spatiotemporally optimal radiotherapy prescription scheme and its potential benefit for glioblastoma (GBM) patients using the proliferation and invasion (PI) glioma model. Methods: Standard prescription for GBM was assumed to deliver 46Gy in 23 fractions to GTV1+2cm margin and additional 14Gy in 7 fractions to GTV2+2cm margin. We simulated the tumor proliferation and invasion in 2D according to the PI glioma model with a moving velocity of 0.029(slow-move), 0.079(average-move), and 0.13(fast-move) mm/day for GTV2 with a radius of 1 and 2cm. For each tumor, the margin around GTV1 and GTV2 was varied to 0–6 cm and 1–3 cm respectively. Total dose to GTV1 was constrained such that the equivalent uniform dose (EUD) to normal brain equals EUD with the standard prescription. A non-stationary dose policy, where the fractional dose varies, was investigated to estimate the temporal effect of the radiation dose. The efficacy of an optimal prescription scheme was evaluated by tumor cell-surviving fraction (SF), EUD, and the expected survival time. Results: Optimal prescription for the slow-move tumors was to use 3.0(small)-3.5(large) cm margins to GTV1, and 1.5cm margin to GTV2. For the average- and fast-move tumors, it was optimal to use 6.0cm margin for GTV1 suggesting that whole brain therapy is optimal, and then 1.5cm (average-move) and 1.5–3.0cm (fast-move, small-large) margins for GTV2. It was optimal to deliver the boost sequentially using a linearly decreasing fractional dose for all tumors. Optimal prescription led to 0.001–0.465% of the tumor SF resulted from using the standard prescription, and increased tumor EUD by 25.3–49.3% and the estimated survival time by 7.6–22.2 months. Conclusion: It is feasible to optimize a prescription scheme depending on the individual tumor characteristics. A personalized prescription scheme could potentially increase tumor EUD and the expected survival time significantly without increasing EUD to

  13. Silibinin inhibits migration and invasion of the rhabdoid tumor G401 cell line via inactivation of the PI3K/Akt signaling pathway.

    Science.gov (United States)

    Li, Yumei; Zhang, Chunmei; Cai, Danfeng; Chen, Congde; Mu, Dongmei

    2017-12-01

    Rhabdoid tumors, which tend to occur prior to the age of 2 years, are one of the most aggressive malignancies and have a poor prognosis due to the frequency of metastasis. Silibinin, a natural extract, has been approved as a potential tumor suppressor in various studies, however, whether or not it also exerts its antitumor capacity in rhabdoid tumors, particularly with regards to tumor migration and invasion, is unclear. The rhabdoid tumor G401 cell line was used in the present in vitro study. An MTT assay was used to assess the cytotoxicity of silibinin on G401 cells, cell migration was studied using a wound healing assay and a Transwell migration assay, and cell invasion was determined using a Transwell invasion assay. The underlying mechanism in silibinin inhibited cell migration and invasion was investigated by western blot analysis and further confirmed using a specific inhibitor. Experimental results demonstrated that high doses of silibinin suppressed cell viability, and that low doses of silibinin inhibited cell migration and invasion without affecting cell proliferation. The phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway was involved in the silibinin-induced inhibition of metastasis. Silibinin inactivated the PI3K/Akt pathway, and inhibited cell migration and invasion, an effect that was further enhanced when LY294002, a classic PI3K inhibitor, was used concurrently. In general, silibinin inhibits migration and invasion of the rhabdoid tumor G401 cell line via inactivation of the PI3K/Akt signaling pathway and may be a potential chemotherapeutic drug to combat rhabdoid tumors in the future.

  14. RNAi-mediated downregulation of oral cancer overexpressed 1 (ORAOV1) inhibits vascular endothelial cell proliferation, migration, invasion, and tube formation.

    Science.gov (United States)

    Zhao, Xin; Liu, Dongjuan; Wang, Lili; Wu, Ruiqing; Zeng, Xin; Dan, Hongxia; Ji, Ning; Jiang, Lu; Zhou, Yu; Chen, Qianming

    2016-04-01

    Oral squamous cell carcinoma (OSCC) is one of the top ten tumors threatening human health. Oral cancer overexpressed 1 (ORAOV1) identified within chromosomal region 11q13, one of the most frequently amplified regions in OSCC, has been suggested as a novel candidate oncogene in OSCC, regulating cell cycle, apoptosis, and angiogenesis. In this study, we investigated the role of ORAOV1 in OSCC-induced angiogenesis in vitro. EA.hy926 human endothelial cells were co-cultured with OSCC cells (HSC-3 and SCC-25) transfected with ORAOV1-specific shRNA to downregulate ORAOV1 expression, and analyzed for proliferation, migration, invasion, and tube formation by specific assays. EA.hy926 endothelial cells co-cultured with ORAOV1-deficient OSCC cells exhibited significantly lower proliferation, migration, and invasion, as well as the activity in tube formation compared to that in the control cells. Our results show, for the first time, that ORAOV1 expressed by OSCC cells promotes tube formation by endothelial cells, indicating its involvement in OSCC angiogenesis. Considering the importance of neovascularization in tumor development and metastasis, these findings suggest that targeting ORAOV1 may be a potential therapeutic strategy against OSCC. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. FHOD1 formin is upregulated in melanomas and modifies proliferation and tumor growth

    International Nuclear Information System (INIS)

    Peippo, Minna; Gardberg, Maria; Lamminen, Tarja; Kaipio, Katja; Carpén, Olli; Heuser, Vanina D.

    2017-01-01

    The functional properties of actin-regulating formin proteins are diverse and in many cases cell-type specific. FHOD1, a formin expressed predominantly in cells of mesenchymal lineage, bundles actin filaments and participates in maintenance of cell shape, migration and cellular protrusions. FHOD1 participates in cancer-associated epithelial to mesenchymal transition (EMT) in oral squamous cell carcinoma and breast cancer. The role of FHOD1 in melanomas has not been characterized. Here, we show that FHOD1 expression is typically strong in cutaneous melanomas and cultured melanoma cells while the expression is low or absent in benign nevi. By using shRNA to knockdown FHOD1 in melanoma cells, we discovered that FHOD1 depleted cells are larger, rounder and have smaller focal adhesions and inferior migratory capacity as compared to control cells. Importantly, we found FHOD1 depleted cells to have reduced colony-forming capacity and attenuated tumor growth in vivo, a finding best explained by the reduced proliferation rate caused by cell cycle arrest. Unexpectedly, FHOD1 depletion did not prevent invasive growth at the tumor margins. These results suggest that FHOD1 participates in key cellular processes that are dysregulated in malignancy, but may not be essential for melanoma cell invasion.

  16. Del-1 overexpression potentiates lung cancer cell proliferation and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Hwan; Kim, Dong-Young; Jing, Feifeng; Kim, Hyesoon [Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Yun, Chae-Ok [Department of Bioengineering, College of Engineering, Hanyang University, Seoul (Korea, Republic of); Han, Deok-Jong [Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Choi, Eun Young, E-mail: choieun@ulsan.ac.kr [Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2015-12-04

    Developmental endothelial locus-1 (Del-1) is an endogenous anti-inflammatory molecule that is highly expressed in the lung and the brain and limits leukocyte migration to these tissues. We previously reported that the expression of Del-1 is positively regulated by p53 in lung endothelial cells. Although several reports have implicated the altered expression of Del-1 gene in cancer patients, little is known about its role in tumor cells. We here investigated the effect of Del-1 on the features of human lung carcinoma cells. Del-1 mRNA was found to be significantly decreased in the human lung adenocarcinoma cell lines A549 (containing wild type of p53), H1299 (null for p53) and EKVX (mutant p53), compared to in human normal lung epithelial BEAS-2B cells and MRC-5 fibroblasts. The decrease of Del-1 expression was dependent on the p53 activity in the cell lines, but not on the expression of p53. Neither treatment with recombinant human Del-1 protein nor the introduction of adenovirus expressing Del-1 altered the expression of the apoptosis regulators BAX, PUMA and Bcl-2. Unexpectedly, the adenovirus-mediated overexpression of Del-1 gene into the lung carcinoma cell lines promoted proliferation and invasion of the lung carcinoma cells, as revealed by BrdU incorporation and transwell invasion assays, respectively. In addition, overexpression of the Del-1 gene enhanced features of epithelial–mesenchymal transition (EMT), such as increasing vimentin while decreasing E-cadherin in A549 cells, and increases in the level of Slug, an EMT-associated transcription regulator. Our findings demonstrated for the first time that there are deleterious effects of high levels of Del-1 in lung carcinoma cells, and suggest that Del-1 may be used as a diagnostic or prognostic marker for cancer progression, and as a novel therapeutic target for lung carcinoma. - Highlights: • Developmental Endothelial Locus-1 (Del-1) expression is downregulated in human lung cancer cells.

  17. Del-1 overexpression potentiates lung cancer cell proliferation and invasion

    International Nuclear Information System (INIS)

    Lee, Seung-Hwan; Kim, Dong-Young; Jing, Feifeng; Kim, Hyesoon; Yun, Chae-Ok; Han, Deok-Jong; Choi, Eun Young

    2015-01-01

    Developmental endothelial locus-1 (Del-1) is an endogenous anti-inflammatory molecule that is highly expressed in the lung and the brain and limits leukocyte migration to these tissues. We previously reported that the expression of Del-1 is positively regulated by p53 in lung endothelial cells. Although several reports have implicated the altered expression of Del-1 gene in cancer patients, little is known about its role in tumor cells. We here investigated the effect of Del-1 on the features of human lung carcinoma cells. Del-1 mRNA was found to be significantly decreased in the human lung adenocarcinoma cell lines A549 (containing wild type of p53), H1299 (null for p53) and EKVX (mutant p53), compared to in human normal lung epithelial BEAS-2B cells and MRC-5 fibroblasts. The decrease of Del-1 expression was dependent on the p53 activity in the cell lines, but not on the expression of p53. Neither treatment with recombinant human Del-1 protein nor the introduction of adenovirus expressing Del-1 altered the expression of the apoptosis regulators BAX, PUMA and Bcl-2. Unexpectedly, the adenovirus-mediated overexpression of Del-1 gene into the lung carcinoma cell lines promoted proliferation and invasion of the lung carcinoma cells, as revealed by BrdU incorporation and transwell invasion assays, respectively. In addition, overexpression of the Del-1 gene enhanced features of epithelial–mesenchymal transition (EMT), such as increasing vimentin while decreasing E-cadherin in A549 cells, and increases in the level of Slug, an EMT-associated transcription regulator. Our findings demonstrated for the first time that there are deleterious effects of high levels of Del-1 in lung carcinoma cells, and suggest that Del-1 may be used as a diagnostic or prognostic marker for cancer progression, and as a novel therapeutic target for lung carcinoma. - Highlights: • Developmental Endothelial Locus-1 (Del-1) expression is downregulated in human lung cancer cells.

  18. In vitro invasion efficiency and intracellular proliferation rate comprise virulence-related phenotypic traits of Neospora caninum

    Directory of Open Access Journals (Sweden)

    Regidor-Cerrillo Javier

    2011-02-01

    Full Text Available Abstract In this study, we examined the in vitro invasion and proliferation capacities of the Nc-Liv and ten Spanish Neospora caninum isolates (Nc-Spain 1 H - Nc-Spain 10. The invasion rate was determined as the number of tachyzoites that completed their internalisation into MARC-145 cells at 2, 4, and 6 h post-inoculation (pi. The proliferation rate was evaluated by determining the doubling time during the exponential proliferation period. Significant differences in the invasion rates of these isolates were detected at 2 and 4 h pi (P P = 0.0016, ANOVA test. Tachyzoite yield, which combines invasion and proliferation data, was also assessed and confirmed marked differences between the highly and less prolific isolates. Interestingly, a direct correlation between the invasion rates and tachyzoite yields, and the severity of the disease that was exhibited by infected pregnant mice in previous works could be established for the isolates in this study (Spearman's coefficient > 0.62, P

  19. microRNA-188 is downregulated in oral squamous cell carcinoma and inhibits proliferation and invasion by targeting SIX1.

    Science.gov (United States)

    Wang, Lili; Liu, Hongchen

    2016-03-01

    microRNA-188 expression is downregulated in several tumors. However, its function and mechanism in human oral squamous cell carcinoma (OSCC) remains obscure. The present study aims to identify the expression pattern, biological roles, and potential mechanism by which miR-188 dysregulation is associated with oral squamous cell carcinoma. Significant downregulation of miR-188 was observed in OSCC tissues compared with paired normal tissues. In vitro, gain-of-function, loss-of-function experiments were performed to examine the impact of miR-188 on cancer cell proliferation, invasion, and cell cycle progression. Transfection of miR-188 mimics suppressed Detroit 562 cell proliferation, cell cycle progression and invasion, with downregulation of cyclin D1, MMP9, and p-ERK. Transfection of miR-188 inhibitor in FaDu cell line with high endogenous expression exhibited the opposite effects. Using fluorescence reporter assays, we confirmed that SIX1 was a direct target of miR-188 in OSCC cells. Transfection of miR-188 mimics downregulated SIX1 expression. SIX1 siRNA treatment abrogated miR-188 inhibitor-induced cyclin D1 and MMP9 upregulation. In addition, we found that SIX1 was overexpressed in 32 of 80 OSCC tissues. In conclusion, this study indicates that miR-188 downregulation might be associated with oral squamous cell carcinoma progression. miR-188 suppresses proliferation and invasion by targeting SIX1 in oral squamous cell carcinoma cells.

  20. Non-Invasive In Vivo Characterization of Breast Tumors Using Photon Migration Spectroscopy

    Directory of Open Access Journals (Sweden)

    Bruce J. Tromberg

    2000-01-01

    Full Text Available Frequency-domain photon migration (FDPM is a noninvasive optical technique that utilizes intensity-modulated, near-infrared (NIR light to quantitatively measure optical properties in thick tissues. Optical properties (absorption, μa, and scattering, μs′, parameters derived from FDPM measurements can be used to construct low-resolution (0.5 to 1 cm functional images of tissue hemoglobin (total, oxy-, and deoxyforms, oxygen saturation, blood volume fraction, water content, fat content and cellular structure. Unlike conventional NIR transillumination, FDPM enables quantitative analysis of tissue absorption and scattering parameters in a single non-invasive measurement. The unique functional information provided by FDPM makes it well-suited to characterizing tumors in thick tissues. In order to test the sensitivity of FDPM for cancer diagnosis, we have initiated clinical studies to quantitatively determine normal and malignant breast tissue optical and physiological properties in human subjects. Measurements are performed using a non-invasive, multi-wavelength, diode-laser FDPM device optimized for clinical studies. Results show that ductal carcinomas (invasive and in situ and benign fibroadenomas exhibit 1.25 to 3-fold higher absorption than normal breast tissue. Within this group, absorption is greatest for measurements obtained from sites of invasive cancer. Optical scattering is approximately 20% greater in pre-menopausal versus post-menopausal subjects due to differences in gland/cell proliferation and collagen/fat content. Spatial variations in tissue scattering reveal the loss of differentiation associated with breast disease progression. Overall, the metabolic demands of hormonal stimulation and tumor growth are detectable using photon migration techniques. Measurements provide quantitative optical property values that reflect changes in tissue perfusion, oxygen consumption, and cell/matrix development.

  1. Alteration of Pituitary Tumor Transforming Gene-1 Regulates Trophoblast Invasion via the Integrin/Rho-Family Signaling Pathway.

    Directory of Open Access Journals (Sweden)

    Seung Mook Lim

    Full Text Available Trophoblast invasion ability is an important factor in early implantation and placental development. Recently, pituitary tumor transforming gene 1 (PTTG1 was shown to be involved in invasion and proliferation of cancer. However, the role of PTTG1 in trophoblast invasion remains unknown. Thus, in this study we analyzed PTTG1 expression in trophoblasts and its effect on trophoblast invasion activity and determined the mechanism through which PTTG1 regulates trophoblast invasion. Trophoblast proliferation and invasion abilities, regardless of PTTG1 expression, were analyzed by quantitative real-time polymerase chain reaction, fluorescence-activated cell sorting analysis, invasion assay, western blot, and zymography after treatment with small interfering RNA against PTTG1 (siPTTG1. Additionally, integrin/Rho-family signaling in trophoblasts by PTTG1 alteration was analyzed. Furthermore, the effect of PTTG1 on trophoblast invasion was evaluated by microRNA (miRNA mimic and inhibitor treatment. Trophoblast invasion was significantly reduced through decreased matrix metalloproteinase (MMP-2 and MMP-9 expression when PTTG1 expression was inhibited by siPTTG1 (p < 0.05. Furthermore, knockdown of PTTG1 increased expression of integrin alpha 4 (ITGA4, ITGA5, and integrin beta 1 (ITGB1; otherwise, RhoA expression was significantly decreased (p < 0.05. Treatment of miRNA-186-5p mimic and inhibitor controlled trophoblast invasion ability by altering PTTG1 and MMP expression. PTTG1 can control trophoblast invasion ability via regulation of MMP expression through integrin/Rho-family signaling. In addition, PTTG1 expression and its function were regulated by miRNA-186-5p. These results help in understanding the mechanism through which PTTG1 regulates trophoblast invasion and thereby implantation and placental development.

  2. Tumor-associated macrophages: Oblivious confederates in invasive mammary carcinoma

    Directory of Open Access Journals (Sweden)

    Imtiaz Ahmed

    2017-01-01

    Full Text Available Background: The infiltrating margins of carcinomas are associated with presence of inflammatory cell infiltrate which are an integral part of the tumor microenvironment. Amongst the inflammatory cells, Tumor Associated Macrophages (TAMs play a key role in the tumorigenesis. This study elucidates the density of TAMs in invasive mammary carcinomas and attempts to establish aa association with the following pathological variables: tumor size, histological grade, nodal status, hormonal expression status and Her2Neu overexpression. Materials and Methods: 90 diagnosed archival cases of invasive mammary carcinomas at a tertiary care centre were included. Density of TAMs was assessed by using CD68 which is a pan-macrophage marker by immunohistochemistry on the archival tissue blocks. The density TAMs (CD68 positive cells was dichotomised into high (>50 CD68 positive cells/ HPF and low (<5050 CD68 positive cells/ HPF and compared with the above mentioned pathological variables using appropriate statistical tests. Results: The density of TAMs was significantly higher around the infiltrating edge of the carcinoma in comparison to the adjoining normal terminal duct lobular units. The density of TAMs was more in the infiltrating edge of the tumor than within the tumor nodule/nests. A higher TAM density showed a significant association in tumors having large tumor size, higher histological grade, nodal metastasis, absence of ER and PR expression and Her2Neu overexpression (p value <0.05. Conclusion: TAMs play an important role in tumor progression in invasive mammary carcinomas. This is as a result of the multiple roles enacted by TAMs in the various stages of tumor development starting from tumor growth, invasion, angiogenesis and metastases. Targeted therapy against TAMs has great potential in the being important components of future treatment strategies against breast carcinomas.

  3. The role of long noncoding RNA-LET in cell proliferation and invasion of nasopharyngeal carcinoma and its mechanism

    Directory of Open Access Journals (Sweden)

    Chen L

    2017-05-01

    Full Text Available Lei Chen,1,* Lingling Sun,1,* Lei Dong,2 Peng Cui,3 Ziwei Xia,4 Chao Li,1 Yu Zhu5 1Department of Otolaryngology, The Second Hospital of Tianjin Medical University, Tianjin, People’s Republic of China; 2Department of Pediatrics, Division of Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, USA; 3Department of Multidisciplinary Consultation Center of TCM and Western Medicine, The Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, 4Department of Clinical Medicine, The Second Clinical Medical School of Tianjin Medical University, 5Department of Clinical Laboratory, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vessels and Neural Degeneration, Tianjin, People’s Republic of China *These authors contributed equally to this work Abstract: LncRNA-LET, a recently identified long noncoding RNA, has been shown to act as a tumor suppressor; however, its biological function and mechanism have not been fully investigated. Our research found that there was less expression of LET in nasopharyngeal carcinoma (NPC tissues than normal tissues and that LET might inhibit proliferation, adhesion and invasion of NPC in vitro by enhancing its expression. By contrast, decreased LET expression could promote the proliferation, adhesion and invasion of NPC. In addition, the expression profiles of related genes and MAPK/ERK pathway were also regulated effectively via overexpression or silencing of LET. This result provides comprehensive evidence of LET’s antitumor effect on NPC in vitro, which might provide a new approach for clinical treatment. Keywords: LncRNA-LET, proliferation, invasion, nasopharyngeal carcinoma, MAPK/ERK pathway

  4. miR-4295 promotes cell proliferation and invasion in anaplastic thyroid carcinoma via CDKN1A

    International Nuclear Information System (INIS)

    Shao, Mingchen; Geng, Yiwei; Lu, Peng; Xi, Ying; Wei, Sidong; Wang, Liuxing; Fan, Qingxia; Ma, Wang

    2015-01-01

    MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. However, the role of microRNAs in anaplastic thyroid carcinoma (ATC), has remained elusive. Here, we identified that miR-4295 promotes ATC cell proliferation by negatively regulates its target gene CDKN1A. In ATC cell lines, CCK-8 proliferation assay indicated that the cell proliferation was promoted by miR-4295, while miR-4295 inhibitor significantly inhibited the cell proliferation. Transwell assay showed that miR-4295 mimics significantly promoted the migration and invasion of ATC cells, whereas miR-4295 inhibitors significantly reduced cell migration and invasion. luciferase assays confirmed that miR-4295 directly bound to the 3'untranslated region of CDKN1A, and western blotting showed that miR-4295 suppressed the expression of CDKN1A at the protein levels. This study indicated that miR-4295 negatively regulates CDKN1A and promotes proliferation and invasion of ATC cell lines. Thus, miR-4295 may represent a potential therapeutic target for ATC intervention. - Highlights: • miR-4295 mimics promote the proliferation and invasion of ATC cells. • miR-4295 inhibitors inhibit the proliferation and invasion of ATC cells. • miR-4295 targets 3′UTR of CDKN1A in ATC cells. • miR-4295 negatively regulates CDKN1A in ATC cells

  5. In vitro effect of lysophosphatidic acid on proliferation, invasion and ...

    African Journals Online (AJOL)

    Purpose: To evaluate the effect of lysophosphatidic acid (LPA) on the proliferation, invasion and migration ... reproduction in any medium, provided the original work is properly credited. Tropical .... air dried at room temperature overnight.

  6. MicroRNA-133a Inhibits Osteosarcoma Cells Proliferation and Invasion via Targeting IGF-1R

    Directory of Open Access Journals (Sweden)

    Guangnan Chen

    2016-02-01

    Full Text Available Background/Aims: MicroRNAs (miRNAs are a class of small noncoding RNAs that regulate gene expression by repressing translation or cleaving RNA transcripts in a sequence-specific manner. Downregulated microRNAs and their roles in cancer development have attracted much attention. A growing body of evidence showed that microRNA-133a (miR-133a has inhibitory effects on cell proliferation, migration, invasion, and metastasis of osteosarcoma. Methods: MiR-133a expression in human osteosarcoma cell lines and human normal osteoblastic cell line hFOB was investigated by real-time PCR (RT-PCR. The role of miR-133a in human osteosarcoma growth and invasion was assessed in cell lines in vitro and in vivo. Then, luciferase reporter assay validated IGF-1R as a downstream and functional target of miR-133a, and functional studies revealed that the anti-tumor effect of miR-133a was probably due to targeting and repressing of IGF-1R expression. Results: MiR-133a was lower expressed in human osteosarcoma cell lines than human normal osteoblastic cell line hFOB and its effect on inhibiting proliferation, invasion and metastasis is mediated by its direct interaction with the IGF-1R. Furthermore, the tumour-suppressive function of miR-133a probably contributed to inhibiting the activation AKT and ERK signaling pathway. Conclusion: MiR-133a suppresses osteosarcoma progression and metastasis by targeting IGF-1R in human osteosarcoma cells, providing a novel candidate prognostic factor and a potential anti-metastasis therapeutic target in osteosarcoma.

  7. Transcriptomic and Proteomic Data Integration and Two-Dimensional Molecular Maps with Regulatory and Functional Linkages: Application to Cell Proliferation and Invasion Networks in Glioblastoma.

    Science.gov (United States)

    Gupta, Manoj Kumar; Jayaram, Savita; Reddy, Divijendra Natha; Polisetty, Ravindra Varma; Sirdeshmukh, Ravi

    2015-12-04

    Glioblastoma multiforme (GBM), the most aggressive primary brain tumor, is characterized by high rates of cell proliferation, migration, and invasion. New therapeutic strategies and targets are being continuously explored with the hope for better outcome. By overlaying transcriptomic and proteomic data from GBM clinical tissues, we identified 317 differentially expressed proteins to be concordant with the messenger RNAs (mRNAs). We used these entities to generate integrated regulatory information at the level of microRNAs (miRNAs) and their mRNA and protein targets using prediction programs or experimentally verified miRNA target mode in the miRWalk database. We observed 60% or even more of the miRNA-target pairs to be consistent with experimentally observed inverse expression of these molecules in GBM. The integrated view of these regulatory cascades in the contexts of cell proliferation and invasion networks revealed two-dimensional molecular interactions with regulatory and functional linkages (miRNAs and their mRNA-protein targets in one dimension; multiple miRNAs associated in a functional network in the second dimension). A total of 28 of the 35 differentially expressed concordant mRNA-protein entities represented in the proliferation network, and 51 of the 59 such entities represented in the invasion network, mapped to altered miRNAs from GBM and conformed to an inverse relationship in their expression. We believe the two-dimensional maps of gene expression changes enhance the strength of the discovery datasets derived from omics-based studies for their applications in GBM as well as tumors in general.

  8. S-adenosylmethionine blocks osteosarcoma cells proliferation and invasion in vitro and tumor metastasis in vivo: therapeutic and diagnostic clinical applications

    International Nuclear Information System (INIS)

    Parashar, Surabhi; Cheishvili, David; Arakelian, Ani; Hussain, Zahid; Tanvir, Imrana; Khan, Haseeb Ahmed; Szyf, Moshe; Rabbani, Shafaat A

    2015-01-01

    Osteosarcoma (OS) is an aggressive and highly metastatic form of primary bone cancer affecting young children and adults. Previous studies have shown that hypomethylation of critical genes is driving metastasis. Here, we examine whether hypermethylation treatment can block OS growth and pulmonary metastasis. Human OS cells LM-7 and MG-63 were treated with the ubiquitous methyl donor S-adenosylmethionine (SAM) or its inactive analog S-adenosylhomocystine (SAH) as control. Treatment with SAM resulted in a dose-dependent inhibition of tumor cell proliferation, invasion, cell migration, and cell cycle characteristics. Inoculation of cells treated with 150 μmol/L SAM for 6 days into tibia or via intravenous route into Fox Chase severe combined immune deficient (SCID) mice resulted in the development of significantly smaller skeletal lesions and a marked reduction in pulmonary metastasis as compared to control groups. Epigenome wide association studies (EWAS) showed differential methylation of several genes involved in OS progression and prominent signaling pathways implicated in bone formation, wound healing, and tumor progression in SAM-treated LM-7 cells. Real-time polymerase chain reaction (qPCR) analysis confirmed that SAM treatment blocked the expression of several prometastatic genes and additional genes identified by EWAS analysis. Immunohistochemical analysis of normal human bone and tissue array from OS patients showed significantly high levels of expression of one of the identified gene platelet-derived growth factor alpha (PDGFA). These studies provide a possible mechanism for the role of DNA demethylation in the development and metastasis of OS to provide a rationale for the use of hypermethylation therapy for OS patients and identify new targets for monitoring OS development and progression

  9. Down-regulation of TCF21 by hypermethylation induces cell proliferation, migration and invasion in colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Youyi [Department of Oncology, Xiangya Hospital Central South University (China); Duan, Huaxin [Department of Oncology, Hunan Provincial People' s Hospital (China); The First Affiliated Hospital of Hunan Normal University (China); Duan, Chaojun [Cental Lab of Xiangya Hospital Central South University (China); Zhou, Rongrong; He, Yuxiang; Tu, Qingsong [Department of Oncology, Xiangya Hospital Central South University (China); Shen, Liangfang, E-mail: 3153559525@qq.com [Department of Oncology, Xiangya Hospital Central South University (China)

    2016-01-15

    Epigenetic alteration induced loss function of the transcription factor 21 (TCF21) has been associated with different types of human cancers. However, the epigenetic regulation and molecular functions of TCF21 in colorectal cancer (CRC) remain unknown. In this study, TCF21 expression levels and methylation status of its promoter region in CRC cell lines (n = 5) and CRC tissues (n = 151) as well as normal colorectal mucosa (n = 30) were assessed by RTq-PCR and methylation analysis (methylation specific PCR, MSP and bisulfite sequencing PCR, BSP), respectively. The cellular functions of TCF21 on CRC cell proliferation, apoptosis, invasion and migration were investigated in vitro. Our data revealed that TCF21 was frequently silenced by promoter hypermethylation in both tested CRC cell lines and primary CRC, and correlation analysis between methylation status and clinicopathologic parameters found that TCF21 methylation was significantly correlated with lymph node invasion (P = 0.013), while no significant correlation was found in other parameters. In addition, demethylation treatment resulted in re-expression of TCF21 in CRC cell lines, and cellular function experiments revealed that restoration of TCF21 inhibited CRC cell proliferation, promoted apoptosis and suppressed cell invasion and migration, suggesting that TCF21 may function as a tumor suppressor gene, which is downregulated through promoter hypermethylation in CRC development. - Highlights: • TCF21 was frequently silenced by promoter DNA methylation in CRC cells. • TCF21 was frequently methylated in primary CRC and significantly correlated with metastasis. • Restoration of TCF21 promotes cell apoptosis of CRC cells. • Restoration of TCF21 inhibits cell invasion and migration of CRC cells.

  10. Down-regulation of TCF21 by hypermethylation induces cell proliferation, migration and invasion in colorectal cancer

    International Nuclear Information System (INIS)

    Dai, Youyi; Duan, Huaxin; Duan, Chaojun; Zhou, Rongrong; He, Yuxiang; Tu, Qingsong; Shen, Liangfang

    2016-01-01

    Epigenetic alteration induced loss function of the transcription factor 21 (TCF21) has been associated with different types of human cancers. However, the epigenetic regulation and molecular functions of TCF21 in colorectal cancer (CRC) remain unknown. In this study, TCF21 expression levels and methylation status of its promoter region in CRC cell lines (n = 5) and CRC tissues (n = 151) as well as normal colorectal mucosa (n = 30) were assessed by RTq-PCR and methylation analysis (methylation specific PCR, MSP and bisulfite sequencing PCR, BSP), respectively. The cellular functions of TCF21 on CRC cell proliferation, apoptosis, invasion and migration were investigated in vitro. Our data revealed that TCF21 was frequently silenced by promoter hypermethylation in both tested CRC cell lines and primary CRC, and correlation analysis between methylation status and clinicopathologic parameters found that TCF21 methylation was significantly correlated with lymph node invasion (P = 0.013), while no significant correlation was found in other parameters. In addition, demethylation treatment resulted in re-expression of TCF21 in CRC cell lines, and cellular function experiments revealed that restoration of TCF21 inhibited CRC cell proliferation, promoted apoptosis and suppressed cell invasion and migration, suggesting that TCF21 may function as a tumor suppressor gene, which is downregulated through promoter hypermethylation in CRC development. - Highlights: • TCF21 was frequently silenced by promoter DNA methylation in CRC cells. • TCF21 was frequently methylated in primary CRC and significantly correlated with metastasis. • Restoration of TCF21 promotes cell apoptosis of CRC cells. • Restoration of TCF21 inhibits cell invasion and migration of CRC cells.

  11. Cyclophilin A enhances cell proliferation and tumor growth of liver fluke-associated cholangiocarcinoma

    Directory of Open Access Journals (Sweden)

    Sawanyawisuth Kanlayanee

    2011-08-01

    Full Text Available Abstract Background Cyclophilin A (CypA expression is associated with malignant phenotypes in many cancers. However, the role and mechanisms of CypA in liver fluke-associated cholangiocarcinoma (CCA are not presently known. In this study, we investigated the expression of CypA in CCA tumor tissues and CCA cell lines as well as regulation mechanisms of CypA in tumor growth using CCA cell lines. Methods CypA expression was determined by real time RT-PCR, Western blot or immunohistochemistry. CypA silence or overexpression in CCA cells was achieved using gene delivery techniques. Cell proliferation was assessed using MTS assay or Ki-67 staining. The effect of silencing CypA on CCA tumor growth was determined in nude mice. The effect of CypA knockdown on ERK1/2 activation was assessed by Western blot. Results CypA was upregulated in 68% of CCA tumor tissues. Silencing CypA significantly suppressed cell proliferation in several CCA cell lines. Likewise, inhibition of CypA peptidyl-prolyl cis-trans isomerase (PPIase activity using cyclosporin A (CsA decreased cell proliferation. In contrast, overexpression of CypA resulted in 30% to 35% increases in proliferation of CCA cell lines. Interestingly, neither silence nor overexpression of CypA affected cell proliferation of a non-tumor human cholangiocyte cell line, MMNK1. Suppression of CypA expression attenuated ERK1/2 activity in CCA M139 cells by using both transient and stable knockdown methods. In the in vivo study, there was a 43% reduction in weight of tumors derived from CypA-silenced CCA cell lines compared with control vector CCA tumors in mice; these tumors with stable CypA silencing showed a reduced cell proliferation. Conclusions CypA is upregulated in majority of CCA patients' tissues and confers a significant growth advantage in CCA cells. Suppression of CypA expression decreases proliferation of CCA cell lines in vitro and reduces tumor growth in the nude mouse model. Inhibition of Cyp

  12. miR-124 suppresses proliferation and invasion of nasopharyngeal carcinoma cells through the Wnt/β-catenin signaling pathway by targeting Capn4

    Directory of Open Access Journals (Sweden)

    Hu H

    2017-05-01

    Full Text Available Haili Hu,1,* Guanghui Wang,1,* Congying Li2 1Department of Otorhinolaryngology, Huaihe Hospital of Henan University, 2Department of Otorhinolaryngology, School of Medicine, Kaifeng University, Kaifeng, People’s Republic of China *These authors contributed equally to this work Background: Recent studies have demonstrated that microRNA 124 (miR-124 acts as a tumor suppressor in nasopharyngeal carcinoma (NPC; however, the exact molecular mechanism by which miR-124 exerts tumor suppression has not been well elucidated.Materials and methods: We performed quantitative real-time PCR (qRT-PCR to measure the expression of metastasis associated lung adenocarcinoma transcript 1, miR-124, and calpain small subunit 1 (Capn4 mRNAs in NPC cell lines. We also performed western blot analysis to detect the levels of Capn4. Furthermore, we performed MTT assay and transwell invasion assay to determine the proliferation and invasion ability of two NPC cell lines, namely, HONE1 and CNE2 cells, respectively. The verification of targets of miR-124 was performed using prediction softwares and luciferase reporter analysis.Results: According to our results, the expression of Capn4 was found to be elevated, whereas the expression of miR-124 was lowered in NPC cell lines compared with normal nasopharyngeal cells. When we preformed overexpression of miR-124, it suppressed the proliferation and invasion of NPC cells. Moreover, miR-124 suppressed the expression of Capn4 by targeting Capn4 in HONE1 and CNE2 cells. When we preformed overexpression of Capn4, it reversed the inhibitory effect of miR-124 on the proliferation and invasion of NPC cells. Furthermore, miR-124–Capn4 axis decreased the levels of β-catenin, cyclin D1, and c-Myc, the components of the Wnt/β-catenin signaling pathway.Conclusion: The suppression of proliferation and invasion of NPC cells by miR-124 were achieved by the regulation of Wnt/β-catenin signaling pathway by targeting Capn4. The results of

  13. Targeting of GIT1 by miR-149* in breast cancer suppresses cell proliferation and metastasis in vitro and tumor growth in vivo

    Directory of Open Access Journals (Sweden)

    Dong Y

    2017-12-01

    Full Text Available Yan Dong,1,* Cai Chang,2,* Jingtian Liu,3 Jinwei Qiang4 1Department of Ultrasonography, Jinshan Hospital, 2Department of Ultrasonography, Cancer Center, 3Department of General Surgery, 4Department of Radiology, Jinshan Hospital, Fudan University, Shanghai, China *These authors contributed equally to this work Abstract: Breast cancer remains a major cause of cancer-related death in women worldwide. Dysregulation of microRNAs (miRNAs is involved in the initiation and progression of breast cancer. Moreover, it was found that GIT1 was widely involved in the development of many human cancers. Herein, we aimed to investigate the expression changes of miR-149* and GIT1 and the functional effects of miR-149*/GIT1 link in breast cancer. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR and Western blot (WB were used to examine the expression levels of miR-149* and GIT1. Dual luciferase reporter assay was utilized to confirm the target interaction between miR-149* and GIT1. The biological functions, including cell proliferation, invasion, and migration, of miR-149* and GIT1 were determined by MTT assay and Transwell assays, respectively. Eventually, the tumor xenograft model in nude mice injected with stable transfected MDA-MB-231 cells was established to verify the effects of miR-149* and GIT1 on tumor growth. Our results showed that miR-149* expression was decreased, whereas GIT1 expression was increased in clinical samples of breast cancer. Based on the inverse expression trend between miR-149* and GIT1, we further demonstrated that miR-149* indeed directly targets GIT1. Subsequently, it was observed that inhibition of miR-149* significantly promoted cell proliferation, invasion, and migration, but the ability of cell proliferation, invasion, and migration was obviously declined after silencing of GIT1 in MDA-MB-231 cells transfected with miR-149* mimic and/or si-GIT1. Finally, it was also found that elevated miR-149* decelerated

  14. ERβ inhibits proliferation and invasion of breast cancer cells

    Science.gov (United States)

    Lazennec, Gwendal; Bresson, Damien; Lucas, Annick; Chauveau, Corine; Vignon, Françoise

    2001-01-01

    Recent studies indicate that the expression of ERβ in breast cancer is lower than in normal breast, suggesting that ERβ could play an important role in carcinogenesis. To investigate this hypothesis, we engineered estrogen-receptor negative MDA-MB-231 breast cancer cells to reintroduce either ERα or ERβ protein with an adenoviral vector. In these cells, ERβ (as ERα) expression was monitored using RT-PCR and Western blot. ERβ protein was localized in the nucleus (immunocytochemistry) and able to transactivate estrogen-responsive reporter constructs in the presence of estradiol. ERβ and ERα induced the expression of several endogenous genes such as pS2, TGFα or the cyclin kinase inhibitor p21, but in contrast to ERα, ERβ was unable to regulate c-myc proto-oncogene expression. The pure antiestrogen ICI 164, 384 completely blocked ERα and ERβ estrogen-induced activities. ERβ inhibited MDA-MB-231 cell proliferation in a ligand-independent manner, whereas ERα inhibition of proliferation is hormone-dependent. Moreover, ERβ and ERα, decreased cell motility and invasion. Our data bring the first evidence that ERβ is an important modulator of proliferation and invasion of breast cancer cells and support the hypothesis that the loss of ERβ expression could be one of the events leading to the development of breast cancer. PMID:11517191

  15. Regulation of tumor invasion by interstitial fluid flow

    International Nuclear Information System (INIS)

    Shieh, Adrian C; Swartz, Melody A

    2011-01-01

    The importance of the tumor microenvironment in cancer progression is undisputed, yet the significance of biophysical forces in the microenvironment remains poorly understood. Interstitial fluid flow is a nearly ubiquitous and physiologically relevant biophysical force that is elevated in tumors because of tumor-associated angiogenesis and lymphangiogenesis, as well as changes in the tumor stroma. Not only does it apply physical forces to cells directly, but interstitial flow also creates gradients of soluble signals in the tumor microenvironment, thus influencing cell behavior and modulating cell–cell interactions. In this paper, we highlight our current understanding of interstitial fluid flow in the context of the tumor, focusing on the physical changes that lead to elevated interstitial flow, how cells sense flow and how they respond to changes in interstitial flow. In particular, we emphasize that interstitial flow can directly promote tumor cell invasion through a mechanism known as autologous chemotaxis, and indirectly support tumor invasion via both biophysical and biochemical cues generated by stromal cells. Thus, interstitial fluid flow demonstrates how important biophysical factors are in cancer, both by modulating cell behavior and coupling biophysical and biochemical signals

  16. CT features of invasion of sublingual space by malignant oropharyngeal tumors

    International Nuclear Information System (INIS)

    Wei Yi; Xiao Jiahe; Zhou Xiangping; Deng Kaihong

    2003-01-01

    Objective: To investigate the CT features of the invasion of sublingual space by malignant oropharyngeal tumors in order to provide more accurate information for clinical treatment. Methods: Fifty-eight cases of pathologically proven malignant oropharyngeal tumors were collected and retrospectively analyzed. Results: Among all the cases, invasion of sublingual space by malignant oropharyngeal tumors could be seen in 14 cases, of which, 7 cases got access to sublingual space through tongue base, 3 cases through parapharyngeal space, 2 cases through pterygomandibular raphe, 2 cases through uncertain routes. Invasion of sublingual space manifested on CT scan as obliteration of fat plane in sublingual space and involvement of the sublingual vessels in the space. Conclusion: Malignant oropharyngeal tumors can invade the adjacent sublingual space via tongue base, pterygomandibular raphe, and parapharyngeal space. The invasion of sublingual space by malignant oropharyngeal tumors manifests in CT as effacement of sublingual fat plane and envelopment of hyoid artery

  17. MicroRNA-494 inhibits cell proliferation and invasion of chondrosarcoma cells in vivo and in vitro by directly targeting SOX9.

    Science.gov (United States)

    Li, Jingyuan; Wang, Lijuan; Liu, Zongzhi; Zu, Chao; Xing, Fanfan; Yang, Pei; Yang, Yongkang; Dang, Xiaoqian; Wang, Kunzheng

    2015-09-22

    Accumulating evidence indicates that dysregulation of miRNAs could contribute to tumor growth and metastasis of chondrosarcoma by infuencing cell proliferation and invasion. In the current study, we are interested to examine the role of miRNAs in the carcinogenesis and progression of chondrosarcoma. Here, using comparative miRNA profiling of tissues and cells of chondrosarcoma and cartilage, we identified miR-494 as a commonly downregulated miRNA in the tissues of patients with chondrosarcoma and chondrosarcoma cancer cell line, and upregulation of miR-494 could inhibit proliferation and invasion of chondrosarcoma cancer cells in vivo and in vitro. Moreover, our data demonstrated that SOX9, the essential regulator of the process of cartilage differentiation, was the direct target and functional mediator of miR-494 in chondrosarcoma cells. And downregulation of SOX9 could also inhibit migration and invasion of chondrosarcoma cells. In the last, we identified low expression of miR-494 was significantly correlated with poor overall survival and prognosis of chondrosarcoma patients. Thus, miR-494 may be a new common therapeutic target and prognosis biomarker for chondrosarcoma.

  18. MicroRNA-320 family is downregulated in colorectal adenoma and affects tumor proliferation by targeting CDK6.

    Science.gov (United States)

    Tadano, Toshihiro; Kakuta, Yoichi; Hamada, Shin; Shimodaira, Yosuke; Kuroha, Masatake; Kawakami, Yoko; Kimura, Tomoya; Shiga, Hisashi; Endo, Katsuya; Masamune, Atsushi; Takahashi, Seiichi; Kinouchi, Yoshitaka; Shimosegawa, Tooru

    2016-07-15

    To investigate the microRNA (miRNA) expression during histological progression from colorectal normal mucosa through adenoma to carcinoma within a lesion. Using microarray, the sequential changes in miRNA expression profiles were compared in colonic lesions from matched samples; histologically, non-neoplastic mucosa, adenoma, and submucosal invasive carcinoma were microdissected from a tissue sample. Cell proliferation assay was performed to observe the effect of miRNA, and its target genes were predicted using bioinformatics approaches and the expression profile of SW480 transfected with the miRNA mimics. mRNA and protein levels of the target gene in colon cancer cell lines with a mimic control or miRNA mimics were measured using qRT-PCR and Western blotting. The expression levels of miRNA and target gene in colorectal tissue samples were also measured. Microarray analysis identified that the miR-320 family, including miR-320a, miR-320b, miR-320c, miR-320d and miR-320e, were differentially expressed in adenoma and submucosal invasive carcinoma. The miR-320 family, which inhibits cell proliferation, is frequently downregulated in colorectal adenoma and submucosal invasive carcinoma tissues. Seven genes including CDK6 were identified to be common in the results of gene expression array and bioinformatics analyses performed to find the target gene of the miR-320 family. We confirmed that mRNA and protein levels of CDK6 were significantly suppressed in colon cancer cell lines with miR-320 family mimics. CDK6 expression was found to increase from non-neoplastic mucosa through adenoma to submucosal invasive carcinoma tissues and showed an inverse correlation with miR-320 family expression. MiR-320 family affects colorectal tumor proliferation by targeting CDK6, plays important role in its growth, and is considered to be a biomarker for its early detection.

  19. Inflammatory Cytokines Induce Podoplanin Expression at the Tumor Invasive Front.

    Science.gov (United States)

    Kunita, Akiko; Baeriswyl, Vanessa; Meda, Claudia; Cabuy, Erik; Takeshita, Kimiko; Giraudo, Enrico; Wicki, Andreas; Fukayama, Masashi; Christofori, Gerhard

    2018-05-01

    Tumor invasion is a critical first step in the organismic dissemination of cancer cells and the formation of metastasis in distant organs, the most important prognostic factor and the actual cause of death in most of the cancer patients. We report herein that the cell surface protein podoplanin (PDPN), a potent inducer of cancer cell invasion, is conspicuously expressed by the invasive front of squamous cell carcinomas (SCCs) of the cervix in patients and in the transgenic human papillomavirus/estrogen mouse model of cervical cancer. Laser capture microscopy combined with gene expression profiling reveals that the expression of interferon-responsive genes is up-regulated in PDPN-expressing cells at the tumor invasive front, which are exposed to CD45-positive inflammatory cells. Indeed, PDPN expression can be induced in cultured SCC cell lines by single or combined treatments with interferon-γ, transforming growth factor-β, and/or tumor necrosis factor-α. Notably, shRNA-mediated ablation of either PDPN or STAT1 in A431 SCC cells repressed cancer cell invasion on s.c. transplantation into immunodeficient mice. The results highlight the induction of tumor cell invasion by the inflammatory cytokine-stimulated expression of PDPN in the outermost cell layers of cervical SCC. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  20. Noninvasive Assessment of Tumor Cell Proliferation in Animal Models

    Directory of Open Access Journals (Sweden)

    Matthias Edinger

    1999-10-01

    Full Text Available Revealing the mechanisms of neoplastic disease and enhancing our ability to intervene in these processes requires an increased understanding of cellular and molecular changes as they occur in intact living animal models. We have begun to address these needs by developing a method of labeling tumor cells through constitutive expression of an optical reporter gene, noninvasively monitoring cellular proliferation in vivo using a sensitive photon detection system. A stable line of HeLa cells that expressed a modified firefly luciferase gene was generated, proliferation of these cells in irradiated severe combined immunodeficiency (SCID mice was monitored. Tumor cells were introduced into animals via subcutaneous, intraperitoneal and intravenous inoculation and whole body images, that revealed tumor location and growth kinetics, were obtained. The number of photons that were emitted from the labeled tumor cells and transmitted through murine tissues was sufficient to detect 1×103 cells in the peritoneal cavity, 1×104 cells at subcutaneous sites and 1×106 circulating cells immediately following injection. The kinetics of cell proliferation, as measured by photon emission, was exponential in the peritoneal cavity and at subcutaneous sites. Intravenous inoculation resulted in detectable colonies of tumor cells in animals receiving more than 1×103 cells. Our demonstrated ability to detect small numbers of tumor cells in living animals noninvasively suggests that therapies designed to treat minimal disease states, as occur early in the disease course and after elimination of the tumor mass, may be monitored using this approach. Moreover, it may be possible to monitor micrometastases and evaluate the molecular steps in the metastatic process. Spatiotemporal analyses of neoplasia will improve the predictability of animal models of human disease as study groups can be followed over time, this method will accelerate development of novel therapeutic

  1. MiR-1254 inhibits proliferation, migration and invasion of human ...

    African Journals Online (AJOL)

    MiR-1254 inhibits proliferation, migration and invasion of human brain tumour cell lines. ... The transcripts were analysed by real-time polymerase chain reaction (RT-PCR) ... Over-expression of miR- 1254 also led to significant decrease in cell ...

  2. Malignant Solitary Fibrous Tumor Metastatic to Widely Invasive Hurthle Cell Thyroid Carcinoma: A Distinct Tumor-to-Tumor Metastasis.

    Science.gov (United States)

    Kolson Kokohaare, Eva; Riva, Francesco M G; Bernstein, Jonathan M; Miah, Aisha B; Thway, Khin

    2018-04-01

    We illustrate a case of synchronous malignant solitary fibrous tumor of the thoracic cavity, and widely invasive thyroid Hurthle cell carcinoma. The Hurthle cell carcinoma was found to harbor distinct areas of malignant solitary fibrous tumor. This is a unique case of tumor-to-tumor metastasis that, to the best of our knowledge, has not been previously reported.

  3. Collagen reorganization at the tumor-stromal interface facilitates local invasion

    Directory of Open Access Journals (Sweden)

    Inman David R

    2006-12-01

    Full Text Available Abstract Background Stromal-epithelial interactions are of particular significance in breast tissue as misregulation of these interactions can promote tumorigenesis and invasion. Moreover, collagen-dense breast tissue increases the risk of breast carcinoma, although the relationship between collagen density and tumorigenesis is not well understood. As little is known about epithelial-stromal interactions in vivo, it is necessary to visualize the stroma surrounding normal epithelium and mammary tumors in intact tissues to better understand how matrix organization, density, and composition affect tumor formation and progression. Methods Epithelial-stromal interactions in normal mammary glands, mammary tumors, and tumor explants in three-dimensional culture were studied with histology, electron microscopy, and nonlinear optical imaging methodologies. Imaging of the tumor-stromal interface in live tumor tissue ex vivo was performed with multiphoton laser-scanning microscopy (MPLSM to generate multiphoton excitation (MPE of endogenous fluorophores and second harmonic generation (SHG to image stromal collagen. Results We used both laser-scanning multiphoton and second harmonic generation microscopy to determine the organization of specific collagen structures around ducts and tumors in intact, unfixed and unsectioned mammary glands. Local alterations in collagen density were clearly seen, allowing us to obtain three-dimensional information regarding the organization of the mammary stroma, such as radiating collagen fibers that could not have been obtained using classical histological techniques. Moreover, we observed and defined three tumor-associated collagen signatures (TACS that provide novel markers to locate and characterize tumors. In particular, local cell invasion was found predominantly to be oriented along certain aligned collagen fibers, suggesting that radial alignment of collagen fibers relative to tumors facilitates invasion. Consistent

  4. Clinicopathological study of rare invasive epithelial tumors of breast: An institutional study

    Directory of Open Access Journals (Sweden)

    Karthik Kasireddy

    2016-01-01

    Full Text Available Introduction: Invasive breast cancer (BC is the most common carcinoma in women. It accounts for 22% of all female cancers. Most tumors are derived from mammary duct epithelium, and up to 75% of BCs are ductal carcinomas. The second most common tumor is invasive lobular carcinoma. However, there are many variants which are less common but well defined by the World Health Organization classification. They comprise <10% of breast tumors. Their clinical behavior differs greatly. Hence, it is important to know their main histomorphological features to make the best treatment of choice and to foresee prognosis. Aims and Objectives: To study the histomorphological features, incidence, and clinical features of rare invasive epithelial tumors of the breast. Materials and Methods: This study was done in the department of pathology, Sri Devaraj Urs Medical College, Kolar. All the neoplastic breast lesions over a period of 5 years (July 2010-September 2015 are included in the study. Clinical features and other details (estrogen receptor/progesterone receptor, human epidermal receptor-2, lymph nodes are obtained from the department (surgery records. Specimens are received and preserved in 10% formalin and are subjected to routine histopathological processing. Hematoxylin and eosin sections are studied, and a morphological diagnosis is given. All rare invasive epithelial breast tumors will be reviewed meticulously. Results and Conclusion: A total number of invasive epithelial tumors of breast were 105. The most common presenting symptom was breast lump. Rare invasive epithelial breast tumors account to 28.5%. The age range from 15 to 70 years. Most common, rare invasive epithelial tumor in our study is medullary carcinoma. Hence, it is imperative to always maintain a Hawks vigil during microscopic diagnosis to know prognosis of the condition and to facilitate early and prompt treatment to the patient.

  5. ETV4 and Myeov knockdown impairs colon cancer cell line proliferation and invasion

    International Nuclear Information System (INIS)

    Moss, Alan C.; Lawlor, Garrett; Murray, David; Tighe, Donal; Madden, Stephen F.; Mulligan, Anne-Marie; Keane, Conor O.; Brady, Hugh R.; Doran, Peter P.; MacMathuna, Padraic

    2006-01-01

    We have identified novel colorectal cancer-associated genes using NCBI's UNIGENE cDNA libraries. Colon cancer libraries were examined using Digital Differential Display and disease-associated genes were selected. Among these were ETV4 and MYEOV, novel colorectal cancer-associated genes. Samples of matched normal and neoplastic colon were obtained from human subjects and gene expression was quantified using real-time PCR. ETV4 gene expression was significantly increased in colonic neoplasia in comparison to matched normal colonic tissue (p < 0.05). Myeov expression was also increased in colon neoplasia in comparison to matched normal tissue. The effect of siRNA-mediated knockdown of ETV4 and Myeov on cell proliferation and invasion was assessed. ETV4 knockdown resulted in a 90% decrease in cell proliferation (p < 0.05) and a 67% decrease in cell invasion. Myeov knockdown resulted in a 48% decrease in cell proliferation (p < 0.05) and a 36% decrease in cell invasion. These data suggest that ETV4 and Myeov may provide novel targets for therapeutic intervention

  6. GSE1 negative regulation by miR-489-5p promotes breast cancer cell proliferation and invasion

    International Nuclear Information System (INIS)

    Chai, Peng; Tian, Jingzhong; Zhao, Deyin; Zhang, Hongyan; Cui, Jian; Ding, Keshuo; Liu, Bin

    2016-01-01

    Gse1 coiled-coil protein (GSE1), also known as KIAA0182, is a proline rich protein. However, the function of GSE1 is largely unknown. In this study, we reported that GSE1 is overexpression in breast cancer and silencing of GSE1 significantly suppressed breast cancer cells proliferation, migration and invasion. Furthermore, GSE1 was identified as a direct target of miR-489-5p, which is significantly reduced in breast cancer tissues. In addition, forced expression of miR-489-5p suppressed breast cancer cells proliferation, migration and invasion. Moreover, depletion of GSE1 by siRNAs significantly abrogated the enhanced proliferation, migration and invasion of breast cancer cells consequent to miR-489-5p depletion. Taken together, these findings suggest that GSE1 may function as a novel oncogene in breast cancer and it can be regulated by miR-489-5p. - Highlights: • GSE1 is overexpressed in breast cancer and increased GSE1 expression predicts poor prognosis in breast cancer patients. • Knockdown of GSE1 inhibits breast cancer cell proliferation, migration and invasion. • GSE1 is a direct target of miR-489-5p. • Forced expression of miR-489-5p inhibits breast cancer cell proliferation, migration and invasion.

  7. B Subunit of Human Chorionic Gonadotropin Promotes Tumor Invasion and Predicts Poor Prognosis of Early-Stage Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Jiali Li

    2018-01-01

    Full Text Available Background/Aims: It is well established that many non-trophoblastic tumors secrete HCG (human chorionic gonadotropin and that such secretion is correlated with the poor prognosis of tumor patients. This study aims to analyze the correlation between β-HCG expression and outcome of colorectal cancer (CRC and understand its role in CRC pathology Methods: We detected the mRNA and protein expression of β-HCG in human CRC tissues with RT-qPCR and immunohistochemistry, and we compared the clinical-pathological characteristics, prognosis and progression between the β-HCG positive and negative groups. We also generated CRC cell lines with β-HCG over-expression as well as β-HCG stable knockout, and evaluated cell function and mechanism in vitro and in vivo. Results: Fifty out of 136 CRC patients (37% expressed β-HCG at the invasive front. Clinical-pathological data showed that β-HCG was positively correlated with Dukes staging (P=0.031 and lymph node metastasis (P=0.012. Survival analysis suggested that the patients with high expression of β-HCG had poorer prognosis than those with low β-HCG expression (P=0.0289. β-HCG expression level was also positively correlated with tumor invasion in early-stage CRC patient tissues (P=0.0227. Additionally β-HCG promoted the migration and invasion of CRC in vitro and in vivo but had no effect on the proliferation of tumor cells. Conclusion: Our study demonstrated that β-HCG was ectopically expressed in the CRC patients and its high expression correlated with poor prognosis of early-stage CRC. Additionally it worked as an oncogene that promotes the migration and invasion of CRC by epithelial-mesenchymal transition (EMT.

  8. microRNA-494 is a potential prognostic marker and inhibits cellular proliferation, migration and invasion by targeting SIRT1 in epithelial ovarian cancer.

    Science.gov (United States)

    Yang, Aijun; Wang, Xuenan; Yu, Chunna; Jin, Zhenzhen; Wei, Lingxia; Cao, Jinghe; Wang, Qin; Zhang, Min; Zhang, Lin; Zhang, Lei; Hao, Cuifang

    2017-09-01

    Ovarian cancer is one of the most common types of gynecological malignancy worldwide, and is the fourth leading cause of cancer-associated mortality among women. Despite improvements in therapeutic treatments, the prognosis for epithelial ovarian cancer (EOC) remains poor, mainly due to the rapid growth and metastasis of ovarian cancer tumors. An increasing number of studies have indicated that microRNAs (miRNAs) are involved in the carcinogenesis and progression of human cancer, suggesting that miRNAs may be used in clinical prognosis and as a therapeutic target in EOC. The aim of the present study was to investigate the expression levels of miRNA-494 in EOC tissues and cell lines. The clinical significance of miRNA-494 in patients with EOC was also evaluated. The results demonstrated that miRNA-494 was significantly downregulated in EOC tissues and cell lines. Low expression levels of miRNA-494 were associated with poor prognostic features, including International Federation of Gynecology and Obstetrics stage, tumor size and lymph node metastasis. In vitro functional studies demonstrated that overexpression of miRNA-494 inhibited proliferation, migration and invasion in EOC cells. By contrast, knockdown of miRNA-494 enhanced cell growth, migration and invasion in EOC cells. Notably, sirtuin 1 (SIRT1) was identified as a direct target of miRNA-494 in EOC. Furthermore, MTT, cell migration and invasion assays verified that EOC cell proliferation, migration and invasion were completely restored with forced miRNA-494 expression and SIRT1 restoration. Together, these findings suggest that miRNA-494 is a potential prognostic marker, and may provide novel therapeutic regimens of targeted therapy for EOC.

  9. Prognostic significance of tumor budding and single cell invasion in gastric adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Che K

    2017-02-01

    Full Text Available Keying Che,1,* Yang Zhao,2,3,* Xiao Qu,1 Zhaofei Pang,1 Yang Ni,4 Tiehong Zhang,4 Jiajun Du,1,5 Hongchang Shen4 1Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 2Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Collaborative Innovation Center of Cancer Medicine, Fudan University Shanghai Cancer Center, 3Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 4Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, 5Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People’s Republic of China *These authors contributed equally to this work Purpose: Gastric carcinoma (GC is a highly aggressive cancer and one of the leading causes of cancer-related deaths worldwide. Histopathological evaluation pertaining to invasiveness is likely to provide additional information in relation to patient outcome. In this study, we aimed to evaluate the prognostic significance of tumor budding and single cell invasion in gastric adenocarcinoma.Materials and methods: Hematoxylin and eosin-stained slides generated from 296 gastric adenocarcinoma patients with full clinical and pathological and follow-up information were systematically reviewed. The patients were grouped on the basis of tumor budding, single cell invasion, large cell invasion, mitotic count, and fibrosis. The association between histopathological parameters, different classification systems, and overall survival (OS was statistically analyzed.Results: Among the 296 cases that were analyzed, high-grade tumor budding was observed in 49.0% (145 of them. Single cell invasion and large cell invasion were observed in 62.8% (186 and 16.9% (50 of the cases, respectively. Following univariate analysis, patients with high-grade tumor budding had shorter OS than those with low-grade tumor budding (hazard ratio [HR]: 2.260, P<0

  10. The lncRNA PCAT1 is correlated with poor prognosis and promotes cell proliferation, invasion, migration and EMT in osteosarcoma

    Directory of Open Access Journals (Sweden)

    Zhang X

    2018-01-01

    Full Text Available Xuedong Zhang,1,2 Yakui Zhang,2 Yong Mao,2 Xinlong Ma1 1Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, 2Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing, People’s Republic of China Introduction: Osteosarcoma is a malignant primary bone cancer and is lethal to children and adolescents. Recently, the dysregulation of long noncoding RNAs (lncRNAs has been shown in various types of cancers.Aim: The present study aimed to examine the role of the lncRNA prostate cancer-associated transcript 1 (PCAT1 in osteosarcoma progression.Materials and methods: The expression levels of relevant genes in clinical samples and cell lines were determined by quantitative real-time polymerase chain reaction. Cell proliferation, invasion and migration were examined by CCK-8 assay, transwell invasion and migration assay, respectively. Cell apoptosis and cell cycle were detected by flow cytometry. Protein levels were detected by Western blot.Results: Our results showed that PCAT1 was upregulated in osteosarcoma tissues when compared to normal bone tissues. PCAT1 was also upregulated in osteosarcoma cell lines when compared to normal bone cell line. The upregulation of PCAT1 was significantly associated with advanced clinical stage, tumor metastasis and shorter overall survival in patients with osteosarcoma. In vitro studies showed that overexpression of PCAT1 in MG-63 cells enhanced cell proliferation, cell invasion and migration and epithelial-to-mesenchymal transition (EMT; decreased cell apoptotic rate; and also caused an increase in cell population at S phase with a decrease in cell population at G0/G1 phase. Knockdown of PCAT1 in U2OS cells suppressed cell proliferation, cell invasion and migration, and EMT; increased cell apoptotic rate; and caused an increase in the cell population at G0/G1 phase with a decrease in cell population at S phase.Conclusion: Taken together, our results suggest the

  11. Effects of Mechanical Properties on Tumor Invasion: Insights from a Cellular Model

    KAUST Repository

    Li, YZ; Naveed, H; Liang, J; Xu, LX

    2014-01-01

    Understanding the regulating mechanism of tumor invasion is of crucial importance for both fundamental cancer research and clinical applications. Previous in vivo experiments have shown that invasive cancer cells dissociate from the primary tumor

  12. miR-503 suppresses tumor cell proliferation and metastasis by directly targeting RNF31 in prostate cancer

    International Nuclear Information System (INIS)

    Guo, Jia; Liu, Xiuheng; Wang, Min

    2015-01-01

    Microarray data analyses were performed to search for metastasis-associated oncogenes in prostate cancer (PCa). RNF31 mRNA expressions in tumor tissues and benign prostate tissues were evaluated. The RNF31 protein expression levels were also analyzed by western blot and immunohistochemistry. Luciferase reporter assays were used to identify miRNAs that can regulate RNF31. The effect of RNF31 on PCa progression was studied in vitro and in vivo. We found that RNF31 was significantly increased in PCa and its expression level was highly correlated with seminal vesicle invasion, clinical stage, prostate specific antigen (PSA) level, Gleason score, and BCR. Silence of RNF31 suppressed PCa cell proliferation and metastasis in vitro and in vivo. miR-503 can directly regulate RNF31. Enforced expression of miR-503 inhibited the expression of RNF31 significantly and the restoration of RNF31 expression reversed the inhibitory effects of miR-503 on PCa cell proliferation and metastasis. These findings collectively indicated an oncogene role of RNF31 in PCa progression which can be regulated by miR-503, suggesting that RNF31 could serve as a potential prognostic biomarker and therapeutic target for PCa. - Highlights: • RNF31 is a potential metastasis associated gene and is associated with prostate cancer progression. • Silence of RNF31 inhibits PCa cell colony formation, migration and invasion. • RNF31 as a direct target of miR-503. • miR-503 can regulate cell proliferation, invasion and migration by targeting RNF31. • RNF31 plays an important role in PCa growth and metastasis in vivo

  13. miR-503 suppresses tumor cell proliferation and metastasis by directly targeting RNF31 in prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jia; Liu, Xiuheng, E-mail: l_xiuheng@163.com; Wang, Min

    2015-09-04

    Microarray data analyses were performed to search for metastasis-associated oncogenes in prostate cancer (PCa). RNF31 mRNA expressions in tumor tissues and benign prostate tissues were evaluated. The RNF31 protein expression levels were also analyzed by western blot and immunohistochemistry. Luciferase reporter assays were used to identify miRNAs that can regulate RNF31. The effect of RNF31 on PCa progression was studied in vitro and in vivo. We found that RNF31 was significantly increased in PCa and its expression level was highly correlated with seminal vesicle invasion, clinical stage, prostate specific antigen (PSA) level, Gleason score, and BCR. Silence of RNF31 suppressed PCa cell proliferation and metastasis in vitro and in vivo. miR-503 can directly regulate RNF31. Enforced expression of miR-503 inhibited the expression of RNF31 significantly and the restoration of RNF31 expression reversed the inhibitory effects of miR-503 on PCa cell proliferation and metastasis. These findings collectively indicated an oncogene role of RNF31 in PCa progression which can be regulated by miR-503, suggesting that RNF31 could serve as a potential prognostic biomarker and therapeutic target for PCa. - Highlights: • RNF31 is a potential metastasis associated gene and is associated with prostate cancer progression. • Silence of RNF31 inhibits PCa cell colony formation, migration and invasion. • RNF31 as a direct target of miR-503. • miR-503 can regulate cell proliferation, invasion and migration by targeting RNF31. • RNF31 plays an important role in PCa growth and metastasis in vivo.

  14. Proliferating Trichilemmal Tumor of the Knee Mimicking Prepatellar Bursitis on Ultrasonogram: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Il Jin; Kim, Tae Eun; Lee, Il Gi; Shin, Hyeon Woong [Daegu Fatima Hospital, Daegu (Korea, Republic of)

    2011-03-15

    Proliferating trichilemmal tumor is a rare benign tumor of skin appendage. It is usually solitary, more common in women after the fourth decade of life, and almost exclusively confined to the scalp and back of the neck. We report herein an unusual case of proliferating trchilemmal tumor which occurred on the knee

  15. Proliferating Trichilemmal Tumor of the Knee Mimicking Prepatellar Bursitis on Ultrasonogram: A Case Report

    International Nuclear Information System (INIS)

    Lee, Il Jin; Kim, Tae Eun; Lee, Il Gi; Shin, Hyeon Woong

    2011-01-01

    Proliferating trichilemmal tumor is a rare benign tumor of skin appendage. It is usually solitary, more common in women after the fourth decade of life, and almost exclusively confined to the scalp and back of the neck. We report herein an unusual case of proliferating trchilemmal tumor which occurred on the knee

  16. Forkhead box K2 inhibits the proliferation, migration, and invasion of human glioma cells and predicts a favorable prognosis

    Directory of Open Access Journals (Sweden)

    Wang B

    2018-02-01

    epithelial-to-mesenchymal transition (EMT biomarker levels.Results: The clinical data showed that expression of FOXK2 gradually decreased with increasing World Health Organization (WHO grades and a low level of FOXK2 indicates a poor prognosis. FOXK2 expression is negatively correlated with Ki67 expression and the WHO degree but is not correlated with other clinicopathological parameters, including sex, age, Karnofsky Performance Status, tumor diameter, O-6-methylguanine-DNA methyltransferase, and glutathione S-transferase pi. FOXK2 knockdown enhances glioma cell proliferation, migration, invasion, and EMT process, and, in contrast, FOXK2 overexpression inhibits glioma cell proliferation, migration, invasion, and the EMT process.Conclusion: Expression of FOXK2 gradually decreases with increasing WHO grades. FOXK2 inhibits tumor proliferation, migration, and invasion. FOXK2 is a critical mediator of the EMT process. Keywords: Forkhead box K2, FOXK2, glioma, oncology

  17. Linc-POU3F3 is overexpressed in hepatocellular carcinoma and regulates cell proliferation, migration and invasion.

    Science.gov (United States)

    Li, Yichun; Li, Yannan; Wang, Dan; Meng, Qingdong

    2018-06-12

    Linc-POU3F3 showed an up-regulated tendency and functioned as tumor promoter in glioma, esophageal cancer and colorectal cancer. There was no report about the expression pattern and clinical value of linc-POU3F3 in hepatocellular carcinoma. Thus, the purpose of our study is to explore the clinical significance and biological role of linc-POU3F3 in hepatocellular carcinoma. Our results suggested that levels of linc-POU3F3 were dramatically increased in hepatocellular carcinoma tissues and cell lines compared with paired normal hepatic tissues and normal hepatic cell line, respectively. Levels of linc-POU3F3 were positively correlated with clinical stage, tumor size, vascular invasion and metastasis. Moreover, high-expression of linc-POU3F3 was an independent prognostic factor for hepatocellular carcinoma patients. The gain- and loss-of-function experiments showed that linc-POU3F3 expression significantly promoted tumor cell proliferation, migration and invasion. In addition, linc-POU3F3 expression was negatively correlated with POU3F3 mRNA and protein expressions in hepatocellular carcinoma tissues, and negatively regulated POU3F3 mRNA and protein expressions in hepatocellular carcinoma cells. In conclusion, our study supports the first evidence that linc-POU3F3 plays an oncogenic role in hepatocellular carcinoma, and represents a potential therapeutic strategy for hepatocellular carcinoma patients. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  18. ER-α36 mediates estrogen-stimulated MAPK/ERK activation and regulates migration, invasion, proliferation in cervical cancer cells

    International Nuclear Information System (INIS)

    Sun, Qing; Liang, Ying; Zhang, Tianli; Wang, Kun; Yang, Xingsheng

    2017-01-01

    Objective: Estrogen receptor alpha 36 (ER-α36), a truncated variant of ER-α, is different from other nuclear receptors of the ER-α family. Previous findings indicate that ER-α36 might be involved in cell growth, proliferation, and differentiation in carcinomas and primarily mediates non-genomic estrogen signaling. However, studies on ER-α36 and cervical cancer are rare. This study aimed to detect the expression of ER-α36 in cervical cancer; the role of ER-α36 in 17-β-estradiol (E2)-induced invasion, migration and proliferation of cervical cancer; and their probable molecular mechanisms. Methods: Immunohistochemistry and immunofluorescence were used to determine the location of ER-α36 in cervical cancer tissues and cervical cell lines. CaSki and HeLa cell lines were transfected with lentiviruses to establish stable cell lines with knockdown and overexpression of ER-α36. Wound healing assay, transwell invasion assay, and EdU incorporation proliferation assay were performed to evaluate the migration, invasion, and proliferation ability. The phosphorylation levels of mitogen-activated protein kinases/extracellular signal-regulated kinase (MAPK/ERK) signaling molecules were examined with western blot analysis. Results: ER-α36 expression was detected in both cervical cell lines and cervical cancer tissues. Downregulation of ER-α36 significantly inhibited cell invasion, migration, and proliferation. Moreover, upregulation of ER-α36 increased the invasion, migration, and proliferation ability of CaSki and HeLa cell lines. ER-α36 mediates estrogen-stimulated MAPK/ERK activation. Conclusion: ER-α36 is localized on the plasma membrane and cytoplasm in both cervical cancer tissues and cell lines. ER-α36 mediates estrogen-stimulated MAPK/ERK activation and regulates migration, invasion, proliferation in cervical cancer cells. - Highlights: • ER-α36 is expressed on both cervical cell lines and cervical cancer tissues. • ER-α36 mediates estrogen

  19. Correlation of MRI apparent diffusion coefficient of invasive breast cancer with tumor tissue growth and angiogenesis

    Directory of Open Access Journals (Sweden)

    Ze-Hong Fu

    2017-08-01

    Full Text Available Objective: To study the correlation of MRI apparent diffusion coefficient (ADC value of invasive breast cancer with tumor tissue growth and angiogenesis. Methods: Patients with breast mass who were treated in Wuhan No. 6 Hospital between March 2014 and May 2017 were selected as the research subjects and divided into group A with invasive ductal carcinoma, group B with intraductal carcinoma and group C with benign lesion according to the biopsy results, magnetic resonance diffusion-weighted imaging was conducted to determine ADC values, and biopsy tissue was taken to determine the expression of proliferation genes and angiogenesis genes. Results: USP39, CyclinD1, VEGF, bFGF, Angplt-2, Angplt-3 and Angplt-4 protein expression levels in lesions of group A and group B were significantly higher than those of group C while ADC value as well as ALEX1 and Bax protein expression levels were significantly lower than those of group C; USP39, CyclinD1, VEGF, bFGF, Angplt-2, Angplt-3 and Angplt-4 protein expression levels in lesions of group A were significantly higher than those of group B while ADC value as well as ALEX1 and Bax protein expression levels was significantly lower than those of group B; USP39, CyclinD1, VEGF, bFGF, Angplt-2, Angplt-3 and Angplt-4 protein expression levels in invasive breast cancer tissue with high ADC value were significantly lower than those in invasive breast cancer tissue with low ADC value while ALEX1 and Bax protein expression levels were significantly higher than those in invasive breast cancer tissue with low ADC value. Conclusion: The decrease of ADC value of invasive breast cancer is closely related to cancer cell proliferation and angiogenesis.

  20. The Atypical Kinase RIOK1 Promotes Tumor Growth and Invasive Behavior

    Directory of Open Access Journals (Sweden)

    Florian Weinberg

    2017-06-01

    Full Text Available Despite being overexpressed in different tumor entities, RIO kinases are hardly characterized in mammalian cells. We investigated the role of these atypical kinases in different cancer cells. Using isogenic colon-, breast- and lung cancer cell lines, we demonstrate that knockdown of RIOK1, but not of RIOK2 or RIOK3, strongly impairs proliferation and invasiveness in conventional and 3D culture systems. Interestingly, these effects were mainly observed in RAS mutant cancer cells. In contrast, growth of RAS wildtype Caco-2 and Bcr-Abl-driven K562 cells is not affected by RIOK1 knockdown, suggesting a specific requirement for RIOK1 in the context of oncogenic RAS signaling. Furthermore, we show that RIOK1 activates NF-κB signaling and promotes cell cycle progression. Using proteomics, we identified the pro-invasive proteins Metadherin and Stathmin1 to be regulated by RIOK1. Additionally, we demonstrate that RIOK1 promotes lung colonization in vivo and that RIOK1 is overexpressed in different subtypes of human lung- and breast cancer. Altogether, our data suggest RIOK1 as a potential therapeutic target, especially in RAS-driven cancers.

  1. Predictive value of the flow cytometric PCNA - assay (proliferating cell nuclear antigen) in head and neck tumors after accelerated-hyperfractionated radiochemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Wenz, F; Lohr, F; Rudat, V; Dietz, A; Flentje, M; Wannenmacher, M

    1995-07-01

    Purpose/Objective: Proliferation of surviving tumor cells during fractionated radiotherapy may limit tumor control, especially in rapidly proliferating tumors. It has been widely accepted, that this may play a major role in head and neck tumors. Several methods for the assessment of tumor proliferation have been developed, however, most of them are either laborious, invasive or potentially toxic. Today, the gold standard is the flow cytometric BrdUrd assay. We present a flow cytometric method for detection of PCNA, which is an intranuclear proliferation associated protein, in solid human head and neck tumors and how these data correlate with outcome. Materials and Methods: Pretherapeutic biopsies of 20 inoperable patients with squamous cell carcinoma of the head and neck (T3-4N2M0) were examined. The tissue was disaggregated with pepsin/HCl, antibody staining was performed using the clone PC10. Biparametric flow cytometry was performed after a FITC conjugated secondary antibody and propidiumjodine staining was applied. The PCNA-index (i.e. percentage PCNA-positive cells), the DNA-index and the S-phase fraction (SPF, euploid tumors only) were determined. The therapy consisted of combined accelerated-hyperfractionated radiochemotherapy (66 Gy in 5 wks, concomittant boost of 1.6 Gy/d in wks 4+5, Carboplatin in wks 1+5). The median follow-up time was 14 mths (5 - 28), the clinical partners (V.R., A.D.) were 'blinded' towards the PCNA-values. Results: 13 patients suffered from disease progession and 11 died. The actuarial median survival and disease free survival (DFS) were 14.4 and 10.7 mths, respectively. The PCNA-values ranged from 3.2 to 70% (median 9%), there were 7 aneuploid and 13 euploid tumors. SFP in the euploid tumors ranged from 4 to 14.5% (median 10.5%). Neither SFP nor ploidy had a significant influence on the outcome. The patients were divided according to their PCNA-value in higher (n=10) and lower (n=10) than the median. The survival and DFS were 13

  2. Salinomycin inhibits proliferation and induces apoptosis of human nasopharyngeal carcinoma cell in vitro and suppresses tumor growth in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Danxin; Zhang, Yu; Huang, Jie; Fan, Zirong; Shi, Fengrong; Wang, Senming, E-mail: wsenming@126.com

    2014-01-10

    Highlight: •We first evaluated the effect of salinomycin on nasopharyngeal carcinoma (NPC). •Salinomycin could inhibit Wnt/β-catenin signaling and induce apoptosis in NPC. •So salinomycin may be a good potential candidate for the chemotherapy of NPC. -- Abstract: Salinomycin (Sal) is a polyether ionophore antibiotic that has recently been shown to induce cell death in various human cancer cells. However, whether salinomycin plays a functional role in nasopharyngeal carcinoma (NPC) has not been determined to date. The present study investigated the chemotherapeutic efficacy of salinomycin and its molecular mechanisms of action in NPC cells. Salinomycin efficiently inhibited proliferation and invasion of 3 NPC cell lines (CNE-1, CNE-2, and CNE-2/DDP) and activated a extensive apoptotic process that is accompanied by activation of caspase-3 and caspase-9, and decreased mitochondrial membrane potential. Meanwhile, the protein expression level of the Wnt coreceptor lipoprotein receptor related protein 6 (LRP6) and β-catenin was down-regulated, which showed that the Wnt/β-catenin signaling was involved in salinomycin-induced apoptosis of NPC cells. In a nude mouse NPC xenograft model, the anti-tumor effect of salinomycin was associated with the downregulation of β-catenin expression. The present study demonstrated that salinomycin can effectively inhibit proliferation and invasion, and induce apoptosis of NPC cells in vitro and inhibit tumor growth in vivo, probably via the inhibition of Wnt/β-catenin signaling, suggesting salinomycin as a potential candidate for the chemotherapy of NPC.

  3. P120-catenin isoforms 1A and 3A differently affect invasion and proliferation of lung cancer cells

    International Nuclear Information System (INIS)

    Liu Yang; Dong Qianze; Zhao Yue; Dong Xinjun; Miao Yuan; Dai Shundong; Yang Zhiqiang; Zhang Di; Wang Yan; Li Qingchang; Zhao Chen; Wang Enhua

    2009-01-01

    Different isoforms of p120-catenin (p120ctn), a member of the Armadillo gene family, are variably expressed in different tissues as a result of alternative splicing and the use of multiple translation initiation codons. When expressed in cancer cells, these isoforms may confer different properties with respect to cell adhesion and invasion. We have previously reported that the p120ctn isoforms 1 and 3 were the most highly expressed isoforms in normal lung tissues, and their expression level was reduced in lung tumor cells. To precisely define their biological roles, we transfected p120ctn isoforms 1A and 3A into the lung cancer cell lines A549 and NCI-H460. Enhanced expression of p120ctn isoform 1A not only upregulated E-cadherin and β-catenin, but also downregulated the Rac1 activity, and as a result, inhibited the ability of cells to invade. In contrast, overexpression of p120ctn isoform 3A led to the inactivation of Cdc42 and the activation of RhoA, and had a smaller influence on invasion. However, we found that isoform 3A had a greater ability than isoform 1A in both inhibiting the cell cycle and reducing tumor cell proliferation. The present study revealed that p120ctn isoforms 1A and 3A differently regulated the adhesive, proliferative, and invasive properties of lung cancer cells through distinct mechanisms

  4. Downregulated long non-coding RNA MEG3 in breast cancer regulates proliferation, migration and invasion by depending on p53’s transcriptional activity

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Lin [West Biostatistics and Cost-effectiveness Research Center, Medical Insurance Office, West China Hospital of Sichuan University, 610041, Sichuan (China); Li, Yu [Department of Anesthesiology, West China Hospital, Sichuan University, 610041, Sichuan (China); Yang, Bangxiang, E-mail: b19933009@qq.coom [Department of Pain Management, West China Hospital of Sichuan University, 610041, Sichuan (China)

    2016-09-09

    Long non-coding RNAs (lncRNAs) was found to play critical roles in tumorigenesis, hence, screen of tumor-related lncRNAs, identification of their biological roles is important for understanding the processes of tumorigenesis. In this study, we identified the expressing difference of several tumor-related lncRNAs in breast cancer samples and found that, MEG3, which is downregulated in non-small cell lung cancer (NSCLC) tumor tissues, is also downregulated in breast cancer samples compared with adjacent tissues. For figuring out the effect of MEG3 in breast cancer cells MCF7 and MB231, we overexpressed MEG3 in these cells, and found that it resulted the inhibition of proliferation, colony formation, migration and invasion capacities by enhancing p53’s transcriptional activity on its target genes, including p21, Maspin and KAI1. MEG3 presented similar effects in MB157, which is a p53-null breast cancer cell line, when functional p53 but not p53R273H mutant, which lacks transcriptional activity, was introduced. Surprisingly, overexpression of MEG3 activates p53’s transcriptional activity by decreasing MDM2’s transcription level, and thus stabilizes and accumulates P53. Taken together, our findings indicate that MEG3 is downregulated in breast cancer tissues and affects breast cancer cells’ malignant behaviors, which indicate MEG3 a potential therapeutic target for breast cancer. - Highlights: • MEG3 RNA is widely downregulated in breast tumor tissue. • MEG3 regulates P53 indirectly through transcriptional regulation of MDM2. • Under unstressed condition, MEG3-related P53 accumulation transcriptionally activates p53’s target genes. • MEG3 expression level tightly regulates proliferation, colony formation, migration and invasion in breast tumor cells.

  5. [Knock-down of ZEB1 inhibits the proliferation, invasion and migration of gastric cancer cells].

    Science.gov (United States)

    Chen, Dengyu; Chu, Yifan; Zheng, Qingwei; Xu, Zhiben; Zhou, Ping; Li, Sheng

    2017-08-01

    Objective To down-regulate the expression of zinc-finger E-box binding homeobox 1 (ZEB1) gene by shRNA, and investigate its effect on invasion, migration and proliferation, as well as the related gene expressions of lncRNA HOTAIR and E-cadherin in human gastric cancer BGC823 cells. Methods RNA interfering (RNAi) was used to knock down ZEB1 in gastric cancer BGC823 cells. The recombinant plasmid shZEB1 was constructed and transfected into the gastric cancer BGC823 cells by Lipofectamine TM 2000, and the stably transfected cells were isolated by G418 selection and limited dilution. The expression of ZEB1 mRNA and protein was detected by real-time quantitative PCR and Western blot analysis. Cell proliferation was determined by MTT assay, and the invasion and migration abilities of BGC823 cells were monitored by Transwell TM invasion assay and wound healing assay, respectively. The expressions of lncRNA HOTAIR and E-cadherin mRNA were detected by real-time quantitative PCR. Results After ZEB1 expression was successfully down-regulated in BGC823 cells by siRNA, the proliferation, invasion and migration rates in shZEB1 transfection group were significantly lower than those in control group; meanwhile, the expression of lncRNA HOTAIR was reduced and E-cadherin expression was enhanced. Conclusion Knock-down of ZEB1 expression by RNA interference can decease lncRNA HOTAIR expression and restrain cell proliferation, invasion and migration in gastric cancer BGC823 cells.

  6. Differential effects of miR-34c-3p and miR-34c-5p on SiHa cells proliferation apoptosis, migration and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Jesus Adrian [Laboratorio de Terapia Genica, Departamento de Genetica y Biologia Molecular, CINVESTAV, Av. IPN 2508, Mexico 07360 D.F. (Mexico); Alvarez-Salas, Luis Marat, E-mail: lalvarez@cinvestav.mx [Laboratorio de Terapia Genica, Departamento de Genetica y Biologia Molecular, CINVESTAV, Av. IPN 2508, Mexico 07360 D.F. (Mexico)

    2011-06-10

    Highlights: {yields} In this study we examine miR-34c-3p and miR-34c-5p functions in SiHa cells. {yields} We study miRNA effect on cell proliferation, anchorage independent growth, apoptosis, cell motility and invasion. {yields} We find that miR-34c-3p and miR-34c-5p inhibition of proliferation and anchorage independent growth are exclusive to SiHa cells. {yields} miR-34c-3p induces apoptosis and inhibits cell motility and invasion in SiHa cells. {yields} In this study we conclude that miR-34c-3p functions as a tumor suppressor differ from miR-34c-5p. -- Abstract: MicroRNAs (miRNA) regulate expression of several genes associated with human cancer. Here, we analyzed the function of miR-34c, an effector of p53, in cervical carcinoma cells. Expression of either miR-34c-3p or miR-34c-5p mimics caused inhibition of cell proliferation in the HPV-containing SiHa cells but not in other cervical cells irrespective of tumorigenicity and HPV content. These results suggest that SiHa cells may lack of regulatory mechanisms for miR-34c. Monolayer proliferation results showed that miR-34c-3p produced a more pronounced inhibitory effect although both miRNAs caused inhibition of anchorage independent growth at similar extent. However, ectopic expression of pre-miR-34c-3p, but not pre-miR-34c-5p, caused S-phase arrest in SiHa cells triggering a strong dose-dependent apoptosis. A significant inhibition was observed only for miR-34c-3p on SiHa cells migration and invasion, therefore implying alternative regulatory pathways and targets. These results suggest differential tumor suppressor roles for miR-34c-3p and miR-34c-5p and provide new insights in the understanding of miRNA biology.

  7. Differential effects of miR-34c-3p and miR-34c-5p on SiHa cells proliferation apoptosis, migration and invasion

    International Nuclear Information System (INIS)

    Lopez, Jesus Adrian; Alvarez-Salas, Luis Marat

    2011-01-01

    Highlights: → In this study we examine miR-34c-3p and miR-34c-5p functions in SiHa cells. → We study miRNA effect on cell proliferation, anchorage independent growth, apoptosis, cell motility and invasion. → We find that miR-34c-3p and miR-34c-5p inhibition of proliferation and anchorage independent growth are exclusive to SiHa cells. → miR-34c-3p induces apoptosis and inhibits cell motility and invasion in SiHa cells. → In this study we conclude that miR-34c-3p functions as a tumor suppressor differ from miR-34c-5p. -- Abstract: MicroRNAs (miRNA) regulate expression of several genes associated with human cancer. Here, we analyzed the function of miR-34c, an effector of p53, in cervical carcinoma cells. Expression of either miR-34c-3p or miR-34c-5p mimics caused inhibition of cell proliferation in the HPV-containing SiHa cells but not in other cervical cells irrespective of tumorigenicity and HPV content. These results suggest that SiHa cells may lack of regulatory mechanisms for miR-34c. Monolayer proliferation results showed that miR-34c-3p produced a more pronounced inhibitory effect although both miRNAs caused inhibition of anchorage independent growth at similar extent. However, ectopic expression of pre-miR-34c-3p, but not pre-miR-34c-5p, caused S-phase arrest in SiHa cells triggering a strong dose-dependent apoptosis. A significant inhibition was observed only for miR-34c-3p on SiHa cells migration and invasion, therefore implying alternative regulatory pathways and targets. These results suggest differential tumor suppressor roles for miR-34c-3p and miR-34c-5p and provide new insights in the understanding of miRNA biology.

  8. GCN5 Potentiates Glioma Proliferation and Invasion via STAT3 and AKT Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Kun Liu

    2015-09-01

    Full Text Available The general control of nucleotide synthesis 5 (GCN5, which is one kind of lysine acetyltransferases, regulates a number of cellular processes, such as cell proliferation, differentiation, cell cycle and DNA damage repair. However, its biological role in human glioma development remains elusive. In the present study, we firstly reported that GCN5 was frequently overexpressed in human glioma tissues and GCN5 was positively correlated with proliferation of cell nuclear antigen PCNA and matrix metallopeptidase MMP9. Meanwhile, down-regulation of GCN5 by siRNA interfering inhibited glioma cell proliferation and invasion. In addition, GCN5 knockdown reduced expression of p-STAT3, p-AKT, PCNA and MMP9 and increased the expression of p21 in glioma cells. In conclusion, GCN5 exhibited critical roles in glioma development by regulating cell proliferation and invasion, which suggested that GCN5 might be a potential molecular target for glioma treatment.

  9. [Some morphometric parameters of nucleoli and nuclei in invasive ductal breast carcinomas in women].

    Science.gov (United States)

    Karpinska-Kaczmarczyk, Katarzyna

    2009-01-01

    The purpose of this study was to correlate seven morphometric parameters of nucleoli and nuclei of invasive ductal cancer cells with some clinico-pathological factors such as age, tumor size, axillary lymph node status, MIB-1 proliferation index, and estrogen receptor expression in tumor cells. Methyl green-pyronin Y (MG-PY) was used for simultaneous staining of nuclei and nucleoli in histological sections of 150 invasive ductal breast carcinomas. Next, morphometric parameters of nucleoli and nuclei of tumor cells were measured with computerized image analysis. Nuclear area and number of nucleoli in breast tumor cells were greater in younger axillary node-negative patients. The number of nucleoli and nucleolar shape polymorphism were reduced in tumors measuring 20 mm or less or with lower histological grade. Nuclear area, nucleolar number, and nucleolar polymorphism in carcinomas with low proliferation index and estrogen receptor expression were smaller than in carcinomas with high proliferation index and no estrogen receptor expression. Nucleolar area in primary tumors without axillary node involvement was greater than in tumors with more than three axillary nodes positive. MG-PY selectively and simultaneously stains nucleoli and nuclei of tumor cells enabling standardized and reproducible examination of these structures with computerized image analysis. Univariate statistical analysis disclosed that some morphometric parameters of nucleoli and nuclei of tumor cells correlated with several established clinico-pathological prognostic factors. Therefore, the prognostic significance of these parameters should be studied in a larger group of patients with invasive ductal breast carcinomas.

  10. Nuclear location of tumor suppressor protein maspin inhibits proliferation of breast cancer cells without affecting proliferation of normal epithelial cells

    International Nuclear Information System (INIS)

    Machowska, Magdalena; Wachowicz, Katarzyna; Sopel, Mirosław; Rzepecki, Ryszard

    2014-01-01

    Maspin, which is classified as a tumor suppressor protein, is downregulated in many types of cancer. Several studies have suggested potential anti-proliferative activity of maspin as well as sensitizing activity of maspin for therapeutic cytotoxic agents in breast cancer tissue culture and animal models. All of the experimental data gathered so far have been based on studies with maspin localized cytoplasmically, while maspin in breast cancer tumor cells may be located in the cytoplasm, nucleus or both. In this study, the effect of maspin cytoplasmic and nuclear location and expression level on breast cancer proliferation and patient survival was studied. Tissue sections from 166 patients with invasive ductal breast cancer were stained by immunohistochemistry for maspin and Ki-67 protein. The localization and expression level of maspin were correlated with estimated patient overall survival and percent of Ki-67-positive cells. In further studies, we created constructs for transient transfection of maspin into breast cancer cells with targeted cytoplasmic and nuclear location. We analyzed the effect of maspin location in normal epithelial cell line MCF10A and three breast cancer cell lines - MCF-7, MDA-MB-231 and SKBR-3 - by immunofluorescence and proliferation assay. We observed a strong positive correlation between moderate and high nuclear maspin level and survival of patients. Moreover, a statistically significant negative relationship was observed between nuclear maspin and Ki-67 expression in patients with invasive ductal breast cancer. Spearman’s correlation analysis showed a negative correlation between level of maspin localized in nucleus and percentage of Ki-67 positive cells. No such differences were observed in cells with cytoplasmic maspin. We found a strong correlation between nuclear maspin and loss of Ki-67 protein in breast cancer cell lines, while there was no effect in normal epithelial cells from breast. The anti-proliferative effect of nuclear

  11. Nuclear location of tumor suppressor protein maspin inhibits proliferation of breast cancer cells without affecting proliferation of normal epithelial cells

    Science.gov (United States)

    2014-01-01

    Background Maspin, which is classified as a tumor suppressor protein, is downregulated in many types of cancer. Several studies have suggested potential anti-proliferative activity of maspin as well as sensitizing activity of maspin for therapeutic cytotoxic agents in breast cancer tissue culture and animal models. All of the experimental data gathered so far have been based on studies with maspin localized cytoplasmically, while maspin in breast cancer tumor cells may be located in the cytoplasm, nucleus or both. In this study, the effect of maspin cytoplasmic and nuclear location and expression level on breast cancer proliferation and patient survival was studied. Methods Tissue sections from 166 patients with invasive ductal breast cancer were stained by immunohistochemistry for maspin and Ki-67 protein. The localization and expression level of maspin were correlated with estimated patient overall survival and percent of Ki-67-positive cells. In further studies, we created constructs for transient transfection of maspin into breast cancer cells with targeted cytoplasmic and nuclear location. We analyzed the effect of maspin location in normal epithelial cell line MCF10A and three breast cancer cell lines - MCF-7, MDA-MB-231 and SKBR-3 - by immunofluorescence and proliferation assay. Results We observed a strong positive correlation between moderate and high nuclear maspin level and survival of patients. Moreover, a statistically significant negative relationship was observed between nuclear maspin and Ki-67 expression in patients with invasive ductal breast cancer. Spearman’s correlation analysis showed a negative correlation between level of maspin localized in nucleus and percentage of Ki-67 positive cells. No such differences were observed in cells with cytoplasmic maspin. We found a strong correlation between nuclear maspin and loss of Ki-67 protein in breast cancer cell lines, while there was no effect in normal epithelial cells from breast. The anti

  12. Quantitative analysis of topoisomerase IIα to rapidly evaluate cell proliferation in brain tumors

    International Nuclear Information System (INIS)

    Oda, Masashi; Arakawa, Yoshiki; Kano, Hideyuki; Kawabata, Yasuhiro; Katsuki, Takahisa; Shirahata, Mitsuaki; Ono, Makoto; Yamana, Norikazu; Hashimoto, Nobuo; Takahashi, Jun A.

    2005-01-01

    Immunohistochemical cell proliferation analyses have come into wide use for evaluation of tumor malignancy. Topoisomerase IIα (topo IIα), an essential nuclear enzyme, has been known to have cell cycle coupled expression. We here show the usefulness of quantitative analysis of topo IIα mRNA to rapidly evaluate cell proliferation in brain tumors. A protocol to quantify topo IIα mRNA was developed with a real-time RT-PCR. It took only 3 h to quantify from a specimen. A total of 28 brain tumors were analyzed, and the level of topo IIα mRNA was significantly correlated with its immuno-staining index (p < 0.0001, r = 0.9077). Furthermore, it sharply detected that topo IIα mRNA decreased in growth-inhibited glioma cell. These results support that topo IIα mRNA may be a good and rapid indicator to evaluate cell proliferate potential in brain tumors

  13. miRNA-218-loaded carboxymethyl chitosan - Tocopherol nanoparticle to suppress the proliferation of gastrointestinal stromal tumor growth

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Lin; Wang, Ming; Zhao, Wen-Yi; Zhang, Zi-Zhen; Tang, De-Feng; Zhang, Ye-Qian [Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127 (China); Cao, Hui, E-mail: caohui10281@163.com [Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127 (China); Zhang, Zhi-Gang, E-mail: zhangzhiganggz@hotmail.com [State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200240 (China)

    2017-03-01

    Gastrointestinal stromal tumors (GIST) are one of the most common forms of mesenchymal cancers of the gastrointestinal tract. Although chemotherapeutic drugs inhibited the proliferation of GIST, however, sizable proportion of people developed resistance and therefore difficult to treat. In the present study, O-carboxymethyl chitosan (OCMC)-tocopherol polymer conjugate was synthesized and formulated into stable polymeric nanoparticles. The main aim of present study was to increase the therapeutic efficacy of miR-218 in GIST. The mean size of nanoparticles was ~ 110 nm with a spherical shape. The miR-218 NP has been shown inhibit the cell proliferation and exhibited a superior cell apoptosis. The miR-218 NP inhibited the cell invasion and promoted the apoptosis of GIST cancer cells. In the present study, we have successfully showed that KIT1 is the target gene of miR-218 as shown by the luciferase reporter assay. These findings collectively suggest the miR-218 loaded nanoparticle by virtue of effective transfection could act as a tumor suppressor miRNA in the treatment of GIST. - Highlights: • O-carboxymethyl chitosan (OCMC)-tocopherol polymer conjugate was synthesized and formulated in nanoparticles. • The miR-218 NP has been shown inhibit the cell proliferation and exhibited a superior cell apoptosis. • We have successfully showed that KIT1 is the target gene of miR-218 as shown by the luciferase reporter assay.

  14. Kaempferol suppresses bladder cancer tumor growth by inhibiting cell proliferation and inducing apoptosis.

    Science.gov (United States)

    Dang, Qiang; Song, Wenbin; Xu, Defeng; Ma, Yanmin; Li, Feng; Zeng, Jin; Zhu, Guodong; Wang, Xinyang; Chang, Luke S; He, Dalin; Li, Lei

    2015-09-01

    The effects of the flavonoid compound, kaempferol, which is an inhibitor of cancer cell proliferation and an inducer of cell apoptosis have been shown in various cancers, including lung, pancreatic, and ovarian, but its effect has never been studied in bladder cancer. Here, we investigated the effects of kaempferol on bladder cancer using multiple in vitro cell lines and in vivo mice studies. The MTT assay results on various bladder cancer cell lines showed that kaempferol enhanced bladder cancer cell cytotoxicity. In contrast, when analyzed by the flow cytometric analysis, DNA ladder experiment, and TUNEL assay, kaempferol significantly was shown to induce apoptosis and cell cycle arrest. These in vitro results were confirmed in in vivo mice studies using subcutaneous xenografted mouse models. Consistent with the in vitro results, we found that treating mice with kaempferol significant suppression in tumor growth compared to the control group mice. Tumor tissue staining results showed decreased expressions of the growth related markers, yet increased expressions in apoptosis markers in the kaempferol treated group mice tissues compared to the control group mice. In addition, our in vitro and in vivo data showed kaempferol can also inhibit bladder cancer invasion and metastasis. Further mechanism dissection studies showed that significant down-regulation of the c-Met/p38 signaling pathway is responsible for the kaempferol mediated cell proliferation inhibition. All these findings suggest kaempferol might be an effective and novel chemotherapeutic drug to apply for the future therapeutic agent to combat bladder cancer. © 2014 Wiley Periodicals, Inc.

  15. miR-664 negatively regulates PLP2 and promotes cell proliferation and invasion in T-cell acute lymphoblastic leukaemia

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hong; Miao, Mei-hua; Ji, Xue-qiang; Xue, Jun; Shao, Xue-jun, E-mail: xuejunshao@hotmail.com

    2015-04-03

    MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. However, the role of microRNAs in leukaemia, particularly T-cell acute lymphoblastic leukaemia (T-ALL), has remained elusive. Here, we identified miR-664 and its predicted target gene PLP2 were differentially expressed in T-ALL using bioinformatics methods. In T-ALL cell lines, CCK-8 proliferation assay indicated that the cell proliferation was promoted by miR-664, while miR-664 inhibitor could significantly inhibited the proliferation. Moreover, migration and invasion assay showed that overexpression of miR-664 could significantly promoted the migration and invasion of T-ALL cells, whereas miR-664 inhibitor could reduce cell migration and invasion. luciferase assays confirmed that miR-664 directly bound to the 3'untranslated region of PLP2, and western blotting showed that miR-664 suppressed the expression of PLP2 at the protein levels. This study indicated that miR-664 negatively regulates PLP2 and promotes proliferation and invasion of T-ALL cell lines. Thus, miR-664 may represent a potential therapeutic target for T-ALL intervention. - Highlights: • miR-664 mimics promote the proliferation and invasion of T-ALL cells. • miR-664 inhibitors inhibit the proliferation and invasion of T-ALL cells. • miR-664 targets 3′ UTR of PLP2 in T-ALL cells. • miR-664 negatively regulates PLP2 in T-ALL cells.

  16. MAGE-A1 promotes melanoma proliferation and migration through C-JUN activation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dong [Department of Dermatology, General Hospital of People' s Liberation Army, Beijing 100853 (China); The 309th Hospital of China People' s Liberation Army, Beijing 100091 (China); Wang, Junyun; Ding, Nan [CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Yongjun; Yang, Yaran [CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101 (China); Fang, Xiangdong, E-mail: fangxd@big.ac.cn [CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101 (China); Zhao, Hua, E-mail: luckhua301@163.com [Department of Dermatology, General Hospital of People' s Liberation Army, Beijing 100853 (China)

    2016-05-13

    MAGE-A1 belongs to the chromosome X-clustered genes of cancer-testis antigen family and is normally expressed in the human germ line but is also overexpressed in various tumors. Previous studies of MAGE-A1 in melanoma mainly focused on methylation changes or its role in immunotherapy, however, its biological functions in melanoma have remained unknown. In order to determine the role of MAGE-A1 in melanoma growth and metastasis, we manipulated melanoma cell lines with overexpression and knockdown of MAGE-A1. Integration of cell proliferation assays, transwell migration and invasion assays, and RNA-Seq analysis revealed that up-regulation of MAGE-A1 dramatically promoted proliferation, migration, and invasion of human melanoma cell lines in vitro, while down-regulation of MAGE-A1 inhibited those characteristics associated with tumor cells. Furthermore, transcriptome sequencing revealed that MAGE-A1 exerts its tumor promoting activity by activating p-C-JUN directly or through ERK-MAPK signaling pathways. Based on our findings, we propose that MAGE-A1 may be a potential therapeutic target for melanoma patients. - Highlights: • MAGE-A1 promotes proliferation and clone formation in melanoma cell lines. • MAGE-A1 enhances tumor cell migration and invasion in melanoma cell lines. • Network including C-JUN, IL8, and ARHGAP29 play critical role in malignant melanoma. • Oncogenic MAGE-A1 increases p-C-JUN levels, possibly via ERK-MAPK signaling pathway.

  17. Down-regulation of 5-HT1B and 5-HT1D receptors inhibits proliferation, clonogenicity and invasion of human pancreatic cancer cells.

    Directory of Open Access Journals (Sweden)

    Nilgun Gurbuz

    Full Text Available Pancreatic ductal adenocarcinoma is characterized by extensive local tumor invasion, metastasis and early systemic dissemination. The vast majority of pancreatic cancer (PaCa patients already have metastatic complications at the time of diagnosis, and the death rate of this lethal type of cancer has increased over the past decades. Thus, efforts at identifying novel molecularly targeted therapies are priorities. Recent studies have suggested that serotonin (5-HT contributes to the tumor growth in a variety of cancers including prostate, colon, bladder and liver cancer. However, there is lack of evidence about the impact of 5-HT receptors on promoting pancreatic cancer. Having considered the role of 5-HT-1 receptors, especially 5-HT1B and 5-HT1D subtypes in different types of malignancies, the aim of this study was to investigate the role of 5-HT1B and 5-HT1D receptors in PaCa growth and progression and analyze their potential as cytotoxic targets. We found that knockdown of 5-HT1B and 5-HT1D receptors expression, using specific small interfering RNA (siRNA, induced significant inhibition of proliferation and clonogenicity of PaCa cells. Also, it significantly suppressed PaCa cells invasion and reduced the activity of uPAR/MMP-2 signaling and Integrin/Src/Fak-mediated signaling, as integral tumor cell pathways associated with invasion, migration, adhesion, and proliferation. Moreover, targeting 5-HT1B and 5-HT1D receptors down-regulates zinc finger ZEB1 and Snail proteins, the hallmarks transcription factors regulating epithelial-mesenchymal transition (EMT, concomitantly with up-regulating of claudin-1 and E-Cadherin. In conclusion, our data suggests that 5-HT1B- and 5-HT1D-mediated signaling play an important role in the regulation of the proliferative and invasive phenotype of PaCa. It also highlights the therapeutic potential of targeting of 5-HT1B/1D receptors in the treatment of PaCa, and opens a new avenue for biomarkers identification

  18. Down-regulation of 5-HT1B and 5-HT1D receptors inhibits proliferation, clonogenicity and invasion of human pancreatic cancer cells.

    Directory of Open Access Journals (Sweden)

    Nilgun Gurbuz

    Full Text Available Pancreatic ductal adenocarcinoma is characterized by extensive local tumor invasion, metastasis and early systemic dissemination. The vast majority of pancreatic cancer (PaCa patients already have metastatic complications at the time of diagnosis, and the death rate of this lethal type of cancer has increased over the past decades. Thus, efforts at identifying novel molecularly targeted therapies are priorities. Recent studies have suggested that serotonin (5-HT contributes to the tumor growth in a variety of cancers including prostate, colon, bladder and liver cancer. However, there is lack of evidence about the impact of 5-HT receptors on promoting pancreatic cancer. Having considered the role of 5-HT-1 receptors, especially 5-HT1B and 5-HT1D subtypes in different types of malignancies, the aim of this study was to investigate the role of 5-HT1B and 5-HT1D receptors in PaCa growth and progression and analyze their potential as cytotoxic targets. We found that knockdown of 5-HT1B and 5-HT1D receptors expression, using specific small interfering RNA (siRNA, induced significant inhibition of proliferation and clonogenicity of PaCa cells. Also, it significantly suppressed PaCa cells invasion and reduced the activity of uPAR/MMP-2 signaling and Integrin/Src/Fak-mediated signaling, as integral tumor cell pathways associated with invasion, migration, adhesion, and proliferation. Moreover, targeting 5-HT1B and 5-HT1D receptors down-regulates zinc finger ZEB1 and Snail proteins, the hallmarks transcription factors regulating epithelial-mesenchymal transition (EMT, concomitantly with up-regulating of claudin-1 and E-Cadherin. In conclusion, our data suggests that 5-HT1B- and 5-HT1D- mediated signaling play an important role in the regulation of the proliferative and invasive phenotype of PaCa. It also highlights the therapeutic potential of targeting of 5-HT1B/1D receptors in the treatment of PaCa, and opens a new avenue for biomarkers identification

  19. Quercetin-induced downregulation of phospholipase D1 inhibits proliferation and invasion in U87 glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Mi Hee [Department of Molecular Biology, College of Natural Science, Pusan National University, 30 Jangjeon dong, Geumjeong gu, Busan 609-735 (Korea, Republic of); Min, Do Sik, E-mail: minds@pusan.ac.kr [Department of Molecular Biology, College of Natural Science, Pusan National University, 30 Jangjeon dong, Geumjeong gu, Busan 609-735 (Korea, Republic of)

    2011-09-09

    Highlights: {yields} Quercetin, a bioactive flavonoid, suppresses expression and enzymatic activity of phospholipase D1. {yields} Quercetin abolishes NFkB-induced phospholipase D1 expression via inhibition of NFkB transactivation. {yields} Quercetin-induced suppression of phospholipase D1 inhibits invasion and proliferation of human glioma cells. -- Abstract: Phospholipase D (PLD) has been recognized as a regulator of cell proliferation and tumorigenesis, but little is known about the molecules regulating PLD expression. Thus, the identification of small molecules inhibiting PLD expression would be an important advance in PLD-mediated physiology. Quercetin, a ubiquitous bioactive flavonoid, is known to inhibit proliferation and induce apoptosis in a variety of cancer cells. In the present study, we examined the effect of quercetin on the expression of PLD in U87 glioma cells. Quercetin significantly suppressed the expression of PLD1 at the transcriptional level. Moreover, quercetin abolished the protein expression of PLD1 in a time and dose-dependent manner, as well as inhibited PLD activity. Quercetin suppressed NF{kappa}B-induced PLD1 expression via inhibition of NFkB transactivation. Furthermore, quercetin inhibited activation and invasion of metalloproteinase-2 (MMP-2), a key modulator of glioma cell invasion, induced by phosphatidic acid (PA), a product of PLD activity. Taken together these data demonstrate that quercetin abolishes PLD1 expression and subsequently inhibits invasion and proliferation of glioma cells.

  20. Rapamycin causes growth arrest and inhibition of invasion in human chondrosarcoma cells.

    Science.gov (United States)

    Song, Jian; Wang, Xiaobo; Zhu, Jiaxue; Liu, Jun

    2016-01-01

    Chondrosarcoma is a highly malignant tumor that is characterized by a potent capacity to invade locally and cause distant metastasis and notable for its lack of response to conventional chemotherapy or radiotherapy. Rapamycin, the inhibitor of mammalian target of rapamycin (mTOR), is a valuable drug with diverse clinical applications and regulates many cellular processes. However, the effects of rapamycin on cell growth and invasion of human chondrosarcoma cells are not well known. We determined the effect of rapamycin on cell proliferation, cell cycle arrest and invasion by using MTS, flow cytometry and invasion assays in two human chondrosarcoma cell lines, SW1353 and JJ012. Cell cycle regulatory and invasion-related genes' expression analysis was performed by quantitative RT-PCR (qRT-PCR). We also evaluated the effect of rapamycin on tumor growth by using mice xenograph models. Rapamycin significantly inhibited the cell proliferation, induced cell cycle arrest and decreased the invasion ability of human chondrosarcoma cells. Meanwhile, rapamycin modulated the cell cycle regulatory and invasion-related genes' expression. Furthermore, the tumor growth of mice xenograph models with human chondrosarcoma cells was significantly inhibited by rapamycin. These results provided further insight into the role of rapamycin in chondrosarcoma. Therefore, rapamycin targeted therapy may be a potential treatment strategy for chondrosarcoma.

  1. Tumor-derived microvesicles mediate human breast cancer invasion through differentially glycosylated EMMPRIN.

    Science.gov (United States)

    Menck, Kerstin; Scharf, Christian; Bleckmann, Annalen; Dyck, Lydia; Rost, Ulrike; Wenzel, Dirk; Dhople, Vishnu M; Siam, Laila; Pukrop, Tobias; Binder, Claudia; Klemm, Florian

    2015-04-01

    Tumor cells secrete not only a variety of soluble factors, but also extracellular vesicles that are known to support the establishment of a favorable tumor niche by influencing the surrounding stroma cells. Here we show that tumor-derived microvesicles (T-MV) also directly influence the tumor cells by enhancing their invasion in a both autologous and heterologous manner. Neither the respective vesicle-free supernatant nor MV from benign mammary cells mediate invasion. Uptake of T-MV is essential for the proinvasive effect. We further identify the highly glycosylated form of the extracellular matrix metalloproteinase inducer (EMMPRIN) as a marker for proinvasive MV. EMMPRIN is also present at high levels on MV from metastatic breast cancer patients in vivo. Anti-EMMPRIN strategies, such as MV deglycosylation, gene knockdown, and specific blocking peptides, inhibit MV-induced invasion. Interestingly, the effect of EMMPRIN-bearing MV is not mediated by matrix metalloproteinases but by activation of the p38/MAPK signaling pathway in the tumor cells. In conclusion, T-MV stimulate cancer cell invasion via a direct feedback mechanism dependent on highly glycosylated EMMPRIN. © The Author (2014). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS.

  2. Total glucosides of paeony inhibits lipopolysaccharide-induced proliferation, migration and invasion in androgen insensitive prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Zhi-Hui Zhang

    Full Text Available Previous studies demonstrated that inflammatory microenvironment promoted prostate cancer progression. This study investigated whether total glucosides of paeony (TGP, the active constituents extracted from the root of Paeonia Lactiflora Pall, suppressed lipopolysaccharide (LPS-stimulated proliferation, migration and invasion in androgen insensitive prostate cancer cells. PC-3 cells were incubated with LPS (2.0 μg/mL in the absence or presence of TGP (312.5 μg /mL. As expected, cells at S phase and nuclear CyclinD1, the markers of cell proliferation, were increased in LPS-stimulated PC-3 cells. Migration activity, as determined by wound-healing assay and transwell migration assay, and invasion activity, as determined by transwell invasion assay, were elevated in LPS-stimulated PC-3 cells. Interestingly, TGP suppressed LPS-stimulated PC-3 cells proliferation. Moreover, TGP inhibited LPS-stimulated migration and invasion of PC-3 cells. Additional experiment showed that TGP inhibited activation of nuclear factor kappa B (NF-κB and mitogen-activated protein kinase (MAPK/p38 in LPS-stimulated PC-3 cells. Correspondingly, TGP attenuated upregulation of interleukin (IL-6 and IL-8 in LPS-stimulated PC-3 cells. In addition, TGP inhibited nuclear translocation of signal transducer and activator of transcription 3 (STAT3 in LPS-stimulated PC-3 cells. These results suggest that TGP inhibits inflammation-associated STAT3 activation and proliferation, migration and invasion in androgen insensitive prostate cancer cells.

  3. Confocal fluorescence microscopy for minimal-invasive tumor diagnosis

    International Nuclear Information System (INIS)

    Zenzinger, M.; Bille, J.

    2000-01-01

    The goal of the project ''stereotactic laser-neurosurgery'' is the development of a system for careful and minimal-invasive resection of brain tumors with ultrashort laser pulses through a thin probe. A confocal laser-scanning-microscope is integrated in the probe. In this paper, the simulation of its optical properties by a laboratory setup and the expansion by the ability for fluorescence microscopy are reported. For a valuation of the imaging properties, the point-spread-function in three dimensions and the axial depth-transfer-function were measured and thus, among other things, the resolving power and the capacity for depth discrimination were analysed. The microscope will enable intra-operative detection of tumor cells by the method of immunofluorescence. As a first model of the application in the brain, cell cultures, that fluorescein-labelled antibodies were bound to specifically, were used in this work. Due to the fluorescence signal, it was possible to detect and identify clearly the areas that had been marked in this manner, proving the suitability of the setup for minimal-invasive tumor diagnosis. (orig.)

  4. Melatonin inhibits proliferation and invasion via repression of miRNA-155 in glioma cells.

    Science.gov (United States)

    Gu, Junyi; Lu, Zhongsheng; Ji, Chenghong; Chen, Yuchao; Liu, Yuzhao; Lei, Zhe; Wang, Longqiang; Zhang, Hong-Tao; Li, Xiangdong

    2017-09-01

    Melatonin, an indolamine mostly synthesized in the pineal gland, exerts the anti-cancer effect by various mechanisms in glioma cells. Our previous study showed that miR-155 promoted glioma cell proliferation and invasion. However, the question of whether melatonin may inhibit glioma by regulating miRNAs has not yet been addressed. In this study, we found that melatonin (100μM, 1μM and 1nM) significantly inhibited the expression of miR-155 in human glioma cell lines U87, U373 and U251. Especially, the lowest expression of miR-155 was detected in 1μM melatonin-treated glioma cells. Melatonin (1μM) inhibits cell proliferation of U87 by promoting cell apoptosis. Nevertheless, melatonin had no effect on cell cycle distribution of U87 cells. Moreover, U87 cells treated with 1μM melatonin presented significantly lower migration and invasion ability when compared with control cells. Importantly, melatonin inhibited c-MYB expression, and c-MYB knockdown reduced miR-155 expression and migration and invasion in U87 cells. Taken together, for the first time, our findings show that melatonin inhibits miR-155 expression and thereby represses glioma cell proliferation, migration and invasion, and suggest that melatonin may downregulate the expression of miR-155 via repression of c-MYB. This will provide a theoretical basis for revealing the anti-glioma mechanisms of melatonin. Copyright © 2017. Published by Elsevier Masson SAS.

  5. The Effects of NDRG2 Overexpression on Cell Proliferation and Invasiveness of SW48 Colorectal Cancer Cell Line.

    Science.gov (United States)

    Golestan, Ali; Mojtahedi, Zahra; Ghalamfarsa, Ghasem; Hamidinia, Maryam; Takhshid, Mohammad Ali

    2015-09-01

    Colorectal cancer (CRC) is one of the most common causes of cancer-related death in the world. The expression of N-myc downstream-regulated gene 2 (NDRG2) is down-regulated in CRC. The aim of this study was to investigate the effect of NDRG2 overexpression on cell proliferation and invasive potential of SW48 cells. SW48 cells were transfected with a plasmid overexpressing NDRG2. After stable transfection, the effect of NDRG2 overexpression on cell proliferation was evaluated by MTT assay. The effects of NDRG2 overexpression on cell migration, invasion and cell motility and matrix metalloproteinase 9 (MMP9) activities were also investigated using matrigel transwell assay, wound healing assay and gelatin zymography, respectively. MTT assay showed that overexpression of NDRG2 caused attenuation of SW48 cell proliferation. Transwell and wound healing assay revealed that NDRG2 overexpression led to inhibition of migration, invasion, and motility of SW48 cells. The overexpression of NDRG2 also reduced the activity of secreted MMP-9. The results of this study suggest that NDRG2 overexpression inhibits proliferation and invasive potential of SW48 cells, which likely occurs via suppression of MMP-9 activity.

  6. Non-small cell lung cancer: Whole-lesion histogram analysis of the apparent diffusion coefficient for assessment of tumor grade, lymphovascular invasion and pleural invasion.

    Science.gov (United States)

    Tsuchiya, Naoko; Doai, Mariko; Usuda, Katsuo; Uramoto, Hidetaka; Tonami, Hisao

    2017-01-01

    Investigating the diagnostic accuracy of histogram analyses of apparent diffusion coefficient (ADC) values for determining non-small cell lung cancer (NSCLC) tumor grades, lymphovascular invasion, and pleural invasion. We studied 60 surgically diagnosed NSCLC patients. Diffusion-weighted imaging (DWI) was performed in the axial plane using a navigator-triggered single-shot, echo-planar imaging sequence with prospective acquisition correction. The ADC maps were generated, and we placed a volume-of-interest on the tumor to construct the whole-lesion histogram. Using the histogram, we calculated the mean, 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles of ADC, skewness, and kurtosis. Histogram parameters were correlated with tumor grade, lymphovascular invasion, and pleural invasion. We performed a receiver operating characteristics (ROC) analysis to assess the diagnostic performance of histogram parameters for distinguishing different pathologic features. The ADC mean, 10th, 25th, 50th, 75th, 90th, and 95th percentiles showed significant differences among the tumor grades. The ADC mean, 25th, 50th, 75th, 90th, and 95th percentiles were significant histogram parameters between high- and low-grade tumors. The ROC analysis between high- and low-grade tumors showed that the 95th percentile ADC achieved the highest area under curve (AUC) at 0.74. Lymphovascular invasion was associated with the ADC mean, 50th, 75th, 90th, and 95th percentiles, skewness, and kurtosis. Kurtosis achieved the highest AUC at 0.809. Pleural invasion was only associated with skewness, with the AUC of 0.648. ADC histogram analyses on the basis of the entire tumor volume are able to stratify NSCLCs' tumor grade, lymphovascular invasion and pleural invasion.

  7. IL1β-mediated Stromal COX-2 signaling mediates proliferation and invasiveness of colonic epithelial cancer cells

    International Nuclear Information System (INIS)

    Zhu, Yingting; Zhu, Min; Lance, Peter

    2012-01-01

    COX-2 is a major inflammatory mediator implicated in colorectal inflammation and cancer. However, the exact origin and role of COX-2 on colorectal inflammation and carcinogenesis are still not well defined. Recently, we reported that COX-2 and iNOS signalings interact in colonic CCD18Co fibroblasts. In this article, we investigated whether activation of COX-2 signaling by IL1β in primary colonic fibroblasts obtained from normal and cancer patients play a critical role in regulation of proliferation and invasiveness of human colonic epithelial cancer cells. Our results demonstrated that COX-2 level was significantly higher in cancer associated fibroblasts than that in normal fibroblasts with or without stimulation of IL-1β, a powerful stimulator of COX-2. Using in vitro assays for estimating proliferative and invasive potential, we discovered that the proliferation and invasiveness of the epithelial cancer cells were much greater when the cells were co-cultured with cancer associated fibroblasts than with normal fibroblasts, with or without stimulation of IL1β. Further analysis indicated that the major COX-2 product, prostaglandin E 2 , directly enhanced proliferation and invasiveness of the epithelial cancer cells in the absence of fibroblasts. Moreover, a selective COX-2 inhibitor, NS-398, blocked the proliferative and invasive effect of both normal and cancer associate fibroblasts on the epithelial cancer cells, with or without stimulation of IL-1β. Those results indicate that activation of COX-2 signaling in the fibroblasts plays a major role in promoting proliferation and invasiveness of the epithelial cancer cells. In this process, PKC is involved in the activation of COX-2 signaling induced by IL-1β in the fibroblasts.

  8. [Knockdown of NEDD9 inhibits the proliferation, invasion and migration of esophageal carcinoma EC109 cells].

    Science.gov (United States)

    Zhang, Wen; Li, Shaojun; Zhao, Yunlong; Guo, Nannan; Li, Yingjie

    2016-12-01

    Objective To observe the expression of the neural precursor cell expressed, developmentally down-regulated 9 (NEDD9) in esophageal cancer, to investigate the impact of decreased expression of NEDD9 on invasion and migration, and to explicit the function of NEDD9 in EC109 human esophageal cancer cell line. Methods Immunohistochemical staining was used to detect the expression of NEDD9 in human esophageal cancer tissues and paracancerous normal tissues. RNA interfering (RNAi) was used to knockdown NEDD9 in EC109 cells. The interference efficiency was detected by reverse transcription PCR (RT-PCR) and Western blot analysis. Cell proliferation was determined by MTT assay and the invasion and migration abilities of EC109 cells were monitored by Transwell TM assay. The protein levels of proliferating cell nuclear antigen (PCNA), Bax and Bcl-2 were tested by Western blotting. Results The positive expression rate of NEDD9 in esophageal carcinoma tissues was significantly higher compared with that in the paracancerous tissues. After NEDD9 expression was successfully downregulated in EC109 cells by siRNA, the proliferation, invasion and migration rates in transfection group were significantly lower than those in control group; meanwhile, the expression of Bcl-2 was reduced and Bax expression was enhanced. Conclusion The protein expression level of NEDD9 is higher in esophageal carcinoma tissues than that in adjacent normal tissues. Knockdown of NEDD9 expression can restrain the proliferation, invasion and migration of EC109 cells.

  9. Cysteine-rich buccal gland protein suppressed the proliferation, migration and invasion of hela cells through akt pathway.

    Science.gov (United States)

    Han, Jianmei; Liu, Yu; Jiang, Qi; Xiao, Rong

    2017-11-01

    Cysteine-rich buccal gland protein (CRBGP) as a member of cysteine-rich secretory proteins (CRISPs) superfamily was isolated from the buccal glands of Lampetra japonica, the blood suckers in the marine. Previous studies showed CRBGP could suppress angiogenesis probably due to its ion channel blocking activity. Whether CRBGP could also affect the activity of tumor cells has not been reported yet. In this study, CRBGP suppressed the proliferation of Hela cells with an IC 50 of 6.7 μM by inducing apoptosis. Both microscopic observation and Western blot indicated that CRBGP was able to induce the nuclei shrinking, downregulate the protein level of BCL2 and caspase 3 as well as upregulate the level of BAX in Hela cells, suggested that CRBGP might induce apoptosis of Hela cells in a mitochondrial-dependent pathway. Furthermore, CRBGP could disturb F-actin organization, which would finally cause the Hela cells to lose their shape and to lessen their abilities on adhesion, migration and invasion. Finally, CRBGP was shown to reduce the phosphorylation level of Akt, which indicated that CRBGP might inhibit the proliferation and metastasis of Hela cells through Akt pathway. CRBGP, as a voltage-gated sodium channel blocker, also possesses the anti-tumor abilities which provided information on the effects and action manner of the other CRISPs. © 2017 IUBMB Life, 69(11):856-866, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  10. The relationship between tumor oxygenation and cell proliferation in human soft tissue sarcomas

    International Nuclear Information System (INIS)

    Nordsmark, Marianne; Hoeyer, Morten; Keller, Johnny; Nielsen, Ole Steen; Jensen, Oluf Myhre; Overgaard, Jens

    1996-01-01

    Purpose: In malignant tumors the oxygenation status and tumor cell proliferation are known to influence local tumor control after radiotherapy. However, the relationship between oxygenation status and tumor cell kinetics in human tumors has not yet been described. Newly developed clinically applicable techniques such as oxygen electrode measurements and assessment of tumor cell proliferation rates have been suggested as promising predictive assays. The purpose of the present study was to characterize tumor oxygenation status in soft tissue sarcomas and to compare this with tumor cell kinetics and clinical parameters. Methods and Materials: Pretreatment tumor oxygenation status was measured by polarographic oxygen needle electrodes and evaluated as the median pO 2 and the percentage of pO 2 values ≤ 5 mmHg and ≤ 2.5 mmHg in 22 patients with primary soft tissue sarcomas. All tumors were characterized by histology, grade of malignancy, the level of microscopic necrosis, the level of effective hemoglobin, and magnetic resonance imaging estimation of tumor volume. The tumor cell potential doubling time and labeling index were measured by flow cytometric and immunohistochemical analysis of tumor biopsy specimens after in vivo incorporation of iododeoxyuridine. Results: There was a significant correlation between the median pO 2 and the tumor cell potential doubling time (p = 0.041), whereas no correlation was found between the level of hypoxia expressed by the percentage of pO 2 values ≤ 2.5 and ≤ 5 mmHg, respectively, and tumor cell potential doubling time. Furthermore, no correlation was found between either of the three tumor oxygenation parameters and labeling index. The material represented large intertumor heterogeneity in oxygenation status, cell kinetics, and tumor volume, and no correlation was found between oxygenation status and either volume, histopathology, grade of malignancy, or effective hemoglobin. Conclusion: This report is the first to suggest

  11. Inhibition of Calcium-Activated Chloride Channel ANO1/TMEM16A Suppresses Tumor Growth and Invasion in Human Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Linghan Jia

    Full Text Available Lung cancer or pulmonary carcinoma is primarily derived from epithelial cells that are thin and line on the alveolar surfaces of the lung for gas exchange. ANO1/TMEM16A, initially identified from airway epithelial cells, is a member of Ca2+-activated Cl- channels (CaCCs that function to regulate epithelial secretion and cell volume for maintenance of ion and tissue homeostasis. ANO1/TMEM16A has recently been shown to be highly expressed in several epithelium originated carcinomas. However, the role of ANO1 in lung cancer remains unknown. In this study, we show that inhibition of calcium-activated chloride channel ANO1/TMEM16A suppresses tumor growth and invasion in human lung cancer. ANO1 is upregulated in different human lung cancer cell lines. Knocking-down ANO1 by small hairpin RNAs inhibited proliferation, migration and invasion of GLC82 and NCI-H520 cancel cells evaluated by CCK-8, would-healing, transwell and 3D soft agar assays. ANO1 protein is overexpressed in 77.3% cases of human lung adenocarcinoma tissues detected by immunohistochemistry. Furthermore, the tumor growth in nude mice implanted with GLC82 cells was significantly suppressed by ANO1 silencing. Taken together, our findings provide evidence that ANO1 overexpression contributes to tumor growth and invasion of lung cancer; and suppressing ANO1 overexpression may have therapeutic potential in lung cancer therapy.

  12. Effects of CD44 and E-cadherin overexpression on the proliferation, adhesion and invasion of ovarian cancer cells.

    Science.gov (United States)

    Mao, Meiya; Zheng, Xiaojiao; Jin, Bohong; Zhang, Fubin; Zhu, Linyan; Cui, Lining

    2017-12-01

    CD44 is a prognostic indicator of shorter survival time in ovarian cancer. E-cadherin fragmentation promotes the progression of ovarian cancer. However, the effects of CD44 and E-cadherin overexpression on ovarian cancer cells have remained elusive. The present study aimed to investigate the effects of overexpression of CD44 and E-cadherin on cell proliferation, adhesion and invasion of SKOV-3 and OVCAR-3 ovarian cancer cells. Overexpression of CD44 and E-cadherin was achieved by transfecting SKOV-3 and OVCAR-3 cells with viruses carrying the CD44 or E-cadherin gene, respectively. Expression of CD44 and E-cadherin was detected by western blot analysis. The proliferation of SKOV-3 and OVCAR-3 cells was measured by a Cell Counting Kit-8 at 0, 24 and 48 h after viral transfection. The adhesion ability of SKOV-3 and OVCAR-3 cells to the endothelial layer was detected. A Transwell invasion assay was utilized to assess the invasion ability of the cells. Overexpression of CD44 and E-cadherin in SKOV-3 and OVCAR-3 cells was confirmed by western blot. Compared with the blank or negative control groups, the CD44 overexpression groups of SKOV-3 and OVCAR-3 cells exhibited an increased cell proliferation rate at 24 and 48 h, whereas overexpression of E-cadherin did not alter the proliferation of these cells. Furthermore, compared with the blank and negative control groups, the cell adhesion and invasion ability in the CD44 overexpression groups of SKOV-3 and OVCAR-3 cells was markedly higher. There were no significant differences in adhesion ability between the E-cadherin overexpression group and the blank/negative control group. Of note, overexpression of E-cadherin decreased the invasive ability of SKOV-3 and OVCAR-3 cells. In conclusion, Overexpression of CD44 increased the proliferation, adhesion and invasion of ovarian cancer cells, while overexpression of E-cadherin decreased the invasion of ovarian cancer cells.

  13. Overexpressed ubiquitin ligase Cullin7 in breast cancer promotes cell proliferation and invasion via down-regulating p53

    International Nuclear Information System (INIS)

    Guo, Hongsheng; Wu, Fenping; Wang, Yan; Yan, Chong; Su, Wenmei

    2014-01-01

    Highlights: • Cullin7 is overexpressed in human breast cancer samples. • Cullin7 stimulated proliferation and invasion of breast cancer cells. • Inhibition of p53 contributes to Cullin7-induced proliferation and invasion. - Abstract: Ubiquitin ligase Cullin7 has been identified as an oncogene in some malignant diseases such as choriocarcinoma and neuroblastoma. However, the role of Cullin7 in breast cancer carcinogenesis remains unclear. In this study, we compared Cullin7 protein levels in breast cancer tissues with normal breast tissues and identified significantly higher expression of Cullin7 protein in breast cancer specimens. By overexpressing Cullin7 in breast cancer cells HCC1937, we found that Cullin7 could promote cell growth and invasion in vitro. In contrast, the cell growth and invasion was inhibited by silencing Cullin7 in breast cancer cell BT474. Moreover, we demonstrated that Cullin7 promoted breast cancer cell proliferation and invasion via down-regulating p53 expression. Thus, our study provided evidence that Cullin7 functions as a novel oncogene in breast cancer and may be a potential therapeutic target for breast cancer management

  14. Overexpressed ubiquitin ligase Cullin7 in breast cancer promotes cell proliferation and invasion via down-regulating p53

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hongsheng [Department of Histology and Embryology, Guangdong Medical College, Dongguan 523808, Guangdong (China); Wu, Fenping [The 7th People’s Hospital of Chengdu, Chengdu 610041, Sichuan (China); Wang, Yan [The Second School of Clinical Medicine, Guangdong Medical College, Dongguan 523808, Guangdong (China); Yan, Chong [School of Pharmacy, Guangdong Medical College, Dongguan 523808, Guangdong (China); Su, Wenmei, E-mail: wenmeisutg@126.com [Oncology of Affiliated Hospital Guangdong Medical College, Zhanjiang 524000, Guangdong (China)

    2014-08-08

    Highlights: • Cullin7 is overexpressed in human breast cancer samples. • Cullin7 stimulated proliferation and invasion of breast cancer cells. • Inhibition of p53 contributes to Cullin7-induced proliferation and invasion. - Abstract: Ubiquitin ligase Cullin7 has been identified as an oncogene in some malignant diseases such as choriocarcinoma and neuroblastoma. However, the role of Cullin7 in breast cancer carcinogenesis remains unclear. In this study, we compared Cullin7 protein levels in breast cancer tissues with normal breast tissues and identified significantly higher expression of Cullin7 protein in breast cancer specimens. By overexpressing Cullin7 in breast cancer cells HCC1937, we found that Cullin7 could promote cell growth and invasion in vitro. In contrast, the cell growth and invasion was inhibited by silencing Cullin7 in breast cancer cell BT474. Moreover, we demonstrated that Cullin7 promoted breast cancer cell proliferation and invasion via down-regulating p53 expression. Thus, our study provided evidence that Cullin7 functions as a novel oncogene in breast cancer and may be a potential therapeutic target for breast cancer management.

  15. Upregulation of metastasis-associated gene 2 promotes cell proliferation and invasion in nasopharyngeal carcinoma

    Directory of Open Access Journals (Sweden)

    Wu MH

    2016-03-01

    Full Text Available Minhua Wu,1,2,* Xiaoxia Ye,2,* Xubin Deng,3,* Yanxia Wu,4 Xiaofang Li,4 Lin Zhang11Department of Histology and Embryology, Southern Medical University, Guangzhou, 2Department of Histology and Embryology, Guangdong Medical University, Zhanjiang, 3Affiliated Cancer Hospital of Guangzhou Medical University, Cancer Center of Guangzhou Medical University, Guangzhou, 4Pathological Diagnosis and Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, People’s Republic of China*These authors contributed equally to this workAims: Metastasis-associated gene 2 (MTA2 is reported to play an important role in tumor progression, but little is known about the role of MTA2 in nasopharyngeal carcinoma (NPC. The aim of the study was to explore the expression and function of MTA2 in NPC.Methods: Expression of MTA2 in NPC tissues and cell lines was detected by immunohistochemistry and Western blotting. Relationship between MTA2 expression and clinicopathological features was analyzed. Stable MTA2-overexpressing and MTA2-siliencing NPC cells were established by transfection with plasmids encoding MTA2 cDNA and lentivirus-mediated short hairpin RNA, respectively. Cell viability was determined by Cell Counting Kit-8 and colony formation assay. Cell migration ability was evaluated by wound healing and transwell invasion assay. The impact of MTA2 knockdown on growth and metastasis of CNE2 cells in vivo was determined by nude mouse xenograft models. Expression of several Akt pathway proteins was detected by Western blotting.Results: MTA2 was upregulated in NPC tissues and three NPC cell lines detected (CNE1, CNE2, and HNE1. MTA2 expression was related to clinical stage and lymph node metastasis of patients with NPC. MTA2 upregulation promoted proliferation and invasion of CNE1 cells, while MTA2 depletion had opposite effects on CNE2 cells. Moreover, MTA2 depletion suppressed growth and metastasis of CNE2 cells in vivo. MTA2 overexpression

  16. The relationship between MDM2 expression and tumor thickness and invasion in primary cutaneous malignant melanoma

    Directory of Open Access Journals (Sweden)

    Parvin Rajabi

    2012-01-01

    Full Text Available Background: Malignant melanoma is the most invasive cutaneous tumor which is associated with an incredibly high mortality rate. The most reliable histological factors associated with melanoma prognosis are tumor thickness- measured by the Breslow index- and invasion depth- measured by Clark level. Murine double minute 2 (MDM2 gene inhibits p53-dependent apoptosis. An increase in MDM2 expression has been found in many tumors. This study aimed to investigate MDM2 expression and its correlation with tumor thickness and invasion level in malignant melanoma. Materials and Methods: This study evaluated paraffin blocks from 43 randomly selected patients with primary cutaneous melanoma who referred to the main university pathology center in Isfahan, Iran. MDM2 expression rate was assessed via immunohistochemical techniques and hematoxylin and eosin staining to determine tumor thickness and invasion level. Correlations between MDM2 expression and tumor thickness and invasion were analyzed using Spearman′s correlation coefficient in SPSS 17 . Results: The mean age of patients was 61.2 ± 15 years. Men and women constituted 55.8% and 44.2% of the participants, respectively. The rate of MDM2 positivity was 28.9%. MDM2 expression was directly associated with tumor thickness (r = 0.425; p = 0.002 and weakly with invasion level (r = 0.343; p = 0.01. Conclusions: Despite the low MDM2 expression rate observed in this study, direct relationships between MDM2 positivity and tumor thickness and invasion level were identified. MDM2 expression can thus be suggested as a potential new predictive prognostic factor.

  17. Anti-tumor effect and mechanism of cyclooxygenase-2 inhibitor through matrix metalloproteinase 14 pathway in PANC-1 cells.

    Science.gov (United States)

    Li, Siyuan; Gu, Zhuoyu; Xiao, Zhiwei; Zhou, Ting; Li, Jun; Sun, Kan

    2015-01-01

    To investigate whether celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, can attenuate proliferation, migration, invasion and MMP-14 expression in pancreatic cancer cells PANC-1 and the possible anti-tumor mechanism of celecoxib. Human pancreatic cancer cell line PANC-1 cells were treated with diverse concentrations of celecoxib (20, 60, 100 μmol/L). Cell proliferation, invasion and migration capabilities were measured by MTT colorimetry, transwell invasion assay, and scratch assay separately. At the same time, the protein expression of COX-2 and MMP-14 was assessed by ELISA. The capabilities of proliferation, invasion and migration in PANC-1 cells were attenuated in a concentration-dependent manner after treated with celecoxib, followed by the down-regulation of the protein expression of COX-2 and MMP-14. In addition, MMP-14 expression was significantly positively correlated with COX-2 expression. COX-2 inhibitor celecoxib can inhibit the proliferation, invasion and migration of PANC-1 cells via down-regulating the expression of MMP-14 in a concentration-dependent manner, thus contributing to its anti-tumor effect in pancreatic cancer.

  18. Sunitinib significantly suppresses the proliferation, migration, apoptosis resistance, tumor angiogenesis and growth of triple-negative breast cancers but increases breast cancer stem cells.

    Science.gov (United States)

    Chinchar, Edmund; Makey, Kristina L; Gibson, John; Chen, Fang; Cole, Shelby A; Megason, Gail C; Vijayakumar, Srinivassan; Miele, Lucio; Gu, Jian-Wei

    2014-01-01

    The majority of triple-negative breast cancers (TNBCs) are basal-like breast cancers. However there is no reported study on anti-tumor effects of sunitinib in xenografts of basal-like TNBC (MDA-MB-468) cells. In the present study, MDA-MB-231, MDA-MB-468, MCF-7 cells were cultured using RPMI 1640 media with 10% FBS. Vascular endothelia growth factor (VEGF) protein levels were detected using ELISA (R & D Systams). MDA-MB-468 cells were exposed to sunitinib for 18 hours for measuring proliferation (3H-thymidine incorporation), migration (BD Invasion Chamber), and apoptosis (ApopTag and ApoScreen Anuexin V Kit). The effect of sunitinib on Notch-1 expression was determined by Western blot in cultured MDA-MB-468 cells. 10(6) MDA-MB-468 cells were inoculated into the left fourth mammary gland fat pad in athymic nude-foxn1 mice. When the tumor volume reached 100 mm(3), sunitinib was given by gavage at 80 mg/kg/2 days for 4 weeks. Tumor angiogenesis was determined by CD31 immunohistochemistry. Breast cancer stem cells (CSCs) isolated from the tumors were determined by flow cytometry analysis using CD44(+)/CD24(-) or low. ELISA indicated that VEGF was much more highly expressed in MDA-MB-468 cells than MDA-MB-231 and MCF-7 cells. Sunitinib significantly inhibited the proliferation, invasion, and apoptosis resistance in cultured basal like breast cancer cells. Sunitinib significantly increased the expression of Notch-1 protein in cultured MDA-MB-468 or MDA-MB-231 cells. The xenograft models showed that oral sunitinib significantly reduced the tumor volume of TNBCs in association with the inhibition of tumor angiogeneisis, but increased breast CSCs. These findings support the hypothesis that the possibility should be considered of sunitinib increasing breast CSCs though it inhibits TNBC tumor angiogenesis and growth/progression, and that effects of sunitinib on Notch expression and hypoxia may increase breast cancer stem cells. This work provides the groundwork for an

  19. miR-29b and miR-125a Regulate Podoplanin and Suppress Invasion in Glioblastoma

    Science.gov (United States)

    Cortez, Maria Angelica; Nicoloso, Milena Sabrina; Shimizu, Masayoshi; Rossi, Simona; Gopisetty, Gopal; Molina, Jennifer R.; Carlotti, Carlos; Tirapelli, Daniela; Neder, Luciano; Brassesco, Maria Sol; Scrideli, Carlos Alberto; Tone, Luiz Gonzaga; Georgescu, Maria-Magdalena; Zhang, Wei; Puduvalli, Vinay; Calin, George Adrian

    2017-01-01

    Glioblastoma is the most frequent and malignant brain tumor, characterized by an elevated capacity for cellular proliferation and invasion. Recently, it was demonstrated that podoplanin membrane sialo-glycoprotein encoded by PDPN gene is over-expressed and related to cellular invasion in astrocytic tumors; however the mechanisms of regulation are still unknown. MicroRNAs are noncoding RNAs that regulate gene expression and several biological processes and diseases, including cancer. Nevertheless, their roles in invasion, proliferation, and apoptosis of glioblastoma are not completely understood. In this study, we focused on miR-29b and miR-125a, which were predicted to regulate PDPN, and demonstrated that these microRNAs directly target the 3′ untranslated region of PDPN and inhibit invasion, apoptosis, and proliferation of glioblastomas. Furthermore, we report that miR-29b and miR-125a are downregulated in glioblastomas and also in CD133-positive cells. Taken together, these results suggest that miR-29b and miR-125a represent potential therapeutic targets in glioblastoma. PMID:20665731

  20. Regorafenib inhibited gastric cancer cells growth and invasion via CXCR4 activated Wnt pathway.

    Science.gov (United States)

    Lin, Xiao-Lin; Xu, Qi; Tang, Lei; Sun, Li; Han, Ting; Wang, Li-Wei; Xiao, Xiu-Ying

    2017-01-01

    Regorafenib is an oral small-molecule multi kinase inhibitor. Recently, several clinical trials have revealed that regorafenib has an anti-tumor activity in gastric cancer. However, only part of patients benefit from regorafenib, and the mechanisms of regorafenib's anti-tumor effect need further demonstrating. In this study, we would assess the potential anti-tumor effects and the underlying mechanisms of regorafenib in gastric cancer cells, and explore novel biomarkers for patients selecting of regorafenib. The anti-tumor effects of regorafenib on gastric cancer cells were analyzed via cell proliferation and invasion. The underlying mechanisms were demonstrated using molecular biology techniques. We found that regorafenib inhibited cell proliferation and invasion at the concentration of 20μmol/L and in a dose dependent manner. The anti-tumor effects of regorafenib related to the decreased expression of CXCR4, and elevated expression and activation of CXCR4 could reverse the inhibition effect of regorafenib on gastric cancer cells. Further studies revealed that regorafenib reduced the transcriptional activity of Wnt/β-Catenin pathway and led to decreased expression of Wnt pathway target genes, while overexpression and activation of CXCR4 could attenuate the inhibition effect of regorafenib on Wnt/β-Catenin pathway. Our findings demonstrated that regorafenib effectively inhibited cell proliferation and invasion of gastric cancer cells via decreasing the expression of CXCR4 and further reducing the transcriptional activity of Wnt/β-Catenin pathway.

  1. [Effect of LPXN Overexpression on the Proliferation, Adhesion and Invasion of THP-1 Cells and Its Mechamisms].

    Science.gov (United States)

    Dai, Hai-Ping; Zhu, Guo-Hua; Wu, Li-Li; Wang, Qian; Yao, Hong; Wang, Qin-Rong; Wen, Li-Jun; Qiu, Hui-Ying; Shen, Qun; Chen, Su-Ning; Wu, De-Pei

    2017-06-01

    To explore the effect of LPXN overexpression on the proliferation, adhesion and invasion of THP-1 cells and its possible mechanism. A THP-1 cell line with stable overexpression of LPXN was constucted by using a lentivirus method, CCK-8 was used to detect the proliferation of cells, adhesion test was used to evaluate adhesion ablity of cells to Fn. Transwell assay was used to detect the change of invasion capability. Western blot was used to detect expression of LPXN, ERK, pERK and integrin α4, α5, β1, the Gelatin zymography was applied to detect activity of MMP2/MMP9 secreted by the THP-1 cells. Successful establishment of THP-1 cells with LPXN overexpression (THP-1 LPXN) was confirmed with Western blot. THP-1 LPXN cells were shown to proliferate faster than the control THP-1 vector cells. Adhesion to Fn and expression of ERK, integrin α4, α5 and β1 in the THP-1 LPXN cells were higher than that in the control cells. Invasion across matrigel and enhanced activity of MMP2 could be detected both in the THP-1 LPXN cells as compared with the control cells. Ectopically ovexpression of LPXN may promote proliferation of THP-1 cells through up-regulation of ERK; promote adhesion of THP-1 cells through up-regulating the integrin α4/β1 as well as integrin α5/β1 complex; promote invasion of THP-1 cells through activating MMP2.

  2. Combination of NRP1-mediated iRGD with 5-fluorouracil suppresses proliferation, migration and invasion of gastric cancer cells.

    Science.gov (United States)

    Zhang, Li; Xing, Yanfeng; Gao, Qi; Sun, Xuejun; Zhang, Di; Cao, Gang

    2017-09-01

    Gastric cancer is one of the most of common cancers in the world. 5-Fluorouracil (5-FU) has been identified as one of the standard first-line chemotherapy drugs for locally advanced or metastatic gastric cancer. However, poor tumor penetration, bad selectivity and toxic side effects are the major limitations for the application of chemotherapy drugs in anticancer therapy. Recently, plenty of studies demonstrate that the novel tumor-homing peptide iRGD could promote the tumor-penetrating capability of chemotherapy drugs in multiple cancers, and neuropilin-1 (NRP1) protein is the critical mediator for iRGD. Here,we found that NRP1 protein expression was significantly up-regulated in gastric cancer tissues and cell lines by Immunohistochemistry and Western blot. And elevated NRP1 was notably associated with tumor differentiation (P=0.021), tumor size (P=0.004), tumor stage(P=0.028), lymph node metastasis(P=0.032), TNM tumor stage (P=0.006) and poorer prognosis. Functionally, the data of Methyl thiazolyl tetrazolium (MTT) assay, Colony formation assay and Transwell assay revealed that NRP1 could facilitate gastric cancer cells proliferation, migration and invasion. Furthermore, iRGD could strengthen the chemotherapy effect of 5-FU on gastric cancer cells through NRP1. Taken together, NPR1 might be a promising tumor target for gastric cancer, and combination of iRGD with 5-FU may be a novel and valuable approach to improving the prognosis of gastric cancer patients. Copyright © 2017. Published by Elsevier Masson SAS.

  3. Effects of IL-6 on proliferation and apoptosis of tumor cells multi-irradiated for tumor-bearing mice

    International Nuclear Information System (INIS)

    Liu Yongbiao; Yao Side

    2004-01-01

    A study was carried out on effects of IL-6 on the proliferation and apoptosis of tumor cells and the expression of apoptosis relevant genes (p53, bcl-2) in tumor cells for three kinds of fractional total-body-irradiated tumor-bearing mice. The apoptotic index, proliferative index, S phase fraction of S 180 sarcoma, H 22 hepatocarcinoma and Lewis lung cancer cells were measured by flowcytometry (FCM) after total-body-irradiation and irradiation plus IL-6. The protein expression level of p53, bcl-2 in three kinds of tumors was also determined by the immunohisto-chemical method (UltraSensitive S-P). The results showed that the S phase fraction and proliferation index in Lewis lung cancer cells were lower in the irradiated plus IL-6 group than in the control, while apoptotic index was higher (P 180 sarcoma cells were opposite (P 22 hepatocarcinoma. These results revealed that IL-6 promoted the apoptosis of irradiated Lewis lung cancer cells (P 180 sarcoma (P 22 hepatocarcinoma (P>0.05). In Lewis lung cancer the expression level of p53 was lower in the IL-6 group and higher in S 180 sarcoma (P 22 hepatocarcinoma as compared with the control (P>0.05). It is considered that tumor cell's proportion in the cellular cycle is changed by IL-6 and the effects of IL-6 on the expression of p53, bcl-2 in different three kinds of tumors are different. IL-6 has radio-sensitive effects on some tumors and opposite effects on other tumors, it may be related to the expression of p53 and bcl-2 in tumor cells. (authors)

  4. Implications of Rho GTPase signaling in glioma cell invasion and tumor progression

    Directory of Open Access Journals (Sweden)

    Shannon Patricia Fortin Ensign

    2013-10-01

    Full Text Available Glioblastoma (GB is the most malignant of primary adult brain tumors, characterized by a highly locally-invasive cell population, as well as abundant proliferative cells, neoangiogenesis, and necrosis. Clinical intervention with chemotherapy or radiation may either promote or establish an environment for manifestation of invasive behavior. Understanding the molecular drivers of invasion in the context of glioma progression may be insightful in directing new treatments for patients with GB. Here, we review current knowledge on Rho family GTPases, their aberrant regulation in GB, and their effect on GB cell invasion and tumor progression. Rho GTPases are modulators of cell migration through effects on actin cytoskeleton rearrangement; in non-neoplastic tissue, expression and activation of Rho GTPases are normally under tight regulation. In GB, Rho GTPases are deregulated, often via hyperactivity or overexpression of their activators, Rho GEFs. Downstream effectors of Rho GTPases have been shown to promote invasiveness and, importantly, glioma cell survival. The study of aberrant Rho GTPase signaling in GB is thus an important investigation of cell invasion as well as treatment resistance and disease progression.

  5. Effect of helicobacter pylori L-form infection on proliferation, apoptosis and invasion molecule expression in gastric cancer tissue

    Directory of Open Access Journals (Sweden)

    Hua Xin

    2017-05-01

    Full Text Available Objective: To study the effect of Helicobacter pylori L-form infection on proliferation, apoptosis and invasion molecule expression in gastric cancer tissue. Methods: The gastric cancer tissues surgically removed in our hospital between May 2013 and October 2016 were collected and divided into Hp negative, Hp-L negative and Hp-L positive according to the condition of helicobacter pylori infection. The proliferation, apoptosis and invasion gene expression were detected. Results: LOXL2, PCNA, CyclinD1, Rab1A, Bcl-2, Snail, N-cadherin, UHRF1 and AnnexinII mRNA expression in Hp-L-positive gastric cancer tissues were significantly higher than those in Hp-L-negative and Hp-negative gastric cancer tissues while ING5, PTPN13, Beclin1 and Mst1 mRNA expression were significantly lower than those in Hp-L-negative and Hp-negative gastric cancer tissues; LOXL2, PCNA, CyclinD1, Rab1A, Bcl-2, ING5, PTPN13, Beclin1, Mst1, Snail, N-cadherin, UHRF1 and AnnexinII mRNA expression in Hp-L-negative gastric cancer tissues were not different from those in Hpnegative gastric cancer tissues. Conclusion: Helicobacter pylori L-form infection can influence the proliferation, apoptosis and invasion gene expression to promote cell proliferation and invasion, and inhibit cell apoptosis.

  6. Study on the correlation of MLCK and FAP expression with uterine fibroid cell proliferation and invasion

    Directory of Open Access Journals (Sweden)

    Wei Lin1

    2017-06-01

    Full Text Available Objective: To study the correlation of myosin light chain kinase (MLCK and fibroblast activation protein (FAP expression with uterine fibroid cell proliferation and invasion. Methods: Uterine fibroids samples and normal uterine muscle samples next to fibroids that were surgically removed in Wuhan Red Cross Hospital between May 2014 and January 2017 were chosen, fluorescence quantitative PCR kits were used to deterct MLCK and FAP mRNA expression, and enzyme-linked immunosorbent assay kits were used to determine proliferation and invasion gene protein expression. Results: MLCK and FAP mRNA expression in uterine fibroids samples were significantly higher than those in normal uterine muscle samples, and Survivin, Livin, Bcl-2, Snail, N-cadherin and MMP2 protein expression were significantly higher than those in normal uterine muscle samples; Survivin, Livin, Bcl-2, Snail, N-cadherin and MMP2 protein expression in uterine fibroids samples with high MLCK and FAP expression were significantly higher than those in uterine fibroids samples with low MLCK and FAP expression. Conclusion: Highly expressed MLCK and FAP in uterine fibroids can promote the proliferation and invasion of uterine fibroids.

  7. Morphogenesis and Complexity of the Tumor Patterns

    Science.gov (United States)

    Izquierdo-Kulich, E.; Nieto-Villar, J. M.

    A mechanism to describe the apoptosis process at mesoscopic level through p53 is proposed in this paper. A deterministic model given by three differential equations is deduced from the mesoscopic approach, which exhibits sustained oscillations caused by a supercritical Andronov-Hopf bifurcation. Taking as hypothesis that the p53 sustained oscillation is the fundamental mechanism for apoptosis regulation; the model predicts that it is necessary a strict control of p53 to stimulated it, which is an important consideration to established new therapy strategy to fight cancer. The mathematical modeling of tumor growth allows us to describe the most important regularities of these systems. A stochastic model, based on the most important processes that take place at the level of individual cells, is proposed to predict the dynamical behavior of the expected radius of the tumor and its fractal dimension. It was found that the tumor has a characteristic fractal dimension, which contains the necessary information to predict the tumor growth until it reaches a stationary state. The mathematical modeling of tumor growth is an approach to explain the complex nature of these systems. A model that describes tumor growth was obtained by using a mesoscopic formalism and fractal dimension. This model theoretically predicts the relation between the morphology of the cell pattern and the mitosis/apoptosis quotient that helps to predict tumor growth from tumoral cells fractal dimension. The relation between the tumor macroscopic morphology and the cell pattern morphology is also determined. This could explain why the interface fractal dimension decreases with the increase of the cell pattern fractal dimension and consequently with the increase of the mitosis/apoptosis relation. Indexes to characterize tumoral cell proliferation and invasion capacities are proposed and used to predict the growth of different types of tumors. These indexes also show that the proliferation capacity is

  8. MR imaging in tumor invasion of the chest wall

    International Nuclear Information System (INIS)

    Bittner, R.C.; Lang, P.; Schorner, W.; Sander, B.; Weiss, T.; Loddenkemper, R.; Kaiser, D.; Felix, R.

    1989-01-01

    The authors have used MR imaging to study 22 patients who had intrathoracic, pleura-related malignancies and whose CT findings had suggested chest wall invasion. ECG-gated T1- and T2-weighted spin-echo sequences were used in all patients. Additionally, in 10 patients an ungated, multisection, gradient-echo sequence was used, which was repeated after intravenous administration of Gd-DTPA in five patients. Surgery confirmed chest wall invasion in 19 patients. CT showed tumor invasion only in 14 of these 19 patients. MR imaging showed high-signal-intensity lesion within chest wall and pleura in T2-weighted and Gd-DTPA-enhanced T1-weighted images as the typical pattern of chest wall invasion in all 19 patients. Two of the three patients with pleural inflammation and without chest wall invasion had high-signal-intensity pleural lesions, but none of these lesions were within the chest wall

  9. FOXL2-induced follistatin attenuates activin A-stimulated cell proliferation in human granulosa cell tumors

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jung-Chien; Chang, Hsun-Ming; Qiu, Xin; Fang, Lanlan; Leung, Peter C.K., E-mail: peter.leung@ubc.ca

    2014-01-10

    Highlights: •Activin A stimulates cell proliferation in KGN human granulosa cell tumor-derived cell line. •Cyclin D2 mediates activin A-induced KGN cell proliferation. •FOXL2 induces follistatin expression in KGN cells. •FOXL2-induced follistatin attenuates activin A-stimulated KGN cell proliferation. -- Abstract: Human granulosa cell tumors (GCTs) are rare, and their etiology remains largely unknown. Recently, the FOXL2 402C > G (C134W) mutation was found to be specifically expressed in human adult-type GCTs; however, its function in the development of human GCTs is not fully understood. Activins are members of the transforming growth factor-beta superfamily, which has been shown to stimulate normal granulosa cell proliferation; however, little is known regarding the function of activins in human GCTs. In this study, we examined the effect of activin A on cell proliferation in the human GCT-derived cell line KGN. We show that activin A treatment stimulates KGN cell proliferation. Treatment with the activin type I receptor inhibitor SB431542 blocks activin A-stimulated cell proliferation. In addition, our results show that cyclin D2 is induced by treatment with activin A and is involved in activin A-stimulated cell proliferation. Moreover, the activation of Smad signaling is required for activin A-induced cyclin D2 expression. Finally, we show that the overexpression of the wild-type FOXL2 but not the C134W mutant FOXL2 induced follistatin production. Treatment with exogenous follistatin blocks activin A-stimulated cell proliferation, and the overexpression of wild-type FOXL2 attenuates activin A-stimulated cell proliferation. These results suggest that FOXL2 may act as a tumor suppressor in human adult-type GCTs by inducing follistatin expression, which subsequently inhibits activin-stimulated cell proliferation.

  10. Endometrial Cancer: Combined MR Volumetry and Diffusion-weighted Imaging for Assessment of Myometrial and Lymphovascular Invasion and Tumor Grade

    Science.gov (United States)

    Reinhold, Caroline; Alsharif, Shaza S.; Addley, Helen; Arceneau, Jocelyne; Molinari, Nicolas; Guiu, Boris; Sala, Evis

    2015-01-01

    Purpose To investigate magnetic resonance (MR) volumetry of endometrial tumors and its association with deep myometrial invasion, tumor grade, and lymphovascular invasion and to assess the value of apparent diffusion coefficient (ADC) histographic analysis of the whole tumor volume for prediction of tumor grade and lymphovascular invasion. Materials and Methods The institutional review board approved this retrospective study; patient consent was not required. Between May 2010 and May 2012, 70 women (mean age, 64 years; range, 24–91 years) with endometrial cancer underwent preoperative MR imaging, including axial oblique and sagittal T2-weighted, dynamic contrast material–enhanced, and diffusion-weighted imaging. Volumetry of the tumor and uterus was performed during the six sequences, with manual tracing of each section, and the tumor volume ratio (TVR) was calculated. ADC histograms were generated from pixel ADCs from the whole tumor volume. The threshold of TVR associated with myometrial invasion was assessed by using receiver operating characteristic curves. An independent sample Mann Whitney U test was used to compare differences in ADCs, skewness, and kurtosis between tumor grade and the presence of lymphovascular invasion. Results No significant difference in tumor volume and TVR was found among the six MR imaging sequences (P = .95 and .86, respectively). A TVR greater than or equal to 25% allowed prediction of deep myometrial invasion with sensitivity of 100% and specificity of 93% (area under the curve, 0.96; 95% confidence interval: 0.86, 0.99) at axial oblique diffusion-weighted imaging. A TVR of greater than or equal to 25% was associated with grade 3 tumors (P = .0007) and with lymphovascular invasion (P .05). The minimum, 10th, 25th, 50th, 75th, and 90th percentile ADCs were significantly lower in grade 3 tumors than in grades 1 and 2 tumors (P < .02). Conclusion The combination of whole tumor volume and ADC can be used for prediction of tumor

  11. Protease-activated receptor 2 modulates proliferation and invasion of oral squamous cell carcinoma cells.

    Science.gov (United States)

    Al-Eryani, Kamal; Cheng, Jun; Abé, Tatsuya; Maruyama, Satoshi; Yamazaki, Manabu; Babkair, Hamzah; Essa, Ahmed; Saku, Takashi

    2015-07-01

    Based on our previous finding that protease-activated receptor 2 (PAR-2) regulates hemophagocytosis of oral squamous cell carcinoma (SCC) cells, which induces their heme oxygenase 1-dependent keratinization, we have formulated a hypothesis that PAR-2 functions in wider activities of SCC cells. To confirm this hypothesis, we investigated immunohistochemical profiles of PAR-2 in oral SCC tissues and its functional roles in cell proliferation and invasion in SCC cells in culture. The PAR-2 expression modes were determined in 48 surgical tissue specimens of oral SCC. Using oral SCC-derived cell systems, we determined both gene and protein expression levels of PAR-2. SCC cell proliferation and invasive properties were also examined in conditions in which PAR-2 was activated by the synthetic peptide SLIGRL. PAR-2 was immunolocalized in oral SCC and carcinoma in situ cells, especially in those on the periphery of carcinoma cell foci (100% of cases), but not in normal oral epithelia. Its expression at both gene and protein levels was confirmed in 3 oral SCC cell lines including ZK-1. Activation of PAR-2 induced ZK-1 cell proliferation in a dose-dependent manner. PAR-2-activated ZK-1 cells invaded faster than nonactivated ones. The expression of PAR-2 is specific to oral malignancies, and PAR-2 regulates the growth and invasion of oral SCC cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. MR imaging of gestational trophoblastic tumor: role of gadolinium enhancement

    International Nuclear Information System (INIS)

    Choi, Si Young; Byun, Jae Young; Kim, Bum Su; Yun, Young Hyun; Mun, Kyung Mi; Park, Kyung Sin; Kim, Byung Kee; Bae, Seog Nyeon; Shinn, Kyung Sub.

    1997-01-01

    The purpose of this study is to investigate the role of gadolinium enhanced MR imaging in the evaluation of gestational trophoblastic tumors (invasive mole and choriocarcinoma). Pre-enhanced T1-and T2-weighted images and gadolinium enhanced T1-weighted images of 34 gestational trophoblastic tumors (15 choriocarcinomas, 19 invasive moles) were retrospectively evaluated and enhancement patterns were analyzed. Morphologica differences and structural characteristics were analyzed by the evaluation of tumor margin, patterns of hemorrhagic necroses, the development of intratumoral vascularity, and molar villi. Graded scores of MR findings between pre- and gadolinium enhanced images were based on the following criteria : 1) visualization of tumor margin 2) distinction between tumor necrosis and zone of trophoblastic proliferation ; and 3) molar villi. Statistical differences between graded scores of pre- and post-enhanced images were analyzed. Gadolinium enhanced MR imaging was helpful for the visualization of tumor characteristics in gestational trophoblastic tumors and in differential diagnosis between invasive mole and choriocarcinoma. (author). 16 refs., 4 tabs., 4 figs

  13. FAM49B, a novel regulator of mitochondrial function and integrity that suppresses tumor metastasis.

    Science.gov (United States)

    Chattaragada, M S; Riganti, C; Sassoe, M; Principe, M; Santamorena, M M; Roux, C; Curcio, C; Evangelista, A; Allavena, P; Salvia, R; Rusev, B; Scarpa, A; Cappello, P; Novelli, F

    2018-02-08

    Mitochondrial dysregulation plays a central role in cancers and drives reactive oxygen species (ROS)-dependent tumor progression. We investigated the pro-tumoral roles of mitochondrial dynamics and altered intracellular ROS levels in pancreatic ductal adenocarcinoma (PDAC). We identified 'family with sequence similarity 49 member B' (FAM49B) as a mitochondria-localized protein that regulates mitochondrial fission and cancer progression. Silencing FAM49B in PDAC cells resulted in increased fission and mitochondrial ROS generation, which enhanced PDAC cell proliferation and invasion. Notably, FAM49B expression levels in PDAC cells were downregulated by the tumor microenvironment. Overall, the results of this study show that FAM49B acts as a suppressor of cancer cell proliferation and invasion in PDAC by regulating tumor mitochondrial redox reactions and metabolism.

  14. microRNA-495 promotes bladder cancer cell growth and invasion by targeting phosphatase and tensin homolog

    International Nuclear Information System (INIS)

    Tan, Mingyue; Mu, Xingyu; Liu, Zhihong; Tao, Le; Wang, Jun; Ge, Jifu; Qiu, Jianxin

    2017-01-01

    Accumulating evidence has linked deregulation of microRNA-495 (miR-495) to tumorigenesis; however, its function in tumor progression is controversial. This work was undertaken to explore the expression and biological roles of miR-495 in bladder cancer. The expression of miR-495 was examined in 67 pairs of bladder cancer and adjacent normal bladder tissues. The roles of miR-495 in bladder cancer cell proliferation and invasion in vitro and tumorigenesis in vivo were determined. Direct target gene(s) mediating the activity of miR-495 in bladder cancer cells was identified. It was found that miR-495 was expressed at greater levels in bladder tissues and cell lines. High expression of miR-495 was significantly associated with larger tumor size, advanced TNM stage, and lymph node metastasis. Overexpression of miR-495 significantly promoted bladder cancer cell proliferation and invasion, whereas inhibition of miR-495 suppressed cell proliferation and invasion. PTEN, a well-defined tumor suppressor was identified to be a target gene of miR-495. A significant inverse correlation between miR-495 and PTEN expression was noted in bladder cancer tissues (r = −0.3094, P = 0.0125). Overexpression of miR-495 led to reduction of PTEN expression in bladder cancer cells. Rescue experiments showed that enforced expression of PTEN impaired miR-495-mediated bladder cancer proliferation and invasion. In vivo mouse studies demonstrated that overexpression of miR-495 accelerated the growth of subcutaneous bladder cancer xenografts, which was associated with downregulation of PTEN. Overall, these findings indicate that miR-495 upregulation contributes to bladder cancer cell growth, invasion, and tumorigenesis by targeting PTEN and offer a potential therapeutic target for bladder cancer. - Highlights: • miR-495 upregulation induces aggressive phenotype in bladder cancer. • miR-495 is inversely correlated with PTEN in bladder cancer. • miR-495 promotes bladder cancer cell

  15.  The role of metalloproteinases in modification of extracellular matrix in invasive tumor growth, metastasis and angiogenesis

    Directory of Open Access Journals (Sweden)

    Krzysztof Fink

    2012-09-01

    Full Text Available Extracellular matrix metalloproteinases (MMPs are a family of endopeptydases which recquire a zinc ion at their active site, for proteolityc activity. There are six members of the MMP family: matrilysins, collagenases, stromelysins, gelatinases, membrane MMPs and other MMPs. Activity of MMPs is regulated at the level of gene transcription, mRNA stability, zymogene proteolitic activation, inhibition of an active enzyme and MMP degradation. Tissue inhibitors of metalloproteinases (TIMPs are main intracellular inhibitors of MMPs. Host cells can be stimulated by tumor cells to produce MMPs by secreted interleukins, interferons, growth factors and an extracellular matrix metalloproteinase inducer (EMMPRIN. MMPs are produced by tumor cells, fibroblasts, macrophages, mast cells, polimorphonuclear neutrophiles (PMNs and endothelial cells (ECs. MMPs affect many stages of tumor development, facilitating its growth through promoting tumor cells proliferation, invasion and migration, new blood vessels formation and blocking tumor cells apoptosis. MMPs can promote tumor development in several ways. ECM degradation results in release of peptide growth factors. Growth factors linked with cell surface or binding proteins can also be liberated by MMPs. MMPs can indirectly regulate integrin signalling or cleave E-cadherins, facilitating cell migration. MMPs support metastasis inducing an epithelial to mesenchymal transition (EMT. MMP also support transendothelial migration. MMPs support angiogenesis by releasing pro-angiogenic factors and degrading ECM to support ECs migration. Cell surface growth factor receptors are also cleaved by MMPs, which results in inhibition of tumor development, so is release of anti-angiogenic factors from ECM. 

  16. Silencing of the integrin-linked kinase gene suppresses the proliferation, migration and invasion of pancreatic cancer cells (Panc-1).

    Science.gov (United States)

    Zhu, Xiang-Yu; Liu, Ning; Liu, Wei; Song, Shao-Wei; Guo, Ke-Jian

    2012-04-01

    Integrin-linked kinase (ILK) is an ankyrin repeat-containing serine-threonine protein kinase that is involved in the regulation of integrin-mediated processes such as cancer cell proliferation, migration and invasion. In this study, we examined the effect of a lentivirus-mediated knockdown of ILK on the proliferation, migration and invasion of pancreatic cancer (Panc-1) cells. Immunohistochemical staining showed that ILK expression was enhanced in pancreatic cancer tissue. The silencing of ILK in human Panc-1 cells led to cell cycle arrest in the G0/G1 phase and delayed cell proliferation, in addition to down-regulating cell migration and invasion. The latter effects were mediated by up-regulating the expression of E-cadherin, a key protein in cell adhesion. These findings indicate that ILK may be a new diagnostic marker for pancreatic cancer and that silencing ILK could be a potentially useful therapeutic approach for treating pancreatic cancer.

  17. Misregulation of Stromelysin-1 in Mouse Mammary Tumor Cells Accompanies Acquisition of Stromelysin-1 dependent Invasive Properties

    Energy Technology Data Exchange (ETDEWEB)

    Lochter, A.; Srebrow, A.; Sympson, C.J.; Terracio, N.; Werb, Z.; Bissell, M.J.

    1997-02-21

    Stromelysin-1 is a member of the metalloproteinase family of extracellular matrix-degrading enzymes that regulates tissue remodeling. We previously established a transgenic mouse model in which rat stromelysin-1 targeted to the mammary gland augmented expression of endogenous stromelysin-1, disrupted functional differentiation, and induced mammary tumors. A cell line generated from an adenocarcinoma in one of these animals and a previously described mammary tumor cell line generated in culture readily invaded both a reconstituted basement membrane and type I collagen gels, whereas a nonmalignant, functionally normal epithelial cell line did not. Invasion of Matrigel by tumor cells was largely abolished by metalloproteinase inhibitors, but not by inhibitors of other proteinase families. Inhibition experiments with antisense oligodeoxynucleotides revealed that Matrigel invasion of both cell lines was critically dependent on stromelysin-1 expression. Invasion of collagen, on the other hand, was reduced by only 40-50%. Stromelysin-1 was expressed in both malignant and nonmalignant cells grown on plastic substrata. Its expression was completely inhibited in nonmalignant cells, but up-regulated in tumor cells, in response to Matrigel. Thus misregulation of stromelysin-1 expression appears to be an important aspect of mammary tumor cell progression to an invasive phenotype. The matrix metalloproteinases (MMPs) are a family of extracellular matrix (ECM)-degrading enzymes that have been implicated in a variety of normal developmental and pathological processes, including tumorigenesis. The MMP family comprises at least 15 members with different, albeit overlapping, substrate specificities. During activation of latent MMPs, their propeptides are cleaved and they are converted to a lower molecular weight form by other enzymes, including serine proteinases, and by autocatalytic cleavage. Among the MMPs, stromelysin-1 (SL1) possesses the broadest substrate specificity. Despite

  18. TROP2 overexpression promotes proliferation and invasion of lung adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zanhua [Medical School of Nanchang University (China); The Chest Hospital of Jiangxi Province Department of Respiration (China); Jiang, Xunsheng [Department of Respiration, Medical School of Nanchang University (China); Zhang, Wei, E-mail: weizhangncu@gmail.com [Department of Respiration, The First Affiliated Hospital of Nanchang University (China)

    2016-01-29

    Recent studies suggest that the human trophoblast cell-surface antigen TROP2 is highly expressed in a number of tumours and is correlated with poor prognosis. However, its role in non-small cell lung carcinoma (NSCLC) remains largely unknown. Here we examined TROP2 expression by immunohistochemistry in a series of 68 patients with adenocarcinoma (ADC). We found significantly elevated TROP2 expression in ADC tissues compared with normal lung tissues (P < 0.05), and TROP2 overexpression was significantly associated with TNM (tumour, node, metastasis) stage (P = 0.012), lymph node metastasis (P = 0.038), and histologic grade (P = 0.013). Kaplan–Meier survival analysis revealed that high TROP2 expression correlated with poor prognosis (P = 0.046). Multivariate analysis revealed that TROP2 expression was an independent prognostic marker for overall survival of ADC patients. Moreover, TROP2 overexpression enhanced cell proliferation, migration, and invasion in the NSCLC cell line A549, whereas knockdown of TROP2 induced apoptosis and impaired proliferation, migration, and invasion in the PC-9 cells. Altogether, our data suggest that TROP2 plays an important role in promoting ADC and may represent a novel prognostic biomarker and therapeutic target for the disease.

  19. Spatial intratumoral heterogeneity of proliferation in immunohistochemical images of solid tumors

    International Nuclear Information System (INIS)

    Valous, Nektarios A.; Lahrmann, Bernd; Halama, Niels; Grabe, Niels; Bergmann, Frank; Jäger, Dirk

    2016-01-01

    not only on percentage content of proliferation phase but also on how the phase fills the space. Lacunarity curves demonstrate variations in the sampled image sections. Since the spatial distribution of proliferation in each case is different, the width of the curves changes too. Image sections that have smaller numerical variations in the computed features correspond to neoplasms with spatially homogeneous proliferation, while larger variations correspond to cases where proliferation shows various degrees of clumping. Grade 1 (uniform/nonuniform: 74%/26%) and grade 3 (uniform: 100%) pNENs demonstrate a more homogeneous proliferation with grade 1 neoplasms being more variant, while grade 2 tumor regions render a more diverse landscape (50%/50%). Hence, some cases show an increased degree of spatial heterogeneity comparing to others with similar grade. Whether this is a sign of different tumor biology and an association with a more benign/malignant clinical course needs to be investigated further. The extent and range of spatial heterogeneity has the potential to be evaluated as a prognostic marker. Conclusions: The association with tumor grade as well as the rationale that the methodology reflects true tumor architecture supports the technical soundness of the method. This reflects a general approach which is relevant to other solid tumors and biomarkers. Drawing upon the merits of computational biomedicine, the approach uncovers salient features for use in future studies of clinical relevance.

  20. Spatial intratumoral heterogeneity of proliferation in immunohistochemical images of solid tumors.

    Science.gov (United States)

    Valous, Nektarios A; Lahrmann, Bernd; Halama, Niels; Bergmann, Frank; Jäger, Dirk; Grabe, Niels

    2016-06-01

    content of proliferation phase but also on how the phase fills the space. Lacunarity curves demonstrate variations in the sampled image sections. Since the spatial distribution of proliferation in each case is different, the width of the curves changes too. Image sections that have smaller numerical variations in the computed features correspond to neoplasms with spatially homogeneous proliferation, while larger variations correspond to cases where proliferation shows various degrees of clumping. Grade 1 (uniform/nonuniform: 74%/26%) and grade 3 (uniform: 100%) pNENs demonstrate a more homogeneous proliferation with grade 1 neoplasms being more variant, while grade 2 tumor regions render a more diverse landscape (50%/50%). Hence, some cases show an increased degree of spatial heterogeneity comparing to others with similar grade. Whether this is a sign of different tumor biology and an association with a more benign/malignant clinical course needs to be investigated further. The extent and range of spatial heterogeneity has the potential to be evaluated as a prognostic marker. The association with tumor grade as well as the rationale that the methodology reflects true tumor architecture supports the technical soundness of the method. This reflects a general approach which is relevant to other solid tumors and biomarkers. Drawing upon the merits of computational biomedicine, the approach uncovers salient features for use in future studies of clinical relevance.

  1. Spatial intratumoral heterogeneity of proliferation in immunohistochemical images of solid tumors

    Energy Technology Data Exchange (ETDEWEB)

    Valous, Nektarios A. [Applied Tumor Immunity Clinical Cooperation Unit, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg 69120 (Germany); Lahrmann, Bernd; Halama, Niels; Grabe, Niels [Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg 69120 (Germany); Bergmann, Frank [Institute of Pathology, Heidelberg University Hospital, Heidelberg 69120 (Germany); Jäger, Dirk [Department of Medical Oncology, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg 69120, Germany and National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg 69120 (Germany)

    2016-06-15

    not only on percentage content of proliferation phase but also on how the phase fills the space. Lacunarity curves demonstrate variations in the sampled image sections. Since the spatial distribution of proliferation in each case is different, the width of the curves changes too. Image sections that have smaller numerical variations in the computed features correspond to neoplasms with spatially homogeneous proliferation, while larger variations correspond to cases where proliferation shows various degrees of clumping. Grade 1 (uniform/nonuniform: 74%/26%) and grade 3 (uniform: 100%) pNENs demonstrate a more homogeneous proliferation with grade 1 neoplasms being more variant, while grade 2 tumor regions render a more diverse landscape (50%/50%). Hence, some cases show an increased degree of spatial heterogeneity comparing to others with similar grade. Whether this is a sign of different tumor biology and an association with a more benign/malignant clinical course needs to be investigated further. The extent and range of spatial heterogeneity has the potential to be evaluated as a prognostic marker. Conclusions: The association with tumor grade as well as the rationale that the methodology reflects true tumor architecture supports the technical soundness of the method. This reflects a general approach which is relevant to other solid tumors and biomarkers. Drawing upon the merits of computational biomedicine, the approach uncovers salient features for use in future studies of clinical relevance.

  2. The 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors, simvastatin, lovastatin and mevastatin inhibit proliferation and invasion of melanoma cells

    International Nuclear Information System (INIS)

    Glynn, Sharon A; O'Sullivan, Dermot; Eustace, Alex J; Clynes, Martin; O'Donovan, Norma

    2008-01-01

    A number of recent studies have suggested that cancer incidence rates may be lower in patients receiving statin treatment for hypercholesterolemia. We examined the effects of statin drugs on in vitro proliferation, migration and invasion of melanoma cells. The ability of lovastatin, mevastatin and simvastatin to inhibit the melanoma cell proliferation was examined using cytotoxicity and apoptosis assays. Effects on cell migration and invasion were assessed using transwell invasion and migration chambers. Hypothesis testing was performed using 1-way ANOVA, and Student's t-test. Lovastatin, mevastatin and simvastatin inhibited the growth, cell migration and invasion of HT144, M14 and SK-MEL-28 melanoma cells. The concentrations required to inhibit proliferation of melanoma cells (0.8–2.1 μM) have previously been achieved in a phase I clinical trial of lovastatin in patients with solid tumours, (45 mg/kg/day resulted in peak plasma concentrations of approximately 3.9 μM). Our results suggest that statin treatment is unlikely to prevent melanoma development at standard doses. However, higher doses of statins may have a role to play in adjuvant therapy by inhibiting growth and invasion of melanoma cells

  3. Preliminary Study on the Effect of Adipocytes on the Biological Behaviors of
Lung Adenocarcinoma A549 Cells in Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Hang ZHANG

    2018-05-01

    Full Text Available Background and objective Adipocytes in the tumor microenvironment may provide the metabolic fuel or signal transduction through media and other means to promote a variety of malignant proliferation and invasion, of tumor cells, but their role in lung cancer progression is still unclear. The purpose of this study was to investigate the effect of adipocytes on lung cancer cell biology. Methods 3T3-L1 pre-adipocytes were induced into mature adipocytes. The cell morphology was observed by microscopy and Oil Red O staining. MTT assay, colony formation assay, wound-healing and Transwell methods were used to detect lung cancer cell proliferation, migration and invasion ability. The content of triglyceride in cells was determined by colorimetry. Results The morphology of lung adenocarcinoma A549 cells became more slender after co-culture with mature adipocytes, and the proliferation and cloning ability were significantly enhanced (P<0.05. In addition, mature adipocytes can also promote the migration ability (P<0.05, invasion ability (P<0.01 and accumulation of intracellular lipid (P<0.05 of A549 cells. Conclusion These findings suggested that adipocytes in tumor microenvironment can promote the proliferation, migration and invasion of lung adenocarcinoma A549 cells, which may be related to lipid metabolism.

  4. MicroRNA-1297 inhibits prostate cancer cell proliferation and invasion by targeting the AEG-1/Wnt signaling pathway

    International Nuclear Information System (INIS)

    Liang, Xuan; Li, Hecheng; Fu, Delai; Chong, Tie; Wang, Ziming; Li, Zhaolun

    2016-01-01

    MicroRNAs (miRNAs) have been known to be implicated in tumorigenic programs. miR-1297 has been reported to be dysregulated and involved in cancer progression in many types of human cancers. However, the expression level and the role of miR-1297 in prostate cancer remain unclear. Herein, we aimed to investigate the potential role and molecular mechanism of miR-1297 in prostate cancer progression. We found that miR-1297 was significantly downregulated in human prostate cancer specimens as well as in several prostate cancer cell lines. In addition, functional experiments demonstrated that overexpression of miR-1297 remarkably inhibited prostate cancer cell proliferation and invasion whereas miR-1297 suppression significantly promoted prostate cancer cell proliferation and invasion. Bioinformatics analysis showed that the Astrocyte elevated gene-1 (AEG-1), a well-known oncogene, is a predicted target of miR-1297. Dual-luciferase reporter assay showed that miR-1297 was able to directly target the 3’-untranslated region of AEG-1. In addition, RT-qPCR and Western blot analysis showed that miR-1297 regulated the mRNA and protein expression levels of AEG-1. We also showed that miR-1297 was able to regulate the Wnt signaling pathway. Moreover, rescue assays indicated that AEG-1 contributed to miR-1297-endowed effects on cell proliferation and invasion as well as Wnt signaling pathway. Taken together, these findings suggest that miR-1297 inhibits prostate cancer proliferation and invasion by targeting AEG-1, thereby providing novel insight into understanding the pathogenesis of prostate cancer. Thus, miR-1297 may be a novel potential therapeutic candidate to treat prostate cancer. - Highlights: • miR-1297 is decreased in prostate cancer. • miR-1297 inhibits prostate cancer cell proliferation and invasion. • miR-1297 targets and inhibits AEG-1. • miR-1297 regulates AEG-1/Wnt signaling pathway.

  5. EVALUATION OF LYMPHATIC SPREAD, VISCERAL METASTASIS AND TUMORAL LOCAL INVASION IN ESOPHAGEAL CARCINOMAS.

    Science.gov (United States)

    Tustumi, Francisco; Kimura, Cintia Mayumi Sakurai; Takeda, Flavio Roberto; Sallum, Rubens Antônio Aissar; Ribeiro-Junior, Ulysses; Cecconello, Ivan

    2016-01-01

    Knowing esophageal tumors behavior in relationship to lymph node involvement, distant metastases and local tumor invasion is of paramount importance for the best esophageal tumors management. To describe lymph node involvement, distant metastases, and local tumor invasion in esophageal carcinoma, according to tumor topography and histology. A total of 444 patients with esophageal squamous cell carcinoma and 105 adenocarcinoma were retrospectively analyzed. They were divided into four groups: adenocarcinoma and squamous cell carcinoma in the three esophageal segments: cervical, middle, and distal. They were compared based on their CT scans at the time of the diagnosis. Nodal metastasis showed great relationship with of primary tumor site. Lymph nodes of hepatogastric, perigastric and peripancreatic ligaments were mainly affected in distal tumors. Periaortic, interaortocaval and portocaval nodes were more commonly found in distal squamous carcinoma; subcarinal, paratracheal and subaortic nodes in middle; neck chains were more affected in cervical squamous carcinoma. Adenocarcinoma had a higher frequency of peritoneal involvement (11.8%) and liver (24.5%) than squamous cell carcinoma. Considering the local tumor invasion, the more cranial neoplasia, more common squamous invasion of airways, reaching 64.7% in the incidence of cervical tumors. Middle esophageal tumors invade more often aorta (27.6%) and distal esophageal tumors, the pericardium and the right atrium (10.4%). Esophageal adenocarcinoma and squamous cell carcinoma in different topographies present peculiarities in lymph node involvement, distant metastasis and local tumor invasion. These differences must be taken into account in esophageal cancer patients' care. Conhecer o comportamento das neoplasias esofágicas em relação à disseminação linfonodal, distribuição de metástases e invasão local do tumor, pode auxiliar o manejo dos pacientes. Descrever o envolvimento linfonodal, disseminação metast

  6. Effects of low dose radiation combined with cyclophosphamide on tumor cell apoptosis, cell cycle and proliferation of bone marrow in tumor-bearing mice

    International Nuclear Information System (INIS)

    Yu Hongsheng; Fei Conghe; Shen Fangzhen; Liang Jun

    2004-01-01

    Objective: To study the effect of low dose radiation (LDR) combined with cyclophosphamide on tumor cell apoptosis, cell cycle, and proliferation of bone marrow in mice tumor-bearing mice. Methods: Kunming strain male mice were implanted with S180 sarcoma cells in the left hind leg subcutaneously as an experimental animal model. Five and 8 days after implantation, the mice were given 75 mGy whole-body γ-ray radiation and CTX(300 mg/kg) by intraperitoneal injection 36 hour after LDR. All mice were sacrificed to measure the tumor volume, tumor cell apoptosis, and cell cycle; the proliferation of bone marrow was analyzed by flow cytometry. Results: Tumor growth was significantly slowed down in the treated groups. The apoptosis of tumor cells increased significantly after LDR. The tumor cells were arrested in G 1 phase in CTX and CTX+LDR groups, more significantly in the latter group than in the former group. Concentration of bone marrow cells and proliferation index in CTX + LDR group were higher than those in CTX group, although concentration of bone marrow cells in CTX and CTX+LDR groups were much lower than that in normal mice. Conclusion: Low dose radiation combined with cyclophosphamide causes more significant G 1 -phase arrest than cyclophosphamide alone and enhances anti-tumor effect markedly. At the same time LDR significantly protects hematopoietic function of bone marrow, which is of practical significance as an adjuvant chemotherapy

  7. Molecular mechanisms involved in the inhibition of tumor cells proliferation exposed to elevated concentrations of the epidermal growth factor

    International Nuclear Information System (INIS)

    Guillen, Isabel A; Berlanga, Jorge; Camacho, Hanlet

    2013-01-01

    The EGF promotes inhibition of cell proliferation in vitro and in vivo models depending on its concentration, application schema and the type of tumor cells on which it acts. Our research hypothesis was based on the fact that the EGF varies the expression of genes involved in a negative regulation of tumor cell lines proliferation carrying high levels of its receptor (EGFR). Our objectives were, to obtain information about the effect of EGF on tumor cell proliferation in vitro and in vivo models and, know the gene expression patterns of a group of genes involved in cancer signaling pathways and EGFR. The results showed that EGF at nanomolar concentrations inhibits the tumor cells proliferation bearing high levels of EGFR and, promotes the survival of treated animals, establishing a direct relationship between the inhibition of cell proliferation, high concentrations of EGF and, high amount of EGFR in the cells. The differential gene expression profile showed a variation in a group of genes which exert a powerful control over the cell cycle progression, gene transcription and apoptosis. It was concluded that the inhibition of tumor cell proliferation by the action of EGF is due to activation of molecular mechanisms controlling cell cycle progression. This work won the Annual Award of the Cuban Academy of Sciences in 2012

  8. Expression of adrenomedullin in human colorectal tumors and its role in cell growth and invasion in vitro and in xenograft growth in vivo

    International Nuclear Information System (INIS)

    Nouguerède, Emilie; Berenguer, Caroline; Garcia, Stéphane; Bennani, Bahia; Delfino, Christine; Nanni, Isabelle; Dahan, Laetitia; Gasmi, Mohamed; Seitz, Jean-François; Martin, Pierre-Marie; Ouafik, L'Houcine

    2013-01-01

    Adrenomedullin (AM) is a multifunctional peptide vasodilator that transduces its effects through calcitonin receptor-like receptor/receptor activity-modifying protein-2 and -3 (CLR/RAMP2 and CLR/RAMP3). In this study, real-time quantitative reverse transcription demonstrated a significant expression of AM mRNA in tumor samples from colorectal cancer (CRC) patients in clinical stage II, III, and IV when compared with normal colorectal tissue. AM, CLR, RAMP2, and RAMP3 proteins were immunohistochemically localized in the carcinomatous epithelial compartment of CRC tissue. Tissue microarray analysis revealed a clear increase of AM, CLR, RAMP2, and RAMP3 staining in lymph node and distant metastasis when compared with primary tumors. The human colon carcinoma cells HT-29 expressed and secreted AM into the culture medium with a significant increase under hypoxia. Treatment of HT-29 cells with synthetic AM stimulated cell proliferation and invasion in vitro. Incubation with anti-AM antibody (αAM), anti-AM receptors antibodies (αAMR), or AM antagonist AM 22–52 inhibited significantly basal levels of proliferation of HT-29 cells, suggesting that AM may function as an autocrine growth factor for CRC cells. Treatment with αAM significantly suppressed the growth of HT-29 tumor xenografts in vivo. Histological examination of αAM-treated tumors showed evidence of disruption of tumor vascularity with decreased microvessel density, depletion of endothelial cells and pericytes, and increased tumor cell apoptosis. These findings highlight the potential importance of AM and its receptors in the progression of CRC and support the conclusion that αAM treatment inhibits tumor growth by suppression of angiogenesis and tumor growth, suggesting that AM may be a useful therapeutic target

  9. Silencing of the integrin-linked kinase gene suppresses the proliferation, migration and invasion of pancreatic cancer cells (Panc-1

    Directory of Open Access Journals (Sweden)

    Xiang-Yu Zhu

    2012-01-01

    Full Text Available Integrin-linked kinase (ILK is an ankyrin repeat-containing serine-threonine protein kinase that is involved in the regulation of integrin-mediated processes such as cancer cell proliferation, migration and invasion. In this study, we examined the effect of a lentivirus-mediated knockdown of ILK on the proliferation, migration and invasion of pancreatic cancer (Panc-1 cells. Immunohistochemical staining showed that ILK expression was enhanced in pancreatic cancer tissue. The silencing of ILK in human Panc-1 cells led to cell cycle arrest in the G0/G1 phase and delayed cell proliferation, in addition to down-regulating cell migration and invasion. The latter effects were mediated by up-regulating the expression of E-cadherin, a key protein in cell adhesion. These findings indicate that ILK may be a new diagnostic marker for pancreatic cancer and that silencing ILK could be a potentially useful therapeutic approach for treating pancreatic cancer.

  10. Metformin inhibits the proliferation of human prostate cancer PC-3 cells via the downregulation of insulin-like growth factor 1 receptor

    International Nuclear Information System (INIS)

    Kato, Haruo; Sekine, Yoshitaka; Furuya, Yosuke; Miyazawa, Yoshiyuki; Koike, Hidekazu; Suzuki, Kazuhiro

    2015-01-01

    Metformin is a biguanide drug that is widely used for the treatment of type 2 diabetes. Recent studies have shown that metformin inhibits cancer cell proliferation and tumor growth both in vitro and in vivo. The anti-tumor mechanisms of metformin include activation of the AMP-activated protein kinase/mTOR pathway and direct inhibition of insulin/insulin-like growth factor (IGF)-mediated cellular proliferation. However, the anti-tumor mechanism in prostate cancer remains unclear. Because activation of the IGF-1 receptor (IGF-1R) is required for prostate cell proliferation, IGF-1R inhibitors may be of therapeutic value. Accordingly, we examined the effects of metformin on IGF-1R signaling in prostate cancer cells. Metformin significantly inhibited PC-3 cell proliferation, migration, and invasion. IGF-1R mRNA expression decreased significantly after 48 h of treatment, and IGF-1R protein expression decreased in a similar manner. IGF-1R knockdown by siRNA transfection led to inhibited proliferation, migration and invasion of PC-3 cells. IGF-1 activated both ERK1/2 and Akt, but these effects were attenuated by metformin treatment. In addition, intraperitoneal treatment with metformin significantly reduced tumor growth and IGF-1R mRNA expression in PC-3 xenografts. Our results suggest that metformin is a potent inhibitor of the IGF-1/IGF-1R system and may be beneficial in prostate cancer treatment. - Highlights: • Metformin inhibited PC-3 cell proliferation, migration, and invasion. • Metformin decreased IGF-1R mRNA and protein expressions in PC-3 cells. • Metformin inhibited IGF-1 induced ERK and Akt phosphorylations in PC-3 cells. • Metformin treatment inhibited PC-3 cell growth and IGF-1R expression in vivo. • Metformin may be a potent inhibitor of the IGF-1/IGF-1R signaling

  11. Metformin inhibits the proliferation of human prostate cancer PC-3 cells via the downregulation of insulin-like growth factor 1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Haruo, E-mail: hal.kato@gunma-u.ac.jp; Sekine, Yoshitaka; Furuya, Yosuke; Miyazawa, Yoshiyuki; Koike, Hidekazu; Suzuki, Kazuhiro

    2015-05-22

    Metformin is a biguanide drug that is widely used for the treatment of type 2 diabetes. Recent studies have shown that metformin inhibits cancer cell proliferation and tumor growth both in vitro and in vivo. The anti-tumor mechanisms of metformin include activation of the AMP-activated protein kinase/mTOR pathway and direct inhibition of insulin/insulin-like growth factor (IGF)-mediated cellular proliferation. However, the anti-tumor mechanism in prostate cancer remains unclear. Because activation of the IGF-1 receptor (IGF-1R) is required for prostate cell proliferation, IGF-1R inhibitors may be of therapeutic value. Accordingly, we examined the effects of metformin on IGF-1R signaling in prostate cancer cells. Metformin significantly inhibited PC-3 cell proliferation, migration, and invasion. IGF-1R mRNA expression decreased significantly after 48 h of treatment, and IGF-1R protein expression decreased in a similar manner. IGF-1R knockdown by siRNA transfection led to inhibited proliferation, migration and invasion of PC-3 cells. IGF-1 activated both ERK1/2 and Akt, but these effects were attenuated by metformin treatment. In addition, intraperitoneal treatment with metformin significantly reduced tumor growth and IGF-1R mRNA expression in PC-3 xenografts. Our results suggest that metformin is a potent inhibitor of the IGF-1/IGF-1R system and may be beneficial in prostate cancer treatment. - Highlights: • Metformin inhibited PC-3 cell proliferation, migration, and invasion. • Metformin decreased IGF-1R mRNA and protein expressions in PC-3 cells. • Metformin inhibited IGF-1 induced ERK and Akt phosphorylations in PC-3 cells. • Metformin treatment inhibited PC-3 cell growth and IGF-1R expression in vivo. • Metformin may be a potent inhibitor of the IGF-1/IGF-1R signaling.

  12. EMMPRIN promotes angiogenesis, proliferation, invasion and resistance to sunitinib in renal cell carcinoma, and its level predicts patient outcome.

    Science.gov (United States)

    Sato, Mototaka; Nakai, Yasutomo; Nakata, Wataru; Yoshida, Takahiro; Hatano, Koji; Kawashima, Atsunari; Fujita, Kazutoshi; Uemura, Motohide; Takayama, Hitoshi; Nonomura, Norio

    2013-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) has been reported to play crucial roles, including in angiogenesis, in several carcinomas. However, the correlation between EMMPRIN levels and angiogenesis expression profile has not been reported, and the role of EMMPRIN in renal cell carcinoma (RCC) is unclear. In the present study, we evaluated the association of EMMPRIN with angiogenesis, its value in prognosis, and its roles in RCC. EMMPRIN expression was examined in 50 RCC patients treated with radical nephrectomy. Angiogenesis, proliferation, and invasion activity were evaluated using EMMPRIN knockdown RCC cell lines. The size of EMMPRIN-overexpressing xenografts was measured and the degree of angiogenesis was quantified. EMMPRIN expression was evaluated in RCC patients who received sunitinib therapy and in sunitinib-resistant cells. Further, the relation between EMMPRIN expression and sensitivity to sunitinib was examined. EMMPRIN score was significantly associated with clinicopathological parameters in RCC patients, as well as being significantly correlated with microvessel area (MVA) in immature vessels and with prognosis. Down-regulation of EMMPRIN by siRNA led to decreased VEGF and bFGF expression, cell proliferation, and invasive potential. EMMPRIN over-expressing xenografts showed accelerated growth and MVA of immature vessels. EMMPRIN expression was significantly increased in patients who received sunitinib therapy as well as in sunitinib-resistant 786-O cells (786-suni). EMMPRIN-overexpressing RCC cells were resistant to sunitinib. Our findings indicate that high expression of EMMPRIN in RCC plays important roles in tumor progression and sunitinib resistance. Therefore, EMMPRIN could be a novel target for the treatment of RCC.

  13. EMMPRIN promotes angiogenesis, proliferation, invasion and resistance to sunitinib in renal cell carcinoma, and its level predicts patient outcome.

    Directory of Open Access Journals (Sweden)

    Mototaka Sato

    Full Text Available Extracellular matrix metalloproteinase inducer (EMMPRIN has been reported to play crucial roles, including in angiogenesis, in several carcinomas. However, the correlation between EMMPRIN levels and angiogenesis expression profile has not been reported, and the role of EMMPRIN in renal cell carcinoma (RCC is unclear. In the present study, we evaluated the association of EMMPRIN with angiogenesis, its value in prognosis, and its roles in RCC.EMMPRIN expression was examined in 50 RCC patients treated with radical nephrectomy. Angiogenesis, proliferation, and invasion activity were evaluated using EMMPRIN knockdown RCC cell lines. The size of EMMPRIN-overexpressing xenografts was measured and the degree of angiogenesis was quantified. EMMPRIN expression was evaluated in RCC patients who received sunitinib therapy and in sunitinib-resistant cells. Further, the relation between EMMPRIN expression and sensitivity to sunitinib was examined.EMMPRIN score was significantly associated with clinicopathological parameters in RCC patients, as well as being significantly correlated with microvessel area (MVA in immature vessels and with prognosis. Down-regulation of EMMPRIN by siRNA led to decreased VEGF and bFGF expression, cell proliferation, and invasive potential. EMMPRIN over-expressing xenografts showed accelerated growth and MVA of immature vessels. EMMPRIN expression was significantly increased in patients who received sunitinib therapy as well as in sunitinib-resistant 786-O cells (786-suni. EMMPRIN-overexpressing RCC cells were resistant to sunitinib.Our findings indicate that high expression of EMMPRIN in RCC plays important roles in tumor progression and sunitinib resistance. Therefore, EMMPRIN could be a novel target for the treatment of RCC.

  14. AA-PMe, a novel asiatic acid derivative, induces apoptosis and suppresses proliferation, migration, and invasion of gastric cancer cells.

    Science.gov (United States)

    Jing, Yue; Wang, Gang; Ge, Ying; Xu, Minjie; Tang, Shuainan; Gong, Zhunan

    2016-01-01

    Asiatic acid (AA; 2α,3β,23-trihydroxyurs-12-ene-28-oic acid) is widely used for medicinal purposes in many Asian countries due to its various bioactivities. A series of AA derivatives has been synthesized in attempts to improve its therapeutic potencies. Herein we investigated the anti-tumor activities of N-(2α,3β,23-acetoxyurs-12-en-28-oyl)-l-proline methyl ester (AA-PMe), a novel AA derivative. AA-PMe exhibited a stronger anti-cancer activity than its parent compound AA. AA-PMe inhibited the proliferation of SGC7901 and HGC27 human gastric cancer cells in a dose-dependent manner but had no significant toxicity in human gastric mucosa epithelial cells (GES-1). AA-PMe induced cell cycle arrest in G0/G1 phase and blocked G1-S transition, which correlated well with marked decreases in levels of cyclin D1, cyclin-dependent kinase CKD4, and phosphorylated retinoblastoma protein, and increase in cyclin-dependent kinase inhibitor P15. Further, AA-PMe induced apoptosis of human gastric cancer cells by affecting Bcl-2, Bax, c-Myc, and caspase-3. Moreover, AA-PMe suppressed the migration and invasion of human gastric cancer cells (SGC7901 and HGC27) cells by downregulating the expression of MMP-2 and MMP-9. Overall, this study investigated the potential anti-cancer activities of AA-PMe including inducing apoptosis and suppressing proliferation, migration and invasion of gastric cancer cells, as well as the underlying mechanisms, suggesting that AA-PMe is a promising anti-cancer drug candidate in gastric cancer therapy.

  15. Breast cancer cell behaviors on staged tumorigenesis-mimicking matrices derived from tumor cells at various malignant stages

    International Nuclear Information System (INIS)

    Hoshiba, Takashi; Tanaka, Masaru

    2013-01-01

    Highlights: •Models mimicking ECM in tumor with different malignancy were prepared. •Cancer cell proliferation was suppressed on benign tumor ECM. •Benign tumor cell proliferation was suppressed on cancerous ECM. •Chemoresistance of cancer cell was enhanced on cancerous ECM. -- Abstract: Extracellular matrix (ECM) has been focused to understand tumor progression in addition to the genetic mutation of cancer cells. Here, we prepared “staged tumorigenesis-mimicking matrices” which mimic in vivo ECM in tumor tissue at each malignant stage to understand the roles of ECM in tumor progression. Breast tumor cells, MDA-MB-231 (invasive), MCF-7 (non-invasive), and MCF-10A (benign) cells, were cultured to form their own ECM beneath the cells and formed ECM was prepared as staged tumorigenesis-mimicking matrices by decellularization treatment. Cells showed weak attachment on the matrices derived from MDA-MB-231 cancer cells. The proliferations of MDA-MB-231 and MCF-7 was promoted on the matrices derived from MDA-MB-231 cancer cells whereas MCF-10A cell proliferation was not promoted. MCF-10A cell proliferation was promoted on the matrices derived from MCF-10A cells. Chemoresistance of MDA-MB-231 cells against 5-fluorouracil increased on only matrices derived from MDA-MB-231 cells. Our results showed that the cells showed different behaviors on staged tumorigenesis-mimicking matrices according to the malignancy of cell sources for ECM preparation. Therefore, staged tumorigenesis-mimicking matrices might be a useful in vitro ECM models to investigate the roles of ECM in tumor progression

  16. Breast cancer cell behaviors on staged tumorigenesis-mimicking matrices derived from tumor cells at various malignant stages

    Energy Technology Data Exchange (ETDEWEB)

    Hoshiba, Takashi [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510 (Japan); International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Tanaka, Masaru, E-mail: tanaka@yz.yamagata-u.ac.jp [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510 (Japan)

    2013-09-20

    Highlights: •Models mimicking ECM in tumor with different malignancy were prepared. •Cancer cell proliferation was suppressed on benign tumor ECM. •Benign tumor cell proliferation was suppressed on cancerous ECM. •Chemoresistance of cancer cell was enhanced on cancerous ECM. -- Abstract: Extracellular matrix (ECM) has been focused to understand tumor progression in addition to the genetic mutation of cancer cells. Here, we prepared “staged tumorigenesis-mimicking matrices” which mimic in vivo ECM in tumor tissue at each malignant stage to understand the roles of ECM in tumor progression. Breast tumor cells, MDA-MB-231 (invasive), MCF-7 (non-invasive), and MCF-10A (benign) cells, were cultured to form their own ECM beneath the cells and formed ECM was prepared as staged tumorigenesis-mimicking matrices by decellularization treatment. Cells showed weak attachment on the matrices derived from MDA-MB-231 cancer cells. The proliferations of MDA-MB-231 and MCF-7 was promoted on the matrices derived from MDA-MB-231 cancer cells whereas MCF-10A cell proliferation was not promoted. MCF-10A cell proliferation was promoted on the matrices derived from MCF-10A cells. Chemoresistance of MDA-MB-231 cells against 5-fluorouracil increased on only matrices derived from MDA-MB-231 cells. Our results showed that the cells showed different behaviors on staged tumorigenesis-mimicking matrices according to the malignancy of cell sources for ECM preparation. Therefore, staged tumorigenesis-mimicking matrices might be a useful in vitro ECM models to investigate the roles of ECM in tumor progression.

  17. The effects of curcumin on proliferation, apoptosis, invasion, and NEDD4 expression in pancreatic cancer.

    Science.gov (United States)

    Su, Jingna; Zhou, Xiuxia; Yin, Xuyuan; Wang, Lixia; Zhao, Zhe; Hou, Yingying; Zheng, Nana; Xia, Jun; Wang, Zhiwei

    2017-09-15

    Pancreatic cancer (PC) is one of the most fatal cancers worldwide. The incidence and death rates are still increasing for PC. Curcumin is the biologically active diarylheptanoid constituent of the spice turmeric, which exerts its anticancer properties in various human cancers including PC. In particular, accumulating evidence has proved that curcumin targets numerous therapeutically important proteins in cell signaling pathways. The neural precursor cell expressed developmentally down-regulated protein 4 (NEDD4) is an E3 HECT ubiquitin ligase and is frequently over-expressed in various cancers. It has reported that NEDD4 might facilitate tumorigenesis via targeting and degradation of multiple tumor suppressor proteins including PTEN. Hence, in the present study we explore whether curcumin inhibits NEDD4, resulting in the suppression of cell growth, migration and invasion in PC cells. We found that curcumin inhibited cell proliferation and triggered apoptosis in PC, which is associated with increased expression of PTEN and p73. These results suggested that inhibition of NEDD4 might be beneficial to the antitumor properties of curcumin on PC treatments. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Effects of IL-6 on proliferation and apoptosis of tumor cells multi-irradiated for tumor-bearing mice

    Energy Technology Data Exchange (ETDEWEB)

    Yongbiao, Liu [Chinese Academy of Sciences, Shanghai (China). Shanghai Inst. of Applied Physics; Xuzhou Medical Univ., Xuzhou (China); Side, Yao [Chinese Academy of Sciences, Shanghai (China). Shanghai Inst. of Applied Physics; Kai, Mei; Ying, Liu; Jie, Zhao; Xianwen, Zhang; Qiang, Zhou; Xingzhi, Hao [Xuzhou Medical Univ., Xuzhou (China)

    2004-05-15

    A study was carried out on effects of IL-6 on the proliferation and apoptosis of tumor cells and the expression of apoptosis relevant genes (p53, bcl-2) in tumor cells for three kinds of fractional total-body-irradiated tumor-bearing mice. The apoptotic index, proliferative index, S phase fraction of S{sub 180} sarcoma, H{sub 22} hepatocarcinoma and Lewis lung cancer cells were measured by flowcytometry (FCM) after total-body-irradiation and irradiation plus IL-6. The protein expression level of p53, bcl-2 in three kinds of tumors was also determined by the immunohisto-chemical method (UltraSensitive S-P). The results showed that the S phase fraction and proliferation index in Lewis lung cancer cells were lower in the irradiated plus IL-6 group than in the control, while apoptotic index was higher (P<0.05). However, the experimental results for S{sub 180} sarcoma cells were opposite (P<0.01). In addition, no significant effects were observed in H{sub 22} hepatocarcinoma. These results revealed that IL-6 promoted the apoptosis of irradiated Lewis lung cancer cells (P<0.05), while the apoptosis of S{sub 180} sarcoma (P<0.05) was restrained, and there was no significant effects on the cellular cycle of H{sub 22} hepatocarcinoma (P>0.05). In Lewis lung cancer the expression level of p53 was lower in the IL-6 group and higher in S{sub 180} sarcoma (P<0.05), while unvaried in H{sub 22} hepatocarcinoma as compared with the control (P>0.05). It is considered that tumor cell's proportion in the cellular cycle is changed by IL-6 and the effects of IL-6 on the expression of p53, bcl-2 in different three kinds of tumors are different. IL-6 has radio-sensitive effects on some tumors and opposite effects on other tumors, it may be related to the expression of p53 and bcl-2 in tumor cells. (authors)

  19. MicroRNA-181b promotes ovarian cancer cell growth and invasion by targeting LATS2

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Ying; Gao, Yan, E-mail: gaoyanhdhos@126.com

    2014-05-09

    Highlights: • miR-181b is upregulated in human ovarian cancer tissues. • miR-181b promotes ovarian cancer cell proliferation and invasion. • LATS2 is a direct target of miR-181b. • LATS2 is involved in miR-181b-induced ovarian cancer cell growth and invasion. - Abstract: MicroRNAs (miRNAs) are strongly implicated in tumorigenesis and metastasis. In this study, we showed significant upregulation of miR-181b in ovarian cancer tissues, compared with the normal ovarian counterparts. Forced expression of miR-181b led to remarkably enhanced proliferation and invasion of ovarian cancer cells while its knockdown induced significant suppression of these cellular events. The tumor suppressor gene, LATS2 (large tumor suppressor 2), was further identified as a novel direct target of miR-181b. Specifically, miR-181b bound directly to the 3′-untranslated region (UTR) of LATS2 and suppressed its expression. Restoration of LATS2 expression partially reversed the oncogenic effects of miR-181b. Our results indicate that miR-181b promotes proliferation and invasion by targeting LATS2 in ovarian cancer cells. These findings support the utility of miR-181b as a potential diagnostic and therapeutic target for ovarian cancer.

  20. Gallic acid reduces cell viability, proliferation, invasion and angiogenesis in human cervical cancer cells

    Science.gov (United States)

    ZHAO, BING; HU, MENGCAI

    2013-01-01

    Gallic acid is a trihydroxybenzoic acid, also known as 3,4,5-trihydroxybenzoic acid, which is present in plants worldwide, including Chinese medicinal herbs. Gallic acid has been shown to have cytotoxic effects in certain cancer cells, without damaging normal cells. The objective of the present study was to determine whether gallic acid is able to inhibit human cervical cancer cell viability, proliferation and invasion and suppress cervical cancer cell-mediated angiogenesis. Treatment of HeLa and HTB-35 human cancer cells with gallic acid decreased cell viability in a dose-dependent manner. BrdU proliferation and tube formation assays indicated that gallic acid significantly decreased human cervical cancer cell proliferation and tube formation in human umbilical vein endothelial cells, respectively. Additionally, gallic acid decreased HeLa and HTB-35 cell invasion in vitro. Western blot analysis demonstrated that the expression of ADAM17, EGFR, p-Akt and p-Erk was suppressed by gallic acid in the HeLa and HTB-35 cell lines. These data indicate that the suppression of ADAM17 and the downregulation of the EGFR, Akt/p-Akt and Erk/p-Erk signaling pathways may contribute to the suppression of cancer progression by Gallic acid. Gallic acid may be a valuable candidate for the treatment of cervical cancer. PMID:24843386

  1. Slug/SNAI2 regulates cell proliferation and invasiveness of metastatic prostate cancer cell lines.

    Science.gov (United States)

    Emadi Baygi, Modjtaba; Soheili, Zahra-Soheila; Essmann, Frank; Deezagi, Abdolkhaleg; Engers, Rainer; Goering, Wolfgang; Schulz, Wolfgang A

    2010-08-01

    Many metastatic cancers recapitulate the epithelial-to-mesenchymal transition (EMT) resulting in enhanced cell motility and invasiveness. The EMT is regulated by several transcription factors, including the zinc finger protein SNAI2, also named Slug, which appears to exert additional functions during development and cancer progression. We have studied the function of SNAI2 in prostate cancer cells. Quantitative RT-PCR analysis showed strong SNAI2 expression particularly in the PC-3 and PC3-16 prostate carcinoma cell lines. Knockdown of SNAI2 by specific siRNA induced changes in EMT markers and inhibited invasion of both cell lines into a matrigel matrix. SNAI2 siRNA-treated cells did not tolerate detachment from the culture plates, likely at least in part due to downregulation of integrin alpha6beta4. SNAI2 knockdown disturbed the microtubular and actin cytoskeletons, especially severely in PC-3 cells, resulting in grossly enlarged, flattened, and sometimes multinuclear cells. Knockdown also decreased cell proliferation, with a prominent G0/G1 arrest in PC3-16. Together, our data imply that SNAI2 exerts strong effects on the cytoskeleton and adhesion of those prostate cancer cells that express it and is necessary for their proliferation and invasiveness.

  2. Transforming growth factor alpha (TGFα regulates granulosa cell tumor (GCT cell proliferation and migration through activation of multiple pathways.

    Directory of Open Access Journals (Sweden)

    Cheng Wang

    Full Text Available Granulosa cell tumors (GCTs are the most common ovarian estrogen producing tumors, leading to symptoms of excessive estrogen such as endometrial hyperplasia and endometrial adenocarcinoma. These tumors have malignant potential and often recur. The etiology of GCT is unknown. TGFα is a potent mitogen for many different cells. However, its function in GCT initiation, progression and metastasis has not been determined. The present study aims to determine whether TGFα plays a role in the growth of GCT cells. KGN cells, which are derived from an invasive GCT and have many features of normal granulosa cells, were used as the cellular model. Immunohistochemistry, Western blot and RT-PCR results showed that the ErbB family of receptors is expressed in human GCT tissues and GCT cell lines. RT-PCR results also indicated that TGFα and EGF are expressed in the human granulosa cells and the GCT cell lines, suggesting that TGFα might regulate GCT cell function in an autocrine/paracrine manner. TGFα stimulated KGN cell DNA synthesis, cell proliferation, cell viability, cell cycle progression, and cell migration. TGFα rapidly activated EGFR/PI3K/Akt and mTOR pathways, as indicated by rapid phosphorylation of Akt, TSC2, Rictor, mTOR, P70S6K and S6 proteins following TGFα treatment. TGFα also rapidly activated the EGFR/MEK/ERK pathway, and P38 MAPK pathways, as indicated by the rapid phosphorylation of EGFR, MEK, ERK1/2, P38, and CREB after TGFα treatment. Whereas TGFα triggered a transient activation of Akt, it induced a sustained activation of ERK1/2 in KGN cells. Long-term treatment of KGN cells with TGFα resulted in a significant increase in cyclin D2 and a decrease in p27/Kip1, two critical regulators of granulosa cell proliferation and granulosa cell tumorigenesis. In conclusion, TGFα, via multiple signaling pathways, regulates KGN cell proliferation and migration and may play an important role in the growth and metastasis of GCTs.

  3. New Approaches for Early Detection of Breast Tumor Invasion or Progression

    National Research Council Canada - National Science Library

    Man, Yan-Gao

    2003-01-01

    To assess interactions between epithelial (EP) and myoepithelial (ME) cells in association with breast tumor progression and invasion, a double immunostaining technique with antibodies to smooth muscle actin (SMA...

  4. Characterization of Compounds with Tumor-Cell Proliferation Inhibition Activity from Mushroom (Phellinus baumii) Mycelia Produced by Solid-State Fermentation.

    Science.gov (United States)

    Zhang, Henan; Shao, Qian; Wang, Wenhan; Zhang, Jingsong; Zhang, Zhong; Liu, Yanfang; Yang, Yan

    2017-04-27

    The inhibition of tumor-cell proliferationbyan organicsolvent extract from the solid-state fermentation of Phellinus baumii mycelia inoculated in rice medium was investigated in vitro. The active compounds inhibiting tumor-cell proliferation were characterized. Results revealed that all (petroleum ether, chloroform, ethyl acetate, and butanol) fractions inhibited tumor-cell proliferation in a dose-dependent fashion. The ethyl acetate extract had the highest inhibitory effecton tumor-cell proliferation, and the butanol fraction had the lowest. Six compounds were isolated and purified from the ethyl acetate extract of P. baumii mycelia by the tandem application of silica-gel column chromatography (SGCC), high-speed countercurrent chromatography (HSCCC), and preparative HPLC. These compounds were identified by NMR and electrospray ionization-mass spectrometry (ESI-MS) spectroscopic methods as ergosterol (RF1), ergosta-7,22-dien-3β-yl pentadecanoate (RF3), 3,4-dihydroxy benzaldehyde(RF6), inoscavinA (RF7), baicalein(RF10), and 24-ethylcholesta-5,22-dien-3β-ol (RF13). To further clarify the activity of these compounds, the cell-proliferation-inhibition tests of these compounds on various tumor cells were carried out and evaluatedin vitro. Results suggested that compounds RF6, RF7, and RF10 had potent inhibition effects on the proliferation of a series of tumor cell lines, including K562, L1210, SW620, HepG2, LNCaP, and MCF-7cells. These findings indicated that P. baumii mycelia produced by solid-state fermentation in rice canbe used to obtain active compounds with the ability to inhibittumor-cell proliferation.

  5. miR-22 regulates cell invasion, migration and proliferation in vitro through inhibiting CD147 expression in tongue squamous cell carcinoma.

    Science.gov (United States)

    Qiu, Kaifeng; Huang, Zixian; Huang, Zhiquan; He, Zhichao; You, Siping

    2016-06-01

    Tongue squamous cell carcinoma (TSCC) is the most common type of head and neck squamous cell carcinoma (HNSCC) in China, and its survival rate remains unsatisfactory. miR-22 has been identified as a tumor suppressor in many human cancers, and high expression of CD147 occurs in many tumors. The aim of the present study was to investigate the expression and function of miR-22 in TSCC and its relationship with the expression of CD147. TCA8113 cells were transiently transfected with a miR-22 mimic/inhibitor. Subsequently, a validation with Real-time RT-PCR was performed to analyze the miR-22 expression level, and a CCK-8 proliferation assay and transwell migration and invasion assays were carried out. Cotransfections using As-miR-22/si-CD147 mRNA or a miR-22/CD147 overexpression vector were applied, and we investigated the biological effects on cotranscribed TCA8113 cells. qRT-PCR confirmed that miR-22 or As-miR-22 were successfully transfected into TCA8113 cells. Suppressing miR-22 resulted in a promotion of cell proliferation and motility and an up-regulation of CD147 in TCA8113 cells in vitro. In contrast, increasing miR-22 inhibited cell proliferation and motility and down-regulated CD147. Furthermore, the reduction or overexpression of CD147 can reverse the promoting or suppressive effects of miR-22, respectively. The down-expression of miR-22 can regulate cell growth and motility in TSCC cells, which indicates that miR-22 acts as a tumor suppressor in TSCC. Additionally, CD147 is subsequently up-regulated when miR-22 inhibited. Taken together, the findings of this research defined a novel relationship between the down-regulation of miR-22 and the up-regulation of CD147 and demonstrated that CD147 is a downstream factor of miR-22. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Tumor suppressor function of Syk in human MCF10A in vitro and normal mouse mammary epithelium in vivo.

    Directory of Open Access Journals (Sweden)

    You Me Sung

    2009-10-01

    Full Text Available The normal function of Syk in epithelium of the developing or adult breast is not known, however, Syk suppresses tumor growth, invasion, and metastasis in breast cancer cells. Here, we demonstrate that in the mouse mammary gland, loss of one Syk allele profoundly increases proliferation and ductal branching and invasion of epithelial cells through the mammary fat pad during puberty. Mammary carcinomas develop by one year. Syk also suppresses proliferation and invasion in vitro. siRNA or shRNA knockdown of Syk in MCF10A breast epithelial cells dramatically increased proliferation, anchorage independent growth, cellular motility, and invasion, with formation of functional, extracellular matrix-degrading invadopodia. Morphological and gene microarray analysis following Syk knockdown revealed a loss of luminal and differentiated epithelial features with epithelial to mesenchymal transition and a gain in invadopodial cell surface markers CD44, CD49F, and MMP14. These results support the role of Syk in limiting proliferation and invasion of epithelial cells during normal morphogenesis, and emphasize the critical role of Syk as a tumor suppressor for breast cancer. The question of breast cancer risk following systemic anti-Syk therapy is raised since only partial loss of Syk was sufficient to induce mammary carcinomas.

  7. The Drosophila Netrin receptor frazzled/DCC functions as an invasive tumor suppressor

    Directory of Open Access Journals (Sweden)

    Duman-Scheel Molly

    2011-06-01

    Full Text Available Abstract Background Loss of heterozygosity at 18q, which includes the Deleted in Colorectal Cancer (DCC gene, has been linked to many human cancers. However, it is unclear if loss of DCC is the specific underlying cause of these cancers. The Drosophila imaginal discs are excellent systems in which to study DCC function, as it is possible to model human tumors through the generation of somatic clones of cells bearing multiple genetic lesions. Here, these attributes of the fly system were utilized to investigate the potential tumor suppressing functions of the Drosophila DCC homologue frazzled (fra during eye-antennal disc development. Results Most fra loss of function clones are eliminated during development. However, when mutant clone cells generated in the developing eye were rescued from death, partially differentiated eye cells were found outside of the normal eye field, and in extreme cases distant sites of the body. Characterization of these cells during development indicates that fra mutant cells display characteristics of invasive tumor cells, including increased levels of phospho-ERK, phospho-JNK, and Mmp-1, changes in cadherin expression, remodeling of the actin cytoskeleton, and loss of polarity. Mutation of fra promotes basement membrane degradation and invasion which are repressed by inhibition of Rho1 signaling. Although inhibition of JNK signaling blocks invasive phenotypes in some metastatic cancer models in flies, blocking JNK signaling inhibits fra mutant cell death, thereby enhancing the fra mutant phenotype. Conclusions The results of this investigation provide the first direct link between point mutations in fra/DCC and metastatic phenotypes in an animal model and suggest that Fra functions as an invasive tumor suppressor during Drosophila development.

  8. Protease-activated receptor 2 agonist increases cell proliferation and invasion of human pancreatic cancer cells

    Science.gov (United States)

    XIE, LIQUN; DUAN, ZEXING; LIU, CAIJU; ZHENG, YANMIN; ZHOU, JING

    2015-01-01

    The aim of this study was to determine the expression of protease-activated receptor 2 (PAR-2) in the human pancreatic cancer cell line SW1990, and to evaluate its effect on cell proliferation and invasion. The expression of PAR-2 protein and mRNA in SW1990 cells was determined by immunocytochemistry and reverse transcription polymerase chain reaction (PCR), respectively. MTT and cell invasion and migration assays, as well as semi-quantitative PCR and zymography analysis, were additionally performed. PAR-2 mRNA was significantly upregulated in the cells treated with trypsin or the PAR-2 activating peptide Ser-Leu-Ile-Gly-Lys-Val (SLIGKV) (P0.05). Trypsin and SLIGKV significantly promoted SW1990 cell proliferation in a dose- and time-dependent manner (P<0.05). Compared with the control group, trypsin and SLIGKV significantly increased the mRNA expression (P<0.01) and gelatinolytic activity (P<0.01) of matrix metalloproteinase (MMP)-2. In conclusion, PAR-2 is expressed in SW1990 cells. PAR-2 activation may promote the invasion and migration of human pancreatic cancer cells by increasing MMP-2 expression. PMID:25452809

  9. FOXA1 promotes tumor cell proliferation through AR involving the Notch pathway in endometrial cancer

    International Nuclear Information System (INIS)

    Qiu, Meiting; Bao, Wei; Wang, Jingyun; Yang, Tingting; He, Xiaoying; Liao, Yun; Wan, Xiaoping

    2014-01-01

    Increasing evidence suggests that forkhead box A1 (FOXA1) is frequently dysregulated in many types of human cancers. However, the exact function and mechanism of FOXA1 in human endometrial cancer (EC) remains unclear. FOXA1 expression, androgen receptor (AR) expression, and the relationships of these two markers with clinicopathological factors were determined by immunohistochemistry analysis. FOXA1 and AR were up-regulated by transient transfection with plasmids, and were down-regulated by transfection with siRNA or short hairpin RNA (shRNA). The effects of FOXA1 depletion and FOXA1 overexpression on AR-mediated transcription as well as Notch pathway and their impact on EC cell proliferation were examined by qRT-PCR, western blotting, co-immunoprecipitation, ChIP-PCR, MTT, colony-formation, and xenograft tumor–formation assays. We found that the expression of FOXA1 and AR in ECs was significantly higher than that in a typical hyperplasia and normal tissues. FOXA1 expression was significantly correlated with AR expression in clinical tissues. High FOXA1 levels positively correlated with pathological grade and depth of myometrial invasion in EC. High AR levels also positively correlated with pathological grade in EC. Moreover, the expression of XBP1, MYC, ZBTB16, and UHRF1, which are downstream targets of AR, was promoted by FOXA1 up-regulation or inhibited by FOXA1 down-regulation. Co-immunoprecipitation showed that FOXA1 interacted with AR in EC cells. ChIP-PCR assays showed that FOXA1 and AR could directly bind to the promoter and enhancer regions upstream of MYC. Mechanistic investigation revealed that over-expression of Notch1 and Hes1 proteins by FOXA1 could be reversed by AR depletion. In addition, we showed that down-regulation of AR attenuated FOXA1-up-regulated cell proliferation. However, AR didn’t influence the promotion effect of FOXA1 on cell migration and invasion. In vivo xenograft model, FOXA1 knockdown reduced the rate of tumor growth. These

  10. Prognostic significance of kynurenine 3-monooxygenase and effects on proliferation, migration, and invasion of human hepatocellular carcinoma.

    Science.gov (United States)

    Jin, Haojie; Zhang, Yurong; You, Haiyan; Tao, Xuemei; Wang, Cun; Jin, Guangzhi; Wang, Ning; Ruan, Haoyu; Gu, Dishui; Huo, Xisong; Cong, Wenming; Qin, Wenxin

    2015-06-23

    Kynurenine 3-monooxygenase (KMO) is a pivotal enzyme in the kynurenine pathway of tryptophan degradation and plays a critical role in Huntington's and Alzheimer's diseases. This study aimed to examine the expression of KMO in human hepatocellular carcinoma (HCC) and investigate the relationship between its expression and prognosis of HCC patients. We first analyzed KMO expression in 120 paired HCC samples (HCC tissues vs matched adjacent non-cancerous liver tissues), and 205 clinical HCC specimens using immunohistochemistry (IHC). Kaplan-Meier survival and Cox regression analyses were executed to evaluate the prognosis of HCC. The results of IHC analysis showed that KMO expression was significantly higher in HCC tissues than that in normal liver tissues (all p KMO was an independent prognostic factor for overall survival (OS) and time to recurrence (TTR) (both pKMO positively regulated proliferation, migration, and invasion of HCC cells. These results suggest that KMO exhibits tumor-promoting effects towards HCC and it may serve as a novel prognostic marker in HCC.

  11. Cell proliferation markers in the transplanted canine transmissible venereal tumor

    Directory of Open Access Journals (Sweden)

    F.G.A. Santos

    2011-12-01

    Full Text Available Adult male mongrel dogs were subcutaneously transplanted with the canine transmissible venereal tumor (TVT on the hypogastric region. Twelve specimens of tumors were collected, half during the proliferative phase and the other half during the regressive phase. Fragments of the tumor were fixed in 10% buffered formalin and routinely processed for light microscopy. Sections of 4µm were stained by Schorr or AgNOR or either immunostained for MIB1 (Ki67. Schorr stain, AgNOR and MIB1 showed an increased proliferative activity through mitotic index, nuclear argyrophilic protein stain and cycling tumoral cells in the growing tumors, respectively. All of the three cell proliferation markers were able to distinguish the TVT in both evolution phases. MIB1 monoclonal antibody was the best in the morphologic evaluation of growth and regression of TVT. This resulted in higher values than AgNORs counting and mitotic index. MIB1 immunostaining was the most effective parameter of the proliferative activity of TVT. However, a significant correlation has been detected only between mitosis counting and AgNORs.

  12. Shikonin Inhibits the Proliferation of Human Breast Cancer Cells by Reducing Tumor-Derived Exosomes

    Directory of Open Access Journals (Sweden)

    Yao Wei

    2016-06-01

    Full Text Available Shikonin is a naphthoquinone isolated from the traditional Chinese medicine Lithospermum. It has been used in the treatment of various tumors. However, the effects of shikonin on such diseases have not been fully elucidated. In the present study, we detected the exosome release of a breast cancer cell line (MCF-7 with shikonin treatment and found a positive relationship between the level of secreted exosomes and cell proliferation. We next analyzed miRNA profiles in MCF-7 cells and exosomes and found that some miRNAs are specifically sorted and abundant in exosomes. Knockdown of the most abundant miRNAs in exosomes and the MCF-7 proliferation assay showed that miR-128 in exosomes negatively regulates the level of Bax in MCF-7 recipient cells and inhibits cell proliferation. These results show that shikonin inhibits the proliferation of MCF-7 cells through reducing tumor-derived exosomal miR-128. The current study suggests that shikonin suppresses MCF-7 growth by the inhibition of exosome release.

  13. Phenotype-dependent effects of EpCAM expression on growth and invasion of human breast cancer cell lines

    International Nuclear Information System (INIS)

    Martowicz, Agnieszka; Spizzo, Gilbert; Gastl, Guenther; Untergasser, Gerold

    2012-01-01

    The epithelial cell adhesion molecule (EpCAM) has been shown to be overexpressed in breast cancer and stem cells and has emerged as an attractive target for immunotherapy of breast cancer patients. This study analyzes the effects of EpCAM on breast cancer cell lines with epithelial or mesenchymal phenotype. For this purpose, shRNA-mediated knockdown of EpCAM gene expression was performed in EpCAM high breast cancer cell lines with epithelial phenotype (MCF-7, T47D and SkBR3). Moreover, EpCAM low breast carcinoma cell lines with mesenchymal phenotype (MDA-MB-231, Hs578t) and inducible overexpression of EpCAM were used to study effects on proliferation, migration and in vivo growth. In comparison to non-specific silencing controls (n/s-crtl) knockdown of EpCAM (E#2) in EpCAM high cell lines resulted in reduced cell proliferation under serum-reduced culture conditions. Moreover, DNA synthesis under 3D culture conditions in collagen was significantly reduced. Xenografts of MCF-7 and T47D cells with knockdown of EpCAM formed smaller tumors that were less invasive. EpCAM low cell lines with tetracycline-inducible overexpression of EpCAM showed no increased cell proliferation or migration under serum-reduced growth conditions. MDA-MB-231 xenografts with EpCAM overexpression showed reduced invasion into host tissue and more infiltrates of chicken granulocytes. The role of EpCAM in breast cancer strongly depends on the epithelial or mesenchymal phenotype of tumor cells. Cancer cells with epithelial phenotype need EpCAM as a growth- and invasion-promoting factor, whereas tumor cells with a mesenchymal phenotype are independent of EpCAM in invasion processes and tumor progression. These findings might have clinical implications for EpCAM-based targeting strategies in patients with invasive breast cancer

  14. More expression of BDNF associates with lung squamous cell carcinoma and is critical to the proliferation and invasion of lung cancer cells

    International Nuclear Information System (INIS)

    Zhang, Si-yang; Hui, Lin-ping; Li, Chun-yan; Gao, Jian; Cui, Ze-shi; Qiu, Xue-shan

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) has been reported to promote tumorigenesis and progression in several human malignancies. The purpose of this study was to explore the function of BDNF in lung squamous cell carcinoma (SCC) and adenocarcinoma (ADC). The expression of BDNF was examined in 110 samples of lung SCC and ADC by immunohistochemistry. The protein level of BDNF was examined in 25 lung SCC or ADC samples and paired non-tumors by western blot. BDNF expression was also evaluated in human bronchial epithelial cells (HBE) and 4 lung cancer cell lines using western blot. Three BDNF mRNA variants containing exons IV, VI and IX were evaluated in HBE, two SCC (SK, LK2) and two ADC (A549, LTE) cell lines by RT-PCR. The expression and secretion of BDNF were also determined in cells using western blot and ELISA. Then the shRNA specific for BDNF was transfected into LK2 or A549 cells to further elucidate the BDNF knockdown on cell proliferation, apoptosis and invasion, which were confirmed by MTT, flow cytometry and transwell examinations. 71.8 % (79 out of 110) of lung SCC and ADC samples were detected positive BDNF, and high expression of BDNF was significantly correlated with histological type and T stage. Compared with non-tumorous counterparts, BDNF was apparently overexpressed in SCC and ADC tissues. In cell studies, the extensive expression and secretion of BDNF were demonstrated in lung cancer cells compared with HBE cells. Interestingly, the expressions of BDNF mRNA variant IV and VI were identical in all cells examined. However, more expression of BDNF mRNA variant IX was found in SK and LK2 cells. The apoptotic cells were increased, and the cell proliferation and invasion were both attenuated once the expression of BDNF was inhibited. When retreated by rhBDNF, BDNF knockdown cells showed less apoptotic or more proliferative and invasive. Our data show that BDNF probably facilitates the tumorigenesis of lung SCC and ADC. The expression of BDNF m

  15. Effect of interventional treatment with p53 on the invasion and metastasis of VX2 liver tumor in experimental rabbits

    International Nuclear Information System (INIS)

    Li Caixia; Feng Yan; Gu Tao; Li Chunmei

    2010-01-01

    Objective: To investigate the effect of interventional treatment with p53 on the invasion and metastasis of VX2 liver tumor in experimental rabbits. Methods: VX2 carcinoma cells were surgically implanted into the left hepatic lobe in 48 New Zealand white rabbits, and the rabbit hepatic carcinoma models were thus established. The rabbits were randomly divided into 4 groups with 12 rabbits in each group. After hepatic arterial catheterization was completed physiological saline (control group), Lipiodol (Group A), Ad-p53 (Group B) and Lipiodol+Ad-p53 (Group C) were respectively infused into the rabbits of four groups via common hepatic artery. One week after the procedure the rabbits were sacrificed and the livers were removed for the determination of matrix metalloprotein-2 (MMP-2), proliferating cell nuclear antigen (PCNA) and vascular endothelial growth factor (VEGF) of the tumor with immunohistochemistry technique. Results: The tumor growth in study groups (group A, B and C) was markedly suppressed, which was significantly different in comparison with that in control group (P 0.05). The positive rates of MMP-2, PCNA and VEGF in group B and C were significantly lower than those in control group (P < 0.05). The positive rates of MMP-2, PCNA and VEGF of the rabbits with metastasis were markedly higher than those without metastasis(P < 0.05). MMP-2 bore a certain relationship with VEGF and PCNA (P < 0.05). Conclusion: The increase of the positive rates of MMP-2, PCNA and VEGF indicates that the tumor possesses higher possibility for developing metastasis, proliferation and vascular formation. The interventional treatment with Adp53 or Lipiodol+Ad-p53 can inhibit the growth, metastasis and vascular formation of VX2 liver tumor in experimental rabbits. (J Intervent Radiol, 2010, 19 : 800-804) (authors)

  16. Proliferation in human tumors and optimum radiotherapy fractionation

    International Nuclear Information System (INIS)

    Fowler, J.F.; Wisconsin Univ., Madison, WI; Lindstrom, M.J.

    1991-01-01

    Within the last ten years a number of radiotherapy results have been published which enable the effect of overall time on local control to be examined. In all 12 papers a loss of local control with prolongation is shown, although not all papers show a dependence on total dose. The loss of local control per week ranges from 6 to 25% with a median value of 15%. Development of shorter radiotherapy schedules, by one or two weeks, with allocation of rapidly proliferating tumors to the shorter schedules, is recommended. (author)

  17. The axon guidance molecule semaphorin 3F is a negative regulator of tumor progression and proliferation in ileal neuroendocrine tumors

    Science.gov (United States)

    Vercherat, Cécile; Blanc, Martine; Lepinasse, Florian; Gadot, Nicolas; Couderc, Christophe; Poncet, Gilles; Walter, Thomas; Joly, Marie-Odile; Hervieu, Valérie; Scoazec, Jean-Yves; Roche, Colette

    2015-01-01

    Gastro-intestinal neuroendocrine tumors (GI-NETs) are rare neoplasms, frequently metastatic, raising difficult clinical and therapeutic challenges due to a poor knowledge of their biology. As neuroendocrine cells express both epithelial and neural cell markers, we studied the possible involvement in GI-NETs of axon guidance molecules, which have been shown to decrease tumor cell proliferation and metastatic dissemination in several tumor types. We focused on the role of Semaphorin 3F (SEMA3F) in ileal NETs, one of the most frequent subtypes of GI-NETs. SEMA3F expression was detected in normal neuroendocrine cells but was lost in most of human primary tumors and all their metastases. SEMA3F loss of expression was associated with promoter gene methylation. After increasing endogenous SEMA3F levels through stable transfection, enteroendocrine cell lines STC-1 and GluTag showed a reduced proliferation rate in vitro. In two different xenograft mouse models, SEMA3F-overexpressing cells exhibited a reduced ability to form tumors and a hampered liver dissemination potential in vivo. This resulted, at least in part, from the inhibition of mTOR and MAPK signaling pathways. This study demonstrates an anti-tumoral role of SEMA3F in ileal NETs. We thus suggest that SEMA3F and/or its cellular signaling pathway could represent a target for ileal NET therapy. PMID:26447612

  18. Density-dependent quiescence in glioma invasion: instability in a simple reaction–diffusion model for the migration/proliferation dichotomy

    KAUST Repository

    Pham, Kara

    2012-01-01

    Gliomas are very aggressive brain tumours, in which tumour cells gain the ability to penetrate the surrounding normal tissue. The invasion mechanisms of this type of tumour remain to be elucidated. Our work is motivated by the migration/proliferation dichotomy (go-or-grow) hypothesis, i.e. the antagonistic migratory and proliferating cellular behaviours in a cell population, which may play a central role in these tumours. In this paper, we formulate a simple go-or-grow model to investigate the dynamics of a population of glioma cells for which the switch from a migratory to a proliferating phenotype (and vice versa) depends on the local cell density. The model consists of two reaction-diffusion equations describing cell migration, proliferation and a phenotypic switch. We use a combination of numerical and analytical techniques to characterize the development of spatio-temporal instabilities and travelling wave solutions generated by our model. We demonstrate that the density-dependent go-or-grow mechanism can produce complex dynamics similar to those associated with tumour heterogeneity and invasion.

  19. KITENIN is associated with tumor progression in human gastric cancer.

    Science.gov (United States)

    Ryu, Ho-Seong; Park, Young-Lan; Park, Su-Jin; Lee, Ji-Hee; Cho, Sung-Bum; Lee, Wan-Sik; Chung, Ik-Joo; Kim, Kyung-Keun; Lee, Kyung-Hwa; Kweon, Sun-Seog; Joo, Young-Eun

    2010-09-01

    KAI1 COOH-terminal interacting tetraspanin (KITENIN) promotes tumor cell migration, invasion and metastasis in colon, bladder, head and neck cancer. The aims of current study were to evaluate whether KITENIN affects tumor cell behavior in human gastric cancer cell line and to document the expression of KITENIN in a well-defined series of gastric tumors, including complete long-term follow-up, with special reference to patient prognosis. To evaluate the impact of KITENIN knockdown on behavior of a human gastric cancer cell line, AGS, migration, invasion and proliferation assays using small-interfering RNA were performed. The expression of activator protein-1 (AP-1) target genes and AP-1 transcriptional activity were evaluated by reverse transcription-polymerase chain reaction (RT-PCR) and luciferase reporter assay. The expression of KITENIN and AP-1 target genes by RT-PCR and Western blotting or immunohistochemistry was also investigated in human gastric cancer tissues. The knockdown of KITENIN suppressed tumor cell migration, invasion and proliferation in AGS cells. The mRNA expression of matrix metalloproteinase-1 (MMP-1), MMP-3, cyclooxygenase-2 (COX-2), and CD44 was reduced by knockdown of KITENIN in AGS. AP-1 transcriptional activity was significantly decreased by knockdown of KITENIN in AGS cells. KITENIN expression was significantly increased in human cancer tissues at RNA and protein levels. Expression of MMP-1, MMP-3, COX-2 and CD44 were significantly increased in human gastric cancer tissues. Immunostaining of KITENIN was predominantly identified in the cytoplasm of cancer cells. Expression of KITENIN was significantly associated with tumor size, Lauren classification, depth of invasion, lymph node metastasis, tumor stage and poor survival. These results indicate that KITENIN plays an important role in human gastric cancer progression by AP-1 activation.

  20. Cystatin C deficiency suppresses tumor growth in a breast cancer model through decreased proliferation of tumor cells.

    Science.gov (United States)

    Završnik, Janja; Butinar, Miha; Prebanda, Mojca Trstenjak; Krajnc, Aleksander; Vidmar, Robert; Fonović, Marko; Grubb, Anders; Turk, Vito; Turk, Boris; Vasiljeva, Olga

    2017-09-26

    Cysteine cathepsins are proteases that, in addition to their important physiological functions, have been associated with multiple pathologies, including cancer. Cystatin C (CstC) is a major endogenous inhibitor that regulates the extracellular activity of cysteine cathepsins. We investigated the role of cystatin C in mammary cancer using CstC knockout mice and a mouse model of breast cancer induced by expression of the polyoma middle T oncoprotein (PyMT) in the mammary epithelium. We showed that the ablation of CstC reduced the rate of mammary tumor growth. Notably, a decrease in the proliferation of CstC knockout PyMT tumor cells was demonstrated ex vivo and in vitro , indicating a role for this protease inhibitor in signaling pathways that control cell proliferation. An increase in phosphorylated p-38 was observed in CstC knockout tumors, suggesting a novel function for cystatin C in cancer development, independent of the TGF-β pathway. Moreover, proteomic analysis of the CstC wild-type and knockout PyMT primary cell secretomes revealed a decrease in the levels of 14-3-3 proteins in the secretome of knock-out cells, suggesting a novel link between cysteine cathepsins, cystatin C and 14-3-3 proteins in tumorigenesis, calling for further investigations.

  1. Aldehyde dehydrogenase 1A1 circumscribes high invasive glioma cells and predicts poor prognosis

    Science.gov (United States)

    Xu, Sen-Lin; Liu, Sha; Cui, Wei; Shi, Yu; Liu, Qin; Duan, Jiang-Jie; Yu, Shi-Cang; Zhang, Xia; Cui, You-Hong; Kung, Hsiang-Fu; Bian, Xiu-Wu

    2015-01-01

    Glioma is the most aggressive brain tumor with high invasiveness and poor prognosis. More reliable, sensitive and practical biomarkers to reveal glioma high invasiveness remain to be explored for the guidance of therapy. We herein evaluated the diagnostic and prognostic value of aldehyde dehydrogenase 1A1 (ALDH1A1) in the glioma specimens from 237 patients, and found that ADLH1A1 was frequently overexpressed in the high-grade glioma (WHO grade III-IV) as compared to the low-grade glioma (WHO grade I-II) patients. The tumor cells with ALDH1A1 expression were more abundant in the region between tumor and the borderline of adjacent tissue as compared to the central part of the tumor. ALDH1A1 overexpression was associated with poor differentiation and dismal prognosis. Notably, the overall and disease-free survivals of the patients who had ALDH1A1+ tumor cells sparsely located in the adjacent tissue were much worse. Furthermore, ALDH1A1 expression was correlated with the “classical-like” (CL) subtype as we examined GBM specimens from 72 patients. Multivariate Cox regression analysis revealed that ALDH1A1 was an independent marker for glioma patients’ outcome. Mechanistically, both in vitro and in vivo studies revealed that ALDH1A1+ cells isolated from either a glioblastoma cell line U251 or primary glioblastoma cells displayed significant invasiveness, clonogenicity, and proliferation as compared to ALDH1A1- cells, due to increased levels of mRNA and protein for matrix metalloproteinase 2, 7 and 9 (MMP2, MMP7 and MMP9). These results indicate that ALDH1A1+ cells contribute to the progression of glioma including invasion, proliferation and poor prognosis, and suggest that targeting ALDH1A1 may have important implications for the treatment of highly invasive glioma. PMID:26101711

  2. miR-409-3p suppresses breast cancer cell growth and invasion by targeting Akt1

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guoqiang [Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan 250012 (China); Department of Thyroid and Breast Surgery, Hospital Affiliated to Binzhou Medical University, 661 Second Huanghe Street, Binzhou 256603 (China); Liu, Zengyan [Department of Hematology, Hospital Affiliated to Binzhou Medical University, 661 Second Huanghe Street, Binzhou 256603 (China); Xu, Hao [Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029 (China); Yang, Qifeng, E-mail: qifengy_sdu1@163.com [Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan 250012 (China)

    2016-01-08

    Altered levels and functions of microRNAs (miRNAs) are correlated with carcinogenesis. While miR-409-3p has been shown to play important roles in several cancer types, its function in the context of breast cancer (BC) remains unknown. In this study, miR-409-3p was significantly downregulated in BC tissues and cell lines, compared with the corresponding control counterparts. Overexpression of miR-409-3p inhibited BC cell proliferation, migration and invasion in vitro and suppressed tumor growth in vivo. Notably, miR-409-3p induced downregulation of Akt1 protein through binding to its 3′ untranslated region (UTR). Conversely, restoring Akt1 expression rescued the suppressive effects of miR-409-3p. Our data collectively indicate that miR-409-3p functions as a tumor suppressor in BC through downregulating Akt1, supporting the targeting of the novel miR-409-3p/Akt1 axis as a potentially effective therapeutic approach for BC. - Highlights: • miR-409-3p inhibits proliferation, migration and invasion of BC cells. • miR-409-3p suppresses tumor growth in nude mice. • Akt1 is a direct downstream target of miR-409-3p. • Ectopic expression of Akt1 reverses the effects of miR-409-3p on cell proliferation, migration and invasion.

  3. AA-PMe, a novel asiatic acid derivative, induces apoptosis and suppresses proliferation, migration, and invasion of gastric cancer cells

    Science.gov (United States)

    Jing, Yue; Wang, Gang; Ge, Ying; Xu, Minjie; Tang, Shuainan; Gong, Zhunan

    2016-01-01

    Asiatic acid (AA; 2α,3β,23-trihydroxyurs-12-ene-28-oic acid) is widely used for medicinal purposes in many Asian countries due to its various bioactivities. A series of AA derivatives has been synthesized in attempts to improve its therapeutic potencies. Herein we investigated the anti-tumor activities of N-(2α,3β,23-acetoxyurs-12-en-28-oyl)-l-proline methyl ester (AA-PMe), a novel AA derivative. AA-PMe exhibited a stronger anti-cancer activity than its parent compound AA. AA-PMe inhibited the proliferation of SGC7901 and HGC27 human gastric cancer cells in a dose-dependent manner but had no significant toxicity in human gastric mucosa epithelial cells (GES-1). AA-PMe induced cell cycle arrest in G0/G1 phase and blocked G1-S transition, which correlated well with marked decreases in levels of cyclin D1, cyclin-dependent kinase CKD4, and phosphorylated retinoblastoma protein, and increase in cyclin-dependent kinase inhibitor P15. Further, AA-PMe induced apoptosis of human gastric cancer cells by affecting Bcl-2, Bax, c-Myc, and caspase-3. Moreover, AA-PMe suppressed the migration and invasion of human gastric cancer cells (SGC7901 and HGC27) cells by downregulating the expression of MMP-2 and MMP-9. Overall, this study investigated the potential anti-cancer activities of AA-PMe including inducing apoptosis and suppressing proliferation, migration and invasion of gastric cancer cells, as well as the underlying mechanisms, suggesting that AA-PMe is a promising anti-cancer drug candidate in gastric cancer therapy. PMID:27073325

  4. MiR-132 prohibits proliferation, invasion, migration, and metastasis in breast cancer by targeting HN1

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhan-Guo, E-mail: zhang_zhanguo@hotmail.com; Chen, Wei-Xun, E-mail: chenweixunclark@163.com; Wu, Yan-Hui, E-mail: wuyanhui84@126.com; Liang, Hui-Fang, E-mail: lianghuifang1997@126.com; Zhang, Bi-Xiang, E-mail: bixiangzhang@163.com

    2014-11-07

    Highlights: • MiR-132 is down-regulated in breast cancer tissues and cell lines. • MiR-132 directly regulates HN1 by binding its 3′ UTR. • MiR-132 shows regulatory role in proliferation, invasion, migration and metastasis. • HN1 is involved in miR-132-mediated cell behavior. • Aberrant HN1 is associated with worse overall survival of breast cancer patients. - Abstract: Accumulating evidence indicates that miRNAs play critical roles in tumorigenesis and cancer progression. This study aims to investigate the role and the underlying mechanism of miR-132 in breast cancer. Here, we report that miR-132 is significantly down-regulated in breast cancer tissues and cancer cell lines. Additional study identifies HN1 as a novel direct target of miR-132. MiR-132 down-regulates HN1 expression by binding to the 3′ UTR of HN1 transcript, thereby, suppressing multiple oncogenic traits such as cancer cell proliferation, invasion, migration and metastasis in vivo and in vitro. Overexpression of HN1 restores miR-132-suppressed malignancy. Importantly, higher HN1 expression is significantly associated with worse overall survival of breast cancer patients. Taken together, our data demonstrate a critical role of miR-132 in prohibiting cell proliferation, invasion, migration and metastasis in breast cancer through direct suppression of HN1, supporting the potential utility of miR-132 as a novel therapeutic strategy against breast cancer.

  5. miR-214 down-regulates ARL2 and suppresses growth and invasion of cervical cancer cells

    International Nuclear Information System (INIS)

    Peng, Ruiqing; Men, Jianlong; Ma, Rui; Wang, Qian; Wang, Yang; Sun, Ying; Ren, Jing

    2017-01-01

    Increasing evidence has shown that miRNAs are implicated in carcinogenesis and can function as oncogenes or tumor suppressor genes in human cancers. In this study, we confirmed that miR-214 is frequently down-regulated in cervical cancer compared with normal cervical tissues. Ectopic expression of miR-214 suppressed proliferation, migration and invasion of HeLa and C33A cervical cancer cells. Bioinformatics analysis revealed that ADP ribosylation factor like 2 (ARL2) was a potential target of miR-214 and was remarkably up-regulated in cervical cancer. Knockdown of ARL2 markedly inhibited cervical cancer cell proliferation, migration and invasion, similarly to over-expression of miR-214, indicating that ARL2 may function as an oncogene in cervical cancer. In conclusion, our study revealed that miR-214 acts as a tumor suppressor via inhibiting proliferation, migration and invasion of cervical cancer cells through targeting ARL2, and that both miR-214 and ARL2 may serve as prognostic or therapeutic targets for cervical cancer. - Highlights: • miR-214 targets ARL2. • ARL2 maybe an oncogene in cervical cancer. • ARL2 rescues miR-214.

  6. NME2 reduces proliferation, migration and invasion of gastric cancer cells to limit metastasis.

    Directory of Open Access Journals (Sweden)

    Yan-fei Liu

    Full Text Available Gastric cancer is one of the most common malignancies and has a high rate of metastasis. We hypothesize that NME2 (Nucleoside Diphosphate Kinase 2, which has previously been considered as an anti-metastatic gene, plays a role in the invasiveness of gastric cancer cells. Using a tissue chip technology and immunohistochemistry, we demonstrated that NME2 expression was associated with levels of differentiation of gastric cancer cells and their metastasis into the lymph nodes. When the NME2 gene product was over-expressed by ;in vitro stable transfection, cells from BGC823 and MKN45 gastric cancer cell lines had reduced rates of proliferation, migration, and invasion through the collagen matrix, suggesting an inhibitory activity of NME2 in the propagation and invasion of gastric cancer. NME2 could, therefore, severe as a risk marker for gastric cancer invasiveness and a potential new target for gene therapy to enhance or induce NME2 expression.

  7. The Long Non-Coding RNA XIST Controls Non-Small Cell Lung Cancer Proliferation and Invasion by Modulating miR-186-5p

    Directory of Open Access Journals (Sweden)

    Haoyou Wang

    2017-04-01

    Full Text Available Background/Aims: Long non-coding RNAs (lncRNAs are key players in the development and progression of human cancers. The lncRNA XIST (X-inactive specific transcript has been shown to be upregulated in human non-small cell lung cancer (NSCLC; however, its role and molecular mechanisms in NSCLC cell progression remain unclear. Methods: qRT-PCR was conducted to assess the expression of XIST and miR-186. Cell proliferation was detected using MTT assay. Cell invasion and migration were evaluated using transwell assay. Cell cycle distribution and apoptosis rates were analyzed by flow cytometry. Luciferase reporter assay was used to identify the direct regulation of XIST and miR-186. A RNA immunoprecipitation was used to analyze whether XIST was associated with the RNA-induced silencing complex (RISC. Results: We confirmed that XIST was upregulated in NSCLC cell lines and tissues. Functionally, XIST knockdown inhibited cancer cell proliferation and invasion, and induced apoptosis in vitro, and suppressed subcutaneous tumor growth in vivo. Mechanistic investigations revealed a reciprocal repressive interaction between XIST and miR-186-5p. Furthermore, we showed that miR-186-5p has a binding site for XIST. Our data also indicated that XIST and miR-186-5p are likely in the same RNA induced silencing complex. Conclusion: Together, our data revealed that XIST knockdown confers suppressive function in NSCLC and XIST may be a novel therapeutic marker in this disease.

  8. Endotoxin/lipopolysaccharide activates NF-kappa B and enhances tumor cell adhesion and invasion through a beta 1 integrin-dependent mechanism.

    LENUS (Irish Health Repository)

    Wang, Jiang Huai

    2012-02-03

    Beta(1) integrins play a crucial role in supporting tumor cell attachment to and invasion into the extracellular matrix. Endotoxin\\/LPS introduced by surgery has been shown to enhance tumor metastasis in a murine model. Here we show the direct effect of LPS on tumor cell adhesion and invasion in extracellular matrix proteins through a beta(1) integrin-dependent pathway. The human colorectal tumor cell lines SW480 and SW620 constitutively expressed high levels of the beta(1) subunit, whereas various low levels of alpha(1), alpha(2), alpha(4), and alpha(6) expression were detected. SW480 and SW620 did not express membrane-bound CD14; however, LPS in the presence of soluble CD14 (sCD14) significantly up-regulated beta(1) integrin expression; enhanced tumor cell attachment to fibronectin, collagen I, and laminin; and strongly promoted tumor cell invasion through the Matrigel. Anti-beta(1) blocking mAbs (4B4 and 6S6) abrogated LPS- plus sCD14-induced tumor cell adhesion and invasion. Furthermore, LPS, when combined with sCD14, resulted in NF-kappaB activation in both SW480 and SW620 cells. Inhibition of the NF-kappaB pathway significantly attenuated LPS-induced up-regulation of beta(1) integrin expression and prevented tumor cell adhesion and invasion. These results provide direct evidence that although SW480 and SW620 cells do not express membrane-bound CD14, LPS in the presence of sCD14 can activate NF-kappaB, up-regulate beta(1) integrin expression, and subsequently promote tumor cell adhesion and invasion. Moreover, LPS-induced tumor cell attachment to and invasion through extracellular matrix proteins is beta(1) subunit-dependent.

  9. Standardizing evaluation of sarcoma proliferation- higher Ki-67 expression in the tumor periphery than the center

    DEFF Research Database (Denmark)

    Fernebro, J; Engellau, J; Persson, A

    2007-01-01

    Soft tissue sarcomas often present as large and histopathologically heterogenous tumors. Proliferation has repeatedly been identified as a prognostic factor and immunostaining for Ki-67 represents the most commonly used proliferation marker. There is, however, a lack of consensus on how to evaluate...... of proliferation in soft tissue sarcomas should be standardized for clinical application of Ki-67 as a prognostic marker....

  10. CD155/PVR plays a key role in cell motility during tumor cell invasion and migration

    International Nuclear Information System (INIS)

    Sloan, Kevin E; Ilag, Leodevico L; Jay, Daniel G; Eustace, Brenda K; Stewart, Jean K; Zehetmeier, Carol; Torella, Claudia; Simeone, Marina; Roy, Jennifer E; Unger, Christine; Louis, David N

    2004-01-01

    Invasion is an important early step of cancer metastasis that is not well understood. Developing therapeutics to limit metastasis requires the identification and validation of candidate proteins necessary for invasion and migration. We developed a functional proteomic screen to identify mediators of tumor cell invasion. This screen couples Fluorophore Assisted Light Inactivation (FALI) to a scFv antibody library to systematically inactivate surface proteins expressed by human fibrosarcoma cells followed by a high-throughput assessment of transwell invasion. Using this screen, we have identified CD155 (the poliovirus receptor) as a mediator of tumor cell invasion through its role in migration. Knockdown of CD155 by FALI or by RNAi resulted in a significant decrease in transwell migration of HT1080 fibrosarcoma cells towards a serum chemoattractant. CD155 was found to be highly expressed in multiple cancer cell lines and primary tumors including glioblastoma (GBM). Knockdown of CD155 also decreased migration of U87MG GBM cells. CD155 is recruited to the leading edge of migrating cells where it colocalizes with actin and αv-integrin, known mediators of motility and adhesion. Knockdown of CD155 also altered cellular morphology, resulting in cells that were larger and more elongated than controls when plated on a Matrigel substrate. These results implicate a role for CD155 in mediating tumor cell invasion and migration and suggest that CD155 may contribute to tumorigenesis

  11. Deregulated GSK3β activity in colorectal cancer: Its association with tumor cell survival and proliferation

    International Nuclear Information System (INIS)

    Shakoori, Abbas; Ougolkov, Andrei; Yu Zhiwei; Zhang Bin; Modarressi, Mohammad H.; Billadeau, Daniel D.; Mai, Masayoshi; Takahashi, Yutaka; Minamoto, Toshinari

    2005-01-01

    Glycogen synthase kinase 3β (GSK3β) reportedly has opposing roles, repressing Wnt/β-catenin signaling on the one hand but maintaining cell survival and proliferation through the NF-κB pathway on the other. The present investigation was undertaken to clarify the roles of GSK3β in human cancer. In colon cancer cell lines and colorectal cancer patients, levels of GSK3β expression and amounts of its active form were higher in tumor cells than in their normal counterparts; these findings were independent of nuclear accumulation of β-catenin oncoprotein in the tumor cells. Inhibition of GSK3β activity by phosphorylation was defective in colorectal cancers but preserved in non-neoplastic cells and tissues. Strikingly, inhibition of GSK3β activity by chemical inhibitors and its expression by RNA interference targeting GSK3β induced apoptosis and attenuated proliferation of colon cancer cells in vitro. Our findings demonstrate an unrecognized role of GSK3β in tumor cell survival and proliferation other than its predicted role as a tumor suppressor, and warrant proposing this kinase as a potential therapeutic target in colorectal cancer

  12. IL13Rα2 siRNA inhibited cell proliferation, induced cell apoptosis, and suppressed cell invasion in papillary thyroid carcinoma cells

    Directory of Open Access Journals (Sweden)

    Gu MJ

    2018-03-01

    Full Text Available Mingjun Gu Department of Endocrinology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, People’s Republic of China Aim: Papillary thyroid carcinoma (PTC is the most common type of thyroid cancer. Infiltrative growth and metastasis are the two most intractable characteristics of PTC. Interleukin-13 receptor α2 (IL13Rα2 with high affinity for Th2-derived cytokine IL-13 has been reported to be overexpressed in several tumors. In this study, an analysis of IL13Rα2 expression in PTC and matched paracancerous tissues was undertaken, and its biologic functions in PTC were assessed. Methods: IL13Rα2 and vascular endothelial growth factor (VEGF expression were detected by using real-time polymerase chain reaction and immunohistochemistry analyses. Cell proliferation, invasion, apoptosis, and caspase activity were measured with the Cell Counting Kit-8, Transwell, flow cytometry analyses, and biochemistry assay, respectively. Results: Upregulation of IL13Rα2 and VEGF was observed in PTC tissues compared with matched paracancerous tissues. Pearson’s correlation analysis indicated that IL13Rα2 mRNA level in the tested PTC tissues was positively correlated with VEGF mRNA level. Besides, inhibited cell proliferation, induced cell apoptosis, and suppressed cell invasion were detected in IL13Rα2-silenced TPC-1 cells. Increased activity of Caspase 3 and Caspase 9, along with elevated cleaved Caspase 3 and poly (ADP-ribose polymerase indicated the signal pathway of cell apoptosis induced by IL13Rα2 siRNA. In addition, downregulated metastasis- and angiogenesis-related proteins VEGF, VEGFR2, MMP2, and MMP9 indicated the decreased number of invading cells after knockdown of IL13Rα2. Conclusion: The results demonstrate that IL13Rα2 plays an important role in the progress of PTC. IL13Rα2 knockdown in PTC cells inhibited cell proliferation, induced cell apoptosis, and suppressed cell invasion. These data suggest that IL13Rα2

  13. Confocal fluorescence microscopy for rapid evaluation of invasive tumor cellularity of inflammatory breast carcinoma core needle biopsies.

    Science.gov (United States)

    Dobbs, Jessica; Krishnamurthy, Savitri; Kyrish, Matthew; Benveniste, Ana Paula; Yang, Wei; Richards-Kortum, Rebecca

    2015-01-01

    Tissue sampling is a problematic issue for inflammatory breast carcinoma, and immediate evaluation following core needle biopsy is needed to evaluate specimen adequacy. We sought to determine if confocal fluorescence microscopy provides sufficient resolution to evaluate specimen adequacy by comparing invasive tumor cellularity estimated from standard histologic images to invasive tumor cellularity estimated from confocal images of breast core needle biopsy specimens. Grayscale confocal fluorescence images of breast core needle biopsy specimens were acquired following proflavine application. A breast-dedicated pathologist evaluated invasive tumor cellularity in histologic images with hematoxylin and eosin staining and in grayscale and false-colored confocal images of cores. Agreement between cellularity estimates was quantified using a kappa coefficient. 23 cores from 23 patients with suspected inflammatory breast carcinoma were imaged. Confocal images were acquired in an average of less than 2 min per core. Invasive tumor cellularity estimated from histologic and grayscale confocal images showed moderate agreement by kappa coefficient: κ = 0.48 ± 0.09 (p confocal images require less than 2 min for acquisition and allow for evaluation of invasive tumor cellularity in breast core needle biopsy specimens with moderate agreement to histologic images. We show that confocal fluorescence microscopy can be performed immediately following specimen acquisition and could indicate the need for additional biopsies at the initial visit.

  14. Anorectal function and outcomes after transanal minimally invasive surgery for rectal tumors

    Directory of Open Access Journals (Sweden)

    Feza Y Karakayali

    2015-01-01

    Full Text Available Background: Transanal endoscopic microsurgery is a minimally invasive technique that allows full-thickness resection and suture closure of the defect for large rectal adenomas, selected low-risk rectal cancers, or small cancers in patients who have a high risk for major surgery. Our aim, in the given prospective study was to report our initial clinical experience with TAMIS, and to evaluate its effects on postoperative anorectal functions. Materials and Methods: In 10 patients treated with TAMIS for benign and malignant rectal tumors, preoperative and postoperative anorectal function was evaluated with anorectal manometry and Cleveland Clinic Incontinence Score. Results: The mean distance of the tumors from the anal verge was 5.6 cm, and mean tumor diameter was 2.6 cm. All resection margins were tumor free. There was no difference in preoperative and 3-week postoperative anorectalmanometry findings; only mean minimum rectal sensory volume was lower at 3 weeks after surgery. The Cleveland Clinic Incontinence Score was normal in all patients except one which resolved by 6 weeks after surgery.The mean postoperative follow-up was 28 weeks without any recurrences. Conclusion: Transanal minimally invasive surgery is a safe and effective procedure for treatment of rectal tumors and can be performed without impairing anorectal functions.

  15. A bioavailable cathepsin S nitrile inhibitor abrogates tumor development.

    Science.gov (United States)

    Wilkinson, Richard D A; Young, Andrew; Burden, Roberta E; Williams, Rich; Scott, Christopher J

    2016-04-21

    Cathepsin S has been implicated in a variety of malignancies with genetic ablation studies demonstrating a key role in tumor invasion and neo-angiogenesis. Thus, the application of cathepsin S inhibitors may have clinical utility in the treatment of cancer. In this investigation, we applied a cell-permeable dipeptidyl nitrile inhibitor of cathepsin S, originally developed to target cathepsin S in inflammatory diseases, in both in vitro and in vivo tumor models. Validation of cathepsin S selectivity was carried out by assaying fluorogenic substrate turnover using recombinant cathepsin protease. Complete kinetic analysis was carried out and true K i values calculated. Abrogation of tumour invasion using murine MC38 and human MCF7 cell lines were carried out in vitro using a transwell migration assay. Effect on endothelial tube formation was evaluated using primary HUVEC cells. The effect of inhibitor in vivo on MC38 and MCF7 tumor progression was evaluated using cells propagated in C57BL/6 and BALB/c mice respectively. Subsequent immunohistochemical staining of proliferation (Ki67) and apoptosis (TUNEL) was carried out on MCF7 tumors. We confirmed that this inhibitor was able to selectively target cathepsin S over family members K, V, L and B. The inhibitor also significantly reduced MC38 and MCF7 cell invasion and furthermore, significantly reduced HUVEC endothelial tubule formation in vitro. In vivo analysis revealed that the compound could significantly reduce tumor volume in murine MC38 syngeneic and MCF7 xenograft models. Immunohistochemical analysis of MCF7 tumors revealed cathepsin S inhibitor treatment significantly reduced proliferation and increased apoptosis. In summary, these results highlight the characterisation of this nitrile cathepsin S inhibitor using in vitro and in vivo tumor models, presenting a compound which may be used to further dissect the role of cathepsin S in cancer progression and may hold therapeutic potential.

  16. DEspR roles in tumor vasculo-angiogenesis, invasiveness, CSC-survival and anoikis resistance: a 'common receptor coordinator' paradigm.

    Science.gov (United States)

    Herrera, Victoria L; Decano, Julius L; Tan, Glaiza A; Moran, Ann M; Pasion, Khristine A; Matsubara, Yuichi; Ruiz-Opazo, Nelson

    2014-01-01

    A priori, a common receptor induced in tumor microvessels, cancer cells and cancer stem-like cells (CSCs) that is involved in tumor angiogenesis, invasiveness, and CSC anoikis resistance and survival, could underlie contemporaneous coordination of these events rather than assume stochasticity. Here we show that functional analysis of the dual endothelin1/VEGFsignal peptide receptor, DEspR, (formerly named Dear, Chr.4q31.2) supports the putative common receptor paradigm in pancreatic ductal adenocarcinoma (PDAC) and glioblastoma (GBM) selected for their invasiveness, CD133+CSCs, and polar angiogenic features. Unlike normal tissue, DEspR is detected in PDAC and GBM microvessels, tumor cells, and CSCs isolated from PDAC-Panc1 and GBM-U87 cells. DEspR-inhibition decreased angiogenesis, invasiveness, CSC-survival and anoikis resistance in vitro, and decreased Panc1-CSC and U87-CSC xenograft tumor growth, vasculo-angiogenesis and invasiveness in nude(nu/nu) rats, suggesting that DEspR activation would coordinate these tumor progression events. As an accessible, cell-surface 'common receptor coordinator', DEspR-inhibition defines a novel targeted-therapy paradigm for pancreatic cancer and glioblastoma.

  17. Expression of CD74 in bladder cancer and its suppression in association with cancer proliferation, invasion and angiogenesis in HT-1376 cells

    Science.gov (United States)

    Gai, Jun-Wei; Wahafu, Wasilijiang; Song, Liming; Ping, Hao; Wang, Mingshuai; Yang, Feiya; Niu, Yinong; Qing, Wei; Xing, Nianzeng

    2018-01-01

    The aim of the present study was to investigate the expression and potential roles of CD74 in human urothelial cell carcinoma of the bladder (UCB) in vitro and in vivo. CD74 and macrophage migration inhibitory factor (MIF) were located and assayed in normal and UCB samples and cell lines using immunostaining. CD74 was knocked down using CD74 shRNA lentiviral particles in HT-1376 cells. The proliferative, invasive potential and microvessel density (MVD) of knockdown-CD74 HT-1376 cells were analyzed in vitro or in vivo. The expression of CD74 in an additional high grade UCB J82 cell line was also verified in vivo. All experiments were repeated at least 3 times. The majority of muscle-invasive bladder cancer (MIBC) samples, and only one high grade UCB cell line, HT-1376, expressed CD74, compared with normal, non-muscle-invasive bladder cancer (NMIBC) samples and other cell lines. The levels of proliferation and invasion were decreased in the CD74 knockdown-HT-1376 cells, and western blotting assay indicated that the levels of proteins associated with proliferation, apoptosis and invasion in the cells were affected correspondingly by different treatments in vitro. The tumorigenesis and MVD assays indicated less proliferation and angiogenesis in the knockdown-HT-1376 cells compared with the scramble cells. Notably, J82 cells exhibiting no signal of CD74 in vitro presented the expression of CD74 in vivo. The present study revealed the potential roles of CD74 in the proliferation, invasion and angiogenesis of MIBC, and that it may serve as a potential therapeutic target for UCB, but additional studies are required.

  18. Decreased tumor cell proliferation as an indicator of the effect of preoperative radiotherapy of rectal cancer

    International Nuclear Information System (INIS)

    Adell, Gunnar; Zhang Hong; Jansson, Agneta; Sun Xiaofeng; Staal, Olle; Nordenskjoeld, Bo

    2001-01-01

    Background: Rectal cancer is a common malignancy, with significant local recurrence and death rates. Preoperative radiotherapy and refined surgical technique can improve local control rates and disease-free survival. Purpose: To investigate the relationship between the tumor growth fraction in rectal cancer measured with Ki-67 and the outcome, with and without short-term preoperative radiotherapy. Method: Ki-67 (MIB-1) immunohistochemistry was used to measure tumor cell proliferation in the preoperative biopsy and the surgical specimen. Materials: Specimens from 152 patients from the Southeast Swedish Health Care region were included in the Swedish rectal cancer trial 1987-1990. Results: Tumors with low proliferation treated with preoperative radiotherapy had a significantly reduced recurrence rate. The influence on death from rectal cancer was shown only in the univariate analysis. Preoperative radiotherapy of tumors with high proliferation did not significantly improve local control and disease-free survival. The interaction between Ki-67 status and the benefit of radiotherapy was significant for the reduced recurrence rate (p=0.03), with a trend toward improved disease-free survival (p=0.08). In the surgery-alone group, Ki-67 staining did not significantly correlate with local recurrence or survival rates. Conclusion: Many Ki-67 stained tumor cells in the preoperative biopsy predicts an increased treatment failure rate after preoperative radiotherapy of rectal cancer

  19. Indispensable role of Notch ligand-dependent signaling in the proliferation and stem cell niche maintenance of APC-deficient intestinal tumors

    International Nuclear Information System (INIS)

    Nakata, Toru; Shimizu, Hiromichi; Nagata, Sayaka; Ito, Go; Fujii, Satoru; Suzuki, Kohei; Kawamoto, Ami; Ishibashi, Fumiaki; Kuno, Reiko; Anzai, Sho; Murano, Tatsuro; Mizutani, Tomohiro; Oshima, Shigeru; Tsuchiya, Kiichiro; Nakamura, Tetsuya; Hozumi, Katsuto; Watanabe, Mamoru; Okamoto, Ryuichi

    2017-01-01

    Ligand-dependent activation of Notch signaling is required to maintain the stem-cell niche of normal intestinal epithelium. However, the precise role of Notch signaling in the maintenance of the intestinal tumor stem cell niche and the importance of the RBPJ-independent non-canonical pathway in intestinal tumors remains unknown. Here we show that Notch signaling was activated in LGR5 +ve cells of APC-deficient mice intestinal tumors. Accordingly, Notch ligands, including Jag1, Dll1, and Dll4, were expressed in these tumors. In vitro studies using tumor-derived organoids confirmed the intrinsic Notch activity-dependent growth of tumor cells. Surprisingly, the targeted deletion of Jag1 but not RBPJ in LGR5 +ve tumor-initiating cells resulted in the silencing of Hes1 expression, disruption of the tumor stem cell niche, and dramatic reduction in the proliferation activity of APC-deficient intestinal tumors in vivo. Thus, our results highlight the importance of ligand-dependent non-canonical Notch signaling in the proliferation and maintenance of the tumor stem cell niche in APC-deficient intestinal adenomas. - Highlights: • Notch signaling is activated in LGR5 +ve cells of APC-deficient intestinal tumors. • Lack of Jag1 but not RBPJ disrupts stem cell niche formation in those tumors. • Lack of Jag1 reduces the proliferation activity of APC-deficient intestinal tumors.

  20. MiR-142 modulates human pancreatic cancer proliferation and invasion by targeting hypoxia-inducible factor 1 (HIF-1α in the tumor microenvironments

    Directory of Open Access Journals (Sweden)

    Yebin Lu

    2017-02-01

    Full Text Available MicroRNAs regulate most protein-coding genes, including genes important in cancer and other diseases. In this study, we demonstrated that the expression of miR-142 could be significantly suppressed in pancreatic cancer specimens and cell lines compared to their adjacent tissues and normal pancreatic cells. Growth and invasion of PANC-1 and SW1990 cells were attenuated by overexpression of miR-142 in vitro. With the help of bioinformatics analysis, hypoxia-inducible factor 1 (HIF-1α was identified to be a direct target of miR-142, and a luciferase reporter experiment confirmed this discovery. Overexpression of miR-142 decreases protein expression of HIF-1α. In the hypoxic microenvironment, HIF-1α was up-regulated while miR-142 was down-regulated. The invaded cells significantly increased in the hypoxic microenvironment compared to the normoxic microenvironment. The hypoxia treatment induced cells’ proliferation, and invasion could be inhibited by miR-142 overexpression or HIF-1α inhibition. Moreover, expression of epithelial-mesenchymal transition (EMT markers, Vimentin, VEGF-C and E-cad, was altered under hypoxia conditions and regulated by miR-142/HIF-1α. Above all, these findings provided insights on the functional mechanism of miR-142, suggesting that the miR-142/HIF-1α axis may interfere with the proliferative and invasive properties of pancreatic cancer cells, and indicated that miR-142 could be a potential therapeutic target for pancreatic cancer.

  1. Impact of ER520, a candidate of selective estrogen receptor modulators, on in vitro cell growth, migration, invasion, angiogenesis and in vivo tumor xenograft of human breast cancer cells.

    Science.gov (United States)

    Wang, Lijun; Wang, Ying; Du, Huaqing; Jiang, Yao; Tang, Zhichao; Liu, Hongyi; Xiang, Hua; Xiao, Hong

    2015-12-01

    ER520, a derivative of indenoisoquinoline, is a patented compound. This study was designed to screen its biological properties and to evaluate its antineoplastic and antiangiogenic effect. Western blot was employed to monitor the ERα and ERβ protein expression in human breast cancer MCF-7 cells and endometrial carcinoma Ishikawa cells. MTT assay was employed to determine cell proliferation. Cell adhesion, scratch and Transwell assay were utilized to estimate the ability of cellular adhesion, migration and invasion. ELISA kit was applied to detect the VEGF products in culture medium. In addition, the inhibitory effect of ER520 on the vessel-like construction of HUVEC cells and the angiogenesis of chicken embryos was investigated. The efficiency of ER520 on tumor growth in nude mice was also assessed. ER520 inhibited the expression of ERα in MCF-7 and Ishikawa cells, while it increased ERβ protein level. ER520 also suppressed the proliferation of MCF-7 and Ishikawa cells. Due to its remarkably negative role in cell adhesion, migration and invasion, ER520 showed a potential ability of inhibiting tumor metastasis. Meanwhile, ER520 reduced the VEGF secretion of MCF-7 and Ishikawa cells, prevented the formation of VEGF-stimulated tubular structure and the cell migration of HUVEC cells, and inhibited the angiogenesis of chicken chorioallantoic membrane. Animal experiment also demonstrated that ER520 could frustrate the in vivo tumor growth and the inhibitory ratio was 48.5 % compared with control group. Our findings indicate that ER520 possesses the competence to be a candidate against breast cancer and angiogenesis.

  2. MicroRNA-410 suppresses migration and invasion by targeting MDM2 in gastric cancer.

    Directory of Open Access Journals (Sweden)

    Jianjun Shen

    Full Text Available Gastric cancer is one of the most frequent malignancies in tumors in the East Asian countries. Identifying precise prognostic markers and effective therapeutic targets is important in the treatment of gastric cancer. microRNAs (miRNAs play important roles in tumorigenesis. However, the mechanisms by which miRNAs regulate gastric cancer metastasis remain poorly understood. In this study, we found that the levels of miR-410 in gastric cancer and cell lines were much lower than that in the normal control, respectively, and the lower level of miR-410 was significantly associated with lymph-node metastasis. Transfection of miR-410 mimics could significantly inhibit the cell proliferation, migration and invasion in the HGC-27 gastric cancer cell lines. In contrast, knockdown of miR-410 had the opposite effect on the cell proliferation, migration and invasion. Moreover, we also found that MDM2 was negatively regulated by miR-410 at the post-transcriptional level, via a specific target site with the 3'UTR by luciferase reporter assay. The expression of MDM2 was inversely correlated with miR-410 expression in gastric cancer tissues, and overexpression of MDM2 in miR-410-transfected gastric cancer cells effectively rescued the inhibition of cell proliferation and invasion caused by miR-410. Thus, our findings suggested that miR-410 acted as a new tumor suppressor by targeting the MDM2 gene and inhibiting gastric cancer cells proliferation, migration and invasion. The findings of this study contributed to the current understanding of these functions of miR-410 in gastric cancer.

  3. Preoperative Magnetic Resonance Volumetry in Predicting Myometrial Invasion, Lymphovascular Space Invasion, and Tumor Grade: Is It Valuable in International Federation of Gynecology and Obstetrics Stage I Endometrial Cancer?

    Science.gov (United States)

    Sahin, Hilal; Sarioglu, Fatma Ceren; Bagci, Mustafa; Karadeniz, Tugba; Uluer, Hatice; Sanci, Muzaffer

    2018-05-01

    The aim of this retrospective single-center study was to evaluate the relationship between maximum tumor size, tumor volume, tumor volume ratio (TVR) based on preoperative magnetic resonance (MR) volumetry, and negative histological prognostic parameters (deep myometrial invasion [MI], lymphovascular space invasion, tumor histological grade, and subtype) in International Federation of Gynecology and Obstetrics stage I endometrial cancer. Preoperative pelvic MR imaging studies of 68 women with surgical-pathologic diagnosis of International Federation of Gynecology and Obstetrics stage I endometrial cancer were reviewed for assessment of MR volumetry and qualitative assessment of MI. Volume of the tumor and uterus was measured with manual tracing of each section on sagittal T2-weighted images. Tumor volume ratio was calculated according to the following formula: TVR = (total tumor volume/total uterine volume) × 100. Receiver operating characteristics curve was performed to investigate a threshold for TVR associated with MI. The Mann-Whitney U test, Kruskal-Wallis test, and linear regression analysis were applied to evaluate possible differences between tumor size, tumor volume, TVR, and negative prognostic parameters. Receiver operating characteristics curve analysis of TVR for prediction of deep MI was statistically significant (P = 0.013). An optimal TVR threshold of 7.3% predicted deep myometrial invasion with 85.7% sensitivity, 46.8% specificity, 41.9% positive predictive value, and 88.0% negative predictive value. Receiver operating characteristics curve analyses of TVR, tumor size, and tumor volume for prediction of tumor histological grade or lymphovascular space invasion were not significant. The concordance between radiologic and pathologic assessment for MI was almost excellent (κ value, 0.799; P volumetry, seems to predict deep MI independently in stage I endometrial cancer with insufficient sensitivity and specificity. Its value in clinical practice for

  4. The MUC4 membrane-bound mucin regulates esophageal cancer cell proliferation and migration properties: Implication for S100A4 protein

    International Nuclear Information System (INIS)

    Bruyere, Emilie; Jonckheere, Nicolas; Frenois, Frederic; Mariette, Christophe; Van Seuningen, Isabelle

    2011-01-01

    Highlights: → Loss of MUC4 reduces proliferation of esophageal cancer cells. → MUC4 inhibition impairs migration of esophageal cancer cells but not their invasion. → Loss of MUC4 significantly reduces in vivo tumor growth. → Decrease of S100A4 induced by MUC4 inhibition impairs proliferation and migration. -- Abstract: MUC4 is a membrane-bound mucin known to participate in tumor progression. It has been shown that MUC4 pattern of expression is modified during esophageal carcinogenesis, with a progressive increase from metaplastic lesions to adenocarcinoma. The principal cause of development of esophageal adenocarcinoma is the gastro-esophageal reflux, and MUC4 was previously shown to be upregulated by several bile acids present in reflux. In this report, our aim was thus to determine whether MUC4 plays a role in biological properties of human esophageal cancer cells. For that stable MUC4-deficient cancer cell lines (shMUC4 cells) were established using a shRNA approach. In vitro (proliferation, migration and invasion) and in vivo (tumor growth following subcutaneous xenografts in SCID mice) biological properties of shMUC4 cells were analyzed. Our results show that shMUC4 cells were less proliferative, had decreased migration properties and did not express S100A4 protein when compared with MUC4 expressing cells. Absence of MUC4 did not impair shMUC4 invasiveness. Subcutaneous xenografts showed a significant decrease in tumor size when cells did not express MUC4. Altogether, these data indicate that MUC4 plays a key role in proliferative and migrating properties of esophageal cancer cells as well as is a tumor growth promoter. MUC4 mucin appears thus as a good therapeutic target to slow-down esophageal tumor progression.

  5. The MUC4 membrane-bound mucin regulates esophageal cancer cell proliferation and migration properties: Implication for S100A4 protein

    Energy Technology Data Exchange (ETDEWEB)

    Bruyere, Emilie; Jonckheere, Nicolas; Frenois, Frederic [Inserm, UMR837, Jean-Pierre Aubert Research Center, Team 5 ' Mucins, Epithelial Differentiation and Carcinogenesis' , rue Polonovski, 59045 Lille Cedex (France); Universite Lille-Nord de France, 1 place de Verdun, 59045 Lille Cedex (France); Mariette, Christophe [Inserm, UMR837, Jean-Pierre Aubert Research Center, Team 5 ' Mucins, Epithelial Differentiation and Carcinogenesis' , rue Polonovski, 59045 Lille Cedex (France); Universite Lille-Nord de France, 1 place de Verdun, 59045 Lille Cedex (France); Department of Digestive and Oncological Surgery, University Hospital Claude Huriez, 1 place de Verdun, 59045 Lille Cedex (France); Van Seuningen, Isabelle, E-mail: isabelle.vanseuningen@inserm.fr [Inserm, UMR837, Jean-Pierre Aubert Research Center, Team 5 ' Mucins, Epithelial Differentiation and Carcinogenesis' , rue Polonovski, 59045 Lille Cedex (France); Universite Lille-Nord de France, 1 place de Verdun, 59045 Lille Cedex (France)

    2011-09-23

    Highlights: {yields} Loss of MUC4 reduces proliferation of esophageal cancer cells. {yields} MUC4 inhibition impairs migration of esophageal cancer cells but not their invasion. {yields} Loss of MUC4 significantly reduces in vivo tumor growth. {yields} Decrease of S100A4 induced by MUC4 inhibition impairs proliferation and migration. -- Abstract: MUC4 is a membrane-bound mucin known to participate in tumor progression. It has been shown that MUC4 pattern of expression is modified during esophageal carcinogenesis, with a progressive increase from metaplastic lesions to adenocarcinoma. The principal cause of development of esophageal adenocarcinoma is the gastro-esophageal reflux, and MUC4 was previously shown to be upregulated by several bile acids present in reflux. In this report, our aim was thus to determine whether MUC4 plays a role in biological properties of human esophageal cancer cells. For that stable MUC4-deficient cancer cell lines (shMUC4 cells) were established using a shRNA approach. In vitro (proliferation, migration and invasion) and in vivo (tumor growth following subcutaneous xenografts in SCID mice) biological properties of shMUC4 cells were analyzed. Our results show that shMUC4 cells were less proliferative, had decreased migration properties and did not express S100A4 protein when compared with MUC4 expressing cells. Absence of MUC4 did not impair shMUC4 invasiveness. Subcutaneous xenografts showed a significant decrease in tumor size when cells did not express MUC4. Altogether, these data indicate that MUC4 plays a key role in proliferative and migrating properties of esophageal cancer cells as well as is a tumor growth promoter. MUC4 mucin appears thus as a good therapeutic target to slow-down esophageal tumor progression.

  6. Rac1 activity regulates proliferation of aggressive metastatic melanoma

    International Nuclear Information System (INIS)

    Bauer, Natalie N.; Chen Yihwen; Samant, Rajeev S.; Shevde, Lalita A.; Fodstad, Oystein

    2007-01-01

    Molecular mechanisms underlying the different capacity of two in vivo selected human melanoma cell variants to form experimental metastases were studied. The doubling times of the FEMX-I and FEMX-V cell sublines in vitro were 15 and 25 h, respectively. The invasive capacity of FEMX-I cells was 8-fold higher than FEMX-V cells, and the time to form approximately 10 mm s.c. tumors in nude mice was 21 versus 35 days. FEMX-I displayed a spindle-like formation in vitro, whereas FEMX-V cells had a rounded shape. Hence, we examined known determinants of cell shape and proliferation, the small GTPases. The four studied showed equal expression in both cell types, but Rac1 activity was significantly decreased in FEMX-V cells. Rac1 stimulates NFκB, and we found that endogenous NFκB activity of FEMX-V cells was 2% of that of FEMX-I cells. Inhibition of Rac1 resulted in blocked NFκB activity. Specific inhibition of either Rac1 or NFκB significantly reduced proliferation and invasion of FEMX-I cells, the more pronounced effects observed with Rac1 inhibition. These data indicate that Rac1 activity in FEMX cells regulates cell proliferation and invasion, in part via its effect on NFκB, signifying Rac1 as a key molecule in melanoma progression and metastasis

  7. Neural control of colonic cell proliferation.

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1980-03-15

    The mitotic rate in rat colonic crypts and in dimethylhydrazine-induced colonic carcinomas was measured using a stathmokinetic technique. In sympathectomized animals cell proliferation was retarded in the crypts but not in the tumors, whereas in animals treated with Metaraminol, a drug which releases norepinephrine from nerve terminals, crypt cell but not tumor cell proliferation was accelerated. Blockade of alpha-adrenoceptors also inhibited crypt cell proliferation. However, stimulation of beta-adrenoceptors inhibited and blockade of beta-adrenoceptors accelerated tumor cell proliferation without influencing crypt cell proliferation. Injection of either serotonin or histamine stimulated tumor but not crypt cell proliferation and blockade or serotonin receptors or histamine H2-receptors inhibited tumor cell proliferation. It is postulated that cell proliferation in the colonic crypts, like that in the jejunal crypts, is under both endocrine and autonomic neural control whereas colonic tumor cell division is subject to endocrine regulation alone.

  8. In Vivo and In Vitro Effects of ATM/ATR Signaling Pathway on Proliferation, Apoptosis, and Radiosensitivity of Nasopharyngeal Carcinoma Cells.

    Science.gov (United States)

    Wang, Ming; Liu, Gang; Shan, Guo-Ping; Wang, Bing-Bing

    2017-08-01

    The study investigated the ability of ataxia-telangiectasia mutated (ATM)/Rad3-related (ATR) signaling pathway to influence the proliferation, apoptosis, and radiosensitivity of nasopharyngeal carcinoma (NPC) cells. NPC tissues and corresponding adjacent normal tissues were collected from 143 NPC patients. The NPC CNE2 cells were assigned into a control group, X-ray group, CGK-733 group, and X-ray+CGK-733 group. The mRNA levels of ATM and ATR were evaluated using quantitative real-time polymerase chain reaction (qRT-PCR) and the protein levels of ATM and ATR using western blotting. The positive expression of ATM and ATR in tissues and nude mouse tumor tissues was determined by immunohistochemistry. Cell proliferation, migration, invasion, and apoptosis rates were analyzed by the 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide (MTT) assay, scratch test, transwell assay, and flow cytometry, respectively. A nude mouse model of NPC was established to observe tumor volume and growth. The mRNA levels of ATR and ATM and the expression of ATR and ATM protein in NPC tissues were significantly higher than those in adjacent normal tissues. The colony formation assay showed that the colony-forming rate decreased, showing radiation dose-dependent and CGK-733 concentration-dependent manners. Expression of ATM, ATR, Chk1, and Chk2 was evidently increased in the X-ray, CGK-733, and X-ray+CGK-733groups compared with the control group, and the aforementioned expression was highest in the X-ray+CGK-733 group among the four groups. The cell proliferation, invasion, and migration were decreased, tumor volume decreased and cell apoptosis increased in the X-ray, CGK-733, and X-ray+CGK-733 groups compared with the control group; the X-ray+CGK-733 group exhibited lowest cell proliferation, invasion and migration, smallest tumor volume, and highest cell apoptosis among the four groups. Inhibition of ATM/ATR signaling pathway reduces proliferation and enhances apoptosis and

  9. DEspR roles in tumor vasculo-angiogenesis, invasiveness, CSC-survival and anoikis resistance: a 'common receptor coordinator' paradigm.

    Directory of Open Access Journals (Sweden)

    Victoria L Herrera

    Full Text Available A priori, a common receptor induced in tumor microvessels, cancer cells and cancer stem-like cells (CSCs that is involved in tumor angiogenesis, invasiveness, and CSC anoikis resistance and survival, could underlie contemporaneous coordination of these events rather than assume stochasticity. Here we show that functional analysis of the dual endothelin1/VEGFsignal peptide receptor, DEspR, (formerly named Dear, Chr.4q31.2 supports the putative common receptor paradigm in pancreatic ductal adenocarcinoma (PDAC and glioblastoma (GBM selected for their invasiveness, CD133+CSCs, and polar angiogenic features. Unlike normal tissue, DEspR is detected in PDAC and GBM microvessels, tumor cells, and CSCs isolated from PDAC-Panc1 and GBM-U87 cells. DEspR-inhibition decreased angiogenesis, invasiveness, CSC-survival and anoikis resistance in vitro, and decreased Panc1-CSC and U87-CSC xenograft tumor growth, vasculo-angiogenesis and invasiveness in nude(nu/nu rats, suggesting that DEspR activation would coordinate these tumor progression events. As an accessible, cell-surface 'common receptor coordinator', DEspR-inhibition defines a novel targeted-therapy paradigm for pancreatic cancer and glioblastoma.

  10. Front instabilities and invasiveness of simulated 3D avascular tumors.

    Directory of Open Access Journals (Sweden)

    Nikodem J Poplawski

    2010-05-01

    Full Text Available We use the Glazier-Graner-Hogeweg model to simulate three-dimensional (3D, single-phenotype, avascular tumors growing in an homogeneous tissue matrix (TM supplying a single limiting nutrient. We study the effects of two parameters on tumor morphology: a diffusion-limitation parameter defined as the ratio of the tumor-substrate consumption rate to the substrate-transport rate, and the tumor-TM surface tension. This initial model omits necrosis and oxidative/hypoxic metabolism effects, which can further influence tumor morphology, but our simplified model still shows significant parameter dependencies. The diffusion-limitation parameter determines whether the growing solid tumor develops a smooth (noninvasive or fingered (invasive interface, as in our earlier two-dimensional (2D simulations. The sensitivity of 3D tumor morphology to tumor-TM surface tension increases with the size of the diffusion-limitation parameter, as in 2D. The 3D results are unexpectedly close to those in 2D. Our results therefore may justify using simpler 2D simulations of tumor growth, instead of more realistic but more computationally expensive 3D simulations. While geometrical artifacts mean that 2D sections of connected 3D tumors may be disconnected, the morphologies of 3D simulated tumors nevertheless correlate with the morphologies of their 2D sections, especially for low-surface-tension tumors, allowing the use of 2D sections to partially reconstruct medically-important 3D-tumor structures.

  11. Higher molecular weight polyethylene glycol increases cell proliferation while improving barrier function in an in vitro colon cancer model.

    Science.gov (United States)

    Bharadwaj, Shruthi; Vishnubhotla, Ramana; Shan, Sun; Chauhan, Chinmay; Cho, Michael; Glover, Sarah C

    2011-01-01

    Polyethylene glycol (PEG) has been previously shown to protect against enteric pathogens and prevent colon cancer invasion. To determine if PEG could indeed protect against previously observed pro-invasive effects of commensal E. coli and EPEC, Caco-2 cells grown in an in vitro model of colon cancer were infected with strains of human commensal E. coli or EPEC and treated with 10% PEG 3350, PEG 8000, and PEG 20,000, respectively. At 24 hours after infection, MMP-1 and MMP-13 activities, cell cluster thickness, depth of invasion, and proliferation were determined using standard molecular biology techniques and advanced imaging. We found that higher molecular weight PEG, especially PEG 8000 and 20,000, regardless of bacterial infection, increased proliferation and depth of invasion although a decrease in cellular density and MMP-1 activity was also noted. Maximum proliferation and depth of invasion of Caco-2 cells was observed in scaffolds treated with a combination of commensal E. coli strain, HS4 and PEG 8000. In conclusion, we found that PEG 8000 increased cell proliferation and led to the preservation of cell density in cells treated with commensal bacteria. This is important, because the preservation of a proliferative response in colon cancer results in a more chemo-responsive tumor.

  12. Higher Molecular Weight Polyethylene Glycol Increases Cell Proliferation While Improving Barrier Function in an In Vitro Colon Cancer Model

    Directory of Open Access Journals (Sweden)

    Shruthi Bharadwaj

    2011-01-01

    Full Text Available Polyethylene glycol (PEG has been previously shown to protect against enteric pathogens and prevent colon cancer invasion. To determine if PEG could indeed protect against previously observed pro-invasive effects of commensal E. coli and EPEC, Caco-2 cells grown in an in vitro model of colon cancer were infected with strains of human commensal E. coli or EPEC and treated with 10% PEG 3350, PEG 8000, and PEG 20,000, respectively. At 24 hours after infection, MMP-1 and MMP-13 activities, cell cluster thickness, depth of invasion, and proliferation were determined using standard molecular biology techniques and advanced imaging. We found that higher molecular weight PEG, especially PEG 8000 and 20,000, regardless of bacterial infection, increased proliferation and depth of invasion although a decrease in cellular density and MMP-1 activity was also noted. Maximum proliferation and depth of invasion of Caco-2 cells was observed in scaffolds treated with a combination of commensal E. coli strain, HS4 and PEG 8000. In conclusion, we found that PEG 8000 increased cell proliferation and led to the preservation of cell density in cells treated with commensal bacteria. This is important, because the preservation of a proliferative response in colon cancer results in a more chemo-responsive tumor.

  13. A general native-state method for determination of proliferation capacity of human normal and tumor tissues in vitro

    International Nuclear Information System (INIS)

    Hoffman, R.M.; Connors, K.M.; Meerson-Monosov, A.Z.; Herrera, H.; Price, J.H.

    1989-01-01

    An important need in cancer research and treatment is a physiological means in vitro by which to assess the proliferation capacity of human tumors and corresponding normal tissue for comparison. The authors have recently developed a native-state, three-dimensional, gel-supported primary culture system that allows every type of human cancer to grow in vitro at more than 90% frequency, with maintenance of tissue architecture, tumor-stromal interaction, and differentiated functions. Here they demonstrate that the native-state culture system allows proliferation indices to be determined for all solid cancer types explanted directly from surgery into long-term culture. Normal tissues also proliferate readily in this system. The degree of resolution of measurement of cell proliferation by histological autoradiography within the cultured tissues is greatly enhanced with the use of epi-illumination polarization microscopy. The histological status of the cultured tissues can be assessed simultaneously with the proliferation status. Carcinomas generally have areas of high epithelial proliferation with quiescent stromal cells. Sarcomas have high proliferation of cells of mesenchymal organ. Normal tissues can also proliferate at high rates. An image analysis system has been developed to automate proliferation determination. The high-resolution physiological means described here to measure the proliferation capacity of tissues will be important in further understanding of the deregulation of cell proliferation in cancer as well as in cancer prognosis and treatment

  14. Relationship of preoperative gastric cancer CT enhancement ratio and perfusion parameters with serum tumor marker levels and proliferation molecule expression in tumor lesions

    Directory of Open Access Journals (Sweden)

    Yong-Hong Wang

    2017-06-01

    Full Text Available Objective: To study the relationship of preoperative gastric cancer CT enhancement ratio and perfusion parameters with serum tumor marker levels and proliferation molecule expression in tumor lesions. Methods: A total of 68 patients with gastric cancer treated in the Second Hospital of Yulin City between May 2012 and May 2016 were chosen as observation group and sub-divided into early and middle gastric cancer group (n=41 and advanced gastric cancer group (n=27 according to the tumor stage; 50 patients diagnosed with benign gastric diseases in our hospital during the same period were selected as benign gastric lesion group. CT enhancement rate and perfusion parameters of three groups of patients were detected by CT scan, serum tumor marker levels were evacuated by enzyme-linked immunosorbent assay (ELISA, and the proliferation gene mRNA expression levels were detected by RTPCR method. Results: CER, AF, BV and CL levels of advanced gastric cancer group were higher than those of early and middle gastric cancer group and benign gastric lesion group; serum CA72-4, CA19-9, CA125 and CEA contents of advanced gastric cancer group were higher than those of early and middle gastric cancer group and benign gastric lesion group; CADM1, miRNA-34a and Cystatin M mRNA expression in tissue of advanced gastric cancer group were lower than those of early and middle gastric cancer group and benign gastric lesion group while Survivin and I2PP2A mRNA expression were higher than those of early and middle gastric cancer group and benign gastric lesion group. The Pearson test showed that the CT enhancement rate and perfusion parameters in patients with gastric cancer are directly correlated with the serum tumor marker levels and the proliferation gene expression in tumor lesions. Conclusion: Preoperative gastric cancer CT enhancement rate and perfusion parameters are directly related to the tumor malignancy, and can be used as a reliable method for the long-term tumor

  15. Comparison of the value of PCNA and Ki-67 as markers of cell proliferation in ameloblastic tumor

    Science.gov (United States)

    Mosqueda-Taylor, Adalberto; Molina-Frechero, Nelly; Mori-Estevez, Ana D.; Sánchez-Acuña, Guillermo

    2013-01-01

    Objectives: The aim of this study was to compare among PCNAand Ki-67 as the most reliable immunohistochemical marker for evaluating cell proliferation in ameloblastic tumors. Study Design: Observational, retrospective, and descriptive study of a large series of ameloblastic tumors, composed of 161 ameloblastomas and four ameloblastic carcinomas, to determine and compare PCNA and Ki-67 expression using immunohistochemistry techniques. Results: When analyzing Ki-67 positivity, the desmoplastic ameloblastoma demonstrated a significantly lower proliferation rate (1.9%) compared with the solid/multicystic and unicystic ameloblastomas and ameloblastic carcinomas (p<0.05), whereas the ameloblastic carcinomas displayed a significantly higher rate compared with all of the other ameloblastomas (48.7%) (p<0.05). When analyzing cell proliferation with PCNA, we found significant differences only between the ameloblastic carcinomas (93.3%) and the desmoplastic ameloblastomas (p<0.05). When differences between the immunopositivity for PCNA and Ki-67 were compared, the percentages were higher for PCNA in all types of ameloblastomas and ameloblastic carcinomas. In all cases, the percentages were greater than 80%, whereas the immunopositivity for Ki-67 was significantly lower; for example, the ameloblastic carcinoma expressed the highest positivity and only reached 48.7%, compared to 93.3% when we used PCNA. Conclusions: In the present study, when we used the proliferation cell marker Ki-67, the percentages of positivity were more specific and varied among the different types of ameloblastomas, suggesting that Ki-67 is a more specific marker for the proliferation of ameloblastic tumor cells. Key words:Ameloblastomas, ameloblastic carcinoma, PCNA, Ki-67, cell proliferation markers. PMID:23229269

  16. SAMHD1 is down regulated in lung cancer by methylation and inhibits tumor cell proliferation

    International Nuclear Information System (INIS)

    Wang, Jia-lei; Lu, Fan-zhen; Shen, Xiao-Yong; Wu, Yun; Zhao, Li-ting

    2014-01-01

    Highlights: • SAMHD1 expression level is down regulated in lung adenocarcinoma. • The promoter of SAMHD1 is methylated in lung adenocarcinoma. • Over expression of SAMHD1 inhibits the proliferation of lung cancer cells. - Abstract: The function of dNTP hydrolase SAMHD1 as a viral restriction factor to inhibit the replication of several viruses in human immune cells was well established. However, its regulation and function in lung cancer have been elusive. Here, we report that SAMHD1 is down regulated both on protein and mRNA levels in lung adenocarcinoma compared to adjacent normal tissue. We also found that SAMHD1 promoter is highly methylated in lung adenocarcinoma, which may inhibit its gene expression. Furthermore, over expression of the SAMHD1 reduces dNTP level and inhibits the proliferation of lung tumor cells. These results reveal the regulation and function of SAMHD1 in lung cancer, which is important for the proliferation of lung tumor cells

  17. Chemokine receptor CXCR7 regulates the invasion, angiogenesis and tumor growth of human hepatocellular carcinoma cells

    Directory of Open Access Journals (Sweden)

    Li Fan

    2010-04-01

    Full Text Available Abstract Background In spite of recent advances in diagnostic and therapeutic measures, the prognosis of hepatocellular carcinoma (HCC patients remains poor. Therefore, it is crucial to understand what factors are involved in promoting development of HCC. Evidence is accumulating that members of the chemokine receptor family are viewed as promising therapeutic targets in the fight against cancer. More recent studies have revealed that chemokine receptor CXCR7 plays an important role in cancer development. However, little is known about the effect of CXCR7 on the process of HCC cell invasion and angiogenesis. The aim of this study is to investigate the expression of CXCR7 in hepatocellular carcinoma tissues and cell lines and to evaluate the role of CXCR7 in tumor growth, angiogenesis and invasion of HCC cells. Methods We constructed CXCR7 expressing shRNA, and CXCR7shRNA was subsequently stably transfected into human HCC cells. We evaluated the effect of CXCR7 inhibition on cell invasion, adhesion, VEGF secretion, tube formation and tumor growth. Immunohistochemistry was done to assess the expression of CXCR7 in human hepatocellular carcinoma tissues and CD31 in tumor of mice. We also evaluated the effect of VEGF stimulation on expression of CXCR7. Results CXCR7 was overexpressed in hepatocellular carcinoma tissues. We showed that high invasive potential HCC cell lines express high levels of CXCR7. In vitro, CXCL12 was found to induce invasion, adhesion, tube formation, and VEGF secretion in SMMC-7721 cells. These biological effects were inhibited by silencing of CXCR7 in SMMC-7721 cells. In addition, we also found that VEGF stimulation can up-regulate CXCR7 expression in SMMC-7721 cells and HUVECs. More importantly, enhanced expression of CXCR7 by VEGF was founctional. In vivo, tumor growth and angiogenesis were suppressed by knockdown of CXCR7 in SMMC-7721 cells. However, silencing of CXCR7 did not affect metastasis of tumor in vivo

  18. Heterogeneity and proliferation of invasive cancer subclones in game theory models of the Warburg effect.

    Science.gov (United States)

    Archetti, M

    2015-04-01

    The Warburg effect, a switch from aerobic energy production to anaerobic glycolysis, promotes tumour proliferation and motility by inducing acidification of the tumour microenvironment. Therapies that reduce acidity could impair tumour growth and invasiveness. I analysed the dynamics of cell proliferation and of resistance to therapies that target acidity, in a population of cells, under the Warburg effect. The dynamics of mutant cells with increased glycolysis and motility has been assessed in a multi-player game with collective interactions in the framework of evolutionary game theory. Perturbations of the level of acidity in the microenvironment have been used to simulate the effect of therapies that target glycolysis. The non-linear effects of glycolysis induce frequency-dependent clonal selection leading to coexistence of glycolytic and non-glycolytic cells within a tumour. Mutants with increased motility can invade such a polymorphic population and spread within the tumour. While reducing acidity may produce a sudden reduction in tumour cell proliferation, frequency-dependent selection enables it to adapt to the new conditions and can enable the tumour to restore its original levels of growth and invasiveness. The acidity produced by glycolysis acts as a non-linear public good that leads to coexistence of cells with high and low glycolysis within the tumour. Such a heterogeneous population can easily adapt to changes in acidity. Therapies that target acidity can only be effective in the long term if the cost of glycolysis is high, that is, under non-limiting oxygen concentrations. Their efficacy, therefore, is reduced when combined with therapies that impair angiogenesis. © 2015 The Authors Cell Proliferation Published by John Wiley & Sons Ltd.

  19. Peroxisome proliferator-activated receptor gamma coactivator-1 alpha acts as a tumor suppressor in hepatocellular carcinoma.

    Science.gov (United States)

    Liu, Rui; Zhang, Haiyang; Zhang, Yan; Li, Shuang; Wang, Xinyi; Wang, Xia; Wang, Cheng; Liu, Bin; Zen, Ke; Zhang, Chen-Yu; Zhang, Chunni; Ba, Yi

    2017-04-01

    Peroxisome proliferator-activated receptor gamma coactivator-1 alpha plays a crucial role in regulating the biosynthesis of mitochondria, which is closely linked to the energy metabolism in various tumors. This study investigated the regulatory role of peroxisome proliferator-activated receptor gamma coactivator-1 alpha in the pathogenesis of hepatocellular carcinoma. In this study, the changes of peroxisome proliferator-activated receptor gamma coactivator-1 alpha messenger RNA levels between normal human liver and hepatocellular carcinoma tissue were examined by quantitative reverse transcription polymerase chain reaction. Knockdown of peroxisome proliferator-activated receptor gamma coactivator-1 alpha was conducted by RNA interference in the human liver cell line L02, while overexpression of peroxisome proliferator-activated receptor gamma coactivator-1 alpha was conducted by adenovirus encoding peroxisome proliferator-activated receptor gamma coactivator-1 alpha complementary DNA in the human hepatocarcinoma cell line HepG2. Cellular morphological changes were observed via optical and electron microscopy. Cellular apoptosis was determined by Hoechst 33258 staining. In addition, the expression levels of 21,400 genes in tissues and cells were detected by microarray. It was shown that peroxisome proliferator-activated receptor gamma coactivator-1 alpha expression was significantly downregulated in hepatocellular carcinoma compared with normal liver tissues. After knockdown of peroxisome proliferator-activated receptor gamma coactivator-1 alpha expression in L02 cells, cells reverted to immature and dedifferentiated morphology exhibiting cancerous tendency. Apoptosis occurred in the HepG2 cells after transfection by adenovirus encoding peroxisome proliferator-activated receptor gamma coactivator-1 alpha. Microarray analysis showed consistent results. The results suggest that peroxisome proliferator-activated receptor gamma coactivator-1 alpha acts as a tumor

  20. Targeted inhibition of the phosphoinositide 3-kinase impairs cell proliferation, survival, and invasion in colon cancer.

    Science.gov (United States)

    Yang, Fei; Gao, Jun-Yi; Chen, Hua; Du, Zhen-Hua; Zhang, Xue-Qun; Gao, Wei

    2017-01-01

    Colon cancer is the third most common cancer in the world, and its metastasis and drug resistance are challenging for its effective treatment. The PI3K/Akt/mTOR pathway plays a crucial role in the pathogenesis of colon cancer. The aim of this study was to investigate the targeting of PI3K in colon cancer cells HT-29 and HCT-116 in vitro. In HT-29 and HCT-116 cells, BEZ235, a dual inhibitor of PI3K/mTOR, and shRNAtarget to PI3KCA were used to inhibit PI3K/Akt/mTOR pathway. The inhibition efficiency of PI3K/Akt/mTOR pathway was detected by RT-PCR and Western blot. Cell proliferation, migration, invasion, and apoptosis were evaluated by Cell Counting Kit-8, Transwell, and flow cytometry assays. The expression of apoptosis-related proteins (cleavage caspase 3, Bcl-2, Bax, and Bim) were also detected. We found that in HT-29 and HCT-116 cells, the treatment of BEZ235 (1 μM) and PI3KCA knockdown inhibited the activation of PI3K/Akt/mTOR pathway and significantly suppressed cell proliferation, migration, and invasion of HT-29 and HCT-116 cells. In addition, we confirmed that knockdown of BEZ235 and PI3KCA induced cell apoptosis through the upregulated levels of cleavage caspase 3 and Bax and downregulated expression of Bcl-2 and Bim. Our results indicated that targeted inhibition of the PI3K/Akt/mTOR pathway impaired cell proliferation, survival, and invasion in human colon cancer.

  1. Pelvic inflammatory disease and risk of invasive ovarian cancer and ovarian borderline tumors

    DEFF Research Database (Denmark)

    Rasmussen, Christina B; Faber, Mette T; Jensen, Allan

    2013-01-01

    PURPOSE: The aim of the study was to examine the potential association between a history of pelvic inflammatory disease (PID) and risk of epithelial ovarian cancer or ovarian borderline tumors. METHODS: In a population-based case-control study in Denmark, we included 554 women with invasive ovarian...... cancer, 202 with ovarian borderline tumors, and 1,564 controls aged 35-79 years. The analyses were performed in multiple logistic regression models. RESULTS: We found a significantly increased risk of ovarian borderline tumors among women with a history of PID (OR = 1.50; 95% CI 1.......08-2.08) but no apparent association between PID and risk of invasive ovarian cancer (OR = 0.83; 95% CI 0.65-1.05). We found no effect of age at time of first PID or time since first PID on the risk for either condition. CONCLUSION: Our results suggest that a history of PID is associated with an increased risk of ovarian...

  2. ERK1/2 signalling pathway is involved in CD147-mediated gastric cancer cell line SGC7901 proliferation and invasion.

    Science.gov (United States)

    Chen, Liping; Pan, Yuqin; Gu, Ling; Nie, Zhenlin; He, Bangshun; Song, Guoqi; Li, Rui; Xu, Yeqiong; Gao, Tianyi; Wang, Shukui

    2013-08-01

    This study aimed to investigate the role of CD147 in the progression of gastric cancer and the signalling pathway involved in CD147-mediated gastric cancer cell line SGC7901 proliferation and invasion. Short hairpin RNA (shRNA) expression vectors targeting CD147 were constructed to silence CD147, and the expression of CD147 was monitored by quantitative realtime reverse transcriptase polymerase chain reaction and Western blot and further confirmed by immunohistochemistry in vivo. Cell proliferation was determined by Cell Counting Kit-8 assay, the activities of matrix metalloproteinase (MMP)-2 and MMP-9 were determined by gelatin zymography, and the invasion of SGC7901 was determined by invasion assay. The phosphorylation and non-phosphorylation of the mitogen-activated protein kinases, extracellular signal-regulated kinase1/2 (ERK1/2), P38 and c-Jun NH2-terminal kinase were examined by Western blot. Additionally, the ERK1/2 inhibitor U0126 were used to confirm the signalling pathway involved in CD147-mediated SGC7901 progression. The BALB/c nude mice were used to study tumour progression in vivo. The results revealed that CD147 silencing inhibited the proliferation and invasion of SGC7901 cells, and down-regulated the activities of MMP-2 and MMP-9 and the phosphorylation of the ERK1/2 in SGC7901 cells. ERK1/2 inhibitor U0126 decreased the proliferation, and invasion of SGC7901 cells, and down-regulated the MMP-2 and MMP-9 activities. In a nude mouse model of subcutaneous xenografts, the tumour volume was significantly smaller in the SGC7901/shRNA group compared to the SGC7901 and SGC7901/snc-RNA group. Immunohistochemistry analysis showed that CD147 and p-ERK1/2 protein expressions were down-regulated in the SGC7901/shRNA2 group compared to the SGC7901 and SGC7901/snc-RNA group. These results suggest that ERK1/2 pathway involves in CD147-mediated gastric cancer growth and invasion. These findings further highlight the importance of CD147 in cancer progression

  3. Type I collagen gene suppresses tumor growth and invasion of malignant human glioma cells

    Directory of Open Access Journals (Sweden)

    Miyata Teruo

    2007-06-01

    Full Text Available Abstract Background Invasion is a hallmark of a malignant tumor, such as a glioma, and the progression is followed by the interaction of tumor cells with an extracellular matrix (ECM. This study examined the role of type I collagen in the invasion of the malignant human glioma cell line T98G by the introduction of the human collagen type I α1 (HCOL1A1 gene. Results The cells overexpressing HCOL1A1 were in a cluster, whereas the control cells were scattered. Overexpression of HCOL1A1 significantly suppressed the motility and invasion of the tumor cells. The glioma cell growth was markedly inhibited in vitro and in vivo by the overexpression of HCOL1A1; in particular, tumorigenicity completely regressed in nude mice. Furthermore, the HCOL1A1 gene induced apoptosis in glioma cells. Conclusion These results indicate that HCOL1A1 have a suppressive biological function in glioma progression and that the introduction of HCOL1A1 provides the basis of a novel therapeutic approach for the treatment of malignant human glioma.

  4. [A Retrospective Study of Mean Computed Tomography Value to Predict 
the Tumor Invasiveness in AAH and Clinical Stage Ia Lung Cancer].

    Science.gov (United States)

    Wu, Hanran; Liu, Changqing; Xu, Meiqing; Xiong, Ran; Xu, Guangwen; Li, Caiwei; Xie, Mingran

    2018-03-20

    Recently, the detectable rate of ground-glass opacity (GGO ) was significantly increased, a appropriate diagnosis before clinic treatment tends to be important for patients with GGO lesions. The aim of this study is to validate the ability of the mean computed tomography (m-CT) value to predict tumor invasiveness, and compared with other measurements such as Max CT value, GGO size, solid size of GGO and C/T ratio (consolid/tumor ratio, C/T) to find out the best measurement to predict tumor invasiveness. A retrospective study was conducted of 129 patients who recieved lobectomy and were pathological confirmed as atypical adenomatous pyperplasia (AAH) or clinical stage Ia lung cance in our center between January 2012 and December 2013. Of those 129 patients, the number of patients of AAH, AIS, AIS and invasive adenocarcinoma were 43, 26, 17 and 43, respectively. We defined AAH and AIS as noninvasive cancer (NC), MIA and invasive adenocarcinoma were categorized as invasive cancer(IC). We used receiver operating characteristic (ROC) curve analysis to compare the ability to predict tumor invasiveness between m-CT value, consolidation/tumor ratio, tumor size and solid size of tumor. Multiple logistic regression analyses were performed to determine the independent variables for prediction of pathologic more invasive lung cancer. 129 patients were enrolled in our study (59 male and 70 female), the patients were a median age of (62.0±8.6) years (range, 44 to 82 years). The two groups were similar in terms of age, sex, differentiation (P>0.05). ROC curve analysis was performed to determine the appropriate cutoff value and area under the cure (AUC). The cutoff value of solid tumor size, tumor size, C/T ratio, m-CT value and Max CT value were 9.4 mm, 15.3 mm, 47.5%, -469.0 HU and -35.0 HU, respectively. The AUC of those variate were 0.89, 0.79, 0.82, 0.90, 0.85, respectively. When compared the clinical and radiologic data between two groups, we found the IC group was strongly

  5. Biophysical force regulation in 3D tumor cell invasion

    Science.gov (United States)

    Wu, Mingming

    When embedded within 3D extracellular matrices (ECM), animal cells constantly probe and adapt to the ECM locally (at cell length scale) and exert forces and communicate with other cells globally (up to 10 times of cell length). It is now well accepted that mechanical crosstalk between animal cells and their microenvironment critically regulate cell function such as migration, proliferation and differentiation. Disruption of the cell-ECM crosstalk is implicated in a number of pathologic processes including tumor progression and fibrosis. Central to the problem of cell-ECM crosstalk is the physical force that cells generate. By measuring single cell generated force within 3D collagen matrices, we revealed a mechanical crosstalk mechanism between the tumor cells and the ECM. Cells generate sufficient force to stiffen collagen fiber network, and stiffer matrix, in return promotes larger cell force generation. Our work highlights the importance of fibrous nonlinear elasticity in regulating tumor cell-ECM interaction, and results may have implications in the rapid tissue stiffening commonly found in tumor progression and fibrosis. This work is partially supported by NIH Grants R21RR025801 and R21GM103388.

  6. Overexpression of long non-coding RNA TUG1 predicts poor prognosis and promotes cancer cell proliferation and migration in high-grade muscle-invasive bladder cancer.

    Science.gov (United States)

    Iliev, Robert; Kleinova, Renata; Juracek, Jaroslav; Dolezel, Jan; Ozanova, Zuzana; Fedorko, Michal; Pacik, Dalibor; Svoboda, Marek; Stanik, Michal; Slaby, Ondrej

    2016-10-01

    Long non-coding RNA TUG1 is involved in the development and progression of a variety of tumors. Little is known about TUG1 function in high-grade muscle-invasive bladder cancer (MIBC). The aims of our study were to determine expression levels of long non-coding RNA TUG1 in tumor tissue, to evaluate its relationship with clinico-pathological features of high-grade MIBC, and to describe its function in MIBC cells in vitro. TUG1 expression levels were determined in paired tumor and adjacent non-tumor bladder tissues of 47 patients with high-grade MIBC using real-time PCR. Cell line T-24 and siRNA silencing were used to study the TUG1 function in vitro. We observed significantly increased levels of TUG1 in tumor tissue in comparison to adjacent non-tumor bladder tissue (P TUG1 levels were significantly increased in metastatic tumors (P = 0.0147) and were associated with shorter overall survival of MIBC patients (P = 0.0241). TUG1 silencing in vitro led to 34 % decrease in cancer cell proliferation (P = 0.0004) and 23 % reduction in migration capacity of cancer cells (P TUG1 silencing on cell cycle distribution and number of apoptotic cells. Our study confirmed overexpression of TUG1 in MIBC tumor tissue and described its association with worse overall survival in high-grade MIBC patients. Together with in vitro observations, these data suggest an oncogenic role of TUG1 and its potential usage as biomarker or therapeutic target in MIBC.

  7. The total flavonoids of Clerodendrum bungei suppress A549 cells proliferation, migration, and invasion by impacting Wnt/β-Catenin signaling

    Directory of Open Access Journals (Sweden)

    Na Yu

    2017-01-01

    Full Text Available Objectives: The objective of this study is to evaluate the effect of the total flavonoids of Clerodendrum bungei (TFCB on the proliferation, invasion, and metastasis of A549 lung cancer cells through the Wnt signaling pathway. Materials and Methods: A549 cells were transfected with a β-catenin overexpression plasmid and the empty vector pcDNA3.1. The A549 cells were divided into six groups: normal A549 cell group, normal A549 cells with TFCB group, vector control group, vector with TFCB group, β-catenin overexpression group, and β-catenin with TFCB group. We used the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay to detect cell proliferation, a scratch test was used to observe cell migration, and a transwell experiment was employed to evaluate cell invasion. Proteins related to the Wnt pathway were detected with Western blot analysis, including β-catenin, GSK-3 β, P-GSK-3 β, c-Myc, and CyclinD1. Results: The proliferation, invasion, and metastasis of A549 cells were significantly enhanced after being transfected with the β-catenin overexpression plasmid (P < 0.05 or 0.01, accompanied by increased expression of β-catenin, C-Myc, CyclinD1 and reduced expression of Gsk-3 β and P-GSK-3 β. Treatment of cells with TFCB resulted in inhibition of cell proliferation, migration, and invasion; downregulated expression of β-catenin, C-Myc, and CyclinD1; and upregulated expression of GSK-3 β and P-GSK-3 β, especially in the β-catenin overexpression group. Conclusion: TFCB has the potential to inhibit the Wnt/β-catenin pathway by prohibiting the overexpression of β-catenin and regulating its downstream factors.

  8. Gallic acid suppresses cell viability, proliferation, invasion and angiogenesis in human glioma cells

    OpenAIRE

    Lu, Yong; Jiang, Feng; Jiang, Hao; Wu, Kalina; Zheng, Xuguang; Cai, Yizhong; Katakowski, Mark; Chopp, Michael; To, Shing-Shun Tony

    2010-01-01

    Gallic acid, an organic acid, also known as 3,4,5-trihydroxybenzoic acid, is cytotoxic against certain cancer cells, without harming normal cells. The objective of this study is to evaluate whether gallic acid can inhibit glioma cell viability, proliferation, invasion and reduce glioma cell mediated angiogenesis. Treatment of U87 and U251n glioma cells with gallic acid inhibited cell viability in a dose- and time-dependent manner. BrdU and tube formation assays indicated that gallic acid sign...

  9. Dominant Expression of DCLK1 in Human Pancreatic Cancer Stem Cells Accelerates Tumor Invasion and Metastasis.

    Directory of Open Access Journals (Sweden)

    Hiromitsu Ito

    Full Text Available Patients with pancreatic cancer typically develop tumor invasion and metastasis in the early stage. These malignant behaviors might be originated from cancer stem cells (CSCs, but the responsible target is less known about invisible CSCs especially for invasion and metastasis. We previously examined the proteasome activity of CSCs and constructed a real-time visualization system for human pancreatic CSCs. In the present study, we found that CSCs were highly metastatic and dominantly localized at the invading tumor margins in a liver metastasis model. Microarray and siRNA screening assays showed that doublecortin-like kinase 1 (DCLK1 was predominantly expressed with histone modification in pancreatic CSCs with invasive and metastatic potential. Overexpression of DCLK1 led to amoeboid morphology, which promotes the migration of pancreatic cancer cells. Knockdown of DCLK1 profoundly suppressed in vivo liver metastasis of pancreatic CSCs. Clinically, DCLK1 was overexpressed in the metastatic tumors in patients with pancreatic cancer. Our studies revealed that DCLK1 is essential for the invasive and metastatic properties of CSCs and may be a promising epigenetic and therapeutic target in human pancreatic cancer.

  10. DEspR Roles in Tumor Vasculo-Angiogenesis, Invasiveness, CSC-Survival and Anoikis Resistance: A ‘Common Receptor Coordinator’ Paradigm

    Science.gov (United States)

    Herrera, Victoria L.; Decano, Julius L.; Tan, Glaiza A.; Moran, Ann M.; Pasion, Khristine A.; Matsubara, Yuichi; Ruiz-Opazo, Nelson

    2014-01-01

    A priori, a common receptor induced in tumor microvessels, cancer cells and cancer stem-like cells (CSCs) that is involved in tumor angiogenesis, invasiveness, and CSC anoikis resistance and survival, could underlie contemporaneous coordination of these events rather than assume stochasticity. Here we show that functional analysis of the dual endothelin1/VEGFsignal peptide receptor, DEspR, (formerly named Dear, Chr.4q31.2) supports the putative common receptor paradigm in pancreatic ductal adenocarcinoma (PDAC) and glioblastoma (GBM) selected for their invasiveness, CD133+CSCs, and polar angiogenic features. Unlike normal tissue, DEspR is detected in PDAC and GBM microvessels, tumor cells, and CSCs isolated from PDAC-Panc1 and GBM-U87 cells. DEspR-inhibition decreased angiogenesis, invasiveness, CSC-survival and anoikis resistance in vitro, and decreased Panc1-CSC and U87-CSC xenograft tumor growth, vasculo-angiogenesis and invasiveness in nudenu/nu rats, suggesting that DEspR activation would coordinate these tumor progression events. As an accessible, cell-surface ‘common receptor coordinator’, DEspR-inhibition defines a novel targeted-therapy paradigm for pancreatic cancer and glioblastoma. PMID:24465725

  11. Patient-specific metrics of invasiveness reveal significant prognostic benefit of resection in a predictable subset of gliomas.

    Directory of Open Access Journals (Sweden)

    Anne L Baldock

    Full Text Available Malignant gliomas are incurable, primary brain neoplasms noted for their potential to extensively invade brain parenchyma. Current methods of clinical imaging do not elucidate the full extent of brain invasion, making it difficult to predict which, if any, patients are likely to benefit from gross total resection. Our goal was to apply a mathematical modeling approach to estimate the overall tumor invasiveness on a patient-by-patient basis and determine whether gross total resection would improve survival in patients with relatively less invasive gliomas.In 243 patients presenting with contrast-enhancing gliomas, estimates of the relative invasiveness of each patient's tumor, in terms of the ratio of net proliferation rate of the glioma cells to their net dispersal rate, were derived by applying a patient-specific mathematical model to routine pretreatment MR imaging. The effect of varying degrees of extent of resection on overall survival was assessed for cohorts of patients grouped by tumor invasiveness.We demonstrate that patients with more diffuse tumors showed no survival benefit (P = 0.532 from gross total resection over subtotal/biopsy, while those with nodular (less diffuse tumors showed a significant benefit (P = 0.00142 with a striking median survival benefit of over eight months compared to sub-totally resected tumors in the same cohort (an 80% improvement in survival time for GTR only seen for nodular tumors.These results suggest that our patient-specific, model-based estimates of tumor invasiveness have clinical utility in surgical decision making. Quantification of relative invasiveness assessed from routinely obtained pre-operative imaging provides a practical predictor of the benefit of gross total resection.

  12. Dioscin inhibits colon tumor growth and tumor angiogenesis through regulating VEGFR2 and AKT/MAPK signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Qingyi [Regenerative Medicine Research Center, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China); Qing, Yong, E-mail: qingyongxy@yahoo.co.jp [Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041 (China); Wu, Yang [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China); Hu, Xiaojuan; Jiang, Lei [Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041 (China); Wu, Xiaohua, E-mail: wuxh@scu.edu.cn [Regenerative Medicine Research Center, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China)

    2014-12-01

    Dioscin has shown cytotoxicity against cancer cells, but its in vivo effects and the mechanisms have not elucidated yet. The purpose of the current study was to assess the antitumor effects and the molecular mechanisms of dioscin. We showed that dioscin could inhibit tumor growth in vivo and has no toxicity at the test condition. The growth suppression was accompanied by obvious blood vessel decrease within solid tumors. We also found dioscin treatment inhibited the proliferation of cancer and endothelial cell lines, and most sensitive to primary cultured human umbilical vein endothelial cells (HUVECs). What's more, analysis of HUVECs migration, invasion, and tube formation exhibited that dioscin has significantly inhibitive effects to these actions. Further analysis of blood vessel formation in the matrigel plugs indicated that dioscin could inhibit VEGF-induced blood vessel formation in vivo. We also identified that dioscin could suppress the downstream protein kinases of VEGFR2, including Src, FAK, AKT and Erk1/2, accompanied by the increase of phosphorylated P38MAPK. The results potently suggest that dioscin may be a potential anticancer drug, which efficiently inhibits angiogenesis induced by VEGFR2 signaling pathway as well as AKT/MAPK pathways. - Highlights: • Dioscin inhibits tumor growth in vivo and does not exhibit any toxicity. • Dioscin inhibits angiogenesis within solid tumors. • Dioscin inhibits the proliferation, migration, invasion, and tube formation of HUVECs. • Dioscin inhibits VEGF–induced blood vessel formation in vivo. • Dioscin inhibits VEGFR2 signaling pathway as well as AKT/MAPK pathway.

  13. STAT5A-mediated NOX5-L expression promotes the proliferation and metastasis of breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Dho, So Hee [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806 (Korea, Republic of); Radioisotope Research Division, Department of Research Reactor Utilization, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Kim, Ji Young; Lee, Kwang-Pyo; Kwon, Eun-Soo [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806 (Korea, Republic of); Lim, Jae Cheong [Radioisotope Research Division, Department of Research Reactor Utilization, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Kim, Chang-Jin [Department of Pathology, Soonchunhyang Medical Science Research Institute, Chonan 330-090 (Korea, Republic of); Jeong, Dongjun, E-mail: juny1024@sch.ac.kr [Department of Pathology, Soonchunhyang Medical Science Research Institute, Chonan 330-090 (Korea, Republic of); Kwon, Ki-Sun, E-mail: kwonks@kribb.re.kr [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806 (Korea, Republic of); Department of Functional Genomics, Korea University of Science and Technology (UST), Daejeon 305-333 (Korea, Republic of)

    2017-02-01

    NADPH oxidase (NOX) generates reactive oxygen species (ROS) and has been suggested to mediate cell proliferation in some cancers. Here, we show that an increase in the expression of NOX5 long form (NOX5-L) is critical for tumor progression in breast tumor tissues. Immunostaining of clinical samples indicated that NOX5 was overexpressed in 41.1% of breast ductal carcinoma samples. NOX5-L depletion consistently suppressed cell proliferation, invasion, and migration in vitro. Antibody-mediated neutralization of NOX5-L attenuated tumor progression in a mouse xenograft model. Promoter analysis revealed that NOX5-L expression is regulated by STAT5A in breast cancer cells. Based on our novel findings, we suggest that inhibition of NOX5-L may be a promising therapeutic strategy that exerts anti-cancer effects via the modulation of ROS-mediated cell signaling. - Highlights: • The ROS-generating protein, NOX5-L, determines cellular proliferation and metastasis in subset of breast tumor. • Tumor growth was attenuated by the treatment of anti-NOX5-L antibody in a xenograft model. • NOX5-L expression is transcriptionally regulated by STAT5A in breast cancer cells.

  14. TGFβ loss activates ADAMTS-1-mediated EGF-dependent invasion in a model of esophageal cell invasion

    Energy Technology Data Exchange (ETDEWEB)

    Le Bras, Grégoire F.; Taylor, Chase; Koumangoye, Rainelli B. [Department of Surgery, Vanderbilt University, Nashville, TN (United States); Revetta, Frank [Department of Pathology, Vanderbilt University, Nashville, TN (United States); Loomans, Holli A. [Department of Cancer Biology, Vanderbilt University, Nashville, TN (United States); Andl, Claudia D., E-mail: claudia.andl@vanderbilt.edu [Department of Surgery, Vanderbilt University, Nashville, TN (United States); Department of Cancer Biology, Vanderbilt University, Nashville, TN (United States); Department of Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, TN (United States)

    2015-01-01

    The TGFβ signaling pathway is essential to epithelial homeostasis and is often inhibited during progression of esophageal squamous cell carcinoma. Recently, an important role for TGFβ signaling has been described in the crosstalk between epithelial and stromal cells regulating squamous tumor cell invasion in mouse models of head-and-neck squamous cell carcinoma (HNSCC). Loss of TGFβ signaling, in either compartment, leads to HNSCC however, the mechanisms involved are not well understood. Using organotypic reconstruct cultures (OTC) to model the interaction between epithelial and stromal cells that occur in dysplastic lesions, we show that loss of TGFβ signaling promotes an invasive phenotype in both fibroblast and epithelial compartments. Employing immortalized esophageal keratinocytes established to reproduce common mutations of esophageal squamous cell carcinoma, we show that treatment of OTC with inhibitors of TGFβ signaling (A83-01 or SB431542) enhances invasion of epithelial cells into a fibroblast-embedded Matrigel/collagen I matrix. Invasion induced by A83-01 is independent of proliferation but relies on protease activity and expression of ADAMTS-1 and can be altered by matrix density. This invasion was associated with increased expression of pro-inflammatory cytokines, IL1 and EGFR ligands HB-EGF and TGFα. Altering EGF signaling prevented or induced epithelial cell invasion in this model. Loss of expression of the TGFβ target gene ROBO1 suggested that chemorepulsion may regulate keratinocyte invasion. Taken together, our data show increased invasion through inhibition of TGFβ signaling altered epithelial-fibroblasts interactions, repressing markers of activated fibroblasts, and altering integrin-fibronectin interactions. These results suggest that inhibition of TGFβ signaling modulates an array of pathways that combined promote multiple aspects of tumor invasion. - Highlights: • Chemical inhibition of TGFβ signaling advances collective invasion

  15. Extracellular matrix composition and rigidity regulate invasive behavior and response to PDT in 3D pancreatic tumor models

    Science.gov (United States)

    Cramer, Gwendolyn; El-Hamidi, Hamid; Jafari, Seyedehrojin; Jones, Dustin P.; Celli, Jonathan P.

    2016-03-01

    The composition and mechanical compliance of the extracellular matrix (ECM) have been shown to serve as regulators of tumor growth and invasive behavior. These effects may be particularly relevant in tumors of the pancreas, noted for a profound desmoplastic reaction and an abundance of stroma rich in ECM. In view of recent progress in the clinical implementation of photodynamic therapy (PDT) for pancreatic tumors, in this report we examine how ECM composition and rheological properties impact upon invasive behavior and response to PDT in 3D multicellular pancreatic tumor spheroids in ECM environments with characterized rheological properties. Tumor spheroids were cultured initially in attachment-free conditions to form millimeter-sized spheroids that were transplanted into reconstituted ECM microenvironments (Matrigel and Type I Collagen) that were characterized using bulk oscillatory shear rheology. Analysis of growth behavior shows that the soft collagen ECM promoted growth and extensive invasion and this microenvironment was used in subsequent assessment of PDT and chemotherapy response. Evaluation of treatment response revealed that primary tumor nodule growth is inhibited more effectively with PDT, while verteporfin PDT response is significantly enhanced in the ECM-infiltrating populations that are non-responsive to oxaliplatin chemotherapy. This finding is potentially significant, suggesting the potential for PDT to target these clinically problematic invasive populations that are associated with aggressive metastatic progression and chemoresistance. Experiments to further validate and identify the mechanistic basis of this observation are ongoing.

  16. Characterization of the loss of SUMO pathway function on cancer cells and tumor proliferation.

    Directory of Open Access Journals (Sweden)

    Xingyue He

    Full Text Available SUMOylation is a post-translational ubiquitin-like protein modification pathway that regulates important cellular processes including chromosome structure, kinetochore function, chromosome segregation, nuclear and sub-nuclear organization, transcription and DNA damage repair. There is increasing evidence that the SUMO pathway is dysregulated in cancer, raising the possibility that modulation of this pathway may have therapeutic potential. To investigate the importance of the SUMO pathway in the context of cancer cell proliferation and tumor growth, we applied lentivirus-based short hairpin RNAs (shRNA to knockdown SUMO pathway genes in human cancer cells. shRNAs for SAE2 and UBC9 reduced SUMO conjugation activity and inhibited proliferation of human cancer cells. To expand upon these observations, we generated doxycycline inducible conditional shRNA cell lines for SAE2 to achieve acute and reversible SAE2 knockdown. Conditional SAE2 knockdown in U2OS and HCT116 cells slowed cell growth in vitro, and SAE2 knockdown induced multiple terminal outcomes including apoptosis, endoreduplication and senescence. Multinucleated cells became senescent and stained positive for the senescence marker, SA-β Gal, and displayed elevated levels of p53 and p21. In an attempt to explain these phenotypes, we confirmed that loss of SUMO pathway activity leads to a loss of SUMOylated Topoisomerase IIα and the appearance of chromatin bridges which can impair proper cytokinesis and lead to multinucleation. Furthermore, knockdown of SAE2 induces disruption of PML nuclear bodies which may further promote apoptosis or senescence. In an in vivo HCT116 xenograft tumor model, conditional SAE2 knockdown strongly impaired tumor growth. These data demonstrate that the SUMO pathway is required for cancer cell proliferation in vitro and tumor growth in vivo, implicating the SUMO pathway as a potential cancer therapeutic target.

  17. The comparison of nuclear ubiquitous casein and cyclin-dependent kinases substrate (NUCKS) with Ki67 proliferation marker expression in common skin tumors.

    Science.gov (United States)

    Zduniak, Krzysztof; Agrawal, Siddarth; Symonowicz, Krzysztof; Jurczyszyn, Kamil; Ziółkowski, Piotr

    2014-03-01

    Nuclear ubiquitous casein and cyclin-dependent kinases substrate (NUCKS) is a chromosomal protein of unknown function. Its amino acid composition and structure of its DNA binding domain resemble those of high mobility group A (HMGA) proteins which are associated with various malignancies. Since changes in expression of HMGA are considered as a marker of tumor progression, it is possible that similar changes in expression of NUCKS could be a useful tool in diagnosis of malignant skin tumors. To investigate this assumption we used specific antibodies against NUCKS for immunohistochemistry of squamous (SCC) and basal cell carcinoma (BCC) as well as keratoacanthoma (KA). We found high expression of NUCKS in nuclei of SCC and BCC cells which exceeded expression of the well-known proliferation marker Ki67. Expression of NUCKS in benign KA was much below that of malignant tumors. With the present study and based on our previous experience we would like to suggest the NUCKS protein as a novel proliferation marker for immunohistochemical evaluation of formalin-fixed and paraffin-embedded skin tumor specimens. We would like to emphasize that NUCKS abundance in malignant skin tumors is higher than that of the well-known proliferation marker Ki67, thus allowing more precise assessment of tumor proliferation potential.

  18. CCL19/CCR7 contributes to the pathogenesis of endometriosis via PI3K/Akt pathway by regulating the proliferation and invasion of ESCs.

    Science.gov (United States)

    Diao, Ruiying; Wei, Weixia; Zhao, Jinghui; Tian, Fuying; Cai, Xueyong; Duan, Yong-Gang

    2017-11-01

    The level of CCL19 increased in the peritoneal fluid of women with endometriosis, but the precise mechanism of CCL19/CCR7 in the pathogenesis of endometriosis remains unknown. ELISA and immunohistochemistry were performed to analyze CCL19/CCR7 expressions in peritoneal fluid and endometrium from women with endometriosis (n = 38) and controls (n = 32). Cell proliferation and transwell invasion assays were applied to detect proliferation and invasion of human endometrial stromal cells (ESCs). Expressions of Bcl2, MMP2, MMP9, and p-AKT/AKT were analyzed by Western blot. Peritoneal fluid concentration of CCL19 in patients with endometriosis was higher than that in controls. Those patients with moderate/severe endometriosis had significantly higher peritoneal fluid concentrations of CCL19 compared to those with minimal/mild endometriosis. Higher CCL19 and CCR7 were found in the endometrium with endometriosis compared to control. CCL19 significantly enhanced ESC proliferation and invasion through CCR7 via activating PI3K/Akt signal pathways. CCL19/CCR7 interaction significantly enhanced phosphorylation of Akt, Bcl2, MMP2, and MMP9 in ESCs. These data indicate CCL19/CCR7 contributes to proliferation and invasion of ESCs, which are conducive to the pathogenesis of endometriosis through activating PI3K/Akt pathway. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Tumor-induced loss of mural Connexin 43 gap junction activity promotes endothelial proliferation

    International Nuclear Information System (INIS)

    Choudhary, Mayur; Naczki, Christine; Chen, Wenhong; Barlow, Keith D.; Case, L. Douglas; Metheny-Barlow, Linda J.

    2015-01-01

    Proper functional association between mural cells and endothelial cells (EC) causes EC of blood vessels to become quiescent. Mural cells on tumor vessels exhibit decreased attachment to EC, which allows vessels to be unstable and proliferative. The mechanisms by which tumors prevent proper association between mural cells and EC are not well understood. Since gap junctions (GJ) play an important role in cell-cell contact and communication, we investigated whether loss of GJ plays a role in tumor-induced mural cell dissociation. Mural cell regulation of endothelial proliferation was assessed by direct co-culture assays of fluorescently labeled cells quantified by flow cytometry or plate reader. Gap junction function was assessed by parachute assay. Connexin 43 (Cx43) protein in mural cells exposed to conditioned media from cancer cells was assessed by Western and confocal microscopy; mRNA levels were assessed by quantitative real-time PCR. Expression vectors or siRNA were utilized to overexpress or knock down Cx43. Tumor growth and angiogenesis was assessed in mouse hosts deficient for Cx43. Using parachute dye transfer assay, we demonstrate that media conditioned by MDA-MB-231 breast cancer cells diminishes GJ communication between mural cells (vascular smooth muscle cells, vSMC) and EC. Both protein and mRNA of the GJ component Connexin 43 (Cx43) are downregulated in mural cells by tumor-conditioned media; media from non-tumorigenic MCF10A cells had no effect. Loss of GJ communication by Cx43 siRNA knockdown, treatment with blocking peptide, or exposure to tumor-conditioned media diminishes the ability of mural cells to inhibit EC proliferation in co-culture assays, while overexpression of Cx43 in vSMC restores GJ and endothelial inhibition. Breast tumor cells implanted into mice heterozygous for Cx43 show no changes in tumor growth, but exhibit significantly increased tumor vascularization determined by CD31 staining, along with decreased mural cell support

  20. Protein kinase Cδ signaling downstream of the EGF receptor mediates migration and invasiveness of prostate cancer cells

    International Nuclear Information System (INIS)

    Kharait, Sourabh; Dhir, Rajiv; Lauffenburger, Douglas; Wells, Alan

    2006-01-01

    Tumor progression to the invasive phenotype occurs secondary to upregulated signaling from growth factor receptors that drive key cellular responses like proliferation, migration, and invasion. We hypothesized that Protein kinase Cδ (PKCδ)-mediated transcellular contractility is required for migration and invasion of prostate tumor cells. Two invasive human prostate cancer cell lines, DU145 cells overexpressing wildtype human EGFR (DU145WT) and PC3 cells, were studied. PKCδ is overexpressed in these cells relative to normal prostate epithelial cells, and is activated downstream of EGFR leading to cell motility via modulation of myosin light chain activity. Abrogation of PKCδ using Rottlerin and specific siRNA significantly decreased migration and invasion of both cell lines in vitro. Both PKCδ and phosphorylated PKCδ protein levels were higher in human prostate cancer tissue relative to normal donor prostate as assessed by Western blotting and immunohistochemistry. Thus, we conclude that PKCδ inhibition can limit migration and invasion of prostate cancer cells

  1. Homeobox B9 is overexpressed in hepatocellular carcinomas and promotes tumor cell proliferation both in vitro and in vivo

    International Nuclear Information System (INIS)

    Li, Fangyi; Dong, Lei; Xing, Rong; Wang, Li; Luan, Fengming; Yao, Chenhui; Ji, Xuening; Bai, Lizhi

    2014-01-01

    Highlights: • HOXB9 is overexpressed in human HCC samples. • HOXB9 over expression had shorter survival time than down expression. • HOXB9 stimulated the proliferation of HCC cells. • Activation of TGF-β1 contributes to HOXB9-induced proliferation in HCC cells. - Abstract: HomeoboxB9 (HOXB9), a nontransforming transcription factor that is overexpressed in multiple tumor types, alters tumor cell fate and promotes tumor progression. However, the role of HOXB9 in hepatocellular carcinoma (HCC) development has not been well studied. In this paper, we found that HOXB9 is overexpressed in human HCC samples. We investigated HOXB9 expression and its prognostic value for HCC. HCC surgical tissue samples were taken from 89 HCC patients. HOXB9 overexpression was observed in 65.2% of the cases, and the survival analysis showed that the HOXB9 overexpression group had significantly shorter overall survival time than the HOXB9 downexpression group. The ectopic expression of HOXB9 stimulated the proliferation of HCC cells; whereas the knockdown of HOXB9 produced an opposite effect. HOXB9 also modulated the tumorigenicity of HCC cells in vivo. Moreover, we found that the activation of TGF-β1 contributes to HOXB9-induced proliferation activities. The results provide the first evidence that HOXB9 is a critical regulator of tumor growth factor in HCC

  2. Homeobox B9 is overexpressed in hepatocellular carcinomas and promotes tumor cell proliferation both in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fangyi [Department of General Surgery, Dalian Municipal Friendship Hospital, No. 8 Sanba Square, Zhongshan District, Dalian 116001 (China); Dong, Lei, E-mail: dlleidong@126.com [Department of Laparoscopic Surgery, First Affiliated Hospital of Dalian Medical University, No. 193 Lianhe Street, Shahekou District, Dalian 116001 (China); Xing, Rong [Department of Pathology and Pathophysiology, Dalian Medical University, No. 9 Lvshunnan Road, Lvshunkou District, Dalian 116044 (China); Wang, Li; Luan, Fengming; Yao, Chenhui [Department of General Surgery, Dalian Municipal Friendship Hospital, No. 8 Sanba Square, Zhongshan District, Dalian 116001 (China); Ji, Xuening [Department of Oncology, Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian 116001 (China); Bai, Lizhi, E-mail: dllizhibai@126.com [Department of Emergency, Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian 116001 (China)

    2014-02-07

    Highlights: • HOXB9 is overexpressed in human HCC samples. • HOXB9 over expression had shorter survival time than down expression. • HOXB9 stimulated the proliferation of HCC cells. • Activation of TGF-β1 contributes to HOXB9-induced proliferation in HCC cells. - Abstract: HomeoboxB9 (HOXB9), a nontransforming transcription factor that is overexpressed in multiple tumor types, alters tumor cell fate and promotes tumor progression. However, the role of HOXB9 in hepatocellular carcinoma (HCC) development has not been well studied. In this paper, we found that HOXB9 is overexpressed in human HCC samples. We investigated HOXB9 expression and its prognostic value for HCC. HCC surgical tissue samples were taken from 89 HCC patients. HOXB9 overexpression was observed in 65.2% of the cases, and the survival analysis showed that the HOXB9 overexpression group had significantly shorter overall survival time than the HOXB9 downexpression group. The ectopic expression of HOXB9 stimulated the proliferation of HCC cells; whereas the knockdown of HOXB9 produced an opposite effect. HOXB9 also modulated the tumorigenicity of HCC cells in vivo. Moreover, we found that the activation of TGF-β1 contributes to HOXB9-induced proliferation activities. The results provide the first evidence that HOXB9 is a critical regulator of tumor growth factor in HCC.

  3. Icotinib inhibits the invasion of Tca8113 cells via downregulation of nuclear factor κB-mediated matrix metalloproteinase expression

    OpenAIRE

    YANG, CAILING; YAN, JIANGUO; YUAN, GUOYAN; ZHANG, YINGHUA; LU, DERONG; REN, MINGXIN; CUI, WEIGANG

    2014-01-01

    Icotinib is an epidermal growth factor receptor tyrosine kinase inhibitor, which has been revealed to inhibit proliferation in tumor cells. However, the effect of icotinib on cancer cell metastasis remains to be explained. This study examines the effect of icotinib on the migration and invasion of squamous cells of tongue carcinoma (Tca8113 cells) in vitro. The results of the Boyden chamber invasion assay demonstrated that icotinib reduced cell invasion, suppressed the protein levels of matri...

  4. Proliferation and Polarity in Breast Cancer: Untying the GordianKnot

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hong; Radisky, Derek C.; Bissell, Mina J.

    2005-05-09

    Epithelial cancers are associated with genomic instability and alterations in signaling pathways that affect proliferation, apoptosis, and integrity of tissue structure. Overexpression of a number of oncogenic protein kinases has been shown to malignantly transform cells in culture and to cause tumors in vivo, but the interconnected signaling events induced by transformation still awaits detailed dissection. We propose that the network of cellular signaling pathways can be classified into functionally distinct branches, and that these pathways are rewired in transformed cells and tissues after they lose tissue-specific architecture to favor tumor expansion and invasion. Using three-dimensional (3D) culture systems, we recently demonstrated that polarity and proliferation of human mammary epithelial cancer cells were separable consequences of signaling pathways downstream of PI3 kinase.These, and results from a number of other laboratories are beginning to provide insight into how different signaling pathways may become interconnected in normal tissues to allow homeostasis, and how they are disrupted during malignant progression.

  5. New and paradoxical roles of matrix metalloproteinases in the tumor microenvironment

    DEFF Research Database (Denmark)

    Noël, Agnès; Gutiérrez-Fernández, Ana; Sounni, Nor Eddine

    2012-01-01

    Processes such as cell proliferation, angiogenesis, apoptosis, or invasion are strongly influenced by the surrounding microenvironment of the tumor. Therefore, the ability to change these surroundings represents an important property through which tumor cells are able to acquire specific functions....... Despite the pro-tumorigenic function of certain metalloproteinases, recent studies have shown that other members of these families, such as MMP8 or MMP11, have a protective role against tumor growth and metastasis in animal models. These studies have been further expanded by large-scale genomic analysis...

  6. TRAIL Death Receptor-4 Expression Positively Correlates With the Tumor Grade in Breast Cancer Patients With Invasive Ductal Carcinoma

    International Nuclear Information System (INIS)

    Sanlioglu, Ahter D.; Korcum, Aylin F.; Pestereli, Elif; Erdogan, Gulgun; Karaveli, Seyda; Savas, Burhan; Griffith, Thomas S.; Sanlioglu, Salih V.

    2007-01-01

    Purpose: Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) selectively induces apoptosis in cancer cells but not in normal cells, and a number of clinical trials have recently been initiated to test the safety and antitumoral potential of TRAIL in cancer patients. Four different receptors have been identified to interact with TRAIL: two are death-inducing receptors (TRAIL-R1 [DR4] and TRAIL-R2 [DR5]), whereas the other two (TRAIL-R3 [DcR1] and TRAIL-R4 [DcR2]) do not induce death upon ligation and are believed to counteract TRAIL-induced cytotoxicity. Because high levels of DcR2 expression have recently been correlated with carcinogenesis in the prostate and lung, this study investigated the importance of TRAIL and TRAIL receptor expression in breast cancer patients with invasive ductal carcinoma, taking various prognostic markers into consideration. Methods and Materials: Immunohistochemical analyses were performed on 90 breast cancer patients with invasive ductal carcinoma using TRAIL and TRAIL receptor-specific antibodies. Age, menopausal status, tumor size, lymph node status, tumor grade, lymphovascular invasion, perineural invasion, extracapsular tumor extension, presence of an extensive intraductal component, multicentricity, estrogen and progesterone receptor status, and CerbB2 expression levels were analyzed with respect to TRAIL/TRAIL receptor expression patterns. Results: The highest TRAIL receptor expressed in patients with invasive ductal carcinoma was DR4. Although progesterone receptor-positive patients exhibited lower DR5 expression, CerbB2-positive tissues displayed higher levels of both DR5 and TRAIL expressions. Conclusions: DR4 expression positively correlates with the tumor grade in breast cancer patients with invasive ductal carcinoma

  7. Gallic acid reduces cell viability, proliferation, invasion and angiogenesis in human cervical cancer cells

    OpenAIRE

    ZHAO, BING; HU, MENGCAI

    2013-01-01

    Gallic acid is a trihydroxybenzoic acid, also known as 3,4,5-trihydroxybenzoic acid, which is present in plants worldwide, including Chinese medicinal herbs. Gallic acid has been shown to have cytotoxic effects in certain cancer cells, without damaging normal cells. The objective of the present study was to determine whether gallic acid is able to inhibit human cervical cancer cell viability, proliferation and invasion and suppress cervical cancer cell-mediated angiogenesis. Treatment of HeLa...

  8. In vivo overexpression of tumstatin domains by tumor cells inhibits their invasive properties in a mouse melanoma model

    International Nuclear Information System (INIS)

    Pasco, Sylvie; Ramont, Laurent; Venteo, Lydie; Pluot, Michel; Maquart, Francois-Xavier; Monboisse, Jean-Claude

    2004-01-01

    Our previous studies demonstrated that a synthetic peptide encompassing residues 185-203 of the noncollagenous (NC1) domain of the α3 chain of type IV collagen, named tumstatin, inhibits in vitro melanoma cell proliferation and migration. In the present study, B16F1 melanoma cells were stably transfected to overexpress the complete tumstatin domain (Tum 1-232) or its C-terminal part, encompassing residues 185-203 (Tum 183-232). Tumstatin domain overexpression inhibited B16F1 in vitro cell proliferation, anchorage-independent growth, and invasive properties. For studying the in vivo effect of overexpression, representative clones were subcutaneously injected into the left side of C57BL6 mice. In vivo tumor growth was decreased by -60% and -56%, respectively, with B16F1 cells overexpressing Tum 1-232 or Tum 183-232 compared to control cells. This inhibitory effect was associated with a decrease of in vivo cyclin D1 expression. We also demonstrated that the overexpression of Tum 1-232 or Tum 183-232 induced an in vivo down-regulation of proteolytic cascades involving matrix metalloproteinases (MMPs), especially the production or activation of MMP-2, MMP-9, MMP-13, as well as MMP-14. The plasminogen activation system was also altered in tumors with a decrease of urokinase-type plasminogen activator (u-PA) and tissue-type plasminogen activator (t-PA) and a strong increase of plasminogen activator inhibitor-1 (PAI-1). Collectively, our results demonstrate that tumstatin or its C-terminal antitumor fragment, Tum 183-232, inhibits in vivo melanoma progression by triggering an intracellular transduction pathway, which involves a cyclic AMP (cAMP)-dependent mechanism

  9. Downregulation of CCR1 inhibits human hepatocellular carcinoma cell invasion

    International Nuclear Information System (INIS)

    Wu Xiaofeng; Fan Jia; Wang Xiaoying; Zhou Jian; Qiu Shuangjian; Yu Yao; Liu Yinkun; Tang Zhaoyou

    2007-01-01

    CC chemokine receptor 1 (CCR1) has an important role in the recruitment of leukocytes to the site of inflammation. The migration and metastasis of tumor cells shares many similarities with leukocyte trafficking, which is mainly regulated by chemokine receptor-ligand interactions. CCR1 is highly expressed in hepatocellular carcinoma (HCC) cells and tissues with unknown functions. In this study, we silenced CCR1 expression in the human HCC cell line HCCLM3 using artificial microRNA (miRNA)-mediated RNA interference (RNAi) and examined the invasiveness and proliferation of CCR1-silenced HCCLM3 cells and the matrix metalloproteinase (MMP) activity. The miRNA-mediated knockdown expression of CCR1 significantly inhibited the invasive ability of HCCLM3 cells, but had only a minor effect on the cellular proliferation rate. Moreover, CCR1 knockdown significantly reduced the secretion of MMP-2. Together, these findings indicate that CCR1 has an important role in HCCLM3 invasion and that CCR1 might be a new target of HCC treatment

  10. Phosphatidylcholine-specific phospholipase C inhibition down- regulates CXCR4 expression and interferes with proliferation, invasion and glycolysis in glioma cells.

    Directory of Open Access Journals (Sweden)

    Laura Mercurio

    Full Text Available The chemokine receptor CXCR4 plays a crucial role in tumors, including glioblastoma multiforme (GBM, the most aggressive glioma. Phosphatidylcholine-specific phospholipase C (PC-PLC, a catabolic enzyme of PC metabolism, is involved in several aspects of cancer biology and its inhibition down-modulates the expression of growth factor membrane receptors interfering with their signaling pathways. In the present work we investigated the possible interplay between CXCR4 and PC-PLC in GBM cells.Confocal microscopy, immunoprecipitation, western blot analyses, and the evaluation of migration and invasion potential were performed on U87MG cells after PC-PLC inhibition with the xanthate D609. The intracellular metabolome was investigated by magnetic resonance spectroscopy; lactate levels and lactate dehydrogenase (LDH activity were analyzed by colorimetric assay.Our studies demonstrated that CXCR4 and PC-PLC co-localize and are associated on U87MG cell membrane. D609 reduced CXCR4 expression, cell proliferation and invasion, interfering with AKT and EGFR activation and expression. Metabolic analyses showed a decrease in intracellular lactate concentration together with a decrement in LDH activity.Our data suggest that inhibition of PC-PLC could represent a new molecular approach in glioma biology not only for its ability in modulating cell metabolism, glioma growth and motility, but also for its inhibitory effect on crucial molecules involved in cancer progression.

  11. Suppression of choriocarcinoma invasion and metastasis following blockade of BDNF/TrkB signaling

    International Nuclear Information System (INIS)

    Kawamura, Kazuhiro; Kawamura, Nanami; Okamoto, Naoki; Manabe, Motomu

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) acts through its cognate receptor tyrosine kinase-B (TrkB) to regulate diverse physiological functions in reproductive and other tissues. In normal and malignant trophoblastic cells, the BDNF/TrkB signaling promotes cell growth. Due to the highly malignant nature of choriocarcinoma, we investigated possible involvement of this system in choriocarcinoma cell invasion and metastasis. We demonstrated that treatment of cultured choriocarcinoma cells, known to express both BDNF and TrkB, with a soluble TrkB ectodomain or a Trk receptor inhibitor K252a suppressed cell invasion accompanied with decreased expression of matrix metalloproteinase-2, a cell invasion marker. In vivo studies using a tumor xenograft model in athymic nude mice further showed inhibition of cell invasion from tumors to surrounding tissues following the suppression of endogenous TrkB signaling. For an in vivo model of choriocarcinoma metastasis, we performed intravenous injections of JAR cells expressing firefly luciferase into severe combined immunodeficiency (SCID) mice. Treatment with K252a inhibited metastasis of tumors to distant organs. In vivo K252a treatment also suppressed metastatic tumor growth as reflected by decreased cell proliferation and increased apoptosis and caspases-3/7 activities, together with reduced tissue levels of a tumor marker, human chorionic gonadotropin-β. In vivo suppression of TrkB signaling also led to decreased expression of angiogenic markers in metastatic tumor, including cluster of differentiation 31 and vascular endothelial growth factor A. Our findings suggested essential autocrine/paracrine roles of the BDNF/TrkB signaling system in choriocarcinoma invasion and metastasis. Inhibition of this signaling could serve as the basis to develop a novel therapy for patients with choriocarcinoma

  12. Caspase-1 from Human Myeloid-Derived Suppressor Cells Can Promote T Cell-Independent Tumor Proliferation.

    Science.gov (United States)

    Zeng, Qi; Fu, Juan; Korrer, Michael; Gorbounov, Mikhail; Murray, Peter J; Pardoll, Drew; Masica, David L; Kim, Young J

    2018-05-01

    Immunosuppressive myeloid-derived suppressive cells (MDSCs) are characterized by their phenotypic and functional heterogeneity. To better define their T cell-independent functions within the tumor, sorted monocytic CD14 + CD11b + HLA-DR low/- MDSCs (mMDSC) from squamous cell carcinoma patients showed upregulated caspase-1 activity, which was associated with increased IL1β and IL18 expression. In vitro studies demonstrated that mMDSCs promoted caspase-1-dependent proliferation of multiple squamous carcinoma cell lines in both human and murine systems. In vivo , growth rates of B16, MOC1, and Panc02 were significantly blunted in chimeric mice adoptively transferred with caspase-1 null bone marrow cells under T cell-depleted conditions. Adoptive transfer of wild-type Gr-1 + CD11b + MDSCs from tumor-bearing mice reversed this antitumor response, whereas caspase-1 inhibiting thalidomide-treated MDSCs phenocopied the antitumor response found in caspase-1 null mice. We further hypothesized that MDSC caspase-1 activity could promote tumor-intrinsic MyD88-dependent carcinogenesis. In mice with wild-type caspase-1, MyD88-silenced tumors displayed reduced growth rate, but in chimeric mice with caspase-1 null bone marrow cells, MyD88-silenced tumors did not display differential tumor growth rate. When we queried the TCGA database, we found that caspase-1 expression is correlated with overall survival in squamous cell carcinoma patients. Taken together, our findings demonstrated that caspase-1 in MDSCs is a direct T cell-independent mediator of tumor proliferation. Cancer Immunol Res; 6(5); 566-77. ©2018 AACR . ©2018 American Association for Cancer Research.

  13. Elevated expression of MMP-13 and TIMP-1 in head and neck squamous cell carcinomas may reflect increased tumor invasiveness

    International Nuclear Information System (INIS)

    Culhaci, Nil; Metin, Kubilay; Copcu, Eray; Dikicioglu, Emel

    2004-01-01

    Matrix metalloproteinases [MMPs], which degrade the extracellular matrix, play an important role in the invasion and metastasis of squamous cell carcinomas. One MMP, MMP-13, is thought to play a central role in MMP activation. The purpose of this study was to investigate MMP-13 and TIMP-1 expression in squamous cell carcinomas of the head and neck and to relate these levels of expression to histologic patterns of invasion. This study included T1 lesions obtained via biopsy from the larynx, tongue, and skin/mucosa of 78 patients with head and neck squamous cell carcinomas. The relationship between expression of MMP-13 and TIMP-1 and the mode of tumor invasion [MI] was evaluated immunohistochemically, using breast carcinoma tissue as a positive control. Increased expression was observed in highly invasive tumors, as reflected by the significant correlation between the degree of staining for MMP-13 or TIMP-1 and MI grade [p < 0.05]. There was no significant relationship between the degree of staining for MMP-13 or TIMP-1 and patient age, sex, tumor site, or tumor histologic grade. In addition, levels of staining for MMP-13 did not correlate with levels of staining for TIMP-1. The expression of MMP-13 and TIMP-1 appears to play an important role in determining the invasive capacity of squamous cell carcinomas of the head and neck. Whereas additional studies are needed to confirm these findings, evaluating expression of these MMPs in small biopsy samples may be useful in determining the invasive capacity of these tumors at an earlier stage

  14. Roles of sphingosine-1-phosphate (S1P) receptors in malignant behavior of glioma cells. Differential effects of S1P2 on cell migration and invasiveness

    International Nuclear Information System (INIS)

    Young, Nicholas; Van Brocklyn, James R.

    2007-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive lipid that signals through a family of five G-protein-coupled receptors, termed S1P 1-5 . S1P stimulates growth and invasiveness of glioma cells, and high expression levels of the enzyme that forms S1P, sphingosine kinase-1, correlate with short survival of glioma patients. In this study we examined the mechanism of S1P stimulation of glioma cell proliferation and invasion by either overexpressing or knocking down, by RNA interference, S1P receptor expression in glioma cell lines. S1P 1 , S1P 2 and S1P 3 all contribute positively to S1P-stimulated glioma cell proliferation, with S1P 1 being the major contributor. Stimulation of glioma cell proliferation by these receptors correlated with activation of ERK MAP kinase. S1P 5 blocks glioma cell proliferation, and inhibits ERK activation. S1P 1 and S1P 3 enhance glioma cell migration and invasion. S1P 2 inhibits migration through Rho activation, Rho kinase signaling and stress fiber formation, but unexpectedly, enhances glioma cell invasiveness by stimulating cell adhesion. S1P 2 also potently enhances expression of the matricellular protein CCN1/Cyr61, which has been implicated in tumor cell adhesion, and invasion as well as tumor angiogenesis. A neutralizing antibody to CCN1 blocked S1P 2 -stimulated glioma invasion. Thus, while S1P 2 decreases glioma cell motility, it may enhance invasion through induction of proteins that modulate glioma cell interaction with the extracellular matrix

  15. Minimally invasive resection of large dumbbell tumors of the lumbar spine: Advantages and pitfalls.

    Science.gov (United States)

    Zairi, Fahed; Troux, Camille; Sunna, Tarek; Karnoub, Mélodie-Anne; Boubez, Ghassan; Shedid, Daniel

    2018-05-01

    The surgical management of dumbbell tumors of the lumbar spine remains controversial, because of their large volume and complex location, involving both the spinal canal and the retro peritoneum. While sporadically reported, our study aims to confirm the value of minimally invasive posterior access for the complete resection of large lumbar dumbbell tumors. In this prospective study, we included all consecutive patients who underwent the resection of a voluminous dumbbell tumor at the lumbar spine through a minimally invasive approach, between March 2015 and August 2017. There were 4 men and 4 women, with a mean age at diagnosis of 40.6 years (range 29-58 years). The resection was performed through a trans muscular tubular retractor by the same surgical team. Operative parameters and initial postoperative course were systematically reported. Clinical and radiological monitoring was scheduled at 3 months, 1 year and 2 years. The mean operative time was 144 min (range 58-300 minutes) and the mean estimated blood loss was 250 ml (range 100-500 ml). Gross total resection was achieved in all patients. No major complication was reported. The mean length of hospital stay was 3.1 days (range 2 to 6 days). Histological analysis confirmed the diagnosis of grade 1 schwannoma in all patients. The mean follow up period was 14.9 months (range 6 to 26 months), and 5 patients completed at least 1-year follow-up. At 6 months the Macnab was excellent in 6 patients, good in one patient and fair in one patient because of residual neuropathic pain requiring the maintenance of a long-term treatment. No tumor recurrence was noted to date. Lumbar dumbbell tumors can be safely and completely resected using a single-stage minimally invasive procedure, in a trained team. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Dual effect of LPS on murine myeloid leukemia cells: Pro-proliferation and anti-proliferation

    International Nuclear Information System (INIS)

    Yu, Lingling; Zhao, Yingmin; Gu, Xin; Wang, Jijun; Pang, Lei; Zhang, Yanqing; Li, Yaoyao; Jia, Xiaoqin; Wang, Xin; Gu, Jian; Yu, Duonan

    2016-01-01

    Modification of the bone marrow microenvironment is considered as a promising strategy to control leukemic cell proliferation, diseases progression and relapse after treatment. However, due to the diversity and complexity of the cellular and molecular compartments in the leukemic microenvironment, it is extremely difficult to dissect the role of each individual molecule or cell type in vivo. Here we established an in vitro system to dissect the role of lipopolysaccharide (LPS), stromal cells and endothelial cells in the growth of mouse myeloid tumor cells and B-lymphoma cells. We found that either LPS or bone marrow stromal cells as a feeder layer in culture is required for the proliferation of myeloid tumor cells. Surprisingly, the growth of myeloid leukemic cells on stromal cells is strongly inhibited when coupled with LPS in culture. This opposing effect of LPS, a complete switch from pro-proliferation to antitumor growth is due, at least in part, to the rapidly increased production of interleukin 12, Fas ligand and tissue inhibitor of metalloproteinases-2 from stromal cells stimulated by LPS. These results demonstrate that LPS can either facilitate or attenuate tumor cell proliferation, thus changing the disease course of myeloid leukemias through its direct effect or modulation of the tumor microenvironment. - Highlights: • LPS alone in culture is required for the proliferation of murine myeloid tumor cells. • Bone marrow stromal cells as a feeder layer is also required for the proliferation of myeloid tumor cells. • However, the growth of myeloid tumor cells is inhibited when LPS and stromal cells are both available in culture. • Thus LPS can either facilitate or attenuate tumor growth through its direct effect or modulation of tumor microenvironment.

  17. Dual effect of LPS on murine myeloid leukemia cells: Pro-proliferation and anti-proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Lingling [Department of Pediatrics, Jingjiang People' s Hospital, Yangzhou University, Jingjiang 214500 (China); Noncoding RNA Center, Yangzhou University, Yangzhou 225001 (China); Zhao, Yingmin [Department of Pediatrics, Jingjiang People' s Hospital, Yangzhou University, Jingjiang 214500 (China); Gu, Xin; Wang, Jijun; Pang, Lei; Zhang, Yanqing; Li, Yaoyao; Jia, Xiaoqin; Wang, Xin [Noncoding RNA Center, Yangzhou University, Yangzhou 225001 (China); Gu, Jian [Department of Hematology, Yangzhou University School of Clinical Medicine, Yangzhou 225001 (China); Yu, Duonan, E-mail: duonan@yahoo.com [Department of Pediatrics, Jingjiang People' s Hospital, Yangzhou University, Jingjiang 214500 (China); Noncoding RNA Center, Yangzhou University, Yangzhou 225001 (China); Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou 225001 (China); Institute of Comparative Medicine, Yangzhou University, Yangzhou 225001 (China); Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou 225001 (China)

    2016-06-10

    Modification of the bone marrow microenvironment is considered as a promising strategy to control leukemic cell proliferation, diseases progression and relapse after treatment. However, due to the diversity and complexity of the cellular and molecular compartments in the leukemic microenvironment, it is extremely difficult to dissect the role of each individual molecule or cell type in vivo. Here we established an in vitro system to dissect the role of lipopolysaccharide (LPS), stromal cells and endothelial cells in the growth of mouse myeloid tumor cells and B-lymphoma cells. We found that either LPS or bone marrow stromal cells as a feeder layer in culture is required for the proliferation of myeloid tumor cells. Surprisingly, the growth of myeloid leukemic cells on stromal cells is strongly inhibited when coupled with LPS in culture. This opposing effect of LPS, a complete switch from pro-proliferation to antitumor growth is due, at least in part, to the rapidly increased production of interleukin 12, Fas ligand and tissue inhibitor of metalloproteinases-2 from stromal cells stimulated by LPS. These results demonstrate that LPS can either facilitate or attenuate tumor cell proliferation, thus changing the disease course of myeloid leukemias through its direct effect or modulation of the tumor microenvironment. - Highlights: • LPS alone in culture is required for the proliferation of murine myeloid tumor cells. • Bone marrow stromal cells as a feeder layer is also required for the proliferation of myeloid tumor cells. • However, the growth of myeloid tumor cells is inhibited when LPS and stromal cells are both available in culture. • Thus LPS can either facilitate or attenuate tumor growth through its direct effect or modulation of tumor microenvironment.

  18. Cell migration or cytokinesis and proliferation? – Revisiting the “go or grow” hypothesis in cancer cells in vitro

    International Nuclear Information System (INIS)

    Garay, Tamás; Juhász, Éva; Molnár, Eszter; Eisenbauer, Maria; Czirók, András; Dekan, Barbara; László, Viktória; Hoda, Mir Alireza; Döme, Balázs; Tímár, József; Klepetko, Walter; Berger, Walter; Hegedűs, Balázs

    2013-01-01

    The mortality of patients with solid tumors is mostly due to metastasis that relies on the interplay between migration and proliferation. The “go or grow” hypothesis postulates that migration and proliferation spatiotemporally excludes each other. We evaluated this hypothesis on 35 cell lines (12 mesothelioma, 13 melanoma and 10 lung cancer) on both the individual cell and population levels. Following three-day-long videomicroscopy, migration, proliferation and cytokinesis-length were quantified. We found a significantly higher migration in mesothelioma cells compared to melanoma and lung cancer while tumor types did not differ in mean proliferation or duration of cytokinesis. Strikingly, we found in melanoma and lung cancer a significant positive correlation between mean proliferation and migration. Furthermore, non-dividing melanoma and lung cancer cells displayed slower migration. In contrast, in mesothelioma there were no such correlations. Interestingly, negative correlation was found between cytokinesis-length and migration in melanoma. FAK activation was higher in melanoma cells with high motility. We demonstrate that the cancer cells studied do not defer proliferation for migration. Of note, tumor cells from various organ systems may differently regulate migration and proliferation. Furthermore, our data is in line with the observation of pathologists that highly proliferative tumors are often highly invasive. - Highlights: • We investigated the “go or grow” hypothesis in human cancer cells in vitro. • Proliferation and migration positively correlate in melanoma and lung cancer cells. • Duration of cytokinesis and migration shows inverse correlation. • Increased FAK activation is present in highly motile melanoma cells

  19. Exosomes from human colorectal cancer induce a tumor-like behavior in colonic mesenchymal stromal cells.

    Science.gov (United States)

    Lugini, Luana; Valtieri, Mauro; Federici, Cristina; Cecchetti, Serena; Meschini, Stefania; Condello, Maria; Signore, Michele; Fais, Stefano

    2016-08-02

    Cancer cells, including colorectal cancer ones (CRC), release high amounts of nanovesicles (exosomes), delivering biochemical messages for paracrine or systemic crosstalk. Mesenchymal stromal cells (MSCs) have been shown to play contradicting roles in tumor progression. CRC exosomes induce in cMSCs: i) atypical morphology, higher proliferation, migration and invasion; ii) formation of spheroids; iii) an acidic extracellular environment associated with iv) a plasma membrane redistribution of vacuolar H+-ATPase and increased expression of CEA. Colon cancer derived MSCs, which were isolated from tumor masses, produce umbilicated spheroids, a future frequently observed in the inner core of rapidly growing tumors and recapitulate the changes observed in normal colonic MSCs exposed to CRC exosomes. Tissue specific colonic (c)MSCs were exposed to primary or metastatic CRC exosomes and analysed by light and electron microscopy, proliferation in 2D and 3D cultures, migration and invasion assays, Western blot and confocal microscopy for vacuolar H+-ATPase expression. CRC exosomes are able to induce morphological and functional changes in colonic MSCs, which may favour tumor growth and its malignant progression. Our results suggest that exosomes are actively involved in cancer progression and that inhibiting tumor exosome release may represent a way to interfere with cancer.

  20. PRDM14 is expressed in germ cell tumors with constitutive overexpression altering human germline differentiation and proliferation

    Directory of Open Access Journals (Sweden)

    Joanna J. Gell

    2018-03-01

    Full Text Available Germ cell tumors (GCTs are a heterogeneous group of tumors occurring in gonadal and extragonadal locations. GCTs are hypothesized to arise from primordial germ cells (PGCs, which fail to differentiate. One recently identified susceptibility loci for human GCT is PR (PRDI-BF1 and RIZ domain proteins 14 (PRDM14. PRDM14 is expressed in early primate PGCs and is repressed as PGCs differentiate. To examine PRDM14 in human GCTs we profiled human GCT cell lines and patient samples and discovered that PRDM14 is expressed in embryonal carcinoma cell lines, embryonal carcinomas, seminomas, intracranial germinomas and yolk sac tumors, but is not expressed in teratomas. To model constitutive overexpression in human PGCs, we generated PGC-like cells (PGCLCs from human pluripotent stem cells (PSCs and discovered that elevated expression of PRDM14 does not block early PGC formation. Instead, we show that elevated PRDM14 in PGCLCs causes proliferation and differentiation defects in the germline. Keywords: Germ cell tumor, PRDM14, Cell differentiation, Primordial germ cell, Proliferation

  1. Plexin-B1 silencing inhibits ovarian cancer cell migration and invasion

    International Nuclear Information System (INIS)

    Ye, Shuangmei; Chen, Yin; You, Lanying; Zhang, Yiqun; Xu, Gang; Zhou, Jianfeng; Ma, Ding; Wang, Shixuan; Hao, Xing; Zhou, Ting; Wu, Mingfu; Wei, Juncheng; Wang, Yongjun; Zhou, Li; Jiang, Xuefeng; Ji, Li

    2010-01-01

    Elevated Plexin-B1 expression has been found in diverse human cancers and in non-neoplastic tissues, and it mediates diverse biological and pathological activities. However, whether or not Plexin-B1 expression is involved in human ovarian tumors remains unclear. In the present study, Plexin-B1 expression was explored in benign and malignant human ovarian tumor tissues. In addition, the impact of Plexin-B1 expression on ovarian cancer cell proliferation, migration and invasion were investigated in vitro. Plexin-B1 expression was analyzed in normal and benign ovarian tissues and serous ovarian tumors (both borderline and malignant) by immunohistochemical staining, as well as in four human ovarian cancer cell lines (A2780, C13*, SKOV3, and OV2008) by RT-PCR and western blot analyses. Furthermore, endogenous Plexin-B1 expression was suppressed by Plexin-B1 siRNA in SKOV3 cells, which overexpress Plexin-B1. Protein levels of Plexin-B1, AKT and AKT Ser473 were examined by western blot analysis. Cell proliferation, migration and invasion were measured with MTT, wound healing and boyden chamber assays, respectively, and the cytoskeleton was monitored via F-actin staining. Expression levels of Plexin-B1 protein were significantly higher in serous ovarian carcinomas than in normal ovaries or benign ovarian neoplasms, and in the former, Plexin-B1 expression was positively correlated with lymphatic metastasis, and the membrane and cytoplasm of cancer cells stained positively. SKOV3 cells displayed the highest Plexin-B1 expression at both the mRNA and protein levels among the four tested human ovarian cancer cell lines and was selected as a cell model for further in vitro experiments. Plexin-B1 siRNA significantly suppressed phosphorylation of AKT at Ser473 in SKOV3 cells, but it did not alter total AKT expression. In addition, silencing of Plexin-B1 in SKOV3 cells inhibited cell migration and invasion and reorganized the cytoskeleton, whereas cell proliferation was not

  2. Fibroblast growth factor receptor 4 regulates tumor invasion by coupling fibroblast growth factor signaling to extracellular matrix degradation

    DEFF Research Database (Denmark)

    Sugiyama, Nami; Varjosalo, Markku; Meller, Pipsa

    2010-01-01

    /stroma border and tumor invasion front. The strongest overall coexpression was found in prostate carcinoma. Studies with cultured prostate carcinoma cell lines showed that the FGFR4-R388 variant, which has previously been associated with poor cancer prognosis, increased MT1-MMP-dependent collagen invasion......Aberrant expression and polymorphism of fibroblast growth factor receptor 4 (FGFR4) has been linked to tumor progression and anticancer drug resistance. We describe here a novel mechanism of tumor progression by matrix degradation involving epithelial-to-mesenchymal transition in response...... to membrane-type 1 matrix metalloproteinase (MT1-MMP, MMP-14) induction at the edge of tumors expressing the FGFR4-R388 risk variant. Both FGFR4 and MT1-MMP were upregulated in tissue biopsies from several human cancer types including breast adenocarcinomas, where they were partially coexpressed at the tumor...

  3. Adenomatoid odontogenic tumor with peripheral cemento-osseous reactive proliferation: report of 2 cases and review of the literature.

    Science.gov (United States)

    Naidu, Aparna; Slater, Lee J; Hamao-Sakamoto, Aya; Waters, Patrick; Kessler, Harvey P; Wright, John M

    2016-09-01

    Two cases of a rare variant of adenomatoid odontogenic tumor encompassed by a prominent reactive cemento-osseous proliferation are reported. This unique variant of adenomatoid odontogenic tumor has only been seen twice in the authors' collective experience. Literature documenting the histopathologic patterns of adenomatoid odontogenic tumor and the occurrence of other combined lesions other is reviewed and discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Monocarboxylate transporter 4 facilitates cell proliferation and migration and is associated with poor prognosis in oral squamous cell carcinoma patients.

    Directory of Open Access Journals (Sweden)

    Jiang Zhu

    Full Text Available Monocarboxylate transporter 4 (MCT4 is a cell membrane transporter of lactate. Recent studies have shown that MCT4 is over-expressed in various cancers; however, its role in cancer maintenance and aggressiveness has not been fully demonstrated. This study investigated the role of MCT4 in oral squamous cell carcinoma (OSCC, and found that it is highly expressed in OSCC patients by using immunohistochemistry. Moreover, this over-expression of MCT4 was closely associated with tumor size, TNM classification, lymphatic metastasis, distant metastasis and tumor recurrence, and also poor prognosis. To further study mechanisms of MCT4 in vitro, we used small-interfering RNA to silence its expression in OSCC cell lines. The results showed that knock-down of MCT4 decreased cell proliferation, migration, and invasion. The inhibition of proliferation was associated with down-regulation of p-AKT and p-ERK1/2, while decreased cell migration and invasion may be caused by down-regulation of integrin β4-SRC-FAK and MEK-ERK signaling. Together, these findings provide new insight into the critical role of MCT4 in cell proliferation and metastasis in OSCC.

  5. Minimally invasive endoscope-assisted trans-oral excision of huge parapharyngeal space tumors.

    Science.gov (United States)

    Li, Shang-Yi; Hsu, Ching-Hui; Chen, Mu-Kuan

    2015-04-01

    Parapharyngeal space tumors are rare head and neck neoplasms, and most are benign lesions. Complete excision of these tumors is difficult because of the complexity of the surrounding anatomic structures. The algorithm for excision of these tumors is typically based on the tumor's characteristics; excision is performed via approaches such as the trans-oral route, the trans-cervical route, and even a combination of the trans-parotid route and mandibulotomy. However, each of these approaches is associated with some complications. Endoscope-assisted minimally invasive surgery is being increasingly employed for surgeries in the head and neck regions. It has the advantage of leaving no facial scars, and ensures better patient comfort after the operation. Here, we report the use of endoscope-assisted trans-oral surgery for excision of parapharyngeal space tumors. The technique yields an excellent outcome and should be a feasible, safe, and economic method for these patients. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. The immunological response created by interstitial and non-invasive laser immunotherapy

    Science.gov (United States)

    Bahavar, Cody F.; Zhou, Feifan; Hasanjee, Aamr M.; West, Connor L.; Nordquist, Robert E.; Hode, Tomas; Liu, Hong; Chen, Wei R.

    2015-03-01

    Laser immunotherapy (LIT) is an innovative cancer modality that uses laser irradiation and immunological stimulation to treat late-stage, metastatic cancers. LIT can be performed through either interstitial or non-invasive laser irradiation. Although LIT is still in development, recent clinical trials have shown that it can be used to successfully treat patients with late-stage breast cancer and melanoma. The development of LIT has been focused on creating an optimal immune response created by irradiating the tumor. One important factor that could enhance the immune response is the duration of laser irradiation. Irradiating the tumor for a shorter or longer amount of time could weaken the immune response created by LIT. Another factor that could weaken this immune response is the proliferation of regulatory T cells (TRegs) in response to the laser irradiation. However, low dose cyclophosphamide (CY) can help suppress the proliferation of TRegs and help create a more optimal immune response. An additional factor that could weaken the effectiveness of LIT is the selectivity of the laser. If LIT is performed non-invasively, then deeply embedded tumors and highly pigmented skin could cause an uneven temperature distribution inside the tumor. To solve this problem, an immunologically modified carbon nanotube system was created by using an immunoadjuvant known as glycated chitosan (GC) as a surfactant for single-walled carbon nanotubes (SWNTs) to immunologically modify SWNTs. SWNT-GC retains the optical properties of SWNTs and the immunological functions of GC to help increase the selectivity of the laser and create a more optimal immune response. In this preliminary study, tumor-bearing rats were treated with LIT either interstitially by an 805-nm laser with GC and low-dose CY, or non-invasively by a 980-nm laser with SWNT-GC. The goal was to observe the effects of CY on the immune response induced by LIT and to also determine the effect of irradiation duration for

  7. Overexpression of CD97 confers an invasive phenotype in glioblastoma cells and is associated with decreased survival of glioblastoma patients.

    Directory of Open Access Journals (Sweden)

    Michael Safaee

    Full Text Available Mechanisms of invasion in glioblastoma (GBM relate to differential expression of proteins conferring increased motility and penetration of the extracellular matrix. CD97 is a member of the epidermal growth factor seven-span transmembrane family of adhesion G-protein coupled receptors. These proteins facilitate mobility of leukocytes into tissue. In this study we show that CD97 is expressed in glioma, has functional effects on invasion, and is associated with poor overall survival. Glioma cell lines and low passage primary cultures were analyzed. Functional significance was assessed by transient knockdown using siRNA targeting CD97 or a non-target control sequence. Invasion was assessed 48 hours after siRNA-mediated knockdown using a Matrigel-coated invasion chamber. Migration was quantified using a scratch assay over 12 hours. Proliferation was measured 24 and 48 hours after confirmed protein knockdown. GBM cell lines and primary cultures were found to express CD97. Knockdown of CD97 decreased invasion and migration in GBM cell lines, with no difference in proliferation. Gene-expression based Kaplan-Meier analysis was performed using The Cancer Genome Atlas, demonstrating an inverse relationship between CD97 expression and survival. GBMs expressing high levels of CD97 were associated with decreased survival compared to those with low CD97 (p = 0.007. CD97 promotes invasion and migration in GBM, but has no effect on tumor proliferation. This phenotype may explain the discrepancy in survival between high and low CD97-expressing tumors. This data provides impetus for further studies to determine its viability as a therapeutic target in the treatment of GBM.

  8. Effect of brain- and tumor-derived connective tissue growth factor on glioma invasion.

    Science.gov (United States)

    Edwards, Lincoln A; Woolard, Kevin; Son, Myung Jin; Li, Aiguo; Lee, Jeongwu; Ene, Chibawanye; Mantey, Samuel A; Maric, Dragan; Song, Hua; Belova, Galina; Jensen, Robert T; Zhang, Wei; Fine, Howard A

    2011-08-03

    Tumor cell invasion is the principal cause of treatment failure and death among patients with malignant gliomas. Connective tissue growth factor (CTGF) has been previously implicated in cancer metastasis and invasion in various tumors. We explored the mechanism of CTGF-mediated glioma cell infiltration and examined potential therapeutic targets. Highly infiltrative patient-derived glioma tumor-initiating or tumor stem cells (TIC/TSCs) were harvested and used to explore a CTGF-induced signal transduction pathway via luciferase reporter assays, chromatin immunoprecipitation (ChIP), real-time polymerase chain reaction, and immunoblotting. Treatment of TIC/TSCs with small-molecule inhibitors targeting integrin β1 (ITGB1) and the tyrosine kinase receptor type A (TrkA), and short hairpin RNAs targeting CTGF directly were used to reduce the levels of key protein components of CTGF-induced cancer infiltration. TIC/TSC infiltration was examined in real-time cell migration and invasion assays in vitro and by immunohistochemistry and in situ hybridization in TIC/TSC orthotopic xenograft mouse models (n = 30; six mice per group). All statistical tests were two-sided. Treatment of TIC/TSCs with CTGF resulted in CTGF binding to ITGB1-TrkA receptor complexes and nuclear factor kappa B (NF-κB) transcriptional activation as measured by luciferase reporter assays (mean relative luciferase activity, untreated vs CTGF(200 ng/mL): 0.53 vs 1.87, difference = 1.34, 95% confidence interval [CI] = 0.69 to 2, P < .001). NF-κB activation resulted in binding of ZEB-1 to the E-cadherin promoter as demonstrated by ChIP analysis with subsequent E-cadherin suppression (fold increase in ZEB-1 binding to the E-cadherin promoter region: untreated + ZEB-1 antibody vs CTGF(200 ng/mL) + ZEB-1 antibody: 1.5 vs 6.4, difference = 4.9, 95% CI = 4.8 to 5.0, P < .001). Immunohistochemistry and in situ hybridization revealed that TrkA is selectively expressed in the most infiltrative glioma cells in situ

  9. The nontoxic natural compound Curcumin exerts anti-proliferative, anti-migratory, and anti-invasive properties against malignant gliomas

    International Nuclear Information System (INIS)

    Senft, Christian; Polacin, Margareth; Priester, Maike; Seifert, Volker; Kögel, Donat; Weissenberger, Jakob

    2010-01-01

    New drugs are constantly sought after to improve the survival of patients with malignant gliomas. The ideal substance would selectively target tumor cells without eliciting toxic side effects. Here, we report on the anti-proliferative, anti-migratory, and anti-invasive properties of the natural, nontoxic compound Curcumin observed in five human glioblastoma (GBM) cell lines in vitro. We used monolayer wound healing assays, modified Boyden chamber trans-well assays, and cell growth assays to quantify cell migration, invasion, and proliferation in the absence or presence of Curcumin at various concentrations. Levels of the transcription factor phospho-STAT3, a potential target of Curcumin, were determined by sandwich-ELISA. Subsequent effects on transcription of genes regulating the cell cycle were analyzed by quantitative real-time PCR. Effects on apoptosis were determined by caspase assays. Curcumin potently inhibited GBM cell proliferation as well as migration and invasion in all cell lines contingent on dose. Simultaneously, levels of the biologically active phospho-STAT3 were decreased and correlated with reduced transcription of the cell cycle regulating gene c-Myc and proliferation marking Ki-67, pointing to a potential mechanism by which Curcumin slows tumor growth. Curcumin is part of the diet of millions of people every day and is without known toxic side effects. Our data show that Curcumin bears anti-proliferative, anti-migratory, and anti-invasive properties against GBM cells in vitro. These results warrant further in vivo analyses and indicate a potential role of Curcumin in the treatment of malignant gliomas

  10. Bone Marrow-derived Myofibroblasts Are the Providers of Pro-invasive Matrix Metalloproteinase 13 in Primary Tumor

    Directory of Open Access Journals (Sweden)

    Julie Lecomte

    2012-10-01

    Full Text Available Carcinoma-associated fibroblasts are key contributors of the tumor microenvironment that regulates carcinoma progression. They consist of a heterogeneous cell population with diverse origins, phenotypes, and functions. In the present report, we have explored the contribution of bone marrow (BM-derived cells to generate different fibroblast subsets that putatively produce the matrix metalloproteinase 13 (MMP13 and affect cancer cell invasion. A murine model of skin carcinoma was applied to mice, irradiated, and engrafted with BM isolated from green fluorescent protein (GFP transgenic mice. We provide evidence that one third of BM-derived GFP+ cells infiltrating the tumor expressed the chondroitin sulfate proteoglycan NG2 (pericytic marker or α-smooth muscle actin (α-SMA, myofibroblast marker, whereas almost 90% of Thy1+ fibroblasts were originating from resident GFP-negative cells. MMP13producing cells were exclusively α-SMA+ cells and derived from GFP+ BM cells. To investigate their impact on tumor invasion, we isolated mesenchymal stem cells (MSCs from the BM of wild-type and MMP13-deficient mice. Wild-type MSC promoted cancer cell invasion in a spheroid assay, whereas MSCs obtained from MMP13-deficient mice failed to. Our data support the concept of fibroblast subset specialization with BM-derived α-SMA+ cells being the main source of MMP13, a stromal mediator of cancer cell invasion.

  11. Retinoid inhibition of in vitro invasion of human amnion basement membrane by human tumor cells

    International Nuclear Information System (INIS)

    Fazely, F.; Ledinko, N.; Smith, D.J.

    1986-01-01

    The biological activity of retinoids was assayed in an in vitro quantitative assay of human tumor cell invasion using human amnion basement membrane (BM). The effects measured were the inhibition of tumor cell migration through the BM and tumor cell degradative enzyme activity on 14 C-proline labeled collagenous and noncollagenous components of the BM. The human lung carcinoma A549 or the human Ewing's sarcoma TC-106 cell lines treated with retinoids for two days were incubated on the BM in the absence of retinoids. A dose-dependent inhibition of cell invasion was produced by retinoids. Among the retinoids tested, the most powerful was retinol acetate which inhibited invasion by 50% of A549 cells at a concentration of 0.009 μg/mL, and of TC-106 cells at 0.07 μg/mL. Retinol acetate inhibited A549 and TC-106 cell growth by approximately 50% at levels over 100-fold higher than those needed for antiinvasive activity. Retinol acetate was about 20 times more potent than retinoic acid and 30 times more potent than retinol palmitate. The model system will be useful for investigating antiinvasive activity of other retinoids as well as other compounds

  12. Genetic ablation of Bcl-x attenuates invasiveness without affecting apoptosis or tumor growth in a mouse model of pancreatic neuroendocrine cancer.

    Directory of Open Access Journals (Sweden)

    Jeffrey H Hager

    Full Text Available Tumor cell death is modulated by an intrinsic cell death pathway controlled by the pro- and anti-apoptotic members of the Bcl-2 family. Up-regulation of anti-apoptotic Bcl-2 family members has been shown to suppress cell death in pre-clinical models of human cancer and is implicated in human tumor progression. Previous gain-of-function studies in the RIP1-Tag2 model of pancreatic islet carcinogenesis, involving uniform or focal/temporal over-expression of Bcl-x(L, demonstrated accelerated tumor formation and growth. To specifically assess the role of endogenous Bcl-x in regulating apoptosis and tumor progression in this model, we engineered a pancreatic beta-cell-specific knockout of both alleles of Bcl-x using the Cre-LoxP system of homologous recombination. Surprisingly, there was no appreciable effect on tumor cell apoptosis rates or on tumor growth in the Bcl-x knockout mice. Other anti-apoptotic Bcl-2 family members were expressed but not substantively altered at the mRNA level in the Bcl-x-null tumors, suggestive of redundancy without compensatory transcriptional up-regulation. Interestingly, the incidence of invasive carcinomas was reduced, and tumor cells lacking Bcl-x were impaired in invasion in a two-chamber trans-well assay under conditions mimicking hypoxia. Thus, while the function of Bcl-x in suppressing apoptosis and thereby promoting tumor growth is evidently redundant, genetic ablation implicates Bcl-x in selectively facilitating invasion, consistent with a recent report documenting a pro-invasive capability of Bcl-x(L upon exogenous over-expression.

  13. Tiling array-CGH for the assessment of genomic similarities among synchronous unilateral and bilateral invasive breast cancer tumor pairs

    Directory of Open Access Journals (Sweden)

    Ringnér Markus

    2008-07-01

    Full Text Available Abstract Background Today, no objective criteria exist to differentiate between individual primary tumors and intra- or intermammary dissemination respectively, in patients diagnosed with two or more synchronous breast cancers. To elucidate whether these tumors most likely arise through clonal expansion, or whether they represent individual primary tumors is of tumor biological interest and may have clinical implications. In this respect, high resolution genomic profiling may provide a more reliable approach than conventional histopathological and tumor biological factors. Methods 32 K tiling microarray-based comparative genomic hybridization (aCGH was used to explore the genomic similarities among synchronous unilateral and bilateral invasive breast cancer tumor pairs, and was compared with histopathological and tumor biological parameters. Results Based on global copy number profiles and unsupervised hierarchical clustering, five of ten (p = 1.9 × 10-5 unilateral tumor pairs displayed similar genomic profiles within the pair, while only one of eight bilateral tumor pairs (p = 0.29 displayed pair-wise genomic similarities. DNA index, histological type and presence of vessel invasion correlated with the genomic analyses. Conclusion Synchronous unilateral tumor pairs are often genomically similar, while synchronous bilateral tumors most often represent individual primary tumors. However, two independent unilateral primary tumors can develop synchronously and contralateral tumor spread can occur. The presence of an intraductal component is not informative when establishing the independence of two tumors, while vessel invasion, the presence of which was found in clustering tumor pairs but not in tumor pairs that did not cluster together, supports the clustering outcome. Our data suggest that genomically similar unilateral tumor pairs may represent a more aggressive disease that requires the addition of more severe treatment modalities, and

  14. Isoginkgetin inhibits tumor cell invasion by regulating phosphatidylinositol 3-kinase/Akt-dependent matrix metalloproteinase-9 expression.

    Science.gov (United States)

    Yoon, Sang-Oh; Shin, Sejeong; Lee, Ho-Jae; Chun, Hyo-Kon; Chung, An-Sik

    2006-11-01

    Matrix metalloproteinase (MMP)-9 plays a key role in tumor invasion. Inhibitors of MMP-9 were screened from Metasequoia glyptostroboides (Dawn redwood) and one potent inhibitor, isoginkgetin, a biflavonoid, was identified. Noncytotoxic levels of isoginkgetin decreased MMP-9 production profoundly, but up-regulated the level of tissue inhibitor of metalloproteinase (TIMP)-1, an inhibitor of MMP-9, in HT1080 human fibrosarcoma cells. The major mechanism of Ras-dependent MMP-9 production in HT1080 cells was phosphatidylinositol 3-kinase (PI3K)/Akt/nuclear factor-kappaB (NF-kappaB) activation. Expression of dominant-active H-Ras and p85 (a subunit of PI3K) increased MMP-9 activity, whereas dominant-negative forms of these molecules decreased the level of MMP-9. H-Ras did not increase MMP-9 in the presence of a PI3K inhibitor, LY294002, and a NF-kappaB inhibitor, SN50. Further studies showed that isoginkgetin regulated MMP-9 production via PI3K/Akt/NF-kappaB pathway, as evidenced by the findings that isoginkgetin inhibited activities of both Akt and NF-kappaB. PI3K/Akt is a well-known key pathway for cell invasion, and isoginkgetin inhibited HT1080 tumor cell invasion substantially. Isoginkgetin was also quite effective in inhibiting the activities of Akt and MMP-9 in MDA-MB-231 breast carcinomas and B16F10 melanoma. Moreover, isoginkgetin treatment resulted in marked decrease in invasion of these cells. In summary, PI3K/Akt is a major pathway for MMP-9 expression and isoginkgetin markedly decreased MMP-9 expression and invasion through inhibition of this pathway. This suggests that isoginkgetin could be a potential candidate as a therapeutic agent against tumor invasion.

  15. Effect of Circular RNA UBAP2 Silencing on Proliferation and Invasion of Human Lung Cancer A549 Cells and Its Mechanism

    Directory of Open Access Journals (Sweden)

    Yujing YIN

    2017-12-01

    Full Text Available Background and objective It has been proven that circular RNAs (circRNAs play an important role on the process of many types cancer and circUBAP2 was a cancer-promoting circRNA, however, the role and mechanism in lung cancer was not clear. The aim of this study is to investigate the effects of circUBAP2 on cell proliferation and invasion of human lung cancer A549 cells. Methods CCK-8 assay was employed to detect the effect of circUBAP2 sliencing on cell proliferation of A549 cells. Fow cytometry was applied to detect the impact of circUBAP2 sliencing on cell cycle and cell anoikis, and Transwell invasion assay was applied to determine cell invasion of A549 cells. We also employed Western blot and Real-time PCR to determine the expressions of CDK6, cyclin D1, p27 and c-IAP1, Bcl-2, Survivin, Bax, FAK, Rac1 and MMP2, and the activities of JNK and ERK1/2, luciferase report gene assay was used to detect the targets. Results CCK-8 assay showed that the inhibition of cell proliferation in the circUBAP2-siRNA group compared to untreated group and siRNA control group. Results of cell cycle detected by flow cytometry showed that cell cycle arrestd at G0/G1 after circUBAP2 silencing, cell apoptosis rate increased also. We also found that after circUBAP2 silencing, cell invasion of A549 cells was significantly inhibited. Western blot and Real-time PCR results showed that expression of CDK6, cyclin D1, c-IAP1, Bcl-2, Survivin, FAK, Rac1 and MMP2 were down-regulated, and the expression of p27 and Bax were up-regulated. Moreover, the activities of JNK and ERK1/2 were inhibited because of circUBAP2 silencing, the target genes were miR-339-5p, miR-96-3p and miR-135b-3p. Conclusion CircUBAP2 plays an important role in the proliferation and invasion of human lung cancer. Silencing of circUBAP2 might be a novel target for molecular targeted therapy of patients with lung cancer.

  16. Tumor cell invasion of collagen matrices requires coordinate lipid agonist-induced G-protein and membrane-type matrix metalloproteinase-1-dependent signaling

    Directory of Open Access Journals (Sweden)

    Anthis Nicholas J

    2006-12-01

    Full Text Available Abstract Background Lysophosphatidic acid (LPA and sphingosine 1-phosphate (S1P are bioactive lipid signaling molecules implicated in tumor dissemination. Membrane-type matrix metalloproteinase 1 (MT1-MMP is a membrane-tethered collagenase thought to be involved in tumor invasion via extracellular matrix degradation. In this study, we investigated the molecular requirements for LPA- and S1P-regulated tumor cell migration in two dimensions (2D and invasion of three-dimensional (3D collagen matrices and, in particular, evaluated the role of MT1-MMP in this process. Results LPA stimulated while S1P inhibited migration of most tumor lines in Boyden chamber assays. Conversely, HT1080 fibrosarcoma cells migrated in response to both lipids. HT1080 cells also markedly invaded 3D collagen matrices (~700 μm over 48 hours in response to either lipid. siRNA targeting of LPA1 and Rac1, or S1P1, Rac1, and Cdc42 specifically inhibited LPA- or S1P-induced HT1080 invasion, respectively. Analysis of LPA-induced HT1080 motility on 2D substrates vs. 3D matrices revealed that synthetic MMP inhibitors markedly reduced the distance (~125 μm vs. ~45 μm and velocity of invasion (~0.09 μm/min vs. ~0.03 μm/min only when cells navigated 3D matrices signifying a role for MMPs exclusively in invasion. Additionally, tissue inhibitors of metalloproteinases (TIMPs-2, -3, and -4, but not TIMP-1, blocked lipid agonist-induced invasion indicating a role for membrane-type (MT-MMPs. Furthermore, MT1-MMP expression in several tumor lines directly correlated with LPA-induced invasion. HEK293s, which neither express MT1-MMP nor invade in the presence of LPA, were transfected with MT1-MMP cDNA, and subsequently invaded in response to LPA. When HT1080 cells were seeded on top of or within collagen matrices, siRNA targeting of MT1-MMP, but not other MMPs, inhibited lipid agonist-induced invasion establishing a requisite role for MT1-MMP in this process. Conclusion LPA is a

  17. Estrogen receptor beta, a possible tumor suppressor involved in ovarian carcinogenesis

    Science.gov (United States)

    Lazennec, Gwendal

    2006-01-01

    Ovarian cancer is one of the leading cause of death from gynecological tumors in women. Several lines of evidence suggest that estrogens may play an important role in ovarian carcinogenesis, through their receptors, ERα and ERβ. Interestingly, malignant ovarian tumors originating from epithelial surface constitute about 90% of ovarian cancers and expressed low levels of ERβ, compared to normal tissues. In addition, restoration of ERβ in ovarian cancer cells, leads to strong inhibition of their proliferation and invasion, while apoptosis is enhanced. In this manuscript, recent data suggesting a possible tumor-suppressor role for ERβ in ovarian carcinogenesis are discussed. PMID:16399219

  18. GL-1196 Suppresses the Proliferation and Invasion of Gastric Cancer Cells via Targeting PAK4 and Inhibiting PAK4-Mediated Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Jian Zhang

    2016-04-01

    Full Text Available Gastric cancer, which is the most common malignant gastrointestinal tumor, has jumped to the third leading cause of cancer-related mortality worldwide. It is of great importance to identify novel and potent drugs for gastric cancer treatment. P21-activated kinase 4 (PAK4 has emerged as an attractive target for the development of anticancer drugs in consideration of its vital functions in tumorigenesis and progression. In this paper, we reported that GL-1196, as a small molecular compound, effectively suppressed the proliferation of human gastric cancer cells through downregulation of PAK4/c-Src/EGFR/cyclinD1 pathway and CDK4/6 expression. Moreover, GL-1196 prominently inhibited the invasion of human gastric cancer cells in parallel with blockage of the PAK4/LIMK1/cofilin pathway. Interestingly, GL-1196 also inhibited the formation of filopodia and induced cell elongation in SGC7901 and BGC823 cells. Taken together, these results provided novel insights into the potential therapeutic strategy for gastric cancer.

  19. Mucosal Proliferations in Completely Examined Fallopian Tubes Accompanying Ovarian Low-grade Serous Tumors: Neoplastic Precursor Lesions or Normal Variants of Benign Mucosa?

    Science.gov (United States)

    Wolsky, Rebecca J; Price, Matt A; Zaloudek, Charles J; Rabban, Joseph T

    2018-05-01

    Malignant transformation of the fallopian tube mucosa, followed by exfoliation of malignant cells onto ovarian and/or peritoneal surfaces, has been implicated as the origin of most pelvic high-grade serous carcinoma. Whether a parallel pathway exists for pelvic low-grade serous tumors [ovarian serous borderline tumor (SBT) and low-grade serous carcinoma (LGSC)] remains to be fully elucidated. The literature is challenging to interpret due to variation in the diagnostic criteria and terminology for cytologically low-grade proliferations of the fallopian tube mucosa, as well as variation in fallopian tube specimen sampling. Recently, a candidate fallopian tube precursor to ovarian SBT, so-called papillary tubal hyperplasia, was described in advanced stage patients. The current study was designed to identify fallopian tube mucosal proliferations unique to patients with low-grade serous ovarian tumors (serous cystadenoma, SBT, LGSC) and to determine if they may represent precursors to the ovarian tumors. Fallopian tubes were thinly sliced and entirely examined microscopically, including all of the fimbriated and nonfimbriated portions of the tubes, from patients with ovarian serous cystadenoma (35), SBT (61), and LGSC (11) and from a control population of patients with ovarian mucinous cystadenoma (28), mature cystic teratoma (18) or uterine leiomyoma (14). The slides of the fallopian tubes were examined in randomized order, without knowledge of the clinical history or findings in the ovaries or other organs. Alterations of the mucosa of the fallopian tube were classified as type 1: nonpapillary proliferation of cytologically bland tubal epithelium exhibiting crowding, stratification, and/or tufting without papillary fibrovascular cores or as type 2: papillary alterations consisting of a fibrovascular core lined by a cytologically bland layer of tubal epithelium. A third abnormality, type 3, consisted of detached intraluminal papillae, buds, or nests of epithelium that

  20. Integration of force reflection with tactile sensing for minimally invasive robotics-assisted tumor localization.

    Science.gov (United States)

    Talasaz, A; Patel, R V

    2013-01-01

    Tactile sensing and force reflection have been the subject of considerable research for tumor localization in soft-tissue palpation. The work presented in this paper investigates the relevance of force feedback (presented visually as well as directly) during tactile sensing (presented visually only) for tumor localization using an experimental setup close to one that could be applied for real robotics-assisted minimally invasive surgery. The setup is a teleoperated (master-slave) system facilitated with a state-of-the-art minimally invasive probe with a rigidly mounted tactile sensor at the tip and an externally mounted force sensor at the base of the probe. The objective is to capture the tactile information and measure the interaction forces between the probe and tissue during palpation and to explore how they can be integrated to improve the performance of tumor localization. To quantitatively explore the effect of force feedback on tactile sensing tumor localization, several experiments were conducted by human subjects to locate artificial tumors embedded in the ex vivo bovine livers. The results show that using tactile sensing in a force-controlled environment can realize, on average, 57 percent decrease in the maximum force and 55 percent decrease in the average force applied to tissue while increasing the tumor detection accuracy by up to 50 percent compared to the case of using tactile feedback alone. The results also show that while visual presentation of force feedback gives straightforward quantitative measures, improved performance of tactile sensing tumor localization is achieved at the expense of longer times for the user. Also, the quickness and intuitive data mapping of direct force feedback makes it more appealing to experienced users.

  1. Proliferative and Invasive Effects of Progesterone-Induced Blocking Factor in Human Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Araceli Gutiérrez-Rodríguez

    2017-01-01

    Full Text Available Progesterone-induced blocking factor (PIBF is a progesterone (P4 regulated protein expressed in different types of high proliferative cells including astrocytomas, the most frequent and aggressive brain tumors. It has been shown that PIBF increases the number of human astrocytoma cells. In this work, we evaluated PIBF regulation by P4 and the effects of PIBF on proliferation, migration, and invasion of U87 and U251 cells, both derived from human glioblastomas. PIBF mRNA expression was upregulated by P4 (10 nM from 12 to 24 h. Glioblastoma cells expressed two PIBF isoforms, 90 and 57 kDa. The content of the shorter isoform was increased by P4 at 24 h, while progesterone receptor antagonist RU486 (10 μM blocked this effect. PIBF (100 ng/mL increased the number of U87 cells on days 4 and 5 of treatment and induced cell proliferation on day 4. Wound-healing assays showed that PIBF increased the migration of U87 (12–48 h and U251 (24 and 48 h cells. Transwell invasion assays showed that PIBF augmented the number of invasive cells in both cell lines at 24 h. These data suggest that PIBF promotes proliferation, migration, and invasion of human glioblastoma cells.

  2. MiR-598: A tumor suppressor with biomarker significance in osteosarcoma.

    Science.gov (United States)

    Liu, Kai; Sun, Xiaolu; Zhang, Yingang; Liu, Liang; Yuan, Qiling

    2017-11-01

    Osteosarcoma is the most frequent primary malignant bone tumor in children and adolescents. Identifying specific and sensitive biomarkers is beneficial to early detection and improvement of life qualities and overall survival rates of osteosarcoma patients. Realtime PCR was used to detect the expression of miR-598. CCK-8 assay was employed to detect the proliferation of osteosarcoma cells, while transwell assays were used to examine the migration and invasion. Tumor xenograft experiments were performed to test the in vivo malignancy of osteosarcoma cells. Co-culture experiment was used to study the relationship between osteosarcoma cells and osteoblast. Realtime PCR, Western Blotting and luciferase report assays were conducted for the target genes analysis. Using a cohort of 20 cases of osteosarcoma and paired adjacent tissue samples, we found that miR-598 expression was decreased in osteosarcoma tissues and serum, as well as the osteosarcoma cell lines. Over expression of miR-598 suppressed the proliferation, migration, and invasion of osteosarcoma cells, while inhibition of miR-598 expression stimulated the proliferation, migration, and invasion. However, MiR-598 had no effect on osteosarcoma cell apoptosis. Data from nude mice further demonstrated the inhibitory role of miR-598 in osteosarcoma progression in vivo. Mechanically, miR-598 played its role by modulating osteoblastic differentiation in the microenvironment and targeting PDGFB and MET. Our findings enrich the knowledge of miR-598 in osteosarcoma progression, and reveal miR-598 as a promising diagnostic, prognostic, therapeutic biomarker for osteosarcoma. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Peroxisome Proliferator-Activated Receptors (PPARs as Potential Inducers of Antineoplastic Effects in CNS Tumors

    Directory of Open Access Journals (Sweden)

    Lars Tatenhorst

    2008-01-01

    Full Text Available The peroxisome proliferator-activated receptors (PPARs are ligand-inducible transcription factors which belong to the superfamily of nuclear hormone receptors. In recent years it turned out that natural as well as synthetic PPAR agonists exhibit profound antineoplastic as well as redifferentiation effects in tumors of the central nervous system (CNS. The molecular understanding of the underlying mechanisms is still emerging, with partially controverse findings reported by a number of studies dealing with the influence of PPARs on treatment of tumor cells in vitro. Remarkably, studies examining the effects of these drugs in vivo are just beginning to emerge. However, the agonists of PPARs, in particular the thiazolidinediones, seem to be promising candidates for new approaches in human CNS tumor therapy.

  4. Genetic disruption of tubulin acetyltransferase, αTAT1, inhibits proliferation and invasion of colon cancer cells through decreases in Wnt1/β-catenin signaling

    International Nuclear Information System (INIS)

    Oh, Somi; You, Eunae; Ko, Panseon; Jeong, Jangho; Keum, Seula; Rhee, Sangmyung

    2017-01-01

    Microtubules are required for diverse cellular processes, and abnormal regulation of microtubule dynamics is closely associated with severe diseases including malignant tumors. In this study, we report that α-tubulin N-acetyltransferase (αTAT1), a regulator of α-tubulin acetylation, is required for colon cancer proliferation and invasion via regulation of Wnt1 and its downstream genes expression. Public transcriptome analysis showed that expression of ATAT1 is specifically upregulated in colon cancer tissue. A knockout (KO) of ATAT1 in the HCT116 colon cancer cell line, using the CRISPR/Cas9 system showed profound inhibition of proliferative and invasive activities of these cancer cells. Overexpression of αTAT1 or the acetyl-mimic K40Q α-tubulin mutant in αTAT1 KO cells restored the invasiveness, indicating that microtubule acetylation induced by αTAT1 is critical for HCT116 cell invasion. Analysis of colon cancer-related gene expression in αTAT1 KO cells revealed that the loss of αTAT1 decreased the expression of WNT1. Mechanistically, abrogation of tubulin acetylation by αTAT1 knockout inhibited localization of β-catenin to the plasma membrane and nucleus, thereby resulting in the downregulation of Wnt1 and of its downstream genes including CCND1, MMP-2, and MMP-9. These results suggest that αTAT1-mediated Wnt1 expression via microtubule acetylation is important for colon cancer progression. - Highlights: • Ablation of αTAT1 inhibits HCT116 colon cancer cell invasion. • αTAT1/acetylated microtubules regulate expression of Wnt1/β-catenin target genes. • Acetylated microtubules regulate cellular localization of β-catenin. • Loss of αTAT1 prevents Wnt1 from inducing β-catenin-dependent and -independent pathways.

  5. Inhibitory effects of a selective Jak2 inhibitor on adrenocorticotropic hormone production and proliferation of corticotroph tumor AtT20 cells

    Directory of Open Access Journals (Sweden)

    Asari Y

    2017-09-01

    Full Text Available Yuko Asari, Kazunori Kageyama, Yuki Nakada, Mizuki Tasso, Shinobu Takayasu, Kanako Niioka, Noriko Ishigame, Makoto Daimon Department of Endocrinology and Metabolism, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan Purpose: The primary cause of Cushing’s disease is adrenocorticotropic hormone (ACTH-producing pituitary adenomas. EGFR signaling induces POMC mRNA-transcript levels and ACTH secretion from corticotroph tumors. The Jak–STAT pathway is located downstream of EGFR signaling; therefore, a Jak2 inhibitor could be an effective therapy for EGFR-related tumors. In this study, we determined the effect of a potent and selective Jak2 inhibitor, SD1029, on ACTH production and proliferation in mouse AtT20 corticotroph tumor cells.Materials and methods: AtT20 pituitary corticotroph tumor cells were cultured after transfection with PTTG1- or GADD45β-specific siRNA. Expression levels of mouse POMC, PTTG1, and GADD45β mRNAs were evaluated using quantitative real-time polymerase chain reaction. ACTH levels were measured using ACTH ELISA. Western blot analysis was performed to examine protein expression of phosphorylated STAT3/STAT3. Viable cells and DNA fragmentation were measured using a cell-proliferation assay and cell-death detection ELISA, respectively. Cellular DNA content was analyzed using fluorescence-activated cell sorting.Results: SD1029 decreased POMC and PTTG1 mRNA and ACTH levels, while increasing GADD45β levels. The drug also decreased AtT20-cell proliferation and induced apoptosis, but did not alter cell-cycle progression. SD1029 also inhibited STAT3 phosphorylation. PTTG1 knockdown inhibited POMC mRNA levels and cell proliferation. However, combined treatment with PTTG1 knockdown and SD1029 had no additive effect on POMC mRNA levels or cell proliferation. GADD45β knockdown inhibited the SD1029-induced decrease in POMC mRNA levels and also partially inhibited the decrease in cell proliferation.Conclusion: Both

  6. LncRNA TUG1 influences papillary thyroid cancer cell proliferation, migration and EMT formation through targeting miR-145.

    Science.gov (United States)

    Lei, Hongwei; Gao, Yan; Xu, Xiaoying

    2017-07-01

    LncRNA TUG1, a tumor oncogene associated with various human cancers, has been reported to be involved in regulating various cellular processes, such as proliferation, apoptosis and invasion through targeting multiple genes. However, its biological function in thyroid cancer cells has not been elucidated. The aim of this study is to measure TUG1 expression level and evaluate its function in thyroid cancer cells. LncRNA TUG1 expression levels in thyroid cancer tissues and three thyroid cancer cell lines (the ATC cell lines SW1736 and KAT18 and the FTC cell line FTC133) were assessed by qRT-PCR and compared with that of the human normal breast epithelial cell HGC-27. MTT assay, colony formation assay, transwell assay and western blot analysis were performed to assess the effects of TUG1 on proliferation, metastasis and EMT formation in thyroid cancer cells in vitro. Rescue assay was performed to further confirm that TUG1 contributes to the progression of thyroid cancer cells through regulating miR-145/ZEB1 signal pathway. LncRNA TUG1 was found to be up-regulated in thyroid cancer tissues and thyroid cancer cells compared with that in the human normal breast epithelial cell HGC-27. Increased lncRNA TUG1 expression was found to significantly promote tumor cell proliferation, and facilitate cell invasion, while down-regulated TUG1 could obviously inhibit cell proliferation, migration/invasion and reverse EMT to MET. These results indicated that TUG1 may contribute to the progression of thyroid cancer cells by function as a ceRNA competitive sponging miR-145, and that lncRNA TUG1 is associated with tumor progression in thyroid cancer cells. © The Author 2017. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Tumor necrosis factor α triggers proliferation of adult neural stem cells via IKK/NF-κB signaling

    Directory of Open Access Journals (Sweden)

    Kaltschmidt Christian

    2006-09-01

    Full Text Available Abstract Background Brain inflammation has been recognized as a complex phenomenon with numerous related aspects. In addition to the very well-described neurodegenerative effect of inflammation, several studies suggest that inflammatory signals exert a potentially positive influence on neural stem cell proliferation, migration and differentiation. Tumor necrosis factor alpha (TNF-α is one of the best-characterized mediators of inflammation. To date, conclusions about the action of TNF on neural stem or progenitor cells (NSCs, NPCs have been conflicting. TNF seems to activate NSC proliferation and to inhibit their differentiation into NPCs. The purpose of the present study was to analyze the molecular signal transduction mechanisms induced by TNF and resulting in NSC proliferation. Results Here we describe for the first time the TNF-mediated signal transduction cascade in neural stem cells (NSCs that results in increased proliferation. Moreover, we demonstrate IKK-α/β-dependent proliferation and markedly up-regulated cyclin D1 expression after TNF treatment. The significant increase in proliferation in TNF-treated cells was indicated by increased neurosphere volume, increased bromodeoxyuridin (BrdU incorporation and a higher total cell number. Furthermore, TNF strongly activated nuclear factor-kappa B (NF-κB as measured by reporter gene assays and by an activity-specific antibody. Proliferation of control and TNF-treated NSCs was strongly inhibited by expression of the NF-κB super-repressor IκB-AA1. Pharmacological blockade of IκB ubiquitin ligase activity led to comparable decreases in NF-κB activity and proliferation. In addition, IKK-β gene product knock-down via siRNA led to diminished NF-κB activity, attenuated cyclin D1 expression and finally decreased proliferation. In contrast, TGFβ-activated kinase 1 (TAK-1 is partially dispensable for TNF-mediated and endogenous proliferation. Understanding stem cell proliferation is crucial

  8. Functional expression of TWEAK and the receptor Fn14 in human malignant ovarian tumors: possible implication for ovarian tumor intervention.

    Directory of Open Access Journals (Sweden)

    Liying Gu

    Full Text Available The aim of this current study was to investigate the expression of the tumor necrosis factor (TNF-like weak inducer of apoptosis (TWEAK and its receptor fibroblast growth factor-inducible 14 (Fn14 in human malignant ovarian tumors, and test TWEAK's potential role on tumor progression in cell models in-vitro. Using immunohistochemistry (IHC, we found that TWEAK and its receptor Fn14 were expressed in human malignant ovarian tumors, but not in normal ovarian tissues or in borderline/benign epithelial ovarian tumors. High levels of TWEAK expression was detected in the majority of malignant tumors (36 out of 41, 87.80%. Similarly, 35 out of 41 (85.37% malignant ovarian tumors were Fn14 positive. In these malignant ovarian tumors, however, TWEAK/Fn14 expression was not corrected with patients' clinical subtype/stages or pathological features. In vitro, we demonstrated that TWEAK only inhibited ovarian cancer HO-8910PM cell proliferation in combination with tumor necrosis factor-α (TNF-α, whereas either TWEAK or TNF-α alone didn't affect HO-8910PM cell growth. TWEAK promoted TNF-α production in cultured THP-1 macrophages. Meanwhile, conditioned media from TWEAK-activated macrophages inhibited cultured HO-8910PM cell proliferation and invasion. Further, TWEAK increased monocyte chemoattractant protein-1 (MCP-1 production in cultured HO-8910PM cells to possibly recruit macrophages. Our results suggest that TWEAK/Fn14, by activating macrophages, could be ovarian tumor suppressors. The unique expression of TWEAK/Fn14 in malignant tumors indicates that it might be detected as a malignant ovarian tumor marker.

  9. [Overexpressed miRNA-134b inhibits proliferation and invasion of CD133+ U87 glioma stem cells].

    Science.gov (United States)

    Liu, Yifeng; Zhang, Baochao; Wen, Changming; Wen, Gongling; Zhou, Guoping; Zhang, Jingwei; He, Haifa; Wang, Ning; Li, Wei

    2017-05-01

    Objective To investigate the role of microRNA-134b (miR-134b) in the tumorigenesis of glioma stem cells (GSCs) and the possible molecular mechanism. Methods Real-time quantitative PCR (qRT-PCR) was used to evalate the expression of miR-134b in CD133 + and CD133 - U87 GSCs. A lentiviral vector overexpressing miR-134b in U87 GSCs was constructed, and the effect of miR-134b overexpression on matrix metalloproteinase-2 (MMP-2), MMP-9 and MMP-12 expressions at both mRNA and protein levels were detected by qRT-PCR and Western blotting, respectively. Transwell TM assay was performed to determine the effect of miR-134b overexpression on GSCs invasion ability. Tumor xenograft models in nude mice were established to evaluate the effect of miR-134b overexpression on tumorgenesis in vivo. Results The qRT-PCR showed that, compared with CD133 - cells, miR-134b was significantly down-regulated in CD133 + cells. Cell line over-expressing miR-134b was successfully established, and miR-134b was up-regulated significantly compared with empty vector control. Overexpression of miR-134b remarkably inhibited the invasion of U87 GSCs and the expression of MMP-12. However, overexpression of miR-134b did not affect MMP-2 and MMP-9 expressions. miR-134b also suppressed U87 GSCs xenograft growth in vivo. Tumor volume in tumor xenograft model group was significantly lower than that in control group, and tumor weight decreased by 42% in the former group. Conclusion Overexpression of miR-134b inhibits the growth and invasion of CD133 + GSCs.

  10. EGFRvIII-specific chimeric antigen receptor T cells migrate to and kill tumor deposits infiltrating the brain parenchyma in an invasive xenograft model of glioblastoma.

    Science.gov (United States)

    Miao, Hongsheng; Choi, Bryan D; Suryadevara, Carter M; Sanchez-Perez, Luis; Yang, Shicheng; De Leon, Gabriel; Sayour, Elias J; McLendon, Roger; Herndon, James E; Healy, Patrick; Archer, Gary E; Bigner, Darell D; Johnson, Laura A; Sampson, John H

    2014-01-01

    Glioblastoma (GBM) is the most common primary malignant brain tumor in adults and is uniformly lethal. T-cell-based immunotherapy offers a promising platform for treatment given its potential to specifically target tumor tissue while sparing the normal brain. However, the diffuse and infiltrative nature of these tumors in the brain parenchyma may pose an exceptional hurdle to successful immunotherapy in patients. Areas of invasive tumor are thought to reside behind an intact blood brain barrier, isolating them from effective immunosurveillance and thereby predisposing the development of "immunologically silent" tumor peninsulas. Therefore, it remains unclear if adoptively transferred T cells can migrate to and mediate regression in areas of invasive GBM. One barrier has been the lack of a preclinical mouse model that accurately recapitulates the growth patterns of human GBM in vivo. Here, we demonstrate that D-270 MG xenografts exhibit the classical features of GBM and produce the diffuse and invasive tumors seen in patients. Using this model, we designed experiments to assess whether T cells expressing third-generation chimeric antigen receptors (CARs) targeting the tumor-specific mutation of the epidermal growth factor receptor, EGFRvIII, would localize to and treat invasive intracerebral GBM. EGFRvIII-targeted CAR (EGFRvIII+ CAR) T cells demonstrated in vitro EGFRvIII antigen-specific recognition and reactivity to the D-270 MG cell line, which naturally expresses EGFRvIII. Moreover, when administered systemically, EGFRvIII+ CAR T cells localized to areas of invasive tumor, suppressed tumor growth, and enhanced survival of mice with established intracranial D-270 MG tumors. Together, these data demonstrate that systemically administered T cells are capable of migrating to the invasive edges of GBM to mediate antitumor efficacy and tumor regression.

  11. EGFRvIII-specific chimeric antigen receptor T cells migrate to and kill tumor deposits infiltrating the brain parenchyma in an invasive xenograft model of glioblastoma.

    Directory of Open Access Journals (Sweden)

    Hongsheng Miao

    Full Text Available Glioblastoma (GBM is the most common primary malignant brain tumor in adults and is uniformly lethal. T-cell-based immunotherapy offers a promising platform for treatment given its potential to specifically target tumor tissue while sparing the normal brain. However, the diffuse and infiltrative nature of these tumors in the brain parenchyma may pose an exceptional hurdle to successful immunotherapy in patients. Areas of invasive tumor are thought to reside behind an intact blood brain barrier, isolating them from effective immunosurveillance and thereby predisposing the development of "immunologically silent" tumor peninsulas. Therefore, it remains unclear if adoptively transferred T cells can migrate to and mediate regression in areas of invasive GBM. One barrier has been the lack of a preclinical mouse model that accurately recapitulates the growth patterns of human GBM in vivo. Here, we demonstrate that D-270 MG xenografts exhibit the classical features of GBM and produce the diffuse and invasive tumors seen in patients. Using this model, we designed experiments to assess whether T cells expressing third-generation chimeric antigen receptors (CARs targeting the tumor-specific mutation of the epidermal growth factor receptor, EGFRvIII, would localize to and treat invasive intracerebral GBM. EGFRvIII-targeted CAR (EGFRvIII+ CAR T cells demonstrated in vitro EGFRvIII antigen-specific recognition and reactivity to the D-270 MG cell line, which naturally expresses EGFRvIII. Moreover, when administered systemically, EGFRvIII+ CAR T cells localized to areas of invasive tumor, suppressed tumor growth, and enhanced survival of mice with established intracranial D-270 MG tumors. Together, these data demonstrate that systemically administered T cells are capable of migrating to the invasive edges of GBM to mediate antitumor efficacy and tumor regression.

  12. Identification of molecular pathways facilitating glioma cell invasion in situ.

    Directory of Open Access Journals (Sweden)

    Ido Nevo

    Full Text Available Gliomas are mostly incurable secondary to their diffuse infiltrative nature. Thus, specific therapeutic targeting of invasive glioma cells is an attractive concept. As cells exit the tumor mass and infiltrate brain parenchyma, they closely interact with a changing micro-environmental landscape that sustains tumor cell invasion. In this study, we used a unique microarray profiling approach on a human glioma stem cell (GSC xenograft model to explore gene expression changes in situ in Invading Glioma Cells (IGCs compared to tumor core, as well as changes in host cells residing within the infiltrated microenvironment relative to the unaffected cortex. IGCs were found to have reduced expression of genes within the extracellular matrix compartment, and genes involved in cell adhesion, cell polarity and epithelial to mesenchymal transition (EMT processes. The infiltrated microenvironment showed activation of wound repair and tissue remodeling networks. We confirmed by protein analysis the downregulation of EMT and polarity related genes such as CD44 and PARD3 in IGCs, and EFNB3, a tissue-remodeling agent enriched at the infiltrated microenvironment. OLIG2, a proliferation regulator and glioma progenitor cell marker upregulated in IGCs was found to function in enhancing migration and stemness of GSCs. Overall, our results unveiled a more comprehensive picture of the complex and dynamic cell autonomous and tumor-host interactive pathways of glioma invasion than has been previously demonstrated. This suggests targeting of multiple pathways at the junction of invading tumor and microenvironment as a viable option for glioma therapy.

  13. SREBP-1 Has a Prognostic Role and Contributes to Invasion and Metastasis in Human Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Chao Li

    2014-04-01

    Full Text Available Sterol regulatory element-binding protein 1 (SREBP-1 is a well-known nuclear transcription factor involved in lipid synthesis. Recent studies have focused on its functions in tumor cell proliferation and apoptosis, but its role in cell migration and invasion, especially in hepatocellular carcinoma (HCC, is still unclear. In this study, we found that the expression of SREBP-1 in HCC tissues was significantly higher than those in matched tumor-adjacent tissues (p < 0.05. SREBP-1 was expressed at significantly higher levels in patients with large tumor size, high histological grade and advanced tumor-node-metastasis (TNM stage (p < 0.05. The positive expression of SREBP-1 correlated with a worse 3-year overall and disease-free survival of HCC patients (p < 0.05. Additionally, SREBP-1 was an independent factor for predicting both 3-year overall and disease-free survival of HCC patients (p < 0.05. In vitro studies revealed that downregulation of SREBP-1 inhibited cell proliferation and induced apoptosis in both HepG2 and MHCC97L cells (p < 0.05. Furthermore, wound healing and transwell assays showed that SREBP-1 knockdown prominently inhibited cell migration and invasion in both HepG2 and MHCC97L cells (p < 0.05. These results suggest that SREBP-1 may serve as a prognostic marker in HCC and may promote tumor progression by promoting cell growth and metastasis.

  14. Cell-ECM Interactions During Cancer Invasion

    Science.gov (United States)

    Jiang, Yi

    The extracellular matrix (ECM), a fibrous material that forms a network in a tissue, significantly affects many aspects of cellular behavior, including cell movement and proliferation. Transgenic mouse tumor studies indicate that excess collagen, a major component of ECM, enhances tumor formation and invasiveness. Clinically, tumor associated collagen signatures are strong markers for breast cancer survival. However, the underlying mechanisms are unclear since the properties of ECM are complex, with diverse structural and mechanical properties depending on various biophysical parameters. We have developed a three-dimensional elastic fiber network model, and parameterized it with in vitro collagen mechanics. Using this model, we study ECM remodeling as a result of local deformation and cell migration through the ECM as a network percolation problem. We have also developed a three-dimensional, multiscale model of cell migration and interaction with ECM. Our model reproduces quantitative single cell migration experiments. This model is a first step toward a fully biomechanical cell-matrix interaction model and may shed light on tumor associated collagen signatures in breast cancer. This work was partially supported by NIH-U01CA143069.

  15. Human Sulfatase 2 inhibits in vivo tumor growth of MDA-MB-231 human breast cancer xenografts

    International Nuclear Information System (INIS)

    Peterson, Sarah M; Concino, Michael F; Liaw, Lucy; Martini, Paolo GV; Iskenderian, Andrea; Cook, Lynette; Romashko, Alla; Tobin, Kristen; Jones, Michael; Norton, Angela; Gómez-Yafal, Alicia; Heartlein, Michael W

    2010-01-01

    Extracellular human sulfatases modulate growth factor signaling by alteration of the heparin/heparan sulfate proteoglycan (HSPG) 6-O-sulfation state. HSPGs bind to numerous growth factor ligands including fibroblast growth factors (FGF), epidermal growth factors (EGF), and vascular endothelial growth factors (VEGF), and are critically important in the context of cancer cell growth, invasion, and metastasis. We hypothesized that sulfatase activity in the tumor microenvironment would regulate tumor growth in vivo. We established a model of stable expression of sulfatases in the human breast cancer cell line MDA-MB-231 and purified recombinant human Sulfatase 2 (rhSulf2) for exogenous administration. In vitro studies were performed to measure effects on breast cancer cell invasion and proliferation, and groups were statistically compared using Student's t-test. The effects of hSulf2 on tumor progression were tested using in vivo xenografts with two methods. First, MDA-MB-231 cells stably expressing hSulf1, hSulf2, or both hSulf1/hSulf2 were grown as xenografts and the resulting tumor growth and vascularization was compared to controls. Secondly, wild type MDA-MB-231 xenografts were treated by short-term intratumoral injection with rhSulf2 or vehicle during tumor growth. Ultrasound analysis was also used to complement caliper measurement to monitor tumor growth. In vivo studies were statistically analyzed using Student's t test. In vitro, stable expression of hSulf2 or administration of rhSulf2 in breast cancer cells decreased cell proliferation and invasion, corresponding to an inhibition of ERK activation. Stable expression of the sulfatases in xenografts significantly suppressed tumor growth, with complete regression of tumors expressing both hSulf1 and hSulf2 and significantly smaller tumor volumes in groups expressing hSulf1 or hSulf2 compared to control xenografts. Despite significant suppression of tumor volume, sulfatases did not affect vascular

  16. Tumor and Stromal-Based Contributions to Head and Neck Squamous Cell Carcinoma Invasion

    Energy Technology Data Exchange (ETDEWEB)

    Markwell, Steven M.; Weed, Scott A., E-mail: scweed@hsc.wvu.edu [Department of Neurobiology and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506 (United States)

    2015-02-27

    Head and neck squamous cell carcinoma (HNSCC) is typically diagnosed at advanced stages with evident loco-regional and/or distal metastases. The prevalence of metastatic lesions directly correlates with poor patient outcome, resulting in high patient mortality rates following metastatic development. The progression to metastatic disease requires changes not only in the carcinoma cells, but also in the surrounding stromal cells and tumor microenvironment. Within the microenvironment, acellular contributions from the surrounding extracellular matrix, along with contributions from various infiltrating immune cells, tumor associated fibroblasts, and endothelial cells facilitate the spread of tumor cells from the primary site to the rest of the body. Thus far, most attempts to limit metastatic spread through therapeutic intervention have failed to show patient benefit in clinic trails. The goal of this review is highlight the complexity of invasion-promoting interactions in the HNSCC tumor microenvironment, focusing on contributions from tumor and stromal cells in order to assist future therapeutic development and patient treatment.

  17. FRK inhibits breast cancer cell migration and invasion by suppressing epithelial-mesenchymal transition.

    Science.gov (United States)

    Ogunbolude, Yetunde; Dai, Chenlu; Bagu, Edward T; Goel, Raghuveera Kumar; Miah, Sayem; MacAusland-Berg, Joshua; Ng, Chi Ying; Chibbar, Rajni; Napper, Scott; Raptis, Leda; Vizeacoumar, Frederick; Vizeacoumar, Franco; Bonham, Keith; Lukong, Kiven Erique

    2017-12-22

    The human fyn-related kinase (FRK) is a non-receptor tyrosine kinase known to have tumor suppressor activity in breast cancer cells. However, its mechanism of action has not been fully characterized. We generated FRK-stable MDA-MB-231 breast cancer cell lines and analyzed the effect on cell proliferation, migration, and invasiveness. We also used kinome analysis to identify potential FRK-regulated signaling pathways. We employed both immunoblotting and RT-PCR to identify/validate FRK-regulated targets (proteins and genes) in these cells. Finally, we interrogated the TCGA and GENT gene expression databases to determine the correlation between the expression of FRK and epithelial/mesenchymal markers. We observed that FRK overexpression suppressed cell proliferation, migration, and invasiveness, inhibited various JAK/STAT, MAPK and Akt signaling pathways, and suppressed the expression of some STAT3 target genes. Also, FRK overexpression increased the expression of epithelial markers including E-cadherin mRNA and down-regulated the transcript levels of vimentin, fibronectin, and slug. Finally, we observed an inverse correlation between FRK expression and mesenchymal markers in a large cohort of breast cancer cells. Our data, therefore, suggests that FRK represses cell proliferation, migration and invasiveness by suppressing epithelial to mesenchymal transition.

  18. Thermo-chemotherapy Induced miR-218 upregulation inhibits the invasion of gastric cancer via targeting Gli2 and E-cadherin.

    Science.gov (United States)

    Ruan, Qiang; Fang, Zhi-Yuan; Cui, Shu-Zhong; Zhang, Xiang-Liang; Wu, Yin-Bing; Tang, Hong-Sheng; Tu, Yi-Nuo; Ding, Yan

    2015-08-01

    Thermo-chemotherapy has been proven to reduce the invasion capability of cancer cells. However, the molecular mechanism underlying this anti-invasion effect is still unclear. In this study, the role of thermo-chemotherapy in the inhibition of tumor invasion was studied. The results demonstrated that expression of miR-218 was downregulated in gastric cancer tissues, which had a positive correlation with tumor invasion and metastasis. In vitro thermo-chemotherapy increased miR-218 expression in SGC7901 cells and inhibited both proliferation and invasion of cancer cells. Gli2 was identified as a downstream target of miR-218, and its expression was negatively regulated by miR-218. The thermo-chemotherapy induced miR-218 upregulation was also accompanied by increasing of E-cadherin expression. In conclusion, the present study indicates that thermo-chemotherapy can effectively decrease the invasion capability of cancer cells and increase cell-cell adhesion. miR-218 and its downstream target Gli2, as well as E-cadherin, participate in the anti-invasion process.

  19. Identification of NDRG1-regulated genes associated with invasive potential in cervical and ovarian cancer cells

    International Nuclear Information System (INIS)

    Zhao, Gang; Chen, Jiawei; Deng, Yanqiu; Gao, Feng; Zhu, Jiwei; Feng, Zhenzhong; Lv, Xiuhong; Zhao, Zheng

    2011-01-01

    Highlights: → NDRG1 was knockdown in cervical and ovarian cancer cell lines by shRNA technology. → NDRG1 knockdown resulted in increased cell invasion activities. → Ninety-six common deregulated genes in both cell lines were identified by cDNA microarray. → Eleven common NDRG1-regulated genes might enhance cell invasive activity. → Regulation of invasion by NDRG1 is an indirect and complicated process. -- Abstract: N-myc downstream regulated gene 1 (NDRG1) is an important gene regulating tumor invasion. In this study, shRNA technology was used to suppress NDRG1 expression in CaSki (a cervical cancer cell line) and HO-8910PM (an ovarian cancer cell line). In vitro assays showed that NDRG1 knockdown enhanced tumor cell adhesion, migration and invasion activities without affecting cell proliferation. cDNA microarray analysis revealed 96 deregulated genes with more than 2-fold changes in both cell lines after NDRG1 knockdown. Ten common upregulated genes (LPXN, DDR2, COL6A1, IL6, IL8, FYN, PTP4A3, PAPPA, ETV5 and CYGB) and one common downregulated gene (CLCA2) were considered to enhance tumor cell invasive activity. BisoGenet network analysis indicated that NDRG1 regulated these invasion effector genes/proteins in an indirect manner. Moreover, NDRG1 knockdown also reduced pro-invasion genes expression such as MMP7, TMPRSS4 and CTSK. These results suggest that regulation of invasion and metastasis by NDRG1 is a highly complicated process.

  20. Additive influence of extracellular pH, oxygen tension, and pressure on invasiveness and survival of human osteosarcoma cells

    Directory of Open Access Journals (Sweden)

    Takao eMatsubara

    2013-07-01

    Full Text Available BACKGROUND/PURPOSE:The effects of chemical and physical interactions in the microenvironment of solid tumors have not been fully elucidated. We hypothesized that acidosis, hypoxia, and elevated interstitial fluid pressure (eIFP have additive effects on tumor cell biology and lead to more aggressive behavior during tumor progression. We investigated this phenomenon using 3 human osteosarcoma cell lines and a novel in vitro cell culture apparatus. MATERIALS AND METHODS:U2OS, SaOS, and MG63 cell lines were cultured in media adjusted to various pH levels, oxygen tension (hypoxia 2% O2, normoxia 20% O2, and hydrostatic gauge pressure (0 or 50 mm Hg. Growth rate, apoptosis, cell cycle parameters, and expression of mRNA for proteins associated with invasiveness and tumor microenvironment (CA IX, VEGF-A, HIF-1A, MMP-9, and TIMP-2 were analyzed. Levels of CA IX, HIF-1α, and MMP-9 were measured using immunofluorescence. The effect of pH on invasiveness was evaluated in a Matrigel chamber assay.RESULTS: Within the acidic–hypoxic–pressurized conditions that simulate the microenvironment at a tumor’s center, invasive genes were upregulated, but the cell cycle was downregulated. The combined influence of acidosis, hypoxia, and IFP promoted invasiveness and angiogenesis to a greater extent than did pH, pO2, or eIFP individually. Significant cell death after brief exposure to acidic conditions occurred in each cell line during acclimation to acidic media, while prolonged exposure to acidic media resulted in reduced cell death. Furthermore, 48-hour exposure to acidic conditions promoted tumor invasiveness in the Matrigel assay. CONCLUSION: Our findings demonstrate that tumor microenvironmental parameters—particularly pH, pO2, and eIFP—additively influence tumor proliferation, invasion, metabolism, and viability to enhance cell survival.

  1. Non-invasive pre-clinical MR imaging of prostate tumor hypoxia for radiation therapy prognosis

    Directory of Open Access Journals (Sweden)

    Derek White

    2014-03-01

    Full Text Available Purpose: To investigate the usefulness of Oxygen-Enhanced Magnetic Resonance Imaging (OE-MRI changes in signal intensity related to oxygen challenge for predicting tumor response to radiation therapy.Methods: Dynamic MR signal changes were acquired using Varian 4.7T small animal MR scanner prior to image-guided radiation therapy (IGRT of small (n = 6 and large subcutaneous (n = 5 prostate tumors in adult male rats. An interleaved blood-oxygen level dependent (BOLD and tissue-oxygen level dependent (TOLD data acquisition or (IBT was performed using a baseline of medical air as positive control and using medical oxygen as a breathing challenge. BOLD used a 2-D multi-slice spoiled gradient-echo with multi-echo sequence. TOLD used a 2-D multi-slice spoiled gradient-echo sequence. Voxel changes in signal intensity were determined by a correlation coefficient mapping technique. Irradiation technique planned consisted of 1F × 15 Gy AP/PA or 2F × 7.5 Gy AP/PA to the gross tumor volume (GTV. Tumor growth measurements were recorded over time to assess the response to IGRT.Results: BOLD and TOLD signals variously illustrated positive or negative impulse responses in the tumor ROI due to inhaling medical oxygen. Correlation coefficient mapping demonstrated heterogeneity in tumors after inhaling medical oxygen. BOLD and TOLD signals exhibited increased changes in signal intensities after the first fraction of dose. Multi-fractionation had minimum effect until the second fraction of dose was applied. Tumor growth delays were observed when inhaling medical oxygen during IGRT.Conclusion: OE-MRI is a non-invasive imaging modality that can provide insight to the oxygen status of tumors. Observed increase percent changes in BOLD and TOLD signal intensities after the first fraction of dose suggest tumors experienced reoxygenation. OE-MRI could be used for predicting tumor response to IGRT when using medical oxygen for increasing GTV radiosensitivity, suggesting

  2. Smurf2 E3 ubiquitin ligase modulates proliferation and invasiveness of breast cancer cells in a CNKSR2 dependent manner.

    Science.gov (United States)

    David, Diana; Jagadeeshan, Sankar; Hariharan, Ramkumar; Nair, Asha Sivakumari; Pillai, Radhakrishna Madhavan

    2014-01-01

    Smurf2 is a member of the HECT family of E3 ubiquitin ligases that play important roles in determining the competence of cells to respond to TGF- β/BMP signaling pathway. However, besides TGF-β/BMP pathway, Smurf2 regulates a repertoire of other signaling pathways ranging from planar cell polarity during embryonic development to cell proliferation, migration, differentiation and senescence. Expression of Smurf2 is found to be dysregulated in many cancers including breast cancer. The purpose of the present study is to examine the effect of Smurf2 knockdown on the tumorigenic potential of human breast cancer cells emphasizing more on proliferative signaling pathway. siRNAs targeting different regions of the Smurf2 mRNA were employed to knockdown the expression of Smurf2. The biological effects of synthetic siRNAs on human breast cancer cells were investigated by examining the cell proliferation, migration, invasion, focus formation, anchorage-independent growth, cell cycle arrest, and cell cycle and cell proliferation related protein expressions upon Smurf2 silencing. Smurf2 silencing in human breast cancer cells resulted in a decreased focus formation potential and clonogenicity as well as in vitro cell migration/invasion capabilities. Moreover, knockdown of Smurf2 suppressed cell proliferation. Cell cycle analysis showed that the anti-proliferative effect of Smurf2 siRNA was mediated by arresting cells in the G0/G1 phase, which was caused by decreased expression of cyclin D1and cdk4, followed by upregulation p21 and p27. Furthermore, we demonstrated that silencing of Smurf2 downregulated the proliferation of breast cancer cells by modulating the PI3K- PTEN-AKT-FoxO3a pathway via the scaffold protein CNKSR2 which is involved in RAS-dependent signaling pathways. The present study provides the first evidence that silencing Smurf2 using synthetic siRNAs can regulate the tumorigenic properties of human breast cancer cells in a CNKSR2 dependent manner. Our results

  3. Targeted inhibition of the phosphoinositide 3-kinase impairs cell proliferation, survival, and invasion in colon cancer

    Directory of Open Access Journals (Sweden)

    Yang F

    2017-09-01

    Full Text Available Fei Yang,1,* Jun-Yi Gao,2,* Hua Chen,1 Zhen-Hua Du,1 Xue-Qun Zhang,3 Wei Gao4 1Department of Pathology, Jinan Central Hospital Affiliated to Shandong University, Jinan, 2Department of Clinical Medicine, Weifang Medical College, Weifang, 3Graduate School, Taishan Medical University, Xintai, 4Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, People’s Republic of China *These authors contributed equally to this work Background: Colon cancer is the third most common cancer in the world, and its metastasis and drug resistance are challenging for its effective treatment. The PI3K/Akt/mTOR pathway plays a crucial role in the pathogenesis of colon cancer. The aim of this study was to investigate the targeting of PI3K in colon cancer cells HT-29 and HCT-116 in vitro. Methods: In HT-29 and HCT-116 cells, BEZ235, a dual inhibitor of PI3K/mTOR, and shRNAtarget to PI3KCA were used to inhibit PI3K/Akt/mTOR pathway. The inhibition efficiency of PI3K/Akt/mTOR pathway was detected by RT-PCR and Western blot. Cell proliferation, migration, invasion, and apoptosis were evaluated by Cell Counting Kit-8, Transwell, and flow cytometry assays. The expression of apoptosis-related proteins (cleavage caspase 3, Bcl-2, Bax, and Bim were also detected. Results: We found that in HT-29 and HCT-116 cells, the treatment of BEZ235 (1 µM and PI3KCA knockdown inhibited the activation of PI3K/Akt/mTOR pathway and significantly suppressed cell proliferation, migration, and invasion of HT-29 and HCT-116 cells. In addition, we confirmed that knockdown of BEZ235 and PI3KCA induced cell apoptosis through the upregulated levels of cleavage caspase 3 and Bax and downregulated expression of Bcl-2 and Bim. Conclusion: Our results indicated that targeted inhibition of the PI3K/Akt/mTOR pathway impaired cell proliferation, survival, and invasion in human colon cancer. Keywords: human colon cancer, PI3K/Akt/mTOR pathway, BEZ235, PI3KCA knockdown

  4. Malignant proliferating trichilemmal tumor of the scalp with secondary infection in an elderly man

    Directory of Open Access Journals (Sweden)

    Saptarshi Paul

    2015-01-01

    Full Text Available A 65-year-old man presented with the complaints of a growth on the scalp, which ruptured spontaneously leading to bleeding and foul smelling discharge associated with severe pain. Examination revealed ulceroproliferative growth with slough and surrounding induration, infested with maggots. Histopathological examination revealed proliferating trichilemmal tumor (PTT with secondary infection. Wide excision of the tumor was done with 1 cm margin all around it. PTT is a benign neoplasm that can rarely undergo malignant transformation thought to originate from trichilemmal cyst. Malignant PTT (MPTT predominantly affects the scalp, eyelids, neck, and face and the treatment recommended being a wide local excision.

  5. Interaction of Munc18c and syntaxin4 facilitates invadopodium formation and extracellular matrix invasion of tumor cells.

    Science.gov (United States)

    Brasher, Megan I; Martynowicz, David M; Grafinger, Olivia R; Hucik, Andrea; Shanks-Skinner, Emma; Uniacke, James; Coppolino, Marc G

    2017-09-29

    Tumor cell invasion involves targeted localization of proteins required for interactions with the extracellular matrix and for proteolysis. The localization of many proteins during these cell-extracellular matrix interactions relies on membrane trafficking mediated in part by SNAREs. The SNARE protein syntaxin4 (Stx4) is involved in the formation of invasive structures called invadopodia; however, it is unclear how Stx4 function is regulated during tumor cell invasion. Munc18c is known to regulate Stx4 activity, and here we show that Munc18c is required for Stx4-mediated invadopodium formation and cell invasion. Biochemical and microscopic analyses revealed a physical association between Munc18c and Stx4, which was enhanced during invadopodium formation, and that a reduction in Munc18c expression decreases invadopodium formation. We also found that an N-terminal Stx4-derived peptide associates with Munc18c and inhibits endogenous interactions of Stx4 with synaptosome-associated protein 23 (SNAP23) and vesicle-associated membrane protein 2 (VAMP2). Furthermore, expression of the Stx4 N-terminal peptide decreased invadopodium formation and cell invasion in vitro Of note, cells expressing the Stx4 N-terminal peptide exhibited impaired trafficking of membrane type 1 matrix metalloproteinase (MT1-MMP) and EGF receptor (EGFR) to the cell surface during invadopodium formation. Our findings implicate Munc18c as a regulator of Stx4-mediated trafficking of MT1-MMP and EGFR, advancing our understanding of the role of SNARE function in the localization of proteins that drive tumor cell invasion. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Neutralization of TNFα in tumor with a novel nanobody potentiates paclitaxel-therapy and inhibits metastasis in breast cancer.

    Science.gov (United States)

    Ji, Xuemei; Peng, Zhengxin; Li, Xiaorui; Yan, Zhonghui; Yang, Yue; Qiao, Zheng; Liu, Yu

    2017-02-01

    Metastatic disease is the major cause of death from cancer, and immunotherapy and chemotherapy have had limited success in reversing its progression. Researchers have suggested that inflammatory factors in the tumor environment can promote cancer invasion and metastasis, stimulating cancer progression. Thus, novel strategies that target cytokines and modulate the tumor microenvironment may emerge as important approaches for treating metastatic breast cancer. Specific neutralization of pathogenic TNF signaling using a TNFα antibody has gained increasing attention. Considering this, a selective human TNFα neutralized antibody was generated based on nanobody technology. A TNFα-specific nanobody was produced in Pichia pastoris with a molecular mass of 15 kDa and affinity constant of 2.05 nM. In the proliferation experiment, the TNFα nanobody could inhibit the proliferation of the breast cancer cell line MCF-7 induced by hTNFα in a dose-dependent manner. In the microinvasion model, the TNFα nanobody could inhibit the migration of the breast cancer cell lines MCF-7, MDA-MB-231 and the invasiveness of MDA-MB-231 induced by hTNFα in a dose-dependent manner. Drug administration of the combination of paclitaxel with the TNFα nanobody in vivo significantly enhanced the efficacy against 4T-1 breast tumor proliferation and lung metastasis; meanwhile, E-cadherin tumor epithelial marker expression was upregulated, supporting the anti-tumor therapeutic relevance of paclitaxel and the TNFα nanobody on EMT. This study highlights the importance of neutralizing low TNFα levels in the tumor microenvironment to sensitize the chemotherapeutic response, which has attractive potential for clinical applications. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Cancer Associated Fibroblasts express pro-inflammatory factors in human breast and ovarian tumors

    Energy Technology Data Exchange (ETDEWEB)

    Erez, Neta, E-mail: netaerez@post.tau.ac.il [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Glanz, Sarah [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Raz, Yael [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Department of Obstetrics and Gynecology, LIS Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel); Avivi, Camilla [Department of Pathology, Sheba Medical Center, Tel Hashomer, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel); Barshack, Iris [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Department of Pathology, Sheba Medical Center, Tel Hashomer, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel)

    2013-08-02

    Highlights: •CAFs in human breast and ovarian tumors express pro-inflammatory factors. •Expression of pro-inflammatory factors correlates with tumor invasiveness. •Expression of pro-inflammatory factors is associated with NF-κb activation in CAFs. -- Abstract: Inflammation has been established in recent years as a hallmark of cancer. Cancer Associated Fibroblasts (CAFs) support tumorigenesis by stimulating angiogenesis, cancer cell proliferation and invasion. We previously demonstrated that CAFs also mediate tumor-enhancing inflammation in a mouse model of skin carcinoma. Breast and ovarian carcinomas are amongst the leading causes of cancer-related mortality in women and cancer-related inflammation is linked with both these tumor types. However, the role of CAFs in mediating inflammation in these malignancies remains obscure. Here we show that CAFs in human breast and ovarian tumors express high levels of the pro-inflammatory factors IL-6, COX-2 and CXCL1, previously identified to be part of a CAF pro-inflammatory gene signature. Moreover, we show that both pro-inflammatory signaling by CAFs and leukocyte infiltration of tumors are enhanced in invasive ductal carcinoma as compared with ductal carcinoma in situ. The pro-inflammatory genes expressed by CAFs are known NF-κB targets and we show that NF-κB is up-regulated in breast and ovarian CAFs. Our data imply that CAFs mediate tumor-promoting inflammation in human breast and ovarian tumors and thus may be an attractive target for stromal-directed therapeutics.

  8. Cancer Associated Fibroblasts express pro-inflammatory factors in human breast and ovarian tumors

    International Nuclear Information System (INIS)

    Erez, Neta; Glanz, Sarah; Raz, Yael; Avivi, Camilla; Barshack, Iris

    2013-01-01

    Highlights: •CAFs in human breast and ovarian tumors express pro-inflammatory factors. •Expression of pro-inflammatory factors correlates with tumor invasiveness. •Expression of pro-inflammatory factors is associated with NF-κb activation in CAFs. -- Abstract: Inflammation has been established in recent years as a hallmark of cancer. Cancer Associated Fibroblasts (CAFs) support tumorigenesis by stimulating angiogenesis, cancer cell proliferation and invasion. We previously demonstrated that CAFs also mediate tumor-enhancing inflammation in a mouse model of skin carcinoma. Breast and ovarian carcinomas are amongst the leading causes of cancer-related mortality in women and cancer-related inflammation is linked with both these tumor types. However, the role of CAFs in mediating inflammation in these malignancies remains obscure. Here we show that CAFs in human breast and ovarian tumors express high levels of the pro-inflammatory factors IL-6, COX-2 and CXCL1, previously identified to be part of a CAF pro-inflammatory gene signature. Moreover, we show that both pro-inflammatory signaling by CAFs and leukocyte infiltration of tumors are enhanced in invasive ductal carcinoma as compared with ductal carcinoma in situ. The pro-inflammatory genes expressed by CAFs are known NF-κB targets and we show that NF-κB is up-regulated in breast and ovarian CAFs. Our data imply that CAFs mediate tumor-promoting inflammation in human breast and ovarian tumors and thus may be an attractive target for stromal-directed therapeutics

  9. Assessing Clinical Outcomes in Colorectal Cancer with Assays for Invasive Circulating Tumor Cells.

    Science.gov (United States)

    Zhang, Yue; Zarrabi, Kevin; Hou, Wei; Madajewicz, Stefan; Choi, Minsig; Zucker, Stanley; Chen, Wen-Tien

    2018-06-06

    Colorectal carcinoma (CRC) is the second leading cause of cancer-related mortality. The goals of this study are to evaluate the association between levels of invasive circulating tumor cells (iCTCs) with CRC outcomes and to explore the molecular characteristics of iCTCs. Peripheral blood from 93 patients with Stage I⁻IV CRC was obtained and assessed for the detection and characterization of iCTCs using a functional collagen-based adhesion matrix (CAM) invasion assay. Patients were followed and assessed for overall survival. Tumor cells isolated by CAM were characterized using cell culture and microarray analyses. Of 93 patients, 88 (95%) had detectable iCTCs, ranging over 0⁻470 iCTCs/mL. Patients with Stage I⁻IV disease exhibited median counts of 0.0 iCTCs/mL ( n = 6), 13.0 iCTCs/mL ( n = 12), 41.0 iCTCs/mL ( n = 12), and 133.0 iCTCs/mL ( n = 58), respectively ( p < 0.001). Kaplan⁻Meier curve analysis demonstrated a significant survival benefit in patients with low iCTC counts compared with in patients with high iCTC counts (log-rank p < 0.001). Multivariable Cox model analysis revealed that iCTC count was an independent prognostic factor of overall survival ( p = 0.009). Disease stage ( p = 0.01, hazard ratio 1.66; 95% confidence interval: 1.12⁻2.47) and surgical intervention ( p = 0.03, HR 0.37; 95% CI: 0.15⁻0.92) were also independent prognostic factors. Gene expression analysis demonstrated the expression of both endothelial and tumor progenitor cell biomarkers in iCTCs. CAM-based invasion assay shows a high detection sensitivity of iCTCs that inversely correlated with overall survival in CRC patients. Functional and gene expression analyses showed the phenotypic mosaics of iCTCs, mimicking the survival capability of circulating endothelial cells in the blood stream.

  10. Overexpression of GRK3, Promoting Tumor Proliferation, Is Predictive of Poor Prognosis in Colon Cancer

    Directory of Open Access Journals (Sweden)

    Tao Jiang

    2017-01-01

    Full Text Available Deregulation of G protein-coupled receptor kinase 3 (GRK3, which belongs to a subfamily of kinases called GRKs, acts as a promoter mechanism in some cancer types. Our study found that GRK3 was significantly overexpressed in 162 pairs of colon cancer tissues than in the matched noncancerous mucosa (P<0.01. Based on immunohistochemistry staining of TMAs, GRK3 was dramatically stained positive in primary colon cancer (130/180, 72.22%, whereas it was detected minimally or negative in paired normal mucosa specimens (50/180, 27.78%. Overexpression of GRK3 was closely correlated with AJCC stage (P=0.001, depth of tumor invasion (P<0.001, lymph node involvement (P=0.004, distant metastasis (P=0.016, and histologic differentiation (P=0.004. Overexpression of GRK3 is an independent prognostic indicator that correlates with poor survival in colon cancer patients. Consistent with this, downregulation of GRK3 exhibited decreased cell growth index, reduction in colony formation ability, elevated cell apoptosis rate, and impaired colon tumorigenicity in a xenograft model. Hence, a specific overexpression of GRK3 was observed in colon cancer, GRK3 potentially contributing to progression by mediating cancer cell proliferation and functions as a poor prognostic indicator in colon cancer and potentially represent a novel therapeutic target for the disease.

  11. HIV Nef-M1 Effects on Colorectal Cancer Growth in Tumor-induced Spleens and Hepatic Metastasis

    Science.gov (United States)

    Harrington, Willie; Bond, Vincent; Huang, Ming Bo; Powell, Michael; Lillard, James; Manne, Upender; Bumpers, Harvey

    2010-01-01

    CXCR4 receptors have been implicated in tumorigenesis and proliferation, making it a potential target for colorectal cancer therapy. Expression of this chemokine receptor on cellular surfaces appears to promote metastasis by directly stimulating tumor cell migration and invasion. The receptor/ligand, CXCR4/SDF-1α, pair are critically important to angiogenesis and vascular remodeling which supports cancer proliferation. Our work has shown that a novel apoptotic peptide of HIV-1, Nef-M1, can act as a CXCR4 antagonist, inducing apoptosis in CXCR4 containing cells. Four colorectal tumor cell lines (HT-29, LS174t, SW480, WiDr), were evaluated for their response to Nef-M1 peptide via in vivo and in vitro. The presence of CXCR4 receptors on tumor cells was determined using immunohistochemical and RT-PCR analyses. Solid xenografts derived from tumor cell lines grown in SCID mice, were evaluated for the persistence of the receptor. Xenografts propagated in SCID mice from each of the four cell lines demonstrated high levels of receptor expression as well. The effects of Nef-M1 in vivo via splenic injected mice and subsequent hepatic metastasis also demonstrated dramatic reduction of primary tumor growth in the spleen and secondary invasion of the liver. We concluded that Nef-M1 peptide, through physical interaction(s) with CXCR4, drives apoptotic reduction in in vivo primary tumor growth and metastasis. PMID:20383296

  12. Downregulation of the long noncoding RNA TUG1 inhibits the proliferation, migration, invasion and promotes apoptosis of renal cell carcinoma.

    Science.gov (United States)

    Zhang, Meng; Lu, Wei; Huang, Yiqiang; Shi, Jizhou; Wu, Xun; Zhang, Xiaolong; Jiang, Runze; Cai, Zhiming; Wu, Song

    2016-08-01

    Long non-coding RNAs, a newly discovered category of noncoding genes, play a leading role in various biological processes, including tumorigenesis. In our study, we aimed to examine the TUG1 expression, and explore the influence of TUG1 silencing on cell proliferation and apoptosis in renal cell carcinoma (RCC) cell lines. The TUG1 expression level was detected using quantitative real-time PCR reverse transcription-polymerase chain reaction in 40 paired clear cell renal cell carcinoma (ccRCC) and adjacent paired normal tissues, as well as four RCC cell lines and one normal human proximal tubule epithelial cell line HK-2. Small interfering RNA was applied to suppress the TUG1 expression in RCC cell lines (A489 and A704). In vitro assays were conducted to further deliberate its potential functions in RCC progression. The relative TUG1 expression was significantly higher in ccRCC tissues compared to the adjacent normal renal tissues. In addition, higher TUG1 expression was equally detected in RCC cell lines (particularly in A498 and A704) compared to HK-2. The ccRCC specimens with higher TUG1 expression had a higher Fuhrman grade and larger tumor size than those with lower TUG1 expression. In vitro assays results suggested that knockdown of TUG1 suppressed RCC cells migration, invasion and proliferation, while the apoptosis process was activated. Our results indicate that TUG1 is identified as a novel oncogene in the morbid state of RCC, which potentially acts as a therapeutic target/biomarker in RCC. The graphic abstract of the present work.

  13. Progress toward overcoming hypoxia-induced resistance to solid tumor therapy

    International Nuclear Information System (INIS)

    Karakashev, Sergey V; Reginato, Mauricio J

    2015-01-01

    Hypoxic tumors are associated with poor clinical outcome for multiple types of human cancer. This may be due, in part, to hypoxic cancer cells being resistant to anticancer therapy, including radiation therapy, chemotherapy, and targeted therapy. Hypoxia inducible factor 1, a major regulator of cellular response to hypoxia, regulates the expression of genes that are involved in multiple aspects of cancer biology, including cell survival, proliferation, metabolism, invasion, and angiogenesis. Here, we review multiple pathways regulated by hypoxia/hypoxia inducible factor 1 in cancer cells and discuss the latest advancements in overcoming hypoxia-mediated tumor resistance

  14. Downregulation of survivin by siRNA inhibits invasion and promotes apoptosis in neuroblastoma SH-SY5Y cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L.; Liang, H. [Department of Pediatrics, Qilu Hospital, Shandong University, Jinan (China); Cao, W. [Department of Obstetrics, Qingdao Central Hospital, Qingdao (China); Xu, R.; Ju, X.L. [Department of Pediatrics, Qilu Hospital, Shandong University, Jinan (China)

    2014-05-23

    Neuroblastoma is a solid tumor that occurs mainly in children. Malignant neuroblastomas have a poor prognosis because conventional chemotherapeutic agents are not very effective. Survivin, a member of the inhibitor of the apoptosis protein family, plays a significant role in cell division, inhibition of apoptosis, and promotion of cell proliferation and invasion. Previous studies found that survivin is highly expressed in some malignant neuroblastomas and is correlated with poor prognosis. The aim of this study was to investigate whether survivin could serve as a potential therapeutic target of human neuroblastoma. We employed RNA interference to reduce survivin expression in the human neuroblastoma SH-SY5Y cell line and analyzed the effect of RNA interference on cell proliferation and invasion in vitro and in vivo. RNA interference of survivin led to a significant decrease in invasiveness and proliferation and increased apoptosis in SH-SY5Y cells in vitro. RNA interference of survivin inhibited tumor growth in vivo by 68±13% (P=0.002) and increased the number of apoptotic cells by 9.8±1.2% (P=0.001) compared with negative small interfering RNA (siRNA) treatment controls. Moreover, RNA interference of survivin inhibited the formation of lung metastases by 92% (P=0.002) and reduced microvascular density by 60% (P=0.0003). Survivin siRNA resulted in significant downregulation of survivin mRNA and protein expression both in vitro and in vivo compared with negative siRNA treatment controls. RNA interference of survivin was found to be a potent inhibitor of SH-SY5Y tumor growth and metastasis formation. These results support further clinical development of RNA interference of survivin as a treatment of neuroblastoma and other cancer types.

  15. Anti-RhoC siRNAs inhibit the proliferation and invasiveness of breast cancer cells via modulating the KAI1, MMP9, and CXCR4 expression

    Directory of Open Access Journals (Sweden)

    Xu X

    2017-03-01

    Full Text Available Xu-Dong Xu,1 Han-Bin Shen,1 Li Zhu,2 Jian-Qin Lu,2 Lin Zhang,3 Zhi-Yong Luo,3 Ya-Qun Wu3 1Department of Thyroid and Breast Surgery, The Fifth Hospital of Wuhan, Hanyang District, 2Department of Oncology, 3Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China Abstract: Overexpression of RhoC in breast cancer cells indicates poor prognosis. In the present study, we aim to investigate the possible antitumor effects of anti-RhoC small-interfering RNA (siRNA in inflammatory breast cancer cells. In this study, a specific anti-RhoC siRNA was used to inhibit RhoC synthesis. Transfection of anti-RhoC siRNA into two IBC cells SUM149 and SUM190 induced extensive degradation of target mRNA and led to significant decrease in the synthesis of protein. Anti-RhoC siRNA inhibited cell proliferation and invasion, increased cell apoptosis, and induced cell cycle arrest in vitro. Moreover, the transfection of siRNA increased the expression of KAI1 and decreased the expression of MMP9 and CXCR4 in both mRNA and protein levels. Furthermore, transplantation tumor experiments in BALB/c-nu mice showed that intratumoral injection of anti-RhoC siRNA inhibited tumor growth and increased survival rate. Our results suggested that RhoC gene silencing with specific anti-RhoC siRNA would be a potential therapeutic method for metastatic breast cancer. Keywords: gene silencing, proliferation, apoptosis, cell cycle arrest

  16. Bone marrow-derived myofibroblasts are the providers of pro-invasive matrix metalloproteinase 13 in primary tumor

    DEFF Research Database (Denmark)

    Lecomte, Julie; Masset, Anne; Blacher, Silvia

    2012-01-01

    producing cells were exclusively α-SMA(+) cells and derived from GFP(+) BM cells. To investigate their impact on tumor invasion, we isolated mesenchymal stem cells (MSCs) from the BM of wild-type and MMP13-deficient mice. Wild-type MSC promoted cancer cell invasion in a spheroid assay, whereas MSCs obtained......)-derived cells to generate different fibroblast subsets that putatively produce the matrix metalloproteinase 13 (MMP13) and affect cancer cell invasion. A murine model of skin carcinoma was applied to mice, irradiated, and engrafted with BM isolated from green fluorescent protein (GFP) transgenic mice. We...

  17. Investigating the expression, effect and tumorigenic pathway of PADI2 in tumors

    Directory of Open Access Journals (Sweden)

    Guo W

    2017-03-01

    Full Text Available Wei Guo,1,2,* Yabing Zheng,2,* Bing Xu,1 Fang Ma,1 Chang Li,3 Xiaoqian Zhang,4 Yao Wang,1 Xiaotian Chang1 1Medical Research Center, Shandong Provincial Qianfoshan Hospital, 2Obstetrical Department, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 3Pathology Department, Tengzhou Central People’s Hospital, Tengzhou, 4Clinical Laboratory, PKU Care Luzhong Hospital, Zibo, Shandong, People’s Republic of China *These authors contributed equally to this work Background: Peptidylarginine deiminase (PAD catalyzes the conversion of arginine residues to citrulline residues, termed citrullination. Recent studies have suggested that PAD isoform 2 (PADI2 plays an important role in tumors, although its tumorigenic effect and mechanism are largely unknown. Materials and methods: Immunohistochemistry and enzyme-linked immunosorbent assay (ELISA were used to investigate the expression level of PADI2 in various tumor tissues and patient blood samples, respectively. MNK-45 and Bel-7402 tumor cell lines originating from gastric and liver tumors, respectively, were treated with anti-PADI2 siRNA, and the subsequent cell proliferation, apoptosis and migration were observed. Polymerase chain reaction (PCR arrays, including Cancer PathwayFinder, Oncogenes and Tumor Suppressor Genes, p53 Signaling Pathway, Signal Transduction Pathway and Tumor Metastasis PCR arrays, were used to investigate the tumorigenic pathway of PADI2 in the siRNA-treated tumor cells. This analysis was verified by real-time PCR. Results: Immunohistochemistry detected significantly increased expression of PADI2 in invasive breast ductal carcinoma, cervical squamous cell carcinoma, colon adenocarcinoma, liver hepatocellular carcinoma, lung cancer, ovarian serous papillary adenocarcinoma and papillary thyroid carcinoma samples. ELISA detected a twofold increase in PADI2 expression in the blood of 48.3% of patients with liver cancer, 38% of patients with cervical

  18. Effect of all-trans retinoic acid on the proliferation and differentiation of brain tumor stem cells

    Directory of Open Access Journals (Sweden)

    Niu Chao

    2010-08-01

    Full Text Available Abstract Objective To investigate the effect of all-trans retinoic acid(ATRA on the proliferation and differentiation of brain tumor stem cells(BTSCs in vitro. Methods Limiting dilution and clonogenic assay were used to isolate and screen BTSCs from the fresh specimen of human brain glioblastoma. The obtained BTSCs, which were cultured in serum-free medium, were classified into four groups in accordance with the composition of the different treatments. The proliferation of the BTSCs was evaluated by MTT assay. The BTSCs were induced to differentiate in serum-containing medium, and classified into the ATRA group and control group. On the 10th day of induction, the expressions of CD133 and glial fibrillary acidic protein (GFAP in the differentiated BTSCs were detected by immunofluorescence. The differentiated BTSCs were cultured in serum-free medium, the percentage and the time required for formation of brain tumor spheres (BTS were observed. Results BTSCs obtained by limiting dilution were all identified as CD133-positive by immunofluorescence. In serum-free medium, the proliferation of BTSCs in the ATRA group was observed significantly faster than that in the control group, but slower than that in the growth factor group and ATRA/growth factor group, and the size of the BTS in the ATRA group was smaller than that in the latter two groups(P P P P Conclusion ATRA can promote the proliferation and induce the differentiation of BTSCs, but the differentiation is incomplete, terminal differentiation cannot be achieved and BTSs can be formed again.

  19. Incorporation of diffusion-weighted magnetic resonance imaging data into a simple mathematical model of tumor growth

    International Nuclear Information System (INIS)

    Atuegwu, N C; Colvin, D C; Loveless, M E; Gore, J C; Yankeelov, T E; Xu, L

    2012-01-01

    We build on previous work to show how serial diffusion-weighted MRI (DW-MRI) data can be used to estimate proliferation rates in a rat model of brain cancer. Thirteen rats were inoculated intracranially with 9L tumor cells; eight rats were treated with the chemotherapeutic drug 1,3-bis(2-chloroethyl)-1-nitrosourea and five rats were untreated controls. All animals underwent DW-MRI immediately before, one day and three days after treatment. Values of the apparent diffusion coefficient (ADC) were calculated from the DW-MRI data and then used to estimate the number of cells in each voxel and also for whole tumor regions of interest. The data from the first two imaging time points were then used to estimate the proliferation rate of each tumor. The proliferation rates were used to predict the number of tumor cells at day three, and this was correlated with the corresponding experimental data. The voxel-by-voxel analysis yielded Pearson's correlation coefficients ranging from −0.06 to 0.65, whereas the region of interest analysis provided Pearson's and concordance correlation coefficients of 0.88 and 0.80, respectively. Additionally, the ratio of positive to negative proliferation values was used to separate the treated and control animals (p <0.05) at an earlier point than the mean ADC values. These results further illustrate how quantitative measurements of tumor state obtained non-invasively by imaging can be incorporated into mathematical models that predict tumor growth. (paper)

  20. Lattice-based model of ductal carcinoma in situ suggests rules for breast cancer progression to an invasive state.

    Science.gov (United States)

    Boghaert, Eline; Radisky, Derek C; Nelson, Celeste M

    2014-12-01

    Ductal carcinoma in situ (DCIS) is a heterogeneous group of non-invasive lesions of the breast that result from abnormal proliferation of mammary epithelial cells. Pathologists characterize DCIS by four tissue morphologies (micropapillary, cribriform, solid, and comedo), but the underlying mechanisms that distinguish the development and progression of these morphologies are not well understood. Here we explored the conditions leading to the emergence of the different morphologies of DCIS using a two-dimensional multi-cell lattice-based model that incorporates cell proliferation, apoptosis, necrosis, adhesion, and contractility. We found that the relative rates of cell proliferation and apoptosis governed which of the four morphologies emerged. High proliferation and low apoptosis favored the emergence of solid and comedo morphologies. In contrast, low proliferation and high apoptosis led to the micropapillary morphology, whereas high proliferation and high apoptosis led to the cribriform morphology. The natural progression between morphologies cannot be investigated in vivo since lesions are usually surgically removed upon detection; however, our model suggests probable transitions between these morphologies during breast cancer progression. Importantly, cribriform and comedo appear to be the ultimate morphologies of DCIS. Motivated by previous experimental studies demonstrating that tumor cells behave differently depending on where they are located within the mammary duct in vivo or in engineered tissues, we examined the effects of tissue geometry on the progression of DCIS. In agreement with our previous experimental work, we found that cells are more likely to invade from the end of ducts and that this preferential invasion is regulated by cell adhesion and contractility. This model provides additional insight into tumor cell behavior and allows the exploration of phenotypic transitions not easily monitored in vivo.

  1. Direct-Conversion Molecular Breast Imaging of Invasive Breast Cancer: Imaging Features, Extent of Invasive Disease, and Comparison Between Invasive Ductal and Lobular Histology.

    Science.gov (United States)

    Conners, Amy Lynn; Jones, Katie N; Hruska, Carrie B; Geske, Jennifer R; Boughey, Judy C; Rhodes, Deborah J

    2015-09-01

    The purposes of this study were to compare the tumor appearance of invasive breast cancer on direct-conversion molecular breast imaging using a standardized lexicon and to determine how often direct-conversion molecular breast imaging identifies all known invasive tumor foci in the breast, and whether this differs for invasive ductal versus lobular histologic profiles. Patients with prior invasive breast cancer and concurrent direct-conversion molecular breast imaging examinations were retrospectively reviewed. Blinded review of direct-conversion molecular breast imaging examinations was performed by one of two radiologists, according to a validated lexicon. Direct-conversion molecular breast imaging findings were matched with lesions described on the pathology report to exclude benign reasons for direct-conversion molecular breast imaging findings and to document direct-conversion molecular breast imaging-occult tumor foci. Associations between direct-conversion molecular breast imaging findings and tumor histologic profiles were examined using chi-square tests. In 286 patients, 390 invasive tumor foci were present in 294 breasts. A corresponding direct-conversion molecular breast imaging finding was present for 341 of 390 (87%) tumor foci described on the pathology report. Invasive ductal carcinoma (IDC) tumor foci were more likely to be a mass (40% IDC vs 15% invasive lobular carcinoma [ILC]; p < 0.001) and to have marked intensity than were ILC foci (63% IDC vs 32% ILC; p < 0.001). Direct-conversion molecular breast imaging correctly revealed all pathology-proven foci of invasive disease in 79.8% of cases and was more likely to do so for IDC than for ILC (86.1% vs 56.7%; p < 0.0001). Overall, direct-conversion molecular breast imaging showed all known invasive foci in 249 of 286 (87%) patients. Direct-conversion molecular breast imaging features of invasive cancer, including lesion type and intensity, differ by histologic subtype. Direct-conversion molecular

  2. miR-92a is upregulated in cervical cancer and promotes cell proliferation and invasion by targeting FBXW7

    International Nuclear Information System (INIS)

    Zhou, Chuanyi; Shen, Liangfang; Mao, Lei; Wang, Bing; Li, Yang; Yu, Huizhi

    2015-01-01

    MicroRNAs (miRNAs) are involved in the cervical carcinogenesis and progression. In this study, we investigated the role of miR-92a in progression and invasion of cervical cancer. MiR-92a was significantly upregulated in cervical cancer tissues and cell lines. Overexpression of miR-92a led to remarkably enhanced proliferation by promoting cell cycle transition from G1 to S phase and significantly enhanced invasion of cervical cancer cells, while its knockdown significantly reversed these cellular events. Bioinformatics analysis suggested F-box and WD repeat domain-containing 7 (FBXW7) as a novel target of miR-92a, and miR-92a suppressed the expression level of FBXW7 mRNA by direct binding to its 3′-untranslated region (3′UTR). Expression of miR-92a was negatively correlated with FBXW7 in cervical cancer tissues. Furthermore, Silencing of FBXW7 counteracted the effects of miR-92a suppression, while its overexpression reversed oncogenic effects of miR-92a. Together, these findings indicate that miR-92a acts as an onco-miRNA and may contribute to the progression and invasion of cervical cancer, suggesting miR-92a as a potential novel diagnostic and therapeutic target of cervical cancer. - Highlights: • miR-92a is elevated in cervical cancer tissues and cell lines. • miR-92a promotes cervical cancer cell proliferation, cell cycle transition from G1 to S phase and invasion. • FBXW7 is a direct target of miR-92a. • FBXW7 counteracts the oncogenic effects of miR-92a on cervical cancer cells

  3. LEPREL1 Expression in Human Hepatocellular Carcinoma and Its Suppressor Role on Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Jianguo Wang

    2013-01-01

    Full Text Available Background. Hepatocellular carcinoma (HCC is one of the most aggressive malignancies worldwide. It is characterized by its high invasive and metastatic potential. Leprecan-like 1 (LEPREL1 has been demonstrated to be downregulated in the HCC tissues in previous proteomics studies. The present study is aimed at a new understanding of LEPREL1 function in HCC. Methods. Quantitative RT-PCR, immunohistochemical analysis, and western blot analysis were used to evaluate the expression of LEPREL1 between the paired HCC tumor and nontumorous tissues. The biology function of LEPREL1 was investigated by Cell Counting Kit-8 (CCK8 assay and colony formation assay in HepG2 and Bel-7402 cells. Results. The levels of LEPREL1 mRNA and protein were significantly lower in the HCC tissues as compared to those of the nontumorous tissues. Reduced LEPREL1 expression was not associated with conventional clinical parameters of HCC. Overexpression of LEPREL1 in HepG2 and Bel-7402 cells inhibited cell proliferation (P<0.01 and colony formation (P<0.05. LEPREL1 suppressed tumor cell proliferation through regulation of the cell cycle by downregulation of cyclins. Conclusions. Clinical parameters analysis suggested that LEPREL1 was an independent factor in the development of HCC. The biology function experiments showed that LEPREL1 might serve as a potential tumor suppressor gene by inhibiting the HCC cell proliferation.

  4. Non-Invasive Radiofrequency Field Treatment of 4T1 Breast Tumors Induces T-cell Dependent Inflammatory Response.

    Science.gov (United States)

    Newton, Jared M; Flores-Arredondo, Jose H; Suki, Sarah; Ware, Matthew J; Krzykawska-Serda, Martyna; Agha, Mahdi; Law, Justin J; Sikora, Andrew G; Curley, Steven A; Corr, Stuart J

    2018-02-22

    Previous work using non-invasive radiofrequency field treatment (RFT) in cancer has demonstrated its therapeutic potential as it can increase intratumoral blood perfusion, localization of intravenously delivered drugs, and promote a hyperthermic intratumoral state. Despite the well-known immunologic benefits that febrile hyperthermia can induce, an investigation of how RFT could modulate the intra-tumoral immune microenvironment had not been studied. Thus, using an established 4T1 breast cancer model in immune competent mice, we demonstrate that RFT induces a transient, localized, and T-cell dependent intratumoral inflammatory response. More specifically we show that multi- and singlet-dose RFT promote an increase in tumor volume in immune competent Balb/c mice, which does not occur in athymic nude models. Further leukocyte subset analysis at 24, 48, and 120 hours after a single RFT show a rapid increase in tumoral trafficking of CD4+ and CD8+ T-cells 24 hours post-treatment. Additional serum cytokine analysis reveals an increase in numerous pro-inflammatory cytokines and chemokines associated with enhanced T-cell trafficking. Overall, these data demonstrate that non-invasive RFT could be an effective immunomodulatory strategy in solid tumors, especially for enhancing the tumoral trafficking of lymphocytes, which is currently a major hindrance of numerous cancer immunotherapeutic strategies.

  5. Upregulation of long non-coding RNA TUG1 promotes bladder cancer cell 5 proliferation, migration and invasion by inhibiting miR-29c.

    Science.gov (United States)

    Guo, Peng; Zhang, Guohui; Meng, Jialin; He, Qian; Li, Zhihui; Guan, Yawei

    2018-01-10

    Bladder cancer (BC) is one of the leading causes of cancer-related death in the word. Long non-coding RNA (lncRNA) taurine-upregulated gene 1 (TUG1) plays an important role in the development and progression of numerous cancers, including BC. However, the exact role of TUG1 in modulating BC progression is still poorly known. In this study, we found that TUG1 was upregulated and microRNA-29c (miR-29c) was downregulated in BC tissues and cell lines. Overexpression of TUG1 promoted the cell proliferation of T24 and EJ cells, whereas TUG1 knockdown had the opposite effect. Upregulation of TUG1 obviously facilitated the migration and invasion of T24 and EJ cells. In contrast, TUG1 silencing repressed the migration and invasion of T24 and EJ cells. Furthermore, TUG1 knockdown markedly increased the expression of miR-29c in vitro. On the contrary, overexpression of TUG1 remarkably decreased the expression of miR-29c. Transfection with plasmids containing mutant TUG1 has no effect on the expression of miR-29c. There were direct interactions between miR-29c and the binding sites of TUG1. In addition, the inhibitory effects of small interfering RNA specific for TUG1 on BC cell proliferation, migration and invasion were reversed by downregulation of miR-29c. Collectively, our study strongly demonstrates that TUG1 promotes BC cell proliferation, migration and invasion by inhibiting miR-29c, suggesting that lncRNATUG1 may be a promising target for BC gene therapy.

  6. FBX8 Acts as an Invasion and Metastasis Suppressor and Correlates with Poor Survival in Hepatocellular Carcinoma.

    Directory of Open Access Journals (Sweden)

    Feifei Wang

    Full Text Available F-box only protein 8 (FBX8, a novel component of F-box proteins, is lost in several cancers and has been associated with invasiveness of cancer cells. However, its expression pattern and role in the progression of hepatocellular carcinoma remain unclear. This study investigated the prognostic significance of FBX8 in hepatocellular carcinoma samples and analyzed FBX8 function in hepatocellular carcinoma cells by gene manipulation.The expression of FBX8 was detected in 120 cases of clinical paraffin-embedded hepatocellular carcinoma tissues, 20 matched pairs of fresh tissues and five hepatocellular carcinoma cell lines by immunohistochemistry with clinicopathological analyses, real-time RT-PCR or Western blot. The correlation of FBX8 expression with cell proliferation and invasion in five HCC cell lines was analyzed. Moreover, loss of function and gain of function assays were performed to evaluate the effect of FBX8 on cell proliferation, motility, invasion in vitro and metastasis in vivo.We found that FBX8 was obviously down-regulated in HCC tissues and cell lines (P<0.05. The FBX8 down-regulation correlated significantly with poor prognosis, and FBX8 status was identified as an independent significant prognostic factor. Over-expression of FBX8 decreased proliferation, migration and invasion in HepG2 and 97H cells, while knock-down of FBX8 in 7721 cells showed the opposite effect. FBX8 negatively correlated with cell proliferation and invasion in 7701, M3, HepG2 and 97H cell lines. In vivo functional assays showed FBX8 suppressed tumor growth and pulmonary metastatic potential in mice. Our results indicate that down-regulation of FBX8 significantly correlates with invasion, metastasis and poor survival in hepatocellular carcinoma patients. It may be a useful biomarker for therapeutic strategy and control in hepatocellular carcinoma treatment.

  7. The expression of VE-cadherin in breast cancer cells modulates cell dynamics as a function of tumor differentiation and promotes tumor-endothelial cell interactions.

    Science.gov (United States)

    Rezaei, Maryam; Cao, Jiahui; Friedrich, Katrin; Kemper, Björn; Brendel, Oliver; Grosser, Marianne; Adrian, Manuela; Baretton, Gustavo; Breier, Georg; Schnittler, Hans-Joachim

    2018-01-01

    The cadherin switch has profound consequences on cancer invasion and metastasis. The endothelial-specific vascular endothelial cadherin (VE-cadherin) has been demonstrated in diverse cancer types including breast cancer and is supposed to modulate tumor progression and metastasis, but underlying mechanisms need to be better understood. First, we evaluated VE-cadherin expression by tissue microarray in 392 cases of breast cancer tumors and found a diverse expression and distribution of VE-cadherin. Experimental expression of fluorescence-tagged VE-cadherin (VE-EGFP) in undifferentiated, fibroblastoid and E-cadherin-negative MDA-231 (MDA-VE-EGFP) as well as in differentiated E-cadherin-positive MCF-7 human breast cancer cell lines (MCF-VE-EGFP), respectively, displayed differentiation-dependent functional differences. VE-EGFP expression reversed the fibroblastoid MDA-231 cells to an epithelial-like phenotype accompanied by increased β-catenin expression, actin and vimentin remodeling, increased cell spreading and barrier function and a reduced migration ability due to formation of VE-cadherin-mediated cell junctions. The effects were largely absent in both MDA-VE-EGFP and in control MCF-EGFP cell lines. However, MCF-7 cells displayed a VE-cadherin-independent planar cell polarity and directed cell migration that both developed in MDA-231 only after VE-EGFP expression. Furthermore, VE-cadherin expression had no effect on tumor cell proliferation in monocultures while co-culturing with endothelial cells enhanced tumor cell proliferation due to integration of the tumor cells into monolayer where they form VE-cadherin-mediated cell contacts with the endothelium. We propose an interactive VE-cadherin-based crosstalk that might activate proliferation-promoting signals. Together, our study shows a VE-cadherin-mediated cell dynamics and an endothelial-dependent proliferation in a differentiation-dependent manner.

  8. Recurrent proliferating trichilemmal tumor with malignant change on the f-18 fluorodeoxyglucose position emission tomography/computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Eun Ha; Kim, Eun Ha; Kim, Young Jun; Yoo, Seol Bong; Nam, Kyung Hwa [Presbyterian Medical Center, Seonam University College of Medicine, Jeonju (Korea, Republic of)

    2016-06-15

    F-18 fluorodeoxyglucose (FDG) positron emission tomography/computed tomography scan has been used for the diagnosis, assessment of treatment response, and follow-up of various neoplasms. Proliferating trichilemmal cyst or tumor (PTT) is a rare neoplasm, originated from the outer root sheath of a hair follicle. Because this tumor has unpredictable biological and clinical behavior, the long-term clinical follow-up is necessary to detect metastasis or recurrence. We reported a case of recurrent malignant PTT on scalp that showed increased FDG uptake.

  9. A human breast cell model of pre-invasive to invasive transition

    Energy Technology Data Exchange (ETDEWEB)

    Bissell, Mina J; Rizki, Aylin; Weaver, Valerie M.; Lee, Sun-Young; Rozenberg, Gabriela I.; Chin, Koei; Myers, Connie A.; Bascom, Jamie L.; Mott, Joni D.; Semeiks, Jeremy R.; Grate, Leslie R.; Mian, I. Saira; Borowsky, Alexander D.; Jensen, Roy A.; Idowu, Michael O.; Chen, Fanqing; Chen, David J.; Petersen, Ole W.; Gray, Joe W.; Bissell, Mina J.

    2008-03-10

    A crucial step in human breast cancer progression is the acquisition of invasiveness. There is a distinct lack of human cell culture models to study the transition from pre-invasive to invasive phenotype as it may occur 'spontaneously' in vivo. To delineate molecular alterations important for this transition, we isolated human breast epithelial cell lines that showed partial loss of tissue polarity in three-dimensional reconstituted-basement membrane cultures. These cells remained non-invasive; however, unlike their non-malignant counterparts, they exhibited a high propensity to acquire invasiveness through basement membrane in culture. The genomic aberrations and gene expression profiles of the cells in this model showed a high degree of similarity to primary breast tumor profiles. The xenograft tumors formed by the cell lines in three different microenvironments in nude mice displayed metaplastic phenotypes, including squamous and basal characteristics, with invasive cells exhibiting features of higher grade tumors. To find functionally significant changes in transition from pre-invasive to invasive phenotype, we performed attribute profile clustering analysis on the list of genes differentially expressed between pre-invasive and invasive cells. We found integral membrane proteins, transcription factors, kinases, transport molecules, and chemokines to be highly represented. In addition, expression of matrix metalloproteinases MMP-9,-13,-15,-17 was up regulated in the invasive cells. Using siRNA based approaches, we found these MMPs to be required for the invasive phenotype. This model provides a new tool for dissection of mechanisms by which pre-invasive breast cells could acquire invasiveness in a metaplastic context.

  10. Differential migration and proliferation of geometrical ensembles of cell clusters

    International Nuclear Information System (INIS)

    Kumar, Girish; Chen, Bo; Co, Carlos C.; Ho, Chia-Chi

    2011-01-01

    Differential cell migration and growth drives the organization of specific tissue forms and plays a critical role in embryonic development, tissue morphogenesis, and tumor invasion. Localized gradients of soluble factors and extracellular matrix have been shown to modulate cell migration and proliferation. Here we show that in addition to these factors, initial tissue geometry can feedback to generate differential proliferation, cell polarity, and migration patterns. We apply layer by layer polyelectrolyte assembly to confine multicellular organization and subsequently release cells to demonstrate the spatial patterns of cell migration and growth. The cell shapes, spreading areas, and cell-cell contacts are influenced strongly by the confining geometry. Cells within geometric ensembles are morphologically polarized. Symmetry breaking was observed for cells on the circular pattern and cells migrate toward the corners and in the direction parallel to the longest dimension of the geometric shapes. This migration pattern is disrupted when actomyosin based tension was inhibited. Cells near the edge or corner of geometric shapes proliferate while cells within do not. Regions of higher rate of cell migration corresponded to regions of concentrated growth. These findings demonstrate that multicellular organization can result in spatial patterns of migration and proliferation.

  11. Ovarian tumor attachment, invasion and vascularization reflect unique microenvironments in the peritoneum:Insights from xenograft and mathematical models

    Directory of Open Access Journals (Sweden)

    Mara P. Steinkamp

    2013-05-01

    Full Text Available Ovarian cancer relapse is often characterized by metastatic spread throughout the peritoneal cavity with tumors attached to multiple organs. In this study, interaction of ovarian tumor cells with the peritoneal tumor microenvironment was evaluated in a xenograft model based on intraperitoneal injection of fluorescent SKOV3.ip1 ovarian cancer cells. Intra-vital microscopy of mixed GFP-RFP cell populations injected into the peritoneum demonstrated that tumor cells aggregate and attach as mixed spheroids, emphasizing the importance of homotypic adhesion in tumor formation. Electron microscopy provided high resolution structural information about local attachment sites. Experimental measurements from the mouse model were used to build a three-dimensional cellular Potts ovarian tumor model (OvTM that examines ovarian tumor cell attachment, chemotaxis, growth and vascularization. OvTM simulations provide insight into the relative influence of tumor cell-cell adhesion, oxygen availability, and local architecture on tumor growth and morphology. Notably, tumors on the mesentery, omentum or spleen readily invade the open architecture, while tumors attached to the gut encounter barriers that restrict invasion and instead rapidly expand into the peritoneal space. Simulations suggest that rapid neovascularization of SKOV3.ip1 tumors is triggered by constitutive release of angiogenic factors in the absence of hypoxia. This research highlights the importance of cellular adhesion and tumor microenvironment in the seeding of secondary ovarian tumors on diverse organs within the peritoneal cavity. Results of the OvTM simulations indicate that invasion is strongly influenced by features underlying the mesothelial lining at different sites, but is also affected by local production of chemotactic factors. The integrated in vivo mouse model and computer simulations provide a unique platform for evaluating targeted therapies for ovarian cancer relapse.

  12. Dynamic interplay between the collagen scaffold and tumor evolution

    DEFF Research Database (Denmark)

    Egeblad, Mikala; Rasch, Morten G; Weaver, Valerie M

    2010-01-01

    and remodeling of the ECM network regulate tissue tension, generate pathways for migration, and release ECM protein fragments to direct normal developmental processes such as branching morphogenesis. Collagens are major components of the ECM of which basement membrane type IV and interstitial matrix type I...... are the most prevalent. Here we discuss how abnormal expression, proteolysis and structure of these collagens influence cellular functions to elicit multiple effects on tumors, including proliferation, initiation, invasion, metastasis, and therapy response....

  13. Tumor suppressor KAI1 affects integrin αvβ3-mediated ovarian cancer cell adhesion, motility, and proliferation

    International Nuclear Information System (INIS)

    Ruseva, Zlatna; Geiger, Pamina Xenia Charlotte; Hutzler, Peter; Kotzsch, Matthias; Luber, Birgit; Schmitt, Manfred; Gross, Eva; Reuning, Ute

    2009-01-01

    The tetraspanin KAI1 had been described as a metastasis suppressor in many different cancer types, a function for which associations of KAI1 with adhesion and signaling receptors of the integrin superfamily likely play a role. In ovarian cancer, integrin αvβ3 correlates with tumor progression and its elevation in vitro provoked enhanced cell adhesion accompanied by significant increases in cell motility and proliferation in the presence of its major ligand vitronectin. In the present study, we characterized integrin αvβ3-mediated tumor biological effects as a function of cellular KAI1 restoration and proved for the first time that KAI1, besides its already known physical crosstalk with β1-integrins, also colocalizes with integrin αvβ3. Functionally, elevated KAI1 levels drastically increased integrin αvβ3/vitronectin-dependent ovarian cancer cell adhesion. Since an intermediate level of cell adhesive strength is required for optimal cell migration, we next studied ovarian cancer cell motility as a function of KAI1 restoration. By time lapse video microscopy, we found impaired integrin αvβ3/vitronectin-mediated cell migration most probably due to strongly enhanced cellular immobilization onto the adhesion-supporting matrix. Moreover, KAI1 reexpression significantly diminished cell proliferation. These data strongly indicate that KAI1 may suppress ovarian cancer progression by inhibiting integrin αvβ3/vitronectin-provoked tumor cell motility and proliferation as important hallmarks of the oncogenic process.

  14. Cavernous sinus invasion by pituitary adenomas. Relationship between magnetic resonance imaging findings and histologically verified dural invasion

    Energy Technology Data Exchange (ETDEWEB)

    Daita, Go; Yonemasu, Yukichi; Nakai, Hirofumi; Takei, Hidetoshi; Ogawa, Katsuhiro [Asahikawa Medical Coll., Hokkaido (Japan)

    1995-01-01

    The relationship between magnetic resonance (MR) imaging findings and histologically verified invasion of the cavernous sinus by tumor cells was studied in 26 patients treated surgically for pituitary adenoma. Dural invasion of the sellar floor by tumor cells was found in 10 cases (38%). All patients were classified according to MR imaging findings into three types. Type I showed a gadolinium-enhanced stripe medial to the carotid artery (5 patients), none of which showed dural invasion. Type II showed no enhanced stripe (17 patients), six of which showed dural invasion. Within this type, tumor size and dural invasion showed no correlation. Type III showed displacement or encasement of the carotid artery by the tumor with or without extracranial extension (4 patients), all of which showed massive infiltration of the tumor cells into the dura mater. This study shows that preoperative MR imaging can provide information for assessment of invasion into the cavernous sinus in patients with pituitary adenoma. (author).

  15. β-elemene inhibits tumor-promoting effect of M2 macrophages in lung cancer.

    Science.gov (United States)

    Yu, Xiaomu; Xu, Maoyi; Li, Na; Li, Zongjuan; Li, Hongye; Shao, Shujuan; Zou, Kun; Zou, Lijuan

    2017-08-19

    Macrophages in tumor are mostly M2-polarized and have been reported to promote tumorigenesis, which are also defined as tumor-associated macrophages (TAMs). β-elemene has therapeutic effects against several cancers, however, it remains unknown whether β-elemene could inhibit cancer by targeting TAMs. Herein, we examined the effect of β-elemene on macrophages to elucidate a novel mechanism of β-elemene in tumor therapy. We showed that the conditioned medium of M2 macrophages promoted lung cancer cells to migration, invasion and epithelial mesenchymal transition, which could be inhibited by β-elemene. Moreover, β-elemene regulated the polarization of macrophages from M2 to M1. β-elemene also inhibited the proliferation, migration, invasion of lung cancer cells and enhanced its radiosensitivity. These results indicate β-elemene suppresses lung cancer by regulating both macrophages and lung cancer cells, it is a promising drug for combination with chemotherapy or radiotherapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. ΔNp63α induces the expression of FAT2 and Slug to promote tumor invasion

    Science.gov (United States)

    Dang, Tuyen T.; Westcott, Jill M.; Maine, Erin A.; Kanchwala, Mohammed; Xing, Chao; Pearson, Gray W.

    2016-01-01

    Tumor invasion can be induced by changes in gene expression that alter cell phenotype. The transcription factor ΔNp63α promotes basal-like breast cancer (BLBC) migration by inducing the expression of the mesenchymal genes Slug and Axl, which confers cells with a hybrid epithelial/mesenchymal state. However, the extent of the ΔNp63α regulated genes that support invasive behavior is not known. Here, using gene expression analysis, ChIP-seq, and functional testing, we find that ΔNp63α promotes BLBC motility by inducing the expression of the atypical cadherin FAT2, the vesicular binding protein SNCA, the carbonic anhydrase CA12, the lipid binding protein CPNE8 and the kinase NEK1, along with Slug and Axl. Notably, lung squamous cell carcinoma migration also required ΔNp63α dependent FAT2 and Slug expression, demonstrating that ΔNp63α promotes migration in multiple tumor types by inducing mesenchymal and non-mesenchymal genes. ΔNp63α activation of FAT2 and Slug influenced E-cadherin localization to cell-cell contacts, which can restrict spontaneous cell movement. Moreover, live-imaging of spheroids in organotypic culture demonstrated that ΔNp63α, FAT2 and Slug were essential for the extension of cellular protrusions that initiate collective invasion. Importantly, ΔNp63α is co-expressed with FAT2 and Slug in patient tumors and the elevated expression of ΔNp63α, FAT2 and Slug correlated with poor patient outcome. Together, these results reveal how ΔNp63α promotes cell migration by directly inducing the expression of a cohort of genes with distinct cellular functions and suggest that FAT2 is a new regulator of collective invasion that may influence patient outcome. PMID:27081041

  17. Effects of 5-aza-2′deoxycytidine on RECK gene expression and tumor invasion in salivary adenoid cystic carcinoma

    International Nuclear Information System (INIS)

    Zhou, X.Q.; Huang, S.Y.; Zhang, D.S.; Zhang, S.Z.; Li, W.G.; Chen, Z.W.; Wu, H.W.

    2014-01-01

    Reversion-inducing cysteine-rich protein with kazal motifs (RECK), a novel tumor suppressor gene that negatively regulates matrix metalloproteinases (MMPs), is expressed in various normal human tissues but downregulated in several types of human tumors. The molecular mechanism for this downregulation and its biological significance in salivary adenoid cystic carcinoma (SACC) are unclear. In the present study, we investigated the effects of a DNA methyltransferase (DNMT) inhibitor, 5-aza-2′deoxycytidine (5-aza-dC), on the methylation status of the RECK gene and tumor invasion in SACC cell lines. Methylation-specific PCR (MSP), Western blot analysis, and quantitative real-time PCR were used to investigate the methylation status of the RECK gene and expression of RECK mRNA and protein in SACC cell lines. The invasive ability of SACC cells was examined by the Transwell migration assay. Promoter methylation was only found in the ACC-M cell line. Treatment of ACC-M cells with 5-aza-dC partially reversed the hypermethylation status of the RECK gene and significantly enhanced the expression of mRNA and protein, and 5-aza-dC significantly suppressed ACC-M cell invasive ability. Our findings showed that 5-aza-dC inhibited cancer cell invasion through the reversal of RECK gene hypermethylation, which might be a promising chemotherapy approach in SACC treatment

  18. Effects of 5-aza-2′deoxycytidine on RECK gene expression and tumor invasion in salivary adenoid cystic carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X.Q. [Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University, Jinan (China); Department of Oral and Maxillofacial Surgery, The First People' s Hospital of Jining, Shandong (China); Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Affiliated to Shandong University, Jinan (China); Huang, S.Y. [Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Affiliated to Shandong University, Jinan (China); Zhang, D.S. [Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University, Jinan (China); Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Affiliated to Shandong University, Jinan (China); Zhang, S.Z.; Li, W.G.; Chen, Z.W.; Wu, H.W. [Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Affiliated to Shandong University, Jinan (China)

    2014-12-12

    Reversion-inducing cysteine-rich protein with kazal motifs (RECK), a novel tumor suppressor gene that negatively regulates matrix metalloproteinases (MMPs), is expressed in various normal human tissues but downregulated in several types of human tumors. The molecular mechanism for this downregulation and its biological significance in salivary adenoid cystic carcinoma (SACC) are unclear. In the present study, we investigated the effects of a DNA methyltransferase (DNMT) inhibitor, 5-aza-2′deoxycytidine (5-aza-dC), on the methylation status of the RECK gene and tumor invasion in SACC cell lines. Methylation-specific PCR (MSP), Western blot analysis, and quantitative real-time PCR were used to investigate the methylation status of the RECK gene and expression of RECK mRNA and protein in SACC cell lines. The invasive ability of SACC cells was examined by the Transwell migration assay. Promoter methylation was only found in the ACC-M cell line. Treatment of ACC-M cells with 5-aza-dC partially reversed the hypermethylation status of the RECK gene and significantly enhanced the expression of mRNA and protein, and 5-aza-dC significantly suppressed ACC-M cell invasive ability. Our findings showed that 5-aza-dC inhibited cancer cell invasion through the reversal of RECK gene hypermethylation, which might be a promising chemotherapy approach in SACC treatment.

  19. The critical role of ERK in death resistance and invasiveness of hypoxia-selected glioblastoma cells

    International Nuclear Information System (INIS)

    Kim, Jee-Youn; Kim, Yong-Jun; Lee, Sun; Park, Jae-Hoon

    2009-01-01

    The rapid growth of tumor parenchyma leads to chronic hypoxia that can result in the selection of cancer cells with a more aggressive behavior and death-resistant potential to survive and proliferate. Thus, identifying the key molecules and molecular mechanisms responsible for the phenotypic changes associated with chronic hypoxia has valuable implications for the development of a therapeutic modality. The aim of this study was to identify the molecular basis of the phenotypic changes triggered by chronic repeated hypoxia. Hypoxia-resistant T98G (HRT98G) cells were selected by repeated exposure to hypoxia and reoxygenation. Cell death rate was determined by the trypan blue exclusion method and protein expression levels were examined by western blot analysis. The invasive phenotype of the tumor cells was determined by the Matrigel invasion assay. Immunohistochemistry was performed to analyze the expression of proteins in the brain tumor samples. The Student T-test and Pearson Chi-Square test was used for statistical analyses. We demonstrate that chronic repeated hypoxic exposures cause T98G cells to survive low oxygen tension. As compared with parent cells, hypoxia-selected T98G cells not only express higher levels of anti-apoptotic proteins such as Bcl-2, Bcl-X L , and phosphorylated ERK, but they also have a more invasive potential in Matrigel invasion chambers. Activation or suppression of ERK pathways with a specific activator or inhibitor, respectively, indicates that ERK is a key molecule responsible for death resistance under hypoxic conditions and a more invasive phenotype. Finally, we show that the activation of ERK is more prominent in malignant glioblastomas exposed to hypoxia than in low grade astrocytic glial tumors. Our study suggests that activation of ERK plays a pivotal role in death resistance under chronic hypoxia and phenotypic changes related to the invasive phenotype of HRT98G cells compared to parent cells

  20. Retinoid inhibition of in vitro invasion of human amnion basement membrane by human tumor cells

    International Nuclear Information System (INIS)

    Fazely, F.

    1988-01-01

    The effects measured were the inhibition of tumor cell migration through the basement membrane (BM) and tumor cell degradative enzyme activity on 3 H-proline labeled collagenous and non collagenous components of the BM. The human lung carcinoma A549 or the human Ewing's sarcoma TC-106 cell lines treated with retinoids for two days were incubated on the BM in the absence of retinoids. A dose-dependent inhibition of cell invasion was produced by retinoids. Among the retinoids tested the most powerful was retinol acetate which inhibited invasion by 50% of A549 cells at a concentration of 0.09 μg/ml, and TC-106 cells at 0.08 μg/ml. Retinol acetate inhibited A549 and TC-106 cell growth by approximately 50% at levels almost 100-fold higher than those needed for antiinvasive activity. Retinol acetate was about 20 times more potent than retinoic acid and 30 times more than retinol palmitate. Furthermore, A549 cells treated with retinol acetate, under conditions whereby an anti-invasive state was induced,showed an increase in the number of cellular retinoic acid binding proteins (CRABP), a decrease in the activity of type IV collagenase and ectosialyltransferase, and no change in the activity of transglutaminase

  1. Inhibition of Cell Proliferation and Growth of Pancreatic Cancer by Silencing of Carbohydrate Sulfotransferase 15 In Vitro and in a Xenograft Model.

    Directory of Open Access Journals (Sweden)

    Kazuki Takakura

    Full Text Available Chondroitin sulfate E (CS-E, a highly sulfated glycosaminoglycan, is known to promote tumor invasion and metastasis. Because the presence of CS-E is detected in both tumor and stromal cells in pancreatic ductal adenocarcinoma (PDAC, multistage involvement of CS-E in the development of PDAC has been considered. However, its involvement in the early stage of PDAC progression is still not fully understood. In this study, to clarify the direct role of CS-E in tumor, but not stromal, cells of PDAC, we focused on carbohydrate sulfotransferase 15 (CHST15, a specific enzyme that biosynthesizes CS-E, and investigated the effects of the CHST15 siRNA on tumor cell proliferation in vitro and growth in vivo. CHST15 mRNA is highly expressed in the human pancreatic cancer cell lines PANC-1, MIA PaCa-2, Capan-1 and Capan-2. CHST15 siRNA significantly inhibited the expression of CHST15 mRNA in these four cells in vitro. Silencing of the CHST15 gene in the cells was associated with significant reduction of proliferation and up-regulation of the cell cycle inhibitor-related gene p21CIP1/WAF1. In a subcutaneous xenograft tumor model of PANC-1 in nude mice, a single intratumoral injection of CHST15 siRNA almost completely suppressed tumor growth. Reduced CHST15 protein signals associated with tumor necrosis were observed with the treatment with CHST15 siRNA. These results provide evidence of the direct action of CHST15 on the proliferation of pancreatic tumor cells partly through the p21CIP1/WAF1 pathway. Thus, CHST15-CS-E axis-mediated tumor cell proliferation could be a novel therapeutic target in the early stage of PDAC progression.

  2. Aberrant glycogen synthase kinase 3β is involved in pancreatic cancer cell invasion and resistance to therapy.

    Directory of Open Access Journals (Sweden)

    Ayako Kitano

    Full Text Available BACKGROUND AND PURPOSE: The major obstacles to treatment of pancreatic cancer are the highly invasive capacity and resistance to chemo- and radiotherapy. Glycogen synthase kinase 3β (GSK3β regulates multiple cellular pathways and is implicated in various diseases including cancer. Here we investigate a pathological role for GSK3β in the invasive and treatment resistant phenotype of pancreatic cancer. METHODS: Pancreatic cancer cells were examined for GSK3β expression, phosphorylation and activity using Western blotting and in vitro kinase assay. The effects of GSK3β inhibition on cancer cell survival, proliferation, invasive ability and susceptibility to gemcitabine and radiation were examined following treatment with a pharmacological inhibitor or by RNA interference. Effects of GSK3β inhibition on cancer cell xenografts were also examined. RESULTS: Pancreatic cancer cells showed higher expression and activity of GSK3β than non-neoplastic cells, which were associated with changes in its differential phosphorylation. Inhibition of GSK3β significantly reduced the proliferation and survival of cancer cells, sensitized them to gemcitabine and ionizing radiation, and attenuated their migration and invasion. These effects were associated with decreases in cyclin D1 expression and Rb phosphorylation. Inhibition of GSK3β also altered the subcellular localization of Rac1 and F-actin and the cellular microarchitecture, including lamellipodia. Coincident with these changes were the reduced secretion of matrix metalloproteinase-2 (MMP-2 and decreased phosphorylation of focal adhesion kinase (FAK. The effects of GSK3β inhibition on tumor invasion, susceptibility to gemcitabine, MMP-2 expression and FAK phosphorylation were observed in tumor xenografts. CONCLUSION: The targeting of GSK3β represents an effective strategy to overcome the dual challenges of invasiveness and treatment resistance in pancreatic cancer.

  3. HER2 induces cell proliferation and invasion of non-small-cell lung cancer by upregulating COX-2 expression via MEK/ERK signaling pathway

    Directory of Open Access Journals (Sweden)

    Chi F

    2016-05-01

    Full Text Available Feng Chi, Rong Wu, Xueying Jin, Min Jiang, Xike Zhu Department of Medical Oncology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China Abstract: HER2 positivity has been well studied in various cancers, but its importance in non-small-cell lung cancer (NSCLC is still being explored. In this study, quantitative reverse transcription polymerase chain reaction (qRT-PCR was performed to detect HER2 and COX-2 expression in NSCLC tissues. Then, pcDNA3.1-HER2 was used to overexpress HER2, while HER2 siRNA and COX-2 siRNA were used to silence HER2 and COX-2 expression. MTT assay and invasion assay were used to detect the effects of HER2 on cell proliferation and invasion. Our study revealed that HER2 and COX-2 expression were upregulated in NSCLC tissues and HER2 exhibited a significant positive correlation with the levels of COX-2 expression. Overexpression of HER2 evidently elevated COX-2 expression, while silencing of HER2 evidently decreased COX-2 expression. Furthermore, overexpressed HER2 induced the ERK phosphorylation, and this was abolished by the treatment with U0126, a pharmacological inhibitor of MEK, an upstream kinase of ERK. HER2-induced expression and promoter activity of COX-2 were also suppressed by U0126, suggesting that the MEK/ERK signaling pathway regulates COX-2 expression. In addition, HER2 induced activation of AKT signaling pathway, which was reversed by pretreatment with U0126 and COX-2 siRNA. MTT and invasion assays revealed that HER2 induced cell proliferation and invasion that were reversed by pretreatment with U0126 and COX-2 siRNA. In this study, our results demonstrated for the first time that HER2 elevated COX-2 expression through the activation of MEK/ERK pathway, which subsequently induced cell proliferation and invasion via AKT pathway in NSCLC tissues. Keywords: HER2, MEK/ERK, COX-2, AKT signaling pathway, non-small-cell lung cancer

  4. Impact of CD68/(CD3+CD20 ratio at the invasive front of primary tumors on distant metastasis development in breast cancer.

    Directory of Open Access Journals (Sweden)

    Noemí Eiró

    Full Text Available Tumors are infiltrated by macrophages, T and B-lymphocytes, which may favor tumor development by promoting angiogenesis, growth and invasion. The aim of this study was to investigate the clinical relevance of the relative amount of macrophages (CD68⁺, T-cells (CD3⁺ and B-cells (CD20⁺ at the invasive front of breast carcinomas, and the expression of matrix metalloproteases (MMPs and their inhibitors (TIMPs either at the invasive front or at the tumor center. We performed an immunohistochemical study counting CD3, CD20 and CD68 positive cells at the invasive front, in 102 breast carcinomas. Also, tissue sections were stained with MMP-2, -9, -11, -14 and TIMP-2 antibodies, and immunoreactivity location, percentage of reactive area and intensity were determined at the invasive front and at the tumor center. The results showed that an increased CD68 count and CD68/(CD3+CD20 ratio were directly associated with both MMP-11 and TIMP-2 expression by mononuclear inflammatory cells at the tumor center (p = 0.041 and p = 0.025 for CD68 count and p = 0.001 and p = 0.045 for ratio, respectively for MMP-11 and TIMP-2. In addition, a high CD68/(CD3+CD20 ratio (>0.05 was directly associated with a higher probability of shortened relapse-free survival. Multivariate analysis revealed that CD68/(CD3+CD20 ratio was an independent factor associated with distant relapse-free survival (RR: 2.54, CI: (1.23-5.24, p<0.01. Therefore, CD68/(CD3+CD20 ratio at the invasive front could be used as an important prognostic marker.

  5. Gamma-Klotho exhibits multiple roles in tumor growth of human bladder cancer.

    Science.gov (United States)

    Hori, Shunta; Miyake, Makito; Tatsumi, Yoshihiro; Morizawa, Yosuke; Nakai, Yasushi; Onishi, Sayuri; Onishi, Kenta; Iida, Kota; Gotoh, Daisuke; Tanaka, Nobumichi; Fujimoto, Kiyohide

    2018-04-13

    Alpha-Klotho (KLα) and beta-Klotho (KLβ) have recently been reported to correlate with cancer prognosis in some malignancies and we previously reported the association between KLα, KLβ, and urothelial carcinoma of the bladder (UCB), indicating that KLβ acts as a tumor promoter. However, the association between gamma-Klotho (KLγ) and cancer prognosis remains unclear. In the present study, we evaluated the association between KLγ and UCB. To evaluate the effect of KLγ on human bladder cancer cell lines in vitro assays were performed. Exogenous KLγ increased the ability of human bladder cancer cells to proliferate, migrate, invade, form colonies, and provide anchorage-independent growth potential. In in vivo assays, eighteen mice bearing xenografts inoculated using UM-UC-3, were randomly divided into three groups and treated with a small interfering RNA (siRNA) by intratumoral administration once a week for four weeks. Knockdown of KLγ with siRNA led to a dramatic change in tumor growth and suggested that KLγ had effects on tumor growth, including promotion of cell proliferation, inhibition of apoptosis, and enhancement of the epithelial-mesenchymal transition. To confirm the study, human tissue samples were used and patients were divided into two groups according to KLγ expression level. High expression of KLγ was significantly associated with higher stage and grade cancer and the presence of lymphovascular invasion compared to patients with lower expression of KLγ. Our results suggest that KLγ plays an important role in tumor invasion and progression and these results may lead to the development of new therapies and diagnostic methods for UCB.

  6. Correlation of primary tumor FDG uptake with clinicopathologic prognostic factors in invasive ductal carcinoma of the breast

    International Nuclear Information System (INIS)

    Jo, I; Kim, Sung Hoon; Kim, Hae Won; Kang, Sung Hee; Zeon, Seok Kil; Kim, Su Jin

    2015-01-01

    The purpose of this study was to investigate the correlation of primary tumor FDG uptake to clinicopathological prognostic factors in invasive ductal carcinoma of the breast. We retrospectively reviewed 136 of 215 female patients with pathologically proven invasive ductal breast cancer from January 2008 to December 2011 who underwent F-18 FDG PET/CT for initial staging and follow-up after curative treatment with analysis of estrogen receptor (ER), progesterone receptor (PR) and human epithelial growth factor receptor 2 (HER2). The maximum standardized uptake value (SUV max ) of the primary breast tumor was measured and compared with hormonal receptor and HER2 overexpression status. The high SUV max of primary breast tumors is significantly correlated with the clinicopathological factors: tumor size, histologic grade, TNM stage, negativity of ER, negativity of PR, HER2 overexpression and triple negativity. The recurrent group with non-triple negative cancer had a higher SUV max compared with the non-recurrent group, though no significant difference in FDG uptake was noted between the recurrence and non-recurrent groups in subjects with triple-negative cancer. Lymph node involvement was the independent risk factor for cancer recurrence in the multivariate analysis. In conclusion, high FDG uptake in primary breast tumors is significantly correlated with clinicopathological factors, such as tumor size, histologic grade, TNM stage, negativity of the hormonal receptor, HER2 overexpression and triple negativity. Therefore, FDG PET/CT is a helpful prognostic tool to direct the further management of patients with breast cancer

  7. Tungsten Targets the Tumor Microenvironment to Enhance Breast Cancer Metastasis

    Science.gov (United States)

    Bolt, Alicia M.; Sabourin, Valérie; Molina, Manuel Flores; Police, Alice M.; Negro Silva, Luis Fernando; Plourde, Dany; Lemaire, Maryse; Ursini-Siegel, Josie; Mann, Koren K.

    2015-01-01

    The number of individuals exposed to high levels of tungsten is increasing, yet there is limited knowledge of the potential human health risks. Recently, a cohort of breast cancer patients was left with tungsten in their breasts following testing of a tungsten-based shield during intraoperative radiotherapy. While monitoring tungsten levels in the blood and urine of these patients, we utilized the 66Cl4 cell model, in vitro and in mice to study the effects of tungsten exposure on mammary tumor growth and metastasis. We still detect tungsten in the urine of patients’ years after surgery (mean urinary tungsten concentration at least 20 months post-surgery = 1.76 ng/ml), even in those who have opted for mastectomy, indicating that tungsten does not remain in the breast. In addition, standard chelation therapy was ineffective at mobilizing tungsten. In the mouse model, tungsten slightly delayed primary tumor growth, but significantly enhanced lung metastasis. In vitro, tungsten did not enhance 66Cl4 proliferation or invasion, suggesting that tungsten was not directly acting on 66Cl4 primary tumor cells to enhance invasion. In contrast, tungsten changed the tumor microenvironment, enhancing parameters known to be important for cell invasion and metastasis including activated fibroblasts, matrix metalloproteinases, and myeloid-derived suppressor cells. We show, for the first time, that tungsten enhances metastasis in an animal model of breast cancer by targeting the microenvironment. Importantly, all these tumor microenvironmental changes are associated with a poor prognosis in humans. PMID:25324207

  8. Fibroblastic and myofibroblastic tumors of the head and neck: Comprehensive imaging-based review with pathologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Hourani, Roula, E-mail: rh64@aub.edu.lb [Department of Diagnostic Radiology, American University of Beirut Medical Center, Beirut (Lebanon); Taslakian, Bedros, E-mail: bt05@aub.edu.lb [Department of Diagnostic Radiology, American University of Beirut Medical Center, Beirut (Lebanon); Shabb, Nina S., E-mail: ns04@aub.edu.lb [Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut (Lebanon); Nassar, Lara, E-mail: ln07@aub.edu.lb [Department of Diagnostic Radiology, American University of Beirut Medical Center, Beirut (Lebanon); Hourani, Mukbil H., E-mail: mh17@aub.edu.lb [Department of Diagnostic Radiology, American University of Beirut Medical Center, Beirut (Lebanon); Moukarbel, Roger, E-mail: rm17@aub.edu.lb [Department of Otolaryngology – Head and Neck Surgery, American University of Beirut Medical Center, Beirut (Lebanon); Sabri, Alain, E-mail: as71@aub.edu.lb [Department of Otolaryngology – Head and Neck Surgery, American University of Beirut Medical Center, Beirut (Lebanon); Rizk, Toni, E-mail: tonirisk@hotmail.com [Department of Neurosurgery, Hôtel-Dieu de France, Saint-Joseph University, Beirut (Lebanon)

    2015-02-15

    Highlights: • Almost all fibroblastic tumors are evaluated with non-invasive imaging. • Radiologists should be familiar with the imaging appearance of fibroblastic tumors. • Most appropriate initial examination when fibromatosis coli suspected is ultrasound. • Most common location of ossifying fibromas is the tooth-bearing regions. - Abstract: Fibroblastic and myofibroblastic tumors of the head and neck are a heterogeneous group of disorders characterized by the proliferation of fibroblasts, myofibroblasts, or both. These tumors may be further subclassified on the basis of their behavior as benign, intermediate with malignant potential, or malignant. There are different types of fibroblastic and myofibroblastic tumors that can involve the head and neck including desmoid-type fibromatosis, solitary fibrous tumor, myofibroma/myofibromatosis, nodular fasciitis, nasopharyngeal angiofibroma, fibrosarcoma, dermatofibrosarcoma protuberans, fibromatosis coli, inflammatory myofibroblastic tumor, ossifying fibroma, fibrous histiocytoma, nodular fasciitis, fibromyxoma, hyaline fibromatosis and fibrous hamartoma. Although the imaging characteristics of fibroblastic and myofibroblastic tumors of the head and neck are nonspecific, imaging plays a pivotal role in the noninvasive diagnosis and characterization of these tumors, providing information about the constitution of tumors, their extension and invasion of adjacent structures. Correlation with the clinical history may help limit the differential diagnosis and radiologists should be familiar with the imaging appearance of these tumors to reach an accurate diagnosis.

  9. Fibroblastic and myofibroblastic tumors of the head and neck: Comprehensive imaging-based review with pathologic correlation

    International Nuclear Information System (INIS)

    Hourani, Roula; Taslakian, Bedros; Shabb, Nina S.; Nassar, Lara; Hourani, Mukbil H.; Moukarbel, Roger; Sabri, Alain; Rizk, Toni

    2015-01-01

    Highlights: • Almost all fibroblastic tumors are evaluated with non-invasive imaging. • Radiologists should be familiar with the imaging appearance of fibroblastic tumors. • Most appropriate initial examination when fibromatosis coli suspected is ultrasound. • Most common location of ossifying fibromas is the tooth-bearing regions. - Abstract: Fibroblastic and myofibroblastic tumors of the head and neck are a heterogeneous group of disorders characterized by the proliferation of fibroblasts, myofibroblasts, or both. These tumors may be further subclassified on the basis of their behavior as benign, intermediate with malignant potential, or malignant. There are different types of fibroblastic and myofibroblastic tumors that can involve the head and neck including desmoid-type fibromatosis, solitary fibrous tumor, myofibroma/myofibromatosis, nodular fasciitis, nasopharyngeal angiofibroma, fibrosarcoma, dermatofibrosarcoma protuberans, fibromatosis coli, inflammatory myofibroblastic tumor, ossifying fibroma, fibrous histiocytoma, nodular fasciitis, fibromyxoma, hyaline fibromatosis and fibrous hamartoma. Although the imaging characteristics of fibroblastic and myofibroblastic tumors of the head and neck are nonspecific, imaging plays a pivotal role in the noninvasive diagnosis and characterization of these tumors, providing information about the constitution of tumors, their extension and invasion of adjacent structures. Correlation with the clinical history may help limit the differential diagnosis and radiologists should be familiar with the imaging appearance of these tumors to reach an accurate diagnosis

  10. Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells.

    Directory of Open Access Journals (Sweden)

    Gang Cheng

    Full Text Available Compressive mechanical stress produced during growth in a confining matrix limits the size of tumor spheroids, but little is known about the dynamics of stress accumulation, how the stress affects cancer cell phenotype, or the molecular pathways involved.We co-embedded single cancer cells with fluorescent micro-beads in agarose gels and, using confocal microscopy, recorded the 3D distribution of micro-beads surrounding growing spheroids. The change in micro-bead density was then converted to strain in the gel, from which we estimated the spatial distribution of compressive stress around the spheroids. We found a strong correlation between the peri-spheroid solid stress distribution and spheroid shape, a result of the suppression of cell proliferation and induction of apoptotic cell death in regions of high mechanical stress. By compressing spheroids consisting of cancer cells overexpressing anti-apoptotic genes, we demonstrate that mechanical stress-induced apoptosis occurs via the mitochondrial pathway.Our results provide detailed, quantitative insight into the role of micro-environmental mechanical stress in tumor spheroid growth dynamics, and suggest how tumors grow in confined locations where the level of solid stress becomes high. An important implication is that apoptosis via the mitochondrial pathway, induced by compressive stress, may be involved in tumor dormancy, in which tumor growth is held in check by a balance of apoptosis and proliferation.

  11. Down-regulation of Gab1 inhibits cell proliferation and migration in hilar cholangiocarcinoma.

    Directory of Open Access Journals (Sweden)

    Haiquan Sang

    Full Text Available Hilar cholangiocarcinoma is a highly aggressive malignancy originating from the hilar biliary duct epithelium. Due to few effective comprehensive treatments, the prognosis of hilar cholangiocarcinoma is poor. In this study, immunohistochemistry was first used to detect and analyze the expression of Gab1, VEGFR-2, and MMP-9 in hilar cholangiocarcinoma solid tumors and the relationships to the clinical pathological features. Furthermore, Gab1 and VEGFR-2 siRNA were used to interfere the hilar cholangiocarcinoma cell line ICBD-1 and then detect the PI3K/Akt signaling pathway, MMP-9 levels and malignant biological behaviors of tumor cells. The data showed that 1. Gab1, VEGFR-2, and MMP-9 were highly expressed and positively correlated with each other in hilar cholangiocarcinoma tissues, which were related to lymph node metastasis and differentiation. 2. After Gab1 or VEGFR-2 siRNA interference, PI3K/Akt pathway activity and MMP-9 levels were decreased in ICBD-1 cells. At the same time, cell proliferation decreased, cell cycle arrested in G1 phase, apoptosis increased and invasion decreased. These results suggest that the expression of Gab1, VEGFR-2, and MMP-9 are significantly related to the malignant biological behavior of hilar cholangiocarcinoma. Gab1 regulates growth, apoptosis and invasion through the VEGFR-2/Gab1/PI3K/Akt signaling pathway in hilar cholangiocarcinoma cells and influences the invasion of tumor cells via MMP-9.

  12. Down-regulation of Gab1 inhibits cell proliferation and migration in hilar cholangiocarcinoma.

    Science.gov (United States)

    Sang, Haiquan; Li, Tingting; Li, Hangyu; Liu, Jingang

    2013-01-01

    Hilar cholangiocarcinoma is a highly aggressive malignancy originating from the hilar biliary duct epithelium. Due to few effective comprehensive treatments, the prognosis of hilar cholangiocarcinoma is poor. In this study, immunohistochemistry was first used to detect and analyze the expression of Gab1, VEGFR-2, and MMP-9 in hilar cholangiocarcinoma solid tumors and the relationships to the clinical pathological features. Furthermore, Gab1 and VEGFR-2 siRNA were used to interfere the hilar cholangiocarcinoma cell line ICBD-1 and then detect the PI3K/Akt signaling pathway, MMP-9 levels and malignant biological behaviors of tumor cells. The data showed that 1. Gab1, VEGFR-2, and MMP-9 were highly expressed and positively correlated with each other in hilar cholangiocarcinoma tissues, which were related to lymph node metastasis and differentiation. 2. After Gab1 or VEGFR-2 siRNA interference, PI3K/Akt pathway activity and MMP-9 levels were decreased in ICBD-1 cells. At the same time, cell proliferation decreased, cell cycle arrested in G1 phase, apoptosis increased and invasion decreased. These results suggest that the expression of Gab1, VEGFR-2, and MMP-9 are significantly related to the malignant biological behavior of hilar cholangiocarcinoma. Gab1 regulates growth, apoptosis and invasion through the VEGFR-2/Gab1/PI3K/Akt signaling pathway in hilar cholangiocarcinoma cells and influences the invasion of tumor cells via MMP-9.

  13. Silencing NPAS2 promotes cell growth and invasion in DLD-1 cells and correlated with poor prognosis of colorectal cancer

    International Nuclear Information System (INIS)

    Xue, Xiaofeng; Liu, Fei; Han, Ye; Li, Pu; Yuan, Bin; Wang, Xu; Chen, Yan; Kuang, Yuting; Zhi, Qiaoming; Zhao, Hong

    2014-01-01

    Highlights: • NPAS2 mRNA was down-regulated in clinical colorectal cancer tissues. • Low NPAS2 level was associated with the tumor size, TNM stage and distance metastasis in CRC. • Silencing NPAS2 promoted cell proliferation, the wound healing and cell invasion abilities. - Abstract: Emerging evidences show that circadian rhythm disorder is an important factor of tumor initiation and development. Neuronal PAS domain protein2 (NPAS2), which is the largest circadian gene, has been proved to be a novel prognostic biomarker in breast cancer and non-Hodgkin’s lymphoma. However, the potential functions of NPAS2 in colorectal cancer are still unknown. In our present study, we detected the mRNA expressions of NPAS2 in 108 CRC patients by RT-PCR, and found that NPAS2 expression was significantly down-regulated in tumor tissues than that in NATs. Clinicopathologic analysis revealed that low expression of NPAS2 was associated with the tumor size, TNM stage and tumor distance metastasis in colorectal cancer (p < 0.05). Furthermore, we effectively down-regulated NPAS2 mRNA expression by transfecting RNA interfere fragments into DLD-1 cells, and our results in vitro demonstrated that silencing NPAS2 expression could promote cell proliferation, cell invasion and increase the wound healing ability (p < 0.05). However, down-regulating NPAS2 expression did not influence the apoptotic rate in DLD-1 cells (p > 0.05). In conclusion, our study suggested that NPAS2, functioned as a potential tumor suppressor gene, could serve as a promising target and potential prognostic indicator for colorectal cancer

  14. Silencing NPAS2 promotes cell growth and invasion in DLD-1 cells and correlated with poor prognosis of colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Xiaofeng [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China); Liu, Fei [Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China); Han, Ye [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China); Li, Pu [Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Department of Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025 (China); Yuan, Bin; Wang, Xu; Chen, Yan; Kuang, Yuting [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China); Zhi, Qiaoming, E-mail: strexboy@163.com [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China); Zhao, Hong, E-mail: zhaohong600@sina.com [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China)

    2014-07-25

    Highlights: • NPAS2 mRNA was down-regulated in clinical colorectal cancer tissues. • Low NPAS2 level was associated with the tumor size, TNM stage and distance metastasis in CRC. • Silencing NPAS2 promoted cell proliferation, the wound healing and cell invasion abilities. - Abstract: Emerging evidences show that circadian rhythm disorder is an important factor of tumor initiation and development. Neuronal PAS domain protein2 (NPAS2), which is the largest circadian gene, has been proved to be a novel prognostic biomarker in breast cancer and non-Hodgkin’s lymphoma. However, the potential functions of NPAS2 in colorectal cancer are still unknown. In our present study, we detected the mRNA expressions of NPAS2 in 108 CRC patients by RT-PCR, and found that NPAS2 expression was significantly down-regulated in tumor tissues than that in NATs. Clinicopathologic analysis revealed that low expression of NPAS2 was associated with the tumor size, TNM stage and tumor distance metastasis in colorectal cancer (p < 0.05). Furthermore, we effectively down-regulated NPAS2 mRNA expression by transfecting RNA interfere fragments into DLD-1 cells, and our results in vitro demonstrated that silencing NPAS2 expression could promote cell proliferation, cell invasion and increase the wound healing ability (p < 0.05). However, down-regulating NPAS2 expression did not influence the apoptotic rate in DLD-1 cells (p > 0.05). In conclusion, our study suggested that NPAS2, functioned as a potential tumor suppressor gene, could serve as a promising target and potential prognostic indicator for colorectal cancer.

  15. Upper urinary tract tumors

    DEFF Research Database (Denmark)

    Gandrup, Karen L; Nordling, Jørgen; Balslev, Ingegerd

    2014-01-01

    BACKGROUND: Computed tomography urography (CTU) is used widely in the work-up of patients with symptoms of urinary tract lesions. Preoperative knowledge of whether a tumor is invasive or non-invasive is important for the choice of surgery. So far there are no studies about the distinction...... of invasive and non-invasive tumors in ureter and renal pelvis based on the enhancement measured with Hounsfield Units. PURPOSE: To examine the value of CTU using split-bolus technique to distinguish non-invasive from invasive urothelial carcinomas in the upper urinary tract. MATERIAL AND METHODS: Patients...... obtained at CTU could distinguish between invasive and non-invasive lesions. No patients had a CTU within the last year before the examination that resulted in surgery. CONCLUSION: A split-bolus CTU cannot distinguish between invasive and non-invasive urothelial tumors in the upper urinary tract...

  16. Overexpression of activin-A and -B in malignant mesothelioma – Attenuated Smad3 signaling responses and ERK activation promote cell migration and invasive growth

    Energy Technology Data Exchange (ETDEWEB)

    Tamminen, Jenni A.; Yin, Miao [Research Programs Unit, Translational Cancer Biology, University of Helsinki (Finland); Transplantation Laboratory, Haartman Institute, University of Helsinki (Finland); Rönty, Mikko [Helsinki University Central Hospital Laboratory, Helsinki (Finland); Department of Pathology, University of Helsinki (Finland); Sutinen, Eva [Helsinki University Central Hospital Laboratory, Helsinki (Finland); Department of Medicine, Division of Pulmonary Medicine, University of Helsinki (Finland); Pasternack, Arja; Ritvos, Olli [Helsinki University Central Hospital Laboratory, Helsinki (Finland); Department of Bacteriology and Immunology, University of Helsinki (Finland); Myllärniemi, Marjukka [Transplantation Laboratory, Haartman Institute, University of Helsinki (Finland); Helsinki University Central Hospital Laboratory, Helsinki (Finland); Department of Medicine, Division of Pulmonary Medicine, University of Helsinki (Finland); Koli, Katri, E-mail: katri.koli@helsinki.fi [Research Programs Unit, Translational Cancer Biology, University of Helsinki (Finland); Transplantation Laboratory, Haartman Institute, University of Helsinki (Finland)

    2015-03-01

    Activin-A and activin-B, members of the TGF-β superfamily, are regulators of reproductive functions, inflammation and wound healing. These dimeric molecules regulate various cellular activities such as proliferation, migration and suvival. Malignant mesothelioma is an asbestos exposure related tumor affecting mainly pleura and it usually has a dismal prognosis. Here, we demonstrate that both activin-A and -B are abundantly expressed in mesothelioma tumor tissue as well as in cultured primary and established mesothelioma cells. Migratory and invasive mesothelioma cells were also found to have attenuated activation of the Smad2/3 pathway in response to activins. Migration and invasive growth of the cells in three-dimentional matrix was prevented by inhibition of activin activity using a soluble activin receptor 2B (sActR2B-Fc). This was associated with decreased ERK activity. Furthermore, migration and invasive growth was significantly inhibited by blocking ERK phosphorylation. Mesothelioma tumors are locally invasive and our results clearly suggest that acivins have a tumor-promoting function in mesothelioma through increasing expression and switching from canonical Smad3 pathway to non-canonical ERK pathway signaling. Blocking activin activity offers a new therapeutic approach for inhibition of mesothelioma invasive growth. - Highlights: • Activin-A and activin-B are highly expressed in mesothelioma. • Mesothelioma cell migration and invasive growth can be blocked with sActR2B. • Activin induced Smad3 activity is attenuated in invasive mesothelioma cells. • Activins induce ERK activity in mesothelioma cells.

  17. Histogram analysis parameters of apparent diffusion coefficient reflect tumor cellularity and proliferation activity in head and neck squamous cell carcinoma.

    Science.gov (United States)

    Surov, Alexey; Meyer, Hans Jonas; Winter, Karsten; Richter, Cindy; Hoehn, Anna-Kathrin

    2018-05-04

    Our purpose was to analyze associations between apparent diffusion coefficient (ADC) histogram analysis parameters and histopathologicalfeatures in head and neck squamous cell carcinoma (HNSCC). The study involved 32 patients with primary HNSCC. For every tumor, the following histogram analysis parameters were calculated: ADCmean, ADCmax, ADC min , ADC median , ADC mode , P10, P25, P75, P90, kurtosis, skewness, and entropy. Furthermore, proliferation index KI 67, cell count, total and average nucleic areas were estimated. Spearman's correlation coefficient (p) was used to analyze associations between investigated parameters. In overall sample, all ADC values showed moderate inverse correlations with KI 67. All ADC values except ADCmax correlated inversely with tumor cellularity. Slightly correlations were identified between total/average nucleic area and ADC mean , ADC min , ADC median , and P25. In G1/2 tumors, only ADCmode correlated well with Ki67. No statistically significant correlations between ADC parameters and cellularity were found. In G3 tumors, Ki 67 correlated with all ADC parameters except ADCmode. Cell count correlated well with all ADC parameters except ADCmax. Total nucleic area correlated inversely with ADC mean , ADC min , ADC median , P25, and P90. ADC histogram parameters reflect proliferation potential and cellularity in HNSCC. The associations between histopathology and imaging depend on tumor grading.

  18. Autocrine IL-6 mediates pituitary tumor senescence

    Science.gov (United States)

    Fuertes, Mariana; Ajler, Pablo; Carrizo, Guillermo; Cervio, Andrés; Sevlever, Gustavo; Stalla, Günter K.; Arzt, Eduardo

    2017-01-01

    Cellular senescence is a stable proliferative arrest state. Pituitary adenomas are frequent and mostly benign, but the mechanism for this remains unknown. IL-6 is involved in pituitary tumor progression and is produced by the tumoral cells. In a cell autonomous fashion, IL-6 participates in oncogene-induced senescence in transduced human melanocytes. Here we prove that autocrine IL-6 participates in pituitary tumor senescence. Endogenous IL-6 inhibition in somatotroph MtT/S shRNA stable clones results in decreased SA-β-gal activity and p16INK4a but increased pRb, proliferation and invasion. Nude mice injected with IL-6 silenced clones develop tumors contrary to MtT/S wild type that do not, demonstrating that clones that escape senescence are capable of becoming tumorigenic. When endogenous IL-6 is silenced, cell cultures derived from positive SA-β-gal human tumor samples decrease the expression of the senescence marker. Our results establish that IL-6 contributes to maintain senescence by its autocrine action, providing a natural model of IL-6 mediated benign adenoma senescence. PMID:27902467

  19. Telmisartan Exerts Anti-Tumor Effects by Activating Peroxisome Proliferator-Activated Receptor-γ in Human Lung Adenocarcinoma A549 Cells

    Directory of Open Access Journals (Sweden)

    Juan Li

    2014-03-01

    Full Text Available Telmisartan, a member of the angiotensin II type 1 receptor blockers, is usually used for cardiovascular diseases. Recent studies have showed that telmisartan has the property of PPARγ activation. Meanwhile, PPARγ is essential for tumor proliferation, invasion and metastasis. In this work we explore whether telmisartan could exert anti-tumor effects through PPARγ activation in A549 cells. MTT and trypan blue exclusion assays were included to determine the survival rates and cell viabilities. RT-PCR and western blotting were used to analyze the expression of ICAM-1, MMP-9 and PPARγ. DNA binding activity of PPARγ was evaluated by EMSA. Our data showed that the survival rates and cell viabilities of A549 cells were all reduced by telmisartan in a time- and concentration-dependent manner. Meanwhile, our results also demonstrated that telmisartan dose-dependently inhibited the expression of ICAM-1 and MMP-9. Moreover, the cytotoxic and anti-proliferative effects, ICAM-1 and MMP-9 inhibitive properties of telmisartan were totally blunted by the PPARγ antagonist GW9662. Our findings also showed that the expression of PPARγ was up-regulated by telmisartan in a dose dependent manner. And, the EMSA results also figured out that DNA binding activity of PPARγ was dose-dependently increased by telmisartan. Additionally, our data also revealed that telmisartan-induced PPARγ activation was abrogated by GW9662. Taken together, our results indicated that telmisartan inhibited the expression of ICAM-1 and MMP-9 in A549 cells, very likely through the up-regulation of PPARγ synthesis.

  20. Lattice-based model of ductal carcinoma in situ suggests rules for breast cancer progression to an invasive state.

    Directory of Open Access Journals (Sweden)

    Eline Boghaert

    2014-12-01

    Full Text Available Ductal carcinoma in situ (DCIS is a heterogeneous group of non-invasive lesions of the breast that result from abnormal proliferation of mammary epithelial cells. Pathologists characterize DCIS by four tissue morphologies (micropapillary, cribriform, solid, and comedo, but the underlying mechanisms that distinguish the development and progression of these morphologies are not well understood. Here we explored the conditions leading to the emergence of the different morphologies of DCIS using a two-dimensional multi-cell lattice-based model that incorporates cell proliferation, apoptosis, necrosis, adhesion, and contractility. We found that the relative rates of cell proliferation and apoptosis governed which of the four morphologies emerged. High proliferation and low apoptosis favored the emergence of solid and comedo morphologies. In contrast, low proliferation and high apoptosis led to the micropapillary morphology, whereas high proliferation and high apoptosis led to the cribriform morphology. The natural progression between morphologies cannot be investigated in vivo since lesions are usually surgically removed upon detection; however, our model suggests probable transitions between these morphologies during breast cancer progression. Importantly, cribriform and comedo appear to be the ultimate morphologies of DCIS. Motivated by previous experimental studies demonstrating that tumor cells behave differently depending on where they are located within the mammary duct in vivo or in engineered tissues, we examined the effects of tissue geometry on the progression of DCIS. In agreement with our previous experimental work, we found that cells are more likely to invade from the end of ducts and that this preferential invasion is regulated by cell adhesion and contractility. This model provides additional insight into tumor cell behavior and allows the exploration of phenotypic transitions not easily monitored in vivo.

  1. Effect of troglitazone on tumor growth and pulmonary metastasis development of the mouse osteosarcoma cell line LM8

    International Nuclear Information System (INIS)

    Aizawa, Junichi; Sakayama, Kenshi; Kamei, Setsuya; Kidani, Teruki; Yamamoto, Haruyasu; Norimatsu, Yoshiaki; Masuno, Hiroshi

    2010-01-01

    Osteosarcoma often develops micrometastases in the lung prior to diagnosis, causing a fatal outcome. Therefore, the prevention of pulmonary metastases is critical for the improvement of the prognosis of patients with osteosarcoma. The purpose of this study was to investigate whether troglitazone (TGZ) is considered as possible therapeutics in the treatment of growth and metastasis of osteosarcoma. LM8 cells were treated for 3 days with various concentrations of TGZ. The effect of TGZ on cell proliferation was determined by DNA measurement in the cultures and 5-bromo-2'-deoxyuridine incorporation study. The assay of cell invasion and motility was performed using either the Matrigel-coated cell culture inserts or the uncoated cell culture inserts in the invasion chambers. The effect of TGZ on Akt signaling was assessed by Western blot analysis of Akt and p-Akt. The effects of oral administration of either TGZ (TGZ group) or ethanol (control group) on the growth of primary tumor and the development of pulmonary metastasis were examined in nude mice implanted with LM8 cells on their backs. The expression and activity of matrix metalloproteinase 2 (MMP-2) within the tumor were determined by immunohistochemistry and zymography. The microvessel density (MVD) within the tumor was determined by immunohistochemistry for CD34. TGZ dose-dependently inhibits cell proliferation. TGZ-treated cells were less invasive and less motile than untreated cells. The activity of MMP-2 secreted by TGZ-treated cells was lower than that secreted by untreated cells. TGZ decreased the level of p-Akt. The primary tumor mass was smaller in the TGZ group than in the control group. The TGZ group had less metastatic tumors in the lung compared with the control group. The expression and activity of MMP-2 within the tumor of the TGZ group were lower than those of the control group. The MVD within the tumor of the TGZ group was lower than that of the control group. Inhibition of Akt signaling by

  2. Effect of troglitazone on tumor growth and pulmonary metastasis development of the mouse osteosarcoma cell line LM8

    Directory of Open Access Journals (Sweden)

    Kidani Teruki

    2010-02-01

    Full Text Available Abstract Background Osteosarcoma often develops micrometastases in the lung prior to diagnosis, causing a fatal outcome. Therefore, the prevention of pulmonary metastases is critical for the improvement of the prognosis of patients with osteosarcoma. The purpose of this study was to investigate whether troglitazone (TGZ is considered as possible therapeutics in the treatment of growth and metastasis of osteosarcoma. Methods LM8 cells were treated for 3 days with various concentrations of TGZ. The effect of TGZ on cell proliferation was determined by DNA measurement in the cultures and 5-bromo-2'-deoxyuridine incorporation study. The assay of cell invasion and motility was performed using either the Matrigel-coated cell culture inserts or the uncoated cell culture inserts in the invasion chambers. The effect of TGZ on Akt signaling was assessed by Western blot analysis of Akt and p-Akt. The effects of oral administration of either TGZ (TGZ group or ethanol (control group on the growth of primary tumor and the development of pulmonary metastasis were examined in nude mice implanted with LM8 cells on their backs. The expression and activity of matrix metalloproteinase 2 (MMP-2 within the tumor were determined by immunohistochemistry and zymography. The microvessel density (MVD within the tumor was determined by immunohistochemistry for CD34. Results TGZ dose-dependently inhibits cell proliferation. TGZ-treated cells were less invasive and less motile than untreated cells. The activity of MMP-2 secreted by TGZ-treated cells was lower than that secreted by untreated cells. TGZ decreased the level of p-Akt. The primary tumor mass was smaller in the TGZ group than in the control group. The TGZ group had less metastatic tumors in the lung compared with the control group. The expression and activity of MMP-2 within the tumor of the TGZ group were lower than those of the control group. The MVD within the tumor of the TGZ group was lower than that of the

  3. Targeting ILK and β4 integrin abrogates the invasive potential of ovarian cancer

    International Nuclear Information System (INIS)

    Choi, Yoon Pyo; Kim, Baek Gil; Gao, Ming-Qing; Kang, Suki; Cho, Nam Hoon

    2012-01-01

    Highlights: ► The potential of targeting ILK and integrins for highly aggressive ovarian cancer. ► Unanticipated synergistic effect for the combination of ILK/β4 integrin. ► Combination of ILK/β4 integrin effectively inhibited the PI3K/Akt/Rac1 cascade. ► Targeting of β4 integrin/ILK had potent inhibitory effects in ovarian cancer. -- Abstract: Integrins and integrin-linked kinase (ILK) are essential to cancerous invasion because they mediate physical interactions with the extracellular matrix, and regulate oncogenic signaling pathways. The purpose of our study is to determine whether deletion of β1 and β4 integrin and ILK, alone or in combination, has antitumoral effects in ovarian cancer. Expression of β1 and β4 integrin and ILK was analyzed by immunohistochemistry in 196 ovarian cancer tissue samples. We assessed the effects of depleting these molecules with shRNAs in ovarian cancer cells by Western blot, conventional RT-PCR, cell proliferation, migration, invasion, and in vitro Rac1 activity assays, and in vivo xenograft formation assays. Overexpression of β4 integrin and ILK in human ovarian cancer specimens was found to correlate with tumor aggressiveness. Depletion of these targets efficiently suppresses ovarian cancer cell proliferation, migration, and invasion in vitro and xenograft tumor formation in vivo. We also demonstrated that single depletion of ILK or combination depletion of β4 integrin/ILK inhibits phosphorylation of downstream signaling targets, p-Ser 473 Akt and p-Thr202/Tyr204 Erk1/2, and activation of Rac1, as well as reduce expression of MMP-2 and MMP-9 and increase expression of caspase-3 in vitro. In conclusion, targeting β4 integrin combined with ILK can instigate the latent tumorigenic potential and abrogate the invasive potential in ovarian cancer.

  4. Targeting ILK and {beta}4 integrin abrogates the invasive potential of ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yoon Pyo; Kim, Baek Gil [BK21 Project for Medical Science, Yonsei University College of Medicine, Seoul (Korea, Republic of); Department of Pathology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Gao, Ming-Qing; Kang, Suki [Department of Pathology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Cho, Nam Hoon, E-mail: cho1988@yuhs.ac [BK21 Project for Medical Science, Yonsei University College of Medicine, Seoul (Korea, Republic of); Department of Pathology, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer The potential of targeting ILK and integrins for highly aggressive ovarian cancer. Black-Right-Pointing-Pointer Unanticipated synergistic effect for the combination of ILK/{beta}4 integrin. Black-Right-Pointing-Pointer Combination of ILK/{beta}4 integrin effectively inhibited the PI3K/Akt/Rac1 cascade. Black-Right-Pointing-Pointer Targeting of {beta}4 integrin/ILK had potent inhibitory effects in ovarian cancer. -- Abstract: Integrins and integrin-linked kinase (ILK) are essential to cancerous invasion because they mediate physical interactions with the extracellular matrix, and regulate oncogenic signaling pathways. The purpose of our study is to determine whether deletion of {beta}1 and {beta}4 integrin and ILK, alone or in combination, has antitumoral effects in ovarian cancer. Expression of {beta}1 and {beta}4 integrin and ILK was analyzed by immunohistochemistry in 196 ovarian cancer tissue samples. We assessed the effects of depleting these molecules with shRNAs in ovarian cancer cells by Western blot, conventional RT-PCR, cell proliferation, migration, invasion, and in vitro Rac1 activity assays, and in vivo xenograft formation assays. Overexpression of {beta}4 integrin and ILK in human ovarian cancer specimens was found to correlate with tumor aggressiveness. Depletion of these targets efficiently suppresses ovarian cancer cell proliferation, migration, and invasion in vitro and xenograft tumor formation in vivo. We also demonstrated that single depletion of ILK or combination depletion of {beta}4 integrin/ILK inhibits phosphorylation of downstream signaling targets, p-Ser 473 Akt and p-Thr202/Tyr204 Erk1/2, and activation of Rac1, as well as reduce expression of MMP-2 and MMP-9 and increase expression of caspase-3 in vitro. In conclusion, targeting {beta}4 integrin combined with ILK can instigate the latent tumorigenic potential and abrogate the invasive potential in ovarian cancer.

  5. Lysosomal cysteine peptidases - Molecules signaling tumor cell death and survival.

    Science.gov (United States)

    Pišlar, Anja; Perišić Nanut, Milica; Kos, Janko

    2015-12-01

    Lysosomal cysteine peptidases - cysteine cathepsins - are general intracellular protein-degrading enzymes that control also a variety of specific physiological processes. They can trigger irreversible events leading to signal transduction and activation of signaling pathways, resulting in cell survival and proliferation or cell death. In cancer cells, lysosomal cysteine peptidases are involved in multiple processes during malignant progression. Their translocation from the endosomal/lysosomal pathway to nucleus, cytoplasm, plasma membrane and extracellular space enables the activation and remodeling of a variety of tumor promoting proteins. Thus, lysosomal cysteine peptidases interfere with cytokine/chemokine signaling, regulate cell adhesion and migration and endocytosis, are involved in the antitumor immune response and apoptosis, and promote cell invasion, angiogenesis and metastasis. Further, lysosomal cysteine peptidases modify growth factors and receptors involved in tyrosine kinase dependent pathways such as MAPK, Akt and JNK, thus representing key signaling tools for the activation of tumor cell growth and proliferation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. PPARγ inhibits ovarian cancer cells proliferation through upregulation of miR-125b

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Shuang, E-mail: luoshuangsch@163.com [Department of Obstetrics and Gynecology, Suining Central Hospital, Suining (China); Wang, Jidong [Department of Gynecology and Obsterics, Jinan Central Hospital, Jinan (China); Ma, Ying [Department of Otorhinolaryngolgy, Suining Central Hospital, Suining (China); Yao, Zhenwei [Department of Gynecology and Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Pan, Hongjuan [Department of Gynecology and Obsterics, Zhongshan Hospital, Wuhan (China)

    2015-06-26

    miR-125b has essential roles in coordinating tumor proliferation, angiogenesis, invasiveness, metastasis and chemotherapy recurrence. In ovarian cancer miR-125b has been shown to be downregulated and acts as a tumor suppressor by targeting proto-oncogene BCL3. PPARγ, a multiple functional transcription factor, has been reported to have anti-tumor effects through inhibition of proliferation and induction of differentiation and apoptosis by targeting the tumor related genes. However, it is unclear whether miR-125b is regulated by PPARγ in ovarian cancer. In this study, we demonstrated that the miR-125b downregulated in ovarian cancer tissues and cell lines. Ligands-activated PPARγ suppressed proliferation of ovarian cancer cells and this PPARγ-induced growth inhibition is mediated by the upregulation of miR-125b. PPARγ promoted the expression of miR-125b by directly binding to the responsive element in miR-125b gene promoter region. Thus, our results suggest that PPARγ can induce growth suppression of ovarian cancer by upregulating miR-125b which inhibition of proto-oncogene BCL3. These findings will extend our understanding of the function of PPARγ in tumorigenesis and miR-125b may be a therapeutic intervention of ovarian cancer. - Highlights: • miR-125b is down-regulated in ovarian cancer tissues and cells. • PPARγ upregulates miR-125b and downregulates its target gene BCL3 expression. • Silence of miR-125b attenuates PPARγ-mediated growth suppression of ovarian cancer cells. • PPARγ promotes the transcription of miR-125b via binding to PPARE in miR-125b gene promoter region.

  7. Bone Marrow Suppression by c-Kit Blockade Enhances Tumor Growth of Colorectal Metastases through the Action of Stromal Cell-Derived Factor-1

    Directory of Open Access Journals (Sweden)

    Kathrin Rupertus

    2012-01-01

    Full Text Available Background. Mobilization of c-Kit+ hematopoietic cells (HCs contributes to tumor vascularization. Whereas survival and proliferation of HCs are regulated by binding of the stem cell factor to its receptor c-Kit, migration of HCs is directed by stromal cell-derived factor (SDF-1. Therefore, targeting migration of HCs provides a promising new strategy of anti-tumor therapy. Methods. BALB/c mice (=16 were pretreated with an anti-c-Kit antibody followed by implantation of CT26.WT-GFP colorectal cancer cells into dorsal skinfold chambers. Animals (=8 additionally received a neutralizing anti-SDF-1 antibody. Animals (=8 treated with a control antibody served as controls. Investigations were performed using intravital fluorescence microscopy, immunohistochemistry, flow cytometry and western blot analysis. Results. Blockade of c-Kit significantly enhanced tumor cell engraftment compared to controls due to stimulation of tumor cell proliferation and invasion without markedly affecting tumor vascularization. C-Kit blockade significantly increased VEGF and CXCR4 expression within the growing tumors. Neutralization of SDF-1 completely antagonized this anti-c-Kit-associated tumor growth by suppression of tumor neovascularization, inhibition of tumor cell proliferation and reduction of muscular infiltration. Conclusion. Our study indicates that bone marrow suppression via anti-c-Kit pretreatment enhances tumor cell engraftment of colorectal metastases due to interaction with the SDF-1/CXCR4 pathway which is involved in HC-mediated tumor angiogenesis.

  8. Downregulated TIPE2 is associated with poor prognosis and promotes cell proliferation in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Li, Yuexia; Li, Xiaohui; Liu, Gang; Sun, Rongqing; Wang, Lirui; Wang, Jing; Wang, Hongmin

    2015-01-01

    Highlights: • TIPE2 is down-regulated in NSCLC tissues. • TIPE2 inhibits NSCLC cell proliferation, colony formation and invasion. • TIPE2 reduces the anti-apoptotic Bcl-XL protein and mesenchymal marker N-cadherin expression. - Abstract: The present study aims to investigate the expression pattern of TIPE2 protein and its clinical significance in human non-small cell lung cancer (NSCLC). We investigated the expression levels of TIPE2 in 96 NSCLC tumor samples by immunohistochemistry and then analyzed its clinical significance. Furthermore, the role of TIPE2 on the biological properties of the NSCLC cell line H1299 and A549 was experimentally tested in vitro and in vivo. We found that the expression level of TIPE2 was significantly higher in normal lung tissues compared with NSCLC tissues (P < 0.001), and TIPE2 downregulation was significantly correlated with advanced TNM stage (P = 0.006). TIPE2 expression was lower in lung cancer cell lines than normal bronchial cell line HBE. Transfection of TIPE2 plasmid was performed in H1299 and A549 cells. TIPE2 overexpression inhibited lung cancer cell proliferation, colony formation and cell invasive in vitro, and prevented lung tumor growth in vivo. In addition, TIPE2 transfection reduced the anti-apoptotic Bcl-XL protein and mesenchymal marker N-cadherin expression. Taken together, our results demonstrate that TIPE2 might serve as a tumor suppressor in NSCLC progression

  9. Downregulated TIPE2 is associated with poor prognosis and promotes cell proliferation in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuexia [Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 (China); Li, Xiaohui [Department of Cardiovascular Surgery, Henan Provincial People’s Hospital, Zhengzhou, Henan 450003 (China); Liu, Gang; Sun, Rongqing; Wang, Lirui [Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 (China); Wang, Jing, E-mail: jing_wang1980@163.com [Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 (China); Wang, Hongmin, E-mail: hmwangzz@126.com [Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 (China)

    2015-01-30

    Highlights: • TIPE2 is down-regulated in NSCLC tissues. • TIPE2 inhibits NSCLC cell proliferation, colony formation and invasion. • TIPE2 reduces the anti-apoptotic Bcl-XL protein and mesenchymal marker N-cadherin expression. - Abstract: The present study aims to investigate the expression pattern of TIPE2 protein and its clinical significance in human non-small cell lung cancer (NSCLC). We investigated the expression levels of TIPE2 in 96 NSCLC tumor samples by immunohistochemistry and then analyzed its clinical significance. Furthermore, the role of TIPE2 on the biological properties of the NSCLC cell line H1299 and A549 was experimentally tested in vitro and in vivo. We found that the expression level of TIPE2 was significantly higher in normal lung tissues compared with NSCLC tissues (P < 0.001), and TIPE2 downregulation was significantly correlated with advanced TNM stage (P = 0.006). TIPE2 expression was lower in lung cancer cell lines than normal bronchial cell line HBE. Transfection of TIPE2 plasmid was performed in H1299 and A549 cells. TIPE2 overexpression inhibited lung cancer cell proliferation, colony formation and cell invasive in vitro, and prevented lung tumor growth in vivo. In addition, TIPE2 transfection reduced the anti-apoptotic Bcl-XL protein and mesenchymal marker N-cadherin expression. Taken together, our results demonstrate that TIPE2 might serve as a tumor suppressor in NSCLC progression.

  10. TGFβ1 induces apoptosis in invasive prostate cancer and bladder cancer cells via Akt-independent, p38 MAPK and JNK/SAPK-mediated activation of caspases

    International Nuclear Information System (INIS)

    Al-Azayzih, Ahmad; Gao, Fei; Goc, Anna; Somanath, Payaningal R.

    2012-01-01

    Highlights: ► TGFβ induced apoptosis in invasive prostate cancer and bladder cancer cells. ► TGFβ inhibited prostate/bladder cancer cell proliferation and colony/foci formation. ► TGFβ induced prostate/bladder cancer cell apoptosis independent of Akt inhibition. ► TGFβ inhibited ERK1/2 phosphorylation in prostate/bladder cancer cells. ► TGFβ induced p38 MAPK and JNK-mediated activation of caspases-9, -8 and -3. -- Abstract: Recent findings indicate that advanced stage cancers shun the tumor suppressive actions of TGFβ and inexplicably utilize the cytokine as a tumor promoter. We investigated the effect of TGFβ1 on the survival and proliferation of invasive prostate (PC3) and bladder (T24) cancer cells. Our study indicated that TGFβ1 decreased cell viability and induced apoptosis in invasive human PC3 and T24 cells via activation of p38 MAPK-JNK-Caspase9/8/3 pathway. Surprisingly, no change in the phosphorylation of pro-survival Akt kinase was observed. We postulate that TGFβ1 pathway may be utilized for specifically targeting urological cancers without inflicting side effects on normal tissues.

  11. NDRG2 inhibits hepatocellular carcinoma adhesion, migration and invasion by regulating CD24 expression

    International Nuclear Information System (INIS)

    Zheng, Jin; Guo, Hang; Tao, Yurong; Xue, Yan; Jiang, Ning; Yao, Libo; Liu, Wenchao; Li, Yan; Yang, Jiandong; Liu, Qiang; Shi, Ming; Zhang, Rui; Shi, Hengjun; Ren, Qinyou; Ma, Ji

    2011-01-01

    The prognosis of most hepatocellular carcinoma (HCC) patients is poor due to the high metastatic rate of the disease. Understanding the molecular mechanisms underlying HCC metastasis is extremely urgent. The role of CD24 and NDRG2 (N-myc downstream-regulated gene 2), a candidate tumor suppressor gene, has not yet been explored in HCC. The mRNA and protein expression of CD24 and NDRG2 was analyzed in MHCC97H, Huh7 and L-02 cells. Changes in cell adhesion, migration and invasion were detected by up- or down-regulating NDRG2 by adenovirus or siRNA. The expression pattern of NDRG2 and CD24 in HCC tissues and the relationship between NDRG2 and HCC clinical features was analyzed by immunohistochemical and western blotting analysis. NDRG2 expression was negatively correlated with malignancy in HCC. NDRG2 exerted anti-tumor activity by regulating CD24, a molecule that mediates cell-cell interaction, tumor proliferation and adhesion. NDRG2 up-regulation decreased CD24 expression and cell adhesion, migration and invasion. By contrast, NDRG2 down-regulation enhanced CD24 expression and cell adhesion, migration and invasion. Immunohistochemical analysis of 50 human HCC clinical specimens showed a strong correlation between NDRG2 down-regulation and CD24 overexpression (P = 0.04). In addition, increased frequency of NDRG2 down-regulation was observed in patients with elevated AFP serum level (P = 0.006), late TNM stage (P = 0.009), poor differentiation grade (P = 0.002), tumor invasion (P = 0.004) and recurrence (P = 0.024). Our findings indicate that NDRG2 and CD24 regulate HCC adhesion, migration and invasion. The expression level of NDRG2 is closely related to the clinical features of HCC. Thus, NDRG2 plays an important physiological role in HCC metastasis

  12. The relationship between mitotic rate and depth of invasion in biopsies of malignant melanoma

    Directory of Open Access Journals (Sweden)

    Ghasemi Basir HR

    2018-03-01

    Full Text Available Hamid Reza Ghasemi Basir,1,2 Pedram Alirezaei,2 Sara Ahovan,3 Abbas Moradi3 1Department of Pathology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; 2Psoriasis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; 3School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran Background: Malignant melanoma of the skin is a potentially lethal neoplasm that generally originates from atypical melanocytes in the dermal–epidermal junction. When the neoplasm penetrates into the dermis, several variables can affect the extent of its spread, among which depth of invasion has the most important prognostic value. Mitotic rate is another prognostic factor that reflects the biological behavior of the neoplasm.Objective: This study was designed to evaluate the probable relationship between the depth of invasion of malignant melanoma and its mitotic rate.Materials and methods: This study was performed on 50 excisional biopsy specimens that had received the diagnosis of malignant melanoma histopathologically. Tumor characteristics including Breslow thickness, Clark level, T-stage, and tumor mitotic rate were recorded.Results: We observed that at higher Clark levels and higher T-stages, and the mean mitotic rate was significantly increased. Moreover, there was a positive and significant correlation between Breslow thickness and mitotic rate. We demonstrated that one unit increase in mitotic rate was correlated with 0.8 mm increase in Breslow thickness of the tumor.Conclusion: In malignant melanoma, mitotic activity may probably indicate the depth of tumor invasion. Therefore, in incisional biopsies where depth of invasion cannot be accurately determined, the mitotic activity may be used to estimate Breslow thickness, which is necessary for planning surgical management. Keywords: melanoma, mitosis, Breslow, invasion, thickness, proliferation

  13. Preliminary 19F-MRS Study of Tumor Cell Proliferation with 3′-deoxy-3′-fluorothymidine and Its Metabolite (FLT-MP

    Directory of Open Access Journals (Sweden)

    In Ok Ko

    2017-01-01

    Full Text Available The thymidine analogue 3′-deoxy-3′-[18F]fluorothymidine, or [18F]fluorothymidine ([18F]FLT, is used to measure tumor cell proliferation with positron emission tomography (PET imaging technology in nuclear medicine. FLT is phosphorylated by thymidine kinase 1 (TK1 and then trapped inside cells; it is not incorporated into DNA. Imaging with 18F-radiolabeled FLT is a noninvasive technique to visualize cellular proliferation in tumors. However, it is difficult to distinguish between [18F]FLT and its metabolites by PET imaging, and quantification has not been attempted using current imaging methods. In this study, we successfully acquired in vivo F19 spectra of natural or nonradioactive 3′-deoxy-3′-fluorothymidine ([19F]FLT and its monophosphate metabolite (FLT-MP in a tumor xenograft mouse model using 9.4T magnetic resonance imaging (MRI. This preliminary result demonstrates that 19F magnetic resonance spectroscopy (MRS with FLT is suitable for the in vivo assessment of tumor aggressiveness and for early prediction of treatment response.

  14. Antiangiogenic Therapy and Mechanisms of Tumor Resistance in Malignant Glioma

    Directory of Open Access Journals (Sweden)

    Ruman Rahman

    2010-01-01

    Full Text Available Despite advances in surgery, radiation therapy, and chemotherapeutics, patients with malignant glioma have a dismal prognosis. The formations of aberrant tumour vasculature and glioma cell invasion are major obstacles for effective treatment. Angiogenesis is a key event in the progression of malignant gliomas, a process involving endothelial cell proliferation, migration, reorganization of extracellular matrix and tube formation. Such processes are regulated by the homeostatic balance between proangiogenic and antiangiogenic factors, most notably vascular endothelial growth factors (VEGFs produced by glioma cells. Current strategies targeting VEGF-VEGF receptor signal transduction pathways, though effective in normalizing abnormal tumor vasculature, eventually result in tumor resistance whereby a highly infiltrative and invasive phenotype may be adopted. Here we review recent anti-angiogenic therapy for malignant glioma and highlight implantable devices and nano/microparticles as next-generation methods for chemotherapeutic delivery. Intrinsic and adaptive modes of glioma resistance to anti-angiogenic therapy will be discussed with particular focus on the glioma stem cell paradigm.

  15. The correlation of vascularization index and flow index of thyroid cancer ultrasound with tumor malignancy

    Directory of Open Access Journals (Sweden)

    Bing Liao

    2017-06-01

    Full Text Available Objective: To study the correlation of ultrasound vascularization index and flow index of thyroid cancer with tumor malignancy. Methods: A total of 140 patients with thyroid nodule who accepted surgical resection in our hospital between May 2013 and June 2016 were selected as the research subjects, the patients with malignant thyroid nodule were included in the malignant group of the research and patients with benign thyroid nodule were included in the benign group of research. Three-dimensional power Doppler ultrasonography was conducted before operation to determine vascularization index (VI, flow index (FI and vascularization flow index (VFI; tumor tissues were collected after operation to detect the expression of angiogenesis as well as cell proliferation, apoptosis and invasion-related molecules. Results: VI, FI and VFI levels of tumor tissue of malignant group were significantly higher than those of benign group; VEGF, MK, Ang-2, IGF-II, Bcl-2, Livin, Wip1, S100A4, TCF, β-catenin and SATB1 protein expression in tumor tissue of malignant group were significantly higher than those of benign group and positively correlated with VI, FI and VFI levels while CCNG2 and p27 protein expression were significantly lower than those of benign group and negatively correlated with VI, FI and VFI levels. Conclusion: Ultrasound vascularization index and flow index of thyroid cancer increase significantly and are closely related to the angiogenesis as well as cell proliferation, apoptosis and invasion.

  16. Preclinical evaluation of destruxin B as a novel Wnt signaling target suppressing proliferation and metastasis of colorectal cancer using non-invasive bioluminescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Chi-Tai [Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan (China); Center of Excellence for Cancer Research, Taipei Medical University, Taipei, Taiwan (China); Department of Surgery, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan (China); Rao, Yerra Koteswara [Institute of Biochemical Sciences and Technology, Chaoyang University of Technology, Taichung, Taiwan (China); Ye, Min [Department of Natural Medicine, School of Pharmaceutical Sciences, Peking University, Beijing (China); Wu, Wen-Shi [Department of Horticulture and Biotechnology, Chinese Culture University, Taipei, Taiwan (China); Chang, Tung-Chen [Department of Surgery, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan (China); Wang, Liang-Shun [Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan (China); Division of Thoracic Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan (China); Wu, Chih-Hsiung [Center of Excellence for Cancer Research, Taipei Medical University, Taipei, Taiwan (China); Department of Surgery, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan (China); Wu, Alexander T.H., E-mail: chaw1211@tmu.edu.tw [Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan (China); Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, Taiwan (China); Tzeng, Yew-Min, E-mail: ymtzeng@cyut.edu.tw [Institute of Biochemical Sciences and Technology, Chaoyang University of Technology, Taichung, Taiwan (China)

    2012-05-15

    In continuation to our studies toward the identification of direct anti-cancer targets, here we showed that destruxin B (DB) from Metarhizium anisopliae suppressed the proliferation and induced cell cycle arrest in human colorectal cancer (CRC) HT29, SW480 and HCT116 cells. Additionally, DB induced apoptosis in HT29 cells by decreased expression level of anti-apoptotic proteins Bcl-2 and Bcl-xL while increased pro-apoptotic Bax. On the other hand, DB attenuated Wnt-signaling by downregulation of β-catenin, Tcf4 and β-catenin/Tcf4 transcriptional activity, concomitantly with decreased expression of β-catenin target genes cyclin D1, c-myc and survivin. Furthermore, DB affected the migratory and invasive ability of HT29 cells through suppressed MMPs-2 and -9 enzymatic activities. We also found that DB targeted the MAPK and/or PI3K/Akt pathway by reduced expression of Akt, IKK-α, JNK, NF-κB, c-Jun and c-Fos while increased that of IκBα. Finally, we demonstrated that DB inhibited tumorigenesis in HT29 xenograft mice using non-invasive bioluminescence technique. Consistently, tumor samples from DB-treated mice demonstrated suppressed expression of β-catenin, cyclin D1, survivin, and endothelial marker CD31 while increased caspase-3 expression. Collectively, our data supports DB as an inhibitor of Wnt/β-catenin/Tcf signaling pathway that may be beneficial in the CRC management. Highlights: ► Destruxin B (DB) inhibited colorectal cancer cells growth and induced apoptosis. ► MAPK and/or PI3K/Akt cascade cooperates in DB induced apoptosis. ► DB affected the migratory and invasive ability of HT29 cells through MMP-9. ► DB attenuated Wnt-signaling components β-catenin, Tcf4. ► DB attenuated cyclin D1, c-myc, survivin and tumorigenesis in HT29 xenograft mice.

  17. Differentiating invasive and pre-invasive lung cancer by quantitative analysis of histopathologic images

    Science.gov (United States)

    Zhou, Chuan; Sun, Hongliu; Chan, Heang-Ping; Chughtai, Aamer; Wei, Jun; Hadjiiski, Lubomir; Kazerooni, Ella

    2018-02-01

    We are developing automated radiopathomics method for diagnosis of lung nodule subtypes. In this study, we investigated the feasibility of using quantitative methods to analyze the tumor nuclei and cytoplasm in pathologic wholeslide images for the classification of pathologic subtypes of invasive nodules and pre-invasive nodules. We developed a multiscale blob detection method with watershed transform (MBD-WT) to segment the tumor cells. Pathomic features were extracted to characterize the size, morphology, sharpness, and gray level variation in each segmented nucleus and the heterogeneity patterns of tumor nuclei and cytoplasm. With permission of the National Lung Screening Trial (NLST) project, a data set containing 90 digital haematoxylin and eosin (HE) whole-slide images from 48 cases was used in this study. The 48 cases contain 77 regions of invasive subtypes and 43 regions of pre-invasive subtypes outlined by a pathologist on the HE images using the pathological tumor region description provided by NLST as reference. A logistic regression model (LRM) was built using leave-one-case-out resampling and receiver operating characteristic (ROC) analysis for classification of invasive and pre-invasive subtypes. With 11 selected features, the LRM achieved a test area under the ROC curve (AUC) value of 0.91+/-0.03. The results demonstrated that the pathologic invasiveness of lung adenocarcinomas could be categorized with high accuracy using pathomics analysis.

  18. The clinical pathologic research of invasive pituitary adenomas

    International Nuclear Information System (INIS)

    Guo Lingchuan; Zheng Yushuang; Wang Shouli; Hui Guozhen; Li Xiangdong

    2012-01-01

    Objective: To study the pathological morphologic characteristics of invasive pituitary tumor and the affect of vascularization to the tumor's invasion. Methods: One hundred and thirty cases of pituitary adenoma patients were divided into two groups, including invasive pituitary adenomas and non-invasive pituitary adenomas, and the clinical data of two groups were analysed and compared. Results : The difference was statistically significant between the invasive group and the non-invasive group in the incidence rate of pathological morphologic characteristics such as high nuclear cytoplasmic ratio, cell pleomorphism, nuclear atypia and nucleoli appearance (P<0.05); there were nuclear atypia and nucleolus margination in the invasive group through electron microscopy. And there was statistical significant difference in rate of MVD expression which was higher in the invasive group than that of noninvasive group (P<0.05). Conclusion: The pathological morphologic characteristics of pituitary tumor and the high expression of MVD are significantly reference valuable in tumor aggression diagnosis, which provides valuable indicators for early clinical diagnosis of tumor invasion. (authors)

  19. The inhibitory effect of angiotensin II type 1 receptor blocker combined with radiation on the proliferation and invasion ability of human nasopharyngeal carcinoma cells

    International Nuclear Information System (INIS)

    Wang Qiong; Zhao Wei; Li Guiling; Zhang Sheng; Wu Gang

    2008-01-01

    Objective: To investigate the effect of valsartan, an angiotensin II type 1 receptor (AT1 R) blocker, on radiosensitivity, invasive potential and proliferation activity of nasopharyngeal carcinoma cells(CNE-2) in vitro. Methods: Radiosensitization of valsartan on CNE-2 cells in vitro was investigated by colony forming assay. Effect of AT1R blocker combined with radiation on invasive potential of CNE-2 cells was evaluated using 24-well Matrigel invasion chambers (Transwell). Apoptosis-inducing effect of valsartan combined with radiation on apoptosis of CNE-2 was identified by flow cytometry (FCM). Results: When valsartan was given at 10 -9 , 10 -8 and 10 -7 mol/L combined with radiation, sensitivity enhancement ratios (SER) were 1.10, 1.20 and 1.36, and the invasive inhibition rates were 8.11%, 16.49% and 16.77%, respectively. The SER of valsartan on CNE-2 distinctly increased when the exposure time was increased. After 24 h exposure to 10 -8 mol/L valsartan combined with radiation, the apoptosis rate was 1.89% ± 0.09%, which was higher than 1.62% ± 0.06% in radiation alone group (t=4.79, P<0.05). Conclusions: AT1R blocker valsartan combined with radiation can significantly inhibit the proliferation activity of nasopharyngeal carcinoma cells in vitro in a dose- and time-dependent manner. Valsartan combined with radiation can potently inhibit the invasive potential of CNE-2, which may be involved in the mechanism of valsartan treatment in vivo. (authors)

  20. ASPN and GJB2 Are Implicated in the Mechanisms of Invasion of Ductal Breast Carcinomas

    Directory of Open Access Journals (Sweden)

    Bàrbara Castellana, Daniel Escuin, Gloria Peiró, Bárbara Garcia-Valdecasas, Tania Vázquez, Cristina Pons, Maitane Pérez-Olabarria, Agustí Barnadas, Enrique Lerma

    2012-01-01

    Full Text Available The mechanism of progression from ductal carcinoma in situ (DCIS to invasive ductal carcinoma (IDC remains largely unknown. We compared gene expression in tumors with simultaneous DCIS and IDC to decipher how diverse proteins participate in the local invasive process.Twenty frozen tumor specimens with concurrent, but separated, DCIS and IDC were microdissected and evaluated. Total RNA was extracted and microarray analysis was performed using Affymetrix GeneChip® Human Gene 1.0 ST Arrays. Microarray data were validated by quantitative real time reverse transcription-PCR (qRT-PCR and immunohistochemistry. Controls included seven pure in situ carcinomas, eight fragments from normal breast tissue, and a series of mouse breast carcinomas (MMTV-PyMT.Fifty-six genes were differentially expressed between DCIS and IDC samples. The genes upregulated in IDC samples, and probably associated with invasion, were related to the epithelial-mesenchymal transition (ASPN, THBS2, FN1, SPARC, and COL11A1, cellular adhesion (GJB2, cell motility and progression (PLAUR, PLAU, BGN, ADAMTS16, and ENPP2, extracellular matrix degradation (MMP11, MMP13, and MMP14, and growth/proliferation (ST6GAL2. qRT-PCR confirmed the expression patterns of ASPN, GJB2, ENPP2, ST6GAL2, and TMBS10. Expression of the ASPN and GJB2 gene products was detected by immunohistochemistry in invasive carcinoma foci. The association of GJB2 protein expression with invasion was confirmed by qRT-PCR in mouse tumors (P < 0.05.Conclusions: The upregulation of ASPN and GJB2 may play important roles in local invasion of breast ductal carcinomas.

  1. Up-regulation of CHAF1A, a poor prognostic factor, facilitates cell proliferation of colon cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zehua; Cui, Feifei; Yu, Fudong; Peng, Xiao; Jiang, Tao; Chen, Dawei [Department of General Surgery, Shanghai Jiaotong University Affiliated First People’s Hospital, 85 Wujin Road, Shanghai 200080 (China); Lu, Su [Department of Pathology, Shanghai Jiaotong University Affiliated First People’s Hospital, 85 Wujin Road, Shanghai 200080 (China); Tang, Huamei, E-mail: tanghuamei@gmail.com [Department of Pathology, Shanghai Jiaotong University Affiliated First People’s Hospital, 85 Wujin Road, Shanghai 200080 (China); Peng, Zhihai, E-mail: zhihai.peng@hotmail.com [Department of General Surgery, Shanghai Jiaotong University Affiliated First People’s Hospital, 85 Wujin Road, Shanghai 200080 (China)

    2014-06-27

    Highlights: • We identified that CHAF1A was up-regulated in colon tumor mucosa in TMA. • The expression pattern of CHAF1A was validated with qPCR and western-blot. • CHAF1A overexpression is an independent indicator for poor colon cancer survival. • CHAF1A facilitates cell proliferation of colon cancer both in vitro and in vivo. - Abstract: Deregulation of chromatin assembly factor 1, p150 subunit A (CHAF1A) has recently been reported to be involved in the development of some cancer types. In this study, we identified that the frequency of positive CHAF1A staining in primary tumor mucosa (45.8%, 93 of 203 samples) was significantly elevated compared to that in paired normal mucosa (18.7%, 38 of 203 samples). The increased expression was strongly associated with cancer stage, tumor invasion, and histological grade. The five-year survival rate of patients with CHAF1A-positive tumors was remarkably lower than that of patients with CHAF1A-negative tumors. Colon cancer cells with CHAF1A knockdown exhibited decreased cell growth index, reduction in colony formation ability, elevated cell apoptosis rate as well as impaired colon tumorigenicity in nude mice. Hence, CHAF1A upregulation functions as a poor prognostic indicator of colon cancer, potentially contributing to its progression by mediating cancer cell proliferation.

  2. Up-regulation of CHAF1A, a poor prognostic factor, facilitates cell proliferation of colon cancer

    International Nuclear Information System (INIS)

    Wu, Zehua; Cui, Feifei; Yu, Fudong; Peng, Xiao; Jiang, Tao; Chen, Dawei; Lu, Su; Tang, Huamei; Peng, Zhihai

    2014-01-01

    Highlights: • We identified that CHAF1A was up-regulated in colon tumor mucosa in TMA. • The expression pattern of CHAF1A was validated with qPCR and western-blot. • CHAF1A overexpression is an independent indicator for poor colon cancer survival. • CHAF1A facilitates cell proliferation of colon cancer both in vitro and in vivo. - Abstract: Deregulation of chromatin assembly factor 1, p150 subunit A (CHAF1A) has recently been reported to be involved in the development of some cancer types. In this study, we identified that the frequency of positive CHAF1A staining in primary tumor mucosa (45.8%, 93 of 203 samples) was significantly elevated compared to that in paired normal mucosa (18.7%, 38 of 203 samples). The increased expression was strongly associated with cancer stage, tumor invasion, and histological grade. The five-year survival rate of patients with CHAF1A-positive tumors was remarkably lower than that of patients with CHAF1A-negative tumors. Colon cancer cells with CHAF1A knockdown exhibited decreased cell growth index, reduction in colony formation ability, elevated cell apoptosis rate as well as impaired colon tumorigenicity in nude mice. Hence, CHAF1A upregulation functions as a poor prognostic indicator of colon cancer, potentially contributing to its progression by mediating cancer cell proliferation

  3. Enhanced caveolin-1 expression increases migration, anchorage-independent growth and invasion of endometrial adenocarcinoma cells

    International Nuclear Information System (INIS)

    Diaz-Valdivia, Natalia; Bravo, Denisse; Huerta, Hernán; Henriquez, Soledad; Gabler, Fernando; Vega, Margarita; Romero, Carmen; Calderon, Claudia; Owen, Gareth I.; Leyton, Lisette; Quest, Andrew F. G.

    2015-01-01

    Caveolin-1 (CAV1) has been implicated both in tumor suppression and progression, whereby the specific role appears to be context dependent. Endometrial cancer is one of the most common malignancies of the female genital tract; however, little is known about the role of CAV1 in this disease. Here, we first determined by immunohistochemistry CAV1 protein levels in normal proliferative human endometrium and endometrial tumor samples. Then using two endometrial cancer cell lines (ECC: Ishikawa and Hec-1A) we evaluated mRNA and protein levels of CAV1 by real time qPCR and Western blot analysis, respectively. The role of CAV1 expression in ECC malignancy was further studied by either inducing its expression in endometrial cancer cells with the tumor promotor 12-O-tetradecanoyl-phorbol-13-acetate (4β-TPA) or decreasing expression using short-hairpin RNA constructs, and then evaluating the effects of these changes on ECC proliferation, transmigration, matrigel invasion, and colony formation in soft agar. Immunohistochemical analysis of endometrial epithelia revealed that substantially higher levels of CAV1 were present in endometrial tumors than the normal proliferative epithelium. Also, in Ishikawa and Hec-1A endometrial cancer cells CAV1 expression was readily detectable. Upon treatment with 4β-TPA CAV1 levels increased and coincided with augmented cell transmigration, matrigel invasion, as well as colony formation in soft agar. Reduction of CAV1 expression using short-hairpin RNA constructs ablated these effects in both cell types whether treated or not with 4β-TPA. Alternatively, CAV1 expression appeared not to modulate significantly proliferation of these cells. Our study shows that elevated CAV1, observed in patients with endometrial cancer, is linked to enhanced malignancy of endometrial cancer cells, as evidenced by increased migration, invasion and anchorage-independent growth. The online version of this article (doi:10.1186/s12885-015-1477-5) contains

  4. Tumor-derived Matrix Metalloproteinase-13 (MMP-13) correlates with poor prognoses of invasive breast cancer

    International Nuclear Information System (INIS)

    Zhang, Bin; Niu, Yun; Niu, Ruifang; Sun, Baocun; Hao, Xishan; Cao, Xuchen; Liu, Yanxue; Cao, Wenfeng; Zhang, Fei; Zhang, Shiwu; Li, Hongtao; Ning, Liansheng; Fu, Li

    2008-01-01

    Experimental evidence suggests that matrix metalloproteinase-13 (MMP-13) protein may promote breast tumor progression. However, its relevance to the progression of human breast cancer is yet to be established. Furthermore, it is not clear whether MMP-13 can be used as an independent breast cancer biomarker. This study was conducted to assess the expression profile of MMP-13 protein in invasive breast carcinomas to determine its diagnostic and prognostic significance, as well as its correlation with other biomarkers including estrogen receptor (ER), progesterone receptor (PR), Her-2/neu, MMP-2, MMP-9, tissue inhibitor of MMP-1 and -2 (TIMP-1 and TIMP-2). Immunohistochemistry (IHC) was performed on paraffin-embedded tissue microarray containing specimens from 263 breast carcinomas. The intensity and the extent of IHC were scored by pathologists in blind fashion. The correlation of the gene expression profiles with patients' clinicopathological features and clinical outcomes were analyzed for statistical significance. MMP-13 protein was detected in the cytoplasm of the malignant cells and the peritumoral stromal cells. MMP-13 expression by tumor cells (p < 0.001) and stromal fibroblasts (p <0.001) both correlated with carcinoma infiltration of lymph nodes. MMP-13 also correlated with the expression of Her-2/neu (p = 0.015) and TIMP-1 (p < 0.010), respectively in tumor cells. Tumor-derived, but not stromal fibroblast-derived, MMP-13 correlated with aggressive tumor phenotypes. Moreover, high levels of MMP-13 expression were associated with decreased overall survival. In parallel, the prognostic value of MMP-13 expressed by peritumoral fibroblasts seems less significant. Our data suggest that lymph node status, tumor size, Her-2/neu expression, TIMP-1 and MMP-13 expression in cancer cells are independent prognostic factors. Tumor-derived, but not stromal fibroblast-derived, MMP-13 correlated with aggressive tumor phenotypes, and inversely correlated with the

  5. A Multimodal Imaging Approach for Longitudinal Evaluation of Bladder Tumor Development in an Orthotopic Murine Model.

    Directory of Open Access Journals (Sweden)

    Chantal Scheepbouwer

    Full Text Available Bladder cancer is the fourth most common malignancy amongst men in Western industrialized countries with an initial response rate of 70% for the non-muscle invasive type, and improving therapy efficacy is highly needed. For this, an appropriate, reliable animal model is essential to gain insight into mechanisms of tumor growth for use in response monitoring of (new agents. Several animal models have been described in previous studies, but so far success has been hampered due to the absence of imaging methods to follow tumor growth non-invasively over time. Recent developments of multimodal imaging methods for use in animal research have substantially strengthened these options of in vivo visualization of tumor growth. In the present study, a multimodal imaging approach was addressed to investigate bladder tumor proliferation longitudinally. The complementary abilities of Bioluminescence, High Resolution Ultrasound and Photo-acoustic Imaging permit a better understanding of bladder tumor development. Hybrid imaging modalities allow the integration of individual strengths to enable sensitive and improved quantification and understanding of tumor biology, and ultimately, can aid in the discovery and development of new therapeutics.

  6. Human bone marrow mesenchymal stem cells induce collagen production and tongue cancer invasion.

    Directory of Open Access Journals (Sweden)

    Sirpa Salo

    Full Text Available Tumor microenvironment (TME is an active player in carcinogenesis and changes in its composition modify cancer growth. Carcinoma-associated fibroblasts, bone marrow-derived multipotent mesenchymal stem cells (BMMSCs, and inflammatory cells can all affect the composition of TME leading to changes in proliferation, invasion and metastasis formation of carcinoma cells. In this study, we confirmed an interaction between BMMSCs and oral tongue squamous cell carcinoma (OTSCC cells by analyzing the invasion progression and gene expression pattern. In a 3-dimensional myoma organotypic invasion model the presence of BMMSCs inhibited the proliferation but increased the invasion of OTSCC cells. Furthermore, the signals originating from OTSCC cells up-regulated the expression of inflammatory chemokines by BMMSCs, whereas BMMSC products induced the expression of known invasion linked molecules by carcinoma cells. Particularly, after the cell-cell interactions, the chemokine CCL5 was abundantly secreted from BMMSCs and a function blocking antibody against CCL5 inhibited BMMSC enhanced cancer invasion area. However, CCL5 blocking antibody did not inhibit the depth of invasion. Additionally, after exposure to BMMSCs, the expression of type I collagen mRNA in OTSCC cells was markedly up-regulated. Interestingly, also high expression of type I collagen N-terminal propeptide (PINP in vivo correlated with the cancer-specific mortality of OTSCC patients, whereas there was no association between cancer tissue CCL5 levels and the clinical parameters. In conclusion, our results suggest that the interaction between BMMSC and carcinoma cells induce cytokine and matrix molecule expression, of which high level of type I collagen production correlates with the prognosis of OTSCC patients.

  7. Correlation between 11C-choline or 18F-FDG uptake and tumor proliferation: a rabbit bearing lung cancer model study

    International Nuclear Information System (INIS)

    Li Yajun; Bai Renju; Gao Shuo; Li Yansheng; Liu Lei; Jia Wei; Cai Li; Xing Xiling

    2009-01-01

    Objective: Tumor proliferative activity has been recognized as an indicator of malignant degree in lung cancer and related to prognosis. The purpose of this study was to evaluate the feasibility of assessing proliferative activity with 11 C-choline and 18 F-fluorodeoxyglucose (FDG) PET on a rabbit bearing lung VX2 tumor model. Methods: About 0.5 ml of viable VX2 tumor cell suspension was slowly injected into the right lungs of 54 New Zealand white rabbits through a transthoracical needle insertion. 11 C-choline and 18 F-FDG PET scan were performed 10-11 d after tumor implantation. One ear vein was cannulated for administration of the tracers, 11 C-choline PET scan (with Discovery LS PET/CT scanner, GE) was performed 5 rain after intravenously injection of 37 MBq 11 C-choline. Then 18.7 MBq 18 F-FDG was infused at 60 min after 11 C-choline administration and 18 F-FDG PET scan was performed at 60 min after 18 F-FDG administration. The maximal standardized uptake value of tumor was calculated. The animals were euthanized after examination. Histochemical stain with proliferating cell nuclear antigen (PCNA) was performed and PCNA index was obtained to assess tumor proliferation. The difference of 11 C-choline and 18 F-FDG was analyzed using paired student t-test. The correlation of 11 C-choline 18 F-FDG and tumor cell density and PCNA index was analyzed using Pearson linear regression. Results: Of the 54 rabbits, 36 had a solitary pulmonary tumor. The rate of successful generation of a solitary VX2 tumor was 66.7% (36/54). Only 33 rabbits underwent both 11 C-choline and 18 F-FDG PET, and enrolled in this study. The mean cellular density was (547.36 ± 64.78) cells/field and the mean PCNA index was (42.34 ± 15.26)%. 18 F-FDG was higher than 11 C-choline (5.70 ± 3.45 vs 4.02 ± 3.07, t=-3.188, P=0.003). 11 C-choline significantly and positively correlated with PCNA index (r=0.786, P 11 C-choline and tumor cellular density (r=-0.176, P=0.327). 18 F-FDG significantly and

  8. miR-208-3p promotes hepatocellular carcinoma cell proliferation and invasion through regulating ARID2 expression

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Peng; Wu, Dingguo; You, Yu; Sun, Jing; Lu, Lele; Tan, Jiaxing; Bie, Ping, E-mail: bieping2010@163.com

    2015-08-15

    MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression at post-transcriptional level. miRNA dysregulation plays a causal role in cancer progression. In this study, miR-208-3p was highly expressed and directly repressed ARID2 expression. As a result, ARID2 expression in hepatocellular carcinoma (HCC) was decreased. In vitro, miR-208-3p down-regulation and ARID2 over-expression elicited similar inhibitory effects on HCC cell proliferation and invasion. In vivo test results revealed that miR-208-3p down-regulation inhibited HCC tumorigenesis in Hep3B cells. Moreover, ARID2 was possibly a downstream element of transforming growth factor beta1 (TGFβ1)/miR-208-3p/ARID2 regulatory pathway. These findings suggested that miR-208-3p up-regulation is associated with HCC cell progression and may provide a new target for liver cancer treatment. - Highlights: • miR-208-3p was highly expressed and directly repressed the expression of ARID2 in HCC. • miR-208-3p contributed to HCC cell progression both in vitro and in vivo. • Over-expression of ARID2 inhibited the HCC cell proliferation and invasion. • Restoration of ARID2 partly reversed the the effect of miR-208-3p down-regulation on HCC cells. • Newly regulatory pathway: miR-208-3p mediated the repression of ARID2 by TGFβ1 in HCC cells.

  9. Role of the extracellular matrix in variations of invasive pathways in lung cancers

    Energy Technology Data Exchange (ETDEWEB)

    Sá, V.K. de [Universidade de São Paulo, Departamento de Patologia, Faculdade de Medicina, São Paulo, SP (Brazil); Carvalho, L.; Gomes, A.; Alarcão, A.; Silva, M.R.; Couceiro, P.; Sousa, V. [Universidade de Coimbra, Coimbra (Portugal); Soares, F.A. [Hospital A.C. Camargo, São Paulo, SP (Brazil); Capelozzi, V.L. [Universidade de São Paulo, Departamento de Patologia, Faculdade de Medicina, São Paulo, SP (Brazil)

    2013-01-11

    Among the most common features of highly invasive tumors, such as lung adenocarcinomas (AD) and squamous cell carcinomas (SqCC), is the massive degradation of the extracellular matrix. The remarkable qualitative and quantitative modifications of hyaluronidases (HAases), hyaluronan synthases (HAS), E-cadherin adhesion molecules, and the transforming growth factor β (TGF-β) may favor invasion, cellular motility, and proliferation. We examined HAase proteins (Hyal), HAS, E-cadherin, and TGF-β profiles in lung AD subtypes and SqCC obtained from smokers and non-smokers. Fifty-six patients, median age 64 years, who underwent lobectomy for AD (N = 31) and SqCC (N = 25) were included in the study. HAS-1, -2 and -3, and Hyal-1 and -3 were significantly more expressed by tumor cells than normal and stroma cells (P < 0.01). When stratified according to histologic types, HAS-3 and Hyal-1 immunoreactivity was significantly increased in tumor cells of AD (P = 0.01) and stroma of SqCC (P = 0.002), respectively. Tobacco history in patients with AD was significantly associated with increased HAS-3 immunoreactivity in tumor cells (P < 0.01). Stroma cells of SqCC from non-smokers presented a significant association with HAS-3 (P < 0.01). Hyal, HAS, E-cadherin, and TGF-β modulate a different tumor-induced invasive pathway in lung AD subgroups and SqCC. HAases in resected AD and SqCC were strongly related to the prognosis. Therefore, our findings suggest that strategies aimed at preventing high HAS-3 and Hyal-1 synthesis, or local responses to low TGF-β and E-cadherin, may have a greater impact in lung cancer prognosis.

  10. Differential role of EGF and BFGF in human GBM-TIC proliferation: relationship to EGFR-tyrosine kinase inhibitor sensibility.

    Science.gov (United States)

    Bajetto, A; Porcile, C; Pattarozzi, A; Scotti, L; Aceto, A; Daga, A; Barbieri, F; Florio, T

    2013-01-01

    Glioblastoma multiforme (GBM) is among the most devastating human tumors being rapidly fatal despite aggressive surgery, radiation and chemotherapies. It is characterized by extensive dissemination of tumor cells within the brain that hinders complete surgical resection. GBM tumor initiating-cells (TICs) are a rare subpopulation of cells responsible for tumor development, growth, invasiveness and recurrence after chemotherapy. TICs from human GBM can be selected in vitro using the same conditions permissive for the growth of normal neural cells, of which share some features including marker expression, self-renewal capacity, long-term proliferation, and ability to differentiate into neuronal and glial cells. EGFR overexpression and its constitutive activation is one of the most important signaling alteration identified in GBM, and its pharmacological targeting represents an attractive therapeutic goal. We previously demonstrated that human GBM TICs have different sensitivity to the EGFR kinase inhibitors erlotinib and gefitinib, depending on the differential modulation of downstream signaling cascades. In this work we investigated the mechanisms of resistance to erlotinib in two human GBM TIC cultures, analyzing EGF and bFGF individual contribution to proliferation, clonogenicity, and migration. We demonstrated the presence of a small cell subpopulation whose proliferation is supported by EGF and a larger one mainly dependent on bFGF. Thus, insensitivity to EGFR kinase inhibitors as far as TIC proliferation results from a predominant FGFR activation that hides the inhibitory effects induced on EGFR signaling. Conversely, EGF and bFGF induced cell migration with similar efficacy. In addition, unlike neural stem/progenitors cells, the removal of chondroitin sulphate proteoglycans from cell surface was unable to discern EGF- and bFGF-dependent subpopulations in GBM TICs.

  11. [Neuroendocrine tumors of digestive system: morphologic spectrum and cell proliferation (Ki67 index)].

    Science.gov (United States)

    Delektorskaia, V V; Kushliskiĭ, N E

    2013-01-01

    This review deals with the analysis of up-to-date concepts ofdiferent types of human neuroendocrine tumors of the digestive system. It summarizes the information on the specifics of recent histological classifications and criteria of morphological diagnosis accounting histological, ultrastructural and immunohistochemical parameters. Current issues of the nomenclature as well as various systems of grading and staging are discussed. In the light of these criteria the results of the own research clinical value of the determination of cell proliferation in primary and metastatic gastroenteropancreatic neuroendocrine neoplasms on the basis of evaluation of the Ki67 antigen expression are also presented.

  12. Immunohistochemical expression of protein 53, murine double minute 2, B-cell lymphoma 2, and proliferating cell nuclear antigen in odontogenic cysts and keratocystic odontogenic tumor.

    Science.gov (United States)

    Galvão, Hebel Cavalcanti; Gordón-Núñez, Manuel Antonio; de Amorim, Rivadavio Fernandes Batista; Freitas, Roseana de Almeida; de Souza, Lelia Batista

    2013-01-01

    Even though odontogenic cysts share a similar histogenesis, they show different growth and differentiation profile due to differences in the proliferative cellular activity. We perform an immunohistochemical assessment of protein 53 (p53), proliferating cell nuclear antigen (PCNA), B-cell lymphoma 2 (bcl-2), and murine double minute 2 (MDM2) expression in odontogenic cysts and keratocystic odontogenic tumor analyzing their correlation with the biological behavior of these lesions. By the streptavidin-biotin-peroxidase method with antibodies against p53, PCNA, bcl-2, and MDM2 proteins, 11 radicular cysts, 11 dentigerous cysts, and 11 keratocystic odontogenic tumor were analyzed. The non-parametric Mann-Whitney U-test and Kruskall-Wallis test (P ≤ 0.05) were used to analyze the data. Immunopositivity for PCNA was observed in all cases appraised, predominantly in the suprabasal layer of keratocystic odontogenic tumor epithelial lining (SD ± 19.44), but no significant differences were found among the groups of lesions. Bcl-2 immunoexpression was observed especially in the basal layer of keratocystic odontogenic tumor. PCNA LI was significantly higher than bcl-2 LI in keratocystic odontogenic tumor. MDM2 and p53 immunoexpression were not detected in the lesions studied. Among the evaluated lesions, the keratocystic odontogenic tumor showed different immunoexpression of the proliferation and apoptosis markers. The results of this study suggest that the keratocystic odontogenic tumor presents distinct biological behavior of the odontogenic cysts, as for the processes of proliferation, apoptosis, and differentiation, reinforcing the information in favor of the neoplastic nature of this lesion.

  13. Gα12/13 signaling promotes cervical cancer invasion through the RhoA/ROCK-JNK signaling axis

    International Nuclear Information System (INIS)

    Yuan, Bo; Cui, Jinquan; Wang, Wuliang; Deng, Kehong

    2016-01-01

    Several reports have indicated a role for the members of the G12 family of heterotrimeric G proteins (Gα12 and Gα13) in oncogenesis and tumor cell growth. The aims of the present study were to evaluate the role of G12 signaling in cervical cancer. We demonstrated that expression of the G12 proteins was highly upregulated in cervical cancer cells. Additionally, expression of the activated forms of Gα12/Gα13 but not expression of activated Gαq induced cell invasion through the activation of the RhoA family of G proteins, but had no effect on cell proliferation in the cervical cancer cells. Inhibition of G12 signaling by expression of the RGS domain of the p115-Rho-specific guanine nucleotide exchange factor (p115-RGS) blocked thrombin-stimulated cell invasion, but did not inhibit cell proliferation in cervical cells, whereas the inhibition of Gαq (RGS2) had no effect. Furthermore, G12 signaling was able to activate Rho proteins, and this stimulation was inhibited by p115-RGS, and Gα12-induced invasion was blocked by an inhibitor of RhoA/B/C (C3 toxin). Pharmacological inhibition of JNK remarkably decreased G12-induced JNK activation. Both a JNK inhibitor (SP600125) and a ROCK inhibitor (Y27632) reduced G12-induced JNK and c-Jun activation, and markedly inhibited G12-induced cellular invasion. Collectively, these findings demonstrate that stimulation of G12 proteins is capable of promoting invasion through RhoA/ROCK-JNK activation. -- Highlights: •Gα12/Gα13 is upregulated in cervical cancer cell lines. •Gα12/Gα13 is not involved in cervical cancer cell proliferation. •Gα12/Gα13 promotes cervical cancer cell invasion. •The role of Rho G proteins in G12-promoted cervical cancer cell invasion. •G12 promotes cell invasion through activation of the ROCK-JNK signaling axis.

  14. NEUROGATE: a new MR-compatible device for realizing minimally invasive treatment of intracerebral tumors.

    Science.gov (United States)

    Vitzthum, Hans Ekkehart; Winkler, Dirk; Strauss, Gero; Lindner, Dirk; Krupp, Wolfgang; Schneider, Jens Peter; Schober, Ralf; Meixensberger, Jürgen

    2004-01-01

    The authors report on the handling and the practicability of a newly developed MR-compatible device, the NEUROGATE (Daum GmbH, Germany), which allows precise planning, simulation and control of stereotactic biopsy in patients with suspect intracranial lesions, and which allows minimally invasive maneuvers to be performed in a comfortable way. Twenty-eight patients were examined stereotactically in the Signa SP interventional 0.5 Tesla MRI (General Electric Medical Systems, USA), including 15 patients with malignant intracerebral tumors and poor general medical conditions (8 gliomas, 7 metastases) who were treated by laser-induced interstitial thermotherapy (LITT) after definite intraoperative neuropathological diagnosis. As a special stereotactic holding device, the NEUROGATE was favored as a reliable tool for stereotaxy and minimally invasive procedures.

  15. Acidic tumor microenvironment and pH-sensing G protein-coupled receptors.

    Science.gov (United States)

    Justus, Calvin R; Dong, Lixue; Yang, Li V

    2013-12-05

    The tumor microenvironment is acidic due to glycolytic cancer cell metabolism, hypoxia, and deficient blood perfusion. It is proposed that acidosis in the tumor microenvironment is an important stress factor and selection force for cancer cell somatic evolution. Acidic pH has pleiotropic effects on the proliferation, migration, invasion, metastasis, and therapeutic response of cancer cells and the function of immune cells, vascular cells, and other stromal cells. However, the molecular mechanisms by which cancer cells and stromal cells sense and respond to acidic pH in the tumor microenvironment are poorly understood. In this article the role of a family of pH-sensing G protein-coupled receptors (GPCRs) in tumor biology is reviewed. Recent studies show that the pH-sensing GPCRs, including GPR4, GPR65 (TDAG8), GPR68 (OGR1), and GPR132 (G2A), regulate cancer cell metastasis and proliferation, immune cell function, inflammation, and blood vessel formation. Activation of the proton-sensing GPCRs by acidosis transduces multiple downstream G protein signaling pathways. Since GPCRs are major drug targets, small molecule modulators of the pH-sensing GPCRs are being actively developed and evaluated. Research on the pH-sensing GPCRs will continue to provide important insights into the molecular interaction between tumor and its acidic microenvironment and may identify new targets for cancer therapy and chemoprevention.

  16. Stable SET knockdown in breast cell carcinoma inhibits cell migration and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jie [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou (China); Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Yang, Xi-fei [Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Ren, Xiao-hu [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou (China); Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Meng, Xiao-jing [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou (China); Huang, Hai-yan [Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Zhao, Qiong-hui [Shenzhen Entry-Exit Inspection and Quarantine Bureau, Shenzhen (China); Yuan, Jian-hui; Hong, Wen-xu; Xia, Bo; Huang, Xin-feng; Zhou, Li [Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Liu, Jian-jun, E-mail: bio-research@hotmail.com [Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen (China); Zou, Fei, E-mail: zoufei616@163.com [Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou (China)

    2014-10-10

    Highlights: • We employed RNA interference to knockdown SET expression in breast cancer cells. • Knockdown of SET expression inhibits cell proliferation, migration and invasion. • Knockdown of SET expression increases the activity and expression of PP2A. • Knockdown of SET expression decreases the expression of MMP-9. - Abstract: Breast cancer is the most malignant tumor for women, however, the mechanisms underlying this devastating disease remain unclear. SET is an endogenous inhibitor of protein phosphatase 2A (PP2A) and involved in many physiological and pathological processes. SET could promote the occurrence of tumor through inhibiting PP2A. In this study, we explore the role of SET in the migration and invasion of breast cancer cells MDA-MB-231 and ZR-75-30. The stable suppression of SET expression through lentivirus-mediated RNA interference (RNAi) was shown to inhibit the growth, migration and invasion of breast cancer cells. Knockdown of SET increases the activity and expression of PP2Ac and decrease the expression of matrix metalloproteinase 9 (MMP-9). These data demonstrate that SET may be involved in the pathogenic processes of breast cancer, indicating that SET can serve as a potential therapeutic target for the treatment of breast cancer.

  17. Stable SET knockdown in breast cell carcinoma inhibits cell migration and invasion

    International Nuclear Information System (INIS)

    Li, Jie; Yang, Xi-fei; Ren, Xiao-hu; Meng, Xiao-jing; Huang, Hai-yan; Zhao, Qiong-hui; Yuan, Jian-hui; Hong, Wen-xu; Xia, Bo; Huang, Xin-feng; Zhou, Li; Liu, Jian-jun; Zou, Fei

    2014-01-01

    Highlights: • We employed RNA interference to knockdown SET expression in breast cancer cells. • Knockdown of SET expression inhibits cell proliferation, migration and invasion. • Knockdown of SET expression increases the activity and expression of PP2A. • Knockdown of SET expression decreases the expression of MMP-9. - Abstract: Breast cancer is the most malignant tumor for women, however, the mechanisms underlying this devastating disease remain unclear. SET is an endogenous inhibitor of protein phosphatase 2A (PP2A) and involved in many physiological and pathological processes. SET could promote the occurrence of tumor through inhibiting PP2A. In this study, we explore the role of SET in the migration and invasion of breast cancer cells MDA-MB-231 and ZR-75-30. The stable suppression of SET expression through lentivirus-mediated RNA interference (RNAi) was shown to inhibit the growth, migration and invasion of breast cancer cells. Knockdown of SET increases the activity and expression of PP2Ac and decrease the expression of matrix metalloproteinase 9 (MMP-9). These data demonstrate that SET may be involved in the pathogenic processes of breast cancer, indicating that SET can serve as a potential therapeutic target for the treatment of breast cancer

  18. Effect of mitomycin combined with Nd-YAG laser on cell proliferation and invasion as well as MEK/ERK signaling pathway in obstructive lacrimal duct model

    Directory of Open Access Journals (Sweden)

    Yu Yan

    2017-11-01

    Full Text Available Objective: To study the effect of mitomycin (MMC combined with Nd-YAG laser on cell proliferation and invasion as well as MEK/ERK signaling pathway in obstructive lacrimal duct model. Methods: New Zealand rabbits were selected as experimental animals and divided into model group, laser group and MMC + laser group; obstructive lacrimal duct model was established, then laser group were given Nd-YAG laser intervention, and MMC + laser group were given Nd-YAG laser combined with mitomycin intervention. 2 months after intervention, the expression of proliferation molecules, invasion molecules and MEK-ERK signaling molecules in lacrimal duct tissue were measured. Results: TGF-β, CTGF, PCNA, Ki-67, Col-I, Col-III, MEK, ERK1/2, MMP2 and MMP9 protein levels in lacrimal duct tissue of laser group were significantly higher than those of model group while TSG-6, Cthrc1 and TIMP1 protein levels were significantly lower than those of model group; TGF-β, CTGF, PCNA, Ki- 67, Col-I, Col-III, MEK, ERK1/2, MMP2 and MMP9 protein levels in lacrimal duct tissue of MMC + laser group were significantly lower than those of laser group while TSG-6, Cthrc1 and TIMP1 protein levels were significantly higher than those of laser group. Conclusion: Mitomycin can inhibit cell proliferation and invasion as well as MEK/ERK signaling pathway activation in obstructive lacrimal duct model after Nd-YAG laser treatment.

  19. Inhibition of furin results in increased growth, invasiveness and cytokine production of synoviocytes from patients with rheumatoid arthritis.

    Science.gov (United States)

    Wu, Changshun; Song, Zezhong; Liu, Huiling; Pan, Jihong; Jiang, Huiyu; Liu, Chao; Yan, Zexing; Feng, Hong; Sun, Shui

    2017-07-01

    Fibroblast-like synoviocytes derived from patients with rheumatoid arthritis play a key role by local production of cytokines and proteolytic enzymes that degrade the extracellular matrix and cartilage. These synoviocytes acquire phenotypic characteristics commonly observed in transformed cells, like anchorage-independent growth, increased proliferation and invasiveness, and insensitivity to apoptosis. Furin is a ubiquitous proprotein convertase that is capable of cleaving precursors of a wide variety of proteins. In patients with rheumatoid arthritis, furin is reported to be highly expressed in the synovial pannus compared with healthy persons. However, the mechanisms are poorly understood. This study is to explore the effect of furin overexpression in rheumatoid synoviocytes. In this study, RNA interference was used to knock down furin expression and to assess the resultant effects on biological behaviors of synoviocytes, such as cell proliferation, invasion, migration, cell cycle and cell apoptosis. In addition, the production of inflammatory cytokines was evaluated. The results showed that the inhibition of furin enhanced proliferation, invasion, and migration of synoviocytes in vitro. Cell cycle was accelerated and cell death was affected by furin knockdown. Also, the inhibition of furin increased interleukin-1β and tumor necrosis factor-α secretion of synoviocytes. Inhibition of furin enhances invasive phenotype of synoviocytes from patients with rheumatoid arthritis, implying a protective role of furin. Agents targeting upregulation of furin may have therapeutic potential for rheumatoid arthritis. Copyright © 2016 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  20. Epstein-Barr virus infection is equally distributed across the invasive ductal and invasive lobular forms of breast cancer.

    Science.gov (United States)

    Ballard, Ashley James

    2015-12-01

    The role of Epstein-Barr virus (EBV) in the pathogenesis of breast cancer is still unclear, although a growing body of evidence supports a link. The aim of this study was to investigate if EBV infection was more prevalent in invasive ductal carcinoma or invasive lobular carcinoma. An immunohistochemical marker for EBV (Epstein-Barr virus nuclear antigen 1 (EBNA1) clone E1-2.5) was applied to a tissue micro array section. The tissue micro array contained 80 cases of invasive ductal carcinoma, and 80 cases of invasive lobular carcinoma. Each case was scored as positive or negative for nuclear expression of EBNA1 in tumor cells using standard light microscopy. EBNA1 staining was evident in the tumor cells of 63 cases (39.4% of tumor cases). By tumor type (ductal/lobular) EBV infection was noted in 34 (42.5%) cases of invasive ductal carcinoma and 29 (36.2%) cases of invasive lobular carcinoma, this difference was not found to be significant (P=0.518). This study indicates that EBV infection is equally distributed across the ductal and lobular tumor types. Copyright © 2015 Elsevier GmbH. All rights reserved.

  1. A Mena invasion isoform potentiates EGF-induced carcinoma cell invasion and metastasis.

    Science.gov (United States)

    Philippar, Ulrike; Roussos, Evanthia T; Oser, Matthew; Yamaguchi, Hideki; Kim, Hyung-Do; Giampieri, Silvia; Wang, Yarong; Goswami, Sumanta; Wyckoff, Jeffrey B; Lauffenburger, Douglas A; Sahai, Erik; Condeelis, John S; Gertler, Frank B

    2008-12-01

    The spread of cancer during metastatic disease requires that tumor cells subvert normal regulatory networks governing cell motility to invade surrounding tissues and migrate toward blood and lymphatic vessels. Enabled (Ena)/vasodilator-stimulated phosphoprotein (VASP) proteins regulate cell motility by controlling the geometry of assembling actin networks. Mena, an Ena/VASP protein, is upregulated in the invasive subpopulation of breast cancer cells. In addition, Mena is alternately spliced to produce an invasion isoform, Mena(INV). Here we show that Mena and Mena(INV) promote carcinoma cell motility and invasiveness in vivo and in vitro, and increase lung metastasis. Mena and Mena(INV) potentiate epidermal growth factor (EGF)-induced membrane protrusion and increase the matrix degradation activity of tumor cells. Interestingly, Mena(INV) is significantly more effective than Mena in driving metastases and sensitizing cells to EGF-dependent invasion and protrusion. Upregulation of Mena(INV) could therefore enable tumor cells to invade in response to otherwise benign EGF stimulus levels.

  2. Riboflavin at high doses enhances lung cancer cell proliferation, invasion, and migration.

    Science.gov (United States)

    Yang, Hui-ting; Chao, Pei-chun; Yin, Mei-chin

    2013-02-01

    The influence of riboflavin (vitamin B(2) ) upon growth, invasion, and migration in non-small cell lung cancer cell lines was evaluated. Riboflavin at 1, 10, 25, 50, 100, 200, or 400 μmol/L was added into A549, H3255, or Calu-6 cells. The effects of this compound upon level and/or expression of reactive oxygen species (ROS), inflammatory cytokines, intercellular adhesion molecule (ICAM)-1, fibronectin, matrix metalloproteinase (MMP)-9, MMP-2, focal adhesion kinase (FAK), nuclear factor kappa B (NF-κB), and mitogen-activated protein kinase (MAPK) were examined. Results showed that riboflavin at test doses did not affect the level of ROS and glutathione. Riboflavin at 200 and 400 μmol/L significantly enhanced cell growth in test lung cancer cell lines, and at 400 μmol/L significantly increased the release of interleukin-6, tumor necrosis factor-alpha, and vascular endothelial growth factor. This agent at 200 and 400 μmol/L also upregulated protein production of ICAM-1, fibronectin, MMP-9, MMP-2, NF-κB p50, p-p38 MAPK, and FAK; and at 400 μmol/L enhanced invasion and migration in test cell lines. These findings suggested that riboflavin at high doses might promote lung cancer progression. © 2013 Institute of Food Technologists®

  3. Cytotoxicity and anti-tumor effects of new ruthenium complexes on triple negative breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Cecília P Popolin

    Full Text Available Triple-negative breast cancer (TNBC is a highly aggressive breast cancer subtype. The high rate of metastasis associated to the fact that these cells frequently display multidrug resistance, make the treatment of metastatic disease difficult. Development of antitumor metal-based drugs was started with the discovery of cisplatin, however, the severe side effects represent a limitation for its clinical use. Ruthenium (Ru complexes with different ligands have been successfully studied as prospective antitumor drugs. In this work, we demonstrated the activity of a series of biphosphine bipyridine Ru complexes (1 [Ru(SO4(dppb(bipy], (2 [Ru(CO3(dppb(bipy], (3 [Ru(C2O4(dppb(bipy] and (4 [Ru(CH3CO2(dppb(bipy]PF6 [where dppb = 1,4-bis(diphenylphosphinobutane and bipy = 2,2'-bipyridine], on proliferation of TNBC (MDA-MB-231, estrogen-dependent breast tumor cells (MCF-7 and a non-tumor breast cell line (MCF-10A. Complex (4 was most effective among the complexes and was selected to be further investigated on effects on tumor cell adhesion, migration, invasion and in apoptosis. Moreover, DNA and HSA binding properties of this complex were also investigated. Results show that complex (4 was more efficient inhibiting proliferation of MDA-MB-231 cells over non-tumor cells. In addition, complex (4 was able to inhibit MDA-MB231 cells adhesion, migration and invasion and to induce apoptosis and inhibit MMP-9 secretion in TNBC cells. Complex (4 should be further investigated in vivo in order to stablish its potential to improve breast cancer treatment.

  4. Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer.

    Science.gov (United States)

    Ciriello, Giovanni; Gatza, Michael L; Beck, Andrew H; Wilkerson, Matthew D; Rhie, Suhn K; Pastore, Alessandro; Zhang, Hailei; McLellan, Michael; Yau, Christina; Kandoth, Cyriac; Bowlby, Reanne; Shen, Hui; Hayat, Sikander; Fieldhouse, Robert; Lester, Susan C; Tse, Gary M K; Factor, Rachel E; Collins, Laura C; Allison, Kimberly H; Chen, Yunn-Yi; Jensen, Kristin; Johnson, Nicole B; Oesterreich, Steffi; Mills, Gordon B; Cherniack, Andrew D; Robertson, Gordon; Benz, Christopher; Sander, Chris; Laird, Peter W; Hoadley, Katherine A; King, Tari A; Perou, Charles M

    2015-10-08

    Invasive lobular carcinoma (ILC) is the second most prevalent histologic subtype of invasive breast cancer. Here, we comprehensively profiled 817 breast tumors, including 127 ILC, 490 ductal (IDC), and 88 mixed IDC/ILC. Besides E-cadherin loss, the best known ILC genetic hallmark, we identified mutations targeting PTEN, TBX3, and FOXA1 as ILC enriched features. PTEN loss associated with increased AKT phosphorylation, which was highest in ILC among all breast cancer subtypes. Spatially clustered FOXA1 mutations correlated with increased FOXA1 expression and activity. Conversely, GATA3 mutations and high expression characterized luminal A IDC, suggesting differential modulation of ER activity in ILC and IDC. Proliferation and immune-related signatures determined three ILC transcriptional subtypes associated with survival differences. Mixed IDC/ILC cases were molecularly classified as ILC-like and IDC-like revealing no true hybrid features. This multidimensional molecular atlas sheds new light on the genetic bases of ILC and provides potential clinical options. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Role of Mesenchymal-Derived Stem Cells in Stimulating Dormant Tumor Cells to Proliferate and Form Clinical Metastases

    Science.gov (United States)

    2017-07-01

    Clinical Metastases PRINCIPAL INVESTIGATOR: Rosandra Kaplan CONTRACTING ORGANIZATION: The Geneva Foundation Tacoma, WA 98402 REPORT DATE: July 2017...2017 4. TITLE AND SUBTITLE Role of Mesenchymal-Derived Stem Cells in Stimulating Dormant Tumor Cells to Proliferate and Form Clinical Metastases 5a...PRODUCTS:  publications, conference papers, and presentations ; Jennifer Zhu submitted an abstract and will present this work at the Annual

  6. Accurate and reproducible invasive breast cancer detection in whole-slide images: A Deep Learning approach for quantifying tumor extent

    Science.gov (United States)

    Cruz-Roa, Angel; Gilmore, Hannah; Basavanhally, Ajay; Feldman, Michael; Ganesan, Shridar; Shih, Natalie N. C.; Tomaszewski, John; González, Fabio A.; Madabhushi, Anant

    2017-04-01

    With the increasing ability to routinely and rapidly digitize whole slide images with slide scanners, there has been interest in developing computerized image analysis algorithms for automated detection of disease extent from digital pathology images. The manual identification of presence and extent of breast cancer by a pathologist is critical for patient management for tumor staging and assessing treatment response. However, this process is tedious and subject to inter- and intra-reader variability. For computerized methods to be useful as decision support tools, they need to be resilient to data acquired from different sources, different staining and cutting protocols and different scanners. The objective of this study was to evaluate the accuracy and robustness of a deep learning-based method to automatically identify the extent of invasive tumor on digitized images. Here, we present a new method that employs a convolutional neural network for detecting presence of invasive tumor on whole slide images. Our approach involves training the classifier on nearly 400 exemplars from multiple different sites, and scanners, and then independently validating on almost 200 cases from The Cancer Genome Atlas. Our approach yielded a Dice coefficient of 75.86%, a positive predictive value of 71.62% and a negative predictive value of 96.77% in terms of pixel-by-pixel evaluation compared to manually annotated regions of invasive ductal carcinoma.

  7. B7-H3 in tumors: friend or foe for tumor immunity?

    Science.gov (United States)

    Li, Gen; Quan, Yanchun; Che, Fengyuan; Wang, Lijuan

    2018-02-01

    B7-H3 is a type I transmembrane co-stimulatory molecule of the B7 family. B7-H3 mRNA is widely distributed in most tissues; however, B7-H3 protein is not constitutively expressed. Few molecules have been shown to mediate the regulation of B7-H3 expression, and their regulatory mechanisms remain unexplored. Recently, TREM-like transcript 2 (TLT-2) has been identified as a potential receptor of B7-H3. However, TLT-2 may not be the only receptor of B7-H3, as B7-H3 has many contradictory roles. As a co-stimulatory molecule, B7-H3 increases the proliferation of both CD4+ and CD8+ T-cells and enhances cytotoxic T-cell activity. However, greatly increased T-cell proliferation and IL-2 levels have been observed in the absence of B7-H3. Thus far, it has been shown that various tumors test positive for B7-H3 expression and that B7-H3 levels correlate with tumor growth, invasion, metastasis, malignant stage, and recurrence rate. Furthermore, transfection of cells with a B7-H3 plasmid and treatment with monoclonal antibodies to block B7-H3 are the main immunotherapeutic strategies for cancer treatment. Several groups have generated anti-B7-H3 antibodies and observed tumor growth suppression in vitro and in vivo. Therefore, it is likely that B7-H3 plays an important role in cancer diagnosis and treatment, aside from its role as a co-stimulatory molecule.

  8. A Transition Zone Showing Highly Discontinuous or Alternating Levels of Stem Cell and Proliferation Markers Characterizes the Development of PTEN-Haploinsufficient Colorectal Cancer.

    Science.gov (United States)

    Arvai, Kevin J; Hsu, Ya-Hsuan; Lee, Lobin A; Jones, Dan

    2015-01-01

    bottleneck-like zone is usually followed by the emergence of invasive tumors with intact PTEN expression but dysregulated TP53 and uniformly high proliferation rates.

  9. A Transition Zone Showing Highly Discontinuous or Alternating Levels of Stem Cell and Proliferation Markers Characterizes the Development of PTEN-Haploinsufficient Colorectal Cancer.

    Directory of Open Access Journals (Sweden)

    Kevin J Arvai

    /β-catenin pathways. This bottleneck-like zone is usually followed by the emergence of invasive tumors with intact PTEN expression but dysregulated TP53 and uniformly high proliferation rates.

  10. Urinary long noncoding RNAs in nonmuscle-invasive bladder cancer: new architects in cancer prognostic biomarkers.

    Science.gov (United States)

    Terracciano, Daniela; Ferro, Matteo; Terreri, Sara; Lucarelli, Giuseppe; D'Elia, Carolina; Musi, Gennaro; de Cobelli, Ottavio; Mirone, Vincenzo; Cimmino, Amelia

    2017-06-01

    Several reports over the last 10 years provided evidence that long noncoding RNAs (lncRNAs) are often altered in bladder cancers. lncRNAs are longer than 200 nucleotides and function as important regulators of gene expression, interacting with the major pathways of cell growth, proliferation, differentiation, and survival. A large number of lncRNAs has oncogenic function and is more expressed in tumor compared with normal tissues. Their overexpression may be associated with tumor formation, progression, and metastasis in a variety of tumors including bladder cancer. Although lncRNAs have been shown to have critical regulatory roles in cancer biology, the biological functions and prognostic values in nonmuscle-invasive bladder cancer remain largely unknown. Nevertheless, a growing body of evidence suggests that several lncRNAs expression profiles in bladder malignancies are associated with poor prognosis, and they can be detected in biological fluids, such as urines. Here, we review current progress in the biology and the implication of lncRNAs associated with bladder cancer, and we discuss their potential use as diagnosis and prognosis biomarkers in bladder malignancies with a focus on their role in high-risk nonmuscle-invasive tumors. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Does Adjuvant Radiation Therapy Improve Outcomes In pT1-3N0 Oral Cavity Cancer With Tumor-Free Margins and Perineural Invasion?

    International Nuclear Information System (INIS)

    Liao, C.-T.; Chang, J.T.-C.; Wang, H.-M.; Ng, S.-H.; Hsueh Chuen; Lee, L.-Y.; Lin, C.-H.

    2008-01-01

    Purpose: The criteria for administration of adjuvant radiation therapy (RT) in oral cavity squamous cell carcinoma (OSCC) remain controversial, and it is unclear whether patients with pT1-3N0 disease benefit from adjuvant radiation in the presence of free margins and perineural invasion. The goal of this report was to determine whether this group would benefit from adjuvant radiation therapy in terms of 5-year local control rate and overall survival rate. Methods and Materials: We retrospectively reviewed our case records from January 1996 to May 2005. In all, 460 pT1-3N0 OSCC patients had tumor-free margins, of whom 68 had perineural invasion. Postoperative adjuvant RT was performed in patients with pT4 tumors, positive lymph nodes, or close margins (≤4 mm). In addition, selected OSCC patients with large pT3 tumors or perineural invasion received postoperative adjuvant RT. Local control and overall survival rates were plotted by Kaplan-Meier analysis. Results: There were no significant differences in 5-year local control (p 0.1936) and overall survival (p = 0.5580) rates between patients with perineural invasion compared with those without. Among patients with perineural invasion, the addition of adjuvant radiotherapy did not significantly alter the 5-year local control rate (p = 0.3170) or the overall survival rate (p = 0.0935). Conclusion: Altogether, these data seem to indicate that radical surgical resection alone should be considered a sufficient treatment for OSCC patients with pT1-3N0 disease, even in the presence of perineural invasion

  12. Effects of homeodomain protein CDX2 expression on the proliferation and migration of lovo colon cancer cells.

    Science.gov (United States)

    Zheng, Jian-bao; Sun, Xue-jun; Qi, Jie; Li, Shou-shuai; Wang, Wei; Ren, Hai-liang; Tian, Yong; Lu, Shao-ying; Du, Jun-kai

    2011-09-01

    The homeobox gene, CDX2, plays a major role in development, especially in the gut, and also functions as a tumor suppressor in the adult colon. In the present study, we investigated the effects of CDX2 expression on the proliferation, migration, and apoptosis of the human colon cancer cell line, Lovo. Lovo cells exogenously expressing CDX2 exhibited no significant differences in the percentage of cells in G1- and S-phase or in apoptosis, as determined by flow cytometry. MTT assay also confirmed that CDX2 expression had no effect on proliferation in these cells. Interestingly, conditioned medium collected from CDX2-overexpressing Lovo cells showed a significant decrease in secretion of MMP-2 and the invasive potential of these cells was significantly inhibited. Collectively, these data suggest that CDX2 may play a critical role in the migration and metastasis of colon carcinoma and over-expression of CDX2 in colon cancer cells markedly inhibits invasion. Based on these results, exogenous expression of CDX2 might be a promising option in the treatment of colon carcinoma.

  13. Effects of MicroRNA-206 on Osteosarcoma Cell Proliferation, Apoptosis, Migration and Invasion by Targeting ANXA2 Through the AKT Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Bao-Long Pan

    2018-02-01

    Full Text Available Background/Aims: This study aimed to investigate the mechanism by which microRNA-206 (miR-206 affects the proliferation, apoptosis, migration and invasion of osteosarcoma (OS cells by targeting ANXA2 via the AKT signaling pathway. Methods: A total of 132 OS tissues and 120 osteochondroma tissues were examined in this study. The targeting relationship between miR-206 and ANXA2 was verified with a dual-luciferase reporter assay. The miR-206 expression and ANXA2, AKT, PARP, FASN, Survivin, Bax, Mcl-1 and Bcl-1 mRNA and protein expression in the above two groups were examined by qRT-PCR and western blotting. The cultured OS cells were divided into 6 groups: a blank group, negative control (NC group, miR-206 mimic group, miR-206 inhibitor group, si-ANXA2 group and miR-206 inhibitor + si-ANXA2 group. Cell cycle and apoptosis were assessed by flow cytometry, cell migration was examined with a wound-healing assay, and cell invasion was assessed with a Transwell assay. Pearson correlation analysis was used to determine the correlation between ANXA2 mRNA expression and miR-206 expression in OS. Results: OS tissues exhibited increased mRNA and protein expression of ANXA2, AKT, PARP, FASN, Survivin, Mcl-1 and Bcl-2; decreased miR-206 expression; and decreased Bax mRNA and protein expression. ANXA2 mRNA expression was strongly negatively correlated with miR-206 expression in OS. ANXA2 was found to be a miR-206 target gene. In the miR-206 mimic group and the si-ANXA2 group, the mRNA and protein expression of ANXA2, AKT, PARP, FASN, Survivin, Mcl-1 and Bcl-1 decreased markedly, cell proliferation was inhibited, apoptosis was promoted, higher cell growth in G1 phase and decreased growth in S phase was detected, and decreased cell migration and invasion were observed compared with those in the blank group. Conclusion: The current results demonstrate that miR-206 overexpression inhibits OS cell proliferation, migration and invasion and promotes apoptosis through

  14. Polytomous diagnosis of ovarian tumors as benign, borderline, primary invasive or metastatic: development and validation of standard and kernel-based risk prediction models

    Directory of Open Access Journals (Sweden)

    Testa Antonia C

    2010-10-01

    Full Text Available Abstract Background Hitherto, risk prediction models for preoperative ultrasound-based diagnosis of ovarian tumors were dichotomous (benign versus malignant. We develop and validate polytomous models (models that predict more than two events to diagnose ovarian tumors as benign, borderline, primary invasive or metastatic invasive. The main focus is on how different types of models perform and compare. Methods A multi-center dataset containing 1066 women was used for model development and internal validation, whilst another multi-center dataset of 1938 women was used for temporal and external validation. Models were based on standard logistic regression and on penalized kernel-based algorithms (least squares support vector machines and kernel logistic regression. We used true polytomous models as well as combinations of dichotomous models based on the 'pairwise coupling' technique to produce polytomous risk estimates. Careful variable selection was performed, based largely on cross-validated c-index estimates. Model performance was assessed with the dichotomous c-index (i.e. the area under the ROC curve and a polytomous extension, and with calibration graphs. Results For all models, between 9 and 11 predictors were selected. Internal validation was successful with polytomous c-indexes between 0.64 and 0.69. For the best model dichotomous c-indexes were between 0.73 (primary invasive vs metastatic and 0.96 (borderline vs metastatic. On temporal and external validation, overall discrimination performance was good with polytomous c-indexes between 0.57 and 0.64. However, discrimination between primary and metastatic invasive tumors decreased to near random levels. Standard logistic regression performed well in comparison with advanced algorithms, and combining dichotomous models performed well in comparison with true polytomous models. The best model was a combination of dichotomous logistic regression models. This model is available online

  15. Undersulfation of proteoglycans and proteins alter C6 glioma cells proliferation, adhesion and extracellular matrix organization.

    Science.gov (United States)

    Mendes de Aguiar, Claudia B N; Garcez, Ricardo Castilho; Alvarez-Silva, Marcio; Trentin, Andréa Gonçalves

    2002-11-01

    Proteoglycans are considered to be important molecule in cell-microenvironment interactions. They are overexpressed in neoplastic cells modifying their growth and migration in hosts. In this work we verified that undersulfation of proteoglycans and other sulfated molecules, induced by sodium chlorate treatment, inhibited C6 glioma cells proliferation in a dose-dependent way. This effect was restored by the addition of exogenous heparin. We could not detect significant cell mortality in our culture condition. The treatment also impaired in a dose-dependent manner, C6 cell adhesion to extracellular matrix (ECM) proteins (collagen IV, laminin and fibronectin). In addition, sodium chlorate treatment altered C6 glioma cell morphology, from the fibroblast-like to a more rounded one. This effect was accompanied by increased synthesis of fibronectin and alterations in its extracellular network organization. However, we could not observe modifications on laminin organization and synthesis. The results suggest an important connection between sulfation degree with important tumor functions, such as proliferation and adhesion. We suggest that proteoglycans may modulate the glioma microenvironment network during tumor cell progression and invasion.

  16. Oleuropein, a non-toxic olive iridoid, is an anti-tumor agent and cytoskeleton disruptor

    International Nuclear Information System (INIS)

    Hamdi, Hamdi K.; Castellon, Raquel

    2005-01-01

    Oleuropein, a non-toxic secoiridoid derived from the olive tree, is a powerful antioxidant and anti-angiogenic agent. Here, we show it to be a potent anti-cancer compound, directly disrupting actin filaments in cells and in a cell-free assay. Oleuropein inhibited the proliferation and migration of advanced-grade tumor cell lines in a dose-responsive manner. In a novel tube-disruption assay, Oleuropein irreversibly rounded cancer cells, preventing their replication, motility, and invasiveness; these effects were reversible in normal cells. When administered orally to mice that developed spontaneous tumors, Oleuropein completely regressed tumors in 9-12 days. When tumors were resected prior to complete regression, they lacked cohesiveness and had a crumbly consistency. No viable cells could be recovered from these tumors. These observations elevate Oleuropein from a non-toxic antioxidant into a potent anti-tumor agent with direct effects against tumor cells. Our data may also explain the cancer-protective effects of the olive-rich Mediterranean diet

  17. 5-Hydroxymethylcytosine Promotes Proliferation of Human Uterine Leiomyoma: A Biological Link to a New Epigenetic Modification in Benign Tumors

    Science.gov (United States)

    Navarro, Antonia; Yin, Ping; Ono, Masanori; Monsivais, Diana; Moravek, Molly B.; Coon, John S.; Dyson, Matthew T.; Wei, Jian-Jun

    2014-01-01

    Context: Uterine leiomyoma, or fibroids, represent the most common benign tumors of the female reproductive tract. A newly discovered epigenetic modification, 5-hydroxymethylation (5-hmC), and its regulators, the TET (Ten Eleven Translocation) enzymes, were implicated in the pathology of malignant tumors; however, their roles in benign tumors, including uterine fibroids, remain unknown. Objective: To determine the role of 5-hmC and TET proteins in the pathogenesis of leiomyoma using human uterine leiomyoma and normal matched myometrial tissues and primary cells. Design: 5-hmC levels were determined by ELISA and immunofluorescent staining in matched myometrial and leiomyoma tissues. TET expression was analyzed by quantitative RT-PCR and immunoblotting. TET1 or TET3 were silenced or inhibited by small interfering RNA or 2-hydroxyglutarate to study their effects on 5-hmC content and cell proliferation. Results: We demonstrated significantly higher 5-hmC levels in the genomic DNA of leiomyoma tissue compared to normal myometrial tissue. The increase in 5-hmC levels was associated with the up-regulation of TET1 or TET3 mRNA and protein expression in leiomyoma tissue. TET1 or TET3 knockdown significantly reduced 5-hmC levels in leiomyoma cells and decreased cell proliferation. Treatment with 2-hydroxyglutarate, a competitive TET enzyme inhibitor, significantly decreased both 5-hmC content and cell proliferation of leiomyoma cells. Conclusion: An epigenetic imbalance in the 5-hmC content of leiomyoma tissue, caused by up-regulation of the TET1 and TET3 enzymes, might lead to discovery of new therapeutic targets in leiomyoma. PMID:25057885

  18. Histone demethylase JMJD2B is required for tumor cell proliferation and survival and is overexpressed in gastric cancer

    International Nuclear Information System (INIS)

    Li, Wenjuan; Zhao, Li; Zang, Wen; Liu, Zhifang; Chen, Long; Liu, Tiantian; Xu, Dawei; Jia, Jihui

    2011-01-01

    Highlights: ► JMJD2B is required for cell proliferation and in vivo tumorigenesis. ► JMJD2B depletion induces apoptosis and/or cell cycle arrest. ► JMJD2B depletion activates DNA damage response and enhances p53 stabilization. ► JMJD2B is overexpressed in human primary gastric cancer. -- Abstract: Epigenetic alterations such as aberrant expression of histone-modifying enzymes have been implicated in tumorigenesis. Jumonji domain containing 2B (JMJD2B) is a newly identified histone demethylase that regulates chromatin structure or gene expression by removing methyl residues from trimethylated lysine 9 on histone H3. Recent observations have shown oncogenic activity of JMJD2B. We explored the functional role of JMJD2B in cancer cell proliferation, survival and tumorigenesis, and determined its expression profile in gastric cancer. Knocking down JMJD2B expression by small interfering RNA (siRNA) in gastric and other cancer cells inhibited cell proliferation and/or induced apoptosis and elevated the expression of p53 and p21 CIP1 proteins. The enhanced p53 expression resulted from activation of the DNA damage response pathway. JMJD2B knockdown markedly suppressed xenograft tumor growth in vivo in mice. Moreover, JMJD2B expression was increased in primary gastric-cancer tissues of humans. Thus, JMJD2B is required for sustained proliferation and survival of tumor cells in vitro and in vivo, and its aberrant expression may contribute to the pathogenesis of gastric cancer.

  19. Histone demethylase JMJD2B is required for tumor cell proliferation and survival and is overexpressed in gastric cancer

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wenjuan; Zhao, Li; Zang, Wen; Liu, Zhifang; Chen, Long; Liu, Tiantian [Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan 250012 (China); Xu, Dawei, E-mail: Dawei.Xu@ki.se [Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan 250012 (China); Department of Medicine, Division of Hematology, Karolinska University Hospital, Solna and Karolinska Institutet, Stockholm (Sweden); Jia, Jihui, E-mail: jiajihui@sdu.edu.cn [Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan 250012 (China)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer JMJD2B is required for cell proliferation and in vivo tumorigenesis. Black-Right-Pointing-Pointer JMJD2B depletion induces apoptosis and/or cell cycle arrest. Black-Right-Pointing-Pointer JMJD2B depletion activates DNA damage response and enhances p53 stabilization. Black-Right-Pointing-Pointer JMJD2B is overexpressed in human primary gastric cancer. -- Abstract: Epigenetic alterations such as aberrant expression of histone-modifying enzymes have been implicated in tumorigenesis. Jumonji domain containing 2B (JMJD2B) is a newly identified histone demethylase that regulates chromatin structure or gene expression by removing methyl residues from trimethylated lysine 9 on histone H3. Recent observations have shown oncogenic activity of JMJD2B. We explored the functional role of JMJD2B in cancer cell proliferation, survival and tumorigenesis, and determined its expression profile in gastric cancer. Knocking down JMJD2B expression by small interfering RNA (siRNA) in gastric and other cancer cells inhibited cell proliferation and/or induced apoptosis and elevated the expression of p53 and p21{sup CIP1} proteins. The enhanced p53 expression resulted from activation of the DNA damage response pathway. JMJD2B knockdown markedly suppressed xenograft tumor growth in vivo in mice. Moreover, JMJD2B expression was increased in primary gastric-cancer tissues of humans. Thus, JMJD2B is required for sustained proliferation and survival of tumor cells in vitro and in vivo, and its aberrant expression may contribute to the pathogenesis of gastric cancer.

  20. Multifocal pancreatic serous cystadenoma with atypical cells and focal perineural invasion.

    Science.gov (United States)

    Kamei, K; Funabiki, T; Ochiai, M; Amano, H; Kasahara, M; Sakamoto, T

    1991-10-01

    A case of multifocal pancreatic serous cystadenoma with atypical cells is reported. The patient was a 72-yr-old female who complained of jaundice. The distal common bile duct was obstructed, and the proximal bile duct was remarkably dilated on cholangiography. The main portal vein was obstructed and collateral vessels had developed on portal angiography. Total pancreatectomy was performed. The resected specimen contained one tumor in the head of the pancreas, five in the body, and one in the tail. The tumors of the head and body were morphologically the same. Microscopically, both contained spongelike multilocular cysts on their cut surfaces. These cysts were covered with low cuboid epithelium containing clear cytoplasm and abundant glycogen. Neural invasion was also found. The tumor cells exhibited an increased N/C ratio, variable nuclear size, irregular nuclear margins, and coarse nuclear chromatin. These tumors had aneuploid nuclear DNA with a DNA index of 1.9 and a proliferation index of 0.28. We feel that it is necessary to reconsider the biological concept of serous cystadenoma.