WorldWideScience

Sample records for tumor growth metastasis

  1. The Effect of Electroacupuncture on Osteosarcoma Tumor Growth and Metastasis: Analysis of Different Treatment Regimens

    Directory of Open Access Journals (Sweden)

    Branden A. Smeester

    2013-01-01

    Full Text Available Osteosarcoma is the most common malignant bone tumor found in children and adolescents and is associated with many complications including cancer pain and metastasis. While cancer patients often seek complementary and alternative medicine (CAM approaches to treat cancer pain and fatigue or the side effects of chemotherapy and treatment, there is little known about the effect of acupuncture treatment on tumor growth and metastasis. Here we evaluate the effects of six different electroacupuncture (EA regimens on osteosarcoma tumor growth and metastasis in both male and female mice. The most significant positive effects were observed when EA was applied to the ST-36 acupoint twice weekly (EA-2X/3 beginning at postimplantation day 3 (PID 3. Twice weekly treatment produced robust reductions in tumor growth. Conversely, when EA was applied twice weekly (EA-2X/7, starting at PID 7, there was a significant increase in tumor growth. We further demonstrate that EA-2X/3 treatment elicits significant reductions in tumor lymphatics, vasculature, and innervation. Lastly, EA-2X/3 treatment produced a marked reduction in pulmonary metastasis, thus providing evidence for EA’s potential antimetastatic capabilities. Collectively, EA-2X/3 treatment was found to reduce both bone tumor growth and lung metastasis, which may be mediated in part through reductions in tumor-associated vasculature, lymphatics, and innervation.

  2. Platelets promote tumor growth and metastasis via direct interaction between Aggrus/podoplanin and CLEC-2.

    Directory of Open Access Journals (Sweden)

    Satoshi Takagi

    Full Text Available The platelet aggregation-inducing factor Aggrus, also known as podoplanin, is frequently upregulated in several types of tumors and enhances hematogenous metastasis by interacting with and activating the platelet receptor CLEC-2. Thus, Aggrus-CLEC-2 binding could be a therapeutic molecular mechanism for cancer therapy. We generated a new anti-human Aggrus monoclonal antibody, MS-1, that suppressed Aggrus-CLEC-2 binding, Aggrus-induced platelet aggregation, and Aggrus-mediated tumor metastasis. Interestingly, the MS-1 monoclonal antibody attenuated the growth of Aggrus-positive tumors in vivo. Moreover, the humanized chimeric MS-1 antibody, ChMS-1, also exhibited strong antitumor activity against Aggrus-positive lung squamous cell carcinoma xenografted into NOD-SCID mice compromising antibody-dependent cellular cytotoxic and complement-dependent cytotoxic activities. Because Aggrus knockdown suppressed platelet-induced proliferation in vitro and tumor growth of the lung squamous cell carcinoma in vivo, Aggrus may be involved in not only tumor metastasis but also tumor growth by promoting platelet-tumor interaction, platelet activation, and secretion of platelet-derived factors in vivo. Our results indicate that molecular target drugs inhibiting specific platelet-tumor interactions can be developed as antitumor drugs that suppress both metastasis and proliferation of tumors such as lung squamous cell carcinoma.

  3. Mesenchymal stem cell 1 (MSC1-based therapy attenuates tumor growth whereas MSC2-treatment promotes tumor growth and metastasis.

    Directory of Open Access Journals (Sweden)

    Ruth S Waterman

    Full Text Available Currently, there are many promising clinical trials using mesenchymal stem cells (MSCs in cell-based therapies of numerous diseases. Increasingly, however, there is a concern over the use of MSCs because they home to tumors and can support tumor growth and metastasis. For instance, we established that MSCs in the ovarian tumor microenvironment promoted tumor growth and favored angiogenesis. In parallel studies, we also developed a new approach to induce the conventional mixed pool of MSCs into two uniform but distinct phenotypes we termed MSC1 and MSC2.Here we tested the in vitro and in vivo stability of MSC1 and MSC2 phenotypes as well as their effects on tumor growth and spread. In vitro co-culture of MSC1 with various cancer cells diminished growth in colony forming units and tumor spheroid assays, while conventional MSCs or MSC2 co-culture had the opposite effect in these assays. Co-culture of MSC1 and cancer cells also distinctly affected their migration and invasion potential when compared to MSCs or MSC2 treated samples. The expression of bioactive molecules also differed dramatically among these samples. MSC1-based treatment of established tumors in an immune competent model attenuated tumor growth and metastasis in contrast to MSCs- and MSC2-treated animals in which tumor growth and spread was increased. Also, in contrast to these groups, MSC1-therapy led to less ascites accumulation, increased CD45+leukocytes, decreased collagen deposition, and mast cell degranulation.These observations indicate that the MSC1 and MSC2 phenotypes may be convenient tools for the discovery of critical components of the tumor stroma. The continued investigation of these cells may help ensure that cell based-therapy is used safely and effectively in human disease.

  4. Inhibition of tumor metastasis by a growth factor receptor bound protein 2 Src homology 2 domain-binding antagonist.

    Science.gov (United States)

    Giubellino, Alessio; Gao, Yang; Lee, Sunmin; Lee, Min-Jung; Vasselli, James R; Medepalli, Sampath; Trepel, Jane B; Burke, Terrence R; Bottaro, Donald P

    2007-07-01

    Metastasis, the primary cause of death in most forms of cancer, is a multistep process whereby cells from the primary tumor spread systemically and colonize distant new sites. Blocking critical steps in this process could potentially inhibit tumor metastasis and dramatically improve cancer survival rates; however, our understanding of metastasis at the molecular level is still rudimentary. Growth factor receptor binding protein 2 (Grb2) is a widely expressed adapter protein with roles in epithelial cell growth and morphogenesis, as well as angiogenesis, making it a logical target for anticancer drug development. We have previously shown that a potent antagonist of Grb2 Src homology-2 domain-binding, C90, blocks growth factor-driven cell motility in vitro and angiogenesis in vivo. We now report that C90 inhibits metastasis in vivo in two aggressive tumor models, without affecting primary tumor growth rate. These results support the potential efficacy of this compound in reducing the metastatic spread of primary solid tumors and establish a critical role for Grb2 Src homology-2 domain-mediated interactions in this process.

  5. 'Obligate' anaerobic Salmonella strain YB1 suppresses liver tumor growth and metastasis in nude mice.

    Science.gov (United States)

    Li, Chang-Xian; Yu, Bin; Shi, Lei; Geng, Wei; Lin, Qiu-Bin; Ling, Chang-Chun; Yang, Mei; Ng, Kevin T P; Huang, Jian-Dong; Man, Kwan

    2017-01-01

    The antitumor properties of bacteria have been demonstrated over the past decades. However, the efficacy is limited and unclear. Furthermore, systemic infection remains a serious concern in bacteria treatment. In this study, the effect of YB1, a rationally designed 'obligate' anaerobic Salmonella typhimurium strain, on liver tumor growth and metastasis in a nude mouse orthotopic liver tumor model was investigated. The orthotopic liver tumor model was established in nude mice using the hepatocellular carcinoma cell line MHCC-97L. Two weeks after orthotopic liver tumor implantation, YB1, SL7207 and saline were respectively administered through the tail vein of the mice. Longitudinal monitoring of tumor growth and metastasis was performed using Xenogen IVIS, and direct measurements of tumor volume were taken 3 weeks after treatment. In vitro , MHCC-97L and PLC cells were incubated with YB1 or SL7207 under anaerobic conditions. YB1 was observed to invade tumor cells and induce tumor cell apoptosis and death. The results revealed that all mice in the YB1 group were alive 3 weeks after YB1 injection while all mice in the SL7207 group died within 11 days of the SL7207 injection. The body weight decreased by ~9% on day 1 after YB1 injection and but subsequently recovered. Liver tumor growth and metastases were significantly inhibited following YB1 treatment. By contrast to the control group, a large number of Gr1-positive cells were detected on days 1 to 21 following YB1 treatment. Furthermore, YB1 also effectively invaded tumor cells and induced tumor cell apoptosis and death. In conclusion, YB1 suppressed liver tumor growth and metastasis in a nude mice liver tumor model. The potential mechanism may be through enhancing innate immune response and inducing tumor cell apoptosis and cell death.

  6. Action of hexachlorobenzene on tumor growth and metastasis in different experimental models

    International Nuclear Information System (INIS)

    Pontillo, Carolina Andrea; Rojas, Paola; Chiappini, Florencia; Sequeira, Gonzalo; Cocca, Claudia; Crocci, Máximo; Colombo, Lucas; Lanari, Claudia

    2013-01-01

    Hexachlorobenzene (HCB) is a widespread organochlorine pesticide, considered a possible human carcinogen. It is a dioxin-like compound and a weak ligand of the aryl hydrocarbon receptor (AhR). We have found that HCB activates c-Src/HER1/STAT5b and HER1/ERK1/2 signaling pathways and cell migration, in an AhR-dependent manner in MDA-MB-231 breast cancer cells. The aim of this study was to investigate in vitro the effect of HCB (0.005, 0.05, 0.5, 5 μM) on cell invasion and metalloproteases (MMPs) 2 and 9 activation in MDA-MB-231 cells. Furthermore, we examined in vivo the effect of HCB (0.3, 3, 30 mg/kg b.w.) on tumor growth, MMP2 and MMP9 expression, and metastasis using MDA-MB-231 xenografts and two syngeneic mouse breast cancer models (spontaneous metastasis using C4-HI and lung experimental metastasis using LM3). Our results show that HCB (5 μM) enhances MMP2 expression, as well as cell invasion, through AhR, c-Src/HER1 pathway and MMPs. Moreover, HCB increases MMP9 expression, secretion and activity through a HER1 and AhR-dependent mechanism, in MDA-MB-231 cells. HCB (0.3 and 3 mg/kg b.w.) enhances subcutaneous tumor growth in MDA-MB-231 and C4-HI in vivo models. In vivo, using MDA-MB-231 model, the pesticide (0.3, 3 and 30 mg/kg b.w.) activated c-Src, HER1, STAT5b, and ERK1/2 signaling pathways and increased MMP2 and MMP9 protein levels. Furthermore, we observed that HCB stimulated lung metastasis regardless the tumor hormone-receptor status. Our findings suggest that HCB may be a risk factor for human breast cancer progression. - Highlights: ► HCB enhances MMP2 and MMP9 expression and cell invasion in MDA-MB-231, in vitro. ► HCB-effects are mediated through AhR, HER1 and/or c-Src. ► HCB increases subcutaneous tumor growth in MDA-MB-231 and C4-HI in vivo models. ► HCB activates c-Src/HER1 pathway and increases MMPs levels in MDA-MB-231 tumors. ► HCB stimulates lung metastasis in C4-HI and LM3 in vivo models

  7. Action of hexachlorobenzene on tumor growth and metastasis in different experimental models

    Energy Technology Data Exchange (ETDEWEB)

    Pontillo, Carolina Andrea, E-mail: caroponti@hotmail.com [Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires (Argentina); Rojas, Paola, E-mail: parojas2010@gmail.com [Laboratorio de Carcinogénesis Hormonal, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires (Argentina); Chiappini, Florencia, E-mail: florenciachiappini@hotmail.com [Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires (Argentina); Sequeira, Gonzalo, E-mail: chicon27_7@hotmail.com [Laboratorio de Carcinogénesis Hormonal, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires (Argentina); Cocca, Claudia, E-mail: cm_cocca@hotmail.com [Laboratorio de Radioisótopos, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires (Argentina); Crocci, Máximo, E-mail: info@crescenti.com.ar [Instituto de Inmunooncología Crescenti, Buenos Aires (Argentina); Colombo, Lucas, E-mail: lucascol2003@yahoo.com.ar [Instituto de Oncología Angel Roffo, Universidad de Buenos Aires, Buenos Aires,Argentina (Argentina); Lanari, Claudia, E-mail: lanari.claudia@gmail.com [Laboratorio de Carcinogénesis Hormonal, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires (Argentina); and others

    2013-05-01

    Hexachlorobenzene (HCB) is a widespread organochlorine pesticide, considered a possible human carcinogen. It is a dioxin-like compound and a weak ligand of the aryl hydrocarbon receptor (AhR). We have found that HCB activates c-Src/HER1/STAT5b and HER1/ERK1/2 signaling pathways and cell migration, in an AhR-dependent manner in MDA-MB-231 breast cancer cells. The aim of this study was to investigate in vitro the effect of HCB (0.005, 0.05, 0.5, 5 μM) on cell invasion and metalloproteases (MMPs) 2 and 9 activation in MDA-MB-231 cells. Furthermore, we examined in vivo the effect of HCB (0.3, 3, 30 mg/kg b.w.) on tumor growth, MMP2 and MMP9 expression, and metastasis using MDA-MB-231 xenografts and two syngeneic mouse breast cancer models (spontaneous metastasis using C4-HI and lung experimental metastasis using LM3). Our results show that HCB (5 μM) enhances MMP2 expression, as well as cell invasion, through AhR, c-Src/HER1 pathway and MMPs. Moreover, HCB increases MMP9 expression, secretion and activity through a HER1 and AhR-dependent mechanism, in MDA-MB-231 cells. HCB (0.3 and 3 mg/kg b.w.) enhances subcutaneous tumor growth in MDA-MB-231 and C4-HI in vivo models. In vivo, using MDA-MB-231 model, the pesticide (0.3, 3 and 30 mg/kg b.w.) activated c-Src, HER1, STAT5b, and ERK1/2 signaling pathways and increased MMP2 and MMP9 protein levels. Furthermore, we observed that HCB stimulated lung metastasis regardless the tumor hormone-receptor status. Our findings suggest that HCB may be a risk factor for human breast cancer progression. - Highlights: ► HCB enhances MMP2 and MMP9 expression and cell invasion in MDA-MB-231, in vitro. ► HCB-effects are mediated through AhR, HER1 and/or c-Src. ► HCB increases subcutaneous tumor growth in MDA-MB-231 and C4-HI in vivo models. ► HCB activates c-Src/HER1 pathway and increases MMPs levels in MDA-MB-231 tumors. ► HCB stimulates lung metastasis in C4-HI and LM3 in vivo models.

  8. Metastasis genetics, epigenetics, and the tumor microenvironment

    Science.gov (United States)

    KISS1 is a member of a family of genes known as metastasis suppressors, defined by their ability to block metastasis without blocking primary tumor development and growth. KISS1 re-expression in multiple metastatic cell lines of diverse cellular origin suppresses metastasis; yet, still allows comple...

  9. Dissecting Tumor-Stromal Interactions in Breast Cancer Bone Metastasis

    Directory of Open Access Journals (Sweden)

    Yibin Kang

    2016-06-01

    Full Text Available Bone metastasis is a frequent occurrence in breast cancer, affecting more than 70% of late stage cancer patients with severe complications such as fracture, bone pain, and hypercalcemia. The pathogenesis of osteolytic bone metastasis depends on cross-communications between tumor cells and various stromal cells residing in the bone microenvironment. Several growth factor signaling pathways, secreted micro RNAs (miRNAs and exosomes are functional mediators of tumor-stromal interactions in bone metastasis. We developed a functional genomic approach to systemically identified molecular pathways utilized by breast cancer cells to engage the bone stroma in order to generate osteolytic bone metastasis. We showed that elevated expression of vascular cell adhesion molecule 1 (VCAM1 in disseminated breast tumor cells mediates the recruitment of pre-osteoclasts and promotes their differentiation to mature osteoclasts during the bone metastasis formation. Transforming growth factor β (TGF-β is released from bone matrix upon bone destruction, and signals to breast cancer to further enhance their malignancy in developing bone metastasis. We furthered identified Jagged1 as a TGF-β target genes in tumor cells that engaged bone stromal cells through the activation of Notch signaling to provide a positive feedback to promote tumor growth and to activate osteoclast differentiation. Substantially change in miRNA expression was observed in osteoclasts during their differentiation and maturation, which can be exploited as circulating biomarkers of emerging bone metastasis and therapeutic targets for the treatment of bone metastasis. Further research in this direction may lead to improved diagnosis and treatment strategies for bone metastasis.

  10. Inhibitory effect of BCG cell-wall skeletons (BCG-CWS) emulsified in squalane on tumor growth and metastasis in mice.

    Science.gov (United States)

    Yoo, Yung Choon; Hata, Katsusuke; Lee, Kyung Bok; Azuma, Ichiro

    2002-08-01

    The antimetastatic effect of BCG-CWS, which was emulsified in an oil-in-water form with either Drakeol 6VR mineral oil (BCG-CWS/DK) or squalane (BCG-CWS/SQA), on lung metastasis produced by highly metastatic murine tumor cells, Colon26-M3.1 carcinoma cells and B16-BL6 melanoma cells, was investigated in syngeneic mice. An intravenous (i.v.) administration of BCG-CWS (100 mg/mouse) 1 day after tumor inoculation significantly inhibited tumor metastasis of both Colon26-M3.1 carcinoma and B16-BL6 melanoma cells in experimental lung metastasis models. No differences in the antitumor activity of the two oil-based formulations (BCG-CWS/DK and BCG-CWS/SQA) were obverved. However, BCG-CWS/SQA administered through subcutaneous (s.c.) route was shown to be effective only when it was consecutively injected (3 times) after tumor inoculation. An in vivo analysis for tumor-induced angiogenesis showed that a single i.v. administration of BCG-CWS/SQA inhibited the number of tumor-induced blood vessels and suppressed tumor growth. Furthermore, the multiple administration of BCG-CWS/SQA given at on week intervals led to a significant reduction in spontaneous lung metastasis of B16-BL6 melanoma cells in a spontaneous metastasis model. These results suggest that BCG-CWS emulsified with squalane is a potent inhibitory agent of lung metastasis, and that the antimetastatic effect of BCG-CWS is related to the suppression of tumor growth and the inhibition of tumor-induced angiogenesis.

  11. Active Roles of Tumor Stroma in Breast Cancer Metastasis

    International Nuclear Information System (INIS)

    Khamis, Z.I.; Sang, Q.A.; Sahab, Z.J.

    2012-01-01

    Metastasis is the major cause of death for breast cancer patients. Tumors are heterogenous cellular entities composed of cancer cells and cells of the microenvironment in which they reside. A reciprocal dynamic interaction occurs between the tumor cells and their surrounding stroma under physiological and pathological conditions. This tumor-host communication interface mediates the escape of tumor cells at the primary site, survival of circulating cancer cells in the vasculature, and growth of metastatic cancer at secondary site. Each step of the metastatic process is accompanied by recruitment of stromal cells from the microenvironment and production of unique array of growth factors and chemokines. Stromal microenvironment may play active roles in breast cancer metastasis. Elucidating the types of cells recruited and signal pathways involved in the crosstalk between tumor cells and stromal cells will help identify novel strategies for cotargeting cancer cells and tumor stromal cells to suppress metastasis and improve patient outcome

  12. Active Roles of Tumor Stroma in Breast Cancer Metastasis

    Directory of Open Access Journals (Sweden)

    Zahraa I. Khamis

    2012-01-01

    Full Text Available Metastasis is the major cause of death for breast cancer patients. Tumors are heterogenous cellular entities composed of cancer cells and cells of the microenvironment in which they reside. A reciprocal dynamic interaction occurs between the tumor cells and their surrounding stroma under physiological and pathological conditions. This tumor-host communication interface mediates the escape of tumor cells at the primary site, survival of circulating cancer cells in the vasculature, and growth of metastatic cancer at secondary site. Each step of the metastatic process is accompanied by recruitment of stromal cells from the microenvironment and production of unique array of growth factors and chemokines. Stromal microenvironment may play active roles in breast cancer metastasis. Elucidating the types of cells recruited and signal pathways involved in the crosstalk between tumor cells and stromal cells will help identify novel strategies for cotargeting cancer cells and tumor stromal cells to suppress metastasis and improve patient outcome.

  13. Pterostilbene acts through metastasis-associated protein 1 to inhibit tumor growth, progression and metastasis in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Kun Li

    Full Text Available The development of natural product agents with targeted strategies holds promise for enhanced anticancer therapy with reduced drug-associated side effects. Resveratrol found in red wine, has anticancer activity in various tumor types. We reported earlier on a new molecular target of resveratrol, the metastasis-associated protein 1 (MTA1, which is a part of nucleosome remodeling and deacetylation (NuRD co-repressor complex that mediates gene silencing. We identified resveratrol as a regulator of MTA1/NuRD complex and re-activator of p53 acetylation in prostate cancer (PCa. In the current study, we addressed whether resveratrol analogues also possess the ability to inhibit MTA1 and to reverse p53 deacetylation. We demonstrated that pterostilbene (PTER, found in blueberries, had greater increase in MTA1-mediated p53 acetylation, confirming superior potency over resveratrol as dietary epigenetic agent. In orthotopic PCa xenografts, resveratrol and PTER significantly inhibited tumor growth, progression, local invasion and spontaneous metastasis. Furthermore, MTA1-knockdown sensitized cells to these agents resulting in additional reduction of tumor progression and metastasis. The reduction was dependent on MTA1 signaling showing increased p53 acetylation, higher apoptotic index and less angiogenesis in vivo in all xenografts treated with the compounds, and particularly with PTER. Altogether, our results indicate MTA1 as a major contributor in prostate tumor malignant progression, and support the use of strategies targeting MTA1. Our strong pre-clinical data indicate PTER as a potent, selective and pharmacologically safe natural product that may be tested in advanced PCa.

  14. HIV Nef-M1 Effects on Colorectal Cancer Growth in Tumor-induced Spleens and Hepatic Metastasis

    Science.gov (United States)

    Harrington, Willie; Bond, Vincent; Huang, Ming Bo; Powell, Michael; Lillard, James; Manne, Upender; Bumpers, Harvey

    2010-01-01

    CXCR4 receptors have been implicated in tumorigenesis and proliferation, making it a potential target for colorectal cancer therapy. Expression of this chemokine receptor on cellular surfaces appears to promote metastasis by directly stimulating tumor cell migration and invasion. The receptor/ligand, CXCR4/SDF-1α, pair are critically important to angiogenesis and vascular remodeling which supports cancer proliferation. Our work has shown that a novel apoptotic peptide of HIV-1, Nef-M1, can act as a CXCR4 antagonist, inducing apoptosis in CXCR4 containing cells. Four colorectal tumor cell lines (HT-29, LS174t, SW480, WiDr), were evaluated for their response to Nef-M1 peptide via in vivo and in vitro. The presence of CXCR4 receptors on tumor cells was determined using immunohistochemical and RT-PCR analyses. Solid xenografts derived from tumor cell lines grown in SCID mice, were evaluated for the persistence of the receptor. Xenografts propagated in SCID mice from each of the four cell lines demonstrated high levels of receptor expression as well. The effects of Nef-M1 in vivo via splenic injected mice and subsequent hepatic metastasis also demonstrated dramatic reduction of primary tumor growth in the spleen and secondary invasion of the liver. We concluded that Nef-M1 peptide, through physical interaction(s) with CXCR4, drives apoptotic reduction in in vivo primary tumor growth and metastasis. PMID:20383296

  15. MicroRNA-219-5p Promotes Tumor Growth and Metastasis of Hepatocellular Carcinoma by Regulating Cadherin 1

    Directory of Open Access Journals (Sweden)

    Jing Yang

    2018-01-01

    Full Text Available MicroRNAs play significant roles in the development of cancer and may serve as promising therapeutic targets. In our previous work, miR-219-5p was identified as one of the important metastasis-related microRNAs in HCC. Here we demonstrated that miR-219-5p expression was elevated in HCC tissues and was associated with vascular invasion and dismal prognosis. In multivariate analysis, miR-219-5p was identified as an independent prognostic indicator for HCC patients. Functional mechanism analyses showed that miR-219-5p promoted HCC cell proliferation and invasion in in vitro, as well as in vivo, tumor growth and metastasis in nude mice models bearing human HCC tumors. In addition, cadherin 1 (CDH1 was revealed to be a downstream target of miR-219-5p in HCC cells. In conclusion, miR-219-5p promotes tumor growth and metastasis of HCC by regulating CDH1 and can serve as a prognostic marker for HCC patients.

  16. Genetically engineered endostatin-lidamycin fusion proteins effectively inhibit tumor growth and metastasis

    International Nuclear Information System (INIS)

    Jiang, Wen-guo; Zhen, Yong-su; Lu, Xin-an; Shang, Bo-yang; Fu, Yan; Zhang, Sheng-hua; Zhou, Daifu; Li, Liang; Li, Yi; Luo, Yongzhang

    2013-01-01

    Endostatin (ES) inhibits endothelial cell proliferation, migration, invasion, and tube formation. It also shows antiangiogenesis and antitumor activities in several animal models. Endostatin specifically targets tumor vasculature to block tumor growth. Lidamycin (LDM), which consists of an active enediyne chromophore (AE) and a non-covalently bound apo-protein (LDP), is a member of chromoprotein family of antitumor antibiotics with extremely potent cytotoxicity to cancer cells. Therefore, we reasoned that endostatin-lidamycin (ES-LDM) fusion proteins upon energizing with enediyne chromophore may obtain the combined capability targeting tumor vasculature and tumor cell by respective ES and LDM moiety. In this study, we designed and obtained two new endostatin-based fusion proteins, endostatin-LDP (ES-LDP) and LDP-endostatin (LDP-ES). In vitro, the antiangiogenic effect of fusion proteins was determined by the wound healing assay and tube formation assay and the cytotoxicity of their enediyne-energized analogs was evaluated by CCK-8 assay. Tissue microarray was used to analyze the binding affinity of LDP, ES or ES-LDP with specimens of human lung tissue and lung tumor. The in vivo efficacy of the fusion proteins was evaluated with human lung carcinoma PG-BE1 xenograft and the experimental metastasis model of 4T1-luc breast cancer. ES-LDP and LDP-ES disrupted the formation of endothelial tube structures and inhibited endothelial cell migration. Evidently, ES-LDP accumulated in the tumor and suppressed tumor growth and metastasis. ES-LDP and ES show higher binding capability than LDP to lung carcinoma; in addition, ES-LDP and ES share similar binding capability. Furthermore, the enediyne-energized fusion protein ES-LDP-AE demonstrated significant efficacy against lung carcinoma xenograft in athymic mice. The ES-based fusion protein therapy provides some fundamental information for further drug development. Targeting both tumor vasculature and tumor cells by endostatin

  17. Mangiferin, a novel nuclear factor kappa B-inducing kinase inhibitor, suppresses metastasis and tumor growth in a mouse metastatic melanoma model

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Tomoya; Tsubaki, Masanobu; Sakamoto, Kotaro; Ichimura, Eri; Enomoto, Aya; Suzuki, Yuri [Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-, Osaka (Japan); Itoh, Tatsuki [Department of Food Science and Nutrition, Kinki University School of Agriculture, Nara, Nara (Japan); Imano, Motohiro [Department of Surgery, Kinki University School of Medicine, Osakasayama, Osaka (Japan); Tanabe, Genzoh; Muraoka, Osamu [Laboratory of Pharmaceutical Organic Chemistry, School of Pharmacy, Kinki University, Kowakae, Higashi-, Osaka (Japan); Matsuda, Hideaki [Department of Natural Drugs Resources, Kinki University School of Pharmacy, Kowakae, Higashi-, Osaka (Japan); Satou, Takao [Department of Pathology, Kinki University School of Medicine, Osakasayama, Osaka (Japan); Nishida, Shozo, E-mail: nishida@phar.kindai.ac.jp [Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-, Osaka (Japan)

    2016-09-01

    Advanced metastatic melanoma, one of the most aggressive malignancies, is currently without reliable therapy. Therefore, new therapies are urgently needed. Mangiferin is a naturally occurring glucosylxanthone and exerts many beneficial biological activities. However, the effect of mangiferin on metastasis and tumor growth of metastatic melanoma remains unclear. In this study, we evaluated the effect of mangiferin on metastasis and tumor growth in a mouse metastatic melanoma model. We found that mangiferin inhibited spontaneous metastasis and tumor growth. Furthermore, mangiferin suppressed the nuclear translocation of nuclear factor kappa B (NF-κB) and expression of phosphorylated NF-κB-inducing kinase (NIK), inhibitor of kappa B kinase (IKK), and inhibitor of kappa B (IκB) and increases the expression of IκB protein in vivo. In addition, we found that mangiferin inhibited the expression of matrix metalloproteinases (MMPs) and very late antigens (VLAs) in vivo. Mangiferin treatment also increased the expression of cleaved caspase-3, cleaved Poly ADP ribose polymerase-1 (PARP-1), p53 upregulated modulator of apoptosis (PUMA), p53, and phosphorylated p53 proteins, and decreased the expression of Survivin and Bcl-associated X (Bcl-xL) proteins in vivo. These results indicate that mangiferin selectivity suppresses the NF-κB pathway via inhibition of NIK activation, thereby inhibiting metastasis and tumor growth. Importantly, the number of reported NIK selective inhibitors is limited. Taken together, our data suggest that mangiferin may be a potential therapeutic agent with a new mechanism of targeting NIK for the treatment of metastatic melanoma. - Highlights: • Mangiferin prolongs survival in mice by inhibiting metastasis and tumor growth • Mangiferin selectivity suppresses the NF-κB pathway via inhibition of NIK activation • Mangiferin regulates the expression of MMPs, VLAs, and apoptosis regulatory proteins.

  18. Rac2 controls tumor growth, metastasis and M1-M2 macrophage differentiation in vivo.

    Directory of Open Access Journals (Sweden)

    Shweta Joshi

    Full Text Available Although it is well-established that the macrophage M1 to M2 transition plays a role in tumor progression, the molecular basis for this process remains incompletely understood. Herein, we demonstrate that the small GTPase, Rac2 controls macrophage M1 to M2 differentiation and the metastatic phenotype in vivo. Using a genetic approach, combined with syngeneic and orthotopic tumor models we demonstrate that Rac2-/- mice display a marked defect in tumor growth, angiogenesis and metastasis. Microarray, RT-PCR and metabolomic analysis on bone marrow derived macrophages isolated from the Rac2-/- mice identify an important role for Rac2 in M2 macrophage differentiation. Furthermore, we define a novel molecular mechanism by which signals transmitted from the extracellular matrix via the α4β1 integrin and MCSF receptor lead to the activation of Rac2 and potentially regulate macrophage M2 differentiation. Collectively, our findings demonstrate a macrophage autonomous process by which the Rac2 GTPase is activated downstream of the α4β1 integrin and the MCSF receptor to control tumor growth, metastasis and macrophage differentiation into the M2 phenotype. Finally, using gene expression and metabolomic data from our Rac2-/- model, and information related to M1-M2 macrophage differentiation curated from the literature we executed a systems biologic analysis of hierarchical protein-protein interaction networks in an effort to develop an iterative interactome map which will predict additional mechanisms by which Rac2 may coordinately control macrophage M1 to M2 differentiation and metastasis.

  19. Abalone visceral extract inhibit tumor growth and metastasis by modulating Cox-2 levels and CD8+ T cell activity

    Directory of Open Access Journals (Sweden)

    II Kim Jae

    2010-10-01

    Full Text Available Abstract Background Abalone has long been used as a valuable food source in East Asian countries. Although the nutritional importance of abalone has been reported through in vitro and in vivo studies, there is little evidence about the potential anti-tumor effects of abalone visceral extract. The aim of the present study is to examine anti-tumor efficacy of abalone visceral extract and to elucidate its working mechanism. Methods In the present study, we used breast cancer model using BALB/c mouse-derived 4T1 mammary carcinoma and investigated the effect of abalone visceral extract on tumor development. Inhibitory effect against tumor metastasis was assessed by histopathology of lungs. Cox-2 productions by primary and secondary tumor were measured by real-time RT-PCR and immunoblotting (IB. Proliferation assay based on [3H]-thymidine incorporation and measurement of cytokines and effector molecules by RT-PCR were used to confirm tumor suppression efficacy of abalone visceral extract by modulating cytolytic CD8+ T cells. The cytotoxicity of CD8+ T cell was compared by JAM test. Results Oral administration of abalone visceral extract reduced tumor growth (tumor volume and weight and showed reduced metastasis as confirmed by decreased level of splenomegaly (spleen size and weight and histological analysis of the lung metastasis (gross analysis and histological staining. Reduced expression of Cox-2 (mRNA and protein from primary tumor and metastasized lung was also detected. In addition, treatment of abalone visceral extract increased anti-tumor activities of CD8+ T cells by increasing the proliferation capacity and their cytolytic activity. Conclusions Our results suggest that abalone visceral extract has anti-tumor effects by suppressing tumor growth and lung metastasis through decreasing Cox-2 expression level as well as promoting proliferation and cytolytic function of CD8+ T cells.

  20. Abalone visceral extract inhibit tumor growth and metastasis by modulating Cox-2 levels and CD8+ T cell activity.

    Science.gov (United States)

    Lee, Choong-Gu; Kwon, Ho-Keun; Ryu, Jae Ha; Kang, Sung Jin; Im, Chang-Rok; Ii Kim, Jae; Im, Sin-Hyeog

    2010-10-20

    Abalone has long been used as a valuable food source in East Asian countries. Although the nutritional importance of abalone has been reported through in vitro and in vivo studies, there is little evidence about the potential anti-tumor effects of abalone visceral extract. The aim of the present study is to examine anti-tumor efficacy of abalone visceral extract and to elucidate its working mechanism. In the present study, we used breast cancer model using BALB/c mouse-derived 4T1 mammary carcinoma and investigated the effect of abalone visceral extract on tumor development. Inhibitory effect against tumor metastasis was assessed by histopathology of lungs. Cox-2 productions by primary and secondary tumor were measured by real-time RT-PCR and immunoblotting (IB). Proliferation assay based on [3H]-thymidine incorporation and measurement of cytokines and effector molecules by RT-PCR were used to confirm tumor suppression efficacy of abalone visceral extract by modulating cytolytic CD8+ T cells. The cytotoxicity of CD8+ T cell was compared by JAM test. Oral administration of abalone visceral extract reduced tumor growth (tumor volume and weight) and showed reduced metastasis as confirmed by decreased level of splenomegaly (spleen size and weight) and histological analysis of the lung metastasis (gross analysis and histological staining). Reduced expression of Cox-2 (mRNA and protein) from primary tumor and metastasized lung was also detected. In addition, treatment of abalone visceral extract increased anti-tumor activities of CD8+ T cells by increasing the proliferation capacity and their cytolytic activity. Our results suggest that abalone visceral extract has anti-tumor effects by suppressing tumor growth and lung metastasis through decreasing Cox-2 expression level as well as promoting proliferation and cytolytic function of CD8+ T cells.

  1. LOXL4 knockdown enhances tumor growth and lung metastasis through collagen-dependent extracellular matrix changes in triple-negative breast cancer.

    Science.gov (United States)

    Choi, Sul Ki; Kim, Hoe Suk; Jin, Tiefeng; Moon, Woo Kyung

    2017-02-14

    Lysyl oxidase (LOX) family genes catalyze collagen cross-link formation. To determine the effects of lysyl oxidase-like 4 (LOXL4) expression on breast tumor formation and metastasis, we evaluated primary tumor growth and lung metastasis in mice injected with LOXL4-knockdown MDA-MB-231 triple-negative human breast cancer cells. In addition, we analyzed overall survival in breast cancer patients based on LOXL4 expression using a public online database. In the mouse xenograft model, LOXL4 knockdown increased primary tumor growth and lung colonization as well as collagen I and IV, lysine hydroxylase 1 and 2, and prolyl 4-hydroxylase subunit alpha 1 and 2 levels. Second harmonic generation imaging revealed that LOXL4 knockdown resulted in the thickening of collagen bundles within tumors. In addition, weak LOXL4 expression was associated with poor overall survival in breast cancer patients from the BreastMark dataset, and this association was strongest in triple-negative breast cancer patients. These results demonstrate that weak LOXL4 expression leads to remodeling of the extracellular matrix through induction of collagen synthesis, deposition, and structural changes. These alterations in turn promote tumor growth and metastasis and are associated with poor clinical outcomes in triple-negative breast cancer.

  2. Presence of intratumoral platelets is associated with tumor vessel structure and metastasis

    International Nuclear Information System (INIS)

    Li, Rong; Zhang, Xu; Zhang, Zhuo; Zhang, Xiao; Ran, Bing; Wu, Jianbo; Ren, Meiping; Chen, Ni; Luo, Mao; Deng, Xin; Xia, Jiyi; Yu, Guang; Liu, Jinbo; He, Bing

    2014-01-01

    Platelets play a fundamental role in maintaining hemostasis and have been shown to participate in hematogenous dissemination of tumor cells. Abundant platelets were detected in the tumor microenvironment outside of the blood vessel, thus, platelet -tumor cell interaction outside of the bloodstream may play a role in regulating primary tumor growth and metastasis initiation. However, it is unclear that platelet depletion affects tumor vessel structure and dynamics. Using thrombocytopenia induction in two different tumor-bearing mouse models, tumor tissues were performed by Westernblotting and immunohistochemical staining. Vascular permeability was evaluated by determination of intratumoral Evans blue and Miles vascular permeability assay. Furthermore, microdialysis was used to examining the intratumoral extracellular angiogenic growth factors (VEGF, TGF-β) by ELISA. Platelet depletion showed no change in tumor growth and reduced lung metastasis. Platelet depletion led to reduced tumor hypoxia and Met receptor activation and was associated with a decreased release of MMP-2, 9, PAI-1, VEGF, and TGF-β. Tumor vessels in platelet-depleted mice showed impaired vessel density and maturation. Our findings demonstrate that platelets within the primary tumor microenvironment play a critical role in the induction of vascular permeability and initiation of tumor metastasis

  3. Bovine Lactoferrin and Lactoferricin, a Peptide Derived from Bovine Lactoferrin, Inhibit Tumor Metastasis in Mice

    Science.gov (United States)

    Watanabe, Shikiko; Watanabe, Ryosuke; Hata, Katsusuke; Shimazaki, Kei–ichi; Azuma, Ichiro

    1997-01-01

    We investigated the effect of a bovine milk protein, lactoferrin (LF–B), and a pepsin–generated peptide of LF–B, lactoferricin (Lfcin–B), on inhibition of tumor metastasis produced by highly metastatic murine tumor cells, B16–BL6 melanoma and L5178Y–ML25 lymphoma cells, using experimental and spontaneous metastasis models in syngeneic mice. The subcutaneous (s.c.) administration of bovine apo–lactoferrin (apo–LF–B, 1 mg/mouse) and Lfcin–B (0.5 mg/monse) 1 day after tumor inoculation significantly inhibited liver and lung metastasis of L5178Y–ML25 cells. However, human apo–lactoferrin (apo–LF–H) and bovine holo–lactoferrin (holo–LF–B) at the dose of 1 mg/mouse failed to inhibit tumor metastasis of L5178Y–ML25 cells. Similarly, the s.c. administration of apo–LF–B as well as Lfcin–B, but not apo–LF–H and holo–LF–B, 1 day after tumor inoculation resulted in significant inhibition of lung metastasis of B16–BL6 cells in an experimental metastasis model. Furthermore, in in vivo analysis for tumor–induced angiogenesis, both apo–LF–B and Lfcin–B inhibited the number of tumor–induced blood vessels and suppressed tumor growth on day 8 after tumor inoculation. However, in a long–term analysis of tumor growth for up to 21 days after tumor inoculation, single administration of apo–LF–B significantly suppressed the growth of B16–BL6 cells throughout the examination period, whereas Lfcin–B showed inhibitory activity only during the early period (8 days). In spontaneous metastasis of B16–BL6 melanoma cells, multiple administration of both apo–LF–B and Lfcin–B into tumor–bearing mice significantly inhibited lung metastasis produced by B16–BL6 cells, though only apo–LF–B exhibited an inhibitory effect on tumor growth at the time of primary tumor amputation (on day 21) after tumor inoculation. These results suggest that apo–LF–B and Lfcin–B inhibit tumor metastasis through different

  4. Long non-coding RNA AFAP1-AS1 facilitates tumor growth and promotes metastasis in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Xu Han

    Full Text Available BACKGROUND AND OBJECTIVE: Long non-coding RNAs can regulate tumorigenesis of various cancers. Dys-regulation of lncRNA-AFAP1-AS1 has not been studied in colorectal carcinoma (CRC. This study was to examine the function involvement of AFAP1-AS1 in tumor growth and metastasis of CRC. METHODS: Relative expression of AFAP1-AS1 in CRC tissues and CRC cells lines was determined using quantitative real-time PCR (qRT-PCR. Functional involvement of AFAP1-AS1 in tumor proliferation and metastasis was evaluated in AFAP1-AS1-specific siRNA-treated CRC cells and in CRC cell xenograft. Expression of epithelial-mesenchymal transition (EMT-related gene expression was determined using western blot. RESULTS: Relative expression of AFAP1-AS1 was significantly elevated in CRC tissues and CRC HCT116 and SW480 cell lines. AFAP1-AS1 knock-down suppressed SW480 cell proliferation, colony formation, migration and invasion. Also AFAP1-AS1 knock-down inhibited tumor metastasis-associated genes expression in terms of EMT. This carcinostatic action by AFAP1-AS1 knock-down was further confirmed by suppression of tumor formation and hepatic metastasis of CRC cells in nude mice. CONCLUSION: lncRNA-AFAP1-AS1 knock-down exhibits antitumor effect on colorectal carcinoma in respects of suppression of cell proliferation and metastasis of cancer cells.

  5. EMMPRIN regulates tumor growth and metastasis by recruiting bone marrow-derived cells through paracrine signaling of SDF-1 and VEGF.

    Science.gov (United States)

    Chen, Yanke; Gou, Xingchun; Kong, Derek Kai; Wang, Xiaofei; Wang, Jianhui; Chen, Zeming; Huang, Chen; Zhou, Jiangbing

    2015-10-20

    EMMPRIN, a cell adhesion molecule highly expressed in a variety of tumors, is associated with poor prognosis in cancer patients. Mechanistically, EMMPRIN has been characterized to contribute to tumor development and progression by controlling the expression of MMPs and VEGF. In the present study, by using fluorescently labeled bone marrow-derived cells (BMDCs), we found that the down-regulation of EMMPRIN expression in cancer cells reduces tumor growth and metastasis, and is associated with the reduced recruitment of BMDCs. Further protein profiling studies suggest that EMMPRIN controls BMDC recruitment through regulating the secretion of soluble factors, notably, VEGF and SDF-1. We demonstrate that the expression and secretion of SDF-1 in tumor cells are regulated by EMMPRIN. This study reveals a novel mechanism by which EMMPRIN promotes tumor growth and metastasis by recruitment of BMDCs through controlling secretion and paracrine signaling of SDF-1 and VEGF.

  6. Oridonin inhibits tumor growth and metastasis through anti-angiogenesis by blocking the Notch signaling.

    Directory of Open Access Journals (Sweden)

    Yanmin Dong

    Full Text Available While significant progress has been made in understanding the anti-inflammatory and anti-proliferative effects of the natural diterpenoid component Oridonin on tumor cells, little is known about its effect on tumor angiogenesis or metastasis and on the underlying molecular mechanisms. In this study, Oridonin significantly suppressed human umbilical vascular endothelial cells (HUVECs proliferation, migration, and apillary-like structure formation in vitro. Using aortic ring assay and mouse corneal angiogenesis model, we found that Oridonin inhibited angiogenesis ex vivo and in vivo. In our animal experiments, Oridonin impeded tumor growth and metastasis. Immunohistochemistry analysis further revealed that the expression of CD31 and vWF protein in xenografts was remarkably decreased by the Oridonin. Furthermore, Oridonin reinforced endothelial cell-cell junction and impaired breast cancer cell transendothelial migration. Mechanistically, Oridonin not only down-regulated Jagged2 expression and Notch1 activity but also decreased the expression of their target genes. In conclusion, our results demonstrated an original role of Oridonin in inhibiting tumor angiogenesis and propose a mechanism. This study also provides new evidence supporting the central role of Notch in tumor angiogenesis and suggests that Oridonin could be a potential drug candidate for angiogenesis related diseases.

  7. Reciprocal modulation of mesenchymal stem cells and tumor cells promotes lung cancer metastasis

    Directory of Open Access Journals (Sweden)

    Giulia Fregni

    2018-03-01

    Full Text Available Metastasis is a multi-step process in which direct crosstalk between cancer cells and their microenvironment plays a key role. Here, we assessed the effect of paired tumor-associated and normal lung tissue mesenchymal stem cells (MSCs on the growth and dissemination of primary human lung carcinoma cells isolated from the same patients. We show that the tumor microenvironment modulates MSC gene expression and identify a four-gene MSC signature that is functionally implicated in promoting metastasis. We also demonstrate that tumor-associated MSCs induce the expression of genes associated with an aggressive phenotype in primary lung cancer cells and selectively promote their dissemination rather than local growth. Our observations provide insight into mechanisms by which the stroma promotes lung cancer metastasis. Keywords: Tumor-associated MSCs, lung cancer, metastasis, GREM1, LOXL2, ADAMTS12, ITGA11

  8. Herbal Extract SH003 Suppresses Tumor Growth and Metastasis of MDA-MB-231 Breast Cancer Cells by Inhibiting STAT3-IL-6 Signaling

    Directory of Open Access Journals (Sweden)

    Youn Kyung Choi

    2014-01-01

    Full Text Available Cancer inflammation promotes cancer progression, resulting in a high risk of cancer. Here, we demonstrate that our new herbal extract, SH003, suppresses both tumor growth and metastasis of MDA-MB-231 breast cancer cells via inhibiting STAT3-IL-6 signaling path. Our new herbal formula, SH003, mixed extract from Astragalus membranaceus, Angelica gigas, and Trichosanthes kirilowii Maximowicz, suppressed MDA-MB-231 tumor growth and lung metastasis in vivo and reduced the viability and metastatic abilities of MDA-MB-231 cells in vitro. Furthermore, SH003 inhibited STAT3 activation, which resulted in a reduction of IL-6 production. Therefore, we conclude that SH003 suppresses highly metastatic breast cancer growth and metastasis by inhibiting STAT3-IL-6 signaling path.

  9. The milk protein α-casein functions as a tumor suppressor via activation of STAT1 signaling, effectively preventing breast cancer tumor growth and metastasis

    Science.gov (United States)

    Bonuccelli, Gloria; Castello-Cros, Remedios; Capozza, Franco; Martinez-Outschoorn, Ubaldo E.; Lin, Zhao; Tsirigos, Aristotelis; Xuanmao, Jiao; Whitaker-Menezes, Diana; Howell, Anthony; Lisanti, Michael P.; Sotgia, Federica

    2012-01-01

    Here, we identified the milk protein α-casein as a novel suppressor of tumor growth and metastasis. Briefly, Met-1 mammary tumor cells expressing α-casein showed a ~5-fold reduction in tumor growth and a near 10-fold decrease in experimental metastasis. To identify the molecular mechanism(s), we performed genome-wide transcriptional profiling. Interestingly, our results show that α-casein upregulates gene transcripts associated with interferon/STAT1 signaling and downregulates genes associated with “stemness.” These findings were validated by immunoblot and FACS analysis, which showed the upregulation and hyperactivation of STAT1 and a decrease in the number of CD44(+) “cancer stem cells.” These gene signatures were also able to predict clinical outcome in human breast cancer patients. Thus, we conclude that a lactation-based therapeutic strategy using recombinant α-casein would provide a more natural and non-toxic approach to the development of novel anticancer therapies. PMID:23047602

  10. Mena deficiency delays tumor progression and decreases metastasis in polyoma middle-T transgenic mouse mammary tumors.

    Science.gov (United States)

    Roussos, Evanthia T; Wang, Yarong; Wyckoff, Jeffrey B; Sellers, Rani S; Wang, Weigang; Li, Jiufeng; Pollard, Jeffrey W; Gertler, Frank B; Condeelis, John S

    2010-01-01

    The actin binding protein Mammalian enabled (Mena), has been implicated in the metastatic progression of solid tumors in humans. Mena expression level in primary tumors is correlated with metastasis in breast, cervical, colorectal and pancreatic cancers. Cells expressing high Mena levels are part of the tumor microenvironment for metastasis (TMEM), an anatomical structure that is predictive for risk of breast cancer metastasis. Previously we have shown that forced expression of Mena adenocarcinoma cells enhances invasion and metastasis in xenograft mice. Whether Mena is required for tumor progression is still unknown. Here we report the effects of Mena deficiency on tumor progression, metastasis and on normal mammary gland development. To investigate the role of Mena in tumor progression and metastasis, Mena deficient mice were intercrossed with mice carrying a transgene expressing the polyoma middle T oncoprotein, driven by the mouse mammary tumor virus. The progeny were investigated for the effects of Mena deficiency on tumor progression via staging of primary mammary tumors and by evaluation of morbidity. Stages of metastatic progression were investigated using an in vivo invasion assay, intravital multiphoton microscopy, circulating tumor cell burden, and lung metastases. Mammary gland development was studied in whole mount mammary glands of wild type and Mena deficient mice. Mena deficiency decreased morbidity and metastatic dissemination. Loss of Mena increased mammary tumor latency but had no affect on mammary tumor burden or histologic progression to carcinoma. Elimination of Mena also significantly decreased epidermal growth factor (EGF) induced in vivo invasion, in vivo motility, intravasation and metastasis. Non-tumor bearing mice deficient for Mena also showed defects in mammary gland terminal end bud formation and branching. Deficiency of Mena decreases metastasis by slowing tumor progression and reducing tumor cell invasion and intravasation. Mena

  11. Role of Tumor-Derived Chemokines in Osteolytic Bone Metastasis

    Directory of Open Access Journals (Sweden)

    Salvatore J. Coniglio

    2018-06-01

    Full Text Available Metastasis is the primary cause of mortality and morbidity in cancer patients. The bone marrow is a common destination for many malignant cancers, including breast carcinoma (BC, prostate carcinoma, multiple myeloma, lung carcinoma, uterine cancer, thyroid cancer, bladder cancer, and neuroblastoma. The molecular mechanism by which metastatic cancer are able to recognize, infiltrate, and colonize bone are still unclear. Chemokines are small soluble proteins which under normal physiological conditions mediate chemotactic trafficking of leukocytes to specific tissues in the body. In the context of metastasis, the best characterized role for the chemokine system is in the regulation of primary tumor growth, survival, invasion, and homing to specific secondary sites. However, there is ample evidence that metastatic tumors exploit chemokines to modulate the metastatic niche within bone which ultimately results in osteolytic bone disease. In this review, we examine the role of chemokines in metastatic tumor growth within bone. In particular, the chemokines CCL2, CCL3, IL-8/CXCL8, and CXCL12 are consistently involved in promoting osteoclastogenesis and tumor growth. We will also evaluate the suitability of chemokines as targets for chemotherapy with the use of neutralizing antibodies and chemokine receptor-specific antagonists.

  12. Tungsten Targets the Tumor Microenvironment to Enhance Breast Cancer Metastasis

    Science.gov (United States)

    Bolt, Alicia M.; Sabourin, Valérie; Molina, Manuel Flores; Police, Alice M.; Negro Silva, Luis Fernando; Plourde, Dany; Lemaire, Maryse; Ursini-Siegel, Josie; Mann, Koren K.

    2015-01-01

    The number of individuals exposed to high levels of tungsten is increasing, yet there is limited knowledge of the potential human health risks. Recently, a cohort of breast cancer patients was left with tungsten in their breasts following testing of a tungsten-based shield during intraoperative radiotherapy. While monitoring tungsten levels in the blood and urine of these patients, we utilized the 66Cl4 cell model, in vitro and in mice to study the effects of tungsten exposure on mammary tumor growth and metastasis. We still detect tungsten in the urine of patients’ years after surgery (mean urinary tungsten concentration at least 20 months post-surgery = 1.76 ng/ml), even in those who have opted for mastectomy, indicating that tungsten does not remain in the breast. In addition, standard chelation therapy was ineffective at mobilizing tungsten. In the mouse model, tungsten slightly delayed primary tumor growth, but significantly enhanced lung metastasis. In vitro, tungsten did not enhance 66Cl4 proliferation or invasion, suggesting that tungsten was not directly acting on 66Cl4 primary tumor cells to enhance invasion. In contrast, tungsten changed the tumor microenvironment, enhancing parameters known to be important for cell invasion and metastasis including activated fibroblasts, matrix metalloproteinases, and myeloid-derived suppressor cells. We show, for the first time, that tungsten enhances metastasis in an animal model of breast cancer by targeting the microenvironment. Importantly, all these tumor microenvironmental changes are associated with a poor prognosis in humans. PMID:25324207

  13. Targeting antisense mitochondrial ncRNAs inhibits murine melanoma tumor growth and metastasis through reduction in survival and invasion factors.

    Science.gov (United States)

    Lobos-González, Lorena; Silva, Verónica; Araya, Mariela; Restovic, Franko; Echenique, Javiera; Oliveira-Cruz, Luciana; Fitzpatrick, Christopher; Briones, Macarena; Villegas, Jaime; Villota, Claudio; Vidaurre, Soledad; Borgna, Vincenzo; Socias, Miguel; Valenzuela, Sebastián; Lopez, Constanza; Socias, Teresa; Varas, Manuel; Díaz, Jorge; Burzio, Luis O; Burzio, Verónica A

    2016-09-06

    We reported that knockdown of the antisense noncoding mitochondrial RNAs (ASncmtRNAs) induces apoptotic death of several human tumor cell lines, but not normal cells, suggesting this approach for selective therapy against different types of cancer. In order to translate these results to a preclinical scenario, we characterized the murine noncoding mitochondrial RNAs (ncmtRNAs) and performed in vivo knockdown in syngeneic murine melanoma models. Mouse ncmtRNAs display structures similar to the human counterparts, including long double-stranded regions arising from the presence of inverted repeats. Knockdown of ASncmtRNAs with specific antisense oligonucleotides (ASO) reduces murine melanoma B16F10 cell proliferation and induces apoptosis in vitro through downregulation of pro-survival and metastasis markers, particularly survivin. For in vivo studies, subcutaneous B16F10 melanoma tumors in C57BL/6 mice were treated systemically with specific and control antisense oligonucleotides (ASO). For metastasis studies, tumors were resected, followed by systemic administration of ASOs and the presence of metastatic nodules in lungs and liver was assessed. Treatment with specific ASO inhibited tumor growth and metastasis after primary tumor resection. In a metastasis-only assay, mice inoculated intravenously with cells and treated with the same ASO displayed reduced number and size of melanoma nodules in the lungs, compared to controls. Our results suggest that ASncmtRNAs could be potent targets for melanoma therapy. To our knowledge, the ASncmtRNAs are the first potential non-nuclear targets for melanoma therapy.

  14. Effect of troglitazone on tumor growth and pulmonary metastasis development of the mouse osteosarcoma cell line LM8

    International Nuclear Information System (INIS)

    Aizawa, Junichi; Sakayama, Kenshi; Kamei, Setsuya; Kidani, Teruki; Yamamoto, Haruyasu; Norimatsu, Yoshiaki; Masuno, Hiroshi

    2010-01-01

    Osteosarcoma often develops micrometastases in the lung prior to diagnosis, causing a fatal outcome. Therefore, the prevention of pulmonary metastases is critical for the improvement of the prognosis of patients with osteosarcoma. The purpose of this study was to investigate whether troglitazone (TGZ) is considered as possible therapeutics in the treatment of growth and metastasis of osteosarcoma. LM8 cells were treated for 3 days with various concentrations of TGZ. The effect of TGZ on cell proliferation was determined by DNA measurement in the cultures and 5-bromo-2'-deoxyuridine incorporation study. The assay of cell invasion and motility was performed using either the Matrigel-coated cell culture inserts or the uncoated cell culture inserts in the invasion chambers. The effect of TGZ on Akt signaling was assessed by Western blot analysis of Akt and p-Akt. The effects of oral administration of either TGZ (TGZ group) or ethanol (control group) on the growth of primary tumor and the development of pulmonary metastasis were examined in nude mice implanted with LM8 cells on their backs. The expression and activity of matrix metalloproteinase 2 (MMP-2) within the tumor were determined by immunohistochemistry and zymography. The microvessel density (MVD) within the tumor was determined by immunohistochemistry for CD34. TGZ dose-dependently inhibits cell proliferation. TGZ-treated cells were less invasive and less motile than untreated cells. The activity of MMP-2 secreted by TGZ-treated cells was lower than that secreted by untreated cells. TGZ decreased the level of p-Akt. The primary tumor mass was smaller in the TGZ group than in the control group. The TGZ group had less metastatic tumors in the lung compared with the control group. The expression and activity of MMP-2 within the tumor of the TGZ group were lower than those of the control group. The MVD within the tumor of the TGZ group was lower than that of the control group. Inhibition of Akt signaling by

  15. Effect of troglitazone on tumor growth and pulmonary metastasis development of the mouse osteosarcoma cell line LM8

    Directory of Open Access Journals (Sweden)

    Kidani Teruki

    2010-02-01

    Full Text Available Abstract Background Osteosarcoma often develops micrometastases in the lung prior to diagnosis, causing a fatal outcome. Therefore, the prevention of pulmonary metastases is critical for the improvement of the prognosis of patients with osteosarcoma. The purpose of this study was to investigate whether troglitazone (TGZ is considered as possible therapeutics in the treatment of growth and metastasis of osteosarcoma. Methods LM8 cells were treated for 3 days with various concentrations of TGZ. The effect of TGZ on cell proliferation was determined by DNA measurement in the cultures and 5-bromo-2'-deoxyuridine incorporation study. The assay of cell invasion and motility was performed using either the Matrigel-coated cell culture inserts or the uncoated cell culture inserts in the invasion chambers. The effect of TGZ on Akt signaling was assessed by Western blot analysis of Akt and p-Akt. The effects of oral administration of either TGZ (TGZ group or ethanol (control group on the growth of primary tumor and the development of pulmonary metastasis were examined in nude mice implanted with LM8 cells on their backs. The expression and activity of matrix metalloproteinase 2 (MMP-2 within the tumor were determined by immunohistochemistry and zymography. The microvessel density (MVD within the tumor was determined by immunohistochemistry for CD34. Results TGZ dose-dependently inhibits cell proliferation. TGZ-treated cells were less invasive and less motile than untreated cells. The activity of MMP-2 secreted by TGZ-treated cells was lower than that secreted by untreated cells. TGZ decreased the level of p-Akt. The primary tumor mass was smaller in the TGZ group than in the control group. The TGZ group had less metastatic tumors in the lung compared with the control group. The expression and activity of MMP-2 within the tumor of the TGZ group were lower than those of the control group. The MVD within the tumor of the TGZ group was lower than that of the

  16. Platelet-camouflaged nanococktail: Simultaneous inhibition of drug-resistant tumor growth and metastasis via a cancer cells and tumor vasculature dual-targeting strategy.

    Science.gov (United States)

    Jing, Lijia; Qu, Haijing; Wu, Dongqi; Zhu, Chaojian; Yang, Yongbo; Jin, Xing; Zheng, Jian; Shi, Xiangsheng; Yan, Xiufeng; Wang, Yang

    2018-01-01

    Multidrug resistance (MDR) poses a great challenge to cancer therapy. It is difficult to inhibit the growth of MDR cancer due to its chemoresistance. Furthermore, MDR cancers are more likely to metastasize, causing a high mortality among cancer patients. In this study, a nanomedicine RGD-NPVs@MNPs/DOX was developed by encapsulating melanin nanoparticles (MNPs) and doxorubicin (DOX) inside RGD peptide (c(RGDyC))-modified nanoscale platelet vesicles (RGD-NPVs) to efficiently inhibit the growth and metastasis of drug-resistant tumors via a cancer cells and tumor vasculature dual-targeting strategy. Methods: The in vitro immune evasion potential and the targeting performance of RGD-NPVs@MNPs/DOX were examined using RAW264.7, HUVECs, MDA-MB-231 and MDA-MB-231/ADR cells lines. We also evaluated the pharmacokinetic behavior and the in vivo therapeutic performance of RGD-NPVs@MNPs/DOX using a MDA-MB-231/ADR tumor-bearing nude mouse model. Results: By taking advantage of the self-recognizing property of the platelet membrane and the conjugated RGD peptides, RGD-NPVs@MNPs/DOX was found to evade immune clearance and target the αvβ3 integrin on tumor vasculature and resistant breast tumor cells. Under irradiation with a NIR laser, RGD-NPVs@MNPs/DOX produced a multipronged effect, including reversal of cancer MDR, efficient killing of resistant cells by chemo-photothermal therapy, elimination of tumor vasculature for blocking metastasis, and long-lasting inhibition of the expressions of VEGF, MMP2 and MMP9 within the tumor. Conclusion: This versatile nanomedicine of RGD-NPVs@MNPs/DOX integrating unique biomimetic properties, excellent targeting performance, and comprehensive therapeutic strategies in one formulation might bring opportunities to MDR cancer therapy.

  17. Withaferin A Suppresses Liver Tumor Growth in a Nude Mouse ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of withaferin A on tumor growth and metastasis in liver in a nude mouse model. Methods: Withaferin A was injected through a portal vein to the orthotopic liver tumor in a nude mice model. Xenogen in vivo imaging system was used to monitor tumor growth and metastasis. The effect of ...

  18.  The role of metalloproteinases in modification of extracellular matrix in invasive tumor growth, metastasis and angiogenesis

    Directory of Open Access Journals (Sweden)

    Krzysztof Fink

    2012-09-01

    Full Text Available Extracellular matrix metalloproteinases (MMPs are a family of endopeptydases which recquire a zinc ion at their active site, for proteolityc activity. There are six members of the MMP family: matrilysins, collagenases, stromelysins, gelatinases, membrane MMPs and other MMPs. Activity of MMPs is regulated at the level of gene transcription, mRNA stability, zymogene proteolitic activation, inhibition of an active enzyme and MMP degradation. Tissue inhibitors of metalloproteinases (TIMPs are main intracellular inhibitors of MMPs. Host cells can be stimulated by tumor cells to produce MMPs by secreted interleukins, interferons, growth factors and an extracellular matrix metalloproteinase inducer (EMMPRIN. MMPs are produced by tumor cells, fibroblasts, macrophages, mast cells, polimorphonuclear neutrophiles (PMNs and endothelial cells (ECs. MMPs affect many stages of tumor development, facilitating its growth through promoting tumor cells proliferation, invasion and migration, new blood vessels formation and blocking tumor cells apoptosis. MMPs can promote tumor development in several ways. ECM degradation results in release of peptide growth factors. Growth factors linked with cell surface or binding proteins can also be liberated by MMPs. MMPs can indirectly regulate integrin signalling or cleave E-cadherins, facilitating cell migration. MMPs support metastasis inducing an epithelial to mesenchymal transition (EMT. MMP also support transendothelial migration. MMPs support angiogenesis by releasing pro-angiogenic factors and degrading ECM to support ECs migration. Cell surface growth factor receptors are also cleaved by MMPs, which results in inhibition of tumor development, so is release of anti-angiogenic factors from ECM. 

  19. Blockade of Notch Signaling in Tumor-Bearing Mice May Lead to Tumor Regression, Progression, or Metastasis, Depending on Tumor Cell Types

    Directory of Open Access Journals (Sweden)

    Xing-Bin Hu

    2009-01-01

    Full Text Available It has been reported that blocking Notch signaling in tumor-bearing mice results in abortive angiogenesis and tumor regression. However, given that Notch signaling influences numerous cellular processes in vivo, a comprehensive evaluation of the effect of Notch inactivation on tumor growth would be favorable. In this study, we inoculated four cancer cell lines in mice with the conditional inactivation of recombination signal-binding protein-Jκ (RBP-J, which mediates signaling from all four mammalian Notch receptors. We found that whereas three tumors including hepatocarcinoma, lung cancer, and osteogenic sarcoma grew slower in the RBP-J-deficient mice, at least a melanoma, B16, grew significantly faster in the RBP-J-deficient mice than in the controls, suggesting that the RBP-J-deficient hosts could provide permissive cues for tumor growth. All these tumors showed increased microvessels and up-regulated hypoxia-inducible factor 1α, suggesting that whereas defective angiogenesis resulted in hypoxia, different tumors might grow differentially in the RBP-J-deleted mice. Similarly, increased infiltration of Gr1+/Mac1+ cells were noticed in tumors grown in the RBP-J-inactivated mice. Moreover, we found that when inoculated in the RBP-J knockout hosts, the H22 hepatoma cells had a high frequency of metastasis and lethality, suggesting that at least for H22, deficiency of environmental Notch signaling favored tumor metastasis. Our findings suggested that the general blockade of Notch signaling in tumor-bearing mice could lead to defective angiogenesis in tumors, but depending on tumor cell types, general inhibition of Notch signaling might result in tumor regression, progression, or metastasis.

  20. Pericytes limit tumor cell metastasis

    DEFF Research Database (Denmark)

    Xian, Xiaojie; Håkansson, Joakim; Ståhlberg, Anders

    2006-01-01

    Previously we observed that neural cell adhesion molecule (NCAM) deficiency in beta tumor cells facilitates metastasis into distant organs and local lymph nodes. Here, we show that NCAM-deficient beta cell tumors grew leaky blood vessels with perturbed pericyte-endothelial cell-cell interactions...... the microvessel wall. To directly address whether pericyte dysfunction increases the metastatic potential of solid tumors, we studied beta cell tumorigenesis in primary pericyte-deficient Pdgfb(ret/ret) mice. This resulted in beta tumor cell metastases in distant organs and local lymph nodes, demonstrating a role...... and deficient perivascular deposition of ECM components. Conversely, tumor cell expression of NCAM in a fibrosarcoma model (T241) improved pericyte recruitment and increased perivascular deposition of ECM molecules. Together, these findings suggest that NCAM may limit tumor cell metastasis by stabilizing...

  1. Growth analysis of pulmonary metastases from salivary gland tumors.

    Science.gov (United States)

    Twardzik, F G; Sklaroff, D M

    1976-03-01

    Three cases of primary salivary gland tumors with lung metastasis are presented with extremely long survival (six, ten, and twelve years). The tumor doubling time was calculated and the growth rate of the pulmonary metastasis was found to be slow and erratic. A simplified table was devised, which permits rapid calculation of the tumor doubling time without the use of graphs. The presence of lung metastasis from some primary malignant salivary tumor is not necessarily an ominous sign: a long survival without symtoms is possible.

  2. BRE enhances in vivo growth of tumor cells

    International Nuclear Information System (INIS)

    Chan, Ben Chung-Lap; Li Qing; Chow, Stephanie Ka-Yee; Ching, Arthur Kar-Keung; Liew, Choong Tsek; Lim, Pak-Leong; Lee, Kenneth Ka-Ho; Chan, John Yeuk-Hon; Chui, Y.-L.

    2005-01-01

    Human BRE, a death receptor-associating intracellular protein, attenuates apoptotic response of human and mouse tumor cell lines to death receptor stimuli in vitro. In this report, we addressed whether the in vitro antiapoptotic effect of BRE could impact on tumor growth in vivo. We have shown that the mouse Lewis lung carcinoma D122 stable transfectants of human BRE expression vector developed into local tumor significantly faster than the stable transfectants of empty vector and parental D122, in both the syngeneic C57BL/6 host and nude mice. In vitro growth of the BRE stable transfectants was, however, not accelerated. No significant difference in metastasis between the transfectants and the parental D122 was detected. Thus, overexpression of BRE promotes local tumor growth but not metastasis. We conclude that the enhanced tumor growth is more likely due to the antiapoptotic activity of BRE than any direct effect of the protein on cell proliferation

  3. Mitochondrial ASncmtRNA-1 and ASncmtRNA-2 as potent targets to inhibit tumor growth and metastasis in the RenCa murine renal adenocarcinoma model.

    Science.gov (United States)

    Borgna, Vincenzo; Villegas, Jaime; Burzio, Verónica A; Belmar, Sebastián; Araya, Mariela; Jeldes, Emanuel; Lobos-González, Lorena; Silva, Verónica; Villota, Claudio; Oliveira-Cruz, Luciana; Lopez, Constanza; Socias, Teresa; Castillo, Octavio; Burzio, Luis O

    2017-07-04

    Knockdown of antisense noncoding mitochondrial RNAs (ASncmtRNAs) induces apoptosis in several human and mouse tumor cell lines, but not normal cells, suggesting this approach for a selective therapy against different types of cancer. Here we show that in vitro knockdown of murine ASncmtRNAs induces apoptotic death of mouse renal adenocarcinoma RenCa cells, but not normal murine kidney epithelial cells. In a syngeneic subcutaneous RenCa model, treatment delayed and even reversed tumor growth. Since the subcutaneous model does not reflect the natural microenviroment of renal cancer, we used an orthotopic model of RenCa cells inoculated under the renal capsule. These studies showed inhibition of tumor growth and metastasis. Direct metastasis assessment by tail vein injection of RenCa cells also showed a drastic reduction in lung metastatic nodules. In vivo treatment reduces survivin, N-cadherin and P-cadherin levels, providing a molecular basis for metastasis inhibition. In consequence, the treatment significantly enhanced mouse survival in these models. Our results suggest that the ASncmtRNAs could be potent and selective targets for therapy against human renal cell carcinoma.

  4. Inhibition of metastasis, angiogenesis, and tumor growth by Chinese herbal cocktail Tien-Hsien Liquid

    International Nuclear Information System (INIS)

    Chia, Jean-San; Du, Jia-Ling; Hsu, Wei-Bin; Sun, Andy; Chiang, Chun-Pin; Wang, Won-Bo

    2010-01-01

    Advanced cancer is a multifactorial disease that demands treatments targeting multiple cellular pathways. Chinese herbal cocktail which contains various phytochemicals may target multiple dys-regulated pathways in cancer cells and thus may provide an alternative/complementary way to treat cancers. Previously we reported that the Chinese herbal cocktail Tien-Hsien Liguid (THL) can specifically induce apoptosis in various cancer cells and have immuno-modulating activity. In this study, we further evaluated the anti-metastatic, anti-angiogenic and anti-tumor activities of THL with a series of in vitro and in vivo experiments. The migration and invasion of cancer cells and endothelial cells was determined by Boyden chamber transwell assays. The effect of THL on pulmonary metastasis was done by injecting CT-26 colon cancer cells intravenously to syngenic mice. The in vitro and in vivo microvessel formation was determined by the tube formation assay and the Matrigel plug assay, respectively. The in vivo anti-tumor effect of THL was determined by a human MDA-MB-231 breast cancer xenograft model. The expression of metalloproteinase (MMP)-2, MMP-9, and urokinase plasminogen activator (uPA) was measured by gelatin zymography. The expression of HIF-1α and the phosphorylation of ERK1/2 were determined by Western blot. THL inhibited the migration and invasion ability of various cancer cells in vitro, decreased the secretion of MMP-2, MMP-9, and uPA and the activity of ERK1/2 in cancer cells, and suppressed pulmonary metastasis of CT-26 cancer cells in syngenic mice. Moreover, THL inhibited the migration, invasion, and tube formation of endothelial cells in vitro, decreased the secretion of MMP-2 and uPA in endothelial cells, and suppressed neovascularization in Matrigel plugs in mice. Besides its inhibitory effect on endothelial cells, THL inhibited hypoxia-induced HIF-1α and vascular endothelial growth factor-A expression in cancer cells. Finally, our results show that THL

  5. Fibroblast growth factor-2-induced host stroma reaction during initial tumor growth promotes progression of mouse melanoma via vascular endothelial growth factor A-dependent neovascularization.

    Science.gov (United States)

    Tsunoda, Satoshi; Nakamura, Toshiyuki; Sakurai, Hiroaki; Saiki, Ikuo

    2007-04-01

    Fibroblast growth factor (FGF)-2 has been considered to play a critical role in neovascularization in several tumors; however, its precise role in tumor progression is not fully understood. In the present study, we have characterized the role of FGF-2 in B16-BL6 mouse melanoma cells, focusing on effects during the initial phase of tumor growth. FGF-2 was injected at the tumor inoculation site of dorsal skin during the initial phase. FGF-2 induced marked tumor growth and lymph node metastasis. This was well correlated with an increase in neovascularization in the host stroma. FGF-2 also recruited inflammatory and mesenchymal cells in host stroma. Marked tumor growth, pulmonary metastasis and intensive neovascularization in tumor parenchyma were also observed after a single injection of FGF-2 into the footpad inoculation site. In contrast, repeated injections of FGF-2 at a site remote from the footpad tumor were ineffective in promoting tumor growth and metastasis. These promoting activities of FGF-2 were blocked by local injections of a glucocorticoid hormone, suggesting that host inflammatory responses induced by FGF-2 are associated with FGF-2-induced tumor progression. In addition, although FGF-2 did not promote cellular proliferation and vascular endothelial growth factor A (VEGFA) mRNA expression in B16-BL6 cells in vitro, FGF-2 induced VEGFA expression in host stroma rather than tumor tissue, and local injections of a neutralizing antibody against VEGFA inhibited these activities of FGF-2 in vivo. These results indicate that abundant FGF-2 during the initial phase of tumor growth induces VEGFA-dependent intensive neovascularization in host stroma, and supports marked tumor growth and metastasis.

  6. Increased Melanoma Growth and Metastasis Spreading in Mice Overexpressing Placenta Growth Factor

    Science.gov (United States)

    Marcellini, Marcella; De Luca, Naomi; Riccioni, Teresa; Ciucci, Alessandro; Orecchia, Angela; Lacal, Pedro Miguel; Ruffini, Federica; Pesce, Maurizio; Cianfarani, Francesca; Zambruno, Giovanna; Orlandi, Augusto; Failla, Cristina Maria

    2006-01-01

    Placenta growth factor (PlGF), a member of the vascular endothelial growth factor family, plays an important role in adult pathological angiogenesis. To further investigate PlGF functions in tumor growth and metastasis formation, we used transgenic mice overexpressing PlGF in the skin under the control of the keratin 14 promoter. These animals showed a hypervascularized phenotype of the skin and increased levels of circulating PlGF with respect to their wild-type littermates. Transgenic mice and controls were inoculated intradermally with B16-BL6 melanoma cells. The tumor growth rate was fivefold increased in transgenic animals compared to wild-type mice, in the presence of a similar percentage of tumor necrotic tissue. Tumor vessel area was increased in transgenic mice as compared to controls. Augmented mobilization of endothelial and hematopoietic stem cells from the bone marrow was observed in transgenic animals, possibly contributing to tumor vascularization. The number and size of pulmonary metastases were significantly higher in transgenic mice compared to wild-type littermates. Finally, PlGF promoted tumor cell invasion of the extracellular matrix and increased the activity of selected matrix metalloproteinases. These findings indicate that PlGF, in addition to enhancing tumor angiogenesis and favoring tumor growth, may directly influence melanoma dissemination. PMID:16877362

  7. Aminomethylphosphonic acid inhibits growth and metastasis of human prostate cancer in an orthotopic xenograft mouse model.

    Science.gov (United States)

    Parajuli, Keshab Raj; Zhang, Qiuyang; Liu, Sen; You, Zongbing

    2016-03-01

    Aminomethylphosphonic acid (AMPA) has been shown to inhibit prostate cancer cell growth in vitro. The purpose of the present study was to determine if AMPA could inhibit growth and metastasis of prostate cancer in vivo. Human prostate cancer PC-3-LacZ-luciferase cells were implanted into the ventral lateral lobes of the prostate in 39 athymic Nu/Nu nude male mice. Seven days later, mice were randomized into the control group (n = 14, treated intraperitoneally with phosphate buffered saline), low dose group (n = 10, treated intraperitoneally with AMPA at 400 mg/kg body weight/day), and high dose group (n = 15, treated intraperitoneally with AMPA at 800 mg/kg body weight/day). Tumor growth and metastasis were examined every 4-7 days by bioluminescence imaging of live mice. We found that AMPA treatment significantly inhibited growth and metastasis of orthotopic xenograft prostate tumors and prolonged the survival time of the mice. AMPA treatment decreased expression of BIRC2 and activated caspase 3, leading to increased apoptosis in the prostate tumors. AMPA treatment decreased expression of cyclin D1. AMPA treatment also reduced angiogenesis in the prostate tumors. Taken together, these results demonstrate that AMPA can inhibit prostate cancer growth and metastasis, suggesting that AMPA may be developed into a therapeutic agent for the treatment of prostate cancer.

  8. Intravital imaging of plasticity during tumor growth and metastasis

    NARCIS (Netherlands)

    Zomer, Anoek

    2015-01-01

    Most tumors consist of a heterogeneous mixture of genetically and epigenetically distinct tumor cells. In addition, tumors display regional differences in the tumor microenvironment comprising non-transformed cell types such as immune cells and non-cellular factors including growth factors and the

  9. Tumor-Infiltrating Immune Cells Promoting Tumor Invasion and Metastasis: Existing Theories

    Directory of Open Access Journals (Sweden)

    Yan-gao Man, Alexander Stojadinovic, Jeffrey Mason, Itzhak Avital, Anton Bilchik, Bjoern Bruecher, Mladjan Protic, Aviram Nissan, Mina Izadjoo, Xichen Zhang, Anahid Jewett

    2013-01-01

    Full Text Available It is a commonly held belief that infiltration of immune cells into tumor tissues and direct physical contact between tumor cells and infiltrated immune cells is associated with physical destructions of the tumor cells, reduction of the tumor burden, and improved clinical prognosis. An increasing number of studies, however, have suggested that aberrant infiltration of immune cells into tumor or normal tissues may promote tumor progression, invasion, and metastasis. Neither the primary reason for these contradictory observations, nor the mechanism for the reported diverse impact of tumor-infiltrating immune cells has been elucidated, making it difficult to judge the clinical implications of infiltration of immune cells within tumor tissues. This mini-review presents several existing hypotheses and models that favor the promoting impact of tumor-infiltrating immune cells on tumor invasion and metastasis, and also analyzes their strength and weakness.

  10. Inhibition of metastasis, angiogenesis, and tumor growth by Chinese herbal cocktail Tien-Hsien Liquid

    Directory of Open Access Journals (Sweden)

    Sun Andy

    2010-04-01

    Full Text Available Abstract Background Advanced cancer is a multifactorial disease that demands treatments targeting multiple cellular pathways. Chinese herbal cocktail which contains various phytochemicals may target multiple dys-regulated pathways in cancer cells and thus may provide an alternative/complementary way to treat cancers. Previously we reported that the Chinese herbal cocktail Tien-Hsien Liguid (THL can specifically induce apoptosis in various cancer cells and have immuno-modulating activity. In this study, we further evaluated the anti-metastatic, anti-angiogenic and anti-tumor activities of THL with a series of in vitro and in vivo experiments. Methods The migration and invasion of cancer cells and endothelial cells was determined by Boyden chamber transwell assays. The effect of THL on pulmonary metastasis was done by injecting CT-26 colon cancer cells intravenously to syngenic mice. The in vitro and in vivo microvessel formation was determined by the tube formation assay and the Matrigel plug assay, respectively. The in vivo anti-tumor effect of THL was determined by a human MDA-MB-231 breast cancer xenograft model. The expression of metalloproteinase (MMP-2, MMP-9, and urokinase plasminogen activator (uPA was measured by gelatin zymography. The expression of HIF-1α and the phosphorylation of ERK1/2 were determined by Western blot. Results THL inhibited the migration and invasion ability of various cancer cells in vitro, decreased the secretion of MMP-2, MMP-9, and uPA and the activity of ERK1/2 in cancer cells, and suppressed pulmonary metastasis of CT-26 cancer cells in syngenic mice. Moreover, THL inhibited the migration, invasion, and tube formation of endothelial cells in vitro, decreased the secretion of MMP-2 and uPA in endothelial cells, and suppressed neovascularization in Matrigel plugs in mice. Besides its inhibitory effect on endothelial cells, THL inhibited hypoxia-induced HIF-1α and vascular endothelial growth factor-A expression

  11. From forest and agro-ecosystems to the microecosystems of the human body: what can landscape ecology tell us about tumor growth, metastasis, and treatment options?

    Science.gov (United States)

    Daoust, Simon P; Fahrig, Lenore; Martin, Amanda E; Thomas, Frédéric

    2013-01-01

    Cancer is now understood to be a process that follows Darwinian evolution. Heterogeneous populations of cancerous cells that make up the tumor inhabit the tissue 'microenvironment', where ecological interactions analogous to predation and competition for resources drive the somatic evolution of cancer. The tumor microenvironment plays a crucial role in the tumor genesis, development, and metastasis processes, as it creates the microenvironmental selection forces that ultimately determine the cellular characteristics that result in the greatest fitness. Here, we explore and offer new insights into the spatial aspects of tumor-microenvironment interactions through the application of landscape ecology theory to tumor growth and metastasis within the tissue microhabitat. We argue that small tissue microhabitats in combination with the spatial distribution of resources within these habitats could be important selective forces driving tumor invasiveness. We also contend that the compositional and configurational heterogeneity of components in the tissue microhabitat do not only influence resource availability and functional connectivity but also play a crucial role in facilitating metastasis and may serve to explain, at least in part, tissue tropism in certain cancers. This novel work provides a compelling argument for the necessity of taking into account the structure of the tissue microhabitat when investigating tumor progression.

  12. Essential contribution of tumor-derived perlecan to epidermal tumor growth and angiogenesis

    DEFF Research Database (Denmark)

    Jiang, Xinnong; Multhaupt, Hinke; Chan, En

    2004-01-01

    As a major heparan sulfate proteoglycan (PG) in basement membranes, perlecan has been linked to tumor invasion, metastasis, and angiogenesis. Here we produced epidermal tumors in immunocompromised rats by injection of mouse RT101 tumor cells. Tumor sections stained with species-specific perlecan...... factor. In vivo, antisense perlecan-transfected cells generated no tumors, whereas untransfected and vector-transfected cells formed tumors with obvious neovascularization, suggesting that tumor perlecan rather than host perlecan controls tumor growth and angiogenesis....

  13. Monitoring of tumor growth and metastasis potential in MDA-MB-435s/tk-luc human breast cancer xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.-F. [Department of Radiological Sciences, National Yang-Ming University, 155, Sec. 2, Li-Nong Street, Pei-tou 112, Taipei, Taiwan (China); Lin, Y.-Y. [Department of Radiological Sciences, National Yang-Ming University, 155, Sec. 2, Li-Nong Street, Pei-tou 112, Taipei, Taiwan (China); Wang, H.-E. [Department of Radiological Sciences, National Yang-Ming University, 155, Sec. 2, Li-Nong Street, Pei-tou 112, Taipei, Taiwan (China); Liu, R.-S. [Department of Nuclear Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan (China); Nuclear Medicine Department, Veterans General Hospital, Taipei, Taiwan (China); Pang Fei [Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan (China); Hwang, J.-J. [Department of Radiological Sciences, National Yang-Ming University, 155, Sec. 2, Li-Nong Street, Pei-tou 112, Taipei, Taiwan (China)]. E-mail: jjhwang@ym.edu.tw

    2007-02-01

    Molecular imaging of reporter gene expression provides a rapid, sensitive and non-invasive monitoring of tumor behaviors. In this study, we reported the establishment of a novel animal model for longitudinal examination of tumor growth kinetics and metastatic spreading in vivo. The highly metastatic human breast carcinoma MDA-MB-435s cell line was engineered to stably express herpes simplex virus type 1 thymidine kinase (HSV-1-tk) and luciferase (luc). Both {sup 131}I-FIAU and D-luciferin were used as reporter probes. For orthotopic tumor formation, MDA-MB-435s/tk-luc cells were implanted into the first nipple of 6-week-old female NOD/SCID mice. For metastatic study, cells were injected via the lateral tail vein. Mice-bearing MDA-MB-435s/tk-luc tumors were scanned for tumor growth and metastatsis using Xenogen IVIS50 system. Gamma scintigraphy and whole-body autoradiography were also applied to confirm the tumor localization. The results of bioluminescence imaging as well as histopathological finding showed that tumors could be detected in femur, spine, ovary, lungs, kidney, adrenal gland, lymph nodes and muscle at 16 weeks post i.v. injection, and correlated photons could be quantified. This MDA-MB-435s/tk-luc human breast carcinoma-bearing mouse model combined with multimodalities of molecular imaging may facilitate studies on the molecular mechanisms of cancer invasion and metastasis.

  14. Monitoring of tumor growth and metastasis potential in MDA-MB-435s/tk-luc human breast cancer xenografts

    International Nuclear Information System (INIS)

    Chang, Y.-F.; Lin, Y.-Y.; Wang, H.-E.; Liu, R.-S.; Pang Fei; Hwang, J.-J.

    2007-01-01

    Molecular imaging of reporter gene expression provides a rapid, sensitive and non-invasive monitoring of tumor behaviors. In this study, we reported the establishment of a novel animal model for longitudinal examination of tumor growth kinetics and metastatic spreading in vivo. The highly metastatic human breast carcinoma MDA-MB-435s cell line was engineered to stably express herpes simplex virus type 1 thymidine kinase (HSV-1-tk) and luciferase (luc). Both 131 I-FIAU and D-luciferin were used as reporter probes. For orthotopic tumor formation, MDA-MB-435s/tk-luc cells were implanted into the first nipple of 6-week-old female NOD/SCID mice. For metastatic study, cells were injected via the lateral tail vein. Mice-bearing MDA-MB-435s/tk-luc tumors were scanned for tumor growth and metastatsis using Xenogen IVIS50 system. Gamma scintigraphy and whole-body autoradiography were also applied to confirm the tumor localization. The results of bioluminescence imaging as well as histopathological finding showed that tumors could be detected in femur, spine, ovary, lungs, kidney, adrenal gland, lymph nodes and muscle at 16 weeks post i.v. injection, and correlated photons could be quantified. This MDA-MB-435s/tk-luc human breast carcinoma-bearing mouse model combined with multimodalities of molecular imaging may facilitate studies on the molecular mechanisms of cancer invasion and metastasis

  15. A PAUF-neutralizing antibody targets both carcinoma and endothelial cells to impede pancreatic tumor progression and metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Su Jin [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); New Drug Development Center, Osong Medical Innovation Foundation, Cheongwon, Chungbuk (Korea, Republic of); Chang, Suhwan [Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Lee, Yangsoon; Kim, Na Young; Hwang, Yeonsil; Min, Hye Jin; Yoo, Kyung-Sook; Park, Eun Hye; Kim, Seokho [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Chung, Young-Hwa [BK21-plus, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan (Korea, Republic of); Park, Young Woo [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Koh, Sang Seok, E-mail: sskoh@dau.ac.kr [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Department of Biological Sciences, Dong-A University, Busan (Korea, Republic of)

    2014-11-07

    Highlights: • PMAb83, a human monoclonal antibody against PAUF, impaired tumor progression in vivo. • PMAb83 attenuated aggressiveness of tumor cells and suppressed angiogenesis. • PMAb83 in combination with gemcitabine conferred improved survival of mouse model. - Abstract: Pancreatic adenocarcinoma up-regulated factor (PAUF) is expressed in pancreatic ductal adenocarcinoma (PDAC) and plays an important role in tumor progression and metastasis. Here we evaluate the anti-tumor efficacy of a human monoclonal antibody against PAUF, PMAb83, to provide a therapeutic intervention to treat the disease. PMAb83 reduced tumor growth and distant metastasis in orthotopically xenografted mice of human PDAC cells. PMAb83 treatment retarded proliferation along with weakened aggressiveness traits of the carcinoma cells. AKT/β-catenin signaling played a role in the carcinoma cell proliferation and the treated xenograft tumors exhibited reduced levels of β-catenin and cyclin D1. Moreover PMAb83 abrogated the PAUF-induced angiogenic responses of endothelial cells, reducing the density of CD31{sup +} vessels in the treated tumors. In combination with gemcitabine, PMAb83 conferred enhanced survival of xenografted mice by about twofold compared to gemcitabine alone. Taken together, our findings show that PMAb83 treatment decreases the aggressiveness of carcinoma cells and suppresses tumor vascularization, which culminates in mitigated tumor growth and metastasis with improved survival in PDAC mouse models.

  16. A PAUF-neutralizing antibody targets both carcinoma and endothelial cells to impede pancreatic tumor progression and metastasis

    International Nuclear Information System (INIS)

    Kim, Su Jin; Chang, Suhwan; Lee, Yangsoon; Kim, Na Young; Hwang, Yeonsil; Min, Hye Jin; Yoo, Kyung-Sook; Park, Eun Hye; Kim, Seokho; Chung, Young-Hwa; Park, Young Woo; Koh, Sang Seok

    2014-01-01

    Highlights: • PMAb83, a human monoclonal antibody against PAUF, impaired tumor progression in vivo. • PMAb83 attenuated aggressiveness of tumor cells and suppressed angiogenesis. • PMAb83 in combination with gemcitabine conferred improved survival of mouse model. - Abstract: Pancreatic adenocarcinoma up-regulated factor (PAUF) is expressed in pancreatic ductal adenocarcinoma (PDAC) and plays an important role in tumor progression and metastasis. Here we evaluate the anti-tumor efficacy of a human monoclonal antibody against PAUF, PMAb83, to provide a therapeutic intervention to treat the disease. PMAb83 reduced tumor growth and distant metastasis in orthotopically xenografted mice of human PDAC cells. PMAb83 treatment retarded proliferation along with weakened aggressiveness traits of the carcinoma cells. AKT/β-catenin signaling played a role in the carcinoma cell proliferation and the treated xenograft tumors exhibited reduced levels of β-catenin and cyclin D1. Moreover PMAb83 abrogated the PAUF-induced angiogenic responses of endothelial cells, reducing the density of CD31 + vessels in the treated tumors. In combination with gemcitabine, PMAb83 conferred enhanced survival of xenografted mice by about twofold compared to gemcitabine alone. Taken together, our findings show that PMAb83 treatment decreases the aggressiveness of carcinoma cells and suppresses tumor vascularization, which culminates in mitigated tumor growth and metastasis with improved survival in PDAC mouse models

  17. Dangerous Liaisons: Deviant Endothelium NOTCHes toward Tumor Metastasis.

    Science.gov (United States)

    Guo, Peipei; Rafii, Shahin

    2017-03-13

    In this issue of Cancer Cell, Wieland et al. uncover a feedback loop in which tumor cells, by augmenting Notch signaling, provoke a senescent and pro-inflammatory state in endothelial cells, promoting neutrophil infiltration, tumor cell adhesion, and metastasis. Interfering with this Notch-dependent crosstalk may be a therapeutic approach to block metastasis. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. M402, a novel heparan sulfate mimetic, targets multiple pathways implicated in tumor progression and metastasis.

    Directory of Open Access Journals (Sweden)

    He Zhou

    Full Text Available Heparan sulfate proteoglycans (HSPGs play a key role in shaping the tumor microenvironment by presenting growth factors, cytokines, and other soluble factors that are critical for host cell recruitment and activation, as well as promoting tumor progression, metastasis, and survival. M402 is a rationally engineered, non-cytotoxic heparan sulfate (HS mimetic, designed to inhibit multiple factors implicated in tumor-host cell interactions, including VEGF, FGF2, SDF-1α, P-selectin, and heparanase. A single s.c. dose of M402 effectively inhibited seeding of B16F10 murine melanoma cells to the lung in an experimental metastasis model. Fluorescent-labeled M402 demonstrated selective accumulation in the primary tumor. Immunohistological analyses of the primary tumor revealed a decrease in microvessel density in M402 treated animals, suggesting anti-angiogenesis to be one of the mechanisms involved in-vivo. M402 treatment also normalized circulating levels of myeloid derived suppressor cells in tumor bearing mice. Chronic administration of M402, alone or in combination with cisplatin or docetaxel, inhibited spontaneous metastasis and prolonged survival in an orthotopic 4T1 murine mammary carcinoma model. These data demonstrate that modulating HSPG biology represents a novel approach to target multiple factors involved in tumor progression and metastasis.

  19. FRMD4A upregulation in human squamous cell carcinoma promotes tumor growth and metastasis and is associated with poor prognosis.

    Science.gov (United States)

    Goldie, Stephen J; Mulder, Klaas W; Tan, David Wei-Min; Lyons, Scott K; Sims, Andrew H; Watt, Fiona M

    2012-07-01

    New therapeutic strategies are needed to improve treatment of head and neck squamous cell carcinoma (HNSCC), an aggressive tumor with poor survival rates. FRMD4A is a human epidermal stem cell marker implicated previously in epithelial polarity that is upregulated in SCC cells. Here, we report that FRMD4A upregulation occurs in primary human HNSCCs where high expression levels correlate with increased risks of relapse. FRMD4A silencing decreased growth and metastasis of human SCC xenografts in skin and tongue, reduced SCC proliferation and intercellular adhesion, and stimulated caspase-3 activity and expression of terminal differentiation markers. Notably, FRMD4A attenuation caused nuclear accumulation of YAP, suggesting a potential role for FRMD4A in Hippo signaling. Treatment with the HSP90 inhibitor 17-DMAG or ligation of CD44 with hyaluronan caused nuclear depletion of FRMD4A, nuclear accumulation of YAP and reduced SCC growth and metastasis. Together, our findings suggest FRMD4A as a novel candidate therapeutic target in HNSCC based on the key role in metastatic growth we have identified. ©2012 AACR.

  20. Inhibitory effect of vitamin C in combination with vitamin K3 on tumor growth and metastasis of Lewis lung carcinoma xenografted in C57BL/6 mice.

    Science.gov (United States)

    Chen, Ming-Feng; Yang, Chih-Min; Su, Cheng-Ming; Liao, Jiunn-Wang; Hu, Miao-Lin

    2011-01-01

    Vitamin C in combination with vitamin K3 (vit CK3) has been shown to inhibit tumor growth and lung metastasis in vivo, but the mechanism of action is poorly understood. Herein, C57BL/6 mice were implanted (s.c.) with Lewis lung carcinoma (LLC) for 9 days before injection (i.p.) with low-dose (100 mg vit C/kg + 1 mg vit K3/kg), high-dose (1,000 mg vit C/kg + 10 mg vit K3/kg) vit CK3 twice a week for an additional 28 days. As expected, vit CK3 or cisplatin (6 mg/kg, as a positive control) significantly and dose-dependently inhibited tumor growth and lung metastasis in LLC-bearing mice. Vit CK3 restored the body weight of tumor-bearing mice to the level of tumor-free mice. Vit CK3 significantly decreased activities of plasma metalloproteinase (MMP)-2, -9, and urokinase plasminogen activator (uPA). In lung tissues, vit CK3 1) increased protein expression of tissue inhibitor of metalloproteinase-1 (TIMP-1), TIMP-2, nonmetastatic protein 23 homolog 1 and plasminogen activator inhibitor-1; 2) reduced protein expression of MMP-2 and MMP-9; and 3) inhibited the proliferating cell nuclear antigen (PCNA). These results demonstrate that vit CK3 inhibits primary tumor growth and exhibits antimetastastic potential in vivo through attenuated tumor invasion and proliferation.

  1. Fibroblast-derived CXCL12 promotes breast cancer metastasis by facilitating tumor cell intravasation.

    Science.gov (United States)

    Ahirwar, Dinesh K; Nasser, Mohd W; Ouseph, Madhu M; Elbaz, Mohamad; Cuitiño, Maria C; Kladney, Raleigh D; Varikuti, Sanjay; Kaul, Kirti; Satoskar, Abhay R; Ramaswamy, Bhuvaneswari; Zhang, Xiaoli; Ostrowski, Michael C; Leone, Gustavo; Ganju, Ramesh K

    2018-05-03

    The chemokine CXCL12 has been shown to regulate breast tumor growth, however, its mechanism in initiating distant metastasis is not well understood. Here, we generated a novel conditional allele of Cxcl12 in mice and used a fibroblast-specific Cre transgene along with various mammary tumor models to evaluate CXCL12 function in the breast cancer metastasis. Ablation of CXCL12 in stromal fibroblasts of mice significantly delayed the time to tumor onset and inhibited distant metastasis in different mouse models. Elucidation of mechanisms using in vitro and in vivo model systems revealed that CXCL12 enhances tumor cell intravasation by increasing vascular permeability and expansion of a leaky tumor vasculature. Furthermore, our studies revealed CXCL12 enhances permeability by recruiting endothelial precursor cells and decreasing endothelial tight junction and adherence junction proteins. High expression of stromal CXCL12 in large cohort of breast cancer patients was directly correlated to blood vessel density and inversely correlated to recurrence and overall patient survival. In addition, our analysis revealed that stromal CXCL12 levels in combination with number of CD31+ blood vessels confers poorer patient survival compared to individual protein level. However, no correlation was observed between epithelial CXCL12 and patient survival or blood vessel density. Our findings describe the novel interactions between fibroblasts-derived CXCL12 and endothelial cells in facilitating tumor cell intrvasation, leading to distant metastasis. Overall, our studies indicate that cross-talk between fibroblast-derived CXCL12 and endothelial cells could be used as novel biomarker and strategy for developing tumor microenvironment based therapies against aggressive and metastatic breast cancer.

  2. Cancer Associated Fibroblasts and Tumor Growth: Focus on Multiple Myeloma

    International Nuclear Information System (INIS)

    De Veirman, Kim; Rao, Luigia; De Bruyne, Elke; Menu, Eline; Van Valckenborgh, Els; Van Riet, Ivan; Frassanito, Maria Antonia; Di Marzo, Lucia; Vacca, Angelo; Vanderkerken, Karin

    2014-01-01

    Cancer associated fibroblasts (CAFs) comprise a heterogeneous population that resides within the tumor microenvironment. They actively participate in tumor growth and metastasis by production of cytokines and chemokines, and the release of pro-inflammatory and pro-angiogenic factors, creating a more supportive microenvironment. The aim of the current review is to summarize the origin and characteristics of CAFs, and to describe the role of CAFs in tumor progression and metastasis. Furthermore, we focus on the presence of CAFs in hypoxic conditions in relation to multiple myeloma disease

  3. Cancer Associated Fibroblasts and Tumor Growth: Focus on Multiple Myeloma

    Energy Technology Data Exchange (ETDEWEB)

    De Veirman, Kim, E-mail: kdeveirm@vub.ac.be [Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels 1090 (Belgium); Rao, Luigia [Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels 1090 (Belgium); Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine, University of Bari Medical School, Bari I-70124 (Italy); De Bruyne, Elke; Menu, Eline; Van Valckenborgh, Els [Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels 1090 (Belgium); Van Riet, Ivan [Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels 1090 (Belgium); Stem Cell Laboratory, Division of Clinical Hematology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels 1090 (Belgium); Frassanito, Maria Antonia [Department of Biomedical Sciences and Human Oncology, Section of General Pathology, University of Bari Medical School, Bari I-70124 (Italy); Di Marzo, Lucia; Vacca, Angelo [Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine, University of Bari Medical School, Bari I-70124 (Italy); Vanderkerken, Karin, E-mail: kdeveirm@vub.ac.be [Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels 1090 (Belgium)

    2014-06-27

    Cancer associated fibroblasts (CAFs) comprise a heterogeneous population that resides within the tumor microenvironment. They actively participate in tumor growth and metastasis by production of cytokines and chemokines, and the release of pro-inflammatory and pro-angiogenic factors, creating a more supportive microenvironment. The aim of the current review is to summarize the origin and characteristics of CAFs, and to describe the role of CAFs in tumor progression and metastasis. Furthermore, we focus on the presence of CAFs in hypoxic conditions in relation to multiple myeloma disease.

  4. Pancreatic ductal adenocarcinoma mice lacking mucin 1 have a profound defect in tumor growth and metastasis.

    Science.gov (United States)

    Besmer, Dahlia M; Curry, Jennifer M; Roy, Lopamudra D; Tinder, Teresa L; Sahraei, Mahnaz; Schettini, Jorge; Hwang, Sun-Il; Lee, Yong Y; Gendler, Sandra J; Mukherjee, Pinku

    2011-07-01

    MUC1 is overexpressed and aberrantly glycosylated in more than 60% of pancreatic ductal adenocarcinomas. The functional role of MUC1 in pancreatic cancer has yet to be fully elucidated due to a dearth of appropriate models. In this study, we have generated mouse models that spontaneously develop pancreatic ductal adenocarcinoma (KC), which are either Muc1-null (KCKO) or express human MUC1 (KCM). We show that KCKO mice have significantly slower tumor progression and rates of secondary metastasis, compared with both KC and KCM. Cell lines derived from KCKO tumors have significantly less tumorigenic capacity compared with cells from KCM tumors. Therefore, mice with KCKO tumors had a significant survival benefit compared with mice with KCM tumors. In vitro, KCKO cells have reduced proliferation and invasion and failed to respond to epidermal growth factor, platelet-derived growth factor, or matrix metalloproteinase 9. Further, significantly less KCKO cells entered the G(2)-M phase of the cell cycle compared with the KCM cells. Proteomics and Western blotting analysis revealed a complete loss of cdc-25c expression, phosphorylation of mitogen-activated protein kinase (MAPK), as well as a significant decrease in nestin and tubulin-α2 chain expression in KCKO cells. Treatment with a MEK1/2 inhibitor, U0126, abrogated the enhanced proliferation of the KCM cells but had minimal effect on KCKO cells, suggesting that MUC1 is necessary for MAPK activity and oncogenic signaling. This is the first study to utilize a Muc1-null PDA mouse to fully elucidate the oncogenic role of MUC1, both in vivo and in vitro. ©2011 AACR

  5. Advances in the biology of bone metastasis: how the skeleton affects tumor behavior.

    Science.gov (United States)

    Sterling, Julie A; Edwards, James R; Martin, T John; Mundy, Gregory R

    2011-01-01

    It is increasingly evident that the microenvironment of bone can influence the cancer phenotype in many ways that favor growth in bone. The ability of cancer cells to adhere to bone matrix and to promote osteoclast formation are key requirements for the establishment and growth of bone metastases. Several cytokine products of breast cancers (e.g. PTHrP, IL-11, IL-8) have been shown to act upon host cells of the bone microenvironment to promote osteoclast formation, allowing for excessive bone resorption. The increased release of matrix-derived growth factors, especially TGF-β, acts back upon the tumor to facilitate further tumor expansion and enhance cytokine production, and also upon osteoblasts to suppress bone formation. This provides a self-perpetuating cycle of bone loss and tumor growth within the skeleton. Other contributing factors favoring tumor metastasis and colonization in bone include the unique structure and stiffness of skeletal tissue, along with the diverse cellular composition of the marrow environment (e.g. bone cells, stromal fibroblasts, immune cells), any of which can contribute to the phenotypic changes that can take place in metastatic deposits that favor their survival. Additionally, it is also apparent that breast cancer cells begin to express different bone specific proteins as well as proteins important for normal breast development and lactation that allow them to grow in bone and stimulate bone destruction. Taken together, these continually emerging areas of study suggest new potential pathways important in the pathogenesis of bone metastasis and potential areas for targeting therapeutics. Copyright © 2010. Published by Elsevier Inc.

  6. Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model.

    Directory of Open Access Journals (Sweden)

    Debbie Liao

    2009-11-01

    Full Text Available Local inflammation associated with solid tumors commonly results from factors released by tumor cells and the tumor stroma, and promotes tumor progression. Cancer associated fibroblasts comprise a majority of the cells found in tumor stroma and are appealing targets for cancer therapy. Here, our aim was to determine the efficacy of targeting cancer associated fibroblasts for the treatment of metastatic breast cancer.We demonstrate that cancer associated fibroblasts are key modulators of immune polarization in the tumor microenvironment of a 4T1 murine model of metastatic breast cancer. Elimination of cancer associated fibroblasts in vivo by a DNA vaccine targeted to fibroblast activation protein results in a shift of the immune microenvironment from a Th2 to Th1 polarization. This shift is characterized by increased protein expression of IL-2 and IL-7, suppressed recruitment of tumor-associated macrophages, myeloid derived suppressor cells, T regulatory cells, and decreased tumor angiogenesis and lymphangiogenesis. Additionally, the vaccine improved anti-metastatic effects of doxorubicin chemotherapy and enhanced suppression of IL-6 and IL-4 protein expression while increasing recruitment of dendritic cells and CD8(+ T cells. Treatment with the combination therapy also reduced tumor-associated Vegf, Pdgfc, and GM-CSF mRNA and protein expression.Our findings demonstrate that cancer associated fibroblasts promote tumor growth and metastasis through their role as key modulators of immune polarization in the tumor microenvironment and are valid targets for therapy of metastatic breast cancer.

  7. Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model.

    Science.gov (United States)

    Liao, Debbie; Luo, Yunping; Markowitz, Dorothy; Xiang, Rong; Reisfeld, Ralph A

    2009-11-23

    Local inflammation associated with solid tumors commonly results from factors released by tumor cells and the tumor stroma, and promotes tumor progression. Cancer associated fibroblasts comprise a majority of the cells found in tumor stroma and are appealing targets for cancer therapy. Here, our aim was to determine the efficacy of targeting cancer associated fibroblasts for the treatment of metastatic breast cancer. We demonstrate that cancer associated fibroblasts are key modulators of immune polarization in the tumor microenvironment of a 4T1 murine model of metastatic breast cancer. Elimination of cancer associated fibroblasts in vivo by a DNA vaccine targeted to fibroblast activation protein results in a shift of the immune microenvironment from a Th2 to Th1 polarization. This shift is characterized by increased protein expression of IL-2 and IL-7, suppressed recruitment of tumor-associated macrophages, myeloid derived suppressor cells, T regulatory cells, and decreased tumor angiogenesis and lymphangiogenesis. Additionally, the vaccine improved anti-metastatic effects of doxorubicin chemotherapy and enhanced suppression of IL-6 and IL-4 protein expression while increasing recruitment of dendritic cells and CD8(+) T cells. Treatment with the combination therapy also reduced tumor-associated Vegf, Pdgfc, and GM-CSF mRNA and protein expression. Our findings demonstrate that cancer associated fibroblasts promote tumor growth and metastasis through their role as key modulators of immune polarization in the tumor microenvironment and are valid targets for therapy of metastatic breast cancer.

  8. Isomalto oligosaccharide sulfate inhibits tumor growth and metastasis of hepatocellular carcinoma in nude mice

    Directory of Open Access Journals (Sweden)

    Tang Zhao-You

    2011-04-01

    Full Text Available Abstract Background Hepatocellular carcinoma (HCC usually has a dismal prognosis because of its limited response to current pharmacotherapy and high metastatic rate. Sulfated oligosaccharide has been confirmed as having potent antitumor activities against solid tumors. Here, we explored the preclinical effects and molecular mechanisms of isomalto oligosaccharide sulfate (IMOS, another novel sulfated oligosaccharide, in HCC cell lines and a xenograft model. Methods The effects of IMOS on HCC proliferation, apoptosis, adhesion, migration, and invasiveness in vitro were assessed by cell counting, flow cytometry, adhesion, wound healing, and transwell assays, respectively. The roles of IMOS on HCC growth and metastasis in xenograft models were evaluated by tumor volumes and fluorescent signals. Total and phosphorylated protein levels of AKT, ERK, and JNK as well as total levels of c-MET were detected by Western blotting. IMOS-regulated genes were screened by quantitative reverse-transcription PCR (qRT-PCR array in HCCLM3-red fluorescent protein (RFP xenograft tissues and then confirmed by qRT-PCR in HepG2 and Hep3B cells. Results IMOS markedly inhibited cell proliferation and induced cell apoptosis of HCCLM3, HepG2, and Bel-7402 cells and also significantly suppressed cell adhesion, migration, and invasion of HCCLM3 in vitro. At doses of 60 and 90 mg/kg/d, IMOS displayed robust inhibitory effects on HCC growth and metastasis without obvious side effects in vivo. The levels of pERK, tERK, and pJNK as well as c-MET were significantly down-regulated after treatment with 16 mg/mL IMOS. No obvious changes were found in the levels of pAkt, tAkt, and tJNK. Ten differentially expressed genes were screened from HCCLM3-RFP xenograft tissues after treatment with IMOS at a dose of 90 mg/kg/d. Similar gene expression profiles were confirmed in HepG2 and Hep3B cells after treatment with 16 mg/mL IMOS. Conclusions IMOS is a potential anti-HCC candidate through

  9. Targeting Insulin-Like Growth Factor 1 Receptor Inhibits Pancreatic Cancer Growth and Metastasis

    Science.gov (United States)

    Subramani, Ramadevi; Lopez-Valdez, Rebecca; Arumugam, Arunkumar; Nandy, Sushmita; Boopalan, Thiyagarajan; Lakshmanaswamy, Rajkumar

    2014-01-01

    Pancreatic cancer is one of the most lethal cancers. Increasing incidence and mortality indicates that there is still much lacking in detection and management of the disease. This is partly due to a lack of specific symptoms during early stages of the disease. Several growth factor receptors have been associated with pancreatic cancer. Here, we have investigated if an RNA interference approach targeted to IGF-IR could be effective and efficient against pancreatic cancer growth and metastasis. For that, we evaluated the effects of IGF-1R inhibition using small interfering RNA (siRNAs) on tumor growth and metastasis in HPAC and PANC-1 pancreatic cancer cell lines. We found that silencing IGF-1R inhibits pancreatic cancer growth and metastasis by blocking key signaling pathways such AKT/PI3K, MAPK, JAK/STAT and EMT. Silencing IGF-1R resulted in an anti-proliferative effect in PANC-1 and HPAC pancreatic cancer cell lines. Matrigel invasion, transwell migration and wound healing assays also revealed a role for IGF-1R in metastatic properties of pancreatic cancer. These results were further confirmed using Western blotting analysis of key intermediates involved in proliferation, epithelial mesenchymal transition, migration, and invasion. In addition, soft agar assays showed that silencing IGF-1R also blocks the colony forming capabilities of pancreatic cancer cells in vitro. Western blots, as well as, flow cytometric analysis revealed the induction of apoptosis in IGF-1R silenced cells. Interestingly, silencing IGF-1R also suppressed the expression of insulin receptor β. All these effects together significantly control pancreatic cancer cell growth and metastasis. To conclude, our results demonstrate the significance of IGF-1R in pancreatic cancer. PMID:24809702

  10. Impact of associating liver partition and portal vein occlusion for staged hepatectomy on tumor growth in a mouse model of liver metastasis.

    Science.gov (United States)

    Kikuchi, Yutaro; Hiroshima, Yukihiko; Matsuo, Kenichi; Murakami, Takashi; Kawaguchi, Daisuke; Kasahara, Kohei; Tanaka, Kuniya

    2018-01-01

    The impact of associating liver partition and portal vein occlusion for staged hepatectomy (ALPPS) on tumor growth activity was investigated. A BALB/c mouse model (male, 8-10 weeks old) of liver metastasis labeled by red fluorescent protein was established. Changes in future liver remnant (FLR) volumes, tumor growth activity, and levels of cytokines and growth factors in liver tissues during the treatment period were compared among the models involving ALPPS, portal vein ligation (PVL), or sham operation. The ratio of the FLR volume to body weight at 24 h after the procedure was greater for ALPPS (4.45 ± 0.12 × 10 -2 ) than for PVL (3.79 ± 0.12 × 10 -2 ; P = 0.003) and sham operation (3.18 ± 0.16 × 10 -2 ; P < 0.001). No differences in tumor progression in the FLR were observed at any time point after the procedures. Within the deportalized liver (DL), although tumor progression was observed during a later period after ALPPS (9 days postoperative) and PVL (12 days postoperative), no acceleration of tumor growth after ALPPS was observed in an early period similar to PVL. ALPPS induces a rapid increase in FLR volume and avoids remnant tumor progression during the early postoperative period. Copyright © 2017 Elsevier Ltd, BASO ~ The Association for Cancer Surgery, and the European Society of Surgical Oncology. All rights reserved.

  11. Effect of interventional treatment with p53 on the invasion and metastasis of VX2 liver tumor in experimental rabbits

    International Nuclear Information System (INIS)

    Li Caixia; Feng Yan; Gu Tao; Li Chunmei

    2010-01-01

    Objective: To investigate the effect of interventional treatment with p53 on the invasion and metastasis of VX2 liver tumor in experimental rabbits. Methods: VX2 carcinoma cells were surgically implanted into the left hepatic lobe in 48 New Zealand white rabbits, and the rabbit hepatic carcinoma models were thus established. The rabbits were randomly divided into 4 groups with 12 rabbits in each group. After hepatic arterial catheterization was completed physiological saline (control group), Lipiodol (Group A), Ad-p53 (Group B) and Lipiodol+Ad-p53 (Group C) were respectively infused into the rabbits of four groups via common hepatic artery. One week after the procedure the rabbits were sacrificed and the livers were removed for the determination of matrix metalloprotein-2 (MMP-2), proliferating cell nuclear antigen (PCNA) and vascular endothelial growth factor (VEGF) of the tumor with immunohistochemistry technique. Results: The tumor growth in study groups (group A, B and C) was markedly suppressed, which was significantly different in comparison with that in control group (P 0.05). The positive rates of MMP-2, PCNA and VEGF in group B and C were significantly lower than those in control group (P < 0.05). The positive rates of MMP-2, PCNA and VEGF of the rabbits with metastasis were markedly higher than those without metastasis(P < 0.05). MMP-2 bore a certain relationship with VEGF and PCNA (P < 0.05). Conclusion: The increase of the positive rates of MMP-2, PCNA and VEGF indicates that the tumor possesses higher possibility for developing metastasis, proliferation and vascular formation. The interventional treatment with Adp53 or Lipiodol+Ad-p53 can inhibit the growth, metastasis and vascular formation of VX2 liver tumor in experimental rabbits. (J Intervent Radiol, 2010, 19 : 800-804) (authors)

  12. Disruption of lysosome function promotes tumor growth and metastasis in Drosophila.

    Science.gov (United States)

    Chi, Congwu; Zhu, Huanhu; Han, Min; Zhuang, Yuan; Wu, Xiaohui; Xu, Tian

    2010-07-09

    Lysosome function is essential to many physiological processes. It has been suggested that deregulation of lysosome function could contribute to cancer. Through a genetic screen in Drosophila, we have discovered that mutations disrupting lysosomal degradation pathway components contribute to tumor development and progression. Loss-of-function mutations in the Class C vacuolar protein sorting (VPS) gene, deep orange (dor), dramatically promote tumor overgrowth and invasion of the Ras(V12) cells. Knocking down either of the two other components of the Class C VPS complex, carnation (car) and vps16A, also renders Ras(V12) cells capable for uncontrolled growth and metastatic behavior. Finally, chemical disruption of the lysosomal function by feeding animals with antimalarial drugs, chloroquine or monensin, leads to malignant tumor growth of the Ras(V12) cells. Taken together, our data provide evidence for a causative role of lysosome dysfunction in tumor growth and invasion and indicate that members of the Class C VPS complex behave as tumor suppressors.

  13. Pancreatic Ductal Adenocarcinoma (PDA) mice lacking Mucin 1 have a profound defect in tumor growth and metastasis

    Science.gov (United States)

    Besmer, Dahlia M.; Curry, Jennifer M.; Roy, Lopamudra D.; Tinder, Teresa L.; Sahraei, Mahnaz; Schettini, Jorge; Hwang, Sun-Il; Lee, Yong Y.; Gendler, Sandra J.; Mukherjee, Pinku

    2011-01-01

    MUC1 is over expressed and aberrantly glycosolated in >60% of pancreatic ductal adenocarcinomas. The functional role of MUC1 in pancreatic cancer has yet to be fully elucidated due to a dearth of appropriate models. In the present study, we have generated mouse models that spontaneously develop pancreatic ductal adenocarcinoma (KC), which are either Muc1-null (KCKO) or express human MUC1 (KCM). We show that KCKO mice have significantly slower tumor progression and rates of secondary metastasis, compared to both KC and KCM. Cell lines derived from KCKO tumors have significantly lower tumorigenic capacity compared to cells from KCM tumors. Therefore, mice with KCKO tumors had a significant survival benefit compared to mice with KCM tumors. In vitro, KCKO cells have reduced proliferation and invasion and failed to respond to epidermal growth factor (EGF), platelet-derived growth factor (PDGF), or matrix metalloproteinase-9 (MMP9). Further, significantly fewer KCKO cells entered the G2M phase of the cell cycle compared to the KCM cells. Proteomics and western blotting analysis revealed a complete loss of cdc-25c expression, phosphorylation of MAPK, as well as a significant decrease in Nestin and Tubulin α-2 chain expression in KCKO cells. Treatment with a MEK1/2 inhibitor, U0126, abrogated the enhanced proliferation of the KCM cells but had minimal effect on KCKO cells, suggesting that MUC1 is necessary for MAPK activity and oncogenic signaling. This is the first study to utilize a Muc1-null PDA mouse in order to fully elucidate the oncogenic role of MUC1, both in vivo and in vitro. PMID:21558393

  14. CD13-positive bone marrow-derived myeloid cells promote angiogenesis, tumor growth, and metastasis.

    Science.gov (United States)

    Dondossola, Eleonora; Rangel, Roberto; Guzman-Rojas, Liliana; Barbu, Elena M; Hosoya, Hitomi; St John, Lisa S; Molldrem, Jeffrey J; Corti, Angelo; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2013-12-17

    Angiogenesis is fundamental to tumorigenesis and an attractive target for therapeutic intervention against cancer. We have recently demonstrated that CD13 (aminopeptidase N) expressed by nonmalignant host cells of unspecified types regulate tumor blood vessel development. Here, we compare CD13 wild-type and null bone marrow-transplanted tumor-bearing mice to show that host CD13(+) bone marrow-derived cells promote cancer progression via their effect on angiogenesis. Furthermore, we have identified CD11b(+)CD13(+) myeloid cells as the immune subpopulation directly regulating tumor blood vessel development. Finally, we show that these cells are specifically localized within the tumor microenvironment and produce proangiogenic soluble factors. Thus, CD11b(+)CD13(+) myeloid cells constitute a population of bone marrow-derived cells that promote tumor progression and metastasis and are potential candidates for the development of targeted antiangiogenic drugs.

  15. Tiamulin inhibits breast cancer growth and pulmonary metastasis by decreasing the activity of CD73.

    Science.gov (United States)

    Yang, Xu; Pei, Shimin; Wang, Huanan; Jin, Yipeng; Yu, Fang; Zhou, Bin; Zhang, Hong; Zhang, Di; Lin, Degui

    2017-04-11

    Metastasis is the leading cause of death in breast cancer patients. CD73, also known as ecto-5'-nucleotidase, plays a critical role in cancer development including metastasis. The existing researches indicate that overexpression of CD73 promotes growth and metastasis of breast cancer. Therefore, CD73 inhibitor can offer a promising treatment for breast cancer. Here, we determined whether tiamulin, which was found to inhibit CD73, was able to suppress breast cancer development and explored the related mechanisms. We firstly measured the effect of tiamulin hydrogen fumarate (THF) on CD73 using high performance liquid chromatography (HPLC). Then, we investigated cell proliferation, migration and invasion in MDA-MB-231 human breast cancer cell line and 4 T1 mouse breast cancer cell line treated with THF by migration assay, invasion assay and activity assay. Besides, we examined the effect of THF on syngeneic mammary tumors of mice by immunohistochemistry. Our data demonstrated that THF inhibited CD73 by decreasing the activity instead of the expression of CD73. In vitro, THF inhibited the proliferation, migration and invasion of MDA-MB-231 and 4 T1 cells by suppressing CD73 activity. In vivo, animal experiments showed that THF treatment resulted in significant reduction in syngeneic tumor growth, microvascular density and lung metastasis rate. Our results indicate that THF inhibits growth and metastasis of breast cancer by blocking the activity of CD73, which may offer a promising treatment for breast cancer therapy.

  16. Inositol pyrophosphates promote tumor growth and metastasis by antagonizing liver kinase B1

    OpenAIRE

    Rao, Feng; Xu, Jing; Fu, Chenglai; Cha, Jiyoung Y.; Gadalla, Moataz M.; Xu, Risheng; Barrow, James C.; Snyder, Solomon H.

    2015-01-01

    Inositol pyrophosphates are messenger molecules incorporating the energetic pyrophosphate bond. Although they have been implicated in diverse biologic processes, their physiologic functions remain enigmatic. We show that the catalytic activity of inositol hexakisphosphate kinase 2 (IP6K2), one of the principal enzymes generating the inositol pyrophosphate IP7 (5-diphosphoinositolpentakisphosphate), mediates cancer cell migration and tumor metastasis both in cell culture and intact mice. In th...

  17. Hypoxia and metastasis in an orthotopic cervix cancer xenograft model

    International Nuclear Information System (INIS)

    Chaudary, Naz; Mujcic, Hilda; Wouters, Bradly G.; Hill, Richard P.

    2013-01-01

    Background: Hypoxia can promote tumor metastasis by mechanisms that are believed to result from changes in gene expression. The current study examined the role of putative metastatic genes regulated by cyclic hypoxia in relation to metastasis formation in orthotopic models of cervix cancer. Methods: Orthotopic tumors derived from ME180 human cervix cancer cells or from early generation human cervix cancer xenografts were exposed to cyclic hypoxic conditions during growth in vivo and tumor growth and lymphnode metastases were monitored. Expression of the chemokine receptor CXCR4 and various genes in the Hedgehog (Hh) pathway were inhibited using genetic (inducible shRNA vs CXCR4) small molecule (AMD3100) or antibody (5E1) treatment (CXCR4 and Hh genes, respectively) during tumor growth. Results: As reported previously, exposure of tumor bearing mice to cyclic hypoxia caused a reduction of tumor growth but a large increase in metastasis. Inhibition of CXCR4 or Hh gene activity during tumor growth further reduced primary tumor size and reduced lymphatic metastasis to levels below those seen in control mice exposed to normoxic conditions. Conclusion: Blocking CXCR4 or Hh gene expression are potential therapeutic pathways for improving cervix cancer treatment

  18. Targeting cytokine signaling checkpoint CIS activates NK cells to protect from tumor initiation and metastasis

    Science.gov (United States)

    Putz, Eva M.; Guillerey, Camille; Kos, Kevin; Stannard, Kimberley; Miles, Kim; Delconte, Rebecca B.; Nicholson, Sandra E.; Huntington, Nicholas D.; Smyth, Mark J.

    2017-01-01

    ABSTRACT The cytokine-induced SH2-containing protein CIS belongs to the suppressor of cytokine signaling (SOCS) protein family. Here, we show the critical role of CIS in suppressing natural killer (NK) cell control of tumor initiation and metastasis. Cish-deficient mice were highly resistant to methylcholanthrene-induced sarcoma formation and protected from lung metastasis of B16F10 melanoma and RM-1 prostate carcinoma cells. In contrast, the growth of primary subcutaneous tumors, including those expressing the foreign antigen OVA, was unchanged in Cish-deficient mice. The combination of Cish deficiency and relevant targeted and immuno-therapies such as combined BRAF and MEK inhibitors, immune checkpoint blockade antibodies, IL-2 and type I interferon revealed further improved control of metastasis. The data clearly indicate that targeting CIS promotes NK cell antitumor functions and CIS holds great promise as a novel target in NK cell immunotherapy. PMID:28344878

  19. The fibrinolytic system facilitates tumor cell migration across the blood-brain barrier in experimental melanoma brain metastasis

    International Nuclear Information System (INIS)

    Perides, George; Zhuge, Yuzheng; Lin, Tina; Stins, Monique F; Bronson, Roderick T; Wu, Julian K

    2006-01-01

    Patients with metastatic tumors to the brain have a very poor prognosis. Increased metastatic potential has been associated with the fibrinolytic system. We investigated the role of the fibrinolytic enzyme plasmin in tumor cell migration across brain endothelial cells and growth of brain metastases in an experimental metastatic melanoma model. Metastatic tumors to the brain were established by direct injection into the striatum or by intracarotid injection of B16F10 mouse melanoma cells in C57Bl mice. The role of plasminogen in the ability of human melanoma cells to cross a human blood-brain barrier model was studied on a transwell system. Wild type mice treated with the plasmin inhibitor epsilon-aminocaproic acid (EACA) and plg -/- mice developed smaller tumors and survived longer than untreated wild type mice. Tumors metastasized to the brain of wild type mice treated with EACA and plg -/- less efficiently than in untreated wild type mice. No difference was observed in the tumor growth in any of the three groups of mice. Human melanoma cells were able to cross the human blood-brain barrier model in a plasmin dependent manner. Plasmin facilitates the development of tumor metastasis to the brain. Inhibition of the fibrinolytic system could be considered as means to prevent tumor metastasis to the brain

  20. Soluble fibrin inhibits monocyte adherence and cytotoxicity against tumor cells: implications for cancer metastasis

    Directory of Open Access Journals (Sweden)

    Patel Shonak

    2006-08-01

    Full Text Available Abstract Background Soluble fibrin (sFn is a marker for disseminated intravascular coagulation and may have prognostic significance, especially in metastasis. However, a role for sFn in the etiology of metastatic cancer growth has not been extensively studied. We have reported that sFn cross-linked platelet binding to tumor cells via the major platelet fibrin receptor αIIbβ3, and tumor cell CD54 (ICAM-1, which is the receptor for two of the leukocyte β2 integrins (αLβ2 and aMβ2. We hypothesized that sFn may also affect leukocyte adherence, recognition, and killing of tumor cells. Furthermore, in a rat experimental metastasis model sFn pre-treatment of tumor cells enhanced metastasis by over 60% compared to untreated cells. Other studies have shown that fibrin(ogen binds to the monocyte integrin αMβ2. This study therefore sought to investigate the effect of sFn on β2 integrin mediated monocyte adherence and killing of tumor cells. Methods The role of sFn in monocyte adherence and cytotoxicity against tumor cells was initially studied using static microplate adherence and cytotoxicity assays, and under physiologically relevant flow conditions in a microscope perfusion incubator system. Blocking studies were performed using monoclonal antibodies specific for β2 integrins and CD54, and specific peptides which inhibit sFn binding to these receptors. Results Enhancement of monocyte/tumor cell adherence was observed when only one cell type was bound to sFn, but profound inhibition was observed when sFn was bound to both monocytes and tumor cells. This effect was also reflected in the pattern of monocyte cytotoxicity. Studies using monoclonal blocking antibodies and specific blocking peptides (which did not affect normal coagulation showed that the predominant mechanism of fibrin inhibition is via its binding to αMβ2 on monocytes, and to CD54 on both leukocytes and tumor cells. Conclusion sFn inhibits monocyte adherence and cytotoxicity of

  1. CT and MRI of germ-cell tumors with metastasis or multi-located tumors

    International Nuclear Information System (INIS)

    Miyagami, Mitsusuke; Tazoe, Makoto; Tsubokawa, Takashi

    1989-01-01

    Twenty-seven cases of germ-cell tumors were examined with a CT scan in our clinic. In the 11 cases of metastasis or multi-localized tumors, the CT findings were studied in connection with the MRI findings. There were 6 cases of germ-cell tumors which had broad infiltrating tumors with multiple lesions on first admission. Their tumor sites were different from that in cases of malignant glioma, being frequently localized in the pineal and/or the suprasellar region, on the wall of the third and/or lateral ventricle, and in the region of the basal ganglia. Five of the cases of germ-cell tumors had metastasis with various patterns connected to a remote area - that is, to spinal cords, to the ventricular wall and basal cistern of the brain stem by CSF dissemination, to a lung by hematogeneous metastasis, and to the peritoneal wall or organs by a V-P shunt. The CT findings of germ-cell tumors were correlated mainly with the results of the histological diagnosis; they were found not to differ with the tumor site. The germinoma in the suprasellar region had less calcification than in the pineal region. Cysts, calcification, and an enlargement of the lateral ventricle on the tumor side were frequently seen in the germinoma of the basal ganglia. On the MRI of 5 cases of germinoma, the T 1 -weighted image revealed a slightly low or iso signal intensity, while the T 2 -weighted image showed a high signal intensity. In the case of multiple tumor lesions, some cases demonstrated different CT findings and radiosensitivities for each tumor. The possibility of a multicentric origin for the tumors is thus suggested in some cases of germ-cell tumors. (author)

  2. Inhibitory mechanism of low-dose, whole-body irradiation with gamma-rays against tumor metastasis

    International Nuclear Information System (INIS)

    Yasuhiro Ohsima; Mitsutoshi Tukimoto; Shuji Kojima

    2007-01-01

    Complete text of publication follows. A lot of beneficial effects of low-dose irradiation are well known. Of them, an inhibitory effect of the radiation on lung metastasis is reported so far. It has been reported that low-dose whole-body irradiation with gamma rays enhanced cytotoxic immune response as one of the mechanisms. In our laboratory, it has been confirmed an enhancement of natural killer activity in mice irradiated with whole-body 0.5Gy gamma-rays. Metastasis is accomplished by multistep process, involving basement membrane destruction, local invasion, intravasation, survival in the bloodstream, extravasation into distant organs, and proliferation at the target site. Besides, a lot of growth factors and proteases are involved in these steps. As to mechanism of inhibition of tumor metastasis induced by low-dose whole-body irradiation, studies from the standpoint of tumor invasion have not been reported. Here, inhibitory effect of 0.5Gy whole-body gamma-ray irradiation on tumor metastasis and its mechanism were examined in pulmonary metastasis model mice injected with B16 melanoma cells. Consequently, 0.5Gy whole-body gamma ray irradiation significantly suppressed colony formation in the lungs. Expression of matrix metalloproteinase- 2 (MMP- 2), a proteinase related to metastasis, in lung tissues was suppressed by the radiation. Alteration of tissue inhibitor of matrix metalloproteinase (TIMP) after the gamma-ray irradiation was examined. Expression of TIMP-1 and TIMP-2 mRNA in the lungs were significantly increased. In order to clarify the inhibitory effect obtained in the in vivo metastatic lung cancer model mice, we studied effects of gamma-rays on cell proliferation, alterations of mRNA and proteins related to tumor metastasis in cultured B16 melanoma cells. Proliferation of B16 melanoma cells was decreased in a dose-dependent manner. MMP-2 mRNA expression was not altered in any doses of gamma-rays. Thought expression of the protein was slightly

  3. Portal Vein Tumor Thrombus of Liver Metastasis from Lung Cancer

    Directory of Open Access Journals (Sweden)

    Ryoko Ogawa

    2009-01-01

    Full Text Available We report a case of liver metastasis of lung carcinoma with portal vein tumor thrombus (PVTT. Although the primary lesion of lung tumor remained unchanged, the patient rapidly developed wide-spread metastases and formed PVTT of liver metastasis. The primary lesion showed features of mixed Clara and bronchial surface epithelial cell component type adenocarcinoma with small foci of micropapillary pattern. Micropapillary pattern was observed in the metastatic lesions in the liver and PVTT. Micropapillary pattern lung adenocarcinoma may develop rapid metastases and cause PVTT associated with liver metastasis. We should perform a detailed examination to establish correct diagnosis.

  4. Imaging Reporters for Proteasome Activity Identify Tumor- and Metastasis-Initiating Cells

    Directory of Open Access Journals (Sweden)

    Amanda C. Stacer

    2015-08-01

    Full Text Available Tumor-initiating cells, also designated as cancer stem cells, are proposed to constitute a subpopulation of malignant cells central to tumorigenesis, metastasis, and treatment resistance. We analyzed the activity of the proteasome, the primary organelle for targeted protein degradation, as a marker of tumor- and metastasis-initiating cells. Using human and mouse breast cancer cells expressing a validated fluorescent reporter, we found a small subpopulation of cells with low proteasome activity that divided asymmetrically to produce daughter cells with low or high proteasome activity. Breast cancer cells with low proteasome activity had greater local tumor formation and metastasis in immunocompromised and immunocompetent mice. To allow flexible labeling of cells, we also developed a new proteasome substrate based on HaloTag technology. Patient-derived glioblastoma cells with low proteasome activity measured by the HaloTag reporter show key phenotypes associated with tumor-initiating cells, including expression of a stem cell transcription factor, reconstitution of the original starting population, and enhanced neurosphere formation. We also show that patient-derived glioblastoma cells with low proteasome activity have higher frequency of tumor formation in mouse xenografts. These studies support proteasome function as a tool to investigate tumor- and metastasis-initiating cancer cells and a potential biomarker for outcomes in patients with several different cancers.

  5. Physical activity counteracts tumor cell growth in colon carcinoma C26-injected muscles: an interim report

    Directory of Open Access Journals (Sweden)

    Charlotte Hiroux

    2016-06-01

    Full Text Available Skeletal muscle tissue is a rare site of tumor metastasis but is the main target of the degenerative processes occurring in cancer-associated cachexia syndrome. Beneficial effects of physical activity in counteracting cancer-related muscle wasting have been described in the last decades. Recently it has been shown that, in tumor xeno-transplanted mouse models, physical activity is able to directly affect tumor growth by modulating inflammatory responses in the tumor mass microenvironment. Here, we investigated the effect of physical activity on tumor cell growth in colon carcinoma C26 cells injected tibialis anterior muscles of BALB/c mice. Histological analyses revealed that 4 days of voluntary wheel running significantly counteracts tumor cell growth in C26-injected muscles compared to the non-injected sedentary controls. Since striated skeletal muscle tissue is the site of voluntary contraction, our results confirm that physical activity can also directly counteract tumor cell growth in a metabolically active tissue that is usually not a target for metastasis.

  6. Analysis of metastasis of melanoma-bearing hamsters in thermal neutron capture therapy

    International Nuclear Information System (INIS)

    Ueda, Masataka; Mishima, Yutaka; Ichihashi, Masamitsu

    1985-01-01

    Melanoma-bearing hamsters were divided into three groups: the MG I was treated with both 10 B 1 -para-boronophenylalanine.HCl ( 10 B 1 -BPA) and neutron capture therapy (NCT); the MG II was treated with NCT alone; and the control group (MG III). The most satisfactory effect on regression was seen in the MG I. When the opposite site to the transplanted tumor site was exposed to thermal neutrons, no enhanced effect on metastasis was seen. Tumor cells of MG I and MG II were transplanted subcutaneously 24 hr after NCT into normal hamsters (MG It and MG IIt), and their growth and metastasis abilities were examined. MG It cells possessed neither growth nor metastasis ability; while MG IIt cells showed normal growth and metastasis abilities. Lethal effects on tumor cells seemed to occur in the MG I at 24 hr after NCT, suggesting no effects of NCT on the metastasis ability of tumor cells. Metastasis was seen in 2 of 8 animals in the MG III; however, inhibitory effects on tumor cells were the same as those in the other groups MG I and MG II. When the cells were exposed to 100 rad and 300 rad of gamma rays to assess effects of gamma rays during NCT, neither tumor growth nor lung metastasis was affected. When the tumor was excised with 5 mm margin, relapse occurred in a high incidence. There was no difference in lung metastasis between NCT and gamma irradiation. (Namekawa, K.)

  7. Initiative action of tumor-associated macrophage during tumor metastasis

    Directory of Open Access Journals (Sweden)

    Saroj Singh

    2017-06-01

    In this review article, we present an overview of mechanisms responsible for TAMs recruitment and highlight the roles of TAMs in the regulation of tumor angiogenesis, invasion, metastasis, immunosuppression, and chemotherapeutic resistance. We describe the interplay between Th17 cells and other immune cells in the tumor microenvironment, and we assess both the potential antitumorigenic and pro-tumorigenic activities of Th17 cells and their associated cytokines. Understanding the nature of Th17 cell responses in the tumor microenvironment will be important for the design of more efficacious cancer immunotherapies. Finally, we discuss TAM-targeting therapy as a promising novel strategy for an indirect cancer therapy.

  8. Inositol pyrophosphates promote tumor growth and metastasis by antagonizing liver kinase B1

    Science.gov (United States)

    Rao, Feng; Xu, Jing; Fu, Chenglai; Cha, Jiyoung Y.; Gadalla, Moataz M.; Xu, Risheng; Barrow, James C.; Snyder, Solomon H.

    2015-01-01

    The inositol pyrophosphates, molecular messengers containing an energetic pyrophosphate bond, impact a wide range of biologic processes. They are generated primarily by a family of three inositol hexakisphosphate kinases (IP6Ks), the principal product of which is diphosphoinositol pentakisphosphate (IP7). We report that IP6K2, via IP7 synthesis, is a major mediator of cancer cell migration and tumor metastasis in cell culture and in intact mice. IP6K2 acts by enhancing cell-matrix adhesion and decreasing cell–cell adhesion. This action is mediated by IP7-elicited nuclear sequestration and inactivation of the tumor suppressor liver kinase B1 (LKB1). Accordingly, inhibitors of IP6K2 offer promise in cancer therapy. PMID:25617365

  9. Differential effects of drugs targeting cancer stem cell (CSC and non-CSC populations on lung primary tumors and metastasis.

    Directory of Open Access Journals (Sweden)

    Leyre Larzabal

    Full Text Available Cancer stem cells (CSCs are thought to be responsible for tumor initiation and recurrence after chemotherapy. Targeting CSCs and non-CSCs with specific compounds may be an effective approach to reduce lung cancer growth and metastasis. The aim of this study was to investigate the effect of salinomycin, a selective inhibitor of CSCs, with or without combination with paclitaxel, in a metastatic model. To evaluate the effect of these drugs in metastasis and tumor microenvironment we took advantage of the immunocompetent and highly metastatic LLC mouse model. Aldefluor assays were used to analyze the ALDH+/- populations in murine LLC and human H460 and H1299 lung cancer cells. Salinomycin reduced the proportion of ALDH+ CSCs in LLC cells, whereas paclitaxel increased such population. The same effect was observed for the H460 and H1299 cell lines. Salinomycin reduced the tumorsphere formation capacity of LLC by more than 7-fold, but paclitaxel showed no effect. In in vivo experiments, paclitaxel reduced primary tumor volume but increased the number of metastatic nodules (p<0.05, whereas salinomycin had no effect on primary tumors but reduced lung metastasis (p<0.05. Combination of both drugs did not improve the effect of single therapies. ALDH1A1, SOX2, CXCR4 and SDF-1 mRNA levels were higher in metastatic lesions than in primary tumors, and were significantly elevated in both locations by paclitaxel treatment. On the contrary, such levels were reduced (or in some cases did not change when mice were administered with salinomycin. The number of F4/80+ and CD11b+ cells was also reduced upon administration of both drugs, but particularly in metastasis. These results show that salinomycin targets ALDH+ lung CSCs, which has important therapeutic effects in vivo by reducing metastatic lesions. In contrast, paclitaxel (although reducing primary tumor growth promotes the selection of ALDH+ cells that likely modify the lung microenvironment to foster

  10. Skin metastasis from conventional giant cell tumor of bone: conceptual significance

    International Nuclear Information System (INIS)

    Tyler, W.; Barrett, T.; Frassica, F.; McCarthy, E.

    2002-01-01

    A conventional giant cell tumor of the proximal femur recurred twice locally and developed pulmonary nodules. The lung lesions were felt to be an example of ''benign'' metastases. Eight months after the initial presentation, the patient developed a single skin nodule on the contralateral leg. Histologic features of the skin nodule showed conventional giant cell tumor identical to the bone lesion. This nodule is a manifestation of arterial metastasis typical of any malignant tumor and seemingly contradicts the concept of ''benign '' metastasis. (orig.)

  11. Activation of the kinin B1 receptor attenuates melanoma tumor growth and metastasis.

    Directory of Open Access Journals (Sweden)

    Patricia Dillenburg-Pilla

    Full Text Available Melanoma is a very aggressive tumor that does not respond well to standard therapeutic approaches, such as radio- and chemotherapies. Furthermore, acquiring the ability to metastasize in melanoma and many other tumor types is directly related to incurable disease. The B1 kinin receptor participates in a variety of cancer-related pathophysiological events, such as inflammation and angiogenesis. Therefore, we investigated whether this G protein-coupled receptor plays a role in tumor progression. We used a murine melanoma cell line that expresses the kinin B1 receptor and does not express the kinin B2 receptor to investigate the precise contribution of activation of the B1 receptor in tumor progression and correlated events using various in vitro and in vivo approaches. Activation of the kinin B1 receptor in the absence of B2 receptor inhibits cell migration in vitro and decreases tumor formation in vivo. Moreover, tumors formed from cells stimulated with B1-specific agonist showed several features of decreased aggressiveness, such as smaller size and infiltration of inflammatory cells within the tumor area, higher levels of pro-inflammatory cytokines implicated in the host anti-tumor immune response, lower number of cells undergoing mitosis, a poorer vascular network, no signs of invasion of surrounding tissues or metastasis and increased animal survival. Our findings reveal that activation of the kinin B1 receptor has a host protective role during murine melanoma tumor progression, suggesting that the B1 receptor could be a new anti-tumor GPCR and provide new opportunities for therapeutic targeting.

  12. The transcription factor FOXO4 is down-regulated and inhibits tumor proliferation and metastasis in gastric cancer

    International Nuclear Information System (INIS)

    Su, Linna; Liu, Xiangqiang; Chai, Na; Lv, Lifen; Wang, Rui; Li, Xiaosa; Nie, Yongzhan; Shi, Yongquan; Fan, Daiming

    2014-01-01

    FOXO4, a member of the FOXO family of transcription factors, is currently the focus of intense study. Its role and function in gastric cancer have not been fully elucidated. The present study was aimed to investigate the expression profile of FOXO4 in gastric cancer and the effect of FOXO4 on cancer cell growth and metastasis. Immunohistochemistry, Western blotting and qRT-PCR were performed to detect the FOXO4 expression in gastric cancer cells and tissues. Cell biological assays, subcutaneous tumorigenicity and tail vein metastatic assay in combination with lentivirus construction were performed to detect the impact of FOXO4 to gastric cancer in proliferation and metastasis in vitro and in vivo. Confocal and qRT-PCR were performed to explore the mechanisms. We found that the expression of FOXO4 was decreased significantly in most gastric cancer tissues and in various human gastric cancer cell lines. Up-regulating FOXO4 inhibited the growth and metastasis of gastric cancer cell lines in vitro and led to dramatic attenuation of tumor growth, and liver and lung metastasis in vivo, whereas down-regulating FOXO4 with specific siRNAs promoted the growth and metastasis of gastric cancer cell lines. Furthermore, we found that up-regulating FOXO4 could induce significant G1 arrest and S phase reduction and down-regulation of the expression of vimentin. Our data suggest that loss of FOXO4 expression contributes to gastric cancer growth and metastasis, and it may serve as a potential therapeutic target for gastric cancer

  13. Tumors induce coordinate growth of artery, vein, and lymphatic vessel triads

    International Nuclear Information System (INIS)

    Ruddell, Alanna; Croft, Alexandra; Kelly-Spratt, Karen; Furuya, Momoko; Kemp, Christopher J

    2014-01-01

    Tumors drive blood vessel growth to obtain oxygen and nutrients to support tumor expansion, and they also can induce lymphatic vessel growth to facilitate fluid drainage and metastasis. These processes have generally been studied separately, so that it is not known how peritumoral blood and lymphatic vessels grow relative to each other. The murine B16-F10 melanoma and chemically-induced squamous cell carcinoma models were employed to analyze large red-colored vessels growing between flank tumors and draining lymph nodes. Immunostaining and microscopy in combination with dye injection studies were used to characterize these vessels. Each peritumoral red-colored vessel was found to consist of a triad of collecting lymphatic vessel, vein, and artery, that were all enlarged. Peritumoral veins and arteries were both functional, as detected by intravenous dye injection. The enlarged lymphatic vessels were functional in most mice by subcutaneous dye injection assay, however tumor growth sometimes blocked lymph drainage to regional lymph nodes. Large red-colored vessels also grew between benign papillomas or invasive squamous cell carcinomas and regional lymph nodes in chemical carcinogen-treated mice. Immunostaining of the red-colored vessels again identified the clustered growth of enlarged collecting lymphatics, veins, and arteries in the vicinity of these spontaneously arising tumors. Implanted and spontaneously arising tumors induce coordinate growth of blood and lymphatic vessel triads. Many of these vessel triads are enlarged over several cm distance between the tumor and regional lymph nodes. Lymphatic drainage was sometimes blocked in mice before lymph node metastasis was detected, suggesting that an unknown mechanism alters lymph drainage patterns before tumors reach draining lymph nodes

  14. Tumors induce coordinate growth of artery, vein, and lymphatic vessel triads.

    Science.gov (United States)

    Ruddell, Alanna; Croft, Alexandra; Kelly-Spratt, Karen; Furuya, Momoko; Kemp, Christopher J

    2014-05-21

    Tumors drive blood vessel growth to obtain oxygen and nutrients to support tumor expansion, and they also can induce lymphatic vessel growth to facilitate fluid drainage and metastasis. These processes have generally been studied separately, so that it is not known how peritumoral blood and lymphatic vessels grow relative to each other. The murine B16-F10 melanoma and chemically-induced squamous cell carcinoma models were employed to analyze large red-colored vessels growing between flank tumors and draining lymph nodes. Immunostaining and microscopy in combination with dye injection studies were used to characterize these vessels. Each peritumoral red-colored vessel was found to consist of a triad of collecting lymphatic vessel, vein, and artery, that were all enlarged. Peritumoral veins and arteries were both functional, as detected by intravenous dye injection. The enlarged lymphatic vessels were functional in most mice by subcutaneous dye injection assay, however tumor growth sometimes blocked lymph drainage to regional lymph nodes. Large red-colored vessels also grew between benign papillomas or invasive squamous cell carcinomas and regional lymph nodes in chemical carcinogen-treated mice. Immunostaining of the red-colored vessels again identified the clustered growth of enlarged collecting lymphatics, veins, and arteries in the vicinity of these spontaneously arising tumors. Implanted and spontaneously arising tumors induce coordinate growth of blood and lymphatic vessel triads. Many of these vessel triads are enlarged over several cm distance between the tumor and regional lymph nodes. Lymphatic drainage was sometimes blocked in mice before lymph node metastasis was detected, suggesting that an unknown mechanism alters lymph drainage patterns before tumors reach draining lymph nodes.

  15. Up-regulation of GTPBP4 in colorectal carcinoma is responsible for tumor metastasis

    International Nuclear Information System (INIS)

    Yu, Haitao; Jin, Sufeng; Zhang, Na; Xu, Qi

    2016-01-01

    GTP binding protein 4(GTPBP4), a member of GTP-binding protein family, was previously characterized as a tumor suppressor that regulates and requires merlin to suppress cell proliferation. However, the role of GTPBP4 in the metastasis of colorectal carcinoma (CRC) remains unelucidated. Here, we observed that GTPBP4 was detected at higher levels in CRC metastatic tissues than that in the primary tumor tissues. Notably, up-regulation of GTPBP4 was closely correlated with tumor metastasis in CRCs. Kaplan-Meier and multivariate Cox regression analysis indicated GTPBP4 as an independent prognostic factor for CRC patients (hazard ratio = 2.693, 95% confident interval: 1.193–6.083, p = 0.017). Functional studies established that knockdown of GTPBP4 impeded, whereas ectopic expression of GTPBP4 enhanced cell motility and tumor metastasis in CRC cells. Interestingly, mechanistic investigations suggested that GTPBP4 may disorganize actin cytoskeleton through repressing RhoA signaling. Taken together, our research uncovered that GTPBP4 promotes CRC metastasis by disrupting actin cytoskeleton, which is mediated by the reduced RhoA activity. Strategies targeting GTPBP4 will be promising for CRC patients with metastases. - Highlights: • Up-regulation of GTPBP4 is detected in CRC metastatic tissues and closely correlated with tumor metastasis. • Increase of GTPBP4 is closely associated with poor prognosis. • GTPBP4 promotes cell motility and tumor metastasis in CRC cells. • GTPBP4 induces filamentous actin rearrangement specifically by repressing the activity of RhoA. • GTPBP4 may be a novel therapeutic target for CRC patients with metastasis.

  16. Rosiglitazone inhibits metastasis development of a murine mammary tumor cell line LMM3

    International Nuclear Information System (INIS)

    Magenta, Gabriela; Borenstein, Ximena; Rolando, Romina; Jasnis, María Adela

    2008-01-01

    Activation of peroxisome proliferator-activated receptors γ (PPARγ) induces diverse effects on cancer cells. The thiazolidinediones (TZDs), such as troglitazone and ciglitazone, are PPARγ agonists exhibiting antitumor activities; however, the underlying mechanism remains inconclusive. Rosiglitazone (RGZ), a synthetic ligand of PPARγ used in the treatment of Type 2 diabetes, inhibits growth of some tumor cells and is involved in other processes related to cancer progression. Opposing results have also been reported with different ligands on tumor cells. The purpose of this study was to determine if RGZ and 15d-PGJ 2 induce antitumor effects in vivo and in vitro on the murine mammary tumor cell line LMM3. The effect on LMM3 cell viability and nitric oxide (NO) production of different doses of RGZ, 15-dPGJ 2 , BADGE and GW9662 were determined using the MTS colorimetric assay and the Griess reaction respectively. In vivo effect of orally administration of RGZ on tumor progression was evaluated either on s.c. primary tumors as well as on experimental metastasis. Cell adhesion, migration (wound assay) and invasion in Transwells were performed. Metalloproteinase activity (MMP) was determined by zymography in conditioned media from RGZ treated tumor cells. PPARγ expression was detected by inmunohistochemistry in formalin fixed tumors and by western blot in tumor cell lysates. RGZ orally administered to tumor-bearing mice decreased the number of experimental lung metastases without affecting primary s.c. tumor growth. Tumor cell adhesion and migration, as well as metalloproteinase MMP-9 activity, decreased in the presence of 1 μM RGZ (non-cytotoxic dose). RGZ induced PPARγ protein expression in LMM3 tumors. Although metabolic activity -measured by MTS assay- diminished with 1–100 μM RGZ, 1 μM-treated cells recovered their proliferating capacity while 100 μM treated cells died. The PPARγ antagonist Biphenol A diglicydyl ether (BADGE) did not affect RGZ activity

  17. Transplantation of β-endorphin neurons into the hypothalamus promotes immune function and restricts the growth and metastasis of mammary carcinoma.

    Science.gov (United States)

    Sarkar, Dipak K; Zhang, Changqing; Murugan, Sengottuvelan; Dokur, Madhavi; Boyadjieva, Nadka I; Ortigüela, Maria; Reuhl, Kenneth R; Mojtehedzadeh, Sepide

    2011-10-01

    Neurobehavioral stress has been shown to promote tumor growth and progression and dampen the immune system. In this study, we investigated whether inhibiting stress hormone production could inhibit the development of mammary carcinoma and metastasis in a rat model of breast carcinogenesis. To enhance β-endorphin (BEP), the endogenous opioid polypeptide that boosts immune activity and decreases stress, we generated BEP neurons by in vitro differentiation from fetal neuronal stem cells and transplanted them into the hypothalami of rats subjected to breast carcinogenesis. BEP-transplanted rats displayed a reduction in mammary tumor incidence, growth, malignancy rate, and metastasis compared with cortical cells-transplanted rats. BEP neuron transplants also reduced inflammation and epithelial to mesenchymal transition in the tumor tissues. In addition, BEP neuron transplants increased peripheral natural killer (NK) cell and macrophage activities, elevated plasma levels of antiinflammatory cytokines, and reduced plasma levels of inflammatory cytokines. Antimetastatic effects along with stimulation of NK cells and macrophages could be reversed by treatment with the opiate antagonist naloxone, the β-receptor agonist metaproterenol, or the nicotine acetylcholine receptor antagonist methyllycaconitine. Together, our findings establish a protective role for BEP against the growth and metastasis of mammary tumor cells by altering autonomic nervous system activities that enhance innate immune function.

  18. Are Breast Tumor Stem Cells Responsible for Metastasis and Angiogenesis?

    National Research Council Canada - National Science Library

    Pan, Quintin

    2005-01-01

    .... The current dogma of metastasis is that most primary tumor cells have low metastatic potential, but rare cells, less than one in ten million, within large primary tumors acquire metastatic capacity...

  19. The Platelet Aggregation-Inducing Factor Aggrus/Podoplanin Promotes Pulmonary Metastasis

    Science.gov (United States)

    Kunita, Akiko; Kashima, Takeshi G.; Morishita, Yasuyuki; Fukayama, Masashi; Kato, Yukinari; Tsuruo, Takashi; Fujita, Naoya

    2007-01-01

    Tumor cell-induced platelet aggregation has been reported to facilitate hematogenous metastasis. Aggrus/podoplanin is a platelet aggregation-inducing factor that is up-regulated in a number of human cancers and has been implicated in tumor progression. We studied herein the role of Aggrus in tumor growth, metastasis, and survival in vivo. Aggrus expression in Chinese hamster ovary cells promoted pulmonary metastasis in both an experimental and a spontaneous mouse model. No differences in the size of metastatic foci or in primary tumor growth were found in either set of mice. Aggrus-expressing cells, which were covered with platelets, arrested in the lung microvasculature 30 minutes after injection. In addition, lung metastasis resulting from Aggrus expression decreased the survival of the mice. By generating several Aggrus point mutants, we revealed that point mutation at the platelet aggregation-stimulating domain of Aggrus (Thr34 and Thr52) obliterated both platelet aggregation and metastasis. Furthermore, administration of aspirin to mice reduced the number of metastatic foci. These results indicate that Aggrus contributes to the establishment of metastasis by promoting platelet aggregation without affecting subsequent growth. Thus, Aggrus could serve as an ideal therapeutic target for drug development to block metastasis. PMID:17392172

  20. Tetrandrine Suppresses Cancer Angiogenesis and Metastasis in 4T1 Tumor Bearing Mice

    Directory of Open Access Journals (Sweden)

    Jian-Li Gao

    2013-01-01

    Full Text Available Metastasis remains the most deadly aspect of cancer and still evades direct treatment. Thus, there is a great need to develop new treatment regimens to suppress tumor cells that have escaped surgical removal or that may have already disseminated. We have found that tetrandrine (TET exhibits anticolon cancer activity. Here, we investigate the inhibition effect of TET to breast cancer metastasis, angiogenesis and its molecular basis underlying TET’s anticancer activity. We compare TET with chemotherapy drug doxorubicin in 4T1 tumor bearing BALB/c mice model and find that TET exhibits an anticancer metastatic and antiangiogenic activities better than those of doxorubicin. The lung metastatic sites were decreased by TET, which is confirmed by bioluminescence imaging in vivo. On the other hand, laser doppler perfusion imaging (LDI was used for measuring the blood flow of tumor in 4T1-tumor bearing mice. As a result, the local blood perfusion of tumor was markedly decreased by TET after 3 weeks. Mechanistically, TET treatment leads to a decrease in p-ERK level and an increase in NF-κB levels in HUVECs. TET also regulated metastatic and angiogenic related proteins, including vascular endothelial growth factor, hypoxia-inducible factor-1α, integrin β5, endothelial cell specific molecule-1, and intercellular adhesion molecule-1 in vivo.

  1. Enhanced experimental tumor metastasis with age in senescence-accelerated mouse

    International Nuclear Information System (INIS)

    Shimizu, Kosuke; Kinouchi Shimizu, Naomi; Asai, Tomohiro; Oku, Naoto; Tsukada, Hideo

    2008-01-01

    Tumor metastasis is affected by the host immune surveillance system. Since aging may attenuate the host immune potential, the experimental tumor metastasis may be enhanced with age. In the present study, we investigated this alteration of experimental tumor metastasis with age. We used senescence-accelerated mice prone 10 (SAMP10) as a model of aged animals. Natural killer cell (NK) activity, as an indicator of immune surveillance potential, in 8-month-old (aged) SAMP10 mice was observed to be much lower than that in 2-month-old (young) mice. When we examined the in vivo trafficking of lung-metastatic K1735M2 melanoma cells in SAMP10 with positron emission tomography (PET), K1735M2 cells labeled with [2- 18 F]2-deoxy-2-fluoro-D-glucose ([ 18 F]FDG) were observed in both young and aged SAMP10 just after injection of the cells, whereas the clearance of 18 F from the lungs was retarded in aged animals. The accumulation of 5-[ 125 I]iodo-2'-deoxyuridine ([ 125 I]IUdR)-labeled K1735M2 cells in the lungs of SAMP10 at 24 h after injection was significantly higher in aged mice. Corresponding to these results, the number of metastatic colonies in the lung was larger in the aged SAMP10 of the experimental tumor metastasis model. The present study demonstrated that the aging process produced a susceptible environment allowing the tumor cells to metastasize due to decrease in the host immune surveillance potential with age. (author)

  2. Urethral metastasis from non-seminomatous germ cell tumor: a case report

    Directory of Open Access Journals (Sweden)

    Joffe Johnathan

    2011-01-01

    Full Text Available Abstract Introduction We present a case of nonseminomatous germ cell tumor of the testes with acute urinary retention secondary to urethral metastasis. This presentation, and similar cases of urethral metastasis from this tumor, have not been reported previously. Case presentation A 35-year-old Caucasian man presented to hospital with a history of acute urinary retention. On examination he was found to have right testicular enlargement with raised β-human chorionic gonadotrophin, serum α-fetoprotein and lactate dehydrogenase levels. He underwent radical left inguinal orchidectomy and histology confirmed a nonseminomatous germ cell tumor of the testes. Cystoscopy carried out due to urinary retention showed penile metastasis and the biopsy confirmed metastatic malignant undifferentiated teratoma. Staging computed tomography scan and magnetic resonance imaging of the pelvis showed pulmonary, pelvic nodal, ischial and penile metastasis. The diagnosis of the International Germ Cell Cancer Collaborative Group of poor prognosis metastatic nonseminomatous germ cell tumor was made, following which he received four cycles of bleomycin, etoposide and cisplatin chemotherapy with curative intent. He had a complete marker and an excellent radiological response. He is currently under follow up. Conclusion The unusual presentation of lymphovascular spread in this case of nonseminomatous germ cell tumor highlights the need to include routine pelvic imaging in the assessment and follow up of testicular cancer.

  3. Malignant Solitary Fibrous Tumor Metastatic to Widely Invasive Hurthle Cell Thyroid Carcinoma: A Distinct Tumor-to-Tumor Metastasis.

    Science.gov (United States)

    Kolson Kokohaare, Eva; Riva, Francesco M G; Bernstein, Jonathan M; Miah, Aisha B; Thway, Khin

    2018-04-01

    We illustrate a case of synchronous malignant solitary fibrous tumor of the thoracic cavity, and widely invasive thyroid Hurthle cell carcinoma. The Hurthle cell carcinoma was found to harbor distinct areas of malignant solitary fibrous tumor. This is a unique case of tumor-to-tumor metastasis that, to the best of our knowledge, has not been previously reported.

  4. Proteus mirabilis inhibits cancer growth and pulmonary metastasis in a mouse breast cancer model.

    Science.gov (United States)

    Zhang, Hong; Diao, Hongxiu; Jia, Lixin; Yuan, Yujing; Thamm, Douglas H; Wang, Huanan; Jin, Yipeng; Pei, Shimin; Zhou, Bin; Yu, Fang; Zhao, Linna; Cheng, Nan; Du, Hongchao; Huang, Ying; Zhang, Di; Lin, Degui

    2017-01-01

    A variety of bacteria have been used as agents and vectors for antineoplastic therapy. A series of mechanisms, including native bacterial toxicity, sensitization of the immune system and competition for nutrients, may contribute to antitumor effects. However, the antitumor effects of Proteus species have been minimally studied, and it is not clear if bacteria can alter tumor hypoxia as a component of their antineoplastic effect. In the present study, Proteus mirabilis bacteria were evaluated for the ability to proliferate and accumulate in murine tumors after intravenous injection. To further investigate the efficacy and safety of bacterial injection, mice bearing 4T1 tumors were treated with an intravenous dose of 5×107 CFU Proteus mirabilis bacteria via the tail vein weekly for three treatments. Histopathology, immunohistochemistry (IHC) and western analysis were then performed on excised tumors. The results suggested Proteus mirabilis localized preferentially to tumor tissues and remarkably suppressed the growth of primary breast cancer and pulmonary metastasis in murine 4T1 models. Results showed that the expression of NKp46 and CD11c was significantly increased after bacteria treatment. Furthermore, tumor expression of carbonic anhydrase IX (CA IX) and hypoxia inducible factor-1a (HIF-1a), surrogates for hypoxia, was significantly lower in the treated group than the control group mice as assessed by IHC and western analysis. These findings demonstrated that Proteus mirabilis may a promising bacterial strain for used against primary tumor growth and pulmonary metastasis, and the immune system and reduction of tumor hypoxia may contribute to the antineoplastic and antimetastatic effects observed.

  5. Inhibition of growth and metastasis of human gastric cancer implanted in nude mice by d-limonene

    Science.gov (United States)

    Lu, Xiao-Guang; Zhan, Li-Bin; Feng, Bing-An; Qu, Ming-Yang; Yu, Li-Hua; Xie, Ji-Hong

    2004-01-01

    AIM: To investigate the effects and mechanism of d-limonene on the growth and metastasis of gastric cancer in vivo. METHODS: Metastatic model simulating human gastric cancer was established by orthotopic implantation of histologically intact human tumor tissue into gastric wall of nude mice. One percent d-limonene was orally administered at dose of 15 ml/kg every other day for seven weeks. Eight weeks after implantation, tumor weight, inhibition rate, apoptotic index (AI), microvessel density (MVD), vascular endothelial growth factor (VEGF), variation of ultrastructure, and the presence of metastasis were evaluated, respectively, after the mice were sacrificed. RESULTS: The tumor weight was significantly reduced in 5-FU group (2.55 ± 0.28 g), d-limonene group (1.49 ± 0.09 g) and combined treatment group (1.48 ± 0.21 g) compared with the control group(2.73 ± 0.23 g, P limonene group, combined treatment group, the inhibition rates were 2.60%, 47.58% and 46.84% and 0, respectively; AI was (3.31 ± 0.33)%, (8.26 ± 1.21)%, (20.99 ± 1.84)% and (19.34 ± 2.19)%, respectively; MVD was (8.64 ± 2.81), (16.77 ± 1.39), (5.32 ± 4.26) and (5.86 ± 2.27), respectively; VEGF expression was (45.77 ± 4.79), (41.34 ± 5.41), (29.71 ± 8.92) and (28.24 ± 8.55), respectively. The incidences of peritoneal metastasis also decreased significantly in 5-FU group(77.8%), d-limonene group (20.0%) and combined group (22.2%) compared with control group (100%) versus 62.5%, 30% and 22.2%) (P limonene group and combined group than that in control group (87.5% vs 55.5%, 20.0% and 22.2% respectively) (P limonene group and combined group was 25.0%, 22.2%, 0, 0, respectively and 12.5%, 11.1% 0, 0, with respect to the metastasis rate to other organs. CONCLUSION: d-limonene has antiangiogenic and proapoptotic effects on gastric cancer, thereby inhibits tumor growth and metastasis. Combination of d-limonene with cytotoxic agents may be more effective. PMID:15237454

  6. Platelets Promote Metastasis via Binding Tumor CD97 Leading to Bidirectional Signaling that Coordinates Transendothelial Migration

    Directory of Open Access Journals (Sweden)

    Yvona Ward

    2018-04-01

    Full Text Available Summary: Tumor cells initiate platelet activation leading to the secretion of bioactive molecules, which promote metastasis. Platelet receptors on tumors have not been well-characterized, resulting in a critical gap in knowledge concerning platelet-promoted metastasis. We identify a direct interaction between platelets and tumor CD97 that stimulates rapid bidirectional signaling. CD97, an adhesion G protein-coupled receptor (GPCR, is an overexpressed tumor antigen in several cancer types. Purified CD97 extracellular domain or tumor cell-associated CD97 stimulated platelet activation. CD97-initiated platelet activation led to granule secretion, including the release of ATP, a mediator of endothelial junction disruption. Lysophosphatidic acid (LPA derived from platelets induced tumor invasiveness via proximal CD97-LPAR heterodimer signaling, coupling coincident tumor cell migration and vascular permeability to promote transendothelial migration. Consistent with this, CD97 was necessary for tumor cell-induced vascular permeability in vivo and metastasis formation in preclinical models. These findings support targeted blockade of tumor CD97 as an approach to ameliorate metastatic spread. : Tumor-initiated platelet activation promotes tissue invasion of cancer cells and metastasis. Ward et al. demonstrate that a common tumor-associated antigen, CD97, accounts for platelet activation and participates directly in LPA-mediated signal transduction leading to tumor cell invasion. CD97 promotes vascular extravasation and metastasis in pre-clinical models. Keywords: platelets, metastasis, transendothelial migration, circulating tumor cells, CD97, adhesion GPCR, LPA

  7. miR-181a Targets RGS16 to Promote Chondrosarcoma Growth, Angiogenesis, and Metastasis.

    Science.gov (United States)

    Sun, Xiaojuan; Charbonneau, Cherie; Wei, Lei; Chen, Qian; Terek, Richard M

    2015-09-01

    Chondrosarcoma is the most common primary malignant bone tumor in adults, has no effective systemic treatment, and patients with this disease have poor survival. Altered expression of microRNA (miR) is involved in tumorigenesis; however, its role in chondrosarcoma is undetermined. miR-181a is overexpressed in high-grade chondrosarcoma, is upregulated by hypoxia, and increases VEGF expression. Here, the purpose was to determine the mechanism of miR-181a regulation of VEGF, determine whether miR-181a overexpression promotes tumor progression, and to evaluate an antagomir-based approach for chondrosarcoma treatment. Therapeutic inhibition of miR-181a decreased expression of VEGF and MMP1 in vitro, and angiogenesis, MMP1 activity, tumor growth, and lung metastasis, all by more than 50%, in a xenograft mouse model. A target of miR-181a is a regulator of G-protein signaling 16 (RGS16), a negative regulator of CXC chemokine receptor 4 (CXCR4) signaling. CXCR4 signaling is increased in chondrosarcoma, its expression is also increased by hypoxia, and is associated with angiogenesis and metastasis; however, receptor blockade is only partially effective. RGS16 expression is restored after miR-181a inhibition and partially accounts for the antiangiogenic and antimetastatic effects of miR-181a inhibition. These data establish miR-181a as an oncomiR that promotes chondrosarcoma progression through a new mechanism involving enhancement of CXCR4 signaling by inhibition of RGS16. Targeting miR-181a can inhibit tumor angiogenesis, growth, and metastasis, thus suggesting the possibility of antagomir-based therapy in chondrosarcoma. ©2015 American Association for Cancer Research.

  8. NADPH promotes the rapid growth of the tumor

    Directory of Open Access Journals (Sweden)

    Hao Sheng

    2018-04-01

    Full Text Available NADPH oxidase is the main source of intracellular reactive oxygen species (ROS. ROS plays an important role in a variety of tumor types. The ROS mediated by NADPH oxidase increases the expression of hypoxia-inducible factor alpha (HIF-α through multiple signaling pathways in tumor, and HIF-α could be regulated and controlled by downstream multiple targeted genes such as vascular endothelial growth factor, glucose transporter to promote tumor angiogenesis, cell energy metabolism reprogram and tumor metastasis. Meanwhile, HIF-α can also regulate the expression of NADPH oxidase by ROS, thus further promoting development of tumor. In this review, we summarized the functions of NADPH in tumorigenesis and discussed their potential implications in cancer therapy.

  9. Long Noncoding RNA Taurine-Upregulated Gene1 (TUG1) Promotes Tumor Growth and Metastasis Through TUG1/Mir-129-5p/Astrocyte-Elevated Gene-1 (AEG-1) Axis in Malignant Melanoma.

    Science.gov (United States)

    Long, Jianwen; Menggen, Qiqige; Wuren, Qimige; Shi, Quan; Pi, Xianming

    2018-03-15

    BACKGROUND Malignant melanoma is a class of malignant tumors derived from melanocytes. lncRNAs have been considered as pro-/anti-tumor factors in progression of cancers. The function of lncRNA TUG1 on growth of melanoma was investigated in this study. MATERIAL AND METHODS The TUG1 and miR-129-5p expression were examined via qRT-PCR. The protein expression was investigated by Western blotting assay. Luciferase reporter assay was used to assess if lncRNA TUG1 can bind to miR-129-5p and if miR-129-5p can target AEG1 mRNA. CCK-8 and apoptosis assay were used to detect cell growth and apoptosis. The metastasis of melanoma cells was detected by wound-healing and Transwell assays. The effects of TUG1 on growth of melanoma in vivo and cell chemoresistance were investigated via xenograft animal experiment and CCK-8 assay. RESULTS The expression of TUG1 and AEG1 was elevated and the miR-129-5p level was decreased in melanoma specimens and cell lines. Downregulation of either TUG1 or AEG1 suppressed cell growth and metastasis. miR-129-5p can bind directly to AEG1 and TUG1 can directly sponge miR-129-5p. Inhibition of TUG1 expression suppressed the expression of Bcl-2, MMP-9, and cyclin D1, and raised the level of cleaved caspase3 by modulating AEG1 level in melanoma cells. Inhibition of TUG1 reduced the growth of tumors in vivo and improved the chemosensitivity of A375 cells to cisplatin and 5-FU. CONCLUSIONS Reduction of TUG1 level suppressed cell growth and metastasis by regulating AEG1 expression mediated by targeting miR-129-5p. Suppression of lnc TUG1 may be a promising therapeutic strategy in the treatment of malignant melanoma.

  10. A Novel NHE1-Centered Signaling Cassette Drives Epidermal Growth Factor Receptor–Dependent Pancreatic Tumor Metastasis and Is a Target for Combination Therapy

    Directory of Open Access Journals (Sweden)

    Rosa Angela Cardone

    2015-02-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC is one of the most lethal cancers principally because of early invasion and metastasis. The epidermal growth factor receptor (EGFR is essential for PDAC development even in the presence of Kras, but its inhibition with erlotinib gives only a modest clinical response, making the discovery of novel EGFR targets of critical interest. Here, we revealed by mining a human pancreatic gene expression database that the metastasis promoter Na+/H+ exchanger (NHE1 associates with the EGFR in PDAC. In human PDAC cell lines, we confirmed that NHE1 drives both basal and EGF-stimulated three-dimensional growth and early invasion via invadopodial extracellular matrix digestion. EGF promoted the complexing of EGFR with NHE1 via the scaffolding protein Na+/H+ exchanger regulatory factor 1, engaging EGFR in a negative transregulatory loop that controls the extent and duration of EGFR oncogenic signaling and stimulates NHE1. The specificity of NHE1 for growth or invasion depends on the segregation of the transient EGFR/Na+/H+ exchanger regulatory factor 1/NHE1 signaling complex into dimeric subcomplexes in different lipid raftlike membrane domains. This signaling complex was also found in tumors developed in orthotopic mice. Importantly, the specific NHE1 inhibitor cariporide reduced both three-dimensional growth and invasion independently of PDAC subtype and synergistically sensitized these behaviors to low doses of erlotinib.

  11. Proteus mirabilis inhibits cancer growth and pulmonary metastasis in a mouse breast cancer model.

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    Full Text Available A variety of bacteria have been used as agents and vectors for antineoplastic therapy. A series of mechanisms, including native bacterial toxicity, sensitization of the immune system and competition for nutrients, may contribute to antitumor effects. However, the antitumor effects of Proteus species have been minimally studied, and it is not clear if bacteria can alter tumor hypoxia as a component of their antineoplastic effect. In the present study, Proteus mirabilis bacteria were evaluated for the ability to proliferate and accumulate in murine tumors after intravenous injection. To further investigate the efficacy and safety of bacterial injection, mice bearing 4T1 tumors were treated with an intravenous dose of 5×107 CFU Proteus mirabilis bacteria via the tail vein weekly for three treatments. Histopathology, immunohistochemistry (IHC and western analysis were then performed on excised tumors. The results suggested Proteus mirabilis localized preferentially to tumor tissues and remarkably suppressed the growth of primary breast cancer and pulmonary metastasis in murine 4T1 models. Results showed that the expression of NKp46 and CD11c was significantly increased after bacteria treatment. Furthermore, tumor expression of carbonic anhydrase IX (CA IX and hypoxia inducible factor-1a (HIF-1a, surrogates for hypoxia, was significantly lower in the treated group than the control group mice as assessed by IHC and western analysis. These findings demonstrated that Proteus mirabilis may a promising bacterial strain for used against primary tumor growth and pulmonary metastasis, and the immune system and reduction of tumor hypoxia may contribute to the antineoplastic and antimetastatic effects observed.

  12. Boswellic acid suppresses growth and metastasis of human pancreatic tumors in an orthotopic nude mouse model through modulation of multiple targets.

    Directory of Open Access Journals (Sweden)

    Byoungduck Park

    Full Text Available Pancreatic cancer (PaCa is one of the most lethal cancers, with an estimated 5-year survival of <5% even when patients are given the best treatment available. In addition, these treatments are often toxic and expensive, thus new agents which are safe, affordable and effective are urgently needed. We describe here the results of our study with acetyl-11-keto-β-boswellic acid (AKBA, an agent obtained from an Ayurvedic medicine, gum resin of Boswellia serrata. Whether AKBA has an activity against human PaCa, was examined in in vitro models and in an orthotopic nude mouse model of PaCa. We found that AKBA inhibited the proliferation of four different PaCa cell lines (AsPC-1, PANC-28, and MIA PaCa-2 with K-Ras and p53 mutations, and BxPC-3 with wild-type K-Ras and p53 mutation. These effects correlated with an inhibition of constitutively active NF-κB and suppression of NF-κB regulating gene expression. AKBA also induced apoptosis, and sensitized the cells to apoptotic effects of gemcitabine. In the orthotopic nude mouse model of PaCa, p.o. administration of AKBA alone (100 mg/kg significantly inhibited the tumor growth; this activity was enhanced by gemcitabine. In addition, AKBA inhibited the metastasis of the PaCa to spleen, liver, and lungs. This correlated with decreases in Ki-67, a biomarker of proliferation, and CD31, a biomarker of microvessel density, in the tumor tissue. AKBA produced significant decreases in the expression of NF-κB regulating genes in the tissues. Immunohistochemical analysis also showed AKBA downregulated the expression of COX-2, MMP-9, CXCR4, and VEGF in the tissues. Overall these results demonstrate that AKBA can suppress the growth and metastasis of human pancreatic tumors in an orthotopic nude mouse model that correlates with modulation of multiple targets.

  13. Regulation of tumor progression and metastasis by bone marrow-derived microenvironments

    DEFF Research Database (Denmark)

    El Rayes, Tina; Gao, Dingcheng; Altorki, Nasser K.

    2017-01-01

    Activating mutations in driver oncogenes and loss-of-function mutations in tumor suppressor genes contribute to tumor progression and metastasis. Accordingly, therapies targeting key tumor cell-intrinsic signaling pathways are being used in clinical trials, and some have met FDA approval. However...

  14. E2-EPF UCP targets pVHL for degradation and associates with tumor growth and metastasis.

    Science.gov (United States)

    Jung, Cho-Rok; Hwang, Kyung-Sun; Yoo, Jinsang; Cho, Won-Kyung; Kim, Jin-Man; Kim, Woo Ho; Im, Dong-Soo

    2006-07-01

    The von Hippel-Lindau tumor suppressor, pVHL, forms part of an E3 ubiquitin ligase complex that targets specific substrates for degradation, including hypoxia-inducible factor-1alpha (HIF-1alpha), which is involved in tumor progression and angiogenesis. It remains unclear, however, how pVHL is destabilized. Here we show that E2-EPF ubiquitin carrier protein (UCP) associates with and targets pVHL for ubiquitin-mediated proteolysis in cells, thereby stabilizing HIF-1alpha. UCP is detected coincidently with HIF-1alpha in human primary liver, colon and breast tumors, and metastatic cholangiocarcinoma and colon cancer cells. UCP level correlates inversely with pVHL level in most tumor cell lines. In vitro and in vivo, forced expression of UCP boosts tumor-cell proliferation, invasion and metastasis through effects on the pVHL-HIF pathway. Our results suggest that UCP helps stabilize HIF-1alpha and may be a new molecular target for therapeutic intervention in human cancers.

  15. Overexpression of vascular endothelial growth factor C increases growth and alters the metastatic pattern of orthotopic PC-3 prostate tumors

    International Nuclear Information System (INIS)

    Tuomela, Johanna; Valta, Maija; Seppänen, Jani; Tarkkonen, Kati; Väänänen, H Kalervo; Härkönen, Pirkko

    2009-01-01

    Prostate cancer metastasizes to regional lymph nodes and distant sites but the roles of lymphatic and hematogenous pathways in metastasis are not fully understood. We studied the roles of VEGF-C and VEGFR3 in prostate cancer metastasis by blocking VEGFR3 using intravenous adenovirus-delivered VEGFR3-Ig fusion protein (VEGFR3-Ig) and by ectopic expression of VEGF-C in PC-3 prostate tumors in nude mice. VEGFR3-Ig decreased the density of lymphatic capillaries in orthotopic PC-3 tumors (p < 0.05) and inhibited metastasis to iliac and sacral lymph nodes. In addition, tumor volumes were smaller in the VEGFR3-Ig-treated group compared with the control group (p < 0.05). Transfection of PC-3 cells with the VEGF-C gene led to a high level of 29/31 kD VEGF-C expression in PC-3 cells. The size of orthotopic and subcutaneous PC-3/VEGF-C tumors was significantly greater than that of PC-3/mock tumors (both p < 0.001). Interestingly, while most orthotopic PC-3 and PC-3/mock tumors grown for 4 weeks metastasized to prostate-draining lymph nodes, orthotopic PC-3/VEGF-C tumors primarily metastasized to the lungs. PC-3/VEGF-C tumors showed highly angiogenic morphology with an increased density of blood capillaries compared with PC-3/mock tumors (p < 0.001). The data suggest that even though VEGF-C/VEGFR3 pathway is primarily required for lymphangiogenesis and lymphatic metastasis, an increased level of VEGF-C can also stimulate angiogenesis, which is associated with growth of orthotopic prostate tumors and a switch from a primary pattern of lymph node metastasis to an increased proportion of metastases at distant sites

  16. Tumor Cells and Tumor-Associated Macrophages: Secreted Proteins as Potential Targets for Therapy

    OpenAIRE

    Baay, Marc; Brouwer, Anja; Pauwels, Patrick; Peeters, Marc; Lardon, Filip

    2011-01-01

    Inflammatory pathways, meant to defend the organism against infection and injury, as a byproduct, can promote an environment which favors tumor growth and metastasis. Tumor-associated macrophages (TAMs), which constitute a significant part of the tumor-infiltrating immune cells, have been linked to the growth, angiogenesis, and metastasis of a variety of cancers, most likely through polarization of TAMs to the M2 (alternative) phenotype. The interaction between tumor cells and macrophages pro...

  17. Innate immune cell-derived microparticles facilitate hepatocarcinoma metastasis by transferring integrin α(M)β₂ to tumor cells.

    Science.gov (United States)

    Ma, Jingwei; Cai, Wenqian; Zhang, Yi; Huang, Chunmei; Zhang, Huafeng; Liu, Jing; Tang, Ke; Xu, Pingwei; Katirai, Foad; Zhang, Jianmin; He, Wei; Ye, Duyun; Shen, Guan-Xin; Huang, Bo

    2013-09-15

    Mechanisms by which tumor cells metastasize to distant organs still remain enigmatic. Immune cells have been assumed to be the root of metastasis by their fusing with tumor cells. This fusion theory, although interpreting tumor metastasis analogically and intriguingly, is arguable to date. We show in this study an alternative explanation by immune cell-derived microparticles (MPs). Upon stimulation by PMA or tumor cell-derived supernatants, immune cells released membrane-based MPs, which were taken up by H22 tumor cells, leading to tumor cell migration in vitro and metastasis in vivo. The underlying molecular basis was involved in integrin α(M)β₂ (CD11b/CD18), which could be effectively relayed from stimulated innate immune cells to MPs, then to tumor cells. Blocking either CD11b or CD18 led to significant decreases in MP-mediated tumor cell metastasis. This MP-mediated transfer of immune phenotype to tumor cells might also occur in vivo. These findings suggest that tumor cells may usurp innate immune cell phenotypes via MP pathway for their metastasis, providing new insight into tumor metastatic mechanism.

  18. Cyclooxygenase-2 Pathway Correlates with VEGF Expression in Head and Neck Cancer. Implications for Tumor Angiogenesis and Metastasis

    Directory of Open Access Journals (Sweden)

    Oreste Gallo

    2001-01-01

    Full Text Available We evaluated the role of COX-2 pathway in 35 head and neck cancers (HNCs by analyzing COX-2 expression and prostaglandin E2 (PGE2 production in relation to tumor angiogenesis and lymph node metastasis. COX-2 activity was also correlated to vascular endothelial growth factor (VEGF mRNA and protein expression. COX-2 mRNA and protein expression was higher in tumor samples than in normal mucosa. PGE2 levels were higher in the tumor front zone in comparison with tumor core and normal mucosa (P<0001. Specimens from patients with lymph node metastasis exhibited higher COX-2 protein expression (P=.0074, PGEZ levels (P=.0011 and microvessel density (P<.0001 than specimens from patients without metastasis. A significant correlation between COX-2 and tumor vascularization (rs=0.450, P=.007 as well as between COX-2 and microvessel density with VEGF expression in tumor tissues was found (rs=0.450, P=.007; rs=0.620, P=.0001, respectively. The induction of COX-2 mRNA and PGE2 synthesis by EGF and Escherichia coli lipopolysaccharide (LPS in A-431 and SCC-9 cell lines, resulted in an increase in VEGF mRNA and protein production. Indomethacin and celecoxib reversed the EGF- and LPS-dependent COX-2, VEGF, and PGE2 increases. This study suggests a central role of COX-2 pathway in HNC angiogenesis by modulating VEGF production and indicates that COX-2 inhibitors may be useful in HNC treatment.

  19. Function of Maximal Microvessel Density in Breast Tumor Metastasis

    National Research Council Canada - National Science Library

    McLeskey, Sandra

    2000-01-01

    .... These data are gained by quantitating the number of microvessels in "hot spots" of high-density tumor vasculature, implying that such hot spots have functional significance in the process of metastasis...

  20. Fibroblast growth factor receptor mediates fibroblast-dependent growth in EMMPRIN-depleted head and neck cancer tumor cells.

    Science.gov (United States)

    Liu, Zhiyong; Hartman, Yolanda E; Warram, Jason M; Knowles, Joseph A; Sweeny, Larissa; Zhou, Tong; Rosenthal, Eben L

    2011-08-01

    Head and neck squamous cell carcinoma tumors (HNSCC) contain a dense fibrous stroma which is known to promote tumor growth, although the mechanism of stroma-mediated growth remains unclear. As dysplastic mucosal epithelium progresses to cancer, there is incremental overexpression of extracellular matrix metalloprotease inducer (EMMPRIN) which is associated with tumor growth and metastasis. Here, we present evidence that gain of EMMPRIN expression allows tumor growth to be less dependent on fibroblasts by modulating fibroblast growth factor receptor-2 (FGFR2) signaling. We show that silencing EMMPRIN in FaDu and SCC-5 HNSCC cell lines inhibits cell growth, but when EMMPRIN-silenced tumor cells were cocultured with fibroblasts or inoculated with fibroblasts into severe combined immunodeficient mice, the growth inhibition by silencing EMMPRIN was blunted by the presence of fibroblasts. Coculture experiments showed fibroblast-dependent tumor cell growth occurred via a paracrine signaling. Analysis of tumor gene expression revealed expression of FGFR2 was inversely related to EMMPRIN expression. To determine the role of FGFR2 signaling in EMMPRIN-silenced tumor cells, ligands and inhibitors of FGFR2 were assessed. Both FGF1 and FGF2 enhanced tumor growth in EMMPRIN-silenced cells compared with control vector-transfected cells, whereas inhibition of FGFR2 with blocking antibody or with a synthetic inhibitor (PD173074) inhibited tumor cell growth in fibroblast coculture, suggesting the importance of FGFR2 signaling in fibroblast-mediated tumor growth. Analysis of xenografted tumors revealed that EMMPRIN-silenced tumors had a larger stromal compartment compared with control. Taken together, these results suggest that EMMPRIN acquired during tumor progression promotes fibroblast-independent tumor growth.

  1. Fibroblast growth factor receptor mediates fibroblast-dependent growth in EMMPRIN depleted head and neck cancer tumor cells

    Science.gov (United States)

    Liu, Zhiyong; Hartman, Yolanda E.; Warram, Jason M.; Knowles, Joseph A.; Sweeny, Larrisa; Zhou, Tong; Rosenthal, Eben L.

    2011-01-01

    Head and neck squamous cell carcinoma tumors (HNSCC) contain a dense fibrous stroma which is known to promote tumor growth, although the mechanism of stroma mediated growth remains unclear. As dysplastic mucosal epithelium progresses to cancer there is incremental overexpression of extracellular matrix metalloprotease inducer (EMMPRIN) which is associated with tumor growth and metastasis. Here we present evidence that gain of EMMPRIN expression allows tumor growth to be less dependent on fibroblasts by modulating fibroblast growth factor receptor-2 (FGFR2) signaling. We show that silencing EMMPRIN in FaDu and SCC-5 HNSCC cell lines inhibits cell growth, but when EMMPRIN-silenced tumor cells were co-cultured with fibroblasts or inoculated with fibroblasts into SCID mice, the growth inhibition by silencing EMMPRIN was blunted by the presence of fibroblasts. Co-culture experiments demonstrated fibroblast-dependent tumor cell growth occurred via a paracrine signaling. Analysis of tumor gene expression revealed expression of FGFR2 was inversely related to EMMPRIN expression. To determine the role of FGFR2 signaling in EMMPRIN silenced tumor cells, ligands and inhibitors of FGFR2 were assessed. Both FGF1 and FGF2 enhanced tumor growth in EMMPRIN silenced cells compared to control vector transfected cells, while inhibition of FGFR2 with blocking antibody or with a synthetic inhibitor (PD173074) inhibited tumor cell growth in fibroblast co-culture, suggesting the importance of FGFR2 signaling in fibroblast mediated tumor growth. Analysis of xenografted tumors revealed EMMPRIN silenced tumors had a larger stromal compartment compared to control. Taken together, these results suggest that EMMPRIN acquired during tumor progression promotes fibroblast independent tumor growth. PMID:21665938

  2. Gallic acid inhibits gastric cancer cells metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Hsieh-Hsun [Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan (China); Chang, Chi-Sen [Department of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Division of Gastroenterology, Taichung Veterans General Hospital, Taichung 402, Taiwan (China); Ho, Wei-Chi [Division of Gastroenterology, Jen-Ai Hospital, Taichung 402, Taiwan (China); Liao, Sheng-You [Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan (China); Lin, Wea-Lung [Department of Pathology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Pathology, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Wang, Chau-Jong, E-mail: wcj@csmu.edu.tw [Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China)

    2013-01-01

    Our previous study demonstrated the therapeutic potential of gallic acid (GA) for controlling tumor metastasis through its inhibitory effect on the motility of AGS cells. A noteworthy finding in our previous experiment was increased RhoB expression in GA-treated cells. The aim of this study was to evaluate the role of RhoB expression on the inhibitory effects of GA on AGS cells. By applying the transfection of RhoB siRNA into AGS cells and an animal model, we tested the effect of GA on inhibition of tumor growth and RhoB expression. The results confirmed that RhoB-siRNA transfection induced GA to inhibit AGS cells’ invasive growth involving blocking the AKT/small GTPase signals pathway and inhibition of NF-κB activity. Finally, we evaluated the effect of GA on AGS cell metastasis by colonization of tumor cells in nude mice. It showed GA inhibited tumor cells growth via the expression of RhoB. These data support the inhibitory effect of GA which was shown to inhibit gastric cancer cell metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity. Thus, GA might be a potential agent in treating gastric cancer. Highlights: ► GA could downregulate AKT signal via increased expression of RhoB. ► GA inhibits metastasis in vitro in gastric carcinoma. ► GA inhibits tumor growth in nude mice model.

  3. CXCR4-mediated osteosarcoma growth and pulmonary metastasis is promoted by mesenchymal stem cells through VEGF.

    Science.gov (United States)

    Zhang, Peng; Dong, Ling; Yan, Kang; Long, Hua; Yang, Tong-Tao; Dong, Ming-Qing; Zhou, Yong; Fan, Qing-Yu; Ma, Bao-An

    2013-10-01

    Chemokines and chemokine receptor 4 (CXCR4) play an important role in metastasis. CXCR4 is also expressed in the human osteosarcoma cell line 9607-F5M2 (F5M2), which has a high tumorigenic ability and potential for spontaneous pulmonary metastasis. Mesenchymal stem cells (MSCs) contribute to the formation of the tumor stroma and promote metastasis. However, mechanisms underlying the promotion of osteosarcoma growth and pulmonary metastasis by MSCs are still elusive. Our study co-injected the human MSCs and F5M2 cells into the caudal vein of nude mice. The total number of tumor nodules per lung was significantly increased in the F5M2+MSC group compared to the other groups (control, F5M2 cells alone and MSCs alone) at week six. Moreover, a high number of Dil-labeled MSCs was present also at the osteosarcoma metastasis sites in the lung. Using Transwell assays, we found that F5M2 cells migrate towards MSCs, while the CXCR4 inhibitor AMD3100 decreased the migration potential of F5M2 cells towards MSCs. Furthermore, upon treatment with F5M2-conditioned medium, MSCs expressed and secreted higher levels of VEGF as determined by immunohistochemistry, western blotting and ELISA, respectively. Importantly, co-cultured with F5M2 cells, MSCs expressed and secreted higher VEGF levels, while AMD3100 dramatically decreased the VEGF secretion by MSCs. However, CXCR4 expression on F5M2 cells was not significantly increased in the co-culture system. Additionally, VEGF increased the proliferation of both MSCs and F5M2 cells. These findings suggest that CXCR4-mediated osteosarcoma growth and pulmonary metastasis are promoted by MSCs through VEGF.

  4. Systemic treatment with n-6 polyunsaturated fatty acids attenuates EL4 thymoma growth and metastasis through enhancing specific and non-specific anti-tumor cytolytic activities and production of TH1 cytokines.

    Science.gov (United States)

    Salem, Mohamed Labib

    2005-06-01

    Recently, there has been a great interest in the effects of different types of n-6 polyunsaturated acids (n-6 PUFAs) upon the immune system and cancer development. However, the effects of n-6 PUFAs are still controversial and as yet undefined. The present study aimed to investigate the anti-tumor effects of n-6 PUFAs against EL4 thymoma and the associated immune mechanisms. To this, sesame oil, a vegetable oil enriched with n-6 PUFAs, or free linoleic acid (LA) were administered intraperitoneally into C57BL/6 mice before and after challenge with EL4 lymphoma cells. Treatment with either sesame oil or LA attenuated the growth and metastasis of EL4 lymphoma. The anti-tumor effect of LA was superior to that of sesame oil, and associated with an increase in the survival rate of the tumor-bearing mice. In addition, both sesame oil and LA showed dose-dependent anti-lymphoma growth in vitro. Treatment with LA generated significant increases in the anti-lymphoma cytolytic and cytostatic activities of T cells and macrophages, respectively, and enhanced production of IL-2 and IFN-gamma while decreased production of IL-4, IL-6 and IL-10. In summation, the results suggest that n-6 PUFAs, represented by LA, can attenuate EL4 lymphoma growth and metastasis through enhancing the specific and non-specific anti-tumor cytolytic activities and production of TH1 cytokines. These findings might be of great importance for a proper design of systemic nourishment with PUFAs emulsions for cancer patients.

  5. Anti-metastasis activity of black rice anthocyanins against breast cancer: analyses using an ErbB2 positive breast cancer cell line and tumoral xenograft model.

    Science.gov (United States)

    Luo, Li-Ping; Han, Bin; Yu, Xiao-Ping; Chen, Xiang-Yan; Zhou, Jie; Chen, Wei; Zhu, Yan-Feng; Peng, Xiao-Li; Zou, Qiang; Li, Sui-Yan

    2014-01-01

    Increasing evidence from animal, epidemiological and clinical investigations suggest that dietary anthocyanins have potential to prevent chronic diseases, including cancers. It is also noteworthy that human epidermal growth factor receptor 2 (ErbB2) protein overexpression or ErbB2 gene amplification has been included as an indicator for metastasis and higher risk of recurrence for breast cancer. The present experiments investigated the anti-metastasis effects of black rice anthocyanins (BRACs) on ErbB2 positive breast cancer cells in vivo and in vitro. Oral administration of BRACs (150 mg/kg/day) reduced transplanted tumor growth, inhibited pulmonary metastasis, and decreased lung tumor nodules in BALB/c nude mice bearing ErbB2 positive breast cancer cell MDA-MB-453 xenografts. The capacity for migration, adhesion, motility and invasion was also inhibited by BRACs in MDA-MB-453 cells in a concentration dependent manner, accompanied by decreased activity of a transfer promoting factor, urokinase-type plasminogen activator (u-PA). Together, our results indicated that BRACs possess anti-metastasis potential against ErbB2 positive human breast cancer cells in vivo and in vitro through inhibition of metastasis promoting molecules.

  6. Profil Gangguan Kognitif pada Tumor Intrakranial Primer dan Metastasis

    OpenAIRE

    Kartika Maharani; Andira Larasari; Tiara Aninditha; Yetty Ramli

    2015-01-01

    Gangguan kognitif sering menyertai pasien tumor intrakranial dan menjadi penyebab utama disabilitas. Perbedaan patofisiologi tumor intrakranial primer (TIP) dan metastasis (TM) menyebabkan perbedaan gambaran klinis dan derajat  gangguan kognitif. Tujuan penelitian ini untuk mengetahui prevalensi dan profil gangguan kognitif pasien TIP dan TM. Disain penelitian potong-lintang retrospektif menggunakan data sekunder dari Poliklinik Saraf RSCM pada bulan Januari 2011-Desember 2013. Subjek b...

  7. Differential Gene Expression in Primary Breast Tumors Associated with Lymph Node Metastasis

    International Nuclear Information System (INIS)

    Ellsworth, R.E.; Field, L.A.; Kane, J.L.; Love, B.; Hooke, J.A.; Shriver, C.D.

    2011-01-01

    Lymph node status remains one of the most useful prognostic indicators in breast cancer; however, current methods to assess nodal status disrupt the lymphatic system and may lead to secondary complications. Identification of molecular signatures discriminating lymph node-positive from lymph node-negative primary tumors would allow for stratification of patients requiring surgical assesment of lymph nodes. Primary breast tumors from women with negative (n=41) and positive (n=35) lymph node status matched for possible confounding factors were subjected to laser micro dissection and gene expression data generated. Although ANOVA analysis (P 1.5) revealed 13 differentially expressed genes, hierarchical clustering classified 90% of node-negative but only 66% of node-positive tumors correctly. The inability to derive molecular profiles of metastasis in primary tumors may reflect tumor heterogeneity, paucity of cells within the primary tumor with metastatic potential, influence of the microenvironment, or inherited host susceptibility to metastasis

  8. Differential Gene Expression in Primary Breast Tumors Associated with Lymph Node Metastasis

    Science.gov (United States)

    Ellsworth, Rachel E.; Field, Lori A.; Love, Brad; Kane, Jennifer L.; Hooke, Jeffrey A.; Shriver, Craig D.

    2011-01-01

    Lymph node status remains one of the most useful prognostic indicators in breast cancer; however, current methods to assess nodal status disrupt the lymphatic system and may lead to secondary complications. Identification of molecular signatures discriminating lymph node-positive from lymph node-negative primary tumors would allow for stratification of patients requiring surgical assesment of lymph nodes. Primary breast tumors from women with negative (n = 41) and positive (n = 35) lymph node status matched for possible confounding factors were subjected to laser microdissection and gene expression data generated. Although ANOVA analysis (P 1.5) revealed 13 differentially expressed genes, hierarchical clustering classified 90% of node-negative but only 66% of node-positive tumors correctly. The inability to derive molecular profiles of metastasis in primary tumors may reflect tumor heterogeneity, paucity of cells within the primary tumor with metastatic potential, influence of the microenvironment, or inherited host susceptibility to metastasis. PMID:22295210

  9. Differential Gene Expression in Primary Breast Tumors Associated with Lymph Node Metastasis

    Directory of Open Access Journals (Sweden)

    Rachel E. Ellsworth

    2011-01-01

    Full Text Available Lymph node status remains one of the most useful prognostic indicators in breast cancer; however, current methods to assess nodal status disrupt the lymphatic system and may lead to secondary complications. Identification of molecular signatures discriminating lymph node-positive from lymph node-negative primary tumors would allow for stratification of patients requiring surgical assesment of lymph nodes. Primary breast tumors from women with negative (=41 and positive (=35 lymph node status matched for possible confounding factors were subjected to laser microdissection and gene expression data generated. Although ANOVA analysis (1.5 revealed 13 differentially expressed genes, hierarchical clustering classified 90% of node-negative but only 66% of node-positive tumors correctly. The inability to derive molecular profiles of metastasis in primary tumors may reflect tumor heterogeneity, paucity of cells within the primary tumor with metastatic potential, influence of the microenvironment, or inherited host susceptibility to metastasis.

  10. Pulmonary Metastasis from Rectal Cancer on Chest CT Is Correlated with 3T MRI Primary Tumor Location

    International Nuclear Information System (INIS)

    Han, Na Yeon; Kim, Min Ju; Park, Beon Jin; Sung, Deuk Jae; Chung, Kyoo Byung; Oh, Yu Whan

    2011-01-01

    To evaluate the association between the incidence of pulmonary metastasis on chest CT and the location of the primary tumor on rectal MRI. One hundred and nine consecutive patients with rectal adenocarcinoma underwent chest CT and 3T rectal MRI. Two radiologists classified the tumor on MRI as an upper (> 10 cm from the anal verge), mid (5-10 cm), or lower rectal tumor (< 5 cm) by consensus. All chest CT scans were retrospectively reviewed for the presence of metastasis. We used Fisher's exact test to evaluate the correlation between the incidence of pulmonary metastasis with the location of the rectal cancer and the Mantel-Haenszel test to control for local tumor stage. We only included the 60 patients with upper (n = 26) or lower (n = 34) rectal cancer, because of the complicated venous drainage system of the mid rectum. Among these, 9 (15%) showed evidence of pulmonary metastasis on chest CT and almost all (89%, 8/9) patients had lower rectal cancer. The incidence of pulmonary metastasis between the two groups was statistically different (p < 0.05) when local tumor stage was controlled. The incidence of pulmonary metastasis was significantly higher for lower than upper rectal cancers when the T-stage of the tumor was accounted for.

  11. Novel chemokine-like activities of histones in tumor metastasis.

    Science.gov (United States)

    Chen, Ruochan; Xie, Yangchun; Zhong, Xiao; Fu, Yongmin; Huang, Yan; Zhen, Yixiang; Pan, Pinhua; Wang, Haichao; Bartlett, David L; Billiar, Timothy R; Lotze, Michael T; Zeh, Herbert J; Fan, Xue-Gong; Tang, Daolin; Kang, Rui

    2016-09-20

    Histones are intracellular nucleosomal components and extracellular damage-associated molecular pattern molecules that modulate chromatin remodeling, as well as the immune response. However, their extracellular roles in cell migration and invasion remain undefined. Here, we demonstrate that histones are novel regulators of tumor metastasis with chemokine-like activities. Indeed, exogenous histones promote both hepatocellular carcinoma (HCC) cell migration and invasion through toll-like receptor (TLR)4, but not TLR2 or the receptor for advanced glycosylation end product. TLR4-mediated activation of nuclear factor-κB (NF-κB) by extracellular signal-regulated kinase (ERK) is required for histone-induced chemokine (e.g., C-C motif ligand 9/10) production. Pharmacological and genetic inhibition of TLR4-ERK-NF-κB signaling impairs histone-induced chemokine production and HCC cell migration. Additionally, TLR4 depletion (by using TLR4-/- mice and TLR4-shRNA) or inhibition of histone release/activity (by administration of heparin and H3 neutralizing antibody) attenuates lung metastasis of HCC cells injected via the tail vein of mice. Thus, histones promote tumor metastasis of HCC cells through the TLR4-NF-κB pathway and represent novel targets for treating patients with HCC.

  12. Microenvironment Determinants of Brain Metastasis

    Directory of Open Access Journals (Sweden)

    Zhang Chenyu

    2011-02-01

    Full Text Available Abstract Metastasis accounts for 90% of cancer-related mortality. Brain metastases generally present during the late stages in the natural history of cancer progression. Recent advances in cancer treatment and management have resulted in better control of systemic disease metastatic to organs other than the brain and improved patient survival. However, patients who experience recurrent disease manifest an increasing number of brain metastases, which are usually refractory to therapies. To meet the new challenges of controlling brain metastasis, the research community has been tackling the problem with novel experimental models and research tools, which have led to an improved understanding of brain metastasis. The time-tested "seed-and-soil" hypothesis of metastasis indicates that successful outgrowth of deadly metastatic tumors depends on permissible interactions between the metastatic cancer cells and the site-specific microenvironment in the host organs. Consistently, recent studies indicate that the brain, the major component of the central nervous system, has unique physiological features that can determine the outcome of metastatic tumor growth. The current review summarizes recent discoveries on these tumor-brain interactions, and the potential clinical implications these novel findings could have for the better treatment of patients with brain metastasis.

  13. Lung metastasis fails in MMTV-PyMT oncomice lacking S100A4 due to a T-cell deficiency in primary tumors

    DEFF Research Database (Denmark)

    Grum-Schwensen, Birgitte; Klingelhöfer, Jörg; Grigorian, Mariam

    2010-01-01

    significantly reduced the metastatic burden in lungs of PyMT-induced mammary tumors. In S100A4(+/+) PyMT mice, massive leukocyte infiltration at the site of the growing tumor at the stage of malignant transition was associated with increased concentration of extracellular S100A4 in the tumor microenvironment......Interactions between tumor and stroma cells are essential for the progression of cancer from its initial growth at a primary site to its metastasis to distant organs. The metastasis-stimulating protein S100A4 exerts its function as a stroma cell-derived factor. Genetic depletion of S100A4...... monolayers. In vivo, the presence of S100A4(+/+), but not S100A4(-/-), fibroblasts significantly stimulated the attraction of T lymphocytes to the site of the growing tumor. Increased levels of T cells were also observed in the premetastatic lungs of tumor-bearing mice primed to metastasize by S100A4...

  14. Stromal matrix metalloprotease-13 knockout alters Collagen I structure at the tumor-host interface and increases lung metastasis of C57BL/6 syngeneic E0771 mammary tumor cells

    International Nuclear Information System (INIS)

    Perry, Seth W; Schueckler, Jill M; Burke, Kathleen; Arcuri, Giuseppe L; Brown, Edward B

    2013-01-01

    Matrix metalloproteases and collagen are key participants in breast cancer, but their precise roles in cancer etiology and progression remain unclear. MMP13 helps regulate collagen structure and has been ascribed largely harmful roles in cancer, but some studies demonstrate that MMP13 may also protect against tumor pathology. Other studies indicate that collagen’s organizational patterns at the breast tumor-host interface influence metastatic potential. Therefore we investigated how MMP13 modulates collagen I, a principal collagen subtype in breast tissue, and affects tumor pathology and metastasis in a mouse model of breast cancer. Tumors were implanted into murine mammary tissues, and their growth analyzed in Wildtype and MMP13 KO mice. Following extraction, tumors were analyzed for collagen I levels and collagen I macro- and micro-structural properties at the tumor-host boundary using immunocytochemistry and two-photon and second harmonic generation microscopy. Lungs were analyzed for metastases counts, to correlate collagen I changes with a clinically significant functional parameter. Statistical analyses were performed by t-test, analysis of variance, or Wilcoxon-Mann–Whitney tests as appropriate. We found that genetic ablation of host stromal MMP13 led to: 1. Increased mammary tumor collagen I content, 2. Marked changes in collagen I spatial organization, and 3. Altered collagen I microstructure at the tumor-host boundary, as well as 4. Increased metastasis from the primary mammary tumor to lungs. These results implicate host MMP13 as a key regulator of collagen I structure and metastasis in mammary tumors, thus making it an attractive potential therapeutic target by which we might alter metastatic potential, one of the chief determinants of clinical outcome in breast cancer. In addition to identifying stromal MMP13 is an important regulator of the tumor microenvironment and metastasis, these results also suggest that stromal MMP13 may protect against

  15. Stromal matrix metalloprotease-13 knockout alters Collagen I structure at the tumor-host interface and increases lung metastasis of C57BL/6 syngeneic E0771 mammary tumor cells.

    Science.gov (United States)

    Perry, Seth W; Schueckler, Jill M; Burke, Kathleen; Arcuri, Giuseppe L; Brown, Edward B

    2013-09-05

    Matrix metalloproteases and collagen are key participants in breast cancer, but their precise roles in cancer etiology and progression remain unclear. MMP13 helps regulate collagen structure and has been ascribed largely harmful roles in cancer, but some studies demonstrate that MMP13 may also protect against tumor pathology. Other studies indicate that collagen's organizational patterns at the breast tumor-host interface influence metastatic potential. Therefore we investigated how MMP13 modulates collagen I, a principal collagen subtype in breast tissue, and affects tumor pathology and metastasis in a mouse model of breast cancer. Tumors were implanted into murine mammary tissues, and their growth analyzed in Wildtype and MMP13 KO mice. Following extraction, tumors were analyzed for collagen I levels and collagen I macro- and micro-structural properties at the tumor-host boundary using immunocytochemistry and two-photon and second harmonic generation microscopy. Lungs were analyzed for metastases counts, to correlate collagen I changes with a clinically significant functional parameter. Statistical analyses were performed by t-test, analysis of variance, or Wilcoxon-Mann-Whitney tests as appropriate. We found that genetic ablation of host stromal MMP13 led to: 1. Increased mammary tumor collagen I content, 2. Marked changes in collagen I spatial organization, and 3. Altered collagen I microstructure at the tumor-host boundary, as well as 4. Increased metastasis from the primary mammary tumor to lungs. These results implicate host MMP13 as a key regulator of collagen I structure and metastasis in mammary tumors, thus making it an attractive potential therapeutic target by which we might alter metastatic potential, one of the chief determinants of clinical outcome in breast cancer. In addition to identifying stromal MMP13 is an important regulator of the tumor microenvironment and metastasis, these results also suggest that stromal MMP13 may protect against breast

  16. Study on the correlation between extracellular matrix protein-1 and the growth, metastasis and angiogenesis of laryngeal carcinoma.

    Science.gov (United States)

    Meng, Xin-Yu; Liu, Juan; Lv, Feng; Liu, Ming-Qiu; Wan, Jing-Ming

    2015-01-01

    To investigate the correlation between extracellular matrix protein-1 (ECM1) and the growth, metastasis and angiogenesis of laryngeal carcinoma. Forty-five samples with laryngeal benign and malignant tumors confirmed by pathology in Laiwu City People's Hospital from March 2006 to March 2011 were collected, in which there were 29 cases with laryngeal carcinoma and 16 with benign tumors. The expression of ECM1 and factor VIII-related antigens in patients with laryngeal carcinoma and those with benign tumors was respectively detected using immunohistochemical method, and the correlation between ECM1 staining grade and microvessel density (MVD) was analyzed. In laryngeal carcinoma tissue, ECM1 was mainly expressed in cytoplasm, less in cytomembrane or intercellular substance. With abundant expression in the tissue of laryngeal benign tumors (benign mesenchymoma and hemangioma), ECM1 was primarily expressed in the connective tissue, which was different from the expression in laryngeal carcinoma tissue. The proportion of positive ECM1 staining (++) in patients with laryngeal carcinoma was dramatically higher than those with benign tumors (pcorrelation analysis revealed that ECM1 staining grade in laryngeal carcinoma tissue had a significantly-positive correlation with MVD (r=0.866, p=0.000). ECM1 expression in laryngeal carcinoma is closely associated with tumor cell growth, metastasis and angiogenesis, which can be considered as an effective predictor in the occurrence and postoperative recurrence of laryngeal carcinoma.

  17. Genotype x diet interactions in mice predisposed to mammary cancer: II. Tumors and metastasis

    DEFF Research Database (Denmark)

    Gordon, Ryan R; Hunter, Kent W; Merrill, Michele La

    2008-01-01

    either a very high-fat or a matched-control-fat diet, and we measured growth, body composition, age at mammary tumor onset, tumor number and severity, and formation of pulmonary metastases. SNP genotyping across the genome facilitated analyses of QTL and QTL × diet interaction effects. Here we describe......High dietary fat intake and obesity may increase the risk of susceptibility to certain forms of cancer. To study the interactions of dietary fat, obesity, and metastatic mammary cancer, we created a population of F2 mice cosegregating obesity QTL and the MMTV-PyMT transgene. We fed the F2 mice...... effects of diet on mammary tumor and metastases phenotypes, mapping of tumor/metastasis modifier genes, and the interaction between dietary fat levels and effects of cancer modifiers. Results demonstrate that animals fed a high-fat diet are not only more likely to experience decreased mammary cancer...

  18. Tumor-Targeting Salmonella typhimurium A1-R Promotes Tumoricidal CD8+ T Cell Tumor Infiltration and Arrests Growth and Metastasis in a Syngeneic Pancreatic-Cancer Orthotopic Mouse Model.

    Science.gov (United States)

    Murakami, Takashi; Hiroshima, Yukihiko; Zhang, Yong; Zhao, Ming; Kiyuna, Tasuku; Hwang, Ho Kyoung; Miyake, Kentaro; Homma, Yuki; Mori, Ryutaro; Matsuyama, Ryusei; Chishima, Takashi; Ichikawa, Yasushi; Tanaka, Kuniya; Bouvet, Michael; Endo, Itaru; Hoffman, Robert M

    2018-01-01

    The present study determined the effect of the tumor-targeting strain Salmonella typhimurium A1-R (S. typhimurium A1-R) on CD8 + tumor-infiltrating lymphocytes (TILs) in a syngeneic pancreatic-cancer orthotopic mouse model. The effect of tumor-targeting S. typhimurium A1-R on CD8 + TILs was determined on the Pan02 murine pancreatic-adenocarcinoma implanted orthotopically in the pancreatic tail of C57BL/6 immunocompromised mice. Three weeks after orthotopic implantation, mice were randomized as follows G1: untreated control group (n = 8); and G2: S. typhimurium A1-R-treatment group (n = 8, 1 × 10 7 colony forming units [CFU]/body, iv, weekly, 3 weeks). On the 22nd day from initial treatment, all mice were sacrificed and tumors were harvested. The tumor-volume ratio was defined as ratio of tumor volume on the 22nd day relative to the 1st day. The tumor volume ratio was significantly lower in the S. typhimurium A1-R-treated group (G2) (3.0 ± 2.8) than the untreated control (G1) (39.9 ± 30.7, P R-treated mice (G2). Six mice in G1 had peritoneal dissemination, whereas no mice showed peritoneal dissemination in G2 (P R promotes CD8 + T cell infiltration and inhibition of tumor growth and metastasis. J. Cell. Biochem. 119: 634-639, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. CXCL12 chemokine expression suppresses human pancreatic cancer growth and metastasis.

    Directory of Open Access Journals (Sweden)

    Ishan Roy

    Full Text Available Pancreatic ductal adenocarcinoma is an unsolved health problem with nearly 75% of patients diagnosed with advanced disease and an overall 5-year survival rate near 5%. Despite the strong link between mortality and malignancy, the mechanisms behind pancreatic cancer dissemination and metastasis are poorly understood. Correlative pathological and cell culture analyses suggest the chemokine receptor CXCR4 plays a biological role in pancreatic cancer progression. In vivo roles for the CXCR4 ligand CXCL12 in pancreatic cancer malignancy were investigated. CXCR4 and CXCR7 were consistently expressed in normal and cancerous pancreatic ductal epithelium, established cell lines, and patient-derived primary cancer cells. Relative to healthy exocrine ducts, CXCL12 expression was pathologically repressed in pancreatic cancer tissue specimens and patient-derived cell lines. To test the functional consequences of CXCL12 silencing, pancreatic cancer cell lines stably expressingthe chemokine were engineered. Consistent with a role for CXCL12 as a tumor suppressor, cells producing the chemokine wereincreasingly adherent and migration deficient in vitro and poorly metastatic in vivo, compared to control cells. Further, CXCL12 reintroduction significantly reduced tumor growth in vitro, with significantly smaller tumors in vivo, leading to a pronounced survival advantage in a preclinical model. Together, these data demonstrate a functional tumor suppressive role for the normal expression of CXCL12 in pancreatic ducts, regulating both tumor growth andcellulardissemination to metastatic sites.

  20. Tumor Cells and Tumor-Associated Macrophages: Secreted Proteins as Potential Targets for Therapy

    Science.gov (United States)

    Baay, Marc; Brouwer, Anja; Pauwels, Patrick; Peeters, Marc; Lardon, Filip

    2011-01-01

    Inflammatory pathways, meant to defend the organism against infection and injury, as a byproduct, can promote an environment which favors tumor growth and metastasis. Tumor-associated macrophages (TAMs), which constitute a significant part of the tumor-infiltrating immune cells, have been linked to the growth, angiogenesis, and metastasis of a variety of cancers, most likely through polarization of TAMs to the M2 (alternative) phenotype. The interaction between tumor cells and macrophages provides opportunities for therapy. This paper will discuss secreted proteins as targets for intervention. PMID:22162712

  1. Tumor Cells and Tumor-Associated Macrophages: Secreted Proteins as Potential Targets for Therapy

    Directory of Open Access Journals (Sweden)

    Marc Baay

    2011-01-01

    Full Text Available Inflammatory pathways, meant to defend the organism against infection and injury, as a byproduct, can promote an environment which favors tumor growth and metastasis. Tumor-associated macrophages (TAMs, which constitute a significant part of the tumor-infiltrating immune cells, have been linked to the growth, angiogenesis, and metastasis of a variety of cancers, most likely through polarization of TAMs to the M2 (alternative phenotype. The interaction between tumor cells and macrophages provides opportunities for therapy. This paper will discuss secreted proteins as targets for intervention.

  2. Evaluation of solitary pulmonary metastasis of extrathoracic tumor with thin-slice computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Shiotani, Seiji; Yamada, Kouzo; Oshita, Fumihiro; Nomura, Ikuo; Noda, Kazumasa; Yamagata, Tatushi; Tajiri, Michihiko; Ishibashi, Makoto; Kameda, Youichi [Kanagawa Cancer Center, Yokohama (Japan)

    1995-10-01

    Thin-slice computed tomography (CT) images were compared with pathological findings in 9 specimens of solitary pulmonary nodules, which had been pathologically diagnosed as pulmonary metastasis of extrathoracic tumor. The thin-slice CT images were 2 mm-thick images reconstructed using a TCT-900S, HELIX (Toshiba, Tokyo) and examined at two different window and level settings. In every case, the surgical specimens were sliced transversely to correlate with the CT images. According to the image findings, the internal structure was of the solid-density type in every case, and the margin showed spiculation in 22%, notching in 67% and pleural indentation in 89%. Regarding the relationship between the pulmonary vessels and tumors, plural vascular involvement was revealed in every case. Thus, it was difficult to distinguish solitary pulmonary metastasis of extrathoracic tumor from primary lung cancer based on the thin-slice CT images. For some solitary pulmonary metastasis of extrathoracic tumor, a comprehensive diagnostic approach taking both the anamnesis and pathological findings into consideration was required. (author).

  3. Differential effects of vascular endothelial growth factor A isoforms in a mouse brain metastasis model of human melanoma.

    NARCIS (Netherlands)

    Kusters, B.; Waal, R.M.W. de; Wesseling, P.; Verrijp, K.; Maass, C.N.; Heerschap, A.; Barentsz, J.O.; Sweep, C.G.J.; Ruiter, D.J.; Leenders, W.P.J.

    2003-01-01

    We reported previously that vascular endothelial growth factor isoform A (VEGF-A) expression by Mel57 human melanoma cells led to tumor progression in a murine brain metastasis model in an angiogenesis-independent fashion by dilation of co-opted, pre-existing vessels and concomitant enhanced blood

  4. Hypoxia promotes tumor growth in linking angiogenesis to immune escape

    Directory of Open Access Journals (Sweden)

    Salem eCHOUAIB

    2012-02-01

    Full Text Available Despite the impressive progress over the past decade, in the field of tumor immunology, such as the identification of tumor antigens and antigenic peptides as potential targets, there are still many obstacles in eliciting an effective immune response to eradicate cancer. It has become increasingly clear that tumor microenvironment plays a crucial role in the control of immune protection and contains many overlapping mechanisms to evade antigen specific immunotherapy. Obviously, tumors have evolved to utilize hypoxic stress to their own advantage by activating key biochemical and cellular pathways that are important in progression, survival and metastasis. Among the hypoxia-induced genes, hypoxia-inducible factor (HIF-1 and vascular endothelial growth factor (VEGF play a determinant role in promoting tumor cell growth and survival. In this regard, hypoxia is emerging as an attractive target for cancer therapy. How the microenvironmental hypoxia poses both obstacles and opportunities for new therapeutic immune interventions will be discussed.

  5. The vascular basement membrane as "soil" in brain metastasis.

    Directory of Open Access Journals (Sweden)

    W Shawn Carbonell

    2009-06-01

    Full Text Available Brain-specific homing and direct interactions with the neural substance are prominent hypotheses for brain metastasis formation and a modern manifestation of Paget's "seed and soil" concept. However, there is little direct evidence for this "neurotropic" growth in vivo. In contrast, many experimental studies have anecdotally noted the propensity of metastatic cells to grow along the exterior of pre-existing vessels of the CNS, a process termed vascular cooption. These observations suggest the "soil" for malignant cells in the CNS may well be vascular, rather than neuronal. We used in vivo experimental models of brain metastasis and analysis of human clinical specimens to test this hypothesis. Indeed, over 95% of early micrometastases examined demonstrated vascular cooption with little evidence for isolated neurotropic growth. This vessel interaction was adhesive in nature implicating the vascular basement membrane (VBM as the active substrate for tumor cell growth in the brain. Accordingly, VBM promoted adhesion and invasion of malignant cells and was sufficient for tumor growth prior to any evidence of angiogenesis. Blockade or loss of the beta1 integrin subunit in tumor cells prevented adhesion to VBM and attenuated metastasis establishment and growth in vivo. Our data establishes a new understanding of CNS metastasis formation and identifies the neurovasculature as the critical partner for such growth. Further, we have elucidated the mechanism of vascular cooption for the first time. These findings may help inform the design of effective molecular therapies for patients with fatal CNS malignancies.

  6. Metastasis in context : modeling the tumor microenvironment with cancer-on-a-chip approaches

    NARCIS (Netherlands)

    Sleeboom, Jelle J.F.; Amirabadi, Hossein Eslami; Nair, Poornima; Sahlgren, Cecilia M.; Den Toonder, Jaap M.J.

    2018-01-01

    Most cancer deaths are not caused by the primary tumor, but by secondary tumors formed through metastasis, a complex and poorly understood process. Cues from the tumor microenvironment, such as the biochemical composition, cellular population, extracellular matrix, and tissue (fluid) mechanics, have

  7. Mortality is higher in patients with leptomeningeal metastasis in spinal cord tumors

    Directory of Open Access Journals (Sweden)

    Ricardo de Amoreira Gepp

    2013-01-01

    Full Text Available Spinal cord tumors are a rare neoplasm of the central nervous system (CNS. The occurrence of metastases is related to poor prognosis. The authors analyzed one series of metastasis cases and their associated mortality. METHODS: Clinical characteristics were studied in six patients with intramedullary tumors with metastases in a series of 71 surgical cases. RESULTS: Five patients had ependymomas of which two were WHO grade III. The patient with astrocytoma had a grade II histopathological classification. Two patients required shunts for hydrocephalus. The survival curve showed a higher mortality than the general group of patients with no metastases in the CNS (p<0.0001. CONCLUSION: Mortality is elevated in patients with metastasis and greater than in patients with only primary lesions. The ependymomas, regardless of their degree of anaplasia, are more likely to cause metastasis than spinal cord astrocytomas.

  8. Metastasis of hepatocellular carcinoma to the heart: unusual patterns in three cases with antemortem diagnosis.

    Science.gov (United States)

    Lei, M H; Ko, Y L; Kuan, P; Lien, W P; Chen, D S

    1992-04-01

    Unusual patterns of cardiac metastasis were noted in three cases of hepatocellular carcinoma (HCC): one patient was noted to have a large right ventricular (RV) tumor mass with intracavitary growth and myocardial invasion; the second had massive pulmonary and left atrial (LA) metastasis; and the third patient had a right atrial tumor mass with concomitant RV and LA involvement. Tumor implantation to the RV without right atrial involvement and extensive myocardial invasion is unusual in HCC. The LA involvement is probably related to tumor growth from the pulmonary veins following massive metastasis to the lung, direct invasion of the atrial septum or tumor implantation via a subclinical right-to-left shunt through the patent foramen ovale. To the best of our knowledge, such unusual intracavitary metastases in HCC have not been reported previously. Cardiac metastasis, without local gross recurrence, may be one of the presentations after lobectomy in patients with HCC.

  9. Different metastasis promotive potency of small G-proteins RalA and RalB in in vivo hamster tumor model

    Directory of Open Access Journals (Sweden)

    Trukhanova Lyubov S

    2011-06-01

    Full Text Available Abstract Background Previously we have shown that oncogenic Ha-Ras stimulated in vivo metastasis through RalGEF-Ral signaling. RalA and RalB are highly homologous small G proteins belonging to Ras superfamily. They can be activated by Ras-RalGEF signaling pathway and influence cellular growth and survival, motility, vesicular transport and tumor progression in humans and in animal models. Here we first time compared the influence of RalA and RalB on tumorigenic, invasive and metastatic properties of RSV transformed hamster fibroblasts. Methods Retroviral vectors encoding activated forms or effector mutants of RalA or RalB proteins were introduced into the low metastatic HET-SR cell line. Tumor growth and spontaneous metastatic activity (SMA were evaluated on immunocompetent hamsters after subcutaneous injection of cells. The biological properties of cells, including proliferation, clonogenicity, migration and invasion were determined using MTT, wound healing, colony formation and Boyden chamber assays respectively. Protein expression and phosphorylation was detected by Westen blot analysis. Extracellular proteinases activity was assessed by substrate-specific zymography. Results We have showed that although both Ral proteins stimulated SMA, RalB was more effective in metastasis stimulation in vivo as well as in potentiating of directed movement and invasion in vitro. Simultaneous expression of active RalA and RalB didn't give synergetic effect on metastasis formation. RalB activity decreased expression of Caveolin-1, while active RalA stimulated MMP-1 and uPA proteolytic activity, as well as CD24 expression. Both Ral proteins were capable of Cyclin D1 upregulation, JNK1 kinase activation, and stimulation of colony growth and motility. Among three main RalB effectors (RalBP1, exocyst complex and PLD1, PLD1 was essential for RalB-dependent metastasis stimulation. Conclusions Presented results are the first data on direct comparison of RalA and Ral

  10. Isolated eyeball metastasis of non-seminomatous germ cell testicular tumor.

    Science.gov (United States)

    Bojanić, Nebojsa; Nale, Djordje; Mićić, Sava; Janicić, Aleksandar; Vuksanović, Aleksandar; Vuković, Ivan

    2011-11-01

    Testicular tumors most frequently metastasize to regional lymph nodes. Non-seminomatous tumor metastasis of testicle (NSGCTT) to the eyeball is rare. We presented a 24-year old man, referred to the ophthalmologist due to acute pain and abrupt loss of sight in the left eye accompanied by its enlargement. Orbital and endocranial computerized tomography (CT) was carried out, indicating the tumor in the left eye. His previous medical history provided the information that the right testicle was painlessly enlarged for 8 months. Ultrasonography showed a completely tumorously altered testis. Abdominal and chest CT failed to reveal any secondary deposits in visceral organs and lymph glands. Tumor markers (AFP - alpha-fetoproteins, beta hCG - human choronic gonadotropin beta) were elevated. Right radical orchiactomy was performed (showed NSGCTT), followed by polychemotherapy with cisplatinum 100 mg/m2, etoposide 120 mg/m2, bleomycin 15 mg/m2 (PEB x 4), resulting in normalization of tumor marker values and significant regression of the left eyeball. Next, the left eye enucleation and ocular prosthesis implantation was carried out. Pathohistological evaluation indicated fibrosis and necrosis only. In a 5-year follow-up period, the patient was free of recurrence. Isolated hematogenous metastasis of the NSGCTT to the eye is rare. In our case, the left eye was the only metastatic localization. After chemotherapy and eye enucleation the patient was in a 4-year follow-up period free of the recurrence.

  11. Functions and Epigenetic Regulation of Wwox in Bone Metastasis from Breast Carcinoma: Comparison with Primary Tumors

    Directory of Open Access Journals (Sweden)

    Paola Maroni

    2017-01-01

    Full Text Available Epigenetic mechanisms influence molecular patterns important for the bone-metastatic process, and here we highlight the role of WW-domain containing oxidoreductase (Wwox. The tumor-suppressor Wwox lacks in almost all cancer types; the variable expression in osteosarcomas is related to lung-metastasis formation, and exogenous Wwox destabilizes HIF-1α (subunit of Hypoxia inducible Factor-1, HIF-1 affecting aerobic glycolysis. Our recent studies show critical functions of Wwox present in 1833-osteotropic clone, in the corresponding xenograft model, and in human bone metastasis from breast carcinoma. In hypoxic-bone metastatic cells, Wwox enhances HIF-1α stabilization, phosphorylation, and nuclear translocation. Consistently, in bone-metastasis specimens Wwox localizes in cytosolic/perinuclear area, while TAZ (transcriptional co-activator with PDZ-binding motif and HIF-1α co-localize in nuclei, playing specific regulatory mechanisms: TAZ is a co-factor of HIF-1, and Wwox regulates HIF-1 activity by controlling HIF-1α. In vitro, DNA methylation affects Wwox-protein synthesis; hypoxia decreases Wwox-protein level; hepatocyte growth factor (HGF phosphorylates Wwox driving its nuclear shuttle, and counteracting a Twist program important for the epithelial phenotype and metastasis colonization. In agreement, in 1833-xenograft mice under DNA-methyltransferase blockade with decitabine, Wwox increases in nuclei/cytosol counteracting bone metastasis with prolongation of the survival. However, Wwox seems relevant for the autophagic process which sustains metastasis, enhancing more Beclin-1 than p62 protein levels, and p62 accumulates under decitabine consistent with adaptability of metastasis to therapy. In conclusion, Wwox methylation as a bone-metastasis therapeutic target would depend on autophagy conditions, and epigenetic mechanisms regulating Wwox may influence the phenotype of bone metastasis.

  12. Tumor Sinus Paranasal Dengan Perluasan Intrakranial dan Metastasis ke Paru

    Directory of Open Access Journals (Sweden)

    Sukri Rahman

    2012-11-01

    Full Text Available Abstrak Keganasan hidung dan sinus paranasal (sinonasal merupakan tumor yang jarang ditemukan, hanya merupakan 1% dari seluruh tumor ganas di tubuh dan 3 % dari keganasan di kepala dan leher. Diagnosis secara dini dan pengobatan sampai saat ini masih merupakan tantangan. Pasien dengan tumor sinonasal biasanya datang pada stadium yang sudah lanjut, dan umumnya sudah meluas ke jaringan sekitarnya. Tidak jarang keluhan utama pasien justru akibat perluasan tumor seperti keluhan mata dan kepala dan bahkan gejala akibat metastsis jauh. Prognosis keganasan ini umumnya buruk. Hal ini karena anatomi sinus yang merupakan rongga yang tersembunyi dalam tulang, yang tidak akan dapat dideteksi dengan pemeriksaan fisik biasa dan sering asimptomatik pada stadium dini serta lokasinya yang berhubungan erat dengan struktur vital. Dilaporkan satu kasus tumor sinus paranasal pada seorang lali-laki berusia 52 tahun yang telah mengalami perluasan ke intrakranial dan metastasis ke paru. Kata kunci: tumor sinonasal, perluasan intrakranial, metastasis paru. Abstract Malignancies of the nasal cavity and paranasal sinuses (sinonasal are rare, comprising only 1 % of all human malignancies and only 3 % of those arising in the head and neck. Early diagnosis and treatment are still a challenge. A patient with sinonasal tumors usually comes at the advanced stage, and generally has spread to surrounding tissue. Not infrequently the patient's main complaint due to the expansion of the tumors such as eye or head complaints and sometimes even result of distant metastases. It has been associated with a poor prognosis. This is because the anatomy of the sinuses, which is a hidden cavity in the bone, which can not be detected by regular physical examination, tend to be asymptomatic at early stages, and located close anatomic proximity to vital structures. A case of paranasal sinus tumors in a 52-year-old man who has experienced intracranial expansion and pulmonary metastases is

  13. Endocannabinoids as Guardians of Metastasis

    Directory of Open Access Journals (Sweden)

    Irmgard Tegeder

    2016-02-01

    Full Text Available Endocannabinoids including anandamide and 2-arachidonoylglycerol are involved in cancer pathophysiology in several ways, including tumor growth and progression, peritumoral inflammation, nausea and cancer pain. Recently we showed that the endocannabinoid profiles are deranged during cancer to an extent that this manifests in alterations of plasma endocannabinoids in cancer patients, which was mimicked by similar changes in rodent models of local and metastatic cancer. The present topical review summarizes the complexity of endocannabinoid signaling in the context of tumor growth and metastasis.

  14. A genome-wide shRNA screen identifies GAS1 as a novel melanoma metastasis suppressor gene.

    Science.gov (United States)

    Gobeil, Stephane; Zhu, Xiaochun; Doillon, Charles J; Green, Michael R

    2008-11-01

    Metastasis suppressor genes inhibit one or more steps required for metastasis without affecting primary tumor formation. Due to the complexity of the metastatic process, the development of experimental approaches for identifying genes involved in metastasis prevention has been challenging. Here we describe a genome-wide RNAi screening strategy to identify candidate metastasis suppressor genes. Following expression in weakly metastatic B16-F0 mouse melanoma cells, shRNAs were selected based upon enhanced satellite colony formation in a three-dimensional cell culture system and confirmed in a mouse experimental metastasis assay. Using this approach we discovered 22 genes whose knockdown increased metastasis without affecting primary tumor growth. We focused on one of these genes, Gas1 (Growth arrest-specific 1), because we found that it was substantially down-regulated in highly metastatic B16-F10 melanoma cells, which contributed to the high metastatic potential of this mouse cell line. We further demonstrated that Gas1 has all the expected properties of a melanoma tumor suppressor including: suppression of metastasis in a spontaneous metastasis assay, promotion of apoptosis following dissemination of cells to secondary sites, and frequent down-regulation in human melanoma metastasis-derived cell lines and metastatic tumor samples. Thus, we developed a genome-wide shRNA screening strategy that enables the discovery of new metastasis suppressor genes.

  15. Correlation of NF-κB signal pathway with tumor metastasis of human head and neck squamous cell carcinoma

    International Nuclear Information System (INIS)

    Yan, Ming; Xu, Qin; Zhang, Ping; Zhou, Xiao-jian; Zhang, Zhi-yuan; Chen, Wan-tao

    2010-01-01

    Nuclear factor-kappa B (NF-κB) signaling constitutes a key event in the multistep process of carcinogenesis, progression and treatment in many cancer types. However, the significance of NF-κB pathway for complex and tissue-specific aspects of head and neck cancer progression, such as invasion and metastasis, is less understood. The expression of NF-κB p65 in squamous cell carcinoma of the head and neck (SCCHN) clinical specimens by immunohistochemistry. The role of NF-κB activity in head and neck squamous cell carcinoma was determined by western blot, reporter assay and EMSA analysis in vitro and metastasis assays in vivo in different metastatic potential tumor cells. Furthermore, the apoptosis rate and expression of metastasis-related protein such as MMP9 and VEGF were examined by Annexin V/PI staining and Western blot, respectively. A higher level of active nuclear-localized NF-κB was observed in the metastatic SCCHN specimens group (p < 0.01). The NF-κB activities of SCCHN cell lines with different metastatic potentials were then determined and in excellent agreement with results found in SCCHN specimens, highly metastatic SCCHN cell lines expressed high level of NF-κB activity. The treatment of highly metastatic SCCHN cells with NF-κB inhibitors reduced the in vitro cell invasion capacity of the cells without affecting the apoptotic rate. Additionally, the NF-κB inhibitors significantly inhibited the experimental lung metastasis of Tb cells and lymph node metastasis of TL cells in nude mice. Furthermore, the expression of metastasis-related proteins, such as matrix metalloproteinase 9 and vascular endothelial growth factor, was inhibited by pyrrolidine dithiocarbonate. This study suggests that NF-κB activity significantly contributes to tumor hematologic and lymphatic metastases and may aid in the development of early detection methods or therapies targeting non-conventional molecular targets

  16. Collaborative interplay between FGF-2 and VEGF-C promotes lymphangiogenesis and metastasis

    DEFF Research Database (Denmark)

    Cao, Renhai; Ji, Hong; Feng, Ninghan

    2012-01-01

    Interplay between various lymphangiogenic factors in promoting lymphangiogenesis and lymphatic metastasis remains poorly understood. Here we show that FGF-2 and VEGF-C, two lymphangiogenic factors, collaboratively promote angiogenesis and lymphangiogenesis in the tumor microenvironment, leading...... endothelial cell tip cell formation is a prerequisite for FGF-2-stimulated lymphangiogenesis. In the tumor microenvironment, the reciprocal interplay between FGF-2 and VEGF-C collaboratively stimulated tumor growth, angiogenesis, intratumoral lymphangiogenesis, and metastasis. Thus, intervention and targeting...

  17. MYC is a metastasis gene for non-small-cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Ulf R Rapp

    Full Text Available BACKGROUND: Metastasis is a process by which cancer cells learn to form satellite tumors in distant organs and represents the principle cause of death of patients with solid tumors. NSCLC is the most lethal human cancer due to its high rate of metastasis. METHODOLOGY/PRINCIPAL FINDINGS: Lack of a suitable animal model has so far hampered analysis of metastatic progression. We have examined c-MYC for its ability to induce metastasis in a C-RAF-driven mouse model for non-small-cell lung cancer. c-MYC alone induced frank tumor growth only after long latency at which time secondary mutations in K-Ras or LKB1 were detected reminiscent of human NSCLC. Combination with C-RAF led to immediate acceleration of tumor growth, conversion to papillary epithelial cells and angiogenic switch induction. Moreover, addition of c-MYC was sufficient to induce macrometastasis in liver and lymph nodes with short latency associated with lineage switch events. Thus we have generated the first conditional model for metastasis of NSCLC and identified a gene, c-MYC that is able to orchestrate all steps of this process. CONCLUSIONS/SIGNIFICANCE: Potential markers for detection of metastasis were identified and validated for diagnosis of human biopsies. These markers may represent targets for future therapeutic intervention as they include genes such as Gata4 that are exclusively expressed during lung development.

  18. Drainage alone or combined with anti-tumor therapy for treatment of obstructive jaundice caused by recurrence and metastasis after primary tumor resection.

    Science.gov (United States)

    Xu, Chuan; Huang, Xin-En; Wang, Shu-Xiang; Lv, Peng-Hua; Sun, Ling; Wang, Fu-An; Wang, Li-Fu

    2014-01-01

    To compare drainage alone or combined with anti-tumor therapy for treatment of obstructive jaundice caused by recurrence and metastasis after primary tumor resection. We collect 42 patients with obstructive jaundice caused by recurrence and metastasis after tumor resection from January 2008 - August 2012, for which percutaneous transhepatic catheter drainage (pTCD)/ percutaneous transhepatic biliary stenting (pTBS) were performed. In 25 patients drainage was combined with anti-tumor treatment, antineoplastic therapy including intra/postprodure local treatment and postoperative systemic chemotherapy, the other 17 undergoing drainage only. We assessed the two kinds of treatment with regard to patient prognosis. Both treatments demonstrated good effects in reducing bilirubin levels in the short term and promoting liver function. The time to reobstruction was 125 days in the combined group and 89 days in the drainage only group; the mean survival times were 185 and 128 days, the differences being significant. Interventional drainage in the treatment of the obstructive jaundice caused by recurrence and metastasis after tumor resection can decrease bilirubin level quickly in a short term and promote the liver function recovery. Combined treatment prolongs the survival time and period before reobstruction as compared to drainage only.

  19. S-adenosylmethionine blocks osteosarcoma cells proliferation and invasion in vitro and tumor metastasis in vivo: therapeutic and diagnostic clinical applications

    International Nuclear Information System (INIS)

    Parashar, Surabhi; Cheishvili, David; Arakelian, Ani; Hussain, Zahid; Tanvir, Imrana; Khan, Haseeb Ahmed; Szyf, Moshe; Rabbani, Shafaat A

    2015-01-01

    Osteosarcoma (OS) is an aggressive and highly metastatic form of primary bone cancer affecting young children and adults. Previous studies have shown that hypomethylation of critical genes is driving metastasis. Here, we examine whether hypermethylation treatment can block OS growth and pulmonary metastasis. Human OS cells LM-7 and MG-63 were treated with the ubiquitous methyl donor S-adenosylmethionine (SAM) or its inactive analog S-adenosylhomocystine (SAH) as control. Treatment with SAM resulted in a dose-dependent inhibition of tumor cell proliferation, invasion, cell migration, and cell cycle characteristics. Inoculation of cells treated with 150 μmol/L SAM for 6 days into tibia or via intravenous route into Fox Chase severe combined immune deficient (SCID) mice resulted in the development of significantly smaller skeletal lesions and a marked reduction in pulmonary metastasis as compared to control groups. Epigenome wide association studies (EWAS) showed differential methylation of several genes involved in OS progression and prominent signaling pathways implicated in bone formation, wound healing, and tumor progression in SAM-treated LM-7 cells. Real-time polymerase chain reaction (qPCR) analysis confirmed that SAM treatment blocked the expression of several prometastatic genes and additional genes identified by EWAS analysis. Immunohistochemical analysis of normal human bone and tissue array from OS patients showed significantly high levels of expression of one of the identified gene platelet-derived growth factor alpha (PDGFA). These studies provide a possible mechanism for the role of DNA demethylation in the development and metastasis of OS to provide a rationale for the use of hypermethylation therapy for OS patients and identify new targets for monitoring OS development and progression

  20. Reduced metastasis of transgenic mammary cancer in urokinase-deficient mice

    DEFF Research Database (Denmark)

    Almholt, Kasper; Lund, L.R.; Rygaard, Jørgen

    2005-01-01

    A prominent phenotype of plasmin deficiency in mice is reduced metastasis in the MMTV-PymT transgenic breast cancer model. Proteolytically active plasmin is generated from inactive plasminogen by one of 2 activators, uPA or tPA. We now find that uPA deficiency alone significantly reduces metastasis...... >7-fold in the MMTV-PymT model. We studied a cohort of 55 MMTV-PymT transgenic mice, either uPA-deficient or wild-type controls. Tumor incidence, latency, growth rate and final primary tumor burden were not significantly affected by uPA deficiency. In contrast, average lung metastasis volume...

  1. Soluble vascular endothelial growth factor receptor-3 suppresses lymphangiogenesis and lymphatic metastasis in bladder cancer

    Directory of Open Access Journals (Sweden)

    Kim Wun-Jae

    2011-04-01

    Full Text Available Abstract Background Most bladder cancer patients experience lymphatic metastasis in the course of disease progression, yet the relationship between lymphangiogenesis and lymphatic metastasis is not well known. The aim of this study is to elucidate underlying mechanisms of how expanded lymphatic vessels and tumor microenvironment interacts each other and to find effective therapeutic options to inhibit lymphatic metastasis. Results The orthotopic urinary bladder cancer (OUBC model was generated by intravesical injection of MBT-2 cell lines. We investigated the angiogenesis, lymphangiogenesis, and CD11b+/CD68+ tumor-associated macrophages (TAM by using immunofluorescence staining. OUBC displayed a profound lymphangiogenesis and massive infiltration of TAM in primary tumor and lymphatic metastasis in lymph nodes. TAM flocked near lymphatic vessels and express higher levels of VEGF-C/D than CD11b- cells. Because VEGFR-3 was highly expressed in lymphatic vascular endothelial cells, TAM could assist lymphangiogenesis by paracrine manner in bladder tumor. VEGFR-3 expressing adenovirus was administered to block VEGF-C/D signaling pathway and clodronate liposome was used to deplete TAM. The blockade of VEGF-C/D with soluble VEGF receptor-3 markedly inhibited lymphangiogenesis and lymphatic metastasis in OUBC. In addition, the depletion of TAM with clodronate liposome exerted similar effects on OUBC. Conclusion VEGF-C/D are the main factors of lymphangiogenesis and lymphatic metastasis in bladder cancer. Moreover, TAM plays an important role in these processes by producing VEGF-C/D. The inhibition of lymphangiogenesis could provide another therapeutic target to inhibit lymphatic metastasis and recurrence in patients with invasive bladder cancer.

  2. miR-216b suppresses breast cancer growth and metastasis by targeting SDCBP

    International Nuclear Information System (INIS)

    Jana, Samir; Sengupta, Suman; Biswas, Subir; Chatterjee, Annesha; Roy, Himansu; Bhattacharyya, Arindam

    2017-01-01

    Breast cancer is the most deadly cancer among women and the second leading cause of cancer death worldwide. Treatment effectiveness is complicated with tumor invasiveness/drug resistance. To tailor treatments more effectively to individual patients, it is important to define tumor growth and metastasis at molecular levels. SDCBP is highly overexpressed and associated with a strikingly poor prognosis in breast cancer. However the post transcriptional regulation of SDCBP overexpression remains to be an unexplored area. Our study reveals that miR-216b directly regulates SDCBP expression by binding to its 3′UTR region. miR-216b is a tumor suppressive miRNA and it is underexpressed during metastatic breast cancer. Consequently, overexpression of miR-216b resulted in decreased proliferation, migration and invasion in BC cell lines by modulating the expression of SDCBP. Inhibition of miR-216b divergent the tumor suppressive role by inducing the growth proliferation, migration and invasion in vitro. There is therefore a negative correlation between the expression of miR-216b and its target gene SDCBP in the BC tissue samples as well as cell lines. Simultaneous expression of miR-216b and SDCBP rescued the growth, migration and invasion effect suggesting that tumor suppressive action of miR-216b may be directly mediated by SDCBP. In summary, the study identifies miR-216b as a regulator of SDCBP expression in breast cancer which can potentially be targeted for developing newer therapies for the effective treatment of this killer disease.

  3. Total Saponin from Root of Actinidia valvata Dunn Inhibits Hepatoma 22 Growth and Metastasis In Vivo by Suppression Angiogenesis

    Directory of Open Access Journals (Sweden)

    Guo-Yin Zheng

    2012-01-01

    Full Text Available The root of Actinidia valvata dunn has been widely used in the treatment of hepatocellular carcinoma (HCC, proved to be beneficial for a longer and better life in China. In present work, total saponin from root of Actinidia valvata Dunn (TSAVD was extracted, and its effects on hepatoma H22-based mouse in vivo were observed. Primarily transplanted hypodermal hepatoma H22-based mice were used to observe TSAVD effect on tumor growth. The microvessel density (MVD, vascular endothelial growth factor (VEGF, basic fibroblast growth factor (bFGF are characterized factors of angiogenesis, which were compared between TSAVD-treated and control groups. Antimetastasis effect on experimental pulmonary metastasis hepatoma mice was also observed in the study. The results demonstrated that TSAVD can effectively inhibit HCC growth and metastasis in vivo, inhibit the formation of microvessel, downregulate expressions of VEGF and bFGF, and retrain angiogenesis of hepatoma 22 which could be one of the reasons.

  4. Anti-metastasis effect of fucoidan from Undaria pinnatifida sporophylls in mouse hepatocarcinoma Hca-F cells.

    Directory of Open Access Journals (Sweden)

    Peisheng Wang

    Full Text Available Metastasis is one of the major causes of cancer-related death. It is a complex biological process involving multiple genes, steps, and phases. It is also closely connected to many biological activities of cancer cells, such as growth, invasion, adhesion, hematogenous metastasis, and lymphatic metastasis. Fucoidan derived from Undaria pinnatifida sporophylls (Ups-fucoidan is a sulfated polysaccharide with more biological activities than other fucoidans. However, there is no information on the effects of Ups-fucoidan on tumor invasion and metastasis. We used the mouse hepatocarcinoma Hca-F cell line, which has high invasive and lymphatic metastasis potential in vitro and in vivo, to examine the effect of Ups-fucoidan on cancer cell invasion and metastasis. Ups-fucoidan exerted a concentration- and time-dependent inhibitory effect on tumor metastasis in vivo and inhibited Hca-F cell growth, migration, invasion, and adhesion capabilities in vitro. Ups-fucoidan inhibited growth and metastasis by downregulating vascular endothelial growth factor (VEGF C/VEGF receptor 3, hepatocyte growth factor/c-MET, cyclin D1, cyclin-dependent kinase 4, phosphorylated (p phosphoinositide 3-kinase, p-Akt, p-extracellular signal regulated kinase (ERK 1/2, and nuclear transcription factor-κB (NF-κB, and suppressed adhesion and invasion by downregulating L-Selectin, and upregulating protein levels of tissue inhibitor of metalloproteinases (TIMPs. The results suggest that Ups-fucoidan suppresses Hca-F cell growth, adhesion, invasion, and metastasis capabilities and that these functions are mediated through the mechanism involving inactivation of the NF-κB pathway mediated by PI3K/Akt and ERK signaling pathways.

  5. Pivotal role of oxidative stress in tumor metastasis under diabetic conditions in mice.

    Science.gov (United States)

    Ikemura, Mai; Nishikawa, Makiya; Kusamori, Kosuke; Fukuoka, Miho; Yamashita, Fumiyoshi; Hashida, Mitsuru

    2013-09-10

    Diabetic patients are reported to have a high incidence and mortality of cancer, but little is known about the linkage. In this study, we investigated whether high oxidative stress is involved in the acceleration of tumor metastasis in diabetic mice. Murine melanoma B16-BL6 cells stably labeled with firefly luciferase (B16-BL6/Luc) were inoculated into the tail vein of streptozotocin (STZ)-treated or untreated mice. A luciferase assay demonstrated that tumor cells were present largely in the lung of untreated mice, whereas large numbers of tumor cells were detected in both the lung and liver of STZ-treated mice. Repeated injections of polyethylene glycol-conjugated catalase (PEG-catalase), a long-circulating derivative, reduced the elevated fasting blood glucose levels and plasma lipoperoxide levels of STZ-treated mice, but had no significant effects on these parameters in untreated mice. In addition, the injections significantly reduced the number of tumor cells in the lung and liver in both untreated and STZ-treated mice. Culture of B16-BL6/Luc cells in medium containing over 45 mg/dl glucose hardly affected the proliferation of the cells, whereas the addition of plasma of STZ-treated mice to the medium significantly increased the number of cells. Plasma samples of STZ-treated mice receiving PEG-catalase exhibited no such effect on proliferation. These findings indicate that a hyperglycemia-induced increase in oxidative stress is involved in the acceleration of tumor metastasis, and the removal of systemic hydrogen peroxide by PEG-catalase can inhibit the progression of diabetic conditions and tumor metastasis in diabetes. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Metastasis in the subcarinal lymph node with unknown primary tumor

    DEFF Research Database (Denmark)

    Eckardt, J.; Olsen, K. E.; Petersen, H.

    2011-01-01

    -differentiated squamous cell carcinoma but no primary tumor was visible on PET-computed tomography. Because of his previous lymphoma the patient was scheduled for mediastinoscopy where the diagnosis was confirmed. Subsequent gastroscopy was normal and a right-sided thoracotomy showed no evidence of cancer elsewhere, only...... an inoperable metastasis in a subcarinal lymph node which infiltrated the trachea, esophagus and aorta. Such isolated squamous cell carcinoma in a subcarinal lymph node without a primary tumor despite invasive work-up has not been reported before....

  7. Up-regulation of hepatoma-derived growth factor facilitates tumor progression in malignant melanoma [corrected].

    Directory of Open Access Journals (Sweden)

    Han-En Tsai

    Full Text Available Cutaneous malignant melanoma is the fastest increasing malignancy in humans. Hepatoma-derived growth factor (HDGF is a novel growth factor identified from human hepatoma cell line. HDGF overexpression is correlated with poor prognosis in various types of cancer including melanoma. However, the underlying mechanism of HDGF overexpression in developing melanoma remains unclear. In this study, human melanoma cell lines (A375, A2058, MEL-RM and MM200 showed higher levels of HDGF gene expression, whereas human epidermal melanocytes (HEMn expressed less. Exogenous application of HDGF stimulated colony formation and invasion of human melanoma cells. Moreover, HDGF overexpression stimulated the degree of invasion and colony formation of B16-F10 melanoma cells whereas HDGF knockdown exerted opposite effects in vitro. To evaluate the effects of HDGF on tumour growth and metastasis in vivo, syngeneic mouse melanoma and metastatic melanoma models were performed by manipulating the gene expression of HDGF in melanoma cells. It was found that mice injected with HDGF-overexpressing melanoma cells had greater tumour growth and higher metastatic capability. In contrast, mice implanted with HDGF-depleted melanoma cells exhibited reduced tumor burden and lung metastasis. Histological analysis of excised tumors revealed higher degree of cell proliferation and neovascularization in HDGF-overexpressing melanoma. The present study provides evidence that HDGF promotes tumor progression of melanoma and targeting HDGF may constitute a novel strategy for the treatment of melanoma.

  8. Neutrophils responsive to endogenous IFN-beta regulate tumor angiogenesis and growth in a mouse tumor model.

    Science.gov (United States)

    Jablonska, Jadwiga; Leschner, Sara; Westphal, Kathrin; Lienenklaus, Stefan; Weiss, Siegfried

    2010-04-01

    Angiogenesis is a hallmark of malignant neoplasias, as the formation of new blood vessels is required for tumors to acquire oxygen and nutrients essential for their continued growth and metastasis. However, the signaling pathways leading to tumor vascularization are not fully understood. Here, using a transplantable mouse tumor model, we have demonstrated that endogenous IFN-beta inhibits tumor angiogenesis through repression of genes encoding proangiogenic and homing factors in tumor-infiltrating neutrophils. We determined that IFN-beta-deficient mice injected with B16F10 melanoma or MCA205 fibrosarcoma cells developed faster-growing tumors with better-developed blood vessels than did syngeneic control mice. These tumors displayed enhanced infiltration by CD11b+Gr1+ neutrophils expressing elevated levels of the genes encoding the proangiogenic factors VEGF and MMP9 and the homing receptor CXCR4. They also expressed higher levels of the transcription factors c-myc and STAT3, known regulators of VEGF, MMP9, and CXCR4. In vitro, treatment of these tumor-infiltrating neutrophils with low levels of IFN-beta restored expression of proangiogenic factors to control levels. Moreover, depletion of these neutrophils inhibited tumor growth in both control and IFN-beta-deficient mice. We therefore suggest that constitutively produced endogenous IFN-beta is an important mediator of innate tumor surveillance. Further, we believe our data help to explain the therapeutic effect of IFN treatment during the early stages of cancer development.

  9. The correlation between pre-operative serum tumor markers and lymph node metastasis in gastric cancer patients undergoing curative treatment.

    Science.gov (United States)

    Li, Fangxuan; Li, Shixia; Wei, Lijuan; Liang, Xiaofeng; Zhang, Huan; Liu, Juntian

    2013-11-01

    There was few study concentrated on the correlation between the evaluated tumor markers and lymph node metastasis. In this study, we aimed to evaluate the correlation between the CA724, CA242, CA199, CEA and the lymph node metastasis of gastric cancer and assess the prognostic value of them in different N stage patients. We analyzed the correlation between serum level of CA724, CA242, CA199, CEA and lymph node metastasis in 1501 gastric cancer patients. Lymph node metastasis of gastric cancer was related with tumor location, Bormann type, tumor size, histological type, depth of invasion and TNM stage (p CEA were positively correlated with the metastatic lymph node counts and the N stage (p tumor markers were higher (p tumor markers, the positive rates of tumor markers combination were higher. The combination of CA724 + CA242 + CA199 + CEA had highest positive rate. The higher CEA level related to N1 stage patients while higher CA199 was related with poor prognosis for N1 stage patients. For N0 and N2 stage patients, evaluation of CA724 indicated poorer prognosis. For N1 and N2 stage gastric patients, the patients with increased CA242 inclined to have shorter survival time. The tumor makers CA724, CA242, CA199 and CEA were evaluated significantly in the gastric patients with later N stage. The combination of these four tumor markers maybe prefer diagnostic index of gastric cancer and its lymph node metastasis. These tumor markers can be a possible indicator of poorer prognosis in different N stage patients.

  10. Raloxifene inhibits tumor growth and lymph node metastasis in a xenograft model of metastatic mammary cancer

    Directory of Open Access Journals (Sweden)

    Li Zhong-Lian

    2010-10-01

    Full Text Available Abstract Background The effects of raloxifene, a novel selective estrogen receptor modulator, were studied in a mouse metastatic mammary cancer model expressing cytoplasmic ERα. Methods Mammary tumors, induced by inoculation of syngeneic BALB/c mice with BJMC3879luc2 cells, were subsequently treated with raloxifene at 0, 18 and 27 mg/kg/day using mini-osmotic pumps. Results In vitro study demonstrated that the ERα in BJMC3879luc2 cells was smaller (between 50 and 64 kDa than the normal-sized ERα (66 kDa and showed cytoplasmic localization. A statistically significant but weak estradiol response was observed in this cell line. When BJMC3879luc2 tumors were implanted into mice, the ERα mRNA levels were significantly higher in females than in males. In vitro studies showed that raloxifene induced mitochondria-mediated apoptosis and cell-cycle arrest in the G1-phase and a decrease in the cell population in the S-phase. In animal experiments, tumor volumes were significantly suppressed in the raloxifene-treated groups. The multiplicity of lymph node metastasis was significantly decreased in the 27 mg/kg group. Levels of apoptosis were significantly increased in the raloxifene-treated groups, whereas the levels of DNA synthesis were significantly decreased in these groups. No differences in microvessel density in tumors were observed between the control and raloxifene-treated groups. The numbers of dilated lymphatic vessels containing intraluminal tumor cells were significantly reduced in mammary tumors in the raloxifene-treated groups. The levels of ERα mRNA in mammary tumors tended to be decreased in the raloxifene-treated groups. Conclusion These results suggest that the antimetastatic activity of raloxifene in mammary cancer expressing cytoplasmic ERα may be a crucial finding with clinical applications and that raloxifene may be useful as an adjuvant therapy and for the chemoprevention of breast cancer development.

  11. A Critical Role for CD200R Signaling in Limiting the Growth and Metastasis of CD200+ Melanoma.

    Science.gov (United States)

    Liu, Jin-Qing; Talebian, Fatemeh; Wu, Lisha; Liu, Zhihao; Li, Ming-Song; Wu, Laichu; Zhu, Jianmin; Markowitz, Joseph; Carson, William E; Basu, Sujit; Bai, Xue-Feng

    2016-08-15

    CD200 is a cell surface glycoprotein that functions through engaging CD200R on cells of the myeloid lineage and inhibits their functions. Expression of CD200 was implicated in a variety of human cancer cells, including melanoma cells; however, its roles in tumor growth and immunity are not clearly understood. In this study, we used CD200R-deficient mice and the B16 tumor model to evaluate this issue. We found that CD200R-deficient mice exhibited accelerated growth of CD200(+), but not CD200(-), B16 tumors. Strikingly, CD200R-deficient mice receiving CD200(+) B16 cells i.v. exhibited massive tumor growth in multiple organs, including liver, lung, kidney, and peritoneal cavity, whereas the growth of the same tumors in wild-type mice was limited. CD200(+) tumors grown in CD200R-deficient mice contained higher numbers of CD11b(+)Ly6C(+) myeloid cells, exhibited increased expression of VEGF and HIF1α genes with increased angiogenesis, and showed significantly reduced infiltration of CD4(+) and CD8(+) T cells, presumably as the result of reduced expression of T cell chemokines, such as CXCL9 and CXCL16. The liver from CD200R-deficient mice, under metastatic growth of CD200(+) tumors, contained significantly increased numbers of CD11b(+)Gr1(-) myeloid cells and Foxp3(+) regulatory T cells and reduced numbers of NK cells. Liver T cells also had a reduced capacity to produce IFN-γ or TNF-α. Taken together, we revealed a critical role for CD200R signaling in limiting the growth and metastasis of CD200(+) tumors. Thus, targeting CD200R signaling may potentially interfere with the metastatic growth of CD200(+) tumors, like melanoma. Copyright © 2016 by The American Association of Immunologists, Inc.

  12. Anesthesia condition for 18F-FDG imaging of lung metastasis tumors using small animal PET

    International Nuclear Information System (INIS)

    Woo, Sang-Keun; Lee, Tae Sup; Kim, Kyeong Min; Kim, June-Youp; Jung, Jae Ho; Kang, Joo Hyun; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo

    2008-01-01

    Small animal positron emission tomography (PET) with 18 F-FDG has been increasingly used for tumor imaging in the murine model. The aim of this study was to establish the anesthesia condition for imaging of lung metastasis tumor using small animal 18 F-FDG PET. Methods: To determine the impact of anesthesia on 18 F-FDG distribution in normal mice, five groups were studied under the following conditions: no anesthesia, ketamine and xylazine (Ke/Xy), 0.5% isoflurane (Iso 0.5), 1% isoflurane (Iso 1) and 2% isoflurane (Iso 2). The ex vivo counting, standard uptake value (SUV) image and glucose SUV of 18 F-FDG in various tissues were evaluated. The 18 F-FDG images in the lung metastasis tumor model were obtained under no anesthesia, Ke/Xy and Iso 0.5, and registered with CT image to clarify the tumor region. Results: Blood glucose concentration and muscle uptake of 18 F-FDG in the Ke/Xy group markedly increased more than in the other groups. The Iso 2 group increased 18 F-FDG uptake in heart compared with the other groups. The Iso 0.5 anesthesized group showed the lowest 18 F-FDG uptake in heart and chest wall. The small size of lung metastasis tumor (2 mm) was clearly visualized by 18 F-FDG image with the Iso 0.5 anesthesia. Conclusion: Small animal 18 F-FDG PET imaging with Iso 0.5 anesthesia was appropriate for the detection of lung metastasis tumor. To acquire 18 F-FDG PET images with small animal PET, the type and level of anesthetic should be carefully considered to be suitable for the visualization of target tissue in the experimental model

  13. Heme oxygenase-1 accelerates tumor angiogenesis of human pancreatic cancer.

    Science.gov (United States)

    Sunamura, Makoto; Duda, Dan G; Ghattas, Maivel H; Lozonschi, Lucian; Motoi, Fuyuhiko; Yamauchi, Jun-Ichiro; Matsuno, Seiki; Shibahara, Shigeki; Abraham, Nader G

    2003-01-01

    Angiogenesis is necessary for the continued growth of solid tumors, invasion and metastasis. Several studies clearly showed that heme oxygenase-1 (HO-1) plays an important role in angiogenesis. In this study, we used the vital microscope system, transparent skinfold model, lung colonization model and transduced pancreatic cancer cell line (Panc-1)/human heme oxygenase-1 (hHO-1) cells, to precisely analyze, for the first time, the effect of hHO-1 gene on tumor growth, angiogenesis and metastasis. Our results revealed that HO-1 stimulates angiogenesis of pancreatic carcinoma in severe combined immune deficient mice. Overexpression of human hHO-1 after its retroviral transfer into Panc-1 cells did not interfere with tumor growth in vitro. While in vivo the development of tumors was accelerated upon transfection with hHO-1. On the other hand, inhibition of heme oxygenase (HO) activity by stannous mesoporphyrin was able transiently to delay tumor growth in a dose dependent manner. Tumor angiogenesis was markedly increased in Panc-1/hHO-1 compared to mock transfected and wild type. Lectin staining and Ki-67 proliferation index confirmed these results. In addition hHO-1 stimulated in vitro tumor angiogenesis and increased endothelial cell survival. In a lung colonization model, overexpression of hHO-1 increased the occurrence of metastasis, while inhibition of HO activity by stannous mesoporphyrin completely inhibited the occurrence of metastasis. In conclusion, overexpression of HO-1 genes potentiates pancreatic cancer aggressiveness, by increasing tumor growth, angiogenesis and metastasis and that the inhibition of the HO system may be of useful benefit for the future treatment of the disease.

  14. Extract of Stellerachamaejasme L(ESC) inhibits growth and metastasis of human hepatocellular carcinoma via regulating microRNA expression.

    Science.gov (United States)

    Liu, Xiaoni; Wang, Shuang; Xu, Jianji; Kou, Buxin; Chen, Dexi; Wang, Yajie; Zhu, Xiaoxin

    2018-03-20

    MicroRNAs(miRNAs)are involved in the initiation and progression of hepatocellular carcinoma. ESC, an extract of Stellerachamaejasme L, had been confirmed as a potential anti-tumor extract of Traditional Chinese Medicine. In light of the important role of miRNAs in hepatocellular carcinoma, we questioned whether the inhibitory effects of ESC on hepatocellular carcinoma (HCC) were associated with miRNAs. The proliferation inhibition of ESC on HCC cells was measured with MTT assay. The migration inhibition of ESC on HCC cells was measured with transwell assay. The influences of ESC on growth and metastasis inhibition were evaluated with xenograft tumor model of HCC. Protein expressions were measured with western blot and immunofluorescence methods and miRNA profiles were detected with miRNA array. Differential miRNA and target mRNAs were verified with real-time PCR. The results showed that ESC could inhibit proliferation and epithelial mesenchymal transition (EMT) in HCC cells in vitro and tumor growth and metastasis in xenograft models in vivo. miRNA array results showed that 69 differential miRNAs in total of 429 ones were obtained in MHCC97H cells treated by ESC. hsa-miR-107, hsa-miR-638, hsa-miR-106b-5p were selected to be validated with real-time PCR method in HepG2 and MHCC97H cells. Expressions of hsa-miR-107 and hsa-miR-638 increased obviously in HCC cells treated by ESC. Target genes of three miRNAs were also validated with real-time PCR. Interestingly, only target genes of hsa-miR-107 changed greatly. ESC downregulated the MCL1, SALL4 and BCL2 gene expressions significantly but did not influence the expression of CACNA2D1. The findings suggested ESC regressed growth and metastasis of human hepatocellular carcinoma via regulating microRNAs expression and their corresponding target genes.

  15. A small molecule inhibitor of ETV1, YK-4-279, prevents prostate cancer growth and metastasis in a mouse xenograft model.

    Directory of Open Access Journals (Sweden)

    Said Rahim

    Full Text Available The erythroblastosis virus E26 transforming sequences (ETS family of transcription factors consists of a highly conserved group of genes that play important roles in cellular proliferation, differentiation, migration and invasion. Chromosomal translocations fusing ETS factors to promoters of androgen responsive genes have been found in prostate cancers, including the most clinically aggressive forms. ERG and ETV1 are the most commonly translocated ETS proteins. Over-expression of these proteins in prostate cancer cells results in a more invasive phenotype. Inhibition of ETS activity by small molecule inhibitors may provide a novel method for the treatment of prostate cancer.We recently demonstrated that the small molecule YK-4-279 inhibits biological activity of ETV1 in fusion-positive prostate cancer cells leading to decreased motility and invasion in-vitro. Here, we present data from an in-vivo mouse xenograft model. SCID-beige mice were subcutaneously implanted with fusion-positive LNCaP-luc-M6 and fusion-negative PC-3M-luc-C6 tumors. Animals were treated with YK-4-279, and its effects on primary tumor growth and lung metastasis were evaluated. YK-4-279 treatment resulted in decreased growth of the primary tumor only in LNCaP-luc-M6 cohort. When primary tumors were grown to comparable sizes, YK-4-279 inhibited tumor metastasis to the lungs. Expression of ETV1 target genes MMP7, FKBP10 and GLYATL2 were reduced in YK-4-279 treated animals. ETS fusion-negative PC-3M-luc-C6 xenografts were unresponsive to the compound. Furthermore, YK-4-279 is a chiral molecule that exists as a racemic mixture of R and S enantiomers. We established that (S-YK-4-279 is the active enantiomer in prostate cancer cells.Our results demonstrate that YK-4-279 is a potent inhibitor of ETV1 and inhibits both the primary tumor growth and metastasis of fusion positive prostate cancer xenografts. Therefore, YK-4-279 or similar compounds may be evaluated as a potential

  16. Stat6 activity-related Th2 cytokine profile and tumor growth advantage of human colorectal cancer cells in vitro and in vivo.

    Science.gov (United States)

    Li, Ben Hui; Xu, Shuang Bing; Li, Feng; Zou, Xiao Guang; Saimaiti, Abudukeyoumu; Simayi, Dilixia; Wang, Ying Hong; Zhang, Yan; Yuan, Jia; Zhang, Wen Jie

    2012-03-01

    Signal transducer and activator of transcription 6 (Stat6) is critical in Th2 polarization of immune cells and active Stat6 activity has been suggested in anti-tumor immunity in animal models. The present study aims at investigating the impact of natural Stat6 activity on tumor microenvironment in human colorectal cancer cells in vitro and in vivo. Using colorectal cancer cell lines HT-29 and Caco-2 whose IL-4/Stat6 activities were known and nude mice as a model, we examined correlative relationships between Stat6 activities and gene expression profiles together with cellular behaviors in vitro and in vivo. HT-29 cells carrying active Stat6 signaling displayed spontaneous expression profiles favoring Th2 cytokines, cell cycle promotion, anti-apoptosis and pro-metastasis with increased mRNA levels of IL-4, IL-13, GATA-3, CDK4, CD44v6 and S100A4 using RT-PCR. In contrast, Caco-2 cells carrying defective Stat6 signaling exhibited spontaneous expression profiles favoring Th1 and Th17 cytokines, cell cycle inhibition, pro-apoptosis and anti-metastasis with elevated mRNA expression of IFNγ, TNFα, IL-12A, IL-17, IL-23, T-bet, CDKN1A, CDKNIB, CDKN2A and NM23-H1. Xenograft tumors of Stat6-active HT-29 cells showed a growth advantage over those of Stat6-defective Caco-2 cells. Furthermore, mice bearing HT-29 tumors expressed increased levels of Th2 cytokines IL-4 and IL-5 in the blood and pro-growth and/or pro-metastasis proteins CDK4 and CD44v6 in the tumor. To the contrary, mice bearing Caco-2 tumors expressed heightened levels of Th1 cytokines IFNγ and TNF in the blood and pro-apoptosis and anti-metastatic proteins p53 and p27(kip1) in the tumor. Colorectal cancer cells carrying active Stat6 signaling may create a microenvironment favoring Th2 cytokines and promoting expression of genes related to pro-growth, pro-metastasis and anti-apoptosis, which leads to a tumor growth advantage in vivo. These findings may imply why Stat6 pathway is constitutively activated in a

  17. Metastasis and growth of friend tumor cells in irradiated syngeneic hosts

    International Nuclear Information System (INIS)

    Matioli, G.

    1974-01-01

    Friend tumor cells (FTC) have been studied by growing them in lethally irradiated syngeneic mice. After establishing the FTC dilution factor (delta), extinction factor (Q), and the optimal time for colony counts, the FTC kinetic was analyzed by the recovery curve method. It was found that FTC growth is different from that experienced by normal or leukemic Friend stem cells when tested by the same in vivo assay. The most interesting differences were the high metastatic activity, the lack of differentiation, the deterministic growth, and the independence from the spleen microenvironment experienced by the FTC, in contrast with the normal and leukemic stem cells. In addition, the estimate of the critical size the FTC colony has to reach before releasing the first metastatic cells is presented. (U.S.)

  18. Immunoediting: evidence of the multifaceted role of the immune system in self-metastatic tumor growth.

    Science.gov (United States)

    Enderling, Heiko; Hlatky, Lynn; Hahnfeldt, Philip

    2012-07-28

    The role of the immune system in tumor progression has been a subject for discussion for many decades. Numerous studies suggest that a low immune response might be beneficial, if not necessary, for tumor growth, and only a strong immune response can counter tumor growth and thus inhibit progression. We implement a cellular automaton model previously described that captures the dynamical interactions between the cancer stem and non-stem cell populations of a tumor through a process of self-metastasis. By overlaying on this model the diffusion of immune reactants into the tumor from a peripheral source to target cells, we simulate the process of immune-system-induced cell kill on tumor progression. A low cytotoxic immune reaction continuously kills cancer cells and, although at a low rate, thereby causes the liberation of space-constrained cancer stem cells to drive self-metastatic progression and continued tumor growth. With increasing immune system strength, however, tumor growth peaks, and then eventually falls below the intrinsic tumor sizes observed without an immune response. With this increasing immune response the number and proportion of cancer stem cells monotonically increases, implicating an additional unexpected consequence, that of cancer stem cell selection, to the immune response. Cancer stem cells and immune cytotoxicity alone are sufficient to explain the three-step "immunoediting" concept - the modulation of tumor growth through inhibition, selection and promotion.

  19. Cyclooxygenase-2 inhibition blocks M2 macrophage differentiation and suppresses metastasis in murine breast cancer model.

    Directory of Open Access Journals (Sweden)

    Yi-Rang Na

    Full Text Available Tumor cells are often associated with abundant macrophages that resemble the alternatively activated M2 subset. Tumor-associated macrophages (TAMs inhibit anti-tumor immune responses and promote metastasis. Cyclooxygenase-2 (COX-2 inhibition is known to prevent breast cancer metastasis. This study hypothesized that COX-2 inhibition affects TAM characteristics potentially relevant to tumor cell metastasis. We found that the specific COX-2 inhibitor, etodolac, inhibited human M2 macrophage differentiation, as determined by decreased CD14 and CD163 expressions and increased TNFα production. Several key metastasis-related mediators, such as vascular endothelial growth factor-A, vascular endothelial growth factor-C, and matrix metalloproteinase-9, were inhibited in the presence of etodolac as compared to untreated M2 macrophages. Murine bone marrow derived M2 macrophages also showed enhanced surface MHCII IA/IE and CD80, CD86 expressions together with enhanced TNFα expressions with etodolac treatment during differentiation. Using a BALB/c breast cancer model, we found that etodolac significantly reduced lung metastasis, possibly due to macrophages expressing increased IA/IE and TNFα, but decreased M2 macrophage-related genes expressions (Ym1, TGFβ. In conclusion, COX-2 inhibition caused loss of the M2 macrophage characteristics of TAMs and may assist prevention of breast cancer metastasis.

  20. The impact of stress on tumor growth: peripheral CRF mediates tumor-promoting effects of stress

    Directory of Open Access Journals (Sweden)

    Stathopoulos Efstathios N

    2010-09-01

    Full Text Available Abstract Introduction Stress has been shown to be a tumor promoting factor. Both clinical and laboratory studies have shown that chronic stress is associated with tumor growth in several types of cancer. Corticotropin Releasing Factor (CRF is the major hypothalamic mediator of stress, but is also expressed in peripheral tissues. Earlier studies have shown that peripheral CRF affects breast cancer cell proliferation and motility. The aim of the present study was to assess the significance of peripheral CRF on tumor growth as a mediator of the response to stress in vivo. Methods For this purpose we used the 4T1 breast cancer cell line in cell culture and in vivo. Cells were treated with CRF in culture and gene specific arrays were performed to identify genes directly affected by CRF and involved in breast cancer cell growth. To assess the impact of peripheral CRF as a stress mediator in tumor growth, Balb/c mice were orthotopically injected with 4T1 cells in the mammary fat pad to induce breast tumors. Mice were subjected to repetitive immobilization stress as a model of chronic stress. To inhibit the action of CRF, the CRF antagonist antalarmin was injected intraperitoneally. Breast tissue samples were histologically analyzed and assessed for neoangiogenesis. Results Array analysis revealed among other genes that CRF induced the expression of SMAD2 and β-catenin, genes involved in breast cancer cell proliferation and cytoskeletal changes associated with metastasis. Cell transfection and luciferase assays confirmed the role of CRF in WNT- β-catenin signaling. CRF induced 4T1 cell proliferation and augmented the TGF-β action on proliferation confirming its impact on TGFβ/SMAD2 signaling. In addition, CRF promoted actin reorganization and cell migration, suggesting a direct tumor-promoting action. Chronic stress augmented tumor growth in 4T1 breast tumor bearing mice and peripheral administration of the CRF antagonist antalarmin suppressed this

  1. Dominant Expression of DCLK1 in Human Pancreatic Cancer Stem Cells Accelerates Tumor Invasion and Metastasis.

    Directory of Open Access Journals (Sweden)

    Hiromitsu Ito

    Full Text Available Patients with pancreatic cancer typically develop tumor invasion and metastasis in the early stage. These malignant behaviors might be originated from cancer stem cells (CSCs, but the responsible target is less known about invisible CSCs especially for invasion and metastasis. We previously examined the proteasome activity of CSCs and constructed a real-time visualization system for human pancreatic CSCs. In the present study, we found that CSCs were highly metastatic and dominantly localized at the invading tumor margins in a liver metastasis model. Microarray and siRNA screening assays showed that doublecortin-like kinase 1 (DCLK1 was predominantly expressed with histone modification in pancreatic CSCs with invasive and metastatic potential. Overexpression of DCLK1 led to amoeboid morphology, which promotes the migration of pancreatic cancer cells. Knockdown of DCLK1 profoundly suppressed in vivo liver metastasis of pancreatic CSCs. Clinically, DCLK1 was overexpressed in the metastatic tumors in patients with pancreatic cancer. Our studies revealed that DCLK1 is essential for the invasive and metastatic properties of CSCs and may be a promising epigenetic and therapeutic target in human pancreatic cancer.

  2. Correlation between tumor size and surveillance of lymph node metastasis for IB and IIA cervical cancer by magnetic resonance images

    International Nuclear Information System (INIS)

    Kim, See Hyung; Lee, Hee Jung; Kim, Young Whan

    2012-01-01

    Purpose: To assess the feasibility of preoperative MRI based measurement of tumor size with regard to lymph node (LN) metastasis in early uterine cervical cancer. Material and Methods: A retrospective review of patients with FIGO stage IB–IIA cervical cancer who underwent lymphadenectomy was performed. Diagnostic accuracy of MRI in detecting LN metastasis and rate of LN recurrence in terms of tumor size (≤4 cm versus >4 cm) were analyzed. ROC curve analysis was used to determine LN size for differentiating LN metastasis in terms of tumor size. P 4 cm revealed higher diagnostic accuracy of MRI in detecting LN metastasis (85.4% versus 50.6%, P = 0.023) and rate of LN recurrence (20.0% versus 6.4%, P = 0.031) in than those with size with ≤4 cm, the differences were statistically significant. Discriminant analysis of LN size for the differentiation of metastasis from non-metastasis resulted in cut-off values (11.8 mm; size with >4 cm versus 8.3 mm; size with ≤4 cm) and diagnostic accuracy (84.0% of size with >4 cm versus 72.0% of size with ≤4 cm). Conclusion: MRI has limited sensitivity, but high specificity in predicting surveillance of LN metastasis in the preoperative early cervical cancer, especially useful tool for patients with tumor size with >4 cm.

  3. LncRNA GAS5 Represses Osteosarcoma Cells Growth and Metastasis via Sponging MiR-203a

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2018-01-01

    Full Text Available Background/Aims: LncRNA GAS5, a growth suppressor, has been reported to exert anti-tumor actions in various cancers, whereas the exact mechanism underling the anti-tumor action is still unclear. This study was aimed to investigate the effect of lncRNA GAS5 on osteosarcoma and tried to decode the underling mechanisms. Methods: Expressions of lncRNA GAS5 in MG-63 cells were silenced by shRNA transfection, while were overexpressed by vector transfection. Cell viability, migration, invasion and apoptosis were respectively assessed by MTT, Transwell assay and flow cytometry. Regulations between lncRNA GAS5 and miR-203a, as well as between miR-203a and TIMP2 were detected by qPCR, western blot and dual luciferase activity assay. Results: LncRNA GAS5 was down-regulated in MG-63 and OS-732 cells compared to hFOB1.19 cells. Silence of lncRNA GAS5 significantly promoted MG-63 cells viability, migration and invasion, and up-regulated Cyclin D1, Cyclin B1, CDK1 and CDK4 expressions. miR-203a was negatively regulated by lncRNA GAS5. The promoting activities of lncRNA GAS5 silence on MG-63 cells growth and metastasis were reversed by miR-203a suppression. TIMP2 was a target of miR-203a and the anti-growth and anti-metastasis actions of miR-203a suppression were reversed by TIMP2 silence. Further, lncRNA GAS5 silence, miR-203a overexpression, and TIMP2 silence could activate PI3K/AKT/GSK3β signaling while block NF-κB signaling. Conclusion: LncRNA GAS5 might be a tumor suppressor in osteosarcoma via sponging miR-203a, sequestering miR-203a away from TIMP2.

  4. Apigenin inhibits HGF-promoted invasive growth and metastasis involving blocking PI3K/Akt pathway and β4 integrin function in MDA-MB-231 breast cancer cells

    International Nuclear Information System (INIS)

    Lee, W.-J.; Chen, W.-K.; Wang, C.-J.; Lin, W.-L.; Tseng, T.-H.

    2008-01-01

    Hepatocyte growth factor (HGF) and its receptor, Met, known to control invasive growth program have recently been shown to play crucial roles in the survival of breast cancer patients. The diet-derived flavonoids have been reported to possess anti-invasion properties; however, knowledge on the pharmacological and molecular mechanisms in suppressing HGF/Met-mediated tumor invasion and metastasis is poorly understood. In our preliminary study, we use HGF as an invasive inducer to investigate the effect of flavonoids including apigenin, naringenin, genistein and kaempferol on HGF-dependent invasive growth of MDA-MB-231 human breast cancer cells. Results show that apigenin presents the most potent anti-migration and anti-invasion properties by Boyden chamber assay. Furthermore, apigenin represses the HGF-induced cell motility and scattering and inhibits the HGF-promoted cell migration and invasion in a dose-dependent manner. The effect of apigenin on HGF-induced signaling activation involving invasive growth was evaluated by immunoblotting analysis, it shows that apigenin blocks the HGF-induced Akt phosphorylation but not Met, ERK, and JNK phosphorylation. In addition to MDA-MB-231 cells, apigenin exhibits inhibitory effect on HGF-induced Akt phosphorylation in hepatoma SK-Hep1 cells and lung carcinoma A549 cells. By indirect immunofluorescence microscopy assay, apigenin inhibits the HGF-induced clustering of β4 integrin at actin-rich adhesive site and lamellipodia through PI3K-dependent manner. Treatment of apigenin inhibited HGF-stimulated integrin β4 function including cell-matrix adhesion and cell-endothelial cells adhesion in MDA-MB-231 cells. By Akt-siRNA transfection analysis, it confirmed that apigenin inhibited HGF-promoted invasive growth involving blocking PI3K/Akt pathway. Finally, we evaluated the effect of apigenin on HGF-promoted metastasis by lung colonization of tumor cells in nude mice and organ metastasis of tumor cells in chick embryo. By

  5. Differential CT features between malignant mesothelioma and pleural metastasis from lung cancer or extra thoracic primary tumor mimicking malignant mesothelioma

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Il; Ryu, Young Hoon; Lee, Kwang Hun; Choe, Kyu Ok; Kim, Sang Jin [College of Medicine, Yonsei University, Seoul (Korea, Republic of)

    2000-01-01

    To evaluate the differential CT features found among malignant mesothelioma and pleural metastasis from lung cancer and from extra-thoracic primary tumor which on CT mimic malignant mesothelioma. Forty-four patients who on chest CT scans showed pleural thickening suggesting malignant pleural disease and in whom this condition was pathologically confirmed were included in this study. On the basis of their pathologically proven primary disease (malignant mesothelioma (n=3D14), pleural metastasis of lung cancer (n=3D18), extra thoracic primary tumor (n=3D12). They were divided into three groups. Cases of lung which on CT showed a primary lung nodule or endobronchial mass with pleural lesion, or manifested only pleural effusion, were excluded. The following eight CT features were retrospectively analyzed: (1) configuration of pleural lesion (type I, single or multiple separate nodules, type II, localized flat pleural thickening, type III, diffuse flat pleural thickening; type IV, type III with pleural nodules superimposed; type V, mass filling the hemithorax), (2) the presence of pleural effusion, (3) chest wall or rib invasion, (4) the involvement of a major fissure, (5) extra-pleural fat proliferation, (6) calcified plaque, (7) metastatic lymph nodes, (8) metastatic lung modules. In malignant mesothelioma, type IV (8/14) or II (4/14) pleural thickening was relatively frequent. Pleural metastasis of lung cancer favored type IV (8/18) or I (6/18) pleural thickening, while pleural metastasis from extrathoracic primary tumor showed a variable thickening configuration, except type V. Pleural metastasis from lung cancer and extrapleural primary tumor more frequently showed type I configuration than did malignant mesothelioma, and there were significant differences among the three groups. Fissural involvement, on the other hand, was significantly more frequent in malignant mesothelioma than in pleural metastasis from lung cancer or extrapleural primary tumor. Metastatic

  6. Cross-linked hyaluronic acid gel inhibits metastasis and growth of gastric and hepatic cancer cells: in vitro and in vivo studies

    Science.gov (United States)

    Lan, Ting; Pang, Ji; Wu, Yan; Zhu, Miaolin; Yao, Xiaoyuan; Wu, Min; Qian, Hai; Zhang, Zhenyu; Gao, Jizong; Chen, Yongchang

    2016-01-01

    Cross-linked hyaluronic acid gel (CHAG) has been used to prevent postoperative adhesion of abdominal tumorectomy. However, its effect on tumor cells is still unknown. This paper was designed to investigate the effect of CHAG on metastasis and growth of tumor cells. Migration and invasion assays, Western blotting, pull down assay, siRNA interference, and nude mice implantation tumor model were applied in this study. The results of in vitro experiments with gastric cancer cell line AGS and hepatic cancer cell line HepG2 showed that CHAG inhibited the migration and invasion activities, the MAPK and PI3K/Akt mediated signaling, the activation of small G proteins Rac1 and RhoA, and the expression of MMPs and PCNA initiated by EGF, through blocking the activation of EGFR. CHAG also had inhibitory effect on activation of other membrane receptors, including integrin and VEGFR. When the expression of hyaluronic acid receptors (CD44 or RHAMM) was interfered, the above inhibitory effects of CHAG still existed. In vivo experimental results showed that CHAG suppressed colonization, growth and metastasis of gastric cancer cell line SGC-7901 in peritoneal cavity of nude mice. In conclusion, CHAG had inhibitory effect on tumor cells, through covering cell surface and blocking the interaction between extracellular stimulative factors and their receptors. PMID:27589842

  7. CCL2 is critical for immunosuppression to promote cancer metastasis.

    Science.gov (United States)

    Kudo-Saito, Chie; Shirako, Hiromi; Ohike, Misa; Tsukamoto, Nobuo; Kawakami, Yutaka

    2013-04-01

    We previously found that cancer metastasis is accelerated by immunosuppression during Snail-induced epithelial-to-mesenchymal transition (EMT). However, the molecular mechanism still remained unclear. Here, we demonstrate that CCL2 is a critical determinant for both tumor metastasis and immunosuppression induced by Snail(+) tumor cells. CCL2 is significantly upregulated in various human tumor cells accompanied by Snail expression induced by snail transduction or TGFβ treatment. The Snail(+) tumor-derived CCL2 amplifies EMT events in other cells including Snail(-) tumor cells and epithelial cells within tumor microenvironment. CCL2 secondarily induces Lipocalin 2 (LCN2) in the Snail(+) tumor cells in an autocrine manner. CCL2 and LCN2 cooperatively generate immunoregulatory dendritic cells (DCreg) having suppressive activity accompanied by lowered expression of costimulatory molecules such as HLA-DR but increased expression of immunosuppressive molecules such as PD-L1 in human PBMCs. The CCL2/LCN2-induced DCreg cells subsequently induce immunosuppressive CD4(+)FOXP3(+) Treg cells, and finally impair tumor-specific CTL induction. In murine established tumor model, however, CCL2 blockade utilizing the specific siRNA or neutralizing mAb significantly inhibits Snail(+) tumor growth and metastasis following systemic induction of anti-tumor immune responses in host. These results suggest that CCL2 is more than a chemoattractant factor that is the significant effector molecule responsible for immune evasion of Snail(+) tumor cells. CCL2 would be an attractive target for treatment to eliminate cancer cells via amelioration of tumor metastasis and immunosuppression.

  8. Severe pulmonary metastasis in obese and diabetic mice.

    Science.gov (United States)

    Mori, Akinori; Sakurai, Hiroaki; Choo, Min-Kyung; Obi, Ryosuke; Koizumi, Keiichi; Yoshida, Chiho; Shimada, Yutaka; Saiki, Ikuo

    2006-12-15

    Although obesity is known as a risk factor for several human cancers, the association of obesity with cancer recurrence and metastasis remains to be characterized. Here, B16-BL6 melanoma and Lewis lung carcinoma cells were intravenously injected into diabetic (db/db) and obese (ob/ob) mice. The number of experimental lung colonies was markedly promoted in these mice when compared with C57BL/6 mice. In contrast, tumor growth at the implanted site was comparable when cells were inoculated orthotopically. The use of B16-BL6 cells stably transfected with the luciferase gene revealed that the increased metastasis reflected a difference mainly within 6 hr after the intravenous inoculation of tumor cells. Administration of recombinant leptin in ob/ob mice abolished the increase in metastasis early on as well as the decrease in the splenic NK cell number. In addition, depletion of NK cells by an anti-asialo-GM1 antibody abrogated the enhanced metastasis in db/db mice. These results demonstrate that metastasis is markedly promoted in diabetic and obese mice mainly because of decreased NK cell function during the early phase of metastasis. Copyright 2006 Wiley-Liss, Inc.

  9. Targeting S100P Inhibits Colon Cancer Growth and Metastasis by Lentivirus-Mediated RNA Interference and Proteomic Analysis

    Science.gov (United States)

    Jiang, Lei; Lai, Yiu-Kay; Zhang, Jinfang; Wang, Hua; Lin, Marie CM; He, Ming-liang; Kung, Hsiang-fu

    2011-01-01

    S100P was recently found to be overexpressed in a variety of cancers and is considered a potential target for cancer therapy, but the functional role or mechanism of action of S100P in colon cancer is not fully understood. In the present study, we knocked down the gene expression of S100P in colon cancer cells using lentivirus-mediated RNA interference. This step resulted in significant inhibition of cancer cell growth, migration and invasion in vitro and tumor growth and liver metastasis in vivo. Moreover, S100P downstream target proteins were identified by proteomic analysis in colon cancer DLD-1 cells with deletion of S100P. Knockdown of S100P led to downregulation of thioredoxin 1 and β-tubulin and upregulation of Rho guanosine diphosphate (GDP) dissociation inhibitor α (RhoGDIA), all potential therapeutic targets in cancer. Taken together, these findings suggest that S100P plays an important role in colon tumorigenesis and metastasis, and the comprehensive and comparative analyses of proteins associated with S100P could contribute to understanding the downstream signal cascade of S100P, leading to tumorigenesis and metastasis. PMID:21327297

  10. Cancer metabolism and the dynamics of metastasis.

    Science.gov (United States)

    Dattoli, G; Guiot, C; Delsanto, P P; Ottaviani, P L; Pagnutti, S; Deisboeck, T S

    2009-02-07

    Cancer growth dynamics, commonly simulated with a Gompertzian model, is analyzed in the framework of a more recent and realistic model. In particular, we consider the setting of a tumor embedded in a host organ and investigate their interaction. We assume that, at least in some cases, tumor metastasis may be triggered by an 'energetic crisis', when the tumor exceeds the 'carrying capacity' of the host organ. As a consequence, dissemination of clusters of cancer cells is set in motion, with a statistical probability given by a Poisson distribution. The model, although still at a preclinical level, is fully quantitative and is applied, as an example, to the case of prostate cancer. The results confirm that, at least for the more aggressive cancers, metastasis starts very early during tumorigenesis and a quantitative link is found between the tumor's doubling time, its 'aggressiveness' and the metastatic potential.

  11. The Epstein-Barr virus encoded BART miRNAs potentiate tumor growth in vivo.

    Directory of Open Access Journals (Sweden)

    Jin Qiu

    2015-01-01

    Full Text Available The human herpes virus Epstein-Barr virus (EBV latently infects and drives the proliferation of B lymphocytes in vitro and is associated with several forms of lymphoma and carcinoma in vivo. The virus encodes ~30 miRNAs in the BART region, the function of most of which remains elusive. Here we have used a new mouse xenograft model of EBV driven carcinomagenesis to demonstrate that the BART miRNAs potentiate tumor growth and development in vivo. No effect was seen on invasion or metastasis, and the growth promoting activity was not seen in vitro. In vivo tumor growth was not associated with the expression of specific BART miRNAs but with up regulation of all the BART miRNAs, consistent with previous observations that all the BART miRNAs are highly expressed in all of the EBV associated cancers. Based on these observations, we suggest that deregulated expression of the BART miRNAs potentiates tumor growth and represents a general mechanism behind EBV associated oncogenesis.

  12. Malignant phyllodes tumor of the breast metastasizing to the vulva: {sup 18}F FDG PET CT Demonstrating rare metastasis from a rare tumor

    Energy Technology Data Exchange (ETDEWEB)

    Khangembam, Bang Kim Chand Ra; Sharma, Punit; Singla, Su Has; Singhal, Abinav; Dhull, Varun Singh; Bal, Chand Rasek Har; Kumar, Rakesh [All India Institute of Medical Sciences, New Delhi (India)

    2012-09-15

    Phyllodes tumors are extremely rare fibroepithelial neoplasms accounting for 0.3 to 0.5% of all female breast tumors with an incidence of 2.1 per 1 million women. They are classified histologically into benign, borderline and malignant varieties. The majority of them are benign, with only 25% being malignant. Surgery remains the mainstay of treatment. One characteristic is that although the malignant variety tends to metastasize and recur, the benign form has also been found to behave in a similar manner. Benign phyllodes tumor has a 21% risk of local recurrence, while that of the malignant variety ranges from 20 to 32%. In patients with malignant phyllodes tumor, the rate of distant metastases ranges from 25 to 40%. The most frequent sites of distant metastasis is uncommon as this tumor spreads by hematogeneous route. Other sites for distant metastasis have been reported sporadically, including the duodenum, pancreas, brain, nasal cavity, forearm, parotid, skin, oral cavity, skeletal muscle, mandible and maxilla. We present a rare case of recurrent malignant phyllodes tumor with metastasis to the vulva, which has not been reported in the literature to the best of our knowledge. A 49 year old female who had undergone lumpectomy and locoregional radiotherapy 1 year previously for malignant phyllodes tumor of the right breast presented with difficulty in breathing and cervical lymphadenopathy. Chest X ray showed multiple pulmonary nodules suggestive of metastasis. She was referred for restaging with 18F fluorodeoxyglucose (FDG)positron emission tomography computed tomography (PET CT)FDG PET CT. Maximum intensity projection (MIP)PET images revealed multiple FDG avid enlarged cervical lymph nodes, bilateral pulmonary nodules along with left pleural effusion and extensive bone marrow metastases. The interesting finding was an intensely FDG avid (SUV{sup max}-21.4)subcutaneous soft tissue density lesion (measuring 2.0x2.2x2.0cm)in the vulva, which was later proved to be

  13. Suppression of choriocarcinoma invasion and metastasis following blockade of BDNF/TrkB signaling

    International Nuclear Information System (INIS)

    Kawamura, Kazuhiro; Kawamura, Nanami; Okamoto, Naoki; Manabe, Motomu

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) acts through its cognate receptor tyrosine kinase-B (TrkB) to regulate diverse physiological functions in reproductive and other tissues. In normal and malignant trophoblastic cells, the BDNF/TrkB signaling promotes cell growth. Due to the highly malignant nature of choriocarcinoma, we investigated possible involvement of this system in choriocarcinoma cell invasion and metastasis. We demonstrated that treatment of cultured choriocarcinoma cells, known to express both BDNF and TrkB, with a soluble TrkB ectodomain or a Trk receptor inhibitor K252a suppressed cell invasion accompanied with decreased expression of matrix metalloproteinase-2, a cell invasion marker. In vivo studies using a tumor xenograft model in athymic nude mice further showed inhibition of cell invasion from tumors to surrounding tissues following the suppression of endogenous TrkB signaling. For an in vivo model of choriocarcinoma metastasis, we performed intravenous injections of JAR cells expressing firefly luciferase into severe combined immunodeficiency (SCID) mice. Treatment with K252a inhibited metastasis of tumors to distant organs. In vivo K252a treatment also suppressed metastatic tumor growth as reflected by decreased cell proliferation and increased apoptosis and caspases-3/7 activities, together with reduced tissue levels of a tumor marker, human chorionic gonadotropin-β. In vivo suppression of TrkB signaling also led to decreased expression of angiogenic markers in metastatic tumor, including cluster of differentiation 31 and vascular endothelial growth factor A. Our findings suggested essential autocrine/paracrine roles of the BDNF/TrkB signaling system in choriocarcinoma invasion and metastasis. Inhibition of this signaling could serve as the basis to develop a novel therapy for patients with choriocarcinoma

  14. Anesthesia condition for {sup 18}F-FDG imaging of lung metastasis tumors using small animal PET

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Sang-Keun; Lee, Tae Sup; Kim, Kyeong Min; Kim, June-Youp; Jung, Jae Ho; Kang, Joo Hyun [Division of Nuclear Medicine and RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS), Nowon-Gu, Seoul 139-706 (Korea, Republic of); Cheon, Gi Jeong [Division of Nuclear Medicine and RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS), Nowon-Gu, Seoul 139-706 (Korea, Republic of); Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences (KIRAMS), Nowon-Gu, Seoul 139-706 (Korea, Republic of)], E-mail: larry@kcch.re.kr; Choi, Chang Woon; Lim, Sang Moo [Division of Nuclear Medicine and RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS), Nowon-Gu, Seoul 139-706 (Korea, Republic of); Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences (KIRAMS), Nowon-Gu, Seoul 139-706 (Korea, Republic of)

    2008-01-15

    Small animal positron emission tomography (PET) with {sup 18}F-FDG has been increasingly used for tumor imaging in the murine model. The aim of this study was to establish the anesthesia condition for imaging of lung metastasis tumor using small animal {sup 18}F-FDG PET. Methods: To determine the impact of anesthesia on {sup 18}F-FDG distribution in normal mice, five groups were studied under the following conditions: no anesthesia, ketamine and xylazine (Ke/Xy), 0.5% isoflurane (Iso 0.5), 1% isoflurane (Iso 1) and 2% isoflurane (Iso 2). The ex vivo counting, standard uptake value (SUV) image and glucose SUV of {sup 18}F-FDG in various tissues were evaluated. The {sup 18}F-FDG images in the lung metastasis tumor model were obtained under no anesthesia, Ke/Xy and Iso 0.5, and registered with CT image to clarify the tumor region. Results: Blood glucose concentration and muscle uptake of {sup 18}F-FDG in the Ke/Xy group markedly increased more than in the other groups. The Iso 2 group increased {sup 18}F-FDG uptake in heart compared with the other groups. The Iso 0.5 anesthesized group showed the lowest {sup 18}F-FDG uptake in heart and chest wall. The small size of lung metastasis tumor (2 mm) was clearly visualized by {sup 18}F-FDG image with the Iso 0.5 anesthesia. Conclusion: Small animal {sup 18}F-FDG PET imaging with Iso 0.5 anesthesia was appropriate for the detection of lung metastasis tumor. To acquire {sup 18}F-FDG PET images with small animal PET, the type and level of anesthetic should be carefully considered to be suitable for the visualization of target tissue in the experimental model.

  15. Chitosan-based nanoparticles for survivin targeted siRNA delivery in breast tumor therapy and preventing its metastasis.

    Science.gov (United States)

    Sun, Ping; Huang, Wei; Jin, Mingji; Wang, Qiming; Fan, Bo; Kang, Lin; Gao, Zhonggao

    Nanoparticle-mediated small interfering RNA (siRNA) delivery is a promising therapeutic strategy in various cancers. However, it is difficult to deliver degradative siRNA to tumor tissue, and thus a safe and efficient vector for siRNA delivery is essential for cancer therapy. In this study, poly(ethylene glycol)-modified chitosan (PEG-CS) was synthesized successfully for delivering nucleic acid drug. We deemed that PEGylated CS could improve its solubility by forming a stable siRNA loaded in nanoparticles, and enhancing transfection efficiency of siRNA-loaded CS nanoparticles in cancer cell line. The research results showed that siRNA loaded in PEGylated CS (PEG-CS/siRNA) nanoparticles with smaller particle size had superior structural stability in the physical environment compared to CS nanoparticles. The data of in vitro antitumor activity revealed that 4T1 tumor cell growth was significantly inhibited and cellular uptake of PEG-CS/siRNA nanoparticles in 4T1 cells was dramatically enhanced compared to naked siRNA groups. The results from flow cytometry and confocal laser scanning microscopy showed that PEG-CS/siRNA nanoparticles were more easily taken up than naked siRNA. Importantly, PEG-CS/siRNA nanoparticles significantly reduced the growth of xenograft tumors of 4T1 cells in vivo. It has been demonstrated that the PEG-CS is a safe and efficient vector for siRNA delivery, and it can effectively reduce tumor growth and prevent metastasis.

  16. The protein C pathway in cancer metastasis

    NARCIS (Netherlands)

    Spek, C. Arnold; Arruda, Valder R.

    2012-01-01

    Cancer is frequently associated with activation of blood coagulation, which in turn has been suggested to promote tumor growth and metastasis. Indeed, low molecular weight heparin treatment significantly prolongs the survival of a wide variety of patients with cancer. Based on this notion that

  17. Inhibition of Spontaneous Breast Cancer Metastasis by Anti—Thomsen-Friedenreich Antigen Monoclonal Antibody JAA-F11

    Directory of Open Access Journals (Sweden)

    Jamie Heimburg

    2006-11-01

    Full Text Available Thomsen-Friedenreich antigen (TF-Ag is expressed in many carcinomas, including those of the breast, colon, bladder, prostate. TF-Ag is important in adhesion and metastasis and as a potential immunotherapy target. We hypothesized that passive transfer of JAAF11, an anti -TF-Ag monoclonal antibody, may create a survival advantage for patients with TIF-Ag -expressing tumors by cytotoxicity, blocking of tumor cell adhesion, inhibition of metastasis. This was tested using in vitro models of tumor cell growth; cytotoxicity assays; in vitro, ex vivo, in vivo models of cancer metastasis; and, finally, in vivo effects in mice with metastatic breast cancer. Unlike some anti-TF-Ag antibodies, JAA-F11 did not enhance breast carcinoma cell growth. JAA-F11 did not induce the killing of 4T1 tumor cells through complement-dependent cytotoxicity or apoptotic mechanisms. However, JAA-F11 blocked the stages of metastasis that involve the adhesion of human breast carcinoma cells to human endothelial cells (human umbilical vein endothelial cells and human bone marrow endothelial cells 60 in in vitro static adhesion models, in a perfused ex vivo model, in murine lung vasculature in an in vivo metastatic deposit formation assay. JAA-F11 significantly extended the median survival time of animals bearing metastatic 4T1 breast tumors and caused a > 50% inhibition of lung metastasis.

  18. Endothelial Dll4 overexpression reduces vascular response and inhibits tumor growth and metastasization in vivo.

    Science.gov (United States)

    Trindade, Alexandre; Djokovic, Dusan; Gigante, Joana; Mendonça, Liliana; Duarte, António

    2017-03-14

    The inhibition of Delta-like 4 (Dll4)/Notch signaling has been shown to result in excessive, nonfunctional vessel proliferation and significant tumor growth suppression. However, safety concerns emerged with the identification of side effects resulting from chronic Dll4/Notch blockade. Alternatively, we explored the endothelial Dll4 overexpression using different mouse tumor models. We used a transgenic mouse model of endothelial-specific Dll4 overexpression, previously produced. Growth kinetics and vascular histopathology of several types of solid tumors was evaluated, namely Lewis Lung Carcinoma xenografts, chemically-induced skin papillomas and RIP1-Tag2 insulinomas. We found that increased Dll4/Notch signaling reduces tumor growth by reducing vascular endothelial growth factor (VEGF)-induced endothelial proliferation, tumor vessel density and overall tumor blood supply. In addition, Dll4 overexpression consistently improved tumor vascular maturation and functionality, as indicated by increased vessel calibers, enhanced mural cell recruitment and increased network perfusion. Importantly, the tumor vessel normalization is not more effective than restricted vessel proliferation, but was found to prevent metastasis formation and allow for increased delivery to the tumor of concomitant chemotherapy, improving its efficacy. By reducing endothelial sensitivity to VEGF, these results imply that Dll4/Notch stimulation in tumor microenvironment could be beneficial to solid cancer patient treatment by reducing primary tumor size, improving tumor drug delivery and reducing metastization. Endothelial specific Dll4 overexpression thus appears as a promising anti-angiogenic modality that might improve cancer control.

  19. Impact of pneumoperitoneum on tumor growth.

    Science.gov (United States)

    Lécuru, F; Agostini, A; Camatte, S; Robin, F; Aggerbeck, M; Jaïs, J P; Vilde, F; Taurelle, R

    2002-08-01

    To compare intraperitoneal tumor growth after CO2 laparoscopy (L), gasless laparoscopy (GL), midline laparotomy (ML), and general anesthesia (GA) as a control. A prospective randomized trial was carried out in nude rats. A carcinomatosis was obtained by intraperitoneal injection of either one of the two human ovarian cancer cell lines IGR-OV1 or NIH:OVCAR-3. Rats secondly underwent randomly different kind of procedures: CO2 L (8 mmHg, 60 min), GL (traction by a balloon for 60 min), ML (bowel removed and let on a mesh for 60 min), or GA. The rats were finally killed 10 or 35 days after surgery (respectively in IGR-OV1, or NIH:OVCAR-3 models). Tumor growth was assessed by the weight of the omental metastasis and MIB1 immunostaining. Peritoneal dissemination as well as abdominal wall metastases were assessed by pathological examination. Statistical analysis used the chi-square test (or Fisher exact test) and Bonferroni method for multiple comparison between groups. Fifteen rats were included in each group. Mean omental weight was significantly increased after surgery (3.1 to 5.6 g), when compared to control (2.4 g), but no significant difference was recorded between the three surgical accesses. MIB1 immunostaining was poor in the PNP group (37%), whereas it was higher after midline laparotomy (51%), but the difference was not significant (p = 0.07). Similarly, no significant variation was recorded in the NIH:OVCAR-3 model for omental weight or MIB1 staining. CO2 pneumoperitoneum significantly increased right diaphragmatic dome involvement in the NIH:OVCAR-3 model. Abdominal wall metastases were significantly more frequent after surgery when compared to the control group, but no significant difference could be demonstrated between surgical groups in each model. In these solid tumor models, CO2 pneumoperitoneum had no deleterious effect on tumor growth when compared to gasless laparoscopy or midline laparotomy.

  20. Construction of radiation - induced metastasis model in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Kuk; Jang, Su Jin; Kang, Sung Wook; Kim, Jae Sung; Hwang, Sang Gu; Kang, Joo Hyun [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2011-05-15

    In treatment of cancer, distant metastases are important limiting factor because an estimated 50% of all cancer patients will develop metastases, and the metastases are major causing of cancer treatment failure. Recently a few reports indicated {gamma}-radiation induced an increase of invasiveness of several cancer cells. In this study, we had tried to show the possibility that radiation could also induce metastasis in vivo system. To prove our hypothesis, we constructed primary tumor by using C6-TL transfectant cell line expressing HSV1-tk and firefly luciferase (fLuc), and then {gamma}-radiation was treated to xenografts locally. Treatment of {gamma}-radiation to primary C6-TL xenografts of mice reduced size of xenografts and elongated survival of mice than those of mock control mice. But we also show that {gamma}-radiation treatment was followed by the growth of dormant metastases in various organs including lung and intestine after 2-4 weeks of {gamma}-radiation treatment. When bioluminescence imaging indicated growth of tumor in organs in mice, we sacrificed the mice and repeat acquired bioluminescence imaging after repeatedly. These images presented tumor growth locations exactly in organs. Because metastatic tumor candidates have morphology of foci, biopsies were performed for histological analysis or PCR analysis to confirm metastases. In most foci, histological analysis indicated several features of typical cancer tissue and PCR analysis showed present of fLuc gene in metastases. Detection of fLuc gene in metastases indicated these foci were originated from primary C6-TL xenografts, and the results suggest that {gamma}-radiation could promote metastasis in vivo as well as in vitro system. Although we need to understand changes of intracellular signaling or physiological phenomena of the radiation-induced metastasis yet, these results also imply that {gamma}-radiation treatment only to cancer patients need to pay attention carefully, and development of new

  1. Cooperative effects of aminopeptidase N (CD13) expressed by nonmalignant and cancer cells within the tumor microenvironment.

    Science.gov (United States)

    Guzman-Rojas, Liliana; Rangel, Roberto; Salameh, Ahmad; Edwards, Julianna K; Dondossola, Eleonora; Kim, Yun-Gon; Saghatelian, Alan; Giordano, Ricardo J; Kolonin, Mikhail G; Staquicini, Fernanda I; Koivunen, Erkki; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2012-01-31

    Processes that promote cancer progression such as angiogenesis require a functional interplay between malignant and nonmalignant cells in the tumor microenvironment. The metalloprotease aminopeptidase N (APN; CD13) is often overexpressed in tumor cells and has been implicated in angiogenesis and cancer progression. Our previous studies of APN-null mice revealed impaired neoangiogenesis in model systems without cancer cells and suggested the hypothesis that APN expressed by nonmalignant cells might promote tumor growth. We tested this hypothesis by comparing the effects of APN deficiency in allografted malignant (tumor) and nonmalignant (host) cells on tumor growth and metastasis in APN-null mice. In two independent tumor graft models, APN activity in both the tumors and the host cells cooperate to promote tumor vascularization and growth. Loss of APN expression by the host and/or the malignant cells also impaired lung metastasis in experimental mouse models. Thus, cooperation in APN expression by both cancer cells and nonmalignant stromal cells within the tumor microenvironment promotes angiogenesis, tumor growth, and metastasis.

  2. Detachment-induced E-cadherin expression promotes 3D tumor spheroid formation but inhibits tumor formation and metastasis of lung cancer cells.

    Science.gov (United States)

    Powan, Phattrakorn; Luanpitpong, Sudjit; He, Xiaoqing; Rojanasakul, Yon; Chanvorachote, Pithi

    2017-11-01

    The epithelial-to-mesenchymal transition is proposed to be a key mechanism responsible for metastasis-related deaths. Similarly, cancer stem cells (CSCs) have been proposed to be a key driver of tumor metastasis. However, the link between the two events and their control mechanisms is unclear. We used a three-dimensional (3D) tumor spheroid assay and other CSC-indicating assays to investigate the role of E-cadherin in CSC regulation and its association to epithelial-to-mesenchymal transition in lung cancer cells. Ectopic overexpression and knockdown of E-cadherin were found to promote and retard, respectively, the formation of tumor spheroids in vitro but had opposite effects on tumor formation and metastasis in vivo in a xenograft mouse model. We explored the discrepancy between the in vitro and in vivo results and demonstrated, for the first time, that E-cadherin is required as a component of a major survival pathway under detachment conditions. Downregulation of E-cadherin increased the stemness of lung cancer cells but had an adverse effect on their survival, particularly on non-CSCs. Such downregulation also promoted anoikis resistance and invasiveness of lung cancer cells. These results suggest that anoikis assay could be used as an alternative method for in vitro assessment of CSCs that involves dysregulated adhesion proteins. Our data also suggest that agents that restore E-cadherin expression may be used as therapeutic agents for metastatic cancers. Copyright © 2017 the American Physiological Society.

  3. Rrp1b, a new candidate susceptibility gene for breast cancer progression and metastasis.

    Directory of Open Access Journals (Sweden)

    Nigel P S Crawford

    2007-11-01

    Full Text Available A novel candidate metastasis modifier, ribosomal RNA processing 1 homolog B (Rrp1b, was identified through two independent approaches. First, yeast two-hybrid, immunoprecipitation, and functional assays demonstrated a physical and functional interaction between Rrp1b and the previous identified metastasis modifier Sipa1. In parallel, using mouse and human metastasis gene expression data it was observed that extracellular matrix (ECM genes are common components of metastasis predictive signatures, suggesting that ECM genes are either important markers or causal factors in metastasis. To investigate the relationship between ECM genes and poor prognosis in breast cancer, expression quantitative trait locus analysis of polyoma middle-T transgene-induced mammary tumor was performed. ECM gene expression was found to be consistently associated with Rrp1b expression. In vitro expression of Rrp1b significantly altered ECM gene expression, tumor growth, and dissemination in metastasis assays. Furthermore, a gene signature induced by ectopic expression of Rrp1b in tumor cells predicted survival in a human breast cancer gene expression dataset. Finally, constitutional polymorphism within RRP1B was found to be significantly associated with tumor progression in two independent breast cancer cohorts. These data suggest that RRP1B may be a novel susceptibility gene for breast cancer progression and metastasis.

  4. Immunomodulation of murine B16 melanoma metastasis: thymosin, thymectomy and irradiation

    International Nuclear Information System (INIS)

    Naylor, P.H.; Bhakoo, H.S.; Rosen, F.; Paolini, N.S.; Goldstein, A.L.

    1983-01-01

    Thymosin, a product of the endocrine system, was used to further define the effects of immunomodulation of metastasis. Adult thymectomized C57BL/6 mice, 4 wk post-irradiation (400 R) had a decrease in the number of pulmonary metastases (compared to controls) following tail vein injection of 5 X 10 4 B16 melanoma cells. Thymosin fraction 5 (fr. 5) administration (200 μg/mouse, 3 times weekly beginning 2 days post-thymectomy) returned the number of metastases to the nonthymectomized values. Thymosin treatment of sham-operated, sham-operated irradiated, or thymectomized nonirradiated mice did not significantly elevate the number of metastases compared to the respective controls. Variant tumors which have an increase in metastasis following thymectomy and irradiation were also used. Thymosin administration reversed the effects of thymectomy in such variants, resulting in a decrease in metastasis. Metastases in thymosin-treated control mice were not significantly altered. A role for the thymus in metastasis via an endocrine product (thymosin) is suggested by these studies. Since thymosin did not increase metastasis in intact mice with tumors, further clinical trials with thymosin in cancer patients are not counterindicated by the results. These experiments confirm that thymosin fr. 5 is an important probe of the immunoendocrine events involved in tumor growth and metastasis. (Auth.)

  5. THE CHOICE OF TREATMENT OF SINGLE BRAIN METASTASIS SHOULD BE BASED ON EXTRACRANIAL TUMOR-ACTIVITY AND AGE

    NARCIS (Netherlands)

    NOORDIJK, EM; VECHT, CJ; HAAXMAREICHE, H; PADBERG, GW; VOORMOLEN, JHC; HOEKSTRA, FH; TANS, JTJ; LAMBOOIJ, N; METSAARS, JAL; WATTENDORFF, AR; BRAND, R; HERMANS, J

    1994-01-01

    Purpose: To determine if in patients with single brain metastasis the addition of neurosurgery to radiotherapy leads to lengthening of survival or to better quality of life. Methods and Materials: From 1985 to 1990, 66 patients with single brain metastasis from a solid tumor were entered in a

  6. Napsin A and Thyroid Transcription Factor-1-Positive Cerebellar Tumor with Epidermal Growth Factor Receptor Mutation

    Directory of Open Access Journals (Sweden)

    Taiji Kuwata

    2011-12-01

    Full Text Available We present a very rare case of cerebellar metastasis of unknown origin, in which a primary lung adenocarcinoma was diagnosed by pathological examination of a cerebellar metastatic tumor, using immunohistochemical markers and epidermal growth factor receptor (EGFR mutation of primary lung cancer. A 69-year-old woman was admitted to our hospital because of a hemorrhagic cerebellar tumor and multiple small brain tumors. She underwent cerebellar tumor resection. On pathological examination, the tumor was diagnosed as adenocarcinoma. However, the primary tumor site was unidentifiable even with several imaging inspections. On immunohistochemical analysis, the resected tumor was positive for napsin A and thyroid transcription factor-1. In addition, an EGFR mutation was detected in the tumor. Therefore, primary lung cancer was diagnosed and the patient was started on gefitinib (250 mg/day therapy.

  7. Tanshinone IIA inhibits metastasis after palliative resection of hepatocellular carcinoma and prolongs survival in part via vascular normalization

    Directory of Open Access Journals (Sweden)

    Wang Wen-Quan

    2012-11-01

    Full Text Available Abstract Background Promotion of endothelial normalization restores tumor oxygenation and obstructs tumor cells invasion, intravasation, and metastasis. We therefore investigated whether a vasoactive drug, tanshinone IIA, could inhibit metastasis by inducing vascular normalization after palliative resection (PR of hepatocellular carcinoma (HCC. Methods A liver orthotopic double-tumor xenograft model in nude mouse was established by implantation of HCCLM3 (high metastatic potential and HepG2 tumor cells. After removal of one tumor by PR, the effects of tanshinone IIA administration on metastasis, tumor vascularization, and survival were evaluated. Tube formation was examined in mouse tumor-derived endothelial cells (TECs treated with tanshinone IIA. Results PR significantly accelerated residual hepatoma metastases. Tanshinone IIA did not inhibit growth of single-xenotransplanted tumors, but it did reduce the occurrence of metastases. Moreover, it inhibited PR-enhanced metastases and, more importantly, prolonged host survival. Tanshinone IIA alleviated residual tumor hypoxia and suppressed epithelial-mesenchymal transition (EMT in vivo; however, it did not downregulate hypoxia-inducible factor 1α (HIF-1α or reverse EMT of tumor cells under hypoxic conditions in vitro. Tanshinone IIA directly strengthened tube formation of TECs, associated with vascular endothelial cell growth factor receptor 1/platelet derived growth factor receptor (VEGFR1/PDGFR upregulation. Although the microvessel density (MVD of residual tumor tissue increased after PR, the microvessel integrity (MVI was still low. While tanshinone IIA did not inhibit MVD, it did dramatically increase MVI, leading to vascular normalization. Conclusions Our results demonstrate that tanshinone IIA can inhibit the enhanced HCC metastasis associated with PR. Inhibition results from promoting VEGFR1/PDGFR-related vascular normalization. This application demonstrates the potential clinical

  8. Arachidonic Acid Metabolite as a Novel Therapeutic Target in Breast Cancer Metastasis

    Directory of Open Access Journals (Sweden)

    Thaiz F. Borin

    2017-12-01

    Full Text Available Metastatic breast cancer (BC (also referred to as stage IV spreads beyond the breast to the bones, lungs, liver, or brain and is a major contributor to the deaths of cancer patients. Interestingly, metastasis is a result of stroma-coordinated hallmarks such as invasion and migration of the tumor cells from the primary niche, regrowth of the invading tumor cells in the distant organs, proliferation, vascularization, and immune suppression. Targeted therapies, when used as monotherapies or combination therapies, have shown limited success in decreasing the established metastatic growth and improving survival. Thus, novel therapeutic targets are warranted to improve the metastasis outcomes. We have been actively investigating the cytochrome P450 4 (CYP4 family of enzymes that can biosynthesize 20-hydroxyeicosatetraenoic acid (20-HETE, an important signaling eicosanoid involved in the regulation of vascular tone and angiogenesis. We have shown that 20-HETE can activate several intracellular protein kinases, pro-inflammatory mediators, and chemokines in cancer. This review article is focused on understanding the role of the arachidonic acid metabolic pathway in BC metastasis with an emphasis on 20-HETE as a novel therapeutic target to decrease BC metastasis. We have discussed all the significant investigational mechanisms and put forward studies showing how 20-HETE can promote angiogenesis and metastasis, and how its inhibition could affect the metastatic niches. Potential adjuvant therapies targeting the tumor microenvironment showing anti-tumor properties against BC and its lung metastasis are discussed at the end. This review will highlight the importance of exploring tumor-inherent and stromal-inherent metabolic pathways in the development of novel therapeutics for treating BC metastasis.

  9. Breast-cancer-associated metastasis is significantly increased in a model of autoimmune arthritis.

    Science.gov (United States)

    Das Roy, Lopamudra; Pathangey, Latha B; Tinder, Teresa L; Schettini, Jorge L; Gruber, Helen E; Mukherjee, Pinku

    2009-01-01

    Sites of chronic inflammation are often associated with the establishment and growth of various malignancies including breast cancer. A common inflammatory condition in humans is autoimmune arthritis (AA) that causes inflammation and deformity of the joints. Other systemic effects associated with arthritis include increased cellular infiltration and inflammation of the lungs. Several studies have reported statistically significant risk ratios between AA and breast cancer. Despite this knowledge, available for a decade, it has never been questioned if the site of chronic inflammation linked to AA creates a milieu that attracts tumor cells to home and grow in the inflamed bones and lungs which are frequent sites of breast cancer metastasis. To determine if chronic inflammation induced by autoimmune arthritis contributes to increased breast cancer-associated metastasis, we generated mammary gland tumors in SKG mice that were genetically prone to develop AA. Two breast cancer cell lines, one highly metastatic (4T1) and the other non-metastatic (TUBO) were used to generate the tumors in the mammary fat pad. Lung and bone metastasis and the associated inflammatory milieu were evaluated in the arthritic versus the non-arthritic mice. We report a three-fold increase in lung metastasis and a significant increase in the incidence of bone metastasis in the pro-arthritic and arthritic mice compared to non-arthritic control mice. We also report that the metastatic breast cancer cells augment the severity of arthritis resulting in a vicious cycle that increases both bone destruction and metastasis. Enhanced neutrophilic and granulocytic infiltration in lungs and bone of the pro-arthritic and arthritic mice and subsequent increase in circulating levels of proinflammatory cytokines, such as macrophage colony stimulating factor (M-CSF), interleukin-17 (IL-17), interleukin-6 (IL-6), vascular endothelial growth factor (VEGF), and tumor necrosis factor-alpha (TNF-alpha) may contribute

  10. Breast cancer-associated metastasis is significantly increased in a model of autoimmune arthritis

    Science.gov (United States)

    Das Roy, Lopamudra; Pathangey, Latha B; Tinder, Teresa L; Schettini, Jorge L; Gruber, Helen E; Mukherjee, Pinku

    2009-01-01

    Introduction Sites of chronic inflammation are often associated with the establishment and growth of various malignancies including breast cancer. A common inflammatory condition in humans is autoimmune arthritis (AA) that causes inflammation and deformity of the joints. Other systemic effects associated with arthritis include increased cellular infiltration and inflammation of the lungs. Several studies have reported statistically significant risk ratios between AA and breast cancer. Despite this knowledge, available for a decade, it has never been questioned if the site of chronic inflammation linked to AA creates a milieu that attracts tumor cells to home and grow in the inflamed bones and lungs which are frequent sites of breast cancer metastasis. Methods To determine if chronic inflammation induced by autoimmune arthritis contributes to increased breast cancer-associated metastasis, we generated mammary gland tumors in SKG mice that were genetically prone to develop AA. Two breast cancer cell lines, one highly metastatic (4T1) and the other non-metastatic (TUBO) were used to generate the tumors in the mammary fat pad. Lung and bone metastasis and the associated inflammatory milieu were evaluated in the arthritic versus the non-arthritic mice. Results We report a three-fold increase in lung metastasis and a significant increase in the incidence of bone metastasis in the pro-arthritic and arthritic mice compared to non-arthritic control mice. We also report that the metastatic breast cancer cells augment the severity of arthritis resulting in a vicious cycle that increases both bone destruction and metastasis. Enhanced neutrophilic and granulocytic infiltration in lungs and bone of the pro-arthritic and arthritic mice and subsequent increase in circulating levels of proinflammatory cytokines, such as macrophage colony stimulating factor (M-CSF), interleukin-17 (IL-17), interleukin-6 (IL-6), vascular endothelial growth factor (VEGF), and tumor necrosis factor

  11. miR-503 suppresses tumor cell proliferation and metastasis by directly targeting RNF31 in prostate cancer

    International Nuclear Information System (INIS)

    Guo, Jia; Liu, Xiuheng; Wang, Min

    2015-01-01

    Microarray data analyses were performed to search for metastasis-associated oncogenes in prostate cancer (PCa). RNF31 mRNA expressions in tumor tissues and benign prostate tissues were evaluated. The RNF31 protein expression levels were also analyzed by western blot and immunohistochemistry. Luciferase reporter assays were used to identify miRNAs that can regulate RNF31. The effect of RNF31 on PCa progression was studied in vitro and in vivo. We found that RNF31 was significantly increased in PCa and its expression level was highly correlated with seminal vesicle invasion, clinical stage, prostate specific antigen (PSA) level, Gleason score, and BCR. Silence of RNF31 suppressed PCa cell proliferation and metastasis in vitro and in vivo. miR-503 can directly regulate RNF31. Enforced expression of miR-503 inhibited the expression of RNF31 significantly and the restoration of RNF31 expression reversed the inhibitory effects of miR-503 on PCa cell proliferation and metastasis. These findings collectively indicated an oncogene role of RNF31 in PCa progression which can be regulated by miR-503, suggesting that RNF31 could serve as a potential prognostic biomarker and therapeutic target for PCa. - Highlights: • RNF31 is a potential metastasis associated gene and is associated with prostate cancer progression. • Silence of RNF31 inhibits PCa cell colony formation, migration and invasion. • RNF31 as a direct target of miR-503. • miR-503 can regulate cell proliferation, invasion and migration by targeting RNF31. • RNF31 plays an important role in PCa growth and metastasis in vivo

  12. miR-503 suppresses tumor cell proliferation and metastasis by directly targeting RNF31 in prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jia; Liu, Xiuheng, E-mail: l_xiuheng@163.com; Wang, Min

    2015-09-04

    Microarray data analyses were performed to search for metastasis-associated oncogenes in prostate cancer (PCa). RNF31 mRNA expressions in tumor tissues and benign prostate tissues were evaluated. The RNF31 protein expression levels were also analyzed by western blot and immunohistochemistry. Luciferase reporter assays were used to identify miRNAs that can regulate RNF31. The effect of RNF31 on PCa progression was studied in vitro and in vivo. We found that RNF31 was significantly increased in PCa and its expression level was highly correlated with seminal vesicle invasion, clinical stage, prostate specific antigen (PSA) level, Gleason score, and BCR. Silence of RNF31 suppressed PCa cell proliferation and metastasis in vitro and in vivo. miR-503 can directly regulate RNF31. Enforced expression of miR-503 inhibited the expression of RNF31 significantly and the restoration of RNF31 expression reversed the inhibitory effects of miR-503 on PCa cell proliferation and metastasis. These findings collectively indicated an oncogene role of RNF31 in PCa progression which can be regulated by miR-503, suggesting that RNF31 could serve as a potential prognostic biomarker and therapeutic target for PCa. - Highlights: • RNF31 is a potential metastasis associated gene and is associated with prostate cancer progression. • Silence of RNF31 inhibits PCa cell colony formation, migration and invasion. • RNF31 as a direct target of miR-503. • miR-503 can regulate cell proliferation, invasion and migration by targeting RNF31. • RNF31 plays an important role in PCa growth and metastasis in vivo.

  13. Halofuginone Inhibits Angiogenesis and Growth in Implanted Metastatic Rat Brain Tumor Model-an MRI Study

    Directory of Open Access Journals (Sweden)

    Rinat Abramovitch

    2004-09-01

    Full Text Available Tumor growth and metastasis depend on angiogenesis; therefore, efforts are made to develop specific angiogenic inhibitors. Halofuginone (HF is a potent inhibitor of collagen type α1(I. In solid tumor models, HF has a potent antitumor and antiangiogenic effect in vivo, but its effect on brain tumors has not yet been evaluated. By employing magnetic resonance imaging (MRI, we monitored the effect of HF on tumor progression and vascularization by utilizing an implanted malignant fibrous histiocytoma metastatic rat brain tumor model. Here we demonstrate that treatment with HF effectively and dose-dependently reduced tumor growth and angiogenesis. On day 13, HF-treated tumors were fivefold smaller than control (P < .001. Treatment with HF significantly prolonged survival of treated animals (142%; P = .001. In HF-treated rats, tumor vascularization was inhibited by 30% on day 13 and by 37% on day 19 (P < .05. Additionally, HF treatment inhibited vessel maturation (P = .03. Finally, in HF-treated rats, we noticed the appearance of a few clusters of satellite tumors, which were distinct from the primary tumor and usually contained vessel cores. This phenomenon was relatively moderate when compared to previous reports of other antiangiogenic agents used to treat brain tumors. We therefore conclude that HF is effective for treatment of metastatic brain tumors.

  14. CT diagnosis of peritoneal metastasis tumor

    International Nuclear Information System (INIS)

    Deng Xueying; Chen Xiaoqi; Qi Le; Huang Feng

    2005-01-01

    Objective: To study the CT findings and diagnosis of peritoneal metastasis. Methods: The CT findings of 17 cases with surgical- pathologically proved peritoneal metastasis were analyzed retrospectively. Results The CT findings of peritoneal metastasis included: (1)ascites (12 cases ); (2)the aternation of parietal peritoneum including broad band thickening (7 cases), nodular sign (2 cases), and massive thickening (1 cases); (3) the involved omentum and mesenterium: 'smut' appearances (7 cases), nodular sign (2 cases), 'omental cake' (5 cases); (4) the invlovement of mesenteric vessels; (5) single-or multi-cystic lesions within peritoneum (1 case) . Conclusion: CT scan is the first choice for metastasis of peritoneum. (authors)

  15. Hypoxia-induced metastasis model in embryonic zebrafish

    DEFF Research Database (Denmark)

    Rouhi, Pegah; Jensen, Lasse D.; Cao, Ziquan

    2010-01-01

    Hypoxia facilitates tumor invasion and metastasis by promoting neovascularization and co-option of tumor cells in the peritumoral vasculature, leading to dissemination of tumor cells into the circulation. However, until recently, animal models and imaging technology did not enable monitoring...... of the early events of tumor cell invasion and dissemination in living animals. We recently developed a zebrafish metastasis model to dissect the detailed events of hypoxia-induced tumor cell invasion and metastasis in association with angiogenesis at the single-cell level. In this model, fluorescent Di......I-labeled human or mouse tumor cells are implanted into the perivitelline cavity of 48-h-old zebrafish embryos, which are subsequently placed in hypoxic water for 3 d. Tumor cell invasion, metastasis and pathological angiogenesis are detected under fluorescent microscopy in the living fish. The average...

  16. Beta1 integrin promotes but is not essential for metastasis of ras-myc transformed fibroblasts

    DEFF Research Database (Denmark)

    Brakebusch, C; Wennerberg, K; Krell, H W

    1999-01-01

    To investigate the role of beta1 integrin during tumor metastasis, we established a ras-myc transformed fibroblastoid cell line with a disrupted beta1 integrin gene on both alleles (GERM 11). Stable transfection of this cell line with an expression vector encoding beta1A integrin resulted in beta1A......, tumors induced by the high expressing clones 1A10 and 2F2 were markedly smaller, suggesting an inverse correlation of tumor growth and beta1 integrin expression. The metastasis potential of all three beta1 integrin-expressing GERM 11 sublines tested was significantly higher than that of the beta1......-deficient GERM 11 cells. GERM 116 tumors led in all animals to severe metastasis in lung and liver, while GERM 11 tumors induced only a few metastatic foci in the lung. Stroma of both tumors contained nidogen and high amounts of tenascin C, but only a few very low levels of fibronectin, laminin-1...

  17. BMP9 inhibits the bone metastasis of breast cancer cells by downregulating CCN2 (connective tissue growth factor, CTGF) expression.

    Science.gov (United States)

    Ren, Wei; Sun, Xiaoxiao; Wang, Ke; Feng, Honglei; Liu, Yuehong; Fei, Chang; Wan, Shaoheng; Wang, Wei; Luo, Jinyong; Shi, Qiong; Tang, Min; Zuo, Guowei; Weng, Yaguang; He, Tongchuan; Zhang, Yan

    2014-03-01

    Bone morphogenetic proteins (BMPs), which belong to the transforming growth factor-β superfamily, regulate a wide range of cellular responses including cell proliferation, differentiation, adhesion, migration, and apoptosis. BMP9, the latest BMP to be discovered, is reportedly expressed in a variety of human carcinoma cell lines, but the role of BMP9 in breast cancer has not been fully clarified. In a previous study, BMP9 was found to inhibit the growth, migration, and invasiveness of MDA-MB-231 breast cancer cells. In the current study, the effect of BMP9 on the bone metastasis of breast cancer cells was investigated. After absent or low expression of BMP9 was detected in the MDA-MB-231 breast cancer cells and breast non-tumor adjacent tissues using Western blot and immunohistochemistry, In our previous study, BMP9 could inhibit the proliferation and invasiveness of breast cancer cells MDA-MB-231 in vitro and in vivo. This paper shows that BMP9 inhibit the bone metastasis of breast cancer cells by activating the BMP/Smad signaling pathway and downregulating connective tissue growth factor (CTGF); however, when CTGF expression was maintained, the inhibitory effect of BMP9 on the MDA-MB-231 cells was abolished. Together, these observations indicate that BMP9 is an important mediator of breast cancer bone metastasis and a potential therapeutic target for treating this deadly disease.

  18. Gene silencing of beta-catenin in melanoma cells retards their growth but promotes the formation of pulmonary metastasis in mice.

    Science.gov (United States)

    Takahashi, Yuki; Nishikawa, Makiya; Suehara, Tetsuya; Takiguchi, Naomi; Takakura, Yoshinobu

    2008-11-15

    Altered expression of beta-catenin, a key component of the Wnt signaling pathway, is involved in a variety of cancers because increased levels of beta-catenin protein are frequently associated with enhanced cellular proliferation. Although our previous study demonstrated that gene silencing of beta-catenin in melanoma B16-BL6 cells by plasmid DNA (pDNA) expressing short-hairpin RNA targeting the gene (pshbeta-catenin) markedly suppressed their growth in vivo, gene silencing of beta-catenin could promote tumor metastasis by the rearranging cell adhesion complex. In this study, we investigated how silencing of beta-catenin affects metastatic aspects of melanoma cells. Transfection of B16-BL6 cells with pshbeta-catenin significantly reduced the amount of cadherin protein, a cell adhesion molecule binding to beta-catenin, with little change in its mRNA level. Cadherin-derived fragments were detected in culture media of B16-BL6 cells transfected with pshbeta-catenin, suggesting that cadherin is shed from the cell surface when the expression of beta-catenin is reduced. The mobility of B16-BL6 cells transfected with pshbeta-catenin was greater than that of cells transfected with any of the control pDNAs. B16-BL6 cells stably transfected with pshbeta-catenin (B16/pshbeta-catenin) formed less or an equal number of tumor nodules in the lung than cells stably transfected with other plasmids when injected into mice via the tail vein. However, when subcutaneously inoculated, B16/pshbeta-catenin cells formed more nodules in the lung than the other stably transfected cells. These results raise concerns about the gene silencing of beta-catenin for inhibiting tumor growth, because it promotes tumor metastasis by reducing the amount of cadherin in tumor cells. (c) 2008 Wiley-Liss, Inc.

  19. [A Case of an Abdominal Desmoplastic Small Round Cell Tumor with Metastasis in the Medulla Oblongata].

    Science.gov (United States)

    Azami, Ayaka; Takano, Yoshinao; Honda, Michitaka; Todate, Yukitoshi; Tada, Takeshi; Waragai, Mitsuru; Fukushima, Daizo; Suzuki, Nobuyasu; Sato, Atai; Abe, Tsuyoshi; Teranishi, Yasushi; Sakuma, Hideo

    2016-11-01

    A desmoplastic small round cell tumor(DSRCT)is a very rare malignant tumor that mainly occurs in the intra-abdominal cavity in young adults.This neoplasm has an extremely poor prognosis, with a clinical course characterized by rapid progression and metastasis.We present a 31-year-old man who presented with chief complaints of dysphagia, ataxic gait, and hoarseness.He first underwent surgical resection of a tumor in the medulla oblongata; however, the lesion was suspected to be a metastatic neoplasm.Following a thorough medical examination, the patient was diagnosed with retroperitoneal DSRCT with multiple metastatic lesions.He received multidisciplinary treatment including debulking surgery for the primary lesion; radiotherapy for metastatic lesions in the brain, abdomen, and cervical lymph nodes; hepatic artery embolization for liver metastasis; and systemic chemotherapy.The patient died of progressive disease 17 months after the initial diagnosis.

  20. Metastasis-inducing S100A4 and RANTES cooperate in promoting tumor progression in mice.

    Directory of Open Access Journals (Sweden)

    Birgitte Forst

    2010-04-01

    Full Text Available The tumor microenvironment has been described as a critical milieu determining tumor growth and metastases. A pivotal role of metastasis-inducing S100A4 in the development of tumor stroma has been proven in animal models and verified in human breast cancer biopsies. Expression and release of S100A4 has been shown in various types of stroma composing cells, including fibroblasts and immune cells. However, the events implicated in upstream and downstream pathways regulating the activity of the extracellular S100A4 protein in the tumor milieu remain unsolved.We studied the interplay between the tumor cell-derived cytokine regulated-upon-activation, normal T-cell expressed and secreted (RANTES; CCL5 and S100A4 which were shown to be critical factors in tumor progression. We found that RANTES stimulates the externalization of S100A4 via microparticle shedding from the plasma membrane of tumor and stroma cells. Conversely, the released S100A4 protein induces the upregulation of fibronectin (FN in fibroblasts and a number of cytokines, including RANTES in tumor cells as well as stimulates cell motility in a wound healing assay. Importantly, using wild type and S100A4-deficient mouse models, we demonstrated a substantial influence of tumor cell-derived RANTES on S100A4 release into blood circulation which ultimately increases the metastatic burden in mice.Altogether, the data presented strongly validate the pro-metastatic function of S100A4 in the tumor microenvironment and define how the tumor cell-derived cytokine RANTES acts as a critical regulator of S100A4-dependent tumor cell dissemination. Additionally, for the first time we demonstrated the mechanism of S100A4 release associated with plasma membrane microparticle shedding from various cells types.

  1. Possible reduction of hepatoma formation by Smmu 7721 cells in SCID mice and metastasis formation by B16F10 melanoma cells in C57BL/6 mice by Agaricus blazei murill extract.

    Science.gov (United States)

    Wu, Ming-Fang; Lu, Hsu-Feng; Hsu, Yu-Ming; Tang, Ming-Chu; Chen, Hsueh-Chin; Lee, Ching-Sung; Yang, Yi-Yuan; Yeh, Ming-Yang; Chung, Hsiung-Kwang; Huang, Yi-Ping; Wu, Chih-Chung; Chung, Jing-Gung

    2011-01-01

    Agaricus blazei Murill extract (ABM) has been reported to possess antitumor effects. In this study, the role of ABM in tumor growth and metastasis in vivo was evaluated in experimental Smmu 7721 hepatoma cells in severe combined immunodeficiency (SCID) mice and B16F10 melanoma cells lung metastasis in C57BL/6 mice. For the tumor growth model, the size of the liver tumor mass was about 10 mm to 20 mm in the control group. In comparison with the control group, the tumor mass seem to grow slowly with ABM treatment, especially at the high dose. For the tumor metastasis model, after a six-week treatment, the survival rates of B6 mice were 0%, 30%, 10% and 50% for control group, low, median and high concentration ABM treatment groups, respectively. The survival rate showed that pretreatment of C57BL/6 (B6) mice with ABM lengthened their lifespan after tumor cell inoculation, which supports the notion that ABM successfully reduced lung metastasis formation by B16F10 melanoma cells. The treatment effect was dependent on the concentration of ABM for tumor growth and metastasis in these models.

  2. Combination of neck dissection for cervical metastasis and irradiation of primary tumors for carcinomas of the mesopharynx, hypopharynx, and larynx

    International Nuclear Information System (INIS)

    Sato, Katsuro; Hanazawa, Hideyuki; Takahashi, Sugata; Watanabe, Jun; Tomita, Masahiko

    2006-01-01

    Carcinomas of the mesopharynx, hypopharynx, and larynx with early-stage primary tumor and with cervical lymph node metastasis, were treated by neck dissection for cervical metastasis and definitive irradiation of the primary tumor. In this study, the primary sites of the 16 cases were the mesopharynx (10), the hypopharynx (3), and the larynx (3). Twelve cases of early T stages (T1 or T2) and 15 cases of advanced N stages (N2 or N3) were chosen for this treatment concept. Neck lesions were controlled in all cases and all the primary tumors showed complete response at the end of the initial treatment. One case of mesopharyngeal cancer died due to recurrence of the primary tumor and one case of hypopharyngeal cancer died due to complicated lung cancer. The treatment modality for cases of early primary cancer and advanced cervical lymph node metastasis requires well-balanced strategies for both lesions. In these cases, optimal prognosis was obtained because of careful patient selection. The treatment strategy described in this paper should be considered for cases of early T tumors and advanced N tumors. (author)

  3. Gene expression analysis of matched ovarian primary tumors and peritoneal metastasis

    Directory of Open Access Journals (Sweden)

    Malek Joel A

    2012-06-01

    Full Text Available Abstract Background Ovarian cancer is the most deadly gynecological cancer due to late diagnosis at advanced stage with major peritoneal involvement. To date most research has focused on primary tumor. However the prognosis is directly related to residual disease at the end of the treatment. Therefore it is mandatory to focus and study the biology of meatastatic disease that is most frequently localized to the peritoneal caivty in ovarian cancer. Methods We used high-density gene expression arrays to investigate gene expression changes between matched primary and metastatic (peritoneal lesions. Results Here we show that gene expression profiles in peritoneal metastasis are significantly different than their matched primary tumor and these changes are affected by underlying copy number variation differences among other causes. We show that differentially expressed genes are enriched in specific pathways including JAK/STAT pathway, cytokine signaling and other immune related pathways. We show that underlying copy number variations significantly affect gene expression. Indeed patients with important differences in copy number variation displayed greater gene expression differences between their primary and matched metastatic lesions. Conclusions Our analysis shows a very specific targeting at both the genomic and transcriptomic level to upregulate certain pathways in the peritoneal metastasis of ovarian cancer. Moreover, while primary tumors use certain pathways we identify distinct differences with metastatic lesions. The variation between primary and metastatic lesions should be considered in personalized treatment of ovarian cancer.

  4. Free Base Lysine Increases Survival and Reduces Metastasis in Prostate Cancer Model.

    Science.gov (United States)

    Ibrahim-Hashim, Arig; Wojtkowiak, Jonathan W; de Lourdes Coelho Ribeiro, Maria; Estrella, Veronica; Bailey, Kate M; Cornnell, Heather H; Gatenby, Robert A; Gillies, Robert J

    2011-11-19

    Malignant tumor cells typically metabolize glucose anaerobically to lactic acid even under normal oxygen tension, a phenomenon called aerobic glycolysis or the Warburg effect. This results in increased acid production and the acidification of the extracellular microenvironment in solid tumors. H + ions tend to flow along concentration gradients into peritumoral normal tissue causing extracellular matrix degradation and increased tumor cell motility thus promoting invasion and metastasis. We have shown that reducing this acidity with sodium bicarbonate buffer decreases the metastatic fitness of circulating tumor cells in prostate cancer and other cancer models. Mathematical models of the tumor-host dynamics predicted that buffers with a pka around 7 will be more effective in reducing intra- and peri-tumoral acidosis and, thus, and possibly more effective in inhibiting tumor metastasis than sodium bicarbonate which has a pKa around 6. Here we test this prediction the efficacy of free base lysine; a non-bicarbonate/non-volatile buffer with a higher pKa (~10), on prostate tumor metastases model. Oxygen consumption and acid production rate of PC3M prostate cancer cells and normal prostate cells were determined using the Seahorse Extracellular Flux (XF-96) analyzer. In vivo effect of 200 mM lysine started four days prior to inoculation on inhibition of metastasis was examined in PC3M-LUC-C6 prostate cancer model using SCID mice. Metastases were followed by bioluminescence imaging. PC3M prostate cancer cells are highly acidic in comparison to a normal prostate cell line indicating that reduction of intra- and perit-tumoral acidosis should inhibit metastases formation. In vivo administration of 200 mM free base lysine increased survival and reduced metastasis. PC3M prostate cancer cells are highly glycolytic and produce large amounts of acid when compared to normal prostate cells. Administration of non-volatile buffer decreased growth of metastases and improved survival

  5. LOX-mediated collagen crosslinking is responsible for fibrosis-enhanced metastasis

    DEFF Research Database (Denmark)

    Cox, Thomas R; Bird, Demelza; Baker, Ann-Marie

    2013-01-01

    of metastastic tumor cells. We show that LOX-dependent collagen crosslinking is involved in creating a growth-permissive fibrotic microenvironment capable of supporting metastatic growth by enhancing tumor cell persistence and survival. We show that therapeutic targeting of LOX abrogates not only the extent...... to which fibrosis manifests, but also prevents fibrosis-enhanced metastatic colonization. Finally, we show that the LOX-mediated collagen crosslinking directly increases tumor cell proliferation, enhancing metastatic colonization and growth manifesting in vivo as increased metastasis. This is the first...... time that crosslinking of collagen I has been shown to enhance metastatic growth. These findings provide an important link between ECM homeostasis, fibrosis, and cancer with important clinical implications for both the treatment of fibrotic disease and cancer....

  6. 3D bioprinting: improving in vitro models of metastasis with heterogeneous tumor microenvironments

    Directory of Open Access Journals (Sweden)

    Jacob L. Albritton

    2017-01-01

    Full Text Available Even with many advances in treatment over the past decades, cancer still remains a leading cause of death worldwide. Despite the recognized relationship between metastasis and increased mortality rate, surprisingly little is known about the exact mechanism of metastatic progression. Currently available in vitro models cannot replicate the three-dimensionality and heterogeneity of the tumor microenvironment sufficiently to recapitulate many of the known characteristics of tumors in vivo. Our understanding of metastatic progression would thus be boosted by the development of in vitro models that could more completely capture the salient features of cancer biology. Bioengineering groups have been working for over two decades to create in vitro microenvironments for application in regenerative medicine and tissue engineering. Over this time, advances in 3D printing technology and biomaterials research have jointly led to the creation of 3D bioprinting, which has improved our ability to develop in vitro models with complexity approaching that of the in vivo tumor microenvironment. In this Review, we give an overview of 3D bioprinting methods developed for tissue engineering, which can be directly applied to constructing in vitro models of heterogeneous tumor microenvironments. We discuss considerations and limitations associated with 3D printing and highlight how these advances could be harnessed to better model metastasis and potentially guide the development of anti-cancer strategies.

  7. 3D bioprinting: improving in vitro models of metastasis with heterogeneous tumor microenvironments.

    Science.gov (United States)

    Albritton, Jacob L; Miller, Jordan S

    2017-01-01

    Even with many advances in treatment over the past decades, cancer still remains a leading cause of death worldwide. Despite the recognized relationship between metastasis and increased mortality rate, surprisingly little is known about the exact mechanism of metastatic progression. Currently available in vitro models cannot replicate the three-dimensionality and heterogeneity of the tumor microenvironment sufficiently to recapitulate many of the known characteristics of tumors in vivo Our understanding of metastatic progression would thus be boosted by the development of in vitro models that could more completely capture the salient features of cancer biology. Bioengineering groups have been working for over two decades to create in vitro microenvironments for application in regenerative medicine and tissue engineering. Over this time, advances in 3D printing technology and biomaterials research have jointly led to the creation of 3D bioprinting, which has improved our ability to develop in vitro models with complexity approaching that of the in vivo tumor microenvironment. In this Review, we give an overview of 3D bioprinting methods developed for tissue engineering, which can be directly applied to constructing in vitro models of heterogeneous tumor microenvironments. We discuss considerations and limitations associated with 3D printing and highlight how these advances could be harnessed to better model metastasis and potentially guide the development of anti-cancer strategies. © 2017. Published by The Company of Biologists Ltd.

  8. Rab27 GTPases Distribute Extracellular Nanomaps for Invasive Growth and Metastasis: Implications for Prognosis and Treatment

    Directory of Open Access Journals (Sweden)

    Olivier De Wever

    2013-05-01

    Full Text Available The Rab27 family of small GTPases regulates exocytosis of distinct vesicle types including multivesicular endosomes, which results in the release of exosomes. Exosomes are nanometer-sized membrane vesicles that enclose soluble factors such as proteins and nucleic acids within a lipid bilayer and can travel toward distant tissues to influence multiple aspects of cell behavior. In our view that tumors are endocrine organs producing exosomes, Rab27 GTPases and their effector proteins are critical determinants for invasive growth and metastasis. Rab27 proteins and their effectors may serve as prognostic biomarkers or as targets for patient-tailored therapy.

  9. Nicaraven reduces cancer metastasis to irradiated lungs by decreasing CCL8 and macrophage recruitment.

    Science.gov (United States)

    Yan, Chen; Luo, Lan; Urata, Yoshishige; Goto, Shinji; Li, Tao-Sheng

    2018-04-01

    Radiotherapy for cancer patients damages normal tissues, thereby inducing an inflammatory response and promoting cancer metastasis. We investigated whether nicaraven, a compound with radioprotective and anti-inflammatory properties, could attenuate radiation-induced cancer metastasis to the lungs of mice. Nicaraven and amifostine, another commercial radioprotective agent, had limited effects on both the radiosensitivity of Lewis lung carcinoma cells in vitro and radiation-induced tumor growth inhibition in vivo. Using experimental and spontaneous metastasis models, we confirmed that thorax irradiation with 5 Gy X-rays dramatically increased the number of tumors in the lungs. Interestingly, the number of tumors in the lungs was significantly reduced by administering nicaraven but not by administering amifostine daily after radiation exposure. Furthermore, nicaraven administration effectively inhibited CCL8 expression and macrophage recruitment in the lungs 1 day after thorax irradiation. Our data suggest that nicaraven attenuates radiation-induced lung metastasis, likely by regulating the inflammatory response after radiation exposure. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Bioluminescent human breast cancer cell lines that permit rapid and sensitive in vivo detection of mammary tumors and multiple metastases in immune deficient mice

    International Nuclear Information System (INIS)

    Jenkins, Darlene E; Hornig, Yvette S; Oei, Yoko; Dusich, Joan; Purchio, Tony

    2005-01-01

    Our goal was to generate xenograft mouse models of human breast cancer based on luciferase-expressing MDA-MB-231 tumor cells that would provide rapid mammary tumor growth; produce metastasis to clinically relevant tissues such as lymph nodes, lung, and bone; and permit sensitive in vivo detection of both primary and secondary tumor sites by bioluminescent imaging. Two clonal cell sublines of human MDA-MB-231 cells that stably expressed firefly luciferase were isolated following transfection of the parental cells with luciferase cDNA. Each subline was passaged once or twice in vivo to enhance primary tumor growth and to increase metastasis. The resulting luciferase-expressing D3H1 and D3H2LN cells were analyzed for long-term bioluminescent stability, primary tumor growth, and distal metastasis to lymph nodes, lungs, bone and soft tissues by bioluminescent imaging. Cells were injected into the mammary fat pad of nude and nude-beige mice or were delivered systemically via intracardiac injection. Metastasis was also evaluated by ex vivo imaging and histologic analysis postmortem. The D3H1 and D3H2LN cell lines exhibited long-term stable luciferase expression for up to 4–6 months of accumulative tumor growth time in vivo. Bioluminescent imaging quantified primary mammary fat pad tumor development and detected early spontaneous lymph node metastasis in vivo. Increased frequency of spontaneous lymph node metastasis was observed with D3H2LN tumors as compared with D3H1 tumors. With postmortem ex vivo imaging, we detected additional lung micrometastasis in mice with D3H2LN mammary tumors. Subsequent histologic evaluation of tissue sections from lymph nodes and lung lobes confirmed spontaneous tumor metastasis at these sites. Following intracardiac injection of the MDA-MB-231-luc tumor cells, early metastasis to skeletal tissues, lymph nodes, brain and various visceral organs was detected. Weekly in vivo imaging data permitted longitudinal analysis of metastasis at

  11. [Markers of angiogenesis in tumor growth].

    Science.gov (United States)

    Nefedova, N A; Kharlova, O A; Danilova, N V; Malkov, P G; Gaifullin, N M

    2016-01-01

    Angiogenesis is a process of new blood vessels formation. The role of angiogenesis in growth, invasion and metastasis of malignant tumours is nowdays universally recognized. Though, investigation of mechanisms of blood vessels formation and elaboration methods for assessment of tumour angiogenesis are still up-dated. Another important concern are different aspects of usage of immunohistochemical markers of blood vessels endothelium (CD31 and CD34) for assessment of tumour aggressiveness and prognosis. The problems of malignant lymphangiogenesis are also up-to-date. The focus is on methods of immunohistochemical visualization of forming lymphatic vessels, role of podoplanin, the most reliable marker of lymphatic vessels, in their identification, and formulization of the main criteria for lymphangiogenesis estimation, its correlation with metastatic activity and prognostic potential. Studying of angiogenesis and lymph angiogenesis in malignant tumors is important and challenging direction for researching tumour progression and invention of antiangiogenic therapy.

  12. Inhibition of metastatic tumor growth in mouse lung by repeated administration of polyethylene glycol-conjugated catalase: quantitative analysis with firefly luciferase-expressing melanoma cells.

    Science.gov (United States)

    Hyoudou, Kenji; Nishikawa, Makiya; Umeyama, Yukari; Kobayashi, Yuki; Yamashita, Fumiyoshi; Hashida, Mitsuru

    2004-11-15

    To develop a novel and effective approach to inhibit tumor metastasis based on controlled delivery of catalase, we first evaluated the characteristics of the disposition and proliferation of tumor cells. Then, we examined the effects of polyethylene glycol-conjugated catalase (PEG-catalase) on tumor metastasis. On the basis of the results obtained, PEG-catalase was repetitively administered to completely suppress the growth of tumor cells. Murine melanoma B16-BL6 cells were stably transfected with firefly luciferase gene to obtain B16-BL6/Luc cells. These cells were injected intravenously into syngeneic C57BL/6 mice. PEG-catalase was injected intravenously, and the effect was evaluated by measuring the luciferase activity as the indicator of the number of tumor cells. At 1 hour after injection of B16-BL6/Luc cells, 60 to 90% of the injected cells were recovered in the lung. The numbers decreased to 2 to 4% at 24 hours, then increased. An injection of PEG-catalase just before inoculation significantly reduced the number of tumor cells at 24 hours. Injection of PEG-catalase at 1 or 3 days after inoculation was also effective in reducing the cell numbers. Daily dosing of PEG-catalase greatly inhibited the proliferation and the number assayed at 14 days after inoculation was not significantly different from the minimal number observed at 1 day, suggesting that the growth had been markedly suppressed by the treatment. These findings indicate that sustained catalase activity in the blood circulation can prevent the multiple processes of tumor metastasis in the lung, which could lead to a state of tumor dormancy.

  13. LCP nanoparticle for tumor and lymph node metastasis imaging

    Science.gov (United States)

    Tseng, Yu-Cheng

    A lipid/calcium/phosphate (LCP) nanoparticle formulation (particle diameter ˜25 nm) has previously been developed to delivery siRNA with superior efficiency. In this work, 111In was formulated into LCP nanoparticles to form 111In-LCP for SPECT/CT imaging. With necessary modifications and improvements of the LCP core-washing and surface-coating methods, 111In-LCP grafted with polyethylene glycol exhibited reduced uptake by the mononuclear phagocytic system. SPECT/CT imaging supported performed biodistribution studies, showing clear tumor images with accumulation of 8% or higher injected dose per gram tissue (ID/g) in subcutaneous, human-H460, lung-cancer xenograft and mouse-4T1, breast cancer metastasis models. Both the liver and the spleen accumulated ˜20% ID/g. Accumulation in the tumor was limited by the enhanced permeation and retention effect and was independent of the presence of a targeting ligand. A surprisingly high accumulation in the lymph nodes (˜70% ID/g) was observed. In the 4T1 lymph node metastasis model, the capability of intravenously injected 111In-LCP to visualize the size-enlarged and tumor-loaded sentinel lymph node was demonstrated. By analyzing the SPECT/CT images taken at different time points, the PK profiles of 111In-LCP in the blood and major organs were determined. The results indicated that the decrement of 111In-LCP blood concentration was not due to excretion, but to tissue penetration, leading to lymphatic accumulation. Larger LCP (diameter ˜65 nm) nanoparticles were also prepared for the purpose of comparison. Results indicated that larger LCP achieved slightly lower accumulation in the tumor and lymph nodes, but much higher accumulation in the liver and spleen; thus, larger nanoparticles might not be favorable for imaging purposes. We also demonstrated that LCP with a diameter of ˜25 nm were better able to penetrate into tissues, travel in the lymphatic system and preferentially accumulate in the lymph nodes due to 1) small

  14. The inhibitory effect of anti- tumor polysaccharide from Punica granatum on metastasis.

    Science.gov (United States)

    Varghese, Sheeja; Joseph, Manu M; S R, Aravind; B S, Unnikrishnan; Sreelekha, T T

    2017-10-01

    Galactomannan (PSP001) isolated from the fruit rind of Punica granatum was demonstrated as an excellent antioxidant, immunomodulatory and anticancer agent both in vitro and in vivo models. Since the most lethal and debilitating attribute of cancer cells is their ability to evolve to a state of malignancy, with key features like increased angiogenesis, invasion, migration, colony formation, and metastasis, the present study focused on evaluating the effects of the galactomannan on tumor and malignancy. PSP001 effectively reduced the neovascularization in chick embryos highlighting its potential as an angiogenic inhibitor. Furthermore, the invasion, migration and clonogenic capacity of human and murine cancer cells were dramatically inhibited by PSP001. Evaluation of the molecular mechanism of its unique potential revealed the down regulation of key players including VEGF, MMP-2, and MMP-9 with marked elevation of TIMP-1 and TIMP-2. The anti-metastatic potential of PSP001 tested in pulmonary metastasis C57BL/6 mice model deciphered the combinatorial administration with vincristine deliberated better survival rates and decreased metastatic index. The angiogenic inhibition potential of PSP001 was further proved with peritoneal angiogenesis assay in BALB/c mice ascitic tumor model. The outcomes of the current investigation highlight the mode of action of antitumor galactomannan in the reduction of tumor malignancy. Copyright © 2017. Published by Elsevier B.V.

  15. Stochastic models for tumoral growth

    Science.gov (United States)

    Escudero, Carlos

    2006-02-01

    Strong experimental evidence has indicated that tumor growth belongs to the molecular beam epitaxy universality class. This type of growth is characterized by the constraint of cell proliferation to the tumor border and the surface diffusion of cells at the growing edge. Tumor growth is thus conceived as a competition for space between the tumor and the host, and cell diffusion at the tumor border is an optimal strategy adopted for minimizing the pressure and helping tumor development. Two stochastic partial differential equations are reported in this paper in order to correctly model the physical properties of tumoral growth in (1+1) and (2+1) dimensions. The advantage of these models is that they reproduce the correct geometry of the tumor and are defined in terms of polar variables. An analysis of these models allows us to quantitatively estimate the response of the tumor to an unfavorable perturbation during growth.

  16. Epithelial-mesenchymal transition: a hallmark in metastasis formation linking circulating tumor cells and cancer stem cells.

    Science.gov (United States)

    Książkiewicz, Magdalena; Markiewicz, Aleksandra; Zaczek, Anna J

    2012-01-01

    The occurrence of either regional or distant metastases is an indicator of poor prognosis for cancer patients. The mechanism of their formation has not yet been fully uncovered, which limits the possibility of developing new therapeutic strategies. Nevertheless, the discovery of circulating tumor cells (CTCs), which are responsible for tumor dissemination, and cancer stem cells (CSCs), required for tumor growth maintenance, shed light on the metastatic cascade. It seems that CTCs and CSCs are not necessarily separate populations of cancer cells, as CTCs generated in the process of epithelial-mesenchymal transition (EMT) can bear features characteristic of CSCs. This article describes the mechanisms of CTC and CSC formation and characterizes their molecular hallmarks. Moreover, we present different types of EMT occurring in physiological and pathological conditions, and we demonstrate its crucial role in providing CTCs with a CSC phenotype. The article delineates molecular changes acquired by cancer cells undergoing EMT that facilitate metastasis formation. Deeper understanding of those processes is of fundamental importance for the development of new strategies of early cancer detection and effective cancer treatment approaches that will be translated into clinical practice. Copyright © 2012 S. Karger AG, Basel.

  17. Association between US features of primary tumor and axillary lymph node metastasis in patients with clinical T1-T2N0 breast cancer.

    Science.gov (United States)

    Bae, Min Sun; Shin, Sung Ui; Song, Sung Eun; Ryu, Han Suk; Han, Wonshik; Moon, Woo Kyung

    2018-04-01

    Background Most patients with early-stage breast cancer have clinically negative lymph nodes (LNs). However, 15-20% of patients have axillary nodal metastasis based on the sentinel LN biopsy. Purpose To assess whether ultrasound (US) features of a primary tumor are associated with axillary LN metastasis in patients with clinical T1-T2N0 breast cancer. Material and Methods This retrospective study included 138 consecutive patients (median age = 51 years; age range = 27-78 years) who underwent breast surgery with axillary LN evaluation for clinically node-negative T1-T2 breast cancer. Three radiologists blinded to the axillary surgery results independently reviewed the US images. Tumor distance from the skin and distance from the nipple were determined based on the US report. Association between US features of a breast tumor and axillary LN metastasis was assessed using a multivariate logistic regression model after controlling for clinicopathologic variables. Results Of the 138 patients, 28 (20.3%) had nodal metastasis. At univariate analysis, tumor distance from the skin ( P = 0.019), tumor size on US ( P = 0.023), calcifications ( P = 0.036), architectural distortion ( P = 0.001), and lymphovascular invasion ( P = 0.049) were associated with axillary LN metastasis. At multivariate analysis, shorter skin-to-tumor distance (odds ratio [OR] = 4.15; 95% confidence interval [CI] = 1.01-16.19; P = 0.040) and masses with associated architectural distortion (OR = 3.80; 95% CI = 1.57-9.19; P = 0.003) were independent predictors of axillary LN metastasis. Conclusion US features of breast cancer can be promising factors associated with axillary LN metastasis in patients with clinically node-negative early-stage breast cancer.

  18. Extract of Cordyceps militaris inhibits angiogenesis and suppresses tumor growth of human malignant melanoma cells.

    Science.gov (United States)

    Ruma, I Made Winarsa; Putranto, Endy Widya; Kondo, Eisaku; Watanabe, Risayo; Saito, Ken; Inoue, Yusuke; Yamamoto, Ken-Ichi; Nakata, Susumu; Kaihata, Masaji; Murata, Hitoshi; Sakaguchi, Masakiyo

    2014-07-01

    Angiogenesis is essential for tumor development and metastasis. Among several angiogenic factors, vascular endothelial growth factor receptor (VEGF) is important for tumor-derived angiogenesis and commonly overexpressed in solid tumors. Thus, many antitumor strategies targeting VEGF have been developed to inhibit cancer angiogenesis, offering insights into the successful treatment of solid cancers. However, there are a number of issues such as harmful effects on normal vascularity in clinical trials. Taking this into consideration, we employed Cordyceps militaris as an antitumor approach due to its biological safety in vivo. The herbal medicinal mushroom Cordyceps militaris has been reported to show potential anticancer properties including anti-angiogenic capacity; however, its concrete properties have yet to be fully demonstrated. In this study, we aimed to elucidate the biological role of Cordyceps militaris extract in tumor cells, especially in regulating angiogenesis and tumor growth of a human malignant melanoma cell line. We demonstrated that Cordyceps militaris extract remarkably suppressed tumor growth via induction of apoptotic cell death in culture that links to the abrogation of VEGF production in melanoma cells. This was followed by mitigation of Akt1 and GSK-3β activation, while p38α phosphorylation levels were increased. Extract treatment in mouse model xenografted with human melanoma cells resulted in a dramatic antitumor effect with down-regulation of VEGF expression. The results suggest that suppression of tumor growth by Cordyceps militaris extract is, at least, mediated by its anti-angiogenicity and apoptosis induction capacities. Cordyceps militaris extract may be a potent antitumor herbal drug for solid tumors.

  19. In vitro three-dimensional cancer metastasis modeling: Past, present, and future

    International Nuclear Information System (INIS)

    Han Wei-jing; Zhu Jiang-rui; Fan Qihui; Liu Li-yu; Yuan Wei; Qu Junle

    2016-01-01

    Metastasis is the leading cause of most cancer deaths, as opposed to dysregulated cell growth of the primary tumor. Molecular mechanisms of metastasis have been studied for decades and the findings have evolved our understanding of the progression of malignancy. However, most of the molecular mechanisms fail to address the causes of cancer and its evolutionary origin, demonstrating an inability to find a solution for complete cure of cancer. After being a neglected area of tumor biology for quite some time, recently several studies have focused on the impact of the tumor microenvironment on cancer growth. The importance of the tumor microenvironment is gradually gaining attention, particularly from the perspective of biophysics. In vitro three-dimensional (3-D) metastatic models are an indispensable platform for investigating the tumor microenvironment, as they mimic the in vivo tumor tissue. In 3-D metastatic in vitro models, static factors such as the mechanical properties, biochemical factors, as well as dynamic factors such as cell–cell, cell–ECM interactions, and fluid shear stress can be studied quantitatively. With increasing focus on basic cancer research and drug development, the in vitro 3-D models offer unique advantages in fundamental and clinical biomedical studies. (topical review)

  20. Stochastic models for tumoral growth

    OpenAIRE

    Escudero, Carlos

    2006-01-01

    Strong experimental evidence has indicated that tumor growth belongs to the molecular beam epitaxy universality class. This type of growth is characterized by the constraint of cell proliferation to the tumor border, and surface diffusion of cells at the growing edge. Tumor growth is thus conceived as a competition for space between the tumor and the host, and cell diffusion at the tumor border is an optimal strategy adopted for minimizing the pressure and helping tumor development. Two stoch...

  1. High Salt Intake Attenuates Breast Cancer Metastasis to Lung.

    Science.gov (United States)

    Xu, Yijuan; Wang, Wenzhe; Wang, Minmin; Liu, Xuejiao; Lee, Mee-Hyun; Wang, Mingfu; Zhang, Hao; Li, Haitao; Chen, Wei

    2018-04-04

    Diet-related factors are thought to modify the risk of cancers, while the influence of high salt intake remains largely uncharacterized. Breast cancer is the most common cancer in women worldwide. In the present study, we examined the effect of salt intake on breast cancer by using a 4T1 mouse mammary tumor model. Unexpectedly, both the fitness and the survival rate of the tumor-bearing mice were improved by high salt intake. Similarly, high salt intake suppressed the primary tumor growth as well as metastasis to lung in mice. Mechanistically, high salt intake greatly reduced food intake and thus might exert antitumor effect through mimicking calorie restriction. Immunoblotting showed the lower proliferation marker Ki-67 and the higher expression of the tumor suppressor gene p53 in tumors of high salt intake mice. Importantly, high salt intake might induce hyperosmotic stress, which sensitized breast cancer cells to p53-dependent anoikis. Collectively, our findings raise the possibility that endogenous salt deposition might act as the first-line defense system against breast cancer progression as well as metastasis.

  2. Skull metastasis revealing a renal tumor: A case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Mohamed Badri

    Full Text Available Background: Renal cell carcinomas represent 85% of malignant renal tumors. Typically, the tumor remains asymptomatic a long time before the appearance of urologic clinical signs. In some cases, metastasis can precede the manifestations of the primary tumor. Different sites are potential metastatic localizations for renal tumors, including skull metastases who represent a very rare location. Case description: We report the case of a 65-year-old man presented after the appearance of a skull mass. This tumefaction developed and had progressively grown up during 9 months. Neurological examination was normal. Brain imaging showed a soft tissue lesion in the left parietal bone with marked osteolysis. Peroperative was found a huge oval-shape hemorrhagic and firm mass associated with scalp invasion and bone destruction that was totally resected. Histopathology revealed renal cell carcinoma (RCC. Pelvic and abdominal CT scan was performed, revealing a large mass on the left kidney with irregular contours and poor definition. The patient was then transferred to urology where he underwent nephrectomy. The patient went then through adjuvant chemotherapy. Clinical and radiological follow up of 12 months did not bring to light tumor recurrence. Conclusions: Although metastases to the head and neck occur infrequently, they should be considered when evaluating any unusual subcutaneous mass in the head and neck. RCC should not be discounted when sites as unlikely as the calvaria are evaluated. Treatment of metastatic renal cell carcinoma is complex, and the optimal regimen for achieving a lasting response without severe toxicity has not yet been defined. Keywords: Renal tumor, Skull metastasis, Neurosurgery

  3. Harnessing high density lipoproteins to block transforming growth factor beta and to inhibit the growth of liver tumor metastases.

    Directory of Open Access Journals (Sweden)

    José Medina-Echeverz

    Full Text Available Transforming growth factor β (TGF-β is a powerful promoter of cancer progression and a key target for antitumor therapy. As cancer cells exhibit active cholesterol metabolism, high density lipoproteins (HDLs appear as an attractive delivery system for anticancer TGFβ-inhibitory molecules. We constructed a plasmid encoding a potent TGF-β-blocking peptide (P144 linked to apolipoprotein A-I (ApoA-I through a flexible linker (pApoLinkerP144. The ApoLinkerP144 sequence was then incorporated into a hepatotropic adeno-associated vector (AAVApoLinkerP144. The aim was to induce hepatocytes to produce HDLs containing a modified ApoA-I capable of blocking TGF-β. We observed that transduction of the murine liver with pApoLinkerP144 led to the appearance of a fraction of circulating HDL containing the fusion protein. These HDLs were able to attenuate TGF-β signaling in the liver and to enhance IL-12 -mediated IFN-γ production. Treatment of liver metastasis of MC38 colorectal cancer with AAVApoLinkerP144 resulted in a significant reduction of tumor growth and enhanced expression of IFN-γ and GM-CSF in cancerous tissue. ApoLinkerP144 also delayed MC38 liver metastasis in Rag2-/-IL2rγ-/- immunodeficient mice. This effect was associated with downregulation of TGF-β target genes essential for metastatic niche conditioning. Finally, in a subset of ret transgenic mice, a model of aggressive spontaneous metastatic melanoma, AAVApoLinkerP144 delayed tumor growth in association with increased CD8+ T cell numbers in regional lymph nodes. In conclusion, modification of HDLs to transport TGF-β-blocking molecules is a novel and promising approach to inhibit the growth of liver metastases by immunological and non-immunological mechanisms.

  4. Picropodophyllin inhibits tumor growth of human nasopharyngeal carcinoma in a mouse model

    International Nuclear Information System (INIS)

    Yin, Shu-Cheng; Guo, Wei; Tao, Ze-Zhang

    2013-01-01

    Highlights: •We identified that PPP inhibits IGF-1R/Akt pathway in NPC cells. •PPP dose-dependently inhibits NPC cell proliferation in vitro. •PPP suppresses tumor growth of NPC in nude mice. •PPP have little effect on microtubule assembly. -- Abstract: Insulin-like growth factor-1 receptor (IGF-1R) is a cell membrane receptor with tyrosine kinase activity and plays important roles in cell transformation, tumor growth, tumor invasion, and metastasis. Picropodophyllin (PPP) is a selective IGF-1R inhibitor and shows promising antitumor effects for several human cancers. However, its antitumor effects in nasopharyngeal carcinoma (NPC) remain unclear. The purpose of this study is to investigate the antitumor activity of PPP in NPC using in vitro cell culture and in vivo animal model. We found that PPP dose-dependently decreased the IGF-induced phosphorylation and activity of IGF-1R and consequently reduced the phosphorylation of Akt, one downstream target of IGF-1R. In addition, PPP inhibited NPC cell proliferation in vitro. The half maximal inhibitory concentration (IC50) of PPP for NPC cell line CNE-2 was ⩽1 μM at 24 h after treatment and ⩽0.5 μM at 48 h after treatment, respectively. Moreover, administration of PPP by intraperitoneal injection significantly suppressed the tumor growth of xenografted NPC in nude mice. Taken together, these results suggest targeting IGF-1R by PPP may represent a new strategy for treatment of NPCs with positive IGF-1R expression

  5. Picropodophyllin inhibits tumor growth of human nasopharyngeal carcinoma in a mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Shu-Cheng [Department of Otolaryngology – Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060 (China); Department of Otolaryngology – Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Guo, Wei [Department of Otolaryngology – Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Tao, Ze-Zhang, E-mail: zezhangtao@gmail.com [Department of Otolaryngology – Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060 (China)

    2013-09-13

    Highlights: •We identified that PPP inhibits IGF-1R/Akt pathway in NPC cells. •PPP dose-dependently inhibits NPC cell proliferation in vitro. •PPP suppresses tumor growth of NPC in nude mice. •PPP have little effect on microtubule assembly. -- Abstract: Insulin-like growth factor-1 receptor (IGF-1R) is a cell membrane receptor with tyrosine kinase activity and plays important roles in cell transformation, tumor growth, tumor invasion, and metastasis. Picropodophyllin (PPP) is a selective IGF-1R inhibitor and shows promising antitumor effects for several human cancers. However, its antitumor effects in nasopharyngeal carcinoma (NPC) remain unclear. The purpose of this study is to investigate the antitumor activity of PPP in NPC using in vitro cell culture and in vivo animal model. We found that PPP dose-dependently decreased the IGF-induced phosphorylation and activity of IGF-1R and consequently reduced the phosphorylation of Akt, one downstream target of IGF-1R. In addition, PPP inhibited NPC cell proliferation in vitro. The half maximal inhibitory concentration (IC50) of PPP for NPC cell line CNE-2 was ⩽1 μM at 24 h after treatment and ⩽0.5 μM at 48 h after treatment, respectively. Moreover, administration of PPP by intraperitoneal injection significantly suppressed the tumor growth of xenografted NPC in nude mice. Taken together, these results suggest targeting IGF-1R by PPP may represent a new strategy for treatment of NPCs with positive IGF-1R expression.

  6. Tongue metastasis mimicking an abscess.

    Science.gov (United States)

    Mavili, Ertuğrul; Oztürk, Mustafa; Yücel, Tuba; Yüce, Imdat; Cağli, Sedat

    2010-03-01

    Primary tumors metastasizing to the oral cavity are extremely rare. Lung is one of the most common primary sources of metastases to the tongue. Although the incidence of lung cancer is increasing, tongue metastasis as the initial presentation of the tumor remains uncommon. Due to the rarity of tongue metastasis, little is known about its imaging findings. Herein we report the magnetic resonance imaging and clinical findings of a lingual metastasis, mimicking an abscess, from a primary lung cancer.

  7. Human Sulfatase 2 inhibits in vivo tumor growth of MDA-MB-231 human breast cancer xenografts

    International Nuclear Information System (INIS)

    Peterson, Sarah M; Concino, Michael F; Liaw, Lucy; Martini, Paolo GV; Iskenderian, Andrea; Cook, Lynette; Romashko, Alla; Tobin, Kristen; Jones, Michael; Norton, Angela; Gómez-Yafal, Alicia; Heartlein, Michael W

    2010-01-01

    Extracellular human sulfatases modulate growth factor signaling by alteration of the heparin/heparan sulfate proteoglycan (HSPG) 6-O-sulfation state. HSPGs bind to numerous growth factor ligands including fibroblast growth factors (FGF), epidermal growth factors (EGF), and vascular endothelial growth factors (VEGF), and are critically important in the context of cancer cell growth, invasion, and metastasis. We hypothesized that sulfatase activity in the tumor microenvironment would regulate tumor growth in vivo. We established a model of stable expression of sulfatases in the human breast cancer cell line MDA-MB-231 and purified recombinant human Sulfatase 2 (rhSulf2) for exogenous administration. In vitro studies were performed to measure effects on breast cancer cell invasion and proliferation, and groups were statistically compared using Student's t-test. The effects of hSulf2 on tumor progression were tested using in vivo xenografts with two methods. First, MDA-MB-231 cells stably expressing hSulf1, hSulf2, or both hSulf1/hSulf2 were grown as xenografts and the resulting tumor growth and vascularization was compared to controls. Secondly, wild type MDA-MB-231 xenografts were treated by short-term intratumoral injection with rhSulf2 or vehicle during tumor growth. Ultrasound analysis was also used to complement caliper measurement to monitor tumor growth. In vivo studies were statistically analyzed using Student's t test. In vitro, stable expression of hSulf2 or administration of rhSulf2 in breast cancer cells decreased cell proliferation and invasion, corresponding to an inhibition of ERK activation. Stable expression of the sulfatases in xenografts significantly suppressed tumor growth, with complete regression of tumors expressing both hSulf1 and hSulf2 and significantly smaller tumor volumes in groups expressing hSulf1 or hSulf2 compared to control xenografts. Despite significant suppression of tumor volume, sulfatases did not affect vascular

  8. Lower gingival squamous cell carcinoma with brain metastasis during long-term cetuximab treatment: A case report.

    Science.gov (United States)

    Naruse, Tomofumi; Tokuhisa, Mitsuko; Yanamoto, Souichi; Sakamoto, Yuki; Okuyama, Kohei; Tsuchihashi, Hiroki; Umeda, Masahiro

    2018-05-01

    Long-term cetuximab treatment can lead to acquired resistance, and tumor progression and/or new lesions often occur. The present report describes a case of lower gingival squamous cell carcinoma with brain metastasis during long-term cetuximab treatment in a 60-year-old man, including findings of an immunohistochemical study. The resected primary tumors, biopsy of the lung metastasis before administration of cetuximab, and brain metastasis specimens mediated by cetuximab were immunohistochemically examined. Histologically, the metastatic brain lesion showed hyperkeratinizing tumor cells with deeply stained irregular nuclei with necrotizing tumor cells, and a decrease in cell density was exhibited in part of the tumor nest. Moreover, the brain lesion was less malignant compared with the primary tumor and metastatic lung lesions. Immunohistochemically, the metastatic brain lesions showed low expression of epidermal growth factor receptor (EGFR) and high expression of N-cadherin compared with the primary tumor and metastatic lung lesions. These results suggest that acquired resistance to cetuximab may be associated with low EGFR expression and increased epithelial-to-mesenchymal transition potential.

  9. The IL-6/JAK/Stat3 feed-forward loop drives tumorigenesis and metastasis.

    Science.gov (United States)

    Chang, Qing; Bournazou, Eirini; Sansone, Pasquale; Berishaj, Marjan; Gao, Sizhi Paul; Daly, Laura; Wels, Jared; Theilen, Till; Granitto, Selena; Zhang, Xinmin; Cotari, Jesse; Alpaugh, Mary L; de Stanchina, Elisa; Manova, Katia; Li, Ming; Bonafe, Massimiliano; Ceccarelli, Claudio; Taffurelli, Mario; Santini, Donatella; Altan-Bonnet, Gregoire; Kaplan, Rosandra; Norton, Larry; Nishimoto, Norihiro; Huszar, Dennis; Lyden, David; Bromberg, Jacqueline

    2013-07-01

    We have investigated the importance of interleukin-6 (IL-6) in promoting tumor growth and metastasis. In human primary breast cancers, increased levels of IL-6 were found at the tumor leading edge and positively correlated with advanced stage, suggesting a mechanistic link between tumor cell production of IL-6 and invasion. In support of this hypothesis, we showed that the IL-6/Janus kinase (JAK)/signal transducer and activator of transcription 3 (Stat3) pathway drives tumor progression through the stroma and metastatic niche. Overexpression of IL-6 in tumor cell lines promoted myeloid cell recruitment, angiogenesis, and induced metastases. We demonstrated the therapeutic potential of interrupting this pathway with IL-6 receptor blockade or by inhibiting its downstream effectors JAK1/2 or Stat3. These clinically relevant interventions did not inhibit tumor cell proliferation in vitro but had profound effects in vivo on tumor progression, interfering broadly with tumor-supportive stromal functions, including angiogenesis, fibroblast infiltration, and myeloid suppressor cell recruitment in both the tumor and pre-metastatic niche. This study provides the first evidence for IL-6 expression at the leading edge of invasive human breast tumors and demonstrates mechanistically that IL-6/JAK/Stat3 signaling plays a critical and pharmacologically targetable role in orchestrating the composition of the tumor microenvironment that promotes growth, invasion, and metastasis.

  10. The IL-6/JAK/Stat3 Feed-Forward Loop Drives Tumorigenesis and Metastasis

    Directory of Open Access Journals (Sweden)

    Qing Chang

    2013-07-01

    Full Text Available We have investigated the importance of interleukin-6 (IL-6 in promoting tumor growth and metastasis. In human primary breast cancers, increased levels of IL-6 were found at the tumor leading edge and positively correlated with advanced stage, suggesting a mechanistic link between tumor cell production of IL-6 and invasion. In support of this hypothesis, we showed that the IL-6/Janus kinase (JAK/signal transducer and activator of transcription 3 (Stat3 pathway drives tumor progression through the stroma and metastatic niche. Overexpression of IL-6 in tumor cell lines promoted myeloid cell recruitment, angiogenesis, and induced metastases. We demonstrated the therapeutic potential of interrupting this pathway with IL-6 receptor blockade or by inhibiting its downstream effectors JAK1/2 or Stat3. These clinically relevant interventions did not inhibit tumor cell proliferation in vitro but had profound effects in vivo on tumor progression, interfering broadly with tumor-supportive stromal functions, including angiogenesis, fibroblast infiltration, and myeloid suppressor cell recruitment in both the tumor and pre-metastatic niche. This study provides the first evidence for IL-6 expression at the leading edge of invasive human breast tumors and demonstrates mechanistically that IL-6/JAK/Stat3 signaling plays a critical and pharmacologically targetable role in orchestrating the composition of the tumor microenvironment that promotes growth, invasion, and metastasis.

  11. Mint3 in bone marrow-derived cells promotes lung metastasis in breast cancer model mice.

    Science.gov (United States)

    Hara, Toshiro; Murakami, Yoshinori; Seiki, Motoharu; Sakamoto, Takeharu

    2017-08-26

    Breast cancer is one of the most common cancers in women in the world. Although breast cancer is well treatable at the early stage, patients with distant metastases show a poor prognosis. Data from recent studies using transplantation models indicate that Mint3/APBA3 might promote breast cancer malignancy. However, whether Mint3 indeed contributes to tumor development, progression, or metastasis in vivo remains unclear. To address this, here we examined whether Mint3 depletion affects tumor malignancy in MMTV-PyMT breast cancer model mice. In MMTV-PyMT mice, Mint3 depletion did not affect tumor onset and tumor growth, but attenuated lung metastases. Experimental lung metastasis of breast cancer Met-1 cells derived from MMTV-PyMT mice also decreased in Mint3-depleted mice, indicating that host Mint3 expression affected lung metastasis of MMTV-PyMT-derived breast cancer cells. Further bone marrow transplant experiments revealed that Mint3 in bone marrow-derived cells promoted lung metastasis in MMTV-PyMT mice. Thus, targeting Mint3 in bone marrow-derived cells might be a good strategy for preventing metastasis and improving the prognosis of breast cancer patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Transforming growth factor-β suppresses metastasis in a subset of human colon carcinoma cells

    International Nuclear Information System (INIS)

    Simms, Neka A K; Rajput, Ashwani; Sharratt, Elizabeth A; Ongchin, Melanie; Teggart, Carol A; Wang, Jing; Brattain, Michael G

    2012-01-01

    TGFβ signaling has typically been associated with suppression of tumor initiation while the role it plays in metastasis is generally associated with progression of malignancy. However, we present evidence here for an anti-metastatic role of TGFβ signaling. To test the importance of TGFβ signaling to cell survival and metastasis we compared human colon carcinoma cell lines that are either non-tumorigenic with TGFβ response (FET), or tumorigenic with TGFβ response (FETα) or tumorigenic with abrogated TGFβ response via introduction of dominant negative TGFβRII (FETα/DN) and their ability to metastasize. Metastatic competency was assessed by orthotopic transplantation. Metastatic colony formation was assessed histologically and by imaging. Abrogation of TGFβ signaling through introduction of a dominant negative TGFβ receptor II (TGFβRII) in non-metastatic FETα human colon cancer cells permits metastasis to distal organs, but importantly does not reduce invasive behavior at the primary site. Loss of TGFβ signaling in FETα-DN cells generated enhanced cell survival capabilities in response to cellular stress in vitro. We show that enhanced cellular survival is associated with increased AKT phosphorylation and cytoplasmic expression of inhibitor of apoptosis (IAP) family members (survivin and XIAP) that elicit a cytoprotective effect through inhibition of caspases in response to stress. To confirm that TGFβ signaling is a metastasis suppressor, we rescued TGFβ signaling in CBS metastatic colon cancer cells that had lost TGFβ receptor expression due to epigenetic repression. Restoration of TGFβ signaling resulted in the inhibition of metastatic colony formation in distal organs by these cells. These results indicate that TGFβ signaling has an important role in the suppression of metastatic potential in tumors that have already progressed to the stage of an invasive carcinoma. The observations presented here indicate a metastasis suppressor role for TGF

  13. Presumed choroidal metastasis of Merkel cell carcinoma

    International Nuclear Information System (INIS)

    Small, K.W.; Rosenwasser, G.O.; Alexander, E. III; Rossitch, G.; Dutton, J.J.

    1990-01-01

    Merkel cell carcinoma is a rare skin tumor of neural crest origin and is part of the amine precursor uptake and decarboxylase system. It typically occurs on the face of elderly people. Distant metastasis is almost uniformly fatal. Choroidal metastasis, to our knowledge, has not been described. We report a patient with Merkel cell carcinoma who had a synchronous solid choroidal tumor and a biopsy-proven brain metastasis. Our 56-year-old patient presented with a rapidly growing, violaceous preauricular skin tumor. Computed tomography of the head disclosed incidental brain and choroidal tumors. Light and electron microscopy of biopsy specimens of both the skin and the brain lesions showed Merkel cell carcinoma. Ophthalmoscopy, fluorescein angiography, and A and B echography revealed a solid choroidal mass. The brain and skin tumors responded well to irradiation. A radioactive episcleral plaque was applied subsequently to the choroidal tumor. All tumors regressed, and the patient was doing well 28 months later. To our knowledge this is the first case of presumed choroidal metastasis of Merkel cell carcinoma

  14. Expression of adrenomedullin in human colorectal tumors and its role in cell growth and invasion in vitro and in xenograft growth in vivo

    International Nuclear Information System (INIS)

    Nouguerède, Emilie; Berenguer, Caroline; Garcia, Stéphane; Bennani, Bahia; Delfino, Christine; Nanni, Isabelle; Dahan, Laetitia; Gasmi, Mohamed; Seitz, Jean-François; Martin, Pierre-Marie; Ouafik, L'Houcine

    2013-01-01

    Adrenomedullin (AM) is a multifunctional peptide vasodilator that transduces its effects through calcitonin receptor-like receptor/receptor activity-modifying protein-2 and -3 (CLR/RAMP2 and CLR/RAMP3). In this study, real-time quantitative reverse transcription demonstrated a significant expression of AM mRNA in tumor samples from colorectal cancer (CRC) patients in clinical stage II, III, and IV when compared with normal colorectal tissue. AM, CLR, RAMP2, and RAMP3 proteins were immunohistochemically localized in the carcinomatous epithelial compartment of CRC tissue. Tissue microarray analysis revealed a clear increase of AM, CLR, RAMP2, and RAMP3 staining in lymph node and distant metastasis when compared with primary tumors. The human colon carcinoma cells HT-29 expressed and secreted AM into the culture medium with a significant increase under hypoxia. Treatment of HT-29 cells with synthetic AM stimulated cell proliferation and invasion in vitro. Incubation with anti-AM antibody (αAM), anti-AM receptors antibodies (αAMR), or AM antagonist AM 22–52 inhibited significantly basal levels of proliferation of HT-29 cells, suggesting that AM may function as an autocrine growth factor for CRC cells. Treatment with αAM significantly suppressed the growth of HT-29 tumor xenografts in vivo. Histological examination of αAM-treated tumors showed evidence of disruption of tumor vascularity with decreased microvessel density, depletion of endothelial cells and pericytes, and increased tumor cell apoptosis. These findings highlight the potential importance of AM and its receptors in the progression of CRC and support the conclusion that αAM treatment inhibits tumor growth by suppression of angiogenesis and tumor growth, suggesting that AM may be a useful therapeutic target

  15. Geometrical approach to tumor growth.

    Science.gov (United States)

    Escudero, Carlos

    2006-08-01

    Tumor growth has a number of features in common with a physical process known as molecular beam epitaxy. Both growth processes are characterized by the constraint of growth development to the body border, and surface diffusion of cells and particles at the growing edge. However, tumor growth implies an approximate spherical symmetry that makes necessary a geometrical treatment of the growth equations. The basic model was introduced in a former paper [C. Escudero, Phys. Rev. E 73, 020902(R) (2006)], and in the present work we extend our analysis and try to shed light on the possible geometrical principles that drive tumor growth. We present two-dimensional models that reproduce the experimental observations, and analyze the unexplored three-dimensional case, for which interesting conclusions on tumor growth are derived.

  16. Some growth factors in neoplastic tissues of brain tumors of different histological structure

    Directory of Open Access Journals (Sweden)

    O. I. Kit

    2016-01-01

    Full Text Available Introduction. Pathologic angiogenesis is typical for angiogenic diseases including tumor growth. Vascular endothelial growth factor (VEGF, fibroblast growth factor (FGF, transforming growth factor alpha and beta (which are also known as “triggers” of angiogenesis, and other factors (Gacche, Meshram, 2013; Nijaguna et al., 2015 play a special role in its development. Evaluation of the important mechanisms of angiogenesis in physiological and pathological conditions remains to be a subject of heightened interest for the past 30 years. It is known that VEGF A is the main trigger of growing blood vessels into the tumor tissue. This is specific mitogen signal for endothelial cells that triggers the mechanisms of cell division and migration. VEGF-induced tumor vasculature has a number of structural and functional features that provide growth and progression of tumors, including increased permeability of blood vessels and their chaotic arrangement.Objective: to study in comparative aspect the level of certain growth factors in the following tissues: glioblastomas, brain metastasis of the breast cancer, meningiomas as well as corresponding peritumoral areas.Materials and methods. Tissue samples were obtained from 56 patients admitted to the surgical treatment in Rostov Research Institute of Oncology: 24 patients had glioblastomas, 19 patients had brain metastasis of the breast cancer, 13 patients with meningiomas without peritumoral edema. Histological control was carried out in all cases. Age of patients ranged from 35 to 72 years. The level of growth factor was detected in the samples of tumor tissue and regions immediately adjacent to the tumor foci (peritumoral area by the method of immunoassay and using standard test systems. The following growth factor were detected: VEGF-A and its receptors VEGF-R1 (BenderMedSystem, Austria, VEGF-C and its receptor VEGF-R3 (BenderMedSystem, Austria, EGF (Biosource, USA, IFR-1 and IFR-2 (Mediagnost, USA, TGF

  17. Structural alterations in tumor-draining lymph nodes before papillary thyroid carcinoma metastasis.

    Science.gov (United States)

    Hinson, Andrew M; Massoll, Nicole A; Jolly, Lee Ann; Stack, Brendan C; Bodenner, Donald L; Franco, Aime T

    2017-08-01

    The purpose of this study was to define and characterize the thyroid tumor-draining lymph nodes in genetically engineered mice harboring thyroid-specific expression of oncogenic Braf V600E with and without Pten insufficiency. After intratumoral injection of methylene blue, the lymphatic drainage of the thyroid gland was visualized in real time. The thyroid gland/tumor was resected en bloc with the respiratory system for histological analysis. Although mice harboring Braf V600E mutations were smaller in body size compared with their wild-type (WT) littermates, the size of their thyroid glands and deep cervical lymph nodes were significantly larger. Additionally, the tumor-draining lymph nodes showed increased and enlarged lymphatic sinuses that were distributed throughout the cortex and medulla. Tumor-reactive lymphadenopathy and histiocytosis, but no frank metastases, were observed in all mice harboring Braf V600E mutations. The tumor-draining lymph nodes undergo significant structural alterations in immunocompetent mice, and this may represent a primer for papillary thyroid carcinoma (PTC) metastasis. © 2017 Wiley Periodicals, Inc.

  18. Long non-coding RNA MALAT1 acts as a competing endogenous RNA to promote malignant melanoma growth and metastasis by sponging miR-22.

    Science.gov (United States)

    Luan, Wenkang; Li, Lubo; Shi, Yan; Bu, Xuefeng; Xia, Yun; Wang, Jinlong; Djangmah, Henry Siaw; Liu, Xiaohui; You, Yongping; Xu, Bin

    2016-09-27

    Long non-coding RNAs (lncRNAs) are involved in tumorigenesis. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), an lncRNAs, is associated with the growth and metastasis of many human tumors, but its biological roles in malignant melanoma remain unclear. In this study, the aberrant up-regulation of MALAT1 was detected in melanoma. We determined that MALAT1 promotes melanoma cells proliferation, invasion and migration by sponging miR-22. MiR-22 was decreased and acted as a tumor suppressor in melanoma, and MMP14 and Snail were the functional targets of miR-22. Furthermore, MALAT1 could modulate MMP14 and Snail by operating as a competing endogenous RNA (ceRNA) for miR-22. The effects of MALAT1 in malignant melanoma is verified using a xenograft model. This finding elucidates a new mechanism for MALAT1 in melanoma development and provides a potential target for melanoma therapeutic intervention.

  19. The IL-6/JAK/Stat3 Feed-Forward Loop Drives Tumorigenesis and Metastasis12

    Science.gov (United States)

    Chang, Qing; Bournazou, Eirini; Sansone, Pasquale; Berishaj, Marjan; Gao, Sizhi Paul; Daly, Laura; Wels, Jared; Theilen, Till; Granitto, Selena; Zhang, Xinmin; Cotari, Jesse; Alpaugh, Mary L; de Stanchina, Elisa; Manova, Katia; Li, Ming; Bonafe, Massimiliano; Ceccarelli, Claudio; Taffurelli, Mario; Santini, Donatella; Altan-Bonnet, Gregoire; Kaplan, Rosandra; Norton, Larry; Nishimoto, Norihiro; Huszar, Dennis; Lyden, David; Bromberg, Jacqueline

    2013-01-01

    We have investigated the importance of interleukin-6 (IL-6) in promoting tumor growth and metastasis. In human primary breast cancers, increased levels of IL-6 were found at the tumor leading edge and positively correlated with advanced stage, suggesting a mechanistic link between tumor cell production of IL-6 and invasion. In support of this hypothesis, we showed that the IL-6/Janus kinase (JAK)/signal transducer and activator of transcription 3 (Stat3) pathway drives tumor progression through the stroma and metastatic niche. Overexpression of IL-6 in tumor cell lines promoted myeloid cell recruitment, angiogenesis, and induced metastases. We demonstrated the therapeutic potential of interrupting this pathway with IL-6 receptor blockade or by inhibiting its downstream effectors JAK1/2 or Stat3. These clinically relevant interventions did not inhibit tumor cell proliferation in vitro but had profound effects in vivo on tumor progression, interfering broadly with tumor-supportive stromal functions, including angiogenesis, fibroblast infiltration, and myeloid suppressor cell recruitment in both the tumor and pre-metastatic niche. This study provides the first evidence for IL-6 expression at the leading edge of invasive human breast tumors and demonstrates mechanistically that IL-6/JAK/Stat3 signaling plays a critical and pharmacologically targetable role in orchestrating the composition of the tumor microenvironment that promotes growth, invasion, and metastasis. PMID:23814496

  20. The Loss of TGF-β Signaling Promotes Prostate Cancer Metastasis

    Directory of Open Access Journals (Sweden)

    William H. Tu

    2003-05-01

    Full Text Available In breast and colon cancers, transforming growth factor (TGIF-β signaling initially has an antineoplastic effect, inhibiting tumor growth, but eventually exerts a proneoplastic effect, increasing motility and cancer spread. In prostate cancer, studies using human samples have correlated the loss of the TGIF-β type II receptor (TβRll with higher tumor grade. To determine the effect of an inhibited TGIF-β pathway on prostate cancer, we bred transgenic mice expressing the tumorigenic SV40 large T antigen in the prostate with transgenic mice expressing a dominant negative TβRII mutant (DNIIR in the prostate. Transgene(s and TGIF-β expression were identified in the prostate and decreased protein levels of plasminogen activator inhibitor type I, as a marker for TGIF-β signaling, correlated with expression of the DNIIR. Although the sizes of the neoplastic prostates were not enlarged, increased amounts of metastasis were observed in mice expressing both transgenes compared to age-matched control mice expressing only the large T antigen transgene. Our study demonstrates for the first time that a disruption of TGIF-β signaling in prostate cancer plays a causal role in promoting tumor metastasis.

  1. Hyaluronan suppresses prostate tumor cell proliferation through diminished expression of N-cadherin and aberrant growth factor receptor signaling

    International Nuclear Information System (INIS)

    Bharadwaj, Alamelu G.; Goodrich, Nathaniel P.; McAtee, Caitlin O.; Haferbier, Katie; Oakley, Gregory G.; Wahl, James K.; Simpson, Melanie A.

    2011-01-01

    Hyaluronan (HA) production has been functionally implicated in prostate tumorigenesis and metastasis. We previously used prostate tumor cells overexpressing the HA synthesizing enzyme HAS3 or the clinically relevant hyaluronidase Hyal1 to show that excess HA production suppresses tumor growth, while HA turnover accelerates spontaneous metastasis from the prostate. Here, we examined pathways responsible for effects of HAS3 and Hyal1 on tumor cell phenotype. Detailed characterization of cell cycle progression revealed that expression of Hyal1 accelerated cell cycle re-entry following synchronization, whereas HAS3 alone delayed entry. Hyal1 expressing cells exhibited a significant reduction in their ability to sustain ERK phosphorylation upon stimulation by growth factors, and in their expression of the cyclin-dependent kinase inhibitor p21. In contrast, HAS3 expressing cells showed prolonged ERK phosphorylation and increased expression of both p21 and p27, in asynchronous and synchronized cultures. Changes in cell cycle regulatory proteins were accompanied by HA-induced suppression of N-cadherin, while E-cadherin expression and β-catenin expression and distribution remained unchanged. Our results are consistent with a model in which excess HA synthesis suppresses cell proliferation by promoting homotypic E-cadherin mediated cell-cell adhesion, consequently signaling to elevate cell cycle inhibitor expression and suppress G1- to S-phase transition.

  2. Nuclear medicine in breast cancer diagnostics: Primary tumor and lymphatic metastasis

    Science.gov (United States)

    Sinilkin, I.; Medvedeva, A.; Chernov, V.; Slonimskaya, E.; Zelchan, R.; Bragina, O.

    2017-09-01

    The purpose of the study: to assess the possibility of using nuclear medicine techniques at the stages of diagnosis and treatment of breast cancer. Materials and Methods: The study included 290 patients with breast cancer and 70 patients with benign breast tumors. The study was used as a radiopharmaceutical 99mTc-MIBI, 199Tl for imaging tumors and colloid 99mTc-Aloteh for visualization sentinel lymph nodes (SLN), colloid was injected peritumoral in four points to 80 MBq one day prior to the planned operation. Results: The sensitivity of SPECT using both 99mTc-MIBI and 199Tl for breast cancer detection was shown to be rather high, being 98.5% and 98%, respectively. It should be noted that the sensitivity of SPECT in detection of small tumors (less than 1 cm in diameter) and multicentric tumors was not high irrespective of the radioisotope used (60% and 65% with 99mTc-MIBI and 65% and 59% with 199Tl, respectively). The difference in the sensitivity was found between 99mTc-MIBI and 199T for the detection of regional lymph node metastasis (91% vs 70%). SLN were detected in 31 patients. The most commonly SLN were defined in the axillary region of 96.7%. In 22 (70.9%) patients there was no metastasis SLN. The sensitivity of the method was 91.2%, specificity of 100%. Conclusion: The specificity of SPECT with 199Tl was higher than that with 99mTc-MIBI. The data obtained show that SPECT with 199Tl can be recommended for its use as an additional breast cancer detection method in cases when other imaging techniques and histological findings are not accurate enough. The clinical study of 99mTc-Aloteh, a new radiopharmaceutical agent, has shown that the studied colloid has high uptake level in SLN and can be successfully used for visualization of SLN in patients with breast cancer.

  3. Platelet "first responders" in wound response, cancer, and metastasis.

    Science.gov (United States)

    Menter, David G; Kopetz, Scott; Hawk, Ernest; Sood, Anil K; Loree, Jonathan M; Gresele, Paolo; Honn, Kenneth V

    2017-06-01

    Platelets serve as "first responders" during normal wounding and homeostasis. Arising from bone marrow stem cell lineage megakaryocytes, anucleate platelets can influence inflammation and immune regulation. Biophysically, platelets are optimized due to size and discoid morphology to distribute near vessel walls, monitor vascular integrity, and initiate quick responses to vascular lesions. Adhesion receptors linked to a highly reactive filopodia-generating cytoskeleton maximizes their vascular surface contact allowing rapid response capabilities. Functionally, platelets normally initiate rapid clotting, vasoconstriction, inflammation, and wound biology that leads to sterilization, tissue repair, and resolution. Platelets also are among the first to sense, phagocytize, decorate, or react to pathogens in the circulation. These platelet first responder properties are commandeered during chronic inflammation, cancer progression, and metastasis. Leaky or inflammatory reaction blood vessel genesis during carcinogenesis provides opportunities for platelet invasion into tumors. Cancer is thought of as a non-healing or chronic wound that can be actively aided by platelet mitogenic properties to stimulate tumor growth. This growth ultimately outstrips circulatory support leads to angiogenesis and intravasation of tumor cells into the blood stream. Circulating tumor cells reengage additional platelets, which facilitates tumor cell adhesion, arrest and extravasation, and metastasis. This process, along with the hypercoagulable states associated with malignancy, is amplified by IL6 production in tumors that stimulate liver thrombopoietin production and elevates circulating platelet numbers by thrombopoiesis in the bone marrow. These complex interactions and the "first responder" role of platelets during diverse physiologic stresses provide a useful therapeutic target that deserves further exploration.

  4. The role of tumor cell-derived connective tissue growth factor (CTGF/CCN2) in pancreatic tumor growth.

    Science.gov (United States)

    Bennewith, Kevin L; Huang, Xin; Ham, Christine M; Graves, Edward E; Erler, Janine T; Kambham, Neeraja; Feazell, Jonathan; Yang, George P; Koong, Albert; Giaccia, Amato J

    2009-02-01

    Pancreatic cancer is highly aggressive and refractory to existing therapies. Connective tissue growth factor (CTGF/CCN2) is a fibrosis-related gene that is thought to play a role in pancreatic tumor progression. However, CCN2 can be expressed in a variety of cell types, and the contribution of CCN2 derived from either tumor cells or stromal cells as it affects the growth of pancreatic tumors is unknown. Using genetic inhibition of CCN2, we have discovered that CCN2 derived from tumor cells is a critical regulator of pancreatic tumor growth. Pancreatic tumor cells derived from CCN2 shRNA-expressing clones showed dramatically reduced growth in soft agar and when implanted s.c. We also observed a role for CCN2 in the growth of pancreatic tumors implanted orthotopically, with tumor volume measurements obtained by positron emission tomography imaging. Mechanistically, CCN2 protects cells from hypoxia-mediated apoptosis, providing an in vivo selection for tumor cells that express high levels of CCN2. We found that CCN2 expression and secretion was increased in hypoxic pancreatic tumor cells in vitro, and we observed colocalization of CCN2 and hypoxia in pancreatic tumor xenografts and clinical pancreatic adenocarcinomas. Furthermore, we found increased CCN2 staining in clinical pancreatic tumor tissue relative to stromal cells surrounding the tumor, supporting our assertion that tumor cell-derived CCN2 is important for pancreatic tumor growth. Taken together, these data improve our understanding of the mechanisms responsible for pancreatic tumor growth and progression, and also indicate that CCN2 produced by tumor cells represents a viable therapeutic target for the treatment of pancreatic cancer.

  5. Thick tumor capsule is a valuable risk factor for distant metastasis in follicular thyroid carcinoma.

    Science.gov (United States)

    Shimbashi, Wataru; Sugitani, Iwao; Kawabata, Kazuyoshi; Mitani, Hiroki; Toda, Kazuhisa; Yamada, Keiko; Sato, Yukiko

    2018-02-01

    While the biological behavior of follicular thyroid carcinoma (FTC) has been studied in great detail using clinical experience, few studies have investigated pre- or intraoperative factors related to the risk of distant metastasis (DM) among patients with FTC. The aim of this study was to analyze the characteristics of FTC with DM. This study retrospectively investigated 102 patients with FTC who underwent surgery between 1988 and 2013. We compared clinicopathological characteristics between FTC with and without DM. Univariate analysis revealed nodal metastasis (p=0.045), serum thyroglobulin (Tg) at initial operation (≥1000ng/ml; pthick tumor capsule (≥1mm; pthick tumor capsule (≥1mm), serum Tg at initial operation (≥1000ng/ml), and macroscopically widely invasive appearance as risk factors independently associated with development of DM. Patients with these risk factors should undergo total thyroidectomy and radioactive iodine ablation. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Neuroendocrine tumor of the skin of head and neck

    Directory of Open Access Journals (Sweden)

    Stošić Srboljub

    2005-01-01

    Full Text Available Background. Merkel cell carcinom is a rare neuroendrocine tumor of skin which manifests it self through aggressive growth and early regional metastasis. It develops mainly in older population. Locally, the tumor spreads intracutaneously. Case report. We showed two cases (females of 89 and 70 years old hospitalized within the last two years. The first patient was treated surgically three times. After the surgery, the patient was treated with radio therapy, and died 3 years from the beginning of the treatment. The second patient with this neuroendocrine tumor with the high malignancy potential and huge regional metastasis, was treated surgically, and died a month and a half after the operation. Conclusion. These two cases confirmed the aggressive and recidivant growth of this tumor with the difficult pathologic investigation, and the extremely bad prognosis inspite of the treatment.

  7. Therapeutic Touch Has Significant Effects on Mouse Breast Cancer Metastasis and Immune Responses but Not Primary Tumor Size.

    Science.gov (United States)

    Gronowicz, Gloria; Secor, Eric R; Flynn, John R; Jellison, Evan R; Kuhn, Liisa T

    2015-01-01

    Evidence-based integrative medicine therapies have been introduced to promote wellness and offset side-effects from cancer treatment. Energy medicine is an integrative medicine technique using the human biofield to promote well-being. The biofield therapy chosen for study was Therapeutic Touch (TT). Breast cancer tumors were initiated in mice by injection of metastatic 66cl4 mammary carcinoma cells. The control group received only vehicle. TT or mock treatments were performed twice a week for 10 minutes. Two experienced TT practitioners alternated treatments. At 26 days, metastasis to popliteal lymph nodes was determined by clonogenic assay. Changes in immune function were measured by analysis of serum cytokines and by fluorescent activated cells sorting (FACS) of immune cells from the spleen and lymph nodes. No significant differences were found in body weight gain or tumor size. Metastasis was significantly reduced in the TT-treated mice compared to mock-treated mice. Cancer significantly elevated eleven cytokines. TT significantly reduced IL-1-a, MIG, IL-1b, and MIP-2 to control/vehicle levels. FACS demonstrated that TT significantly reduced specific splenic lymphocyte subsets and macrophages were significantly elevated with cancer. Human biofield therapy had no significant effect on primary tumor but produced significant effects on metastasis and immune responses in a mouse breast cancer model.

  8. KIF26B, a novel oncogene, promotes proliferation and metastasis by activating the VEGF pathway in gastric cancer.

    Science.gov (United States)

    Zhang, H; Ma, R-R; Wang, X-J; Su, Z-X; Chen, X; Shi, D-B; Guo, X-Y; Liu, H-T; Gao, P

    2017-10-05

    Tumor metastasis is the main reason of cancer-related death for gastric cancer (GC) patients and gene expression microarray data indicate that kinesin family member 26B (KIF26B) is one of the most upregulated genes in metastatic GC samples. Specifically, KIF26B expression was upregulated in a stepwise manner from non-tumorous gastric mucosa, primary GC tissues without metastasis, via primary GC tissues with metastasis, to secondary lymph node metastatic (LNM) foci. Increased expression of KIF26B was correlated with tumor size, positive LNM or distant metastases and poor prognosis. KIF26B, negatively regulated by miR-372, promoted GC cell proliferation and metastasis in vitro and in vivo. Mechanistic investigations confirmed that the main target of KIF26B was the vascular endothelial growth factor (VEGF) signaling pathway, particularly by inhibition or overexpression of VEGFA, PXN, FAK, PIK3CA, BCL2 and CREB1. Thus, KIF26B, a novel oncogene regulated by miR-372, promotes proliferation and metastasis through the VEGF pathway in GC.

  9. Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals

    Science.gov (United States)

    Gupta, Subash C.; Kim, Ji Hye; Prasad, Sahdeo

    2010-01-01

    Almost 25 centuries ago, Hippocrates, the father of medicine, proclaimed “Let food be thy medicine and medicine be thy food.” Exploring the association between diet and health continues today. For example, we now know that as many as 35% of all cancers can be prevented by dietary changes. Carcinogenesis is a multistep process involving the transformation, survival, proliferation, invasion, angiogenesis, and metastasis of the tumor and may take up to 30 years. The pathways associated with this process have been linked to chronic inflammation, a major mediator of tumor progression. The human body consists of about 13 trillion cells, almost all of which are turned over within 100 days, indicating that 70,000 cells undergo apoptosis every minute. Thus, apoptosis/cell death is a normal physiological process, and it is rare that a lack of apoptosis kills the patient. Almost 90% of all deaths due to cancer are linked to metastasis of the tumor. How our diet can prevent cancer is the focus of this review. Specifically, we will discuss how nutraceuticals, such as allicin, apigenin, berberine, butein, caffeic acid, capsaicin, catechin gallate, celastrol, curcumin, epigallocatechin gallate, fisetin, flavopiridol, gambogic acid, genistein, plumbagin, quercetin, resveratrol, sanguinarine, silibinin, sulforaphane, taxol, γ-tocotrienol, and zerumbone, derived from spices, legumes, fruits, nuts, and vegetables, can modulate inflammatory pathways and thus affect the survival, proliferation, invasion, angiogenesis, and metastasis of the tumor. Various cell signaling pathways that are modulated by these agents will also be discussed. PMID:20737283

  10. C/EBPα Short-Activating RNA Suppresses Metastasis of Hepatocellular Carcinoma through Inhibiting EGFR/β-Catenin Signaling Mediated EMT.

    Directory of Open Access Journals (Sweden)

    Hongbo Huan

    Full Text Available Hepatocellular carcinoma is associated with high mortality, and tumor metastasis is an important reason for poor prognosis. However, metastasis has not been effectively prevented in clinical therapy and the mechanisms underlying metastasis have not been fully characterized. CCAAT/enhancer-binding protein-α (C/EBPα is a transcriptional regulator with an essential role in tumor metastasis. We used short-activating RNAs (saRNA to enhance expression of C/EBPα. Intravenous injection of C/EBPα-saRNA in a nude mouse liver orthotopic xenograft tumor model inhibited intrahepatic and distant metastasis. C/EBPα-saRNA-treated mice showed increased serum levels of albumin and decreased alanine aminotransferase (ALT, glutamic-oxalacetic transaminase (AST, indicating a role of C/EBPα in improving liver function. Migration and invasion were inhibited in hepatoma cell lines transfected with C/EBPα-saRNA. We also observed an inhibition of epithelial-mesenchymal transition (EMT and suppression of epidermal growth factor receptor (EGFR, EGFR phosphorylation, and β-catenin in C/EBPa-saRNA-transfected cells. Our results suggested that C/EBPα-saRNA successfully inhibited HCC metastasis by inhibiting EGFR/β-catenin signaling pathway mediated EMT in vitro and in vivo.

  11. Reactive Astrocytes in Brain Metastasis

    Directory of Open Access Journals (Sweden)

    David Wasilewski

    2017-12-01

    Full Text Available Brain metastasis, the secondary growth of malignant cells within the central nervous system (CNS, exceeds the incidence of primary brain tumors (i.e., gliomas by tenfold and are seemingly on the rise owing to the emergence of novel targeted therapies that are more effective in controlling extracranial disease relatively to intracranial lesions. Despite the fact that metastasis to the brain poses a unmet clinical problem, with afflicted patients carrying significant morbidity and a fatal prognosis, our knowledge as to how metastatic cells manage to adapt to the tissue environment of the CNS remains limited. Answering this question could pave the way for novel and more specific therapeutic modalities in brain metastasis by targeting the specific makeup of the brain metastatic niche. In regard to this, astrocytes have emerged as the major host cell type that cancer cells encounter and interact with during brain metastasis formation. Similarly to other CNS disorders, astrocytes become reactive and respond to the presence of cancer cells by changing their phenotype and significantly influencing the outcome of disseminated cancer cells within the CNS. Here, we summarize the current knowledge on the contribution of reactive astrocytes in brain metastasis by focusing on the signaling pathways and types of interactions that play a crucial part in the communication with cancer cells and how these could be translated into innovative therapies.

  12. Augmentation of Breast Cancer Growth and Metastasis by Chronic Stressor Exposure

    Science.gov (United States)

    2012-07-01

    stress with diagnosis and successive treatment. Psychosocial stressors can activate the sympathetic nervous system (SNS) to release the catecholamine...matrix is believed to play a pivotal role in the early steps of tumor cell migration and metastasis [14]. The arrangement of collagen fibers is uniquely...cancer patients. 18 REFERENCES 1. Andersen BL, Yang H, Farrar W, et al. Psychological intervention improves survival for breast cancer patients

  13. [A Case of Transverse Colon Cancer with Liver Metastasis and Tumor Thrombosis of Portal Vein Effectively Treated with Chemotherapy].

    Science.gov (United States)

    Aida, Toshiaki; Shiobara, Masayuki; Wakatsuki, Kazuo; Arai, Shuka; Suda, Kosuke; Miyazawa, Kotaro; Miyoshi, Tetsutaro; Takahashi, Yoshihisa; Yoshioka, Shigeru

    2018-02-01

    The patient was a 70-year-old man. He was diagnosed with advanced transverse colon cancer. A computed tomography (CT)revealed liver metastasis and tumor thrombosis of portal vein. We started combination chemotherapy with capecita- bine/oxaliplatin(CapeOX). Perforation of the tumor was observed 5 days after CapeOX therapy was started. Treatment with abscess drainage and ileostmy, infection was controlled and general condition was improved. After 9 courses of CapeOX, we changed chemotherapy regimen to irinotecan/tegafur-gimeracil-oteracilpotassium (IRIS)due to strong side effects. In CT and FDG-PET examination after 8 courses of IRIS, the tumor of transverse colon, liver metastasis, and the tumor thrombosis of portalvein became unclear. A year and 6 months have passed since chemotherapy was started, recurrence was not observed. For the patients with unresectable colorectal cancer, it is necessary to consider multidisciplinary treatments including chemotherapy while considering the general condition of them.

  14. Tumor Budding Detection by Immunohistochemical Staining is Not Superior to Hematoxylin and Eosin Staining for Predicting Lymph Node Metastasis in pT1 Colorectal Cancer.

    Science.gov (United States)

    Okamura, Takuma; Shimada, Yoshifumi; Nogami, Hitoshi; Kameyama, Hitoshi; Kobayashi, Takashi; Kosugi, Shin-ichi; Wakai, Toshifumi; Ajioka, Yoichi

    2016-05-01

    Tumor budding is recognized as an important risk factor for lymph node metastasis in pT1 colorectal cancer. Immunohistochemical staining for cytokeratin has the potential to improve the objective diagnosis of tumor budding over detection based on hematoxylin and eosin staining. However, it remains unclear whether tumor budding detected by immunohistochemical staining is a significant predictor of lymph node metastasis in pT1 colorectal cancer. The purpose of this study was to clarify the clinical significance of tumor budding detected by immunohistochemical staining in comparison with that detected by hematoxylin and eosin staining. This was a retrospective study. The study was conducted at Niigata University Medical & Dental Hospital. We enrolled 265 patients with pT1 colorectal cancer who underwent surgery with lymph node dissection. Tumor budding was evaluated by both hematoxylin and eosin and immunohistochemical staining with the use of CAM5.2 antibody. Receiver operating characteristic curve analyses were conducted to determine the optimal cutoff values for tumor budding detected by hematoxylin and eosin and CAM5.2 staining. Univariate and multivariate analyses were performed to identify the significant factors for predicting lymph node metastasis. Receiver operating characteristic curve analyses revealed that the cutoff values for tumor budding detected by hematoxylin and eosin and CAM5.2 staining for predicting lymph node metastases were 5 and 8. On multivariate analysis, histopathological differentiation (OR, 6.21; 95% CI, 1.16-33.33; p = 0.03) and tumor budding detected by hematoxylin and eosin staining (OR, 4.91; 95% CI, 1.64-14.66; p = 0.004) were significant predictors for lymph node metastasis; however, tumor budding detected by CAM5.2 staining was not a significant predictor. This study was limited by potential selection bias because surgically resected specimens were collected instead of endoscopically resected specimens. Tumor budding detected by

  15. Interaction of tumor cells with the microenvironment

    Directory of Open Access Journals (Sweden)

    Lehnert Hendrik

    2011-09-01

    Full Text Available Abstract Recent advances in tumor biology have revealed that a detailed analysis of the complex interactions of tumor cells with their adjacent microenvironment (tumor stroma is mandatory in order to understand the various mechanisms involved in tumor growth and the development of metastasis. The mutual interactions between tumor cells and cellular and non-cellular components (extracellular matrix = ECM of the tumor microenvironment will eventually lead to a loss of tissue homeostasis and promote tumor development and progression. Thus, interactions of genetically altered tumor cells and the ECM on the one hand and reactive non-neoplastic cells on the other hand essentially control most aspects of tumorigenesis such as epithelial-mesenchymal-transition (EMT, migration, invasion (i.e. migration through connective tissue, metastasis formation, neovascularisation, apoptosis and chemotherapeutic drug resistance. In this mini-review we will focus on these issues that were recently raised by two review articles in CCS.

  16. Nasopharyngeal carcinoma with pericardial metastasis

    Directory of Open Access Journals (Sweden)

    Shang-Wen Chen

    2011-07-01

    Full Text Available Nasopharyngeal carcinoma (NPC is prevalent in Taiwan and is characterized by a high frequency of nodal metastasis. The most common organs with distal metastases are the bones, lungs, and liver, with extremely rare cases to the pericardium. Herein, we report a rare case with NPC who presented with dyspnea and orthopnea. Serial studies, including pericardial biopsy, revealed NPC with pericardial metastasis and pericardial effusion. The tumor cells of both the original and metastatic tumors were positive for Epstein–Barr virus by in situ hybridization. This is the first histologically confirmed case of NPC with pericardial metastasis.

  17. RYBP Inhibits Progression and Metastasis of Lung Cancer by Suppressing EGFR Signaling and Epithelial-Mesenchymal Transition

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Dinglin

    2017-04-01

    Full Text Available Lung cancer (LC is a common lethal malignancy with rapid progression and metastasis, and Ring1 and YY1 binding protein (RYBP has been shown to suppress cell growth in human cancers. This study aimed to investigate the role of RYBP in LC progression and metastasis. In this study, a total of 149 LC patients were recruited, and the clinical stage of their tumors, metastasis status, survival time, presence of epidermal growth factor receptor (EGFR mutation, and RYBP expression levels were measured. RYBP silencing and overexpression were experimentally performed in LC cell lines and in nude mice, and the expressions of genes in EGFR-related signaling pathways and epithelial-mesenchymal transition (EMT were detected. The results showed that RYBP was downregulated in LC compared with adjacent normal tissues, and low RYBP expression was associated with a more severe clinical stage, high mortality, high metastasis risk, and poor survival. Cell proliferation and xenograft growth were inhibited by RYBP overexpression, whereas proliferation and xenograft growth were accelerated by RYBP silencing. EGFR and phosphorylated-EGFR levels were upregulated when RYBP was silenced, whereas EGFR, p-EGFR, p-AKT, and p-ERK were downregulated when RYBP was overexpressed. Low RYBP expression was related to a high metastasis risk, and metastasized tumors showed low RYBP levels. Cell migration and invasion were promoted by silencing RYBP but were inhibited by overexpressed RYBP. In addition, the EMT marker vimentin showed diminished expression, and E-cadherin was promoted by the overexpression of RYBP. In conclusion, our data suggest that RYBP suppresses cell proliferation and LC progression by impeding the EGFR-ERK and EGFR-AKT signaling pathways and thereby inhibiting cell migration and invasion and LC metastasis through the suppression of EMT.

  18. A novel peptide derived from human apolipoprotein E is an inhibitor of tumor growth and ocular angiogenesis.

    Directory of Open Access Journals (Sweden)

    Partha S Bhattacharjee

    2011-01-01

    Full Text Available Angiogenesis is a hallmark of tumor development and metastasis and now a validated target for cancer treatment. We previously reported that a novel dimer peptide (apoEdp derived from the receptor binding region of human apolipoprotein E (apoE inhibits virus-induced angiogenesis. However, its role in tumor anti-angiogenesis is unknown. This study demonstrates that apoEdp has anti-angiogenic property in vivo through reduction of tumor growth in a mouse model and ocular angiogenesis in a rabbit eye model. Our in vitro studies show that apoEdp inhibits human umbilical vein endothelial cell proliferation, migration, invasion and capillary tube formation. We document that apoEdp inhibits vascular endothelial growth factor-induced Flk-1 activation as well as downstream signaling pathways that involve c-Src, Akt, eNOS, FAK, and ERK1/2. These in vitro data suggest potential sites of the apoE dipeptide inhibition that could occur in vivo.This is the first evidence that a synthetic dimer peptide mimicking human apoE has anti-angiogenesis functions and could be an anti-tumor drug candidate.

  19. Evaluating Changes to Blood-Brain Barrier Integrity in Brain Metastasis over Time and after Radiation Treatment

    Directory of Open Access Journals (Sweden)

    Donna H. Murrell

    2016-06-01

    Full Text Available INTRODUCTION: The incidence of brain metastasis due to breast cancer is increasing, and prognosis is poor. Treatment is challenging because the blood-brain barrier (BBB limits efficacy of systemic therapies. In this work, we develop a clinically relevant whole brain radiotherapy (WBRT plan to investigate the impact of radiation on brain metastasis development and BBB permeability in a murine model. We hypothesize that radiotherapy will decrease tumor burden and increase tumor permeability, which could offer a mechanism to increase drug uptake in brain metastases. METHODS: Contrast-enhanced magnetic resonance imaging (MRI and high-resolution anatomical MRI were used to evaluate BBB integrity associated with brain metastases due to breast cancer in the MDA-MB-231-BR-HER2 model during their natural development. Novel image-guided microirradiation technology was employed to develop WBRT treatment plans and to investigate if this altered brain metastatic growth or permeability. Histology and immunohistochemistry were performed on whole brain slices corresponding with MRI to validate and further investigate radiological findings. RESULTS: Herein, we show successful implementation of microirradiation technology that can deliver WBRT to small animals. We further report that WBRT following diagnosis of brain metastasis can mitigate, but not eliminate, tumor growth in the MDA-MB-231-BR-HER2 model. Moreover, radiotherapy did not impact BBB permeability associated with metastases. CONCLUSIONS: Clinically relevant WBRT is not curative when delivered after MRI-detectable tumors have developed in this model. A dose of 20 Gy in 2 fractions was not sufficient to increase tumor permeability such that it could be used as a method to increase systemic drug uptake in brain metastasis.

  20. Mechanisms of Glioma Formation: Iterative Perivascular Glioma Growth and Invasion Leads to Tumor Progression, VEGF-Independent Vascularization, and Resistance to Antiangiogenic Therapy

    Directory of Open Access Journals (Sweden)

    Gregory J. Baker

    2014-07-01

    Full Text Available As glioma cells infiltrate the brain they become associated with various microanatomic brain structures such as blood vessels, white matter tracts, and brain parenchyma. How these distinct invasion patterns coordinate tumor growth and influence clinical outcomes remain poorly understood. We have investigated how perivascular growth affects glioma growth patterning and response to antiangiogenic therapy within the highly vascularized brain. Orthotopically implanted rodent and human glioma cells are shown to commonly invade and proliferate within brain perivascular space. This form of brain tumor growth and invasion is also shown to characterize de novo generated endogenous mouse brain tumors, biopsies of primary human glioblastoma (GBM, and peripheral cancer metastasis to the human brain. Perivascularly invading brain tumors become vascularized by normal brain microvessels as individual glioma cells use perivascular space as a conduit for tumor invasion. Agent-based computational modeling recapitulated biological perivascular glioma growth without the need for neoangiogenesis. We tested the requirement for neoangiogenesis in perivascular glioma by treating animals with angiogenesis inhibitors bevacizumab and DC101. These inhibitors induced the expected vessel normalization, yet failed to reduce tumor growth or improve survival of mice bearing orthotopic or endogenous gliomas while exacerbating brain tumor invasion. Our results provide compelling experimental evidence in support of the recently described failure of clinically used antiangiogenics to extend the overall survival of human GBM patients.

  1. Angiosarcoma of the Thyroid and Regional Lymph Node Metastasis

    Directory of Open Access Journals (Sweden)

    Lutfi Dogan

    2013-10-01

    Full Text Available Thyroid angiosarcomas are typically infiltrative and large tumors with very similar clinical findings of anaplastic carcinoma of thyroid. Early hematogenous metastasis is very frequent, but regional lymph node metastasis is quite rare. We present a case of angiosarcoma of the thyroid gland in a 68 years old man with regional lymph node metastasis. Total thyroidectomy with right modified radical neck dissection was applied. Four out of 19 lymph nodes dissected were seen to contain metastasis. Metastatic tumor was composed of sarcomatous areas containing large numbers of blood filled clefts. There after the surgery PET-CT was performed and multiple metastatic involvements were reported. Thyroid angiosarcomas are completely different tumors from angiomatoid anaplastic carcinomas. Longer survival with these tumors is only possible with agressive surgery and in case of regional LN metastasis, neck dissection should be done.

  2. Lung Metastasis Mimicking Fingertip Infection

    Science.gov (United States)

    Soylemez, Salih; Demiroglu, Murat; Yayla, Mehmet Ali; Ozkan, Korhan; Alpan, Bugra; Ozger, Harzem

    2015-01-01

    Metastasis fingers (acral metastasis) are finding a poor prognosis. Past medical history should be questioned and metastasis from primary tumor should be kept in mind in patients with pain, swelling, and hyperemia in fingers. Successful surgical treatment on acral metastasis does not extend the life expectancy; however, it reduces the patient's pain during his terminal period, saves the functions of the limb, and increases life comfort. PMID:26236517

  3. Lung Metastasis Mimicking Fingertip Infection

    Directory of Open Access Journals (Sweden)

    Salih Soylemez

    2015-01-01

    Full Text Available Metastasis fingers (acral metastasis are finding a poor prognosis. Past medical history should be questioned and metastasis from primary tumor should be kept in mind in patients with pain, swelling, and hyperemia in fingers. Successful surgical treatment on acral metastasis does not extend the life expectancy; however, it reduces the patient’s pain during his terminal period, saves the functions of the limb, and increases life comfort.

  4. Biochemomechanical poroelastic theory of avascular tumor growth

    Science.gov (United States)

    Xue, Shi-Lei; Li, Bo; Feng, Xi-Qiao; Gao, Huajian

    2016-09-01

    Tumor growth is a complex process involving genetic mutations, biochemical regulations, and mechanical deformations. In this paper, a thermodynamics-based nonlinear poroelastic theory is established to model the coupling among the mechanical, chemical, and biological mechanisms governing avascular tumor growth. A volumetric growth law accounting for mechano-chemo-biological coupled effects is proposed to describe the development of solid tumors. The regulating roles of stresses and nutrient transport in the tumor growth are revealed under different environmental constraints. We show that the mechano-chemo-biological coupling triggers anisotropic and heterogeneous growth, leading to the formation of layered structures in a growing tumor. There exists a steady state in which tumor growth is balanced by resorption. The influence of external confinements on tumor growth is also examined. A phase diagram is constructed to illustrate how the elastic modulus and thickness of the confinements jointly dictate the steady state of tumor volume. Qualitative and quantitative agreements with experimental observations indicate the developed model is capable of capturing the essential features of avascular tumor growth in various environments.

  5. The Potential Role of the Proteases Cathepsin D and Cathepsin L in the Progression and Metastasis of Epithelial Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Md Zahidul Islam Pranjol

    2015-11-01

    Full Text Available Epithelial ovarian cancer (EOC is the leading cause of death from gynecologic malignancies and has a poor prognosis due to relatively unspecific early symptoms, and thus often advanced stage, metastasized cancer at presentation. Metastasis of EOC occurs primarily through the transcoelomic route whereby exfoliated tumor cells disseminate within the abdominal cavity, particularly to the omentum. Primary and metastatic tumor growth requires a pool of proangiogenic factors in the microenvironment which propagate new vasculature in the growing cancer. Recent evidence suggests that proangiogenic factors other than the widely known, potent angiogenic factor vascular endothelial growth factor may mediate growth and metastasis of ovarian cancer. In this review we examine the role of some of these alternative factors, specifically cathepsin D and cathepsin L.

  6. The Potential Role of the Proteases Cathepsin D and Cathepsin L in the Progression and Metastasis of Epithelial Ovarian Cancer.

    Science.gov (United States)

    Pranjol, Md Zahidul Islam; Gutowski, Nicholas; Hannemann, Michael; Whatmore, Jacqueline

    2015-11-20

    Epithelial ovarian cancer (EOC) is the leading cause of death from gynecologic malignancies and has a poor prognosis due to relatively unspecific early symptoms, and thus often advanced stage, metastasized cancer at presentation. Metastasis of EOC occurs primarily through the transcoelomic route whereby exfoliated tumor cells disseminate within the abdominal cavity, particularly to the omentum. Primary and metastatic tumor growth requires a pool of proangiogenic factors in the microenvironment which propagate new vasculature in the growing cancer. Recent evidence suggests that proangiogenic factors other than the widely known, potent angiogenic factor vascular endothelial growth factor may mediate growth and metastasis of ovarian cancer. In this review we examine the role of some of these alternative factors, specifically cathepsin D and cathepsin L.

  7. Plasma soluble podoplanin is a novel marker for the diagnosis of tumor occurrence and metastasis.

    Science.gov (United States)

    Zhao, Xingpeng; Pan, Yanfang; Ren, Weihua; Shen, Fei; Xu, Mengqiao; Yu, Min; Fu, Jianxin; Xia, Lijun; Ruan, Changgeng; Zhao, Yiming

    2018-02-01

    Podoplanin (PDPN) is expressed on many tumors and is involved in tumor metastasis. The objective of the present study was to develop an ELISA for determining soluble PDPN (sPDPN) levels as a potential novel tumor marker in plasma of patients with cancers for detection of tumor occurrence and metastasis. Mouse monoclonal antibodies (mAb) against human PDPN were developed and characterized. Two anti-PDPN mAb, SZ-163 and SZ-168, were used in a sandwich ELISA to detect plasma sPDPN in patients with cancers and in normal individuals. The levels of sPDPN were detected in patients with adenocarcinoma (87 cases, 31.09 ± 5.48 ng/ml), squamous cell carcinoma (86 cases, 6.91 ± 0.59 ng/ml), lung cancer (45 cases, 26.10 ± 7.62 ng/ml), gastric cancer (38 cases, 23.71 ± 6.90 ng/ml) and rectal cancer (27 cases, 32.98 ± 9.88 ng/ml), which were significantly higher than those in normal individuals (99 cases, 1.31 ± 0.13 ng/ml) (P < .0001). Moreover, the sPDPN levels in patients with metastatic cancers were higher (192 cases, 30.35 ± 3.63 ng/ml) than those in non-metastatic cancer patients (92 cases, 6.28 ± 0.77 ng/ml) (P < .0001). The post-treatment sPDPN levels of cancer patients (n = 156) (4.47 ± 0.35 ng/ml) were significantly lower compared with those seen pre-treatment (n = 128) (43.74 ± 4.97 ng/ml) (P < .0001). These results showed that an ELISA method was successfully established for quantitation of plasma sPDPN and plasma sPDPN levels correlate significantly with tumor occurrence and metastasis. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  8. Transforming growth factor-β1 promotes breast cancer metastasis by downregulating miR-196a-3p expression.

    Science.gov (United States)

    Chen, Yan; Huang, Shai; Wu, Bo; Fang, Jiankai; Zhu, Minsheng; Sun, Li; Zhang, Lifeng; Zhang, Yongsheng; Sun, Maomin; Guo, Lingling; Wang, Shouli

    2017-07-25

    Transforming growth factor-β1 is considered a key contributor to the progression of breast cancer. MicroRNAs are important factors in the development and progression of many malignancies. In the present study, upon studies of breast cancer cell lines and tissues, we showed that microRNA -196a-3p is decreased by transforming growth factor-β1 in breast cancer cells and associated with breast cancer progression. We identified neuropilin-2 as a target gene of microRNA -196a-3p and showed that it is regulated by transforming growth factor-β1. Moreover, transforming growth factor-β1-mediated inhibition of microRNA -196a-3p and activation of neuropilin-2were required for transforming growth factor-β1-induced migration and invasion of breast cancer cells. In addition, neuropilin-2 expression was suppressed in breast tumors, particularly in triple-negative breast cancers. Collectively, our findings strongly indicate that microRNA -196a-3p is a predictive biomarker of breast cancer metastasis and patient survival and a potential therapeutic target in metastatic breast cancer.

  9. Ampullary carcinoma with cutaneous metastasis

    Directory of Open Access Journals (Sweden)

    I-Ting Liu

    2016-06-01

    Full Text Available Carcinoma of the ampulla of Vater is a rare gastrointestinal tumor. Additionally, cutaneous metastasis from such an internal malignancy is also uncommon. We reported the case of a 55-year-old man afflicted with ampullary carcinoma with cutaneous metastasis. The patient did not undergo the standard Whipple procedure but received chemotherapy due to apparent left neck lymph node metastasis noted by initial PET/CT imaging. The skin metastasis presented as a left neck infiltrating purpuric lesion, which was confirmed by skin biopsy approximately one year after the patient's disease was first diagnosed. Thereafter, the patient received further chemotherapy pursuant to his course of medical management. Skin metastasis usually represents a poor patient prognosis. In these cases, treatment of cutaneous metastasis typically includes systemic chemotherapy and local management such as radiation therapy or tumor excision. And when choosing a chemotherapy regimen for the ampullary cancer, the histological subtypes (intestinal or pancreatobiliary should be comprehensively considered. In our review of the literature, the intestinal type seems to have less distant lymph node metastasis, advanced local invasion, as well as recurrence than pancreatobiliary type of ampullary cancer.

  10. Bevacizumab Inhibits Breast Cancer-Induced Osteolysis, Surrounding Soft Tissue Metastasis, and Angiogenesis in Rats as Visualized by VCT and MRI

    Directory of Open Access Journals (Sweden)

    Tobias Bäuerle

    2008-05-01

    Full Text Available The aim of this study was to evaluate the effect of an antiangiogenic treatment with the vascular endothelial growth factor antibody bevacizumab in an experimental model of breast cancer bone metastasis and to monitor osteolysis, soft tissue tumor, and angiogenesis in bone metastasis noninvasively by volumetric computed tomography (VCT and magnetic resonance imaging (MRI. After inoculation of MDA-MB-231 human breast cancer cells into nude rats, bone metastasis was monitored with contrast-enhanced VCT and MRI from day 30 to day 70 after tumor cell inoculation, respectively. Thereby, animals of the treatment group (10 mg/kg bevacizumab IV weekly, n = 15 were compared with sham-treated animals (n = 17. Treatment with bevacizumab resulted in a significant difference versus control in osteolytic as well as soft tissue lesion sizes (days 50 to 70 and 40 to 70 after tumor cell inoculation, respectively; P < .05. This observation was paralleled with significantly reduced vascularization in the treatment group as shown by reduced increase in relative signal intensity in dynamic contrast-enhanced MRI from days 40 to 70 (P < .05. Contrast-enhanced VCT and histology confirmed decreased angiogenesis as well as new bone formation after application of bevacizumab. In conclusion, bevacizumab significantly inhibited osteolysis, surrounding soft tissue tumor growth, and angiogenesis in an experimental model of breast cancer bone metastasis as visualized by VCT and MRI.

  11. The hypoxia-inducible factor-responsive proteins semaphorin 4D and vascular endothelial growth factor promote tumor growth and angiogenesis in oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hua; Yang, Ying-Hua [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Binmadi, Nada O. [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Department of Oral Basic and Clinical Sciences, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Proia, Patrizia [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Department of Sports Science (DISMOT), University of Palermo, Via Eleonora Duse 2 90146, Palermo (Italy); Basile, John R., E-mail: jbasile@umaryland.edu [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Greenebaum Cancer Center, 22S. Greene Street, Baltimore, MD 21201 (United States)

    2012-08-15

    Growth and metastasis of solid tumors requires induction of angiogenesis to ensure the delivery of oxygen, nutrients and growth factors to rapidly dividing transformed cells. Through either mutations, hypoxia generated by cytoreductive therapies, or when a malignancy outgrows its blood supply, tumor cells undergo a change from an avascular to a neovascular phenotype, a transition mediated by the hypoxia-inducible factor (HIF) family of transcriptional regulators. Vascular endothelial growth factor (VEGF) is one example of a gene whose transcription is stimulated by HIF. VEGF plays a crucial role in promoting tumor growth and survival by stimulating new blood vessel growth in response to such stresses as chemotherapy or radiotherapy-induced hypoxia, and it therefore has become a tempting target for neutralizing antibodies in the treatment of advanced neoplasms. Emerging evidence has shown that the semaphorins, proteins originally associated with control of axonal growth and immunity, are regulated by changes in oxygen tension as well and may play a role in tumor-induced angiogenesis. Through the use of RNA interference, in vitro and in vivo angiogenesis assays and tumor xenograft experiments, we demonstrate that expression of semaphorin 4D (SEMA4D), which is under the control of the HIF-family of transcription factors, cooperates with VEGF to promote tumor growth and vascularity in oral squamous cell carcinoma (OSCC). We use blocking antibodies to show that targeting SEMA4D function along with VEGF could represent a novel anti-angiogenic therapeutic strategy for the treatment of OSCC and other solid tumors. -- Highlights: Black-Right-Pointing-Pointer Similar to VEGF, SEMA4D promotes angiogenesis in vitro and in vivo. Black-Right-Pointing-Pointer Both VEGF and SEMA4D are produced by OSCC cells in a HIF-dependent manner. Black-Right-Pointing-Pointer These factors combine to elicit a robust pro-angiogenic phenotype in OSCC. Black-Right-Pointing-Pointer Anti-SEMA4D

  12. The hypoxia-inducible factor-responsive proteins semaphorin 4D and vascular endothelial growth factor promote tumor growth and angiogenesis in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Zhou, Hua; Yang, Ying-Hua; Binmadi, Nada O.; Proia, Patrizia; Basile, John R.

    2012-01-01

    Growth and metastasis of solid tumors requires induction of angiogenesis to ensure the delivery of oxygen, nutrients and growth factors to rapidly dividing transformed cells. Through either mutations, hypoxia generated by cytoreductive therapies, or when a malignancy outgrows its blood supply, tumor cells undergo a change from an avascular to a neovascular phenotype, a transition mediated by the hypoxia-inducible factor (HIF) family of transcriptional regulators. Vascular endothelial growth factor (VEGF) is one example of a gene whose transcription is stimulated by HIF. VEGF plays a crucial role in promoting tumor growth and survival by stimulating new blood vessel growth in response to such stresses as chemotherapy or radiotherapy-induced hypoxia, and it therefore has become a tempting target for neutralizing antibodies in the treatment of advanced neoplasms. Emerging evidence has shown that the semaphorins, proteins originally associated with control of axonal growth and immunity, are regulated by changes in oxygen tension as well and may play a role in tumor-induced angiogenesis. Through the use of RNA interference, in vitro and in vivo angiogenesis assays and tumor xenograft experiments, we demonstrate that expression of semaphorin 4D (SEMA4D), which is under the control of the HIF-family of transcription factors, cooperates with VEGF to promote tumor growth and vascularity in oral squamous cell carcinoma (OSCC). We use blocking antibodies to show that targeting SEMA4D function along with VEGF could represent a novel anti-angiogenic therapeutic strategy for the treatment of OSCC and other solid tumors. -- Highlights: ► Similar to VEGF, SEMA4D promotes angiogenesis in vitro and in vivo. ► Both VEGF and SEMA4D are produced by OSCC cells in a HIF-dependent manner. ► These factors combine to elicit a robust pro-angiogenic phenotype in OSCC. ► Anti-SEMA4D blocking antibody inhibits Plexin-B1 activation. ► SEMA4D is a valid anti-angiogenic target in the

  13. LGR4 modulates breast cancer initiation, metastasis, and cancer stem cells.

    Science.gov (United States)

    Yue, Zhiying; Yuan, Zengjin; Zeng, Li; Wang, Ying; Lai, Li; Li, Jing; Sun, Peng; Xue, Xiwen; Qi, Junyi; Yang, Zhengfeng; Zheng, Yansen; Fang, Yuanzhang; Li, Dali; Siwko, Stefan; Li, Yi; Luo, Jian; Liu, Mingyao

    2018-05-01

    The fourth member of the leucine-rich repeat-containing GPCR family (LGR4, frequently referred to as GPR48) and its cognate ligands, R-spondins (RSPOs) play crucial roles in the development of multiple organs as well as the survival of adult stem cells by activation of canonical Wnt signaling. Wnt/β-catenin signaling acts to regulate breast cancer; however, the molecular mechanisms determining its spatiotemporal regulation are largely unknown. In this study, we identified LGR4 as a master controller of Wnt/β-catenin signaling-mediated breast cancer tumorigenesis, metastasis, and cancer stem cell (CSC) maintenance. LGR4 expression in breast tumors correlated with poor prognosis. Either Lgr4 haploinsufficiency or mammary-specific deletion inhibited mouse mammary tumor virus (MMTV)- PyMT- and MMTV- Wnt1-driven mammary tumorigenesis and metastasis. Moreover, LGR4 down-regulation decreased in vitro migration and in vivo xenograft tumor growth and lung metastasis. Furthermore, Lgr4 deletion in MMTV- Wnt1 tumor cells or knockdown in human breast cancer cells decreased the number of functional CSCs by ∼90%. Canonical Wnt signaling was impaired in LGR4-deficient breast cancer cells, and LGR4 knockdown resulted in increased E-cadherin and decreased expression of N-cadherin and snail transcription factor -2 ( SNAI2) (also called SLUG), implicating LGR4 in regulation of epithelial-mesenchymal transition. Our findings support a crucial role of the Wnt signaling component LGR4 in breast cancer initiation, metastasis, and breast CSCs.-Yue, Z., Yuan, Z., Zeng, L., Wang, Y., Lai, L., Li, J., Sun, P., Xue, X., Qi, J., Yang, Z., Zheng, Y., Fang, Y., Li, D., Siwko, S., Li, Y., Luo, J., Liu, M. LGR4 modulates breast cancer initiation, metastasis, and cancer stem cells.

  14. PRL-3 siRNA inhibits the metastasis of B16-BL6 mouse melanoma cells in vitro and in vivo.

    Science.gov (United States)

    Qian, Feng; Li, Yu-Pei; Sheng, Xia; Zhang, Zi-Chao; Song, Ran; Dong, Wei; Cao, Shao-Xian; Hua, Zi-Chun; Xu, Qiang

    2007-01-01

    Phosphatase of regenerating liver-3 (PRL-3) has been proposed to promote the invasion of tumor cells to metastasis sites. However, the effect of PRL-3 on spontaneous metastasis has not been clearly demonstrated, and whether PRL-3 could become a new therapeutic target in malignant tumor is still unknown. In this study, we used PRL-3 siRNA as a molecular medicine to specifically reduce the expression of PRL-3 in B16-BL6 cells, a highly metastatic melanoma cell line. In vitro, PRL-3 siRNA significantly inhibited cell adhesion and migration, but had no effect on cell proliferation. In the spontaneous metastatic tumor model in vivo, PRL-3 siRNA treatment remarkably inhibited the proliferation of primary tumor, prevented tumor cells from invading the draining lymph nodes, and prolonged the life span of mice. Therefore, our results indicate that PRL-3 plays a critical role in promoting the whole process of spontaneous metastasis and tumor growth initiation, and that inhibiting PRL-3 will improve malignant tumor therapy.

  15. Metastasis of Lung Adenocarcinoma to the Gingiva: A Rare Case Report

    Directory of Open Access Journals (Sweden)

    M. Rajini Kanth

    2015-05-01

    Full Text Available Metastatic tumors account for 1% of all oral malignancies. Metastasis to jaw bones is common, particularly in the mandible, rare in the oral soft tissues, and account for only 0.1% of oral malignancies. The majority of metastatic cases (70% reported in the literature have primary tumors located in the lung, breast, kidney, and colon. Metastasis is a biological complex process that involves detachment from the surrounding cells, regulation of cell motility, invasion, survival, proliferation, and evasion of the immune system. Clinical presentation of metastatic tumors is variable, which may create diagnostic dilemma or may lead to erroneous diagnosis. Metastatic tumors clinically mimic as dental infections. Metastasis to the oral soft tissue from lung cancer, especially gingiva is a rare condition. Metastasis to the gingiva can affect the oral function, speech, and nutrition. Most of the cases in the literature reported that lesion presented in oral soft tissues before the diagnosis of primary tumors. Here we report a case of 62-year-old male patient with metastasis from lung to the gingiva, where the metastasis was detected before primary tumor.

  16. A rare case of primary mesenteric gastrointestinal stromal tumor with metastasis to the cervix uteri

    Science.gov (United States)

    Gupta, Nupur; Mittal, Suneeta; Lal, Neena; Misra, Renu; Kumar, Lalit; Bhalla, Sunita

    2007-01-01

    Background Gastrointestinal stromal tumors are CD117 (C Kit) positive mesenchymal neoplasms, that may arise anywhere in the gastrointestinal tract. Their current therapy is imatinib mesylate before or after surgery. Case presentation We describe a case of 17-year-old female with metastasis to the cervix uteri of a primary mesenteric gastrointestinal tumor. Conclusion Surgery remains the mainstay of known curative treatment. The manifestations of GIST are not restricted to the typical locations within the bowel; may have very unusual metastatic sites or infiltrations per continuitatem. PMID:18045506

  17. VEGF-dependent mechanism of anti-angiogenic action of diamond nanoparticles in Glioblastoma Multiforme tumor

    DEFF Research Database (Denmark)

    Grodzik, M.; Sawosz, E.; Wierzbicki, M.

    2012-01-01

    Malignant gliomas are highly lethal cancers dependent on angiogenesis. The concept of treating tumors by inhibiting tumor angiogenesis was first articulated almost 30 years ago. Inhibition of tumor angiogenesis suppresses both tumor growth and metastasis. We determined the inhibition effect of di...

  18. RELATIONSHIP BETWEEN EXPRESSION OF MATRIX METALLOPROTEINASES AND MORPHOLOGICAL HETEROGENEITY, TUMOR DIFFERENTIATION AND LYMPHOGENOUS METASTASIS OF SQUAMOUS CELL LARYNGEAL CARCINOMA

    Directory of Open Access Journals (Sweden)

    О. V. Savenkova

    2015-01-01

    Full Text Available The study included 58 patients with stage Т1–3N0–3M0–1 squamous cell laryngeal carcinoma. The age range was from 31 to 77 years. Patients received no cancer treatment before surgery. The expression of metalloproteinases (ММP-1, -2, -9, their inhibitors (TIMP-1, -2 and inductor of metalloproteinase expression (CD147 were determined in tumor cells of different structures of squamous cell carcinoma using immunohistochemical method. Results were compared with the presence of lymphogenous metastases. Results. Five morphological structures of squamous cell carcinomas were studied: with keratinization (type 1, with cells of basaloid and acanthocyte types without kartinization (type 2, with cells of basaloid type (type 3, with pronounced cellular polymorphism (type 4 and single tumor cells (type 5. With regard to combination of these structures, tumors were divided into high-grade, low-grade and mixed tumor structures. In tumors without lymphogenous metastases, the increased expression of ММP-1, -2, and-9 was only revealed in discrete cells. In tumors with lymphogenic metastases, the increased MMP-9 expression was observed in more differentiated structures of 1, 2 and 3 types. Less frequent lymphogenous metastasis of vocal cord carcinomas was associated only with tumors of mixed structure, in which the expression of TIMP1 was reduced.  Conclusion. To assess the histological differentiation of squamous cell carcinoma of the larynx, it should be considered a combination of high and low-grade tumor structures. The expression of metalloproteinases should be studied considering morphological heterogeneity of squamous cell carcinomas. The frequency of lymphogenous metastasis of high-or low-grade squamous cell carcinoma of the vocal cords did not differ from that of squamous cell carcinoma of the supra-glottal area. The frequency of lymphogenous metastasis was significantly lower in mixed squamous cell carcinomas of the vocal cords than in similar

  19. Induction of erythropoiesis by hypoxia-inducible factor prolyl hydroxylase inhibitors without promotion of tumor initiation, progression, or metastasis in a VEGF-sensitive model of spontaneous breast cancer

    Science.gov (United States)

    Seeley, Todd W; Sternlicht, Mark D; Klaus, Stephen J; Neff, Thomas B; Liu, David Y

    2017-01-01

    The effects of pharmacological hypoxia-inducible factor (HIF) stabilization were investigated in the MMTV-Neundl-YD5 (NeuYD) mouse model of breast cancer. This study first confirmed the sensitivity of this model to increased vascular endothelial growth factor (VEGF), using bigenic NeuYD;MMTV-VEGF-25 mice. Tumor initiation was dramatically accelerated in bigenic animals. Bigenic tumors were also more aggressive, with shortened doubling times and increased lung metastasis as compared to NeuYD controls. In separate studies, NeuYD mice were treated three times weekly from 7 weeks of age until study end with two different HIF prolyl hydroxylase inhibitors (HIF-PHIs), FG-4497 or roxadustat (FG-4592). In NeuYD mice, HIF-PHI treatments elevated erythropoiesis markers, but no differences were detected in tumor onset or the phenotypes of established tumors. PMID:28331872

  20. A Tissue Engineering Approach to Study the Progression of Breast Tumor Metastasis in Bone

    National Research Council Canada - National Science Library

    Che, Mingxin; Nie, Daotai

    2005-01-01

    Most patients dying of breast cancer suffer painful bone metastasis. It is our hypothesis that the invasive growth and progression of breast metastatic lesions in bone requires the participation of various constituents from "soil...

  1. A Tissue Engineering Approach to Study the Progression of Breast Tumor Metastasis in Bone

    National Research Council Canada - National Science Library

    Che, Mingxin; Nie, Daotai

    2006-01-01

    Most patients dying of breast cancer suffer painful bone metastasis. It is our hypothesis that the invasive growth and progression of breast metastatic lesions in bone requires the participation of various constituents from "soil...

  2. Combination use of lentinan with x-ray therapy in mouse experimental tumor system, (3). Combination effect on the metastatic tumors

    Energy Technology Data Exchange (ETDEWEB)

    Shiio, Tsuyoshi; Ohishi, Kazuo; Niitsu, Iwayasu; Hayashibara, Hiromi; Tsuchiya, Yoshiharu; Yoshihama, Takashi; Moriyuki, Hirobumi

    1988-03-01

    Combination effect of lentinan with X-ray irradiation on the metastatic mouse tumors, L1210, KLN205 and Lewis lung carcinoma were studied. Combination use of lentinan with X-ray therapy prolonged the life of BDF/sub 1/ mice bearing L1210 leukemia in the suitable combination conditions. Combination effects of lentinan with X-ray therapy were also observed on the suppression of the growth of KLN205 squamus cell carcinoma and on the suppression of the metastasis of Lewis lung carcinoma. Especially, in the case that lentinan was administered before or after X-ray local irradiation in the pulmorary metastasis system of Lewis lung carcinoma, a marked suppressin of pulmonary metastasis was observed and 2 to 4 mice among 8 tested mice were tumor free.

  3. PROSTATE CANCER TOPOGRAPHY AND PATTERNS OF LYMPH NODE METASTASIS

    Science.gov (United States)

    Tokuda, Yuji; Carlino, Lauren J.; Gopalan, Anuradha; Tickoo, Satish K.; Kaag, Matthew G.; Guillonneau, Bertrand; Eastham, James A.; Scher, Howard I.; Scardino, Peter T.; Reuter, Victor E.; Fine, Samson W.

    2012-01-01

    Pelvic lymph node (LN) metastasis is a well-recognized route of prostate cancer spread. However, the relationship between topography and pathologic features of primary prostatic cancers and patterns of pelvic LN metastasis has not been well studied. We reviewed original slides of radical prostatectomies and pelvic LN dissections from 125 patients with LN metastasis and recorded total # of LN excised / laterality of positive LN, as well as localization, staging parameters, lymphovascular invasion and tumor volume of primary tumors. LN Quantity and Distribution 14.6 (mean) and 13 (median) LN were resected. 76 (61%), 33 (26%) and 16 (13%) cases had 1, 2 and > 2 positive LN, while 58, 44 and 20 cases had LN metastasis on the right (R), left (L), and bilaterally. Pathologic Features 86% (108/125) and 37% (46/125) demonstrated extraprostatic extension and seminal vesicle invasion, while 64% showed lymphovascular invasion. Mean and median total tumor volume was 6.39 and 3.92 cc, with ≥ 50% and ≥ 90% Gleason patterns 4/5 in 105 (84%) and 73 (58%) cases, respectively. Correlation with Dominant Tumor Location Dominant lesions on RP: 50 R lobe, 44 L lobe, 31 bilateral. 15/50 (30%) R lobe and 18/44 (41%) L lobe dominant tumors had LN metastasis on the contralateral side. Only 4% (5/125) of cases were associated with anterior dominant tumors. 30–40% of LN metastases occur contralateral to the dominant tumor. LN metastasis is overwhelmingly associated with high grade, high stage and large volume disease. LN positivity is rarely associated with anterior dominant tumors. PMID:21107093

  4. Geometrical approach to tumor growth

    OpenAIRE

    Escudero, Carlos

    2006-01-01

    Tumor growth has a number of features in common with a physical process known as molecular beam epitaxy. Both growth processes are characterized by the constraint of growth development to the body border, and surface diffusion of cells/particles at the growing edge. However, tumor growth implies an approximate spherical symmetry that makes necessary a geometrical treatment of the growth equations. The basic model was introduced in a former article [C. Escudero, Phys. Rev. E 73, 020902(R) (200...

  5. Lentivirus-mediated knockdown of NLK inhibits small-cell lung cancer growth and metastasis

    Directory of Open Access Journals (Sweden)

    Lv MT

    2016-11-01

    Full Text Available Mutian Lv,1 Yaming Li,1 Xin Tian,2 Shundong Dai,3,4 Jing Sun,5 Guojiang Jin,6 Shenyi Jiang7 1Department of Nuclear Medicine, 2Molecular Oncology Laboratory of Cancer Research Institute, The First Affiliated Hospital of China Medical University, 3Department of Pathology, The First Affiliated Hospital, College of Basic Medical Sciences of China Medical University, 4Department of Pathology, Institute of Pathology and Pathophysiology, 5Department of Immunology and Biotherapy, Liaoning Cancer Hospital and Institute, 6Department of Laboratory Medicine, 7Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China Abstract: Nemo-like kinase (NLK, an evolutionarily conserved serine/threonine kinase, has been recognized as a critical regulator of various cancers. In this study, we investigated the role of NLK in human small-cell lung cancer (SCLC, which is the most aggressive form of lung cancer. NLK expression was evaluated by quantitative real-time polymerase chain reaction in 20 paired fresh SCLC tissue samples and found to be noticeably elevated in tumor tissues. Lentivirus-mediated RNAi efficiently suppressed NLK expression in NCI-H446 cells, resulting in a significant reduction in cell viability and proliferation in vitro. Moreover, knockdown of NLK led to cell cycle arrest at the S-phase via suppression of Cyclin A, CDK2, and CDC25A, which could contribute to cell growth inhibition. Furthermore, knockdown of NLK decreased the migration of NCI-H446 cells and downregulated matrix metalloproteinase 9. Treatment with NLK short hairpin RNA significantly reduced SCLC tumor growth in vivo. In conclusion, this study suggests that NLK plays an important role in the growth and metastasis of SCLC and may serve as a potential therapeutic target for the treatment of SCLC. Keywords: NLK, SCLC, RNAi, proliferation, migration

  6. High NUCB2 expression level is associated with metastasis and may promote tumor progression in colorectal cancer.

    Science.gov (United States)

    Xie, Jun; Chen, Lina; Chen, Wenbin

    2018-06-01

    Nucleobindin 2 (NUCB2) is mainly expressed in the hypothalamic nuclei and has a proven role in energy homeostasis. It has also been recently reported to have a key role in tumor progression. However, the clinical significance of NUCB2 in colorectal cancer (CRC) remains unknown. In the present study, the level of NUCB2 mRNA was quantified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in 34 paired fresh tissues from patients with CRC. RT-qPCR was followed by immunohistochemical (IHC) staining of NUCB2 protein in tissue microarrays of 251 samples to evaluate the clinical significance of NUCB2 in CRC. The RT-qPCR indicated an upregulation of NUCB2 mRNA in CRC tissues compared with normal tissues (P=0.027). IHC staining indicated a positive association between elevated NUCB2 expression and lymph node metastasis or tumor-node-metastasis (TNM) stage. Patients with CRC and lymph node metastasis demonstrated a higher expression of NUCB2 (49.5%, 50/101) compared with those without lymph node metastasis (36.7%, 55/150; P=0.043). Furthermore, NUCB2 expression was also higher in patients with CRC and TNM stage III-IV compared with those with TNM stage I-II (50.9% vs. 35.0%; P=0.011). However, Kaplan-Meier analysis indicated no significant association between NUCB2 expression and disease-free survival of patients. Additionally, multivariate analysis did not identify the upregulation of NUCB2 as an independent prognostic predictor in patients with CRC (P=0.755). In conclusion, the present study demonstrated that upregulation of NUCB2 is significantly associated with CRC metastasis, indicating that NUCB2 may be a cancer-associated oncogene associated with the aggressive progression of CRC.

  7. Bortezomib induces apoptosis and suppresses cell growth and metastasis by inactivation of Stat3 signaling in chondrosarcoma.

    Science.gov (United States)

    Bao, Xing; Ren, Tingting; Huang, Yi; Ren, Chongmin; Yang, Kang; Zhang, Hongliang; Guo, Wei

    2017-02-01

    Bortezomib, formerly known as PS341, is a novel proteasome inhibitor with in vitro and in vivo antineoplastic effects in many malignancies. However, diverse antitumor mechanisms of bortezomib have been identified in many investigations and preclinical studies. Understanding the molecular and cellular mechanisms through which bortezomib acts will improve the therapeutic utility of this drug in different cancer types. In the present study, we investigated the in vitro and in vivo effects of bortezomib on chondrosarcoma. Bortezomib selectively inhibited cell growth in chondrosarcoma cells but not in normal articular cartilage cells. In addition to growth inhibition, apoptosis and cell cycle arrest, bortezomib triggered alleviation of migratory and invasive properties of chondrosarcoma cells. Mechanistically, signal transducer and activator of transcription 3 (Stat3) and its downstream targets Bcl-2, cyclin D1 and c-Myc was inactivated by bortezomib treatment. Accordingly, small interfering RNA (siRNA)-mediated Stat3 knockdown enhanced bortezomib-induced apoptosis, and concomitantly enhanced the inhibitory effect of bortezomib on cell viability, migration and invasion. Moreover, while Slug, MMP9, MMP2, CD44, N-cadherin and vimentin, the mesenchymal cell markers, were repressed by bortezomib concomitant increased expression of E-cadherin was observed. In vivo, bortezomib downregulated Stat3 activity and mesenchymal cell marker expression, induced apoptosis and inhibition of metastasis and tumor growth. Together, inactivation of Stat3 signaling contributes to bortezomib-induced inhibition of tumor growth, migration and invation on chondrosarcoma. Bortezomib demonstrates an antineoplastic role on chondrosarcoma both in vitro and in vivo. These beneficial effects can be explained by bortezomib-mediated Stat3 supression. The present study suggests a promising therapeutics target in chondrosarcoma and probably in other kinds of metastatic malignant tumors.

  8. Tumor cell-derived microparticles polarize M2 tumor-associated macrophages for tumor progression.

    Science.gov (United States)

    Ma, Ruihua; Ji, Tiantian; Chen, Degao; Dong, Wenqian; Zhang, Huafeng; Yin, Xiaonan; Ma, Jingwei; Liang, Xiaoyu; Zhang, Yi; Shen, Guanxin; Qin, Xiaofeng; Huang, Bo

    2016-04-01

    Despite identification of macrophages in tumors (tumor-associated macrophages, TAM) as potential targets for cancer therapy, the origin and function of TAM in the context of malignancy remain poorly characterized. Here, we show that microparticles (MPs), as a by-product, released by tumor cells act as a general mechanism to mediate M2 polarization of TAM. Taking up tumor MPs by macrophages is a very efficient process, which in turn results in the polarization of macrophages into M2 type, not only leading to promoting tumor growth and metastasis but also facilitating cancer stem cell development. Moreover, we demonstrate that the underlying mechanism involves the activation of the cGAS/STING/TBK1/STAT6 pathway by tumor MPs. Finally, in addition to murine tumor MPs, we show that human counterparts also possess consistent effect on human M2 polarization. These findings provide new insights into a critical role of tumor MPs in remodeling of tumor microenvironment and better understanding of the communications between tumors and macrophages.

  9. Long-term exposure to hypoxia inhibits tumor progression of lung cancer in rats and mice

    International Nuclear Information System (INIS)

    Yu, Lunyin; Hales, Charles A

    2011-01-01

    Hypoxia has been identified as a major negative factor for tumor progression in clinical observations and in animal studies. However, the precise role of hypoxia in tumor progression has not been fully explained. In this study, we extensively investigated the effect of long-term exposure to hypoxia on tumor progression in vivo. Rats bearing transplanted tumors consisting of A549 human lung cancer cells (lung cancer tumor) were exposed to hypoxia for different durations and different levels of oxygen. The tumor growth and metastasis were evaluated. We also treated A549 lung cancer cells (A549 cells) with chronic hypoxia and then implanted the hypoxia-pretreated cancer cells into mice. The effect of exposure to hypoxia on metastasis of Lewis lung carcinoma in mice was also investigated. We found that long-term exposure to hypoxia a) significantly inhibited lung cancer tumor growth in xenograft and orthotopic models in rats, b) significantly reduced lymphatic metastasis of the lung cancer in rats and decreased lung metastasis of Lewis lung carcinoma in mice, c) reduced lung cancer cell proliferation and cell cycle progression in vitro, d) decreased growth of the tumors from hypoxia-pretreated A549 cells, e) decreased Na + -K + ATPase α1 expression in hypoxic lung cancer tumors, and f) increased expression of hypoxia inducible factors (HIF1α and HIF2α) but decreased microvessel density in the lung cancer tumors. In contrast to lung cancer, the growth of tumor from HCT116 human colon cancer cells (colon cancer tumor) was a) significantly enhanced in the same hypoxia conditions, accompanied by b) no significant change in expression of Na + -K + ATPase α1, c) increased HIF1α expression (no HIF2α was detected) and d) increased microvessel density in the tumor tissues. This study demonstrated that long-term exposure to hypoxia repressed tumor progression of the lung cancer from A549 cells and that decreased expression of Na + -K + ATPase was involved in hypoxic

  10. Local recurrence and distant metastasis of supratentorial primitive neuro-ectodermal tumor in an adult patient successfully treated with intensive induction chemotherapy and maintenance temozolomide

    NARCIS (Netherlands)

    Terheggen, F.; Troost, D.; Majoie, C. B.; Leenstra, S.; Richel, D. J.

    2007-01-01

    Supratentorial primitive neuro-ectodermal tumors (PNET) in adults are very rare. Extraneural metastasis are unusual and the optimal palliative chemotherapy regimen is not established. We present a 26-year-old patient with local recurrence and distant metastasis of supratentorial PNET successfully

  11. Profil Gangguan Kognitif pada Tumor Intrakranial Primer dan Metastasis

    Directory of Open Access Journals (Sweden)

    Kartika Maharani

    2015-12-01

    Full Text Available Gangguan kognitif sering menyertai pasien tumor intrakranial dan menjadi penyebab utama disabilitas. Perbedaan patofisiologi tumor intrakranial primer (TIP dan metastasis (TM menyebabkan perbedaan gambaran klinis dan derajat  gangguan kognitif. Tujuan penelitian ini untuk mengetahui prevalensi dan profil gangguan kognitif pasien TIP dan TM. Disain penelitian potong-lintang retrospektif menggunakan data sekunder dari Poliklinik Saraf RSCM pada bulan Januari 2011-Desember 2013. Subjek berusia 18-65 tahun yang didiagnosis TIP dan TM berdasarkan anamnesis, pemeriksaan fisik, CT scan atau MRI kepala, dan atau histopatologi. Terdapat 121 subjek, 79 TIP dan 27 TM; usia rerata TIP 43,7 tahun dan TM 50,9 tahun. Pada kelompok TM mayoritas (40,7% memiliki lesi di kedua hemisfer sedangkan TIP hanya di satu hemisfer. Lokasi tumor pada TM lebih dari 1 lobus (51,9%. Gangguan kognitif lebih banyak pada TM (81,5% dibandingkan TIK (52,5% dengan domain tersering gangguan visuospasial. Subjek TM mengalami gangguan kognitif lebih berat dibandingkan TIP (rerata MMSE 20,96 dan 22,61. Gangguan kognitif lebih banyak pada kelompok TM dibandingkan TIP dengan gangguan kognitif lebih berat karena mayoritas lesi tumor mengenai lebih dari 1 lobus. Kata kunci: gangguan kognitif, tumor intrakranial, neuro-onkologi.   Cognitve Impairment in Primary and Metastatic Brain Tumors Abstract Brain tumor patients are often accompanied by a wide range of cognitive impairment as a major cause of disablility. The different pathophysiology of primary and metastatic brain tumor influences patients’ clinical signs and symptoms, and also the severity of cognitive impairment. To determine the prevalence and profile of cognitive impairment in patients with primary and metastatic brain tumors, this cross-sectional study was done on subjects of 18 to 65 years old with the diagnosis of primary and metastatic brain tumors based on anamnesis, physical examination, imaging modalities, and

  12. From Prostate to Bone: Key Players in Prostate Cancer Bone Metastasis

    International Nuclear Information System (INIS)

    Thobe, Megan N.; Clark, Robert J.; Bainer, Russell O.; Prasad, Sandip M.; Rinker-Schaeffer, Carrie W.

    2011-01-01

    Bone is the most common site for metastasis in human prostate cancer patients. Skeletal metastases are a significant cause of morbidity and mortality and overall greatly affect the quality of life of prostate cancer patients. Despite advances in our understanding of the biology of primary prostate tumors, our knowledge of how and why secondary tumors derived from prostate cancer cells preferentially localize bone remains limited. The physiochemical properties of bone, and signaling molecules including specific chemokines and their receptors, are distinct in nature and function, yet play intricate and significant roles in prostate cancer bone metastasis. Examining the impact of these facets of bone metastasis in vivo remains a significant challenge, as animal models that mimic the natural history and malignant progression clinical prostate cancer are rare. The goals of this article are to discuss (1) characteristics of bone that most likely render it a favorable environment for prostate tumor cell growth, (2) chemokine signaling that is critical in the recruitment and migration of prostate cancer cells to the bone, and (3) current animal models utilized in studying prostate cancer bone metastasis. Further research is necessary to elucidate the mechanisms underlying the extravasation of disseminated prostate cancer cells into the bone and to provide a better understanding of the basis of cancer cell survival within the bone microenvironment. The development of animal models that recapitulate more closely the human clinical scenario of prostate cancer will greatly benefit the generation of better therapies

  13. From Prostate to Bone: Key Players in Prostate Cancer Bone Metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Thobe, Megan N. [Section of Urology, Department of Surgery, The University of Chicago, Chicago, IL 60637 (United States); Clark, Robert J. [Department of Molecular Pathogenesis and Molecular Medicine, The University of Chicago, Chicago, IL 60637 (United States); Bainer, Russell O. [Department of Human Genetics, The University of Chicago, Chicago, IL 60637 (United States); Prasad, Sandip M.; Rinker-Schaeffer, Carrie W., E-mail: crinkers@uchicago.edu [Section of Urology, Department of Surgery, The University of Chicago, Chicago, IL 60637 (United States)

    2011-01-27

    Bone is the most common site for metastasis in human prostate cancer patients. Skeletal metastases are a significant cause of morbidity and mortality and overall greatly affect the quality of life of prostate cancer patients. Despite advances in our understanding of the biology of primary prostate tumors, our knowledge of how and why secondary tumors derived from prostate cancer cells preferentially localize bone remains limited. The physiochemical properties of bone, and signaling molecules including specific chemokines and their receptors, are distinct in nature and function, yet play intricate and significant roles in prostate cancer bone metastasis. Examining the impact of these facets of bone metastasis in vivo remains a significant challenge, as animal models that mimic the natural history and malignant progression clinical prostate cancer are rare. The goals of this article are to discuss (1) characteristics of bone that most likely render it a favorable environment for prostate tumor cell growth, (2) chemokine signaling that is critical in the recruitment and migration of prostate cancer cells to the bone, and (3) current animal models utilized in studying prostate cancer bone metastasis. Further research is necessary to elucidate the mechanisms underlying the extravasation of disseminated prostate cancer cells into the bone and to provide a better understanding of the basis of cancer cell survival within the bone microenvironment. The development of animal models that recapitulate more closely the human clinical scenario of prostate cancer will greatly benefit the generation of better therapies.

  14. Mathematical models of tumor growth: translating absorbed dose to tumor control probability

    International Nuclear Information System (INIS)

    Sgouros, G.

    1996-01-01

    Full text: The dose-rate in internal emitter therapy is low and time-dependent as compared to external beam radiotherapy. Once the total absorbed dose delivered to a target tissue is calculated, however, most dosimetric analyses of radiopharmaceuticals are considered complete. To translate absorbed dose estimates obtained for internal emitter therapy to biologic effect, the growth characteristics, repair capacity, and radiosensitivity of the tumor must be considered. Tumor growth may be represented by the Gompertz equation in which tumor cells increase at an exponential growth rate that is itself decreasing at an exponential rate; as the tumor increases in size, the growth rate diminishes. The empirical Gompertz expression for tumor growth may be derived from a mechanistic model in which growth is represented by a balance between tumor-cell birth and loss. The birth rate is assumed to be fixed, while the cell loss rate is time-dependent and increases with tumor size. The birth rate of the tumors may be related to their potential doubling time. Multiple biopsies of individual tumors have demonstrated a heterogeneity in the potential doubling time of tumors. By extending the mechanistic model described above to allow for sub-populations of tumor cells with different birth rates, the effect of kinetic heterogeneity within a tumor may be examined. Model simulations demonstrate that the cell kinetic parameters of a tumor are predicted to change over time and measurements obtained using a biopsy are unlikely to reflect the kinetics of the tumor throughout its growth history. A decrease in overall tumor mass, in which each sub-population is reduced in proportion to its cell number, i.e., the log-kill assumption, leads to re-growth of a tumor that has a greater proliferation rate. Therapy that is linked to the potential doubling time or to the effective proliferation rate of the tumor may lead to re-growth of a tumor that is kinetically unchanged. The simplest model of

  15. EVALUATION OF LYMPHATIC SPREAD, VISCERAL METASTASIS AND TUMORAL LOCAL INVASION IN ESOPHAGEAL CARCINOMAS.

    Science.gov (United States)

    Tustumi, Francisco; Kimura, Cintia Mayumi Sakurai; Takeda, Flavio Roberto; Sallum, Rubens Antônio Aissar; Ribeiro-Junior, Ulysses; Cecconello, Ivan

    2016-01-01

    Knowing esophageal tumors behavior in relationship to lymph node involvement, distant metastases and local tumor invasion is of paramount importance for the best esophageal tumors management. To describe lymph node involvement, distant metastases, and local tumor invasion in esophageal carcinoma, according to tumor topography and histology. A total of 444 patients with esophageal squamous cell carcinoma and 105 adenocarcinoma were retrospectively analyzed. They were divided into four groups: adenocarcinoma and squamous cell carcinoma in the three esophageal segments: cervical, middle, and distal. They were compared based on their CT scans at the time of the diagnosis. Nodal metastasis showed great relationship with of primary tumor site. Lymph nodes of hepatogastric, perigastric and peripancreatic ligaments were mainly affected in distal tumors. Periaortic, interaortocaval and portocaval nodes were more commonly found in distal squamous carcinoma; subcarinal, paratracheal and subaortic nodes in middle; neck chains were more affected in cervical squamous carcinoma. Adenocarcinoma had a higher frequency of peritoneal involvement (11.8%) and liver (24.5%) than squamous cell carcinoma. Considering the local tumor invasion, the more cranial neoplasia, more common squamous invasion of airways, reaching 64.7% in the incidence of cervical tumors. Middle esophageal tumors invade more often aorta (27.6%) and distal esophageal tumors, the pericardium and the right atrium (10.4%). Esophageal adenocarcinoma and squamous cell carcinoma in different topographies present peculiarities in lymph node involvement, distant metastasis and local tumor invasion. These differences must be taken into account in esophageal cancer patients' care. Conhecer o comportamento das neoplasias esofágicas em relação à disseminação linfonodal, distribuição de metástases e invasão local do tumor, pode auxiliar o manejo dos pacientes. Descrever o envolvimento linfonodal, disseminação metast

  16. Collagen induced arthritis increases secondary metastasis in MMTV-PyV MT mouse model of mammary cancer

    International Nuclear Information System (INIS)

    Roy, Lopamudra Das; Ghosh, Sriparna; Pathangey, Latha B; Tinder, Teresa L; Gruber, Helen E; Mukherjee, Pinku

    2011-01-01

    Several studies have demonstrated that sites of chronic inflammation are often associated with the establishment and growth of various malignancies. A common inflammatory condition in humans is autoimmune arthritis (AA). Although AA and cancer are different diseases, many of the underlying processes that contribute to the disorders of the joints and connective tissue that characterize AA also affect cancer progression and metastasis. Systemically, AA can lead to cellular infiltration and inflammation of the lungs. Several studies have reported statistically significant risk ratios between AA and breast cancer. Despite this knowledge being available, there has been minimal research linking breast cancer, arthritis, and metastasis associated with breast cancer. Notably both diseases are extremely prevalent in older post-menopausal women. To establish the novel link between arthritis induced inflammation and secondary metastasis associated with breast cancer, PyV MT mice that spontaneously develop mammary gland carcinoma were injected with Type II collagen (CII) to induce arthritis at 9 and 18 weeks of age for pre-metastatic and metastatic condition. The sites of secondary metastasis and the associated inflammatory microenvironment were evaluated. A significant increase in breast cancer-associated secondary metastasis to the lungs and bones was observed in the arthritic versus the non-arthritic PyV MT mice along with an increase in primary tumor burden. We report significant increases in the levels of interstitial cellular infiltrates and pro-inflammatory cytokines such as interleukin-17 (IL-17), interleukin-6 (IL-6), Pro- Matrix metallopeptidase 9 (Pro-MMP9), insulin like growth factor-II (GF-II) and macrophage colony stimulating factor (M-CSF) in the arthritic lung and bone milieu as well as in the circulation. These pro-inflammatory cytokines along with the inflammatory microenvironment may be the underlying factors facilitating tumor progression and metastasis in

  17. Collagen induced arthritis increases secondary metastasis in MMTV-PyV MT mouse model of mammary cancer.

    Science.gov (United States)

    Roy, Lopamudra Das; Ghosh, Sriparna; Pathangey, Latha B; Tinder, Teresa L; Gruber, Helen E; Mukherjee, Pinku

    2011-08-22

    Several studies have demonstrated that sites of chronic inflammation are often associated with the establishment and growth of various malignancies. A common inflammatory condition in humans is autoimmune arthritis (AA). Although AA and cancer are different diseases, many of the underlying processes that contribute to the disorders of the joints and connective tissue that characterize AA also affect cancer progression and metastasis. Systemically, AA can lead to cellular infiltration and inflammation of the lungs. Several studies have reported statistically significant risk ratios between AA and breast cancer. Despite this knowledge being available, there has been minimal research linking breast cancer, arthritis, and metastasis associated with breast cancer. Notably both diseases are extremely prevalent in older post-menopausal women. To establish the novel link between arthritis induced inflammation and secondary metastasis associated with breast cancer, PyV MT mice that spontaneously develop mammary gland carcinoma were injected with Type II collagen (CII) to induce arthritis at 9 and 18 weeks of age for pre-metastatic and metastatic condition. The sites of secondary metastasis and the associated inflammatory microenvironment were evaluated. A significant increase in breast cancer-associated secondary metastasis to the lungs and bones was observed in the arthritic versus the non-arthritic PyV MT mice along with an increase in primary tumor burden. We report significant increases in the levels of interstitial cellular infiltrates and pro-inflammatory cytokines such as interleukin-17 (IL-17), interleukin-6 (IL-6), Pro- Matrix metallopeptidase 9 (Pro-MMP9), insulin like growth factor-II (GF-II) and macrophage colony stimulating factor (M-CSF) in the arthritic lung and bone milieu as well as in the circulation. These pro-inflammatory cytokines along with the inflammatory microenvironment may be the underlying factors facilitating tumor progression and metastasis in

  18. Composite implants coated with biodegradable polymers prevent stimulating tumor progression

    Energy Technology Data Exchange (ETDEWEB)

    Litviakov, N. V., E-mail: nvlitv72@yandex.ru; Tsyganov, M. M., E-mail: TsyganovMM@yandex.ru; Cherdyntseva, N. V., E-mail: nvch@oncology.tomsk.ru [Tomsk Cancer Research Institute, Tomsk, 634050 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Tverdokhlebov, S. I., E-mail: tverd@tpu.ru; Bolbasov, E. N., E-mail: ebolbasov@gmail.com [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Perelmuter, V. M., E-mail: pvm@ngs.ru; Kulbakin, D. E., E-mail: kulbakin2012@gmail.com [Tomsk Cancer Research Institute, Tomsk, 634050 (Russian Federation); Zheravin, A. A., E-mail: zheravin2010@yandex.ru [Tomsk Cancer Research Institute, Tomsk, 634050 (Russian Federation); Academician E.N. Meshalkin Novosibirsk State Research Institute of Circulation Pathology, Novosibirsk (Russian Federation); Svetlichnyi, V. A., E-mail: v-svetlichnyi@bk.ru [National Research Tomsk State University, Tomsk, 634050 (Russian Federation)

    2016-08-02

    In this experiment we studied oncologic safety of model implants created using the solution blow spinning method with the use of the PURASORB PL-38 polylactic acid polymer and organic mineral filler which was obtained via laser ablation of a solid target made of dibasic calcium phosphate dihydrate. For this purpose the implant was introduced into the area of Wistar rats’ iliums, and on day 17 after the surgery the Walker sarcoma was transplanted into the area of the implant. We evaluated the implant’s influence on the primary tumor growth, hematogenous and lymphogenous metastasis of the Walker sarcoma. In comparison with sham operated animals the implant group demonstrated significant inhibition of hematogenous metastasis on day 34 after the surgery. The metastasis inhibition index (MII) equaled 94% and the metastases growth inhibition index (MGII) equaled 83%. The metastasis frequency of the Walker sarcoma in para aortic lymph nodes in the implant group was not statistically different from the control frequency; there was also no influence of the implant on the primary tumor growth noted. In case of the Walker sarcoma transplantation into the calf and the palmar pad of the ipsilateral limb to the one with the implant in the ilium, we could not note any attraction of tumor cells to the implant area, i.e. stimulation of the Walker sarcoma relapse by the implant. Thus, the research concluded that the studied implant meets the requirements of oncologic safety.

  19. Composite implants coated with biodegradable polymers prevent stimulating tumor progression

    International Nuclear Information System (INIS)

    Litviakov, N. V.; Tsyganov, M. M.; Cherdyntseva, N. V.; Tverdokhlebov, S. I.; Bolbasov, E. N.; Perelmuter, V. M.; Kulbakin, D. E.; Zheravin, A. A.; Svetlichnyi, V. A.

    2016-01-01

    In this experiment we studied oncologic safety of model implants created using the solution blow spinning method with the use of the PURASORB PL-38 polylactic acid polymer and organic mineral filler which was obtained via laser ablation of a solid target made of dibasic calcium phosphate dihydrate. For this purpose the implant was introduced into the area of Wistar rats’ iliums, and on day 17 after the surgery the Walker sarcoma was transplanted into the area of the implant. We evaluated the implant’s influence on the primary tumor growth, hematogenous and lymphogenous metastasis of the Walker sarcoma. In comparison with sham operated animals the implant group demonstrated significant inhibition of hematogenous metastasis on day 34 after the surgery. The metastasis inhibition index (MII) equaled 94% and the metastases growth inhibition index (MGII) equaled 83%. The metastasis frequency of the Walker sarcoma in para aortic lymph nodes in the implant group was not statistically different from the control frequency; there was also no influence of the implant on the primary tumor growth noted. In case of the Walker sarcoma transplantation into the calf and the palmar pad of the ipsilateral limb to the one with the implant in the ilium, we could not note any attraction of tumor cells to the implant area, i.e. stimulation of the Walker sarcoma relapse by the implant. Thus, the research concluded that the studied implant meets the requirements of oncologic safety.

  20. Clinical Significance of Lymph Node Metastasis in the Mesentery of the Terminal Ileum in Patients With Right-sided Colon Tumors at Different Locations.

    Science.gov (United States)

    Kang, Sung Il; Kim, Duck-Woo; Shin, Eun; Kim, Myung Jo; Son, Il Tae; Oh, Heung-Kwon; Kang, Sung-Bum

    2018-06-01

    There are limited reports on peri-ileal lymph node metastasis in patients with right-sided colon cancer, and little is known about their clinical significance. This study aimed to examine the role of tumor location in the prevalence and clinical significance of peri-ileal lymph node metastasis in patients with right-sided colon cancer. This is a retrospective study from a prospective cohort database. The study was conducted at a tertiary referral hospital. Patients with right-sided colon cancer treated with radical surgery in a hospital between May 2006 and September 2016 were included. The frequency of peri-ileal lymph node metastasis in the study cohort and the role of tumor location and the clinical characteristics of patients with peri-ileal lymph node metastasis were determined. We examined 752 cases with right-sided colon cancer including 82 cecal, 554 ascending colon, and 116 hepatic flexure cancer. Twenty patients (2.7%) had peri-ileal lymph node metastasis. The incidence of metastasis to peri-ileal lymph nodes was 7.3% (6/82) in patients with cecal cancer, 2.2% (12/554) in patients with ascending colon cancer, and 1.7% (2/116) in patients with hepatic flexure cancer. Three patients had stage III cancer and 17 had stage IV. All 3 patients with positive peri-ileal lymph nodes and stage III cancer had cecal tumors. In contrast, all patients with ascending colon or hepatic flexure cancer and positive peri-ileal lymph nodes had stage IV cancer. The results were limited by the retrospective design of the study and the small number of patients with peri-ileal lymph node metastasis. Peri-ileal lymph node metastasis was rare even in right-sided colon cancer and occurred mainly in stage IV. However, it occurred in some patients with locally advanced cecal cancer. These results suggest that optimal resection of the mesentery of the terminal ileum might have clinical benefit, especially in curative surgery for cecal cancer. See Video Abstract at http

  1. PTHrP drives breast tumor initiation, progression, and metastasis in mice and is a potential therapy target

    Science.gov (United States)

    Li, Jiarong; Karaplis, Andrew C.; Huang, Dao C.; Siegel, Peter M.; Camirand, Anne; Yang, Xian Fang; Muller, William J.; Kremer, Richard

    2011-01-01

    Parathyroid hormone–related protein (PTHrP) is a secreted factor expressed in almost all normal fetal and adult tissues. It is involved in a wide range of developmental and physiological processes, including serum calcium regulation. PTHrP is also associated with the progression of skeletal metastases, and its dysregulated expression in advanced cancers causes malignancy-associated hypercalcemia. Although PTHrP is frequently expressed by breast tumors and other solid cancers, its effects on tumor progression are unclear. Here, we demonstrate in mice pleiotropic involvement of PTHrP in key steps of breast cancer — it influences the initiation and progression of primary tumors and metastases. Pthrp ablation in the mammary epithelium of the PyMT-MMTV breast cancer mouse model caused a delay in primary tumor initiation, inhibited tumor progression, and reduced metastasis to distal sites. Mechanistically, it reduced expression of molecular markers of cell proliferation (Ki67) and angiogenesis (factor VIII), antiapoptotic factor Bcl-2, cell-cycle progression regulator cyclin D1, and survival factor AKT1. PTHrP also influenced expression of the adhesion factor CXCR4, and coexpression of PTHrP and CXCR4 was crucial for metastatic spread. Importantly, PTHrP-specific neutralizing antibodies slowed the progression and metastasis of human breast cancer xenografts. Our data identify what we believe to be new functions for PTHrP in several key steps of breast cancer and suggest that PTHrP may constitute a novel target for therapeutic intervention. PMID:22056386

  2. CXCR4 Protein Epitope Mimetic Antagonist POL5551 Disrupts Metastasis and Enhances Chemotherapy Effect in Triple-Negative Breast Cancer.

    Science.gov (United States)

    Xiang, Jingyu; Hurchla, Michelle A; Fontana, Francesca; Su, Xinming; Amend, Sarah R; Esser, Alison K; Douglas, Garry J; Mudalagiriyappa, Chidananda; Luker, Kathryn E; Pluard, Timothy; Ademuyiwa, Foluso O; Romagnoli, Barbara; Tuffin, Gérald; Chevalier, Eric; Luker, Gary D; Bauer, Michael; Zimmermann, Johann; Aft, Rebecca L; Dembowsky, Klaus; Weilbaecher, Katherine N

    2015-11-01

    The SDF-1 receptor CXCR4 has been associated with early metastasis and poorer prognosis in breast cancers, especially the most aggressive triple-negative subtype. In line with previous reports, we found that tumoral CXCR4 expression in patients with locally advanced breast cancer was associated with increased metastases and rapid tumor progression. Moreover, high CXCR4 expression identified a group of bone marrow-disseminated tumor cells (DTC)-negative patients at high risk for metastasis and death. The protein epitope mimetic (PEM) POL5551, a novel CXCR4 antagonist, inhibited binding of SDF-1 to CXCR4, had no direct effects on tumor cell viability, but reduced migration of breast cancer cells in vitro. In two orthotopic models of triple-negative breast cancer, POL5551 had little inhibitory effect on primary tumor growth, but significantly reduced distant metastasis. When combined with eribulin, a chemotherapeutic microtubule inhibitor, POL5551 additively reduced metastasis and prolonged survival in mice after resection of the primary tumor compared with single-agent eribulin. Hypothesizing that POL5551 may mobilize tumor cells from their microenvironment and sensitize them to chemotherapy, we used a "chemotherapy framing" dosing strategy. When administered shortly before and after eribulin treatment, three doses of POL5551 with eribulin reduced bone and liver tumor burden more effectively than chemotherapy alone. These data suggest that sequenced administration of CXCR4 antagonists with cytotoxic chemotherapy synergize to reduce distant metastases. ©2015 American Association for Cancer Research.

  3. Induction of erythropoiesis by hypoxia-inducible factor prolyl hydroxylase inhibitors without promotion of tumor initiation, progression, or metastasis in a VEGF-sensitive model of spontaneous breast cancer

    Directory of Open Access Journals (Sweden)

    Seeley TW

    2017-03-01

    Full Text Available Todd W Seeley, Mark D Sternlicht, Stephen J Klaus, Thomas B Neff, David Y Liu Therapeutics R&D, FibroGen, Inc., San Francisco, CA, USA Abstract: The effects of pharmacological hypoxia-inducible factor (HIF stabilization were investigated in the MMTV-Neundl-YD5 (NeuYD mouse model of breast cancer. This study first confirmed the sensitivity of this model to increased vascular endothelial growth factor (VEGF, using bigenic NeuYD;MMTV-VEGF-25 mice. Tumor initiation was dramatically accelerated in bigenic animals. Bigenic tumors were also more aggressive, with shortened doubling times and increased lung metastasis as compared to NeuYD controls. In separate studies, NeuYD mice were treated three times weekly from 7 weeks of age until study end with two different HIF prolyl hydroxylase inhibitors (HIF-PHIs, FG-4497 or roxadustat (FG-4592. In NeuYD mice, HIF-PHI treatments elevated erythropoiesis markers, but no differences were detected in tumor onset or the phenotypes of established tumors. Keywords: cancer progression, erythropoiesis, hypoxia-inducible factor, hypoxia-inducible factor prolyl hydroxylase inhibitors, vascular endothelial growth factor, MMTV-Neu breast cancer model

  4. Spontaneous lung metastasis formation of human Merkel cell carcinoma cell lines transplanted into scid mice.

    Science.gov (United States)

    Knips, Jill; Czech-Sioli, Manja; Spohn, Michael; Heiland, Max; Moll, Ingrid; Grundhoff, Adam; Schumacher, Udo; Fischer, Nicole

    2017-07-01

    Merkel cell carcinoma (MCC) is an aggressive skin cancer entity that frequently leads to rapid death due to its high propensity to metastasize. The etiology of most MCC cases is linked to Merkel cell polyomavirus (MCPyV), a virus which is monoclonally integrated in up to 95% of tumors. While there are presently no animal models to study the role of authentic MCPyV infection on transformation, tumorigenesis or metastasis formation, xenograft mouse models employing engrafted MCC-derived cell lines (MCCL) represent a promising approach to study certain aspects of MCC pathogenesis. Here, the two MCPyV-positive MCC cell lines WaGa and MKL-1 were subcutaneously engrafted in scid mice. Engraftment of both MCC cell lines resulted in the appearance of circulating tumor cells and metastasis formation, with WaGa-engrafted mice showing a significantly shorter survival time as well as increased numbers of spontaneous lung metastases compared to MKL-1 mice. Interestingly, explanted tumors compared to parental cell lines exhibit an upregulation of MCPyV sT-Antigen expression in all tumors, with WaGa tumors showing significantly higher sT-Antigen expression than MKL-1 tumors. RNA-Seq analysis of explanted tumors and parental cell lines furthermore revealed that in the more aggressive WaGa tumors, genes involved in inflammatory response, growth factor activity and Wnt signalling pathway are significantly upregulated, suggesting that sT-Antigen is the driver of the observed differences in metastasis formation. © 2017 UICC.

  5. Cyclophosphamide Enhances Human Tumor Growth in Nude Rat Xenografted Tumor Models

    Directory of Open Access Journals (Sweden)

    Yingjen Jeffrey Wu

    2009-02-01

    Full Text Available The effect of the immunomodulatory chemotherapeutic agent cyclophosphamide (CTX on tumor growth was investigated in primary and metastatic intracerebral and subcutaneous rat xenograft models. Nude rats were treated with CTX (100 mg/kg, intraperitoneally 24 hours before human ovarian carcinoma (SKOV3, small cell lung carcinoma (LX-1 SCLC, and glioma (UW28, U87MG, and U251 tumor cells were inoculated subcutaneously, intraperitoneally, or in the right cerebral hemisphere or were infused into the right internal carotid artery. Tumor development was monitored and recorded. Potential mechanisms were further investigated. Only animals that received both CTX and Matrigel showed consistent growth of subcutaneous tumors. Cyclophosphamide pretreatment increased the percentage (83.3% vs 0% of animals showing intraperitoneal tumors. In intracerebral implantation tumor models, CTX pretreatment increased the tumor volume and the percentage of animals showing tumors. Cyclophosphamide increased lung carcinoma bone and facial metastases after intra-arterial injection, and 20% of animals showed brain metastases. Cyclophosphamide transiently decreased nude rat white blood cell counts and glutathione concentration, whereas serum vascular endothelial growth factor was significantly elevated. Cyclophosphamide also increased CD31 reactivity, a marker of vascular endothelium, and macrophage (CD68-positive infiltration into glioma cell-inoculated rat brains. Cyclophosphamide may enhance primary and metastatic tumor growth through multiple mechanisms, including immune modulation, decreased response to oxidative stress, increased tumor vascularization, and increased macrophage infiltration. These findings may be clinically relevant because chemotherapy may predispose human cancer subjects to tumor growth in the brain or other tissues.

  6. Platelet-tumor cell interaction with the subendothelial extracellular matrix: relationship to cancer metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Yahalom, J; Biran, S; Fuks, Z; Vlodavsky, I [Hadassah University Hospital, Jerusalem (Israel). Dept. of Radiation and Clinical Oncology; Eldor, A [Hadassah University Hospital, Jerusalem (Israel). Dept. of Hematology

    1985-04-01

    Dissemination of neoplastic cells within the body involves invasion of blood vessels by tumor cells. This requires adhesion of blood-borne cells to the luminal surface of the vascular endothelium, invasion through the endothelial cell layer and local dissolution of the subendothelial basement membrane. The authors studied the interaction of platelets and tumor cells with cultured vascular endothelial cells and their secreted basement membrane-like extracellular matrix (ECM). Interaction of platelets with this ECM was associated with platelet activation, aggregation and degradation of heparan sulfate in the ECM by means of the platelet heparitinase. Biochemical and scanning electron microscopy (SEM) studies have demonstrated that platelets may detect even minor gaps between adjacent endothelial cells and degrade the ECM heparan sulfate. Platelets were also shown to recruit lymphoma cells into minor gaps in the vascular endothelium. It is suggested that the platelet heparitinase is involved in the impairment of the integrity of the vessel wall and thus play a role in tumor cell metastasis.

  7. Renal Metastasis from Primary Cervical Cancer: A Case Report

    International Nuclear Information System (INIS)

    Jeon, Seong Woo; Kim, See Hyung; Kwon, Sun Young

    2013-01-01

    Metastasis of malignant tumors to the kidney is clinically rare and often discovered by autopsy. Primary lymphoma and lung cancer are known that can metastasize to the kidney. Other malignant tumor metastasis to the kidney is very unusual. Primary cervical cancer metastasis to adjacent pelvic organs and lymph nodes are well known followed by abdominal solid organs such as the liver and adrenal glands. However, reported primary cervical cancer metastasis to the kidney is extremely rare and mostly appeared as bilateral multiple renal masses. We report here on a rare case of unilateral single renal metastasis from primary cervical cancer after concur- rent chemoradiotherapy.

  8. Control of Both Myeloid Cell Infiltration and Angiogenesis by CCR1 Promotes Liver Cancer Metastasis Development in Mice

    Directory of Open Access Journals (Sweden)

    Mathieu Paul Rodero

    2013-06-01

    Full Text Available Expression of the CC chemokine receptor 1 (CCR1 by tumor cells has been associated with protumoral activity; however, its role in nontumoral cells during tumor development remains elusive. Here, we investigated the role of CCR1 deletion on stromal and hematopoietic cells in a liver metastasis tumor model. Metastasis development was strongly impaired in CCR1-deficient mice compared to control mice and was associated with reduced liver monocyte infiltration. To decipher the role of myeloid cells, sublethally irradiated mice were reconstituted with CCR1-deficient bone marrow (BM and showed better survival rates than the control reconstituted mice. These results point toward the involvement of CCR1 myeloid cell infiltration in the promotion of tumor burden. In addition, survival rates were extended in CCR1-deficient mice receiving either control or CCR1-deficient BM, indicating that host CCR1 expression on nonhematopoietic cells also supports tumor growth. Finally, we found defective tumor-induced neoangiogenesis (in vitro and in vivo in CCR1-deficient mice. Overall, our results indicate that CCR1 expression by both hematopoietic and nonhematopoietic cells favors tumor aggressiveness. We propose CCR1 as a potential therapeutical target for liver metastasis therapy.

  9. Prevention of growth and metastasis of murine melanoma through enhanced natural-killer cytotoxicity by fatty acid-conjugate of protopanaxatriol.

    Science.gov (United States)

    Hasegawa, Hideo; Suzuki, Ryuichi; Nagaoka, Takema; Tezuka, Yasuhiro; Kadota, Shigetoshi; Saiki, Ikuo

    2002-07-01

    Ginsenosides, the glycosides of Panax ginseng, are metabolized (deglycosylated) by intestinal bacteria after oral administration. 20(S)-Protopanaxatriol (M4) is the main bacterial metabolite of protopanaxatriol-type ginsenosides and mediates their antitumor effects. To clarify the mechanism of the M4-mediated antitumor effect, the antitumor activity and metabolism of M4 was examined, using the C57BL/6 mice implanted with B16-BL6 melanoma. The chronic oral administration of M4 inhibited the growth of B16-BL6 melanoma at the implanted site. Analyses using TLC, HPLC, MS and NMR suggest that orally administered M4 was absorbed from the small intestine into the mesenteric lymphatics followed by the rapid esterification of M4 with fatty acids and its accumulation in the tissues including the liver and lung. The administration of M4 prior to the intravenous injection of B16-BL6 cells abrogated the enhanced lung metastasis in the mice pretreated with 2-chloroadenosine more effectively than in those pretreated with anti-asialo GM1. The esterified M4 (EM4) did not directly affect tumor growth in vitro, whereas it stimulated splenic NK cells to become cytotoxic to tumor cells. These results indicate that the antitumor activity of M4 is based on the NK cell-mediated tumor lysis enhanced by EM4.

  10. Renal malignant solitary fibrous tumor with single lymph node involvement: report of unusual metastasis and review of the literature

    Directory of Open Access Journals (Sweden)

    Mearini E

    2014-05-01

    Full Text Available Ettore Mearini,1 Giovanni Cochetti,1 Francesco Barillaro,1 Sonia Fatigoni,2 Fausto Roila2 1Department of Medical-Surgical Specialties and Public Health, Division of Urological Andrological Surgery and Minimally Invasive Techniques, University of Perugia, Terni, Italy; 2Medical Oncology, S Maria Hospital, Terni, Italy Abstract: Solitary fibrous tumors are rare mesenchymal spindle cell neoplasms that are usually found in the pleura. The kidneys are an uncommon site and only few cases of renal solitary fibrous tumor exhibit malignant behavior metastasizing to the liver, lung, and bone through the hematogenous pathway. Purpose: To describe the first case of lymph node metastasis from renal solitary fibrous tumor in order to increase the knowledge about the malignant behavior of these tumors. Patients and methods: A 19-year-old female patient had intermittent hematuria for several months without flank pain or other symptoms. A chest and abdomen CT scan was performed and showed a multi-lobed bulky solid mass of 170 × 98 × 120 mm in the left kidney. One day before the surgery, the left renal artery was catheterized and the kidney embolization was performed using a Haemostatic Absorbable Gelatin Sponge and polyvinyl alcohol. We then performed a radical nephrectomy with hilar, para-aortic, and inter-aortocaval lymphadenectomy. Results: Estimated intraoperative blood loss was 200 mL and the operative time was 100 minutes. No postoperative complications occurred. The hospital stay was 7 days long. The histological examination was malignant solitary fibrous tumor of the kidney. Cancerous tissue showed cellular atypia, with an increased mitotic index (up to 7 × 10 hpf. Immunohistochemical analysis showed positive results for CD34, BCL2, partial expression of HBME1, and occasionally of synaptophysin. Histological evaluation confirmed the presence of metastasis in one hilar node. The patient did not receive any other therapy. At 30-month follow-up, the

  11. Significance of the measurement of serum transforming growth factor-α ad laminin in patients with three kinds of gastrointestinal malignant tumors

    International Nuclear Information System (INIS)

    Li Qing; Ma Yunbao

    2001-01-01

    The authors study the relationship between the levels of serum TGF-α and LN in gastrointestinal malignant tumor and the tumor formation and metastasis. Adopting radioimmunoassay measured serum TGF-α and LN levels in 40 cases of carcinoma of stomach, 24 cases of carcinoma of esophagus and 32 cases of liver cancer. The level of serum TGF-α in the patients with the three kinds of tumors was significantly higher than that of the normal control group (P < 0.05, P < 0.01); except for the group of carcinoma of esophagus, the level of LN was significantly higher than that of the normal control group (P < 0.05, P < 0.01). Meanwhile, the two markers of the metastasis group were significantly higher than that of the group without metastasis (P < 0.05). Elevation of the level of serum TGF-α and LN is closely related to the invasion and metastasis of the three kinds of malignant tumors, and is valuable for tumor diagnosis and prognosis evaluation

  12. Therapeutic Targeting of AXL Receptor Tyrosine Kinase Inhibits Tumor Growth and Intraperitoneal Metastasis in Ovarian Cancer Models

    Directory of Open Access Journals (Sweden)

    Pinar Kanlikilicer

    2017-12-01

    Full Text Available Despite substantial improvements in the treatment strategies, ovarian cancer is still the most lethal gynecological malignancy. Identification of drug treatable therapeutic targets and their safe and effective targeting is critical to improve patient survival in ovarian cancer. AXL receptor tyrosine kinase (RTK has been proposed to be an important therapeutic target for metastatic and advanced-stage human ovarian cancer. We found that AXL-RTK expression is associated with significantly shorter patient survival based on the The Cancer Genome Atlas patient database. To target AXL-RTK, we developed a chemically modified serum nuclease-stable AXL aptamer (AXL-APTAMER, and we evaluated its in vitro and in vivo antitumor activity using in vitro assays as well as two intraperitoneal animal models. AXL-aptamer treatment inhibited the phosphorylation and the activity of AXL, impaired the migration and invasion ability of ovarian cancer cells, and led to the inhibition of tumor growth and number of intraperitoneal metastatic nodules, which was associated with the inhibition of AXL activity and angiogenesis in tumors. When combined with paclitaxel, in vivo systemic (intravenous [i.v.] administration of AXL-aptamer treatment markedly enhanced the antitumor efficacy of paclitaxel in mice. Taken together, our data indicate that AXL-aptamers successfully target in vivo AXL-RTK and inhibit its AXL activity and tumor growth and progression, representing a promising strategy for the treatment of ovarian cancer.

  13. Tumor associated osteoclast-like giant cells promote tumor growth and lymphangiogenesis by secreting vascular endothelial growth factor-C

    International Nuclear Information System (INIS)

    Hatano, Yu; Nakahama, Ken-ichi; Isobe, Mitsuaki; Morita, Ikuo

    2014-01-01

    Highlights: • M-CSF and RANKL expressing HeLa cells induced osteoclastogenesis in vitro. • We established OGC-containing tumor model in vivo. • OGC-containing tumor became larger independent of M-CSF or RANKL effect. • VEGF-C secreted from OGCs was a one of candidates for OGC-containing tumor growth. - Abstract: Tumors with osteoclast-like giant cells (OGCs) have been reported in a variety of organs and exert an invasive and prometastatic phenotype, but the functional role of OGCs in the tumor environment has not been fully clarified. We established tumors containing OGCs to clarify the role of OGCs in tumor phenotype. A mixture of HeLa cells expressing macrophage colony-stimulating factor (M-CSF, HeLa-M) and receptor activator of nuclear factor-κB ligand (RANKL, HeLa-R) effectively supported the differentiation of osteoclast-like cells from bone marrow macrophages in vitro. Moreover, a xenograft study showed OGC formation in a tumor composed of HeLa-M and HeLa-R. Surprisingly, the tumors containing OGCs were significantly larger than the tumors without OGCs, although the growth rates were not different in vitro. Histological analysis showed that lymphangiogenesis and macrophage infiltration in the tumor containing OGCs, but not in other tumors were accelerated. According to quantitative PCR analysis, vascular endothelial growth factor (VEGF)-C mRNA expression increased with differentiation of osteoclast-like cells. To investigate whether VEGF-C expression is responsible for tumor growth and macrophage infiltration, HeLa cells overexpressing VEGF-C (HeLa-VC) were established and transplanted into mice. Tumors composed of HeLa-VC mimicked the phenotype of the tumors containing OGCs. Furthermore, the vascular permeability of tumor microvessels also increased in tumors containing OGCs and to some extent in VEGF-C-expressing tumors. These results suggest that macrophage infiltration and vascular permeability are possible mediators in these tumors. These

  14. Sonic Hedgehog Signaling Promotes Tumor Growth

    National Research Council Canada - National Science Library

    Bushman, Wade

    2007-01-01

    ... of the DOD New Investigator award indicate that Shh signaling promotes tumor growth. This proposal addresses the hypothesis that Sonic hedgehog signaling promotes tumor growth by activating stromal cell gene expression...

  15. 'A novel in vivo model for the study of human breast cancer metastasis using primary breast tumor-initiating cells from patient biopsies'

    International Nuclear Information System (INIS)

    Marsden, Carolyn G; Wright, Mary Jo; Carrier, Latonya; Moroz, Krzysztof; Pochampally, Radhika; Rowan, Brian G

    2012-01-01

    The study of breast cancer metastasis depends on the use of established breast cancer cell lines that do not accurately represent the heterogeneity and complexity of human breast tumors. A tumor model was developed using primary breast tumor-initiating cells isolated from patient core biopsies that would more accurately reflect human breast cancer metastasis. Tumorspheres were isolated under serum-free culture conditions from core biopsies collected from five patients with clinical diagnosis of invasive ductal carcinoma (IDC). Isolated tumorspheres were transplanted into the mammary fat pad of NUDE mice to establish tumorigenicity in vivo. Tumors and metastatic lesions were analyzed by hematoxylin and eosin (H+E) staining and immunohistochemistry (IHC). Tumorspheres were successfully isolated from all patient core biopsies, independent of the estrogen receptor α (ERα)/progesterone receptor (PR)/Her2/neu status or tumor grade. Each tumorsphere was estimated to contain 50-100 cells. Transplantation of 50 tumorspheres (1-5 × 10 3 cells) in combination with Matrigel into the mammary fat pad of NUDE mice resulted in small, palpable tumors that were sustained up to 12 months post-injection. Tumors were serially transplanted three times by re-isolation of tumorspheres from the tumors and injection into the mammary fat pad of NUDE mice. At 3 months post-injection, micrometastases to the lung, liver, kidneys, brain and femur were detected by measuring content of human chromosome 17. Visible macrometastases were detected in the lung, liver and kidneys by 6 months post-injection. Primary tumors variably expressed cytokeratins, Her2/neu, cytoplasmic E-cadherin, nuclear β catenin and fibronectin but were negative for ERα and vimentin. In lung and liver metastases, variable redistribution of E-cadherin and β catenin to the membrane of tumor cells was observed. ERα was re-expressed in lung metastatic cells in two of five samples. Tumorspheres isolated under defined culture

  16. An Anti-Urokinase Plasminogen Activator Receptor Antibody (ATN-658 Blocks Prostate Cancer Invasion, Migration, Growth, and Experimental Skeletal Metastasis In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Shafaat A. Rabbani

    2010-10-01

    Full Text Available Urokinase plasminogen activator receptor (uPAR is a multidomain protein that plays important roles in the growth, invasion, and metastasis of a number of cancers. In the present study, we examined the effects of administration of a monoclonal anti-uPAR antibody (ATN-658 on prostate cancer progression in vitro and in vivo. We examined the effect of treatment of ATN-658 on human prostate cancer cell invasion, migration, proliferation, and regulation of intracellular signaling pathways. For in vivo studies, PC-3 cells (1 x 106 were inoculated into the right flank of male Balb C nu/nu mice through subcutaneous or through intratibial route (2 x 105 of male Fox Chase severe combined immunodeficient mice to monitor the effect on tumor growth and skeletal metastasis. Treatment with ATN-658 resulted in a significant dose-dependent decrease in PC-3 cell invasion and migration without affecting cell doubling time. Western blot analysis showed that ATN-658 treatment decreased the phosphorylation of serine/threonine protein kinase B (AKT, mitogen-activated protein kinase (MAPK, and focal adhesion kinase (FAK without affecting AKT, MAPK, and FAK total protein expression. In in vivo studies, ATN-658 caused a significant decrease in tumor volume and a marked reduction in skeletal lesions as determined by Faxitron x-ray and micro-computed tomography. Immunohistochemical analysis of subcutaneous and tibial tumors showed a marked decrease in the levels of expression of pAKT, pMAPK, and pFAK, consistent with the in vitro observations. Results from these studies provide compelling evidence for the continued development of ATN-658 as a potential therapeutic agent for the treatment of prostate and other cancers expressing uPAR.

  17. Resveratrol Reduces Prostate Cancer Growth and Metastasis by Inhibiting the Akt/MicroRNA-21 Pathway

    Science.gov (United States)

    Sheth, Sandeep; Jajoo, Sarvesh; Kaur, Tejbeer; Mukherjea, Debashree; Sheehan, Kelly; Rybak, Leonard P.; Ramkumar, Vickram

    2012-01-01

    The consumption of foods containing resveratrol produces significant health benefits. Resveratrol inhibits cancer by reducing cell proliferation and metastasis and by inducing apoptosis. These actions could be explained by its ability to inhibit (ERK-1/2), Akt and suppressing the levels of estrogen and insulin growth factor -1 (IGF-1) receptor. How these processes are manifested into the antitumor actions of resveratrol is not clear. Using microarray studies, we show that resveratrol reduced the expression of various prostate-tumor associated microRNAs (miRs) including miR-21 in androgen-receptor negative and highly aggressive human prostate cancer cells, PC-3M-MM2. This effect of resveratrol was associated with reduced cell viability, migration and invasiveness. Additionally, resveratrol increased the expression of tumor suppressors, PDCD4 and maspin, which are negatively regulated by miR-21. Short interfering (si) RNA against PDCD4 attenuated resveratrol’s effect on prostate cancer cells, and similar effects were observed following over expression of miR-21 with pre-miR-21 oligonucleotides. PC-3M-MM2 cells also exhibited high levels of phospho-Akt (pAkt), which were reduced by both resveratrol and LY294002 (a PI3-kinase inhibitor). MiR-21 expression in these cells appeared to be dependent on Akt, as LY294002 reduced the levels of miR-21 along with a concurrent increase in PDCD4 expression. These in vitro findings were further corroborated in a severe combined immunodeficient (SCID) mouse xenograft model of prostate cancer. Oral administration of resveratrol not only inhibited the tumor growth but also decreased the incidence and number of metastatic lung lesions. These tumor- and metastatic-suppressive effects of resveratrol were associated with reduced miR-21 and pAkt, and elevated PDCD4 levels. Similar anti-tumor effects of resveratrol were observed in DU145 and LNCaP prostate cancer cells which were associated with suppression of Akt and PDCD4, but

  18. A novel oncolytic adenovirus targeting Wnt signaling effectively inhibits cancer-stem like cell growth via metastasis, apoptosis and autophagy in HCC models.

    Science.gov (United States)

    Zhang, Jian; Lai, Weijie; Li, Qiang; Yu, Yang; Jin, Jin; Guo, Wan; Zhou, Xiumei; Liu, Xinyuan; Wang, Yigang

    2017-09-16

    Cancer stem cells (CSCs), which are highly differentiated and self-renewing, play an important role in the occurrence, therapeutic resistant and metastasis of hepatacellular carcinoma (HCC). Oncolytic adenoviruses have targeted killing effect on tumor cells, and are invoked as candidate drugs for cancer treatment. We designed a dual-regulated oncolytic adenovirus Ad.wnt-E1A(△24bp)-TSLC1 that targets Wnt and Rb signaling pathways respectively, and carries the tumor suppressor gene, TSLC1. Previous studies have demonstrated that oncolytic adenovirus mediated TSLC1can target liver cancer and exhibit significant cytotoxicity. However, whether Ad.wnt-E1A(△24bp)-TSLC1 can effectively eliminate liver CSCs remains to be explored. We first used the spheroid culture to enrich the liver CSCs-like cells, and detected the self-renewal capacity, differentiation, drug resistance and tumorigenicity. The results showed that Ad-wnt-E1A(△24bp)-TSLC1 could effectively lead to autophagic death. In addition, recombinant adenovirus effectively induced the apoptosis, inhibit metastasis of hepatic CSCs-like cells in vivo. Further animal experiments indicated that Ad-wnt-E1A(△24bp)-TSLC1could effectively inhibit the growth of transplanted tumor of hepatic CSCs and prolong the survival time of mice. Therefore, the novel oncolytic adenovirus Ad.wnt-E1A(△24bp)-TSLC1 has potential application as a therapeutic target for HCC stem cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. A Case of Conjunctival Melanoma Presenting with Breast Metastasis

    Directory of Open Access Journals (Sweden)

    Mustafa Canhoroz

    2014-03-01

    Full Text Available Most breast masses arise from the breast. Metastasis to the breast is fairly uncommon, but can occur in breast skin and parenchyma. In particular, leukemia and lung cancers, and MM may metastasize to the breast. Breast metastasis might be the first symptom or may occur during the course of other malignancies. Our case presented with a fixed mass in the upper-medial quadrant of her left breast during regular follow-up visits. The mean time to breast metastasis in patients with MM is 62 months (13-178. In our case this time was 48 months. In a case series with 7 patients hematological malignancies (Hodgkin lymphoma, non-Hodgkin lymphoma, and leukemia were the leading cause of breast metastasis, whereas in only 1 case the cause was MM. In another case series of 15 MM patients with metastasis to the breast, the primary tumor was frequently localized to the upper extremities and trunk. In a report of 250 conjunctival MM cases the mortality rate was significantly higher in patients with tumors >4 mm in vertical thickness. In another 45-case MM series tumors with a diameter >10 mm were associated with higher mortality rates. In our case the thickness of the tumor was 5 mm. In conclusion, histopathological evaluation should be mandatory in patients with known primary malignancies in order to differentiate new primary tumors, metastases, and benign tumors.

  20. Molecular biology of breast cancer metastasis: Genetic regulation of human breast carcinoma metastasis

    International Nuclear Information System (INIS)

    Welch, Danny R; Steeg, Patricia S; Rinker-Schaeffer, Carrie W

    2000-01-01

    The present is an overview of recent data that describes the genetic underpinnings of the suppression of cancer metastasis. Despite the explosion of new information about the genetics of cancer, only six human genes have thus far been shown to suppress metastasis functionally. Not all have been shown to be functional in breast carcinoma. Several additional genes inhibit various steps of the metastatic cascade, but do not necessarily block metastasis when tested using in vivo assays. The implications of this are discussed. Two recently discovered metastasis suppressor genes block proliferation of tumor cells at a secondary site, offering a new target for therapeutic intervention

  1. Gain of glucose-independent growth upon metastasis of breast cancer cells to the brain

    Science.gov (United States)

    Chen, Jinyu; Lee, Ho-Jeong; Wu, Xuefeng; Huo, Lei; Kim, Sun-Jin; Xu, Lei; Wang, Yan; He, Junqing; Bollu, Lakshmi Reddy; Gao, Guang; Su, Fei; Briggs, James; Liu, Xiaojing; Melman, Tamar; Asara, John M.; Fidler, Isaiah J.; Cantley, Lewis C.; Locasale, Jason W.; Weihua, Zhang

    2014-01-01

    Breast cancer brain metastasis is resistant to therapy and a particularly poor prognostic feature in patient survival. Altered metabolism is a common feature of cancer cells but little is known as to what metabolic changes benefit breast cancer brain metastases. We found that brain-metastatic breast cancer cells evolved the ability to survive and proliferate independent of glucose due to enhanced gluconeogenesis and oxidations of glutamine and branched chain amino acids, which together sustain the non-oxidative pentose pathway for purine synthesis. Silencing expression of fructose-1,6-bisphosphatases (FBPs) in brain metastatic cells reduced their viability and improved the survival of metastasis-bearing immunocompetent hosts. Clinically, we showed that brain metastases from human breast cancer patients expressed higher levels of FBP and glycogen than the corresponding primary tumors. Together, our findings identify a critical metabolic condition required to sustain brain metastasis, and suggest that targeting gluconeogenesis may help eradicate this deadly feature in advanced breast cancer patients. PMID:25511375

  2. Histone Demethylase RBP2 Is Critical for Breast Cancer Progression and Metastasis

    Directory of Open Access Journals (Sweden)

    Jian Cao

    2014-03-01

    Full Text Available Metastasis is a major clinical challenge for cancer treatment. Emerging evidence suggests that aberrant epigenetic modifications contribute significantly to tumor formation and progression. However, the drivers and roles of such epigenetic changes in tumor metastasis are still poorly understood. Using bioinformatic analysis of human breast cancer gene-expression data sets, we identified histone demethylase RBP2 as a putative mediator of metastatic progression. By using both human breast cancer cells and genetically engineered mice, we demonstrated that RBP2 is critical for breast cancer metastasis to the lung in multiple in vivo models. Mechanistically, RBP2 promotes metastasis as a pleiotropic positive regulator of many metastasis genes, including TNC. In addition, RBP2 loss suppresses tumor formation in MMTV-neu transgenic mice. These results suggest that therapeutic targeting of RBP2 is a potential strategy for inhibition of tumor progression and metastasis.

  3. Current status of research on microRNA associated with colorectal cancer liver metastasis

    Directory of Open Access Journals (Sweden)

    WANG Dongxu

    2016-12-01

    Full Text Available Tumor metastasis is a complicated process with multiple steps, and liver metastasis is the most common metastatic mode of colorectal cancer. Deep understanding and study of metastatic mechanism helps to find solutions for colorectal cancer liver metastasis. Recent studies have shown that microRNA are involved in tumor metastasis and recurrence, and studies on microRNA associated with colorectal cancer liver metastasis can provide new thoughts for the development and progression, diagnosis and treatment, and prognosis of the disease. This article summarizes the research advances in microRNA associated with colorectal cancer liver metastasis and reviews the biological function and molecular mechanism of microRNA, which suggests that microRNA have a vital significance in the field of tumor metastasis, especially colorectal cancer liver metastasis.

  4. DEAD-box helicase 27 promotes colorectal cancer growth and metastasis and predicts poor survival in CRC patients.

    Science.gov (United States)

    Tang, Jieting; Chen, Huarong; Wong, Chi-Chun; Liu, Dabin; Li, Tong; Wang, Xiaohong; Ji, Jiafu; Sung, Joseph Jy; Fang, Jing-Yuan; Yu, Jun

    2018-03-14

    Copy number alterations (CNAs) are crucial for colorectal cancer (CRC) development. In this study, DEAD box polypeptide 27 (DDX27) was identified to be highly amplified in both TCGA CRC (474/615) and primary CRC (47/103), which was positively correlated with its mRNA overexpression. High DDX27 mRNA (N = 199) and protein expression (N = 260) predicted poor survival in CRC patients. Ectopic expression of DDX27 increased CRC cells proliferation, migration and invasion, but suppressed apoptosis. Conversely, silencing of DDX27 exerted opposite effects in vitro and significantly inhibited murine xenograft tumor growth and lung metastasis in vivo. Up-regulation of DDX27 enhanced and prolonged TNF-α-mediated NF-κB signaling. Nucleophosmin (NPM1) was identified as a binding partner of DDX27. DDX27 increased nuclear NPM1 and NF-κB-p65 interaction to enhance DNA binding activity of NF-κB. Silencing NPM1 abrogated DDX27-activating NF-κB signaling and its tumor-promoting function. Together, DDX27 is overexpressed and plays a pivotal oncogenic role in CRC.

  5. Disruption of Lysosome Function Promotes Tumor Growth and Metastasis in Drosophila *

    OpenAIRE

    Chi, Congwu; Zhu, Huanhu; Han, Min; Zhuang, Yuan; Wu, Xiaohui; Xu, Tian

    2010-01-01

    Lysosome function is essential to many physiological processes. It has been suggested that deregulation of lysosome function could contribute to cancer. Through a genetic screen in Drosophila, we have discovered that mutations disrupting lysosomal degradation pathway components contribute to tumor development and progression. Loss-of-function mutations in the Class C vacuolar protein sorting (VPS) gene, deep orange (dor), dramatically promote tumor overgrowth and invasion of the RasV12 cells....

  6. Malignant tumor of the parotid gland with metastasis into the cervical vertebra

    International Nuclear Information System (INIS)

    Kimura, Jun; Tsuchiya, Keiichi; Utsumi, Takehiko; Furuki, Shin; Asano, Hisashi.

    1979-01-01

    A patient with malignant tumor of the parotid gland with metastasis into the cervical vertebra was found. Because spinal symptoms were observed at first and the symptoms and the course of the disease were not typical, it was so difficult to diagnose it. For this patient, a parotid gland scintigram with sup(99m)Tc was very useful to diagnose the lesion. The patient was treated with chemotherapy, 60 Co beam therapy and immuno-chemo-therapy and survived about one year and two months more. Cyclo-C (cyclocytidine) was very effective to control the primary lesion in the parotid gland. (Nishio, M.)

  7. Autocrine HBEGF expression promotes breast cancer intravasation, metastasis and macrophage-independent invasion in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z. N.; Sharma, V. P.; Beaty, B. T.; Roh-Johnson, M.; Peterson, E. A.; Van Rooijen, N.; Kenny, P. A.; Wiley, H. S.; Condeelis, J. S.; Segall, J. E.

    2014-10-13

    Increased expression of HBEGF in estrogen receptor-negative breast tumors is correlated with enhanced metastasis to distant organ sites and more rapid disease recurrence upon removal of the primary tumor. Our previous work has demonstrated a paracrine loop between breast cancer cells and macrophages in which the tumor cells are capable of stimulating macrophages through the secretion of colony-stimulating factor-1 while the tumor-associated macrophages (TAMs), in turn, aid in tumor cell invasion by secreting epidermal growth factor. To determine how the autocrine expression of epidermal growth factor receptor (EGFR) ligands by carcinoma cells would affect this paracrine loop mechanism, and in particular whether tumor cell invasion depends on spatial ligand gradients generated by TAMs, we generated cell lines with increased HBEGF expression. We found that autocrine HBEGF expression enhanced in vivo intravasation and metastasis and resulted in a novel phenomenon in which macrophages were no longer required for in vivo invasion of breast cancer cells. In vitro studies revealed that expression of HBEGF enhanced invadopodium formation, thus providing a mechanism for cell autonomous invasion. The increased invadopodium formation was directly dependent on EGFR signaling, as demonstrated by a rapid decrease in invadopodia upon inhibition of autocrine HBEGF/EGFR signaling as well as inhibition of signaling downstream of EGFR activation. HBEGF expression also resulted in enhanced invadopodium function via upregulation of matrix metalloprotease 2 (MMP2) and MMP9 expression levels. We conclude that high levels of HBEGF expression can short-circuit the tumor cell/macrophage paracrine invasion loop, resulting in enhanced tumor invasion that is independent of macrophage signaling.

  8. Aggressive venous invasion in the area of carcinoma correlates with liver metastasis as an index of metastasis for invasive ductal carcinoma of the pancreas.

    Science.gov (United States)

    Hamada, Yoshihiro; Nakayama, Yoshifuku

    Invasive ductal carcinoma of the pancreas (IDCP) predominantly causes death through liver metastasis (LM) and peritoneal dissemination with local recurrence. However, whether its venous invasion is from the enlarged carcinoma accompanied by tumor growth, or from a distinct carcinoma group, for which venous invasion is facilitated by proximity to the origin, is unclear. We analyzed the correlation between LM and venous invasion in patients with small IDCP tumors. Of 388 patients who were diagnosed with IDCP, 20 (5.2%) had tumors with diameters IDPC. Patients in whom ≥60% of veins were invaded by IDCP should be prepared for LM. Copyright © 2017 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  9. IK channel activation increases tumor growth and induces differential behavioral responses in two breast epithelial cell lines.

    Science.gov (United States)

    Thurber, Amy E; Nelson, Michaela; Frost, Crystal L; Levin, Michael; Brackenbury, William J; Kaplan, David L

    2017-06-27

    Many potassium channel families are over-expressed in cancer, but their mechanistic role in disease progression is poorly understood. Potassium channels modulate membrane potential (Vmem) and thereby influence calcium ion dynamics and other voltage-sensitive signaling mechanisms, potentially acting as transcriptional regulators. This study investigated the differential response to over-expression and activation of a cancer-associated potassium channel, the intermediate conductance calcium-activated potassium channel (IK), on aggressive behaviors in mammary epithelial and breast cancer cell lines. IK was over-expressed in the highly metastatic breast cancer cell line MDA-MB-231 and the spontaneously immortalized breast epithelial cell line MCF-10A, and the effect on cancer-associated behaviors was assessed. IK over-expression increased primary tumor growth and metastasis of MDA-MB-231 in orthotopic xenografts, demonstrating for the first time in any cancer type that increased IK is sufficient to promote cancer aggression. The primary tumors had similar vascularization as determined by CD31 staining and similar histological characteristics. Interestingly, despite the increased in vivo growth and metastasis, neither IK over-expression nor activation with agonist had a significant effect on MDA-MB-231 proliferation, invasion, or migration in vitro. In contrast, IK decreased MCF-10A proliferation and invasion through Matrigel but had no effect on migration in a scratch-wound assay. We conclude that IK activity is sufficient to promote cell aggression in vivo. Our data provide novel evidence supporting IK and downstream signaling networks as potential targets for cancer therapies.

  10. PAR-1 and thrombin: the ties that bind the microenvironment to melanoma metastasis.

    Science.gov (United States)

    Zigler, Maya; Kamiya, Takafumi; Brantley, Emily C; Villares, Gabriel J; Bar-Eli, Menashe

    2011-11-01

    Progression of melanoma is dependent on cross-talk between tumor cells and the adjacent microenvironment. The thrombin receptor, protease-activated receptor-1 (PAR-1), plays a key role in exerting this function during melanoma progression. PAR-1 and its activating factors, which are expressed on tumor cells and the surrounding stroma, induce not only coagulation but also cell signaling, which promotes the metastatic phenotype. Several adhesion molecules, cytokines, growth factors, and proteases have recently been identified as downstream targets of PAR-1 and have been shown to modulate interactions between tumor cells and the microenvironment in the process of melanoma growth and metastasis. Inhibiting such interactions by targeting PAR-1 could potentially be a useful therapeutic modality for melanoma patients. ©2011 AACR.

  11. Tyrosine isomers mediate the classical phenomenon of concomitant tumor resistance.

    Science.gov (United States)

    Ruggiero, Raúl A; Bruzzo, Juan; Chiarella, Paula; di Gianni, Pedro; Isturiz, Martín A; Linskens, Susana; Speziale, Norma; Meiss, Roberto P; Bustuoabad, Oscar D; Pasqualini, Christiane D

    2011-11-15

    Concomitant tumor resistance (CR) is a phenomenon originally described in 1906 in which a tumor-bearing host is resistant to the growth of secondary tumor implants and metastasis. Although recent studies have indicated that T-cell-dependent processes mediate CR in hosts bearing immunogenic small tumors, manifestations of CR induced by immunogenic and nonimmunogenic large tumors have been associated with an elusive serum factor. In this study, we identify this serum factor as tyrosine in its meta and ortho isoforms. In three different murine models of cancer that generate CR, both meta-tyrosine and ortho-tyrosine inhibited tumor growth. In addition, we showed that both isoforms of tyrosine blocked metastasis in a fourth model that does not generate CR but is sensitive to CR induced by other tumors. Mechanistic studies showed that the antitumor effects of the tyrosine isoforms were mediated, in part, by early inhibition of mitogen-activated protein/extracellular signal-regulated kinase pathway and inactivation of STAT3, potentially driving tumor cells into a state of dormancy. By revealing a molecular basis for the classical phenomenon of CR, our findings may stimulate new generalized approaches to limit the development of metastases that arise after resection of primary tumors, an issue of pivotal importance to oncologists and their patients. ©2011 AACR

  12. Hypophyseal metastasis

    International Nuclear Information System (INIS)

    Yanes Quesada, Miguel Angel; Yanes Quesada, Marelys; Lopez Arbolay, Omar; Lima Perez, Mayte; Hernandez Yero, Arturo

    2009-01-01

    Metastatic tumors of hypophyseal gland are infrequent. Most are silent lesions discovered accidentally in necropsy. Appearance of symptomatic metastasis is however, exceptional. We describe here clinical and radiological findings in a female patient aged 69, presenting with a non-differential carcinoma of lung, diagnosed two years a half ago, starting with headache and visual disorders without hypopituitarism and insipidus diabetes. We made a nuclear magnetic resonance and diagnosis was a hypophyseal lesion operated on by trans-esphenoidal route, and Pathological Anatomy Service reports a metastasis of lung carcinoma. (Author)

  13. Rapid recurrence and bilateral lungs, multiple bone metastasis of malignant solitary fibrous tumor of the right occipital lobe: report of a case and review.

    Science.gov (United States)

    Wu, Zhengrong; Yang, Hongjun; Weng, Desheng; Ding, Yanqing

    2015-07-09

    Intracranial malignant solitary fibrous tumor (MSFT) is extremely rare. The authors report a case of MSFT of the right occipital lobe with a rapid recurrence and bilateral lung, multiple bone metastasis. The patient was a 25-year-old male presenting with headache, nausea and visual disturbances without obvious cause. Three times right-side occipital craniotomies were performed and two times postoperative conformal radiotherapy were administered within one year. 4 months after the third time of right-side occipital craniotomy, the patient felt right chest pain and neck pain. Positron emission tomography/computed tomography (PET/CT) showed tumor recurrence of the right occipital lobe and bilateral lung metastasis, multiple bone metastasis including: vertebrae, libs, the left iliac wing, sacrum, the right ischium and upper parts of both femurs. Ultrasound guided puncture biopsy of left-side back of the neck and CT guided puncture biopsy of the third lumbar vertebra were performed. General sample showed grayish white or grayish red with irregular shape. Histopathologically, the tumor was composed of areas of alternating hypercellularity and hypocellularity with spindle-shaped cells, which arranged as fascicular, storiform pattern or patternless pattern, with intervening irregular eosinophilic collagen bundles. Some areas showed hemangiopericytoma-like perivascular pattern and perivascular hyalinization. Tumor cells were pleomorphic with mitotic counts of more than 4 per 10 high power fields and showed coagulative necrosis. Immunohistochemically, tumor cells were diffusely positive for vimentin and CD99, focal positive for CD34, bcl-2 and Actin. Ki-67 labelling index was more than 40%. The final pathological diagnosis was MSFT of the right occipital lobe, metastatic MSFT of left-side back of the neck and the third lumbar vertebra. The MSFT of the right occipital lobe with recurrence and bilateral lung, multiple bone metastasis is extremely rare. Although intracranial

  14. Inhibition of heregulin expression blocks tumorigenicity and metastasis of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Miaw-Sheue; Shamon-Taylor, Lisa A.; Mehmi, Inderjit; Tang, Careen K.; Cardillo, Marina; Lupu, Ruth

    2001-12-20

    The growth factor Heregulin (HRG) is expressed in 30% of breast cancer tumors. HRG induces tumorigenicity and metastasis of breast cancer cells. Our investigation into whether blockage of HRG reduces the aggressiveness of breast cancer cells demonstrated that transfection of MDA-MB-231 with an HRG antisense cDNA suppressed proliferation, tumorigenicity, and metastasis. Blockage of the aggressive phenotype is mediated possibly through inactivation of the erbB signaling pathways and a decrease in MMP-9 activity. Our study is the first to report that HRG is a key promoter of breast cancer progression and should be deemed as a potential target in developing therapies for the treatment of breast carcinomas.

  15. Primary tumor location as a predictor of the benefit of palliative resection for colorectal cancer with unresectable metastasis.

    Science.gov (United States)

    Zhang, Rong-Xin; Ma, Wen-Juan; Gu, Yu-Ting; Zhang, Tian-Qi; Huang, Zhi-Mei; Lu, Zhen-Hai; Gu, Yang-Kui

    2017-07-27

    It is still under debate that whether stage IV colorectal cancer patients with unresectable metastasis can benefit from primary tumor resection, especially for asymptomatic colorectal cancer patients. Retrospective studies have shown controversial results concerning the benefit from surgery. This retrospective study aims to evaluate whether the site of primary tumor is a predictor of palliative resection in asymptomatic stage IV colorectal cancer patients. One hundred ninety-four patients with unresectable metastatic colorectal cancer were selected from Sun Yat-sen University Cancer Center Database in the period between January 2007 and December 2013. All information was carefully reviewed and collected, including the treatment, age, sex, carcinoembryonic antigen, site of tumor, histology, cancer antigen 199, number of liver metastases, and largest diameter of liver metastasis. The univariate and multivariate analyses were used to detect the relationship between primary tumor resection and overall survival of unresectable stage IV colorectal cancer patients. One hundred twenty-five received palliative resection, and 69 received only chemotherapy. Multivariate analysis indicated that primary tumor site was one of the independent factors (RR 0.569, P = 0.007) that influenced overall survival. For left-side colon cancer patients, primary tumor resection prolonged the median overall survival time for 8 months (palliative resection vs. no palliative resection: 22 vs. 14 months, P = 0.009); however, for right-side colon cancer patients, palliative resection showed no benefit (12 vs. 10 months, P = 0.910). This study showed that left-side colon cancer patients might benefit from the primary tumor resection in terms of overall survival. This result should be further explored in a prospective study.

  16. Malignant peripheral nerve sheath tumor associated with neurofibromatosis type 1, with metastasis to the heart: a case report

    Directory of Open Access Journals (Sweden)

    Araki Nobuhito

    2010-01-01

    Full Text Available Abstract A rare case is presented of a 61-year-old man with a malignant peripheral nerve sheath tumor associated with neurofibromatosis type 1, with metastasis to the heart. The primary tumor originated in the right thigh in 1982. Since then, the patient has had repeated local recurrences in spite of repeated surgical treatment and adjuvant chemotherapy. He has developed previous metastases of the lung and heart. The patient died of cardiac involvement.

  17. Eradication of breast cancer with bone metastasis by autologous formalin-fixed tumor vaccine (AFTV) combined with palliative radiation therapy and adjuvant chemotherapy: a case report.

    Science.gov (United States)

    Kuranishi, Fumito; Ohno, Tadao

    2013-06-04

    Skeletal metastasis of breast carcinoma is refractory to intensive chemo-radiation therapy and therefore is assumed impossible to cure. Here, we report an advanced case of breast cancer with vertebra-Th7 metastasis that showed complete response to combined treatments with formalin-fixed autologous tumor vaccine (AFTV), palliative radiation therapy with 36 Gy, and adjuvant chemotherapy with standardized CEF (cyclophosphamide, epirubicin, and 5FU), zoledronic acid, and aromatase inhibitors following mastectomy for the breast tumor. The patient has been disease-free for more than 4 years after the mammary surgery and remains well with no evidence of metastasis or local recurrence. Thus, a combination of AFTV, palliative radiation therapy, and adjuvant chemotherapy may be an effective treatment for this devastating disease.

  18. Clinicopathologic risk factors for right paraesophageal lymph node metastasis in patients with papillary thyroid carcinoma.

    Science.gov (United States)

    Yu, Q A; Ma, D K; Liu, K P; Wang, P; Xie, C M; Wu, Y H; Dai, W J; Jiang, H C

    2018-03-17

    To investigate risk factors associated with right paraesophageal lymph node (RPELN) metastasis in patients with papillary thyroid carcinoma (PTC) and to determine the indications for right lymph node dissection. Clinicopathologic data from 829 patients (104 men and 725 women) with PTC, operated on by the same thyroid surgery team at the First Affiliated Hospital of Harbin Medical University from January 2013 to May 2017, were analyzed. Overall, 309 patients underwent total thyroidectomy with bilateral lymph node dissection, 488 underwent right thyroid lobe and isthmic resection with right central compartment lymph node dissection, and 32 underwent near-total thyroidectomy (ipsilateral thyroid lobectomy with contralateral near-total lobectomy) with bilateral lymph node dissection. The overall rate of central compartment lymph node metastasis was 43.5% (361/829), with right central compartment lymph node and RPELN metastasis rates of 35.5% (294/829) and 19.1% (158/829), respectively. Tumor size, number, invasion, and location, lymph node metastasis, right central compartment lymph node metastasis, and right lateral compartment lymph node metastasis were associated with RPELN in the univariate analysis, whereas age and sex were not. Multivariate analysis identified tumors with a diameter ≥ 1 cm, multiple tumors, tumors located in the right lobe, right central compartment lymph node metastasis, and right lateral compartment lymph node metastasis as independent risk factors for RPELN metastasis. Lymph node dissection, including RPELN dissection, should be performed for patients with PTC with a tumor diameter ≥ 1 cm, multiple tumors, right-lobe tumors, right central compartment lymph node metastasis, or suspected lateral compartment lymph node metastasis.

  19. High Intra- and Inter-Tumoral Heterogeneity of RAS Mutations in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Marion Jeantet

    2016-12-01

    Full Text Available Approximately 30% of patients with wild type RAS metastatic colorectal cancer are non-responders to anti-epidermal growth factor receptor monoclonal antibodies (anti-EGFR mAbs, possibly due to undetected tumoral subclones harboring RAS mutations. The aim of this study was to analyze the distribution of RAS mutations in different areas of the primary tumor, metastatic lymph nodes and distant metastasis. A retrospective cohort of 18 patients with a colorectal cancer (CRC was included in the study. Multiregion analysis was performed in 60 spatially separated tumor areas according to the pathological tumor node metastasis (pTNM staging and KRAS, NRAS and BRAF mutations were tested using pyrosequencing. In primary tumors, intra-tumoral heterogeneity for RAS mutation was found in 33% of cases. Inter-tumoral heterogeneity for RAS mutation between primary tumors and metastatic lymph nodes or distant metastasis was found in 36% of cases. Moreover, 28% of tumors had multiple RAS mutated subclones in the same tumor. A high proportion of CRCs presented intra- and/or inter-tumoral heterogeneity, which has relevant clinical implications for anti-EGFR mAbs prescription. These results suggest the need for multiple RAS testing in different parts of the same tumor and/or more sensitive techniques.

  20. Collagen induced arthritis increases secondary metastasis in MMTV-PyV MT mouse model of mammary cancer

    Directory of Open Access Journals (Sweden)

    Gruber Helen E

    2011-08-01

    Full Text Available Abstract Background Several studies have demonstrated that sites of chronic inflammation are often associated with the establishment and growth of various malignancies. A common inflammatory condition in humans is autoimmune arthritis (AA. Although AA and cancer are different diseases, many of the underlying processes that contribute to the disorders of the joints and connective tissue that characterize AA also affect cancer progression and metastasis. Systemically, AA can lead to cellular infiltration and inflammation of the lungs. Several studies have reported statistically significant risk ratios between AA and breast cancer. Despite this knowledge being available, there has been minimal research linking breast cancer, arthritis, and metastasis associated with breast cancer. Notably both diseases are extremely prevalent in older post-menopausal women. Methods To establish the novel link between arthritis induced inflammation and secondary metastasis associated with breast cancer, PyV MT mice that spontaneously develop mammary gland carcinoma were injected with Type II collagen (CII to induce arthritis at 9 and 18 weeks of age for pre-metastatic and metastatic condition. The sites of secondary metastasis and the associated inflammatory microenvironment were evaluated. Results A significant increase in breast cancer-associated secondary metastasis to the lungs and bones was observed in the arthritic versus the non-arthritic PyV MT mice along with an increase in primary tumor burden. We report significant increases in the levels of interstitial cellular infiltrates and pro-inflammatory cytokines such as interleukin-17 (IL-17, interleukin-6 (IL-6, Pro- Matrix metallopeptidase 9 (Pro-MMP9, insulin like growth factor-II (GF-II and macrophage colony stimulating factor (M-CSF in the arthritic lung and bone milieu as well as in the circulation. These pro-inflammatory cytokines along with the inflammatory microenvironment may be the underlying factors

  1. Simulating tumor growth in confined heterogeneous environments

    International Nuclear Information System (INIS)

    Gevertz, Jana L; Torquato, Salvatore; Gillies, George T

    2008-01-01

    The holy grail of computational tumor modeling is to develop a simulation tool that can be utilized in the clinic to predict neoplastic progression and propose individualized optimal treatment strategies. In order to develop such a predictive model, one must account for many of the complex processes involved in tumor growth. One interaction that has not been incorporated into computational models of neoplastic progression is the impact that organ-imposed physical confinement and heterogeneity have on tumor growth. For this reason, we have taken a cellular automaton algorithm that was originally designed to simulate spherically symmetric tumor growth and generalized the algorithm to incorporate the effects of tissue shape and structure. We show that models that do not account for organ/tissue geometry and topology lead to false conclusions about tumor spread, shape and size. The impact that confinement has on tumor growth is more pronounced when a neoplasm is growing close to, versus far from, the confining boundary. Thus, any clinical simulation tool of cancer progression must not only consider the shape and structure of the organ in which a tumor is growing, but must also consider the location of the tumor within the organ if it is to accurately predict neoplastic growth dynamics

  2. Surgical treatment of a rare primary renal carcinoid tumor with liver metastasis

    Directory of Open Access Journals (Sweden)

    Rowland Randall G

    2008-04-01

    Full Text Available Abstract Background Carcinoid tumors are characteristically low grade malignant neoplasms with neuroendocrine differentiation that arise in various body sites, most commonly the lung and gastrointestinal tract, but less frequently the kidneys, breasts, ovaries, testes, prostate and other locations. We report a case of a carcinoid of renal origin with synchronous single liver metastases on radiological studies. Case presentation A 45 year-old patient who presented with abdominal pain was found on CT scan to have lesions in the right ovary, right kidney, and left hepatic lobe. CA-125, CEA, and CA 19-9 were within normal limits, as were preoperative liver function tests and renal function. Biopsy of the liver mass demonstrated metastatic neuroendocrine tumor. At laparotomy, the patient underwent total abdominal hysterectomy with bilateral salpingo-oophorectomy, radical right nephrectomy with lymphadenectomy, and left hepatectomy. Pathology evaluation reported a right ovarian borderline serous tumor, well-differentiated neuroendocrine carcinoma of the kidney (carcinoid with 2 positive retroperitoneal lymph nodes, and a single liver metastasis. Immunohistochemistry revealed that this lesion was positive for synaptophysin and CD56, but negative for chromogranin as well as CD10, CD7, and CD20, consistent with a well-differentiated neuroendocrine tumor. She is doing well one year after her initial surgery, with no evidence of tumor recurrence. Conclusion Early surgical intervention, together with careful surveillance and follow-up, can achieve successful long-term outcomes in patients with this rare malignancy.

  3. Suppression of Angiogenesis and Therapy of Human Colon Cancer Liver Metastasis by Systemic Administration of Interferon-α

    Directory of Open Access Journals (Sweden)

    Shutaro Ozawa

    2001-01-01

    Full Text Available The purpose of this study was to determine whether systemic administration of interferon-alpha (IFN-α can inhibit liver metastasis produced in nude mice by human colon cancer cells. KM12L4 (IFN-α-sensitive or KM12L4 IFNR (IFN-α-resistant cells were injected into the spleen of nude mice. Seven days later, the mice were treated with subcutaneous (s.c. injections of IFN-α (70,000 units/week at different dosing schedules (1, 2, or 7 times/week. Significant inhibition of tumor growth, vascularization and expression of basic fibroblast growth factor (bFGF or matrix metal loproteinase9 (MMP-9 mRNA and protein occurred in mice given daily injections of IFN-α. Kinetic analysis of therapy showed that daily s.c. administrations of 10,000 units of IFN-α induced apoptosis in liver metastasis-associated endothelial cells, followed by inhibition of tumor cell division and apoptosis of tumor cells. These data suggest that the antiangiogenic activity of IFN-α-2a depends on frequent administration of the optimal biologic dose.

  4. Multiparametric classification links tumor microenvironments with tumor cell phenotype.

    Directory of Open Access Journals (Sweden)

    Bojana Gligorijevic

    2014-11-01

    Full Text Available While it has been established that a number of microenvironment components can affect the likelihood of metastasis, the link between microenvironment and tumor cell phenotypes is poorly understood. Here we have examined microenvironment control over two different tumor cell motility phenotypes required for metastasis. By high-resolution multiphoton microscopy of mammary carcinoma in mice, we detected two phenotypes of motile tumor cells, different in locomotion speed. Only slower tumor cells exhibited protrusions with molecular, morphological, and functional characteristics associated with invadopodia. Each region in the primary tumor exhibited either fast- or slow-locomotion. To understand how the tumor microenvironment controls invadopodium formation and tumor cell locomotion, we systematically analyzed components of the microenvironment previously associated with cell invasion and migration. No single microenvironmental property was able to predict the locations of tumor cell phenotypes in the tumor if used in isolation or combined linearly. To solve this, we utilized the support vector machine (SVM algorithm to classify phenotypes in a nonlinear fashion. This approach identified conditions that promoted either motility phenotype. We then demonstrated that varying one of the conditions may change tumor cell behavior only in a context-dependent manner. In addition, to establish the link between phenotypes and cell fates, we photoconverted and monitored the fate of tumor cells in different microenvironments, finding that only tumor cells in the invadopodium-rich microenvironments degraded extracellular matrix (ECM and disseminated. The number of invadopodia positively correlated with degradation, while the inhibiting metalloproteases eliminated degradation and lung metastasis, consistent with a direct link among invadopodia, ECM degradation, and metastasis. We have detected and characterized two phenotypes of motile tumor cells in vivo, which

  5. Leptomeningeal metastasis from hepatocellular carcinoma with other unusual metastases: a case report

    OpenAIRE

    Pan, Zhenyu; Yang, Guozi; Yuan, Tingting; Pang, Xiaochuan; Wang, Yongxiang; Qu, Limei; Dong, Lihua

    2014-01-01

    Background Leptomeningeal metastasis, which results from metastasis of tumors to the arachnoid and pia mater, can lead to the dissemination of tumor cells throughout the subarachnoid space via the cerebral spinal fluid, and frequently with a poor prognosis. The primary tumor in adults is most often breast cancer, lung cancer, or melanoma. Although leptomeningeal metastasis due to cholangiocarcinoma has been reported, to the best of our knowledge there is no cytologically confirmed report of l...

  6. Pectic polysaccharide from corn (Zea mays L.) effectively inhibited multi-step mediated cancer cell growth and metastasis.

    Science.gov (United States)

    Jayaram, Smitha; Kapoor, Sabeeta; Dharmesh, Shylaja M

    2015-06-25

    Corn pectic polysaccharide (COPP) inhibited galectin-3 mediated hemagglutination at Minimum Inhibitory Concentration (MIC) of 4.08 μg/mL as opposed to citrus pectin (25 μg/mL), a well known galectin-3 inhibitor and lactose (4.16 μg/mL)--sugar specific to galectin-3. COPP effectively (72%) inhibited invasion and metastasis in experimental animals. In vivo results were substantiated by modulation of cancer specific markers such as galectin-3, which is a key molecule for initiation of metastatic cascade, vascular endothelial growth factor (VEGF) that enhances angiogenesis, matrix metalloproteinases 2 and 9 that are required for invasion, NF-κB, a transcription factor for proliferative potency of tumor cells and a phosphoglucoisomerase (PGI), the activity of which favors cancer cell growth. Structural characterization studies indicate the active component (relatively less acidic, 0.05 M ammonium carbonate, 160 kDa fraction) which showed antimetastatic potency in vitro with MIC of 0.09 μg/mL, and ∼ 45 fold increase in the activity when compared to that of COPP. Gas liquid chromatographic analysis indicated the presence of rhamnose (1%), arabinose (20%), xylose (3%), mannose (4%), galactose (54%) and uronic acid (10%) in different proportions. However, correlative data attributed galectin-3 inhibitory activity to enhanced levels of arabinose and galactose. FTIR, HPLC and NMR spectroscopic analysis further highlights that COPP is an arabinogalactan with methyl/ethyl esters. It is therefore suggested that the blockade of galectin-3 mediated lung metastasis appears to be a result of an inhibition of mixed functions induced during metastasis. The data signifies the importance of dietary carbohydrate as cancer-preventive agent. Although pectin digestibility and absorption are issues of concern, promising in vivo data provides evidence for the cancer preventive property of corn. The present study reveals for the first time a new component of corn, i.e.,--corn pectin

  7. Suppression of tumor development and metastasis formation in mice lacking the S100A4(mts1) gene

    DEFF Research Database (Denmark)

    Grum-Schwensen, Birgitte; Klingelhofer, Jörg; Berg, Christian Hededam

    2005-01-01

    distribution of host-derived stroma cells. Coinjection of CSML100 cells with immortalized S100A4(+/+) fibroblasts partially restored the dynamics of tumor development and the ability to form metastasis. These fibroblasts were characterized by an enhanced motility and invasiveness in comparison with S100A4...

  8. Gene expression markers in circulating tumor cells may predict bone metastasis and response to hormonal treatment in breast cancer.

    Science.gov (United States)

    Wang, Haiying; Molina, Julian; Jiang, John; Ferber, Matthew; Pruthi, Sandhya; Jatkoe, Timothy; Derecho, Carlo; Rajpurohit, Yashoda; Zheng, Jian; Wang, Yixin

    2013-11-01

    Circulating tumor cells (CTCs) have recently attracted attention due to their potential as prognostic and predictive markers for the clinical management of metastatic breast cancer patients. The isolation of CTCs from patients may enable the molecular characterization of these cells, which may help establish a minimally invasive assay for the prediction of metastasis and further optimization of treatment. Molecular markers of proven clinical value may therefore be useful in predicting disease aggressiveness and response to treatment. In our earlier study, we identified a gene signature in breast cancer that appears to be significantly associated with bone metastasis. Among the genes that constitute this signature, trefoil factor 1 (TFF1) was identified as the most differentially expressed gene associated with bone metastasis. In this study, we investigated 25 candidate gene markers in the CTCs of metastatic breast cancer patients with different metastatic sites. The panel of the 25 markers was investigated in 80 baseline samples (first blood draw of CTCs) and 30 follow-up samples. In addition, 40 healthy blood donors (HBDs) were analyzed as controls. The assay was performed using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) with RNA extracted from CTCs captured by the CellSearch system. Our study indicated that 12 of the genes were uniquely expressed in CTCs and 10 were highly expressed in the CTCs obtained from patients compared to those obtained from HBDs. Among these genes, the expression of keratin 19 was highly correlated with the CTC count. The TFF1 expression in CTCs was a strong predictor of bone metastasis and the patients with a high expression of estrogen receptor β in CTCs exhibited a better response to hormonal treatment. Molecular characterization of these genes in CTCs may provide a better understanding of the mechanism underlying tumor metastasis and identify gene markers in CTCs for predicting disease progression and

  9. Investigation of the roles of exosomes in colorectal cancer liver metastasis.

    Science.gov (United States)

    Wang, Xia; Ding, Xiaoling; Nan, Lijuan; Wang, Yiting; Wang, Jing; Yan, Zhiqiang; Zhang, Wei; Sun, Jihong; Zhu, Wei; Ni, Bing; Dong, Suzhen; Yu, Lei

    2015-05-01

    The leading cause of death among cancer patients is tumor metastasis. Tumor-derived exosomes are emerging as mediators of metastasis. In the present study, we demonstrated that exosomes play a pivotal role in the metastatic progression of colorectal cancer. First, a nude mouse model of colorectal cancer liver metastasis was established and characterized. Then, we demonstrated that exosomes from a highly liver metastatic colorectal cancer cell line (HT-29) could significantly increase the metastatic tumor burden and distribution in the mouse liver of Caco-2 colorectal cancer cells, which ordinarily exhibit poor liver metastatic potential. We further investigated the mechanisms by which HT-29-derived-exosomes influence the liver metastasis of colorectal cancer and found that mice treated with HT-29-derived exosomes had a relatively higher level of CXCR4 in the metastatic microenvironment, indicating that exosomes may promote colorectal cancer metastasis by recruiting CXCR4-expressing stromal cells to develop a permissive metastatic microenvironment. Finally, the migration of Caco-2 cells was significantly increased following treatment with HT-29-derived exosomes in vitro, further supporting a role for exosomes in modulating colorectal tumor-derived liver metastasis. The data from the present study may facilitate further translational medicine research into the prevention and treatment of colorectal cancer liver metastasis.

  10. Metastasis of transgenic breast cancer in plasminogen activator inhibitor-1 gene-deficient mice

    DEFF Research Database (Denmark)

    Almholt, Kasper; Nielsen, Boye Schnack; Frandsen, Thomas Leth

    2003-01-01

    , high levels of PAI-1 as well as uPA are equally associated with poor prognosis in cancer patients. PAI-1 is thought to play a vital role for the controlled extracellular proteolysis during tumor neovascularization. We have studied the effect of PAI-1 deficiency in a transgenic mouse model...... of metastasizing breast cancer. In these tumors, the expression pattern of uPA and PAI-1 resembles that of human ductal breast cancer and plasminogen is required for efficient metastasis. In a cohort of 63 transgenic mice that were either PAI-1-deficient or wild-type sibling controls, primary tumor growth...

  11. Protein arginine methyltransferase 5 promotes lung cancer metastasis via the epigenetic regulation of miR-99 family/FGFR3 signaling.

    Science.gov (United States)

    Jing, Pengyu; Zhao, Nan; Ye, Mingxiang; Zhang, Yong; Zhang, Zhipei; Sun, Jianyong; Wang, Zhengxin; Zhang, Jian; Gu, Zhongping

    2018-07-28

    Protein arginine methyltransferase 5 (PRMT5) functions as a tumor initiator to regulate several cancer progressions, such as proliferation and apoptosis, by catalyzing the symmetrical dimethylation (me2s) of arginine residues within targeted molecules. However, the exact role of PRMT5-mediated metastasis in lung cancer is not fully understood. Here, we illustrated its potential effects in lung cancer metastasis in vivo and vitro. PRMT5 was frequently overexpressed in lung tumors, and its expression was positively related to tumor stages, lymphatic metastasis and poor outcome. In this model, PRMT5 repressed the transcription of the miR-99 family by symmetrical dimethylation of histone H4R3, which increased FGFR3 expression and in turn activated Erk1/2 and Akt, leading to cell growth and metastasis in lung cancer. Furthermore, loss of PRMT5 exerted anti-metastasis effects on lung cancer progression by blocking histone-modification of miR-99 family. Overall, this study provides new insights into the PRMT5/miR-99 family/FGFR3 axis in regulating lung cancer progression and identifies PRMT5 as a promising prognostic biomarker and therapeutic target. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  12. Tumor-Associated Macrophages and Neutrophils in Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Jaehong Kim

    2016-01-01

    Full Text Available Distinct tumor microenvironment forms in each progression step of cancer and has diverse capacities to induce both adverse and beneficial consequences for tumorigenesis. It is now known that immune cells can be activated to favor tumor growth and progression, most probably influenced by the tumor microenvironment. Tumor-associated macrophages and tumor-associated neutrophils can exert protumoral functions, enhancing tumor cell invasion and metastasis, angiogenesis, and extracellular matrix remodeling, while inhibiting the antitumoral immune surveillance. Considering that neutrophils in inflammatory environments recruit macrophages and that recruited macrophages affect neutrophil functions, there may be various degrees of interaction between tumor-associated macrophages and tumor-associated neutrophils. Platelets also play an important role in the recruitment and regulation of monocytic and granulocytic cells in the tumor tissues, suggesting that platelet function may be essential for generation of tumor-associated macrophages and tumor-associated neutrophils. In this review, we will explore the biology of tumor-associated macrophages and tumor-associated neutrophils and their possible interactions in the tumor microenvironment. Special attention will be given to the recruitment and activation of these tumor-associated cells and to the roles they play in maintenance of the tumor microenvironment and progression of tumors.

  13. Neutralization of TNFα in tumor with a novel nanobody potentiates paclitaxel-therapy and inhibits metastasis in breast cancer.

    Science.gov (United States)

    Ji, Xuemei; Peng, Zhengxin; Li, Xiaorui; Yan, Zhonghui; Yang, Yue; Qiao, Zheng; Liu, Yu

    2017-02-01

    Metastatic disease is the major cause of death from cancer, and immunotherapy and chemotherapy have had limited success in reversing its progression. Researchers have suggested that inflammatory factors in the tumor environment can promote cancer invasion and metastasis, stimulating cancer progression. Thus, novel strategies that target cytokines and modulate the tumor microenvironment may emerge as important approaches for treating metastatic breast cancer. Specific neutralization of pathogenic TNF signaling using a TNFα antibody has gained increasing attention. Considering this, a selective human TNFα neutralized antibody was generated based on nanobody technology. A TNFα-specific nanobody was produced in Pichia pastoris with a molecular mass of 15 kDa and affinity constant of 2.05 nM. In the proliferation experiment, the TNFα nanobody could inhibit the proliferation of the breast cancer cell line MCF-7 induced by hTNFα in a dose-dependent manner. In the microinvasion model, the TNFα nanobody could inhibit the migration of the breast cancer cell lines MCF-7, MDA-MB-231 and the invasiveness of MDA-MB-231 induced by hTNFα in a dose-dependent manner. Drug administration of the combination of paclitaxel with the TNFα nanobody in vivo significantly enhanced the efficacy against 4T-1 breast tumor proliferation and lung metastasis; meanwhile, E-cadherin tumor epithelial marker expression was upregulated, supporting the anti-tumor therapeutic relevance of paclitaxel and the TNFα nanobody on EMT. This study highlights the importance of neutralizing low TNFα levels in the tumor microenvironment to sensitize the chemotherapeutic response, which has attractive potential for clinical applications. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Magnetic Resonance Imaging of Liver Metastasis.

    Science.gov (United States)

    Karaosmanoglu, Ali Devrim; Onur, Mehmet Ruhi; Ozmen, Mustafa Nasuh; Akata, Deniz; Karcaaltincaba, Musturay

    2016-12-01

    Liver magnetic resonance imaging (MRI) is becoming the gold standard in liver metastasis detection and treatment response assessment. The most sensitive magnetic resonance sequences are diffusion-weighted images and hepatobiliary phase images after Gd-EOB-DTPA. Peripheral ring enhancement, diffusion restriction, and hypointensity on hepatobiliary phase images are hallmarks of liver metastases. In patients with normal ultrasonography, computed tomography (CT), and positron emission tomography (PET)-CT findings and high clinical suspicion of metastasis, MRI should be performed for diagnosis of unseen metastasis. In melanoma, colon cancer, and neuroendocrine tumor metastases, MRI allows confident diagnosis of treatment-related changes in liver and enables differential diagnosis from primary liver tumors. Focal nodular hyperplasia-like nodules in patients who received platinum-based chemotherapy, hypersteatosis, and focal fat can mimic metastasis. In cancer patients with fatty liver, MRI should be preferred to CT. Although the first-line imaging for metastases is CT, MRI can be used as a problem-solving method. MRI may be used as the first-line method in patients who would undergo curative surgery or metastatectomy. Current limitation of MRI is low sensitivity for metastasis smaller than 3mm. MRI fingerprinting, glucoCEST MRI, and PET-MRI may allow simpler and more sensitive diagnosis of liver metastasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. [Effect of hepatic resection on development of liver metastasis].

    Science.gov (United States)

    García-Alonso, I; Palomares, T; Alonso, A; Portugal, V; Castro, B; Caramés, J; Méndez, J

    2003-11-01

    In the early stages of metastasis, development of the disease is dependent on growth factors produced by the host. There are clinical situations associated with an increase in these factors, such as partial resection of metastasized liver. Given the important role of hepatotrophic factors in liver regeneration, we have studied the effect of partial hepatectomy on the development of residual micrometastases in the liver, and on the neoplastic process as a whole. We used a murine model in which a rabdomiosarcoma was established by subcutaneous inoculation of syngeneic tumor cells in male Wag rats. Subsequently, the primary tumor was resected and/or a 40% hepatectomy was performed. The effect of these two surgical procedures on the tumor process was analyzed on the 25th and 35th days post-inoculation, and the percentage of regenerating hepatocytes was assessed. Both the tumorectomy and liver resection, when not combined, produced an increase in regional adenopathies without modifying the evolution of metastasis in the liver. However, when tumor excision and partial hepatectomy were performed simultaneously, there was a net increase in the metastatic process. In addition to a rapid spread of the disease (lung, mediastinum, retroperitoneum), the number of liver metastases increased by 300%. This development coincided with a steep rise in the percentage of regenerating hepatocytes, which nearly doubled that of the group subjected only to liver resection. We conclude that liver resection, alone or combined with excision of the primary tumor, may enhance tumor progression, both locally and at the metastasic level.

  16. Histologic assessment of tumor budding in preoperative biopsies to predict nodal metastasis in squamous cell carcinoma of the tongue and floor of the mouth.

    Science.gov (United States)

    Seki, Mai; Sano, Takaaki; Yokoo, Satoshi; Oyama, Tetsunari

    2016-04-01

    In squamous cell carcinoma (SCC) of the tongue and the floor of the mouth (FOM), it is important to predict lymph node metastasis, including occult metastasis, before operating. The purpose of this study was for us to determine practical histopathologic parameters as predictive factors for lymph node metastasis in preoperative SCC biopsy specimens. We examined 91 cases of SCC for conventional histopathologic assessment and a new factor, tumor budding, and their relationship with lymph node metastasis. Significant factors via univariate analysis (p factoring into the decision as to whether neck dissection is indicated. © 2015 Wiley Periodicals, Inc. Head Neck 38: E1582-E1590, 2016. © 2015 Wiley Periodicals, Inc.

  17. Early impact of social isolation and breast tumor progression in mice.

    Science.gov (United States)

    Madden, Kelley S; Szpunar, Mercedes J; Brown, Edward B

    2013-03-01

    Evidence from cancer patients and animal models of cancer indicates that exposure to psychosocial stress can promote tumor growth and metastasis, but the pathways underlying stress-induced cancer pathogenesis are not fully understood. Social isolation has been shown to promote tumor progression. We examined the impact of social isolation on breast cancer pathogenesis in adult female severe combined immunodeficiency (SCID) mice using the human breast cancer cell line, MDA-MB-231, a high β-adrenergic receptor (AR) expressing line. When group-adapted mice were transferred into single housing (social isolation) one week prior to MB-231 tumor cell injection into a mammary fat pad (orthotopic), no alterations in tumor growth or metastasis were detected compared to group-housed mice. When social isolation was delayed until tumors were palpable, tumor growth was transiently increased in singly-housed mice. To determine if sympathetic nervous system activation was associated with increased tumor growth, spleen and tumor norepinephrine (NE) was measured after social isolation, in conjunction with tumor-promoting macrophage populations. Three days after transfer to single housing, spleen weight was transiently increased in tumor-bearing and non-tumor-bearing mice in conjunction with reduced splenic NE concentration and elevated CD11b+Gr-1+ macrophages. At day 10 after social isolation, no changes in spleen CD11b+ populations or NE were detected in singly-housed mice. In the tumors, social isolation increased CD11b+Gr-1+, CD11b+Gr-1-, and F4/80+ macrophage populations, with no change in tumor NE. The results indicate that a psychological stressor, social isolation, elicits dynamic but transient effects on macrophage populations that may facilitate tumor growth. The transiency of the changes in peripheral NE suggest that homeostatic mechanisms may mitigate the impact of social isolation over time. Studies are underway to define the neuroendocrine mechanisms underlying the

  18. Alpha2-Adrenergic Receptors and Breast Tumor Stroma: A Novel Pathway Driving Breast Cancer Growth and Metastasis

    Science.gov (United States)

    2015-10-01

    sectioned into 5-micron sections. Three serial sections were mounted onto each slide and stained using hematoxylin and eosin (H&E). Five sets of... serial sections were taken from each lung, 100 µm distance between each set. This spacing allows surveillance of metastatic lesions throughout the lung...functions that promote tumor growth may be altered by DEX treatment. For example, IFN- is associated with effector function of natural killer cells

  19. Gene Regulation and Targeted Therapy in Gastric Cancer Peritoneal Metastasis: Radiological Findings from Dual Energy CT and PET/CT.

    Science.gov (United States)

    Shi, Bowen; Lin, Huimin; Zhang, Miao; Lu, Wei; Qu, Ying; Zhang, Huan

    2018-01-22

    Gastric cancer remains fourth in cancer incidence worldwide with a five-year survival of only 20%-30%. Peritoneal metastasis is the most frequent type of metastasis that accompanies unresectable gastric cancer and is a definitive determinant of prognosis. Preventing and controlling the development of peritoneal metastasis could play a role in helping to prolong the survival of gastric cancer patients. A non-invasive and efficient imaging technique will help us to identify the invasion and metastasis process of peritoneal metastasis and to monitor the changes in tumor nodules in response to treatments. This will enable us to obtain an accurate description of the development process and molecular mechanisms of gastric cancer. We have recently described experiment using dual energy CT (DECT) and positron emission tomography/computed tomography (PET/CT) platforms for the detection and monitoring of gastric tumor metastasis in nude mice models. We have shown that weekly continuous monitoring with DECT and PET/CT can identify dynamic changes in peritoneal metastasis. The sFRP1-overexpression in gastric cancer mice models showed positive radiological performance, a higher FDG uptake and increasing enhancement, and the SUVmax (standardized uptake value) of nodules demonstrated an obvious alteration trend in response to targeted therapy of TGF-β1 inhibitor. In this article, we described the detailed non-invasive imaging procedures to conduct more complex research on gastric cancer peritoneal metastasis using animal models and provided representative imaging results. The use of non-invasive imaging techniques should enable us to better understand the mechanisms of tumorigenesis, monitor tumor growth, and evaluate the effect of therapeutic interventions for gastric cancer.

  20. Efficient inhibition of murine breast cancer growth and metastasis by gene transferred mouse survivin Thr34→Ala mutant

    Directory of Open Access Journals (Sweden)

    Chen li-Juan

    2008-09-01

    Full Text Available Abstract Background Metastasis in breast cancer is a vital concern in treatment because most women with primary breast cancer have micrometastases to distant sites at diagnosis. As a member of the inhibitor of apoptosis protein (IAP family, survivin has been proposed as an attractive target for new anticancer interventions. In this study, we investigated the role of the plasmid encoding the phosphorylation-defective mouse survivin threonine 34→alanine mutant (Msurvivin T34A plasmid in suppressing both murine primary breast carcinomas and pulmonary metastases. Methods In vitro study, induction of apoptosis by Msurvivin T34A plasmid complexed with cationic liposome (DOTAP/Chol was examined by PI staining fluorescence microscopy and flow cytometric analysis. The anti-tumor and anti-metastases activity of Msurvivin T34A plasmid complexed with cationic liposome (DOTAP/Chol was evaluated in female BALB/c mice bearing 4T1 s.c. tumors. Mice were treated twice weekly with i.v. administration of Msurvivin T34A plasmid complexed with cationic liposome (DOTAP/Chol, PORF-9 null plasmid complexed with cationic liposome (DOTAP/Chol, 0.9% NaCl solution for 4 weeks. Tumor volume was observed. After sacrificed, tumor net weight was measured and Lung metastatic nodules of each group were counted. Assessment of apoptotic cells by TUNEL assay was conducted in tumor tissue. Microvessel density within tumor tissue was determined by CD31 immunohistochemistry. Alginate-encapsulated tumor cells test was conducted to evaluate the effect on angiogenesis. By experiment of cytotoxicity T lymphocytes, we test whether Msurvivin T34A plasmid complexed with cationic liposome (DOTAP/Chol can induce specific cell immune response. Results Administration of Msurvivin T34A plasmid complexed with cationic liposome (DOTAP/Chol resulted in significant inhibition in the growth and metastases of 4T1 tumor model. These anti-tumor and anti-metastases responses were associated with

  1. Imaging of lung metastasis tumor mouse model using [{sup 18}F]FDG small animal PET and CT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, June Youp; Woo, Sang Keun; Lee, Tae Sup [Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul (Korea, Republic of)] (and others)

    2007-02-15

    The purpose of this study is to image metastaic lung melanoma model with optimal pre-conditions for animal handling by using [{sup 18}F]FDG small animal PET and clinical CT. The pre-conditions for lung region tumor imaging were 16-22 h fasting and warming temperature at 30 .deg. C. Small animal PET image was obtained at 60 min postinjection of 7.4 MBq [{sup 18}F]FDG and compared pattern of [{sup 18}F]FDG uptake and glucose standard uptake value (SUVG) of lung region between Ketamine/Xylazine (Ke/Xy) and Isoflurane (Iso) anesthetized group in normal mice. Metastasis tumor mouse model to lung was established by intravenous injection of B16-F10 cells in C57BL/6 mice. In lung metastasis tumor model, [{sup 18}F]FDG image was obtained and fused with anatomical clinical CT image. Average blood glucose concentration in normal mice were 128.0 {+-} 22.87 and 86.0 {+-} 21.65 mg/dL in Ke/Xy group and Iso group, respectively. Ke/Xy group showed 1.5 fold higher blood glucose concentration than Iso group. Lung to Background ratio (L/B) in SUVG image was 8.6 {+-} 0.48 and 12.1 {+-}0.63 in Ke/Xy group and Iso group, respectively. In tumor detection in lung region, [{sup 18}F]FDG image of Iso group was better than that of Ke/Xy group, because of high L/B ratio. Metastatic tumor location in [{sup 18}F]FDG small animal PET image was confirmed by fusion image using clinical CT. Tumor imaging in small animal lung region with [{sup 18}F]FDG small animal PET should be considered pre-conditions which fasting, warming and an anesthesia during [{sup 18}F]FDG uptake. Fused imaging with small animal PET and CT image could be useful for the detection of metastatic tumor in lung region.

  2. Detection of cancer before distant metastasis

    NARCIS (Netherlands)

    Coumans, F.A.W.; Siesling, Sabine; Terstappen, Leonardus Wendelinus Mathias Marie

    2013-01-01

    Background To establish a distant metastasis (DM) cells must disseminate from the primary tumor and overcome a series of obstacles, the metastatic cascade. In this study we develop a mathematical model for this cascade to estimate the tumor size and the circulating tumor cell (CTC) load before the

  3. Detection of cancer before distant metastasis

    NARCIS (Netherlands)

    Coumans, Frank A. W.; Siesling, Sabine; Terstappen, Leon W. M. M.

    2013-01-01

    Background: To establish a distant metastasis (DM) cells must disseminate from the primary tumor and overcome a series of obstacles, the metastatic cascade. In this study we develop a mathematical model for this cascade to estimate the tumor size and the circulating tumor cell (CTC) load before the

  4. Intracardiac metastasis originated from chondrosarcoma.

    Science.gov (United States)

    Maurea, Nicola; Ragone, Gianluca; Coppola, Carmela; Caronna, Antonietta; Tocchetti, Carlo G; Agozzino, Lucio; Apice, Gaetano; Iaffaioli, Rosario V

    2017-05-01

    Primary cardiac tumors are extremely rare. By comparison, metastatic involvement of the heart is over 20 times more common and has been reported in autopsy series in up to one in five patients dying of cancer. Cardiac metastasis of chondrosarcoma is absolutely not frequent. In the recent literature, a cardiac metastasis from chondrosarcoma has never been described. We report the case of an 18-year-old man with a diagnosis of cardiac metastasis that originated from a left scapular chondrosarcoma. Chondrosarcoma is a skeletal tumor with various grades of malignancy, rapidly evolving, and with a strong tendency to metastasize, with low responsiveness to chemotherapy. The onset of characteristic systemic symptoms in the late stage of the disease led to the diagnosis of a mass localized in the right atrium. Management and differential diagnosis of infective heart lesions were also very complex in a rapidly evolving life-threatening condition.

  5. In Vivo Imaging of Prostate Cancer Tumors and Metastasis Using Non-Specific Fluorescent Nanoparticles in Mice

    Directory of Open Access Journals (Sweden)

    Coralie Genevois

    2017-12-01

    Full Text Available With the growing interest in the use of nanoparticles (NPs in nanomedicine, there is a crucial need for imaging and targeted therapies to determine NP distribution in the body after systemic administration, and to achieve strong accumulation in tumors with low background in other tissues. Accumulation of NPs in tumors results from different mechanisms, and appears extremely heterogeneous in mice models and rather limited in humans. Developing new tumor models in mice, with their low spontaneous NP accumulation, is thus necessary for screening imaging probes and for testing new targeting strategies. In the present work, accumulation of LipImageTM 815, a non-specific nanosized fluorescent imaging agent, was compared in subcutaneous, orthotopic and metastatic tumors of RM1 cells (murine prostate cancer cell line by in vivo and ex vivo fluorescence imaging techniques. LipImageTM 815 mainly accumulated in liver at 24 h but also in orthotopic tumors. Limited accumulation occurred in subcutaneous tumors, and very low fluorescence was detected in metastasis. Altogether, these different tumor models in mice offered a wide range of NP accumulation levels, and a panel of in vivo models that may be useful to further challenge NP targeting properties.

  6. MicroRNA-338 inhibits growth, invasion and metastasis of gastric cancer by targeting NRP1 expression.

    Directory of Open Access Journals (Sweden)

    Yang Peng

    Full Text Available NRP1 as multifunctional non-tyrosine-kinase receptors play critical roles in tumor progression. MicroRNAs (miRNAs are an important class of pervasive genes that are involved in a variety of biological functions, particularly cancer. It remains unclear whether miRNAs can regulate the expression of NRP1. The goal of this study was to identify miRNAs that could inhibit the growth, invasion and metastasis of gastric cancer by targeting NRP1 expression. We found that miR-338 expression was reduced in gastric cancer cell lines and in gastric cancer tissues. Moreover, we found that miR-338 inhibited gastric cancer cell migration, invasion, proliferation and promoted apoptosis by targeting NRP1 expression. As an upstream regulator of NRP1, miR-338 directly targets NRP1. The forced expression of miR-338 inhibited the phosphorylation of Erk1/2, P38 MAPK and Akt; however, the expression of phosphorylated Erk1/2, P38 MAPK and Akt was restored by the overexpression of NRP1. In AGS cells infected with miR-338 or transfected with SiNRP1, the protein levels of fibronectin, vimentin, N-cadherin and SNAIL were decreased, but the expression of E-cadherin was increased. The expression of mesenchymal markers in miR-338-expressing cells was restored to normal levels by the restoration of NRP1 expression. In vivo, miR-338 also decreased tumor growth and suppressed D-MVA by targeting NRP1. Therefore, we conclude that miR-338 acts as a novel tumor suppressor gene in gastric cancer. miR-338 can decrease migratory, invasive, proliferative and apoptotic behaviors, as well as gastric cancer EMT, by attenuating the expression of NRP1.

  7. Pancreatic metastasis from invasive pleomorphic lobular carcinoma of the breast: a rare case report.

    Science.gov (United States)

    Sun, Xiangjie; Zuo, Ke; Huang, Dan; Yu, Baohua; Cheng, Yufan; Yang, Wentao

    2017-07-11

    Invasive pleomorphic lobular carcinoma (PLC) is an aggressive subtype of invasive lobular carcinoma of the breast, which has its own histopathological and biological features. The metastatic patterns for PLC are distinct from those of invasive ductal carcinoma. In addition, pancreatic metastasis from PLC is extremely rare. We report a rare case of a 48-year-old woman presenting with clinical gastrointestinal symptoms and pancreatic metastasis of PLC. The pancreatic tumor was composed of pleomorphic tumor cells arranged in the form of solid sheets and nests and as single files, with frequent mitotic figures, nucleolar prominence, high nuclear to cytoplasmic ratio and loss of cohesion. The malignant cells were positive for p120 (cytoplasmic) and GATA3 and negative for estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2, E-cadherin, gross cystic disease fluid protein 15 and mammaglobin, which indicated a lobular carcinoma phenotype of the breast. To the best of our knowledge, this is one of the few reported cases in the literature of pancreatic metastasis of invasive lobular carcinoma of the breast, of which the definitive diagnosis was obtained only after surgery. Rare metastasis sites should be considered, particularly, when a patient has a medical history of PLC.

  8. Promotion of Tumor Invasion by Cooperation of Granulocytes and Macrophages Activated by Anti-tumor Antibodies

    Directory of Open Access Journals (Sweden)

    Emilio Barbera-Guillem

    1999-11-01

    Full Text Available We investigated the potential role of anti-tumor antibodies and tumor antigens in the formation of immune complexes which promote matrix degradation and angiogenesis. B-cell deficient or B-cell depleted mice showed a reduction in tumor invasion and metastasis. In vitro invasion assays and in vivo models of metastasis showed that anti-sTn antibodies and sTn tumor antigens form complexes which induce granulocytes and macrophages together to mediate tumor invasion and metastasis by processes including extracellular matrix degradation and angiogenesis. These results suggest the existence of a tumor promoting role of a B-cell immune response induced by shed tumor associated antigens of solid, nonlymphoid tumors.

  9. Role of blood tumor markers in predicting metastasis and local recurrence after curative resection of colon cancer

    Science.gov (United States)

    Peng, Yifan; Zhai, Zhiwei; Li, Zhongmin; Wang, Lin; Gu, Jin

    2015-01-01

    Aim: To investigate the prognostic value of carcinoembryonic antigen (CEA), CA199, CA724 and CA242 in peripheral blood and local draining venous blood in colon cancer patients after curative resection. Methods: 92 colon cancer patients who received curative resection were retrospectively analyzed. The CEA, CA199, CA724 and CA242 were detected in peripheral blood and local draining venous blood. Results: Metastasis or local recurrence was found in 29 (29/92, 31.5%) patients during follow-up period. 92 patients were divided into two groups: metastasis/local recurrence group (n = 29) and non-metastasis/local recurrence group (n = 63). Peripheral venous CEA, CA199, CA724 and CA242 (p-CEA, p-CA199, p-CA724 and p-CA242) were comparable between two groups (P > 0.05). The median draining venous CEA (d-CEA) in metastases/local recurrence group (23.7 ± 6.9 ng/ml) was significantly higher than that in non-metastases/local recurrence group (18.1 ± 6.3 ng/ml; P 0.05). The optimal cut-off value of d-CEA was 2.76 ng/ml, with the sensitivity and specificity of 90% and 40% in the prediction of metastasis or local recurrence, respectively. d-CEA correlated with tumor differentiation, T stage, TNM stage, metastasis and local recurrence. Subgroup analysis showed that, of 41 patients with stage II colon cancer, the optimal cut-off value of d-CEA was 8.78 ng/mL, and the sensitivity and specificity were 87.5% and 69.7% in the prediction of metastasis or local recurrence, respectively. Conclusion: d-CEA may be a prognostic factor for stage II colon cancer patients. PMID:25785084

  10. Ectopic adrenocorticotropic hormone syndrome in a case of duodenal neuroendocrine tumor presenting with liver metastasis

    Directory of Open Access Journals (Sweden)

    J Khare

    2018-01-01

    Full Text Available Ectopic adrenocorticotropic hormone (ACTH syndrome is an uncommon disorder and comprises about 15% of all patients with Cushing's syndrome (CS. Duodenal carcinoids are rare, indolent tumors usually associated with a benign progression. We hereby report a rare case of CS resulting from ectopic ACTH secretion from a duodenal neuroendocrine tumor (NET presenting with liver metastasis. A 37-year-old female presented with abdominal discomfort and dyspepsia of 1-month duration. Ultrasound abdomen suggested a well-defined hypoechoic lesion in the left lobe of the liver, suggestive of neoplasia. On clinical examination, she had Cushingoid features and persistent hypokalemia. Midnight ACTH and cortisol levels were grossly elevated at 1027 pg/ml (n < 46 pg/ml and 87.56 μg/dl (n < 7.5 μg/ml, respectively. Both overnight and high-dose dexamethasone suppression test confirmed nonsuppressed cortisol levels - 86.04 and 84.42 μg/dl (n < 1.8 μg/ml, respectively. Magnetic resonance imaging brain showed a structurally normal pituitary gland. Computed tomography scan of the abdomen revealed hepatic lesion with bilateral adrenal enlargement. A diagnosis of ectopic ACTH-dependent CS was made. Intraoperatively, a duodenal lesion of 0.5 cm × 0.5 cm was identified alongside an 8 cm × 6 cm exophytic lesion in segment IV of the liver. Frozen section of the duodenal lesion was positive for NET. She underwent a Whipple's surgery, cholecystectomy, and left hepatic lobectomy. Postoperatively, she showed clinical and biochemical remission. Herewith, we report the third case of duodenal carcinoid tumor presenting as ectopic ACTH syndrome and the first with liver metastasis.

  11. Leptomeningeal metastasis from hepatocellular carcinoma with other unusual metastases: a case report

    International Nuclear Information System (INIS)

    Pan, Zhenyu; Yang, Guozi; Yuan, Tingting; Pang, Xiaochuan; Wang, Yongxiang; Qu, Limei; Dong, Lihua

    2014-01-01

    Leptomeningeal metastasis, which results from metastasis of tumors to the arachnoid and pia mater, can lead to the dissemination of tumor cells throughout the subarachnoid space via the cerebral spinal fluid, and frequently with a poor prognosis. The primary tumor in adults is most often breast cancer, lung cancer, or melanoma. Although leptomeningeal metastasis due to cholangiocarcinoma has been reported, to the best of our knowledge there is no cytologically confirmed report of leptomeningeal metastasis from hepatocellular carcinoma. We herein report a case of leptomeningeal metastasis from hepatocellular carcinoma in a 53-year-old woman with concomitant systemic metastases to the lung, bone, brain, kidney, adrenal gland, subcutaneous tissues, and abdominal pelvis. The neurological symptoms of the patient were relieved after treatment with methotrexate intra-cerebral spinal fluid chemotherapy concurrent with whole brain radiotherapy. To our knowledge this is the first report of leptomeningeal metastasis from hepatocellular carcinoma confirmed by cytology. Treatment with methotrexate intra-cerebral spinal fluid chemotherapy concurrent with whole brain radiotherapy was effective

  12. Analysis of factors affecting local tumor progression of colorectal cancer liver metastasis after radiofrequency ablation

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Seong Hee; Cho, Yun Ku; Choi, Seung A; Kim, Mi Young; Lee, Ho Suk [Veterans Health Service Medical Center, Seoul (Korea, Republic of)

    2017-03-15

    The purpose of this study was to evaluate the independent predictive factors for local tumor progression (LTP) of colorectal liver metastasis (CRLM) after radiofrequency ablation (RFA). Patients with CRLM were included in the analysis if nodules were up to five in number, each nodule was ≤ 5 cm, and RFA was performed in our center from January 2006 to December 2015. Univariate and multivariate analyses to identify the predictors of LTP were performed by using a Cox proportional hazard model. Overall, 58 tumors from 38 patients were included in this study. LTP occurred in 14 tumors from 9 patients. The overall 1- and 3-year LTP rates were 23.5% and 29.4%, respectively. Multivariate analysis showed that tumor size > 2 cm and insufficient ablative margin were two independently significant adverse prognostic factors for LTP (p = 0.045 and 0.022, respectively). The 3-year LTP rates for 33 and 25 tumors with and without sufficient ablative margin were 4.5% and 61.2%, respectively. The difference was statistically significant (p < 0.001). The difference in the 3-year LTP rates according to the tumor size was not statistically significant (p = 0.791). Insufficient ablative margin seems to be the most potent predictor of LTP after RFA of CRLM.

  13. Circulating Tumor Cells and Cardiac Metastasis from Esophageal Cancer: A Case Report

    Directory of Open Access Journals (Sweden)

    Francesca Consoli

    2011-05-01

    Full Text Available We report the case of a 67-year-old man affected by metastatic esophageal cancer. The patient developed a symptomatic heart metastasis presenting as mimicking ST-segment elevation myocardial infarction. Cardiac magnetic resonance imaging (MRI documented the presence of a mass in the apex and septum of the left ventriculum. The dissemination of cancer was confirmed by the detection of circulating tumor cells (CTCs in the peripheral blood, measured by the CellSearch System (Veridex, LLC, Raritan, N.J., USA. The blood sample drawn at cardiac disease progression revealed the presence of 2 CTCs per 7.5 ml of blood. This report highlights the potential role of CTCs as markers of metastatic spread.

  14. Differentiated thyroid cancer (papillary). Brain tumor metastasis as clinical onset. surgical treatment and "1"3"1I. 8 years disease-free

    International Nuclear Information System (INIS)

    Mena, D.; Pena, M.; Alvarez, L.; García del Rio, H.; Bruno, O.

    2015-01-01

    Introduction: The differentiated thyroid cancer is the most common endocrine neoplasia. The major manifestation belongs to the papillary variant (65-90%). The prognosis tends to be very favorable, with a mortality rate of 1.8 % and a disease-free rate up to 10 years of around 90-95 %. The distant metastasis in brain accounts for 0.1-5 %. There are no established protocols for the management of brain metastasis. Therapeutic options are: surgery, stereotactic radiotherapy / radiosurgery, and "1"3"1I. The successful management of this case is an option for brain metastasis from thyroid papillary carcinoma. Case report: A 77 year-old female begins with double vision (diplopia). She underwent twice a surgery for brain tumor with a histopathological report on thyroid papillary tissue. The endocrine evaluation determines euthyroid state except thyroglobulin (TG) 2300 ng/ml. Total thyroidectomy with classic thyroid papillary carcinoma. A diagnostic "1"3"1I scan after surgery shows for first time brain metastasis uptake. The patient receives 25 mCi of "1"3"1I as initial therapeutic dose, and subsequent therapeutic doses (50, 50, 75, 75, 50 mCi) in 2 years, in accordance with the evolution of magnetic resonance, clinic, endocrine lab, hematological analysis, and "1"3"1I scintigraphy, that shows the possible remission of the disease. The follow-up was carried out by means of a clinical control, thyroglobulin values, U.S., "1"3"1I scans, and magnetic resonance. The patient is at the present time over 11 years survival and 8 years disease-free. Discussion: Even though the distant metastasis is not very common in brain and is generally associated with aggressive variants of tumor, our case started with a metastatic brain tumor in an euthyroid patient with no thyroid pathology background and with low-risk post-thyroidectomy criterion. The "1"3"1I scan turned positive in brain metastasis when the patient was thyroidectomized. This detail must be considered important, since it

  15. On the growth and dissemination laws in a mathematical model of metastatic growth

    Directory of Open Access Journals (Sweden)

    Benzekry Sébastien

    2015-01-01

    Full Text Available Metastasis represents one of the main clinical challenge in cancer treatment since it is associated with the majority of deaths. Recent technological advances allow quantification of the dynamics of the process by means of noninvasive techniques such as longitudinal tracking of bioluminescent cells. The metastatic process was simplified here into two essential components – dissemination and colonization – which were mathematically formalized in terms of simple quantitative laws. The resulting mathematical model was confronted to in vivo experimental data of spontaneous metastasis after primary tumor resection. We discuss how much information can be inferred from confrontation of theories to the data with emphasis on identifiability issues. It is shown that two mutually exclusive assumptions for the secondary growth law (namely same or different from the primary tumor growth law could fit equally well the data. Similarly, the fractal dimension coeffcient in the dissemination law could not be uniquely determined from data on total metastatic burden only. Together, these results delimitate the range of information that can be recovered from fitting data of metastatic growth to already simplified mathematical models.

  16. Role of CD44 in Malignant Peripheral Nerve Sheath Tumor Growth and Metastasis

    National Research Council Canada - National Science Library

    Sherman, Larry

    2003-01-01

    Malignant peripheral nerve sheath tumors (MPNST) are aggressive, difficult to treat tumors that occur in type I neurofibromatosis patients with an increased incidence compared to the general population...

  17. Role of CD44 in Malignant Peripheral Nerve Sheath Tumor Growth and Metastasis

    National Research Council Canada - National Science Library

    Sherman, Larry

    2001-01-01

    Malignant peripheral nerve sheath tumors (MPNST) are aggressive, difficult to treat tumors that occur in type I neurofibromatosis patients with an increased incidence compared to the general population...

  18. Spontaneous rupture of adrenal metastasis from hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Chae Hun; Kim, Hyun Jin; Park, Soo Youn; Hwang, Seong Su; Choi, Hyun Joo [St. Vincent Hospital, Suwon (Korea, Republic of)

    2007-03-15

    Rupture of adrenal tumor from various primary origins is a rather rare event. We report here on a ruptured adrenal metastasis from hepatocellular carcinoma, and this ruptured metastasis was observed at the time of the initial diagnosis.

  19. Dinitrosopiperazine-Mediated Phosphorylated-Proteins Are Involved in Nasopharyngeal Carcinoma Metastasis

    Directory of Open Access Journals (Sweden)

    Gongjun Tan

    2014-11-01

    Full Text Available N,N'-dinitrosopiperazine (DNP with organ specificity for nasopharyngeal epithelium, is involved in nasopharyngeal carcinoma (NPC metastasis, though its mechanism is unclear. To reveal the pathogenesis of DNP-induced metastasis, immunoprecipitation was used to identify DNP-mediated phosphoproteins. DNP-mediated NPC cell line (6-10B motility and invasion was confirmed. Twenty-six phosphoproteins were increased at least 1.5-fold following DNP exposure. Changes in the expression levels of selected phosphoproteins were verified by Western-blotting analysis. DNP treatment altered the phosphorylation of ezrin (threonine 567, vimentin (serine 55, stathmin (serine 25 and STAT3 (serine 727. Furthermore, it was shown that DNP-dependent metastasis is mediated in part through ezrin at threonine 567, as DNP-mediated metastasis was decreased when threonine 567 of ezrin was mutated. Strikingly, NPC metastatic tumors exhibited a higher expression of phosphorylated-ezrin at threonine 567 than the primary tumors. These findings provide novel insight into DNP-induced NPC metastasis and may contribute to a better understanding of the metastatic mechanisms of NPC tumors.

  20. Mesenchymal stem cells enhance the metastasis of 3D-cultured hepatocellular carcinoma cells

    International Nuclear Information System (INIS)

    Liu, Chang; Liu, Yang; Xu, Xiao-xi; Guo, Xin; Sun, Guang-wei; Ma, Xiao-jun

    2016-01-01

    Accumulating evidences have demonstrated that mesenchymal stem cells (MSC) could be recruited to the tumor microenvironment. Umbilical cord mesenchymal stem cells (UCMSC) were attractive vehicles for delivering therapeutic agents against cancer. Nevertheless, the safety of UCMSC in the treatment of tumors including hepatocellular carcinoma (HCC) was still undetermined. In this study, an in vitro co-culture system was established to evaluate the effect of UCMSC on the cell growth, cancer stem cell (CSC) characteristics, drug resistance, metastasis of 3D-cultured HCC cells, and the underlying mechanism was also investigated. It was found that after co-cultured with UCMSC, the metastatic ability of 3D-cultured HCC cells was significantly enhanced as indicated by up-regulation of matrix metalloproteinase (MMP), epithelial-mesenchymal transition (EMT)-related genes, and migration ability. However, cell growth, drug resistance and CSC-related gene expression of HCC cells were not affected by UCMSC. Moreover, EMT was reversed, MMP-2 expression was down-regulated, and migration ability of HCC cell was significantly inhibited when TGF-β receptor inhibitor SB431542 was added into the co-culture system. Therefore, these data indicated that UCMSC could significantly enhance the tumor cell metastasis, which was due to the EMT of HCC cells induced by TGF-β. The online version of this article (doi:10.1186/s12885-016-2595-4) contains supplementary material, which is available to authorized users

  1. CT manifestation of peritoneal metastasis

    International Nuclear Information System (INIS)

    Cha, Soon Joo; Kang, Eun Young; Suh, Won Hyuck

    1989-01-01

    Peritoneal metastasis is frequent mode of dissemination of intraabdominal malignancies. Radiologic diagnosis of peritoneal metastasis has relied on indirect evidence on a barium UGI series and small bowel examination. With the advent of CT scanning, CT is capable of direct imaging of peritoneum. The sensitivity of CT in detecting peritoneal metastasis and CT manifestation of peritoneal metastatic lesions had reported occasionally, but rarely in Korea. So, authors illustrated the CT manifestation of peritoneal metastatic lesions in 32 cases of macroscopically proven cases in laparoscopy or laparotomy in Korea University Hae Wha Hospital during recent 4 years. The results are as follows. 1. Of total 32 cases, 18 cases were male and 14 cases were female. Age incidence was the most common in 6th decade. 2. The most common type of malignancy that cause peritoneal metastasis was the stomach cancer and next common type of malignancies were pancreas cancer in men and ovarian cancer in women. 3. Of total 32 cases of peritoneal metastasis which was confirmed by laparoscopy or laparotomy macroscopically, 23 cases (72%) were detected peritoneal thickening and/or omental pathology by CT, and the remaining 9 cases (28%) were not detected by CT. 4. Ascites was present in 19 cases (59%). 5. Parietal peritoneal thickening was present in 16 cases (50%) by CT and sheetlike pattern was the most common findings. The patterns of peritoneal thickening was relatively nonspecific and was not correlated with primary tumor type. 6. Tumor involvement of greater omentum by CT was present in 19 cases (59%). There were 7 cases of smudged appearance pattern, 6 cases of nodular pattern, 6 cases of omental cake pattern and no cystic mass pattern. The patterns of omental pathology was relatively nonspecific and was nor correlated with primary tumor type

  2. Anti-metastatic and anti-tumor growth effects of Origanum majorana on highly metastatic human breast cancer cells: inhibition of NFκB signaling and reduction of nitric oxide production.

    Directory of Open Access Journals (Sweden)

    Yusra Al Dhaheri

    Full Text Available BACKGROUND: We have recently reported that Origanummajorana exhibits anticancer activity by promoting cell cycle arrest and apoptosis of the metastatic MDA-MB-231 breast cancer cell line. Here, we extended our study by investigating the effect of O. majorana on the migration, invasion and tumor growth of these cells. RESULTS: We demonstrate that non-cytotoxic concentrations of O. majorana significantly inhibited the migration and invasion of the MDA-MB-231 cells as shown by wound-healing and matrigel invasion assays. We also show that O. majorana induce homotypic aggregation of MDA-MB-231 associated with an upregulation of E-cadherin protein and promoter activity. Furthermore, we show that O. majorana decrease the adhesion of MDA-MB-231 to HUVECs and inhibits transendothelial migration of MDA-MB-231 through TNF-α-activated HUVECs. Gelatin zymography assay shows that O. majorana suppresses the activities of matrix metalloproteinase-2 and -9 (MMP-2 and MMP-9. ELISA, RT-PCR and Western blot results revealed that O. majorana decreases the expression of MMP-2, MMP-9, urokinase plasminogen activator receptor (uPAR, ICAM-1 and VEGF. Further investigation revealed that O. majorana suppresses the phosphorylation of IκB, downregulates the nuclear level of NFκB and reduces Nitric Oxide (NO production in MDA-MB-231 cells. Most importantly, by using chick embryo tumor growth assay, we also show that O. majorana promotes inhibition of tumor growth and metastasis in vivo. CONCLUSION: Our findings identify Origanummajorana as a promising chemopreventive and therapeutic candidate that modulate breast cancer growth and metastasis.

  3. Tumor vessel normalization by the PI3K inhibitor HS-173 enhances drug delivery.

    Science.gov (United States)

    Kim, Soo Jung; Jung, Kyung Hee; Son, Mi Kwon; Park, Jung Hee; Yan, Hong Hua; Fang, Zhenghuan; Kang, Yeo Wool; Han, Boreum; Lim, Joo Han; Hong, Soon-Sun

    2017-09-10

    Tumor vessels are leaky and immature, which causes poor oxygen and nutrient supply to tumor vessels and results in cancer cell metastasis to distant organs. This instability of tumor blood vessels also makes it difficult for anticancer drugs to penetrate and reach tumors. Numerous tumor vessel normalization approaches have been investigated for improving drug delivery into tumors. In this study, we investigated whether phosphoinositide 3-kinase (PI3K) inhibitors are able to improve vascular structure and function over the prolonged period necessary to achieve effective vessel normalization. The PI3K inhibitors, HS-173 and BEZ235 potently suppressed tumor growth and hypoxia, and increased tumor apoptosis in animal models. PI3K inhibitors also induced a regular, flat monolayer of endothelial cells (ECs) in vessels, improving stability of vessel structure, and normalized tumor vessels by increasing vascular maturity, pericyte coverage, basement membrane thickness, and tight-junctions. These effects resulted in a decrease in tumor vessel tortuosity and vessel thinning, and improved vessel function and blood flow. The tumor vessel stabilization effect of the PI3K inhibitor HS-173 also decreased the number of metastatic lung nodules in vivo metastasis model. Furthermore, HS-173 improved the delivery of doxorubicin into the tumor region, enhancing its anticancer effects. Mechanistic studies suggested that PI3K inhibitor HS-173-induced vessel normalization reflected changes in endothelial Notch signaling. Taken together, our findings indicate that vessel normalization by PI3K inhibitors restrained tumor growth and metastasis while improving chemotherapy by enhancing drug delivery into the tumor, suggesting that HS-173 may have a therapeutic value as an enhancer or an anticancer drug. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Application of detecting cerebrospinal fluid circulating tumor cells in the diagnosis of meningeal metastasis of non-small cell lung cancer

    OpenAIRE

    Rong JIANG; Chun-hua MA; Zi-long ZHU; Jin-duo LI; Bin WANG; Li-wei SUN; Yuan LÜ

    2014-01-01

    Objective To observe a new technology for the detection and enumeration of cerebrospinal fluid (CSF) circulating tumor cells (CTCs) in the diagnosis of non-small cell lung cancer (NSCLC) with meningeal metastasis (MM).  Methods Five cases of NSCLC with MM that were diagnosed by CSF cytology were selected, and 20 ml CSF samples were obtained by lumbar puncture for every patient. The tumor marker immunostaining-fluorescence in situ hybridization (TM-iFISH) technology was adapted to detect...

  5. Let-7b-mediated suppression of basigin expression and metastasis in mouse melanoma cells

    International Nuclear Information System (INIS)

    Fu, Tzu-Yen; Chang, Chia-Che; Lin, Chun-Ting; Lai, Cong-Hao; Peng, Shao-Yu; Ko, Yi-Ju; Tang, Pin-Chi

    2011-01-01

    Basigin (Bsg), also called extracellular matrix metalloproteinase inducer (EMMPRIN), is highly expressed on the surface of tumor cells and stimulates adjacent fibroblasts or tumor cells to produce matrix metalloproteinases (mmps). It has been shown that Bsg plays an important role in growth, development, cell differentiation, and tumor progression. MicroRNAs (miRNAs) are a class of short endogenous non-protein coding RNAs of 20-25 nucleotides (nt) that function as post-transcriptional regulators of gene expression by base-pairing to their target mRNAs and thereby mediate cleavage of target mRNAs or translational repression. In this study, let-7b, one of the let-7 family members, was investigated for its effect on the growth and invasiveness of the mouse melanoma cell line B16-F10. We have shown that let-7b can suppress the expression of Bsg in B16-F10 cells and also provided evidence that this suppression could result in the indirect suppression of mmp-9. The ability of B16-F10 cells transfected with let-7b to invade or migrate was significantly reduced. In addition, let-7b transfected B16-F10 cells displayed an inhibition of both cellular proliferation and colony formation. Furthermore, it was shown that the overexpression of let-7b in B16-F10 cells could reduce lung metastasis. Taken together, the present study identifies let-7b as a tumor suppressor that represses cancer cell proliferation and migration as well as tumor metastasis in mouse melanoma cells.

  6. Let-7b-mediated suppression of basigin expression and metastasis in mouse melanoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Tzu-Yen [Department of Animal Science, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan (China); Chang, Chia-Che [Institute of Biomedical Sciences, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan (China); Graduate Institute of Basic Medical Science, China Medical University, 91 Hsueh Shih Road, Taichung 40402, Taiwan (China); Lin, Chun-Ting [Department of Animal Science, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan (China); Lai, Cong-Hao [Institute of Biomedical Sciences, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan (China); Department of Life Sciences, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan (China); Peng, Shao-Yu; Ko, Yi-Ju [Department of Animal Science, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan (China); Tang, Pin-Chi, E-mail: pctang@dragon.nchu.edu.tw [Department of Animal Science, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan (China)

    2011-02-15

    Basigin (Bsg), also called extracellular matrix metalloproteinase inducer (EMMPRIN), is highly expressed on the surface of tumor cells and stimulates adjacent fibroblasts or tumor cells to produce matrix metalloproteinases (mmps). It has been shown that Bsg plays an important role in growth, development, cell differentiation, and tumor progression. MicroRNAs (miRNAs) are a class of short endogenous non-protein coding RNAs of 20-25 nucleotides (nt) that function as post-transcriptional regulators of gene expression by base-pairing to their target mRNAs and thereby mediate cleavage of target mRNAs or translational repression. In this study, let-7b, one of the let-7 family members, was investigated for its effect on the growth and invasiveness of the mouse melanoma cell line B16-F10. We have shown that let-7b can suppress the expression of Bsg in B16-F10 cells and also provided evidence that this suppression could result in the indirect suppression of mmp-9. The ability of B16-F10 cells transfected with let-7b to invade or migrate was significantly reduced. In addition, let-7b transfected B16-F10 cells displayed an inhibition of both cellular proliferation and colony formation. Furthermore, it was shown that the overexpression of let-7b in B16-F10 cells could reduce lung metastasis. Taken together, the present study identifies let-7b as a tumor suppressor that represses cancer cell proliferation and migration as well as tumor metastasis in mouse melanoma cells.

  7. Induction of antiproliferative connective tissue growth factor expression in Wilms' tumor cells by sphingosine-1-phosphate receptor 2.

    Science.gov (United States)

    Li, Mei-Hong; Sanchez, Teresa; Pappalardo, Anna; Lynch, Kevin R; Hla, Timothy; Ferrer, Fernando

    2008-10-01

    Connective tissue growth factor (CTGF), a member of the CCN family of secreted matricellular proteins, regulates fibrosis, angiogenesis, cell proliferation, apoptosis, tumor growth, and metastasis. However, the role of CTGF and its regulation mechanism in Wilms' tumor remains largely unknown. We found that the bioactive lipid sphingosine-1-phosphate (S1P) induced CTGF expression in a concentration- and time-dependent manner in a Wilms' tumor cell line (WiT49), whereas FTY720-phosphate, an S1P analogue that binds all S1P receptors except S1P2, did not. Further, the specific S1P2 antagonist JTE-013 completely inhibited S1P-induced CTGF expression, whereas the S1P1 antagonist VPC44116 did not, indicating that this effect was mediated by S1P2. This was confirmed by adenoviral transduction of S1P2 in WiT49 cells, which showed that overexpression of S1P2 increased the expression of CTGF. Induction of CTGF by S1P was sensitive to ROCK inhibitor Y-27632 and c-Jun NH2-terminal kinase inhibitor SP600125, suggesting the requirement of RhoA/ROCK and c-Jun NH2-terminal kinase pathways for S1P-induced CTGF expression. Interestingly, the expression levels of CTGF were decreased in 8 of 10 Wilms' tumor tissues compared with matched normal tissues by quantitative real-time PCR and Western blot analysis. In vitro, human recombinant CTGF significantly inhibited the proliferation of WiT49 cells. In addition, overexpression of CTGF resulted in significant inhibition of WiT49 cell growth. Taken together, these data suggest that CTGF protein induced by S1P2 might act as a growth inhibitor in Wilms' tumor.

  8. Information dynamics in carcinogenesis and tumor growth.

    Science.gov (United States)

    Gatenby, Robert A; Frieden, B Roy

    2004-12-21

    The storage and transmission of information is vital to the function of normal and transformed cells. We use methods from information theory and Monte Carlo theory to analyze the role of information in carcinogenesis. Our analysis demonstrates that, during somatic evolution of the malignant phenotype, the accumulation of genomic mutations degrades intracellular information. However, the degradation is constrained by the Darwinian somatic ecology in which mutant clones proliferate only when the mutation confers a selective growth advantage. In that environment, genes that normally decrease cellular proliferation, such as tumor suppressor or differentiation genes, suffer maximum information degradation. Conversely, those that increase proliferation, such as oncogenes, are conserved or exhibit only gain of function mutations. These constraints shield most cellular populations from catastrophic mutator-induced loss of the transmembrane entropy gradient and, therefore, cell death. The dynamics of constrained information degradation during carcinogenesis cause the tumor genome to asymptotically approach a minimum information state that is manifested clinically as dedifferentiation and unconstrained proliferation. Extreme physical information (EPI) theory demonstrates that altered information flow from cancer cells to their environment will manifest in-vivo as power law tumor growth with an exponent of size 1.62. This prediction is based only on the assumption that tumor cells are at an absolute information minimum and are capable of "free field" growth that is, they are unconstrained by external biological parameters. The prediction agrees remarkably well with several studies demonstrating power law growth in small human breast cancers with an exponent of 1.72+/-0.24. This successful derivation of an analytic expression for cancer growth from EPI alone supports the conceptual model that carcinogenesis is a process of constrained information degradation and that malignant

  9. [Influence of anesthesia procedure on malignant tumor outcome].

    Science.gov (United States)

    Fukui, K; Werner, C; Pestel, G

    2012-03-01

    Malignant tumors are the second major cause of death in Germany. The essential therapy of operable cancer is surgical removal of primary tumors combined with adjuvant therapy. However, several consequences of surgery may promote metastasis, such as shedding of tumor cells into the circulation, decrease in tumor-induced antiangiogenesis factors, excessive release of growth factors for wound healing and suppression of immunity induced by surgical stress. In the last decade it has become clear that cell-mediated immunity controls the development of metastasis. Various perioperative factors, such as surgical stress, certain anesthetic and analgesic drugs and pain can suppress the patients' immune system perioperatively. On the other hand, by modifications of the anesthesia technique (e.g. regional anesthesia) and perioperative management to minimize immunosuppression, anesthesiologists can play a considerable role for a better outcome in patients having malignant tumors. Sufficient clinical evidence is not yet available to prove or disprove the hypothesis that anesthesia practice can improve cancer prognosis. Despite difficulties in study design, several prospective randomized trials are currently running and the results are awaited to elucidate this topic.

  10. Molecular Mechanisms of Metastasis Suppression in Human Breast Cancer

    Science.gov (United States)

    1997-07-01

    immune system? Ann N Y Acad Sci, JR, 1986, The role of NK cells in tumour growth and 741, 212-15. metastasis in beige mice. Nature, 284, 622-4. 89. Stone ...77. Simmons ML and Brick JO, 1969, The Laboratory 96. Senger DR, Brown LF, Claffey KP and Dvorak HF, Mouse. Hollaender A, ed. Englewood Cliffs, NJ...ranfe of huan tumo sme I I su ding the human chromosome 11 into the highly metastatic MDA-MB-435 breast tumorigenic phenotype of several tumor lines

  11. Redox-responsive microbeads containing thiolated pectin-doxorubicin conjugate inhibit tumor growth and metastasis: An in vitro and in vivo study.

    Science.gov (United States)

    Cheewatanakornkool, Kamonrak; Niratisai, Sathit; Dass, Crispin R; Sriamornsak, Pornsak

    2018-07-10

    The objective of this study was to investigate the in vitro cytotoxicity and in vivo anticancer efficacy of redox-responsive microbeads containing thiolated pectin-doxorubicin (DOX) conjugate. Oral microbeads were coated with an enteric polymer to protect the drug from release in the upper gastrointestinal (GI) tract and allow redox-triggered drug release in the colon. Morphology, particle size, drug content, and in vitro drug release behavior of the microbeads were characterized; in vitro cytotoxicity was tested on mouse colon carcinoma, human colorectal adenocarcinoma, and human bone osteosarcoma cell lines. In vivo anticancer efficacy of coated microbeads was examined in BALB/c mice with murine colon carcinoma. These coated microbeads significantly inhibited the growth of all cell lines. The in vivo study confirmed delivery of DOX to the colorectal tumor site, redox-responsiveness, and anticancer efficacy of coated microbeads. Coated microbeads also effectively inhibited primary tumor growth and suppressed tumor metastases without gross toxicity to the non-target tissue. No noticeable damage was found in mouse GI tissues, indicating lack of DOX toxicity. These novel coated microbeads containing thiolated pectin-DOX conjugate may be a promising vehicle for targeted clinical delivery of DOX to the colorectal cancer site by oral administration. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  12. Endothelial-to-Osteoblast Conversion Generates Osteoblastic Metastasis of Prostate Cancer.

    Science.gov (United States)

    Lin, Song-Chang; Lee, Yu-Chen; Yu, Guoyu; Cheng, Chien-Jui; Zhou, Xin; Chu, Khoi; Murshed, Monzur; Le, Nhat-Tu; Baseler, Laura; Abe, Jun-Ichi; Fujiwara, Keigi; deCrombrugghe, Benoit; Logothetis, Christopher J; Gallick, Gary E; Yu-Lee, Li-Yuan; Maity, Sankar N; Lin, Sue-Hwa

    2017-06-05

    Prostate cancer (PCa) bone metastasis is frequently associated with bone-forming lesions, but the source of the osteoblastic lesions remains unclear. We show that the tumor-induced bone derives partly from tumor-associated endothelial cells that have undergone endothelial-to-osteoblast (EC-to-OSB) conversion. The tumor-associated osteoblasts in PCa bone metastasis specimens and patient-derived xenografts (PDXs) were found to co-express endothelial marker Tie-2. BMP4, identified in PDX-conditioned medium, promoted EC-to-OSB conversion of 2H11 endothelial cells. BMP4 overexpression in non-osteogenic C4-2b PCa cells led to ectopic bone formation under subcutaneous implantation. Tumor-induced bone was reduced in trigenic mice (Tie2 cre /Osx f/f /SCID) with endothelial-specific deletion of osteoblast cell-fate determinant OSX compared with bigenic mice (Osx f/f /SCID). Thus, tumor-induced EC-to-OSB conversion is one mechanism that leads to osteoblastic bone metastasis of PCa. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The Role of Extracellular Vesicles in Bone Metastasis

    Directory of Open Access Journals (Sweden)

    Michela Rossi

    2018-04-01

    Full Text Available Multiple types of cancer have the specific ability to home to the bone microenvironment and cause metastatic lesions. Despite being the focus of intense investigation, the molecular and cellular mechanisms that regulate the metastasis of disseminated tumor cells still remain largely unknown. Bone metastases severely impact quality of life since they are associated with pain, fractures, and bone marrow aplasia. In this review, we will summarize the recent discoveries on the role of extracellular vesicles (EV in the regulation of bone remodeling activity and bone metastasis occurrence. Indeed, it was shown that extracellular vesicles, including exosomes and microvesicles, released from tumor cells can modify the bone microenvironment, allowing the formation of osteolytic, osteosclerotic, and mixed mestastases. In turn, bone-derived EV can stimulate the proliferation of tumor cells. The inhibition of EV-mediated crosstalk between cancer and bone cells could represent a new therapeutic target for bone metastasis.

  14. Connective tissue growth factor inhibits gastric cancer peritoneal metastasis by blocking integrin α3β1-dependent adhesion.

    Science.gov (United States)

    Chen, Chiung-Nien; Chang, Cheng-Chi; Lai, Hong-Shiee; Jeng, Yung-Ming; Chen, Chia-I; Chang, King-Jeng; Lee, Po-Huang; Lee, Hsinyu

    2015-07-01

    Connective tissue growth factor (CTGF) plays important roles in normal and pathological conditions. The aim of this study was to investigate the role of CTGF in peritoneal metastasis as well as the underlying mechanism in gastric cancer progression. CTGF expression levels for wild-type and stable overexpression clones were determined by Western blotting and quantitative polymerase chain reaction (Q-PCR). Univariate and multivariate analyses, immunohistochemistry, and survival probability analyses were performed on gastric cancer patients. The extracellular matrix components involved in CTGF-regulated adhesion were determined. Recombinant CTGF was added to cells or coinoculated with gastric cancer cells into mice to evaluate its therapeutic potential. CTGF overexpression and treatment with the recombinant protein significantly inhibited cell adhesion. In vivo peritoneal metastasis demonstrated that CTGF-stable transfectants markedly decreased the number and size of tumor nodules in the mesentery. Statistical analysis of gastric cancer patient data showed that patients expressing higher CTGF levels had earlier TNM staging and a higher survival probability after the surgery. Integrin α3β1 was the cell adhesion molecule mediating gastric cancer cell adhesion to laminin, and blocking of integrin α3β1 prevented gastric cancer cell adhesion to recombinant CTGF. Coimmunoprecipitation results indicated that CTGF binds to integrin α3. Coinoculation of recombinant CTGF and gastric cancer cell lines in mice showed effective inhibition of peritoneal dissemination. Our results suggested that gastric cancer peritoneal metastasis is mediated through integrin α3β1 binding to laminin, and CTGF effectively blocks the interaction by binding to integrin α3β1, thus demonstrating the therapeutic potential of recombinant CTGF in gastric cancer patients.

  15. Inhibition of IL-17A suppresses enhanced-tumor growth in low dose pre-irradiated tumor beds.

    Directory of Open Access Journals (Sweden)

    Eun-Jung Lee

    Full Text Available Ionizing radiation induces modification of the tumor microenvironment such as tumor surrounding region, which is relevant to treatment outcome after radiotherapy. In this study, the effects of pre-irradiated tumor beds on the growth of subsequently implanted tumors were investigated as well as underlying mechanism. The experimental model was set up by irradiating the right thighs of C3H/HeN mice with 5 Gy, followed by the implantation of HCa-I and MIH-2. Both implanted tumors in the pre-irradiated bed showed accelerated-growth compared to the control. Tumor-infiltrated lymphocyte (TIL levels were increased, as well as pro-tumor factors such as IL-6 and transforming growth factor-beta1 (TGF-β1 in the pre-irradiated group. In particular, the role of pro-tumor cytokine interleukin-17A (IL-17A was investigated as a possible target mechanism because IL-6 and TGF-β are key factors in Th17 cells differentiation from naïve T cells. IL-17A expression was increased not only in tumors, but also in CD4+ T cells isolated from the tumor draining lymph nodes. The effect of IL-17A on tumor growth was confirmed by treating tumors with IL-17A antibody, which abolished the acceleration of tumor growth. These results indicate that the upregulation of IL-17A seems to be a key factor for enhancing tumor growth in pre-irradiated tumor beds.

  16. Transforming Growth Factor β1 Could Influence Thyroid Nodule Elasticity and Also Improve Cervical Lymph Node Metastasis in Papillary Thyroid Carcinoma.

    Science.gov (United States)

    Li, Yi; Wang, Yan; Wu, Qiong; Hu, Bing

    2015-11-01

    Ultrasound elastography has been a very useful tool in predicting the risk of malignant thyroid tumor for several years. The objective of this study was to determine if there is a correlation between strain ratio (SR), collagen deposition and transforming growth factor β1 (TGF-β1) expression in different types of thyroid nodules and if TGF-β1 is related to cervical lymph node metastasis. 102 nodules from 81 patients who underwent thyroid resection surgery in our hospital were retrospectively studied. All of these patients had undergone ultrasound elastography scanning before surgery. Masson staining and immunohistochemical staining were used to evaluate the ratio of expression of collagen deposition and TGF-β1. There was a significant difference between benign and malignant thyroid nodules in SR (8.913 ± 11.021 vs. 1.732 ± 0.727, p = 0.000), collagen content (0.371 ± 0.125 vs. 0.208 ± 0.057, p = 0.000) and TGF-β1 expression (0.336 ± 0.093 vs. 0.178 ± 0.071, p = 0.000). A cutoff of 2.99 for SR measurement was selected for the highest Youden index for predicting malignant thyroid nodules, which yielded 87.88% sensitivity, 100% specificity, 100% positive predictive value, 83.72% negative predictive value and 92.15% accuracy. Expression of collagen and TGF-β1 was positively correlated with SR measurements (coefficient = 0.839 for collagen and 0.855 for TGF-β1, p = 0.000). Among 61 nodules with papillary thyroid carcinoma, the average SR for the metastasis group was higher than that for the non-metastasis group (10.955 ± 13.805 and 7.852 ± 7.931, respectively), but without statistical significance (p = 0.287). Collagen deposition was significantly higher in the metastasis group than in the non-metastasis group (0.421 ± 0.091 vs. 0.353 ± 0.118, p = 0.011). TGF-β1 expression was also significantly higher in the metastasis group than in the non-metastasis group (0.378 ± 0.0.69 vs. 0.328 ± 0.091, p = 0.016). To conclude, TGF-β1 may contribute to thyroid

  17. Combination use of lentinan with x-ray therapy in mouse experimental tumor system, (3)

    International Nuclear Information System (INIS)

    Shiio, Tsuyoshi; Ohishi, Kazuo; Niitsu, Iwayasu; Hayashibara, Hiromi; Tsuchiya, Yoshiharu; Yoshihama, Takashi; Moriyuki, Hirobumi

    1988-01-01

    Combination effect of lentinan with X-ray irradiation on the metastatic mouse tumors, L1210, KLN205 and Lewis lung carcinoma were studied. Combination use of lentinan with X-ray therapy prolonged the life of BDF 1 mice bearing L1210 leukemia in the suitable combination conditions. Combination effects of lentinan with X-ray therapy were also observed on the suppression of the growth of KLN205 squamus cell carcinoma and on the suppression of the metastasis of Lewis lung carcinoma. Especially, in the case that lentinan was administered before or after X-ray local irradiation in the pulmorary metastasis system of Lewis lung carcinoma, a marked suppressin of pulmonary metastasis was observed and 2 to 4 mice among 8 tested mice were tumor free. (author)

  18. Bone metastasis target redox-responsive micell for the treatment of lung cancer bone metastasis and anti-bone resorption.

    Science.gov (United States)

    Ye, Wei-Liang; Zhao, Yi-Pu; Cheng, Ying; Liu, Dao-Zhou; Cui, Han; Liu, Miao; Zhang, Bang-Le; Mei, Qi-Bing; Zhou, Si-Yuan

    2018-01-16

    In order to inhibit the growth of lung cancer bone metastasis and reduce the bone resorption at bone metastasis sites, a bone metastasis target micelle DOX@DBMs-ALN was prepared. The size and the zeta potential of DOX@DBNs-ALN were about 60 nm and -15 mV, respectively. DOX@DBMs-ALN exhibited high binding affinity with hydroxyapatite and released DOX in redox-responsive manner. DOX@DBMs-ALN was effectively up taken by A549 cells and delivered DOX to the nucleus of A549 cells, which resulted in strong cytotoxicity on A549 cells. The in vivo experimental results indicated that DOX@DBMs-ALN specifically delivered DOX to bone metastasis site and obviously prolonged the retention time of DOX in bone metastasis site. Moreover, DOX@DBMs-ALN not only significantly inhibited the growth of bone metastasis tumour but also obviously reduced the bone resorption at bone metastasis sites without causing marked systemic toxicity. Thus, DOX@DBMs-ALN has great potential in the treatment of lung cancer bone metastasis.

  19. Role of stem cells in tumor initiation, metastasis formation and their use in cancer therapy

    International Nuclear Information System (INIS)

    Altaner, C.; Altanerova, V.

    2010-01-01

    This review considers recent advances in the stem cell field focusing on the challenges and opportunities for their use in clinical practice. Various kinds of stem cells and their roles in the human organism are in the review described. Attention is given to the role of mesenchymal stem cells as a potential tool in regenerative medicine. The origin and consequences of existence of tumor-initiating cells known as cancer stem cells is discussed also in context of metastasis formation. It seems that tumor-initiating cells might be responsible for resistance to many conventional cancer therapies, which might explain the limitations of these therapeutic modalities. Furthermore, the review focuses to tumor homing property of adult mesenchymal (stromal) stem cells. The feasibility of mesenchymal stem cells isolation from human adipose tissue, their genetic modifications with suicide genes together with ability to find tumor in the organism make them an attractive vehicle for cancer therapy without systemic toxicity. Published achievements from our laboratory in stem cell-based gene cancer therapy are shortly summarized. Generally, it is believed that the stem cell therapies might be ideal future treatment modality for inherited, degenerative diseases and in curing human malignancies as well. (author)

  20. A medaka model of cancer allowing direct observation of transplanted tumor cells in vivo at a cellular-level resolution.

    Science.gov (United States)

    Hasegawa, Sumitaka; Maruyama, Kouichi; Takenaka, Hikaru; Furukawa, Takako; Saga, Tsuneo

    2009-08-18

    The recent success with small fish as an animal model of cancer with the aid of fluorescence technique has attracted cancer modelers' attention because it would be possible to directly visualize tumor cells in vivo in real time. Here, we report a medaka model capable of allowing the observation of various cell behaviors of transplanted tumor cells, such as cell proliferation and metastasis, which were visualized easily in vivo. We established medaka melanoma (MM) cells stably expressing GFP and transplanted them into nonirradiated and irradiated medaka. The tumor cells were grown at the injection sites in medaka, and the spatiotemporal changes were visualized under a fluorescence stereoscopic microscope at a cellular-level resolution, and even at a single-cell level. Tumor dormancy and metastasis were also observed. Interestingly, in irradiated medaka, accelerated tumor growth and metastasis of the transplanted tumor cells were directly visualized. Our medaka model provides an opportunity to visualize in vivo tumor cells "as seen in a culture dish" and would be useful for in vivo tumor cell biology.

  1. CD47-CAR-T Cells Effectively Kill Target Cancer Cells and Block Pancreatic Tumor Growth.

    Science.gov (United States)

    Golubovskaya, Vita; Berahovich, Robert; Zhou, Hua; Xu, Shirley; Harto, Hizkia; Li, Le; Chao, Cheng-Chi; Mao, Mike Ming; Wu, Lijun

    2017-10-21

    CD47 is a glycoprotein of the immunoglobulin superfamily that is often overexpressed in different types of hematological and solid cancer tumors and plays important role in blocking phagocytosis, increased tumor survival, metastasis and angiogenesis. In the present report, we designed CAR (chimeric antigen receptor)-T cells that bind CD47 antigen. We used ScFv (single chain variable fragment) from mouse CD47 antibody to generate CD47-CAR-T cells for targeting different cancer cell lines. CD47-CAR-T cells effectively killed ovarian, pancreatic and other cancer cells and produced high level of cytokines that correlated with expression of CD47 antigen. In addition, CD47-CAR-T cells significantly blocked BxPC3 pancreatic xenograft tumor growth after intratumoral injection into NSG mice. Moreover, we humanized mouse CD47 ScFv and showed that it effectively bound CD47 antigen. The humanized CD47-CAR-T cells also specifically killed ovarian, pancreatic, and cervical cancer cell lines and produced IL-2 that correlated with expression of CD47. Thus, CD47-CAR-T cells can be used as a novel cellular therapeutic agent for treating different types of cancer.

  2. Hypoxic exosomes facilitate bladder tumor growth and development through transferring long non-coding RNA-UCA1.

    Science.gov (United States)

    Xue, Mei; Chen, Wei; Xiang, An; Wang, Ruiqi; Chen, He; Pan, Jingjing; Pang, Huan; An, Hongli; Wang, Xiang; Hou, Huilian; Li, Xu

    2017-08-25

    To overcome the hostile hypoxic microenvironment of solid tumors, tumor cells secrete a large number of non-coding RNA-containing exosomes that facilitate tumor development and metastasis. However, the precise mechanisms of tumor cell-derived exosomes during hypoxia are unknown. Here, we aim to clarify whether hypoxia affects tumor growth and progression by transferring long non-coding RNA-urothelial cancer-associated 1 (lncRNA-UCA1) enriched exosomes secreted from bladder cancer cells. We used bladder cancer 5637 cells with high expression of lncRNA-UCA1 as exosome-generating cells and bladder cancer UMUC2 cells with low expression of lncRNA-UCA1 as recipient cells. Exosomes derived from 5637 cells cultured under normoxic or hypoxic conditions were isolated and identified by transmission electron microscopy, nanoparticle tracking analysis and western blotting analysis. These exosomes were co-cultured with UMUC2 cells to evaluate cell proliferation, migration and invasion. We further investigated the roles of exosomal lncRNA-UCA1 derived from hypoxic 5637 cells by xenograft models. The availability of lncRNA-UCA1 in serum-derived exosomes as a biomarker for bladder cancer was also assessed. We found that hypoxic exosomes derived from 5637 cells promoted cell proliferation, migration and invasion, and hypoxic exosomal RNAs could be internalized by three bladder cancer cell lines. Importantly, lncRNA-UCA1 was secreted in hypoxic 5637 cell-derived exosomes. Compared with normoxic exosomes, hypoxic exosomes derived from 5637 cells showed the higher expression levels of lncRNA-UCA1. Moreover, Hypoxic exosomal lncRNA-UCA1 could promote tumor growth and progression though epithelial-mesenchymal transition, in vitro and in vivo. In addition, the expression levels of lncRNA-UCA1 in the human serum-derived exosomes of bladder cancer patients were higher than that in the healthy controls. Together, our results demonstrate that hypoxic bladder cancer cells remodel tumor

  3. Improved magnetic resonance molecular imaging of tumor angiogenesis by avidin-induced clearance of nonbound bimodal liposomes

    NARCIS (Netherlands)

    Tilborg, van G.A.F.; Mulder, W.J.M.; Schaft, van der D.W.J.; Reutelingsperger, C.; Griffioen, A.W.; Strijkers, G.J.; Nicolay, K.

    2008-01-01

    Angiogenic, that is, newly formed, blood vessels play an important role in tumor growth and metastasis and are a potential target for tumor treatment. In previous studies, the avß3 integrin, which is strongly expressed in angiogenic vessels, has been used as a target for Arg-Gly-Asp

  4. A new ODE tumor growth modeling based on tumor population dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Oroji, Amin; Omar, Mohd bin [Institute of Mathematical Sciences, Faculty of Science University of Malaya, 50603 Kuala Lumpur, Malaysia amin.oroji@siswa.um.edu.my, mohd@um.edu.my (Malaysia); Yarahmadian, Shantia [Mathematics Department Mississippi State University, USA Syarahmadian@math.msstate.edu (United States)

    2015-10-22

    In this paper a new mathematical model for the population of tumor growth treated by radiation is proposed. The cells dynamics population in each state and the dynamics of whole tumor population are studied. Furthermore, a new definition of tumor lifespan is presented. Finally, the effects of two main parameters, treatment parameter (q), and repair mechanism parameter (r) on tumor lifespan are probed, and it is showed that the change in treatment parameter (q) highly affects the tumor lifespan.

  5. A new ODE tumor growth modeling based on tumor population dynamics

    International Nuclear Information System (INIS)

    Oroji, Amin; Omar, Mohd bin; Yarahmadian, Shantia

    2015-01-01

    In this paper a new mathematical model for the population of tumor growth treated by radiation is proposed. The cells dynamics population in each state and the dynamics of whole tumor population are studied. Furthermore, a new definition of tumor lifespan is presented. Finally, the effects of two main parameters, treatment parameter (q), and repair mechanism parameter (r) on tumor lifespan are probed, and it is showed that the change in treatment parameter (q) highly affects the tumor lifespan

  6. Modeling triple-negative breast cancer heterogeneity: effects of stromal macrophages, fibroblasts and tumor vasculature.

    Science.gov (United States)

    Norton, Kerri-Ann; Jin, Kideok; Popel, Aleksander S

    2018-05-08

    A hallmark of breast tumors is its spatial heterogeneity that includes its distribution of cancer stem cells and progenitor cells, but also heterogeneity in the tumor microenvironment. In this study we focus on the contributions of stromal cells, specifically macrophages, fibroblasts, and endothelial cells on tumor progression. We develop a computational model of triple-negative breast cancer based on our previous work and expand it to include macrophage infiltration, fibroblasts, and angiogenesis. In vitro studies have shown that the secretomes of tumor-educated macrophages and fibroblasts increase both the migration and proliferation rates of triple-negative breast cancer cells. In vivo studies also demonstrated that blocking signaling of selected secreted factors inhibits tumor growth and metastasis in mouse xenograft models. We investigate the influences of increased migration and proliferation rates on tumor growth, the effect of the presence on fibroblasts or macrophages on growth and morphology, and the contributions of macrophage infiltration on tumor growth. We find that while the presence of macrophages increases overall tumor growth, the increase in macrophage infiltration does not substantially increase tumor growth and can even stifle tumor growth at excessive rates. Copyright © 2018. Published by Elsevier Ltd.

  7. Inhibition of experimental lung metastasis by systemic lentiviral delivery of kallistatin

    International Nuclear Information System (INIS)

    Shiau, Ai-Li; Wu, Chao-Liang; Lee, Che-Hsin; Teo, Min-Li; Chen, Shin-Yao; Wang, Chrong-Reen; Hsieh, Jeng-Long; Chang, Meng-Ya; Chang, Chih-Jui; Chao, Julie; Chao, Lee

    2010-01-01

    Angiogenesis plays an important role in the development and progression of tumors. Kallistatin exerts anti-angiogenic and anti-inflammatory activities that may be effective in inhibiting tumor metastasis. We investigated the antitumor effect of lentivirus-mediated kallistatin gene transfer in a syngeneic murine tumor model. Lentiviral vector encoding kallistatin (LV-Kallistatin) was constructed. The expression of kallistatin was verified by enzyme-linked immunosorbent assay (ELISA), and the bioactivity of kallistatin was determined by using cell proliferation, migration, and invasion assays. In addition, antitumor effects of LV-Kallistatin were evaluated by the intravenous injection of virus into tumor-bearing mice. The conditioned medium from LV-Kallistatin-treated cells inhibited the migration and proliferation of endothelial cells. Meanwhile, it also reduced the migration and invasion of tumor cells. In the experimental lung metastatic model, tumor-bearing mice receiving LV-Kallistatin had lower tumor nodules and longer survival than those receiving control virus or saline. Moreover, the microvessel densities, the levels of vascular endothelial growth factor (VEGF), tumor necrosis factor (TNF)-α, and nuclear factor κB (NF-κB) transcriptional activity were reduced in the LV-Kallistatin-treated mice. Results of this study showed that systemic administration of lentiviral vectors encoding kallistatin inhibited the growth of metastatic tumor and prolonged the survival of tumor-bearing mice. These results suggest that gene therapy using lentiviruses carrying the kallistatin gene, which exerts anti-angiogenic and anti-inflammatory activities, represents a promising strategy for the treatment of lung cancer

  8. Targeting the urokinase plasminogen activator receptor inhibits ovarian cancer metastasis.

    Science.gov (United States)

    Kenny, Hilary A; Leonhardt, Payton; Ladanyi, Andras; Yamada, S Diane; Montag, Anthony; Im, Hae Kyung; Jagadeeswaran, Sujatha; Shaw, David E; Mazar, Andrew P; Lengyel, Ernst

    2011-02-01

    To understand the functional and preclinical efficacy of targeting the urokinase plasminogen activator receptor (u-PAR) in ovarian cancer. Expression of u-PAR was studied in 162 epithelial ovarian cancers, including 77 pairs of corresponding primary and metastatic tumors. The effect of an antibody against u-PAR (ATN-658) on proliferation, adhesion, invasion, apoptosis, and migration was assessed in 3 (SKOV3ip1, HeyA8, and CaOV3) ovarian cancer cell lines. The impact of the u-PAR antibody on tumor weight, number, and survival was examined in corresponding ovarian cancer xenograft models and the mechanism by which ATN-658 blocks metastasis was explored. Only 8% of all ovarian tumors were negative for u-PAR expression. Treatment of SKOV3ip1, HeyA8, and CaOV3 ovarian cancer cell lines with the u-PAR antibody inhibited cell invasion, migration, and adhesion. In vivo, anti-u-PAR treatment reduced the number of tumors and tumor weight in CaOV3 and SKOV3ip1 xenografts and reduced tumor weight and increased survival in HeyA8 xenografts. Immunostaining of CaOV3 xenograft tumors and ovarian cancer cell lines showed an increase in active-caspase 3 and TUNEL staining. Treatment with u-PAR antibody inhibited α(5)-integrin and u-PAR colocalization on primary human omental extracellular matrix. Anti-u-PAR treatment also decreased the expression of urokinase, u-PAR, β(3)-integrin, and fibroblast growth factor receptor-1 both in vitro and in vivo. This study shows that an antibody against u-PAR reduces metastasis, induces apoptosis, and reduces the interaction between u-PAR and α(5)-integrin. This provides a rationale for targeting the u-PAR pathway in patients with ovarian cancer and for further testing of ATN-658 in this indication. ©2010 AACR.

  9. Intracerebral metastasis showing restricted diffusion: Correlation with histopathologic findings

    Energy Technology Data Exchange (ETDEWEB)

    Duygulu, G. [Radiology Department, Ege University Medicine School, Izmir (Turkey); Ovali, G. Yilmaz [Radiology Department, Celal Bayar University Medicine School, Manisa (Turkey)], E-mail: gulgun.yilmaz@bayar.edu.tr; Calli, C.; Kitis, O.; Yuenten, N. [Radiology Department, Ege University Medicine School, Izmir (Turkey); Akalin, T. [Pathology Department, Ege University Medicine School, Izmir (Turkey); Islekel, S. [Neurosurgery Department, Ege University Medicine School, Izmir (Turkey)

    2010-04-15

    Objective: We aimed to detect the frequency of restricted diffusion in intracerebral metastases and to find whether there is correlation between the primary tumor pathology and diffusion-weighted MR imaging (DWI) findings of these metastases. Material and methods: 87 patients with intracerebral metastases were examined with routine MR imaging and DWI. 11 hemorrhagic metastatic lesions were excluded. The routine MR imaging included three plans before and after contrast enhancement. The DWI was performed with spin-echo EPI sequence with three b values (0, 500 and 1000), and ADC maps were calculated. 76 patients with metastases were grouped according to primary tumor histology and the ratios of restricted diffusion were calculated according to these groups. ADCmin values were measured within the solid components of the tumors and the ratio of metastases with restricted diffusion to that which do not show restricted diffusion were calculated. Fisher's exact and Mann-Whitney U tests were used for the statistical analysis. Results: Restricted diffusion was observed in a total of 15 metastatic lesions (19, 7%). Primary malignancy was lung carcinoma in 10 of these cases (66, 6%) (5 small cell carcinoma, 5 non-small cell carcinoma), and breast carcinoma in three cases (20%). Colon carcinoma and testicular teratocarcinoma were the other two primary tumors in which restricted diffusion in metastasis was detected. There was no statistical significant difference between the primary pathology groups which showed restricted diffusion (p > 0.05). ADCmin values of solid components of the metastasis with restricted diffusion and other metastasis without restricted diffusion also showed no significant statistical difference (0.72 {+-} 0.16 x 10{sup -3} mm{sup 2}/s and 0.78 {+-} 21 x 10{sup -3} mm{sup 2}/s respectively) (p = 0.325). Conclusion: Detection of restricted diffusion on DWI in intracerebral metastasis is not rare, particularly if the primary tumor is lung or breast

  10. Anti-tumor activity of a novel HS-mimetic-vascular endothelial growth factor binding small molecule.

    Directory of Open Access Journals (Sweden)

    Kazuyuki Sugahara

    Full Text Available The angiogenic process is controlled by variety of factors of which the vascular endothelial growth factor (VEGF pathway plays a major role. A series of heparan sulfate mimetic small molecules targeting VEGF/VEGFR pathway has been synthesized. Among them, compound 8 (2-butyl-5-chloro-3-(4-nitro-benzyl-3H-imidazole-4-carbaldehyde was identified as a significant binding molecule for the heparin-binding domain of VEGF, determined by high-throughput-surface plasmon resonance assay. The data predicted strong binding of compound 8 with VEGF which may prevent the binding of VEGF to its receptor. We compared the structure of compound 8 with heparan sulfate (HS, which have in common the functional ionic groups such as sulfate, nitro and carbaldehyde that can be located in similar positions of the disaccharide structure of HS. Molecular docking studies predicted that compound 8 binds at the heparin binding domain of VEGF through strong hydrogen bonding with Lys-30 and Gln-20 amino acid residues, and consistent with the prediction, compound 8 inhibited binding of VEGF to immobilized heparin. In vitro studies showed that compound 8 inhibits the VEGF-induced proliferation migration and tube formation of mouse vascular endothelial cells, and finally the invasion of a murine osteosarcoma cell line (LM8G7 which secrets high levels of VEGF. In vivo, these effects produce significant decrease of tumor burden in an experimental model of liver metastasis. Collectively, these data indicate that compound 8 may prevent tumor growth through a direct effect on tumor cell proliferation and by inhibition of endothelial cell migration and angiogenesis mediated by VEGF. In conclusion, compound 8 may normalize the tumor vasculature and microenvironment in tumors probably by inhibiting the binding of VEGF to its receptor.

  11. Contribution to Tumor Angiogenesis From Innate Immune Cells Within the Tumor Microenvironment: Implications for Immunotherapy

    Directory of Open Access Journals (Sweden)

    Adriana Albini

    2018-04-01

    Full Text Available The critical role of angiogenesis in promoting tumor growth and metastasis is strongly established. However, tumors show considerable variation in angiogenic characteristics and in their sensitivity to antiangiogenic therapy. Tumor angiogenesis involves not only cancer cells but also various tumor-associated leukocytes (TALs and stromal cells. TALs produce chemokines, cytokines, proteases, structural proteins, and microvescicles. Vascular endothelial growth factor (VEGF and inflammatory chemokines are not only major proangiogenic factors but are also immune modulators, which increase angiogenesis and lead to immune suppression. In our review, we discuss the regulation of angiogenesis by innate immune cells in the tumor microenvironment, specific features, and roles of major players: macrophages, neutrophils, myeloid-derived suppressor and dendritic cells, mast cells, γδT cells, innate lymphoid cells, and natural killer cells. Anti-VEGF or anti-inflammatory drugs could balance an immunosuppressive microenvironment to an immune permissive one. Anti-VEGF as well as anti-inflammatory drugs could therefore represent partners for combinations with immune checkpoint inhibitors, enhancing the effects of immune therapy.

  12. Solitary Spinal Epidural Metastasis from Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Taisei Sako

    2016-01-01

    Full Text Available Solitary epidural space metastasis of a malignant tumor is rare. We encountered a 79-year-old male patient with solitary metastatic epidural tumor who developed paraplegia and dysuria. The patient had undergone total gastrectomy for gastric cancer followed by chemotherapy 8 months priorly. The whole body was examined for suspected metastatic spinal tumor, but no metastases of the spine or important organs were observed, and a solitary mass was present in the thoracic spinal epidural space. The mass was excised for diagnosis and treatment and was histopathologically diagnosed as metastasis from gastric cancer. No solitary metastatic epidural tumor from gastric cancer has been reported in English. Among the Japanese, 3 cases have been reported, in which the outcome was poor in all cases and no definite diagnosis could be made before surgery in any case. Our patient developed concomitant pneumonia after surgery and died shortly after the surgery. When a patient has a past medical history of malignant tumor, the possibility of a solitary metastatic tumor in the epidural space should be considered.

  13. Imaging of bioluminescent LNCaP-luc-M6 tumors: a new animal model for the study of metastatic human prostate cancer.

    Science.gov (United States)

    Scatena, Caroline D; Hepner, Mischa A; Oei, Yoko A; Dusich, Joan M; Yu, Shang-Fan; Purchio, Tony; Contag, Pamela R; Jenkins, Darlene E

    2004-05-15

    Animal experiments examining hormone-sensitive metastatic prostate cancer using the human LNCaP cell line have been limited to endpoint analyses. To permit longitudinal studies, we generated a luciferase-expressing cell line and used bioluminescent imaging (BLI) to non-invasively monitor the in vivo growth of primary LNCaP tumors and metastasis. LNCaP.FGC cells were transfected to constitutively express firefly luciferase. LNCaP-luc-M6 cells were tested for bioluminescent signal intensity and hormone responsiveness in vitro. The cells were implanted in subcutaneous and orthotopic sites in SCID-bg mice and imaged over time. The LNCaP-luc-M6 cells formed subcutaneous and orthotopic tumors in SCID-bg mice, and nearly all tumor-bearing animals developed pulmonary metastases. Early detection and temporal growth of primary tumors and metastatic lesions was successfully monitored by BLI. The LNCaP-luc-M6 cell line is a bioluminescent, hormone-sensitive prostate cancer cell line applicable for BLI studies to non-invasively monitor subcutaneous and orthotopic prostate tumor growth and metastasis in vivo. Copyright 2004 Wiley-Liss, Inc.

  14. Galectin-1 as a potent target for cancer therapy: role in the tumor microenvironment.

    Science.gov (United States)

    Ito, Koichi; Stannard, Kimberley; Gabutero, Elwyn; Clark, Amanda M; Neo, Shi-Yong; Onturk, Selda; Blanchard, Helen; Ralph, Stephen J

    2012-12-01

    The microenvironment of a tumor is a highly complex milieu, primarily characterized by immunosuppression, abnormal angiogenesis, and hypoxic regions. These features promote tumor progression and metastasis, resulting in poor prognosis and greater resistance to existing cancer therapies. Galectin-1 is a β-galactoside binding protein that is abundantly secreted by almost all types of malignant tumor cells. The expression of galectin-1 is regulated by hypoxia-inducible factor-1 (HIF-1) and it plays vital pro-tumorigenic roles within the tumor microenvironment. In particular, galectin-1 suppresses T cell-mediated cytotoxic immune responses and promotes tumor angiogenesis. However, since galectin-1 displays many different activities by binding to a number of diverse N- or O-glycan modified target proteins, it has been difficult to fully understand how galectin-1 supports tumor growth and metastasis. This review explores the importance of galectin-1 and glycan expression patterns in the tumor microenvironment and the potential effects of inhibiting galectin-1 as a therapeutic target for cancer treatment.

  15. Receptor for advanced glycation end products (RAGE) functions as receptor for specific sulfated glycosaminoglycans, and anti-RAGE antibody or sulfated glycosaminoglycans delivered in vivo inhibit pulmonary metastasis of tumor cells.

    Science.gov (United States)

    Mizumoto, Shuji; Takahashi, Jun; Sugahara, Kazuyuki

    2012-06-01

    Altered expression of chondroitin sulfate (CS) and heparan sulfate (HS) at the surfaces of tumor cells plays a key role in malignant transformation and tumor metastasis. Previously we demonstrated that a Lewis lung carcinoma (LLC)-derived tumor cell line with high metastatic potential had a higher proportion of E-disaccharide units, GlcUA-GalNAc(4,6-O-disulfate), in CS chains than low metastatic LLC cells and that such CS chains are involved in the metastatic process. The metastasis was markedly inhibited by the pre-administration of CS-E from squid cartilage rich in E units or by preincubation with a phage display antibody specific for CS-E. However, the molecular mechanism of the inhibition remains to be investigated. In this study the receptor molecule for CS chains containing E-disaccharides expressed on LLC cells was revealed to be receptor for advanced glycation end products (RAGE), which is a member of the immunoglobulin superfamily predominantly expressed in the lung. Interestingly, RAGE bound strongly to not only E-disaccharide, but also HS-expressing LLC cells. Furthermore, the colonization of the lungs by LLC cells was effectively inhibited by the blocking of CS or HS chains at the tumor cell surface with an anti-RAGE antibody through intravenous injections in a dose-dependent manner. These results provide the clear evidence that RAGE is at least one of the critical receptors for CS and HS chains expressed at the tumor cell surface and involved in experimental lung metastasis and that CS/HS and RAGE are potential molecular targets in the treatment of pulmonary metastasis.

  16. Small Submucosal Tumors of the Stomach: Differentiation of Gastric Schwannoma from Gastrointestinal Stromal Tumor with CT

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jin Wook; Choi, Dong Gil; Kim, Kyoung Mee; Sohn, Tae Sung; Lee, Jun Haeng; Kim, Hee Jung; Lee, Soon Jin [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2012-07-15

    To identify the CT features that help differentiate gastric schwannomas (GS) from small (5 cm or smaller) gastrointestinal stromal tumors (GIST) and to assess the growth rates of both tumors. We included 16 small GSs and 56 GISTs located in the stomach. We evaluated the CT features including size, contour, surface pattern, margins, growth pattern, pattern and degree of contrast enhancement, and the presence of intralesional low attenuation area, hemorrhage, calcification, surface dimpling, fistula, perilesional lymph nodes (LNs), invasion to other organs, metastasis, ascites, and peritoneal seeding. We also estimated the tumor volume doubling time. Compared with GISTs, GSs more frequently demonstrated a homogeneous enhancement pattern, exophytic or mixed growth pattern, and the presence of perilesional LNs (each p < 0.05). The intralesional low attenuation area was more common in GISTs than GSs (p < 0.05). Multivariate analyses indicated that a homogeneous enhancement pattern, exophytic or mixed growth pattern, and the presence of perilesional LNs were statistically significant (p < 0.05). Tumor volume doubling times for GSs (mean, 1685.4 days) were significantly longer than that of GISTs (mean, 377.6 days) (p = 0.004). Although small GSs and GISTs show similar imaging findings, GSs more frequently show an exophytic or mixed growth pattern, homogeneous enhancement pattern, perilesional LNs and grow slower than GISTs.

  17. Small Submucosal Tumors of the Stomach: Differentiation of Gastric Schwannoma from Gastrointestinal Stromal Tumor with CT

    International Nuclear Information System (INIS)

    Choi, Jin Wook; Choi, Dong Gil; Kim, Kyoung Mee; Sohn, Tae Sung; Lee, Jun Haeng; Kim, Hee Jung; Lee, Soon Jin

    2012-01-01

    To identify the CT features that help differentiate gastric schwannomas (GS) from small (5 cm or smaller) gastrointestinal stromal tumors (GIST) and to assess the growth rates of both tumors. We included 16 small GSs and 56 GISTs located in the stomach. We evaluated the CT features including size, contour, surface pattern, margins, growth pattern, pattern and degree of contrast enhancement, and the presence of intralesional low attenuation area, hemorrhage, calcification, surface dimpling, fistula, perilesional lymph nodes (LNs), invasion to other organs, metastasis, ascites, and peritoneal seeding. We also estimated the tumor volume doubling time. Compared with GISTs, GSs more frequently demonstrated a homogeneous enhancement pattern, exophytic or mixed growth pattern, and the presence of perilesional LNs (each p < 0.05). The intralesional low attenuation area was more common in GISTs than GSs (p < 0.05). Multivariate analyses indicated that a homogeneous enhancement pattern, exophytic or mixed growth pattern, and the presence of perilesional LNs were statistically significant (p < 0.05). Tumor volume doubling times for GSs (mean, 1685.4 days) were significantly longer than that of GISTs (mean, 377.6 days) (p = 0.004). Although small GSs and GISTs show similar imaging findings, GSs more frequently show an exophytic or mixed growth pattern, homogeneous enhancement pattern, perilesional LNs and grow slower than GISTs.

  18. Solitary epidural brain metastasis of Neuroepithelioma (a Primitive Neuroectodermal Tumor: case report

    Directory of Open Access Journals (Sweden)

    Farnaz Farshidfar

    2008-08-01

    Full Text Available A 14 years old male was referred to Computerized tomography scan (CT of our hospital for evaluation of headache. The patient was known case of cervical soft tissue Primitive neuroectodermal tumor (PNET which has undergone surgery and radiotherapy 4 years ago. The CT scan showed large solitary extra axial, epidural lesion in right parietal region, with mass effect and bony involvement. Then surgery was done for him and the resultant biopsy was Neuroepithelioma. After diagnosis the patient has undergone chemotherapy and radiotherapy. He has no signs or symptoms of malignancy, and also follow up CT scan of the brain, chest, and abdomen were normal after two years of surgery. This is the first reported case of epidural metastasis of a head and neck PNET in an adolescent.

  19. Targeting SPARC by lentivirus-mediated RNA interference inhibits cervical cancer cell growth and metastasis

    International Nuclear Information System (INIS)

    Chen, Jie; Shi, Dehuan; Liu, Xiaoyan; Fang, Shuang; Zhang, Jie; Zhao, Yueran

    2012-01-01

    Secreted protein acidic and rich in cysteine (SPARC), a calcium-binding matricellular glycoprotein, is implicated in the progressions of some cancers. However, no information has been available to date regarding the function of SPARC in cervical cancer cell growth and metastasis. In this study, we isolated and established high invasive subclones and low invasive subclones from human cervical cancer cell lines HeLa and SiHa by the limited dilution method. Real-time q-RT-PCR, Western Blot and ICC were performed to investigate SPARC mRNA and protein expressions in high invasive subclones and low invasive subclones. Then lentivirus vector with SPARC shRNA was constructed and infected the highly invasive subclones. Real-time q-RT-PCR, Western Blot and ICC were also performed to investigate the changes of SPARC expression after viral infection. In functional assays, effects of SPARC knockdown on the biological behaviors of cervical cancer cells were investigated. The mechanisms of SPARC in cervical cancer proliferation, apoptosis and invasion were also researched. SPARC was over-expressed in the highly invasive subclones compared with the low invasive subclones. Knockdown of SPARC significantly suppressed cervical cancer cell proliferation, and induced cell cycle arrest at the G1/G0 phase through the p53/p21 pathway, also caused cell apoptosis accompanied by the decreased ratio of Bcl-2/Bax, and inhibited cell invasion and metastasis accompanied by down-regulated MMP2 and MMP9 expressions and up-regulated E-cadherin expression. SPARC is related to the invasive phenotype of cervical cancer cells. Knockdown of SPARC significantly suppresses cervical cancer cell proliferation, induces cell apoptosis and inhibits cell invasion and metastasis. SPARC as a promoter improves cervical cancer cell growth and metastasis

  20. Targeting SPARC by lentivirus-mediated RNA interference inhibits cervical cancer cell growth and metastasis

    Directory of Open Access Journals (Sweden)

    Chen Jie

    2012-10-01

    Full Text Available Abstract Background Secreted protein acidic and rich in cysteine (SPARC, a calcium-binding matricellular glycoprotein, is implicated in the progressions of some cancers. However, no information has been available to date regarding the function of SPARC in cervical cancer cell growth and metastasis. Methods In this study, we isolated and established high invasive subclones and low invasive subclones from human cervical cancer cell lines HeLa and SiHa by the limited dilution method. Real-time q-RT-PCR, Western Blot and ICC were performed to investigate SPARC mRNA and protein expressions in high invasive subclones and low invasive subclones. Then lentivirus vector with SPARC shRNA was constructed and infected the highly invasive subclones. Real-time q-RT-PCR, Western Blot and ICC were also performed to investigate the changes of SPARC expression after viral infection. In functional assays, effects of SPARC knockdown on the biological behaviors of cervical cancer cells were investigated. The mechanisms of SPARC in cervical cancer proliferation, apoptosis and invasion were also researched. Results SPARC was over-expressed in the highly invasive subclones compared with the low invasive subclones. Knockdown of SPARC significantly suppressed cervical cancer cell proliferation, and induced cell cycle arrest at the G1/G0 phase through the p53/p21 pathway, also caused cell apoptosis accompanied by the decreased ratio of Bcl-2/Bax, and inhibited cell invasion and metastasis accompanied by down-regulated MMP2 and MMP9 expressions and up-regulated E-cadherin expression. Conclusion SPARC is related to the invasive phenotype of cervical cancer cells. Knockdown of SPARC significantly suppresses cervical cancer cell proliferation, induces cell apoptosis and inhibits cell invasion and metastasis. SPARC as a promoter improves cervical cancer cell growth and metastasis.

  1. Factors associated with peritoneal metastasis in non-serosa-invasive gastric cancer: a retrospective study of a prospectively-collected database

    International Nuclear Information System (INIS)

    Huang, Baojun; Sun, Zhe; Wang, Zhenning; Lu, Chong; Xing, Chengzhong; Zhao, Bo; Xu, Huimian

    2013-01-01

    Peritoneal dissemination is the most common type of recurrence in advanced gastric cancer. The main mechanism is thought to be via the exfoliation of free cancer cells (FCCs) from tumor in the gastric serosa. The frequency of recurrence thus increases once the tumor cells penetrate the serosa. However, this type of recurrence also occurs in patients without serosal invasion, though the mechanisms responsible for have not been fully established. We therefore investigated the factors associated with peritoneal dissemination in patients with non-serosa-invasive gastric cancer. A total of 685 patients with non-serosa-invasive gastric cancer who underwent curative resection with retrieval of more than 15 nodes were selected. The associations between clinicopathological features and peritoneal dissemination were analyzed. Among them, the tumor infiltrating growth pattern (INF) were classified into α, β and γ according to the Japanese Classification of Gastric Carcinoma (JCGC). The overall incidence of peritoneal metastasis was 20% (137/685). Age, Borrmann type, differentiation, INF, nodal status and free cancer cells (FCCs) were correlated with peritoneal dissemination using univariate analysis. However, only INF, Borrmann type and TNM node stage were identified as independent correlated factors with peritoneal metastasis by multivariate analysis when FCCs were excluded, and these were also prognostic factors. Peritoneal dissemination was more common in patients with INFγ, Borrmann III/IV and N3 stage. Among patients without FCCs, nodal involvement or vessel invasion, only INF remained an independent associated factor according to multivariate analysis. Tumor infiltrating growth pattern (INF), together with Borrmann type and TNM node stage, are important factors associated with peritoneal metastasis in non-serosa-invasive gastric cancer

  2. Tomographic findings of gastric gastrointestinal stromal tumor: a 14-case study

    International Nuclear Information System (INIS)

    Pelandre, Gustavo Lemos; Djahjah, Maria Celia; Nobre, Luiz Felipe; Gasparetto, Emerson Leandro; Marchiori, Edson; Pereira, Bruno Vilhena; Valadao, Marcus; Linhares, Eduardo

    2008-01-01

    Objective: The purpose of this study was to describe the tomographic findings of gastric gastrointestinal stromal tumor. Materials and methods: Fourteen patients with histopathologically and immunohistochemically confirmed gastric gastrointestinal stromal tumors, who had already been submitted to computed tomography scans before the treatment, were evaluated in the period between January 1999 and December 2006. The following tomographic variables were analyzed: lesion topography, size/dimensions, homogeneity, contour, margins, morphology, pattern and intravenous contrast-enhancement intensity, growth pattern, invasion of adjacent organs, presence of ulceration, fistula, calcifications, mesenteric fat infiltration, lymphadenomegaly and presence of distant metastasis. Results: Tumors were found in the body (57.1%) or in the gastric fundus (42.9%), with sizes ranging between 6.0 cm and 23.0 cm (mean, 11.5 cm). Predominantly extra luminal growth was observed in 57.1% of cases and intra/extra luminal in 35.7%. Subtle contrast-enhancement was observed in 50%, moderate in 50%, and heterogeneous in 64.3% of cases. Additionally, central hypodensity was observed in 64.3%, invasion of adjacent organs in 42.9%, and hepatic metastasis in 7.2% of cases. Conclusion: In the present study, the majority of tumors were found in the gastric body, with an average size of 11.5 cm, presenting with central hypodensity, heterogeneous contrast-enhancement and predominantly extraluminal growth. (author)

  3. Experience of treating late cerebral lungcancer metastasis using photodynamic therapy

    Directory of Open Access Journals (Sweden)

    A. I. Ryabova

    2013-01-01

    Full Text Available Treatment outcomes for a patient with solitary brain metastasis after long-term relapse-free follow-up of invasive lung carcinoma were presented. Brain metastasis without other signs of disease progression was diagnosed 10 years after combined modality treatment for stage II lung cancer. Removal of intracerebral metastasis with intraoperative photodynamic therapy was performed. Histology microspecimens of the primary tumor and metastasis were similar. No signs of disease progression in the brain 9 months after surgery were found. This case demonstrates that it is important to increase cancer suspicion for patients with long-term relapse-free follow-up. The use of intraoperative photodynamic therapy with photoditazine as a sensitizer in the treatment of cerebral metastases results in a favorable anti-tumor effect, thus improving life quality of patients

  4. Analysis of the ultrasonic image of adrenal metastasis in primary lung cancer

    International Nuclear Information System (INIS)

    Bai Ling; Yang Tao; Tang Ying; Mao Jingning; Chen Wei; Wang Yong; Zhang Yan

    2009-01-01

    Objective: To investigate the ultrasonic image of adrenal metastasis in primary lung cancer. Methods: The ultrasonic imaging characteristics of fourteen patients with adrenal metastasis in primary lung cancer were retrospectively reviewed. In all the cases, US-guided percutaneous biopsy was performed for pathological evaluation during the clinical diagnosis. Results and Conclusion: In ultrasonography the adrenal metastatic tumors were manifested as solitary in all the cases, well-defined in 10 cases, irregularly shaped in 10 cases, hypoechoic in 13 cases, and 1 case showed cystoid structure in the tumor. The maximum diameter of the tumor was 3.0-15.3 cm. 9 cases were metastatic adenocarcinoma. The sonographic appearance of adrenal metastasis in primary lung cancer has its characteristics. Ultrasonography can find adrenal metastalic tumors easily and contribute to diagnosis. (authors)

  5. Improved magnetic resonance molecular imaging of tumor angiogenesis by avidin-induced clearance of nonbound bimodal liposomes

    NARCIS (Netherlands)

    van Tilborg, Geralda A. F.; Mulder, Willem J. M.; van der Schaft, Daisy W. J.; Reutelingsperger, Chris P. M.; Griffioen, Arjan W.; Strijkers, Gustav J.; Nicolay, Klaas

    2008-01-01

    Angiogenic, that is, newly formed, blood vessels play an important role in tumor growth and metastasis and are a potential target for tumor treatment. In previous studies, the alpha(v)beta(3) integrin, which is strongly expressed in angiogenic vessels, has been used as a target for Arg-Gly-Asp

  6. A new protein Girdin in tumor metastasis

    Institute of Scientific and Technical Information of China (English)

    WANG Jing; FU Li; GU Feng; MA Yong-jie

    2010-01-01

    @@ The phosphatidylinositol 3-kinase/Akt serine/threonine kinase system regulates multiple cellular processes through the phosphorylation of a great number of downstream substrates and has been recognized as an important pathway for signal transduction, and in cancer invasion and metastasis.

  7. Novel LIMK2 Inhibitor Blocks Panc-1 Tumor Growth in a mouse xenograft model.

    Science.gov (United States)

    Rak, Roni; Haklai, Roni; Elad-Tzfadia, Galit; Wolfson, Haim J; Carmeli, Shmuel; Kloog, Yoel

    2014-01-01

    LIM kinases (LIMKs) are important cell cytoskeleton regulators that play a prominent role in cancer manifestation and neuronal diseases. The LIMK family consists of two homologues, LIMK1 and LIMK2, which differ from one another in expression profile, intercellular localization, and function. The main substrate of LIMK is cofilin, a member of the actin-depolymerizing factor (ADF) protein family. When phosphorylated by LIMK, cofilin is inactive. LIMKs play a contributory role in several neurodevelopmental disorders and in cancer growth and metastasis. We recently reported the development and validation of a novel LIMK inhibitor, referred to here as T56-LIMKi, using a combination of computational methods and classical biochemistry techniques. Here we report that T56-LIMKi inhibits LIMK2 with high specificity, and shows little or no cross-reactivity with LIMK1. We found that T56-LIMKi decreases phosphorylated cofilin (p-cofilin) levels and thus inhibits growth of several cancerous cell lines, including those of pancreatic cancer, glioma and schwannoma. Because the most promising in-vitro effect of T56-LIMKi was observed in the pancreatic cancer cell line Panc-1, we tested the inhibitor on a nude mouse Panc-1 xenograft model. T56-LIMKi reduced tumor size and p-cofilin levels in the Panc-1 tumors, leading us to propose T56-LIMKi as a candidate drug for cancer therapy.

  8. Evaluation of (99m)Tc-HYNIC-TMTP1 as a tumor-homing imaging agent targeting metastasis with SPECT.

    Science.gov (United States)

    Li, Fei; Cheng, Teng; Dong, Qingjian; Wei, Rui; Zhang, Zhenzhong; Luo, Danfeng; Ma, Xiangyi; Wang, Shixuan; Gao, Qinglei; Ma, Ding; Zhu, Xiaohua; Xi, Ling

    2015-03-01

    TMTP1 (NVVRQ) is a novel tumor-homing peptide, which specifically targets tumor metastases, even at the early stage of occult metastasis foci. Fusing TMTP1 to therapeutic peptides or proteins can increase its anti-cancer efficacy both in vivo and in vitro. Here, we labeled TMTP1 with (99m)Tc to evaluate its targeting properties in an ovarian cancer xenograft tumor mouse model and a gastric cancer xenograft mouse model. The invasion ability of SKOV3 and highly metastatic SKOV3.ip cell lines were performed by the Transwell Invasion Assays, and then Rhodamine-TMTP1 was used to detect its affinity to these two cells. Using the co-ligand ethylenediamine-N, N'-diacetic acid (EDDA) and the bifunctional chelator 6-hydrazinonicotinic acid (HYNIC), the TMTP1 peptide was labeled with (99m)Tc. A cell-binding assay was performed by incubating cancer cells with (99m)Tc-HYNIC-TMTP1 with or without an excess dose of cold HYNIC-TMTP1. To evaluate the probe in vivo, nude mice bearing SKOV3, SKOV3.ip and MNK-45 tumor cells were established and subjected to SPECT imaging after injection with (99m)Tc-HYNIC-TMTP1. Ex vivo γ-counting of dissected tissues from the mice was used to evaluate its biodistribution. (99m)Tc-HYNIC-TMTP1 was successfully synthesized. The radiotracer also exhibited high hydrophilicity and excellent stability in vitro and in vivo. It has strong affinity to highly metastatic cancer cell lines but not to poorly metastatic cell lines. After mice were injected with (99m)Tc-HYNIC-TMTP1, non-invasive SPECT imaging detected SKOV3.ip and MNK-45 xenograft tumors but not SKOV3 xenograft tumors. This result can be inhibited by excess HYNIC-TMTP1. The uptake of (99m)Tc-HYNIC-TMTP1 in SKOV3.ip xenograft tumors was 0.182±0.017% ID/g at 2h p.i. with high renal uptake (74.32±15.05% ID/g at 2h p.i.). (99m)Tc-HYNIC-TMTP1 biodistribution and SPECT imaging demonstrated its ability to target highly metastatic tumors. Therefore, metastasis can be non-invasively investigated by SPECT

  9. Therapeutic response assessment using 3D ultrasound for hepatic metastasis from colorectal cancer: Application of a personalized, 3D-printed tumor model using CT images.

    Directory of Open Access Journals (Sweden)

    Ye Ra Choi

    Full Text Available To evaluate accuracy and reliability of three-dimensional ultrasound (3D US for response evaluation of hepatic metastasis from colorectal cancer (CRC using a personalized 3D-printed tumor model.Twenty patients with liver metastasis from CRC who underwent baseline and after chemotherapy CT, were retrospectively included. Personalized 3D-printed tumor models using CT were fabricated. Two radiologists measured volume of each 3D printing model using 3D US. With CT as a reference, we compared difference between CT and US tumor volume. The response evaluation was based on Response Evaluation Criteria in Solid Tumors (RECIST criteria.3D US tumor volume showed no significant difference from CT volume (7.18 ± 5.44 mL, 8.31 ± 6.32 mL vs 7.42 ± 5.76 mL in CT, p>0.05. 3D US provided a high correlation coefficient with CT (r = 0.953, r = 0.97 as well as a high inter-observer intraclass correlation (0.978; 0.958-0.988. Regarding response, 3D US was in agreement with CT in 17 and 18 out of 20 patients for observer 1 and 2 with excellent agreement (κ = 0.961.3D US tumor volume using a personalized 3D-printed model is an accurate and reliable method for the response evaluation in comparison with CT tumor volume.

  10. The Role of Tumor Associated Macrophage in Recurrent Growth of Tumor Stem Cell

    Science.gov (United States)

    2011-09-01

    recent cancer stem cell (CSC) theory, recurrent tumor must arise from a dormant tumor stem cell whose re-growth is triggered by shifting of...microenvironment. This project aims at clarifying the roles of TAM in recurrent growth of dormant stem cell in breast cancer. We hypothesize that the balance of...dormancy and recurrence is determined by the ability of the tumor stem cells to recruit TAM which in turn promotes self-renewal of the stem cell . We

  11. Von Hippel-Lindau tumor suppressor gene loss in renal cell carcinoma promotes oncogenic epidermal growth factor receptor signaling via Akt-1 and MEK-1.

    Science.gov (United States)

    Lee, S Justin; Lattouf, Jean-Baptiste; Xanthopoulos, Julie; Linehan, W Marston; Bottaro, Donald P; Vasselli, James R

    2008-10-01

    Clear-cell renal cell carcinoma (RCC) is the most prevalent form of kidney cancer and is frequently associated with loss of von Hippel-Lindau (VHL) gene function, resulting in the aberrant transcriptional activation of genes that contribute to tumor growth and metastasis, including transforming growth factor-alpha (TGF-alpha), a ligand of the epidermal growth factor receptor (EGFR) tyrosine kinase. To determine the functional impact of EGFR activation on RCC, we suppressed critical components of this pathway: EGFR, Akt-1, and MEK-1. Stable transfection of RCC cells with plasmids bearing shRNA directed against each of these genes was used to individually suppress their expression. Transfectants were characterized for growth and invasiveness in vitro and tumorigenesis in vivo. RCC cell transfectants displayed significantly reduced growth rate and matrix invasion in vitro and RCC tumor xenograft growth rate in vivo. Analysis of tumor cells that emerged after extended periods in each model showed that significant EGFR suppression was sustained, whereas Akt-1 and MEK-1 knock-down cells had escaped shRNA suppression. EGFR, Akt-1, and MEK-1 are individually critical for RCC cell invasiveness in vitro and tumorigenicity in vivo, and even partial suppression of each can have a significant impact on tumor progression. The emergence of transfectants that had escaped Akt-1 and MEK-1 suppression during tumorigenicity experiments suggests that these effectors may each be more critical than EGFR for RCC tumorigenesis, consistent with results from clinical trials of EGFR inhibitors for RCC, where durable clinical responses have not been seen.

  12. Von Hippel-Lindau Tumor Suppressor Gene Loss in Renal Cell Carcinoma Promotes Oncogenic Epidermal Growth Factor Receptor Signaling via Akt-1 and MEK1

    Science.gov (United States)

    Lee, S. Justin; Lattouf, Jean-Baptiste; Xanthopoulos, Julie; Linehan, W. Marston; Bottaro, Donald P.; Vasselli, James R.

    2008-01-01

    Objectives Clear-cell renal cell carcinoma (RCC) is the most prevalent form of kidney cancer and is frequently associated with loss of von Hippel-Lindau (VHL) gene function, resulting in the aberrant transcriptional activation of genes that contribute to tumor growth and metastasis, including transforming growth factor-α (TGF-α), a ligand of the epidermal growth factor receptor (EGFR) tyrosine kinase. To determine the functional impact of EGFR activation on RCC, we suppressed critical components of this pathway: EGFR, Akt-1, and MEK-1. Methods Stable transfection of RCC cells with plasmids bearing shRNA directed against each of these genes was used to individually suppress their expression. Transfectants were characterized for growth and invasiveness in vitro and tumorigenesis in vivo. Results RCC cell transfectants displayed significantly reduced growth rate and matrix invasion in vitro and RCC tumor xenograft growth rate in vivo. Analysis of tumor cells that emerged after extended periods in each model showed that significant EGFR suppression was sustained, whereas Akt-1 and MEK-1 knockdown cells had escaped shRNA suppression. Conclusions EGFR, Akt-1, and MEK-1 are individually critical for RCC cell invasiveness in vitro and tumorigenicity in vivo, and even partial suppression of each can have a significant impact on tumor progression. The emergence of transfectants that had escaped Akt-1 and MEK-1 suppression during tumorigenicity experiments suggests that these effectors may each be more critical than EGFR for RCC tumorigenesis, consistent with results from clinical trials of EGFR inhibitors for RCC, where durable clinical responses have not been seen. PMID:18243508

  13. Olive phenolics as c-Met inhibitors: (--Oleocanthal attenuates cell proliferation, invasiveness, and tumor growth in breast cancer models.

    Directory of Open Access Journals (Sweden)

    Mohamed R Akl

    Full Text Available Dysregulation of the Hepatocyte growth factor (HGF/c-Met signaling axis upregulates diverse tumor cell functions, including cell proliferation, survival, scattering and motility, epithelial-to-mesenchymal transition (EMT, angiogenesis, invasion, and metastasis. (--Oleocanthal is a naturally occurring secoiridoid from extra-virgin olive oil, which showed antiproliferative and antimigratory activity against different cancer cell lines. The aim of this study was to characterize the intracellular mechanisms involved in mediating the anticancer effects of (--oleocanthal treatment and the potential involvement of c-Met receptor signaling components in breast cancer. Results showed that (--oleocanthal inhibits the growth of human breast cancer cell lines MDA-MB-231, MCF-7 and BT-474 while similar treatment doses were found to have no effect on normal human MCF10A cell growth. In addition, (--oleocanthal treatment caused a dose-dependent inhibition of HGF-induced cell migration, invasion and G1/S cell cycle progression in breast cancer cell lines. Moreover, (--oleocanthal treatment effects were found to be mediated via inhibition of HGF-induced c-Met activation and its downstream mitogenic signaling pathways. This growth inhibitory effect is associated with blockade of EMT and reduction in cellular motility. Further results from in vivo studies showed that (--oleocanthal treatment suppressed tumor cell growth in an orthotopic model of breast cancer in athymic nude mice. Collectively, the findings of this study suggest that (--oleocanthal is a promising dietary supplement lead with potential for therapeutic use to control malignancies with aberrant c-Met activity.

  14. Conflicting Roles of Connexin43 in Tumor Invasion and Growth in the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Miaki Uzu

    2018-04-01

    Full Text Available The tumor microenvironment is known to have increased levels of cytokines and metabolites, such as glutamate, due to their release from the surrounding cells. A normal cell around the tumor that responds to the inflammatory environment is likely to be subsequently altered. We discuss how these abnormalities will support tumor survival via the actions of gap junctions (GJs and hemichannels (HCs which are composed of hexamer of connexin43 (Cx43 protein. In particular, we discuss how GJ intercellular communication (GJIC in glioma cells, the primary brain tumor, is a regulatory factor and its attenuation leads to tumor invasion. In contrast, the astrocytes, which are normal cells around the glioma, are “hijacked” by tumor cells, either by receiving the transmission of malignant substances from the cancer cells via GJIC, or perhaps via astrocytic HC activity through the paracrine signaling which enable the delivery of these substances to the distal astrocytes. This astrocytic signaling would promote tumor expansion in the brain. In addition, brain metastasis from peripheral tissues has also been known to be facilitated by GJs formed between cerebral vascular endothelial cells and cancer cells. Astrocytes and microglia are generally thought to eliminate cancer cells at the blood–brain barrier. In contrast, some reports suggest they facilitate tumor progression as tumor cells take advantage of the normal functions of astrocytes that support the survival of the neurons by exchanging nutrients and metabolites. In summary, GJIC is essential for the normal physiological function of growth and allowing the diffusion of physiological substances. Therefore, whether GJIC is cancer promoting or suppressing may be dependent on what permeates through GJs, when it is active, and to which cells. The nature of GJs, which has been ambiguous in brain tumor progression, needs to be revisited and understood together with new findings on Cx proteins and HC

  15. Blood Outgrowth Endothelial Cells Increase Tumor Growth Rates and Modify Tumor Physiology: Relevance for Therapeutic Targeting

    Energy Technology Data Exchange (ETDEWEB)

    Pagan, Jonathan, E-mail: jdpagan@uams.edu; Przybyla, Beata; Jamshidi-Parsian, Azemat [Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205 (United States); Gupta, Kalpna [Vascular Biology Center and Division of Hematology-Oncology Transplantation, Department of Medicine, University of Minnesota Medical School, MN 72223 (United States); Griffin, Robert J. [Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205 (United States)

    2013-02-18

    Endothelial cell precursors from human peripheral blood have been shown to home to areas of neovascularization and may assist tumor growth by increasing or fortifying blood vessel growth. In the present study, the influence of these cells on tumor growth and physiology was investigated and the role of these cells as a therapeutic target or in determining treatment sensitivity was tested. After isolation from human blood and expansion in vitro, actively growing cells with verified endothelial phenotype (Blood Outgrowth Endothelial Cell, BOEC) were injected i.v. into tumor bearing mice for three consecutive days. The growth rate was significantly enhanced in relatively small RERF human lung tumors (i.e., less than 150 mm{sup 3}) grown in immunocompromised mice by an average of 1.5-fold while it had no effect when injections were given to animals bearing larger tumors. There were no signs of toxicity or unwanted systemic effects. We also observed evidence of increased perfusion, vessel number, response to 15 Gy radiation and oxygenation in RERF tumors of animals injected with BOECs compared to control tumors. In addition, FSaII murine fibrosarcoma tumors were found to grow faster upon injection of BOECs. When FSaII tumors were subjected to a partial thermal ablation treatment using high intensity focused ultrasound (HIFU) there was consistently elevated detection of fluorescently labeled and i.v. injected endothelial precursors in the tumor when analyzed with optical imaging and/or histological preparations. Importantly, we also observed that BOECs treated with the novel anti-angiogenic peptide anginex in-vitro, show decreased proliferation and increased sensitivity to radiation. In vivo, the normal increase in FSaII tumor growth induced by injected BOECs was blunted by the addition of anginex treatment. It appears that endothelial precursors may significantly contribute to tumor vessel growth, tumor progression and/or repair of tumor damage and may improve the

  16. Blood Outgrowth Endothelial Cells Increase Tumor Growth Rates and Modify Tumor Physiology: Relevance for Therapeutic Targeting

    International Nuclear Information System (INIS)

    Pagan, Jonathan; Przybyla, Beata; Jamshidi-Parsian, Azemat; Gupta, Kalpna; Griffin, Robert J.

    2013-01-01

    Endothelial cell precursors from human peripheral blood have been shown to home to areas of neovascularization and may assist tumor growth by increasing or fortifying blood vessel growth. In the present study, the influence of these cells on tumor growth and physiology was investigated and the role of these cells as a therapeutic target or in determining treatment sensitivity was tested. After isolation from human blood and expansion in vitro, actively growing cells with verified endothelial phenotype (Blood Outgrowth Endothelial Cell, BOEC) were injected i.v. into tumor bearing mice for three consecutive days. The growth rate was significantly enhanced in relatively small RERF human lung tumors (i.e., less than 150 mm 3 ) grown in immunocompromised mice by an average of 1.5-fold while it had no effect when injections were given to animals bearing larger tumors. There were no signs of toxicity or unwanted systemic effects. We also observed evidence of increased perfusion, vessel number, response to 15 Gy radiation and oxygenation in RERF tumors of animals injected with BOECs compared to control tumors. In addition, FSaII murine fibrosarcoma tumors were found to grow faster upon injection of BOECs. When FSaII tumors were subjected to a partial thermal ablation treatment using high intensity focused ultrasound (HIFU) there was consistently elevated detection of fluorescently labeled and i.v. injected endothelial precursors in the tumor when analyzed with optical imaging and/or histological preparations. Importantly, we also observed that BOECs treated with the novel anti-angiogenic peptide anginex in-vitro, show decreased proliferation and increased sensitivity to radiation. In vivo, the normal increase in FSaII tumor growth induced by injected BOECs was blunted by the addition of anginex treatment. It appears that endothelial precursors may significantly contribute to tumor vessel growth, tumor progression and/or repair of tumor damage and may improve the

  17. Cancer cell metastasis; perspectives from the focal adhesion

    Directory of Open Access Journals (Sweden)

    Lefteris C Zacharia

    2015-10-01

    Full Text Available In almost all cancers, most patients die from metastatic disease and not from the actual primary tumor. That is why addressing the problem of metastasis is of utmost importance for the successful treatment and improved survival of cancer patients. Metastasis is a complex process that ultimately leads to cancer cells spreading from the tumor to distant sites of the body. During this process, cancer cells tend to lose contact with the extracellular matrix (ECM and neighboring cells within the primary tumor, and are thus able to invade surrounding tissues. Hence, ECM, and the ECM-associated adhesion proteins play a critical role in the metastatic process. This review will focus on recent literature regarding interesting and novel molecules at the cell-ECM adhesion sites, namely migfilin, mitogen-inducible gene-2 (Mig-2 and Ras suppressor-1 (RSU-1, that are also critically involved in cancer cell metastasis, emphasizing on data from experiments performed in vitro in breast cancer and hepatocellular carcinoma cell lines as well as human breast cancer tissue samples.

  18. Ligand-directed targeting of lymphatic vessels uncovers mechanistic insights in melanoma metastasis.

    Science.gov (United States)

    Christianson, Dawn R; Dobroff, Andrey S; Proneth, Bettina; Zurita, Amado J; Salameh, Ahmad; Dondossola, Eleonora; Makino, Jun; Bologa, Cristian G; Smith, Tracey L; Yao, Virginia J; Calderone, Tiffany L; O'Connell, David J; Oprea, Tudor I; Kataoka, Kazunori; Cahill, Dolores J; Gershenwald, Jeffrey E; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2015-02-24

    Metastasis is the most lethal step of cancer progression in patients with invasive melanoma. In most human cancers, including melanoma, tumor dissemination through the lymphatic vasculature provides a major route for tumor metastasis. Unfortunately, molecular mechanisms that facilitate interactions between melanoma cells and lymphatic vessels are unknown. Here, we developed an unbiased approach based on molecular mimicry to identify specific receptors that mediate lymphatic endothelial-melanoma cell interactions and metastasis. By screening combinatorial peptide libraries directly on afferent lymphatic vessels resected from melanoma patients during sentinel lymphatic mapping and lymph node biopsies, we identified a significant cohort of melanoma and lymphatic surface binding peptide sequences. The screening approach was designed so that lymphatic endothelium binding peptides mimic cell surface proteins on tumor cells. Therefore, relevant metastasis and lymphatic markers were biochemically identified, and a comprehensive molecular profile of the lymphatic endothelium during melanoma metastasis was generated. Our results identified expression of the phosphatase 2 regulatory subunit A, α-isoform (PPP2R1A) on the cell surfaces of both melanoma cells and lymphatic endothelial cells. Validation experiments showed that PPP2R1A is expressed on the cell surfaces of both melanoma and lymphatic endothelial cells in vitro as well as independent melanoma patient samples. More importantly, PPP2R1A-PPP2R1A homodimers occur at the cellular level to mediate cell-cell interactions at the lymphatic-tumor interface. Our results revealed that PPP2R1A is a new biomarker for melanoma metastasis and show, for the first time to our knowledge, an active interaction between the lymphatic vasculature and melanoma cells during tumor progression.

  19. A co-delivery nanosystem of chemotherapeutics and DNAzyme overcomes cancer drug resistance and metastasis

    Science.gov (United States)

    Sun, Shu-Pin; Liu, Ching-Ping; Huang, I.-Ping; Chu, Chia-Hui; Chung, Ming-Fang; Cheng, Shih-Hsun; Lin, Shu-Yi; Lo, Leu-Wei

    2017-12-01

    Multidrug resistance (MDR) constitutes a major problem in the management of cancer and cancer metastasized from primary-source tumor causes cancer-related deaths. Our new approach is the co-delivery of chemotherapy drugs with a transcription-factor-targeting genetic agent to simultaneously inhibit the growth and metastasis of cancer cells. C-Jun is a transcription factor that regulates multidrug resistance-associated protein 1 (MRP1) pump efflux transcription and tumor metastasis. In this work, we reported that mesoporous silica nanoparticles (MSNs) can be functionalized to co-deliver doxorubicin (Dox) and DNAzyme (Dz) to increase cancer cell killing in an additive fashion. The MSNs were sequentially conjugated with Dox into the MSNs’ nanochannels and Dz onto the MSNs’ outermost surface to target c-Jun as the Dox@MSN-Dz co-delivery system. The Dox-resistant PC-3 cells treated with Dox@MSN-Dz efficiently enhanced the intracellular Dox concentration due to the abrogation of Dox-induced MRP1 expression through the downregulation of c-Jun expression by Dz. Additionally, significant reductions in invasion and migration related to metastasis were also observed in cells treated with Dox@MSN-Dz. Therefore, our results contribute new insight to the treatment of MDR combined metastatic cancer cells, worthwhile for studying its potential for development in clinical translation.

  20. Angiotensin II facilitates breast cancer cell migration and metastasis.

    Directory of Open Access Journals (Sweden)

    Sylvie Rodrigues-Ferreira

    Full Text Available Breast cancer metastasis is a leading cause of death by malignancy in women worldwide. Efforts are being made to further characterize the rate-limiting steps of cancer metastasis, i.e. extravasation of circulating tumor cells and colonization of secondary organs. In this study, we investigated whether angiotensin II, a major vasoactive peptide both produced locally and released in the bloodstream, may trigger activating signals that contribute to cancer cell extravasation and metastasis. We used an experimental in vivo model of cancer metastasis in which bioluminescent breast tumor cells (D3H2LN were injected intra-cardiacally into nude mice in order to recapitulate the late and essential steps of metastatic dissemination. Real-time intravital imaging studies revealed that angiotensin II accelerates the formation of metastatic foci at secondary sites. Pre-treatment of cancer cells with the peptide increases the number of mice with metastases, as well as the number and size of metastases per mouse. In vitro, angiotensin II contributes to each sequential step of cancer metastasis by promoting cancer cell adhesion to endothelial cells, trans-endothelial migration and tumor cell migration across extracellular matrix. At the molecular level, a total of 102 genes differentially expressed following angiotensin II pre-treatment were identified by comparative DNA microarray. Angiotensin II regulates two groups of connected genes related to its precursor angiotensinogen. Among those, up-regulated MMP2/MMP9 and ICAM1 stand at the crossroad of a network of genes involved in cell adhesion, migration and invasion. Our data suggest that targeting angiotensin II production or action may represent a valuable therapeutic option to prevent metastatic progression of invasive breast tumors.

  1. Effect of low frequency magnetic fields on melanoma: tumor inhibition and immune modulation

    International Nuclear Information System (INIS)

    Nie, Yunzhong; Du, Leilei; Mou, Yongbin; Xu, Zhenjun; Weng, Leihua; Du, Youwei; Zhu, Yanan; Hou, Yayi; Wang, Tingting

    2013-01-01

    We previously found that the low frequency magnetic fields (LF-MF) inhibited gastric and lung cancer cell growth. We suppose that exposure to LF-MF may modulate immune function so as to inhibit tumor. We here investigated whether LF-MF can inhibit the proliferation and metastasis of melanoma and influence immune function. The effect of MF on the proliferation, cell cycle and ultrastracture of B16-F10 in vitro was detected by cell counting Kit-8 assay, flow cytometry, and transmission electron microscopy. Lung metastasis mice were prepared by injection of 2 × 10 5 B16-F10 melanoma cells into the tail vein in C57BL/6 mice. The mice were then exposed to an LF-MF (0.4 T, 7.5 Hz) for 43 days. Survival rate, tumor markers and the innate and adaptive immune parameters were measured. The growth of B16-F10 cells was inhibited after exposure to the LF-MF. The inhibition was related to induction of cell cycle arrest and decomposition of chromatins. Moreover, the LF-MF prolonged the mouse survival rate and inhibited the proliferation of B16-F10 in melanoma metastasis mice model. Furthermore, the LF-MF modulated the immune response via regulation of immune cells and cytokine production. In addition, the number of Treg cells was decreased in mice with the LF-MF exposure, while the numbers of T cells as well as dendritic cells were significantly increased. LF-MF inhibited the growth and metastasis of melanoma cancer cells and improved immune function of tumor-bearing mice. This suggests that the inhibition may be attributed to modulation of LF-MF on immune function and LF-MF may be a potential therapy for treatment of melanoma

  2. Cells competition in tumor growth poroelasticity

    Science.gov (United States)

    Fraldi, Massimiliano; Carotenuto, Angelo R.

    2018-03-01

    Growth of biological tissues has been recently treated within the framework of Continuum Mechanics, by adopting heterogeneous poroelastic models where the interaction between soft matrix and interstitial fluid flow is coupled with inelastic effects ad hoc introduced to simulate the macroscopic volumetric growth determined by cells division, cells growth and extracellular matrix changes occurring at the micro-scale level. These continuum models seem to overcome some limitations intrinsically associated to other alternative approaches based on mass balances in multiphase systems, because the crucial role played by residual stresses accompanying growth and nutrients walkway is preserved. Nevertheless, when these strategies are applied to analyze solid tumors, mass growth is usually assigned in a prescribed form that essentially copies the in vitro measured intrinsic growth rates of the cell species. As a consequence, some important cell-cell dynamics governing mass evolution and invasion rates of cancer cells, as well as their coupling with feedback mechanisms associated to in situ stresses, are inevitably lost and thus the spatial distribution and the evolution with time of the growth inside the tumor -which would be results rather than inputs- are forced to enter in the model simply as data. In order to solve this paradox, it is here proposed an enhanced multi-scale poroelastic model undergoing large deformations and embodying inelastic growth, where the net growth terms directly result from the "interspecific" predator-prey (Volterra/Lotka-like) competition occurring at the micro-scale level between healthy and abnormal cell species. In this way, a system of fully-coupled non-linear PDEs is derived to describe how the fight among cell species to grab the available common resources, stress field, pressure gradients, interstitial fluid flows driving nutrients and inhomogeneous growth all simultaneously interact to decide the tumor fate.

  3. Molecular mechanism and potential targets for bone metastasis

    International Nuclear Information System (INIS)

    Iguchi, Haruo

    2007-01-01

    The incidence of bone metastasis has been increasing in all cancers in recent years. Bone metastasis is associated with substantial morbidity, including bone pain, pathological fracture, neurological deficit and/or hypercalcemia. Thus, the management of bone metastasis in patients is a clinically significant issue. In the process of bone metastasis, the primary mechanism responsible for bone destruction is cancer cell-mediated stimulation of osteoclastic bone resorption, which results in osteolysis and release of various growth factors from the bone matrix. These growth factors are prerequisites for successful colonization and subsequent invasive growth of cancer cells in bone, which is called a 'vicious cycle.' Thus, it is important to elucidate what molecules are involved in this step of bone destruction, and the understanding of these molecular mechanisms could lead to develop molecular-target therapies for bone metastasis. Bisphosphonates introduced in the treatment for bone metastasis have been shown to reduce skeletal morbidity. In Japan, the most potent bisphosphonate, zoledronate (ZOMETA), was introduced in this past April, and a phase III clinical trial of humanized anti-receptor activator of NF-κB ligand (RANKL) monoclonal antibody (Denosumab) against bone metastasis is under way as a global study. These new agents, which are targeted to osteoclasts, are considered to be standard management in the care of bone metastasis patients in combination with chemotherapy and/or hormone therapy. (author)

  4. Mechanisms of Twist 1-Induced Invasion in Breast Cancer Metastasis

    Science.gov (United States)

    2011-01-01

    affect breast cancer metastasis with a subcutaneous mouse tumor implantation model of breast cancer metastasis. HMLE -Twist1 cells expressing shRNAs...13 4 Introduction Distant metastases are responsible for the vast majority of breast cancer deaths. This process...to migrate and invade is therefore essential to the metastatic process. The initial steps of breast cancer metastasis, local invasion and

  5. Association of SDF-1 with Metastasis in Breast Cancer Patient at Sanglah Hospital, Bali

    Directory of Open Access Journals (Sweden)

    Kristanto Yuli Yarso

    2016-10-01

    Full Text Available Objectives: More than 24% breast cancer patients came to Sanglah Teaching Hospital with distant metastasis which cause 90% of cancer related death. Distant metastasis is complex process of interaction between tumor cells and its micro environment involving a chemoattractant cytokines which lead circulating tumor cells toward target organs. One of the most common cytokines involved in metastasis of multiple tumor is SDF-1, produces by target organ or tumor cells itselves. However, only few stucy ever evaluate the relationship between its concentrations in tumor tissue with metastasis. Method: A cross sectional analysis study was conducted involving clinical data and paraffin blocks from 46 patients. Samples were grouped into metastasis and non-metastasis group and level of tumor tissue SDF-1 was evaluated by immunohistochemistry method. Numerical conversion was done using modified “Mirisola” technique and statistical analysis was conducted using SPSS 16 software. Results: The overall median expression of SDF-1 was 4.83 in which the median is 4.08±2.25 in non-metastatic group and 5.71±2.61 in metastatic group (p=0.012. In addition, parenchymal carcinoma cell had significantly higher expression of SDF-1 compared with microenvironmental cell both in metastatic group (carcinoma cell vs microenvironment; 4,57+1,91 vs 3,68 +2,06; p=0,004 and non-metastatic group (3,19 +2,29 vs 2,16+1,11; p=0.011. Finally, logistic regression analysis of SDF-1 expression also gave significant result that MBC had significantly higher expression of SDF-1 (p=0.039.  Conclusions: There was significant association between of SDF-1 expression and distant metastasis in breast cancer and majority of SDF was produced by cancer cells

  6. Mixed adenoneuroendocrine carcinoma with brain metastasis

    Directory of Open Access Journals (Sweden)

    Xiao-ling YAN

    2015-05-01

    Full Text Available Objective To study clinicopathological features, diagnosis, differential diagnosis and prognosis of mixed adenoneuroendocrine carcinoma (MANEC.  Methods One case of MANEC with brain metastasis was reported focusing on the following aspects: clinical manifestations, histopathological features and immunophenotypes, and the relevant literatures were reviewed.  Results A 35-year-old male presented headache and vomiting, and his head CT scan showed a lesion located in the right temporal lobe. The tumor was detected after separating the cerebral cortex during the surgery. The tumor diameter was 3 cm. The tumor was soft and rubbery with ill-defined margins, and rich in blood supply. Under optical microscopy, the tumor was consisted of small round cells of the same size, with focal tumor cells arranged around blood vessels in a pseudorosette manner or papillary manner with brisk mitotic activity. The boundary between tumor and brain tissue was ill-defined. By using immunohistochemical staining, the tumor cells were diffusely positive for synaptophysin (Syn and CD56, and negative for glial fibrillary acidic protein (GFAP, pan cytokeratin (PCK, CD3, CD20, vimentin (Vim, leukocyte common antigen (LCA, thyroid transcription factor-1 (TTF-1, S-100 protein (S-100, neurofilament (NF, nestin (Nes, CK5/6, CK8/18 and CD99. Ki-67 labeling index was about 62%. Sigmoidoscopy was performed later in another hospital and showed a mass in the patient's colon. The colon tumor was biphasic in appearance, and was consisted of two distinct components: isomorphic small round cells and low-middle differentiated adenocarcinoma cells. The small round tumor cells were diffusely positive for Syn and CD56, and negative for PCK. The adenocarcinoma cells showed opposite results.  Conclusions MANEC is a rare tumor, which is defined in 2010 by WHO Classification of Digestive, and to the best of our knowledge, MANEC of the colon with brain metastasis has never been described

  7. The synergistic effects of radiofrequency ablation (RFA) with glycated chitosan for inhibiting the metastasis of breast cancer

    Science.gov (United States)

    Chiu, Hsin-Yu; Leu, Jyh-Der; Chen, Wei R.; Lee, Yi-Jang

    2016-03-01

    Breast cancer is increasing with years in Taiwan because of dietary style, life behavior and several social-physiological factors. According to the record of Bureau of Health Promotion in Taiwan, the incidence of breast cancer is top one, and the mortality of that is top one cancer type in women. Compared with USA, most of breast cancer cases found in Taiwanese women have reached to stage 2 or 3. Current therapeutic strategies for breast cancer include surgery, radiation therapy, chemotherapy, hormone therapy and targeted therapy. However, these methods used for curing the late-stage breast cancer remains rare. Because the metastasis is the major problem of late-stage breast cancer, it is of interest to investigate whether a systemic therapy can reduce the symptoms of cancer. The immunotherapy, particularly an induction of autoimmune system, is probably important for the treatment of late-stage breast cancer. Glycated chitosan (GC) is derived from chitosan, a linear polysaccharide composed of D-glucosamine and N-acetyl-D-glucosamine through β-(1-4) linkage. Several lines of evidence have shown that GC is an immunoadjuvant that can target on primary and metastatic tumors formed in animal and human patients. In our previous data, GC was demonstrated to decrease the motility and invasion of mammalian breast cancer cells in vitro and in vivo. Radiofrequency ablation (RFA) is dependent on a small generator that delivers high frequency alternating electric current directly to burn a tumor lesion. Therefore, the temperature may reach up to above 60 °C. In this study, we used 4T1 mouse breast cancer cell that is the approximately equal to stage 4 of human breast cancer. And triple modality reporter gene (3R) was delivered into the cells using transfected piggyBac, a transposable element for observation of tumor growth and metastasis in vivo. Data showed that growth and metastasis of tumors smaller than 500mm3 were entirely suppressed by RFA-GC combination treatment

  8. Intracranial Dural Metastasis of Ewing's Sarcoma: a Case Report

    International Nuclear Information System (INIS)

    Kim, Eung Yeop; Lee, Seung Koo; Kim, Dong Joon; Kim, Jin Na; Lee, Kyu Sung; Jung, Woo Hee; Kim, Dong Ik

    2008-01-01

    Ewing's sarcoma is a malignant bone tumor that can occur anywhere in the body, but it is most commonly observed in the long bones of the arms and legs, the pelvis and in the chest. The predominant sites of metastasis include the lung (38%), bone (including the spine; 31%), and the bone marrow (11%). Metastasis of Ewing's sarcoma to the central nervous system (CNS) is relatively rare, and most of the previous reports have demonstrated involvement of the bony calvarium or brain parenchyma. We describe here the imaging findings of dural metastasis of Ewing's sarcoma, and these imaging findings have not been previously reported on in the medical literature. In conclusion, dural metastasis of Ewing's sarcoma is very rare and its imaging characteristics are similar to those of a primary tumor, which mimic the findings of a schwannoma or meningioma. Despite its rarity, secondary Ewing's sarcoma may be included in the differential diagnosis of extra-axial dural masses

  9. Ethanol stimulates tumor progression and expression of vascular endothelial growth factor in chick embryos.

    Science.gov (United States)

    Gu, Jian-Wei; Bailey, Amelia Purser; Sartin, Amanda; Makey, Ian; Brady, Ann L

    2005-01-15

    The mechanisms by which alcohol consumption causes cancer have not been established due to a lack of experimental studies. A chick embryo chorioallantoic membrane (CAM) model that bore human fibrosarcoma (HT1080) was used to determine whether the administration of physiologically relevant doses of ethanol could stimulate tumor growth, angiogenesis, metastasis, and vascular endothelial growth factor (VEGF) expression in tumors. HT1080 cells were inoculated onto the "upper CAM" on Day 8, saline or ethanol was administrated at a dose of 0.25 g/kg per day on the CAM, and the tumors were harvested on Day 17. VEGF mRNA and protein were determined by Northern blot analysis and enzyme-linked immunosorbent assay. Intratumoral vascular volume density (IVVD) was determined by point counting on periodic acid-Schiff-stained sections. Intravasation of HT1080 cells was determined using human-Alu polymerase chain reaction analysis. The effects of ethanol on VEGF expression and cell proliferation were examined in cultured HT1080 cells. Ethanol treatment for 9 days caused a 2.2-fold increase in tumor volume (867 +/- 138 mm(3) vs. 402 +/- 28 mm(3)), a 2.1-fold increase in IVVD (0.021 +/- 0.004 mm(3)/mm(3) vs. 0.010 mm(3)/mm(3) +/- 0.002 mm(3)/mm(3)), and a significant increase in VEGF mRNA or protein expression in tumors compared with a group of control embryos (n = 6 embryos; P 8-fold in the intravasated HT1080 cells in the CAM group compared with the control group (n = 6 embryos; P < 0.01). Physiologically relevant levels of ethanol (10 mM and 20 mM) caused a dose-related increase in VEGF mRNA and protein expression in cultured HT1080 cells. The ethanol-HT1080-conditioned media increased the proliferation of endothelial cells, but not of HT1080 cells. The findings suggest that the induction of angiogenesis and VEGF expression by ethanol represents an important mechanism of cancer progression associated with alcoholic beverage consumption. (c) 2004 American Cancer Society.

  10. Recent discoveries concerning the tumor - mesenchymal stem cell interactions.

    Science.gov (United States)

    Lazennec, Gwendal; Lam, Paula Y

    2016-12-01

    Tumor microenvironment plays a crucial role in coordination with cancer cells in the establishment, growth and dissemination of the tumor. Among cells of the microenvironment, mesenchymal stem cells (MSCs) and their ability to evolve into cancer associated fibroblasts (CAFs) have recently generated a major interest in the field. Numerous studies have described the potential pro- or anti-tumorigenic action of MSCs. The goal of this review is to synthesize recent and emerging discoveries concerning the mechanisms by which MSCs can be attracted to tumor sites, how they can generate CAFs and by which way MSCs are able to modulate the growth, response to treatments, angiogenesis, invasion and metastasis of tumors. The understanding of the role of MSCs in tumor development has potential and clinical applications in terms of cancer management. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Inhibition of experimental lung metastasis by systemic lentiviral delivery of kallistatin

    Directory of Open Access Journals (Sweden)

    Chao Julie

    2010-05-01

    Full Text Available Abstract Background Angiogenesis plays an important role in the development and progression of tumors. Kallistatin exerts anti-angiogenic and anti-inflammatory activities that may be effective in inhibiting tumor metastasis. We investigated the antitumor effect of lentivirus-mediated kallistatin gene transfer in a syngeneic murine tumor model. Methods Lentiviral vector encoding kallistatin (LV-Kallistatin was constructed. The expression of kallistatin was verified by enzyme-linked immunosorbent assay (ELISA, and the bioactivity of kallistatin was determined by using cell proliferation, migration, and invasion assays. In addition, antitumor effects of LV-Kallistatin were evaluated by the intravenous injection of virus into tumor-bearing mice. Results The conditioned medium from LV-Kallistatin-treated cells inhibited the migration and proliferation of endothelial cells. Meanwhile, it also reduced the migration and invasion of tumor cells. In the experimental lung metastatic model, tumor-bearing mice receiving LV-Kallistatin had lower tumor nodules and longer survival than those receiving control virus or saline. Moreover, the microvessel densities, the levels of vascular endothelial growth factor (VEGF, tumor necrosis factor (TNF-α, and nuclear factor κB (NF-κB transcriptional activity were reduced in the LV-Kallistatin-treated mice. Conclusion Results of this study showed that systemic administration of lentiviral vectors encoding kallistatin inhibited the growth of metastatic tumor and prolonged the survival of tumor-bearing mice. These results suggest that gene therapy using lentiviruses carrying the kallistatin gene, which exerts anti-angiogenic and anti-inflammatory activities, represents a promising strategy for the treatment of lung cancer.

  12. Tumor Cells Express FcγRl Which Contributes to Tumor Cell Growth and a Metastatic Phenotype

    Directory of Open Access Journals (Sweden)

    M. Bud Nelson

    2001-01-01

    Full Text Available High levels of circulating immune complexes containing tumor-associated antigens are associated with a poor prognosis for individuals with cancer. The ability of B cells, previously exposed to tumor-associated antigens, to promote both in vitro and in vivo tumor growth formed the rationale to evaluate the mechanism by which immune complexes may promote tumor growth. In elucidating this mechanism, FcγRl expression by tumor cells was characterized by flow cytometry, polymerase chain reaction, and sequence analysis. Immune complexes containing shed tumor antigen and anti-shed tumor antigen Ab cross-linked FcγRl-expressing tumor cells, which resulted in an induction of tumor cell proliferation and of shed tumor antigen production. Use of selective tyrosine kinase inhibitors demonstrated that tumor cell proliferation induced by immune complex cross-linking of FcγRl is dependent on the tyrosine kinase signal transduction pathway. A selective inhibitor of phosphatidylinositol-3 kinase also inhibited this induction of tumor cell proliferation. These findings support a role for immune complexes and FcγRl expression by tumor cells in augmentation of tumor growth and a metastatic phenotype.

  13. Understanding Collagen Organization in Breast Tumors to Predict and Prevent Metastasis

    Science.gov (United States)

    2015-11-01

    mouse mammary tumor virus polyoma middle T (MMTV-PyMT) mice crossed with MMP13 KO mice, noted proportionately more “thin collagen fibers” (rela- tive to...mammary gland gene expression and increased tumor growth following social isolation. Cancer Prev. Res. 2, 850–861. Wohleb, E.S., Hanke, M.L., Corona , A.W...1:100 dilution of mouse anti-Collagen II (II-II6B3; Developmental Studies Hybridoma Bank, Iowa City, IA) or a mouse monoclonal anti-Collagen I ( Cat

  14. Serous carcinomatous component championed by heparin-binding EGF-like growth factor (HB-EGF) predisposing to metastasis and recurrence in stage I uterine malignant mixed mullerian tumor.

    Science.gov (United States)

    Zhang, Lei; Shimizu, David; Killeen, Jeffrey L; Honda, Stacey A; Lu, Di; Stanoyevitch, Alexander; Lin, Fritz; Wang, Beverly; Monuki, Edwin S; Carbone, Michele

    2016-07-01

    The stage I uterine malignant mixed mullerian tumor (MMMT) shows different potential for progression. We reason that MMMTs with high-grade carcinomatous component and positivity for HB-EGF are prone to recurrence/metastasis in the early stage. A retrospective clinical and histopathologic review with immunohistochemical staining for HB-EGF, EGFR, and integrin-α5 was performed for 62 surgically staged MMMT cases. Recurrence/metastasis (RM) is 6/18 (33%) in stage I disease. Of all the clinicopathologic variables and biomarkers analyzed for stage I MMMT, serous carcinomatous component (83% [5/6] versus 17% [1/12], P = .0015) and HB-EGF expression (100% [6/6] versus 50% [6/12], P=.0339) were significantly different between groups with RM and without RM. The presence of serous carcinoma in all stages was 83% (5/6) in stage I with RM, 8% (1/12) in stage I without RM, 20% (1/5) in stage II, 36.4% (8/22) in stage III and 64.7% (11/17) in stage IV; this was paralleled by HB-EGF expression of 100% (6/6), 50% (6/12), 40% (2/5), 50% (11/22) and 71% (12/17) with a correlation coefficient r=0.9131 (P=.027). HB-EGF and integrin-α5 were highly expressed in MMMTs bearing serous carcinoma component, compared to endometrioid and unclassifiable/miscellaneous subtypes (84.6%/47.6%/33.3%, P=.025 for HB-EGF; and 61.5%/42.9%/20.0%, P=.021 for integrin-α5). The EGFR positivity was comparable among the three subtypes (48.1%, 47.6% and 26.7%, P=.326). This study indicates that serous carcinomatous component championed by expression of HB-EGF predisposes to recurrence/metastasis in stage I MMMT. This process might involve integrin-α5 and does not seem to require overexpression of EGFR. Further study is required. Published by Elsevier Inc.

  15. Treatment of metastasis localizations by intratumoral injection of radionuclide microsphere

    International Nuclear Information System (INIS)

    Tuo Peiyu; Pang Yan; Zhu Dianqing; Chang Keli; Zhu Yanjia

    2001-01-01

    Objective: To evaluate the therapeutic effects of radionuclide-labeled microsphere by intratumoral injection into 18 patients with superficial metastasis tumor for treatment. Methods: 18 patients with superficial metastasis were treated with radionuclide-labeled microsphere ( 90 Y-GTMS and 32 P-GTMS) by multi-point intratumoral injection. Each injection dose was 11.1-18.5 MBq/g (tumor). Results: 1 patient was relieved completely, 9 were relieved partly, 5 were improved and 3 kept stable. The total rate of relief and virtual value were 55.6% and 83.3% respectively. Conclusion: Topical treatment by using radionuclide may help diminish the tumor, control its progress and ease the symptoms. Thus it can be used as a supplement of routine treatment of tumors and it should do some work in therapy of malignant tumors in late stages

  16. Malignant gastroduodenal stromal tumor imaging diagnosis

    International Nuclear Information System (INIS)

    Guo Qiang; Wen Feng; Zhao Zhenguo

    2010-01-01

    Objective: To assess the imaging features of malignant gastroduodenal stromal tumor (mGDST)as an aid to its diagnosis. Methods: The unenhanced and multi-phasic contrast-enhanced CT scans of 24 patients with pathologically proven mGDST and air-contrast upper gastrointestinal studies(15 patients) were reviewed by two radiologists. The tumor location, size, contour, margin, growth type, contrast enhancement pattern and presence of ulcer were recorded. Results: The mGDST was located in the gastric fundus (15), gastric body(3), pylorus(2) and duodenum(4). The pathological types were submucosal(9), intramuscular(9) and subserosal(6). CT findings of mGDST included lobular shape(17), tumor size>5cm(14), central necrosis(15), large and deep ulcer(6), heterogeneous contrast enhancement(1), metastasis(1). The diagnostic accuracy of air-contrast upper gastrointestinal studies and CT for location of mGDST was 93.3% and 100% respectively, for malignant features was both 75.0%. Conclusion: Most mGDST have some characteristic appearances including large tumor size greater than 5 cm, lobular shape, central necrosis, large and deep ulcer, heterogeneous contrast enhancement and metastasis. Lymph node enlargement was uncommon. The diagnostic accuracy can be improved by CT scan combined with upper gastrointestinal barium examination. (authors)

  17. Tumor cell proliferation kinetics and tumor growth rate

    Energy Technology Data Exchange (ETDEWEB)

    Tubiana, M

    1989-01-01

    The present knowledge on the growth rate and the proliferation kinetics of human tumor is based on the measurement of the tumor doubling times (DT) in several hundred patients and on the determination of the proportion of proliferating cells with radioactive thymidine or by flow cytometry in large numbers of patients. The results show that the DT of human tumor varies widely, from less than one week to over one year with a median value of approximately 2 months. The DTs are significantly correlated with the histological type. They depend upon (1) the duration of the cell cycle whose mean duration is 2 days with small variations from tumor to tumor, (2) the proportion of proliferating cells and consequently the cell birth rate which varies widely among tumors and which is significantly correlated to the DT, (3) the cell loss factors which also vary widely and which are the greatest when proliferation is most intensive. These studies have several clinical implications: (a) they have further increased our understanding of the natural history of human tumor, (b) they have therapeutic implications since tumor responsiveness and curability by radiation and drugs are strongly influenced by the cell kinetic parameters of the tumor, (c) the proportion of proliferating cells is of great prognostic value in several types of human cancers. The investigation of the molecular defects, which are correlated with the perturbation of control of cell proliferation, should lead to significant fundamental and therapeutic advances. (orig.).

  18. Targeting of GIT1 by miR-149* in breast cancer suppresses cell proliferation and metastasis in vitro and tumor growth in vivo

    Directory of Open Access Journals (Sweden)

    Dong Y

    2017-12-01

    Full Text Available Yan Dong,1,* Cai Chang,2,* Jingtian Liu,3 Jinwei Qiang4 1Department of Ultrasonography, Jinshan Hospital, 2Department of Ultrasonography, Cancer Center, 3Department of General Surgery, 4Department of Radiology, Jinshan Hospital, Fudan University, Shanghai, China *These authors contributed equally to this work Abstract: Breast cancer remains a major cause of cancer-related death in women worldwide. Dysregulation of microRNAs (miRNAs is involved in the initiation and progression of breast cancer. Moreover, it was found that GIT1 was widely involved in the development of many human cancers. Herein, we aimed to investigate the expression changes of miR-149* and GIT1 and the functional effects of miR-149*/GIT1 link in breast cancer. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR and Western blot (WB were used to examine the expression levels of miR-149* and GIT1. Dual luciferase reporter assay was utilized to confirm the target interaction between miR-149* and GIT1. The biological functions, including cell proliferation, invasion, and migration, of miR-149* and GIT1 were determined by MTT assay and Transwell assays, respectively. Eventually, the tumor xenograft model in nude mice injected with stable transfected MDA-MB-231 cells was established to verify the effects of miR-149* and GIT1 on tumor growth. Our results showed that miR-149* expression was decreased, whereas GIT1 expression was increased in clinical samples of breast cancer. Based on the inverse expression trend between miR-149* and GIT1, we further demonstrated that miR-149* indeed directly targets GIT1. Subsequently, it was observed that inhibition of miR-149* significantly promoted cell proliferation, invasion, and migration, but the ability of cell proliferation, invasion, and migration was obviously declined after silencing of GIT1 in MDA-MB-231 cells transfected with miR-149* mimic and/or si-GIT1. Finally, it was also found that elevated miR-149* decelerated

  19. In silico modeling for tumor growth visualization.

    Science.gov (United States)

    Jeanquartier, Fleur; Jean-Quartier, Claire; Cemernek, David; Holzinger, Andreas

    2016-08-08

    Cancer is a complex disease. Fundamental cellular based studies as well as modeling provides insight into cancer biology and strategies to treatment of the disease. In silico models complement in vivo models. Research on tumor growth involves a plethora of models each emphasizing isolated aspects of benign and malignant neoplasms. Biologists and clinical scientists are often overwhelmed by the mathematical background knowledge necessary to grasp and to apply a model to their own research. We aim to provide a comprehensive and expandable simulation tool to visualizing tumor growth. This novel Web-based application offers the advantage of a user-friendly graphical interface with several manipulable input variables to correlate different aspects of tumor growth. By refining model parameters we highlight the significance of heterogeneous intercellular interactions on tumor progression. Within this paper we present the implementation of the Cellular Potts Model graphically presented through Cytoscape.js within a Web application. The tool is available under the MIT license at https://github.com/davcem/cpm-cytoscape and http://styx.cgv.tugraz.at:8080/cpm-cytoscape/ . In-silico methods overcome the lack of wet experimental possibilities and as dry method succeed in terms of reduction, refinement and replacement of animal experimentation, also known as the 3R principles. Our visualization approach to simulation allows for more flexible usage and easy extension to facilitate understanding and gain novel insight. We believe that biomedical research in general and research on tumor growth in particular will benefit from the systems biology perspective.

  20. Cyclosporin safety in a simplified rat brain tumor implantation model

    Directory of Open Access Journals (Sweden)

    Francisco H. C. Felix

    2012-01-01

    Full Text Available Brain cancer is the second neurological cause of death. A simplified animal brain tumor model using W256 (carcinoma 256, Walker cell line was developed to permit the testing of novel treatment modalities. Wistar rats had a cell tumor solution inoculated stereotactically in the basal ganglia (right subfrontal caudate. This model yielded tumor growth in 95% of the animals, and showed absence of extracranial metastasis and systemic infection. Survival median was 10 days. Estimated tumor volume was 17.08±6.7 mm³ on the 7th day and 67.25±19.8 mm³ on 9th day post-inoculation. Doubling time was 24.25 h. Tumor growth induced cachexia, but no hematological or biochemical alterations. This model behaved as an undifferentiated tumor and can be promising for studying tumor cell migration in the central nervous system. Dexamethasone 3.0 mg/kg/day diminished significantly survival in this model. Cyclosporine 10 mg/kg/day administration was safely tolerated.

  1. Interplay between TGF-β signaling and receptor tyrosine kinases in tumor development.

    Science.gov (United States)

    Shi, Qiaoni; Chen, Ye-Guang

    2017-10-01

    Transforming growth factor-β (TGF-β) signaling regulates cell proliferation, differentiation, migration and death, and plays a critical role in embryogenesis and tissue homeostasis. Its deregulation results in various diseases including tumor formation. Receptor tyrosine kinases (RTKs), such as epidermal growth factor receptor (EGFR), fibroblast growth factor receptor (FGFR), vascular endothelial growth factor receptor (VEGFR) and platelet-derived growth factor receptor (PDGFR), also play key roles in the development and progression of many types of tumors. It has been realized that TGF-β signaling and RTK pathways interact with each other and their interplay is important for cancer development. They are mutually regulated and cooperatively modulate cell survival and migration, epithelial-mesenchymal transition, and tumor microenvironment to accelerate tumorigenesis and tumor metastasis. RTKs can modulate Smad-dependent transcription or cooperate with TGF-β to potentiate its oncogenic activity, while TGF-β signaling can in turn control RTK signaling by regulating their activities or expression. This review summarizes current understandings of the interplay between TGF-β signaling and RTKs and its influence on tumor development.

  2. Tracking and Functional Characterization of Epithelial-Mesenchymal Transition and Mesenchymal Tumor Cells During Prostate Cancer Metastasis

    Science.gov (United States)

    Ruscetti, Marcus; Quach, Bill; Dadashian, Eman L.; Mulholland, David J.; Wu, Hong

    2015-01-01

    The epithelial-mesenchymal transition (EMT) has been postulated as a mechanism by which cancer cells acquire the invasive and stem-like traits necessary for distant metastasis. However, direct in vivo evidence for the role of EMT in the formation of cancer stem-like cells (CSC) and the metastatic cascade remains lacking. Here we report the first isolation and characterization of mesenchymal and EMT tumor cells, which harbor both epithelial and mesenchymal characteristics, in an autochthonous murine model of prostate cancer. By crossing the established Pb-Cre+/−;PtenL/L;KrasG12D/+ prostate cancer model with a vimentin-GFP reporter strain, generating CPKV mice, we were able to isolate epithelial, EMT and mesenchymal cancer cells based on expression of vimentin and EpCAM. CPKV mice (but not mice with Pten deletion alone) exhibited expansion of cells with EMT (EpCAM+/Vim-GFP+) and mesenchymal (EpCAM−/Vim-GFP+) characteristics at the primary tumor site and in circulation. These EMT and mesenchymal tumor cells displayed enhanced stemness and invasive character compared to epithelial tumor cells. Moreover, they displayed an enriched tumor-initiating capacity and could regenerate epithelial glandular structures in vivo, indicative of epithelia-mesenchyme plasticity. Interestingly, while mesenchymal tumor cells could persist in circulation and survive in the lung following intravenous injection, only epithelial and EMT tumor cells could form macrometastases. Our work extends the evidence that mesenchymal and epithelial states in cancer cells contribute differentially to their capacities for tumor initiation and metastatic seeding, respectively, and that EMT tumor cells exist with plasticity that can contribute to multiple stages of the metastatic cascade. PMID:25948589

  3. G Protein Coupled Receptor Kinase 3 Regulates Breast Cancer Migration, Invasion, and Metastasis.

    Directory of Open Access Journals (Sweden)

    Matthew J Billard

    Full Text Available Triple negative breast cancer (TNBC is a heterogeneous disease that has a poor prognosis and limited treatment options. Chemokine receptor interactions are important modulators of breast cancer metastasis; however, it is now recognized that quantitative surface expression of one important chemokine receptor, CXCR4, may not directly correlate with metastasis and that its functional activity in breast cancer may better inform tumor pathogenicity. G protein coupled receptor kinase 3 (GRK3 is a negative regulator of CXCR4 activity, and we show that GRK expression correlates with tumorigenicity, molecular subtype, and metastatic potential in human tumor microarray analysis. Using established human breast cancer cell lines and an immunocompetent in vivo mouse model, we further demonstrate that alterations in GRK3 expression levels in tumor cells directly affect migration and invasion in vitro and the establishment of distant metastasis in vivo. The effects of GRK3 modulation appear to be specific to chemokine-mediated migration behaviors without influencing tumor cell proliferation or survival. These data demonstrate that GRK3 dysregulation may play an important part in TNBC metastasis.

  4. G Protein Coupled Receptor Kinase 3 Regulates Breast Cancer Migration, Invasion, and Metastasis

    Science.gov (United States)

    Billard, Matthew J.; Fitzhugh, David J.; Parker, Joel S.; Brozowski, Jaime M.; McGinnis, Marcus W.; Timoshchenko, Roman G.; Serafin, D. Stephen; Lininger, Ruth; Klauber-Demore, Nancy; Sahagian, Gary; Truong, Young K.; Sassano, Maria F.; Serody, Jonathan S.; Tarrant, Teresa K.

    2016-01-01

    Triple negative breast cancer (TNBC) is a heterogeneous disease that has a poor prognosis and limited treatment options. Chemokine receptor interactions are important modulators of breast cancer metastasis; however, it is now recognized that quantitative surface expression of one important chemokine receptor, CXCR4, may not directly correlate with metastasis and that its functional activity in breast cancer may better inform tumor pathogenicity. G protein coupled receptor kinase 3 (GRK3) is a negative regulator of CXCR4 activity, and we show that GRK expression correlates with tumorigenicity, molecular subtype, and metastatic potential in human tumor microarray analysis. Using established human breast cancer cell lines and an immunocompetent in vivo mouse model, we further demonstrate that alterations in GRK3 expression levels in tumor cells directly affect migration and invasion in vitro and the establishment of distant metastasis in vivo. The effects of GRK3 modulation appear to be specific to chemokine-mediated migration behaviors without influencing tumor cell proliferation or survival. These data demonstrate that GRK3 dysregulation may play an important part in TNBC metastasis. PMID:27049755

  5. Osteoprotegerin expression in triple-negative breast cancer cells promotes metastasis

    International Nuclear Information System (INIS)

    Weichhaus, Michael; Segaran, Prabu; Renaud, Ashleigh; Geerts, Dirk; Connelly, Linda

    2014-01-01

    Osteoprotegerin (OPG) is a secreted member of the tumor necrosis factor (TNF) receptor superfamily that has been well characterized as a negative regulator of bone remodeling. OPG is also expressed in human breast cancer tissues and cell lines. In vitro studies suggest that OPG exerts tumor-promoting effects by binding to TNF-related apoptosis inducing ligand (TRAIL), thereby preventing induction of apoptosis. However, the in vivo effect of OPG expression by primary breast tumors has not been characterized. We knocked down OPG expression in MDA-MB-231 and MDA-MB-436 human breast cancer cells using shRNA and siRNA to investigate impact on metastasis in the chick embryo model. We observed a reduction in metastasis with OPG knockdown cells. We found that lowering OPG expression did not alter sensitivity to TRAIL-induced apoptosis; however, the OPG knockdown cells had a reduced level of invasion. In association with this we observed reduced expression of the proteases Cathepsin D and Matrix Metalloproteinase-2 upon OPG knockdown, indicating that OPG may promote metastasis via modulation of protease expression and invasion. We conclude that OPG has a metastasis-promoting effect in breast cancer cells

  6. Intermittent hypoxia increases melanoma metastasis to the lung in a mouse model of sleep apnea.

    Science.gov (United States)

    Almendros, Isaac; Montserrat, Josep M; Torres, Marta; Dalmases, Mireia; Cabañas, Maria L; Campos-Rodríguez, Francisco; Navajas, Daniel; Farré, Ramon

    2013-05-01

    Obstructive sleep apnea (OSA) has recently been associated with an increased risk of cancer incidence and mortality in humans. Experimental data in mice have also shown that intermittent hypoxia similar to that observed in OSA patients enhances tumor growth. The aim of this study was to test the hypothesis that intermittent hypoxia mimicking OSA enhances lung metastasis. A total of 75 C57BL/6J male mice (10-week-old) were subjected to either spontaneous or induced melanoma lung metastasis. Normoxic animals breathed room air and intermittent hypoxic animals were subjected to cycles of 20s of 5% O2 followed by 40s of room air for 6h/day. Spontaneous and induced lung metastases were studied after subcutaneous and intravenous injection of B16F10 melanoma cells, respectively. Compared with normoxia, intermittent hypoxia induced a significant increase in melanoma lung metastasis. These animal model results suggest that intermittent hypoxia could contribute to cancer metastasis in patients with OSA. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Transforming growth factor alpha (TGFα regulates granulosa cell tumor (GCT cell proliferation and migration through activation of multiple pathways.

    Directory of Open Access Journals (Sweden)

    Cheng Wang

    Full Text Available Granulosa cell tumors (GCTs are the most common ovarian estrogen producing tumors, leading to symptoms of excessive estrogen such as endometrial hyperplasia and endometrial adenocarcinoma. These tumors have malignant potential and often recur. The etiology of GCT is unknown. TGFα is a potent mitogen for many different cells. However, its function in GCT initiation, progression and metastasis has not been determined. The present study aims to determine whether TGFα plays a role in the growth of GCT cells. KGN cells, which are derived from an invasive GCT and have many features of normal granulosa cells, were used as the cellular model. Immunohistochemistry, Western blot and RT-PCR results showed that the ErbB family of receptors is expressed in human GCT tissues and GCT cell lines. RT-PCR results also indicated that TGFα and EGF are expressed in the human granulosa cells and the GCT cell lines, suggesting that TGFα might regulate GCT cell function in an autocrine/paracrine manner. TGFα stimulated KGN cell DNA synthesis, cell proliferation, cell viability, cell cycle progression, and cell migration. TGFα rapidly activated EGFR/PI3K/Akt and mTOR pathways, as indicated by rapid phosphorylation of Akt, TSC2, Rictor, mTOR, P70S6K and S6 proteins following TGFα treatment. TGFα also rapidly activated the EGFR/MEK/ERK pathway, and P38 MAPK pathways, as indicated by the rapid phosphorylation of EGFR, MEK, ERK1/2, P38, and CREB after TGFα treatment. Whereas TGFα triggered a transient activation of Akt, it induced a sustained activation of ERK1/2 in KGN cells. Long-term treatment of KGN cells with TGFα resulted in a significant increase in cyclin D2 and a decrease in p27/Kip1, two critical regulators of granulosa cell proliferation and granulosa cell tumorigenesis. In conclusion, TGFα, via multiple signaling pathways, regulates KGN cell proliferation and migration and may play an important role in the growth and metastasis of GCTs.

  8. Chemokine receptor CXCR7 regulates the invasion, angiogenesis and tumor growth of human hepatocellular carcinoma cells

    Directory of Open Access Journals (Sweden)

    Li Fan

    2010-04-01

    Full Text Available Abstract Background In spite of recent advances in diagnostic and therapeutic measures, the prognosis of hepatocellular carcinoma (HCC patients remains poor. Therefore, it is crucial to understand what factors are involved in promoting development of HCC. Evidence is accumulating that members of the chemokine receptor family are viewed as promising therapeutic targets in the fight against cancer. More recent studies have revealed that chemokine receptor CXCR7 plays an important role in cancer development. However, little is known about the effect of CXCR7 on the process of HCC cell invasion and angiogenesis. The aim of this study is to investigate the expression of CXCR7 in hepatocellular carcinoma tissues and cell lines and to evaluate the role of CXCR7 in tumor growth, angiogenesis and invasion of HCC cells. Methods We constructed CXCR7 expressing shRNA, and CXCR7shRNA was subsequently stably transfected into human HCC cells. We evaluated the effect of CXCR7 inhibition on cell invasion, adhesion, VEGF secretion, tube formation and tumor growth. Immunohistochemistry was done to assess the expression of CXCR7 in human hepatocellular carcinoma tissues and CD31 in tumor of mice. We also evaluated the effect of VEGF stimulation on expression of CXCR7. Results CXCR7 was overexpressed in hepatocellular carcinoma tissues. We showed that high invasive potential HCC cell lines express high levels of CXCR7. In vitro, CXCL12 was found to induce invasion, adhesion, tube formation, and VEGF secretion in SMMC-7721 cells. These biological effects were inhibited by silencing of CXCR7 in SMMC-7721 cells. In addition, we also found that VEGF stimulation can up-regulate CXCR7 expression in SMMC-7721 cells and HUVECs. More importantly, enhanced expression of CXCR7 by VEGF was founctional. In vivo, tumor growth and angiogenesis were suppressed by knockdown of CXCR7 in SMMC-7721 cells. However, silencing of CXCR7 did not affect metastasis of tumor in vivo

  9. Phosphorylated hepatocyte growth factor receptor/c-Met is associated with tumor growth and prognosis in patients with bladder cancer: correlation with matrix metalloproteinase-2 and -7 and E-cadherin.

    Science.gov (United States)

    Miyata, Yasuyoshi; Sagara, Yuji; Kanda, Shigeru; Hayashi, Tomayoshi; Kanetake, Hiroshi

    2009-04-01

    Hepatocyte growth factor receptor/c-Met is associated with malignant aggressiveness and survival in various cancers including bladder cancer. Although phosphorylation of hepatocyte growth factor receptor/c-Met is essential for its function, the pathologic significance of phosphorylated hepatocyte growth factor receptor/c-Met in bladder cancer remains elusive. We investigated the clinical significance of its expression, and its correlation with cancer cell progression-related molecules. The expression levels of 2 tyrosine residues of hepatocyte growth factor receptor/c-Met (pY1234/1235 and pY1349) were examined immunohistochemically in 133 specimens with nonmetastatic bladder cancer. We also investigated their correlation with matrix metalloproteinase-1, -2, -7, and -14; urokinase-type plasminogen activator; E-cadherin; CD44 standard, variant 3, and variant 6; and vascular endothelial growth factor. Expression of phosphorylated hepatocyte growth factor receptor/c-Met was detected in cancer cells, but was rare in normal urothelial cells. Although hepatocyte growth factor receptor/c-Met, pY1234/1235 hepatocyte growth factor receptor/c-Met, and pY1349 hepatocyte growth factor receptor/c-Met were associated with pT stage, multivariate analysis identified pY1349 hepatocyte growth factor receptor/c-met expression only as a significant factor for high pT stage. Expression of pY1349 hepatocyte growth factor receptor/c-Met was a marker of metastasis and (P = .001) and cause-specific survival (P = .003). Expressions of matrix metalloproteinase-2, matrix metalloproteinase-7, and E-cadherin correlated with pY1349 hepatocyte growth factor receptor/c-Met expression. Our results demonstrated that pY1349 hepatocyte growth factor receptor/c-Met plays an important role in tumor development, and its expression is a significant predictor of metastasis and survival of patients with bladder cancer. The results suggest that these activities are mediated, at least in part, by matrix

  10. Identification of a Novel TGFβ/PKA Signaling Transduceome in Mediating Control of Cell Survival and Metastasis in Colon Cancer

    Science.gov (United States)

    Rajput, Ashwani; Teggart, Carol A.; Brattain, Lisa E.; Weber, Hannah R.; Chowdhury, Aparajita; Brattain, Michael G.

    2011-01-01

    Background Understanding drivers for metastasis in human cancer is important for potential development of therapies to treat metastases. The role of loss of TGFβ tumor suppressor activities in the metastatic process is essentially unknown. Methodology/Principal Findings Utilizing in vitro and in vivo techniques, we have shown that loss of TGFβ tumor suppressor signaling is necessary to allow the last step of the metastatic process - colonization of the metastatic site. This work demonstrates for the first time that TGFβ receptor reconstitution leads to decreased metastatic colonization. Moreover, we have identified a novel TGFβ/PKA tumor suppressor pathway that acts directly on a known cell survival mechanism that responds to stress with the survivin/XIAP dependent inhibition of caspases that effect apoptosis. The linkage between the TGFβ/PKA transduceome signaling and control of metastasis through induction of cell death was shown by TGFβ receptor restoration with reactivation of the TGFβ/PKA pathway in receptor deficient metastatic colon cancer cells leading to control of aberrant cell survival. Conclusion/Significance This work impacts our understanding of the possible mechanisms that are critical to the growth and maintenance of metastases as well as understanding of a novel TGFβ function as a metastatic suppressor. These results raise the possibility that regeneration of attenuated TGFβ signaling would be an effective target in the treatment of metastasis. Our work indicates the clinical potential for developing anti-metastasis therapy based on inhibition of this very important aberrant cell survival mechanism by the multifaceted TGFβ/PKA transduceome induced pathway. Development of effective treatments for metastatic disease is a pressing need since metastases are the major cause of death in solid tumors. PMID:21559296

  11. Identification of a novel TGFβ/PKA signaling transduceome in mediating control of cell survival and metastasis in colon cancer.

    Directory of Open Access Journals (Sweden)

    Sanjib Chowdhury

    2011-05-01

    Full Text Available Understanding drivers for metastasis in human cancer is important for potential development of therapies to treat metastases. The role of loss of TGFβ tumor suppressor activities in the metastatic process is essentially unknown.Utilizing in vitro and in vivo techniques, we have shown that loss of TGFβ tumor suppressor signaling is necessary to allow the last step of the metastatic process - colonization of the metastatic site. This work demonstrates for the first time that TGFβ receptor reconstitution leads to decreased metastatic colonization. Moreover, we have identified a novel TGFβ/PKA tumor suppressor pathway that acts directly on a known cell survival mechanism that responds to stress with the survivin/XIAP dependent inhibition of caspases that effect apoptosis. The linkage between the TGFβ/PKA transduceome signaling and control of metastasis through induction of cell death was shown by TGFβ receptor restoration with reactivation of the TGFβ/PKA pathway in receptor deficient metastatic colon cancer cells leading to control of aberrant cell survival.This work impacts our understanding of the possible mechanisms that are critical to the growth and maintenance of metastases as well as understanding of a novel TGFβ function as a metastatic suppressor. These results raise the possibility that regeneration of attenuated TGFβ signaling would be an effective target in the treatment of metastasis. Our work indicates the clinical potential for developing anti-metastasis therapy based on inhibition of this very important aberrant cell survival mechanism by the multifaceted TGFβ/PKA transduceome induced pathway. Development of effective treatments for metastatic disease is a pressing need since metastases are the major cause of death in solid tumors.

  12. Pristimerin Inhibits Prostate Cancer Bone Metastasis by Targeting PC-3 Stem Cell Characteristics and VEGF-Induced Vasculogenesis of BM-EPCs

    Directory of Open Access Journals (Sweden)

    Shuai Huang

    2015-08-01

    Full Text Available Background/Aims: Prostate cancer (PCa is one of the most common malignant cancers and a major leading cause of cancer deaths in men. Cancer stem-like cells are shown to be highly tumorigenic, pro-angiogenic and can significantly contribute to tumor new vessel formation and bone marrow derived-EPCs (BM-EPCs are shown to recruit to the angiogenic switch in tumor growth and metastatic progression, suggesting the importance of targeting cancer stem cells (CSCs and EPCs for novel tumor therapies. Pristimerin, an active component isolated from Celastraceae and Hippocrateaceae, has shown anti-tumor effects in some cell lines in previous studies. However, the effect and mechanism of Pristimerin on CSCs and EPCs in PCa bone metastasis are not well studied. Methods: The effect of Pristimerin on PC-3 stem cell characteristics and metastasis were detected by spheroid formation, CD133 and CD44 protein expression, matrix-gel invasive assay and colony-formation assay in vitro, VEGF and pro-inflammatory cytokines expression by ELISA assay, and tumor tumorigenicity by X-ray and MR in NOD-SCID mice model in vivo. In addition, we also detected the effect of Pristimerin on VEGF-induced vasculogenesis and protein expression of BM-EPCs. Results: Pristimerin could significantly inhibit spheroid formation and protein expression of CD133 and CD44, reduce VEGF and pro-inflammation cytokines expression of PC-3 cell, and prevent the xenografted PC-3 tumor growth in the bone of nude mice. The present data also showed that Pristimerin significantly inhibited VEGF-induced vasculogenesis of BM-EPCs by suppressing the EPCs functions including proliferation, adhesion, migration, tube formation and inactivation the phosphorylation of VEGFR-2, Akt and eNOS. Conclusion: These data provide evidence that Pristimerin has strong potential for development as a novel agent against prostate bone metastasis by suppressing PC-3 stem cell characteristics and VEGF-induced vasculogenesis of BM-EPCs.

  13. High Glucose Promotes Tumor Invasion and Increases Metastasis-Associated Protein Expression in Human Lung Epithelial Cells by Upregulating Heme Oxygenase-1 via Reactive Oxygen Species or the TGF-β1/PI3K/Akt Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Xiaowen Kang

    2015-02-01

    Full Text Available Background: Growing evidence indicates that heme oxygenase-1 (HO-1 is up-regulated in malignancies and subsequently alters tumor aggressiveness and various cancer-related factors, such as high glucose (HG levels. HO-1 expression can be induced when glucose concentrations are above 25 mM; however, the role of HO-1 in lung cancer patients with diabetes remains unknown. Therefore, in this study we investigated the promotion of tumor cell invasion and the expression of metastasis-associated proteins by inducing the up-regulation of HO-1 expression by HG treatment in A549 human lung epithelial cells. Methods: The expression of HO-1and metastasis-associated protein expression was explored by western blot analysis. HO-1 enzymatic activity, reactive oxygen species (ROS production and TGF-β1 production were examined by ELISA. Invasiveness was analyzed using a Transwell chamber. Results: HG treatment of A549 cells induced an increase in HO-1 expression, which was mediated by the HG-induced generation of reactive oxygen species (ROS and transforming growth factor-β1 (TGF-β1 in a concentration- and time-dependent manner. Following the increase in HO-1 expression, the enzymatic activity of HO-1 also increased in HG-treated cells. Pretreatment with N-acetyl-L-cysteine (NAC or with phosphatidylinositol 3-kinase (PI3K/Akt inhibitors attenuated the HG-induced increase in HO-1 expression. HG treatment of A549 cells enhanced the invasion potential of these cells, as shown with a Transwell assay, and increased metastasis-associated protein expression. However, HO-1 siRNA transfection significantly decreased these capabilities. Conclusion: this study is the first to demonstrate that HG treatment of A549 human lung epithelial cells promotes tumor cell invasion and increases metastasis-associated protein expression by up-regulating HO-1 expression via ROS or the TGF-β1/PI3K/Akt signaling pathway.

  14. Novel MET/TIE2/VEGFR2 inhibitor altiratinib inhibits tumor growth and invasiveness in bevacizumab-resistant glioblastoma mouse models

    Science.gov (United States)

    Piao, Yuji; Park, Soon Young; Henry, Verlene; Smith, Bryan D.; Tiao, Ningyi; Flynn, Daniel L.

    2016-01-01

    Background Glioblastoma highly expresses the proto-oncogene MET in the setting of resistance to bevacizumab. MET engagement by hepatocyte growth factor (HGF) results in receptor dimerization and autophosphorylation mediating tumor growth, invasion, and metastasis. Evasive revascularization and the recruitment of TIE2-expressing macrophages (TEMs) are also triggered by anti-VEGF therapy. Methods We investigated the activity of altiratinib (a novel balanced inhibitor of MET/TIE2/VEGFR2) against human glioblastoma stem cell lines in vitro and in vivo using xenograft mouse models. The biological activity of altiratinib was assessed in vitro by testing the expression of HGF-stimulated MET phosphorylation as well as cell viability after altiratinib treatment. Tumor volume, stem cell and mesenchymal marker levels, microvessel density, and TIE2-expressing monocyte infiltration were evaluated in vivo following treatment with a control, bevacizumab alone, bevacizumab combined with altiratinib, or altiratinib alone. Results In vitro, HGF-stimulated MET phosphorylation was completely suppressed by altiratinib in GSC17 and GSC267, and altiratinib markedly inhibited cell viability in several glioblastoma stem cell lines. More importantly, in multiple xenograft mouse models, altiratinib combined with bevacizumab dramatically reduced tumor volume, invasiveness, mesenchymal marker expression, microvessel density, and TIE2-expressing monocyte infiltration compared with bevacizumab alone. Furthermore, in the GSC17 xenograft model, altiratinib combined with bevacizumab significantly prolonged survival compared with bevacizumab alone. Conclusions Together, these data suggest that altiratinib may suppress tumor growth, invasiveness, angiogenesis, and myeloid cell infiltration in glioblastoma. Thus, altiratinib administered alone or in combination with bevacizumab may overcome resistance to bevacizumab and prolong survival in patients with glioblastoma. PMID:26965451

  15. Long-term survival after a favorable response to anti-EGFR antibody plus chemotherapy to treat bone marrow metastasis: a case report of KRAS-wildtype rectal cancer

    Directory of Open Access Journals (Sweden)

    Nakamura S

    2017-02-01

    Full Text Available Sho Nakamura, Tadahisa Fukui, Shuhei Suzuki, Hiroyuki Takeda, Kaname Watanabe, Takashi Yoshioka Department of Clinical Oncology, Yamagata University Faculty of Medicine, Yamagata, Japan Abstract: Bone marrow metastasis is a rare consequence of colorectal cancer that results in a poor prognosis; few reports describe a favorable response to doublet chemotherapy combined with targeted therapy, which is currently the standard treatment. We experienced a case where anti-epidermal growth factor receptor (EGFR antibody produced a marked anti-tumor response to bone marrow metastasis that led to long-term survival. A 51-year-old man was diagnosed with a primary KRAS-wildtype rectal cancer with multiple metastases, including the bone marrow. Disease control was achieved for 10.8 months following chemotherapy with a modified FOLFOX6 regimen combined with an anti-EGFR antibody. He died of cancer 22.7 and 16.6 months after disease onset and first-line chemotherapy, respectively. This case shows that early tumor shrinkage and deepness of response to the anti-EGFR antibody were observed even in a patient with bone marrow metastasis. Anti-EGFR antibody therapy should therefore be considered even when a patient’s medical condition appears to be poor owing to bone marrow metastasis. Moreover, tumors that are likely to be sensitive to chemotherapy, such as RAS-wildtype colorectal cancers, can be considered for anti-EGFR antibody therapy even if the patient is considered unfit for chemotherapy. Keywords: colorectal cancer, anti-epidermal growth factor receptor antibody, molecular targeted therapies, disseminated intravascular coagulation, standard of care

  16. Paraganglioma with intracranial metastasis: a case report and review of the literature.

    Science.gov (United States)

    Cai, Peihao; Mahta, Ali; Kim, Ryan Y; Kesari, Santosh

    2012-10-01

    Paragangliomas are rare neuroendocrine tumors of neural crest origin. They are mostly benign, however; malignant tumors with aggressive behavior and distant metastasis can also occur. Intracranial involvement is extremely rare and has been sporadically reported in the literature. Here we report a case who presented with progressive neurologic deficits due to multiple intracranial lesions found to be metastasis from an occult retroperitoneal malignant paraganglioma.

  17. Disrupting Hypoxia-Induced Bicarbonate Transport Acidifies Tumor Cells and Suppresses Tumor Growth.

    Science.gov (United States)

    McIntyre, Alan; Hulikova, Alzbeta; Ledaki, Ioanna; Snell, Cameron; Singleton, Dean; Steers, Graham; Seden, Peter; Jones, Dylan; Bridges, Esther; Wigfield, Simon; Li, Ji-Liang; Russell, Angela; Swietach, Pawel; Harris, Adrian L

    2016-07-01

    Tumor hypoxia is associated clinically with therapeutic resistance and poor patient outcomes. One feature of tumor hypoxia is activated expression of carbonic anhydrase IX (CA9), a regulator of pH and tumor growth. In this study, we investigated the hypothesis that impeding the reuptake of bicarbonate produced extracellularly by CA9 could exacerbate the intracellular acidity produced by hypoxic conditions, perhaps compromising cell growth and viability as a result. In 8 of 10 cancer cell lines, we found that hypoxia induced the expression of at least one bicarbonate transporter. The most robust and frequent inductions were of the sodium-driven bicarbonate transporters SLC4A4 and SLC4A9, which rely upon both HIF1α and HIF2α activity for their expression. In cancer cell spheroids, SLC4A4 or SLC4A9 disruption by either genetic or pharmaceutical approaches acidified intracellular pH and reduced cell growth. Furthermore, treatment of spheroids with S0859, a small-molecule inhibitor of sodium-driven bicarbonate transporters, increased apoptosis in the cell lines tested. Finally, RNAi-mediated attenuation of SLC4A9 increased apoptosis in MDA-MB-231 breast cancer spheroids and dramatically reduced growth of MDA-MB-231 breast tumors or U87 gliomas in murine xenografts. Our findings suggest that disrupting pH homeostasis by blocking bicarbonate import might broadly relieve the common resistance of hypoxic tumors to anticancer therapy. Cancer Res; 76(13); 3744-55. ©2016 AACR. ©2016 American Association for Cancer Research.

  18. A Case Report of Intraocular Metastasis Treated with Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ok Bae; Byun, Sang Jun; Kim, Kwang Soo; Kim, Jin Hee [Keimyung University School of Medicine, Daegu (Korea, Republic of); Lee, Ho Jun [Daegu Catholic University School of Medicine, Daegu (Korea, Republic of)

    2009-09-15

    Intraocular metastasis is the most common malignancy of the eye. The frequency of intraocular metastasis in all the patients dying of cancer is about 12% and ocular metastases will be detected more frequently in the future because the patients with malignant tumor are now living longer. Intraocular metastasis can cause a serious clinical problem such as blindness. The early recognition and treatment of intraocular metastasis are very important clinical oncologic issues to maintain vision and to maximize the quality of life. However, significance of intraocular metastasis is still under-evaluated for practicing oncologists. External beam radiotherapy is a safe, effective palliative treatment in terms of preserving both the vision and the eye globe.

  19. Breast cancer lung metastasis: Molecular biology and therapeutic implications.

    Science.gov (United States)

    Jin, Liting; Han, Bingchen; Siegel, Emily; Cui, Yukun; Giuliano, Armando; Cui, Xiaojiang

    2018-03-26

    Distant metastasis accounts for the vast majority of deaths in patients with cancer. Breast cancer exhibits a distinct metastatic pattern commonly involving bone, liver, lung, and brain. Breast cancer can be divided into different subtypes based on gene expression profiles, and different breast cancer subtypes show preference to distinct organ sites of metastasis. Luminal breast tumors tend to metastasize to bone while basal-like breast cancer (BLBC) displays a lung tropism of metastasis. However, the mechanisms underlying this organ-specific pattern of metastasis still remain to be elucidated. In this review, we will summarize the recent advances regarding the molecular signaling pathways as well as the therapeutic strategies for treating breast cancer lung metastasis.

  20. The role of GAGE cancer/testis antigen in metastasis

    DEFF Research Database (Denmark)

    Gjerstorff, Morten Frier; Terp, Mikkel Green; Hansen, Malene Bredahl

    2016-01-01

    with migratory and invasive properties and were found to be upregulated in cancer cells with metastasizing potential in a gastric cancer model. METHODS: We have addressed the direct role of GAGE proteins in supporting metastasis using an isogenic metastasis model of human cancer, consisting of 4 isogenic cell......) and moderately metastatic clones (LM3), stable downregulation of GAGE expression did not affect the ability of CL16 cells to establish primary tumors and form metastasis in the lungs of immunodeficient mice. CONCLUSIONS: These results suggest that GAGE proteins per se do not support metastasis and that further...