WorldWideScience

Sample records for tumor development progression

  1. Mena deficiency delays tumor progression and decreases metastasis in polyoma middle-T transgenic mouse mammary tumors.

    Science.gov (United States)

    Roussos, Evanthia T; Wang, Yarong; Wyckoff, Jeffrey B; Sellers, Rani S; Wang, Weigang; Li, Jiufeng; Pollard, Jeffrey W; Gertler, Frank B; Condeelis, John S

    2010-01-01

    The actin binding protein Mammalian enabled (Mena), has been implicated in the metastatic progression of solid tumors in humans. Mena expression level in primary tumors is correlated with metastasis in breast, cervical, colorectal and pancreatic cancers. Cells expressing high Mena levels are part of the tumor microenvironment for metastasis (TMEM), an anatomical structure that is predictive for risk of breast cancer metastasis. Previously we have shown that forced expression of Mena adenocarcinoma cells enhances invasion and metastasis in xenograft mice. Whether Mena is required for tumor progression is still unknown. Here we report the effects of Mena deficiency on tumor progression, metastasis and on normal mammary gland development. To investigate the role of Mena in tumor progression and metastasis, Mena deficient mice were intercrossed with mice carrying a transgene expressing the polyoma middle T oncoprotein, driven by the mouse mammary tumor virus. The progeny were investigated for the effects of Mena deficiency on tumor progression via staging of primary mammary tumors and by evaluation of morbidity. Stages of metastatic progression were investigated using an in vivo invasion assay, intravital multiphoton microscopy, circulating tumor cell burden, and lung metastases. Mammary gland development was studied in whole mount mammary glands of wild type and Mena deficient mice. Mena deficiency decreased morbidity and metastatic dissemination. Loss of Mena increased mammary tumor latency but had no affect on mammary tumor burden or histologic progression to carcinoma. Elimination of Mena also significantly decreased epidermal growth factor (EGF) induced in vivo invasion, in vivo motility, intravasation and metastasis. Non-tumor bearing mice deficient for Mena also showed defects in mammary gland terminal end bud formation and branching. Deficiency of Mena decreases metastasis by slowing tumor progression and reducing tumor cell invasion and intravasation. Mena

  2. Second harmonic generation reveals matrix alterations during breast tumor progression

    Science.gov (United States)

    Burke, Kathleen; Tang, Ping; Brown, Edward

    2013-03-01

    Alteration of the extracellular matrix in tumor stroma influences efficiency of cell locomotion away from the primary tumor into surrounding tissues and vasculature, thereby affecting metastatic potential. We study matrix changes in breast cancer through the use of second harmonic generation (SHG) of collagen in order to improve the current understanding of breast tumor stromal development. Specifically, we utilize a quantitative analysis of the ratio of forward to backward propagating SHG signal (F/B ratio) to monitor collagen throughout ductal and lobular carcinoma development. After detection of a significant decrease in the F/B ratio of invasive but not in situ ductal carcinoma compared with healthy tissue, the collagen F/B ratio is investigated to determine the evolution of fibrillar collagen changes throughout tumor progression. Results are compared with the progression of lobular carcinoma, whose F/B signature also underwent significant evolution during progression, albeit in a different manner, which offers insight into varying methods of tissue penetration and collagen manipulation between the carcinomas. This research provides insights into trends of stromal reorganization throughout breast tumor development.

  3. Tumor heterogeneity and progression: conceptual foundations for modeling.

    Science.gov (United States)

    Greller, L D; Tobin, F L; Poste, G

    1996-01-01

    A conceptual foundation for modeling tumor progression, growth, and heterogeneity is presented. The purpose of such models is to aid understanding, test ideas, formulate experiments, and to model cancer 'in machina' to address the dynamic features of tumor cell heterogeneity, progression, and growth. The descriptive capabilities of such an approach provides a consistent language for qualitatively reasoning about tumor behavior. This approach provides a schema for building conceptual models that combine three key phenomenological driving elements: growth, progression, and genetic instability. The growth element encompasses processes contributing to changes in tumor bulk and is distinct from progression per se. The progression element subsumes a broad collection of processes underlying phenotypic progression. The genetics elements represents heritable changes which potentially affect tumor character and behavior. Models, conceptual and mathematical, can be built for different tumor situations by drawing upon the interaction of these three distinct driving elements. These models can be used as tools to explore a diversity of hypotheses concerning dynamic changes in cellular populations during tumor progression, including the generation of intratumor heterogeneity. Such models can also serve to guide experimentation and to gain insight into dynamic aspects of complex tumor behavior.

  4. Regulation of Tumor Progression by Programmed Necrosis

    Directory of Open Access Journals (Sweden)

    Su Yeon Lee

    2018-01-01

    Full Text Available Rapidly growing malignant tumors frequently encounter hypoxia and nutrient (e.g., glucose deprivation, which occurs because of insufficient blood supply. This results in necrotic cell death in the core region of solid tumors. Necrotic cells release their cellular cytoplasmic contents into the extracellular space, such as high mobility group box 1 (HMGB1, which is a nonhistone nuclear protein, but acts as a proinflammatory and tumor-promoting cytokine when released by necrotic cells. These released molecules recruit immune and inflammatory cells, which exert tumor-promoting activity by inducing angiogenesis, proliferation, and invasion. Development of a necrotic core in cancer patients is also associated with poor prognosis. Conventionally, necrosis has been thought of as an unregulated process, unlike programmed cell death processes like apoptosis and autophagy. Recently, necrosis has been recognized as a programmed cell death, encompassing processes such as oncosis, necroptosis, and others. Metabolic stress-induced necrosis and its regulatory mechanisms have been poorly investigated until recently. Snail and Dlx-2, EMT-inducing transcription factors, are responsible for metabolic stress-induced necrosis in tumors. Snail and Dlx-2 contribute to tumor progression by promoting necrosis and inducing EMT and oncogenic metabolism. Oncogenic metabolism has been shown to play a role(s in initiating necrosis. Here, we discuss the molecular mechanisms underlying metabolic stress-induced programmed necrosis that promote tumor progression and aggressiveness.

  5. Basic fibroblast growth factor in an animal model of spontaneous mammary tumor progression.

    Science.gov (United States)

    Kao, Steven; Mo, Jeffrey; Baird, Andrew; Eliceiri, Brian P

    2012-06-01

    Although basic fibroblast growth factor (FGF2) was the first pro-angiogenic molecule discovered, it has numerous activities on the growth and differentiation of non-vascular cell types. FGF2 is both stimulatory and inhibitory, depending on the cell type evaluated, the experimental design used and the context in which it is tested. Here, we investigated the effects of manipulating endogenous FGF2 on the development of mammary cancer to determine whether its endogenous contribution in vivo is pro- or anti-tumorigenic. Specifically, we examined the effects of FGF2 gene dosing in a cross between a spontaneous breast tumor model (PyVT+ mice) and FGF2-/- (FGF KO) mice. Using these mice, the onset and progression of mammary tumors was determined. As predicted, female FGF2 WT mice developed mammary tumors starting around 60 days after birth and by 80 days, 100% of FGF2 WT female mice had mammary tumors. In contrast, 80% of FGF2 KO female mice had no palpable tumors until nearly three weeks later (85 days) at times when 100% of the WT cohort was tumor positive. All FGF KO mice were tumor-bearing by 115 days. When we compared the onset of mammary tumor development and the tumor progression curves between FGF het and FGF KO mice, we observed a difference, which suggested a gene dosing effect. Analysis of the tumors demonstrated that there were significant differences in tumor size depending on FGF2 status. The delay in tumor onset supports a functional role for FGF2 in mammary tumor progression, but argues against an essential role for FGF2 in overall mammary tumor progression.

  6. Ionizing radiation in tumor promotion and progression

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.

    1990-08-01

    Chronic exposure to beta radiation has been tested as a tumor promoting or progressing agent. The dorsal skins of groups of 25 female SENCAR mice were chemically initiated with a single exposure to DMBA, and chronic exposure to strontium-90/yttrium-90 beta radiation was tested as a stage 1, stage 2 or complete skin tumor promoter. Exposure of initiated mice to 0.5 gray twice a week for 13 weeks produced no papillomas, indicating no action as a complete promoter. Another similar group of animals was chemically promoted through stage 1 (with TPA) followed by 0.5 gray of beta radiation twice a week for 13 weeks. Again no papillomas developed indicating no action of chronic radiation as a stage 2 tumor promoter. The same radiation exposure protocol in another DMBA initiated group receiving both stage 1 and 2 chemical promotion resulted in a decrease in papilloma frequency, compared to the control group receiving no beta irradiation, indicating a tumor preventing effect of radiation at stage 2 promotion, probably by killing initiated cells. Chronic beta radiation was tested three different ways as a stage 1 tumor promoter. When compared to the appropriate control, beta radiation given after initiation as a stage 1 promoter (0.5 gray twice a week for 13 weeks), after initiation and along with a known stage 1 chemical promoter (1.0 gray twice a week for 2 weeks), or prior to initiation as a stage 1 promoter (0.5 gray twice a week for 4 weeks), each time showed a weak (∼ 15% stimulation) but statistically significant (p<0.01) ability to act as a stage 1 promoter. When tested as a tumor progressing agent delivered to pre-existing papillomas, beta radiation (0.5 gray twice a week for 13 weeks) increased carcinoma frequency from 0.52 to 0.68 carcinoma/animal, but this increase was not statistically significant at the 95% confidence level. We conclude that in the addition to the known initiating, progressing and complete carcinogenic action of acute exposures to ionizing

  7. The tumor macroenvironment and systemic regulation of breast cancer progression.

    Science.gov (United States)

    Castaño, Zafira; Tracy, Kristin; McAllister, Sandra S

    2011-01-01

    Breast cancer is the most common malignancy among women worldwide and is the most common cause of death for women between 35 and 50 years of age. Women with breast cancer are at risk of developing metastases for their entire lifetime and, despite local and systemic therapies, approximately 30% of breast cancer patients will relapse (Jemal et al., 2010). Nearly all breast cancer related deaths are due to metastatic disease, even though metastasis is considered to be an inefficient process. In some cases, tumor cells disseminate from primary sites at an early stage, but remain indolent for protracted periods of time before becoming overt, life-threatening tumors. Little is known about the mechanisms that cause these indolent tumors to grow into malignant disease. Because of this gap in our understanding, we are unable to predict which breast cancer patients are likely to experience disease relapse or develop metastases years after treatment of their primary tumor. A better understanding of the mechanisms and signals involved in the exit of tumor cells from dormancy would not only allow for more accurate selection of patients that would benefit from systemic therapy, but could also lead to the development of more targeted therapies to inhibit the signals that promote disease progression. In this review, we address the systemic, or "macroenvironmental", contribution to tumor initiation and progression and what is known about how a pro-tumorigenic systemic environment is established.

  8. Estrogen receptor signaling in prostate cancer: Implications for carcinogenesis and tumor progression.

    Science.gov (United States)

    Bonkhoff, Helmut

    2018-01-01

    The androgen receptor (AR) is the classical target for prostate cancer prevention and treatment, but more recently estrogens and their receptors have also been implicated in prostate cancer development and tumor progression. Recent experimental and clinical data were reviewed to elucidate pathogenetic mechanisms how estrogens and their receptors may affect prostate carcinogenesis and tumor progression. The estrogen receptor beta (ERβ) is the most prevalent ER in the human prostate, while the estrogen receptor alpha (ERα) is restricted to basal cells of the prostatic epithelium and stromal cells. In high grade prostatic intraepithelial neoplasia (HGPIN), the ERα is up-regulated and most likely mediates carcinogenic effects of estradiol as demonstrated in animal models. The partial loss of the ERβ in HGPIN indicates that the ERβ acts as a tumor suppressor. The tumor promoting function of the TMPRSS2-ERG fusion, a major driver of prostate carcinogenesis, is triggered by the ERα and repressed by the ERβ. The ERβ is generally retained in hormone naïve and metastatic prostate cancer, but is partially lost in castration resistant disease. The progressive emergence of the ERα and ERα-regulated genes (eg, progesterone receptor (PR), PS2, TMPRSS2-ERG fusion, and NEAT1) during prostate cancer progression and hormone refractory disease suggests that these tumors can bypass the AR by using estrogens and progestins for their growth. In addition, nongenomic estrogen signaling pathways mediated by orphan receptors (eg, GPR30 and ERRα) has also been implicated in prostate cancer progression. Increasing evidences demonstrate that local estrogen signaling mechanisms are required for prostate carcinogenesis and tumor progression. Despite the recent progress in this research topic, the translation of the current information into potential therapeutic applications remains highly challenging and clearly warrants further investigation. © 2017 Wiley Periodicals, Inc.

  9. ADAM12 produced by tumor cells rather than stromal cells accelerates breast tumor progression

    DEFF Research Database (Denmark)

    Frohlich, Camilla; Nehammer, Camilla; Albrechtsen, Reidar

    2011-01-01

    that ADAM12 deficiency reduces breast tumor progression in the PyMT model. However, the catalytic activity of ADAM12 appears to be dispensable for its tumor-promoting effect. Interestingly, we demonstrate that ADAM12 endogenously expressed in tumor-associated stroma in the PyMT model does not influence......Expression of ADAM12 is low in most normal tissues, but is markedly increased in numerous human cancers, including breast carcinomas. We have previously shown that overexpression of ADAM12 accelerates tumor progression in a mouse model of breast cancer (PyMT). In the present study, we found...... hypothesized, however, that the tumor-associated stroma may stimulate ADAM12 expression in tumor cells, based on the fact that TGF-ß1 stimulates ADAM12 expression and is a well-known growth factor released from tumor-associated stroma. TGF-ß1 stimulation of ADAM12-negative Lewis lung tumor cells induced ADAM12...

  10. Tumor-Derived Exosomes and Their Role in Cancer Progression.

    Science.gov (United States)

    Whiteside, Theresa L

    2016-01-01

    Tumor cells actively produce, release, and utilize exosomes to promote tumor growth. Mechanisms through which tumor-derived exosomes subserve the tumor are under intense investigation. These exosomes are information carriers, conveying molecular and genetic messages from tumor cells to normal or other abnormal cells residing at close or distant sites. Tumor-derived exosomes are found in all body fluids. Upon contact with target cells, they alter phenotypic and functional attributes of recipients, reprogramming them into active contributors to angiogenesis, thrombosis, metastasis, and immunosuppression. Exosomes produced by tumors carry cargos that in part mimic contents of parent cells and are of potential interest as noninvasive biomarkers of cancer. Their role in inhibiting the host antitumor responses and in mediating drug resistance is important for cancer therapy. Tumor-derived exosomes may interfere with cancer immunotherapy, but they also could serve as adjuvants and antigenic components of antitumor vaccines. Their biological roles in cancer development or progression as well as cancer therapy suggest that tumor-derived exosomes are critical components of oncogenic transformation. © 2016 Elsevier Inc. All rights reserved.

  11. Tumor-Induced Generation of Splenic Erythroblast-like Ter-Cells Promotes Tumor Progression.

    Science.gov (United States)

    Han, Yanmei; Liu, Qiuyan; Hou, Jin; Gu, Yan; Zhang, Yi; Chen, Zhubo; Fan, Jia; Zhou, Weiping; Qiu, Shuangjian; Zhang, Yonghong; Dong, Tao; Li, Ning; Jiang, Zhengping; Zhu, Ha; Zhang, Qian; Ma, Yuanwu; Zhang, Lianfeng; Wang, Qingqing; Yu, Yizhi; Li, Nan; Cao, Xuetao

    2018-04-19

    Identifying tumor-induced leukocyte subsets and their derived circulating factors has been instrumental in understanding cancer as a systemic disease. Nevertheless, how primary tumor-induced non-leukocyte populations in distal organs contribute to systemic spread remains poorly defined. Here, we report one population of tumor-inducible, erythroblast-like cells (Ter-cells) deriving from megakaryocyte-erythroid progenitor cells with a unique Ter-119 + CD45 - CD71 + phenotype. Ter-cells are enriched in the enlarged spleen of hosts bearing advanced tumors and facilitate tumor progression by secreting neurotrophic factor artemin into the blood. Transforming growth factor β (TGF-β) and Smad3 activation are important in Ter-cell generation. In vivo blockade of Ter-cell-derived artemin inhibits hepatocellular carcinoma (HCC) growth, and artemin deficiency abolishes Ter-cells' tumor-promoting ability. We confirm the presence of splenic artemin-positive Ter-cells in human HCC patients and show that significantly elevated serum artemin correlates with poor prognosis. We propose that Ter-cells and the secreted artemin play important roles in cancer progression with prognostic and therapeutic implications. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Progression of desmoid tumors in familial polyposis: a case report

    International Nuclear Information System (INIS)

    Lee, Yong Il; Lee, Hae Kyung; Hong, Hyung Sook; Kwon, Kui Hyang; Choi, Deuk Lin; Kim, Jae Joon

    2001-01-01

    Multiple large bowel polyps are the hallmark of familial adenomatous polyposis (FAP), and many progress to colorectal cancer. Desmoid tumors are more common in patients with FAP than in other people, occurring, particulary, in those who have previously undergone prophylatic total colectomy. In such patients, desmoid tumors are a common cause of death. In an FAP patient without extracolic menifestation, who has undergone prophylatic surgery, multifocal desmoid tumors occur periodically. We report the serial radiologic findings of progressive desmoid tumors in FAP, drawing attention to the related findings of previous research

  13. Progression of desmoid tumors in familial polyposis: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Il; Lee, Hae Kyung; Hong, Hyung Sook; Kwon, Kui Hyang; Choi, Deuk Lin; Kim, Jae Joon [Soonchunhyang Univ. College of Medicine, A-san (Korea, Republic of)

    2001-01-01

    Multiple large bowel polyps are the hallmark of familial adenomatous polyposis (FAP), and many progress to colorectal cancer. Desmoid tumors are more common in patients with FAP than in other people, occurring, particulary, in those who have previously undergone prophylatic total colectomy. In such patients, desmoid tumors are a common cause of death. In an FAP patient without extracolic menifestation, who has undergone prophylatic surgery, multifocal desmoid tumors occur periodically. We report the serial radiologic findings of progressive desmoid tumors in FAP, drawing attention to the related findings of previous research.

  14. Intracranial solitary fibrous tumors/hemangiopericytomas: first report of malignant progression.

    Science.gov (United States)

    Apra, Caroline; Mokhtari, Karima; Cornu, Philippe; Peyre, Matthieu; Kalamarides, Michel

    2018-06-01

    OBJECTIVE Meningeal solitary fibrous tumors/hemangiopericytomas (MSFTs/HPCs) are rare intracranial tumors resembling meningiomas. Their classification was redefined in 2016 by the World Health Organization (WHO) as benign Grade I fibrohyaline type, intermediate Grade II hypercellular type, and malignant highly mitotic Grade III. This grouping is based on common histological features and identification of a common NAB2-STAT6 fusion. METHODS The authors retrospectively identified 49 cases of MSFT/HPC. Clinical data were obtained from the medical records, and all cases were analyzed according to this new 2016 WHO grading classification in order to identify malignant transformations. RESULTS Recurrent surgery was performed in 18 (37%) of 49 patients. Malignant progression was identified in 5 (28%) of these 18 cases, with 3 Grade I and 2 Grade II tumors progressing to Grade III, 3-13 years after the initial surgery. Of 31 Grade III tumors treated in this case series, 16% (5/31) were proved to be malignant progressions from lower-grade tumors. CONCLUSIONS Low-grade MSFTs/HPCs can transform into higher grades as shown in this first report of such progression. This is a decisive argument in favor of a common identity for MSFT and meningeal HPC. High-grade MSFTs/HPCs tend to recur more often and be associated with reduced overall survival. Malignant progression could be one mechanism explaining some recurrences or metastases, and justifying long-term follow-up, even for patients with Grade I tumors.

  15. Does Tumor Development Follow a Programmed Path?

    Science.gov (United States)

    Austin, Robert

    2011-03-01

    The initiation and progression of a tumor is a complex process, resembling the growth of a embryo in terms of the stages of development and increasing differentiation and somatic evolution of constituent cells in the community of cells that constitute the tumor. Typically we view cancer cells as rogue individuals violating the rules of the games played within an organism, but I would suggest that what we see is a programmed and algorithmic process. I will then question If tumor progression is dominated by the random acquisition of successive survival traits, or by a systematic and sequential unpacking of ``weapons'' from a pre-adapted ``toolkit'' of genetic and epigenetic potentialities? Can we then address this hypothesis by data mining solid tumors layer by layer? Support of the NSF and the NCI is gratefully acknowledged.

  16. Comprehensive expression profiling of tumor cell lines identifies molecular signatures of melanoma progression.

    Directory of Open Access Journals (Sweden)

    Byungwoo Ryu

    2007-07-01

    Full Text Available Gene expression profiling has revolutionized our ability to molecularly classify primary human tumors and significantly enhanced the development of novel tumor markers and therapies; however, progress in the diagnosis and treatment of melanoma over the past 3 decades has been limited, and there is currently no approved therapy that significantly extends lifespan in patients with advanced disease. Profiling studies of melanoma to date have been inconsistent due to the heterogeneous nature of this malignancy and the limited availability of informative tissue specimens from early stages of disease.In order to gain an improved understanding of the molecular basis of melanoma progression, we have compared gene expression profiles from a series of melanoma cell lines representing discrete stages of malignant progression that recapitulate critical characteristics of the primary lesions from which they were derived. Here we describe the unsupervised hierarchical clustering of profiling data from melanoma cell lines and melanocytes. This clustering identifies two distinctive molecular subclasses of melanoma segregating aggressive metastatic tumor cell lines from less-aggressive primary tumor cell lines. Further analysis of expression signatures associated with melanoma progression using functional annotations categorized these transcripts into three classes of genes: 1 Upregulation of activators of cell cycle progression, DNA replication and repair (CDCA2, NCAPH, NCAPG, NCAPG2, PBK, NUSAP1, BIRC5, ESCO2, HELLS, MELK, GINS1, GINS4, RAD54L, TYMS, and DHFR, 2 Loss of genes associated with cellular adhesion and melanocyte differentiation (CDH3, CDH1, c-KIT, PAX3, CITED1/MSG-1, TYR, MELANA, MC1R, and OCA2, 3 Upregulation of genes associated with resistance to apoptosis (BIRC5/survivin. While these broad classes of transcripts have previously been implicated in the progression of melanoma and other malignancies, the specific genes identified within each class

  17. Characterization of the expression of the pro-metastatic Mena(INV) isoform during breast tumor progression.

    Science.gov (United States)

    Oudin, Madeleine J; Hughes, Shannon K; Rohani, Nazanin; Moufarrej, Mira N; Jones, Joan G; Condeelis, John S; Lauffenburger, Douglas A; Gertler, Frank B

    2016-03-01

    Several functionally distinct isoforms of the actin regulatory Mena are produced by alternative splicing during tumor progression. Forced expression of the Mena(INV) isoform drives invasion, intravasation and metastasis. However, the abundance and distribution of endogenously expressed Mena(INV) within primary tumors during progression remain unknown, as most studies to date have only assessed relative mRNA levels from dissociated tumor samples. We have developed a Mena(INV) isoform-specific monoclonal antibody and used it to examine Mena(INV) expression patterns in mouse mammary and human breast tumors. Mena(INV) expression increases during tumor progression and to examine the relationship between Mena(INV) expression and markers for epithelial or mesenchymal status, stemness, stromal cell types and hypoxic regions. Further, while Mena(INV) robustly expressed in vascularized areas of the tumor, it is not confined to cells adjacent to blood vessels. Altogether, these data demonstrate the specificity and utility of the anti-Mena(INV)-isoform specific antibody, and provide the first description of endogenous Mena(INV) protein expression in mouse and human tumors.

  18. Accessing key steps of human tumor progression in vivo by using an avian embryo model

    Science.gov (United States)

    Hagedorn, Martin; Javerzat, Sophie; Gilges, Delphine; Meyre, Aurélie; de Lafarge, Benjamin; Eichmann, Anne; Bikfalvi, Andreas

    2005-02-01

    Experimental in vivo tumor models are essential for comprehending the dynamic process of human cancer progression, identifying therapeutic targets, and evaluating antitumor drugs. However, current rodent models are limited by high costs, long experimental duration, variability, restricted accessibility to the tumor, and major ethical concerns. To avoid these shortcomings, we investigated whether tumor growth on the chick chorio-allantoic membrane after human glioblastoma cell grafting would replicate characteristics of the human disease. Avascular tumors consistently formed within 2 days, then progressed through vascular endothelial growth factor receptor 2-dependent angiogenesis, associated with hemorrhage, necrosis, and peritumoral edema. Blocking of vascular endothelial growth factor receptor 2 and platelet-derived growth factor receptor signaling pathways by using small-molecule receptor tyrosine kinase inhibitors abrogated tumor development. Gene regulation during the angiogenic switch was analyzed by oligonucleotide microarrays. Defined sample selection for gene profiling permitted identification of regulated genes whose functions are associated mainly with tumor vascularization and growth. Furthermore, expression of known tumor progression genes identified in the screen (IL-6 and cysteine-rich angiogenic inducer 61) as well as potential regulators (lumican and F-box-only 6) follow similar patterns in patient glioma. The model reliably simulates key features of human glioma growth in a few days and thus could considerably increase the speed and efficacy of research on human tumor progression and preclinical drug screening. angiogenesis | animal model alternatives | glioblastoma

  19. Calcium-Sensing Receptor Tumor Expression and Lethal Prostate Cancer Progression.

    Science.gov (United States)

    Ahearn, Thomas U; Tchrakian, Nairi; Wilson, Kathryn M; Lis, Rosina; Nuttall, Elizabeth; Sesso, Howard D; Loda, Massimo; Giovannucci, Edward; Mucci, Lorelei A; Finn, Stephen; Shui, Irene M

    2016-06-01

    Prostate cancer metastases preferentially target bone, and the calcium-sensing receptor (CaSR) may play a role in promoting this metastatic progression. We evaluated the association of prostate tumor CaSR expression with lethal prostate cancer. A validated CaSR immunohistochemistry assay was performed on tumor tissue microarrays. Vitamin D receptor (VDR) expression and phosphatase and tensin homolog tumor status were previously assessed in a subset of cases by immunohistochemistry. Cox proportional hazards models adjusting for age and body mass index at diagnosis, Gleason grade, and pathological tumor node metastasis stage were used to estimate hazard ratios (HR) and 95% confidence intervals (CI) for the association of CaSR expression with lethal prostate cancer. The investigation was conducted in the Health Professionals Follow-up Study and Physicians' Health Study. We studied 1241 incident prostate cancer cases diagnosed between 1983 and 2009. Participants were followed up or cancer-specific mortality or development of metastatic disease. On average, men were followed up 13.6 years, during which there were 83 lethal events. High CaSR expression was associated with lethal prostate cancer independent of clinical and pathological variables (HR 2.0; 95% CI 1.2-3.3). Additionally, there was evidence of effect modification by VDR expression; CaSR was associated with lethal progression among men with low tumor VDR expression (HR 3.2; 95% CI 1.4-7.3) but not in cases with high tumor VDR expression (HR 0.8; 95% CI 0.2-3.0). Tumor CaSR expression is associated with an increased risk of lethal prostate cancer, particularly in tumors with low VDR expression. These results support further investigating the mechanism linking CaSR with metastases.

  20. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress.

    Science.gov (United States)

    Lammers, Twan; Kiessling, Fabian; Hennink, Wim E; Storm, Gert

    2012-07-20

    Many different systems and strategies have been evaluated for drug targeting to tumors over the years. Routinely used systems include liposomes, polymers, micelles, nanoparticles and antibodies, and examples of strategies are passive drug targeting, active drug targeting to cancer cells, active drug targeting to endothelial cells and triggered drug delivery. Significant progress has been made in this area of research both at the preclinical and at the clinical level, and a number of (primarily passively tumor-targeted) nanomedicine formulations have been approved for clinical use. Significant progress has also been made with regard to better understanding the (patho-) physiological principles of drug targeting to tumors. This has led to the identification of several important pitfalls in tumor-targeted drug delivery, including I) overinterpretation of the EPR effect; II) poor tumor and tissue penetration of nanomedicines; III) misunderstanding of the potential usefulness of active drug targeting; IV) irrational formulation design, based on materials which are too complex and not broadly applicable; V) insufficient incorporation of nanomedicine formulations in clinically relevant combination regimens; VI) negligence of the notion that the highest medical need relates to metastasis, and not to solid tumor treatment; VII) insufficient integration of non-invasive imaging techniques and theranostics, which could be used to personalize nanomedicine-based therapeutic interventions; and VIII) lack of (efficacy analyses in) proper animal models, which are physiologically more relevant and more predictive for the clinical situation. These insights strongly suggest that besides making ever more nanomedicine formulations, future efforts should also address some of the conceptual drawbacks of drug targeting to tumors, and that strategies should be developed to overcome these shortcomings. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Male patients presenting with rapidly progressive puberty associated with malignant tumors

    Directory of Open Access Journals (Sweden)

    Soo Jung Kim

    2016-03-01

    Full Text Available In males, precocious puberty (PP is defined as the development of secondary sexual characteristics before age 9 years. PP is usually idiopathic; though, organic abnormalities including tumors are more frequently found in male patients with PP. However, advanced puberty in male also can be an important clinical manifestation in tumors. We report 2 cases of rapidly progressive puberty in males, each associated with a germ-cell tumor. First, an 11-year-old boy presented with mild fever and weight loss for 1 month. Physical examination revealed a pubertal stage of G3P3 with 10-mL testes. Investigations revealed advanced bone age (16 years with elevated basal luteinizing hormone and testosterone levels. An anterior mediastinal tumor was identified by chest radiography and computed tomography, and elevated α-fetoprotein (AFP and β-human chorionic gonadotropin (β-hCG levels were noted. Histopathologic analysis confirmed a yolk-sac tumor. Second, a 12-year-old boy presented with diplopia, polydipsia, and polyuria for 4 months. Physical examination revealed a pubertal stage of G3P3 with 8-mL testes. Bone age was advanced (16 years and laboratory tests indicated panhypopituitarism with elevated testosterone level. A mixed germ-cell tumor was diagnosed with elevated AFP and β-hCG levels. Of course, these patients also have other symptoms of suspecting tumors, however, rapidly progressive puberty can be the more earlier screening sign of tumors. Therefore, in male patients with accelerated or advanced puberty, malignancy should be considered, with evaluation of tumor markers. In addition, advanced puberty in male should be recognized more widely as a unique sign of neoplasm.

  2. Microenvironmental independence associated with tumor progression.

    Science.gov (United States)

    Anderson, Alexander R A; Hassanein, Mohamed; Branch, Kevin M; Lu, Jenny; Lobdell, Nichole A; Maier, Julie; Basanta, David; Weidow, Brandy; Narasanna, Archana; Arteaga, Carlos L; Reynolds, Albert B; Quaranta, Vito; Estrada, Lourdes; Weaver, Alissa M

    2009-11-15

    Tumor-microenvironment interactions are increasingly recognized to influence tumor progression. To understand the competitive dynamics of tumor cells in diverse microenvironments, we experimentally parameterized a hybrid discrete-continuum mathematical model with phenotypic trait data from a set of related mammary cell lines with normal, transformed, or tumorigenic properties. Surprisingly, in a resource-rich microenvironment, with few limitations on proliferation or migration, transformed (but not tumorigenic) cells were most successful and outcompeted other cell types in heterogeneous tumor simulations. Conversely, constrained microenvironments with limitations on space and/or growth factors gave a selective advantage to phenotypes derived from tumorigenic cell lines. Analysis of the relative performance of each phenotype in constrained versus unconstrained microenvironments revealed that, although all cell types grew more slowly in resource-constrained microenvironments, the most aggressive cells were least affected by microenvironmental constraints. A game theory model testing the relationship between microenvironment resource availability and competitive cellular dynamics supports the concept that microenvironmental independence is an advantageous cellular trait in resource-limited microenvironments.

  3. Loss of TRPV2 Homeostatic Control of Cell Proliferation Drives Tumor Progression

    Directory of Open Access Journals (Sweden)

    Sonia Liberati

    2014-02-01

    Full Text Available Herein we evaluate the involvement of the TRPV2 channel, belonging to the Transient Receptor Potential Vanilloid channel family (TRPVs, in development and progression of different tumor types. In normal cells, the activation of TRPV2 channels by growth factors, hormones, and endocannabinoids induces a translocation of the receptor from the endosomal compartment to the plasma membrane, which results in abrogation of cell proliferation and induction of cell death. Consequently, loss or inactivation of TRPV2 signaling (e.g., glioblastomas, induces unchecked proliferation, resistance to apoptotic signals and increased resistance to CD95-induced apoptotic cell death. On the other hand, in prostate cancer cells, Ca2+-dependent activation of TRPV2 induced by lysophospholipids increases the invasion of tumor cells. In addition, the progression of prostate cancer to the castration-resistant phenotype is characterized by de novo TRPV2 expression, with higher TRPV2 transcript levels in patients with metastatic cancer. Finally, TRPV2 functional expression in tumor cells can also depend on the presence of alternative splice variants of TRPV2 mRNA that act as dominant-negative mutant of wild-type TRPV2 channels, by inhibiting its trafficking and translocation to the plasma membrane. In conclusion, as TRP channels are altered in human cancers, and their blockage impair tumor progression, they appear to be a very promising targets for early diagnosis and chemotherapy.

  4. Inflammasomes and Cancer: The Dynamic Role of the Inflammasome in Tumor Development

    Directory of Open Access Journals (Sweden)

    Melvin Kantono

    2017-09-01

    Full Text Available Chronic Inflammation in tumor microenvironments is not only associated with various stages of tumor development, but also has significant impacts on tumor immunity and immunotherapy. Inflammasome are an important innate immune pathway critical for the production of active IL-1β and interleukin 18, as well as the induction of pyroptosis. Although extensive studies have demonstrated that inflammasomes play a vital role in infectious and autoimmune diseases, their role in tumor progression remains elusive. Multiple studies using a colitis-associated colon cancer model show that inflammasome components provide protection against the development of colon cancer. However, very recent studies demonstrate that inflammasomes promote tumor progression in skin and breast cancer. These results indicate that inflammasomes can promote and suppress tumor development depending on types of tumors, specific inflammasomes involved, and downstream effector molecules. The complicated role of inflammasomes raises new opportunities and challenges to manipulate inflammasome pathways in the treatment of cancer.

  5. Adipocytes and Macrophages Interplay in the Orchestration of Tumor Microenvironment: New Implications in Cancer Progression

    Directory of Open Access Journals (Sweden)

    Luís Henrique Corrêa

    2017-09-01

    Full Text Available Inflammation has been known as one of the main keys to the establishment and progression of cancers. Chronic low-grade inflammation is also a strategic condition that underlies the causes and development of metabolic syndrome and obesity. Moreover, obesity has been largely related to poor prognosis of tumors by modulating tumor microenvironment with secretion of several inflammatory mediators by tumor-associated adipocytes (TAAs, which can modulate and recruit tumor-associated macrophages. Thus, the understanding of cellular and molecular mechanisms that underlay and link inflammation, obesity, and cancer is crucial to identify potential targets that interfere with this important route. Knowledge about the exact role of each component of the tumor microenvironment is not yet fully understood, but the new insights in literature highlight the essential role of adipocytes and macrophages interplay as key factor to determine the fate of cancer progression. In this review article, we focus on the functions of adipocytes and macrophages orchestrating cellular and molecular mechanisms that lead to inflammatory modulation in tumor microenvironment, which will be crucial to cancer establishment. We also emphasized the mechanisms by which the tumor promotes itself by recruiting and polarizing macrophages, discussing the role of adipocytes in this process. In addition, we discuss here the newest possible anticancer therapeutic treatments aiming to retard the development of the tumor based on what is known about cancer, adipocyte, and macrophage polarization.

  6. Tumor-derived exosomes in cancer progression and treatment failure

    Science.gov (United States)

    Shen, Bo; Feng, Jifeng

    2015-01-01

    Exosomes have diameter within the range of 30-100nm and spherical to cup-shaped nanoparticles with specific surface molecular characteristics, such as CD9 and CD63. These vesicles are present in nearly all human body fluids, including blood plasma/serum, saliva, breast milk, cerebrospinal fluid, urine, semen, and particularly enriched in tumor microenvironment. Exosomes contain multiple proteins, DNA, mRNA, miRNA, long non-coding RNA, and even genetic materials of viruses/prions. These materials are biochemically and functionally distinct and can be transferred to a recipient cell where they regulate protein expression and signaling pathways. Recently, exosomes are demonstrated to have a close relationship with tumor development and metastasis. Exosomes influence therapeutic effect in cancer patients. In this review, we describe the biogenesis, composition, and function of exosomes. The mechanism on how tumor-derived exosomes contribute to cancer progression and clinical treatment failure is also described, with special focus on their potential applications in cancer therapy. PMID:26452221

  7. Tumor-derived exosomes in cancer progression and treatment failure.

    Science.gov (United States)

    Yu, Shaorong; Cao, Haixia; Shen, Bo; Feng, Jifeng

    2015-11-10

    Exosomes have diameter within the range of 30-100 nm and spherical to cup-shaped nanoparticles with specific surface molecular characteristics, such as CD9 and CD63. These vesicles are present in nearly all human body fluids, including blood plasma/serum, saliva, breast milk, cerebrospinal fluid, urine, semen, and particularly enriched in tumor microenvironment. Exosomes contain multiple proteins, DNA, mRNA, miRNA, long non-coding RNA, and even genetic materials of viruses/prions. These materials are biochemically and functionally distinct and can be transferred to a recipient cell where they regulate protein expression and signaling pathways. Recently, exosomes are demonstrated to have a close relationship with tumor development and metastasis. Exosomes influence therapeutic effect in cancer patients. In this review, we describe the biogenesis, composition, and function of exosomes. The mechanism on how tumor-derived exosomes contribute to cancer progression and clinical treatment failure is also described, with special focus on their potential applications in cancer therapy.

  8. Epigenetic Modifications and Head and Neck Cancer: Implications for Tumor Progression and Resistance to Therapy

    Directory of Open Access Journals (Sweden)

    Rogerio M. Castilho

    2017-07-01

    Full Text Available Head and neck squamous carcinoma (HNSCC is the sixth most prevalent cancer and one of the most aggressive malignancies worldwide. Despite continuous efforts to identify molecular markers for early detection, and to develop efficient treatments, the overall survival and prognosis of HNSCC patients remain poor. Accumulated scientific evidences suggest that epigenetic alterations, including DNA methylation, histone covalent modifications, chromatin remodeling and non-coding RNAs, are frequently involved in oral carcinogenesis, tumor progression, and resistance to therapy. Epigenetic alterations occur in an unsystematic manner or as part of the aberrant transcriptional machinery, which promotes selective advantage to the tumor cells. Epigenetic modifications also contribute to cellular plasticity during tumor progression and to the formation of cancer stem cells (CSCs, a small subset of tumor cells with self-renewal ability. CSCs are involved in the development of intrinsic or acquired therapy resistance, and tumor recurrences or relapse. Therefore, the understanding and characterization of epigenetic modifications associated with head and neck carcinogenesis, and the prospective identification of epigenetic markers associated with CSCs, hold the promise for novel therapeutic strategies to fight tumors. In this review, we focus on the current knowledge on epigenetic modifications observed in HNSCC and emerging Epi-drugs capable of sensitizing HNSCC to therapy.

  9. Regulation of tumor progression and metastasis by bone marrow-derived microenvironments

    DEFF Research Database (Denmark)

    El Rayes, Tina; Gao, Dingcheng; Altorki, Nasser K.

    2017-01-01

    Activating mutations in driver oncogenes and loss-of-function mutations in tumor suppressor genes contribute to tumor progression and metastasis. Accordingly, therapies targeting key tumor cell-intrinsic signaling pathways are being used in clinical trials, and some have met FDA approval. However...

  10. Determinants of Local Progression After Computed Tomography-Guided Percutaneous Radiofrequency Ablation for Unresectable Lung Tumors: 9-Year Experience in a Single Institution

    International Nuclear Information System (INIS)

    Okuma, Tomohisa; Matsuoka, Toshiyuki; Yamamoto, Akira; Oyama, Yoshimasa; Hamamoto, Shinichi; Toyoshima, Masami; Nakamura, Kenji; Miki, Yukio

    2010-01-01

    The purpose of this study was to retrospectively determine the local control rate and contributing factors to local progression after computed tomography (CT)-guided radiofrequency ablation (RFA) for unresectable lung tumor. This study included 138 lung tumors in 72 patients (56 men and 16 women; age 70.0 ± 11.6 years (range 31-94); mean tumor size 2.1 ± 1.2 cm [range 0.2-9]) who underwent lung RFA between June 2000 and May 2009. Mean follow-up periods for patients and tumors were 14 and 12 months, respectively. The local progression-free rate and survival rate were calculated to determine the contributing factors to local progression. During follow-up, 44 of 138 (32%) lung tumors showed local progression. The 1-, 2-, 3-, and 5-year overall local control rates were 61, 57, 57, and 38%, respectively. The risk factors for local progression were age (≥70 years), tumor size (≥2 cm), sex (male), and no achievement of roll-off during RFA (P < 0.05). Multivariate analysis identified tumor size ≥2 cm as the only independent factor for local progression (P = 0.003). For tumors <2 cm, 17 of 68 (25%) showed local progression, and the 1-, 2-, and 3-year overall local control rates were 77, 73, and 73%, respectively. Multivariate analysis identified that age ≥70 years was an independent determinant of local progression for tumors <2 cm in diameter (P = 0.011). The present study showed that 32% of lung tumors developed local progression after CT-guided RFA. The significant risk factor for local progression after RFA for lung tumors was tumor size ≥2 cm.

  11. Effect of Curcuma zedoaria crude extract against tumor progression and immunomodulation

    Directory of Open Access Journals (Sweden)

    FR Carvalho

    2010-01-01

    Full Text Available The aim of the present work was to study the effect of the crude extract of Curcuma zedoaria on peripheral blood cells and tumor progression in C57Bl/6J mice injected with B16F10 murine melanoma cells. The intraperitoneal therapy showed a significant increase in total white and red blood cell counts, a decrease in peritoneal cell number and tumor volume reduction, whereas the oral administration revealed a noteworthy augmentation only in total leukocyte count. These results contribute to evaluate the importance of alternative treatments that employ phytotherapic compounds against tumor progression and its possible immunomodulation.

  12. MUC1 enhances tumor progression and contributes toward immunosuppression in a mouse model of spontaneous pancreatic adenocarcinoma.

    Science.gov (United States)

    Tinder, Teresa L; Subramani, Durai B; Basu, Gargi D; Bradley, Judy M; Schettini, Jorge; Million, Arefayene; Skaar, Todd; Mukherjee, Pinku

    2008-09-01

    MUC1, a membrane tethered mucin glycoprotein, is overexpressed and aberrantly glycosylated in >80% of human ductal pancreatic adenocarcinoma. However, the role of MUC1 in pancreatic cancer has been elusive, partly due to the lack of an appropriate model. We report the characterization of a novel mouse model that expresses human MUC1 as a self molecule (PDA.MUC1 mice). Pancreatic tumors arise in an appropriate MUC1-tolerant background within an immune-competent host. Significant enhancement in the development of pancreatic intraepithelial preneoplastic lesions and progression to adenocarcinoma is observed in PDA.MUC1 mice, possibly due to increased proliferation. Tumors from PDA.MUC1 mice express higher levels of cyclooxygenase-2 and IDO compared with PDA mice lacking MUC1, especially during early stages of tumor development. The increased proinflammatory milieu correlates with an increased percentage of regulatory T cells and myeloid suppressor cells in the pancreatic tumor and tumor draining lymph nodes. Data shows that during pancreatic cancer progression, MUC1-mediated mechanisms enhance the onset and progression of the disease, which in turn regulate the immune responses. Thus, the mouse model is ideally suited for testing novel chemopreventive and therapeutic strategies against pancreatic cancer.

  13. MUC1 enhances tumor progression and contributes towards immunosuppression in a mouse model of spontaneous pancreatic adenocarcinoma

    Science.gov (United States)

    Tinder, Teresa L.; Subramani, Durai B.; Basu, Gargi D.; Bradley, Judy M.; Schettini, Jorge; Million, Arefayene; Skaar, Todd

    2008-01-01

    MUC1, a membrane tethered mucin glycoprotein, is overexpressed and aberrantly glycosylated in >80% of human ductal pancreatic adenocarcinoma. However, the role of MUC1 in pancreatic cancer has been elusive, partly due to the lack of an appropriate model. We report the characterization of a novel mouse model that expresses human MUC1 as a self molecule (PDA.MUC1 mice). Pancreatic tumors arise in an appropriate MUC1-tolerant background within an immune competent host. Significant enhancement in the development of pancreatic intraepithelial pre-neoplastic lesions (PanINs) and progression to adenocarcinoma is observed in PDA.MUC1 mice, possibly due to increased proliferation. Tumors from PDA.MUC1 mice express higher levels of cyclooxygenase-2 and indoleamine 2,3, dioxygenase compared to PDA mice lacking MUC1, especially during early stages of tumor development. The increased pro-inflammatory milieu correlates with an increased percentage of regulatory T cells and myeloid suppressor cells in the pancreatic tumor and tumor draining lymph nodes. Data shows that during pancreatic cancer progression, MUC1-mediated mechanisms enhance the onset and progression of the disease which in turn regulate the immune responses. Thus, the mouse model is ideally-suited for testing novel chemopreventive and therapeutic strategies against pancreatic cancer. PMID:18713982

  14. Radiological features of progressive tumoral calcinosis in chronic renal failure.

    LENUS (Irish Health Repository)

    Hodnett, P

    2012-02-03

    We present the case of a young adult patient with chronic renal failure who developed painful subcutaneous nodules after failed renal transplant and recommencing dialysis. These nodules were juxta-articular in location and initially located over both shoulders. Radiological evaluation suggested tumoral calcinosis. The patient was placed on a strict dialysis and dietary regimen but was suboptimally compliant with same. The patient developed progressive disease with an increase in size and number of juxta-articular calcified soft-tissue masses. However, 6 months following a second renal transplant clinical and radiological follow up demonstrated marked resolution both in symptomatology and radiographic findings. We present the plain radiographic, CT and MRI findings which demonstrate the typical radiological features of tumoral calcinosis. We correlate these findings with clinical course and histological findings following surgical excision of one of these masses.

  15. Growth and Progression of TRAMP Prostate Tumors in Relationship to Diet and Obesity

    Directory of Open Access Journals (Sweden)

    Melissa J. L. Bonorden

    2012-01-01

    Full Text Available To clarify effects of diet and body weight on prostate cancer development, three studies were undertaken using the TRAMP mouse model of this disease. In the first experiment, obesity was induced by injection of gold thioglucose (GTG. Age of prostate tumor detection (~33 wk and death (~43 wk was not significantly different among the groups. In the second study, TRAMP-C2 cells were injected into syngeneic C57BL6 mice and tumor progression was evaluated in mice fed either high-fat or low-fat diets. The high fat fed mice had larger tumors than did the low-fat fed mice. In the third study, tumor development was followed in TRAMP mice fed a high fat diet from 6 weeks of age. There were no significant effects of body weight status or diet on tumor development among the groups. When the tumors were examined for the neuroendocrine marker synaptophysin, there was no correlation with either body weight or diet. However, there was a significant correlation of the expression of synaptophysin with earlier age to tumor detection and death. In summary, TRAMP-C2 cells grew faster when the mice were fed a high-fat diet. Further synaptophysin may be a marker of poor prognosis independent of weight and diet.

  16. Long-term exposure to hypoxia inhibits tumor progression of lung cancer in rats and mice

    International Nuclear Information System (INIS)

    Yu, Lunyin; Hales, Charles A

    2011-01-01

    Hypoxia has been identified as a major negative factor for tumor progression in clinical observations and in animal studies. However, the precise role of hypoxia in tumor progression has not been fully explained. In this study, we extensively investigated the effect of long-term exposure to hypoxia on tumor progression in vivo. Rats bearing transplanted tumors consisting of A549 human lung cancer cells (lung cancer tumor) were exposed to hypoxia for different durations and different levels of oxygen. The tumor growth and metastasis were evaluated. We also treated A549 lung cancer cells (A549 cells) with chronic hypoxia and then implanted the hypoxia-pretreated cancer cells into mice. The effect of exposure to hypoxia on metastasis of Lewis lung carcinoma in mice was also investigated. We found that long-term exposure to hypoxia a) significantly inhibited lung cancer tumor growth in xenograft and orthotopic models in rats, b) significantly reduced lymphatic metastasis of the lung cancer in rats and decreased lung metastasis of Lewis lung carcinoma in mice, c) reduced lung cancer cell proliferation and cell cycle progression in vitro, d) decreased growth of the tumors from hypoxia-pretreated A549 cells, e) decreased Na + -K + ATPase α1 expression in hypoxic lung cancer tumors, and f) increased expression of hypoxia inducible factors (HIF1α and HIF2α) but decreased microvessel density in the lung cancer tumors. In contrast to lung cancer, the growth of tumor from HCT116 human colon cancer cells (colon cancer tumor) was a) significantly enhanced in the same hypoxia conditions, accompanied by b) no significant change in expression of Na + -K + ATPase α1, c) increased HIF1α expression (no HIF2α was detected) and d) increased microvessel density in the tumor tissues. This study demonstrated that long-term exposure to hypoxia repressed tumor progression of the lung cancer from A549 cells and that decreased expression of Na + -K + ATPase was involved in hypoxic

  17. Comprehensive modulation of tumor progression and regression with periodic fasting and refeeding circles via boosting IGFBP-3 loops and NK responses.

    Science.gov (United States)

    Chen, Xiancheng; Lin, Xiaojuan; Li, Meng

    2012-10-01

    Progressive tumor-bearing patients deserve to benefit from more realistic approaches. Here, a study revealed the impact of modified periodic fasting and refeeding regimen on tumor progression or regression with little or no loss of food intake and body weight. Human A549 lung, HepG-2 liver, and SKOV-3 ovary progressive tumor-bearing mice were established and subjected to 4 wk of periodic fasting/refeeding cycles (PFRC), including periodic 1-d fasting/6-d refeeding weekly (protocol 1) and periodic 2-d fasting/5-d refeeding weekly (P2DF/5DR, protocol 2), with ad libitum (AL)-fed hosts as controls. Afterwards, PFRC groups exhibited tumor growth arrest with some tendency towards regression; especially, complete regression of progressive tumors and metastases comprised between 43.75 and 56.25% of tumor-challenged hosts in P2DF/5DR group (P fasting/6-d refeeding weekly groups survived a 4-month study period vs. only 31.25-37.5% in AL control group. Immunological assays and Luminex microarray revealed that tumor growth remission is mainly via natural killer cell (NK) reactivity and cross-regulation of IGF-binding protein-3, IGF/IGF-receptor, and megakaryocyte growth and development factor autocrine and paracrine loops. In vivo cellular and humoral assays indicated that tumor-regressive induction by PFRC protocols could be partly terminated by NK cell and IGF-binding protein-3 blockade or replenishment of IGF-I/-II and megakaryocyte growth and development factor. These findings offer a better understanding of comprehensive modulation of periodic fasting/refeeding strategy on the balance between tumor progression and regression.

  18. Antioxidant Activity during Tumor Progression: A Necessity for the Survival of Cancer Cells?

    Science.gov (United States)

    Hawk, Mark A; McCallister, Chelsea; Schafer, Zachary T

    2016-10-13

    Antioxidant defenses encompass a variety of distinct compounds and enzymes that are linked together through their capacity to neutralize and scavenge reactive oxygen species (ROS). While the relationship between ROS and tumorigenesis is clearly complex and context dependent, a number of recent studies have suggested that neutralizing ROS can facilitate tumor progression and metastasis in multiple cancer types through distinct mechanisms. These studies therefore infer that antioxidant activity may be necessary to support the viability and/or the invasive capacity of cancer cells during tumor progression and metastasis. Here, we discuss some of the accumulating evidence suggesting a role for antioxidant activity in facilitating tumor progression.

  19. Antioxidant Activity during Tumor Progression: A Necessity for the Survival of Cancer Cells?

    Directory of Open Access Journals (Sweden)

    Mark A. Hawk

    2016-10-01

    Full Text Available Antioxidant defenses encompass a variety of distinct compounds and enzymes that are linked together through their capacity to neutralize and scavenge reactive oxygen species (ROS. While the relationship between ROS and tumorigenesis is clearly complex and context dependent, a number of recent studies have suggested that neutralizing ROS can facilitate tumor progression and metastasis in multiple cancer types through distinct mechanisms. These studies therefore infer that antioxidant activity may be necessary to support the viability and/or the invasive capacity of cancer cells during tumor progression and metastasis. Here, we discuss some of the accumulating evidence suggesting a role for antioxidant activity in facilitating tumor progression.

  20. Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression

    DEFF Research Database (Denmark)

    Laklai, Hanane; Miroshnikova, Yekaterina A.; Pickup, Michael W.

    2016-01-01

    by increasing matricellular fibrosis and tissue tension. In contrast, epithelial STAT3 ablation attenuated tumor progression by reducing the stromal stiffening and epithelial contractility induced by loss of TGF-β signaling. In PDAC patient biopsies, higher matricellular protein and activated STAT3 were......Fibrosis compromises pancreatic ductal carcinoma (PDAC) treatment and contributes to patient mortality, yet antistromal therapies are controversial. We found that human PDACs with impaired epithelial transforming growth factor-β (TGF-β) signaling have high epithelial STAT3 activity and develop...... stiff, matricellular-enriched fibrosis associated with high epithelial tension and shorter patient survival. In several KRAS-driven mouse models, both the loss of TGF-β signaling and elevated β1-integrin mechanosignaling engaged a positive feedback loop whereby STAT3 signaling promotes tumor progression...

  1. Limited utility of tissue micro-arrays in detecting intra-tumoral heterogeneity in stem cell characteristics and tumor progression markers in breast cancer.

    Science.gov (United States)

    Kündig, Pascale; Giesen, Charlotte; Jackson, Hartland; Bodenmiller, Bernd; Papassotirolopus, Bärbel; Freiberger, Sandra Nicole; Aquino, Catharine; Opitz, Lennart; Varga, Zsuzsanna

    2018-05-08

    Intra-tumoral heterogeneity has been recently addressed in different types of cancer, including breast cancer. A concept describing the origin of intra-tumoral heterogeneity is the cancer stem-cell hypothesis, proposing the existence of cancer stem cells that can self-renew limitlessly and therefore lead to tumor progression. Clonal evolution in accumulated single cell genomic alterations is a further possible explanation in carcinogenesis. In this study, we addressed the question whether intra-tumoral heterogeneity can be reliably detected in tissue-micro-arrays in breast cancer by comparing expression levels of conventional predictive/prognostic tumor markers, tumor progression markers and stem cell markers between central and peripheral tumor areas. We analyzed immunohistochemical expression and/or gene amplification status of conventional prognostic tumor markers (ER, PR, HER2, CK5/6), tumor progression markers (PTEN, PIK3CA, p53, Ki-67) and stem cell markers (mTOR, SOX2, SOX9, SOX10, SLUG, CD44, CD24, TWIST) in 372 tissue-micro-array samples from 72 breast cancer patients. Expression levels were compared between central and peripheral tumor tissue areas and were correlated to histopathological grading. 15 selected cases additionally underwent RNA sequencing for transcriptome analysis. No significant difference in any of the analyzed between central and peripheral tumor areas was seen with any of the analyzed methods/or results that showed difference. Except mTOR, PIK3CA and SOX9 (nuclear) protein expression, all markers correlated significantly (p < 0.05) with histopathological grading both in central and peripheral areas. Our results suggest that intra-tumoral heterogeneity of stem-cell and tumor-progression markers cannot be reliably addressed in tissue-micro-array samples in breast cancer. However, most markers correlated strongly with histopathological grading confirming prognostic information as expression profiles were independent on the site of the

  2. Global Expression Profiling and Pathway Analysis of Mouse Mammary Tumor Reveals Strain and Stage Specific Dysregulated Pathways in Breast Cancer Progression.

    Science.gov (United States)

    Mei, Yan; Yang, Jun-Ping; Lang, Yan-Hong; Peng, Li-Xia; Yang, Ming-Ming; Liu, Qin; Meng, Dong-Fang; Zheng, Li-Sheng; Qiang, Yuan-Yuan; Xu, Liang; Li, Chang-Zhi; Wei, Wen-Wen; Niu, Ting; Peng, Xing-Si; Yang, Qin; Lin, Fen; Hu, Hao; Xu, Hong-Fa; Huang, Bi-Jun; Wang, Li-Jing; Qian, Chao-Nan

    2018-05-01

    It is believed that the alteration of tissue microenvironment would affect cancer initiation and progression. However, little is known in terms of the underlying molecular mechanisms that would affect the initiation and progression of breast cancer. In the present study, we use two murine mammary tumor models with different speeds of tumor initiation and progression for whole genome expression profiling to reveal the involved genes and signaling pathways. The pathways regulating PI3K-Akt signaling and Ras signaling were activated in Fvb mice and promoted tumor progression. Contrastingly, the pathways regulating apoptosis and cellular senescence were activated in Fvb.B6 mice and suppressed tumor progression. We identified distinct patterns of oncogenic pathways activation at different stages of breast cancer, and uncovered five oncogenic pathways that were activated in both human and mouse breast cancers. The genes and pathways discovered in our study would be useful information for other researchers and drug development.

  3. Sequential Apparent Diffusion Coefficient for Assessment of Tumor Progression in Patients with Low-Grade Glioma.

    Science.gov (United States)

    Chen, I E; Swinburne, N; Tsankova, N M; Hefti, M M; Aggarwal, A; Doshi, A H; Hormigo, A; Delman, B N; Nael, K

    2018-04-19

    Early and accurate identification of tumor progression in patients with low-grade gliomas is challenging. We aimed to assess the role of quantitative ADC analysis in the sequential follow-up of patients with low-grade gliomas as a potential imaging marker of tumor stability or progression. In this retrospective study, patients with a diagnosis of low-grade glioma with at least 12 months of imaging follow-up were retrospectively reviewed. Two neuroradiologists independently reviewed sequential MR imaging in each patient to determine tumor progression using the Response Assessment in Neuro-Oncology criteria. Normalized mean ADC (ADC mean ) and 10th percentile ADC (ADC 10 ) values from FLAIR hyperintense tumor volume were calculated for each MR image and compared between patients with stable disease versus tumor progression using univariate analysis. The interval change of ADC values between sequential scans was used to differentiate stable disease from progression using the Fisher exact test. Twenty-eight of 69 patients who were evaluated met our inclusion criteria. Fifteen patients were classified as stable versus 13 patients as having progression based on consensus reads of MRIs and the Response Assessment in Neuro-Oncology criteria. The interval change of ADC values showed greater concordance with ultimate lesion disposition than quantitative ADC values at a single time point. The interval change in ADC 10 matched the expected pattern in 12/13 patients with tumor progression (overall diagnostic accuracy of 86%, P average, the ADC 10 interval change predicted progression 8 months before conventional MR imaging. The interval change of ADC 10 values can be used to identify progression versus stability of low-grade gliomas with a diagnostic accuracy of 86% and before apparent radiologic progression on conventional MR imaging. © 2018 by American Journal of Neuroradiology.

  4. Progress of Shenqi Fuzheng Injection as Adjuvant Therapy for Malignant Tumors

    Directory of Open Access Journals (Sweden)

    Jing WANG

    2017-09-01

    Full Text Available Tumor is a kind of common and frequently-occurring disease that severely impaires human lives and health. As is proposed in Required Readings for Medical Professions, “Accumulation of virus causes insuffcient healthy qi, and then results in invasion of evil qi into the body”. Tumor is caused by interaction of exogenous evil qi and pathogenic products in the body such as phlegm and blood stasis on the basis of healthy qi defciency and disharmony of viscera. Therefore, the condition of healthy qi is not only the key of the occurrence of tumor, but a decisive factor of the development and prognosis of the disease. At present, the main therapeutic approaches for malignant tumors are radiotherapy and chemotherapy. However, during the disease process, the healthy qi gradually decreases due to the consumption of malignant tumors and the injury caused by radiotherapy and chemotherapy. In recent years, taking advantages of traditional Chinese drugs such as Shenqi Fuzheng Injection in combination with radiotherapy or chemotherapy is an important approach for many clinical physicians to improve therapeutic effects and alleviate toxic and side effects induced by radiotherapy and chemotherapy. This study mainly reviewed the progress of mechanisms and application of Shenqi Fuzhen Injection in malignant tumors in recent years.

  5. Understanding and Targeting Tumor Microenvironment in Prostate Cancer to Inhibit Tumor Progression and Castration Resistance

    Science.gov (United States)

    2016-10-01

    cancer-secreted chemokine to attract Cxcr2-expressing MDSCs and, correspondingly, pharmacological inhibition of Cxcr2 impeded tumor progression...impact of pharmacological inhibition of Cxcl5 and Cxcr2 on MDSCs using the transwell migration assay 26 . First, anti-Cxcl5 neutralizing antibody...and MRI . (B) Generation of the CPPSML chimera model. (C) Fluorescence microscopy and H&E image of snap frozen prostate tumor from chimera showing that

  6. Tumor cell-derived microparticles polarize M2 tumor-associated macrophages for tumor progression.

    Science.gov (United States)

    Ma, Ruihua; Ji, Tiantian; Chen, Degao; Dong, Wenqian; Zhang, Huafeng; Yin, Xiaonan; Ma, Jingwei; Liang, Xiaoyu; Zhang, Yi; Shen, Guanxin; Qin, Xiaofeng; Huang, Bo

    2016-04-01

    Despite identification of macrophages in tumors (tumor-associated macrophages, TAM) as potential targets for cancer therapy, the origin and function of TAM in the context of malignancy remain poorly characterized. Here, we show that microparticles (MPs), as a by-product, released by tumor cells act as a general mechanism to mediate M2 polarization of TAM. Taking up tumor MPs by macrophages is a very efficient process, which in turn results in the polarization of macrophages into M2 type, not only leading to promoting tumor growth and metastasis but also facilitating cancer stem cell development. Moreover, we demonstrate that the underlying mechanism involves the activation of the cGAS/STING/TBK1/STAT6 pathway by tumor MPs. Finally, in addition to murine tumor MPs, we show that human counterparts also possess consistent effect on human M2 polarization. These findings provide new insights into a critical role of tumor MPs in remodeling of tumor microenvironment and better understanding of the communications between tumors and macrophages.

  7. Matrix metalloproteinase-10 promotes tumor progression through regulation of angiogenic and apoptotic pathways in cervical tumors

    International Nuclear Information System (INIS)

    Zhang, Ge; Miyake, Makito; Lawton, Adrienne; Goodison, Steve; Rosser, Charles J

    2014-01-01

    Cancer invasion and metastasis develops through a series of steps that involve the loss of cell to cell and cell to matrix adhesion, degradation of extracellular matrix and induction of angiogenesis. Different protease systems (e.g., matrix metalloproteinases, MMPs) are involved in these steps. MMP-10, one of the lesser studied MMPs, is limited to epithelial cells and can facilitate tumor cell invasion by targeting collagen, elastin and laminin. Enhanced MMP-10 expression has been linked to poor clinical prognosis in some cancers, however, mechanisms underlying a role for MMP-10 in tumorigenesis and progression remain largely unknown. Here, we report that MMP-10 expression is positively correlated with the invasiveness of human cervical and bladder cancers. Using commercial tissue microarray (TMA) of cervical and bladder tissues, MMP-10 immunohistochemical staining was performed. Furthermore using a panel of human cells (HeLa and UROtsa), in vitro and in vivo experiments were performed in which MMP-10 was overexpressed or silenced and we noted phenotypic and genotypic changes. Experimentally, we showed that MMP-10 can regulate tumor cell migration and invasion, and endothelial cell tube formation, and that MMP-10 effects are associated with a resistance to apoptosis. Further investigation revealed that increasing MMP-10 expression stimulates the expression of HIF-1α and MMP-2 (pro-angiogenic factors) and PAI-1 and CXCR2 (pro-metastatic factors), and accordingly, targeting MMP-10 with siRNA in vivo resulted in diminution of xenograft tumor growth with a concomitant reduction of angiogenesis and a stimulation of apoptosis. Taken together, our findings show that MMP-10 can play a significant role in tumor growth and progression, and that MMP-10 perturbation may represent a rational strategy for cancer treatment

  8. Histogenesis and progression of ultraviolet light-induced tumors in hairless mice

    International Nuclear Information System (INIS)

    Kligman, L.H.; Kligman, A.M.

    1981-01-01

    Tumor histogenesis and progression were studied in UV-irradiated albino (Skh:hairless-1) and lightly pigmented (Skh:hairless-2) hairless mice. A strongly carcinogenic dose of UV light was used, producing 100% tumor incidence by 35 weeks. The light source emitted mainly UV radiation in the range of 280-320 nm and the less energetic UV radiation up to 400 nm. The resulting epidermal changes and neoplasms resembled those seen in the actinically damaged skin of humans. Microscopic lesions included benign hyperplasia, actinic keratoses, and squamous cell carcinoma in situ and with microinvasion. Clinical tumors were epithelial papillomas, fibropapillomas, keratoacanthomas, cystic keratomas, benign pigmented macules, cutaneous hornlike growths, exophytic and endophytic squamous cell carcinomas of several cytologic types, and fibrosarcomas. Even with this high dose of UV radiation, not all of the small tumors progressed to cancer. Many regressed, including some keratoacanthomas, whereas others remained small and benign for the lifetime of the mouse

  9. Research Progress on the Relationship Between Oral Microbial Community and Tumor

    Directory of Open Access Journals (Sweden)

    Ma Shujun

    2016-03-01

    Full Text Available Significant progress was observed in studies of the relationship between oral Helicobacter pylori and gastric cancer and tumors. Based on three distinct and close relationships, namely, the relationship between oral H. pylori and gastric cancer, between oral microbial communities and oral squamous cell carcinoma, and between oral microbial communities of human immunodeficiency virus-infected patients and tumors, this work reviews the relationship between oral microbial communities and tumors. This research also provides reference for further analysis of the relationship between oral microorganisms and tumors to realize early diagnosis of tumor patients through detecting oral microorganisms under adjuvant therapy.

  10. PTPRZ1 regulates calmodulin phosphorylation and tumor progression in small-cell lung carcinoma

    International Nuclear Information System (INIS)

    Makinoshima, Hideki; Ishii, Genichiro; Kojima, Motohiro; Fujii, Satoshi; Higuchi, Youichi; Kuwata, Takeshi; Ochiai, Atsushi

    2012-01-01

    Small-cell lung carcinoma (SCLC) is a neuroendocrine tumor subtype and comprises approximately 15% of lung cancers. Because SCLC is still a disease with a poor prognosis and limited treatment options, there is an urgent need to develop targeted molecular agents for this disease. We screened 20 cell lines from a variety of pathological phenotypes established from different organs by RT-PCR. Paraffin-embedded tissue from 252 primary tumors was examined for PTPRZ1 expression using immunohistochemistry. shRNA mediated PTPRZ1 down-regulation was used to study impact on tyrosine phosphorylation and in vivo tumor progression in SCLC cell lines. Here we show that PTPRZ1, a member of the protein tyrosine- phosphatase receptor (PTPR) family, is highly expressed in SCLC cell lines and specifically exists in human neuroendocrine tumor (NET) tissues. We also demonstrate that binding of the ligand of PTPRZ1, pleiotrophin (PTN), activates the PTN/PTPRZ1 signaling pathway to induce tyrosine phosphorylation of calmodulin (CaM) in SCLC cells, suggesting that PTPRZ1 is a regulator of tyrosine phosphorylation in SCLC cells. Furthermore, we found that PTPRZ1 actually has an important oncogenic role in tumor progression in the murine xenograft model. PTPRZ1 was highly expressed in human NET tissues and PTPRZ1 is an oncogenic tyrosine phosphatase in SCLCs. These results imply that a new signaling pathway involving PTPRZ1 could be a feasible target for treatment of NETs

  11. Role of immune system in tumor progression and carcinogenesis.

    Science.gov (United States)

    Upadhyay, Shishir; Sharma, Nidhi; Gupta, Kunj Bihari; Dhiman, Monisha

    2018-01-12

    Tumor micro-environment has potential to customize the behavior of the immune cell according to their need. In immune-eliminating phase, immune cells eliminate transformed cells but after tumor establishment innate and adaptive immune cells synergistically provide shelter as well as fulfill their requirement that helps in progression. In between eliminating and establishment phase, equilibrium and escaping phase regulate the immune cells response. During immune-escaping, (1) the antigenic response generated is either inadequate, or focused entirely on tolerance, and (2) immune response generated is specific and effective, but the tumor skips immune recognition. In this review, we are discussing the critical role of immune cells and their cytokines before and after the establishment of tumor which might play a critical role during immunotherapy. © 2018 Wiley Periodicals, Inc.

  12. Association between time to disease progression end points and overall survival in patients with neuroendocrine tumors

    Directory of Open Access Journals (Sweden)

    Singh S

    2014-08-01

    Full Text Available Simron Singh,1 Xufang Wang,2 Calvin HL Law1 1Sunnybrook Odette Cancer Center, University of Toronto, Toronto, ON, Canada; 2Novartis Oncology, Florham Park, NJ, USA Abstract: Overall survival can be difficult to determine for slowly progressing malignancies, such as neuroendocrine tumors. We investigated whether time to disease progression is positively associated with overall survival in patients with such tumors. A literature review identified 22 clinical trials in patients with neuroendocrine tumors that reported survival probabilities for both time to disease progression (progression-free survival and time to progression and overall survival. Associations between median time to disease progression and median overall survival and between treatment effects on time to disease progression and treatment effects on overall survival were analyzed using weighted least-squares regression. Median time to disease progression was significantly associated with median overall survival (coefficient 0.595; P=0.022. In the seven randomized studies identified, the risk reduction for time to disease progression was positively associated with the risk reduction for overall survival (coefficient on −ln[HR] 0.151; 95% confidence interval −0.843, 1.145; P=0.713. The significant association between median time to disease progression and median overall survival supports the assertion that time to disease progression is an alternative end point to overall survival in patients with neuroendocrine tumors. An apparent albeit not significant trend correlates treatment effects on time to disease progression and treatment effects on overall survival. Informal surveys of physicians’ perceptions are consistent with these concepts, although additional randomized trials are needed. Keywords: neuroendocrine tumors, progression-free survival, disease progression, mortality

  13. Inhibition of prostate cancer osteoblastic progression with VEGF121/rGel, a single agent targeting osteoblasts, osteoclasts, and tumor neovasculature

    Science.gov (United States)

    Mohamedali, Khalid A.; Li, Zhi Gang; Starbuck, Michael W.; Wan, Xinhai; Yang, Jun; Kim, Sehoon; Zhang, Wendy; Rosenblum, Michael G.; Navone, Nora M.

    2011-01-01

    Purpose A hallmark of prostate cancer (PCa) progression is the development of osteoblastic bone metastases, which respond poorly to available therapies. We previously reported that VEGF121/rGel targets osteoclast precursors and tumor neovasculature. Here we tested the hypothesis that targeting non-tumor cells expressing these receptors can inhibit tumor progression in a clinically relevant model of osteoblastic PCa. Experimental Design Cells from MDA PCa 118b, a PCa xenograft obtained from a bone metastasis in a patient with castrate-resistant PCa, were injected into the femurs of mice. Osteoblastic progression was monitored following systemic administration of VEGF121/rGel. Results VEGF121/rGel was cytotoxic in vitro to osteoblast precursor cells. This cytotoxicity was specific as VEGF121/rGel internalization into osteoblasts was VEGF121 receptor driven. Furthermore, VEGF121/rGel significantly inhibited PCa-induced bone formation in a mouse calvaria culture assay. In vivo, VEGF121/rGel significantly inhibited the osteoblastic progression of PCa cells in the femurs of nude mice. Microcomputed tomography analysis revealed that VEGF121/rGel restored the bone volume fraction of tumor-bearing femurs to values similar to those of the contralateral (non–tumor bearing) femurs. VEGF121/rGel significantly reduced the number of tumor-associated osteoclasts but did not change the numbers of peritumoral osteoblasts. Importantly, VEGF121/rGel-treated mice had significantly less tumor burden than control mice. Our results thus indicate that VEGF121/rGel inhibits osteoblastic tumor progression by targeting angiogenesis, osteoclastogenesis, and bone formation. Conclusions Targeting VEGFR-1 – or VEGFR-2–expressing cells is effective in controlling the osteoblastic progression of PCa in bone. These findings provide the basis for an effective multitargeted approach for metastatic PCa. PMID:21343372

  14. Technological progress in radiation therapy for brain tumors

    LENUS (Irish Health Repository)

    Vernimmen, Frederik Jozef

    2014-01-01

    To achieve a good therapeutic ratio the radiation dose to the tumor should be as high as possible with the lowest possible dose to the surrounding normal tissue. This is especially the case for brain tumors. Technological ad- vancements in diagnostic imaging, dose calculations, and radiation delivery systems, combined with a better un- derstanding of the pathophysiology of brain tumors have led to improvements in the therapeutic results. The widely used technology of delivering 3-D conformal therapy with photon beams (gamma rays) produced by Li-near Accelerators has progressed into the use of Intensity modulated radiation therapy (IMRT). Particle beams have been used for several decades for radiotherapy because of their favorable depth dose characteristics. The introduction of clinically dedicated proton beam therapy facilities has improved the access for cancer patients to this treatment. Proton therapy is of particular interest for pediatric malignancies. These technical improvements are further enhanced by the evolution in tumor physiology imaging which allows for improved delineation of the tumor. This in turn opens the potential to adjust the radiation dose to maximize the radiobiological effects. The advances in both imaging and radiation therapy delivery will be discussed.

  15. P18 tumor suppressor gene and progression of oligodendrogliomas to anaplasia.

    Science.gov (United States)

    He, J; Hoang-Xuan, K; Marie, Y; Leuraud, P; Mokhtari, K; Kujas, M; Delattre, J Y; Sanson, M

    2000-09-26

    P18INK4C is a good candidate to be the tumor suppressor gene involved in oligodendrogliomas on 1p32. Loss of heterozygosity on 1p, mutation(s), homozygous deletion(s), and expression of p18 in 30 oligodendroglial tumors were investigated. Loss of heterozygosity on 1p was found in 15 tumors. A p18 mutation was found at an recurrence of an anaplastic oligodendroglioma, but not in the primary, low-grade tumor. No homozygous deletions were found and p18 was expressed in all cases. These results show that p18 alteration is involved in tumor progression in a subset of oligodendrogliomas.

  16. Inhibition of prostate cancer osteoblastic progression with VEGF121/rGel, a single agent targeting osteoblasts, osteoclasts, and tumor neovasculature.

    Science.gov (United States)

    Mohamedali, Khalid A; Li, Zhi Gang; Starbuck, Michael W; Wan, Xinhai; Yang, Jun; Kim, Sehoon; Zhang, Wendy; Rosenblum, Michael G; Navone, Nora M

    2011-04-15

    A hallmark of prostate cancer (PCa) progression is the development of osteoblastic bone metastases, which respond poorly to available therapies. We previously reported that VEGF(121)/rGel targets osteoclast precursors and tumor neovasculature. Here we tested the hypothesis that targeting nontumor cells expressing these receptors can inhibit tumor progression in a clinically relevant model of osteoblastic PCa. Cells from MDA PCa 118b, a PCa xenograft obtained from a bone metastasis in a patient with castrate-resistant PCa, were injected into the femurs of mice. Osteoblastic progression was monitored following systemic administration of VEGF(121)/rGel. VEGF(121)/rGel was cytotoxic in vitro to osteoblast precursor cells. This cytotoxicity was specific as VEGF(121)/rGel internalization into osteoblasts was VEGF(121) receptor driven. Furthermore, VEGF(121)/rGel significantly inhibited PCa-induced bone formation in a mouse calvaria culture assay. In vivo, VEGF(121)/rGel significantly inhibited the osteoblastic progression of PCa cells in the femurs of nude mice. Microcomputed tomographic analysis revealed that VEGF(121)/rGel restored the bone volume fraction of tumor-bearing femurs to values similar to those of the contralateral (non-tumor-bearing) femurs. VEGF(121)/rGel significantly reduced the number of tumor-associated osteoclasts but did not change the numbers of peritumoral osteoblasts. Importantly, VEGF(121)/rGel-treated mice had significantly less tumor burden than control mice. Our results thus indicate that VEGF(121)/rGel inhibits osteoblastic tumor progression by targeting angiogenesis, osteoclastogenesis, and bone formation. Targeting VEGF receptor (VEGFR)-1- or VEGFR-2-expressing cells is effective in controlling the osteoblastic progression of PCa in bone. These findings provide the basis for an effective multitargeted approach for metastatic PCa. ©2011 AACR.

  17. Growth hormone treatment and risk of recurrence or progression of brain tumors in children: a review.

    Science.gov (United States)

    Bogarin, Roberto; Steinbok, Paul

    2009-03-01

    Brain tumors are one of the most common types of solid neoplasm in children. As life expectancy of these patients has increased with new and improved therapies, the morbidities associated with the treatments and the tumor itself have become more important. One of the most common morbidities is growth hormone deficiency, and since recombinant growth hormone (GH) became available, its use has increased exponentially. There is concern that in the population of children with brain tumors, GH treatment might increase the risk of tumor recurrence or progression or the appearance of a second neoplasm. In the light of this ongoing concern, the current literature has been reviewed to provide an update on the risk of tumor recurrence, tumor progression, or new intracranial tumor formation when GH is used to treat GH deficiency in children, who have had or have intracranial tumors. On the basis of this review, the authors conclude that the use of GH in patients with brain tumor is safe. GH therapy is not associated with an increased risk of central nervous system tumor progression or recurrence, leukemia (de novo or relapse), or extracranial non-leukemic neoplasms.

  18. Androgen receptor status is highly conserved during tumor progression of breast cancer.

    Science.gov (United States)

    Grogg, André; Trippel, Mafalda; Pfaltz, Katrin; Lädrach, Claudia; Droeser, Raoul A; Cihoric, Nikola; Salhia, Bodour; Zweifel, Martin; Tapia, Coya

    2015-11-09

    With the advent of new and more efficient anti-androgen drugs targeting androgen receptor (AR) in breast cancer (BC) is becoming an increasingly important area of investigation. This would potentially be most useful in triple negative BC (TNBC), where better therapies are still needed. The assessment of AR status is generally performed on the primary tumor even if the tumor has already metastasized. Very little is known regarding discrepancies of AR status during tumor progression. To determine the prevalence of AR positivity, with emphasis on TNBCs, and to investigate AR status during tumor progression, we evaluated a large series of primary BCs and matching metastases and recurrences. AR status was performed on 356 primary BCs, 135 matching metastases, and 12 recurrences using a next-generation Tissue Microarray (ngTMA). A commercially available AR antibody was used to determine AR-status by immunohistochemistry. AR positivity was defined as any nuclear staining in tumor cells ≥1 %. AR expression was correlated with pathological tumor features of the primary tumor. Additionally, the concordance rate of AR expression between the different tumor sites was determined. AR status was positive in: 87 % (307/353) of primary tumors, 86.1 % (105/122) of metastases, and in 66.7 % (8/12) of recurrences. TNBC tested positive in 11.4 %, (4/35) of BCs. A discrepant result was seen in 4.3 % (5/117) of primary BC and matching lymph node (LN) metastases. Three AR negative primary BCs were positive in the matching LN metastasis, representing 17.6 % of all negative BCs with lymph node metastases (3/17). Two AR positive primary BCs were negative in the matching LN metastasis, representing 2.0 % of all AR positive BCs with LN metastases (2/100). No discrepancies were seen between primary BC and distant metastases or recurrence (n = 17). Most primary (87 %) and metastasized (86.1 %) BCs are AR positive including a significant fraction of TNBCs (11.4 %). Further, AR status is

  19. Androgen receptor status is highly conserved during tumor progression of breast cancer

    International Nuclear Information System (INIS)

    Grogg, André; Trippel, Mafalda; Pfaltz, Katrin; Lädrach, Claudia; Droeser, Raoul A.; Cihoric, Nikola; Salhia, Bodour; Zweifel, Martin; Tapia, Coya

    2015-01-01

    With the advent of new and more efficient anti-androgen drugs targeting androgen receptor (AR) in breast cancer (BC) is becoming an increasingly important area of investigation. This would potentially be most useful in triple negative BC (TNBC), where better therapies are still needed. The assessment of AR status is generally performed on the primary tumor even if the tumor has already metastasized. Very little is known regarding discrepancies of AR status during tumor progression. To determine the prevalence of AR positivity, with emphasis on TNBCs, and to investigate AR status during tumor progression, we evaluated a large series of primary BCs and matching metastases and recurrences. AR status was performed on 356 primary BCs, 135 matching metastases, and 12 recurrences using a next-generation Tissue Microarray (ngTMA). A commercially available AR antibody was used to determine AR-status by immunohistochemistry. AR positivity was defined as any nuclear staining in tumor cells ≥1 %. AR expression was correlated with pathological tumor features of the primary tumor. Additionally, the concordance rate of AR expression between the different tumor sites was determined. AR status was positive in: 87 % (307/353) of primary tumors, 86.1 % (105/122) of metastases, and in 66.7 % (8/12) of recurrences. TNBC tested positive in 11.4 %, (4/35) of BCs. A discrepant result was seen in 4.3 % (5/117) of primary BC and matching lymph node (LN) metastases. Three AR negative primary BCs were positive in the matching LN metastasis, representing 17.6 % of all negative BCs with lymph node metastases (3/17). Two AR positive primary BCs were negative in the matching LN metastasis, representing 2.0 % of all AR positive BCs with LN metastases (2/100). No discrepancies were seen between primary BC and distant metastases or recurrence (n = 17). Most primary (87 %) and metastasized (86.1 %) BCs are AR positive including a significant fraction of TNBCs (11.4 %). Further, AR status is highly

  20. New Approaches for Early Detection of Breast Tumor Invasion or Progression

    National Research Council Canada - National Science Library

    Man, Yan-Gao

    2003-01-01

    To assess interactions between epithelial (EP) and myoepithelial (ME) cells in association with breast tumor progression and invasion, a double immunostaining technique with antibodies to smooth muscle actin (SMA...

  1. The Role of Wnt Signal in Glioblastoma Development and Progression: A Possible New Pharmacological Target for the Therapy of This Tumor.

    Science.gov (United States)

    Zuccarini, Mariachiara; Giuliani, Patricia; Ziberi, Sihana; Carluccio, Marzia; Iorio, Patrizia Di; Caciagli, Francesco; Ciccarelli, Renata

    2018-02-17

    Wnt is a complex signaling pathway involved in the regulation of crucial biological functions such as development, proliferation, differentiation and migration of cells, mainly stem cells, which are virtually present in all embryonic and adult tissues. Conversely, dysregulation of Wnt signal is implicated in development/progression/invasiveness of different kinds of tumors, wherein a certain number of multipotent cells, namely "cancer stem cells", are characterized by high self-renewal and aggressiveness. Hence, the pharmacological modulation of Wnt pathway could be of particular interest, especially in tumors for which the current standard therapy results to be unsuccessful. This might be the case of glioblastoma multiforme (GBM), one of the most lethal, aggressive and recurrent brain cancers, probably due to the presence of highly malignant GBM stem cells (GSCs) as well as to a dysregulation of Wnt system. By examining the most recent literature, here we point out several factors in the Wnt pathway that are altered in human GBM and derived GSCs, as well as new molecular strategies or experimental drugs able to modulate/inhibit aberrant Wnt signal. Altogether, these aspects serve to emphasize the existence of alternative pharmacological targets that may be useful to develop novel therapies for GBM.

  2. Development of Antibody-Based Vaccines Targeting the Tumor Vasculature.

    Science.gov (United States)

    Zhuang, Xiaodong; Bicknell, Roy

    2016-01-01

    A functional vasculature is essential for tumor progression and malignant cell metastasis. Endothelial cells lining blood vessels in the tumor are exposed to a unique microenvironment, which in turn induces expression of specific proteins designated as tumor endothelial markers (TEMs). TEMs either localized at the plasma membrane or secreted into the extracellular matrix are accessible for antibody targeting, which can be either infused or generated de novo via vaccination. Recent studies have demonstrated vaccines against several TEMs can induce a strong antibody response accompanied by a potent antitumor effect in animal models. These findings present an exciting field for novel anticancer therapy development. As most of the TEMs are self-antigens, breaking tolerance is necessary for a successful vaccine. This chapter describes approaches to efficiently induce a robust antibody response against the tumor vasculature.

  3. CXCL17 expression by tumor cells recruits CD11b+Gr1 high F4/80- cells and promotes tumor progression.

    Directory of Open Access Journals (Sweden)

    Aya Matsui

    Full Text Available BACKGROUND: Chemokines are involved in multiple aspects of pathogenesis and cellular trafficking in tumorigenesis. In this study, we report that the latest member of the C-X-C-type chemokines, CXCL17 (DMC/VCC-1, recruits immature myeloid-derived cells and enhances early tumor progression. METHODOLOGY/PRINCIPAL FINDINGS: CXCL17 was preferentially expressed in some aggressive types of gastrointestinal, breast, and lung cancer cells. CXCL17 expression did not impart NIH3T3 cells with oncogenic potential in vitro, but CXCL17-expressing NIH3T3 cells could form vasculature-rich tumors in immunodeficient mice. Our data showed that CXCL17-expressing tumor cells increased immature CD11b(+Gr1(+ myeloid-derived cells at tumor sites in mice and promoted CD31(+ tumor angiogenesis. Extensive chemotactic assays proved that CXCL17-responding cells were CD11b(+Gr1(highF4/80(- cells (≈ 90% with a neutrophil-like morphology in vitro. Although CXCL17 expression could not increase the number of CD11b(+Gr1(+ cells in tumor-burdened SCID mice or promote metastases of low metastatic colon cancer cells, the existence of CXCL17-responding myeloid-derived cells caused a striking enhancement of xenograft tumor formation. CONCLUSIONS/SIGNIFICANCE: These results suggest that aberrant expression of CXCL17 in tumor cells recruits immature myeloid-derived cells and promotes tumor progression through angiogenesis.

  4. A Ketogenic Formula Prevents Tumor Progression and Cancer Cachexia by Attenuating Systemic Inflammation in Colon 26 Tumor-Bearing Mice

    Directory of Open Access Journals (Sweden)

    Kentaro Nakamura

    2018-02-01

    Full Text Available Low-carbohydrate, high-fat diets (ketogenic diets might prevent tumor progression and could be used as supportive therapy; however, few studies have addressed the effect of such diets on colorectal cancer. An infant formula with a ketogenic composition (ketogenic formula; KF is used to treat patients with refractory epilepsy. We investigated the effect of KF on cancer and cancer cachexia in colon tumor-bearing mice. Mice were randomized into normal (NR, tumor-bearing (TB, and ketogenic formula (KF groups. Colon 26 cells were inoculated subcutaneously into TB and KF mice. The NR and TB groups received a standard diet, and the KF mice received KF ad libitum. KF mice preserved their body, muscle, and carcass weights. Tumor weight and plasma IL-6 levels were significantly lower in KF mice than in TB mice. In the KF group, energy intake was significantly higher than that in the other two groups. Blood ketone body concentrations in KF mice were significantly elevated, and there was a significant negative correlation between blood ketone body concentration and tumor weight. Therefore, KF may suppress the progression of cancer and the accompanying systemic inflammation without adverse effects on weight gain, or muscle mass, which might help to prevent cancer cachexia.

  5. Stereotactic body radiation therapy for liver oligo-recurrence and oligo-progression from various tumors

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Yu Jin; Kim, Mi Sook; Jang, Won Il; Seo, Young Seok; Cho, Chul Koo; Yoo, Hyung Jun; Paik, Eun Kyung [Dept. of Radiation Oncology, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2017-06-15

    To evaluate the outcomes of stereotactic body radiation therapy (SBRT) for patients with liver oligo-recurrence and oligo-progression from various primary tumors. Between 2002 and 2013, 72 patients with liver oligo-recurrence (oligo-metastasis with a controlled primary tumor) and oligo-progression (contradictory progression of a few sites of disease despite an overall tumor burden response to therapy) underwent SBRT. Of these, 9 and 8 patients with uncontrollable distant metastases and patients immediate loss to follow-up, respectively, were excluded. The total planning target volume was used to select the SBRT dose (median, 48 Gy; range, 30 to 60 Gy, 3–4 fractions). Toxicity was evaluated using the Common Toxicity Criteria for Adverse Events v4.0. We evaluated 55 patients (77 lesions) treated with SBRT for liver metastases. All patients had controlled primary lesions, and 28 patients had stable lesions at another site (oligo-progression). The most common primary site was the colon (36 patients), followed by the stomach (6 patients) and other sites (13 patients). The 2-year local control and progression-free survival rates were 68% and 22%, respectively. The 2- and 5-year overall survival rates were 56% and 20%, respectively. The most common adverse events were grade 1–2 fatigue, nausea, and vomiting; no grade ≥3 toxicities were observed. Univariate analysis revealed that oligo-progression associated with poor survival. SBRT for liver oligo-recurrence and oligo-progression appears safe, with similar local control rates. For liver oligo-progression, criteria are needed to select patients in whom improved overall survival can be expected through SBRT.

  6. TLR5 signaling, commensal microbiota and systemic tumor promoting inflammation: the three parcae of malignant progression.

    Science.gov (United States)

    Rutkowski, Melanie R; Conejo-Garcia, Jose R

    2015-08-01

    We have reported that TLR5-mediated recognition of commensal microbiota modulates systemic tumor-promoting inflammation and malignant progression of tumors at distal locations. Approximately 7-10% of the general population harbors a deleterious single nucleotide polymorphism in TLR5, implicating a novel role for genetic variation during the initiation and progression of cancer.

  7. Mammary Gland Tumor Development in Transgenic Mice Overexpressing Different Isoforms of the CDP/Cux Transcription Factor

    National Research Council Canada - National Science Library

    Cadieux, Chantal

    2008-01-01

    Short CUX1 isoforms were found to be overexpressed in breast cancer cell lines, in human breast tumors and in uterine leiomyomas, suggesting that these proteins play a key role in tumor development and progression...

  8. Mammary Gland Tumor Development in Transgenic Mice Overexpressing Different Isoforms of the CDP/Cux Transcription Factor

    National Research Council Canada - National Science Library

    Cadieux, Chantal

    2007-01-01

    Short CDP/Cux isoforms were found to be overexpressed in breast cancer cell lines, in human breast tumors and in uterine leiomyomas, suggesting that these proteins play a key role in tumor development and progression...

  9. Effects of low dose radiation on tumor apoptosis, cell cycle progression and changes of apoptosis-related protein bcl-2 in tumor-bearing mice

    International Nuclear Information System (INIS)

    Yu Hongsheng; Fei Conghe; Shen Fangzhen; Liang Jun

    2003-01-01

    Objective: To study the effect of low dose radiation (LDR) on tumor apoptosis, cell cycle progression and changes of apoptosis-related protein bcl-2 in tumor-bearing mice. Methods: Kunming stain male mice were implanted with S180 sarcoma cells in the left inguen subcutaneously as an in situ experimental animal model. Seven days after implantation, the mice were given 75 mGy whole-body γ-irradiation. At 24 and 48 h after irradiation, all mice were sacrificed to measure the tumor volume, and tumor cell apoptosis, cell cycle progression were analyzed by flow cytometry. The expression of apoptosis-related protein bcl-2 and the apoptotic rate of tumor cells were observed by immunohistochemistry and electron microscopy. Results: Tumor growth was significantly slowed down after LDR (P 1 phase and the expression of bcl-2 protein decreased at 24 h. Apoptotic rate of tumor cells increased significantly at 48 h after LDR. Conclusion: LDR could cause a G 1 -phase arrest and increase the apoptosis of tumor cells through the low level of apoptosis-related protein bcl-2 in the tumor-bearing mice. The organized immune function and anti-tumor ability are markedly increased after LDR. The study provides practical evidence of clinical application to cancer treatment

  10. Anesthetic drugs accelerate the progression of postoperative metastases of mouse tumors.

    OpenAIRE

    Shapiro, J; Jersky, J; Katzav, S; Feldman, M; Segal, S

    1981-01-01

    Experiments were made to investigate the effect of four anesthetic drugs that are commonly used in surgical practice on the postoperative growth of mouse tumors in syngeneic recipients. These experiments revealed that some of the anesthetics when applied for surgical excision of the local tumor, strongly accelerated postoperative progression of spontaneous lung metastases produced by the 3LL Lewis lung carcinoma and by the B16 melanoma. Some of the drugs caused the appearance of metastases in...

  11. White Adipose Tissue Cells Are Recruited by Experimental Tumors and Promote Cancer Progression in Mouse Models

    Science.gov (United States)

    Zhang, Yan; Daquinag, Alexes; Traktuev, Dmitry O.; Amaya-Manzanares, Felipe; Simmons, Paul J.; March, Keith L.; Pasqualini, Renata; Arap, Wadih; Kolonin, Mikhail G.

    2010-01-01

    The connection between obesity and accelerated cancer progression has been established, but the mediating mechanisms are not well understood. We have shown that stromal cells from white adipose tissue (WAT) cooperate with the endothelium to promote blood vessel formation through the secretion of soluble trophic factors. Here, we hypothesize that WAT directly mediates cancer progression by serving as a source of cells that migrate to tumors and promote neovascularization. To test this hypothesis, we have evaluated the recruitment of WAT-derived cells by tumors and the effect of their engraftment on tumor growth by integrating a transgenic mouse strain engineered for expansion of traceable cells with established allograft and xenograft cancer models. Our studies show that entry of adipose stromal and endothelial cells into systemic circulation leads to their homing to and engraftment into tumor stroma and vasculature, respectively. We show that recruitment of adipose stromal cells by tumors is sufficient to promote tumor growth. Finally, we show that migration of stromal and vascular progenitor cells from WAT grafts to tumors is also associated with acceleration of cancer progression. These results provide a biological insight for the clinical association between obesity and cancer, thus outlining potential avenues for preventive and therapeutic strategies. PMID:19491274

  12. Blockade of Notch Signaling in Tumor-Bearing Mice May Lead to Tumor Regression, Progression, or Metastasis, Depending on Tumor Cell Types

    Directory of Open Access Journals (Sweden)

    Xing-Bin Hu

    2009-01-01

    Full Text Available It has been reported that blocking Notch signaling in tumor-bearing mice results in abortive angiogenesis and tumor regression. However, given that Notch signaling influences numerous cellular processes in vivo, a comprehensive evaluation of the effect of Notch inactivation on tumor growth would be favorable. In this study, we inoculated four cancer cell lines in mice with the conditional inactivation of recombination signal-binding protein-Jκ (RBP-J, which mediates signaling from all four mammalian Notch receptors. We found that whereas three tumors including hepatocarcinoma, lung cancer, and osteogenic sarcoma grew slower in the RBP-J-deficient mice, at least a melanoma, B16, grew significantly faster in the RBP-J-deficient mice than in the controls, suggesting that the RBP-J-deficient hosts could provide permissive cues for tumor growth. All these tumors showed increased microvessels and up-regulated hypoxia-inducible factor 1α, suggesting that whereas defective angiogenesis resulted in hypoxia, different tumors might grow differentially in the RBP-J-deleted mice. Similarly, increased infiltration of Gr1+/Mac1+ cells were noticed in tumors grown in the RBP-J-inactivated mice. Moreover, we found that when inoculated in the RBP-J knockout hosts, the H22 hepatoma cells had a high frequency of metastasis and lethality, suggesting that at least for H22, deficiency of environmental Notch signaling favored tumor metastasis. Our findings suggested that the general blockade of Notch signaling in tumor-bearing mice could lead to defective angiogenesis in tumors, but depending on tumor cell types, general inhibition of Notch signaling might result in tumor regression, progression, or metastasis.

  13. Thermal ablation of intrahepatic cholangiocarcinoma: Safety, efficacy, and factors affecting local tumor progression.

    Science.gov (United States)

    Takahashi, Edwin A; Kinsman, Kristin A; Schmit, Grant D; Atwell, Thomas D; Schmitz, John J; Welch, Brian T; Callstrom, Matthew R; Geske, Jennifer R; Kurup, A Nicholas

    2018-06-04

    To evaluate the safety and oncologic efficacy of percutaneous thermal ablation of intrahepatic cholangiocarcinoma (ICC) and identify risk factors for local tumor progression (LTP). Retrospective review of an institutional tumor ablation registry demonstrated that 20 patients (9 males, 11 females; mean age 62.5 ± 15.8 years) with 50 ICCs (mean size 1.8 ± 1.3 cm) were treated with percutaneous radiofrequency ablation (RFA) or microwave ablation (MWA) between 2006 and 2015. Thirty-eight of the treated ICCs (76%) were metastases that developed after surgical resection of the primary tumor. Patient demographics, procedure technical parameters, and clinical outcomes were reviewed. A Cox proportional hazards model was used to examine the risk of LTP by ablation modality. Survival analyses were performed using the Kaplan-Meier method. Mean imaging follow-up time was 41.5 ± 42.7 months. Forty-four (88%) ICCs were treated with RFA, and 6 (12%) with MWA. Eleven (22%) cases of LTP developed in 5 (25%) patients. The median time to LTP among these 11 tumors was 7.1 months (range, 2.3-22.9 months). Risk of LTP was not significantly different for ICCs treated with MWA compared to RFA (HR 2.72; 95% CI 0.58-12.84; p = 03.21). Median disease-free survival was 8.2 months (1.1-70.4 months), and median overall survival was 23.6 months (7.4-122.5 months). No major complication occurred. Percutaneous thermal ablation is a safe and effective treatment for patients with ICCs and may be particularly valuable in unresectable patients, or those who have already undergone hepatic surgery. Tumor size and ablation modality were not associated with LTP, whereas primary tumors and superficially located tumors were more likely to subsequently recur.

  14. PTHrP drives breast tumor initiation, progression, and metastasis in mice and is a potential therapy target

    Science.gov (United States)

    Li, Jiarong; Karaplis, Andrew C.; Huang, Dao C.; Siegel, Peter M.; Camirand, Anne; Yang, Xian Fang; Muller, William J.; Kremer, Richard

    2011-01-01

    Parathyroid hormone–related protein (PTHrP) is a secreted factor expressed in almost all normal fetal and adult tissues. It is involved in a wide range of developmental and physiological processes, including serum calcium regulation. PTHrP is also associated with the progression of skeletal metastases, and its dysregulated expression in advanced cancers causes malignancy-associated hypercalcemia. Although PTHrP is frequently expressed by breast tumors and other solid cancers, its effects on tumor progression are unclear. Here, we demonstrate in mice pleiotropic involvement of PTHrP in key steps of breast cancer — it influences the initiation and progression of primary tumors and metastases. Pthrp ablation in the mammary epithelium of the PyMT-MMTV breast cancer mouse model caused a delay in primary tumor initiation, inhibited tumor progression, and reduced metastasis to distal sites. Mechanistically, it reduced expression of molecular markers of cell proliferation (Ki67) and angiogenesis (factor VIII), antiapoptotic factor Bcl-2, cell-cycle progression regulator cyclin D1, and survival factor AKT1. PTHrP also influenced expression of the adhesion factor CXCR4, and coexpression of PTHrP and CXCR4 was crucial for metastatic spread. Importantly, PTHrP-specific neutralizing antibodies slowed the progression and metastasis of human breast cancer xenografts. Our data identify what we believe to be new functions for PTHrP in several key steps of breast cancer and suggest that PTHrP may constitute a novel target for therapeutic intervention. PMID:22056386

  15. Selenium prevents tumor development in a rat model for chemical carcinogenesis

    DEFF Research Database (Denmark)

    Bjorkhem-Bergman, L.; Torndal, U. B.; Eken, S.

    2005-01-01

    Previous studies in animals and humans have shown that selenium compounds can prevent cancer development. In this work we studied the tumor preventive effect of selenium supplementation, administrated as selenite, in the initiation, promotion and progression phases in a synchronized rat model for...

  16. Current Research of the Roles of IL-35 in Tumor Progression

    Directory of Open Access Journals (Sweden)

    Chongbiao HUANG

    2016-04-01

    Full Text Available Interleukin(IL-35 is a new member of the interleukin-12 superfamily. Since its first report in 2007, IL-35 rapidly became a research highlight in the field of immunology. Like other IL-12 superfamily members, IL-35 was a heterodimer which was composed of an α chain P35 and a β chain Epstein-Barr virus induced gene 3 (EBI3. Recent research work revealed two distinct roles of IL-35. Firstly, IL-35 is highly expressed in some kinds of inflammatory diseases and autoimmune diseases and plays import roles in the pathogenesis. Secondly, IL-35 is positively expressed in some cancers and plays some roles in the process of tumor progression. Here we demonstrate the structure and the signalling of IL-35. We reviewed the the roles of IL-35 in promoting tumor progression.

  17. Tumor-Associated Macrophages as Major Players in the Tumor Microenvironment

    International Nuclear Information System (INIS)

    Chanmee, Theerawut; Ontong, Pawared; Konno, Kenjiro; Itano, Naoki

    2014-01-01

    During tumor progression, circulating monocytes and macrophages are actively recruited into tumors where they alter the tumor microenvironment to accelerate tumor progression. Macrophages shift their functional phenotypes in response to various microenvironmental signals generated from tumor and stromal cells. Based on their function, macrophages are divided broadly into two categories: classical M1 and alternative M2 macrophages. The M1 macrophage is involved in the inflammatory response, pathogen clearance, and antitumor immunity. In contrast, the M2 macrophage influences an anti-inflammatory response, wound healing, and pro-tumorigenic properties. Tumor-associated macrophages (TAMs) closely resemble the M2-polarized macrophages and are critical modulators of the tumor microenvironment. Clinicopathological studies have suggested that TAM accumulation in tumors correlates with a poor clinical outcome. Consistent with that evidence, experimental and animal studies have supported the notion that TAMs can provide a favorable microenvironment to promote tumor development and progression. In this review article, we present an overview of mechanisms responsible for TAM recruitment and highlight the roles of TAMs in the regulation of tumor angiogenesis, invasion, metastasis, immunosuppression, and chemotherapeutic resistance. Finally, we discuss TAM-targeting therapy as a promising novel strategy for an indirect cancer therapy

  18. Tumor-Associated Macrophages as Major Players in the Tumor Microenvironment

    Energy Technology Data Exchange (ETDEWEB)

    Chanmee, Theerawut [Institute of Advanced Technology, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555 (Japan); Ontong, Pawared [Division of Engineering (Biotechnology), Graduate School of Engineering, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555 (Japan); Konno, Kenjiro [Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555 (Japan); Itano, Naoki, E-mail: itanon@cc.kyoto-su.ac.jp [Institute of Advanced Technology, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555 (Japan); Division of Engineering (Biotechnology), Graduate School of Engineering, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555 (Japan); Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555 (Japan)

    2014-08-13

    During tumor progression, circulating monocytes and macrophages are actively recruited into tumors where they alter the tumor microenvironment to accelerate tumor progression. Macrophages shift their functional phenotypes in response to various microenvironmental signals generated from tumor and stromal cells. Based on their function, macrophages are divided broadly into two categories: classical M1 and alternative M2 macrophages. The M1 macrophage is involved in the inflammatory response, pathogen clearance, and antitumor immunity. In contrast, the M2 macrophage influences an anti-inflammatory response, wound healing, and pro-tumorigenic properties. Tumor-associated macrophages (TAMs) closely resemble the M2-polarized macrophages and are critical modulators of the tumor microenvironment. Clinicopathological studies have suggested that TAM accumulation in tumors correlates with a poor clinical outcome. Consistent with that evidence, experimental and animal studies have supported the notion that TAMs can provide a favorable microenvironment to promote tumor development and progression. In this review article, we present an overview of mechanisms responsible for TAM recruitment and highlight the roles of TAMs in the regulation of tumor angiogenesis, invasion, metastasis, immunosuppression, and chemotherapeutic resistance. Finally, we discuss TAM-targeting therapy as a promising novel strategy for an indirect cancer therapy.

  19. A bioavailable cathepsin S nitrile inhibitor abrogates tumor development.

    Science.gov (United States)

    Wilkinson, Richard D A; Young, Andrew; Burden, Roberta E; Williams, Rich; Scott, Christopher J

    2016-04-21

    Cathepsin S has been implicated in a variety of malignancies with genetic ablation studies demonstrating a key role in tumor invasion and neo-angiogenesis. Thus, the application of cathepsin S inhibitors may have clinical utility in the treatment of cancer. In this investigation, we applied a cell-permeable dipeptidyl nitrile inhibitor of cathepsin S, originally developed to target cathepsin S in inflammatory diseases, in both in vitro and in vivo tumor models. Validation of cathepsin S selectivity was carried out by assaying fluorogenic substrate turnover using recombinant cathepsin protease. Complete kinetic analysis was carried out and true K i values calculated. Abrogation of tumour invasion using murine MC38 and human MCF7 cell lines were carried out in vitro using a transwell migration assay. Effect on endothelial tube formation was evaluated using primary HUVEC cells. The effect of inhibitor in vivo on MC38 and MCF7 tumor progression was evaluated using cells propagated in C57BL/6 and BALB/c mice respectively. Subsequent immunohistochemical staining of proliferation (Ki67) and apoptosis (TUNEL) was carried out on MCF7 tumors. We confirmed that this inhibitor was able to selectively target cathepsin S over family members K, V, L and B. The inhibitor also significantly reduced MC38 and MCF7 cell invasion and furthermore, significantly reduced HUVEC endothelial tubule formation in vitro. In vivo analysis revealed that the compound could significantly reduce tumor volume in murine MC38 syngeneic and MCF7 xenograft models. Immunohistochemical analysis of MCF7 tumors revealed cathepsin S inhibitor treatment significantly reduced proliferation and increased apoptosis. In summary, these results highlight the characterisation of this nitrile cathepsin S inhibitor using in vitro and in vivo tumor models, presenting a compound which may be used to further dissect the role of cathepsin S in cancer progression and may hold therapeutic potential.

  20. Regorafenib inhibits tumor progression through suppression of ERK/NF-κB activation in hepatocellular carcinoma bearing mice.

    Science.gov (United States)

    Weng, Mao-Chi; Wang, Mei-Hui; Tsai, Jai-Jen; Kuo, Yu-Cheng; Liu, Yu-Chang; Hsu, Fei-Ting; Wang, Hsin-Ell

    2018-03-13

    Regorafenib has been demonstrated in our previous study to trigger apoptosis through suppression of extracellular signal-regulated kinase (ERK)/nuclear factor-κB (NF-κB) activation in hepatocellular carcinoma (HCC) SK-Hep1 cells in vitro However, the effect of regorafenib on NF-κB-modulated tumor progression in HCC in vivo is ambiguous. The aim of the present study is to investigate the effect of regorafenib on NF-κB-modulated tumor progression in HCC bearing mouse model. pGL4.50 luciferase reporter vector transfected SK-Hep1 (SK-Hep1/ luc2 ) and Hep3B 2.1-7 tumor bearing mice were established and used for this study. Mice were treated with vehicle or regorafenib (20 mg/kg/day by gavage) for 14 days. Effects of regorafenib on tumor growth and protein expression together with toxicity of regorafenib were evaluated with digital caliper and bioluminescence imaging (BLI), ex vivo Western blotting immunohistochemistry (IHC) staining, and measurement of body weight and pathological examination of liver tissue, respectively, in SK-Hep1/ luc2 and Hep3B 2.1-7 tumor bearing mice. The results indicated regorafenib significantly reduced tumor growth and expression of phosphorylated ERK, NF-κB p65 (Ser536), phosphorylated AKT and tumor progression-associated proteins. In addition, we found regorafenib induced both extrinsic and intrinsic apoptotic pathways. Body weight and liver morphology were not affected by regorafenib treatment. Our findings present the mechanism of tumor progression inhibition by regorafenib is linked to suppression of ERK/NF-κB signaling in SK-Hep1/ luc2 and Hep3B 2.1-7 tumor-bearing mice. ©2018 The Author(s).

  1. Postmenopausal obesity promotes tumor angiogenesis and breast cancer progression in mice.

    Science.gov (United States)

    Gu, Jian-Wei; Young, Emily; Patterson, Sharla G; Makey, Kristina L; Wells, Jeremy; Huang, Min; Tucker, Kevan B; Miele, Lucio

    2011-05-15

    Obese postmenopausal women have a 50% higher risk of breast cancer than non-obese women. There is not an animal model that mimics postmenopausal obesity related to breast cancer progression. Using age-relevant C57BL/6 mice, this study determined whether postmenopausal obesity increases VEGF expression, tumor angiogenesis, and breast tumor growth. Ovariectomy (OVX) was performed in 12 sixty week-old female mice, then followed by a low-fat (5%, LF, n=6) or a high-fat (60%, HF, n=6) diet for 12 weeks. In the eighth week of the dietary program, 10(6) E0771 (mouse breast cancer) cells were injected in the left fourth mammary gland. Tumor size was monitored for 4 weeks. Body weights were monitored weekly. At the end of the experiment, blood samples, visceral fat and tumors were collected for measuring VEGF expression using ELISA and intratumoral microvessel density (IMD) using CD31 immunochemistry. Body weight was significantly increased in OVX/HF mice, compared to OVX/LF group (55.3±1.7 vs. 41.5±1.5 g; p < 0.01). There was a two-fold increase in the ratio of visceral fat/BW in OVX/HF mice, compared to those in OVX/LF group (0.062±0.005 vs. 0.032±0.003; p < 0.01). Postmenopausal obesity significantly increased breast tumor weight over the control (4.62±0.63 vs. 1.98±0.27 g; p < 0.01) and IMD (173±3.7 vs. 139±4.3 IM#/mm^2; p < 0.01). Tumor VEGF levels were higher in OVX/HF mice, compared to OVX/LF group (73.3±3.8 vs. 49.5±4.3 pg/mg protein; p < 0.01). Plasma VEGF levels (69±7.1 vs. 48±3.5 pg/ml) and visceral fat VEGF levels (424.4±39.5 vs. 208.5±22.4 pg/mg protein) were significantly increased in OVX/HF mice, compared to OVX/LF group, respectively (n=6; p < 0.01). Interestingly, adipose tissue primary culture showed that subcutaneous fat released more VEGF, compared to visceral fat (6.77±1.14 vs. 0.94±0.16 pg/mg tissue; n=6; p < 0.01). These findings support the hypothesis that postmenopausal obesity promotes tumor angiogenesis and breast cancer

  2. v-Ha-ras oncogene insertion: A model for tumor progression of human small cell lung cancer

    International Nuclear Information System (INIS)

    Mabry, M.; Nakagawa, Toshitaro; Nelkin, B.D.; McDowell, E.; Gesell, M.; Eggleston, J.C.; Casero, R.A. Jr.; Baylin, S.B.

    1988-01-01

    Small cell lung cancer (SCLC) manifests a range of phenotypes in culture that may be important in understanding its relationship to non-SCLCs and to tumor progression events in patients. Most SCLC-derived cell lines, termed classic SCLC lines, have properties similar to SCLC tumors in patients. To delineate further the relationships between these phenotypes and the molecular events involved, the authors inserted the v-Ha-ras gene in SCLC cell lines with (biochemical variant) and without (classic) an amplified c-myc gene. These two SCLC subtypes had markedly different phenotypic responses to similar levels of expression of v-Ha-ras RNA. No biochemical or morphologic changes were observed in classic SCLC cells. In contrast, in biochemical variant SCLC cells, v-Ha-ras expression induced features typical of large cell undifferentiated lung carcinoma. Expression of v-Ha-ras in biochemical variant SCLC cells directly demonstrates that important transitions can occur between phenotypes of human lung cancer cells and that these may play a critical role in tumor progression events in patients. The finding provide a model system to study molecular events involved in tumor progression steps within a series of related tumor types

  3. Activated Hepatic Stellate Cells Induce Tumor Progression of Neoplastic Hepatocytes in a TGF-β Dependent Fashion

    Science.gov (United States)

    MIKULA, M.; PROELL, V.; FISCHER, A.N.M.; MIKULITS, W.

    2010-01-01

    The development of hepatocellular carcinomas from malignant hepatocytes is frequently associated with intra- and peritumoral accumulation of connective tissue arising from activated hepatic stellate cells. For both tumorigenesis and hepatic fibrogenesis, transforming growth factor (TGF)-β signaling executes key roles and therefore is considered as a hallmark of these pathological events. By employing cellular transplantation we show that the interaction of neoplastic MIM-R hepatocytes with the tumor microenvironment, containing either activated hepatic stellate cells (M1-4HSCs) or myofibroblasts derived thereof (M-HTs), induces progression in malignancy. Cotransplantation of MIM-R hepatocytes with M-HTs yielded strongest MIM-R generated tumor formation accompanied by nuclear localization of Smad2/3 as well as of β-catenin. Genetic interference with TGF-β signaling by gain of antagonistic Smad7 in MIM-R hepatocytes diminished epithelial dedifferentiation and tumor progression upon interaction with M1-4HSCs or M-HTs. Further analysis showed that tumors harboring disrupted Smad signaling are devoid of nuclear β-catenin accumulation, indicating a crosstalk between TGF-β and β-catenin signaling. Together, these data demonstrate that activated HSCs and myofibroblasts directly govern hepatocarcinogenesis in a TGF-β dependent fashion by inducing autocrine TGF-β signaling and nuclear β-catenin accumulation in neoplastic hepatocytes. These results indicate that intervention with TGF-β signaling is highly promising in liver cancer therapy. PMID:16883581

  4. Perioperative blood transfusion: does it influence survival and cancer progression in metastatic spine tumor surgery?

    Science.gov (United States)

    Zaw, Aye Sandar; Kantharajanna, Shashidhar B; Maharajan, Karthikeyan; Tan, Barry; Vellayappan, Balamurugan; Kumar, Naresh

    2017-02-01

    Despite advances in surgical techniques for spinal metastases, there is often substantial blood loss, resulting in patients requiring blood transfusion during the perioperative period. Allogeneic blood transfusion (ABT) has been the main replenishment method for lost blood. However, the impact of ABT on cancer-related outcomes has been controversial in various studies. We aimed to evaluate the influence of perioperative ABT on disease progression and survival in patients undergoing metastatic spinal tumor surgery (MSTS). We conducted a retrospective study that included 247 patients who underwent MSTS at a single tertiary institution between 2005 and 2014. The impact of using perioperative ABT (either exposure to or quantities of transfusion) on disease progression and survival was assessed using Cox regression analyses while adjusting for potential confounding variables. Of 247 patients, 133 (54%) received ABT. The overall median number of blood units transfused was 2 (range, 0-10 units). Neither blood transfusion exposure nor quantities of transfusion were associated with overall survival (hazard ratio [HR], 1.15 [p = 0.35] and 1.10 [p = 0.11], respectively) and progression-free survival (HR, 0.87 [p = 0.18] and 0.98 [p = 0.11], respectively). The factors that influenced overall survival were primary tumor type and preoperative Eastern Cooperative Oncology Group performance status, whereas primary tumor type was the only factor that had an impact on progression-free survival. This is the first study providing evidence that disease progression and survival in patients who undergo MSTS are less likely to be influenced by perioperative ABT. The worst oncologic outcomes are more likely to be caused by the clinical circumstances necessitating blood transfusion, but not transfusion itself. However, because ABT can have a propensity toward developing postoperative infections, including surgical site infection, the use of patient blood management

  5. Expression of neurotensin and NT1 receptor in human breast cancer: a potential role in tumor progression.

    Science.gov (United States)

    Souazé, Frédérique; Dupouy, Sandra; Viardot-Foucault, Véronique; Bruyneel, Erik; Attoub, Samir; Gespach, Christian; Gompel, Anne; Forgez, Patricia

    2006-06-15

    Emerging evidence supports neurotensin as a trophic and antiapoptotic factor, mediating its control via the high-affinity neurotensin receptor (NT1 receptor) in several human solid tumors. In a series of 51 patients with invasive ductal breast cancers, 34% of all tumors were positive for neurotensin and 91% positive for NT1 receptor. We found a coexpression of neurotensin and NT1 receptor in a large proportion (30%) of ductal breast tumors, suggesting a contribution of the neurotensinergic signaling cascade within breast cancer progression. Functionally expressed NT1 receptor, in the highly malignant MDA-MB-231 human breast cancer cell line, coordinated a series of transforming functions, including cellular migration, invasion, induction of the matrix metalloproteinase (MMP)-9 transcripts, and MMP-9 gelatinase activity. Disruption of NT1 receptor signaling by silencing RNA or use of a specific NT1 receptor antagonist, SR48692, caused the reversion of these transforming functions and tumor growth of MDA-MB-231 cells xenografted in nude mice. Our findings support the contribution of neurotensin in human breast cancer progression and point out the utility to develop therapeutic molecules targeting neurotensin or NT1 receptor signaling cascade. These strategies would increase the range of therapeutic approaches and be beneficial for specific patients.

  6. Tumor Progression Locus 2 (Tpl2 Kinase as a Novel Therapeutic Target for Cancer: Double-Sided Effects of Tpl2 on Cancer

    Directory of Open Access Journals (Sweden)

    Hye Won Lee

    2015-02-01

    Full Text Available Tumor progression locus 2 (Tpl2 is a mitogen-activated protein kinase (MAPK kinase kinase (MAP3K that conveys various intra- and extra-cellular stimuli to effector proteins of cells provoking adequate adoptive responses. Recent studies have elucidated that Tpl2 is an indispensable signal transducer as an MAP3K family member in diverse signaling pathways that regulate cell proliferation, survival, and death. Since tumorigenesis results from dysregulation of cellular proliferation, differentiation, and apoptosis, Tpl2 participates in many decisive molecular processes of tumor development and progression. Moreover, Tpl2 is closely associated with cytokine release of inflammatory cells, which has crucial effects on not only tumor cells but also tumor microenvironments. These critical roles of Tpl2 in human cancers make it an attractive anti-cancer therapeutic target. However, Tpl2 contradictorily works as a tumor suppressor in some cancers. The double-sided effects of Tpl2 originate from the specific upstream and downstream signaling environment of each tumor, since Tpl2 interacts with various signaling components. This review summarizes recent studies concerning the possible roles of Tpl2 in human cancers and considers its possibility as a therapeutic target, against which novel anti-cancer agents could be developed.

  7. Modeling freedom from progression for standard-risk medulloblastoma: a mathematical tumor control model with multiple modes of failure

    DEFF Research Database (Denmark)

    Brodin, Nils Patrik; Vogelius, Ivan R.; Bjørk-Eriksson, Thomas

    2013-01-01

    As pediatric medulloblastoma (MB) is a relatively rare disease, it is important to extract the maximum information from trials and cohort studies. Here, a framework was developed for modeling tumor control with multiple modes of failure and time-to-progression for standard-risk MB, using published...

  8. Pterostilbene acts through metastasis-associated protein 1 to inhibit tumor growth, progression and metastasis in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Kun Li

    Full Text Available The development of natural product agents with targeted strategies holds promise for enhanced anticancer therapy with reduced drug-associated side effects. Resveratrol found in red wine, has anticancer activity in various tumor types. We reported earlier on a new molecular target of resveratrol, the metastasis-associated protein 1 (MTA1, which is a part of nucleosome remodeling and deacetylation (NuRD co-repressor complex that mediates gene silencing. We identified resveratrol as a regulator of MTA1/NuRD complex and re-activator of p53 acetylation in prostate cancer (PCa. In the current study, we addressed whether resveratrol analogues also possess the ability to inhibit MTA1 and to reverse p53 deacetylation. We demonstrated that pterostilbene (PTER, found in blueberries, had greater increase in MTA1-mediated p53 acetylation, confirming superior potency over resveratrol as dietary epigenetic agent. In orthotopic PCa xenografts, resveratrol and PTER significantly inhibited tumor growth, progression, local invasion and spontaneous metastasis. Furthermore, MTA1-knockdown sensitized cells to these agents resulting in additional reduction of tumor progression and metastasis. The reduction was dependent on MTA1 signaling showing increased p53 acetylation, higher apoptotic index and less angiogenesis in vivo in all xenografts treated with the compounds, and particularly with PTER. Altogether, our results indicate MTA1 as a major contributor in prostate tumor malignant progression, and support the use of strategies targeting MTA1. Our strong pre-clinical data indicate PTER as a potent, selective and pharmacologically safe natural product that may be tested in advanced PCa.

  9. The Role of Neutrophil Myeloperoxidase in Models of Lung Tumor Development

    International Nuclear Information System (INIS)

    Rymaszewski, Amy L.; Tate, Everett; Yimbesalu, Joannes P.; Gelman, Andrew E.; Jarzembowski, Jason A.; Zhang, Hao; Pritchard, Kirkwood A. Jr.; Vikis, Haris G.

    2014-01-01

    Chronic inflammation plays a key tumor-promoting role in lung cancer. Our previous studies in mice demonstrated that neutrophils are critical mediators of tumor promotion in methylcholanthrene (MCA)-initiated, butylated hydroxytoluene (BHT)-promoted lung carcinogenesis. In the present study we investigated the role of neutrophil myeloperoxidase (MPO) activity in this inflammation promoted model. Increased levels of MPO protein and activity were present in the lungs of mice administered BHT. Treatment of mice with N-acetyl lysyltyrosylcysteine amide (KYC), a novel tripeptide inhibitor of MPO, during the inflammatory stage reduced tumor burden. In a separate tumor model, KYC treatment of a Lewis Lung Carcinoma (LLC) tumor graft in mice had no effect on tumor growth, however, mice genetically deficient in MPO had significantly reduced LLC tumor growth. Our observations suggest that MPO catalytic activity is critical during the early stages of tumor development. However, during the later stages of tumor progression, MPO expression independent of catalytic activity appears to be required. Our studies advocate for the use of MPO inhibitors in a lung cancer prevention setting

  10. The role of neutrophil myeloperoxidase in models of lung tumor development.

    Science.gov (United States)

    Rymaszewski, Amy L; Tate, Everett; Yimbesalu, Joannes P; Gelman, Andrew E; Jarzembowski, Jason A; Zhang, Hao; Pritchard, Kirkwood A; Vikis, Haris G

    2014-05-09

    Chronic inflammation plays a key tumor-promoting role in lung cancer. Our previous studies in mice demonstrated that neutrophils are critical mediators of tumor promotion in methylcholanthrene (MCA)-initiated, butylated hydroxytoluene (BHT)-promoted lung carcinogenesis. In the present study we investigated the role of neutrophil myeloperoxidase (MPO) activity in this inflammation promoted model. Increased levels of MPO protein and activity were present in the lungs of mice administered BHT. Treatment of mice with N-acetyl lysyltyrosylcysteine amide (KYC), a novel tripeptide inhibitor of MPO, during the inflammatory stage reduced tumor burden. In a separate tumor model, KYC treatment of a Lewis Lung Carcinoma (LLC) tumor graft in mice had no effect on tumor growth, however, mice genetically deficient in MPO had significantly reduced LLC tumor growth. Our observations suggest that MPO catalytic activity is critical during the early stages of tumor development. However, during the later stages of tumor progression, MPO expression independent of catalytic activity appears to be required. Our studies advocate for the use of MPO inhibitors in a lung cancer prevention setting.

  11. The Role of Neutrophil Myeloperoxidase in Models of Lung Tumor Development

    Energy Technology Data Exchange (ETDEWEB)

    Rymaszewski, Amy L.; Tate, Everett; Yimbesalu, Joannes P. [Department of Pharmacology and Toxicology and MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226 (United States); Gelman, Andrew E. [Department of Surgery, Washington University in St. Louis, St. Louis, MO 63130 (United States); Jarzembowski, Jason A. [Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226 (United States); Zhang, Hao; Pritchard, Kirkwood A. Jr. [Department of Surgery and MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226 (United States); Vikis, Haris G., E-mail: hvikis@mcw.edu [Department of Pharmacology and Toxicology and MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226 (United States)

    2014-05-09

    Chronic inflammation plays a key tumor-promoting role in lung cancer. Our previous studies in mice demonstrated that neutrophils are critical mediators of tumor promotion in methylcholanthrene (MCA)-initiated, butylated hydroxytoluene (BHT)-promoted lung carcinogenesis. In the present study we investigated the role of neutrophil myeloperoxidase (MPO) activity in this inflammation promoted model. Increased levels of MPO protein and activity were present in the lungs of mice administered BHT. Treatment of mice with N-acetyl lysyltyrosylcysteine amide (KYC), a novel tripeptide inhibitor of MPO, during the inflammatory stage reduced tumor burden. In a separate tumor model, KYC treatment of a Lewis Lung Carcinoma (LLC) tumor graft in mice had no effect on tumor growth, however, mice genetically deficient in MPO had significantly reduced LLC tumor growth. Our observations suggest that MPO catalytic activity is critical during the early stages of tumor development. However, during the later stages of tumor progression, MPO expression independent of catalytic activity appears to be required. Our studies advocate for the use of MPO inhibitors in a lung cancer prevention setting.

  12. The Role of Neutrophil Myeloperoxidase in Models of Lung Tumor Development

    Directory of Open Access Journals (Sweden)

    Amy L. Rymaszewski

    2014-05-01

    Full Text Available Chronic inflammation plays a key tumor-promoting role in lung cancer. Our previous studies in mice demonstrated that neutrophils are critical mediators of tumor promotion in methylcholanthrene (MCA-initiated, butylated hydroxytoluene (BHT-promoted lung carcinogenesis. In the present study we investigated the role of neutrophil myeloperoxidase (MPO activity in this inflammation promoted model. Increased levels of MPO protein and activity were present in the lungs of mice administered BHT. Treatment of mice with N-acetyl lysyltyrosylcysteine amide (KYC, a novel tripeptide inhibitor of MPO, during the inflammatory stage reduced tumor burden. In a separate tumor model, KYC treatment of a Lewis Lung Carcinoma (LLC tumor graft in mice had no effect on tumor growth, however, mice genetically deficient in MPO had significantly reduced LLC tumor growth. Our observations suggest that MPO catalytic activity is critical during the early stages of tumor development. However, during the later stages of tumor progression, MPO expression independent of catalytic activity appears to be required. Our studies advocate for the use of MPO inhibitors in a lung cancer prevention setting.

  13. The Enigmatic Roles of Caspases in Tumor Development

    Energy Technology Data Exchange (ETDEWEB)

    Jäger, Richard; Zwacka, Ralf M., E-mail: ralf.zwacka@nuigalway.ie [National University of Ireland, Galway, National Centre for Biomedical Engineering Science and Apoptosis Research Centre, Molecular Therapeutics Group, Galway (Ireland)

    2010-11-24

    even promote tumor development. Moreover, experimental evidence suggests that caspases might play non-apoptotic roles in processes that are crucial for tumorigenesis, such as cell proliferation, migration, or invasion. We thus propose a model wherein caspases are preserved in tumor cells due to their functional contributions to development and progression of tumors.

  14. The Enigmatic Roles of Caspases in Tumor Development

    International Nuclear Information System (INIS)

    Jäger, Richard; Zwacka, Ralf M.

    2010-01-01

    even promote tumor development. Moreover, experimental evidence suggests that caspases might play non-apoptotic roles in processes that are crucial for tumorigenesis, such as cell proliferation, migration, or invasion. We thus propose a model wherein caspases are preserved in tumor cells due to their functional contributions to development and progression of tumors

  15. Implications of Rho GTPase signaling in glioma cell invasion and tumor progression

    Directory of Open Access Journals (Sweden)

    Shannon Patricia Fortin Ensign

    2013-10-01

    Full Text Available Glioblastoma (GB is the most malignant of primary adult brain tumors, characterized by a highly locally-invasive cell population, as well as abundant proliferative cells, neoangiogenesis, and necrosis. Clinical intervention with chemotherapy or radiation may either promote or establish an environment for manifestation of invasive behavior. Understanding the molecular drivers of invasion in the context of glioma progression may be insightful in directing new treatments for patients with GB. Here, we review current knowledge on Rho family GTPases, their aberrant regulation in GB, and their effect on GB cell invasion and tumor progression. Rho GTPases are modulators of cell migration through effects on actin cytoskeleton rearrangement; in non-neoplastic tissue, expression and activation of Rho GTPases are normally under tight regulation. In GB, Rho GTPases are deregulated, often via hyperactivity or overexpression of their activators, Rho GEFs. Downstream effectors of Rho GTPases have been shown to promote invasiveness and, importantly, glioma cell survival. The study of aberrant Rho GTPase signaling in GB is thus an important investigation of cell invasion as well as treatment resistance and disease progression.

  16. Interplay between TGF-β signaling and receptor tyrosine kinases in tumor development.

    Science.gov (United States)

    Shi, Qiaoni; Chen, Ye-Guang

    2017-10-01

    Transforming growth factor-β (TGF-β) signaling regulates cell proliferation, differentiation, migration and death, and plays a critical role in embryogenesis and tissue homeostasis. Its deregulation results in various diseases including tumor formation. Receptor tyrosine kinases (RTKs), such as epidermal growth factor receptor (EGFR), fibroblast growth factor receptor (FGFR), vascular endothelial growth factor receptor (VEGFR) and platelet-derived growth factor receptor (PDGFR), also play key roles in the development and progression of many types of tumors. It has been realized that TGF-β signaling and RTK pathways interact with each other and their interplay is important for cancer development. They are mutually regulated and cooperatively modulate cell survival and migration, epithelial-mesenchymal transition, and tumor microenvironment to accelerate tumorigenesis and tumor metastasis. RTKs can modulate Smad-dependent transcription or cooperate with TGF-β to potentiate its oncogenic activity, while TGF-β signaling can in turn control RTK signaling by regulating their activities or expression. This review summarizes current understandings of the interplay between TGF-β signaling and RTKs and its influence on tumor development.

  17. Deletion of tumor progression locus 2 attenuates alcohol induced hepatic inflammation

    Science.gov (United States)

    BACKGROUND: The pathogenesis of alcoholic liver disease (ALD) involves the interaction of several inflammatory signaling pathways. Tumor progression locus 2 (TPL2), also known as Cancer Osaka Thyroid (COT) and MAP3K8, is a serine threonine kinase that functions as a critical regulator of inflammator...

  18. Which factors influence radiographic progression during treatment with tumor necrosis factor inhibitors in clinical practice?

    DEFF Research Database (Denmark)

    Ørnbjerg, Lykke Midtbøll; Østergaard, Mikkel; Bøyesen, Pernille

    2014-01-01

    OBJECTIVE: To investigate baseline characteristics associated with radiographic progression and the effect of disease activity, drug, switching, and withdrawal on radiographic progression in tumor necrosis factor (TNF) inhibitor-naive patients with rheumatoid arthritis (RA) followed for about 2...

  19. [Initiation, promotion, initiation experiments with radon and cigarette smoke: Lung tumors in rats]. Progress report

    International Nuclear Information System (INIS)

    Moolgavkar, S.H.

    1994-01-01

    During the past several years, the authors have made considerable progress in modeling carcinogenesis in general, and in modeling radiation carcinogenesis, in particular. They present an overview of their progress in developing stochastic carcinogenesis models and applying them to experimental and epidemiologic data sets. Traditionally, cancer models have been used for the analysis of incidence (or prevalence) data in epidemiology and time to tumor data in experimental studies. The relevant quantities for the analysis of these data are the hazard function and the probability of tumor. The derivation of these quantities is briefly described here. More recently, the authors began to use these models for the analysis of data on intermediate lesions on the pathway to cancer. Such data are available in experimental carcinogenesis studies, in particular in initiation and promotion studies on the mouse skin and the rat liver. If however, quantitative information on intermediate lesions on the pathway to lung cancer were to be come available at some future date, the methods that they have developed for the analysis of initiation-promotion experiments could easily be applied to the analysis of these lesions. The mathematical derivations here are couched in terms of a particular two-mutation model of carcinogenesis. Extension to models postulating more than two mutations is not always straightforward

  20. Genetically engineered rat gliomas: PDGF-driven tumor initiation and progression in tv-a transgenic rats recreate key features of human brain cancer.

    Directory of Open Access Journals (Sweden)

    Nina P Connolly

    Full Text Available Previously rodent preclinical research in gliomas frequently involved implantation of cell lines such as C6 and 9L into the rat brain. More recently, mouse models have taken over, the genetic manipulability of the mouse allowing the creation of genetically accurate models outweighed the disadvantage of its smaller brain size that limited time allowed for tumor progression. Here we illustrate a method that allows glioma formation in the rat using the replication competent avian-like sarcoma (RCAS virus / tumor virus receptor-A (tv-a transgenic system of post-natal cell type-specific gene transfer. The RCAS/tv-a model has emerged as a particularly versatile and accurate modeling technology by enabling spatial, temporal, and cell type-specific control of individual gene transformations and providing de novo formed glial tumors with distinct molecular subtypes mirroring human GBM. Nestin promoter-driven tv-a (Ntv-a transgenic Sprague-Dawley rat founder lines were created and RCAS PDGFA and p53 shRNA constructs were used to initiate intracranial brain tumor formation. Tumor formation and progression were confirmed and visualized by magnetic resonance imaging (MRI and spectroscopy. The tumors were analyzed using histopathological and immunofluorescent techniques. All experimental animals developed large, heterogeneous brain tumors that closely resembled human GBM. Median survival was 92 days from tumor initiation and 62 days from the first point of tumor visualization on MRI. Each tumor-bearing animal showed time dependent evidence of malignant progression to high-grade glioma by MRI and neurological examination. Post-mortem tumor analysis demonstrated the presence of several key characteristics of human GBM, including high levels of tumor cell proliferation, pseudopalisading necrosis, microvascular proliferation, invasion of tumor cells into surrounding tissues, peri-tumoral reactive astrogliosis, lymphocyte infiltration, presence of numerous tumor

  1. A 3-D model of tumor progression based on complex automata driven by particle dynamics.

    Science.gov (United States)

    Wcisło, Rafał; Dzwinel, Witold; Yuen, David A; Dudek, Arkadiusz Z

    2009-12-01

    The dynamics of a growing tumor involving mechanical remodeling of healthy tissue and vasculature is neglected in most of the existing tumor models. This is due to the lack of efficient computational framework allowing for simulation of mechanical interactions. Meanwhile, just these interactions trigger critical changes in tumor growth dynamics and are responsible for its volumetric and directional progression. We describe here a novel 3-D model of tumor growth, which combines particle dynamics with cellular automata concept. The particles represent both tissue cells and fragments of the vascular network. They interact with their closest neighbors via semi-harmonic central forces simulating mechanical resistance of the cell walls. The particle dynamics is governed by both the Newtonian laws of motion and the cellular automata rules. These rules can represent cell life-cycle and other biological interactions involving smaller spatio-temporal scales. We show that our complex automata, particle based model can reproduce realistic 3-D dynamics of the entire system consisting of the tumor, normal tissue cells, blood vessels and blood flow. It can explain phenomena such as the inward cell motion in avascular tumor, stabilization of tumor growth by the external pressure, tumor vascularization due to the process of angiogenesis, trapping of healthy cells by invading tumor, and influence of external (boundary) conditions on the direction of tumor progression. We conclude that the particle model can serve as a general framework for designing advanced multiscale models of tumor dynamics and it is very competitive to the modeling approaches presented before.

  2. Retinoblastoma loss modulates DNA damage response favoring tumor progression.

    Directory of Open Access Journals (Sweden)

    Marcos Seoane

    Full Text Available Senescence is one of the main barriers against tumor progression. Oncogenic signals in primary cells result in oncogene-induced senescence (OIS, crucial for protection against cancer development. It has been described in premalignant lesions that OIS requires DNA damage response (DDR activation, safeguard of the integrity of the genome. Here we demonstrate how the cellular mechanisms involved in oncogenic transformation in a model of glioma uncouple OIS and DDR. We use this tumor type as a paradigm of oncogenic transformation. In human gliomas most of the genetic alterations that have been previously identified result in abnormal activation of cell growth signaling pathways and deregulation of cell cycle, features recapitulated in our model by oncogenic Ras expression and retinoblastoma (Rb inactivation respectively. In this scenario, the absence of pRb confers a proliferative advantage and activates DDR to a greater extent in a DNA lesion-independent fashion than cells that express only HRas(V12. Moreover, Rb loss inactivates the stress kinase DDR-associated p38MAPK by specific Wip1-dependent dephosphorylation. Thus, Rb loss acts as a switch mediating the transition between premalignant lesions and cancer through DDR modulation. These findings may have important implications for the understanding the biology of gliomas and anticipate a new target, Wip1 phosphatase, for novel therapeutic strategies.

  3. High frequency of tumor cells with nuclear Egr-1 protein expression in human bladder cancer is associated with disease progression

    International Nuclear Information System (INIS)

    Egerod, Frederikke Lihme; Bartels, Annette; Fristrup, Niels; Borre, Michael; Ørntoft, Torben F; Oleksiewicz, Martin B; Brünner, Nils; Dyrskjøt, Lars

    2009-01-01

    Egr-1 (early growth response-1 transcription factor) has been proposed to be involved in invasion and metastasis processes of human bladder cancer, but Egr-1 protein expression levels in human bladder cancer have not been investigated. In the present study we investigated the expression levels of Egr-1 protein in early stages of human bladder cancer and correlated it to later progression. Expression of Egr-1 protein in human bladder cancer was examined by immunohistochemistry, on a tissue microarray constructed from tumors from 289 patients with non-muscle invasive urothelial bladder cancer. The frequency of tumor cells with nuclear Egr-1 immunolabelling correlated to bladder cancer stage, grade and to later progression to muscle-invasive bladder cancer (T2-4). Stage T1 tumors exhibited significantly higher frequencies of tumor cells with nuclear Egr-1 immunolabelling than Ta tumors (P = 0.001). Furthermore, Kaplan-Meier survival analysis showed that a high frequency of tumor cells with nuclear Egr-1 immunolabelling was significantly associated with a higher risk of progression to stage T2-4 (log-rank test, P = 0.035). Tumor cells with nuclear Egr-1 immunolabelling were found to localize at the tumor front in some of the tumor biopsies. The results from this study support a potential involvement of Egr-1 in the progression from non-muscle invasive bladder cancers to muscle invasive bladder cancer

  4. High frequency of tumor cells with nuclear Egr-1 protein expression in human bladder cancer is associated with disease progression

    DEFF Research Database (Denmark)

    Egerod, Frederikke N S Lihme; Bartels, Annette; Fristrup, Niels

    2009-01-01

    bladder cancer. RESULTS: The frequency of tumor cells with nuclear Egr-1 immunolabelling correlated to bladder cancer stage, grade and to later progression to muscle-invasive bladder cancer (T2-4). Stage T1 tumors exhibited significantly higher frequencies of tumor cells with nuclear Egr-1 immunolabelling...... than Ta tumors (P = 0.001). Furthermore, Kaplan-Meier survival analysis showed that a high frequency of tumor cells with nuclear Egr-1 immunolabelling was significantly associated with a higher risk of progression to stage T2-4 (log-rank test, P = 0.035). Tumor cells with nuclear Egr-1 immunolabelling...

  5. Host microenvironment in breast cancer development: Inflammatory cells, cytokines and chemokines in breast cancer progression: reciprocal tumor–microenvironment interactions

    International Nuclear Information System (INIS)

    Ben-Baruch, A

    2003-01-01

    A comprehensive overview of breast cancer development and progression suggests that the process is influenced by intrinsic properties of the tumor cells, as well as by microenvironmental factors. Indeed, in breast carcinoma, an intensive interplay exists between the tumor cells on one hand, and inflammatory cells/cytokines/chemokines on the other. The purpose of the present review is to outline the reciprocal interactions that exist between these different elements, and to shed light on their potential involvement in breast cancer development and progression

  6. Early impact of social isolation and breast tumor progression in mice.

    Science.gov (United States)

    Madden, Kelley S; Szpunar, Mercedes J; Brown, Edward B

    2013-03-01

    Evidence from cancer patients and animal models of cancer indicates that exposure to psychosocial stress can promote tumor growth and metastasis, but the pathways underlying stress-induced cancer pathogenesis are not fully understood. Social isolation has been shown to promote tumor progression. We examined the impact of social isolation on breast cancer pathogenesis in adult female severe combined immunodeficiency (SCID) mice using the human breast cancer cell line, MDA-MB-231, a high β-adrenergic receptor (AR) expressing line. When group-adapted mice were transferred into single housing (social isolation) one week prior to MB-231 tumor cell injection into a mammary fat pad (orthotopic), no alterations in tumor growth or metastasis were detected compared to group-housed mice. When social isolation was delayed until tumors were palpable, tumor growth was transiently increased in singly-housed mice. To determine if sympathetic nervous system activation was associated with increased tumor growth, spleen and tumor norepinephrine (NE) was measured after social isolation, in conjunction with tumor-promoting macrophage populations. Three days after transfer to single housing, spleen weight was transiently increased in tumor-bearing and non-tumor-bearing mice in conjunction with reduced splenic NE concentration and elevated CD11b+Gr-1+ macrophages. At day 10 after social isolation, no changes in spleen CD11b+ populations or NE were detected in singly-housed mice. In the tumors, social isolation increased CD11b+Gr-1+, CD11b+Gr-1-, and F4/80+ macrophage populations, with no change in tumor NE. The results indicate that a psychological stressor, social isolation, elicits dynamic but transient effects on macrophage populations that may facilitate tumor growth. The transiency of the changes in peripheral NE suggest that homeostatic mechanisms may mitigate the impact of social isolation over time. Studies are underway to define the neuroendocrine mechanisms underlying the

  7. Cell Death Conversion under Hypoxic Condition in Tumor Development and Therapy

    Directory of Open Access Journals (Sweden)

    Yu Qiu

    2015-10-01

    Full Text Available Hypoxia, which is common during tumor progression, plays important roles in tumor biology. Failure in cell death in response to hypoxia contributes to progression and metastasis of tumors. On the one hand, the metabolic and oxidative stress following hypoxia could lead to cell death by triggering signal cascades, like LKB1/AMPK, PI3K/AKT/mTOR, and altering the levels of effective components, such as the Bcl-2 family, Atg and p62. On the other hand, hypoxia-induced autophagy can serve as a mechanism to turn over nutrients, so as to mitigate the adverse condition and then avoid cell death potentially. Due to the effective role of hypoxia, this review focuses on the crosstalk in cell death under hypoxia in tumor progression. Additionally, the illumination of cell death in hypoxia could shed light on the clinical applications of cell death targeted therapy.

  8. When Progressive Disease Does Not Mean Treatment Failure: Reconsidering the Criteria for Progression

    Science.gov (United States)

    2012-01-01

    Although progression-based endpoints, such as progression-free survival, are often key clinical trial endpoints for anticancer agents, the clinical meaning of “objective progression” is much less certain. As scrutiny of progression-based endpoints in clinical trials increases, it should be remembered that the Response Evaluation Criteria In Solid Tumors (RECIST) progression criteria were not developed as a surrogate for survival. Now that progression-free survival has come to be an increasingly important trial endpoint, the criteria that define progression deserve critical evaluation to determine whether alternate definitions of progression might facilitate the development of stronger surrogate endpoints and more meaningful trial results. In this commentary, we review the genesis of the criteria for progression, highlight recent data that question their value as a marker of treatment failure, and advocate for several research strategies that could lay the groundwork for a clinically validated definition of disease progression in solid tumor oncology. PMID:22927506

  9. Modeling Freedom From Progression for Standard-Risk Medulloblastoma: A Mathematical Tumor Control Model With Multiple Modes of Failure

    International Nuclear Information System (INIS)

    Brodin, N. Patrik; Vogelius, Ivan R.; Björk-Eriksson, Thomas; Munck af Rosenschöld, Per; Bentzen, Søren M.

    2013-01-01

    Purpose: As pediatric medulloblastoma (MB) is a relatively rare disease, it is important to extract the maximum information from trials and cohort studies. Here, a framework was developed for modeling tumor control with multiple modes of failure and time-to-progression for standard-risk MB, using published pattern of failure data. Methods and Materials: Outcome data for standard-risk MB published after 1990 with pattern of relapse information were used to fit a tumor control dose-response model addressing failures in both the high-dose boost volume and the elective craniospinal volume. Estimates of 5-year event-free survival from 2 large randomized MB trials were used to model the time-to-progression distribution. Uncertainty in freedom from progression (FFP) was estimated by Monte Carlo sampling over the statistical uncertainty in input data. Results: The estimated 5-year FFP (95% confidence intervals [CI]) for craniospinal doses of 15, 18, 24, and 36 Gy while maintaining 54 Gy to the posterior fossa was 77% (95% CI, 70%-81%), 78% (95% CI, 73%-81%), 79% (95% CI, 76%-82%), and 80% (95% CI, 77%-84%) respectively. The uncertainty in FFP was considerably larger for craniospinal doses below 18 Gy, reflecting the lack of data in the lower dose range. Conclusions: Estimates of tumor control and time-to-progression for standard-risk MB provides a data-driven setting for hypothesis generation or power calculations for prospective trials, taking the uncertainties into account. The presented methods can also be applied to incorporate further risk-stratification for example based on molecular biomarkers, when the necessary data become available

  10. PTEN C-Terminal Deletion Causes Genomic Instability and Tumor Development

    Directory of Open Access Journals (Sweden)

    Zhuo Sun

    2014-03-01

    Full Text Available Tumor suppressor PTEN controls genomic stability and inhibits tumorigenesis. The N-terminal phosphatase domain of PTEN antagonizes the PI3K/AKT pathway, but its C-terminal function is less defined. Here, we describe a knockin mouse model of a nonsense mutation that results in the deletion of the entire Pten C-terminal region, referred to as PtenΔC. Mice heterozygous for PtenΔC develop multiple spontaneous tumors, including cancers and B cell lymphoma. Heterozygous deletion of the Pten C-terminal domain also causes genomic instability and common fragile site rearrangement. We found that Pten C-terminal disruption induces p53 and its downstream targets. Simultaneous depletion of p53 promotes metastasis without influencing the initiation of tumors, suggesting that p53 mainly suppresses tumor progression. Our data highlight the essential role of the PTEN C terminus in the maintenance of genomic stability and suppression of tumorigenesis.

  11. Influence of tumor grade on time to progression after irradiation for localized ependymoma in children

    International Nuclear Information System (INIS)

    Merchant, Thomas E.; Jenkins, Jesse J.; Burger, Peter C.; Sanford, Robert A.; Sherwood, Scot H.; Jones-Wallace, Dana; Heideman, Richard L.; Thompson, Stephen J.; Helton, Kathleen J.; Kun, Larry E.

    2002-01-01

    Purpose: To investigate the influence of histologic grade on progression-free survival (PFS) after irradiation (RT) for pediatric patients with localized ependymoma. Methods and Materials: Fifty patients with localized ependymoma (median age 3.6 years, range 1-18 years at the time of RT) were treated with RT between December 1982 and June 1999. Anaplastic features were identified in 14 of 50 patients. The extent of resection was characterized as gross-total in 36 patients, near-total in 5, and subtotal in 9. The median dose to the primary site was 54 Gy. Of the 50 patients, 23 received pre-RT chemotherapy. Results: Thirty-nine patients were alive at a median follow-up of 46 months (range 21-214) from diagnosis. Thirty-four patients remained progression free at a median follow-up of 35 months (range 13-183) after the initiation of RT. Progression occurred in 16 patients (12 local and 4 local and distant), with a median time to failure of 21.2 months (range 4.6-65.0). The tumor grade significantly influenced the PFS after RT (p<0.0005). The estimated 3-year PFS rate was 28%±14% for patients with anaplastic ependymoma compared with 84% ± 8% for patients with differentiated ependymoma. These results remained significant when corrected for age at diagnosis (<3 years), pre-RT chemotherapy, and extent of resection. Patients who received pre-RT chemotherapy had an inferior 3-year PFS estimate after RT (49±12%) compared with those who did not (84%±10%; p=0.056). Anaplastic ependymoma was found more frequently in the supratentorial brain (p=0.002). Six of 12 patients with supratentorial tumor developed recurrence; recurrence was restricted to patients with anaplastic ependymoma. Conclusion: Tumor grade influences outcome for patients with ependymoma independent of other factors and should be considered in the design and analysis of prospective trials involving pediatric patients treated with RT. Chemotherapy before RT influences the PFS and overall survival after RT. The

  12. Creatine supplementation prevents hyperhomocysteinemia, oxidative stress and cancer-induced cachexia progression in Walker-256 tumor-bearing rats.

    Science.gov (United States)

    Deminice, Rafael; Cella, Paola Sanches; Padilha, Camila S; Borges, Fernando H; da Silva, Lilian Eslaine Costa Mendes; Campos-Ferraz, Patrícia L; Jordao, Alceu Afonso; Robinson, Jason Lorne; Bertolo, Robert F; Cecchini, Rubens; Guarnier, Flávia Alessandra

    2016-08-01

    The purpose of this study was to investigate (1) the impact of tumor growth on homocysteine (Hcy) metabolism, liver oxidative stress and cancer cachexia and, (2) the potential benefits of creatine supplementation in Walker-256 tumor-bearing rats. Three experiments were conducted. First, rats were killed on days 5 (D5), 10 (D10) and 14 (D14) after tumor implantation. In experiment 2, rats were randomly assigned to three groups designated as control (C), tumor-bearing (T) and tumor-bearing supplemented with creatine (TCr). A life span experiment was conducted as the third experiment. Creatine was supplied in drinking water for 21 days (8 g/L) in all cases. Tumor implantation consisted of a suspension of Walker-256 cells (8.0 × 10(7) cells in 0.5 mL of PBS). The progressive increase (P creatine supplementation promoted a 28 % reduction of tumor weight (P Creatine supplementation was unable to decrease Hcy concentration and to increase SAM/SAH ratio in tumor tissue. These data suggest that creatine effects on hepatic impaired Hcy metabolism promoted by tumor cell inoculation are responsible to decrease plasma Hcy in tumor-bearing rats. In conclusion, Walker-256 tumor growth is associated with progressive hyperhomocysteinemia, body weight loss and liver oxidative stress in rats. Creatine supplementation, however, prevented these tumor-associated perturbations.

  13. Hyaluronan, Cancer-Associated Fibroblasts and the Tumor Microenvironment in Malignant Progression

    Directory of Open Access Journals (Sweden)

    James B. McCarthy

    2018-05-01

    Full Text Available This review summarizes the roles of CAFs in forming a “cancerized” fibrotic stroma favorable to tumor initiation and dissemination, in particular highlighting the functions of the extracellular matrix component hyaluronan (HA in these processes. The structural complexity of the tumor and its host microenvironment is now well appreciated to be an important contributing factor to malignant progression and resistance-to-therapy. There are multiple components of this complexity, which include an extensive remodeling of the extracellular matrix (ECM and associated biomechanical changes in tumor stroma. Tumor stroma is often fibrotic and rich in fibrillar type I collagen and hyaluronan (HA. Cancer-associated fibroblasts (CAFs are a major source of this fibrotic ECM. CAFs organize collagen fibrils and these biomechanical alterations provide highways for invading carcinoma cells either under the guidance of CAFs or following their epithelial to mesenchymal transition (EMT. The increased HA metabolism of a tumor microenvironment instructs carcinoma initiation and dissemination by performing multiple functions. The key effects of HA reviewed here are its role in activating CAFs in pre-malignant and malignant stroma, and facilitating invasion by promoting motility of both CAFs and tumor cells, thus facilitating their invasion. Circulating CAFs (cCAFs also form heterotypic clusters with circulating tumor cells (CTC, which are considered to be pre-cursors of metastatic colonies. cCAFs are likely required for extravasation of tumors cells and to form a metastatic niche suitable for new tumor colony growth. Therapeutic interventions designed to target both HA and CAFs in order to limit tumor spread and increase response to current therapies are discussed.

  14. Metastasis-inducing S100A4 and RANTES cooperate in promoting tumor progression in mice.

    Directory of Open Access Journals (Sweden)

    Birgitte Forst

    2010-04-01

    Full Text Available The tumor microenvironment has been described as a critical milieu determining tumor growth and metastases. A pivotal role of metastasis-inducing S100A4 in the development of tumor stroma has been proven in animal models and verified in human breast cancer biopsies. Expression and release of S100A4 has been shown in various types of stroma composing cells, including fibroblasts and immune cells. However, the events implicated in upstream and downstream pathways regulating the activity of the extracellular S100A4 protein in the tumor milieu remain unsolved.We studied the interplay between the tumor cell-derived cytokine regulated-upon-activation, normal T-cell expressed and secreted (RANTES; CCL5 and S100A4 which were shown to be critical factors in tumor progression. We found that RANTES stimulates the externalization of S100A4 via microparticle shedding from the plasma membrane of tumor and stroma cells. Conversely, the released S100A4 protein induces the upregulation of fibronectin (FN in fibroblasts and a number of cytokines, including RANTES in tumor cells as well as stimulates cell motility in a wound healing assay. Importantly, using wild type and S100A4-deficient mouse models, we demonstrated a substantial influence of tumor cell-derived RANTES on S100A4 release into blood circulation which ultimately increases the metastatic burden in mice.Altogether, the data presented strongly validate the pro-metastatic function of S100A4 in the tumor microenvironment and define how the tumor cell-derived cytokine RANTES acts as a critical regulator of S100A4-dependent tumor cell dissemination. Additionally, for the first time we demonstrated the mechanism of S100A4 release associated with plasma membrane microparticle shedding from various cells types.

  15. Progress and controversies in developing cancer vaccines

    Directory of Open Access Journals (Sweden)

    Speiser Daniel E

    2005-04-01

    Full Text Available Abstract Immunotherapy has become a standard approach for cancer management, through the use of cytokines (eg: interleukin-2 and monoclonal antibodies. Cancer vaccines hold promise as another form of immunotherapy, and there has been substantial progress in identifying shared antigens recognized by T cells, in developing vaccine approaches that induce antigen-specific T cell responses in cancer patients, and in developing new technology for monitoring immune responses in various human tissue compartments. Dramatic clinical regressions of human solid tumors have occurred with some cancer vaccines, but the rate of those responses remains low. This article is part of a 2-part point:counterpoint series on peptide vaccines and adoptive therapy approaches for cancer. The current status of cancer vaccination, and associated challenges, are discussed. Emphasis is placed on the need to increase our knowledge of cancer immunobiology, as well as to improve monitoring of cellular immune function after vaccination. Progress in both areas will facilitate development of effective cancer vaccines, as well as of adoptive therapy. Effective cancer vaccines promise to be useful for treatment and prevention of cancer at low cost and with low morbidity.

  16. BRD7 inhibits the Warburg effect and tumor progression through inactivation of HIF1α/LDHA axis in breast cancer.

    Science.gov (United States)

    Niu, Weihong; Luo, Yanwei; Wang, Xinye; Zhou, Yao; Li, Hui; Wang, Heran; Fu, Yaojie; Liu, Shanshan; Yin, Shanghelin; Li, Jianglei; Zhao, Ran; Liu, Yukun; Fan, Songqing; Li, Zheng; Xiong, Wei; Li, Xiaoling; Li, Guiyuan; Ren, Caiping; Tan, Ming; Zhou, Ming

    2018-05-03

    The bromodomain-containing protein 7 (BRD7) was first identified as a tumor suppressor in nasopharyngeal carcinoma and has critical roles in cancer development and progression. However, the regulatory roles and mechanisms of BRD7 in cancer metabolism are still unknown. In this study, we demonstrated that BRD7 was lowly expressed in breast cancer tissues and was identified as a poor prognostic factor in breast cancer. Meanwhile, BRD7 could suppress cell proliferation, initiate cell apoptosis and reduce aerobic glycolysis, suggesting that BRD7 plays a tumor suppressive roles in breast cancer. Mechanistically, BRD7 could negatively regulate a critical glycolytic enzyme LDHA through directly interaction with its upstream transcription factor, HIF1α, facilitating degradation of HIF1α mediated by ubiquitin-proteasome pathway. Moreover, restoring the expression of LDHA in breast cancer cells could reverse the effect of BRD7 on aerobic glycolysis, cell proliferation, and tumor formation, as well as the expression of cell cycle and apopotosis related molecules such as cyclin D1, CDK4, P21, and c-PARP both in vitro and in vivo. Taken together, these results indicate that BRD7 acts as a tumor suppressor in breast cancer and represses the glycolysis and tumor progression through inactivation of HIF1α/LDHA transcription axis.

  17. Progression-free survival, post-progression survival, and tumor response as surrogate markers for overall survival in patients with extensive small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Hisao Imai

    2015-01-01

    Full Text Available Objectives: The effects of first-line chemotherapy on overall survival (OS might be confounded by subsequent therapies in patients with small cell lung cancer (SCLC. We examined whether progression-free survival (PFS, post-progression survival (PPS, and tumor response could be valid surrogate endpoints for OS after first-line chemotherapies for patients with extensive SCLC using individual-level data. Methods: Between September 2002 and November 2012, we analyzed 49 cases of patients with extensive SCLC who were treated with cisplatin and irinotecan as first-line chemotherapy. The relationships of PFS, PPS, and tumor response with OS were analyzed at the individual level. Results: Spearman rank correlation analysis and linear regression analysis showed that PPS was strongly correlated with OS (r = 0.97, p < 0.05, R 2 = 0.94, PFS was moderately correlated with OS (r = 0.58, p < 0.05, R 2 = 0.24, and tumor shrinkage was weakly correlated with OS (r = 0.37, p < 0.05, R 2 = 0.13. The best response to second-line treatment, and the number of regimens employed after progression beyond first-line chemotherapy were both significantly associated with PPS ( p ≤ 0.05. Conclusion: PPS is a potential surrogate for OS in patients with extensive SCLC. Our findings also suggest that subsequent treatment after disease progression following first-line chemotherapy may greatly influence OS.

  18. Hsp90 inhibitor 17-AAG inhibits progression of LuCaP35 xenograft prostate tumors to castration resistance.

    Science.gov (United States)

    O'Malley, Katherine J; Langmann, Gabrielle; Ai, Junkui; Ramos-Garcia, Raquel; Vessella, Robert L; Wang, Zhou

    2012-07-01

    Advanced prostate cancer is currently treated with androgen deprivation therapy (ADT). ADT initially results in tumor regression; however, all patients eventually relapse with castration-resistant prostate cancer. New approaches to delay the progression of prostate cancer to castration resistance are in desperate need. This study addresses whether targeting Heat shock protein 90 (HSP90) regulation of androgen receptor (AR) can inhibit prostate cancer progression to castration resistance. The HSP90 inhibitor 17-AAG was injected intraperitoneally into nude mice bearing LuCaP35 xenograft tumors to determine the effect of HSP90 inhibition on prostate cancer progression to castration resistance and host survival. Administration of 17-AAG maintained androgen-sensitivity, delayed the progression of LuCaP35 xenograft tumors to castration resistance, and prolonged the survival of host. In addition, 17-AAG prevented nuclear localization of endogenous AR in LuCaP35 xenograft tumors in castrated nude mice. Targeting Hsp90 or the mechanism by which HSP90 regulates androgen-independent AR nuclear localization and activation may lead to new approaches to prevent and/or treat castration-resistant prostate cancer. Copyright © 2011 Wiley Periodicals, Inc.

  19. M402, a novel heparan sulfate mimetic, targets multiple pathways implicated in tumor progression and metastasis.

    Directory of Open Access Journals (Sweden)

    He Zhou

    Full Text Available Heparan sulfate proteoglycans (HSPGs play a key role in shaping the tumor microenvironment by presenting growth factors, cytokines, and other soluble factors that are critical for host cell recruitment and activation, as well as promoting tumor progression, metastasis, and survival. M402 is a rationally engineered, non-cytotoxic heparan sulfate (HS mimetic, designed to inhibit multiple factors implicated in tumor-host cell interactions, including VEGF, FGF2, SDF-1α, P-selectin, and heparanase. A single s.c. dose of M402 effectively inhibited seeding of B16F10 murine melanoma cells to the lung in an experimental metastasis model. Fluorescent-labeled M402 demonstrated selective accumulation in the primary tumor. Immunohistological analyses of the primary tumor revealed a decrease in microvessel density in M402 treated animals, suggesting anti-angiogenesis to be one of the mechanisms involved in-vivo. M402 treatment also normalized circulating levels of myeloid derived suppressor cells in tumor bearing mice. Chronic administration of M402, alone or in combination with cisplatin or docetaxel, inhibited spontaneous metastasis and prolonged survival in an orthotopic 4T1 murine mammary carcinoma model. These data demonstrate that modulating HSPG biology represents a novel approach to target multiple factors involved in tumor progression and metastasis.

  20. Secretory IgM Exacerbates Tumor Progression by Inducing Accumulations of MDSCs in Mice.

    Science.gov (United States)

    Tang, Chih-Hang Anthony; Chang, Shiun; Hashimoto, Ayumi; Chen, Yi-Ju; Kang, Chang Won; Mato, Anthony R; Del Valle, Juan R; Gabrilovich, Dmitry I; Hu, Chih-Chi Andrew

    2018-06-01

    Chronic lymphocytic leukemia (CLL) cells can secrete immunoglobulin M. However, it is not clear whether secretory IgM (sIgM) plays a role in disease progression. We crossed the Eμ-TCL1 mouse model of CLL, in which the expression of human TCL1 oncogene was driven by the V(H) promoter-Ig(H)-Eμ enhancer, with MD4 mice whose B cells produced B-cell receptor (membrane-bound IgM) and sIgM with specificity for hen egg lysozyme (HEL). CLL cells that developed in these MD4/Eμ-TCL1 mice reactivated a parental Ig gene allele and secreted IgM, and did not recognize HEL. The MD4/Eμ-TCL1 mice had reduced survival, increased myeloid-derived suppressor cells (MDSC), and decreased numbers of T cells. We tested whether sIgM could contribute to the accumulation of MDSCs by crossing μS -/- mice, which could not produce sIgM, with Eμ-TCL1 mice. The μS -/- /Eμ-TCL1 mice survived longer than Eμ-TCL1 mice and developed decreased numbers of MDSCs which were less able to suppress proliferation of T cells. We targeted the synthesis of sIgM by deleting the function of XBP-1s and showed that targeting XBP-1s genetically or pharmacologically could lead to decreased sIgM, accompanied by decreased numbers and reduced functions of MDSCs in MD4/Eμ-TCL1 mice. Additionally, MDSCs from μS -/- mice grafted with Lewis lung carcinoma were inefficient suppressors of T cells, resulting in slower tumor growth. These results demonstrate that sIgM produced by B cells can upregulate the functions of MDSCs in tumor-bearing mice to aggravate cancer progression. In a mouse model of CLL, production of secretory IgM led to more MDSCs, fewer T cells, and shorter survival times for the mice. Thus, secretory IgM may aggravate the progression of this cancer. Cancer Immunol Res; 6(6); 696-710. ©2018 AACR . ©2018 American Association for Cancer Research.

  1. Bimodal CD40/Fas-Dependent Crosstalk between iNKT Cells and Tumor-Associated Macrophages Impairs Prostate Cancer Progression.

    Science.gov (United States)

    Cortesi, Filippo; Delfanti, Gloria; Grilli, Andrea; Calcinotto, Arianna; Gorini, Francesca; Pucci, Ferdinando; Lucianò, Roberta; Grioni, Matteo; Recchia, Alessandra; Benigni, Fabio; Briganti, Alberto; Salonia, Andrea; De Palma, Michele; Bicciato, Silvio; Doglioni, Claudio; Bellone, Matteo; Casorati, Giulia; Dellabona, Paolo

    2018-03-13

    Heterotypic cellular and molecular interactions in the tumor microenvironment (TME) control cancer progression. Here, we show that CD1d-restricted invariant natural killer (iNKT) cells control prostate cancer (PCa) progression by sculpting the TME. In a mouse PCa model, iNKT cells restrained the pro-angiogenic and immunosuppressive capabilities of tumor-infiltrating immune cells by reducing pro-angiogenic TIE2 + , M2-like macrophages (TEMs), and sustaining pro-inflammatory M1-like macrophages. iNKT cells directly contacted macrophages in the PCa stroma, and iNKT cell transfer into tumor-bearing mice abated TEMs, delaying tumor progression. iNKT cells modulated macrophages through the cooperative engagement of CD1d, Fas, and CD40, which promoted selective killing of M2-like and survival of M1-like macrophages. Human PCa aggressiveness associate with reduced intra-tumoral iNKT cells, increased TEMs, and expression of pro-angiogenic genes, underscoring the clinical significance of this crosstalk. Therefore, iNKT cells may control PCa through mechanisms involving differential macrophage modulation, which may be harnessed for therapeutically reprogramming the TME. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Duct- and Acinar-Derived Pancreatic Ductal Adenocarcinomas Show Distinct Tumor Progression and Marker Expression

    Directory of Open Access Journals (Sweden)

    Rute M.M. Ferreira

    2017-10-01

    Full Text Available The cell of origin of pancreatic ductal adenocarcinoma (PDAC has been controversial. Here, we show that identical oncogenic drivers trigger PDAC originating from both ductal and acinar cells with similar histology but with distinct pathophysiology and marker expression dependent on cell of origin. Whereas acinar-derived tumors exhibited low AGR2 expression and were preceded by pancreatic intraepithelial neoplasias (PanINs, duct-derived tumors displayed high AGR2 and developed independently of a PanIN stage via non-mucinous lesions. Using orthotopic transplantation and chimera experiments, we demonstrate that PanIN-like lesions can be induced by PDAC as bystanders in adjacent healthy tissues, explaining the co-existence of mucinous and non-mucinous lesions and highlighting the need to distinguish between true precursor PanINs and PanIN-like bystander lesions. Our results suggest AGR2 as a tool to stratify PDAC according to cell of origin, highlight that not all PanIN-like lesions are precursors of PDAC, and add an alternative progression route to the current model of PDAC development.

  3. Extracellular Vesicles As Modulators of Tumor Microenvironment and Disease Progression in Glioma

    Directory of Open Access Journals (Sweden)

    Abir Mondal

    2017-07-01

    Full Text Available Diffuse gliomas are lethal tumors of the central nervous system (CNS characterized by infiltrative growth, aggressive nature, and therapeutic resistance. The recent 2016 WHO classification for CNS tumors categorizes diffuse glioma into two major types that include IDH wild-type glioblastoma, which is the predominant type and IDH-mutant glioblastoma, which is less common and displays better prognosis. Recent studies suggest presence of a distinct cell population with stem cell features termed as glioma stem cells (GSCs to be causal in driving tumor growth in glioblastoma. The presence of a stem and progenitor population possibly makes glioblastoma highly heterogeneous. Significantly, tumor growth is driven by interaction of cells residing within the tumor with the surrounding milieu termed as the tumor microenvironment. It comprises of various cell types such as endothelial cells, secreted factors, and the surrounding extracellular matrix, which altogether help perpetuate the proliferation of GSCs. One of the important mediators critical to the cross talk is extracellular vesicles (EVs. These nano-sized vesicles play important roles in intercellular communication by transporting bioactive molecules into the surrounding milieu, thereby altering cellular functions and/or reprogramming recipient cells. With the growing information on the contribution of EVs in modulation of the tumor microenvironment, it is important to determine their role in both supporting as well as promoting tumor growth in glioma. In this review, we provide a comprehensive overview of the role of EVs in tumor progression and glioma pathogenesis.

  4. A versatile mathematical work-flow to explore how Cancer Stem Cell fate influences tumor progression.

    Science.gov (United States)

    Fornari, Chiara; Balbo, Gianfranco; Halawani, Sami M; Ba-Rukab, Omar; Ahmad, Ab Rahman; Calogero, Raffaele A; Cordero, Francesca; Beccuti, Marco

    2015-01-01

    Nowadays multidisciplinary approaches combining mathematical models with experimental assays are becoming relevant for the study of biological systems. Indeed, in cancer research multidisciplinary approaches are successfully used to understand the crucial aspects implicated in tumor growth. In particular, the Cancer Stem Cell (CSC) biology represents an area particularly suited to be studied through multidisciplinary approaches, and modeling has significantly contributed to pinpoint the crucial aspects implicated in this theory. More generally, to acquire new insights on a biological system it is necessary to have an accurate description of the phenomenon, such that making accurate predictions on its future behaviors becomes more likely. In this context, the identification of the parameters influencing model dynamics can be advantageous to increase model accuracy and to provide hints in designing wet experiments. Different techniques, ranging from statistical methods to analytical studies, have been developed. Their applications depend on case-specific aspects, such as the availability and quality of experimental data, and the dimension of the parameter space. The study of a new model on the CSC-based tumor progression has been the motivation to design a new work-flow that helps to characterize possible system dynamics and to identify those parameters influencing such behaviors. In detail, we extended our recent model on CSC-dynamics creating a new system capable of describing tumor growth during the different stages of cancer progression. Indeed, tumor cells appear to progress through lineage stages like those of normal tissues, being their division auto-regulated by internal feedback mechanisms. These new features have introduced some non-linearities in the model, making it more difficult to be studied by solely analytical techniques. Our new work-flow, based on statistical methods, was used to identify the parameters which influence the tumor growth. The

  5. Metronomic Chemotherapy vs Best Supportive Care in Progressive Pediatric Solid Malignant Tumors: A Randomized Clinical Trial.

    Science.gov (United States)

    Pramanik, Raja; Agarwala, Sandeep; Gupta, Yogendra Kumar; Thulkar, Sanjay; Vishnubhatla, Sreenivas; Batra, Atul; Dhawan, Deepa; Bakhshi, Sameer

    2017-09-01

    Although oral metronomic chemotherapy is often used in progressive pediatric solid malignant tumors, a literature review reveals that only small single-arm retrospective or phase 1 and 2 studies have been performed. Skepticism abounds because of the lack of level 1 evidence. To compare the effect of metronomic chemotherapy on progression-free survival (PFS) with that of placebo in pediatric patients with primary extracranial, nonhematopoietic solid malignant tumors that progress after at least 2 lines of chemotherapy. A double-blinded, placebo-controlled randomized clinical trial was conducted from October 1, 2013, through December 31, 2015, at the cancer center at All India Institute of Medical Sciences in children aged 5 to 18 years with primary extracranial, nonhematopoietic solid malignant tumors that progressed after at least 2 lines of chemotherapy and had no further curative options. One arm received a 4-drug oral metronomic regimen of daily celecoxib and thalidomide with alternating periods of etoposide and cyclophosphamide, whereas the other arm received placebo. Disease status was assessed at baseline, 9 weeks, 18 weeks, and 27 weeks or at clinical progression. The primary end point was PFS as defined by the proportion of patients without disease progression at 6 months, and PFS duration and overall survival (OS) were secondary end points. A total of 108 of the 123 patients screened were enrolled, with 52 randomized to the placebo group (median age, 15 years; 40 male [76.9%]) and 56 to the metronomic chemotherapy group (median age, 13 years; 42 male [75.0%]). At a median follow-up of 2.9 months, 100% of the patients had disease progression by 6 months in the placebo group vs 96.4% in the metronomic chemotherapy group (P = .24). Median PFS and OS in the 2 groups was similar (hazard ratio [HR], 0.69; 95% CI, 0.47-1.03 [P = .07] for PFS; and HR, 0.74; 95% CI, 0.50-1.09 [P = .13] for OS). In post hoc subgroup analysis, cohorts receiving more than

  6. Integrated genomics of ovarian xenograft tumor progression and chemotherapy response

    International Nuclear Information System (INIS)

    Stuckey, Ashley; Brodsky, Alexander S; Fischer, Andrew; Miller, Daniel H; Hillenmeyer, Sara; Kim, Kyu K; Ritz, Anna; Singh, Rakesh K; Raphael, Benjamin J; Brard, Laurent

    2011-01-01

    Ovarian cancer is the most deadly gynecological cancer with a very poor prognosis. Xenograft mouse models have proven to be one very useful tool in testing candidate therapeutic agents and gene function in vivo. In this study we identify genes and gene networks important for the efficacy of a pre-clinical anti-tumor therapeutic, MT19c. In order to understand how ovarian xenograft tumors may be growing and responding to anti-tumor therapeutics, we used genome-wide mRNA expression and DNA copy number measurements to identify key genes and pathways that may be critical for SKOV-3 xenograft tumor progression. We compared SKOV-3 xenografts treated with the ergocalciferol derived, MT19c, to untreated tumors collected at multiple time points. Cell viability assays were used to test the function of the PPARγ agonist, Rosiglitazone, on SKOV-3 cell growth. These data indicate that a number of known survival and growth pathways including Notch signaling and general apoptosis factors are differentially expressed in treated vs. untreated xenografts. As tumors grow, cell cycle and DNA replication genes show increased expression, consistent with faster growth. The steroid nuclear receptor, PPARγ, was significantly up-regulated in MT19c treated xenografts. Surprisingly, stimulation of PPARγ with Rosiglitazone reduced the efficacy of MT19c and cisplatin suggesting that PPARγ is regulating a survival pathway in SKOV-3 cells. To identify which genes may be important for tumor growth and treatment response, we observed that MT19c down-regulates some high copy number genes and stimulates expression of some low copy number genes suggesting that these genes are particularly important for SKOV-3 xenograft growth and survival. We have characterized the time dependent responses of ovarian xenograft tumors to the vitamin D analog, MT19c. Our results suggest that PPARγ promotes survival for some ovarian tumor cells. We propose that a combination of regulated expression and copy number

  7. FTIR spectro-imaging of collagen scaffold formation during glioma tumor development.

    Science.gov (United States)

    Noreen, Razia; Chien, Chia-Chi; Chen, Hsiang-Hsin; Bobroff, Vladimir; Moenner, Michel; Javerzat, Sophie; Hwu, Yeukuang; Petibois, Cyril

    2013-11-01

    Evidence has recently emerged that solid and diffuse tumors produce a specific extracellular matrix (ECM) for division and diffusion, also developing a specific interface with microvasculature. This ECM is mainly composed of collagens and their scaffolding appears to drive tumor growth. Although collagens are not easily analyzable by UV-fluorescence means, FTIR imaging has appeared as a valuable tool to characterize collagen contents in tissues, specially the brain, where ECM is normally devoid of collagen proteins. Here, we used FTIR imaging to characterize collagen content changes in growing glioma tumors. We could determine that C6-derived solid tumors presented high content of triple helix after 8-11 days of growth (typical of collagen fibrils formation; 8/8 tumor samples; 91 % of total variance), and further turned to larger α-helix (days 12-15; 9/10 of tumors; 94 % of variance) and β-turns (day 18-21; 7/8 tumors; 97 % of variance) contents, which suggest the incorporation of non-fibrillar collagen types in ECM, a sign of more and more organized collagen scaffold along tumor progression. The growth of tumors was also associated to the level of collagen produced (P < 0.05). This study thus confirms that collagen scaffolding is a major event accompanying the angiogenic shift and faster tumor growth in solid glioma phenotypes.

  8. A PAUF-neutralizing antibody targets both carcinoma and endothelial cells to impede pancreatic tumor progression and metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Su Jin [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); New Drug Development Center, Osong Medical Innovation Foundation, Cheongwon, Chungbuk (Korea, Republic of); Chang, Suhwan [Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Lee, Yangsoon; Kim, Na Young; Hwang, Yeonsil; Min, Hye Jin; Yoo, Kyung-Sook; Park, Eun Hye; Kim, Seokho [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Chung, Young-Hwa [BK21-plus, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan (Korea, Republic of); Park, Young Woo [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Koh, Sang Seok, E-mail: sskoh@dau.ac.kr [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Department of Biological Sciences, Dong-A University, Busan (Korea, Republic of)

    2014-11-07

    Highlights: • PMAb83, a human monoclonal antibody against PAUF, impaired tumor progression in vivo. • PMAb83 attenuated aggressiveness of tumor cells and suppressed angiogenesis. • PMAb83 in combination with gemcitabine conferred improved survival of mouse model. - Abstract: Pancreatic adenocarcinoma up-regulated factor (PAUF) is expressed in pancreatic ductal adenocarcinoma (PDAC) and plays an important role in tumor progression and metastasis. Here we evaluate the anti-tumor efficacy of a human monoclonal antibody against PAUF, PMAb83, to provide a therapeutic intervention to treat the disease. PMAb83 reduced tumor growth and distant metastasis in orthotopically xenografted mice of human PDAC cells. PMAb83 treatment retarded proliferation along with weakened aggressiveness traits of the carcinoma cells. AKT/β-catenin signaling played a role in the carcinoma cell proliferation and the treated xenograft tumors exhibited reduced levels of β-catenin and cyclin D1. Moreover PMAb83 abrogated the PAUF-induced angiogenic responses of endothelial cells, reducing the density of CD31{sup +} vessels in the treated tumors. In combination with gemcitabine, PMAb83 conferred enhanced survival of xenografted mice by about twofold compared to gemcitabine alone. Taken together, our findings show that PMAb83 treatment decreases the aggressiveness of carcinoma cells and suppresses tumor vascularization, which culminates in mitigated tumor growth and metastasis with improved survival in PDAC mouse models.

  9. A PAUF-neutralizing antibody targets both carcinoma and endothelial cells to impede pancreatic tumor progression and metastasis

    International Nuclear Information System (INIS)

    Kim, Su Jin; Chang, Suhwan; Lee, Yangsoon; Kim, Na Young; Hwang, Yeonsil; Min, Hye Jin; Yoo, Kyung-Sook; Park, Eun Hye; Kim, Seokho; Chung, Young-Hwa; Park, Young Woo; Koh, Sang Seok

    2014-01-01

    Highlights: • PMAb83, a human monoclonal antibody against PAUF, impaired tumor progression in vivo. • PMAb83 attenuated aggressiveness of tumor cells and suppressed angiogenesis. • PMAb83 in combination with gemcitabine conferred improved survival of mouse model. - Abstract: Pancreatic adenocarcinoma up-regulated factor (PAUF) is expressed in pancreatic ductal adenocarcinoma (PDAC) and plays an important role in tumor progression and metastasis. Here we evaluate the anti-tumor efficacy of a human monoclonal antibody against PAUF, PMAb83, to provide a therapeutic intervention to treat the disease. PMAb83 reduced tumor growth and distant metastasis in orthotopically xenografted mice of human PDAC cells. PMAb83 treatment retarded proliferation along with weakened aggressiveness traits of the carcinoma cells. AKT/β-catenin signaling played a role in the carcinoma cell proliferation and the treated xenograft tumors exhibited reduced levels of β-catenin and cyclin D1. Moreover PMAb83 abrogated the PAUF-induced angiogenic responses of endothelial cells, reducing the density of CD31 + vessels in the treated tumors. In combination with gemcitabine, PMAb83 conferred enhanced survival of xenografted mice by about twofold compared to gemcitabine alone. Taken together, our findings show that PMAb83 treatment decreases the aggressiveness of carcinoma cells and suppresses tumor vascularization, which culminates in mitigated tumor growth and metastasis with improved survival in PDAC mouse models

  10. Progress in radiotherapy of diencephalohypophyseal tumor

    Energy Technology Data Exchange (ETDEWEB)

    Takakura, Kintomo; Kubo, Osami [Tokyo Women`s Medical Coll. (Japan). Neurological Inst.

    1997-12-01

    The patients with hypophyseal adenoma (36 patients) were treated with peripheral irradiation (between 10 and 35 Gy) using gamma unit. The results are shown as follows: GH producing hypophyseal tumor (8 patients); tumor volume did not reduce rapidly. Growth hormone level fell, but it took more than 12 months to recover to normal level. PRL producing hypophyseal tumor (5 patients); five intractable patients were irradiated. Tumor contraction was not obvious, but the increase of tumor size was restrained. ACTH producing hypophyseal tumor (4 patients); ACTH level dropped gradually, and tumor size was reduced. However, there were 2 intractable cases. Non-functional hypophyseal tumor (19 patients); local tumor control rate was 100% in all patients and visual field was recovered. The size of craniopharyngioma was obviously reduced with peripheral irradiation of 10 Gy dimension about 10 months later. (K.H.)

  11. Radiation and chemical effects on viral transformation and tumor antigen expression. Annual progress report, August 1, 1978--May 1, 1979

    International Nuclear Information System (INIS)

    Coggin, J.H. Jr.

    1979-01-01

    Studies aimed at the biological, biochemical, and immunologic characterization of fetal antigens (EA) in hamsters and mice and locating and determining the distribution of fetal antigens in tumor tissues and in developing fetuses have been underway for several months. Progress has been made in isolating embryonic or fetal antigens from fetuses and from tumor cells. We have developed and reported a reliable lymphocyte transformation assay (LTA) which meets our needs in routinely assaying cell free tumor associated antigen (TAA) preparations from fetal and tumor cells. The assay correlated with transplantation resistance assays and has appropriate specificity. We have also developed the staph-A protein binding assay utilizing anti-serum derived against embryonic antigens present on SV40 tumor cells. In other studies, we have reported increases and perturbations in thymocytes during viral and chemical oncogenesis in hamsters, have developed a simple technique for preserving functional lymphocytes sensitized against TAA by freezing for use in our model system work, have reported the cross-reactivity of tranplantation resistance antigen on a spectrum of chemically induced tumors previously believed to only contain individually specific TSTAs and have recently reported the cross-reactivity of papovavirus induced transplantation resistance antigen in sarcoma cells induced by different viruses. We have concluded our studies of glycosyltransferases in the membranes of developing fetuses and noted no differences in their levels with advancing days of gestation using whold embryo cell populations

  12. Tumor-Associated Macrophages and Neutrophils in Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Jaehong Kim

    2016-01-01

    Full Text Available Distinct tumor microenvironment forms in each progression step of cancer and has diverse capacities to induce both adverse and beneficial consequences for tumorigenesis. It is now known that immune cells can be activated to favor tumor growth and progression, most probably influenced by the tumor microenvironment. Tumor-associated macrophages and tumor-associated neutrophils can exert protumoral functions, enhancing tumor cell invasion and metastasis, angiogenesis, and extracellular matrix remodeling, while inhibiting the antitumoral immune surveillance. Considering that neutrophils in inflammatory environments recruit macrophages and that recruited macrophages affect neutrophil functions, there may be various degrees of interaction between tumor-associated macrophages and tumor-associated neutrophils. Platelets also play an important role in the recruitment and regulation of monocytic and granulocytic cells in the tumor tissues, suggesting that platelet function may be essential for generation of tumor-associated macrophages and tumor-associated neutrophils. In this review, we will explore the biology of tumor-associated macrophages and tumor-associated neutrophils and their possible interactions in the tumor microenvironment. Special attention will be given to the recruitment and activation of these tumor-associated cells and to the roles they play in maintenance of the tumor microenvironment and progression of tumors.

  13. [A review of progress of real-time tumor tracking radiotherapy technology based on dynamic multi-leaf collimator].

    Science.gov (United States)

    Liu, Fubo; Li, Guangjun; Shen, Jiuling; Li, Ligin; Bai, Sen

    2017-02-01

    While radiation treatment to patients with tumors in thorax and abdomen is being performed, further improvement of radiation accuracy is restricted by the tumor intra-fractional motion due to respiration. Real-time tumor tracking radiation is an optimal solution to tumor intra-fractional motion. A review of the progress of real-time dynamic multi-leaf collimator(DMLC) tracking is provided in the present review, including DMLC tracking method, time lag of DMLC tracking system, and dosimetric verification.

  14. CD4+ and Perivascular Foxp3+ T Cells in Glioma Correlate with Angiogenesis and Tumor Progression

    Directory of Open Access Journals (Sweden)

    Luyan Mu

    2017-11-01

    Full Text Available BackgroundAngiogenesis and immune cell infiltration are key features of gliomas and their manipulation of the microenvironment, but their prognostic significance remains indeterminate. We evaluate the interconnection between tumor-infiltrating lymphocyte (TIL and tumor blood-vasculatures in the context of glioma progression.MethodsPaired tumor tissues of 44 patients from three tumor-recurrent groups: diffuse astrocytomas (DA recurred as DA, DA recurred as glioblastomas (GBM, and GBM recurred as GBM were evaluated by genetic analysis, immunohistochemistry for tumor blood vessel density, TIL subsets, and clinical outcomes. These cells were geographically divided into perivascular and intratumoral TILs. Associations were examined between these TILs, CD34+ tumor blood vessels, and clinical outcomes. To determine key changes in TIL subsets, microarray data of 15-paired tumors from patients who failed antiangiogenic therapy- bevacizumab, and 16-paired tumors from chemo-naïve recurrent GBM were also evaluated and compared.ResultsUpon recurrence in primary gliomas, similar kinetic changes were found between tumor blood vessels and each TIL subset in all groups, but only CD4+ including Foxp3+ TILs, positively correlated with the density of tumor blood vessels. CD4 was the predominant T cell population based on the expression of gene-transcripts in primary GBMs, and increased activated CD4+ T cells were revealed in Bevacizumab-resistant recurrent tumors (not in chemo-naïve recurrent tumors. Among these TILs, 2/3 of them were found in the perivascular niche; Foxp3+ T cells in these niches not only correlated with the tumor vessels but were also an independent predictor of shortened recurrence-free survival (RFS (HR = 4.199, 95% CI 1.522–11.584, p = 0.006.ConclusionThe minimal intratumoral T cell infiltration and low detection of CD8 transcripts expression in primary GBMs can potentially limit antitumor response. CD4+ and perivascular Foxp3

  15. Gain-of-function mutant p53 activates small GTPase Rac1 through SUMOylation to promote tumor progression.

    Science.gov (United States)

    Yue, Xuetian; Zhang, Cen; Zhao, Yuhan; Liu, Juan; Lin, Alan W; Tan, Victor M; Drake, Justin M; Liu, Lianxin; Boateng, Michael N; Li, Jun; Feng, Zhaohui; Hu, Wenwei

    2017-08-15

    Tumor suppressor p53 is frequently mutated in human cancer. Mutant p53 often promotes tumor progression through gain-of-function (GOF) mechanisms. However, the mechanisms underlying mutant p53 GOF are not well understood. In this study, we found that mutant p53 activates small GTPase Rac1 as a critical mechanism for mutant p53 GOF to promote tumor progression. Mechanistically, mutant p53 interacts with Rac1 and inhibits its interaction with SUMO-specific protease 1 (SENP1), which in turn inhibits SENP1-mediated de-SUMOylation of Rac1 to activate Rac1. Targeting Rac1 signaling by RNAi, expression of the dominant-negative Rac1 (Rac1 DN), or the specific Rac1 inhibitor NSC23766 greatly inhibits mutant p53 GOF in promoting tumor growth and metastasis. Furthermore, mutant p53 expression is associated with enhanced Rac1 activity in clinical tumor samples. These results uncover a new mechanism for Rac1 activation in tumors and, most importantly, reveal that activation of Rac1 is an unidentified and critical mechanism for mutant p53 GOF in tumorigenesis, which could be targeted for therapy in tumors containing mutant p53. © 2017 Yue et al.; Published by Cold Spring Harbor Laboratory Press.

  16. KITENIN is associated with tumor progression in human gastric cancer.

    Science.gov (United States)

    Ryu, Ho-Seong; Park, Young-Lan; Park, Su-Jin; Lee, Ji-Hee; Cho, Sung-Bum; Lee, Wan-Sik; Chung, Ik-Joo; Kim, Kyung-Keun; Lee, Kyung-Hwa; Kweon, Sun-Seog; Joo, Young-Eun

    2010-09-01

    KAI1 COOH-terminal interacting tetraspanin (KITENIN) promotes tumor cell migration, invasion and metastasis in colon, bladder, head and neck cancer. The aims of current study were to evaluate whether KITENIN affects tumor cell behavior in human gastric cancer cell line and to document the expression of KITENIN in a well-defined series of gastric tumors, including complete long-term follow-up, with special reference to patient prognosis. To evaluate the impact of KITENIN knockdown on behavior of a human gastric cancer cell line, AGS, migration, invasion and proliferation assays using small-interfering RNA were performed. The expression of activator protein-1 (AP-1) target genes and AP-1 transcriptional activity were evaluated by reverse transcription-polymerase chain reaction (RT-PCR) and luciferase reporter assay. The expression of KITENIN and AP-1 target genes by RT-PCR and Western blotting or immunohistochemistry was also investigated in human gastric cancer tissues. The knockdown of KITENIN suppressed tumor cell migration, invasion and proliferation in AGS cells. The mRNA expression of matrix metalloproteinase-1 (MMP-1), MMP-3, cyclooxygenase-2 (COX-2), and CD44 was reduced by knockdown of KITENIN in AGS. AP-1 transcriptional activity was significantly decreased by knockdown of KITENIN in AGS cells. KITENIN expression was significantly increased in human cancer tissues at RNA and protein levels. Expression of MMP-1, MMP-3, COX-2 and CD44 were significantly increased in human gastric cancer tissues. Immunostaining of KITENIN was predominantly identified in the cytoplasm of cancer cells. Expression of KITENIN was significantly associated with tumor size, Lauren classification, depth of invasion, lymph node metastasis, tumor stage and poor survival. These results indicate that KITENIN plays an important role in human gastric cancer progression by AP-1 activation.

  17. Proinflammatory Cytokines in Prostate Cancer Development and Progression Promoted by High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Hua Xu

    2015-01-01

    Full Text Available Background. We aimed to examine whether proinflammatory cytokines participated in prostate cancer (PCa development and progression promoted by high-fat diet (HFD. Methods. TRAMP (transgenic adenocarcinoma mouse prostate mice were randomly divided into two groups: normal diet group and HFD group. Mortality rate and tumor formation rate were examined. TRAMP mice were sacrificed and sampled on the 20th, 24th, and 28th week, respectively. Levels of proinflammatory cytokines, including IL-1α, IL-1β, IL-6, and TNF-α, were tested by FlowCytomix. Prostate tissue of TRAMP mice was used for histology study. Results. A total of 13 deaths of TRAMP mice were observed, among which 3 (8.33% were from the normal diet group and 10 (27.78% from the HFD group. The mortality rate of TRAMP mice from HFD group was significantly higher than that of normal diet group (P=0.032. Tumor formation rate at 20th week of age of HFD group was significantly higher than that of normal diet group (P=0.045. Proinflammatory cytokines levels, including IL-1α, IL-1β, IL-6, and TNF-α, were significantly higher in HFD TRAMP mice. Conclusions. HFD could promote TRAMP mouse PCa development and progression with elevated proinflammatory cytokines levels. Proinflammatory cytokines could contribute to PCa development and progression promoted by HFD.

  18. Locoregional Tumor Progression After Radiation Therapy Influences Overall Survival in Pediatric Patients With Neuroblastoma

    International Nuclear Information System (INIS)

    Pai Panandiker, Atmaram S.; McGregor, Lisa; Krasin, Matthew J.; Wu Shengjie; Xiong Xiaoping; Merchant, Thomas E.

    2010-01-01

    Purpose: There is renewed attention to primary site irradiation and local control for patients with high-risk neuroblastoma (NB). We conducted a retrospective review to identify factors that might predict for locoregional tumor control and its impact on overall survival. Methods and Materials: Between July 2000 through August 2006, a total of 44 pediatric patients with NB received radiation therapy (RT) with curative intent using computed tomography (CT)-based treatment planning. The median age was 3.4 years and the median cumulative dose was 23.4 Gy. Overall survival and locoregional tumor control were measured from the start of RT to the date of death or event as determined by CT/magnetic resonance imaging/meta-iodobenzylguanidine. The influence of age at irradiation, gender, race, cumulative radiation dose, International Neuroblastoma Staging System stage, treatment protocol and resection status was determined with respect to locoregional tumor control. Results: With a median follow-up of 34 months ± 21 months, locoregional tumor progression was observed in 11 (25%) and was evenly divided between primary site and adjacent nodal/visceral site failure. The influence of locoregional control reached borderline statistical significance (p = 0.06). Age (p = 0.5), dose (p = 0.6), resection status (p = 0.7), and International Neuroblastoma Staging System stage (p = 0.08) did not influence overall survival. Conclusions: Overall survival in high-risk neuroblastoma is influenced by locoregional tumor control. Despite CT-based planning, progression in adjacent nodal/visceral sites appears to be common; this requires further investigation regarding target volume definitions, dose, and the effects of systemic therapy.

  19. Myristoylation of Src kinase mediates Src-induced and high-fat diet-accelerated prostate tumor progression in mice.

    Science.gov (United States)

    Kim, Sungjin; Yang, Xiangkun; Li, Qianjin; Wu, Meng; Costyn, Leah; Beharry, Zanna; Bartlett, Michael G; Cai, Houjian

    2017-11-10

    Exogenous fatty acids provide substrates for energy production and biogenesis of the cytoplasmic membrane, but they also enhance cellular signaling during cancer cell proliferation. However, it remains controversial whether dietary fatty acids are correlated with tumor progression. In this study, we demonstrate that increased Src kinase activity is associated with high-fat diet-accelerated progression of prostate tumors and that Src kinases mediate this pathological process. Moreover, in the in vivo prostate regeneration assay, host SCID mice carrying Src(Y529F)-transduced regeneration tissues were fed a low-fat diet or a high-fat diet and treated with vehicle or dasatinib. The high-fat diet not only accelerated Src-induced prostate tumorigenesis in mice but also compromised the inhibitory effect of the anticancer drug dasatinib on Src kinase oncogenic potential in vivo We further show that myristoylation of Src kinase is essential to facilitate Src-induced and high-fat diet-accelerated tumor progression. Mechanistically, metabolism of exogenous myristic acid increased the biosynthesis of myristoyl CoA and myristoylated Src and promoted Src kinase-mediated oncogenic signaling in human cells. Of the fatty acids tested, only exogenous myristic acid contributed to increased intracellular myristoyl CoA levels. Our results suggest that targeting Src kinase myristoylation, which is required for Src kinase association at the cellular membrane, blocks dietary fat-accelerated tumorigenesis in vivo Our findings uncover the molecular basis of how the metabolism of myristic acid stimulates high-fat diet-mediated prostate tumor progression. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. . Modern concepts on carcinogenesis: the value of insufficiency of malignant cell elimination mechanisms in the tumor progression in case of neoplasia at different localizations

    Directory of Open Access Journals (Sweden)

    Chesnokova N.P.

    2016-03-01

    Full Text Available The article presents the review of contemporary concepts of tumor induction mechanisms applicable for neoplastic transformation, promotion and proliferation. The paper also contains an in-depth analysis of results of authors' own observations and study of immunological protection mechanisms of a significant number of patients diagnosed with oncopathologies of mammary and thyroid glands as well as adenocarcinoma of ascending colon. We have established common development patterns of T-cell and B-cell immunodeficiencies that are not influenced by location and proliferation of neoplastic tumors; the progress of such immunodeficincies, however, depends on regional metastasis development. Thus, we can conclude that insufficiency of immunological defense mechanisms leading to disruption of maligned cell elimination process is the primary pathogenic factor for metastatic tumor development.

  1. Podoplanin as Key Player of Tumor Progression and Lymph Vessel Proliferation in Ovarian Cancer.

    Science.gov (United States)

    Cobec, Ionut Marcel; Sas, Ioan; Pirtea, Laurențiu; Cimpean, Anca Maria; Moatar, Aurica Elisabeta; Ceaușu, Raluca Amalia; Raica, Marius

    2016-10-01

    Podoplanin plays a key role in tumor progression and metastasis. We evaluated lymphatics proliferation rate and podoplanin expression in tumor cells of ovarian carcinoma. Seventy-five paraffin-embedded specimens of ovarian cancer were immunohistochemically assessed in order to quantify peritumoral (LMVDP) and intratumoral (LMVDT) lymphatic microvessel density of proliferating lymphatics and for podoplanin variability in tumor cells. LMVDT correlated with proliferating tumor vessels located in the peritumoral area (p=0.024) and with the number of mature vessels located in the intratumoral area (p<0.0001), while LMVDP correlated with peritumoral mature vessels (p<0.000l). Proliferating tumor cells at the invasive front were highly positive for podoplanin. To the best of our knowledge, this study represents the first assessment of lymphatic endothelial cell proliferation correlated with podoplanin expression in tumor cells from ovarian cancer. Our data support podoplanin as a potential target that may help reduce ovarian cancer dissemination and lymphatic metastasis. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  2. A Unique Model System for Tumor Progression in GBM Comprising Two Developed Human Neuro-Epithelial Cell Lines with Differential Transforming Potential and Coexpressing Neuronal and Glial Markers

    Directory of Open Access Journals (Sweden)

    Anjali Shiras

    2003-11-01

    Full Text Available The molecular mechanisms involved in tumor progression from a low-grade astrocytoma to the most malignant glioblastoma multiforme (GBM have been hampered due to lack of suitable experimental models. We have established a model of tumor progression comprising of two cell lines derived from the same astrocytoma tumor with a set of features corresponding to low-grade glioma (as in HNGC-1 and high-grade GBM (as in HNGC-2. The HNGC-1 cell line is slowgrowing, contact-inhibited, nontumorigenic, and noninvasive, whereas HNGC-2 is a rapidly proliferating, anchorage-independent, highly tumorigenic, and invasive cell line. The proliferation of cell lines is independent of the addition of exogenous growth factors. Interestingly, the HNGC-2 cell line displays a near-haploid karyotype except for a disomy of chromosome 2. The two cell lines express the neuronal precursor and progenitor markers vimentin, nestin, MAP-2, and NFP160, as well as glial differentiation protein S100μ. The HNGC-1 cell line also expresses markers of mature neurons like Tuj1 and GFAP, an astrocytic differentiation marker, hence contributing toward a more morphologically differentiated phenotype with a propensity for neural differentiation in vitro. Additionally, overexpression of epidermal growth factor receptor and c-erbB2, and loss of fibronectin were observed only in the HNGC-2 cell line, implicating the significance of these pathways in tumor progression. This in vitro model system assumes importance in unraveling the cellular and molecular mechanisms in differentiation, transformation, and gliomagenesis.

  3. Inhibition of progression of androgen-dependent prostate LNCaP tumors to androgen independence in SCID mice by oral caffeine and voluntary exercise.

    Science.gov (United States)

    Zheng, Xi; Cui, Xiao-Xing; Huang, Mou-Tuan; Liu, Yue; Wagner, George C; Lin, Yong; Shih, Weichung Joe; Lee, Mao-Jung; Yang, Chung S; Conney, Allan H

    2012-01-01

    The effect of oral caffeine or voluntary running wheel exercise (RW) alone or in combination on the progression of human androgen-dependent LNCaP prostate tumors to androgen independence in male severe combined immunodeficiency mice was determined. The mice were injected subcutaneously with LNCaP cells, and when the tumors reached a moderate size, the mice were surgically castrated and treated with caffeine (0.40 mg/ml drinking water) or RW alone or in combination for 42 days. We found that caffeine administration or RW inhibited the progression and growth of androgen-dependent LNCaP tumors to androgen independence, and a combination of the 2 regimens was more effective than the individual regimens alone. The ratios of the percent mitotic cells/caspase-3 positive cells in tumors from the caffeine-treated, RW-treated, or combination-treated mice were decreased by 34%, 38%, and 52%, respectively. Caffeine treatment increased the percentage of mitotic tumor cells undergoing apoptosis (lethal mitosis) whereas RW inhibited the increase in interleukin-6 that occurred during the progression of LNCaP tumors from androgen dependence to androgen independence. Our results indicate that oral administration of caffeine in combination with voluntary exercise may be an effective strategy for the prevention of prostate cancer progression from androgen dependence to androgen independence.

  4. Differentiating Tumor Progression from Pseudoprogression in Patients with Glioblastomas Using Diffusion Tensor Imaging and Dynamic Susceptibility Contrast MRI.

    Science.gov (United States)

    Wang, S; Martinez-Lage, M; Sakai, Y; Chawla, S; Kim, S G; Alonso-Basanta, M; Lustig, R A; Brem, S; Mohan, S; Wolf, R L; Desai, A; Poptani, H

    2016-01-01

    Early assessment of treatment response is critical in patients with glioblastomas. A combination of DTI and DSC perfusion imaging parameters was evaluated to distinguish glioblastomas with true progression from mixed response and pseudoprogression. Forty-one patients with glioblastomas exhibiting enhancing lesions within 6 months after completion of chemoradiation therapy were retrospectively studied. All patients underwent surgery after MR imaging and were histologically classified as having true progression (>75% tumor), mixed response (25%-75% tumor), or pseudoprogression (<25% tumor). Mean diffusivity, fractional anisotropy, linear anisotropy coefficient, planar anisotropy coefficient, spheric anisotropy coefficient, and maximum relative cerebral blood volume values were measured from the enhancing tissue. A multivariate logistic regression analysis was used to determine the best model for classification of true progression from mixed response or pseudoprogression. Significantly elevated maximum relative cerebral blood volume, fractional anisotropy, linear anisotropy coefficient, and planar anisotropy coefficient and decreased spheric anisotropy coefficient were observed in true progression compared with pseudoprogression (P < .05). There were also significant differences in maximum relative cerebral blood volume, fractional anisotropy, planar anisotropy coefficient, and spheric anisotropy coefficient measurements between mixed response and true progression groups. The best model to distinguish true progression from non-true progression (pseudoprogression and mixed) consisted of fractional anisotropy, linear anisotropy coefficient, and maximum relative cerebral blood volume, resulting in an area under the curve of 0.905. This model also differentiated true progression from mixed response with an area under the curve of 0.901. A combination of fractional anisotropy and maximum relative cerebral blood volume differentiated pseudoprogression from

  5. Simulating tumor growth in confined heterogeneous environments

    International Nuclear Information System (INIS)

    Gevertz, Jana L; Torquato, Salvatore; Gillies, George T

    2008-01-01

    The holy grail of computational tumor modeling is to develop a simulation tool that can be utilized in the clinic to predict neoplastic progression and propose individualized optimal treatment strategies. In order to develop such a predictive model, one must account for many of the complex processes involved in tumor growth. One interaction that has not been incorporated into computational models of neoplastic progression is the impact that organ-imposed physical confinement and heterogeneity have on tumor growth. For this reason, we have taken a cellular automaton algorithm that was originally designed to simulate spherically symmetric tumor growth and generalized the algorithm to incorporate the effects of tissue shape and structure. We show that models that do not account for organ/tissue geometry and topology lead to false conclusions about tumor spread, shape and size. The impact that confinement has on tumor growth is more pronounced when a neoplasm is growing close to, versus far from, the confining boundary. Thus, any clinical simulation tool of cancer progression must not only consider the shape and structure of the organ in which a tumor is growing, but must also consider the location of the tumor within the organ if it is to accurately predict neoplastic growth dynamics

  6. APRIL is overexpressed in cancer: link with tumor progression

    International Nuclear Information System (INIS)

    Moreaux, Jérôme; Veyrune, Jean-Luc; De Vos, John; Klein, Bernard

    2009-01-01

    BAFF and APRIL share two receptors – TACI and BCMA – and BAFF binds to a third receptor, BAFF-R. Increased expression of BAFF and APRIL is noted in hematological malignancies. BAFF and APRIL are essential for the survival of normal and malignant B lymphocytes, and altered expression of BAFF or APRIL or of their receptors (BCMA, TACI, or BAFF-R) have been reported in various B-cell malignancies including B-cell non-Hodgkin's lymphoma, chronic lymphocytic leukemia, Hodgkin's lymphoma, multiple myeloma, and Waldenstrom's macroglobulinemia. We compared the expression of BAFF, APRIL, TACI and BAFF-R gene expression in 40 human tumor types – brain, epithelial, lymphoid, germ cells – to that of their normal tissue counterparts using publicly available gene expression data, including the Oncomine Cancer Microarray database. We found significant overexpression of TACI in multiple myeloma and thyroid carcinoma and an association between TACI expression and prognosis in lymphoma. Furthermore, BAFF and APRIL are overexpressed in many cancers and we show that APRIL expression is associated with tumor progression. We also found overexpression of at least one proteoglycan with heparan sulfate chains (HS), which are coreceptors for APRIL and TACI, in tumors where APRIL is either overexpressed or is a prognostic factor. APRIL could induce survival or proliferation directly through HS proteoglycans. Taken together, these data suggest that APRIL is a potential prognostic factor for a large array of malignancies

  7. LACTB, a novel epigenetic silenced tumor suppressor, inhibits colorectal cancer progression by attenuating MDM2-mediated p53 ubiquitination and degradation.

    Science.gov (United States)

    Zeng, Kaixuan; Chen, Xiaoxiang; Hu, Xiuxiu; Liu, Xiangxiang; Xu, Tao; Sun, Huiling; Pan, Yuqin; He, Bangshun; Wang, Shukui

    2018-06-13

    Colorectal cancer (CRC) is one of the most common aggressive malignancies. Like other solid tumors, inactivation of tumor suppressor genes and activation of oncogenes occur during CRC development and progression. Recently, a novel tumor suppressor, LACTB, was proposed to inhibit tumor progression, but the functional and clinical significance of this tumor suppressor in CRC remains unexplored. Herein, we found LACTB was significantly downregulated in CRC due to promoter methylation and histone deacetylation, which was associated with metastasis and advanced clinical stage. CRC patients with low LACTB expression had poorer overall survival and LACTB also determined to be an independent prognostic factor for poorer outcome. Ectopic expression of LACTB suppressed CRC cells proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) in vitro and inhibited CRC growth and metastasis in vivo, while knockout of LACTB by CRISPR/Cas9 gene editing technique resulted in an opposite phenotype. Interestingly, LACTB could exert antitumorigenic effect only in HCT116 and HCT8 cells harboring wild-type TP53, but not in HT29 and SW480 cells harboring mutant TP53 or HCT116 p53 -/- cells. Mechanistic studies demonstrated that LACTB could directly bind to the C terminus of p53 to inhibit p53 degradation by preventing MDM2 from interacting with p53. Moreover, ablation of p53 attenuated the antitumorigenic effects of LACTB overexpression in CRC. Collectively, our findings successfully demonstrate for the first time that LACTB is a novel epigenetic silenced tumor suppressor through modulating the stability of p53, supporting the pursuit of LACTB as a potential therapeutic target for CRC.

  8. Canolol inhibits gastric tumors initiation and progression through COX-2/PGE2 pathway in K19-C2mE transgenic mice.

    Directory of Open Access Journals (Sweden)

    Donghui Cao

    Full Text Available 4-Vinyl-2, 6-dimethoxyphenol (canolol is an antioxidant phenolic compound extracted from crude canola oil. In current research, K19-C2mE transgenic mice, developing hyperplastic tumors spontaneously in the glandular stomach, were used to study the mechanisms involved in the anti-inflammation and anti-tumor effects of canolol. Tg mice receiving canolol diet had a reduced tumor incidence, to 41.2%, compared with Non-treatment Tg mice, 77.8% of which had gastric tumor (P=0.002. Besides that, the mean tumor diameter was decreased from 6.5 mm to 4.5 mm (P<0.001 after canolol administration. COX-2/PGE2 pathway is known to play pivotal role in inflammation-induced gastric tumorigenesis. The neutrophils and lymphocytes infiltration was suppressed significantly, and the mRNA levels of the proinflammatory cytokines COX-2, IL-1β and IL-12b were also downregulated in gastric mucosa. Additionally, immunohistochemical analysis showed that COX-2, EP2, Gαs and β-catenin, key factors involving in PGE2 signal transduction, were positive staining with higher H scores in Non-treatment Tg mice, while the expressions were suppressed significantly by 0.1% canolol (P<0.001. In addition, tumor-suppressor miR-7 was reactivated after canolol administration, and COX-2 was showed to be a functional target of miR-7 to suppress the tumor progression. In conclusion, canolol could inhibit the gastritis-related tumor initiation and progression, and the suppression effect was correlated with the blocking up of canonical COX-2/PGE2 signaling pathway and might be regulated by miR-7.

  9. Pathogenesis and progression of fibroepithelial breast tumors

    NARCIS (Netherlands)

    Kuijper, Arno

    2006-01-01

    Fibroadenoma and phyllodes tumor are fibroepithelial breast tumors. These tumors are biphasic, i.e. they are composed of stroma and epithelium. The behavior of fibroadenomas is benign, whereas phyllodes tumors can recur and even metastasize. Classification criteria for both tumors show considerable

  10. Tumor progression: analysis of the instability of the metastatic phenotype, sensitivity to radiation and chemotherapy

    International Nuclear Information System (INIS)

    Welch, D.R.

    1984-01-01

    The major complications for tumor therapy are 1) tumor spread (metastasis); 2) the mixed nature of tumors (heterogeneity); and 3) the capacity of tumors to evolve (progress). To study these tumor characteristics, the rat 13762NF mammary adenocarcinoma was cloned and studied for metastatic properties and sensitivities to therapy (chemotherapy, radiation and hyperthermia). The cell clones were heterogeneous and no correlation between metastatic potential and therapeutic sensitivities was observed. Further, these phenotypes were unstable during pasage in vitro; yet, the changes were clone dependent and reproducible using different cryoprotected cell stocks. To understand the phenotypic instability, subclones were isolated from low and high passage cell clones. The results demonstrated that 1) tumor cells are heterogeneous for multiple phenotypes; 2) tumor cells are unstable for multiple phenotypes; 3) the magnitude, direction and time of occurrence of phenotypic drift is clone dependent; 4) the sensitivity of cell clones to ionizing radiation (γ or heat) and chemotherapy agents is independent of their metastatic potential; 5) shifts in metastatic potential and sensitivity to therapy may occur simultaneously but are not linked; and 6) tumor cells independently diverge to form several subpopulations with unique phenotypic profiles

  11. Colorectal cancer: genetic abnormalities, tumor progression, tumor heterogeneity, clonal evolution and tumor-initiating cells.

    Science.gov (United States)

    Testa, Ugo; Pelosi, Elvira; Castelli, Germana

    2018-04-13

    Colon cancer is the third most common cancer worldwide. Most colorectal cancer occurrences are sporadic, not related to genetic predisposition or family history; however, 20-30% of patients with colorectal cancer have a family history of colorectal cancer and 5% of these tumors arise in the setting of a Mendelian inheritance syndrome. In many patients, the development of a colorectal cancer is preceded by a benign neoplastic lesion: either an adenomatous polyp or a serrated polyp. Studies carried out in the last years have characterized the main molecular alterations occurring in colorectal cancers, showing that the tumor of each patient displays from two to eight driver mutations. The ensemble of molecular studies, including gene expression studies, has led to two proposed classifications of colorectal cancers, with the identification of four/five non-overlapping groups. The homeostasis of the rapidly renewing intestinal epithelium is ensured by few stem cells present at the level of the base of intestinal crypts. Various experimental evidence suggests that colorectal cancers may derive from the malignant transformation of intestinal stem cells or of intestinal cells that acquire stem cell properties following malignant transformation. Colon cancer stem cells seem to be involved in tumor chemoresistance, radioresistance and relapse.

  12. The Tumor Macroenvironment: Cancer-Promoting Networks Beyond Tumor Beds.

    Science.gov (United States)

    Rutkowski, Melanie R; Svoronos, Nikolaos; Perales-Puchalt, Alfredo; Conejo-Garcia, Jose R

    2015-01-01

    During tumor progression, alterations within the systemic tumor environment, or macroenvironment, result in the promotion of tumor growth, tumor invasion to distal organs, and eventual metastatic disease. Distally produced hormones, commensal microbiota residing within mucosal surfaces, myeloid cells and even the bone marrow impact the systemic immune system, tumor growth, and metastatic spread. Understanding the reciprocal interactions between the cells and soluble factors within the macroenvironment and the primary tumor will enable the design of specific therapies that have the potential to prevent dissemination and metastatic spread. This chapter will summarize recent findings detailing how the primary tumor and systemic tumor macroenvironment coordinate malignant progression. © 2015 Elsevier Inc. All rights reserved.

  13. Jnk2 effects on tumor development, genetic instability and replicative stress in an oncogene-driven mouse mammary tumor model.

    Directory of Open Access Journals (Sweden)

    Peila Chen

    2010-05-01

    Full Text Available Oncogenes induce cell proliferation leading to replicative stress, DNA damage and genomic instability. A wide variety of cellular stresses activate c-Jun N-terminal kinase (JNK proteins, but few studies have directly addressed the roles of JNK isoforms in tumor development. Herein, we show that jnk2 knockout mice expressing the Polyoma Middle T Antigen transgene developed mammary tumors earlier and experienced higher tumor multiplicity compared to jnk2 wildtype mice. Lack of jnk2 expression was associated with higher tumor aneuploidy and reduced DNA damage response, as marked by fewer pH2AX and 53BP1 nuclear foci. Comparative genomic hybridization further confirmed increased genomic instability in PyV MT/jnk2-/- tumors. In vitro, PyV MT/jnk2-/- cells underwent replicative stress and cell death as evidenced by lower BrdU incorporation, and sustained chromatin licensing and DNA replication factor 1 (CDT1 and p21(Waf1 protein expression, and phosphorylation of Chk1 after serum stimulation, but this response was not associated with phosphorylation of p53 Ser15. Adenoviral overexpression of CDT1 led to similar differences between jnk2 wildtype and knockout cells. In normal mammary cells undergoing UV induced single stranded DNA breaks, JNK2 localized to RPA (Replication Protein A coated strands indicating that JNK2 responds early to single stranded DNA damage and is critical for subsequent recruitment of DNA repair proteins. Together, these data support that JNK2 prevents replicative stress by coordinating cell cycle progression and DNA damage repair mechanisms.

  14. Repression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL but not its receptors during oral cancer progression

    Directory of Open Access Journals (Sweden)

    Muller Susan

    2007-06-01

    Full Text Available Abstract Background TRAIL plays an important role in host immunosurveillance against tumor progression, as it induces apoptosis of tumor cells but not normal cells, and thus has great therapeutic potential for cancer treatment. TRAIL binds to two cell-death-inducing (DR4 and DR5 and two decoy (DcR1, and DcR2 receptors. Here, we compare the expression levels of TRAIL and its receptors in normal oral mucosa (NOM, oral premalignancies (OPM, and primary and metastatic oral squamous cell carcinomas (OSCC in order to characterize the changes in their expression patterns during OSCC initiation and progression. Methods DNA microarray, immunoblotting and immunohistochemical analyses were used to examine the expression levels of TRAIL and its receptors in oral epithelial cell lines and in archival tissues of NOM, OPM, primary and metastatic OSCC. Apoptotic rates of tumor cells and tumor-infiltrating lymphocytes (TIL in OSCC specimens were determined by cleaved caspase 3 immunohistochemistry. Results Normal oral epithelia constitutively expressed TRAIL, but expression was progressively lost in OPM and OSCC. Reduction in DcR2 expression levels was noted frequently in OPM and OSCC compared to respective patient-matched uninvolved oral mucosa. OSCC frequently expressed DR4, DR5 and DcR1 but less frequently DcR2. Expression levels of DR4, DR5 and DcR1 receptors were not significantly altered in OPM, primary OSCC and metastatic OSCC compared to patient-matched normal oral mucosa. Expression of proapoptotic TRAIL-receptors DR4 and DR5 in OSCC seemed to depend, at least in part, on whether or not these receptors were expressed in their parental oral epithelia. High DR5 expression in primary OSCC correlated significantly with larger tumor size. There was no significant association between TRAIL-R expression and OSSC histology grade, nodal status or apoptosis rates of tumor cells and TIL. Conclusion Loss of TRAIL expression is an early event during oral

  15. Repression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) but not its receptors during oral cancer progression

    International Nuclear Information System (INIS)

    Vigneswaran, Nadarajah; Baucum, Darryl C; Wu, Jean; Lou, Yahuan; Bouquot, Jerry; Muller, Susan; Zacharias, Wolfgang

    2007-01-01

    TRAIL plays an important role in host immunosurveillance against tumor progression, as it induces apoptosis of tumor cells but not normal cells, and thus has great therapeutic potential for cancer treatment. TRAIL binds to two cell-death-inducing (DR4 and DR5) and two decoy (DcR1, and DcR2) receptors. Here, we compare the expression levels of TRAIL and its receptors in normal oral mucosa (NOM), oral premalignancies (OPM), and primary and metastatic oral squamous cell carcinomas (OSCC) in order to characterize the changes in their expression patterns during OSCC initiation and progression. DNA microarray, immunoblotting and immunohistochemical analyses were used to examine the expression levels of TRAIL and its receptors in oral epithelial cell lines and in archival tissues of NOM, OPM, primary and metastatic OSCC. Apoptotic rates of tumor cells and tumor-infiltrating lymphocytes (TIL) in OSCC specimens were determined by cleaved caspase 3 immunohistochemistry. Normal oral epithelia constitutively expressed TRAIL, but expression was progressively lost in OPM and OSCC. Reduction in DcR2 expression levels was noted frequently in OPM and OSCC compared to respective patient-matched uninvolved oral mucosa. OSCC frequently expressed DR4, DR5 and DcR1 but less frequently DcR2. Expression levels of DR4, DR5 and DcR1 receptors were not significantly altered in OPM, primary OSCC and metastatic OSCC compared to patient-matched normal oral mucosa. Expression of proapoptotic TRAIL-receptors DR4 and DR5 in OSCC seemed to depend, at least in part, on whether or not these receptors were expressed in their parental oral epithelia. High DR5 expression in primary OSCC correlated significantly with larger tumor size. There was no significant association between TRAIL-R expression and OSSC histology grade, nodal status or apoptosis rates of tumor cells and TIL. Loss of TRAIL expression is an early event during oral carcinogenesis and may be involved in dysregulation of apoptosis and

  16. Mechanisms of Altered Control of Proliferation by Cyclic Amp/Protein Kinase A During Mammary Tumor Progression

    National Research Council Canada - National Science Library

    Imagawa, Walter

    1999-01-01

    We hypothesize that alterations in the regulation of growth by growth factors and cAMP during mammary tumor progression are related to MAP kinase signaling pathways known to be affected by cAMP and pertussis toxin (PT...

  17. Cancer vaccines: the challenge of developing an ideal tumor killing system.

    Science.gov (United States)

    Mocellin, Simone

    2005-09-01

    Despite the evidence that the immune system plays a significant role in controlling tumor growth in natural conditions and in response to therapeutic vaccination, cancer cells can survive their attack as the disease progresses and no vaccination regimen should be currently proposed to patients outside experimental clinical trials. Clinical results show that the immune system can be actively polarized against malignant cells by means of a variety of vaccination strategies, and that in some cases this is associated with tumor regression. This implies that under some unique circumstances, the naturally "dormant" immune effectors can actually be put at work and used as endogenous weapons against malignant cells. Consequently, the main challenge of tumor immunologists appears to lie on the ability of reproducing those conditions in a larger set of patients. The complexity of the immune network and the still enigmatic host-tumor interactions make these tasks at the same time challenging and fascinating. Recent tumor immunology findings are giving new impetus to the development of more effective vaccination strategies and might revolutionize the way of designing the next generation of cancer vaccines. In the near future, the implementation of these insights in the clinical setting and the completion/conduction of comparative randomized phase III trials will allow oncologists to define the actual role of cancer vaccines in the fight against malignancy.

  18. The Research Progress of SiRNA Targeting Notch1 on Tumor Cells: A Mini Review of the State of the Art

    Directory of Open Access Journals (Sweden)

    Lanfen Huo

    2016-09-01

    Full Text Available Notch signaling is a highly conserved signaling pathway, playing an important role in a variety of cell differentiation, development and regulation. Notch signaling includes Notch1-4; Notch1 gene encodes Notch1 signaling that can shorten cell cycle, enhance cell proliferation, inhibit cell differentiation, and promote apoptosis. Mutation and overexpression of the Notch1 gene may induce tumorigenesis, which plays an important role in the development of tumors across a variety of signaling pathways. Currently, using RNA interference technology (RNAi synthesizing small interference RNA (siRNA targeting Notch1 gene(siNotch1)has become a hot topic, and clinical application of gene silencing has also obtained a certain therapeutic effect. In this paper, the application of Notch1 gene silencing in tumor progress was reviewed.

  19. Up-regulation of hepatoma-derived growth factor facilitates tumor progression in malignant melanoma [corrected].

    Directory of Open Access Journals (Sweden)

    Han-En Tsai

    Full Text Available Cutaneous malignant melanoma is the fastest increasing malignancy in humans. Hepatoma-derived growth factor (HDGF is a novel growth factor identified from human hepatoma cell line. HDGF overexpression is correlated with poor prognosis in various types of cancer including melanoma. However, the underlying mechanism of HDGF overexpression in developing melanoma remains unclear. In this study, human melanoma cell lines (A375, A2058, MEL-RM and MM200 showed higher levels of HDGF gene expression, whereas human epidermal melanocytes (HEMn expressed less. Exogenous application of HDGF stimulated colony formation and invasion of human melanoma cells. Moreover, HDGF overexpression stimulated the degree of invasion and colony formation of B16-F10 melanoma cells whereas HDGF knockdown exerted opposite effects in vitro. To evaluate the effects of HDGF on tumour growth and metastasis in vivo, syngeneic mouse melanoma and metastatic melanoma models were performed by manipulating the gene expression of HDGF in melanoma cells. It was found that mice injected with HDGF-overexpressing melanoma cells had greater tumour growth and higher metastatic capability. In contrast, mice implanted with HDGF-depleted melanoma cells exhibited reduced tumor burden and lung metastasis. Histological analysis of excised tumors revealed higher degree of cell proliferation and neovascularization in HDGF-overexpressing melanoma. The present study provides evidence that HDGF promotes tumor progression of melanoma and targeting HDGF may constitute a novel strategy for the treatment of melanoma.

  20. SU-F-J-89: Assessment of Delivered Dose in Understanding HCC Tumor Progression Following SBRT

    Energy Technology Data Exchange (ETDEWEB)

    McCulloch, M; Cazoulat, G; Polan, D; Schipper, M; Lawrence, T; Feng, M; Brock, K [University of Michigan, Ann Arbor, MI (United States)

    2016-06-15

    Purpose: It is well documented that the delivered dose to patients undergoing radiotherapy (RT) is often different from the planned dose due to geometric variability and uncertainties in patient positioning. Recent work suggests that accumulated dose to the GTV is a better predictor of progression compared to the minimum planned dose to the PTV. The purpose of this study is to evaluate if deviations from the planned dose can contributed to tumor progression. Methods: From 2010 to 2014 an in-house Phase II clinical trial of adaptive stereotactic body RT was completed. Of the 90 patients enrolled, 7 patients had a local recurrence defined on contrast enhanced CT or MR imaging 3–21 months after completion of RT. Retrospective dose accumulation was performed using a biomechanical model-based deformable image registration algorithm (DIR) to accumulate the dose based on the kV CBCT acquired prior to each fraction for soft tissue alignment of the patient. The DIR algorithm was previously validated for geometric accuracy in the liver (target registration error = 2.0 mm) and dose accumulation in a homogeneous image, similar to a liver CBCT (gamma index = 91%). Following dose accumulation, the minimum dose to 0.5 cc of the GTV was compared between the planned and accumulated dose. Work is ongoing to evaluate the tumor control probability based on the planned and accumulated dose. Results: DIR and dose accumulation was performed on all fractions for 6 patients with local recurrence. The difference in minimum dose to 0.5 cc of the GTV ranged from −0.3–2.3 Gy over 3–5 fractions. One patient had a potentially significant difference in minimum dose of 2.3 Gy. Conclusion: Dose accumulation can reveal tumor underdosage, improving our ability to understand recurrence and tumor progression patterns, and could aid in adaptive re-planning during therapy to correct for this. This work was supported in part by NIH P01CA059827.

  1. Receptor for activated protein kinase C 1 suppresses gastric tumor progression through nuclear factor-kB pathway.

    Science.gov (United States)

    Yong-Zheng, X; Wan-Li, M; Ji-Ming, M; Xue-Qun, R

    2015-12-01

    Nuclear factor-kB (NF-kB) activity is crucial for survival and proliferation of many kinds of malignancies, including gastric cancer (GC). The receptor for activated protein kinase C 1 (RACK1) is known to regulate tumor development, whereas the underlined mechanism has not been described clearly. We analyzed expression of RACK1 in paired human GC samples by both real-time polymerase chain reaction (PCR) and western blot. Effects of RACK inhibition with small interfering RNA or its overexpression in cultured GC cell lines were evaluated in cell viabilities. NF-kB signaling was investigated using luciferase reporter assay and real-time PCR. RACK1 was significantly decreased in GC samples. Knockdown of RACK elevated GC cell viabilities, whereas overexpression of RACK1 suppressed tumorigenesis of GC cells. Importantly, NF-kB signaling was enhanced after RACK1 expression was inhibited, suggesting the negative regulation of the pro-oncogenic NF-kB activity by RACK1 might contribute to its tumor suppressor role in GC cells. Our results support that RACK1 suppresses gastric tumor progression through the NF-kB signaling pathway.

  2. Macroscopy predicts tumor progression in gastric cancer: A retrospective patho-historical analysis based on Napoleon Bonaparte's autopsy report.

    Science.gov (United States)

    Dawson, Heather; Novotny, Alexander; Becker, Karen; Reim, Daniel; Langer, Rupert; Gullo, Irene; Svrcek, Magali; Niess, Jan H; Tutuian, Radu; Truninger, Kaspar; Diamantis, Ioannis; Blank, Annika; Zlobec, Inti; Riddell, Robert H; Carneiro, Fatima; Fléjou, Jean-François; Genta, Robert M; Lugli, Alessandro

    2016-11-01

    The cause of Napoleon Bonaparte's death remains controversial. Originally suggested to be gastric cancer, whether this was truly neoplastic or a benign lesion has been recently debated. To interpret findings of original autopsy reports in light of the current knowledge of gastric cancer and to highlight the significance of accurate macroscopy in modern-day medicine. Using original autopsy documents, endoscopic images and data from current literature, Napoleon's gastric situation was reconstructed. In a multicenter collection of 2071 gastric cancer specimens, the relationship between tumor size and features of tumor progression was assessed. Greater tumor size was associated with advanced pT, nodal metastases and Borrmann types 3-4 (pNapoleon's autopsy with present-day knowledge to support gastric cancer as his terminal illness and emphasizes the role of macroscopy, which may provide valuable information on gastric cancer progression and aid patient management. Copyright © 2016 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  3. Characterizing and Targeting Bone Marrow-Derived Inflammatory Cells in Driving the Malignancy and Progression of Childhood Astrocytic Brain Tumors

    Science.gov (United States)

    2015-09-01

    described previously (21). Bioluminesence IVIS -100 (Xenogen) and MRI (Bruker Biospin) were performed to monitor the progression of tumor. Tumor margins in...Cancer Cell 2006;9:157–73. 16. Tang Z, Arjunan P, Lee C, Li Y, Kumar A, Hou X, et al. Survival effect of PDGF-CC rescues neurons from apoptosis in both

  4. Podocalyxin expression in malignant astrocytic tumors

    International Nuclear Information System (INIS)

    Hayatsu, Norihito; Kaneko, Mika Kato; Mishima, Kazuhiko; Nishikawa, Ryo; Matsutani, Masao; Price, Janet E.; Kato, Yukinari

    2008-01-01

    Podocalyxin is an anti-adhesive mucin-like transmembrane sialoglycoprotein that has been implicated in the development of aggressive forms of cancer. Podocalyxin is also known as keratan sulfate (KS) proteoglycan. Recently, we revealed that highly sulfated KS or another mucin-like transmembrane sialoglycoprotein podoplanin/aggrus is upregulated in malignant astrocytic tumors. The aim of this study is to examine the relationship between podocalyxin expression and malignant progression of astrocytic tumors. In this study, 51 astrocytic tumors were investigated for podocalyxin expression using immunohistochemistry, Western blot analysis, and quantitative real-time PCR. Immunohistochemistry detected podocalyxin on the surface of tumor cells in six of 14 anaplastic astrocytomas (42.9%) and in 17 of 31 glioblastomas (54.8%), especially around proliferating endothelial cells. In diffuse astrocytoma, podocalyxin expression was observed only in vascular endothelial cells. Podocalyxin might be associated with the malignant progression of astrocytic tumors, and be a useful prognostic marker for astrocytic tumors

  5. Imaging study of lymphoreticular tumor development in ataxia-telangiectasia and Nijmegen breakage syndrome

    International Nuclear Information System (INIS)

    Martinez-Leon, M. I.; Ceres-Ruiz, L.; Cuesta, M. A.; Garcia-Martin, F. J.

    2003-01-01

    Ataxia-telangiectasia (AT), or Louis-Bar syndrome, is an autosomal recessive illness characterized by progressive cerebellar ataxia, oculo-cutaneous telangiectasia, immunodeficiency combined with susceptibility to sinopulmonary infections and high incidence of neoplastic development. Nijmegen breakage syndrome (NBS) is a variant of AT, is also an autosomal recessive illness that presents cerebellar ataxia, as well as combined immunodeficiency and a tendency toward tumor development. Contrary to Louis-Bar syndrome, it doesn't present telangiectasia and exhibits a characteristics phenotype (short stature, bird-like face and microcephaly). Both entities are classified as syndrome of chromosomal instability or chromosomal fragility, a group which also includes Bloom syndrome and Fanconi anemia. All of these show an increase in the frequency of neoplastic pathologies, mainly lymphoid tumors. We present three patients,two with AT and one with NBS, who developed different lymphoma types in the course of the illness. We highlight the most outstanding aspects from a clinical-radiological point of view. (Author) 17 refs

  6. High CD49f expression is associated with osteosarcoma tumor progression: a study using patient-derived primary cell cultures.

    Science.gov (United States)

    Penfornis, Patrice; Cai, David Z; Harris, Michael R; Walker, Ryan; Licini, David; Fernandes, Joseph D A; Orr, Griffin; Koganti, Tejaswi; Hicks, Chindo; Induru, Spandana; Meyer, Mark S; Khokha, Rama; Barr, Jennifer; Pochampally, Radhika R

    2014-08-01

    Overall prognosis for osteosarcoma (OS) is poor despite aggressive treatment options. Limited access to primary tumors, technical challenges in processing OS tissues, and the lack of well-characterized primary cell cultures has hindered our ability to fully understand the properties of OS tumor initiation and progression. In this study, we have isolated and characterized cell cultures derived from four central high-grade human OS samples. Furthermore, we used the cell cultures to study the role of CD49f in OS progression. Recent studies have implicated CD49f in stemness and multipotency of both cancer stem cells and mesenchymal stem cells. Therefore, we investigated the role of CD49f in osteosarcomagenesis. First, single cell suspensions of tumor biopsies were subcultured and characterized for cell surface marker expression. Next, we characterized the growth and differentiation properties, sensitivity to chemotherapy drugs, and anchorage-independent growth. Xenograft assays showed that cell populations expressing CD49f(hi) /CD90(lo) cell phenotype produced an aggressive tumor. Multiple lines of evidence demonstrated that inhibiting CD49f decreased the tumor-forming ability. Furthermore, the CD49f(hi) /CD90(lo) cell population is generating more aggressive OS tumor growth and indicating this cell surface marker could be a potential candidate for the isolation of an aggressive cell type in OSs. © 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  7. [The development of novel tumor targeting delivery strategy].

    Science.gov (United States)

    Gao, Hui-le; Jiang, Xin-guo

    2016-02-01

    Tumor is one of the most serious threats for human being. Although many anti-tumor drugs are approved for clinical use, the treatment outcome is still modest because of the poor tumor targeting efficiency and low accumulation in tumor. Therefore, it is important to deliver anti-tumor drug into tumor efficiently, elevate drug concentration in tumor tissues and reduce the drug distribution in normal tissues. And it has been one of the most attractive directions of pharmaceutical academy and industry. Many kinds of strategies, especially various nanoparticulated drug delivery systems, have been developed to address the critical points of complex tumor microenvironment, which are partially or mostly satisfied for tumor treatment. In this paper, we carefully reviewed the novel targeting delivery strategies developed in recent years. The most powerful method is passive targeting delivery based on the enhanced permeability and retention(EPR) effect, and most commercial nanomedicines are based on the EPR effect. However, the high permeability and retention require different particle sizes, thus several kinds of size-changeable nanoparticles are developed, such as size reducible particles and assemble particles, to satisfy the controversial requirement for particle size and enhance both tumor retention and penetration. Surface charge reversible nanoparticles also shows a high efficiency because the anionic charge in blood circulation and normal organs decrease the unintended internalization. The charge can change into positive in tumor microenvironment, facilitating drug uptake by tumor cells. Additionally, tumor microenvironment responsive drug release is important to decrease drug side effect, and many strategies are developed, such as p H sensitive release and enzyme sensitive release. Except the responsive nanoparticles, shaping tumor microenvironment could attenuate the barriers in drug delivery, for example, decreasing tumor collagen intensity and normalizing tumor

  8. Overexpression of prostate tumor overexpressed 1 correlates with tumor progression and predicts poor prognosis in breast cancer

    International Nuclear Information System (INIS)

    Lei, Fangyong; Zhang, Longjuan; Li, Xinghua; Lin, Xi; Wu, Shu; Li, Fengyan; Liu, Junling

    2014-01-01

    Prostate tumor overexpressed 1 (PTOV1) was demonstrated to play an important role in cancer progression and was correlated with unfavorable clinical outcome. However, the clinical role of PTOV1 in cancer remains largely unknown. This study aimed to investigate the expression and clinicopathological significance of PTOV1 in breast cancer. The mRNA and protein expression levels of PTOV1 were analyzed in 12 breast cancer cell lines and eight paired breast cancer tumors by semi-quantitative real time-PCR and western blotting, respectively. Immunohistochemistry was performed to assess PTOV1 protein expression in 169 paraffin-embedded, archived breast cancer samples. Survival analysis and Cox regression analysis were performed to investigate the clinicopathological significance of PTOV1 expression. Our data revealed that PTOV1 was frequently overexpressed in breast cancer cell lines compared to normal human breast epithelial cells and in primary breast cancer samples compared to adjacent noncancerous breast tissues, at both the mRNA and protein levels. Moreover, high expression of PTOV1 in breast cancer is strongly associated with clinicopathological characteristics and estrogen receptor expression status (P = 0.003). Breast cancer patients with higher PTOV1 expression had substantially shorter survival times than patients with lower PTOV1 expression (P < 0.001). Univariate and multivariate analysis revealed that PTOV1 might be an independent prognostic factor for breast cancer patients (P = 0.005). Our study showed that PTOV1 is upregulated in breast cancer cell lines and clinical samples, and its expression was positively associated with progression and aggressiveness of breast cancer, suggesting that PTOV1 could serve as an independent prognostic marker

  9. Analysis of factors affecting local tumor progression of colorectal cancer liver metastasis after radiofrequency ablation

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Seong Hee; Cho, Yun Ku; Choi, Seung A; Kim, Mi Young; Lee, Ho Suk [Veterans Health Service Medical Center, Seoul (Korea, Republic of)

    2017-03-15

    The purpose of this study was to evaluate the independent predictive factors for local tumor progression (LTP) of colorectal liver metastasis (CRLM) after radiofrequency ablation (RFA). Patients with CRLM were included in the analysis if nodules were up to five in number, each nodule was ≤ 5 cm, and RFA was performed in our center from January 2006 to December 2015. Univariate and multivariate analyses to identify the predictors of LTP were performed by using a Cox proportional hazard model. Overall, 58 tumors from 38 patients were included in this study. LTP occurred in 14 tumors from 9 patients. The overall 1- and 3-year LTP rates were 23.5% and 29.4%, respectively. Multivariate analysis showed that tumor size > 2 cm and insufficient ablative margin were two independently significant adverse prognostic factors for LTP (p = 0.045 and 0.022, respectively). The 3-year LTP rates for 33 and 25 tumors with and without sufficient ablative margin were 4.5% and 61.2%, respectively. The difference was statistically significant (p < 0.001). The difference in the 3-year LTP rates according to the tumor size was not statistically significant (p = 0.791). Insufficient ablative margin seems to be the most potent predictor of LTP after RFA of CRLM.

  10. Focal degeneration of basal cells and the resultant auto-immunoreactions: a novel mechanism for prostate tumor progression and invasion.

    Science.gov (United States)

    Man, Yan-Gao; Gardner, William A

    2008-01-01

    The development of human prostate cancer is believed to be a multistep process, progressing sequentially from normal, to hyperplasia, to prostatic intraepithelial neoplasia (PIN), and to invasive and metastatic lesions. High grade PIN has been generally considered as the direct precursor of invasive lesions, and the progression of PIN is believed to be triggered primarily, if not solely, by the overproduction of proteolytic enzymes predominately by cancer cells, which result in the degradation of the basement membrane. These theories, however, are hard to reconcile with two main facts: (1) only about 30% untreated PIN progress to invasive stage, while none of the current approaches could accurately identify the specific PIN or individuals at greater risk for progression, and (2) results from recent world-wide clinical trials with a wide variety of proteolytic enzyme inhibitors have been very disappointing, casting doubt on the validity of the proteolytic enzyme theory. Since over 90% of prostate cancer-related deaths result from invasion-related illness and the incidence of PIN could be up to 16.5-25% in routine or ultrasound guided prostate biopsy, there is an urgent need to uncover the intrinsic mechanism of prostate tumor invasion. Promoted by the facts that the basal cell population is the source of several tumor suppressors and the absence of the basal cell layer is the most distinct feature of invasive lesions, our recent studies have intended to identify the early alterations of basal cell layers and their impact on tumor invasion using multidisciplinary approaches. Our studies revealed that a subset of pre-invasive tumors contained focal disruptions (the absence of basal cells resulting in a gap greater than the combined size of at least three epithelial cells) in surrounding basal cell layers. Compared to their non-disrupted counterparts, focally disrupted basal cell layers had several unique features: (1) significantly lower proliferation; (2

  11. TU-D-207B-01: A Prediction Model for Distinguishing Radiation Necrosis From Tumor Progression After Gamma Knife Radiosurgery Based On Radiomics Features From MR Images

    International Nuclear Information System (INIS)

    Zhang, Z; Ho, A; Wang, X; Brown, P; Guha-Thakurta, N; Ferguson, S; Fave, X; Zhang, L; Mackin, D; Court, L; Li, J; Yang, J

    2016-01-01

    Purpose: To develop and validate a prediction model using radiomics features extracted from MR images to distinguish radiation necrosis from tumor progression for brain metastases treated with Gamma knife radiosurgery. Methods: The images used to develop the model were T1 post-contrast MR scans from 71 patients who had had pathologic confirmation of necrosis or progression; 1 lesion was identified per patient (17 necrosis and 54 progression). Radiomics features were extracted from 2 images at 2 time points per patient, both obtained prior to resection. Each lesion was manually contoured on each image, and 282 radiomics features were calculated for each lesion. The correlation for each radiomics feature between two time points was calculated within each group to identify a subset of features with distinct values between two groups. The delta of this subset of radiomics features, characterizing changes from the earlier time to the later one, was included as a covariate to build a prediction model using support vector machines with a cubic polynomial kernel function. The model was evaluated with a 10-fold cross-validation. Results: Forty radiomics features were selected based on consistent correlation values of approximately 0 for the necrosis group and >0.2 for the progression group. In performing the 10-fold cross-validation, we narrowed this number down to 11 delta radiomics features for the model. This 11-delta-feature model showed an overall prediction accuracy of 83.1%, with a true positive rate of 58.8% in predicting necrosis and 90.7% for predicting tumor progression. The area under the curve for the prediction model was 0.79. Conclusion: These delta radiomics features extracted from MR scans showed potential for distinguishing radiation necrosis from tumor progression. This tool may be a useful, noninvasive means of determining the status of an enlarging lesion after radiosurgery, aiding decision-making regarding surgical resection versus conservative medical

  12. TU-D-207B-01: A Prediction Model for Distinguishing Radiation Necrosis From Tumor Progression After Gamma Knife Radiosurgery Based On Radiomics Features From MR Images

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z [Central South University Xiangya Hospital, Changsha, Hunan (China); MD Anderson Cancer Center, Houston, TX (United States); Ho, A [University of Houston, Houston, TX (United States); Wang, X; Brown, P; Guha-Thakurta, N; Ferguson, S; Fave, X; Zhang, L; Mackin, D; Court, L; Li, J; Yang, J [MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: To develop and validate a prediction model using radiomics features extracted from MR images to distinguish radiation necrosis from tumor progression for brain metastases treated with Gamma knife radiosurgery. Methods: The images used to develop the model were T1 post-contrast MR scans from 71 patients who had had pathologic confirmation of necrosis or progression; 1 lesion was identified per patient (17 necrosis and 54 progression). Radiomics features were extracted from 2 images at 2 time points per patient, both obtained prior to resection. Each lesion was manually contoured on each image, and 282 radiomics features were calculated for each lesion. The correlation for each radiomics feature between two time points was calculated within each group to identify a subset of features with distinct values between two groups. The delta of this subset of radiomics features, characterizing changes from the earlier time to the later one, was included as a covariate to build a prediction model using support vector machines with a cubic polynomial kernel function. The model was evaluated with a 10-fold cross-validation. Results: Forty radiomics features were selected based on consistent correlation values of approximately 0 for the necrosis group and >0.2 for the progression group. In performing the 10-fold cross-validation, we narrowed this number down to 11 delta radiomics features for the model. This 11-delta-feature model showed an overall prediction accuracy of 83.1%, with a true positive rate of 58.8% in predicting necrosis and 90.7% for predicting tumor progression. The area under the curve for the prediction model was 0.79. Conclusion: These delta radiomics features extracted from MR scans showed potential for distinguishing radiation necrosis from tumor progression. This tool may be a useful, noninvasive means of determining the status of an enlarging lesion after radiosurgery, aiding decision-making regarding surgical resection versus conservative medical

  13. Ghrelin and gastrointestinal stromal tumors.

    Science.gov (United States)

    Zhu, Chang-Zhen; Liu, Dong; Kang, Wei-Ming; Yu, Jian-Chun; Ma, Zhi-Qiang; Ye, Xin; Li, Kang

    2017-03-14

    Ghrelin, as a kind of multifunctional protein polypeptide, is mainly produced in the fundus of the stomach and can promote occurrence and development of many tumors, including gastrointestinal tumors, which has been proved by the relevant researches. Most gastrointestinal stromal tumors (GISTs, about 80%), as the most common mesenchymal tumor, also develop in the fundus. Scientific research has confirmed that ghrelin, its receptors and mRNA respectively can be found in GISTs, which demonstrated the existence of a ghrelin autocrine/paracrine loop in GIST tissues. However, no reports to date have specified the mechanism whether ghrelin can promote the occurrence and development of GISTs. Studies of pulmonary artery endothelial cells in a low-oxygen environment and cardiac muscle cells in an ischemic environment have shown that ghrelin can activate the phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway. Moreover, some studies of GISTs have confirmed that activation of the PI3K/AKT/mTOR pathway can indeed promote the growth and progression of GISTs. Whether ghrelin is involved in the development or progression of GISTs through certain pathways remains unknown. Can we find a new target for the treatment of GISTs? This review explores and summaries the relationship among ghrelin, the PI3K/AKT/mTOR pathway and the development of GISTs.

  14. Alterations of the Blood-Brain Barrier and Regional Perfusion in Tumor Development: MRI Insights from a Rat C6 Glioma Model.

    Science.gov (United States)

    Huhndorf, Monika; Moussavi, Amir; Kramann, Nadine; Will, Olga; Hattermann, Kirsten; Stadelmann, Christine; Jansen, Olav; Boretius, Susann

    2016-01-01

    Angiogenesis and anti-angiogenetic medications play an important role in progression and therapy of glioblastoma. In this context, in vivo characterization of the blood-brain-barrier and tumor vascularization may be important for individual prognosis and therapy optimization. We analyzed perfusion and capillary permeability of C6-gliomas in rats at different stages of tumor-growth by contrast enhanced MRI and dynamic susceptibility contrast (DSC) MRI at 7 Tesla. The analyses included maps of relative cerebral blood volume (CBV) and signal recovery derived from DSC data over a time period of up to 35 days after tumor cell injections. In all rats tumor progression was accompanied by temporal and spatial changes in CBV and capillary permeability. A leakage of the blood-brain barrier (slow contrast enhancement) was observed as soon as the tumor became detectable on T2-weighted images. Interestingly, areas of strong capillary permeability (fast signal enhancement) were predominantly localized in the center of the tumor. In contrast, the tumor rim was dominated by an increased CBV and showed the highest vessel density compared to the tumor center and the contralateral hemisphere as confirmed by histology. Substantial regional differences in the tumor highlight the importance of parameter maps in contrast or in addition to region-of-interest analyses. The data vividly illustrate how MRI including contrast-enhanced and DSC-MRI may contribute to a better understanding of tumor development.

  15. Antitumor action of 3-bromopyruvate implicates reorganized tumor growth regulatory components of tumor milieu, cell cycle arrest and induction of mitochondria-dependent tumor cell death.

    Science.gov (United States)

    Yadav, Saveg; Kujur, Praveen Kumar; Pandey, Shrish Kumar; Goel, Yugal; Maurya, Babu Nandan; Verma, Ashish; Kumar, Ajay; Singh, Rana Pratap; Singh, Sukh Mahendra

    2018-01-15

    Evidences demonstrate that metabolic inhibitor 3-bromopyruvate (3-BP) exerts a potent antitumor action against a wide range of malignancies. However, the effect of 3-BP on progression of the tumors of thymic origin remains unexplored. Although, constituents of tumor microenvironment (TME) plays a pivotal role in regulation of tumor progression, it remains unclear if 3-BP can alter the composition of the crucial tumor growth regulatory components of the external surrounding of tumor cells. Thus, the present investigation attempts to understand the effect of 3-BP administration to a host bearing a progressively growing tumor of thymic origin on tumor growth regulatory soluble, cellular and biophysical components of tumor milieu vis-à-vis understanding its association with tumor progression, accompanying cell cycle events and mode of cell death. Further, the expression of cell survival regulatory molecules and hemodynamic characteristics of the tumor milieu were analysed to decipher mechanisms underlying the antitumor action of 3-BP. Administration of 3-BP to tumor-bearing hosts retarded tumor progression accompanied by induction of tumor cell death, cell cycle arrest, declined metabolism, inhibited mitochondrial membrane potential, elevated release of cytochrome c and altered hemodynamics. Moreover, 3-BP reconstituted the external milieu, in concurrence with deregulated glucose and pH homeostasis and increased tumor infiltration by NK cells, macrophages, and T lymphocytes. Further, 3-BP administration altered the expression of key regulatory molecules involved in glucose uptake, intracellular pH and tumor cell survival. The outcomes of this study will help in optimizing the therapeutic application of 3-BP by targeting crucial tumor growth regulatory components of tumor milieu. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Intake of high-fat diet stimulates the risk of ultraviolet radiation-induced skin tumors and malignant progression of papillomas to carcinoma in SKH-1 hairless mice

    Energy Technology Data Exchange (ETDEWEB)

    Vaid, Mudit; Singh, Tripti; Prasad, Ram [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Katiyar, Santosh K., E-mail: skatiyar@uab.edu [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294 (United States)

    2014-01-01

    Previously, we showed that administration of a high-fat diet (HF-diet) to C57BL/6 mice exacerbates their response to short-term UVB radiation-induced inflammation in the skin. To explore the effects of an HF-diet on UVB-induced tumorigenesis, we have used the SKH-1 hairless mouse model in which the mice are exposed to UVB radiation (180 mJ/cm{sup 2}) three times a week for 24 weeks. The development of UVB-induced skin tumors was rapid and the tumor multiplicity and tumor size were significantly higher (P < 0.01–0.005) in the mice fed an HF-diet than the mice fed a control-diet (C-diet). Moreover, the malignant progression of UVB-induced papillomas to carcinomas was higher in HF-diet-fed mice. On analysis of tumors and tumor-uninvolved skin samples from the tumor-bearing mice, we found that administration of an HF-diet significantly enhanced the levels of UVB-induced expression of cyclooxygenase-2 (COX-2), prostaglandin E{sub 2} (P < 0.01), and PGE{sub 2} receptors, and activation of NF-κB in the UVB-exposed skin as well as in tumors. In addition the HF-diet enhanced the expression of proinflammatory cytokines, including tumor necrosis factor-α (P < 0.01), interleukin (IL)-1β (P < 0.01) and IL-6 (P < 0.05) in the UVB-exposed skin as well as in tumors. Western blot analysis revealed that HF-diet enhanced the levels of epidermal cell proliferation, phosphatidylinositol 3-kinase and phosphorylation of Akt at Ser{sup 473} in UVB-exposed skin and skin tumors. Collectively, these data demonstrate that the regular consumption of an HF-diet increases the risk of photocarcinogenesis in mice and that this is associated with enhanced expression of inflammatory mediators in the UVB-exposed skin and tumors. - Highlights: • Consumption of high-fat diet increases UVB-induced skin tumor development in mice. • Intake of high-fat diet stimulates progression of UV-induced papilloma to carcinoma. • Intake of high-fat diet enhances inflammation in UV-exposed skin • Regular

  17. Autophagy-dependent secretion: contribution to tumor progression

    Directory of Open Access Journals (Sweden)

    Tom Keulers

    2016-11-01

    Full Text Available Autophagy is best known as a lysosomal degradation and recycling pathway to maintain cellular homeostasis. During autophagy, cytoplasmic content is recognized and packed in autophagic vacuoles, or autophagosomes, and targeted for degradation. However, during the last years, it has become evident that the role of autophagy is not restricted to degradation alone but also mediates unconventional forms of secretion. Furthermore, cells with defects in autophagy apparently are able to reroute their cargo, like mitochondria, to the extracellular environment; effects that contribute to an array of pathologies. In this review we discuss the current knowledge of the physiological roles of autophagy-dependent secretion, i.e. the effect on inflammation and insulin/ hormone secretion. Finally, we focus on the effects of autophagy-dependent secretion on the tumour microenvironment and tumour progression. The autophagy mediated secreted factors may stimulate cellular proliferation via auto- and paracrine signaling. The autophagy mediated release of immune modulating proteins change the immunosuppresive tumor microenvironment and may promote an invasive phenotype. These effects may be either direct or indirect through facilitating formation of the mobilized vesicle, aid in anterograde trafficking or alterations in homeostasis and/or autonomous cell signaling.

  18. Research progress in nanographene oxide with tumor imaging and therapy

    Directory of Open Access Journals (Sweden)

    YOU Peihong

    2015-04-01

    Full Text Available Nanographene oxide,one of graphene oxide derivatives and a novel two-dimensional carbon nanomaterial,has become a popular research topic in nanomedicine due to its unique properties such as ultra-high surface-to-volume ratio and great photo-thermal effect.It contains a large amount of reactive chemical groups,including carboxy group,carbonyl group,hydroxyl group and epoxy group,which enable its easy biological and chemical functionalization and excellent biocompatibility.Therefore,it has potential applications in biomedical field.This paper briefly describes the preparation and functionalization of nanographeme oxide,and then mainly focuses on its application studies in the biomedical field,including in vitro and in vivo toxicity tests and advanced research progress of tumor imaging and treatment.

  19. Hypoxic exosomes facilitate bladder tumor growth and development through transferring long non-coding RNA-UCA1.

    Science.gov (United States)

    Xue, Mei; Chen, Wei; Xiang, An; Wang, Ruiqi; Chen, He; Pan, Jingjing; Pang, Huan; An, Hongli; Wang, Xiang; Hou, Huilian; Li, Xu

    2017-08-25

    To overcome the hostile hypoxic microenvironment of solid tumors, tumor cells secrete a large number of non-coding RNA-containing exosomes that facilitate tumor development and metastasis. However, the precise mechanisms of tumor cell-derived exosomes during hypoxia are unknown. Here, we aim to clarify whether hypoxia affects tumor growth and progression by transferring long non-coding RNA-urothelial cancer-associated 1 (lncRNA-UCA1) enriched exosomes secreted from bladder cancer cells. We used bladder cancer 5637 cells with high expression of lncRNA-UCA1 as exosome-generating cells and bladder cancer UMUC2 cells with low expression of lncRNA-UCA1 as recipient cells. Exosomes derived from 5637 cells cultured under normoxic or hypoxic conditions were isolated and identified by transmission electron microscopy, nanoparticle tracking analysis and western blotting analysis. These exosomes were co-cultured with UMUC2 cells to evaluate cell proliferation, migration and invasion. We further investigated the roles of exosomal lncRNA-UCA1 derived from hypoxic 5637 cells by xenograft models. The availability of lncRNA-UCA1 in serum-derived exosomes as a biomarker for bladder cancer was also assessed. We found that hypoxic exosomes derived from 5637 cells promoted cell proliferation, migration and invasion, and hypoxic exosomal RNAs could be internalized by three bladder cancer cell lines. Importantly, lncRNA-UCA1 was secreted in hypoxic 5637 cell-derived exosomes. Compared with normoxic exosomes, hypoxic exosomes derived from 5637 cells showed the higher expression levels of lncRNA-UCA1. Moreover, Hypoxic exosomal lncRNA-UCA1 could promote tumor growth and progression though epithelial-mesenchymal transition, in vitro and in vivo. In addition, the expression levels of lncRNA-UCA1 in the human serum-derived exosomes of bladder cancer patients were higher than that in the healthy controls. Together, our results demonstrate that hypoxic bladder cancer cells remodel tumor

  20. Loss of ERβ expression as a common step in estrogen-dependent tumor progression

    Science.gov (United States)

    Bardin, Allison; Boulle, Nathalie; Lazennec, Gwendal; Vignon, Françoise; Pujol, Pascal

    2004-01-01

    The characterization of estrogen receptor beta (ERβ) brought new insight into the mechanisms underlying estrogen signaling. Estrogen induction of cell proliferation is a crucial step in carcinogenesis of gynecologic target tissues and the mitogenic effects of estrogen in these tissues (e.g. breast, endometrium and ovary) are well documented both in vitro and in vivo. There is also an emerging body of evidence that colon and prostate cancer growth is influenced by estrogens. In all of these tissues, most studies have shown decreased ERβ expression in cancer as compared to benign tumors or normal tissues, whereas ERα expression persists. The loss of ERβ expression in cancer cells could reflect tumor cell dedifferentiation but may also represent a critical stage in estrogen-dependent tumor progression. Modulation of the expression of ERα target genes by ERβ, or ERβ specific gene induction could indicate that ERβ has a differential effect on proliferation as compared to ERα. ERβ may exert a protective effect and thus constitute a new target for hormone therapy, e.g. via ligand specific activation. The potential distinct roles of ERα and ERβ expression in carcinogenesis, as suggested by experimental and clinical data, are discussed in this review. PMID:15369453

  1. Role of cMET in the Development and Progression of Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Ilaria Bossi

    2013-09-01

    Full Text Available Mesenchymal-epithelial transition (MET is a member of a distinct subfamily of heterodimeric receptor tyrosine kinase receptors that specifically binds the hepatocyte growth factor (HGF. Binding to HGF leads to receptor dimerization/multimerization and phosphorylation, resulting in its catalytic activation. MET activation drives the malignant progression of several tumor types, including colorectal cancer (CRC, by promoting signaling cascades that mainly result in alterations of cell motility, survival, and proliferation. MET is aberrantly activated in many human cancers through various mechanisms, including point mutations, gene amplification, transcriptional up-regulation, or ligand autocrine loops. MET promotes cell scattering, invasion, and protection from apoptosis, thereby acting as an adjuvant pro-metastatic gene for many tumor types. In CRC, MET expression confers more aggressiveness and worse clinical prognosis. With all of this rationale, inhibitors that target the HGF/MET axis with different types of response have been developed. HGF and MET are new promising targets to understand the pathogenesis of CRC and for the development of new, targeted therapies.

  2. Glioblastoma progression is assisted by induction of immunosuppressive function of pericytes through interaction with tumor cells

    Science.gov (United States)

    Valdor, Rut; García-Bernal, David; Bueno, Carlos; Ródenas, Mónica; Moraleda, José M.; Macian, Fernando; Martínez, Salvador

    2017-01-01

    The establishment of immune tolerance during Glioblastoma Multiforme (GBM) progression, is characterized by high levels expression of anti-inflammatory cytokines, which suppress the function of tumor assocciated myeloid cells, and the activation and expansion of tumor antigen specific T cells. However, the mechanisms underlying the failed anti-tumor immune response around the blood vessels during GBM, are poorly understood. The consequences of possible interactions between cancer cells and the perivascular compartment might affect the tumor growth. In this work we show for the first time that GBM cells induce immunomodulatory changes in pericytes in a cell interaction-dependent manner, acquiring an immunosuppresive function that possibly assists the evasion of the anti-tumor immune response and consequently participates in tumor growth promotion. Expression of high levels of anti-inflammatory cytokines was detected in vitro and in vivo in brain pericytes that interacted with GBM cells (GBC-PC). Furthermore, reduction of surface expression of co-stimulatory molecules and major histocompatibility complex molecules in GBC-PC correlated with a failure of antigen presentation to T cells and the acquisition of the ability to supress T cell responses. In vivo, orthotopic xenotransplant of human glioblastoma in an immunocompetent mouse model showed significant GBM cell proliferation and tumor growth after the establishment of interspecific immunotolerance that followed GMB interaction with pericytes. PMID:28978142

  3. Loss of E-Cadherin-Dependent Cell-Cell Adhesion and the Development and Progression of Cancer.

    Science.gov (United States)

    Bruner, Heather C; Derksen, Patrick W B

    2018-03-01

    Classical cadherins are the key molecules that control cell-cell adhesion. Notwithstanding this function, it is also clear that classical cadherins are more than just the "glue" that keeps the cells together. Cadherins are essential regulators of tissue homeostasis that govern multiple facets of cellular function and development, by transducing adhesive signals to a complex network of signaling effectors and transcriptional programs. In cancer, cadherins are often inactivated or functionally inhibited, resulting in disease development and/or progression. This review focuses on E-cadherin and its causal role in the development and progression of breast and gastric cancer. We provide a summary of the biochemical consequences and consider the conceptual impact of early (mutational) E-cadherin loss in cancer. We advocate that carcinomas driven by E-cadherin loss should be considered "actin-diseases," caused by the specific disruption of the E-cadherin-actin connection and a subsequent dependence on sustained actomyosin contraction for tumor progression. Based on the available data from mouse and human studies we discuss opportunities for targeted clinical intervention. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  4. Genomic Heterogeneity of Breast Tumor Pathogenesis

    Science.gov (United States)

    Ellsworth, Rachel E.; Hooke, Jeffrey A.; Shriver, Craig D.; Ellsworth, Darrell L.

    2009-01-01

    Pathological grade is a useful prognostic factor for stratifying breast cancer patients into favorable (low-grade, well-differentiated tumors) and less favorable (high-grade, poorly-differentiated tumors) outcome groups. Under the current system of tumor grading, however, a large proportion of tumors are characterized as intermediate-grade, making determination of optimal treatments difficult. In an effort to increase objectivity in the pathological assessment of tumor grade, differences in chromosomal alterations and gene expression patterns have been characterized in low-grade, intermediate-grade, and high-grade disease. In this review, we outline molecular data supporting a linear model of progression from low-grade to high-grade carcinomas, as well as contradicting genetic data suggesting that low-grade and high-grade tumors develop independently. While debate regarding specific pathways of development continues, molecular data suggest that intermediate-grade tumors do not comprise an independent disease subtype, but represent clinical and molecular hybrids between low-grade and high-grade tumors. Finally, we discuss the clinical implications associated with different pathways of development, including a new clinical test to assign grade and guide treatment options. PMID:20689613

  5. THE TUMOR MACROENVIRONMENT: CANCER-PROMOTING NETWORKS BEYOND TUMOR BEDS

    OpenAIRE

    Rutkowski, Melanie R.; Svoronos, Nikolaos; Puchalt, Alfredo Perales; Conejo-Garcia, Jose R.

    2015-01-01

    During tumor progression, alterations within the systemic tumor environment, or macroenvironment, result in the promotion of tumor growth, tumor invasion to distal organs, and eventual metastatic disease. Distally produced hormones, commensal microbiota residing within mucosal surfaces, and myeloid cells and even the bone marrow impact the systemic immune system, tumor growth, and metastatic spread. Understanding the reciprocal interactions between the cells and soluble factors within the mac...

  6. The importance of time interval to development of second tumor in metachronous bilateral wilms' tumor

    International Nuclear Information System (INIS)

    Paulino, Arnold C.; Thakkar, Bharat; Henderson, William G.

    1997-01-01

    Purpose: To determine whether the time interval to development of second tumor is a prognostic factor for overall survival in children with metachronous bilateral Wilms' tumor and to give a recommendation regarding screening of the contralateral kidney in patients with Wilms' tumor. Materials and Management: A literature search using MEDLINE was performed of manuscripts in the English language from 1950-1996 and identified 108 children with metachronous bilateral Wilms' tumor. Children were classified according to time interval to development of a contralateral Wilms' tumor ( 78 mos (2), 78 - < 84 mos (1), 84 - < 90 mos (0), 90 - < 96 mos (1), ≥ 96 mos (0). Analysis of overall survival in patients with a time interval of < 18 months and ≥ 18 months showed a 10 year survival of 39.6% and 55.2%, respectively (p = 0.024, log-rank test). Conclusions: Children with metachronous bilateral Wilms' tumor who develop a contralateral tumor at a time interval of ≥ 18 months from the initial Wilms' tumor had a better overall survival than children with a time interval of < 18 months. Screening by abdominal ultrasound of the contralateral kidney for more than 5 years after initial diagnosis of Wilms' tumor may not be necessary since 102/106 (96.2%) of children had a time interval to second tumor of < 60 months

  7. Investigation of Metastatic Breast Tumor Heterogeneity and Progression Using Dual Optical/SPECT Imaging

    National Research Council Canada - National Science Library

    Antich, Peter P; Constantinescu, Anca; Lewis, Matthew; Mason, Ralph; Richer, Edmond

    2005-01-01

    The goal of our project is to image tumor growth, metastatic development and vascular changes, both to characterize tumor dynamics during growth for application in diagnostic and prognostic imaging...

  8. Integrin-Targeted Hybrid Fluorescence Molecular Tomography/X-ray Computed Tomography for Imaging Tumor Progression and Early Response in Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Xiaopeng Ma

    2017-01-01

    Full Text Available Integrins play an important role in tumor progression, invasion and metastasis. Therefore we aimed to evaluate a preclinical imaging approach applying ανβ3 integrin targeted hybrid Fluorescence Molecular Tomography/X-ray Computed Tomography (FMT-XCT for monitoring tumor progression as well as early therapy response in a syngeneic murine Non-Small Cell Lung Cancer (NSCLC model. Lewis Lung Carcinomas were grown orthotopically in C57BL/6 J mice and imaged in-vivo using a ανβ3 targeted near-infrared fluorescence (NIRF probe. ανβ3-targeted FMT-XCT was able to track tumor progression. Cilengitide was able to substantially block the binding of the NIRF probe and suppress the imaging signal. Additionally mice were treated with an established chemotherapy regimen of Cisplatin and Bevacizumab or with a novel MEK inhibitor (Refametinib for 2 weeks. While μCT revealed only a moderate slowdown of tumor growth, ανβ3 dependent signal decreased significantly compared to non-treated mice already at one week post treatment. ανβ3 targeted imaging might therefore become a promising tool for assessment of early therapy response in the future.

  9. Malignant Trigeminal Nerve Sheath Tumor and Anaplastic Astrocytoma Collision Tumor with High Proliferative Activity and Tumor Suppressor P53 Expression

    Directory of Open Access Journals (Sweden)

    Maher Kurdi

    2014-01-01

    Full Text Available Background. The synchronous development of two primary brain tumors of distinct cell of origin in close proximity or in contact with each other is extremely rare. We present the first case of collision tumor with two histological distinct tumors. Case Presentation. A 54-year-old woman presented with progressive atypical left facial pain and numbness for 8 months. MRI of the brain showed left middle cranial fossa heterogeneous mass extending into the infratemporal fossa. At surgery, a distinct but intermingled intra- and extradural tumor was demonstrated which was completely removed through left orbitozygomatic-temporal craniotomy. Histopathological examination showed that the tumor had two distinct components: malignant nerve sheath tumor of the trigeminal nerve and temporal lobe anaplastic astrocytoma. Proliferative activity and expressed tumor protein 53 (TP53 gene mutations were demonstrated in both tumors. Conclusions. We describe the first case of malignant trigeminal nerve sheath tumor (MTNST and anaplastic astrocytoma in collision and discuss the possible hypothesis of this rare occurrence. We propose that MTNST, with TP53 mutation, have participated in the formation of anaplastic astrocytoma, or vice versa.

  10. Individual moral development and moral progress

    OpenAIRE

    Schinkel, Anders; de Ruyter, Doret J.

    2017-01-01

    At first glance, one of the most obvious places to look for moral progress is in individuals, in particular in moral development from childhood to adulthood. In fact, that moral progress is possible is a foundational assumption of moral education. Beyond the general agreement that moral progress is not only possible but even a common feature of human development things become blurry, however. For what do we mean by ‘progress’? And what constitutes moral progress? Does the idea of individual m...

  11. Hypoxia-inducible factor 1 alpha expression increases during colorectal carcinogenesis and tumor progression

    International Nuclear Information System (INIS)

    Simiantonaki, Nektaria; Taxeidis, Marios; Jayasinghe, Caren; Kurzik-Dumke, Ursula; Kirkpatrick, Charles James

    2008-01-01

    Hypoxia-inducible factor 1 alpha (HIF-1α) is involved in processes promoting carcinogenesis of many tumors. However, its role in the development of colorectal cancer is unknown. To investigate the significance of HIF-1α during colorectal carcinogenesis and progression we examined its expression in precursor lesions constituting the conventional and serrated pathways, as well as in non-metastatic and metastatic adenocarcinomas. Immunohistochemistry and Western blot is used to analyse HIF-1α expression in normal colonic mucosa, hyperplastic polyps (HPP), sessile serrated adenomas (SSA), low-grade (TA-LGD) and high-grade (TA-HGD) traditional adenomas as well as in non-metastatic and metastatic colorectal adenocarcinomas. Eight colorectal carcinoma cell lines are tested for their HIF-1α inducibility after lipopolysaccharide (LPS) stimulation using western blot and immunocytochemistry. In normal mucosa, HPP and TA-LGD HIF-1α was not expressed. In contast, perinuclear protein accumulation and nuclear expression of HIF-1α were shown in half of the examined SSA and TA-HGD. In all investigated colorectal carcinomas a significant nuclear HIF-1α overexpression compared to the premalignant lesions was observed but a significant correlation with the metastatic status was not found. Nuclear HIF-1α expression was strongly accumulated in perinecrotic regions. In these cases HIF-1α activation was seen in viable cohesive tumor epithelia surrounding necrosis and in dissociated tumor cells, which subsequently die. Enhanced distribution of HIF-1α was also seen in periiflammatory regions. In additional in vitro studies, treatment of diverse colorectal carcinoma cell lines with the potent pro-inflammatory factor lipopolysaccharide (LPS) led to HIF-1α expression and nuclear translocation. We conclude that HIF-1α expression occurs in early stages of colorectal carcinogenesis and achieves a maximum in the invasive stage independent of the metastatic status. Perinecrotic

  12. Tumor progression: chance and necessity in Darwinian and Lamarckian somatic (mutationless) evolution.

    Science.gov (United States)

    Huang, Sui

    2012-09-01

    Current investigation of cancer progression towards increasing malignancy focuses on the molecular pathways that produce the various cancerous traits of cells. Their acquisition is explained by the somatic mutation theory: tumor progression is the result of a neo-Darwinian evolution in the tissue. Herein cells are the units of selection. Random genetic mutations permanently affecting these pathways create malignant cell phenotypes that are selected for in the disturbed tissue. However, could it be that the capacity of the genome and its gene regulatory network to generate the vast diversity of cell types during development, i.e., to produce inheritable phenotypic changes without mutations, is harnessed by tumorigenesis to propel a directional change towards malignancy? Here we take an encompassing perspective, transcending the orthodoxy of molecular carcinogenesis and review mechanisms of somatic evolution beyond the Neo-Darwinian scheme. We discuss the central concept of "cancer attractors" - the hidden stable states of gene regulatory networks normally not occupied by cells. Noise-induced transitions into such attractors provide a source for randomness (chance) and regulatory constraints (necessity) in the acquisition of novel expression profiles that can be inherited across cell divisions, and hence, can be selected for. But attractors can also be reached in response to environmental signals - thus offering the possibility for inheriting acquired traits that can also be selected for. Therefore, we face the possibility of non-genetic (mutation-independent) equivalents to both Darwinian and Lamarckian evolution which may jointly explain the arrow of change pointing toward increasing malignancy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Specific features of Brodie’s tumors

    Directory of Open Access Journals (Sweden)

    D. A. Denchik

    2010-01-01

    Full Text Available Brodie’s tumors are comparatively rare in oncological care and difficult-to-diagnose masses with an unpredictable course, predilection for recurrences, and a high probability of malignization. These tumors have a two-component structure with the predominant develop- ment of a connective tissue component that is absolute in sarcomas and, in a group of fibroepithelial tumors, combines with the parallel development of epithelial tissue.The etiology of Brodie’s tumor is unclear, so is its pathogenesis. Molecular genetic studies have shown that the carriers of germ line missence-mutation R1699W in the BRCA1 gene have an increased risk of developing malignant Brodie’s tumor, but allele losses at the D22S264 locus of the TP5 gene determine the progression of the disease. Deletion of the short-arm of chromosome 1 (1p and allelic imbalance are associated with the more aggressive course and recurrences of Brodie’s tumor.A complex clinicomorphological and molecular genetic study will help answer some questions concerning the diagnosis and treatment of Brodie’s tumors.

  14. Epigenetic Regulation in Prostate Cancer Progression.

    Science.gov (United States)

    Ruggero, Katia; Farran-Matas, Sonia; Martinez-Tebar, Adrian; Aytes, Alvaro

    2018-01-01

    An important number of newly identified molecular alterations in prostate cancer affect gene encoding master regulators of chromatin biology epigenetic regulation. This review will provide an updated view of the key epigenetic mechanisms underlying prostate cancer progression, therapy resistance, and potential actionable mechanisms and biomarkers. Key players in chromatin biology and epigenetic master regulators has been recently described to be crucially altered in metastatic CRPC and tumors that progress to AR independency. As such, epigenetic dysregulation represents a driving mechanism in the reprograming of prostate cancer cells as they lose AR-imposed identity. Chromatin integrity and accessibility for transcriptional regulation are key features altered in cancer progression, and particularly relevant in nuclear hormone receptor-driven tumors like prostate cancer. Understanding how chromatin remodeling dictates prostate development and how its deregulation contributes to prostate cancer onset and progression may improve risk stratification and treatment selection for prostate cancer patients.

  15. Development of synchronous VHL syndrome tumors reveals contingencies and constraints to tumor evolution

    DEFF Research Database (Denmark)

    Fisher, Rosalie; Horswell, Stuart; Rowan, Andrew

    2014-01-01

    are contingent upon the nature of 3p loss of heterozygosity occurring early in tumorigenesis. However, despite distinct 3p events, genomic, proteomic and immunohistochemical analyses reveal evidence for convergence upon the PI3K-AKT-mTOR signaling pathway. Four germline tumors in this young patient...... a germline VHL mutation, the evolutionary principles of contingency and convergence in tumor development are complementary. In this small set of patients with early stage VHL-associated tumors, there is reduced mutation burden and limited evidence of intra-tumor heterogeneity....

  16. Oncomirs: from tumor biology to molecularly targeted anticancer strategies.

    Science.gov (United States)

    Mocellin, Simone; Pasquali, Sandro; Pilati, Pierluigi

    2009-01-01

    Deregulation of microRNA (miRNA) promotes carcinogenesis, as these molecules can act as oncogenes or tumor suppressor genes. Here we provide an overview of miRNA biology, discuss the most recent findings on miRNA and cancer development/progression, and report on how tumor-related miRNAs (oncomirs) are being used to develop novel cancer specific therapeutic approaches.

  17. Cinnamic aldehyde suppresses hypoxia-induced angiogenesis via inhibition of hypoxia-inducible factor-1α expression during tumor progression.

    Science.gov (United States)

    Bae, Woom-Yee; Choi, Jae-Sun; Kim, Ja-Eun; Jeong, Joo-Won

    2015-11-01

    During tumor progression, hypoxia-inducible factor 1 (HIF-1) plays a critical role in tumor angiogenesis and tumor growth by regulating the transcription of several genes in response to a hypoxic environment and changes in growth factors. This study was designed to investigate the effects of cinnamic aldehyde (CA) on tumor growth and angiogenesis and the mechanisms underlying CA's anti-angiogenic activities. We found that CA administration inhibits tumor growth and blocks tumor angiogenesis in BALB/c mice. In addition, CA treatment decreased HIF-1α protein expression and vascular endothelial growth factor (VEGF) expression in mouse tumors and Renca cells exposed to hypoxia in vitro. Interestingly, CA treatment did not affect the stability of von Hippel-Lindau protein (pVHL)-associated HIF-1α and CA attenuated the activation of mammalian target of rapamycin (mTOR) pathway. Collectively, these findings strongly indicate that the anti-angiogenic activity of CA is, at least in part, regulated by the mTOR pathway-mediated suppression of HIF-1α protein expression and these findings suggest that CA may be a potential drug for human cancer therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Cancer stem cells in solid tumors: is 'evading apoptosis' a hallmark of cancer?

    Science.gov (United States)

    Enderling, Heiko; Hahnfeldt, Philip

    2011-08-01

    Conventional wisdom has long held that once a cancer cell has developed it will inevitably progress to clinical disease. Updating this paradigm, it has more recently become apparent that the tumor interacts with its microenvironment and that some environmental bottlenecks, such as the angiogenic switch, must be overcome for the tumor to progress. In parallel, attraction has been drawn to the concept that there is a minority population of cells - the cancer stem cells - bestowed with the exclusive ability to self-renew and regenerate the tumor. With therapeutic targeting issues at stake, much attention has shifted to the identification of cancer stem cells, the thinking being that the remaining non-stem population, already fated to die, will play a negligible role in tumor development. In fact, the newly appreciated importance of intercellular interactions in cancer development also extends in a unique and unexpected way to interactions between the stem and non-stem compartments of the tumor. Here we discuss recent findings drawn from a hybrid mathematical-cellular automaton model that simulates growth of a heterogeneous solid tumor comprised of cancer stem cells and non-stem cancer cells. The model shows how the introduction of cell fate heterogeneity paradoxically influences the tumor growth dynamic in response to apoptosis, to reveal yet another bottleneck to tumor progression potentially exploitable for disease control. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Interaction of tumor cells with the microenvironment

    Directory of Open Access Journals (Sweden)

    Lehnert Hendrik

    2011-09-01

    Full Text Available Abstract Recent advances in tumor biology have revealed that a detailed analysis of the complex interactions of tumor cells with their adjacent microenvironment (tumor stroma is mandatory in order to understand the various mechanisms involved in tumor growth and the development of metastasis. The mutual interactions between tumor cells and cellular and non-cellular components (extracellular matrix = ECM of the tumor microenvironment will eventually lead to a loss of tissue homeostasis and promote tumor development and progression. Thus, interactions of genetically altered tumor cells and the ECM on the one hand and reactive non-neoplastic cells on the other hand essentially control most aspects of tumorigenesis such as epithelial-mesenchymal-transition (EMT, migration, invasion (i.e. migration through connective tissue, metastasis formation, neovascularisation, apoptosis and chemotherapeutic drug resistance. In this mini-review we will focus on these issues that were recently raised by two review articles in CCS.

  20. Emergent Stratification in Solid Tumors Selects for Reduced Cohesion of Tumor Cells: A Multi-Cell, Virtual-Tissue Model of Tumor Evolution Using CompuCell3D.

    Directory of Open Access Journals (Sweden)

    Maciej H Swat

    Full Text Available Tumor cells and structure both evolve due to heritable variation of cell behaviors and selection over periods of weeks to years (somatic evolution. Micro-environmental factors exert selection pressures on tumor-cell behaviors, which influence both the rate and direction of evolution of specific behaviors, especially the development of tumor-cell aggression and resistance to chemotherapies. In this paper, we present, step-by-step, the development of a multi-cell, virtual-tissue model of tumor somatic evolution, simulated using the open-source CompuCell3D modeling environment. Our model includes essential cell behaviors, microenvironmental components and their interactions. Our model provides a platform for exploring selection pressures leading to the evolution of tumor-cell aggression, showing that emergent stratification into regions with different cell survival rates drives the evolution of less cohesive cells with lower levels of cadherins and higher levels of integrins. Such reduced cohesivity is a key hallmark in the progression of many types of solid tumors.

  1. Tissue engineered tumor models.

    Science.gov (United States)

    Ingram, M; Techy, G B; Ward, B R; Imam, S A; Atkinson, R; Ho, H; Taylor, C R

    2010-08-01

    Many research programs use well-characterized tumor cell lines as tumor models for in vitro studies. Because tumor cells grown as three-dimensional (3-D) structures have been shown to behave more like tumors in vivo than do cells growing in monolayer culture, a growing number of investigators now use tumor cell spheroids as models. Single cell type spheroids, however, do not model the stromal-epithelial interactions that have an important role in controlling tumor growth and development in vivo. We describe here a method for generating, reproducibly, more realistic 3-D tumor models that contain both stromal and malignant epithelial cells with an architecture that closely resembles that of tumor microlesions in vivo. Because they are so tissue-like we refer to them as tumor histoids. They can be generated reproducibly in substantial quantities. The bioreactor developed to generate histoid constructs is described and illustrated. It accommodates disposable culture chambers that have filled volumes of either 10 or 64 ml, each culture yielding on the order of 100 or 600 histoid particles, respectively. Each particle is a few tenths of a millimeter in diameter. Examples of histological sections of tumor histoids representing cancers of breast, prostate, colon, pancreas and urinary bladder are presented. Potential applications of tumor histoids include, but are not limited to, use as surrogate tumors for pre-screening anti-solid tumor pharmaceutical agents, as reference specimens for immunostaining in the surgical pathology laboratory and use in studies of invasive properties of cells or other aspects of tumor development and progression. Histoids containing nonmalignant cells also may have potential as "seeds" in tissue engineering. For drug testing, histoids probably will have to meet certain criteria of size and tumor cell content. Using a COPAS Plus flow cytometer, histoids containing fluorescent tumor cells were analyzed successfully and sorted using such criteria.

  2. The PCa Tumor Microenvironment.

    Science.gov (United States)

    Sottnik, Joseph L; Zhang, Jian; Macoska, Jill A; Keller, Evan T

    2011-12-01

    The tumor microenvironment (TME) is a very complex niche that consists of multiple cell types, supportive matrix and soluble factors. Cells in the TME consist of both host cells that are present at tumor site at the onset of tumor growth and cells that are recruited in either response to tumor- or host-derived factors. PCa (PCa) thrives on crosstalk between tumor cells and the TME. Crosstalk results in an orchestrated evolution of both the tumor and microenvironment as the tumor progresses. The TME reacts to PCa-produced soluble factors as well as direct interaction with PCa cells. In return, the TME produces soluble factors, structural support and direct contact interactions that influence the establishment and progression of PCa. In this review, we focus on the host side of the equation to provide a foundation for understanding how different aspects of the TME contribute to PCa progression. We discuss immune effector cells, specialized niches, such as the vascular and bone marrow, and several key protein factors that mediate host effects on PCa. This discussion highlights the concept that the TME offers a potentially very fertile target for PCa therapy.

  3. Liquid Biopsy for Cancer: Circulating Tumor Cells, Circulating Free DNA or Exosomes?

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2017-02-01

    Full Text Available Precision medicine and personalized medicine are based on the development of biomarkers, and liquid biopsy has been reported to be able to detect biomarkers that carry information on tumor development and progression. Compared with traditional ‘solid biopsy’, which cannot always be performed to determine tumor dynamics, liquid biopsy has notable advantages in that it is a noninvasive modality that can provide diagnostic and prognostic information prior to treatment, during treatment and during progression. In this review, we describe the source, characteristics, technology for detection and current situation of circulating tumor cells, circulating free DNA and exosomes used for diagnosis, recurrence monitoring, prognosis assessment and medication planning.

  4. Studies in development immunogenetics. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Owen, R D

    1975-03-26

    This contract provides the research support for a group concerned with a relatively large range of problems. The integrating thread that runs through it is that of an interest in development and its genetic regulation, mainly in complex organisms and with an emphasis on the immune system as a model for developmental analysis and as a tool for following the development of other systems, especially the brain. It includes studies of biochemical genetics, primarily from a developmental viewpoint and with particular regard to defense mechanisms, and cellular aspects of the immune system. It extends into the area of cancer immunology and cell specificities as related to tumor systems, primarily from an immunogenetic viewpoint and with particular reference to leukemias in the mouse, and to disruptions of genetic control mechanisms in tumor development, especially as approached through the reappearance of fetal antigens associated with tumor development.

  5. Complex role for the immune system in initiation and progression of pancreatic cancer.

    Science.gov (United States)

    Inman, Kristin S; Francis, Amanda A; Murray, Nicole R

    2014-08-28

    The immune system plays a complex role in the development and progression of pancreatic cancer. Inflammation can promote the formation of premalignant lesions and accelerate pancreatic cancer development. Conversely, pancreatic cancer is characterized by an immunosuppressive environment, which is thought to promote tumor progression and invasion. Here we review the current literature describing the role of the immune response in the progressive development of pancreatic cancer, with a focus on the mechanisms that drive recruitment and activation of immune cells at the tumor site, and our current understanding of the function of the immune cell types at the tumor. Recent clinical and preclinical data are reviewed, detailing the involvement of the immune response in pancreatitis and pancreatic cancer, including the role of specific cytokines and implications for disease outcome. Acute pancreatitis is characterized by a predominantly innate immune response, while chronic pancreatitis elicits an immune response that involves both innate and adaptive immune cells, and often results in profound systemic immune-suppression. Pancreatic adenocarcinoma is characterized by marked immune dysfunction driven by immunosuppressive cell types, tumor-promoting immune cells, and defective or absent inflammatory cells. Recent studies reveal that immune cells interact with cancer stem cells and tumor stromal cells, and these interactions have an impact on development and progression of pancreatic ductal adenocarcinoma (PDAC). Finally, current PDAC therapies are reviewed and the potential for harnessing the actions of the immune response to assist in targeting pancreatic cancer using immunotherapy is discussed.

  6. CD13-positive bone marrow-derived myeloid cells promote angiogenesis, tumor growth, and metastasis.

    Science.gov (United States)

    Dondossola, Eleonora; Rangel, Roberto; Guzman-Rojas, Liliana; Barbu, Elena M; Hosoya, Hitomi; St John, Lisa S; Molldrem, Jeffrey J; Corti, Angelo; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2013-12-17

    Angiogenesis is fundamental to tumorigenesis and an attractive target for therapeutic intervention against cancer. We have recently demonstrated that CD13 (aminopeptidase N) expressed by nonmalignant host cells of unspecified types regulate tumor blood vessel development. Here, we compare CD13 wild-type and null bone marrow-transplanted tumor-bearing mice to show that host CD13(+) bone marrow-derived cells promote cancer progression via their effect on angiogenesis. Furthermore, we have identified CD11b(+)CD13(+) myeloid cells as the immune subpopulation directly regulating tumor blood vessel development. Finally, we show that these cells are specifically localized within the tumor microenvironment and produce proangiogenic soluble factors. Thus, CD11b(+)CD13(+) myeloid cells constitute a population of bone marrow-derived cells that promote tumor progression and metastasis and are potential candidates for the development of targeted antiangiogenic drugs.

  7. The frequency of tumor-infiltrating Tie-2-expressing monocytes in renal cell carcinoma: its relationship to angiogenesis and progression.

    Science.gov (United States)

    Ji, Jindong; Zhang, Guangbo; Sun, Bo; Yuan, Hexing; Huang, Yuhua; Zhang, Jianglei; Wei, Xuedong; Zhang, Xuefeng; Hou, Jianquan

    2013-10-01

    To examine the frequency of tumor-infiltrating Tie-2-expressing monocytes (TEMs) in renal cell carcinoma (RCC) and its association with microvessel density (MVD) and other clinical-pathologic features. This study enrolled 65 consecutive patients with RCC treated with radical nephrectomy. The frequency of tumor-infiltrating TEMs, which was defined as CD14(+) Tie-2(+) cells, was assessed using flow cytometry. MVD was measured by immunohistochemistry using anti-CD34 antibody. The association between clinicopathologic parameters, MVD, and the frequency of tumor-infiltrating TEMs in RCC was assessed. High frequency of tumor-infiltrating TEMs was significantly associated with advanced stage (P = .018), positive lymph nodes (P = .013), high grade (P = .019), and metastases (P = .006). Correlation analysis revealed that the frequency of TEMs was positively correlated with MVD. Our findings revealed a significant association between prognostic tumor features, MVD, and the frequency of tumor-infiltrating TEMs in RCC and indicated that TEMs may play an important role in angiogenesis and progression of RCC. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Angiogenic Signaling in Living Breast Tumor Models

    National Research Council Canada - National Science Library

    Brown, Edward

    2006-01-01

    .... Progress to date includes the recruitment of personnel to the new laboratory, the development and testing of a novel method for the measurement of convective flow in tumors in vivo, the investigation...

  9. Microenvironment alters epigenetic and gene expression profiles in Swarm rat chondrosarcoma tumors

    International Nuclear Information System (INIS)

    Hamm, Christopher A; Wang, Deli; Malchenko, Sergey; Fatima Bonaldo, Maria de; Casavant, Thomas L; Hendrix, Mary JC; Soares, Marcelo B; Stevens, Jeff W; Xie, Hehuang; Vanin, Elio F; Morcuende, Jose A; Abdulkawy, Hakeem; Seftor, Elisabeth A; Sredni, Simone T; Bischof, Jared M

    2010-01-01

    Chondrosarcomas are malignant cartilage tumors that do not respond to traditional chemotherapy or radiation. The 5-year survival rate of histologic grade III chondrosarcoma is less than 30%. An animal model of chondrosarcoma has been established - namely, the Swarm Rat Chondrosarcoma (SRC) - and shown to resemble the human disease. Previous studies with this model revealed that tumor microenvironment could significantly influence chondrosarcoma malignancy. To examine the effect of the microenvironment, SRC tumors were initiated at different transplantation sites. Pyrosequencing assays were utilized to assess the DNA methylation of the tumors, and SAGE libraries were constructed and sequenced to determine the gene expression profiles of the tumors. Based on the gene expression analysis, subsequent functional assays were designed to determine the relevancy of the specific genes in the development and progression of the SRC. The site of transplantation had a significant impact on the epigenetic and gene expression profiles of SRC tumors. Our analyses revealed that SRC tumors were hypomethylated compared to control tissue, and that tumors at each transplantation site had a unique expression profile. Subsequent functional analysis of differentially expressed genes, albeit preliminary, provided some insight into the role that thymosin-β4, c-fos, and CTGF may play in chondrosarcoma development and progression. This report describes the first global molecular characterization of the SRC model, and it demonstrates that the tumor microenvironment can induce epigenetic alterations and changes in gene expression in the SRC tumors. We documented changes in gene expression that accompany changes in tumor phenotype, and these gene expression changes provide insight into the pathways that may play a role in the development and progression of chondrosarcoma. Furthermore, specific functional analysis indicates that thymosin-β4 may have a role in chondrosarcoma metastasis

  10. Microenvironment alters epigenetic and gene expression profiles in Swarm rat chondrosarcoma tumors

    Directory of Open Access Journals (Sweden)

    Hamm Christopher A

    2010-09-01

    Full Text Available Abstract Background Chondrosarcomas are malignant cartilage tumors that do not respond to traditional chemotherapy or radiation. The 5-year survival rate of histologic grade III chondrosarcoma is less than 30%. An animal model of chondrosarcoma has been established - namely, the Swarm Rat Chondrosarcoma (SRC - and shown to resemble the human disease. Previous studies with this model revealed that tumor microenvironment could significantly influence chondrosarcoma malignancy. Methods To examine the effect of the microenvironment, SRC tumors were initiated at different transplantation sites. Pyrosequencing assays were utilized to assess the DNA methylation of the tumors, and SAGE libraries were constructed and sequenced to determine the gene expression profiles of the tumors. Based on the gene expression analysis, subsequent functional assays were designed to determine the relevancy of the specific genes in the development and progression of the SRC. Results The site of transplantation had a significant impact on the epigenetic and gene expression profiles of SRC tumors. Our analyses revealed that SRC tumors were hypomethylated compared to control tissue, and that tumors at each transplantation site had a unique expression profile. Subsequent functional analysis of differentially expressed genes, albeit preliminary, provided some insight into the role that thymosin-β4, c-fos, and CTGF may play in chondrosarcoma development and progression. Conclusion This report describes the first global molecular characterization of the SRC model, and it demonstrates that the tumor microenvironment can induce epigenetic alterations and changes in gene expression in the SRC tumors. We documented changes in gene expression that accompany changes in tumor phenotype, and these gene expression changes provide insight into the pathways that may play a role in the development and progression of chondrosarcoma. Furthermore, specific functional analysis indicates that

  11. Erbb2 up-regulation of ADAM12 expression accelerates skin cancer progression.

    Science.gov (United States)

    Rao, Velidi H; Vogel, Kristen; Yanagida, Jodi K; Marwaha, Nitin; Kandel, Amrit; Trempus, Carol; Repertinger, Susan K; Hansen, Laura A

    2015-10-01

    Solar ultraviolet (UV) radiation can cause severe damage to the skin and is the primary cause of most skin cancer. UV radiation causes DNA damage leading to mutations and also activates the Erbb2/HER2 receptor through indirect mechanisms involving reactive oxygen species. We hypothesized that Erbb2 activation accelerates the malignant progression of UV-induced skin cancer. Following the induction of benign squamous papillomas by UV exposure of v-ras(Ha) transgenic Tg.AC mice, mice were treated topically with the Erbb2 inhibitor AG825 and tumor progression monitored. AG825 treatment reduced tumor volume, increased tumor regression, and delayed the development of malignant squamous cell carcinoma (SCC). Progression to malignancy was associated with increased Erbb2 and ADAM12 (A Disintegin And Metalloproteinase 12) transcripts and protein, while inhibition of Erbb2 blocked the increase in ADAM12 message upon malignant progression. Similarly, human SCC and SCC cell lines had increased ADAM12 protein and transcripts when compared to normal controls. To determine whether Erbb2 up-regulation of ADAM12 contributed to malignant progression of skin cancer, Erbb2 expression was modulated in cultured SCC cells using forced over-expression or siRNA targeting, demonstrating up-regulation of ADAM12 by Erbb2. Furthermore, ADAM12 transfection or siRNA targeting revealed that ADAM12 increased both the migration and invasion of cutaneous SCC cells. Collectively, these results suggest Erbb2 up-regulation of ADAM12 as a novel mechanism contributing to the malignant progression of UV-induced skin cancer. Inhibition of Erbb2/HER2 reduced tumor burden, increased tumor regression, and delayed the progression of benign skin tumors to malignant SCC in UV-exposed mice. Inhibition of Erbb2 suppressed the increase in metalloproteinase ADAM12 expression in skin tumors, which in turn increased migration and tumor cell invasiveness. © 2014 Wiley Periodicals, Inc.

  12. Individual moral development and moral progress

    NARCIS (Netherlands)

    Schinkel, Anders; de Ruyter, Doret J.

    At first glance, one of the most obvious places to look for moral progress is in individuals, in particular in moral development from childhood to adulthood. In fact, that moral progress is possible is a foundational assumption of moral education. Beyond the general agreement that moral progress is

  13. Individual Moral Development and Moral Progress

    NARCIS (Netherlands)

    Schinkel, Anders; de Ruyter, Doret J.

    2017-01-01

    At first glance, one of the most obvious places to look for moral progress is in individuals, in particular in moral development from childhood to adulthood. In fact, that moral progress is possible is a foundational assumption of moral education. Beyond the general agreement that moral progress is

  14. A phase II trial with bevacizumab and irinotecan for patients with primary brain tumors and progression after standard therapy

    DEFF Research Database (Denmark)

    Møller, Søren; Grunnet, Kirsten; Hansen, Steinbjørn

    2012-01-01

    The combination of irinotecan and bevacizumab has shown efficacy in the treatment of recurrent glioblastoma multiforme (GBM). A prospective, phase II study of 85 patients with various recurrent brain tumors was carried out. Primary endpoints were progression free survival (PFS) and response rate....

  15. Tumor-Derived Exosomes and Their Role in Tumor-Induced Immune Suppression

    Directory of Open Access Journals (Sweden)

    Theresa L. Whiteside

    2016-10-01

    Full Text Available Tumor-derived exosomes (TEX are emerging as critical components of an intercellular information network between the tumor and the host. The tumor escapes from the host immune system by using a variety of mechanisms designed to impair or eliminate anti-tumor immunity. TEX carrying a cargo of immunoinhibitory molecules and factors represent one such mechanism. TEX, which are present in all body fluids of cancer patients, deliver negative molecular or genetic signals to immune cells re-programming their functions. Although TEX can also stimulate immune activity, in the microenvironments dominated by the tumor, TEX tend to mediate immune suppression thus promoting tumor progression. The TEX content, in part resembling that of the parent cell, may serve as a source of cancer biomarkers. TEX also interfere with immune therapies. A better understanding of TEX and their contribution to cancer progression and cancer patients’ response to immune therapies represents a challenging new field of investigation.

  16. Linc00210 drives Wnt/β-catenin signaling activation and liver tumor progression through CTNNBIP1-dependent manner.

    Science.gov (United States)

    Fu, Xiaomin; Zhu, Xiaoyan; Qin, Fujun; Zhang, Yong; Lin, Jizhen; Ding, Yuechao; Yang, Zihe; Shang, Yiman; Wang, Li; Zhang, Qinxian; Gao, Quanli

    2018-03-14

    Liver tumor initiating cells (TICs) have self-renewal and differentiation properties, accounting for tumor initiation, metastasis and drug resistance. Long noncoding RNAs are involved in many physiological and pathological processes, including tumorigenesis. DNA copy number alterations (CNA) participate in tumor formation and progression, while the CNA of lncRNAs and their roles are largely unknown. LncRNA CNA was determined by microarray analyses, realtime PCR and DNA FISH. Liver TICs were enriched by surface marker CD133 and oncosphere formation. TIC self-renewal was analyzed by oncosphere formation, tumor initiation and propagation. CRISPRi and ASO were used for lncRNA loss of function. RNA pulldown, western blot and double FISH were used to identify the interaction between lncRNA and CTNNBIP1. Using transcriptome microarray analysis, we identified a frequently amplified long noncoding RNA in liver cancer termed linc00210, which was highly expressed in liver cancer and liver TICs. Linc00210 copy number gain is associated with its high expression in liver cancer and liver TICs. Linc00210 promoted self-renewal and tumor initiating capacity of liver TICs through Wnt/β-catenin signaling. Linc00210 interacted with CTNNBIP1 and blocked its inhibitory role in Wnt/β-catenin activation. Linc00210 silencing cells showed enhanced interaction of β-catenin and CTNNBIP1, and impaired interaction of β-catenin and TCF/LEF components. We also confirmed linc00210 copy number gain using primary hepatocellular carcinoma (HCC) samples, and found the correlation between linc00210 CNA and Wnt/β-catenin activation. Of interest, linc00210, CTNNBIP1 and Wnt/β-catenin signaling targeting can efficiently inhibit tumor growth and progression, and liver TIC propagation. With copy-number gain in liver TICs, linc00210 is highly expressed along with liver tumorigenesis. Linc00210 drives the self-renewal and propagation of liver TICs through activating Wnt/β-catenin signaling. Linc00210

  17. Reduced glucocorticoid receptor expression predicts bladder tumor recurrence and progression.

    Science.gov (United States)

    Ishiguro, Hitoshi; Kawahara, Takashi; Zheng, Yichun; Netto, George J; Miyamoto, Hiroshi

    2014-08-01

    To assess the levels of glucocorticoid receptor (GR) expression in bladder tumors because the status and its prognostic value remain largely unknown. We immunohistochemically stained for GR in bladder tumor and matched non-neoplastic bladder tissue specimens. Overall, GR was positive in 129 (87%) of 149 urothelial tumors, which was significantly (P=.026) lower than in non-neoplastic urothelium (90 [96%] of 94). Forty-two (79%) of 53 low-grade tumors vs 45 (47%) of 96 high-grade carcinomas (Pcancer-specific survival of MI tumors (P=.067). Multivariate analysis identified low GR expression as a strong predictor for recurrence of NMI tumors (P=.034). GR expression was downregulated in bladder tumors compared with nonneoplastic bladder tumors and in high-grade/MI tumors compared with low-grade/NMI tumors. Decreased expression of GR, as an independent prognosticator, predicted recurrence of NMI tumors. These results support experimental evidence suggesting an inhibitory role of GR signals in bladder cancer outgrowth. Copyright© by the American Society for Clinical Pathology.

  18. IB-11PSEUDO-PROGRESSION (PsdPg) IS A HARBINGER OF A MORE EFFECTIVE ANTI-TUMOR RESPONSE

    Science.gov (United States)

    Sturla, Lisa; Donahue, John; Machan, Jason; Delamonte, Suzanne; Jeyapalan, Suriya

    2014-01-01

    BACKGROUND: PsdPg is the increased contrast enhancement, high choline/creatine ratio and increased perfusion observed in the residual tumor bed of high-grade glioma patients after completion of temozolomide/radiation. It resolves within 3-6 months and incidence ranges from 10 - 31%. Though correlated with longer patient survival, its pathological basis is unclear. We used a cytokine/chemokine focused approach to compare the tumor microenvironment in pre- and post-treatment tumor tissue from patients with PsdPg to patients with true progression (TP). METHODS: We obtained pre-treatment formalin fixed paraffin embedded (FFPE) tissue from 35 GBM patients and post-treatment FFPE tissue from five patients with PsdPg and TP. A quantitative PCR array and custom Quantigene 2.0 multiplex was used to quantify gene expression corresponding to major cytokines/chemokines. An 18-gene signature was used to determine the macrophage polarization score (cumulative M2-associated cytokine expression - cumulative M1-associated cytokine expression). Immunohistochemistry (IHC) was used to confirm significantly different targets at the protein level. RESULTS: IHC revealed 7-fold higher B-cell infiltration in TP patients as compared to patients with PsdPg (p = 0.003). Macrophage and T-cell infiltration were not significantly different between the two groups. Nevertheless, the cytokines associated with macrophage polarization indicated pro-tumorigenic (M2) polarization in TP patients while PsdPg patients exhibited classical anti-tumorigenic (M1) polarization. TP patients had a 10-fold higher M2 score (p = 0.03) compared to PsdPg patients. The M1 score of tissue from PsdPg patients post-treatment was 25-fold higher than their pre-treatment tissue (p = 0.01). Analysis of a 7-gene signature associated with natural killer (NK) cell recruitment and activation showed a 8-fold higher expression in pre-treatment tissue from PsdPg patients compared to TP patients (p = 0.009) suggesting that NK cells

  19. Tumor-stroma metabolic relationship based on lactate shuttle can sustain prostate cancer progression

    International Nuclear Information System (INIS)

    Sanità, Patrizia; Capulli, Mattia; Teti, Anna; Galatioto, Giuseppe Paradiso; Vicentini, Carlo; Chiarugi, Paola; Bologna, Mauro; Angelucci, Adriano

    2014-01-01

    correlation between stromal MCT4 and tumor MCT1 expression. Our data demonstrated that PCa progression may benefit of MCT1 expression in tumor cells and of MCT4 in tumor-associated stromal cells. Therefore, MCTs may result promising therapeutic targets in different phases of neoplastic transformation according to a strategy aimed to contrast the energy metabolic adaptation of PCa cells to stressful environments

  20. Fibroblast growth factor-2-induced host stroma reaction during initial tumor growth promotes progression of mouse melanoma via vascular endothelial growth factor A-dependent neovascularization.

    Science.gov (United States)

    Tsunoda, Satoshi; Nakamura, Toshiyuki; Sakurai, Hiroaki; Saiki, Ikuo

    2007-04-01

    Fibroblast growth factor (FGF)-2 has been considered to play a critical role in neovascularization in several tumors; however, its precise role in tumor progression is not fully understood. In the present study, we have characterized the role of FGF-2 in B16-BL6 mouse melanoma cells, focusing on effects during the initial phase of tumor growth. FGF-2 was injected at the tumor inoculation site of dorsal skin during the initial phase. FGF-2 induced marked tumor growth and lymph node metastasis. This was well correlated with an increase in neovascularization in the host stroma. FGF-2 also recruited inflammatory and mesenchymal cells in host stroma. Marked tumor growth, pulmonary metastasis and intensive neovascularization in tumor parenchyma were also observed after a single injection of FGF-2 into the footpad inoculation site. In contrast, repeated injections of FGF-2 at a site remote from the footpad tumor were ineffective in promoting tumor growth and metastasis. These promoting activities of FGF-2 were blocked by local injections of a glucocorticoid hormone, suggesting that host inflammatory responses induced by FGF-2 are associated with FGF-2-induced tumor progression. In addition, although FGF-2 did not promote cellular proliferation and vascular endothelial growth factor A (VEGFA) mRNA expression in B16-BL6 cells in vitro, FGF-2 induced VEGFA expression in host stroma rather than tumor tissue, and local injections of a neutralizing antibody against VEGFA inhibited these activities of FGF-2 in vivo. These results indicate that abundant FGF-2 during the initial phase of tumor growth induces VEGFA-dependent intensive neovascularization in host stroma, and supports marked tumor growth and metastasis.

  1. Interleukin-34 promotes tumor progression and metastatic process in osteosarcoma through induction of angiogenesis and macrophage recruitment.

    Science.gov (United States)

    Ségaliny, Aude I; Mohamadi, Amel; Dizier, Blandine; Lokajczyk, Anna; Brion, Régis; Lanel, Rachel; Amiaud, Jérôme; Charrier, Céline; Boisson-Vidal, Catherine; Heymann, Dominique

    2015-07-01

    Interleukin-34 (IL-34) was recently characterized as the M-CSF "twin" cytokine, regulating the proliferation/differentiation/survival of myeloid cells. The implication of M-CSF in oncology was initially suspected by the reduced metastatic dissemination in knock-out mice, due to angiogenesis impairment. Based on this observation, our work studied the involvement of IL-34 in the pathogenesis of osteosarcoma. The in vivo effects of IL-34 were assessed on tissue vasculature and macrophage infiltration in a murine preclinical model based on a paratibial inoculation of human osteosarcoma cells overexpressing or not IL-34 or M-CSF. In vitro investigations using endothelial cell precursors and mature HUVEC cells were performed to analyse the involvement of IL-34 in angiogenesis and myeloid cell adhesion. The data revealed that IL-34 overexpression was associated with the progression of osteosarcoma (tumor growth, lung metastases) and an increase of neo-angiogenesis. In vitro analyses demonstrated that IL-34 stimulated endothelial cell proliferation and vascular cord formation. Pre-treatment of endothelial cells by chondroitinases/heparinases reduced the formation of vascular tubes and abolished the associated cell signalling. In addition, IL-34 increased the in vivo recruitment of M2 tumor-associated macrophages into the tumor tissue. IL-34 increased in vitro monocyte/CD34(+) cell adhesion to activated HUVEC monolayers under physiological shear stress conditions. This work also demonstrates that IL-34 is expressed by osteosarcoma cells, is regulated by TNF-α, IL-1β, and contributes to osteosarcoma growth by increasing the neo-angiogenesis and the recruitment of M2 macrophages. By promoting new vessel formation and extravasation of immune cells, IL-34 may play a key role in tumor development and inflammatory diseases. © 2014 UICC.

  2. The importance of melanoma inhibitory activity gene family in the tumor progression of oral cancer.

    Science.gov (United States)

    Sasahira, Tomonori; Bosserhoff, Anja Katrin; Kirita, Tadaaki

    2018-05-01

    Oral squamous cell carcinoma has a high potential for locoregional invasion and nodal metastasis. Consequently, early detection of such malignancies is of immense importance. The melanoma inhibitory activity (MIA) gene family comprises MIA, MIA2, transport and Golgi organization protein 1 (TANGO), and otoraplin (OTOR). These members of the MIA gene family have a highly conserved Src homology 3 (SH3)-like structure. Although the molecules of this family share 34-45% amino acid homology and 47-59% cDNA sequence homology, those members, excluding OTOR, play different tumor-associated functions. MIA has a pivotal role in the progression and metastasis of melanoma; MIA2 and TANGO have been suggested to possess tumor-suppressive functions; and OTOR is uniquely expressed in cochlea of the inner ear. Therefore, the definite functions of the MIA gene family in cancer cells remain unclear. Since the members of the MIA gene family are secreted proteins, these molecules might be useful tumor markers that can be detected in the body fluids, including serum and saliva. In this review, we described the molecular biological functions of the MIA gene family in oral cancer. © 2018 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

  3. Oxidative stress: development and progression of breast cancer:review article

    Directory of Open Access Journals (Sweden)

    Arash Salmaninejad

    2017-04-01

    Full Text Available Breast cancer is the most commonly diagnosed cancer in women worldwide. Enormous advancement has been made over the last decades in understanding the biology of breast cancer. Nevertheless, the molecular mechanisms regulating progression, gaining of invasive and metastatic phenotypes, and therapeutic resistance are still not completely understood. Oxidative stress initiate by disbalance in redox status of body. In this case, increase of free radicals in body cause tissue damage. One of the significant species of free radicals is reactive oxygen species (ROS that produced by various metabolic pathways, comprising aerobic metabolism in the mitochondrial respiratory chain. They play a serious role in cellular physiology and pathophysiology likewise beginning and evolution of numerous types of cancers. ROS overproduction is deleterious to cells, and considered key-factors for the development of numerous diseases, such as cardiovascular disorders, neurodegenerative diseases, and cancer. Cancer cells are commonly submitted to upper ROS levels that further incite malignant phenotype through motivation to preserved proliferation, angiogenesis, death evasion, invasiveness, and metastasis. ROS impress various signaling pathways, comprising mitogenic pathways and growth factors, and also controls numerous cellular processes, containing cell proliferation, thus stimulates the undisciplined growth of cells which inspires the development of tumors and initiates the progression of carcinogenesis. The importance of ROS on breast cancer development and etiology is being increasingly clarified. Nevertheless, fewer consideration has been given to the progress of redox system-targeted strategies for breast cancer treatment. Augmented oxidative stress caused by reactive species can diminish the body’s antioxidant defense against angiogenesis and metastasis in cancer cells. These processes are core factors in the development of cancer. Bimolecular reactions cause

  4. [Desmoid tumors in three patients].

    Science.gov (United States)

    Mohos, E; Kovács, T; Brittig, F; Nagy, A

    2001-12-01

    Desmoids are rare tumors of the connective tissue. It develops about 1:1000 times more in patients with familial adenomatous polyposis (FAP, Gardner syndrome) compared to normal population. It has been shown in molecular genetic examinations, that different mutations of the APC gene are responsible for desmoid tumors in FAP. It means, that this disease is one of the extraintestinal manifestations of Gardner syndrome. This tumor has high recurrence rate and is growing rapidly, and as a result it is the second most common cause of death in FAP patients. That is why genetic examination for FAP patients is advised to decide if the patient has higher risk for desmoid formation. If the result of the genetic test is positive, it is advisable to try to slow the progression of polyposis with medical treatment, and so to delay the date of the colectomy because the surgical intervention--and connective tissue damage--can induce desmoid formation in these patients. At the same time it is reasonable to examine and regularly control patients with sporadic desmoid tumors searching for other manifestations of Gardner syndrome (colon, stomach and duodenum polyposis, tumor of papilla Vateri, retinopathy, etc.). Palliative surgery is not indicated in patients with inoperable intraabdominal desmoid tumors, because partial resections (R1, R2, debulking) result in further tumor progression. In these patients medical treatment (sulindac, tamoxifen), chemotherapy (doxorubicin, dacarbazin) and radiotherapy or combination of them can result tumor remission. We describe our three patients (an abdominal wall desmoid four years following Cesarean section; a desmoid tumor in the retroperitoneum and in the pelvis diagnosed three years after total colectomy; and a retroperitoneal and abdominal wall desmoid one year after total colectomy) and etiology, diagnosis and therapy of desmoid tumors are discussed.

  5. Down-regulation of connective tissue growth factor by inhibition of transforming growth factor beta blocks the tumor-stroma cross-talk and tumor progression in hepatocellular carcinoma.

    Science.gov (United States)

    Mazzocca, Antonio; Fransvea, Emilia; Dituri, Francesco; Lupo, Luigi; Antonaci, Salvatore; Giannelli, Gianluigi

    2010-02-01

    Tumor-stroma interactions in hepatocellular carcinoma (HCC) are of key importance to tumor progression. In this study, we show that HCC invasive cells produce high levels of connective tissue growth factor (CTGF) and generate tumors with a high stromal component in a xenograft model. A transforming growth factor beta (TGF-beta) receptor inhibitor, LY2109761, inhibited the synthesis and release of CTGF, as well as reducing the stromal component of the tumors. In addition, the TGF-beta-dependent down-regulation of CTGF diminished tumor growth, intravasation, and metastatic dissemination of HCC cells by inhibiting cancer-associated fibroblast proliferation. By contrast, noninvasive HCC cells were found to produce low levels of CTGF. Upon TGF-beta1 stimulation, noninvasive HCC cells form tumors with a high stromal content and CTGF expression, which is inhibited by treatment with LY2109761. In addition, the acquired intravasation and metastatic spread of noninvasive HCC cells after TGF-beta1 stimulation was blocked by LY2109761. LY2109761 interrupts the cross-talk between cancer cells and cancer-associated fibroblasts, leading to a significant reduction of HCC growth and dissemination. Interestingly, patients with high CTGF expression had poor prognosis, suggesting that treatment aimed at reducing TGF-beta-dependent CTGF expression may offer clinical benefits. Taken together, our preclinical results indicate that LY2109761 targets the cross-talk between HCC and the stroma and provide a rationale for future clinical trials.

  6. Hypoxia-Induced Signaling Promotes Prostate Cancer Progression: Exosomes Role as Messenger of Hypoxic Response in Tumor Microenvironment

    Science.gov (United States)

    Deep, Gagan; Panigrahi, Gati K.

    2017-01-01

    Prostate cancer (PCA) is the leading malignancy in men and the second leading cause of cancer-related deaths. Hypoxia (low O2 condition) is considered an early event in prostate carcinogenesis associated with an aggressive phenotype. In fact, clinically, hypoxia and hypoxia-related biomarkers are associated with treatment failure and disease progression. Hypoxia-inducible factor 1 (HIF-1) is the key factor that is activated under hypoxia, and mediates adaptation of cells to hypoxic conditions through regulating the expression of genes associated with angiogenesis, epithelial-to-mesenchymal transition (EMT), metastasis, survival, proliferation, metabolism, stemness, hormone-refractory progression, and therapeutic resistance. Besides HIF-1, several other signaling pathways including PI3K/Akt/mTOR, NADPH oxidase (NOX), Wnt/β-catenin, and Hedgehog are activated in cancer cells under hypoxic conditions, and also contribute in hypoxia-induced biological effects in HIF-1-dependent and -independent manners. Hypoxic cancer cells cause extensive changes in the tumor microenvironment both local and distant, and recent studies have provided ample evidence supporting the crucial role of nanosized vesicles “exosomes” in mediating hypoxia-induced tumor microenvironment remodeling. Exosomes’ role has been reported in hypoxia-induced angiogenesis, stemness, activation of cancer-associated fibroblasts (CAFs), and EMT. Together, existing literature suggests that hypoxia plays a predominant role in PCA growth and progression, and PCA could be effectively prevented and treated via targeting hypoxia/hypoxia-related signaling pathways. PMID:27279239

  7. EMMPRIN/CD147 up-regulates urokinase-type plasminogen activator: implications in oral tumor progression

    Directory of Open Access Journals (Sweden)

    Lescaille Géraldine

    2012-03-01

    Full Text Available Abstract Backgrounds An elevated level of EMMPRIN in cancer tissues have been correlated with tumor invasion in numerous cancers including oral cavity and larynx. Although EMMPRIN's effect has been generally attributed to its MMP inducing activity, we have previously demonstrated in breast cancer model that EMMPRIN can also enhance invasion by upregulating uPA. In this study, the role of EMMPRIN in regulating uPA and invasion was investigated in oral squamous cell carcinoma (OSCC progression. Methods Precancerous and invasive oral tumoral tissues were used as well as the corresponding cell lines, DOK and SCC-9 respectively. The paracrine regulation of uPA by EMMPRIN was investigated by treating culture cells with EMMPRIN-enriched membrane vesicles. UPA expression was analyzed by qPCR and immunostaining and the consequence on the invasion capacity was studied using modified Boyden chamber assay, in the presence or absence of EMMPRIN blocking antibody, the uPA inhibitor amiloride or the MMP inhibitor marimastat. Results OSCC tumors were shown to express more EMMPRIN and uPA compared to dysplastic lesions. The corresponding cell models, SCC-9 and DOK cells, displayed similar expression pattern. In both cell types EMMPRIN upregulated the expression of uPA as well as that of MMP-2 and MMP-9. EMMPRIN treatment led to a significant increase in cell invasion both in the invasive SCC-9 and in the less invasive dysplastic DOK cells, in an MMP and uPA dependent manner. Conclusions Our results suggest that the upregulation of uPA contributes to EMMPRIN's effect in promoting oral tumor invasion.

  8. EMMPRIN/CD147 up-regulates urokinase-type plasminogen activator: implications in oral tumor progression.

    Science.gov (United States)

    Lescaille, Géraldine; Menashi, Suzanne; Cavelier-Balloy, Bénédicte; Khayati, Farah; Quemener, Cathy; Podgorniak, Marie Pierre; Naïmi, Benyoussef; Calvo, Fabien; Lebbe, Céleste; Mourah, Samia

    2012-03-23

    An elevated level of EMMPRIN in cancer tissues have been correlated with tumor invasion in numerous cancers including oral cavity and larynx. Although EMMPRIN's effect has been generally attributed to its MMP inducing activity, we have previously demonstrated in breast cancer model that EMMPRIN can also enhance invasion by upregulating uPA. In this study, the role of EMMPRIN in regulating uPA and invasion was investigated in oral squamous cell carcinoma (OSCC) progression. Precancerous and invasive oral tumoral tissues were used as well as the corresponding cell lines, DOK and SCC-9 respectively. The paracrine regulation of uPA by EMMPRIN was investigated by treating culture cells with EMMPRIN-enriched membrane vesicles. UPA expression was analyzed by qPCR and immunostaining and the consequence on the invasion capacity was studied using modified Boyden chamber assay, in the presence or absence of EMMPRIN blocking antibody, the uPA inhibitor amiloride or the MMP inhibitor marimastat. OSCC tumors were shown to express more EMMPRIN and uPA compared to dysplastic lesions. The corresponding cell models, SCC-9 and DOK cells, displayed similar expression pattern. In both cell types EMMPRIN upregulated the expression of uPA as well as that of MMP-2 and MMP-9. EMMPRIN treatment led to a significant increase in cell invasion both in the invasive SCC-9 and in the less invasive dysplastic DOK cells, in an MMP and uPA dependent manner. Our results suggest that the upregulation of uPA contributes to EMMPRIN's effect in promoting oral tumor invasion.

  9. EMMPRIN/CD147 up-regulates urokinase-type plasminogen activator: implications in oral tumor progression

    International Nuclear Information System (INIS)

    Lescaille, Géraldine; Mourah, Samia; Menashi, Suzanne; Cavelier-Balloy, Bénédicte; Khayati, Farah; Quemener, Cathy; Podgorniak, Marie Pierre; Naïmi, Benyoussef; Calvo, Fabien; Lebbe, Céleste

    2012-01-01

    An elevated level of EMMPRIN in cancer tissues have been correlated with tumor invasion in numerous cancers including oral cavity and larynx. Although EMMPRIN's effect has been generally attributed to its MMP inducing activity, we have previously demonstrated in breast cancer model that EMMPRIN can also enhance invasion by upregulating uPA. In this study, the role of EMMPRIN in regulating uPA and invasion was investigated in oral squamous cell carcinoma (OSCC) progression. Precancerous and invasive oral tumoral tissues were used as well as the corresponding cell lines, DOK and SCC-9 respectively. The paracrine regulation of uPA by EMMPRIN was investigated by treating culture cells with EMMPRIN-enriched membrane vesicles. UPA expression was analyzed by qPCR and immunostaining and the consequence on the invasion capacity was studied using modified Boyden chamber assay, in the presence or absence of EMMPRIN blocking antibody, the uPA inhibitor amiloride or the MMP inhibitor marimastat. OSCC tumors were shown to express more EMMPRIN and uPA compared to dysplastic lesions. The corresponding cell models, SCC-9 and DOK cells, displayed similar expression pattern. In both cell types EMMPRIN upregulated the expression of uPA as well as that of MMP-2 and MMP-9. EMMPRIN treatment led to a significant increase in cell invasion both in the invasive SCC-9 and in the less invasive dysplastic DOK cells, in an MMP and uPA dependent manner. Our results suggest that the upregulation of uPA contributes to EMMPRIN's effect in promoting oral tumor invasion

  10. Targeting Nanomedicine to Brain Tumors: Latest Progress and Achievements.

    Science.gov (United States)

    Van't Root, Moniek; Lowik, Clemens; Mezzanotte, Laura

    2017-01-01

    Targeting nanomedicine to brain tumors is hampered by the heterogeneity of brain tumors and the blood brain barrier. These represent the main reasons of unsuccessful treatments. Nanomedicine based approaches hold promise for improved brain tissue distribution of drugs and delivery of combination therapies. In this review, we describe the recent advancements and latest achievements in the use of nanocarriers, virus and cell-derived nanoparticles for targeted therapy of brain tumors. We provide successful examples of nanomedicine based approaches for direct targeting of receptors expressed in brain tumor cells or modulation of pathways involved in cell survival as well as approaches for indirect targeting of cells in the tumor stroma and immunotherapies. Although the field is at its infancy, clinical trials involving nanomedicine based approaches for brain tumors are ongoing and many others will start in the near future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Everolimus in advanced, progressive, well-differentiated, non-functional neuroendocrine tumors: RADIANT-4 lung subgroup analysis.

    Science.gov (United States)

    Fazio, Nicola; Buzzoni, Roberto; Delle Fave, Gianfranco; Tesselaar, Margot E; Wolin, Edward; Van Cutsem, Eric; Tomassetti, Paola; Strosberg, Jonathan; Voi, Maurizio; Bubuteishvili-Pacaud, Lida; Ridolfi, Antonia; Herbst, Fabian; Tomasek, Jiri; Singh, Simron; Pavel, Marianne; Kulke, Matthew H; Valle, Juan W; Yao, James C

    2018-01-01

    In the phase III RADIANT-4 study, everolimus improved median progression-free survival (PFS) by 7.1 months in patients with advanced, progressive, well-differentiated (grade 1 or grade 2), non-functional lung or gastrointestinal neuroendocrine tumors (NETs) vs placebo (hazard ratio, 0.48; 95% confidence interval [CI], 0.35-0.67; P < .00001). This exploratory analysis reports the outcomes of the subgroup of patients with lung NETs. In RADIANT-4, patients were randomized (2:1) to everolimus 10 mg/d or placebo, both with best supportive care. This is a post hoc analysis of the lung subgroup with PFS, by central radiology review, as the primary endpoint; secondary endpoints included objective response rate and safety measures. Ninety of the 302 patients enrolled in the study had primary lung NET (everolimus, n = 63; placebo, n = 27). Median PFS (95% CI) by central review was 9.2 (6.8-10.9) months in the everolimus arm vs 3.6 (1.9-5.1) months in the placebo arm (hazard ratio, 0.50; 95% CI, 0.28-0.88). More patients who received everolimus (58%) experienced tumor shrinkage compared with placebo (13%). Most frequently reported (≥5% incidence) grade 3-4 drug-related adverse events (everolimus vs. placebo) included stomatitis (11% vs. 0%), hyperglycemia (10% vs. 0%), and any infections (8% vs. 0%). In patients with advanced, progressive, well-differentiated, non-functional lung NET, treatment with everolimus was associated with a median PFS improvement of 5.6 months, with a safety profile similar to that of the overall RADIANT-4 cohort. These results support the use of everolimus in patients with advanced, non-functional lung NET. The trial is registered with ClinicalTrials.gov (no. NCT01524783). © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  12. HER family kinase domain mutations promote tumor progression and can predict response to treatment in human breast cancer

    KAUST Repository

    Boulbes, Delphine R.; Arold, Stefan T.; Chauhan, Gaurav B.; Blachno, Korina V.; Deng, Nanfu; Chang, Wei-Chao; Jin, Quanri; Huang, Tzu-Hsuan; Hsu, Jung-Mao; Brady, Samuel W.; Bartholomeusz, Chandra; Ladbury, John E.; Stone, Steve; Yu, Dihua; Hung, Mien-Chie; Esteva, Francisco J.

    2014-01-01

    Resistance to HER2-targeted therapies remains a major obstacle in the treatment of HER2-overexpressing breast cancer. Understanding the molecular pathways that contribute to the development of drug resistance is needed to improve the clinical utility of novel agents, and to predict the success of targeted personalized therapy based on tumor-specific mutations. Little is known about the clinical significance of HER family mutations in breast cancer. Because mutations within HER1/EGFR are predictive of response to tyrosine kinase inhibitors (TKI) in lung cancer, we investigated whether mutations in HER family kinase domains are predictive of response to targeted therapy in HER2-overexpressing breast cancer. We sequenced the HER family kinase domains from 76 HER2-overexpressing invasive carcinomas and identified 12 missense variants. Patients whose tumors carried any of these mutations did not respond to HER2 directed therapy in the metastatic setting. We developed mutant cell lines and used structural analyses to determine whether changes in protein conformation could explain the lack of response to therapy. We also functionally studied all HER2 mutants and showed that they conferred an aggressive phenotype and altered effects of the TKI lapatinib. Our data demonstrate that mutations in the finely tuned HER kinase domains play a critical function in breast cancer progression and may serve as prognostic and predictive markers.

  13. HER family kinase domain mutations promote tumor progression and can predict response to treatment in human breast cancer

    KAUST Repository

    Boulbes, Delphine R.

    2014-11-11

    Resistance to HER2-targeted therapies remains a major obstacle in the treatment of HER2-overexpressing breast cancer. Understanding the molecular pathways that contribute to the development of drug resistance is needed to improve the clinical utility of novel agents, and to predict the success of targeted personalized therapy based on tumor-specific mutations. Little is known about the clinical significance of HER family mutations in breast cancer. Because mutations within HER1/EGFR are predictive of response to tyrosine kinase inhibitors (TKI) in lung cancer, we investigated whether mutations in HER family kinase domains are predictive of response to targeted therapy in HER2-overexpressing breast cancer. We sequenced the HER family kinase domains from 76 HER2-overexpressing invasive carcinomas and identified 12 missense variants. Patients whose tumors carried any of these mutations did not respond to HER2 directed therapy in the metastatic setting. We developed mutant cell lines and used structural analyses to determine whether changes in protein conformation could explain the lack of response to therapy. We also functionally studied all HER2 mutants and showed that they conferred an aggressive phenotype and altered effects of the TKI lapatinib. Our data demonstrate that mutations in the finely tuned HER kinase domains play a critical function in breast cancer progression and may serve as prognostic and predictive markers.

  14. Heparan Sulfate and Heparanase as Modulators of Breast Cancer Progression

    Directory of Open Access Journals (Sweden)

    Angélica M. Gomes

    2013-01-01

    Full Text Available Breast cancer is defined as a cancer originating in tissues of the breast, frequently in ducts and lobules. During the last 30 years, studies to understand the biology and to treat breast tumor improved patients’ survival rates. These studies have focused on genetic components involved in tumor progression and on tumor microenvironment. Heparan sulfate proteoglycans (HSPGs are involved in cell signaling, adhesion, extracellular matrix assembly, and growth factors storage. As a central molecule, HSPG regulates cell behavior and tumor progression. HS accompanied by its glycosaminoglycan counterparts regulates tissue homeostasis and cancer development. These molecules present opposite effects according to tumor type or cancer model. Studies in this area may contribute to unveil glycosaminoglycan activities on cell dynamics during breast cancer exploring these polysaccharides as antitumor agents. Heparanase is a potent tumor modulator due to its protumorigenic, proangiogenic, and prometastatic activities. Several lines of evidence indicate that heparanase is upregulated in all human sarcomas and carcinomas. Heparanase seems to be related to several aspects regulating the potential of breast cancer metastasis. Due to its multiple roles, heparanase is seen as a target in cancer treatment. We will describe recent findings on the function of HSPGs and heparanase in breast cancer behavior and progression.

  15. Clinical relevance and biology of circulating tumor cells

    Science.gov (United States)

    2011-01-01

    Most breast cancer patients die due to metastases, and the early onset of this multistep process is usually missed by current tumor staging modalities. Therefore, ultrasensitive techniques have been developed to enable the enrichment, detection, isolation and characterization of disseminated tumor cells in bone marrow and circulating tumor cells in the peripheral blood of cancer patients. There is increasing evidence that the presence of these cells is associated with an unfavorable prognosis related to metastatic progression in the bone and other organs. This review focuses on investigations regarding the biology and clinical relevance of circulating tumor cells in breast cancer. PMID:22114869

  16. Reactive Retinal Astrocytic Tumor (Focal Nodular Gliosis): Report of the Clinical Spectrum of 3 Cases.

    Science.gov (United States)

    Singh, Arun D; Soto, Hansell; Bellerive, Claudine; Biscotti, Charles V

    2017-09-01

    To report 3 cases providing insight into clinical progression of reactive retinal astrocytic tumor. The clinical, imaging, and when available, the cytologic features of 3 cases of reactive retinal astrocytic tumor (focal nodular gliosis) were reviewed. A 6-year-old female, a 49-year-old man, and a 39-year-old man each developed a white retinal mass associated with laser photocoagulation, lattice degeneration, and treatment of a presumed vascular tumor, respectively. All tumors were white, circumscribed retinal masses that tended to be associated with exudation and either initially or eventually minimal vascularity. Reactive retinal astrocytic tumor can be observed in response to a degenerative, inflammatory, or ischemic retinal insult. Such tumors may progress after therapeutic intervention.

  17. Canine tumor cross-species genomics uncovers targets linked to osteosarcoma progression

    Science.gov (United States)

    2009-01-01

    Background Pulmonary metastasis continues to be the most common cause of death in osteosarcoma. Indeed, the 5-year survival for newly diagnosed osteosarcoma patients has not significantly changed in over 20 years. Further understanding of the mechanisms of metastasis and resistance for this aggressive pediatric cancer is necessary. Pet dogs naturally develop osteosarcoma providing a novel opportunity to model metastasis development and progression. Given the accelerated biology of canine osteosarcoma, we hypothesized that a direct comparison of canine and pediatric osteosarcoma expression profiles may help identify novel metastasis-associated tumor targets that have been missed through the study of the human cancer alone. Results Using parallel oligonucleotide array platforms, shared orthologues between species were identified and normalized. The osteosarcoma expression signatures could not distinguish the canine and human diseases by hierarchical clustering. Cross-species target mining identified two genes, interleukin-8 (IL-8) and solute carrier family 1 (glial high affinity glutamate transporter), member 3 (SLC1A3), which were uniformly expressed in dog but not in all pediatric osteosarcoma patient samples. Expression of these genes in an independent population of pediatric osteosarcoma patients was associated with poor outcome (p = 0.020 and p = 0.026, respectively). Validation of IL-8 and SLC1A3 protein expression in pediatric osteosarcoma tissues further supported the potential value of these novel targets. Ongoing evaluation will validate the biological significance of these targets and their associated pathways. Conclusions Collectively, these data support the strong similarities between human and canine osteosarcoma and underline the opportunities provided by a comparative oncology approach as a means to improve our understanding of cancer biology and therapies. PMID:20028558

  18. Canine tumor cross-species genomics uncovers targets linked to osteosarcoma progression

    Directory of Open Access Journals (Sweden)

    Triche Timothy

    2009-12-01

    Full Text Available Abstract Background Pulmonary metastasis continues to be the most common cause of death in osteosarcoma. Indeed, the 5-year survival for newly diagnosed osteosarcoma patients has not significantly changed in over 20 years. Further understanding of the mechanisms of metastasis and resistance for this aggressive pediatric cancer is necessary. Pet dogs naturally develop osteosarcoma providing a novel opportunity to model metastasis development and progression. Given the accelerated biology of canine osteosarcoma, we hypothesized that a direct comparison of canine and pediatric osteosarcoma expression profiles may help identify novel metastasis-associated tumor targets that have been missed through the study of the human cancer alone. Results Using parallel oligonucleotide array platforms, shared orthologues between species were identified and normalized. The osteosarcoma expression signatures could not distinguish the canine and human diseases by hierarchical clustering. Cross-species target mining identified two genes, interleukin-8 (IL-8 and solute carrier family 1 (glial high affinity glutamate transporter, member 3 (SLC1A3, which were uniformly expressed in dog but not in all pediatric osteosarcoma patient samples. Expression of these genes in an independent population of pediatric osteosarcoma patients was associated with poor outcome (p = 0.020 and p = 0.026, respectively. Validation of IL-8 and SLC1A3 protein expression in pediatric osteosarcoma tissues further supported the potential value of these novel targets. Ongoing evaluation will validate the biological significance of these targets and their associated pathways. Conclusions Collectively, these data support the strong similarities between human and canine osteosarcoma and underline the opportunities provided by a comparative oncology approach as a means to improve our understanding of cancer biology and therapies.

  19. Rapid progression of gliomatosis cerebri to secondary glioblastoma, factors that affects the progression rate: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee Kyung; Yu, In Kyu; Kim, Seung Min; Kim, Joo Heon; Lee, Seung Hoon; Lee, Seung Yeon [Eulji University Hospital, Daejeon (Korea, Republic of)

    2017-03-15

    Glioblastomas may develop de novo or through progression from low-grade or anaplastic astrocytomas. The term 'primary glioblastoma' refers to a glioblastoma that lacks a precursor lesion and has a clinical history of less than three months. On the other hand, the term 'secondary glioblastoma' indicates that the glioblastoma has progressed from a low-grade tumor after a long latency period and often manifests in younger patients. These subtypes of glioblastoma develop via different genetic pathways, and they differ in prognosis and response to therapy. Thus, differential diagnosis of these subtypes and prediction of the factors that affect the progression from low-grade diffuse astrocytoma to secondary glioblastoma would be clinically very important. We present a rare case of secondary glioblastoma, which developed only three months after the follow up imaging evaluations, with a history of low grade glioma, and present the factors that cause rapid progression.

  20. Acquired Immune Resistance Follows Complete Tumor Regression without Loss of Target Antigens or IFN gamma Signaling

    DEFF Research Database (Denmark)

    Donia, Marco; Harbst, Katja; van Buuren, Marit

    2017-01-01

    Cancer immunotherapy can result in durable tumor regressions in some patients. However, patients who initially respond often experience tumor progression. Here, we report mechanistic evidence of tumoral immune escape in an exemplary clinical case: a patient with metastatic melanoma who developed ...

  1. Imaging study of lymphoreticular tumor development in ataxia-telangiectasia and Nijmegen breakage syndrome; Estudio por imagen del desarrollo de tumores linforreticulares en la ataxia telangiectasia y el sindrome de Nijmegen

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Leon, M. I.; Ceres-Ruiz, L.; Cuesta, M. A.; Garcia-Martin, F. J. [Hospital Materno-Infantil C.H.U. Carlos Haya. Malaga (Spain)

    2003-07-01

    Ataxia-telangiectasia (AT), or Louis-Bar syndrome, is an autosomal recessive illness characterized by progressive cerebellar ataxia, oculo-cutaneous telangiectasia, immunodeficiency combined with susceptibility to sinopulmonary infections and high incidence of neoplastic development. Nijmegen breakage syndrome (NBS) is a variant of AT, is also an autosomal recessive illness that presents cerebellar ataxia, as well as combined immunodeficiency and a tendency toward tumor development. Contrary to Louis-Bar syndrome, it doesn't present telangiectasia and exhibits a characteristics phenotype (short stature, bird-like face and microcephaly). Both entities are classified as syndrome of chromosomal instability or chromosomal fragility, a group which also includes Bloom syndrome and Fanconi anemia. All of these show an increase in the frequency of neoplastic pathologies, mainly lymphoid tumors. We present three patients,two with AT and one with NBS, who developed different lymphoma types in the course of the illness. We highlight the most outstanding aspects from a clinical-radiological point of view. (Author) 17 refs.

  2. Monitoring multiple myeloma by idiotype-specific peptide binders of tumor-derived exosomes.

    Science.gov (United States)

    Iaccino, Enrico; Mimmi, Selena; Dattilo, Vincenzo; Marino, Fabiola; Candeloro, Patrizio; Di Loria, Antonio; Marimpietri, Danilo; Pisano, Antonio; Albano, Francesco; Vecchio, Eleonora; Ceglia, Simona; Golino, Gaetanina; Lupia, Antonio; Fiume, Giuseppe; Quinto, Ileana; Scala, Giuseppe

    2017-10-13

    Tumor-derived exosomes (TDEs) play a pivotal role in tumor establishment and progression, and are emerging biomarkers for tumor diagnosis in personalized medicine. To date, there is a lack of efficient technology platforms for exosome isolation and characterization. Multiple myeloma (MM) is an incurable B-cell malignancy due to the rapid development of drug-resistance. MM-released exosomes express the immunoglobulin B-cell receptor (Ig-BCR) of the tumor B-cells, which can be targeted by Idiotype-binding peptides (Id-peptides). In this study, we analyzed the production of MM-released exosomes in the murine 5T33MM multiple myeloma model as biomarkers of tumor growth. To this end, we selected Id-peptides by screening a phage display library using as bait the Ig-BCR expressed by 5T33MM cells. By FACS, the FITC-conjugated Id-peptides detected the MM-released exosomes in the serum of 5T33MM-engrafted mice, levels of which are correlated with tumor progression at an earlier time point compared to serum paraprotein. These results indicate that Id-peptide-based recognition of MM-released exosomes may represent a very sensitive diagnostic approach for clinical evaluation of disease progression.

  3. Pharmacological or genetic inhibition of LDHA reverses tumor progression of pediatric osteosarcoma.

    Science.gov (United States)

    Gao, Shan; Tu, Dan-Na; Li, Heng; Jiang, Jian-Xin; Cao, Xin; You, Jin-Bin; Zhou, Xiao-Qin

    2016-07-01

    Reprogrammed energy metabolism is an emerging hallmark of cancer. Lactate dehydrogenase A (LDHA), a key enzyme involved in anaerobic glycolysis, is frequently deregulated in human malignancies. However, limited knowledge is known about its roles in the progression of osteosarcoma (OS). In this study, we found that LDHA is commonly upregulated in four OS cell lines compared with the normal osteoblast cells (hFOB1.19). Treatment with FX11, a specific inhibitor of LDHA, significantly reduced LDHA activity, and inhibited cell proliferation and invasive potential in a dose dependent manner. Genetic silencing of LDHA resulted in a decreased lactate level in the culture medium, reduced cell viability and decreased cell invasion ability. Meanwhile, silencing of LDHA also compromised tumorigenesis in vivo. Furthermore, knockdown of LDHA remarkably reduced extracellular acidification rate (ECAR) as well as glucose consumption. In the presence of 2-DG, a glycolysis inhibitor, LDHA-mediated cell proliferation and invasion were completely blocked, indicating the oncogenic activities of LDHA may dependent on Warburg effect. Finally, pharmacological inhibition of c-Myc or HIF1α significantly attenuated LDHA expression. Taken together, upregulated LDHA facilitates tumor progression of OS and might be a potential target for OS treatment. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Recent Progress in the Medical Therapy of Pituitary Tumors

    Directory of Open Access Journals (Sweden)

    Fabienne Langlois

    2017-05-01

    Full Text Available Management of pituitary tumors is multidisciplinary, with medical therapy playing an increasingly important role. With the exception of prolactin-secreting tumors, surgery is still considered the first-line treatment for the majority of pituitary adenomas. However, medical/pharmacological therapy plays an important role in controlling hormone-producing pituitary adenomas, especially for patients with acromegaly and Cushing disease (CD. In the case of non-functioning pituitary adenomas (NFAs, pharmacological therapy plays a minor role, the main objective of which is to reduce tumor growth, but this role requires further studies. For pituitary carcinomas and atypical adenomas, medical therapy, including chemotherapy, acts as an adjuvant to surgery and radiation therapy, which is often required to control these aggressive tumors. In the last decade, knowledge about the pathophysiological mechanisms of various pituitary adenomas has increased, thus novel medical therapies that target specific pathways implicated in tumor synthesis and hormonal over secretion are now available. Advancement in patient selection and determination of prognostic factors has also helped to individualize therapy for patients with pituitary tumors. Improvements in biochemical and “tumor mass” disease control can positively affect patient quality of life, comorbidities and overall survival. In this review, the medical armamentarium for treating CD, acromegaly, prolactinomas, NFA, and carcinomas/aggressive atypical adenomas will be presented. Pharmacological therapies, including doses, mode of administration, efficacy, adverse effects, and use in special circumstances are provided. Medical therapies currently under clinical investigation are also briefly discussed.

  5. The Multifunctional Protein Kinase C-ε in Cancer Development and Progression

    Science.gov (United States)

    Jain, Kirti; Basu, Alakananda

    2014-01-01

    The protein kinase C (PKC) family proteins are important signal transducers and have long been the focus of cancer research. PKCɛ, a member of this family, is overexpressed in most solid tumors and plays critical roles in different processes that lead to cancer development. Studies using cell lines and animal models demonstrated the transforming potential of PKCɛ. While earlier research established the survival functions of PKCɛ, recent studies revealed its role in cell migration, invasion and cancer metastasis. PKCɛ has also been implicated in epithelial to mesenchymal transition (EMT), which may be the underlying mechanism by which it contributes to cell motility. In addition, PKCɛ affects cell-extracellular matrix (ECM) interactions by direct regulation of the cytoskeletal elements. Recent studies have also linked PKCɛ signaling to cancer stem cell functioning. This review focuses on the role of PKCɛ in different processes that lead to cancer development and progression. We also discussed current literatures on the pursuit of PKCɛ as a target for cancer therapy. PMID:24727247

  6. The Multifunctional Protein Kinase C-ε in Cancer Development and Progression

    Directory of Open Access Journals (Sweden)

    Kirti Jain

    2014-04-01

    Full Text Available The protein kinase C (PKC family proteins are important signal transducers and have long been the focus of cancer research. PKCɛ, a member of this family, is overexpressed in most solid tumors and plays critical roles in different processes that lead to cancer development. Studies using cell lines and animal models demonstrated the transforming potential of PKCɛ. While earlier research established the survival functions of PKCɛ, recent studies revealed its role in cell migration, invasion and cancer metastasis. PKCɛ has also been implicated in epithelial to mesenchymal transition (EMT, which may be the underlying mechanism by which it contributes to cell motility. In addition, PKCɛ affects cell-extracellular matrix (ECM interactions by direct regulation of the cytoskeletal elements. Recent studies have also linked PKCɛ signaling to cancer stem cell functioning. This review focuses on the role of PKCɛ in different processes that lead to cancer development and progression. We also discussed current literatures on the pursuit of PKCɛ as a target for cancer therapy.

  7. The Multifunctional Protein Kinase C-ε in Cancer Development and Progression

    International Nuclear Information System (INIS)

    Jain, Kirti; Basu, Alakananda

    2014-01-01

    The protein kinase C (PKC) family proteins are important signal transducers and have long been the focus of cancer research. PKCε, a member of this family, is overexpressed in most solid tumors and plays critical roles in different processes that lead to cancer development. Studies using cell lines and animal models demonstrated the transforming potential of PKCε. While earlier research established the survival functions of PKCε, recent studies revealed its role in cell migration, invasion and cancer metastasis. PKCε has also been implicated in epithelial to mesenchymal transition (EMT), which may be the underlying mechanism by which it contributes to cell motility. In addition, PKCε affects cell-extracellular matrix (ECM) interactions by direct regulation of the cytoskeletal elements. Recent studies have also linked PKCε signaling to cancer stem cell functioning. This review focuses on the role of PKCε in different processes that lead to cancer development and progression. We also discussed current literatures on the pursuit of PKCε as a target for cancer therapy.

  8. The Multifunctional Protein Kinase C-ε in Cancer Development and Progression

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Kirti; Basu, Alakananda, E-mail: alakananda.basu@unthsc.edu [Department of Molecular and Medical Genetics, University of North Texas Health Science Center, Institute for Cancer Research, and Focused on Resources for her Health Education and Research, Fort Worth, TX 76107 (United States)

    2014-04-10

    The protein kinase C (PKC) family proteins are important signal transducers and have long been the focus of cancer research. PKCε, a member of this family, is overexpressed in most solid tumors and plays critical roles in different processes that lead to cancer development. Studies using cell lines and animal models demonstrated the transforming potential of PKCε. While earlier research established the survival functions of PKCε, recent studies revealed its role in cell migration, invasion and cancer metastasis. PKCε has also been implicated in epithelial to mesenchymal transition (EMT), which may be the underlying mechanism by which it contributes to cell motility. In addition, PKCε affects cell-extracellular matrix (ECM) interactions by direct regulation of the cytoskeletal elements. Recent studies have also linked PKCε signaling to cancer stem cell functioning. This review focuses on the role of PKCε in different processes that lead to cancer development and progression. We also discussed current literatures on the pursuit of PKCε as a target for cancer therapy.

  9. Mutations in TGFbeta-RII and BAX mediate tumor progression in the later stages of colorectal cancer with microsatellite instability

    International Nuclear Information System (INIS)

    Yashiro, Masakazu; Hirakawa, Kosei; Boland, C Richard

    2010-01-01

    Microsatellite instability (MSI) occurs in 15% of colorectal cancers (CRC). The genetic targets for mutation in the MSI phenotype include somatic mutations in the transforming growth factor beta receptor typeII (TGFbetaRII), BAX, hMSH3 and hMSH6. It is not clear how mutations of these genes mediate tumor progression in the MSI pathway, and the temporal sequence of these mutations remains uncertain. In this study, early stage CRCs were examined for frameshift mutations in these target genes, and compared with late stage tumors and CRC cell lines. We investigated 6 CRC cell lines and 71 sporadic CRCs, including 61 early stage cancers and 10 late stage cancers. Mutations of repetitive mononucleotide tracts in the coding regions of TGFbetaRII, BAX, hMSH3, hMSH6, IGFIIR and Fas antigen were identified by direct sequencing. Thirteen (18.3%) of 71 CRC, including 9/61 (14.7%) early stage cancers and 4/10 (40%) late stage cancers, were identified as MSI and analyzed for frameshift mutations. No mutation in the target genes was observed in any of the 9 early stage MSI CRCs. In contrast, frameshift mutations of TGFbetaRII, BAX, hMSH3 and hMSH6 were present in 3/4 late stage MSI tumors. There is a statistical association (p = 0.014) between mutation in any one gene and tumor stage. TGFbetaRII, BAX, hMSH3 and hMSH6 mutations are relatively late events in the genesis of MSI CRCs. The frameshift mutations in these target genes might mediate progression from early to late stage cancer, rather than mediating the adenoma to carcinoma transition

  10. Ethanol stimulates tumor progression and expression of vascular endothelial growth factor in chick embryos.

    Science.gov (United States)

    Gu, Jian-Wei; Bailey, Amelia Purser; Sartin, Amanda; Makey, Ian; Brady, Ann L

    2005-01-15

    The mechanisms by which alcohol consumption causes cancer have not been established due to a lack of experimental studies. A chick embryo chorioallantoic membrane (CAM) model that bore human fibrosarcoma (HT1080) was used to determine whether the administration of physiologically relevant doses of ethanol could stimulate tumor growth, angiogenesis, metastasis, and vascular endothelial growth factor (VEGF) expression in tumors. HT1080 cells were inoculated onto the "upper CAM" on Day 8, saline or ethanol was administrated at a dose of 0.25 g/kg per day on the CAM, and the tumors were harvested on Day 17. VEGF mRNA and protein were determined by Northern blot analysis and enzyme-linked immunosorbent assay. Intratumoral vascular volume density (IVVD) was determined by point counting on periodic acid-Schiff-stained sections. Intravasation of HT1080 cells was determined using human-Alu polymerase chain reaction analysis. The effects of ethanol on VEGF expression and cell proliferation were examined in cultured HT1080 cells. Ethanol treatment for 9 days caused a 2.2-fold increase in tumor volume (867 +/- 138 mm(3) vs. 402 +/- 28 mm(3)), a 2.1-fold increase in IVVD (0.021 +/- 0.004 mm(3)/mm(3) vs. 0.010 mm(3)/mm(3) +/- 0.002 mm(3)/mm(3)), and a significant increase in VEGF mRNA or protein expression in tumors compared with a group of control embryos (n = 6 embryos; P 8-fold in the intravasated HT1080 cells in the CAM group compared with the control group (n = 6 embryos; P < 0.01). Physiologically relevant levels of ethanol (10 mM and 20 mM) caused a dose-related increase in VEGF mRNA and protein expression in cultured HT1080 cells. The ethanol-HT1080-conditioned media increased the proliferation of endothelial cells, but not of HT1080 cells. The findings suggest that the induction of angiogenesis and VEGF expression by ethanol represents an important mechanism of cancer progression associated with alcoholic beverage consumption. (c) 2004 American Cancer Society.

  11. Mathematical modeling of tumor-associated macrophage interactions with the cancer microenvironment.

    Science.gov (United States)

    Mahlbacher, Grace; Curtis, Louis T; Lowengrub, John; Frieboes, Hermann B

    2018-01-30

    Immuno-oncotherapy has emerged as a promising means to target cancer. In particular, therapeutic manipulation of tumor-associated macrophages holds promise due to their various and sometimes opposing roles in tumor progression. It is established that M1-type macrophages suppress tumor progression while M2-types support it. Recently, Tie2-expressing macrophages (TEM) have been identified as a distinct sub-population influencing tumor angiogenesis and vascular remodeling as well as monocyte differentiation. This study develops a modeling framework to evaluate macrophage interactions with the tumor microenvironment, enabling assessment of how these interactions may affect tumor progression. M1, M2, and Tie2 expressing variants are integrated into a model of tumor growth representing a metastatic lesion in a highly vascularized organ, such as the liver. Behaviors simulated include M1 release of nitric oxide (NO), M2 release of growth-promoting factors, and TEM facilitation of angiogenesis via Angiopoietin-2 and promotion of monocyte differentiation into M2 via IL-10. The results show that M2 presence leads to larger tumor growth regardless of TEM effects, implying that immunotherapeutic strategies that lead to TEM ablation may fail to restrain growth when the M2 represents a sizeable population. As TEM pro-tumor effects are less pronounced and on a longer time scale than M1-driven tumor inhibition, a more nuanced approach to influence monocyte differentiation taking into account the tumor state (e.g., under chemotherapy) may be desirable. The results highlight the dynamic interaction of macrophages within a growing tumor, and, further, establish the initial feasibility of a mathematical framework that could longer term help to optimize cancer immunotherapy.

  12. Circulating Tumor Cell Count Correlates with Colorectal Neoplasm Progression and Is a Prognostic Marker for Distant Metastasis in Non-Metastatic Patients

    Science.gov (United States)

    Tsai, Wen-Sy; Chen, Jinn-Shiun; Shao, Hung-Jen; Wu, Jen-Chia; Lai-Ming, Jr.; Lu, Si-Hong; Hung, Tsung-Fu; Chiu, Yen-Chi; You, Jeng-Fu; Hsieh, Pao-Shiu; Yeh, Chien-Yuh; Hung, Hsin-Yuan; Chiang, Sum-Fu; Lin, Geng-Ping; Tang, Reiping; Chang, Ying-Chih

    2016-04-01

    Enumeration of circulating tumor cells (CTCs) has been proven as a prognostic marker for metastatic colorectal cancer (m-CRC) patients. However, the currently available techniques for capturing and enumerating CTCs lack of required sensitivity to be applicable as a prognostic marker for non-metastatic patients as CTCs are even more rare. We have developed a microfluidic device utilizing antibody-conjugated non-fouling coating to eliminate nonspecific binding and to promote the multivalent binding of target cells. We then established the correlation of CTC counts and neoplasm progression through applying this platform to capture and enumerate CTCs in 2 mL of peripheral blood from healthy (n = 27), benign (n = 21), non-metastatic (n = 95), and m-CRC (n = 15) patients. The results showed that the CTC counts progressed from 0, 1, 5, to 36. Importantly, after 2-year follow-up on the non-metastatic CRC patients, we found that those who had ≥5 CTCs were 8 times more likely to develop distant metastasis within one year after curable surgery than those who had marker for the non-metastatic CRC patients who are at high risk of early recurrence.

  13. Transgenic Overexpression of the Proprotein Convertase Furin Enhances Skin Tumor Growth

    Directory of Open Access Journals (Sweden)

    Jian Fu

    2012-04-01

    Full Text Available Furin, one of the members of the family of proprotein convertases (PCs, ubiquitously expressed as a type I membrane-bound proteinase, activates several proteins that contribute to tumor progression. In vitro studies using cancer cell lines and clinical specimens demonstrated that furin processes important substrates such as insulin-like growth factor 1 receptor (IGF-1R and transforming growth factor β, leading to increased tumor growth and progression. Despite the numerous studies associating furin with tumor development, its effects in preclinical models has not been comprehensively studied. In this study, we sought to determine the protumorigenic role of furin in vivo after a two-stage chemical carcinogenesis protocol in transgenic mice in which furin expression was targeted to the epidermal basal layer. We found that processing of the PC substrate IGF-1R and the proliferation rate of mouse epidermis was enhanced in transgenic mice when compared with their WT counterparts. Histopathologic diagnoses of the tumors demonstrated that furin transgenic mice (line F47 developed twice as many squamous carcinomas as the control, WT mice (P < .002. Similarly, tumors cells from transgenic mice were able to process PC substrates more efficiently than tumor cells from WT mice. Furthermore, furin expression resulted in a higher SCC volume in transgenic mice as well as an increase in the percentage of high-grade SCC, including poorly differentiated and spindle cell carcinomas. In conclusion, expression of furin in the basal layer of the epidermis increased tumor development and enhanced tumor growth, supporting the consideration of furin as a potential target for cancer treatment.

  14. T Cell-Tumor Interaction Directs the Development of Immunotherapies in Head and Neck Cancer

    Directory of Open Access Journals (Sweden)

    A. E. Albers

    2010-01-01

    Full Text Available The competent immune system controls disease effectively due to induction, function, and regulation of effector lymphocytes. Immunosurveillance is exerted mostly by cytotoxic T-lymphocytes (CTLs while specific immune suppression is associated with tumor malignancy and progression. In squamous cell carcinoma of the head and neck, the presence, activity, but also suppression of tumor-specific CTL have been demonstrated. Functional CTL may exert a selection pressure on the tumor cells that consecutively escape by a combination of molecular and cellular evasion mechanisms. Certain of these mechanisms target antitumor effector cells directly or indirectly by affecting cells that regulate CTL function. This results in the dysfunction or apoptosis of lymphocytes and dysregulated lymphocyte homeostasis. Another important tumor-escape mechanism is to avoid recognition by dysregulation of antigen processing and presentation. Thus, both induction of functional CTL and susceptibility of the tumor and its microenvironment to become T cell targets should be considered in CTL-based immunotherapy.

  15. Adiponectin haploinsufficiency promotes mammary tumor development in MMTV-PyVT mice by modulation of phosphatase and tensin homolog activities.

    Directory of Open Access Journals (Sweden)

    Janice B B Lam

    Full Text Available Adiponectin is an adipokine possessing beneficial effects on obesity-related medical complications. A negative association of adiponectin levels with breast cancer development has been demonstrated. However, the precise role of adiponectin deficiency in mammary carcinogenesis remains elusive.In the present study, MMTV-polyomavirus middle T antigen (MMTV-PyVT transgenic mice with reduced adiponectin expressions were established and the stromal effects of adiponectin haploinsufficiency on mammary tumor development evaluated. In mice from both FVB/N and C57BL/6J backgrounds, insufficient adiponectin production promoted mammary tumor onset and development. A distinctive basal-like subtype of tumors, with a more aggressive phenotype, was derived from adiponectin haplodeficient MMTV-PyVT mice. Comparing with those from control MMTV-PyVT mice, the isolated mammary tumor cells showed enhanced tumor progression in re-implanted nude mice, accelerated proliferation in primary cultures, and hyperactivated phosphatidylinositol-3-kinase (PI3K/Akt/beta-catenin signaling, which at least partly attributed to the decreased phosphatase and tensin homolog (PTEN activities. Further analysis revealed that PTEN was inactivated by a redox-regulated mechanism. Increased association of PTEN-thioredoxin complexes was detected in tumors derived from mice with reduced adiponectin levels. The activities of thioredoxin (Trx1 and thioredoxin reductase (TrxR1 were significantly elevated, whereas treatment with either curcumin, an irreversible inhibitor of TrxR1, or adiponectin largely attenuated their activities and resulted in the re-activation of PTEN in these tumor cells. Moreover, adiponectin could inhibit TrxR1 promoter-mediated transcription and restore the mRNA expressions of TrxR1.Adiponectin haploinsufficiency facilitated mammary tumorigenesis by down-regulation of PTEN activity and activation of PI3K/Akt signalling pathway through a mechanism involving Trx1/TrxR1

  16. Androgen receptor variation affects prostate cancer progression and drug resistance.

    Science.gov (United States)

    McCrea, Edel; Sissung, Tristan M; Price, Douglas K; Chau, Cindy H; Figg, William D

    2016-12-01

    Significant therapeutic progress has been made in treating prostate cancer in recent years. Drugs such as enzalutamide, abiraterone, and cabazitaxel have expanded the treatment armamentarium, although it is not completely clear which of these drugs are the most-effective option for individual patients. Moreover, such advances have been tempered by the development of therapeutic resistance. The purpose of this review is to summarize the current literature pertaining to the biochemical effects of AR variants and their consequences on prostate cancer therapies at both the molecular level and in clinical treatment. We address how these AR splice variants and mutations affect tumor progression and therapeutic resistance and discuss potential novel therapeutic strategies under development. It is hoped that these therapies can be administered with increasing precision as tumor genotyping methods become more sophisticated, thereby lending clinicians a better understanding of the underlying biology of prostate tumors in individual patients. Published by Elsevier Ltd.

  17. Infiltration of M2 Tumor-Associated Macrophages in Oral Squamous Cell Carcinoma Correlates with Tumor Malignancy

    International Nuclear Information System (INIS)

    Mori, Kazumasa; Hiroi, Miki; Shimada, Jun; Ohmori, Yoshihiro

    2011-01-01

    Tumor-associated macrophages (TAMs) are a major cellular component in the tumor microenvironment of many solid tumors. The functional competence of TAMs varies depending on the type of tumors and their respective microenvironments. The classically activated M1 macrophages exhibit antitumor functions, whereas the alternatively activated M2 macrophages exhibit protumor functions that contribute to tumor development and progression. Although TAMs have been detected in oral squamous cell carcinoma (OSCC), little is known about their phenotype. In the present study, we performed an immunohistochemical analysis to identify TAMs in surgically resected specimens from 50 patients with OSCC and evaluated the relationship between infiltrated TAMs and the pathological grade of OSCC. Positive staining for CD163, which has been used as a marker for M2 macrophages, was observed in OSCC specimens, and the percentages of CD163 + cells were significantly increased based on the pathological grade. CD163 + cells were detected in the tumor stroma in grade I tumors, whereas an increase in the CD163 + cells in the tumor nest was observed in higher grades of tumors. Although infiltrated CD4 + and CD8 + T cells were detected in all pathological grades of OSCC, no correlation between the infiltrated T cells and the CD163 + TAMs was observed. These results indicate that the infiltrated TAMs in OSCC have an M2 phenotype and that the M2 macrophages may participate in the development of OSCC

  18. Infiltration of M2 Tumor-Associated Macrophages in Oral Squamous Cell Carcinoma Correlates with Tumor Malignancy

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Kazumasa [Division of Oral and Maxillofacial Surgery, Department of Diagnosis and Therapeutics, Meikai University of School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283 (Japan); Hiroi, Miki [Division of Microbiology and Immunology, Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283 (Japan); Shimada, Jun [Division of Oral and Maxillofacial Surgery, Department of Diagnosis and Therapeutics, Meikai University of School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283 (Japan); Ohmori, Yoshihiro, E-mail: ohmori@dent.meikai.ac.jp [Division of Microbiology and Immunology, Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283 (Japan)

    2011-09-28

    Tumor-associated macrophages (TAMs) are a major cellular component in the tumor microenvironment of many solid tumors. The functional competence of TAMs varies depending on the type of tumors and their respective microenvironments. The classically activated M1 macrophages exhibit antitumor functions, whereas the alternatively activated M2 macrophages exhibit protumor functions that contribute to tumor development and progression. Although TAMs have been detected in oral squamous cell carcinoma (OSCC), little is known about their phenotype. In the present study, we performed an immunohistochemical analysis to identify TAMs in surgically resected specimens from 50 patients with OSCC and evaluated the relationship between infiltrated TAMs and the pathological grade of OSCC. Positive staining for CD163, which has been used as a marker for M2 macrophages, was observed in OSCC specimens, and the percentages of CD163{sup +} cells were significantly increased based on the pathological grade. CD163{sup +} cells were detected in the tumor stroma in grade I tumors, whereas an increase in the CD163{sup +} cells in the tumor nest was observed in higher grades of tumors. Although infiltrated CD4{sup +} and CD8{sup +} T cells were detected in all pathological grades of OSCC, no correlation between the infiltrated T cells and the CD163{sup +} TAMs was observed. These results indicate that the infiltrated TAMs in OSCC have an M2 phenotype and that the M2 macrophages may participate in the development of OSCC.

  19. Metabolic changes in tumor cells and tumor-associated macrophages: A mutual relationship.

    Science.gov (United States)

    Netea-Maier, Romana T; Smit, Johannes W A; Netea, Mihai G

    2018-01-28

    In order to adapt to the reduced availability of nutrients and oxygen in the tumor microenvironment and the increased requirements of energy and building blocks necessary for maintaining their high proliferation rate, malignant cells undergo metabolic changes that result in an increased production of lactate, nitric oxide, reactive oxygen species, prostaglandins and other byproducts of arachidonic acid metabolism that influence both the composition of the inflammatory microenvironment and the function of the tumor-associated macrophages (TAMs). In response to cues present in the TME, among which products of altered tumor cell metabolism, TAMs are also required to reprogram their metabolism, with activation of glycolysis, fatty acid synthesis and altered nitrogen cycle metabolism. These changes result in functional reprogramming of TAMs which includes changes in the production of cytokines and angiogenetic factors, and contribute to the tumor progression and metastasis. Understanding the metabolic changes governing the intricate relationship between the tumor cells and the TAMs represents an essential step towards developing novel therapeutic approaches targeting the metabolic reprogramming of the immune cells to potentiate their tumoricidal potential and to circumvent therapy resistance. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Avoiding Pitfalls in the Statistical Analysis of Heterogeneous Tumors

    Directory of Open Access Journals (Sweden)

    Judith-Anne W. Chapman

    2009-01-01

    Full Text Available Information about tumors is usually obtained from a single assessment of a tumor sample, performed at some point in the course of the development and progression of the tumor, with patient characteristics being surrogates for natural history context. Differences between cells within individual tumors (intratumor heterogeneity and between tumors of different patients (intertumor heterogeneity may mean that a small sample is not representative of the tumor as a whole, particularly for solid tumors which are the focus of this paper. This issue is of increasing importance as high-throughput technologies generate large multi-feature data sets in the areas of genomics, proteomics, and image analysis. Three potential pitfalls in statistical analysis are discussed (sampling, cut-points, and validation and suggestions are made about how to avoid these pitfalls.

  1. An Improved Binary Differential Evolution Algorithm to Infer Tumor Phylogenetic Trees.

    Science.gov (United States)

    Liang, Ying; Liao, Bo; Zhu, Wen

    2017-01-01

    Tumourigenesis is a mutation accumulation process, which is likely to start with a mutated founder cell. The evolutionary nature of tumor development makes phylogenetic models suitable for inferring tumor evolution through genetic variation data. Copy number variation (CNV) is the major genetic marker of the genome with more genes, disease loci, and functional elements involved. Fluorescence in situ hybridization (FISH) accurately measures multiple gene copy number of hundreds of single cells. We propose an improved binary differential evolution algorithm, BDEP, to infer tumor phylogenetic tree based on FISH platform. The topology analysis of tumor progression tree shows that the pathway of tumor subcell expansion varies greatly during different stages of tumor formation. And the classification experiment shows that tree-based features are better than data-based features in distinguishing tumor. The constructed phylogenetic trees have great performance in characterizing tumor development process, which outperforms other similar algorithms.

  2. Tumor-Infiltrating Immune Cells Promoting Tumor Invasion and Metastasis: Existing Theories

    Directory of Open Access Journals (Sweden)

    Yan-gao Man, Alexander Stojadinovic, Jeffrey Mason, Itzhak Avital, Anton Bilchik, Bjoern Bruecher, Mladjan Protic, Aviram Nissan, Mina Izadjoo, Xichen Zhang, Anahid Jewett

    2013-01-01

    Full Text Available It is a commonly held belief that infiltration of immune cells into tumor tissues and direct physical contact between tumor cells and infiltrated immune cells is associated with physical destructions of the tumor cells, reduction of the tumor burden, and improved clinical prognosis. An increasing number of studies, however, have suggested that aberrant infiltration of immune cells into tumor or normal tissues may promote tumor progression, invasion, and metastasis. Neither the primary reason for these contradictory observations, nor the mechanism for the reported diverse impact of tumor-infiltrating immune cells has been elucidated, making it difficult to judge the clinical implications of infiltration of immune cells within tumor tissues. This mini-review presents several existing hypotheses and models that favor the promoting impact of tumor-infiltrating immune cells on tumor invasion and metastasis, and also analyzes their strength and weakness.

  3. Video-rate resonant scanning multiphoton microscopy: An emerging technique for intravital imaging of the tumor microenvironment

    OpenAIRE

    Kirkpatrick, Nathaniel D.; Chung, Euiheon; Cook, Daniel C.; Han, Xiaoxing; Gruionu, Gabriel; Liao, Shan; Munn, Lance L.; Padera, Timothy P.; Fukumura, Dai; Jain, Rakesh K.

    2012-01-01

    The abnormal tumor microenvironment fuels tumor progression, metastasis, immune suppression, and treatment resistance. Over last several decades, developments in and applications of intravital microscopy have provided unprecedented insights into the dynamics of the tumor microenvironment. In particular, intravital multiphoton microscopy has revealed the abnormal structure and function of tumor-associated blood and lymphatic vessels, the role of aberrant tumor matrix in drug delivery, invasion...

  4. Bone marrow-derived CD13+ cells sustain tumor progression

    Science.gov (United States)

    Dondossola, Eleonora; Corti, Angelo; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2014-01-01

    Non-malignant cells found within neoplastic lesions express alanyl (membrane) aminopeptidase (ANPEP, best known as CD13), and CD13-null mice exhibit limited tumor growth and angiogenesis. We have recently demonstrated that a subset of bone marrow-derived CD11b+CD13+ myeloid cells accumulate within neoplastic lesions in several murine models of transplantable cancer to promote angiogenesis. If these findings were confirmed in clinical settings, CD11b+CD13+ myeloid cells could become a non-malignant target for the development of novel anticancer regimens. PMID:25339996

  5. Application of Benchtop-magnetic resonance imaging in a nude mouse tumor model

    Directory of Open Access Journals (Sweden)

    Mäder Karsten

    2011-07-01

    Full Text Available Abstract Background MRI plays a key role in the preclinical development of new drugs, diagnostics and their delivery systems. However, very high installation and running costs of existing superconducting MRI machines limit the spread of MRI. The new method of Benchtop-MRI (BT-MRI has the potential to overcome this limitation due to much lower installation and almost no running costs. However, due to the low field strength and decreased magnet homogeneity it is questionable, whether BT-MRI can achieve sufficient image quality to provide useful information for preclinical in vivo studies. It was the aim of the current study to explore the potential of BT-MRI on tumor models in mice. Methods We used a prototype of an in vivo BT-MRI apparatus to visualise organs and tumors and to analyse tumor progression in nude mouse xenograft models of human testicular germ cell tumor and colon carcinoma. Results Subcutaneous xenografts were easily identified as relative hypointense areas in transaxial slices of NMR images. Monitoring of tumor progression evaluated by pixel extension analyses based on NMR images correlated with increasing tumor volume calculated by calliper measurement. Gd-BOPTA contrast agent injection resulted in a better differentiation between parts of the urinary tissues and organs due to fast elimination of the agent via kidneys. In addition, interior structuring of tumors could be observed. A strong contrast enhancement within a tumor was associated with a central necrotic/fibrotic area. Conclusions BT-MRI provides satisfactory image quality to visualize organs and tumors and to monitor tumor progression and structure in mouse models.

  6. Progress in MELCOR development and assessment

    International Nuclear Information System (INIS)

    Summers, R.M.; Kmetyk, L.N.; Cole, R.K. Jr.; Smith, R.C.; Elsbernd, A.E.; Stuart, D.S.; Thompson, S.L.

    1995-01-01

    MELCOR models the progression of severe accidents in light water reactor nuclear power plants. Recent efforts in MELCOR development to incorporate CORCON-Mod3 models for core-concrete interactions, new models for advanced reactors, and improvements to several other existing models have resulted in release of MELCOR 1.8.3. In addition, continuing efforts to expand the code assessment database have filled in many of the gaps in phenomenological coverage. Efforts are now under way to develop models for chemical interactions of fission products with structural surfaces and for reactions of iodine in the presence of water, and work is also in progress to improve models for the scrubbing of fission products by water pools, the chemical reactions of boron carbide with steam, and the coupling of flow blockages with the hydrodynamics. Several code assessment analyses are in progress, and more are planned

  7. Connective tissue growth factor (CTGF) and cancer progression.

    Science.gov (United States)

    Chu, Chia-Yu; Chang, Cheng-Chi; Prakash, Ekambaranellore; Kuo, Min-Liang

    2008-11-01

    Connective tissue growth factor (CTGF) is a member of the CCN family of secreted, matrix-associated proteins encoded by immediate early genes that play various roles in angiogenesis and tumor growth. CCN family proteins share uniform modular structure which mediates various cellular functions such as regulation of cell division, chemotaxis, apoptosis, adhesion, motility, angiogenesis, neoplastic transformation, and ion transport. Recently, CTGF expression has been shown to be associated with tumor development and progression. There is growing body of evidence that CTGF may regulate cancer cell migration, invasion, angiogenesis, and anoikis. In this review, we will highlight the influence of CTGF expression on the biological behavior and progression of various cancer cells, as well as its regulation on various types of protein signals and their mechanisms.

  8. Increased cytosine DNA-methyltransferase activity in A/J mouse lung cells following carcinogen exposure and during tumor progression

    International Nuclear Information System (INIS)

    Belinsky, S.A.; Issa, J.-P.J.; Baylin, S.B.

    1994-01-01

    Considerable evidence has accumulated that 5-methylcytosine modification of mammalian DNA, both in exons and CpG rich islands located in promoter regions, is important in gene regulation. For example, a decrease of 5-methylcytosine in 5' flanking regions or exons of genes has been associated with increased gene transcription. In addition, hypermethylation at specific regions of chromosomes 17p and 3p have also been observed in lung and colon cancer. During colon cancer development, these hypermethylation changes precede allelic loss. In addition, the activity of the enzyme which maintains the methylation status at CpG dinucleotides, DNA methyltransferase (MT), has been shown to increase during colon cancer progression. These observations suggest changes in methylation patterns within specific genes could result in either inappropriate gene expression or gene deletion, both of which would contribute to the establishment of the malignant phenotype. The purpose of this investigation was to determine if DNA MT activity is elevated in target (alveolar type II), but not in nontarget (Clara, endothelial, macrophage) lung cells isolated from the A/J mouse following exposure to nitrosamine 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK). In addition, the activity of this enzyme during tumor progression was examined

  9. Potential of confocal laser scanning microscopy for non-invasive diagnostics of malignant epithelial skin tumors in the course of dermatoheliosis progression

    Directory of Open Access Journals (Sweden)

    E. S. Snarskaya

    2016-01-01

    Full Text Available Most cases of malignant epithelial skin neoplasms including actinic keratosis and basal cell carcinoma, which are characterized by the most complicated course and numerous clinical and morphological options, involve dermatoheliosis progression. The risk of actinic keratosis transformation into basal cell carcinoma varies from 0.1% to 20% and up to 80% in cases of multiple AK lesion foci. A non-invasive method known as reflectance confocal laser scanning microscopy is the most promising one for the purposes of early diagnostics of signs pointing at epithelial skin neoplasm development and makes it possible to monitor the tumor in progress in vivo to diagnose the presence of a pool of squamous cells on a timely basis. The confocal laser scanning microscopy method provides high-contrast images of for any horizontal-oriented morphologic structures in the epidermis and upper dermis with a resolution comparable to those characteristic of traditional optical microscopy of skin tissue samples. According to our data obtained as a result of studying dynamic changes and morphologic structures in actinic keratosis foci (50 cases using the confocal laser scanning microscopy method, we discovered a number of morphologic features, and their further analysis will distinguish the signs of progressing carcinogenesis in case of dermatoheliosis.

  10. Renal transplantation-related risk factors for the development of uterine adenomatoid tumors.

    Science.gov (United States)

    Mizutani, Teruyuki; Yamamuro, Osamu; Kato, Noriko; Hayashi, Kazumasa; Chaya, Junya; Goto, Norihiko; Tsuzuki, Toyonori

    2016-08-01

    •We analyzed the epidemiological factors for clinical manifestations of uterine adenomatoid tumors.•Renal transplantation with immunosuppression therapy is risk factor for the development of uterine adenomatoid tumors.•The length of time on dialysis is risk factor for the development of uterine adenomatoid tumors.

  11. Tumor Biology and Microenvironment Research

    Science.gov (United States)

    Part of NCI's Division of Cancer Biology's research portfolio, research in this area seeks to understand the role of tumor cells and the tumor microenvironment (TME) in driving cancer initiation, progression, maintenance and recurrence.

  12. Encouraging Early Clinical Outcomes With Helical Tomotherapy–Based Image-Guided Intensity-Modulated Radiation Therapy for Residual, Recurrent, and/or Progressive Benign/Low-Grade Intracranial Tumors: A Comprehensive Evaluation

    International Nuclear Information System (INIS)

    Gupta, Tejpal; Wadasadawala, Tabassum; Master, Zubin; Phurailatpam, Reena; Pai-Shetty, Rajershi; Jalali, Rakesh

    2012-01-01

    Purpose: To report early clinical outcomes of helical tomotherapy (HT)-based image-guided intensity-modulated radiation therapy (IMRT) in brain tumors of varying shape, size, and location. Materials and Methods: Patients with residual, recurrent, and/or progressive low-grade intracranial and skull-base tumors were treated on a prospective protocol of HT-based IMRT and followed clinicoradiologically. Standardized metrics were used for plan evaluation and outcome analysis. Results: Twenty-seven patients with 30 lesions were treated to a median radiotherapy dose of 54 Gy in 30 fractions. All HT plans resulted in excellent target volume coverage with steep dose-gradients. The mean (standard deviation) dose homogeneity index and conformity index was 0.07 (0.05) and 0.71 (0.08) respectively. At first response assessment, 20 of 30 lesions were stable, whereas 9 showed partial regression. One patient with a recurrent clival chordoma though neurologically stable showed imaging-defined progression, whereas another patient with stable disease on serial imaging had sustained neurologic worsening. With a median follow-up of 19 months (interquartile range, 11–26 months), the 2-year clinicoradiological progression-free survival and overall survival was 93.3% and 100% respectively. Conclusions: Careful selection of radiotherapy technique is warranted for benign/low-grade brain tumors to achieve durable local control with minimum long-term morbidity. Large or complex-shaped tumors benefit most from IMRT. Our early clinical experience of HT-based IMRT for brain tumors has been encouraging.

  13. Encouraging Early Clinical Outcomes With Helical Tomotherapy-Based Image-Guided Intensity-Modulated Radiation Therapy for Residual, Recurrent, and/or Progressive Benign/Low-Grade Intracranial Tumors: A Comprehensive Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Tejpal [Department of Radiation Oncology, ACTREC/TMH, Tata Memorial Centre, Kharghar, Navi Mumbai (India); Wadasadawala, Tabassum; Master, Zubin; Phurailatpam, Reena; Pai-Shetty, Rajershi; Jalali, Rakesh [Department of Radiation Oncology, ACTREC/TMH, Tata Memorial Centre, Kharghar, Navi Mumbai (India)

    2012-02-01

    Purpose: To report early clinical outcomes of helical tomotherapy (HT)-based image-guided intensity-modulated radiation therapy (IMRT) in brain tumors of varying shape, size, and location. Materials and Methods: Patients with residual, recurrent, and/or progressive low-grade intracranial and skull-base tumors were treated on a prospective protocol of HT-based IMRT and followed clinicoradiologically. Standardized metrics were used for plan evaluation and outcome analysis. Results: Twenty-seven patients with 30 lesions were treated to a median radiotherapy dose of 54 Gy in 30 fractions. All HT plans resulted in excellent target volume coverage with steep dose-gradients. The mean (standard deviation) dose homogeneity index and conformity index was 0.07 (0.05) and 0.71 (0.08) respectively. At first response assessment, 20 of 30 lesions were stable, whereas 9 showed partial regression. One patient with a recurrent clival chordoma though neurologically stable showed imaging-defined progression, whereas another patient with stable disease on serial imaging had sustained neurologic worsening. With a median follow-up of 19 months (interquartile range, 11-26 months), the 2-year clinicoradiological progression-free survival and overall survival was 93.3% and 100% respectively. Conclusions: Careful selection of radiotherapy technique is warranted for benign/low-grade brain tumors to achieve durable local control with minimum long-term morbidity. Large or complex-shaped tumors benefit most from IMRT. Our early clinical experience of HT-based IMRT for brain tumors has been encouraging.

  14. Rosiglitazone inhibits metastasis development of a murine mammary tumor cell line LMM3

    International Nuclear Information System (INIS)

    Magenta, Gabriela; Borenstein, Ximena; Rolando, Romina; Jasnis, María Adela

    2008-01-01

    Activation of peroxisome proliferator-activated receptors γ (PPARγ) induces diverse effects on cancer cells. The thiazolidinediones (TZDs), such as troglitazone and ciglitazone, are PPARγ agonists exhibiting antitumor activities; however, the underlying mechanism remains inconclusive. Rosiglitazone (RGZ), a synthetic ligand of PPARγ used in the treatment of Type 2 diabetes, inhibits growth of some tumor cells and is involved in other processes related to cancer progression. Opposing results have also been reported with different ligands on tumor cells. The purpose of this study was to determine if RGZ and 15d-PGJ 2 induce antitumor effects in vivo and in vitro on the murine mammary tumor cell line LMM3. The effect on LMM3 cell viability and nitric oxide (NO) production of different doses of RGZ, 15-dPGJ 2 , BADGE and GW9662 were determined using the MTS colorimetric assay and the Griess reaction respectively. In vivo effect of orally administration of RGZ on tumor progression was evaluated either on s.c. primary tumors as well as on experimental metastasis. Cell adhesion, migration (wound assay) and invasion in Transwells were performed. Metalloproteinase activity (MMP) was determined by zymography in conditioned media from RGZ treated tumor cells. PPARγ expression was detected by inmunohistochemistry in formalin fixed tumors and by western blot in tumor cell lysates. RGZ orally administered to tumor-bearing mice decreased the number of experimental lung metastases without affecting primary s.c. tumor growth. Tumor cell adhesion and migration, as well as metalloproteinase MMP-9 activity, decreased in the presence of 1 μM RGZ (non-cytotoxic dose). RGZ induced PPARγ protein expression in LMM3 tumors. Although metabolic activity -measured by MTS assay- diminished with 1–100 μM RGZ, 1 μM-treated cells recovered their proliferating capacity while 100 μM treated cells died. The PPARγ antagonist Biphenol A diglicydyl ether (BADGE) did not affect RGZ activity

  15. Embolotherapy for Neuroendocrine Tumor Liver Metastases: Prognostic Factors for Hepatic Progression-Free Survival and Overall Survival

    Energy Technology Data Exchange (ETDEWEB)

    Chen, James X. [Hospital of the University of Pennsylvania, Division of Interventional Radiology, Department of Radiology (United States); Rose, Steven [University of San Diego Medical Center, Division of Interventional Radiology, Department of Radiology (United States); White, Sarah B. [Medical College of Wisconsin, Division of Interventional Radiology, Department of Radiology (United States); El-Haddad, Ghassan [Moffitt Cancer Center, Division of Interventional Radiology, Department of Radiology (United States); Fidelman, Nicholas [University of San Francisco Medical Center, Division of Interventional Radiology, Department of Radiology (United States); Yarmohammadi, Hooman [Memorial Sloan Kettering Cancer Center, Division of Interventional Radiology, Department of Radiology (United States); Hwang, Winifred; Sze, Daniel Y.; Kothary, Nishita [Stanford University Medical Center, Division of Interventional Radiology, Department of Radiology (United States); Stashek, Kristen [Hospital of the University of Pennsylvania, Department of Pathology (United States); Wileyto, E. Paul [University of Pennsylvania, Department of Biostatistics and Epidemiology (United States); Salem, Riad [Northwestern Memorial Hospital, Division of Interventional Radiology, Department of Radiology (United States); Metz, David C. [Hospital of the University of Pennsylvania, Division of Gastroenterology, Department of Medicine (United States); Soulen, Michael C., E-mail: michael.soulen@uphs.upenn.edu [Hospital of the University of Pennsylvania, Division of Interventional Radiology, Department of Radiology (United States)

    2017-01-15

    PurposeThe purpose of the study was to evaluate prognostic factors for survival outcomes following embolotherapy for neuroendocrine tumor (NET) liver metastases.Materials and MethodsThis was a multicenter retrospective study of 155 patients (60 years mean age, 57 % male) with NET liver metastases from pancreas (n = 71), gut (n = 68), lung (n = 8), or other/unknown (n = 8) primary sites treated with conventional transarterial chemoembolization (TACE, n = 50), transarterial radioembolization (TARE, n = 64), or transarterial embolization (TAE, n = 41) between 2004 and 2015. Patient-, tumor-, and treatment-related factors were evaluated for prognostic effect on hepatic progression-free survival (HPFS) and overall survival (OS) using unadjusted and propensity score-weighted univariate and multivariate Cox proportional hazards models.ResultsMedian HPFS and OS were 18.5 and 125.1 months for G1 (n = 75), 12.2 and 33.9 months for G2 (n = 60), and 4.9 and 9.3 months for G3 tumors (n = 20), respectively (p < 0.05). Tumor burden >50 % hepatic volume demonstrated 5.5- and 26.8-month shorter median HPFS and OS, respectively, versus burden ≤50 % (p < 0.05). There were no significant differences in HPFS or OS between gut or pancreas primaries. In multivariate HPFS analysis, there were no significant differences among embolotherapy modalities. In multivariate OS analysis, TARE had a higher hazard ratio than TACE (unadjusted Cox model: HR 2.1, p = 0.02; propensity score adjusted model: HR 1.8, p = 0.11), while TAE did not differ significantly from TACE.ConclusionHigher tumor grade and tumor burden prognosticated shorter HPFS and OS. TARE had a higher hazard ratio for OS than TACE. There were no significant differences in HPFS among embolotherapy modalities.

  16. Chromosomal imbalance in the progression of high-risk non-muscle invasive bladder cancer

    International Nuclear Information System (INIS)

    Zieger, Karsten; Wiuf, Carsten; Jensen, Klaus Møller-Ernst; Ørntoft, Torben Falck; Dyrskjøt, Lars

    2009-01-01

    Non-muscle invasive bladder neoplasms with invasion of the lamina propria (stage T1) or high grade of dysplasia are at 'high risk' of progression to life-threatening cancer. However, the individual course is difficult to predict. Chromosomal instability (CI) is associated with high tumor stage and grade, and possibly with the risk of progression. To investigate the relationship between CI and subsequent disease progression, we performed a case-control-study of 125 patients with 'high-risk' non-muscle invasive bladder neoplasms, 67 with later disease progression, and 58 with no progression. Selection criteria were conservative (non-radical) resections and full prospective clinical follow-up (> 5 years). We investigated primary lesions in 59, and recurrent lesions in 66 cases. We used Affymetrix GeneChip ® Mapping 10 K and 50 K SNP microarrays to evaluate genome wide chromosomal imbalance (loss-of-heterozygosity and DNA copy number changes) in 48 representative tumors. DNA copy number changes of 15 key instability regions were further investigated using QPCR in 101 tumors (including 25 tumors also analysed on 50 K SNP microarrays). Chromosomal instability did not predict any higher risk of subsequent progression. Stage T1 and high-grade tumors had generally more unstable genomes than tumors of lower stage and grade (mostly non-primary tumors following a 'high-risk' tumor). However, about 25% of the 'high-risk' tumors had very few alterations. This was independent of subsequent progression. Recurrent lesions represent underlying field disease. A separate analysis of these lesions did neither reflect any difference in the risk of progression. Of specific chromosomal alterations, a possible association between loss of chromosome 8p11 and the risk of progression was found. However, the predictive value was limited by the heterogeneity of the changes. Chromosomal instability (CI) was associated with 'high risk' tumors

  17. Role of CD44 in Tumor Progression

    National Research Council Canada - National Science Library

    Underhill, Charles

    1999-01-01

    ...) that we isolated from cartilage by affinity chromatography. We found that the HAbc was able to block the growth of tumors cells in mice as well as in the chorioallantoic membrane (CAM) of chicken embryos...

  18. The Role of Mesenchymal Stem Cell in Cancer Development

    Directory of Open Access Journals (Sweden)

    Hiroshi eYagi

    2013-11-01

    Full Text Available The role of mesenchymal stem cells (MSCs in cancer development is still controversial. MSCs may promote tumor progression through immune modulation, but other tumor suppressive effects of MSCs have also been described. The discrepancy between these results may arise from issues related to different tissue sources, individual donor variability, and injection timing of MSCs. The expression of critical receptors such as Toll-like receptor (TLR is variable at each time point of treatment, which may also determine the effects of MSCs on tumor progression. However, factors released from malignant cells, as well as surrounding tissues and the vasculature, are still regarded as a black box. Thus, it is still difficult to clarify the specific role of MSCs in cancer development. Whether MSCs support or suppress tumor progression is currently unclear, but it is clear that systemically administered MSCs can be recruited and migrate toward tumors. These findings are important because they can be used as a basis for initiating studies to explore the incorporation of engineered MSCs as novel anti-tumor carriers, for the development of tumor-targeted therapies.

  19. Lysophosphatidic acid signaling via LPA_1 and LPA_3 regulates cellular functions during tumor progression in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Fukushima, Kaori; Takahashi, Kaede; Yamasaki, Eri; Onishi, Yuka; Fukushima, Nobuyuki; Honoki, Kanya; Tsujiuchi, Toshifumi

    2017-01-01

    Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors exhibits a variety of biological effects, such as cell proliferation, motility and differentiation. The aim of this study was to evaluate the roles of LPA_1 and LPA_3 in cellular functions during tumor progression in pancreatic cancer cells. LPA_1 and LPA_3 knockdown cells were generated from PANC-1 cells. The cell motile and invasive activities of PANC-1 cells were inhibited by LPA_1 and LPA_3 knockdown. In gelatin zymography, LPA_1 and LPA_3 knockdown cells indicated the low activation of matrix metalloproteinase-2 (MMP-2) in the presence of LPA. Next, to assess whether LPA_1 and LPA_3 regulate cellular functions induced by anticancer drug, PANC-1 cells were treated with cisplatin (CDDP) for approximately 6 months. The cell motile and invasive activities of long-term CDDP treated cells were markedly higher than those of PANC-1 cells, correlating with the expression levels of LPAR1 and LPAR3 genes. In soft agar assay, the long-term CDDP treated cells formed markedly large sized colonies. In addition, the cell motile and invasive activities enhanced by CDDP were significantly suppressed by LPA_1 and LPA_3 knockdown as well as colony formation. These results suggest that LPA signaling via LPA_1 and LPA_3 play an important role in the regulation of cellular functions during tumor progression in PANC-1 cells. - Highlights: • The cell motile and invasive activities of PANC-1 cells were stimulated by LPA_1 and LPA_3. • LPA_1 and LPA_3 enhanced MMP-2 activation in PANC-1 cells. • The expressions of LPAR1 and LPAR3 genes were elevated in PANC-1 cells treated with cisplatin. • The cell motile and invasive activities of PANC-1 cells treated with cisplatin were suppressed by LPA_1 and LPA_3 knockdown. • LPA_1 and LPA_3 are involved in the regulation of cellular functions during tumor progression in PANC-1 cells.

  20. RNA-Sequencing of Primary Retinoblastoma Tumors Provides New Insights and Challenges Into Tumor Development

    Directory of Open Access Journals (Sweden)

    Sailaja V. Elchuri

    2018-05-01

    Full Text Available Retinoblastoma is rare tumor of the retina caused by the homozygous loss of the Retinoblastoma 1 tumor suppressor gene (RB1. Loss of the RB1 protein, pRB, results in de-regulated activity of the E2F transcription factors, chromatin changes and developmental defects leading to tumor development. Extensive microarray profiles of these tumors have enabled the identification of genes sensitive to pRB disruption, however, this technology has a number of limitations in the RNA profiles that they generate. The advent of RNA-sequencing has enabled the global profiling of all of the RNA within the cell including both coding and non-coding features and the detection of aberrant RNA processing events. In this perspective, we focus on discussing how RNA-sequencing of rare Retinoblastoma tumors will build on existing data and open up new area’s to improve our understanding of the biology of these tumors. In particular, we discuss how the RB-research field may be to use this data to determine how RB1 loss results in the expression of; non-coding RNAs, causes aberrant RNA processing events and how a deeper analysis of metabolic RNA changes can be utilized to model tumor specific shifts in metabolism. Each section discusses new opportunities and challenges associated with these types of analyses and aims to provide an honest assessment of how understanding these different processes may contribute to the treatment of Retinoblastoma.

  1. Evidence for widespread dysregulation of circadian clock progression in human cancer

    Directory of Open Access Journals (Sweden)

    Jarrod Shilts

    2018-01-01

    Full Text Available The ubiquitous daily rhythms in mammalian physiology are guided by progression of the circadian clock. In mice, systemic disruption of the clock can promote tumor growth. In vitro, multiple oncogenes can disrupt the clock. However, due to the difficulties of studying circadian rhythms in solid tissues in humans, whether the clock is disrupted within human tumors has remained unknown. We sought to determine the state of the circadian clock in human cancer using publicly available transcriptome data. We developed a method, called the clock correlation distance (CCD, to infer circadian clock progression in a group of samples based on the co-expression of 12 clock genes. Our method can be applied to modestly sized datasets in which samples are not labeled with time of day and coverage of the circadian cycle is incomplete. We used the method to define a signature of clock gene co-expression in healthy mouse organs, then validated the signature in healthy human tissues. By then comparing human tumor and non-tumor samples from twenty datasets of a range of cancer types, we discovered that clock gene co-expression in tumors is consistently perturbed. Subsequent analysis of data from clock gene knockouts in mice suggested that perturbed clock gene co-expression in human cancer is not caused solely by the inactivation of clock genes. Furthermore, focusing on lung cancer, we found that human lung tumors showed systematic changes in expression in a large set of genes previously inferred to be rhythmic in healthy lung. Our findings suggest that clock progression is dysregulated in many solid human cancers and that this dysregulation could have broad effects on circadian physiology within tumors. In addition, our approach opens the door to using publicly available data to infer circadian clock progression in a multitude of human phenotypes.

  2. Development of indigenous irradiator - current progress and challenges

    International Nuclear Information System (INIS)

    Anwar A Rahman; Mohd Arif Hamzah; Muhd Nor Atan; Aznor Hassan; Fadil Ismail; Julia A Karim; Rosli Darmawan

    2009-01-01

    The development of indigenous irradiator is one of Prototype Development Center main project to support Nuclear Malaysia services. Three (3) projects have been identified and currently the status is in final stage of design. There are some issues and challenges encountered, which delayed the project progress. The paper will discuss the current progress of development and challenges faced in designing the irradiator. (Author)

  3. A pesquisa com a fosfoetanolamina sintética como inibidor da progressão de tumores

    Directory of Open Access Journals (Sweden)

    Natália Aparecida Oliveira Caetano

    2017-11-01

    Full Text Available Introdução: A fosfoetanolamina sintética (FS, conhecida como pílula do câncer, foi apresentada como promissora do tratamento de tumores. Essa substância tem seu mecanismo de ação voltado para as membranas celulares pela transdução de sinais e metabolismo de lipídeos que resultam na indução da apoptose. Objetivo: O presente trabalho avaliou os artigos da literatura que relacionam o uso da substância fosfoetanolamina sintética (FS como inibidor da progressão e disseminação de células tumorais no Brasil. Buscou-se também descrever os possíveis mecanismos associados com a ação da molécula para tratamento de tumores. Método: O trabalho é uma revisão bibliográfica, narrativa, exploratória e integrativa, nas bases de dados Biblioteca Virtual de Saúde, Google acadêmico, Pubmed e Scientific Electronic Library Online (SciELO. Critérios de inclusão: artigos completos disponíveis na literatura nacional e internacional, com palavras FS e tumores. Resultados: A partir de resultados de busca com 65 artigos, foram selecionados 19 artigos. Após análises das fontes de informações acima, foram selecionados os artigos que descreveram os efeitos da fosfoetanolamina sintética e os possíveis mecanismos associados com a ação da FS para tratamento de tumores. Conclusão: A fosfoetanolamina é um composto lipídico em elevada concentração em tumores, associada com elevada taxa de apoptose. Pesquisas préclínicas buscam validar a utilização da FS para tratamento tumoral. Até o presente não há dados que comprovem a eficácia da FS em neoplasias. Estudos clínicos relacionados ao uso da FS em tumores são essenciais para validação do uso da FS. Em abril de 2017, A FS não mostrou eficácia clínica em ensaios preliminares e os testes clínicos foram suspensos pela ANVISA.

  4. AZU-1: A Candidate Breast Tumor Suppressor and Biomarker for Tumor Progression

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Huei-Mei; Schmeichel, Karen L; Mian, I. Saira; Lelie`vre, Sophie; Petersen, Ole W; Bissell, Mina J

    2000-02-04

    To identify genes misregulated in the final stages of breast carcinogenesis, we performed differential display to compare the gene expression patterns of the human tumorigenic mammary epithelial cells, HMT-3522-T4-2, with those of their immediate premalignant progenitors, HMT-3522-S2. We identified a novel gene, called anti-zuai-1 (AZU-1), that was abundantly expressed in non- and premalignant cells and tissues but was appreciably reduced in breast tumor cell types and in primary tumors. The AZU-1 gene encodes an acidic 571-amino-acid protein containing at least two structurally distinct domains with potential protein-binding functions: an N-terminal serine and proline-rich domain with a predicted immunoglobulin-like fold and a C-terminal coiled-coil domain. In HMT-3522 cells, the bulk of AZU-1 protein resided in a detergent-extractable cytoplasmic pool and was present at much lower levels in tumorigenic T4-2 cells than in their nonmalignant counterparts. Reversion of the tumorigenic phenotype of T4-2 cells, by means described previously, was accompanied by the up-regulation of AZU-1. In addition, reexpression of AZU-1 in T4-2 cells, using viral vectors, was sufficient to reduce their malignant phenotype substantially, both in culture and in vivo. These results indicate that AZU-1 is a candidate breast tumor suppressor that may exert its effects by promoting correct tissue morphogenesis.

  5. Clinical application and research of tumor markers in colorectal cancer

    International Nuclear Information System (INIS)

    Chen Yumei

    2005-01-01

    Colorectal cancer is one of the most common malignant tumors. There are many tumor markers for detecting colorectal cancer, some of which have been widely used in clinical area. However, still lack an ideal tumor marker of colorectal cancer. In this review, we simply characterized some common tumor markers including carcinoembryonic antigen, CA19-9, CA50, CA242 etc and their dignostic value. And here we discussed some combined detecting procedures which improve diagnostic accuracy of colorectal cancer. In addition, with the development of the biomoleculer technique, some newly discovered tumor markers and genetic marekers have gained great progress in the research of colorectal cancer, and will become a promissing technique in the diagnosis of colorectal cancer. (authors)

  6. Targeting tumor-associated macrophages by anti-tumor Chinese materia medica.

    Science.gov (United States)

    Pu, Wei-Ling; Sun, Li-Kang; Gao, Xiu-Mei; Rüegg, Curzio; Cuendet, Muriel; Hottiger, Micheal O; Zhou, Kun; Miao, Lin; Zhang, Yun-Sha; Gebauer, Margaret

    2017-10-01

    Tumor-associated macrophages (TAMs) play a key role in all stages of tumorigenesis and tumor progression. TAMs secrete different kinds of cytokines, chemokines, and enzymes to affect the progression, metastasis, and resistance to therapy depending on their state of reprogramming. Therapeutic benefit in targeting TAMs suggests that macrophages are attractive targets for cancer treatment. Chinese materia medica (CMM) is an important approach for treating cancer in China and in the Asian region. According to the theory of Chinese medicine (CM) and its practice, some prescriptions of CM regulate the body's internal environment possibly including the remodeling the tumor microenvironment (TME). Here we briefly summarize the pivotal effects of TAMs in shaping the TME and promoting tumorigenesis, invasion, metastasis and immunosuppression. Furthermore, we illustrate the effects and mechanisms of CMM targeting TAMs in antitumor therapy. Finally, we reveal the CMM's dual-regulatory and multi-targeting functions on regulating TAMs, and hopefully, provide the theoretical basis for CMM clinical practice related to cancer therapy.

  7. Rapid progression of mediastinal tumor within a few days: A case report of T cell lymphoblastic lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Tae Ran; Lee, Young Kyung; Jun, Hyun Jung; Jung, Eun Ah; Son, Jin Sung [Seoul Medical Center, Seoul (Korea, Republic of)

    2016-05-15

    T-cell lymphoblastic lymphoma is a highly aggressive tumor derived from lymphocyte of the thymus, which accounts for 2% of non-Hodgkin's lymphoma. The disease occurs most commonly in adolescent and young adult males. It often results in respiratory emergency because of high proliferation rate. In this case, we confirmed the rapid progression of T-cell lymphoblastic lymphoma through the chest CT scan with one week interval. Three days of empirical chemotherapy resulted in substantial reduction of mediastinal mass, pleural thickening and pleural effusion.

  8. Early imaging findings in germ cell tumors arising from the basal ganglia

    International Nuclear Information System (INIS)

    Lee, So Mi; Kim, In-One; Choi, Young Hun; Cheon, Jung-Eun; Kim, Woo Sun; Cho, Hyun-Hae; You, Sun Kyoung

    2016-01-01

    It is difficult to diagnosis early stage germ cell tumors originating in the basal ganglia, but early recognition is important for better outcome. To evaluate serial MR images of basal ganglia germ cell tumors, with emphasis on the features of early stage tumors. We retrospectively reviewed serial MR images of 15 tumors in 14 children and young adults. We categorized MR images of the tumors as follows: type I, ill-defined patchy lesions (<3 cm) without cyst; type II, small mass lesions (<3 cm) with cyst; and type III, large lesions (≥3 cm) with cyst. We also assessed temporal changes of the MR images. On the initial images, 8 of 11 (73%) type I tumors progressed to types II or III, and 3 of 4 (75%) type II tumors progressed to type III. The remaining 4 tumors did not change in type. All type II tumors (5/5, 100%) that changed from type I had a few tiny cysts. Intratumoral hemorrhage was observed even in the type I tumor. Ipsilateral hemiatrophy was observed in most of the tumors (13/15, 87%) on initial MR images. As tumors grew, cystic changes, intratumoral hemorrhage, and ipsilateral hemiatrophy became more apparent. Early stage basal ganglia germ cell tumors appear as ill-defined small patchy hyperintense lesions without cysts on T2-weighted images, are frequently associated with ipsilateral hemiatrophy, and sometimes show microhemorrhage. Tumors develop tiny cysts at a relatively early stage. (orig.)

  9. Early imaging findings in germ cell tumors arising from the basal ganglia

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So Mi [Seoul National University College of Medicine, Department of Radiology, 101 Daehak-ro, Jongno-gu, Seoul (Korea, Republic of); Kyungpook National University Medical Center, Department of Radiology, Daegu (Korea, Republic of); Kim, In-One; Choi, Young Hun; Cheon, Jung-Eun; Kim, Woo Sun [Seoul National University College of Medicine, Department of Radiology and Institute of Radiation Medicine, 101 Daehak-ro, Jongno-gu, Seoul (Korea, Republic of); Cho, Hyun-Hae [Seoul National University College of Medicine, Department of Radiology, 101 Daehak-ro, Jongno-gu, Seoul (Korea, Republic of); Ewha Woman' s University Mokdong Hospital, Department of Radiology, Seoul (Korea, Republic of); You, Sun Kyoung [Seoul National University College of Medicine, Department of Radiology, 101 Daehak-ro, Jongno-gu, Seoul (Korea, Republic of); Chungnam National University Hospital, Department of Radiology, Daejeon (Korea, Republic of)

    2016-05-15

    It is difficult to diagnosis early stage germ cell tumors originating in the basal ganglia, but early recognition is important for better outcome. To evaluate serial MR images of basal ganglia germ cell tumors, with emphasis on the features of early stage tumors. We retrospectively reviewed serial MR images of 15 tumors in 14 children and young adults. We categorized MR images of the tumors as follows: type I, ill-defined patchy lesions (<3 cm) without cyst; type II, small mass lesions (<3 cm) with cyst; and type III, large lesions (≥3 cm) with cyst. We also assessed temporal changes of the MR images. On the initial images, 8 of 11 (73%) type I tumors progressed to types II or III, and 3 of 4 (75%) type II tumors progressed to type III. The remaining 4 tumors did not change in type. All type II tumors (5/5, 100%) that changed from type I had a few tiny cysts. Intratumoral hemorrhage was observed even in the type I tumor. Ipsilateral hemiatrophy was observed in most of the tumors (13/15, 87%) on initial MR images. As tumors grew, cystic changes, intratumoral hemorrhage, and ipsilateral hemiatrophy became more apparent. Early stage basal ganglia germ cell tumors appear as ill-defined small patchy hyperintense lesions without cysts on T2-weighted images, are frequently associated with ipsilateral hemiatrophy, and sometimes show microhemorrhage. Tumors develop tiny cysts at a relatively early stage. (orig.)

  10. Evasion of Cell Senescence Leads to Medulloblastoma Progression

    Directory of Open Access Journals (Sweden)

    Lukas Tamayo-Orrego

    2016-03-01

    Full Text Available How brain tumors progress from precancerous lesions to advanced cancers is not well understood. Using Ptch1+/− mice to study medulloblastoma progression, we found that Ptch1 loss of heterozygosity (LOH is an early event that is associated with high levels of cell senescence in preneoplasia. In contrast, advanced tumors have evaded senescence. Remarkably, we discovered that the majority of advanced medulloblastomas display either spontaneous, somatic p53 mutations or Cdkn2a locus inactivation. Consistent with senescence evasion, these p53 mutations are always subsequent to Ptch1 LOH. Introduction of a p53 mutation prevents senescence, accelerates tumor formation, and increases medulloblastoma incidence. Altogether, our results show that evasion of senescence associated with Ptch1 LOH allows progression to advanced tumors.

  11. Tumor-associated fibrosis as a regulator of tumor immunity and response to immunotherapy.

    Science.gov (United States)

    Jiang, Hong; Hegde, Samarth; DeNardo, David G

    2017-08-01

    Tumor-associated fibrosis is characterized by unchecked pro-fibrotic and pro-inflammatory signaling. The components of fibrosis including significant numbers of cancer-associated fibroblasts, dense collagen deposition, and extracellular matrix stiffness, are well appreciated regulators of tumor progression but may also be critical regulators of immune surveillance. While this suggests that the efficacy of immunotherapy may be limited in highly fibrotic cancers like pancreas, it also suggests a therapeutic opportunity to target fibrosis in these tumor types to reawaken anti-tumor immunity. This review discusses the mechanisms by which fibrosis might subvert tumor immunity and how to overcome these mechanisms.

  12. Role of ADAMs in cancer formation and progression.

    LENUS (Irish Health Repository)

    Duffy, Michael J

    2012-02-01

    The ADAMs (a disintegrin and metalloproteinase) comprise a family of multidomain transmembrane and secreted proteins. One of their best-established roles is the release of biologically important ligands, such as tumor necrosis factor-alpha, epidermal growth factor, transforming growth factor-alpha, and amphiregulin. Because these ligands have been implicated in the formation and progression of tumors, it might be expected that the specific ADAMs involved in their release would also be involved in malignancy. Consistent with this hypothesis, emerging data from model systems suggest that ADAMs, such as ADAM-9, ADAM-12, ADAM-15, and ADAM-17, are causally involved in tumor formation\\/progression. In human cancer, specific ADAMs are up-regulated, with levels generally correlating with parameters of tumor progression and poor outcome. In preclinical models, selective ADAM inhibitors against ADAM-10 and ADAM-17 have been shown to synergize with existing therapies in decreasing tumor growth. The ADAMs are thus a new family of potential targets for the treatment of cancer, especially malignancies that are dependent on human epidermal growth factor receptor ligands or tumor necrosis factor-alpha.

  13. Cancer vaccine development: Designing tumor cells for greater immunogenicity

    Science.gov (United States)

    Bozeman, Erica N.; Shashidharamurthy, Rangaiah; Paulos, Simon A.; Palaniappan, Ravi; D’Souza, Martin; Selvaraj, Periasamy

    2014-01-01

    Cancer vaccine development is one of the most hopeful and exhilarating areas in cancer research. For this reason, there has been a growing interest in the development and application of novel immunotherapies for the treatment of cancer with the focus being on stimulating the immune system to target tumor cells specifically while leaving normal cells unharmed. From such research has emerged a host of promising immunotherapies such as dendritic cell-based vaccines, cytokine therapies and gene transfer technology. These therapies seek to counteract the poor immunogenicity of tumors by augmenting the host’s immune system with a variety of immunostimulatory proteins such as cytokines and costimulatory molecules. While such therapies have proven effective in the induction of anti-tumor immunity in animal models, they are less than optimal and pose a high risk of clinical infeasibility. Herein, we further discuss these immunotherapies as well as a feasible and efficient alternative that, in pre-clinical animal models, allows for the expression of specific immunostimulatory molecules on the surface of tumor cells by a novel protein transfer technology. PMID:20036822

  14. Epigenetics, Nervous System Tumors, and Cancer Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, Irfan A. [Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Mehler, Mark F., E-mail: mark.mehler@einstein.yu.edu [Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States)

    2011-09-13

    Recent advances have begun to elucidate how epigenetic regulatory mechanisms are responsible for establishing and maintaining cell identity during development and adult life and how the disruption of these processes is, not surprisingly, one of the hallmarks of cancer. In this review, we describe the major epigenetic mechanisms (i.e., DNA methylation, histone and chromatin modification, non-coding RNA deployment, RNA editing, and nuclear reorganization) and discuss the broad spectrum of epigenetic alterations that have been uncovered in pediatric and adult nervous system tumors. We also highlight emerging evidence that suggests epigenetic deregulation is a characteristic feature of so-called cancer stem cells (CSCs), which are thought to be present in a range of nervous system tumors and responsible for tumor maintenance, progression, treatment resistance, and recurrence. We believe that better understanding how epigenetic mechanisms operate in neural cells and identifying the etiologies and consequences of epigenetic deregulation in tumor cells and CSCs, in particular, are likely to promote the development of enhanced molecular diagnostics and more targeted and effective therapeutic agents for treating recalcitrant nervous system tumors.

  15. Epigenetics, Nervous System Tumors, and Cancer Stem Cells

    International Nuclear Information System (INIS)

    Qureshi, Irfan A.; Mehler, Mark F.

    2011-01-01

    Recent advances have begun to elucidate how epigenetic regulatory mechanisms are responsible for establishing and maintaining cell identity during development and adult life and how the disruption of these processes is, not surprisingly, one of the hallmarks of cancer. In this review, we describe the major epigenetic mechanisms (i.e., DNA methylation, histone and chromatin modification, non-coding RNA deployment, RNA editing, and nuclear reorganization) and discuss the broad spectrum of epigenetic alterations that have been uncovered in pediatric and adult nervous system tumors. We also highlight emerging evidence that suggests epigenetic deregulation is a characteristic feature of so-called cancer stem cells (CSCs), which are thought to be present in a range of nervous system tumors and responsible for tumor maintenance, progression, treatment resistance, and recurrence. We believe that better understanding how epigenetic mechanisms operate in neural cells and identifying the etiologies and consequences of epigenetic deregulation in tumor cells and CSCs, in particular, are likely to promote the development of enhanced molecular diagnostics and more targeted and effective therapeutic agents for treating recalcitrant nervous system tumors

  16. Ets2 in tumor fibroblasts promotes angiogenesis in breast cancer.

    Directory of Open Access Journals (Sweden)

    Julie A Wallace

    Full Text Available Tumor fibroblasts are active partners in tumor progression, but the genes and pathways that mediate this collaboration are ill-defined. Previous work demonstrates that Ets2 function in stromal cells significantly contributes to breast tumor progression. Conditional mouse models were used to study the function of Ets2 in both mammary stromal fibroblasts and epithelial cells. Conditional inactivation of Ets2 in stromal fibroblasts in PyMT and ErbB2 driven tumors significantly reduced tumor growth, however deletion of Ets2 in epithelial cells in the PyMT model had no significant effect. Analysis of gene expression in fibroblasts revealed a tumor- and Ets2-dependent gene signature that was enriched in genes important for ECM remodeling, cell migration, and angiogenesis in both PyMT and ErbB2 driven-tumors. Consistent with these results, PyMT and ErbB2 tumors lacking Ets2 in fibroblasts had fewer functional blood vessels, and Ets2 in fibroblasts elicited changes in gene expression in tumor endothelial cells consistent with this phenotype. An in vivo angiogenesis assay revealed the ability of Ets2 in fibroblasts to promote blood vessel formation in the absence of tumor cells. Importantly, the Ets2-dependent gene expression signatures from both mouse models were able to distinguish human breast tumor stroma from normal stroma, and correlated with patient outcomes in two whole tumor breast cancer data sets. The data reveals a key function for Ets2 in tumor fibroblasts in signaling to endothelial cells to promote tumor angiogenesis. The results highlight the collaborative networks that orchestrate communication between stromal cells and tumor cells, and suggest that targeting tumor fibroblasts may be an effective strategy for developing novel anti-angiogenic therapies.

  17. Plasma level of LDL-cholesterol at diagnosis is a predictor factor of breast tumor progression

    International Nuclear Information System (INIS)

    Rodrigues dos Santos, Catarina; Fonseca, Isabel; Dias, Sérgio; Mendes de Almeida, JC

    2014-01-01

    Among women, breast cancer (BC) is the leading cancer and the most common cause of cancer-related death between 30 and 69 years. Although lifestyle and diet are considered to have a role in global BC incidence pattern, the specific influence of dyslipidemia in BC onset and progression is not yet completely understood. Fasting lipid profile (total cholesterol, LDL-C, HDL-C, and triglycerides) was prospectively assessed in 244 women with BC who were enrolled according to pre-set inclusion criteria: diagnosis of non-hereditary invasive ductal carcinoma; selection for surgery as first treatment, and no history of treatment with lipid-lowering or anti-diabetic drugs in the previous year. Pathological and clinical follow-up data were recorded for further inclusion in the statistical analysis. Univariate associations show that BC patients with higher levels of LDL-C at diagnosis have tumors that are larger, with higher differentiation grade, higher proliferative rate (assessed by Ki67 immunostaining), are more frequently Her2-neu positive and are diagnosed in more advanced stages. Cox regression model for disease-free survival (DFS), adjusted to tumor T and N stages of TNM classification, and immunohistochemical subtypes, revealed that high LDL-C at diagnosis is associated with poor DFS. At 25 months of follow up, DFS is 12% higher in BC patients within the third LDL-C tertile compared to those in the first tertile. This is a prospective study where LDL-C levels, at diagnosis, emerge as a prognostic factor; and this parameter can be useful in the identification and follow-up of high-risk groups. Our results further support a possible role for systemic cholesterol in BC progression and show that cholesterol metabolism may be an important therapeutic target in BC patients

  18. Plasma level of LDL-cholesterol at diagnosis is a predictor factor of breast tumor progression

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues dos Santos, Catarina [Gulbenkian Programme for Advanced Medical Education, Lisbon (Portugal); Department of Surgical Oncology, Instituto Português de Oncologia de Lisboa, Francisco Gentil, Lisbon (Portugal); Faculdade de Medicina de Lisboa, Lisbon (Portugal); Fonseca, Isabel [Department of Pathology, Instituto Português de Oncologia de Lisboa, Francisco Gentil, Lisbon (Portugal); Faculdade de Medicina de Lisboa, Lisbon (Portugal); Dias, Sérgio [Instituto de Medicina Molecular, Lisbon (Portugal); Faculdade de Medicina de Lisboa, Lisbon (Portugal); Mendes de Almeida, JC [Department of Surgical Oncology, Instituto Português de Oncologia de Lisboa, Francisco Gentil, Lisbon (Portugal); Faculdade de Medicina de Lisboa, Lisbon (Portugal)

    2014-02-26

    Among women, breast cancer (BC) is the leading cancer and the most common cause of cancer-related death between 30 and 69 years. Although lifestyle and diet are considered to have a role in global BC incidence pattern, the specific influence of dyslipidemia in BC onset and progression is not yet completely understood. Fasting lipid profile (total cholesterol, LDL-C, HDL-C, and triglycerides) was prospectively assessed in 244 women with BC who were enrolled according to pre-set inclusion criteria: diagnosis of non-hereditary invasive ductal carcinoma; selection for surgery as first treatment, and no history of treatment with lipid-lowering or anti-diabetic drugs in the previous year. Pathological and clinical follow-up data were recorded for further inclusion in the statistical analysis. Univariate associations show that BC patients with higher levels of LDL-C at diagnosis have tumors that are larger, with higher differentiation grade, higher proliferative rate (assessed by Ki67 immunostaining), are more frequently Her2-neu positive and are diagnosed in more advanced stages. Cox regression model for disease-free survival (DFS), adjusted to tumor T and N stages of TNM classification, and immunohistochemical subtypes, revealed that high LDL-C at diagnosis is associated with poor DFS. At 25 months of follow up, DFS is 12% higher in BC patients within the third LDL-C tertile compared to those in the first tertile. This is a prospective study where LDL-C levels, at diagnosis, emerge as a prognostic factor; and this parameter can be useful in the identification and follow-up of high-risk groups. Our results further support a possible role for systemic cholesterol in BC progression and show that cholesterol metabolism may be an important therapeutic target in BC patients.

  19. Diet-induced obesity promotes colon tumor development in azoxymethane-treated mice.

    Directory of Open Access Journals (Sweden)

    Iina Tuominen

    Full Text Available Obesity is an important risk factor for colon cancer in humans, and numerous studies have shown that a high fat diet enhances colon cancer development. As both increased adiposity and high fat diet can promote tumorigenesis, we examined the effect of diet-induced obesity, without ongoing high fat diet, on colon tumor development. C57BL/6J male mice were fed regular chow or high fat diet for 8 weeks. Diets were either maintained or switched resulting in four experimental groups: regular chow (R, high fat diet (H, regular chow switched to high fat diet (RH, and high fat diet switched to regular chow (HR. Mice were then administered azoxymethane to induce colon tumors. Tumor incidence and multiplicity were dramatically smaller in the R group relative to all groups that received high fat diet at any point. The effect of obesity on colon tumors could not be explained by differences in aberrant crypt foci number. Moreover, diet did not alter colonic expression of pro-inflammatory cytokines tumor necrosis factor-α, interleukin-6, interleukin-1β, and interferon-γ, which were measured immediately after azoxymethane treatment. Crypt apoptosis and proliferation, which were measured at the same time, were increased in the HR relative to all other groups. Our results suggest that factors associated with obesity - independently of ongoing high fat diet and obesity - promote tumor development because HR group animals had significantly more tumors than R group, and these mice were fed the same regular chow throughout the entire carcinogenic period. Moreover, there was no difference in the number of aberrant crypt foci between these groups, and thus the effect of obesity appears to be on subsequent stages of tumor development when early preneoplastic lesions transition into adenomas.

  20. Tumor development following internal exposures to radionuclides during the perinatal period

    International Nuclear Information System (INIS)

    Sikov, M.R.

    1988-07-01

    Exposure to radiation from internally deposited radionuclides during the prenatal and/or neonatal periods involves a distinct oncogenic potential. The fundamental mechanisms for perinatal radionuclide carcinogenesis seem to be generally similar to those that pertain to external radiation exposures and other carcinogenic agents, but unique interactions may be superimposed. Specific dose-effect relationships differ among radionuclides; many studies find dose-related increases in the incidence of tumors or decreases in age at tumor appearance following prenatal or neonatal radiation exposures. Tumor incidences may be decreased, especially at high dose levels; these are usually attributable to cell death, inhibited development of target tissues, or to endocrine malfunction. Age-related differences in predominant tumor types and/or sites of tumor development are often detected, and are explainable by the existence of nuclide-specific target organs or tissues, dosimetric factors, and developmental considerations. 34 refs

  1. Involvement of host stroma cells and tissue fibrosis in pancreatic tumor development in transgenic mice.

    Directory of Open Access Journals (Sweden)

    Itai Spector

    Full Text Available INTRODUCTION: Stroma cells and extracellular matrix (ECM components provide the pivotal microenvironment for tumor development. The study aimed to evaluate the importance of the pancreatic stroma for tumor development. METHODS: Pancreatic tumor cells were implanted subcutaneously into green fluorescent protein transgenic mice, and stroma cells invading the tumors were identified through immunohistochemistry. Inhibition of tumor invasion by stroma cells was achieved with halofuginone, an inhibitor of TGFβ/Smad3 signaling, alone or in combination with chemotherapy. The origin of tumor ECM was evaluated with species-specific collagen I antibodies and in situ hybridization of collagen α1(I gene. Pancreatic fibrosis was induced by cerulean injection and tumors by spleen injection of pancreatic tumor cells. RESULTS: Inhibition of stroma cell infiltration and reduction of tumor ECM levels by halofuginone inhibited development of tumors derived from mouse and human pancreatic cancer cells. Halofuginone reduced the number only of stroma myofibroblasts expressing both contractile and collagen biosynthesis markers. Both stroma myofibroblasts and tumor cells generated ECM that contributes to tumor growth. Combination of treatments that inhibit stroma cell infiltration, cause apoptosis of myofibroblasts and inhibit Smad3 phosphorylation, with chemotherapy that increases tumor-cell apoptosis without affecting Smad3 phosphorylation was more efficacious than either treatment alone. More tumors developed in fibrotic than in normal pancreas, and prevention of tissue fibrosis greatly reduced tumor development. CONCLUSIONS: The utmost importance of tissue fibrosis and of stroma cells for tumor development presents potential new therapy targets, suggesting combination therapy against stroma and neoplastic cells as a treatment of choice.

  2. Natural inhibitors of tumor-associated proteases

    International Nuclear Information System (INIS)

    Magdolen, U.; Krol, J.; Sato, S.; Schmitt, M.; Magdolen, V.; Krueger, A.; Mueller, M.M.; Sperl, S.

    2002-01-01

    The turnover and remodelling of extracellular matrix (ECM) is an essential part of many normal biological processes including development, morphogenesis, and wound healing. ECM turnover also occurs in severe pathological situations like artherosclerosis, fibrosis, tumor invasion and metastasis. The major proteases involved in this turnover are serine proteases (especially the urokinase-type plasminogen activator/plasmin system), matrix metalloproteases (a family of about 20 zinc-dependent endopeptidases including collagenases, gelatinases, stromelysins, and membrane-type metalloproteases), and cysteine proteases. In vivo, the activity of these proteases is tightly regulated in the extracellular space by zymogen activation and/or controlled inhibition. In the present review, we give an overview on the structure and biochemical properties of important tumor-associated protease inhibitors such as plasminogen activator inhibitor type 1 and type 2 (PAI-1, PAI-2), tissue inhibitors of metalloproteinases (TIMP-1, -2, -3, and -4), and the cysteine protease inhibitor cystatin C. Interestingly, some of these inhibitors of tumor-associated proteases display multiple functions which rather promote than inhibit tumor progression, when the presence of inhibitors in the tumor tissue is not balanced. (author)

  3. Tumor Suppression and Promotion by Autophagy

    Directory of Open Access Journals (Sweden)

    Yenniffer Ávalos

    2014-01-01

    Full Text Available Autophagy is a highly regulated catabolic process that involves lysosomal degradation of proteins and organelles, mostly mitochondria, for the maintenance of cellular homeostasis and reduction of metabolic stress. Problems in the execution of this process are linked to different pathological conditions, such as neurodegeneration, aging, and cancer. Many of the proteins that regulate autophagy are either oncogenes or tumor suppressor proteins. Specifically, tumor suppressor genes that negatively regulate mTOR, such as PTEN, AMPK, LKB1, and TSC1/2 stimulate autophagy while, conversely, oncogenes that activate mTOR, such as class I PI3K, Ras, Rheb, and AKT, inhibit autophagy, suggesting that autophagy is a tumor suppressor mechanism. Consistent with this hypothesis, the inhibition of autophagy promotes oxidative stress, genomic instability, and tumorigenesis. Nevertheless, autophagy also functions as a cytoprotective mechanism under stress conditions, including hypoxia and nutrient starvation, that promotes tumor growth and resistance to chemotherapy in established tumors. Here, in this brief review, we will focus the discussion on this ambiguous role of autophagy in the development and progression of cancer.

  4. Tumor suppression and promotion by autophagy.

    Science.gov (United States)

    Ávalos, Yenniffer; Canales, Jimena; Bravo-Sagua, Roberto; Criollo, Alfredo; Lavandero, Sergio; Quest, Andrew F G

    2014-01-01

    Autophagy is a highly regulated catabolic process that involves lysosomal degradation of proteins and organelles, mostly mitochondria, for the maintenance of cellular homeostasis and reduction of metabolic stress. Problems in the execution of this process are linked to different pathological conditions, such as neurodegeneration, aging, and cancer. Many of the proteins that regulate autophagy are either oncogenes or tumor suppressor proteins. Specifically, tumor suppressor genes that negatively regulate mTOR, such as PTEN, AMPK, LKB1, and TSC1/2 stimulate autophagy while, conversely, oncogenes that activate mTOR, such as class I PI3K, Ras, Rheb, and AKT, inhibit autophagy, suggesting that autophagy is a tumor suppressor mechanism. Consistent with this hypothesis, the inhibition of autophagy promotes oxidative stress, genomic instability, and tumorigenesis. Nevertheless, autophagy also functions as a cytoprotective mechanism under stress conditions, including hypoxia and nutrient starvation, that promotes tumor growth and resistance to chemotherapy in established tumors. Here, in this brief review, we will focus the discussion on this ambiguous role of autophagy in the development and progression of cancer.

  5. A model of tumor architecture and spatial interactions with tumor microenvironment in breast carcinoma

    Science.gov (United States)

    Ben Cheikh, Bassem; Bor-Angelier, Catherine; Racoceanu, Daniel

    2017-03-01

    Breast carcinomas are cancers that arise from the epithelial cells of the breast, which are the cells that line the lobules and the lactiferous ducts. Breast carcinoma is the most common type of breast cancer and can be divided into different subtypes based on architectural features and growth patterns, recognized during a histopathological examination. Tumor microenvironment (TME) is the cellular environment in which tumor cells develop. Being composed of various cell types having different biological roles, TME is recognized as playing an important role in the progression of the disease. The architectural heterogeneity in breast carcinomas and the spatial interactions with TME are, to date, not well understood. Developing a spatial model of tumor architecture and spatial interactions with TME can advance our understanding of tumor heterogeneity. Furthermore, generating histological synthetic datasets can contribute to validating, and comparing analytical methods that are used in digital pathology. In this work, we propose a modeling method that applies to different breast carcinoma subtypes and TME spatial distributions based on mathematical morphology. The model is based on a few morphological parameters that give access to a large spectrum of breast tumor architectures and are able to differentiate in-situ ductal carcinomas (DCIS) and histological subtypes of invasive carcinomas such as ductal (IDC) and lobular carcinoma (ILC). In addition, a part of the parameters of the model controls the spatial distribution of TME relative to the tumor. The validation of the model has been performed by comparing morphological features between real and simulated images.

  6. Factors that predict residual tumors in re-TUR patients

    African Journals Online (AJOL)

    H. Türk

    2015-11-30

    Nov 30, 2015 ... Abstract. Introduction: Thefirstandforemostruleinthetreatmentofsuperficialbladdercanceriscorrectandcomplete resection of the tumor. Histopathological analysis of the resected tumor will help to define the correct tumor stage, thus delaying or, ideally, avoiding tumor recurrence and progression. Objectives: ...

  7. Late sarcoma development after curettage and bone grafting of benign bone tumors

    International Nuclear Information System (INIS)

    Picci, Piero; Sieberova, Gabriela; Alberghini, Marco; Balladelli, Alba; Vanel, Daniel; Hogendoorn, Pancras C.W.; Mercuri, Mario

    2011-01-01

    Background and aim: Rarely sarcomas develop in previous benign lesions, after a long term disease free interval. We report the experience on these rare cases observed at a single Institution. Patients and methods: 12 cases curetted and grafted, without radiotherapy developed sarcomas, between 1970 and 2005, 6.5-28 years from curettage (median 18, average 19). Age ranged from 13 to 55 years (median 30, average 32) at first diagnosis; tumors were located in the extremities (9 GCT, benign fibrous histiocytoma, ABC, and solitary bone cyst). Radiographic and clinic documentation, for the benign and malignant lesions, were available. Histology was available for 7 benign and all malignant lesions. Results: To fill cavities, autogenous bone was used in 4 cases, allograft in 2, allograft and tricalcium-phosphate/hydroxyapatite in 1, autogenous/allograft in 1, heterogenous in 1. For 3 cases the origin was not reported. Secondary sarcomas, all high grade, were 8 osteosarcoma, 3 malignant fibrous histiocytoma, and 1 fibrosarcoma. Conclusions: Recurrences with progression from benign tumors are possible, but the very long intervals here reported suggest a different cancerogenesis for these sarcomas. This condition is extremely rare accounting for only 0.26% of all malignant bone sarcomas treated in the years 1970-2005 and represents only 8.76% of all secondary bone sarcomas treated in the same years. This incidence is the same as that of sarcomas arising on fibrous dysplasia, and is lower than those arising on bone infarcts or on Paget's disease. This possible event must be considered during follow-up of benign lesions.

  8. Late sarcoma development after curettage and bone grafting of benign bone tumors

    Energy Technology Data Exchange (ETDEWEB)

    Picci, Piero, E-mail: piero.picci@ior.it [Bone Tumor Center, Istituto Ortopedico Rizzoli, Bologna (Italy); Sieberova, Gabriela [Dept. of Pathology, National Cancer Institute, Bratislava (Slovakia); Alberghini, Marco; Balladelli, Alba; Vanel, Daniel [Bone Tumor Center, Istituto Ortopedico Rizzoli, Bologna (Italy); Hogendoorn, Pancras C.W. [Dept. of Pathology, Leiden University Medical Center, Leiden (Netherlands); Mercuri, Mario [Bone Tumor Center, Istituto Ortopedico Rizzoli, Bologna (Italy)

    2011-01-15

    Background and aim: Rarely sarcomas develop in previous benign lesions, after a long term disease free interval. We report the experience on these rare cases observed at a single Institution. Patients and methods: 12 cases curetted and grafted, without radiotherapy developed sarcomas, between 1970 and 2005, 6.5-28 years from curettage (median 18, average 19). Age ranged from 13 to 55 years (median 30, average 32) at first diagnosis; tumors were located in the extremities (9 GCT, benign fibrous histiocytoma, ABC, and solitary bone cyst). Radiographic and clinic documentation, for the benign and malignant lesions, were available. Histology was available for 7 benign and all malignant lesions. Results: To fill cavities, autogenous bone was used in 4 cases, allograft in 2, allograft and tricalcium-phosphate/hydroxyapatite in 1, autogenous/allograft in 1, heterogenous in 1. For 3 cases the origin was not reported. Secondary sarcomas, all high grade, were 8 osteosarcoma, 3 malignant fibrous histiocytoma, and 1 fibrosarcoma. Conclusions: Recurrences with progression from benign tumors are possible, but the very long intervals here reported suggest a different cancerogenesis for these sarcomas. This condition is extremely rare accounting for only 0.26% of all malignant bone sarcomas treated in the years 1970-2005 and represents only 8.76% of all secondary bone sarcomas treated in the same years. This incidence is the same as that of sarcomas arising on fibrous dysplasia, and is lower than those arising on bone infarcts or on Paget's disease. This possible event must be considered during follow-up of benign lesions.

  9. Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: New trends in the development of miRNA therapeutic strategies in oncology (Review)

    Science.gov (United States)

    GAMBARI, ROBERTO; BROGNARA, ELEONORA; SPANDIDOS, DEMETRIOS A.; FABBRI, ENRICA

    2016-01-01

    MicroRNA (miRNA or miR) therapeutics in cancer are based on targeting or mimicking miRNAs involved in cancer onset, progression, angiogenesis, epithelial-mesenchymal transition and metastasis. Several studies conclusively have demonstrated that miRNAs are deeply involved in tumor onset and progression, either behaving as tumor-promoting miRNAs (oncomiRNAs and metastamiRNAs) or as tumor suppressor miRNAs. This review focuses on the most promising examples potentially leading to the development of anticancer, miRNA-based therapeutic protocols. The inhibition of miRNA activity can be readily achieved by the use of miRNA inhibitors and oligomers, including RNA, DNA and DNA analogues (miRNA antisense therapy), small molecule inhibitors, miRNA sponges or through miRNA masking. On the contrary, the enhancement of miRNA function (miRNA replacement therapy) can be achieved by the use of modified miRNA mimetics, such as plasmid or lentiviral vectors carrying miRNA sequences. Combination strategies have been recently developed based on the observation that i) the combined administration of different antagomiR molecules induces greater antitumor effects and ii) some anti-miR molecules can sensitize drug-resistant tumor cell lines to therapeutic drugs. In this review, we discuss two additional issues: i) the combination of miRNA replacement therapy with drug administration and ii) the combination of antagomiR and miRNA replacement therapy. One of the solid results emerging from different independent studies is that miRNA replacement therapy can enhance the antitumor effects of the antitumor drugs. The second important conclusion of the reviewed studies is that the combination of anti-miRNA and miRNA replacement strategies may lead to excellent results, in terms of antitumor effects. PMID:27175518

  10. Disruption of Lysosome Function Promotes Tumor Growth and Metastasis in Drosophila *

    OpenAIRE

    Chi, Congwu; Zhu, Huanhu; Han, Min; Zhuang, Yuan; Wu, Xiaohui; Xu, Tian

    2010-01-01

    Lysosome function is essential to many physiological processes. It has been suggested that deregulation of lysosome function could contribute to cancer. Through a genetic screen in Drosophila, we have discovered that mutations disrupting lysosomal degradation pathway components contribute to tumor development and progression. Loss-of-function mutations in the Class C vacuolar protein sorting (VPS) gene, deep orange (dor), dramatically promote tumor overgrowth and invasion of the RasV12 cells....

  11. Recent progress on the effects of microRNAs and natural products on tumor epithelial–mesenchymal transition

    Directory of Open Access Journals (Sweden)

    He SJ

    2017-07-01

    Full Text Available Shu-Jin He,1,2,* Chu-Qi Xiang,1,3,* Yu Zhang,3 Xiang-Tong Lu,1 Hou-Wen Chen,1,4 Li-Xia Xiong1,4 1Department of Pathophysiology, Medical College, Nanchang University, 2Second Clinical Medical College, Nanchang University, 3First Clinical Medical College, Nanchang University, 4Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang, People’s Republic of China *These authors contributed equally to this work Abstract: Epithelial–mesenchymal transition (EMT is a biological process of phenotypic transition of epithelial cells that can promote physiological development as well as tissue healing and repair. In recent years, cancer researchers have noted that EMT is closely related to the occurrence and development of tumors. When tumor cells undergo EMT, they can develop enhanced migration and local tissue invasion abilities, which can lead to metastatic growth. Nevertheless, two researches in NATURE deny its necessity in specific tumors and that is discussed in this review. The degree of EMT and the detection of EMT-associated marker molecules can also be used to judge the risk of metastasis and to evaluate patients’ prognosis. MicroRNAs (miRNAs are noncoding small RNAs, which can inhibit gene expression and protein translation through specific binding with the 3' untranslated region of mRNA. In this review, we summarize the miRNAs that are reported to influence EMT through transcription factors such as ZEB, SNAIL, and TWIST, as well as some natural products that regulate EMT in tumors. Moreover, mutual inhibition occurs between some transcription factors and miRNAs, and these effects appear to occur in a complex regulatory network. Thus, understanding the role of miRNAs in EMT and tumor growth may lead to new treatments for malignancies. Natural products can also be combined with conventional chemotherapy to enhance curative effects. Keywords: epithelial–mesenchymal transition, miRNA, tumor, natural products

  12. The Progress of Mitophagy and Related Pathogenic Mechanisms of the Neurodegenerative Diseases and Tumor

    Directory of Open Access Journals (Sweden)

    Ying Song

    2015-01-01

    Full Text Available Mitochondrion, an organelle with two layers of membrane, is extremely vital to eukaryotic cell. Its major functions are energy center and apoptosis censor inside cell. The intactness of mitochondrial membrane is important to maintain its structure and function. Mitophagy is one kind of autophagy. In recent years, studies of mitochondria have shown that mitophagy is regulated by various factors and is an important regulation mechanism for organisms to maintain their normal state. In addition, abnormal mitophagy is closely related to several neurodegenerative diseases and tumor. However, the related signal pathway and its regulation mechanism still remain unclear. As a result, summarizing the progress of mitophagy and its related pathogenic mechanism not only helps to reveal the complicated molecular mechanism, but also helps to find a new target to treat the related diseases.

  13. Embolotherapy for Neuroendocrine Tumor Liver Metastases: Prognostic Factors for Hepatic Progression-Free Survival and Overall Survival

    International Nuclear Information System (INIS)

    Chen, James X.; Rose, Steven; White, Sarah B.; El-Haddad, Ghassan; Fidelman, Nicholas; Yarmohammadi, Hooman; Hwang, Winifred; Sze, Daniel Y.; Kothary, Nishita; Stashek, Kristen; Wileyto, E. Paul; Salem, Riad; Metz, David C.; Soulen, Michael C.

    2017-01-01

    PurposeThe purpose of the study was to evaluate prognostic factors for survival outcomes following embolotherapy for neuroendocrine tumor (NET) liver metastases.Materials and MethodsThis was a multicenter retrospective study of 155 patients (60 years mean age, 57 % male) with NET liver metastases from pancreas (n = 71), gut (n = 68), lung (n = 8), or other/unknown (n = 8) primary sites treated with conventional transarterial chemoembolization (TACE, n = 50), transarterial radioembolization (TARE, n = 64), or transarterial embolization (TAE, n = 41) between 2004 and 2015. Patient-, tumor-, and treatment-related factors were evaluated for prognostic effect on hepatic progression-free survival (HPFS) and overall survival (OS) using unadjusted and propensity score-weighted univariate and multivariate Cox proportional hazards models.ResultsMedian HPFS and OS were 18.5 and 125.1 months for G1 (n = 75), 12.2 and 33.9 months for G2 (n = 60), and 4.9 and 9.3 months for G3 tumors (n = 20), respectively (p  50 % hepatic volume demonstrated 5.5- and 26.8-month shorter median HPFS and OS, respectively, versus burden ≤50 % (p < 0.05). There were no significant differences in HPFS or OS between gut or pancreas primaries. In multivariate HPFS analysis, there were no significant differences among embolotherapy modalities. In multivariate OS analysis, TARE had a higher hazard ratio than TACE (unadjusted Cox model: HR 2.1, p = 0.02; propensity score adjusted model: HR 1.8, p = 0.11), while TAE did not differ significantly from TACE.ConclusionHigher tumor grade and tumor burden prognosticated shorter HPFS and OS. TARE had a higher hazard ratio for OS than TACE. There were no significant differences in HPFS among embolotherapy modalities.

  14. Optical imaging of tumor hypoxia dynamics

    Science.gov (United States)

    Palmer, Gregory M.; Fontanella, Andrew N.; Zhang, Guoqing; Hanna, Gabi; Fraser, Cassandra L.; Dewhirst, Mark W.

    2010-11-01

    The influence of the tumor microenvironment and hypoxia plays a significant role in determining cancer progression, treatment response, and treatment resistance. That the tumor microenvironment is highly heterogeneous with significant intratumor and intertumor variability presents a significant challenge in developing effective cancer therapies. Critical to understanding the role of the tumor microenvironment is the ability to dynamically quantify oxygen levels in the vasculature and tissue in order to elucidate the roles of oxygen supply and consumption, spatially and temporally. To this end, we describe the use of hyperspectral imaging to characterize hemoglobin absorption to quantify hemoglobin content and oxygen saturation, as well as dual emissive fluorescent/phosphorescent boron nanoparticles, which serve as ratiometric indicators of tissue oxygen tension. Applying these techniques to a window-chamber tumor model illustrates the role of fluctuations in hemoglobin saturation in driving changes in tissue oxygenation, the two being significantly correlated (r = 0.77). Finally, a green-fluorescence-protein reporter for hypoxia inducible factor-1 (HIF-1) provides an endpoint for hypoxic stress in the tumor, which is used to demonstrate a significant association between tumor hypoxia dynamics and HIF-1 activity in an in vivo demonstration of the technique.

  15. Interleukin-30: A novel microenvironmental hallmark of prostate cancer progression.

    Science.gov (United States)

    Di Carlo, Emma

    2014-01-01

    Metastatic prostate cancer is a leading cause of cancer-related death in men worldwide. We have recently discovered that IL-30 shapes the microenvironment of prostate cancer and tumor-draining lymph nodes to favor tumor progression. IL-30 supports tumor growth in vitro, and IL-30 expression in prostate cancer patients is associated with high tumor grade and metastatic stage of disease. Thus, IL-30 may constitute a valuable target for modern therapeutic approaches to hamper prostate cancer progression.

  16. Conjunctival Melanocytic Tumors-New Developments

    Directory of Open Access Journals (Sweden)

    Hülya Gökmen Soysal

    2014-09-01

    Full Text Available Melanocytic lesions of the conjunctiva represent a wide spectrum of tumors that include benign, premalignant, and malignant tumors. There are many ongoing arguments about the definition, classification, and therapeutic options of the conjunctival melanocytic tumors with many different suggestions. Conjunctival nevi are the most common melanocytic tumors and their risk of malignant transformation is less than1%. Primary acquired melanosis (PAM histopathologically includes various types of lesions from increased melanin pigmentation without melanocyte proliferation to melanoma in situ and is accepted as a clinical definition, so that a new classification is recommended which is based on more objective criteria than before. Although conjunctival melanoma is seen rarely, it is associated with a high mortality rate. Management of these tumors mainly involves surgery and adjuvant topical chemotherapy, cryotherapy, and radiation therapy that help improving the survival, however, new options are being investigated related to genetic and molecular researches. (Turk J Ophthalmol 2014; 44: Supplement 15-21

  17. Gammasphere software development. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Piercey, R.B.

    1994-01-01

    This report describes the activities of the nuclear physics group at Mississippi State University which were performed during 1993. Significant progress has been made in the focus areas: chairing the Gammasphere Software Working Group (SWG); assisting with the porting and enhancement of the ORNL UPAK histogramming software package; and developing standard formats for Gammasphere data products. In addition, they have established a new public ftp archive to distribute software and software development tools and information.

  18. Expression of Axl in Lung Adenocarcinoma and Correlation with Tumor Progression

    Directory of Open Access Journals (Sweden)

    Yi-Shing Shinh

    2005-12-01

    Full Text Available We used the Transwell system to select highly invasive cell lines from minimally invasive parent cells, and we compared gene expression in paired cell lines with high and low invasive potentials. Axl was relatively overexpressed in the highly invasive cell lines when compared with their minimally invasive counterparts. However, there is only limited information about the role of Axl in cancer invasion. The biologic function of Axl in tumor invasion was investigated by overexpression of full-length Axl in minimally invasive cells and by siRNA knockdown of Axl expression in highly invasive cells. Overexpression of Axl in minimally invasive cells increased their invasiveness. siRNA reduced cell invasiveness as Axl was downregulated in highly invasive cells. We further investigated the protein expression of Axl by immunohistochemistry and its correlation with clinicopathologic features. Data from a study of 58 patient specimens showed that Axl immunoreactivity was statistically significant with respect to lymph node status (P < .0001 and the patient's clinical stage (P < .0001. Our results demonstrate that Axl protein kinase seems to play an important role in the invasion and progression of lung cancer.

  19. Rapid development of Leydig cell tumors in a Wistar rat substrain

    NARCIS (Netherlands)

    Teerds, K. J.; de rooij, D. G.; de Jong, F. H.; Rommerts, F. F.

    1991-01-01

    In 78% of the Wistar rats (substrain U) studied, spontaneous Leydig cell tumors developed between the ages of 12 and 30 months. The first signs of tumor development, in the form of nodules of Leydig cells, were already apparent in 1-month-old U-rats. These nodules of Leydig cells were found in all

  20. Endothelial cells provide a notch-dependent pro-tumoral niche for enhancing breast cancer survival, stemness and pro-metastatic properties.

    Directory of Open Access Journals (Sweden)

    Pegah Ghiabi

    Full Text Available Treating metastasis has been challenging due to tumors complexity and heterogeneity. This complexity is partly related to the crosstalk between tumor and its microenvironment. Endothelial cells -the building blocks of tumor vasculature- have been shown to have additional roles in cancer progression than angiogenesis and supplying oxygen and nutrients. Here, we show an alternative role for endothelial cells in supporting breast cancer growth and spreading independent of their vascular functions. Using endothelial cells and breast cancer cell lines MDA-MB231 and MCF-7, we developed co-culture systems to study the influence of tumor endothelium on breast tumor development by both in vitro and in vivo approaches. Our results demonstrated that endothelial cells conferred survival advantage to tumor cells under complete starvation and enriched the CD44HighCD24Low/- stem cell population in tumor cells. Moreover, endothelial cells enhanced the pro-metastatic potential of breast cancer cells. The in vitro and in vivo results concordantly confirmed a role for endothelial Jagged1 to promote breast tumor through notch activation. Here, we propose a role for endothelial cells in enhancing breast cancer progression, stemness, and pro-metastatic traits through a perfusion-independent manner. Our findings may be beneficial in developing novel therapeutic approaches.

  1. Circulating tumor cell isolation and diagnostics: toward routine clinical use

    NARCIS (Netherlands)

    Stolpe, van de A.; Pantel, K.; Sleijfer, S.; Terstappen, L.W.; Toonder, den J.M.J.

    2011-01-01

    From February 7–11, 2011, the multidisciplinary Lorentz Workshop Circulating Tumor Cell (CTC) Isolation and Diagnostics: Toward Routine Clinical Use was held in Leiden (The Netherlands) to discuss progress and define challenges and potential solutions for development of clinically useful circulating

  2. USP22 regulates oncogenic signaling pathways to drive lethal cancer progression.

    Science.gov (United States)

    Schrecengost, Randy S; Dean, Jeffry L; Goodwin, Jonathan F; Schiewer, Matthew J; Urban, Mark W; Stanek, Timothy J; Sussman, Robyn T; Hicks, Jessica L; Birbe, Ruth C; Draganova-Tacheva, Rossitza A; Visakorpi, Tapio; DeMarzo, Angelo M; McMahon, Steven B; Knudsen, Karen E

    2014-01-01

    Increasing evidence links deregulation of the ubiquitin-specific proteases 22 (USP22) deubitiquitylase to cancer development and progression in a select group of tumor types, but its specificity and underlying mechanisms of action are not well defined. Here we show that USP22 is a critical promoter of lethal tumor phenotypes that acts by modulating nuclear receptor and oncogenic signaling. In multiple xenograft models of human cancer, modeling of tumor-associated USP22 deregulation demonstrated that USP22 controls androgen receptor accumulation and signaling, and that it enhances expression of critical target genes coregulated by androgen receptor and MYC. USP22 not only reprogrammed androgen receptor function, but was sufficient to induce the transition to therapeutic resistance. Notably, in vivo depletion experiments revealed that USP22 is critical to maintain phenotypes associated with end-stage disease. This was a significant finding given clinical evidence that USP22 is highly deregulated in tumors, which have achieved therapeutic resistance. Taken together, our findings define USP22 as a critical effector of tumor progression, which drives lethal phenotypes, rationalizing this enzyme as an appealing therapeutic target to treat advanced disease.

  3. Loss of the α2β1 integrin alters human papilloma virus-induced squamous carcinoma progression in vivo and in vitro.

    Directory of Open Access Journals (Sweden)

    Thuy Tran

    Full Text Available Expression of the α2β1 integrin, a receptor for collagens and laminin, is altered during tumor progression. Recent studies have linked polymorphisms in the α2 integrin gene with oral, squamous cell carcinoma (SCC. To determine the α2β1 integrin's role in SCC progression, we crossed α2-null mice with K14-HPV16 transgenic animals. Pathological progression to invasive carcinoma was evaluated in HPV-positive, α2-null (HPV/KO and HPV-positive, wild-type (HPV/WT animals. α2β1 integrin expression stimulated progression from hyperplasia and papillomatosis to dysplasia with concomitant dermal mast cell infiltration. Moreover, lymph node metastasis was decreased by 31.3% in HPV/KO, compared to HPV/WT, animals. To evaluate the integrin-specific impact on the malignant epithelium versus the microenvironment, we developed primary tumor cell lines. Although transition from dysplasia to carcinoma was unaltered during spontaneous tumor development, isolated primary HPV/KO SCC cell lines demonstrated decreased migration and invasion, compared to HPV/WT cells. When HPV/WT and HPV/KO SCC cells were orthotopically injected into WT or KO hosts, tumor α2β1 integrin expression resulted in decreased tumor latency, regardless of host integrin status. HPV/WT SCC lines failed to demonstrate a proliferative advantage in vitro, however, the HPV/WT tumors demonstrated increased growth compared to HPV/KO SCC lines in vivo. Although contributions of the integrin to the microenvironment cannot be excluded, our studies indicate that α2β1 integrin expression by HPV-transformed keratinocytes modulates SCC growth and progression.

  4. The role of tumor cell-derived connective tissue growth factor (CTGF/CCN2) in pancreatic tumor growth.

    Science.gov (United States)

    Bennewith, Kevin L; Huang, Xin; Ham, Christine M; Graves, Edward E; Erler, Janine T; Kambham, Neeraja; Feazell, Jonathan; Yang, George P; Koong, Albert; Giaccia, Amato J

    2009-02-01

    Pancreatic cancer is highly aggressive and refractory to existing therapies. Connective tissue growth factor (CTGF/CCN2) is a fibrosis-related gene that is thought to play a role in pancreatic tumor progression. However, CCN2 can be expressed in a variety of cell types, and the contribution of CCN2 derived from either tumor cells or stromal cells as it affects the growth of pancreatic tumors is unknown. Using genetic inhibition of CCN2, we have discovered that CCN2 derived from tumor cells is a critical regulator of pancreatic tumor growth. Pancreatic tumor cells derived from CCN2 shRNA-expressing clones showed dramatically reduced growth in soft agar and when implanted s.c. We also observed a role for CCN2 in the growth of pancreatic tumors implanted orthotopically, with tumor volume measurements obtained by positron emission tomography imaging. Mechanistically, CCN2 protects cells from hypoxia-mediated apoptosis, providing an in vivo selection for tumor cells that express high levels of CCN2. We found that CCN2 expression and secretion was increased in hypoxic pancreatic tumor cells in vitro, and we observed colocalization of CCN2 and hypoxia in pancreatic tumor xenografts and clinical pancreatic adenocarcinomas. Furthermore, we found increased CCN2 staining in clinical pancreatic tumor tissue relative to stromal cells surrounding the tumor, supporting our assertion that tumor cell-derived CCN2 is important for pancreatic tumor growth. Taken together, these data improve our understanding of the mechanisms responsible for pancreatic tumor growth and progression, and also indicate that CCN2 produced by tumor cells represents a viable therapeutic target for the treatment of pancreatic cancer.

  5. Molecular pathways undergoing dramatic transcriptomic changes during tumor development in the human colon

    Directory of Open Access Journals (Sweden)

    Maglietta Rosalia

    2012-12-01

    Full Text Available Abstract Background The malignant transformation of precancerous colorectal lesions involves progressive alterations at both the molecular and morphologic levels, the latter consisting of increases in size and in the degree of cellular atypia. Analyzing preinvasive tumors of different sizes can therefore shed light on the sequence of these alterations. Methods We used a molecular pathway-based approach to analyze transcriptomic profiles of 59 colorectal tumors representing early and late preinvasive stages and the invasive stage of tumorigenesis. Random set analysis was used to identify biological pathways enriched for genes differentially regulated in tumors (compared with 59 samples of normal mucosa. Results Of the 880 canonical pathways we investigated, 112 displayed significant tumor-related upregulation or downregulation at one or more stages of tumorigenesis. This allowed us to distinguish between pathways whose dysregulation is probably necessary throughout tumorigenesis and those whose involvement specifically drives progression from one stage to the next. We were also able to pinpoint specific changes within each gene set that seem to play key roles at each transition. The early preinvasive stage was characterized by cell-cycle checkpoint activation triggered by DNA replication stress and dramatic downregulation of basic transmembrane signaling processes that maintain epithelial/stromal homeostasis in the normal mucosa. In late preinvasive lesions, there was also downregulation of signal transduction pathways (e.g., those mediated by G proteins and nuclear hormone receptors involved in cell differentiation and upregulation of pathways governing nuclear envelope dynamics and the G2>M transition in the cell cycle. The main features of the invasive stage were activation of the G1>S transition in the cell cycle, upregulated expression of tumor-promoting microenvironmental factors, and profound dysregulation of metabolic pathways (e

  6. Multiple Myeloma Macrophages: Pivotal Players in the Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Simona Berardi

    2013-01-01

    Full Text Available Tumor microenvironment is essential for multiple myeloma (MM growth, progression, and drug resistance through provision of survival signals and secretion of growth and proangiogenic factors. This paper examines the importance of macrophages within MM bone marrow (BM microenvironment, referred to as MM-associated macrophages, as a potential niche component that supports tumor plasma cells. These macrophages are derived from peripheral blood monocytes recruited into the tumor. Upon activation by MM plasma cells and mesenchymal stromal cells, macrophages can release growth factors, proteolytic enzymes, cytokines, and inflammatory mediators that promote plasma cell growth and survival. Macrophages promote tumor progression through several mechanisms including angiogenesis, growth, and drug resistance. Indeed, these macrophages are essential for the induction of an angiogenic response through vasculogenic mimicry, and this ability proceeds in step with progression of the plasma cell tumors. Data suggest that macrophages play an important role in the biology and survival of patients with MM, and they may be a target for the MM antivascular management.

  7. Off and back-on again: a tumor suppressor's tale.

    Science.gov (United States)

    Acosta, Jonuelle; Wang, Walter; Feldser, David M

    2018-06-01

    Tumor suppressor genes play critical roles orchestrating anti-cancer programs that are both context dependent and mechanistically diverse. Beyond canonical tumor suppressive programs that control cell division, cell death, and genome stability, unexpected tumor suppressor gene activities that regulate metabolism, immune surveillance, the epigenetic landscape, and others have recently emerged. This diversity underscores the important roles these genes play in maintaining cellular homeostasis to suppress cancer initiation and progression, but also highlights a tremendous challenge in discerning precise context-specific programs of tumor suppression controlled by a given tumor suppressor. Fortunately, the rapid sophistication of genetically engineered mouse models of cancer has begun to shed light on these context-dependent tumor suppressor activities. By using techniques that not only toggle "off" tumor suppressor genes in nascent tumors, but also facilitate the timely restoration of gene function "back-on again" in disease specific contexts, precise mechanisms of tumor suppression can be revealed in an unbiased manner. This review discusses the development and implementation of genetic systems designed to toggle tumor suppressor genes off and back-on again and their potential to uncover the tumor suppressor's tale.

  8. The Effects of Radiation and Dose-Fractionation on Cancer and Non-Tumor Disease Development

    Directory of Open Access Journals (Sweden)

    Gayle E. Woloschak

    2012-12-01

    Full Text Available The Janus series of radiation experiments, conducted from 1970 to 1992, explored the effects of gamma and neutron radiation on animal lifespan and disease development. Data from these experiments presents an opportunity to conduct a large scale analysis of both tumor and non-tumor disease development. This work was focused on a subset of animals from the Janus series of experiments, comparing acute or fractionated exposures of gamma or neutron radiation on the hazards associated with the development of tumor and non-tumor diseases of the liver, lung, kidney or vascular system. This study also examines how the co-occurrence of non-tumor diseases may affect tumor-associated hazards. While exposure to radiation increases the hazard of dying with tumor and non-tumor diseases, dose fractionation modulates these hazards, which varies across different organ systems. Finally, the effect that concurrent non-cancer diseases have on the hazard of dying with a tumor also differs by organ system. These results highlight the complexity in the effects of radiation on the liver, lung, kidney and vascular system.

  9. In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy

    Science.gov (United States)

    Laufer, Jan; Johnson, Peter; Zhang, Edward; Treeby, Bradley; Cox, Ben; Pedley, Barbara; Beard, Paul

    2012-05-01

    The use of a novel all-optical photoacoustic scanner for imaging the development of tumor vasculature and its response to a therapeutic vascular disrupting agent is described. The scanner employs a Fabry-Perot polymer film ultrasound sensor for mapping the photoacoustic waves and an image reconstruction algorithm based upon attenuation-compensated acoustic time reversal. The system was used to noninvasively image human colorectal tumor xenografts implanted subcutaneously in mice. Label-free three-dimensional in vivo images of whole tumors to depths of almost 10 mm with sub-100-micron spatial resolution were acquired in a longitudinal manner. This enabled the development of tumor-related vascular features, such as vessel tortuosity, feeding vessel recruitment, and necrosis to be visualized over time. The system was also used to study the temporal evolution of the response of the tumor vasculature following the administration of a therapeutic vascular disrupting agent (OXi4503). This revealed the well-known destruction and recovery phases associated with this agent. These studies illustrate the broader potential of this technology as an imaging tool for the preclinical and clinical study of tumors and other pathologies characterized by changes in the vasculature.

  10. Image-guided radiofrequency ablation (RFA) of spinal tumors

    International Nuclear Information System (INIS)

    Gevargez, Athour; Groenemeyer, Dietrich H.W.

    2008-01-01

    Purpose: To evaluate retrospectively the efficacy and safety of radiofrequency ablation (RFA) in patients with spinal tumors. Materials and methods: Forty-one patients (25 men, 16 women; age range, 46-82 years) with nonresectable primary or secondary tumor involvement of the spine unresponsive to chemo- and radiotherapy received RFA treatment. Two radiofrequency ablation systems, one with a cool-tip electrode and one with an expandable electrode catheter, were used. Both systems work impedance controlled with a power output of 150- 200 W. Each coagulation cycle lasted 12-15 min depending on tumor impedance. Several single RFA cycles of 15 min each were used for overlapping RFAs in tumors with diameters of more than 3 cm. Temperature was kept between 50 deg. C and 120 deg. C and was chosen according to spinal cord distance and patient heat tolerance during the ablation. Multi-slice computed tomography (CT) combined with C-arm fluoroscopy guided the intervention. Efficacy outcomes were assessed after about 6 weeks, 6 months, and more than 6 months using standardized questionnaires and indices regarding tumor pain, pain disability, functional activities, quality of life, neurological status, and tumor progression. Results: RFA significantly reduced tumor-induced pain within 6 weeks, improved daily activities, and maintained quality of life. Mean time to tumor progression was 730 ± 54 days (Kaplan-Meier estimate). No RFA-associated complications were reported. Conclusion: RFA of primary and secondary spinal tumors, which were unresponsive to chemo- and radiotherapy and prone to progression, is a safe, resource-saving, and highly effective percutaneous technique in patients with nonresectable spinal tumors

  11. Platelet Proteome and Tumor Dormancy: Can Platelets Content Serve as Predictive Biomarkers for Exit of Tumors from Dormancy?

    Energy Technology Data Exchange (ETDEWEB)

    Almog, Nava, E-mail: nava.almog@tufts.edu; Klement, Giannoula Lakka, E-mail: nava.almog@tufts.edu [Center of Cancer Systems Biology, Caritas St. Elizabeth' s Medical Center, Tufts University School of Medicine, Boston, MA (United States)

    2010-05-11

    Although tumor dormancy is highly prevalent, the underling mechanisms are still mostly unknown. It is unclear which lesions will progress and become a disseminated cancer, and which will remain dormant and asymptomatic. Yet, an improved ability to predict progression would open the possibility of timely treatment and improvement in outcomes. We have recently described the ability of platelets to selectively uptake angiogenesis regulators very early in tumor growth, and proposed their use as an early marker of malignancy. In this review we will summarize current knowledge about these processes and will discuss the possibility of using platelet content to predict presence of occult tumors.

  12. Current applications and future prospects of nanomaterials in tumor therapy

    Directory of Open Access Journals (Sweden)

    Huang Y

    2017-03-01

    Full Text Available Yu Huang,1 Chao-Qiang Fan,1 Hui Dong,1 Su-Min Wang,1 Xiao-Chao Yang,2 Shi-Ming Yang1 1Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, People’s Republic of China; 2Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, People’s Republic of China Abstract: Tumors are one of the most serious human diseases and cause numerous global deaths per year. In spite of many strategies applied in tumor therapy, such as radiation therapy, chemotherapy, surgery, and a combination of these treatments, tumors are still the foremost killer worldwide among human diseases, due to their specific limitations, such as multidrug resistance and side effects. Therefore, it is urgent and necessary to develop new strategies for tumor therapy. Recently, the fast development of nanoscience has paved the way for designing new strategies to treat tumors. Nanomaterials have shown great potential in tumor therapy, due to their unique properties, including passive targeting, hyperthermia effects, and tumor-specific inhibition. This review summarizes the recent progress using the innate antitumor properties of metallic and nonmetallic nanomaterials to treat tumors, and related challenges and prospects are discussed. Keywords: tumor, nanomaterials, nanoparticles, nanotechnology

  13. [Angiotensin converting enzyme: the antigenic properties of the domain, role in Alzheimer's disease and tumor progression].

    Science.gov (United States)

    Kugaevskaya, E V; Timoshenko, O S; Solovyeva, N I

    2015-01-01

    Angiotensin converting enzyme (ACE, EC 3.4.15.1) was discovered and characterized in the Laboratory of biochemistry and chemical pathology of proteins under the direction of academician V.N. Orekhovich, where its physiological function, associated with a key role in the regulation of the renin-angiotensin (RAS) and the kallikrein-kinin systems that control blood flow in the body and homeostasis was first deciphered. We carried out a search for structural differences between the two highly homologous domains (N- and C-domains) of somatic ACE (sACE); it was based on a comparative analysis of antigenic determinants (or B-epitopes) of both domains. The revealed epitopes were classified with variable and conserved regions and functionally important sites of the molecule ACE. Essential difference was demonstrated between locations of the epitopes in the N- and C-domains. These data indicate the existence of structural differences between the domains of sACE. We studied the role of the domains of ACE in the metabolism of human amyloid beta peptide (Ab) - the main component of senile plaques, found in the brains of patients with Alzheimer's disease (AD). Our results demonstrated that only N-domain ACE cleaved the Ab between residues R5-H6, while, the C-domain of ACE failed to hydrolyze this region. In addition, the effect of post-translational modifications of Ab on its hydrolysis by the ACE was investigated. We show that isomerization of residue D7, a common non-enzymatic age-related modification found in AD-associated species, does not reduce the affinity of the peptide to the N-domain of ACE, and conversely, it increases. According to our data, the role of ACE in the metabolism of Ab becomes more significant in the development of AD. RAS is involved in malignant transformation and tumor progression. RAS components, including ACE and angiotensin II receptors type 1 (AT1R) are expressed in various human tumors. We found a significant increase in the level of ACE activity

  14. 3D bioprinting: improving in vitro models of metastasis with heterogeneous tumor microenvironments

    Directory of Open Access Journals (Sweden)

    Jacob L. Albritton

    2017-01-01

    Full Text Available Even with many advances in treatment over the past decades, cancer still remains a leading cause of death worldwide. Despite the recognized relationship between metastasis and increased mortality rate, surprisingly little is known about the exact mechanism of metastatic progression. Currently available in vitro models cannot replicate the three-dimensionality and heterogeneity of the tumor microenvironment sufficiently to recapitulate many of the known characteristics of tumors in vivo. Our understanding of metastatic progression would thus be boosted by the development of in vitro models that could more completely capture the salient features of cancer biology. Bioengineering groups have been working for over two decades to create in vitro microenvironments for application in regenerative medicine and tissue engineering. Over this time, advances in 3D printing technology and biomaterials research have jointly led to the creation of 3D bioprinting, which has improved our ability to develop in vitro models with complexity approaching that of the in vivo tumor microenvironment. In this Review, we give an overview of 3D bioprinting methods developed for tissue engineering, which can be directly applied to constructing in vitro models of heterogeneous tumor microenvironments. We discuss considerations and limitations associated with 3D printing and highlight how these advances could be harnessed to better model metastasis and potentially guide the development of anti-cancer strategies.

  15. 3D bioprinting: improving in vitro models of metastasis with heterogeneous tumor microenvironments.

    Science.gov (United States)

    Albritton, Jacob L; Miller, Jordan S

    2017-01-01

    Even with many advances in treatment over the past decades, cancer still remains a leading cause of death worldwide. Despite the recognized relationship between metastasis and increased mortality rate, surprisingly little is known about the exact mechanism of metastatic progression. Currently available in vitro models cannot replicate the three-dimensionality and heterogeneity of the tumor microenvironment sufficiently to recapitulate many of the known characteristics of tumors in vivo Our understanding of metastatic progression would thus be boosted by the development of in vitro models that could more completely capture the salient features of cancer biology. Bioengineering groups have been working for over two decades to create in vitro microenvironments for application in regenerative medicine and tissue engineering. Over this time, advances in 3D printing technology and biomaterials research have jointly led to the creation of 3D bioprinting, which has improved our ability to develop in vitro models with complexity approaching that of the in vivo tumor microenvironment. In this Review, we give an overview of 3D bioprinting methods developed for tissue engineering, which can be directly applied to constructing in vitro models of heterogeneous tumor microenvironments. We discuss considerations and limitations associated with 3D printing and highlight how these advances could be harnessed to better model metastasis and potentially guide the development of anti-cancer strategies. © 2017. Published by The Company of Biologists Ltd.

  16. Comparative study of radiation, chemical, and aging effects on viral transformation. Annual progress report, 1975

    International Nuclear Information System (INIS)

    Coggin, J.H. Jr.

    1976-01-01

    Progress is reported on the following research projects: evaluation of isotopic antiglobulin test (IAT) to detect tumor associated antigens using antisera induced by x-irradiated tumor cells; development of cytotoxic antibody for embryonic antigens (EA); acrylamide gel cell culture assay for transformation; and evaluation of 3-MCA induced sarcomas for TSTA and cross-reacting antigens

  17. Tumor markers kits development for use in radioimmunometric assays

    International Nuclear Information System (INIS)

    Ahmed, B.

    1997-01-01

    The immunoassays such as RIA and IRMA are now widely used through the world for the quantitation of a variety of substances in the biological fluid for their high sensibility and specificity which required simple equipments. These techniques are also very used in Algeria for an effective amelioration of public heath The assays kits of RIA/IRMA of thyroid hormones are the most used, followed by peptidic hormones, steroids hormones and IRMA Tumor Markers (T.M) kits. In spite of the important demand, of tumor markers kits for the diagnosis and follow up of cancers their use are always insufficient due to the high cost. The research contract programme proposed by IAEA on the theme 'The Developments of IRMA Tumor Markers Kits' of prostate specific Antigen (PSA) and Tissue Polypeptide Specific Antigen (TPS) will allowed us to produce locally with best quality-price, the main reagents for PSA and TPS IRMA assays kits for diagnosis and follow up the prostate and breast cancers which are very spready in the country. This report include the following points: Generalities on the use of tumor markers in Algeria, programme for the Development of the PSA IRMA assay (schedule of protocols applied for each reagents; annual planning for assessing the programme activities) and conclusion

  18. Statistics-Based Prediction Analysis for Head and Neck Cancer Tumor Deformation

    Directory of Open Access Journals (Sweden)

    Maryam Azimi

    2012-01-01

    Full Text Available Most of the current radiation therapy planning systems, which are based on pre-treatment Computer Tomography (CT images, assume that the tumor geometry does not change during the course of treatment. However, tumor geometry is shown to be changing over time. We propose a methodology to monitor and predict daily size changes of head and neck cancer tumors during the entire radiation therapy period. Using collected patients' CT scan data, MATLAB routines are developed to quantify the progressive geometric changes occurring in patients during radiation therapy. Regression analysis is implemented to develop predictive models for tumor size changes through entire period. The generated models are validated using leave-one-out cross validation. The proposed method will increase the accuracy of therapy and improve patient's safety and quality of life by reducing the number of harmful unnecessary CT scans.

  19. Monitoring mammary tumor progression and effect of tamoxifen treatment in MMTV-PymT using MRI and magnetic resonance spectroscopy with hyperpolarized [1-13C]pyruvate

    DEFF Research Database (Denmark)

    Asghar Butt, Sadia; Søgaard, Lise V.; Ardenkjær-Larsen, Jan Henrik

    2015-01-01

    Purpose: To use dynamic magnetic resonance spectroscopy (MRS) of hyperpolarized 13C-pyruvate to follow the progress over time in vivo of breast cancer metabolism in the MMTV-PymT model, and to follow the response to the anti-estrogen drug tamoxifen. Methods: Tumor growth was monitored by anatomical...... significantly in the treated group. Conclusion: These hyperpolarized 13C MRS findings indicate that tumor metabolic changes affects kP. The measured kp did not relate to treatment response to the same extent as did tumor growth, histological evaluation, and in vitro determination of LDH activity. © 2014 Wiley...

  20. The Receptor Tyrosine Kinase AXL in Cancer Progression

    Directory of Open Access Journals (Sweden)

    Erinn B. Rankin

    2016-11-01

    Full Text Available The AXL receptor tyrosine kinase (AXL has emerged as a promising therapeutic target for cancer therapy. Recent studies have revealed a central role of AXL signaling in tumor proliferation, survival, stem cell phenotype, metastasis, and resistance to cancer therapy. Moreover, AXL is expressed within cellular components of the tumor microenvironment where AXL signaling contributes to the immunosuppressive and protumorigenic phenotypes. A variety of AXL inhibitors have been developed and are efficacious in preclinical studies. These agents offer new opportunities for therapeutic intervention in the prevention and treatment of advanced disease. Here we review the literature that has illuminated the cellular and molecular mechanisms by which AXL signaling promotes tumor progression and we will discuss the therapeutic potential of AXL inhibition for cancer therapy.

  1. Heterotypic mouse models of canine osteosarcoma recapitulate tumor heterogeneity and biological behavior

    Directory of Open Access Journals (Sweden)

    Milcah C. Scott

    2016-12-01

    Full Text Available Osteosarcoma (OS is a heterogeneous and rare disease with a disproportionate impact because it mainly affects children and adolescents. Lamentably, more than half of patients with OS succumb to metastatic disease. Clarification of the etiology of the disease, development of better strategies to manage progression, and methods to guide personalized treatments are among the unmet health needs for OS patients. Progress in managing the disease has been hindered by the extreme heterogeneity of OS; thus, better models that accurately recapitulate the natural heterogeneity of the disease are needed. For this study, we used cell lines derived from two spontaneous canine OS tumors with distinctly different biological behavior (OS-1 and OS-2 for heterotypic in vivo modeling that recapitulates the heterogeneous biology and behavior of this disease. Both cell lines demonstrated stability of the transcriptome when grown as orthotopic xenografts in athymic nude mice. Consistent with the behavior of the original tumors, OS-2 xenografts grew more rapidly at the primary site and had greater propensity to disseminate to lung and establish microscopic metastasis. Moreover, OS-2 promoted formation of a different tumor-associated stromal environment than OS-1 xenografts. OS-2-derived tumors comprised a larger percentage of the xenograft tumors than OS-1-derived tumors. In addition, a robust pro-inflammatory population dominated the stromal cell infiltrates in OS-2 xenografts, whereas a mesenchymal population with a gene signature reflecting myogenic signaling dominated those in the OS-1 xenografts. Our studies show that canine OS cell lines maintain intrinsic features of the tumors from which they were derived and recapitulate the heterogeneous biology and behavior of bone cancer in mouse models. This system provides a resource to understand essential interactions between tumor cells and the stromal environment that drive the progression and metastatic propensity of

  2. Heterotypic mouse models of canine osteosarcoma recapitulate tumor heterogeneity and biological behavior.

    Science.gov (United States)

    Scott, Milcah C; Tomiyasu, Hirotaka; Garbe, John R; Cornax, Ingrid; Amaya, Clarissa; O'Sullivan, M Gerard; Subramanian, Subbaya; Bryan, Brad A; Modiano, Jaime F

    2016-12-01

    Osteosarcoma (OS) is a heterogeneous and rare disease with a disproportionate impact because it mainly affects children and adolescents. Lamentably, more than half of patients with OS succumb to metastatic disease. Clarification of the etiology of the disease, development of better strategies to manage progression, and methods to guide personalized treatments are among the unmet health needs for OS patients. Progress in managing the disease has been hindered by the extreme heterogeneity of OS; thus, better models that accurately recapitulate the natural heterogeneity of the disease are needed. For this study, we used cell lines derived from two spontaneous canine OS tumors with distinctly different biological behavior (OS-1 and OS-2) for heterotypic in vivo modeling that recapitulates the heterogeneous biology and behavior of this disease. Both cell lines demonstrated stability of the transcriptome when grown as orthotopic xenografts in athymic nude mice. Consistent with the behavior of the original tumors, OS-2 xenografts grew more rapidly at the primary site and had greater propensity to disseminate to lung and establish microscopic metastasis. Moreover, OS-2 promoted formation of a different tumor-associated stromal environment than OS-1 xenografts. OS-2-derived tumors comprised a larger percentage of the xenograft tumors than OS-1-derived tumors. In addition, a robust pro-inflammatory population dominated the stromal cell infiltrates in OS-2 xenografts, whereas a mesenchymal population with a gene signature reflecting myogenic signaling dominated those in the OS-1 xenografts. Our studies show that canine OS cell lines maintain intrinsic features of the tumors from which they were derived and recapitulate the heterogeneous biology and behavior of bone cancer in mouse models. This system provides a resource to understand essential interactions between tumor cells and the stromal environment that drive the progression and metastatic propensity of OS. © 2016

  3. Primary peripheral primitive neuroectodermal tumor/Ewing's tumor of the testis in a 46-year-old man-differential diagnosis and review of the literature.

    Science.gov (United States)

    Heikaus, Sebastian; Schaefer, Karl-Ludwig; Eucker, Jan; Hogrebe, Esther; Danebrock, Raihanatou; Wai, Daniel H; Krenn, Veit; Gabbert, Helmut E; Poremba, Christopher

    2009-06-01

    Peripheral primitive neuroectodermal tumor/Ewing's tumors are rare bone and soft tissue malignancies with a highly aggressive clinical course and early metastases occurring at multiple peripheral sites. Here, we present for the first time a case of a 46-year-old man with a primary peripheral primitive neuroectodermal tumor/Ewing's tumor of the testis. The diagnosis of peripheral primitive neuroectodermal tumor/Ewing's tumor was established by histology, immunohistochemistry, and molecular pathology. The tumor revealed a rapid progress in 2 months' time. Therefore, the patient was included in the EURO-E.W.I.N.G.99 study and was placed on chemotherapy. However, the tumor progressed during ongoing therapy, and the patient died in March 2008. In conclusion, though being reported here for the first time, peripheral primitive neuroectodermal tumor/Ewing's tumors should be considered in the differential diagnosis of blue round cell tumors of the testis. A rapid and correct diagnosis of this entity is crucial for fast and accurate therapy, which is stressed by the fatal case presented here.

  4. Enhanced tumor growth in the remaining lung after major lung resection.

    Science.gov (United States)

    Sano, Fumiho; Ueda, Kazuhiro; Murakami, Junichi; Hayashi, Masataro; Nishimoto, Arata; Hamano, Kimikazu

    2016-05-01

    Pneumonectomy induces active growth of the remaining lung in order to compensate for lost lung tissue. We hypothesized that tumor progression is enhanced in the activated local environment. We examined the effects of mechanical strain on the activation of lung growth and tumor progression in mice. The mechanical strain imposed on the right lung after left pneumonectomy was neutralized by filling the empty space that remained after pneumonectomy with a polypropylene prosthesis. The neutralization of the strain prevented active lung growth. According to an angiogenesis array, stronger monocyte chemoattractant protein-1 (MCP-1) expression was found in the strain-induced growing lung. The neutralization of the strain attenuated the release of MCP-1 from the lung cells. The intravenous injection of Lewis lung cancer cells resulted in the enhanced development of metastatic foci in the strain-induced growing lung, but the enhanced development was canceled by the neutralization of the strain. An immunohistochemical analysis revealed the prominent accumulation of tumor-associated macrophages in tumors arising in the strain-induced growing lung, and that there was a relationship between the accumulation and the MCP-1 expression status. Our results suggested that mechanical lung strain, induced by pulmonary resection, triggers active lung growth, thereby creating a tumor-friendly environment. The modification of that environment, as well as the minimizing of surgical stress, may be a meaningful strategy to improve the therapeutic outcome after lung cancer surgery. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Autocrine IL-6 mediates pituitary tumor senescence

    Science.gov (United States)

    Fuertes, Mariana; Ajler, Pablo; Carrizo, Guillermo; Cervio, Andrés; Sevlever, Gustavo; Stalla, Günter K.; Arzt, Eduardo

    2017-01-01

    Cellular senescence is a stable proliferative arrest state. Pituitary adenomas are frequent and mostly benign, but the mechanism for this remains unknown. IL-6 is involved in pituitary tumor progression and is produced by the tumoral cells. In a cell autonomous fashion, IL-6 participates in oncogene-induced senescence in transduced human melanocytes. Here we prove that autocrine IL-6 participates in pituitary tumor senescence. Endogenous IL-6 inhibition in somatotroph MtT/S shRNA stable clones results in decreased SA-β-gal activity and p16INK4a but increased pRb, proliferation and invasion. Nude mice injected with IL-6 silenced clones develop tumors contrary to MtT/S wild type that do not, demonstrating that clones that escape senescence are capable of becoming tumorigenic. When endogenous IL-6 is silenced, cell cultures derived from positive SA-β-gal human tumor samples decrease the expression of the senescence marker. Our results establish that IL-6 contributes to maintain senescence by its autocrine action, providing a natural model of IL-6 mediated benign adenoma senescence. PMID:27902467

  6. Novel systemic treatment options for advanced solid tumors with or without central nervous system metastases or malignant glioma

    NARCIS (Netherlands)

    Milojkovic Kerklaan, B.

    2015-01-01

    Chemotherapy is a very frequently used therapy in patients with advanced tumors with or without central nervous system (CNS) metastases or primary brain tumors. Despite the significant progress in drug development, the survival of patients is limited with an unmet need for more effective

  7. In Vitro Tumor Models: Advantages, Disadvantages, Variables, and Selecting the Right Platform.

    Science.gov (United States)

    Katt, Moriah E; Placone, Amanda L; Wong, Andrew D; Xu, Zinnia S; Searson, Peter C

    2016-01-01

    In vitro tumor models have provided important tools for cancer research and serve as low-cost screening platforms for drug therapies; however, cancer recurrence remains largely unchecked due to metastasis, which is the cause of the majority of cancer-related deaths. The need for an improved understanding of the progression and treatment of cancer has pushed for increased accuracy and physiological relevance of in vitro tumor models. As a result, in vitro tumor models have concurrently increased in complexity and their output parameters further diversified, since these models have progressed beyond simple proliferation, invasion, and cytotoxicity screens and have begun recapitulating critical steps in the metastatic cascade, such as intravasation, extravasation, angiogenesis, matrix remodeling, and tumor cell dormancy. Advances in tumor cell biology, 3D cell culture, tissue engineering, biomaterials, microfabrication, and microfluidics have enabled rapid development of new in vitro tumor models that often incorporate multiple cell types, extracellular matrix materials, and spatial and temporal introduction of soluble factors. Other innovations include the incorporation of perfusable microvessels to simulate the tumor vasculature and model intravasation and extravasation. The drive toward precision medicine has increased interest in adapting in vitro tumor models for patient-specific therapies, clinical management, and assessment of metastatic potential. Here, we review the wide range of current in vitro tumor models and summarize their advantages, disadvantages, and suitability in modeling specific aspects of the metastatic cascade and drug treatment.

  8. Stereotactic gamma radiosurgery of pineal and related tumors

    International Nuclear Information System (INIS)

    Kobayashi, Tatsuya; Mori, Yoshimasa; Yamada, Yasushi; Kida, Yoshihisa

    2001-01-01

    The role of gamma radiosurgery as an additional therapy after conventional treatments for pineal and related tumors was studied in 30 out of 33 cases with a mean follow-up of 23.3 months. Overall results showed that complete response (CR) was obtained in 8 cases (26.7%) and response rate was 73.3%. However, enlargement of the tumors was noted in 8 cases, of which 7 (23.3%) died of tumor progression (PG). Germinomas and pineocytomas showed higher response and control rates of 100%, and no tumor enlargement or death occurred after gamma knife treatment. In germinoma with STGC (syncytiotrophoblastic giant cell) which has been thought to have intermediate prognosis, two cases showed partial response (PR), but another died from progression of the disease. Malignant germ cell tumors and pineoblastomas showed unfavorable response and prognosis; the response and progression rates were 50%. However, complete response was obtained in 3 cases (25%) after gamma radiosurgery. Gamma knife was the initial treatment in three cases without pathological diagnosis in which one obtained CR and two showed partial response (PR). Stereotactic gamma radiosurgery is expected to be an effective and novel treatment for pineal and related tumors not only as an adjuvant, but also as an initial therapy. (author)

  9. Comparative study of radiation, chemical, and aging effects on viral transformation. Annual progress report, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Coggin, J.H. Jr.

    1976-03-31

    Progress is reported on the following research projects: evaluation of isotopic antiglobulin test (IAT) to detect tumor associated antigens using antisera induced by x-irradiated tumor cells; development of cytotoxic antibody for embryonic antigens (EA); acrylamide gel cell culture assay for transformation; and evaluation of 3-MCA induced sarcomas for TSTA and cross-reacting antigens. (HLW)

  10. Identification of differentially expressed proteins during human urinary bladder cancer progression.

    Science.gov (United States)

    Memon, Ashfaque A; Chang, Jong W; Oh, Bong R; Yoo, Yung J

    2005-01-01

    Comparative proteome analysis was performed between RT4 (grade-1) and T24 (grade-3) bladder cancer cell lines, in an attempt to identify differentially expressed proteins during bladder cancer progression. Among those relatively abundant proteins, seven spots changed more than two-fold reproducibly and identified by peptide mass fingerprinting using mass spectrometry and database search. We found most extensive and reproducible down-regulation of NADP dependent isocitrate dehydrogenase cytoplasmic (IDPc) and peroxiredoxin-II (Prx-II), in poorly differentiated T24 compared to well-differentiated RT4 bladder cancer cell line. Subsequent Western blotting analysis of human biopsy samples from bladder cancer patient revealed significant loss of IDPc and Prx-II in more advance tumor samples, in agreement with data on cell lines. These results suggest that loss of IDPc and Prx-II during tumor development may involve in tumor progression and metastasis. However, additional investigations are needed on large number of human samples to further verify these findings.

  11. Development of a Prognostic Marker for Lung Cancer Using Analysis of Tumor Evolution

    Science.gov (United States)

    2017-08-01

    AWARD NUMBER: W81XWH-15-1-0243 TITLE: Development of a Prognostic Marker for Lung Cancer Using Analysis of Tumor Evolution PRINCIPAL...SUBTITLE 5a. CONTRACT NUMBER Development of a Prognostic Marker for Lung Cancer Using Analysis of Tumor Evolution 5b. GRANT NUMBER 5c. PROGRAM...derive a prognostic classifier. 15. SUBJECT TERMS NSCLC; tumor evolution ; whole exome sequencing 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  12. Development of Y-shaped peptide for constructing nanoparticle systems targeting tumor-associated macrophages in vitro and in vivo

    International Nuclear Information System (INIS)

    Yan, Lu; Gao, Yunxiang; Pierce, Ryan; Dai, Liming; Kim, Julian; Zhang, Mei

    2014-01-01

    Tumor-associated macrophage (TAM) is increasingly being viewed as a target of great interest in tumor microenvironment due to its important role in the progression and metastasis of cancers. It has been shown that TAM indeed overexpresses unique surface marker legumain. In this study, we designed and synthesized a Y-shaped legumain-targeting peptide (Y-Leg) with functional groups allowing for further conjugation with imaging and therapeutic moieties (vide infra). The in vitro cell experiments using FITC-conjugated Y-Leg revealed its specific and selective interaction with M2-polarized macrophages (i.e., TAMs) with preference to M1 macrophages, and that the interaction was not interfered with by conjugating FITC to its functional group. Further, we constructed a nanotube system by grafting Y-Leg onto oxidized carbon nanotubes (OCNTs) loaded with paramagnetic Fe 3 O 4 nanoparticles. The intravenous injection of the resultant Y-Leg-OCNT/Fe 3 O 4 nanotubes to 4T1 mammary tumor-bearing mouse led to the magnetic resonance imaging (MRI) of TAM-infiltrated tumor microenvironment, revealing the targeting specificity of Y-Leg-conjugated nanotubes in vivo. The Y shape of peptide and its functional groups containing amines and imidazole can protonate at different pHs, contributing to the in vitro and in vivo targeting specificity. This study represents the first development of novel peptide and peptide-grafted nanotube system targeting M2-polarized TAMs in vivo. The methodology developed in this study is applicable to the construction of various multifunctional nanoparticle systems for selectively targeting, imaging and manipulating of TAMs for the diagnosis and treatment of cancers and inflammatory diseases identified with macrophage-infiltrated disease tissue. (papers)

  13. Research Progress of Exosomes in Lung Cancer Diagnosis and Treatment

    Directory of Open Access Journals (Sweden)

    Hongbo ZOU

    2016-11-01

    Full Text Available As the leading cause of morbidity and cancer related-death worldwide, lung cancer has a serious threat to human health. Exosomes are nanoscale lipid membrane vesicles derived from multivesicles, which containing active biomolecules including proteins, lipids, nucleic acids and etc. Exosomes play important roles in lung cancer initiation and progression by promoting the formation of tumor microenvironment, enhancing tumor invasive and metastasis capability, leading to immunosuppression and resistance to chemoradiotherapy, and also have the application value in early diagnosis and treatment. This review summarizes the research progress of exosomes in tumor initiation and progression, and its roles in diagnosis and treatment of lung cancer.

  14. A drug development perspective on targeting tumor-associated myeloid cells.

    Science.gov (United States)

    Majety, Meher; Runza, Valeria; Lehmann, Christian; Hoves, Sabine; Ries, Carola H

    2018-02-01

    Despite decades of research, cancer remains a devastating disease and new treatment options are needed. Today cancer is acknowledged as a multifactorial disease not only comprising of aberrant tumor cells but also the associated stroma including tumor vasculature, fibrotic plaques, and immune cells that interact in a complex heterotypic interplay. Myeloid cells represent one of the most abundant immune cell population within the tumor stroma and are equipped with a broad functional repertoire that promotes tumor growth by suppressing cytotoxic T cell activity, stimulating neoangiogenesis and tissue remodeling. Therefore, myeloid cells have become an attractive target for pharmacological intervention. In this review, we summarize the pharmacological approaches to therapeutically target tumor-associated myeloid cells with a focus on advanced programs that are clinically evaluated. In addition, for each therapeutic strategy, the preclinical rationale as well as advantages and challenges from a drug development perspective are discussed. © 2017 Federation of European Biochemical Societies.

  15. FOXA1 promotes tumor progression in prostate cancer and represents a novel hallmark of castration-resistant prostate cancer.

    Science.gov (United States)

    Gerhardt, Josefine; Montani, Matteo; Wild, Peter; Beer, Marc; Huber, Fabian; Hermanns, Thomas; Müntener, Michael; Kristiansen, Glen

    2012-02-01

    Forkhead box protein A1 (FOXA1) modulates the transactivation of steroid hormone receptors and thus may influence tumor growth and hormone responsiveness in prostate cancer. We therefore investigated the correlation of FOXA1 expression with clinical parameters, prostate-specific antigen (PSA) relapse-free survival, and hormone receptor expression in a large cohort of prostate cancer patients at different disease stages. FOXA1 expression did not differ significantly between benign glands from the peripheral zone and primary peripheral zone prostate carcinomas. However, FOXA1 was overexpressed in metastases and particularly in castration-resistant cases, but was expressed at lower levels in both normal and neoplastic transitional zone tissues. FOXA1 levels correlated with higher pT stages and Gleason scores, as well as with androgen (AR) and estrogen receptor expression. Moreover, FOXA1 overexpression was associated with faster biochemical disease progression, which was pronounced in patients with low AR levels. Finally, siRNA-based knockdown of FOXA1 induced decreased cell proliferation and migration. Moreover, in vitro tumorigenicity was inducible by ARs only in the presence of FOXA1, substantiating a functional cooperation between FOXA1 and AR. In conclusion, FOXA1 expression is associated with tumor progression, dedifferentiation of prostate cancer cells, and poorer prognosis, as well as with cellular proliferation and migration and with AR signaling. These findings suggest FOXA1 overexpression as a novel mechanism inducing castration resistance in prostate cancer. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  16. Expression of the p16{sup INK4a} tumor suppressor gene in rodent lung tumors

    Energy Technology Data Exchange (ETDEWEB)

    Swafford, D.S.; Tesfaigzi, J.; Belinsky, S.A.

    1995-12-01

    Aberrations on the short arm of chromosome 9 are among the earliest genetic changes in human cancer. p16{sup INK4a} is a candidate tumor suppressor gene that lies within human 9p21, a chromosome region associated with frequent loss of heterozygosity in human lung tumors. The p16{sup INK4a} protein functions as an inhibitor of cyclin D{sub 1}-dependent kinases that phosphorylate the retinoblastoma (Rb) tumor suppressor gene product enabling cell-cycle progression. Thus, overexpression of cyclin D{sub 1}, mutation of cyclin-dependent kinase genes, or loss of p16{sup INK4a} function, can all result in functional inactivation of Rb. Inactivation of Rb by mutation or deletion can result in an increase in p16{sup INK4a} transcription, suggesting that an increased p16{sup INK4a} expression in a tumor cell signals dysfunction of the pathway. The p16{sup (INK4a)} gene, unlike some tumor suppressor genes, is rarely inactivated by mutation. Instead, the expression of this gene is suppressed in some human cancers by hypermethylation of the CpG island within the first exon or by homozygous deletion: 686. Chromosome losses have been observed at 9p21 syntenic loci in tumors of the mouse and rat, two species often used as animal models for pulmonary carcinogenesis. Expression of p16{sup INK4a} is lost in some mouse tumor cell lines, often due to homozygous deletion. These observations indicate that p16{sup INK4a} dysfunction may play a role in the development of neoplasia in rodents as well as humans. The purpose of the current investigation was to define the extent to which p16{sup INK4a} dysfunction contributes to the development of rodent lung tumors and to determine the mechanism of inactivation of the gene. There is no evidence to suggest a loss of function of the p16{sup INK4a} tumor suppressor gene in these primary murine lung tumors by mutation, deletion, or methylation.

  17. Naturally occurring, tumor-specific, therapeutic proteins.

    Science.gov (United States)

    Argiris, Konstantinos; Panethymitaki, Chrysoula; Tavassoli, Mahvash

    2011-05-01

    The emerging approach to cancer treatment known as targeted therapies offers hope in improving the treatment of therapy-resistant cancers. Recent understanding of the molecular pathogenesis of cancer has led to the development of targeted novel drugs such as monoclonal antibodies, small molecule inhibitors, mimetics, antisense and small interference RNA-based strategies, among others. These compounds act on specific targets that are believed to contribute to the development and progression of cancers and resistance of tumors to conventional therapies. Delivered individually or combined with chemo- and/or radiotherapy, such novel drugs have produced significant responses in certain types of cancer. Among the most successful novel compounds are those which target tyrosine kinases (imatinib, trastuzumab, sinutinib, cetuximab). However, these compounds can cause severe side-effects as they inhibit pathways such as epidermal growth factor receptor (EGFR) or platelet-derived growth factor receptor, which are also important for normal functions in non-transformed cells. Recently, a number of proteins have been identified which show a remarkable tumor-specific cytotoxic activity. This toxicity is independent of tumor type or specific genetic changes such as p53, pRB or EGFR aberrations. These tumor-specific killer proteins are either derived from common human and animal viruses such as E1A, E4ORF4 and VP3 (apoptin) or of cellular origin, such as TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) and MDA-7 (melanoma differentiation associated-7). This review aims to present a current overview of a selection of these proteins with preferential toxicity among cancer cells and will provide an insight into the possible mechanism of action, tumor specificity and their potential as novel tumor-specific cancer therapeutics.

  18. Development of model plans in three dimensional conformal radiotherapy for brain tumors

    International Nuclear Information System (INIS)

    Pyo, Hongryull; Kim, Gwieon; Keum, Kichang; Chang, Sekyung; Suh, Changok; Lee, Sanghoon

    2002-01-01

    Three dimensional conformal radiotherapy planning is being used widely for the treatment of patients with brain tumor. However, it takes much time to develop an optimal treatment plan, therefore, it is difficult to apply this technique to all patients. To increase the efficiency of this technique, we need to develop standard radiotherapy plans for each site of the brain. Therefore we developed several 3 dimensional conformal radiotherapy plans (3D plans) for tumors at each site of brain, compared them with each other, and with 2 dimensional radiotherapy plans. Finally model plans for each site of the brain were decided. Imaginary tumors, with sizes commonly observed in the clinic, were designed for each site of the brain and drawn on CT images. The planning target volumes (PTVs) were as follows; temporal tumor-5.7 x 8.2 x 7.6 cm, suprasellar tumor-3 x 4 x 4.1 cm, thalamic tumor-3.1 x 5.9 x 3.7 cm, frontoparietal tumor-5.5 x 7 x 5.5 cm, and occipitoparietal tumor-5 x 5.5 x 5 cm. Plans using parallel opposed 2-portals and/or 3 portals including fronto-vertex and 2 lateral fields were developed manually as the conventional 2D plans, and 3D noncoplanar conformal plans were developed using beam's eye view and the automatic block drawing tool. Total tumor dose was 54 Gy for a suprasellar tumor, 59.4 Gy and 72 Gy for the other tumors. All dose plans (including 2D plans) were calculated using 3D plan software. Developed plans were compared with each other using dose-volume histograms (DVH), normal tissue complication probabilities (NTCP) and variable dose statistic values (minimum, maximum and mean dose, D5, V83, V85 and V95). Finally a best radiotherapy plan for each site of brain was selected. 1) Temporal tumor; NTCPs and DVHs of the normal tissue of all 3D plans were superior to 2D plans and this trend was more definite when total dose was escalated to 72 Gy (NTCPs of normal brain 2D plans: 27%, 8% → 3D plans: 1%, 1%). Various dose statistic values did not show any

  19. Developing Novel Therapeutic Approaches in Small Cell Lung Carcinoma Using Genetically Engineered Mouse Models and Human Circulating Tumor Cells

    Science.gov (United States)

    2016-12-01

    ABT-263 (Fig. 2I and SI Appendix, Fig. S6A). We therefore sought to identify pharmacological strategies that could suppress MCL-1 levels and increase...resonance imaging ( MRI ) of the thorax was performed 1 day before starting treatment and on day 21 of treatment, and lung tumor volumes pre- and...spread on MRI were included in the analysis. Tumors progressed in all untreated animals (n = 7), although we observed significant variability in the

  20. Targeting Autophagy in the Tumor Microenvironment: New Challenges and Opportunities for Regulating Tumor Immunity

    Directory of Open Access Journals (Sweden)

    Bassam Janji

    2018-04-01

    Full Text Available Cancer cells evolve in the tumor microenvironment, which is now well established as an integral part of the tumor and a determinant player in cancer cell adaptation and resistance to anti-cancer therapies. Despite the remarkable and fairly rapid progress over the past two decades regarding our understanding of the role of the tumor microenvironment in cancer development, its precise contribution to cancer resistance is still fragmented. This is mainly related to the complexity of the “tumor ecosystem” and the diversity of the stromal cell types that constitute the tumor microenvironment. Emerging data indicate that several factors, such as hypoxic stress, activate a plethora of resistance mechanisms, including autophagy, in tumor cells. Hypoxia-induced autophagy in the tumor microenvironment also activates several tumor escape mechanisms, which effectively counteract anti-tumor immune responses mediated by natural killer and cytotoxic T lymphocytes. Therefore, strategies aiming at targeting autophagy in cancer cells in combination with other therapeutic strategies have inspired significant interest to overcome immunological tolerance and promote tumor regression. However, a number of obstacles still hamper the application of autophagy inhibitors in clinics. First, the lack of selectivity of the current pharmacological inhibitors of autophagy makes difficult to draw a clear statement about its effective contribution in cancer. Second, autophagy has been also described as an important mechanism in tumor cells involved in presentation of antigens to T cells. Third, there is a circumstantial evidence that autophagy activation in some innate immune cells may support the maturation of these cells, and it is required for their anti-tumor activity. In this review, we will address these aspects and discuss our current knowledge on the benefits and the drawbacks of targeting autophagy in the context of anti-tumor immunity. We believe that it is

  1. Ultraviolet B irradiation induces expansion of intraepithelial tumor cells in a tissue model of early cancer progression.

    Science.gov (United States)

    Mudgil, Adarsh V; Segal, Nadav; Andriani, Frank; Wang, Youai; Fusenig, Norbert E; Garlick, Jonathan A

    2003-07-01

    Ultraviolet B irradiation is thought to enable skin cancer progression as clones of genetically damaged keratinocytes escape apoptosis and expand at the expense of adjacent normal cells. Mechanisms through which potentially malignant cells in human skin undergo clonal expansion, however, are not well understood. The goal of this study was to characterize the role of ultraviolet B irradiation on the intraepithelial expansion of early stage human tumor cells in organotypic skin cultures. To accomplish this, we have studied the effect of ultraviolet B irradiation on organotypic cultures that were fabricated by mixing normal human keratinocytes with beta-galactosidase-marked, intraepithelial tumor cells (HaCaT-ras, clone II-4), which bear mutations in both p53 alleles and harbor an activated H-ras oncogene. We found that when organotypic mixtures were exposed to an ultraviolet B dose of 50 mJ per cm2, intraepithelial tumor cells underwent a significant degree of proliferative expansion compared to nonirradiated cultures. To understand this response, organotypic cultures of nor-mal keratinocytes were exposed to ultraviolet B and showed a dose-dependent increase in numbers of sunburn cells and TUNEL-positive cells although their proliferation was suppressed. In contrast, neither the apoptotic nor the proliferative response of II-4 cells was altered by ultraviolet B in organotypic cultures. The differential response of these cell types suggested that II-4 cells were resistant to ultraviolet-B-induced alterations, which allowed these intraepithelial tumor cells to gain a selective growth and survival advantage relative to neighboring normal cells. These findings demonstrate that ultraviolet B exposure can induce the intraepithelial expansion of apoptosis-resistant, p53-mutant, and ras-activated keratinocytes, suggesting that this agent can act to promote the early stages of epithelial carcinogenesis.

  2. Characterizing and Targeting Bone Marrow-Derived Inflammatory Cells in Driving the Malignancy and Progression of Childhood Astrocytic Brain Tumors

    Science.gov (United States)

    2016-11-01

    tumors were monitored by bioluminescence. The quantification of bioluminescence based tumor growth. Figure 2-4. Immuno-staining of vascular ...marrow developed high-grade tumors, which had typical malignant features, including robust gadolinium enhancement on MRI, pseudopalisading necrosis , and...perfused with Rhodamine-Dextran. Upper scale bar, 50 µm. Lower panels are magnified views to highlight vascular permeability, scale bar, 20 µm

  3. Dysregulated pH in Tumor Microenvironment Checkmates Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Jaleh Barar

    2013-12-01

    Full Text Available Introduction: The dysregulation of pH by cancerous cells of solid tumors is able to create a unique milieu that is in favor of progression, invasion and metastasis as well as chemo-/immuno-resistance traits of solid tumors. Bioelements involved in pH dysregulation provide new set of oncotargets, inhibition of which may result in better clinical outcome. Methods: To study the impacts of pH dysregulation, we investigated the tumor development and progression in relation with Warburg effect, glycolysis and formation of aberrant tumor microenvironment. Results: The upregulation of glucose transporter GLUT-1 and several enzymes involve in glycolysis exacerbates this phenomenon. The accumulation of lactic acids in cancer cells provokes upregulation of several transport machineries (MCT-1, NHE-1, CA IX and H+ pump V-ATPase resulting in reinforced efflux of proton into extracellular fluid. This deviant event makes pH to be settled at 7.4 and 6.6 respectively in cancer cells cytoplasm and extracellular fluid within the tumor microenvironment, which in return triggers secretion of lysosomal components (various enzymes in acidic milieu with pH 5 into cytoplasm. All these anomalous phenomena make tumor microenvironment (TME to be exposed to cocktail of various enzymes with acidic pH, upon which extracellular matrix (ECM can be remodeled and even deformed, resulting in emergence of a complex viscose TME with high interstitial fluid pressure. Conclusion: It seems that pH dysregulation is able to remodel various physiologic functions and make solid tumors to become much more invasive and metastatic. It also can cause undesired resistance to chemotherapy and immunotherapy. Hence, cancer therapy needs to be reinforced using specific inhibitors of bioelements involved in pH dysregulation of TME in solid tumors.

  4. Progress of radiotherapy by three-dimensional treatment planning

    International Nuclear Information System (INIS)

    Imada, Hajime; Nomoto, Satoshi; Takahashi, Hiroyuki; Nakata, Hajime

    1998-01-01

    The recent progress of three-dimensional radiation treatment planning was reviewed. And clinical cases such as lung cancer and breast cancer are introduced. In the University of Occupational and Development Health, the treatment system FOCUS which is made up of CT simulator and linac was used mainly. Three-dimensional treatment planning was carried for about 90% of 330 patients who underwent radiotherapy for one year. The target becomes to be accurate and dose distribution with all CT slices in radiation field can be confirmed by using three-dimensional radiation treatment planning apparatus. High dose irradiation localized to tumor part is possible. Relations between total dose and volume of normal tissue and/or tumor can be estimated numerically and easily by DVH. A prediction of indication and affection became possible by this procedure. In conclusion, generalization of three-dimensional radiation treatment planning will bring progress of more effective radiotherapy with less adverse reaction. (K.H.). 21 refs

  5. HiJAK’d Signaling; the STAT3 Paradox in Senescence and Cancer Progression

    International Nuclear Information System (INIS)

    Junk, Damian J.; Bryson, Benjamin L.; Jackson, Mark W.

    2014-01-01

    Clinical and epidemiological data have associated chronic inflammation with cancer progression. Most tumors show evidence of infiltrating immune and inflammatory cells, and chronic inflammatory disorders are known to increase the overall risk of cancer development. While immune cells are often observed in early hyperplastic lesions in vivo, there remains debate over whether these immune cells and the cytokines they produce in the developing hyperplastic microenvironment act to inhibit or facilitate tumor development. The interleukin-6 (IL-6) family of cytokines, which includes IL-6 and oncostatin M (OSM), among others (LIF, CT-1, CNTF, and CLC), are secreted by immune cells, stromal cells, and epithelial cells, and regulate diverse biological processes. Each of the IL-6 family cytokines signals through a distinct receptor complex, yet each receptor complex uses a shared gp130 subunit, which is critical for signal transduction following cytokine binding. Activation of gp130 results in the activation of Signal Transducer and Activator of Transcription 3 (STAT3), and the Mitogen-Activated Protein Kinase (MAPK) and Phosphatidylinositol 3-Kinase (PI3K) signaling cascades. Tumor suppressive signaling can often be observed in normal cells following prolonged STAT3 activation. However, there is mounting evidence that the IL-6 family cytokines can contribute to later stages of tumor progression in many ways. Here we will review how the microenvironmental IL-6 family cytokine OSM influences each stage of the transformation process. We discuss the intrinsic adaptations a developing cancer cell must make in order to tolerate and circumvent OSM-mediated growth suppression, as well as the OSM effectors that are hijacked during tumor expansion and metastasis. We propose that combining current therapies with new ones that suppress the signals generated from the tumor microenvironment will significantly impact an oncologist’s ability to treat cancer

  6. Tumor interstitial fluid - a treasure trove of cancer biomarkers.

    Science.gov (United States)

    Gromov, Pavel; Gromova, Irina; Olsen, Charlotta J; Timmermans-Wielenga, Vera; Talman, Mai-Lis; Serizawa, Reza R; Moreira, José M A

    2013-11-01

    Tumor interstitial fluid (TIF) is a proximal fluid that, in addition to the set of blood soluble phase-borne proteins, holds a subset of aberrantly externalized components, mainly proteins, released by tumor cells and tumor microenvironment through various mechanisms, which include classical secretion, non-classical secretion, secretion via exosomes and membrane protein shedding. Consequently, the interstitial aqueous phase of solid tumors is a highly promising resource for the discovery of molecules associated with pathological changes in tissues. Firstly, it allows one to delve deeper into the regulatory mechanisms and functions of secretion-related processes in tumor development. Secondly, the anomalous secretion of molecules that is innate to tumors and the tumor microenvironment, being associated with cancer progression, offers a valuable source for biomarker discovery and possible targets for therapeutic intervention. Here we provide an overview of the features of tumor-associated interstitial fluids, based on recent and updated information obtained mainly from our studies of breast cancer. Data from the study of interstitial fluids recovered from several other types of cancer are also discussed. This article is a part of a Special Issue entitled: The Updated Secretome. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. IT-26IDENTIFICATION OF PSEUDO-PROGRESSION IN NEW DIAGNOSED GLIOBLASTOMA (GBM) IN A RANDOMIZED PHASE 2 OF ICT-107: MRI AND PATHOLOGY CORRELATION

    Science.gov (United States)

    Phuphanich, Surasak; Yu, John; Bannykh, Serguei; Zhu, Jay-Jiguang

    2014-01-01

    BACKGROUND: Previously reports of pseudo-progression in patients with brain tumor after therapeutic vaccines in pediatric and adult glioma (Pollack, JCO online on June 2, 2014 and Okada, JCO Jan 20, 2011; 29: 330-336) demonstrated that RANO criteria for tumor progression may not be adequate for immunotherapy trials. Similar observations were also seen in other checkpoint inhibitor in melanoma and NSLSC. METHODS: We identified 2 patients, who developed tumor progression by RANO criteria, underwent surgery following enrollment in a phase 2 randomized ICT-107 (an autologous vaccine consisting of patient dendritic cells pulsed with peptides from AIM-2, TRP-2, HER2/neu, IL-13Ra2, gp100, MAGE1) after radiation and Temozolomide (TMZ). RESULTS: The first case is a 69 years old Chinese male, who underwent 1st surgery of gross total resection right occipital GBM on 10/26/2011. Subsequently he received 19 cycles of TMZ and 9 vaccines/placebo. MRI from 7/2/2013 showed enhancement surrounding surgical cavity. After 2nd surgery, pathology showed only rare residual tumor cells with macrophages and positive CD 8 cells. He continued on this vaccine program and MRI showed more progression with finger-like extension into parietal lobe 4 months later. The 3rd surgery also showed extensive reactive changes with no active tumor cells. For 2nd case, a 62 years old male, who underwent first surgery on 7/11/2011 of right temporal lobe, developed 2 areas of enhancement after 6 cycles of TMZ and 7 vaccines/placebo on 4/18/2012. With 2nd surgery, pathology showed reactive gliosis without active tumor. The subject continued in this trial. CONCLUSION: Pseudo-progression was confirmed by pathology in these 2 patients at 20 and 9 months which were delayed comparing to pseudo-progression observed in patients treated with concurrent XRT/TMZ (3-6 months). Future iRANO criteria development is essential for immunotherapy trials. Accurately identifying and managing such patients is necessary to avoid

  8. Mitochondrial DNA Mutations in Epithelial Ovarian Tumor Progression

    Science.gov (United States)

    2007-12-01

    Panici PL, Fazio VM: Mutations of D310 mitochondrial mononu- cleotide repeat in primary tumors and cytological speci- mens . Cancer Lett 2003, 190:73...BR: Detection of LOH and mitochondrial DNA alter- ations in ductal lavage and nipple aspirate fluids from high- risk patients. Breast Cancer Res

  9. Effect of Arrabidaea chica extracts on the Ehrlich solid tumor development

    Directory of Open Access Journals (Sweden)

    Ana Flávia C. Ribeiro

    2012-04-01

    Full Text Available The aim of this study was to investigate the effect of Arrabidaea chica (Humb. & Bonpl. B. Verl., Bignoniaceae, extracts on Ehrlich solid tumor development in Swiss mice. Leaves of A. chica were extracted with two distinct solvents, ethanol and water. The phytochemical analysis of the extracts indicated different classes of secondary metabolites like as anthocyanidins, flavonoids, tannins and saponins. Ethanol (EE and aqueous (AE extracts at 30 mg/kg reduced the development of Ehrlich solid tumor after ten days of oral treatment. The EE group presented increase in neutrophil count, α1 and β globulin values, and decrease of α2 globulin values. Furthermore, EE reduced the percentage of CD4+ T cells in blood but did not alter the percentage of inflammatory mononuclear cells associated with tumor suggesting a direct action of EE on tumor cells. Reduced tumor development observed in AE group was accompanied by a lower percentage of CD4+ T lymphocytes in blood. At the tumor microenvironment, this treatment decreased the percentage of CD3+ T cells, especially due to a reduction of CD8+ T subpopulation and NK cells. The antitumor activity presented by the AE is possibly related to an anti-inflammatory activity. None of the extracts produced toxic effects in animals. In conclusion, the ethanol and aqueous extracts of A. chica have immunomodulatory and antitumor activities attributed to the presence of flavonoids, such as kaempferol. These effects appear to be related to different mechanisms of action for each extract. This study demonstrates the potential of A. chica as an antitumor agent confirming its use in traditional popular medicine.

  10. Mast Cell, the Neglected Member of the Tumor Microenvironment: Role in Breast Cancer.

    Science.gov (United States)

    Aponte-López, Angélica; Fuentes-Pananá, Ezequiel M; Cortes-Muñoz, Daniel; Muñoz-Cruz, Samira

    2018-01-01

    Mast cells are unique tissue-resident immune cells that secrete a diverse array of biologically active compounds that can stimulate, modulate, or suppress the immune response. Although mounting evidence supports that mast cells are consistently infiltrating tumors, their role as either a driving or an opposite force for cancer progression is still controversial. Particularly, in breast cancer, their function is still under discussion. While some studies have shown a protective role, recent evidence indicates that mast cells enhance blood and lymphatic vessel formation. Interestingly, one of the most important components of the mast cell cargo, the serine protease tryptase, is a potent angiogenic factor, and elevated serum tryptase levels correlate with bad prognosis in breast cancer patients. Likewise, histamine is known to induce tumor cell proliferation and tumor growth. In agreement, mast cell depletion reduces the size of mammary tumors and metastasis in murine models that spontaneously develop breast cancer. In this review, we will discuss the evidence supporting protumoral and antitumoral roles of mast cells, emphasizing recent findings placing mast cells as important drivers of tumor progression, as well as the potential use of these cells or their mediators as therapeutic targets.

  11. Model-based prediction of progression-free survival in patients with first-line renal cell carcinoma using week 8 tumor size change from baseline.

    Science.gov (United States)

    Claret, Laurent; Zheng, Jenny; Mercier, Francois; Chanu, Pascal; Chen, Ying; Rosbrook, Brad; Yazdi, Pithavala; Milligan, Peter A; Bruno, Rene

    2016-09-01

    To assess the link between early tumor shrinkage (ETS) and progression-free survival (PFS) based on historical first-line metastatic renal cell carcinoma (mRCC) data. Tumor size data from 921 patients with first-line mRCC who received interferon-alpha, sunitinib, sorafenib or axitinib in two Phase III studies were modeled. The relationship between model-based estimates of ETS at week 8 as well as the baseline prognostic factors and PFS was tested in multivariate log-logistic models. Model performance was evaluated using simulations of PFS distributions and hazard ratio (HR) across treatments for the two studies. In addition, an external validation was conducted using data from an independent Phase II RCC study. The relationship between expected HR of an investigational treatment vs. sunitinib and the differences in ETS was simulated. A model with a nonlinear ETS-PFS link was qualified to predict PFS distribution by ETS quartiles as well as to predict HRs of sunitinib vs. interferon-alpha and axitinib vs. sorafenib. The model also performed well in simulations of an independent study of axitinib (external validation). The simulations suggested that if a new investigational treatment could further reduce the week 8 ETS by 30 % compared with sunitinib, an expected HR [95 % predictive interval] of the new treatment vs. sunitinib would be 0.59 [0.46, 0.79]. A model has been developed that uses early changes in tumor size to predict the HR for PFS differences between treatment arms for first-line mRCC. Such a model may have utility in predicting the outcome of ongoing studies (e.g., as part of interim futility analyses), supporting early decision making and future study design for investigational agents in development for this indication.

  12. Stereotactic gamma radiosurgery of brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Tatsuya; Kida, Yoshihisa; Tanaka, Takayuki; Oyama, Hirofumi; Yoshida, Kazuo; Maesawa, Satoshi; Kai, Osamu; Nakamura, Mototoshi; Arahata, Masashige [Komaki City Hospital, Aichi (Japan)

    1996-06-01

    One thousand cases with various head and neck diseases have been treated by gamma radiosurgery at Komaki City Hospital since May 1991. Five hundred and sixty-eight out of 1,000 cases were neoplastic lesions which consisted of 173 cases of neurinoma, 108 of metastatic tumors, 103 of meningioma, 69 of gliomas, 27 of pituitary adenoma, 26 of craniopharyngioma, 13 of pineal tumors, 11 of chordoma, 6 of malignant lymphoma, 5 of hemangioblastoma and so on. The most effective result has been shown in metastatic brain tumors. The complete response (disappearance of the lesion) was obtained in more than 50% of the treated lesions, and the control rate of 85% was maintained for more than 12 months. Next effective results were shown in craniopharyngioma, malignant pineal tumors and malignant lymphoma. There was a group which showed moderate response but no tumor disappearance. Those were pituitary adenoma, acoustic neurinoma, meningioma and chordoma. Gliomas showed less response and even progression of tumor at relatively higher rate. It has been found that malignant gliomas showed difficult control of the tumor and progression rate of 70%, while benign gliomas showed the control rate of more than 90%. Besides intracranial lesions, malignant skull base tumors such as chordoma, naso-pharyngeal cancer, adenoid cystic cancer showed better response to gamma radiosurgery and higher control rate for longer period of time with high QOL compaired to conventional irradiation. (author)

  13. Advancing bioluminescence imaging technology for the evaluation of anticancer agents in the MDA-MB-435-HAL-Luc mammary fat pad and subrenal capsule tumor models.

    Science.gov (United States)

    Zhang, Cathy; Yan, Zhengming; Arango, Maria E; Painter, Cory L; Anderes, Kenna

    2009-01-01

    Tumors grafted s.c. or under the mammary fat pad (MFP) rarely develop efficient metastasis. By applying bioluminescence imaging (BLI) technology, the MDA-MB-435-HAL-Luc subrenal capsule (SRC) model was compared with the MFP model for disease progression, metastatic potential, and response to therapy. The luciferase-expressing MDA-MB-435-HAL-Luc cell line was used in both MFP and SRC models. BLI technology allowed longitudinal assessment of disease progression and the therapeutic response to PD-0332991, Avastin, and docetaxel. Immunohistochemical analysis of Ki67 and CD31 staining in the primary tumors was compared in these models. Caliper measurement was used in the MFP model to validate the BLI quantification of primary tumors. The primary tumors in MDA-MB-435-HAL-Luc MFP and SRC models displayed comparable growth rates and vascularity. However, tumor-bearing mice in the SRC model developed lung metastases much earlier (4 weeks) than in the MFP model (>7 weeks), and the metastatic progression contributed significantly to the survival time. In the MFP model, BLI and caliper measurements were comparable for quantifying palpable tumors, but BLI offered an advantage for detecting the primary tumors that fell below a palpable threshold and for visualizing metastases. In the SRC model, BLI allowed longitudinal assessment of the antitumor and antimetastatic effects of PD-0332991, Avastin, and docetaxel, and the results correlated with the survival benefits of these agents. The MDA-MB-435-HAL-Luc SRC model and the MFP model displayed differences in disease progression. BLI is an innovative approach for developing animal models and creates opportunities for improving preclinical evaluations of anticancer agents.

  14. Risk estimation of multiple recurrence and progression of non muscle invasive bladder carcinoma using new mathematical models.

    Science.gov (United States)

    Luján, S; Santamaría, C; Pontones, J L; Ruiz-Cerdá, J L; Trassierra, M; Vera-Donoso, C D; Solsona, E; Jiménez-Cruz, F

    2014-12-01

    To apply new mathematical models according to Non Muscle Invasive Bladder Carcinoma (NMIBC) biological characteristics and enabling an accurate risk estimation of multiple recurrences and tumor progression. The classical Cox model is not valid for the assessment of this kind of events becausethe time betweenrecurrencesin the same patientmay be stronglycorrelated. These new models for risk estimation of recurrence/progression lead to individualized monitoring and treatment plan. 960 patients with primary NMIBC were enrolled. The median follow-up was 48.1 (3-160) months. Results obtained were validated in 240 patients from other center. Transurethral resection of the bladder (TURB) and random bladder biopsy were performed. Subsequently, adjuvant localized chemotherapy was performed. The variables analyzed were: number and tumor size, age, chemotherapy and histopathology. The endpoints were time to recurrence and time to progression. Cox model and its extensions were used as joint frailty model for multiple recurrence and progression. Model accuracy was calculated using Harrell's concordance index (c-index). 468 (48.8%) patients developed at least one tumor recurrence and tumor progression was reported in 52 (5.4%) patients. Variables for multiple-recurrence risk are: age, grade, number, size, treatment and the number of prior recurrences. All these together with age, stage and grade are the variables for progression risk. Concordance index was 0.64 and 0.85 for multiple recurrence and progression respectively. the high concordance reported besides to the validation process in external source, allow accurate multi-recurrence/progression risk estimation. As consequence, it is possible to schedule a follow-up and treatment individualized plan in new and recurrent NMCB cases. Copyright © 2014 AEU. Published by Elsevier Espana. All rights reserved.

  15. Childhood brain tumors: epidemiology, current management and future directions.

    Science.gov (United States)

    Pollack, Ian F; Jakacki, Regina I

    2011-07-26

    Brain tumors are the most common solid tumors in children. With the increasingly widespread availability of MRI, the incidence of childhood brain tumors seemed to rise in the 1980s, but has subsequently remained relatively stable. However, management of brain tumors in children has evolved substantially during this time, reflecting refinements in classification of tumors, delineation of risk groups within histological subsets of tumors, and incorporation of molecular techniques to further define tumor subgroups. Although considerable progress has been made in the outcomes of certain tumors, prognosis in other childhood brain tumor types is poor. Among the tumor groups with more-favorable outcomes, attention has been focused on reducing long-term morbidity without sacrificing survival rates. Studies for high-risk groups have examined the use of intensive therapy or novel, molecularly targeted approaches to improve disease control rates. In addition to reviewing the literature and providing an overview of the complexities in diagnosing childhood brain tumors, we will discuss advances in the treatment and categorization of several tumor types in which progress has been most apparent, as well as those in which improvements have been lacking. The latest insights from molecular correlative studies that hold potential for future refinements in therapy will also be discussed.

  16. High NUCB2 expression level is associated with metastasis and may promote tumor progression in colorectal cancer.

    Science.gov (United States)

    Xie, Jun; Chen, Lina; Chen, Wenbin

    2018-06-01

    Nucleobindin 2 (NUCB2) is mainly expressed in the hypothalamic nuclei and has a proven role in energy homeostasis. It has also been recently reported to have a key role in tumor progression. However, the clinical significance of NUCB2 in colorectal cancer (CRC) remains unknown. In the present study, the level of NUCB2 mRNA was quantified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in 34 paired fresh tissues from patients with CRC. RT-qPCR was followed by immunohistochemical (IHC) staining of NUCB2 protein in tissue microarrays of 251 samples to evaluate the clinical significance of NUCB2 in CRC. The RT-qPCR indicated an upregulation of NUCB2 mRNA in CRC tissues compared with normal tissues (P=0.027). IHC staining indicated a positive association between elevated NUCB2 expression and lymph node metastasis or tumor-node-metastasis (TNM) stage. Patients with CRC and lymph node metastasis demonstrated a higher expression of NUCB2 (49.5%, 50/101) compared with those without lymph node metastasis (36.7%, 55/150; P=0.043). Furthermore, NUCB2 expression was also higher in patients with CRC and TNM stage III-IV compared with those with TNM stage I-II (50.9% vs. 35.0%; P=0.011). However, Kaplan-Meier analysis indicated no significant association between NUCB2 expression and disease-free survival of patients. Additionally, multivariate analysis did not identify the upregulation of NUCB2 as an independent prognostic predictor in patients with CRC (P=0.755). In conclusion, the present study demonstrated that upregulation of NUCB2 is significantly associated with CRC metastasis, indicating that NUCB2 may be a cancer-associated oncogene associated with the aggressive progression of CRC.

  17. Percutaneous CT-guided high-dose brachytherapy (CT-HDRBT) ablation of primary and metastatic lung tumors in nonsurgical candidates; Perkutane CT-gesteuerte Hochdosis-Brachytherapie (CT-HDRBT) von primaeren und metastatischen Lungentumoren in nicht chirurgischen Kandidaten

    Energy Technology Data Exchange (ETDEWEB)

    Collettini, F.; Schnapauff, D.; Poellinger, A.; Denecke, T.; Banzer, J.; Golenia, M.J.; Gebauer, B. [Charite - Universitatesmedizin Berlin (Germany). Inst. fuer Radiologie; Wust, P. [Charite - Universitatesmedizin Berlin (Germany). Klinik fuer Strahlentherapie

    2012-04-15

    To evaluate the safety and efficacy of CT-guided high-dose brachytherapy (CT-HDRBT) ablation of primary and metastatic lung tumors. Between November 2007 and May 2010, all consecutive patients with primary or metastatic lung tumors, unsuitable for surgery, were treated with CT-HDRBT. Imaging follow-up after treatment was performed with contrast-enhanced CT at 6 weeks, 3 months and every 6 months after the procedure. The endpoints of the study were local tumor control and time to progression. The Kaplan-Meier method was used to estimate survival functions and local tumor progression rates. 34 procedures were carried out on 33 lesions in 22 patients. The mean diameter of the tumors was 33.3 mm (SD = 20.4). The first contrast-enhanced CT showed that complete ablation was achieved in all lesions. The mean minimal tumor enclosing dose was 18.9 Gy (SD = 2). Three patients developed a pneumothorax after the procedure. The mean follow-up time was 13.7 (3 - 29) months. 2 of 32 lesions (6.25 %) developed a local tumor progression. 8 patients (36.3 %) developed a distant tumor progression. After 17.7 months, 13 patients were alive and 9 patients had died. CT-HDRBT ablation is a safe and attractive treatment option for patients with lung malignancies and allows targeted destruction of tumor tissue with simultaneous preservation of important lung structures. Furthermore, CT-HDRBT is independent of the size of the lesion and its location within the lung parenchyma. (orig.)

  18. ErbB2 Pathway Activation upon Smad4 Loss Promotes Lung Tumor Growth and Metastasis

    Directory of Open Access Journals (Sweden)

    Jian Liu

    2015-03-01

    Full Text Available Lung cancer remains the leading cause of cancer death. Genome sequencing of lung tumors from patients with squamous cell carcinoma has identified SMAD4 to be frequently mutated. Here, we use a mouse model to determine the molecular mechanisms by which Smad4 loss leads to lung cancer progression. Mice with ablation of Pten and Smad4 in airway epithelium develop metastatic adenosquamous tumors. Comparative transcriptomic and in vivo cistromic analyses determine that loss of PTEN and SMAD4 results in ELF3 and ErbB2 pathway activation due to decreased expression of ERRFI1, a negative regulator of ERBB2 in mouse and human cells. The combinatorial inhibition of ErbB2 and Akt signaling attenuate tumor progression and cell invasion, respectively. Expression profile analysis of human lung tumors substantiated the importance of the ErbB2/Akt/ELF3 signaling pathway as both a prognostic biomarker and a therapeutic drug target for treating lung cancer.

  19. In vivo inhibition of tumor progression by 5 hydroxy-1,4-naphthoquinone (juglone) and 2-(4-hydroxyanilino)-1,4-naphthoquinone (Q7) in combination with ascorbate

    Energy Technology Data Exchange (ETDEWEB)

    Ourique, Fabiana [Department of Biochemistry, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC (Brazil); Kviecinski, Maicon R. [Postgraduate Programe of Health Science, Universidade do Sul de Santa Catarina (UNISUL), Palhoça, SC (Brazil); Zirbel, Guilherme; Castro, Luiza S.E.P.W.; Gomes Castro, Allisson Jhonatan; Mena Barreto Silva, Fátima Regina [Department of Biochemistry, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC (Brazil); Valderrama, Jaime A.; Rios, David; Benites, Julio [Department of Chemical and Pharmaceutical Sciences, Universidad Arturo Prat, Iquique (Chile); Calderon, Pedro Buc [Toxicology and Cancer Biology Research Group (GTOX), Louvain Drug Research Institute, Université Catholique de Louvain, Brussels (Belgium); Pedrosa, Rozangela Curi, E-mail: rozangelapedrosa@gmail.com [Department of Biochemistry, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC (Brazil)

    2016-09-02

    The purpose of the study was to obtain further in vivo data of antitumor effects and mechanisms triggered by juglone and Q7 in combination with ascorbate. The study was done using Ehrlich ascites tumor-bearing mice. Treatments were intraperitoneal every 24 h for 9 days. Control group was treated with excipient. Previous tests selected the doses of juglone and Q7 plus ascorbate (1 and 100 mg/kg, respectively). Samples of ascitic fluid were collected to evaluate carbonyl proteins, GSH and activity of antioxidant enzymes such as catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase. Hypoxia inducible factor HIF-1α, GLUT1, proteins driving cell cycle (p53, p16 and cyclin A) and apoptosis (poly-ADP-polymerase PARP, Bax and Bcl-xL) were assessed by western blot. Tumor cells were categorized by the phase of cell cycle using flow cytometry and type of cell death using acridine orange/ethidium bromide. A glucose uptake assessment was performed by liquid scintillation using Ehrlich tumor cells cultured with {sup 14}C-deoxyglucose. Treatments caused increased protein carbonylation and activity of antioxidant enzymes and decreased levels of GSH, HIF-1α, GLUT1 and glucose uptake in tumor cells. They also caused increased number of tumor cells in G1, p53 and p16 activation and decreased cyclin A, but only when combined with ascorbate. Apoptosis was induced mostly when treatments were done with ascorbate, causing PARP and Bax cleavage, and increased Bax/Bcl-xL ratio. Juglone and Q7 in combination with ascorbate caused inhibition of tumor progress in vivo by triggering apoptosis and cell cycle arrest associated with oxidative stress, suppression of HIF-1 and uncoupling of glycolytic metabolism. - Highlights: • Ascorbate potentiates the inhibition caused by juglone and Q7on tumor progress in vivo. • Juglone and Q7 with ascorbate caused widespread oxidative stress in tumor tissue. • Treatments inhibited HIF-1 and GLUT1 expression causing

  20. Evolution of sarcoma 180 (ascitic tumor in mice infected with Schistosoma mansoni

    Directory of Open Access Journals (Sweden)

    Fausto Edmundo Lima Pereira

    1986-03-01

    Full Text Available Mice infected with 60 cercariae of Schistosoma mansoni were more resistant to the sarcoma 180 ascites tumor. Tumor inoculation was performed 50 days after schistosoma infection and the animals were observed and weighed at 48 hours intervals for development and progression of malignancy. In infected mice the weight gain (ascites formation started later and was shorter than in uninfected Controls. Also, the number of tumor cells into the peritoneal cavity 72h after tumor implantation was shorter in infected group than incontrols. This in creased resistance against a transplantable tumor probably is related to the effect of endotoxin on tumoricidal activity of macrophages activated by the infection. The immunodepression induced by Schistosoma mansoni infection enhances the proliferation of endogenous bacteria increasing the amount of endotoxin absorbed from the gut.

  1. Lysophosphatidic acid signaling via LPA{sub 1} and LPA{sub 3} regulates cellular functions during tumor progression in pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Fukushima, Kaori; Takahashi, Kaede; Yamasaki, Eri; Onishi, Yuka [Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Fukushima, Nobuyuki [Division of Molecular Neurobiology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Honoki, Kanya [Department of Orthopedic Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Tsujiuchi, Toshifumi, E-mail: ttujiuch@life.kindai.ac.jp [Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan)

    2017-03-01

    Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors exhibits a variety of biological effects, such as cell proliferation, motility and differentiation. The aim of this study was to evaluate the roles of LPA{sub 1} and LPA{sub 3} in cellular functions during tumor progression in pancreatic cancer cells. LPA{sub 1} and LPA{sub 3} knockdown cells were generated from PANC-1 cells. The cell motile and invasive activities of PANC-1 cells were inhibited by LPA{sub 1} and LPA{sub 3} knockdown. In gelatin zymography, LPA{sub 1} and LPA{sub 3} knockdown cells indicated the low activation of matrix metalloproteinase-2 (MMP-2) in the presence of LPA. Next, to assess whether LPA{sub 1} and LPA{sub 3} regulate cellular functions induced by anticancer drug, PANC-1 cells were treated with cisplatin (CDDP) for approximately 6 months. The cell motile and invasive activities of long-term CDDP treated cells were markedly higher than those of PANC-1 cells, correlating with the expression levels of LPAR1 and LPAR3 genes. In soft agar assay, the long-term CDDP treated cells formed markedly large sized colonies. In addition, the cell motile and invasive activities enhanced by CDDP were significantly suppressed by LPA{sub 1} and LPA{sub 3} knockdown as well as colony formation. These results suggest that LPA signaling via LPA{sub 1} and LPA{sub 3} play an important role in the regulation of cellular functions during tumor progression in PANC-1 cells. - Highlights: • The cell motile and invasive activities of PANC-1 cells were stimulated by LPA{sub 1} and LPA{sub 3}. • LPA{sub 1} and LPA{sub 3} enhanced MMP-2 activation in PANC-1 cells. • The expressions of LPAR1 and LPAR3 genes were elevated in PANC-1 cells treated with cisplatin. • The cell motile and invasive activities of PANC-1 cells treated with cisplatin were suppressed by LPA{sub 1} and LPA{sub 3} knockdown. • LPA{sub 1} and LPA{sub 3} are involved in the regulation of cellular functions during tumor

  2. Role for the Wilms tumor gene in genital development?

    International Nuclear Information System (INIS)

    van Heyningen, V.; Bickmore, W.A.; Seawright, A.; Fletcher, J.M.; Maule, J.; Hastie, N.D.; Fekete, G.; Gessler, M.; Bruns, G.A.P.; Huerre-Jeanpierre, C.; Junien, C.; Williams, B.R.G.

    1990-01-01

    Detailed molecular definition of the WAGR region at chromosome 11p13 has been achieved by chromosome breakpoint analysis and long-range restriction mapping. Here the authors describe the molecular detection of a cytogenetically invisible 1-megabase deletion in an individual with aniridia, cryptorchidism, and hypospadias but no Wilms tumor (WT). The region of overlap between this deletion and one associated with WT and similar genital anomalies but no aniridia covers a region of 350-400 kilobases, which is coincident with the extent of homozygous deletion detected in tumor tissue from a sporadic WT. A candidate WT gene located within this region has recently been isolated, suggesting nonpenetrance for tumor expression in the first individual. The inclusion within the overlap region of a gene for WT predisposition and a gene for the best-documented WT-associated genitourinary malformations leads to suggest that both of these anomalies result from a loss-of-function mutation at the same locus. This in turn implies that the WT gene exerts pleiotropic effect on both kidney and genitourinary development, a possibility supported by the observed expression pattern of the WT candidate gene in developing kidney and gonads

  3. Fertility preservation in women with CNS tumors.

    Science.gov (United States)

    Tosoni, Alicia; Balestrini, Damiano; Brandes, Alba A

    2017-05-01

    Fertility impairment due to treatments is a major concern for adolescents and young adult patients who survived cancer. Areas covered: Chemotherapy may determine a detrimental effect on ovary function, leading to infertility, and premature ovarian failure. Embryo and oocyte cryopreservation is a standard strategy for fertility preservation; other strategies, such as gonadal tissue cryopreservation and the use of gonadotropin - releasing hormone agonist, are still considered experimental. There are few data available regarding the effect of pregnancy on glioma, which indicates tumor progression during pregnancy in 33-45% of patients. Expert commentary: Glioma patients need to be advised about the risk of tumor progression during pregnancy, and about the possible, even if not proven, interaction between hormone stimulation and tumor growth.

  4. Clinical Experience With Radiation Therapy in the Management of Neurofibromatosis-Associated Central Nervous System Tumors

    International Nuclear Information System (INIS)

    Wentworth, Stacy; Pinn, Melva; Bourland, J. Daniel; Guzman, Allan F. de; Ekstrand, Kenneth; Ellis, Thomas L.; Glazier, Steven S.; McMullen, Kevin P.; Munley, Michael; Stieber, Volker W.; Tatter, Stephen B.; Shaw, Edward G.

    2009-01-01

    Purpose: Patients with neurofibromatosis (NF) develop tumors of the central nervous system (CNS). Radiation therapy (RT) is used to treat these lesions. To better define the efficacy of RT in these patients, we reviewed our 20-year experience. Methods and Materials: Eighteen patients with NF with CNS tumors were treated from 1986 to 2007. Median follow-up was 48 months. Progression was defined as growth or recurrence of an irradiated tumor on serial imaging. Progression-free survival (PFS) was measured from the date of RT completion to the date of last follow-up imaging study. Actuarial rates of overall survival (OS) and PFS were calculated according to the Kaplan-Meier method. Results: Eighty-two tumors in 18 patients were irradiated, with an average of five tumors/patient. Median age at treatment was 25 years (range, 4.3-64 years). Tumor types included acoustic neuroma (16%), ependymoma (6%), low-grade glioma (11%), meningioma (60%), and schwanomma/neurofibroma (7%). The most common indication for treatment was growth on serial imaging. Most patients (67%) received stereotactic radiosurgery (median dose, 1,200 cGy; range, 1,000-2,400 cGy). The OS rate at 5 years was 94%. Five-year PFS rates were 75% (acoustic neuroma), 100% (ependymoma), 75% (low-grade glioma), 86% (meningioma), and 100% (schwanomma/neurofibroma). Thirteen acoustic neuromas had a local control rate of 94% with a 50% hearing preservation rate. Conclusions: RT provided local control, OS, and PFS rates similar to or better than published data for tumors in non-NF patients. Radiation therapy should be considered in NF patients with imaging progression of CNS tumors

  5. The development of CAR design for tumor CAR-T cell therapy.

    Science.gov (United States)

    Xu, Dandan; Jin, Guoliang; Chai, Dafei; Zhou, Xiaowan; Gu, Weiyu; Chong, Yanyun; Song, Jingyuan; Zheng, Junnian

    2018-03-02

    In recent years, the chimeric antigen receptor modified T cells (Chimeric antigen receptor T cells, CAR-T) immunotherapy has developed rapidly, which has been considered the most promising therapy. Efforts to enhance the efficacy of CAR-based anti-tumor therapy have been made, such as the improvement of structures of CAR-T cells, including the development of extracellular antigen recognition receptors, intracellular co-stimulatory molecules and the combination application of CARs and synthetic small molecules. In addition, effects on the function of the CAR-T cells that the space distance between the antigen binding domains and tumor targets and the length of the spacer domains have are also being investigated. Given the fast-moving nature of this field, it is necessary to make a summary of the development of CAR-T cells. In this review, we mainly focus on the present design strategies of CAR-T cells with the hope that they can provide insights to increase the anti-tumor efficacy and safety.

  6. Longitudinal Studies of Angiogenesis in Hormone-Dependent Shionogi Tumors

    Directory of Open Access Journals (Sweden)

    Trevor P. Wade

    2007-07-01

    Full Text Available Vessel size imaging was used to assess changes in the average vessel size of Shionogi tumors throughout the tumor growth cycle. Changes in R2 and R2* relaxivities caused by the injection of a superparamagnetic contrast agent (ferumoxtran-10 were measured using a 2.35-T animal magnetic resonance imaging system, and average vessel size index (VSI was calculated for each stage of tumor progression: growth, regression, and relapse. Statistical analysis using Spearman rank correlation test showed no dependence between vessel size and tumor volume at any stage of the tumor growth cycle. Paired Student's t test was used to assess the statistical significance of the differences in average vessel size for the three stages of the tumor growth cycle. The average VSI for regressing tumors (15.1 ± 6.6 wm was significantly lower than that for growing tumors (35.2 ± 25.5 μm; P < .01. Relapsing tumors also had an average VSI (45.4 ± 41.8 μm higher than that of regressing tumors, although the difference was not statistically significant (P = .067. This study shows that VSI imaging is a viable method for the noninvasive monitoring of angiogenesis during the progression of a Shionogi tumor from androgen dependence to androgen independence.

  7. Experimental control of neoplastic progression in cell populations: Foulds' rules revisited.

    OpenAIRE

    Rubin, H

    1994-01-01

    Foulds introduced six rules of tumor progression based on his observations of spontaneous mammary cancer in mice and generalized them to all forms of neoplasia [Foulds, L. (1954) Cancer Res. 14, 327-339 and Foulds, L. (1969) Neoplastic Development (Academic, New York), Vol. 1, preface and pp. 72-74.] Rules III, IV, and V are considered controversial, and research in animals seems inadequate to resolve the controversies. A subline of NIH 3T3 cells undergoes progressive transformation to produc...

  8. Interstitial fluid flow in cancer: implications for disease progression and treatment

    International Nuclear Information System (INIS)

    Munson, Jennifer M; Shieh, Adrian C

    2014-01-01

    As cancer progresses, a dynamic microenvironment develops that creates and responds to cellular and biophysical cues. Increased intratumoral pressure and corresponding increases in interstitial flow from the tumor bulk to the healthy stroma is an observational hallmark of progressing cancers. Until recently, the role of interstitial flow was thought to be mostly passive in the transport and dissemination of cancer cells to metastatic sites. With research spanning the past decade, we have seen that interstitial flow has a promigratory effect on cancer cell invasion in multiple cancer types. This invasion is one mechanism by which cancers can resist therapeutics and recur, but the role of interstitial flow in cancer therapy is limited to the understanding of transport of therapeutics. Here we outline the current understanding of the role of interstitial flow in cancer and the tumor microenvironment through cancer progression and therapy. We also discuss the current role of fluid flow in the treatment of cancer, including drug transport and therapeutic strategies. By stating the current understanding of interstitial flow in cancer progression, we can begin exploring its role in therapeutic failure and treatment resistance

  9. Tumor-Derived CXCL1 Promotes Lung Cancer Growth via Recruitment of Tumor-Associated Neutrophils

    Directory of Open Access Journals (Sweden)

    Ming Yuan

    2016-01-01

    Full Text Available Neutrophils have a traditional role in inflammatory process and act as the first line of defense against infections. Although their contribution to tumorigenesis and progression is still controversial, accumulating evidence recently has demonstrated that tumor-associated neutrophils (TANs play a key role in multiple aspects of cancer biology. Here, we detected that chemokine CXCL1 was dramatically elevated in serum from 3LL tumor-bearing mice. In vitro, 3LL cells constitutively expressed and secreted higher level of CXCL1. Furthermore, knocking down CXCL1 expression in 3LL cells significantly hindered tumor growth by inhibiting recruitment of neutrophils from peripheral blood into tumor tissues. Additionally, tumor-infiltrated neutrophils expressed higher levels of MPO and Fas/FasL, which may be involved in TAN-mediated inhibition of CD4+ and CD8+ T cells. These results demonstrate that tumor-derived CXCL1 contributes to TANs infiltration in lung cancer which promotes tumor growth.

  10. Research progress in roles of gut microbiota and bile acid metabolism in development and progression of NAFLD

    Directory of Open Access Journals (Sweden)

    LU Xu

    2014-11-01

    Full Text Available With the prevalence of obesity and metabolic syndrome, the incidence of nonalcoholic fatty liver disease (NAFLD is increasing year by year. Studies have uncovered the important roles of gut microbiota and bile acid metabolism in the development and progression of NAFLD. The roles of gut microbiota, as well bile acid and bile acid receptors, in the development and progression of NAFLD are highlighted.

  11. Molecular and metabolic pattern classification for detection of brain glioma progression

    Energy Technology Data Exchange (ETDEWEB)

    Imani, Farzin, E-mail: imanif@upmc.edu [Department of Radiology, University of Pittsburgh Medical Center, PA (United States); Boada, Fernando E. [Department of Radiology, University of Pittsburgh Medical Center, PA (United States); Lieberman, Frank S. [Department of Neurology, University of Pittsburgh Medical Center, PA (United States); Davis, Denise K.; Mountz, James M. [Department of Radiology, University of Pittsburgh Medical Center, PA (United States)

    2014-02-15

    Objectives: The ability to differentiate between brain tumor progression and radiation therapy induced necrosis is critical for appropriate patient management. In order to improve the differential diagnosis, we combined fluorine-18 2-fluoro-deoxyglucose positron emission tomography ({sup 18}F-FDG PET), proton magnetic resonance spectroscopy ({sup 1}H MRS) and histological data to develop a multi-parametric machine-learning model. Methods: We enrolled twelve post-therapy patients with grade 2 and 3 gliomas that were suspicious of tumor progression. All patients underwent {sup 18}F-FDG PET and {sup 1}H MRS. Maximal standardized uptake value (SUVmax) of the tumors and reference regions were obtained. Multiple 2D maps of choline (Cho), creatine (Cr), and N-acetylaspartate (NAA) of the tumors were generated. A support vector machine (SVM) learning model was established to take imaging biomarkers and histological data as input vectors. A combination of clinical follow-up and multiple sequential MRI studies served as the basis for assessing the clinical outcome. All vector combinations were evaluated for diagnostic accuracy and cross validation. The optimal cutoff value of individual parameters was calculated using Receiver operating characteristic (ROC) plots. Results: The SVM and ROC analyses both demonstrated that SUVmax of the lesion was the most significant single diagnostic parameter (75% accuracy) followed by Cho concentration (67% accuracy). SVM analysis of all paired parameters showed SUVmax and Cho concentration in combination could achieve 83% accuracy. SUVmax of the lesion paired with SUVmax of the white matter as well as the tumor Cho paired with the tumor Cr both showed 83% accuracy. These were the most significant paired diagnostic parameters of either modality. Combining all four parameters did not improve the results. However, addition of two more parameters, Cho and Cr of brain parenchyma contralateral to the tumor, increased the accuracy to 92

  12. Tumor and Stromal-Based Contributions to Head and Neck Squamous Cell Carcinoma Invasion

    Energy Technology Data Exchange (ETDEWEB)

    Markwell, Steven M.; Weed, Scott A., E-mail: scweed@hsc.wvu.edu [Department of Neurobiology and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506 (United States)

    2015-02-27

    Head and neck squamous cell carcinoma (HNSCC) is typically diagnosed at advanced stages with evident loco-regional and/or distal metastases. The prevalence of metastatic lesions directly correlates with poor patient outcome, resulting in high patient mortality rates following metastatic development. The progression to metastatic disease requires changes not only in the carcinoma cells, but also in the surrounding stromal cells and tumor microenvironment. Within the microenvironment, acellular contributions from the surrounding extracellular matrix, along with contributions from various infiltrating immune cells, tumor associated fibroblasts, and endothelial cells facilitate the spread of tumor cells from the primary site to the rest of the body. Thus far, most attempts to limit metastatic spread through therapeutic intervention have failed to show patient benefit in clinic trails. The goal of this review is highlight the complexity of invasion-promoting interactions in the HNSCC tumor microenvironment, focusing on contributions from tumor and stromal cells in order to assist future therapeutic development and patient treatment.

  13. Homocysteine Is an Oncometabolite in Breast Cancer, Which Promotes Tumor Progression and Metastasis

    Science.gov (United States)

    2014-09-01

    increase in breast cancer, which results in changes in gene expression in tumor cells helping the tumors to grow and metastasize. The molecular basis...in changes in gene expression in tumor cells helping the tumors to grow and metastasize. The molecular basis for the increase in the levels of this...diseases and also a pregnancy disorder known as preeclampsia . Polymorphisms in MTHFR that decrease the catalytic activity of the enzyme are common in the

  14. Biomarkers of evasive resistance predict disease progression in cancer patients treated with antiangiogenic therapies

    Science.gov (United States)

    Pircher, Andreas; Jöhrer, Karin; Kocher, Florian; Steiner, Normann; Graziadei, Ivo; Heidegger, Isabel; Pichler, Renate; Leonhartsberger, Nicolai; Kremser, Christian; Kern, Johann; Untergasser, Gerold; Gunsilius, Eberhard; Hilbe, Wolfgang

    2016-01-01

    Numerous antiangiogenic agents are approved for the treatment of oncological diseases. However, almost all patients develop evasive resistance mechanisms against antiangiogenic therapies. Currently no predictive biomarker for therapy resistance or response has been established. Therefore, the aim of our study was to identify biomarkers predicting the development of therapy resistance in patients with hepatocellular cancer (n = 11), renal cell cancer (n = 7) and non-small cell lung cancer (n = 2). Thereby we measured levels of angiogenic growth factors, tumor perfusion, circulating endothelial cells (CEC), circulating endothelial progenitor cells (CEP) and tumor endothelial markers (TEM) in patients during the course of therapy with antiangiogenic agents, and correlated them with the time to antiangiogenic progression (aTTP). Importantly, at disease progression, we observed an increase of proangiogenic factors, upregulation of CEC/CEP levels and downregulation of TEMs, such as Robo4 and endothelial cell-specific chemotaxis regulator (ECSCR), reflecting the formation of torturous tumor vessels. Increased TEM expression levels tended to correlate with prolonged aTTP (ECSCR high = 275 days vs. ECSCR low = 92.5 days; p = 0.07 and for Robo4 high = 387 days vs. Robo4 low = 90.0 days; p = 0.08). This indicates that loss of vascular stabilization factors aggravates the development of antiangiogenic resistance. Thus, our observations confirm that CEP/CEC populations, proangiogenic cytokines and TEMs contribute to evasive resistance in antiangiogenic treated patients. Higher TEM expression during disease progression may have clinical and pathophysiological implications, however, validation of our results is warranted for further biomarker development. PMID:26956051

  15. Microdissecting the Genetic Events in Nephrogenic Rests and Wilms’ Tumor Development

    Science.gov (United States)

    Charles, Adrian K.; Brown, Keith W.; Berry, P. Jeremy

    1998-01-01

    Nephrogenic rests are precursor lesions associated with about 40% of Wilms’ tumors. This study identifies genetic steps occurring in the development of Wilms’ tumor. Thirty-four Wilms’ tumors with nephrogenic rests and/or areas of anaplasia were microdissected from paraffin sections to determine whether and at what stage loss of heterozygosity (LOH) occurred, using polymerase chain reaction-based polymorphic markers at 11p13, 11p15, and 16q. LOH at these loci have been identified in Wilms’ tumors and are associated with identified or putative tumor suppressor genes. Three cystic nephromas/cystic partially differentiated nephroblastomas were also examined. LOH was detected in six cases at 11p13 and in six cases at 11p15, and two of these cases had LOH at both loci. All intralobar rests showing LOH also showed LOH in the tumor. A case with a small perilobar rest showed LOH of 11p13 only in the tumor. Five cases showing LOH at 16q were identified (this was identified only in the tumor, and not in the associated rest), and three of these had recurrence of the tumor. Two cases had a WT1 mutation (one germline and the other somatic), as well as LOH in both the intralobar rest and the tumor. A cystic partially differentiated nephroblastoma showed loss at 11p13 and 11p15, as well as at 16q. This study suggests that LOH at 11p13 and 11p15 and WT1 mutations are early events but that LOH at 16q occurs late in the pathogenesis of Wilms’ tumor. Intralobar and perilobar nephrogenic rests are known to have different biological behaviors, and this study suggests that they are genetically different. A multistep model of Wilms’ tumor pathogenesis is supported by these findings. PMID:9736048

  16. TRAP1 Regulation of Cancer Metabolism: Dual Role as Oncogene or Tumor Suppressor

    Directory of Open Access Journals (Sweden)

    Danilo Swann Matassa

    2018-04-01

    Full Text Available Metabolic reprogramming is an important issue in tumor biology. An unexpected inter- and intra-tumor metabolic heterogeneity has been strictly correlated to tumor outcome. Tumor Necrosis Factor Receptor-Associated Protein 1 (TRAP1 is a molecular chaperone involved in the regulation of energetic metabolism in cancer cells. This protein is highly expressed in several cancers, such as glioblastoma, colon, breast, prostate and lung cancers and is often associated with drug resistance. However, TRAP1 is also downregulated in specific tumors, such as ovarian, bladder and renal cancers, where its lower expression is correlated with the worst prognoses and chemoresistance. TRAP1 is the only mitochondrial member of the Heat Shock Protein 90 (HSP90 family that directly interacts with respiratory complexes, contributing to their stability and activity but it is still unclear if such interactions lead to reduced or increased respiratory capacity. The role of TRAP1 is to enhance or suppress oxidative phosphorylation; the effects of such regulation on tumor development and progression are controversial. These observations encourage the study of the mechanisms responsible for the dualist role of TRAP1 as an oncogene or oncosuppressor in specific tumor types. In this review, TRAP1 puzzling functions were recapitulated with a special focus on the correlation between metabolic reprogramming and tumor outcome. We wanted to investigate whether metabolism-targeting drugs can efficiently interfere with tumor progression and whether they might be combined with chemotherapeutics or molecular-targeted agents to counteract drug resistance and reduce therapeutic failure.

  17. Primary desmoplastic small round cell tumor of the femur

    International Nuclear Information System (INIS)

    Yoshida, Akihiko; Garcia, Joaquin; Edgar, Mark A.; Meyers, Paul A.; Morris, Carol D.; Panicek, David M.

    2008-01-01

    Desmoplastic small round cell tumor (DSRCT) is a rare malignant neoplasm typically involving the abdominal cavity of a young male. Extra-abdominal occurrence of this tumor is very rare. We report a 10-year-old girl with primary DSRCT arising within the left femur. The patient presented with knee pain, and radiological findings were strongly suggestive of osteogenic sarcoma. In addition to the typical microscopic appearance and immunophenotype, RT-PCR demonstrated the chimeric transcript of EWS-WT1, which is diagnostic of DSRCT. Pulmonary metastases were present at initial staging studies, but no abdominal or pelvic lesion was present. Despite chemotherapy and complete tumor excision, the patient developed progressive lung and bone metastases and died 3 years after initial presentation. This is the second reported case of primary DSRCT of bone with genetic confirmation. (orig.)

  18. Primary desmoplastic small round cell tumor of the femur

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Akihiko; Garcia, Joaquin [Memorial Sloan-Kettering Cancer Center, Department of Pathology, New York, NY (United States); Edgar, Mark A. [Memorial Sloan-Kettering Cancer Center, Department of Pathology, New York, NY (United States); Weill Medical College of Cornell University, New York, NY (United States); Meyers, Paul A. [Weill Medical College of Cornell University, New York, NY (United States); Memorial Sloan-Kettering Cancer Center, Department of Pediatrics, New York, NY (United States); Morris, Carol D. [Weill Medical College of Cornell University, New York, NY (United States); Memorial Sloan-Kettering Cancer Center, Department of Surgery, Orthopaedic Service, New York, NY (United States); Panicek, David M. [Weill Medical College of Cornell University, New York, NY (United States); Memorial Sloan-Kettering Cancer Center, Department of Radiology, New York, NY (United States)

    2008-09-15

    Desmoplastic small round cell tumor (DSRCT) is a rare malignant neoplasm typically involving the abdominal cavity of a young male. Extra-abdominal occurrence of this tumor is very rare. We report a 10-year-old girl with primary DSRCT arising within the left femur. The patient presented with knee pain, and radiological findings were strongly suggestive of osteogenic sarcoma. In addition to the typical microscopic appearance and immunophenotype, RT-PCR demonstrated the chimeric transcript of EWS-WT1, which is diagnostic of DSRCT. Pulmonary metastases were present at initial staging studies, but no abdominal or pelvic lesion was present. Despite chemotherapy and complete tumor excision, the patient developed progressive lung and bone metastases and died 3 years after initial presentation. This is the second reported case of primary DSRCT of bone with genetic confirmation. (orig.)

  19. Comparison of one-, two-, and three-dimensional measurements of childhood brain tumors.

    Science.gov (United States)

    Warren, K E; Patronas, N; Aikin, A A; Albert, P S; Balis, F M

    2001-09-19

    End points for assessing drug activity in brain tumors are determined by measuring the change in tumor size by magnetic resonance imaging (MRI) relative to a pretreatment or best-response scan. Traditionally, two-dimensional (2D) tumor measurements have been used, but one-dimensional (1D) measurements have recently been proposed as an alternative. Because software to estimate three-dimensional (3D) tumor volume from digitized MRI images is available, we compared all three methods of tumor measurement for childhood brain tumors and clinical outcome. Tumor size from 130 MRI scans from 32 patients (32 baseline and 98 follow-up scans, for a total of 130 scans; median, three scans per patient; range, two to 18 scans) was measured by each method. Tumor-response category (partial response, minor response, stable disease, or progressive disease) was determined from the percentage change in tumor size between the baseline or best-response scan and follow-up scans. Time to clinical progression was independently determined by chart review. All statistical tests were two-sided. Concordances between 1D and 2D, 1D and 3D, and 2D and 3D were 83% (95% confidence interval [CI] = 67% to 99%), 61% (95% CI = 47% to 75%), and 66% (95% CI = 52% to 80%), respectively, on follow-up scans. Concordances for 1D and 3D and for 2D and 3D were statistically significantly lower than the concordance for 1D and 2D (Ptumors in the minor response and progressive-disease categories. Median times to progression measured by the 1D, 2D, and 3D methods were 154, 105, and 112 days, respectively, compared with 114 days based on neurologic symptoms and signs (P = .09 for overall comparison). Detection of partial responses was not influenced by the measurement method, but estimating time to disease progression may be method dependent for childhood brain tumors.

  20. CD133 expression in well-differentiated pancreatic neuroendocrine tumors: a potential predictor of progressive clinical courses.

    Science.gov (United States)

    Sakai, Yasuhiro; Hong, Seung-Mo; An, Soyeon; Kim, Joo Young; Corbeil, Denis; Karbanová, Jana; Otani, Kyoko; Fujikura, Kohei; Song, Ki-Byung; Kim, Song Cheol; Akita, Masayuki; Nanno, Yoshihide; Toyama, Hirochika; Fukumoto, Takumi; Ku, Yonson; Hirose, Takanori; Itoh, Tomoo; Zen, Yoh

    2017-03-01

    The present study aimed to elucidate whether the stemness molecule, CD133, is expressed in well-differentiated pancreatic neuroendocrine tumors (PanNETs; World Health Organization grades 1 and 2) and establish its clinical relevance using 2 separate cohorts. In the first series (n = 178) in which tissue microarrays were available, immunohistochemistry revealed that CD133 was expressed in 14 cases (8%). CD133+ PanNETs had higher TNM stages (P < .01), more frequent lymphovascular invasion (P = .01), and higher recurrence rates (P = .01). In the second cohort (n = 56), the expression of CD133 and CK19 was examined in whole tissue sections. CD133 and CK19 were positive in 10 (18%) and 36 (64%) cases, respectively. CD133 expression correlated with higher pT scores (P < .01), the presence of microscopic venous infiltration (P = .03), and shorter disease-free periods (P < .01). When cases were divided into grade 1 and 2 neoplasms, patients with CD133+ PanNET continued to have shorter disease-free periods than did those with CD133- tumors in both groups (P < .01 and P = .02, respectively). Although CK19+ cases had shorter disease-free periods than did CK19- cases in the whole cohort (P = .02), this difference was less apparent in subanalyses of grade 1 and 2 cases. CD133 expression also appeared to be an independent predictive factor for tumor recurrence in a multivariate analysis (P = .018). The CD133 phenotype was identical between primary and metastatic foci in 17 of 18 cases from which tissues of metastatic deposits were available. In conclusion, the combination of CD133 phenotyping and World Health Organization grading may assist in stratifying patients in terms of the risk of progressive clinical courses. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. The four and a half LIM domains 2 (FHL2) regulates ovarian granulosa cell tumor progression via controlling AKT1 transcription

    OpenAIRE

    Hua, G; He, C; Lv, X; Fan, L; Wang, C; Remmenga, S W; Rodabaugh, K J; Yang, L; Lele, S M; Yang, P; Karpf, A R; Davis, J S; Wang, C

    2016-01-01

    The four and a half LIM domains 2 (FHL2) has been shown to play important roles in the regulation of cell proliferation, survival, adhesion, motility and signal transduction in a cell type and tissue-dependent manner. However, the function of FHL2 in ovarian physiology and pathology is unclear. The aim of this study was to determine the role and functional mechanism of FHL2 in the progression of ovarian granulosa cell tumors (GCTs). Immunohistochemical analysis indicated that FHL2 was overexp...

  2. Radiographic progression is associated with resolution of systemic inflammation in patients with axial spondylarthritis treated with tumor necrosis factor α inhibitors

    DEFF Research Database (Denmark)

    Pedersen, Susanne Juhl; Sørensen, Inge Juul; Lambert, Robert G W

    2011-01-01

    To investigate the relationship of circulating biomarkers of inflammation (C-reactive protein [CRP], interleukin-6 [IL-6], and YKL-40), angiogenesis (vascular endothelial growth factor), cartilage turnover (C-terminal crosslinking telopeptide of type II collagen [CTX-II], total aggrecan, matrix...... metalloproteinase 3 [MMP-3], and cartilage oligomeric matrix protein [COMP]), and bone turnover (CTX-I and osteocalcin) to inflammation on magnetic resonance imaging (MRI) and radiographic progression in patients with axial spondylarthritis (SpA) beginning tumor necrosis factor α (TNFα) inhibitor therapy....

  3. Macrophages support splenic erythropoiesis in 4T1 tumor-bearing mice.

    Directory of Open Access Journals (Sweden)

    Min Liu

    Full Text Available Anemia is a common complication of cancer; a role of spleen in tumor-stress erythropoiesis has been suggested. However, the molecular mechanisms involved in the splenic erythropoiesis following tumor maintenance remain poorly understood. Here we show that tumor development blocks medullar erythropoiesis by granulocyte colony-stimulating factor (G-CSF and then causes anemia in murine 4T1 breast tumor-bearing mice. Meanwhile, tumor-stress promotes splenic erythropoiesis. Splenectomy worsened tumor-induced anemia, and reduced tumor volume and tumor weight, indicating the essential role of spleen in tumor-stress erythropoiesis and tumor growth. Tumor progression of these mice led to increased amounts of bone morphogenetic protein 4 (BMP4 in spleen. The in vivo role of macrophages in splenic erythropoiesis under tumor-stress conditions was investigated. Macrophage depletion by injecting liposomal clodronate decreased the expression of BMP4, inhibited splenic erythropoiesis, aggravated the tumor-induced anemia and suppressed tumor growth. Our results provide insight that macrophages and BMP4 are positive regulators of splenic erythropoiesis in tumor pathological situations. These findings reveal that during the tumor-stress period, the microenvironment of the spleen is undergoing changes, which contributes to adopt a stress erythropoietic fate and supports the expansion and differentiation of stress erythroid progenitors, thereby replenishing red blood cells and promoting tumor growth.

  4. Radioimmunoassays for tumor diagnosis

    International Nuclear Information System (INIS)

    Dressler, J.

    1983-01-01

    Aside from imaging techniques several (radio-)immunological analyses are used for tumor diagnosis. Oncofetal antigens, for instance the carcinoembryonic antigen (CEA) and alpha-fetoprotein (AFP), have become the most important substances for many malignancies. However, nearly all of the so-called tumor markers are not suitable for early diagnosis or screening either because of low sensitivity or low tumor specifity. On the other hand follow-up measurements give a very sensitive index of the success of treatment and may indicate tumor progression when other signs are still not present. In some carcinomas and under some clinical circumstances tumorspecific markers are available and mandatory for detection and/or staging: AFP in hepatoma, acid phosphatase in metastasizing carcinoma of the prostate and serum thyreoglobulin in differentiated thyroid cancer. (orig.) [de

  5. Tumor Microenvironment Modulation via Gold Nanoparticles Targeting Malicious Exosomes: Implications for Cancer Diagnostics and Therapy

    Directory of Open Access Journals (Sweden)

    Catarina Roma-Rodrigues

    2017-01-01

    Full Text Available Exosomes are nanovesicles formed in the endosomal pathway with an important role in paracrine and autocrine cell communication. Exosomes secreted by cancer cells, malicious exosomes, have important roles in tumor microenvironment maturation and cancer progression. The knowledge of the role of exosomes in tumorigenesis prompted a new era in cancer diagnostics and therapy, taking advantage of the use of circulating exosomes as tumor biomarkers due to their stability in body fluids and targeting malignant exosomes’ release and/or uptake to inhibit or delay tumor development. In recent years, nanotechnology has paved the way for the development of a plethora of new diagnostic and therapeutic platforms, fostering theranostics. The unique physical and chemical properties of gold nanoparticles (AuNPs make them suitable vehicles to pursuit this goal. AuNPs’ properties such as ease of synthesis with the desired shape and size, high surface:volume ratio, and the possibility of engineering their surface as desired, potentiate AuNPs’ role in nanotheranostics, allowing the use of the same formulation for exosome detection and restraining the effect of malicious exosomes in cancer progression.

  6. Tumor Microenvironment Modulation via Gold Nanoparticles Targeting Malicious Exosomes: Implications for Cancer Diagnostics and Therapy.

    Science.gov (United States)

    Roma-Rodrigues, Catarina; Raposo, Luís R; Cabral, Rita; Paradinha, Fabiana; Baptista, Pedro V; Fernandes, Alexandra R

    2017-01-14

    Exosomes are nanovesicles formed in the endosomal pathway with an important role in paracrine and autocrine cell communication. Exosomes secreted by cancer cells, malicious exosomes, have important roles in tumor microenvironment maturation and cancer progression. The knowledge of the role of exosomes in tumorigenesis prompted a new era in cancer diagnostics and therapy, taking advantage of the use of circulating exosomes as tumor biomarkers due to their stability in body fluids and targeting malignant exosomes' release and/or uptake to inhibit or delay tumor development. In recent years, nanotechnology has paved the way for the development of a plethora of new diagnostic and therapeutic platforms, fostering theranostics. The unique physical and chemical properties of gold nanoparticles (AuNPs) make them suitable vehicles to pursuit this goal. AuNPs' properties such as ease of synthesis with the desired shape and size, high surface:volume ratio, and the possibility of engineering their surface as desired, potentiate AuNPs' role in nanotheranostics, allowing the use of the same formulation for exosome detection and restraining the effect of malicious exosomes in cancer progression.

  7. A Novel Tumor Antigen and Foxp3 Dual Targeting Tumor Cell Vaccine Enhances the Immunotherapy in a Murine Model of Renal Cell Carcinoma

    Science.gov (United States)

    2015-12-01

    MDSCs facilitate tumor progression by impairing T-cell and natural killer (NK)–cell activation (9) and by modulating angiogenesis. Preclinical data...tasquinimod. Left, tumor growth curves by serial calipermeasurements. Right, tumor weights at the endpoint. B, mice were inoculated s.c. with B16...25 mg/kg) was given as daily i.v. injections on days 3 to 6. Left, tumor growth curves by serial caliper measurements. Right, end-of-treatment tumor

  8. Current diagnosis of tumors developed in the internal auditory canal and cerebellopontine angle

    International Nuclear Information System (INIS)

    Vignaud, J.; Doyon, D.

    1988-01-01

    The introduction of CT scan and, more recently, magnetic resonance imaging, has radically changed the diagnostic approach to tumors developed in the internal auditory canal and cerebellopontine angle. CT scan with intravenous injection visualizes tumors lying in the cerebellopontine angle. Magnetic resonance imaging, especially using gadolinium, is a very accurate means for diagnosing tumors of both the auditory canal and cerebellopontine angle [fr

  9. Kidney cancer progression linked to shifts in tumor metabolism

    Science.gov (United States)

    Investigators in The Cancer Genome Atlas Research Network have uncovered a connection between how tumor cells use energy from metabolic processes and the aggressiveness of the most common form of kidney cancer, clear cell renal cell carcinoma.

  10. Progress in two-dimensional polyacrylamide gel electrophoresis and application in radiation research

    International Nuclear Information System (INIS)

    Wang Zhidong; Chen Xiaohua

    2003-01-01

    Two-dimensional polyacrylamide gel electrophoresis is the key separation technique in proteomics research, which is designed by protein character: molecular weight and PI. Some progress has been made in disease mechanism detection, tumor indicator research and drug development. This technique also has some potential application in radiation research

  11. The Elastin Receptor Complex: a unique matricellular receptor with high anti-tumoral potential

    Directory of Open Access Journals (Sweden)

    Amandine eScandolera

    2016-03-01

    Full Text Available Elastin, one of the longest-lived proteins, confers elasticity to tissues with high mechanical constraints. During aging or pathophysiological conditions such as cancer progression, this insoluble polymer of tropoelastin undergoes an important degradation leading to the release of bioactive elastin-derived peptides (EDP, named elastokines. EDP exhibit several biological functions able to drive tumor development by regulating cell proliferation, invasion, survival, angiogenesis, and matrix metalloproteinase expression in various tumor and stromal cells. Although several receptors have been suggested to bind elastokines (αvβ3 and αvβ5 integrins, galectin-3, their main receptor remains the Elastin Receptor Complex (ERC. This heterotrimer comprises a peripheral subunit, named Elastin Binding Protein (EBP, associated to the Protective Protein/Cathepsin A (PPCA. The latter is bound to a membrane-associated protein called Neuraminidase-1 (Neu-1. The pro-tumoral effects of elastokines have been linked to their binding onto EBP. Additionally, Neu-1 sialidase activity is essential for their signal transduction. Consistently, EDP-EBP interaction and Neu-1 activity emerge as original anti-tumoral targets. Interestingly, besides its direct involvement in cancer progression, the ERC also regulates diabetes outcome and thrombosis, an important risk factor for cancer development and a vascular process highly increased in patients suffering from cancer. In this review, we will describe ERC and elastokines involvement in cancer development suggesting that this unique receptor would be a promising therapeutic target. We will also discuss the pharmacological concepts aiming at blocking its pro-tumoral activities. Finally, its emerging role in cancer-associated complications and pathologies such as diabetes and thrombotic events will be also considered.

  12. Immunoediting: evidence of the multifaceted role of the immune system in self-metastatic tumor growth.

    Science.gov (United States)

    Enderling, Heiko; Hlatky, Lynn; Hahnfeldt, Philip

    2012-07-28

    The role of the immune system in tumor progression has been a subject for discussion for many decades. Numerous studies suggest that a low immune response might be beneficial, if not necessary, for tumor growth, and only a strong immune response can counter tumor growth and thus inhibit progression. We implement a cellular automaton model previously described that captures the dynamical interactions between the cancer stem and non-stem cell populations of a tumor through a process of self-metastasis. By overlaying on this model the diffusion of immune reactants into the tumor from a peripheral source to target cells, we simulate the process of immune-system-induced cell kill on tumor progression. A low cytotoxic immune reaction continuously kills cancer cells and, although at a low rate, thereby causes the liberation of space-constrained cancer stem cells to drive self-metastatic progression and continued tumor growth. With increasing immune system strength, however, tumor growth peaks, and then eventually falls below the intrinsic tumor sizes observed without an immune response. With this increasing immune response the number and proportion of cancer stem cells monotonically increases, implicating an additional unexpected consequence, that of cancer stem cell selection, to the immune response. Cancer stem cells and immune cytotoxicity alone are sufficient to explain the three-step "immunoediting" concept - the modulation of tumor growth through inhibition, selection and promotion.

  13. Tumor Vessel Development and Expansion in Ewing's Sarcoma: A Review of the Vasculogenesis Process and Clinical Trials with Vascular-Targeting Agents

    Science.gov (United States)

    Stewart, Keri S.; Kleinerman, Eugenie S.

    2011-01-01

    Ewing's sarcoma accounts for a disproportionately high portion of the overall pediatric mortality rate compared to its rare incidence in the pediatric population. Little progress has been made since the introduction of traditional chemotherapies, and understanding the biology of the tumor is critical for developing new therapies. Ewing's sarcomas rely on a functional vascular supply, which is formed by a combination of angiogenesis and vasculogenesis. Recent insights into the molecular regulation of bone marrow (BM) cell participation in vascular development have identified VEGF, SDF-1α, and DLL4 as critical players in the vasculogenesis process. Clinical trials using vascular targeting agents, specifically targeting VEGF or DLL4, are underway. PMID:21785569

  14. Progress toward overcoming hypoxia-induced resistance to solid tumor therapy

    International Nuclear Information System (INIS)

    Karakashev, Sergey V; Reginato, Mauricio J

    2015-01-01

    Hypoxic tumors are associated with poor clinical outcome for multiple types of human cancer. This may be due, in part, to hypoxic cancer cells being resistant to anticancer therapy, including radiation therapy, chemotherapy, and targeted therapy. Hypoxia inducible factor 1, a major regulator of cellular response to hypoxia, regulates the expression of genes that are involved in multiple aspects of cancer biology, including cell survival, proliferation, metabolism, invasion, and angiogenesis. Here, we review multiple pathways regulated by hypoxia/hypoxia inducible factor 1 in cancer cells and discuss the latest advancements in overcoming hypoxia-mediated tumor resistance

  15. Contribution of Interstitial Deletion of 21q22.2-3 per se to Prostate Cancer Progression in Tumors Harboring TMPRSS2-ERG Translocations

    Science.gov (United States)

    2015-12-01

    harboring TMPRSS2- ERG translocations PRINCIPAL INVESTIGATOR: Yan Dong CONTRACTING ORGANIZATION: Tulane University New Orleans, LA 70112...0485 to prostate cancer progression in tumors harboring TMPRSS2- ERG translocations 5b. GRANT NUMBER W81XWH-14-1-0485 5c. PROGRAM ELEMENT NUMBER...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT TMPRSS2- ERG gene fusions are present in close to 50% of human prostate cancers. Approximately half of the

  16. Blood Outgrowth Endothelial Cells Increase Tumor Growth Rates and Modify Tumor Physiology: Relevance for Therapeutic Targeting

    Energy Technology Data Exchange (ETDEWEB)

    Pagan, Jonathan, E-mail: jdpagan@uams.edu; Przybyla, Beata; Jamshidi-Parsian, Azemat [Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205 (United States); Gupta, Kalpna [Vascular Biology Center and Division of Hematology-Oncology Transplantation, Department of Medicine, University of Minnesota Medical School, MN 72223 (United States); Griffin, Robert J. [Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205 (United States)

    2013-02-18

    Endothelial cell precursors from human peripheral blood have been shown to home to areas of neovascularization and may assist tumor growth by increasing or fortifying blood vessel growth. In the present study, the influence of these cells on tumor growth and physiology was investigated and the role of these cells as a therapeutic target or in determining treatment sensitivity was tested. After isolation from human blood and expansion in vitro, actively growing cells with verified endothelial phenotype (Blood Outgrowth Endothelial Cell, BOEC) were injected i.v. into tumor bearing mice for three consecutive days. The growth rate was significantly enhanced in relatively small RERF human lung tumors (i.e., less than 150 mm{sup 3}) grown in immunocompromised mice by an average of 1.5-fold while it had no effect when injections were given to animals bearing larger tumors. There were no signs of toxicity or unwanted systemic effects. We also observed evidence of increased perfusion, vessel number, response to 15 Gy radiation and oxygenation in RERF tumors of animals injected with BOECs compared to control tumors. In addition, FSaII murine fibrosarcoma tumors were found to grow faster upon injection of BOECs. When FSaII tumors were subjected to a partial thermal ablation treatment using high intensity focused ultrasound (HIFU) there was consistently elevated detection of fluorescently labeled and i.v. injected endothelial precursors in the tumor when analyzed with optical imaging and/or histological preparations. Importantly, we also observed that BOECs treated with the novel anti-angiogenic peptide anginex in-vitro, show decreased proliferation and increased sensitivity to radiation. In vivo, the normal increase in FSaII tumor growth induced by injected BOECs was blunted by the addition of anginex treatment. It appears that endothelial precursors may significantly contribute to tumor vessel growth, tumor progression and/or repair of tumor damage and may improve the

  17. Blood Outgrowth Endothelial Cells Increase Tumor Growth Rates and Modify Tumor Physiology: Relevance for Therapeutic Targeting

    International Nuclear Information System (INIS)

    Pagan, Jonathan; Przybyla, Beata; Jamshidi-Parsian, Azemat; Gupta, Kalpna; Griffin, Robert J.

    2013-01-01

    Endothelial cell precursors from human peripheral blood have been shown to home to areas of neovascularization and may assist tumor growth by increasing or fortifying blood vessel growth. In the present study, the influence of these cells on tumor growth and physiology was investigated and the role of these cells as a therapeutic target or in determining treatment sensitivity was tested. After isolation from human blood and expansion in vitro, actively growing cells with verified endothelial phenotype (Blood Outgrowth Endothelial Cell, BOEC) were injected i.v. into tumor bearing mice for three consecutive days. The growth rate was significantly enhanced in relatively small RERF human lung tumors (i.e., less than 150 mm 3 ) grown in immunocompromised mice by an average of 1.5-fold while it had no effect when injections were given to animals bearing larger tumors. There were no signs of toxicity or unwanted systemic effects. We also observed evidence of increased perfusion, vessel number, response to 15 Gy radiation and oxygenation in RERF tumors of animals injected with BOECs compared to control tumors. In addition, FSaII murine fibrosarcoma tumors were found to grow faster upon injection of BOECs. When FSaII tumors were subjected to a partial thermal ablation treatment using high intensity focused ultrasound (HIFU) there was consistently elevated detection of fluorescently labeled and i.v. injected endothelial precursors in the tumor when analyzed with optical imaging and/or histological preparations. Importantly, we also observed that BOECs treated with the novel anti-angiogenic peptide anginex in-vitro, show decreased proliferation and increased sensitivity to radiation. In vivo, the normal increase in FSaII tumor growth induced by injected BOECs was blunted by the addition of anginex treatment. It appears that endothelial precursors may significantly contribute to tumor vessel growth, tumor progression and/or repair of tumor damage and may improve the

  18. The retinoblastoma protein regulates hypoxia-inducible genetic programs, tumor cell invasiveness and neuroendocrine differentiation in prostate cancer cells

    Science.gov (United States)

    Labrecque, Mark P.; Takhar, Mandeep K.; Nason, Rebecca; Santacruz, Stephanie; Tam, Kevin J.; Massah, Shabnam; Haegert, Anne; Bell, Robert H.; Altamirano-Dimas, Manuel; Collins, Colin C.; Lee, Frank J.S.; Prefontaine, Gratien G.; Cox, Michael E.; Beischlag, Timothy V.

    2016-01-01

    Loss of tumor suppressor proteins, such as the retinoblastoma protein (Rb), results in tumor progression and metastasis. Metastasis is facilitated by low oxygen availability within the tumor that is detected by hypoxia inducible factors (HIFs). The HIF1 complex, HIF1α and dimerization partner the aryl hydrocarbon receptor nuclear translocator (ARNT), is the master regulator of the hypoxic response. Previously, we demonstrated that Rb represses the transcriptional response to hypoxia by virtue of its association with HIF1. In this report, we further characterized the role Rb plays in mediating hypoxia-regulated genetic programs by stably ablating Rb expression with retrovirally-introduced short hairpin RNA in LNCaP and 22Rv1 human prostate cancer cells. DNA microarray analysis revealed that loss of Rb in conjunction with hypoxia leads to aberrant expression of hypoxia-regulated genetic programs that increase cell invasion and promote neuroendocrine differentiation. For the first time, we have established a direct link between hypoxic tumor environments, Rb inactivation and progression to late stage metastatic neuroendocrine prostate cancer. Understanding the molecular pathways responsible for progression of benign prostate tumors to metastasized and lethal forms will aid in the development of more effective prostate cancer therapies. PMID:27015368

  19. Design and development of progressive tool for manufacturing washer

    Science.gov (United States)

    Annigeri, Ulhas K.; Raghavendra Ravi Kiran, K.; Deepthi, Y. P.

    2017-07-01

    In a progressive tool the raw material is worked at different station to finally fabricate the component. A progressive tool is a lucrative tool for mass production of components. A lot of automobile and other transport industries develop progressive tool for the production of components. The design of tool involves lot of planning and the same amount of skill of process planning is required in the fabrication of the tool. The design also involves use of thumb rules and standard elements as per experience gained in practice. Manufacturing the press tool is a laborious task as special jigs and fixtures have to be designed for the purpose. Assembly of all the press tool elements is another task where use of accurate measuring instruments for alignment of various tool elements is important. In the present study, design and fabrication of progressive press tool for production of washer has been developed and the press tool has been tried out on a mechanical type of press. The components produced are to dimensions.

  20. Targeting fibroblast growth factor receptor signaling inhibits prostate cancer progression.

    Science.gov (United States)

    Feng, Shu; Shao, Longjiang; Yu, Wendong; Gavine, Paul; Ittmann, Michael

    2012-07-15

    Extensive correlative studies in human prostate cancer as well as studies in vitro and in mouse models indicate that fibroblast growth factor receptor (FGFR) signaling plays an important role in prostate cancer progression. In this study, we used a probe compound for an FGFR inhibitor, which potently inhibits FGFR-1-3 and significantly inhibits FGFR-4. The purpose of this study is to determine whether targeting FGFR signaling from all four FGFRs will have in vitro activities consistent with inhibition of tumor progression and will inhibit tumor progression in vivo. Effects of AZ8010 on FGFR signaling and invasion were analyzed using immortalized normal prostate epithelial (PNT1a) cells and PNT1a overexpressing FGFR-1 or FGFR-4. The effect of AZ8010 on invasion and proliferation in vitro was also evaluated in prostate cancer cell lines. Finally, the impact of AZ8010 on tumor progression in vivo was evaluated using a VCaP xenograft model. AZ8010 completely inhibits FGFR-1 and significantly inhibits FGFR-4 signaling at 100 nmol/L, which is an achievable in vivo concentration. This results in marked inhibition of extracellular signal-regulated kinase (ERK) phosphorylation and invasion in PNT1a cells expressing FGFR-1 and FGFR-4 and all prostate cancer cell lines tested. Treatment in vivo completely inhibited VCaP tumor growth and significantly inhibited angiogenesis and proliferation and increased cell death in treated tumors. This was associated with marked inhibition of ERK phosphorylation in treated tumors. Targeting FGFR signaling is a promising new approach to treating aggressive prostate cancer.

  1. New candidate markers of head and neck squamous cell carcinoma progression

    Science.gov (United States)

    Kakurina, G. V.; Kolegova, E. S.; Cheremisina, O. V.; Kulbakin, D. E.; Choinzonov, E. L.

    2017-09-01

    The tumor progression in head and neck squamous cell carcinoma (HNSCC) is one of the main causes of high mortality of the patients with HNSCC. The tumor progression, particularly the metastasis, is characterized by the changes in the composition, functions and structure of different proteins. We have previously shown that serum of HNSCC patients contains the proteins which regulate various cellular processes—adenylyl cyclase associated protein 1 (CAP1), protein phosphatase 1 B (PPM1B), etc. The levels of CAP1 and PPM1B were determined using the enzyme immunoassay. The results of this study show that CAP1 and PPM1B take a part in the progression of HNSCC. The levels of CAP1 and PPM1B in the tumor and in morphologically normal tissue depended on the prevalence of the tumor process. The CAP1 and PPM1B levels were significantly higher in tumor tissue of the patients with regional metastasis. Our data allow assuming the potential possibility for predicting the outcome of the HNSCC measuring the level of tissue CAP1.

  2. Indian Hedgehog Controls Proliferation and Differentiation in Skin Tumorigenesis and Protects against Malignant Progression

    Directory of Open Access Journals (Sweden)

    Parisa Kakanj

    2013-07-01

    Full Text Available Mutations in the hedgehog pathway drive the formation of tumors in many different organs, including the development of basal cell carcinoma in the skin. However, little is known about the role of epidermal Indian hedgehog (Ihh in skin physiology. Using mouse genetics, we identified overlapping and distinct functions of Ihh in different models of epidermal tumorigenesis. Epidermal deletion of Ihh resulted in increased formation of benign squamous papilloma. Strikingly, Ihh-deficient mice showed an increase in malignant squamous cell carcinoma and developed lung and lymph node metastases. In a sebaceous gland tumor model, Ihh deficiency inhibited tumor cell differentiation. More mechanistically, IHH stimulated cell proliferation by activating the transcription factor GLI2 in human keratinocytes and human tumors. Thus, our results uncover important functions for Ihh signaling in controlling proliferation, differentiation, malignant progression, and metastasis of epithelial cancer, establishing Ihh as a gatekeeper for controlling the grade of tumor malignancy.

  3. MR imaging-guided percutaneous cryotherapy for lung tumors: initial experience.

    Science.gov (United States)

    Liu, Shangang; Ren, Ruimei; Liu, Ming; Lv, Yubo; Li, Bin; Li, Chengli

    2014-09-01

    To evaluate prospectively the initial clinical experience of magnetic resonance (MR) imaging-guided percutaneous cryotherapy of lung tumors. MR imaging-guided percutaneous cryotherapy was performed in 21 patients with biopsy-proven lung tumors (12 men, 9 women; age range, 39-79 y). Follow-up consisted of contrast-enhanced chest computed tomography (CT) scan performed at 3-month intervals to assess tumor control; CT scanning was carried out for 12 months or until death. Cryotherapy procedures were successfully completed in all 21 patients. Pneumothorax occurred in 7 (33.3%) of 21 patients. Chest tube placement was required in one (4.8%) case. Hemoptysis was exhibited by 11 (52.4%) patients, and pleural effusion occurred in 6 (28.6%) patients. Other complications were observed in 14 (66.7%) patients. The mean follow-up period was 10.5 months (range, 9-12 mo) in patients who died. At month 12 of follow-up, 7 (33.3%) patients had a complete response to therapy, and 10 (47.6%) patients showed a partial response. In addition, two patients had stable disease, and two patients developed progressive disease; one patient developed a tumor in the liver, and the other developed a tumor in the brain. The 1-year local control rate was 81%, and 1-year survival rate was 90.5%. MR imaging-guided percutaneous cryotherapy appears feasible, effective, and minimally invasive for lung tumors. Copyright © 2014 SIR. Published by Elsevier Inc. All rights reserved.

  4. Non-invasive thermal IR detection of breast tumor development in vivo

    Science.gov (United States)

    Case, Jason R.; Young, Madison A.; Dréau, D.; Trammell, Susan R.

    2015-03-01

    Lumpectomy coupled with radiation therapy and/or chemotherapy comprises the treatment of breast cancer for many patients. We are developing an enhanced thermal IR imaging technique that can be used in real-time to guide tissue excision during a lumpectomy. This novel enhanced thermal imaging method is a combination of IR imaging (8- 10 μm) and selective heating of blood (~0.5 °C) relative to surrounding water-rich tissue using LED sources at low powers. Post-acquisition processing of these images highlights temporal changes in temperature and is sensitive to the presence of vascular structures. In this study, fluorescent and enhanced thermal imaging modalities were used to estimate breast cancer tumor volumes as a function of time in 19 murine subjects over a 30-day study period. Tumor volumes calculated from fluorescent imaging follow an exponential growth curve for the first 22 days of the study. Cell necrosis affected the tumor volume estimates based on the fluorescent images after Day 22. The tumor volumes estimated from enhanced thermal imaging show exponential growth over the entire study period. A strong correlation was found between tumor volumes estimated using fluorescent imaging and the enhanced IR images, indicating that enhanced thermal imaging is capable monitoring tumor growth. Further, the enhanced IR images reveal a corona of bright emission along the edges of the tumor masses. This novel IR technique could be used to estimate tumor margins in real-time during surgical procedures.

  5. Brainstem tumors: Current management and future directions

    Directory of Open Access Journals (Sweden)

    Pablo F Recinos

    2012-01-01

    Full Text Available Tumors arising in the brainstem comprise 10-20% of all pediatric central nervous system (CNS tumors and account for a small percentage in adults. The prognosis for these tumors was considered uniformly poor prior to the era of modern neuroimaging and the location was fraught with disaster being considered a ′no man′s land′ for neurosurgeons. Following the introduction of advanced imaging modalities and neurophysiological monitoring, striking progress has occurred in the management of these lesions. Brainstem tumors are presently classified based on their anatomic location, focality, and histopathology. This article reviews the current classification of brainstem tumors, current management options, and future directions in the treatment for these rare tumors.

  6. Virilizing tumor of the ovary. Presentation of a case

    International Nuclear Information System (INIS)

    Ovies Carballo, Gisel; Yanes Quesada, Marelys; Cruz Hernandez, Jeddu

    2008-01-01

    Ovarian tumors are divided into functioning and non-functioning. Those presenting endocrine activity and producing androgenization, such as the tumors of Sertoli cells are within the latter group. A case of a 50-year-old female patient that clinically showed signs of progressive virilization was presented. A tumor on the right ovary was found by ultrasound and CAT. After performing surgery, the existence of a Sertoli-Leydig cell tumor was confirmed

  7. Serum Thyroglobulin Doubling Time in Progressive Thyroid Cancer

    NARCIS (Netherlands)

    Rossing, R.M.; Jentzen, W.; Nagarajah, J.; Bockisch, A.; Gorges, R.

    2016-01-01

    BACKGROUND: Tumor marker doubling time (DT) has been proposed as a prognostic marker for various types of cancer. The present study analyzed the DT of the thyroid-specific tumor marker thyroglobulin (Tg), focusing on patients with progressive differentiated thyroid cancer (DTC). METHODS: A total of

  8. ErbB2 Pathway Activation upon Smad4 Loss Promotes Lung Tumor Growth and Metastasis.

    Science.gov (United States)

    Liu, Jian; Cho, Sung-Nam; Akkanti, Bindu; Jin, Nili; Mao, Jianqiang; Long, Weiwen; Chen, Tenghui; Zhang, Yiqun; Tang, Ximing; Wistub, Ignacio I; Creighton, Chad J; Kheradmand, Farrah; DeMayo, Francesco J

    2015-03-03

    Lung cancer remains the leading cause of cancer death. Genome sequencing of lung tumors from patients with squamous cell carcinoma has identified SMAD4 to be frequently mutated. Here, we use a mouse model to determine the molecular mechanisms by which Smad4 loss leads to lung cancer progression. Mice with ablation of Pten and Smad4 in airway epithelium develop metastatic adenosquamous tumors. Comparative transcriptomic and in vivo cistromic analyses determine that loss of PTEN and SMAD4 results in ELF3 and ErbB2 pathway activation due to decreased expression of ERRFI1, a negative regulator of ERBB2 in mouse and human cells. The combinatorial inhibition of ErbB2 and Akt signaling attenuate tumor progression and cell invasion, respectively. Expression profile analysis of human lung tumors substantiated the importance of the ErbB2/Akt/ELF3 signaling pathway as both a prognostic biomarker and a therapeutic drug target for treating lung cancer. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Development of tumor-targeted near infrared probes for fluorescence guided surgery.

    Science.gov (United States)

    Kelderhouse, Lindsay E; Chelvam, Venkatesh; Wayua, Charity; Mahalingam, Sakkarapalayam; Poh, Scott; Kularatne, Sumith A; Low, Philip S

    2013-06-19

    Complete surgical resection of malignant disease is the only reliable method to cure cancer. Unfortunately, quantitative tumor resection is often limited by a surgeon's ability to locate all malignant disease and distinguish it from healthy tissue. Fluorescence-guided surgery has emerged as a tool to aid surgeons in the identification and removal of malignant lesions. While nontargeted fluorescent dyes have been shown to passively accumulate in some tumors, the resulting tumor-to-background ratios are often poor, and the boundaries between malignant and healthy tissues can be difficult to define. To circumvent these problems, our laboratory has developed high affinity tumor targeting ligands that bind to receptors that are overexpressed on cancer cells and deliver attached molecules selectively into these cells. In this study, we explore the use of two tumor-specific targeting ligands (i.e., folic acid that targets the folate receptor (FR) and DUPA that targets prostate specific membrane antigen (PSMA)) to deliver near-infrared (NIR) fluorescent dyes specifically to FR and PSMA expressing cancers, thereby rendering only the malignant cells highly fluorescent. We report here that all FR- and PSMA-targeted NIR probes examined bind cultured cancer cells in the low nanomolar range. Moreover, upon intravenous injection into tumor-bearing mice with metastatic disease, these same ligand-NIR dye conjugates render receptor-expressing tumor tissues fluorescent, enabling their facile resection with minimal contamination from healthy tissues.

  10. Tumor Hypoxia: Causative Mechanisms, Microregional Heterogeneities, and the Role of Tissue-Based Hypoxia Markers.

    Science.gov (United States)

    Vaupel, Peter; Mayer, Arnulf

    Tumor hypoxia is a hallmark of solid malignant tumor growth, profoundly influences malignant progression and contributes to the development of therapeutic resistance. Pathogenesis of tumor hypoxia is multifactorial, with contributions from both acute and chronic factors. Spatial distribution of hypoxia within tumors is markedly heterogeneous and often changes over time, e.g., during a course of radiotherapy. Substantial changes in the oxygenation status can occur within the distance of a few cell layers, explaining the inability of currently used molecular imaging techniques to adequately assess this crucial trait. Due to the possible importance of tumor hypoxia for clinical decision-making, there is a great demand for molecular tools which may provide the necessary resolution down to the single cell level. Exogenous and endogenous markers of tumor hypoxia have been investigated for this purpose. Their potential use may be greatly enhanced by multiparametric in situ methods in experimental and human tumor tissue.

  11. Disruption of lysosome function promotes tumor growth and metastasis in Drosophila.

    Science.gov (United States)

    Chi, Congwu; Zhu, Huanhu; Han, Min; Zhuang, Yuan; Wu, Xiaohui; Xu, Tian

    2010-07-09

    Lysosome function is essential to many physiological processes. It has been suggested that deregulation of lysosome function could contribute to cancer. Through a genetic screen in Drosophila, we have discovered that mutations disrupting lysosomal degradation pathway components contribute to tumor development and progression. Loss-of-function mutations in the Class C vacuolar protein sorting (VPS) gene, deep orange (dor), dramatically promote tumor overgrowth and invasion of the Ras(V12) cells. Knocking down either of the two other components of the Class C VPS complex, carnation (car) and vps16A, also renders Ras(V12) cells capable for uncontrolled growth and metastatic behavior. Finally, chemical disruption of the lysosomal function by feeding animals with antimalarial drugs, chloroquine or monensin, leads to malignant tumor growth of the Ras(V12) cells. Taken together, our data provide evidence for a causative role of lysosome dysfunction in tumor growth and invasion and indicate that members of the Class C VPS complex behave as tumor suppressors.

  12. Chimeric antigen receptor T cells: a novel therapy for solid tumors

    Directory of Open Access Journals (Sweden)

    Shengnan Yu

    2017-03-01

    Full Text Available Abstract The chimeric antigen receptor T (CAR-T cell therapy is a newly developed adoptive antitumor treatment. Theoretically, CAR-T cells can specifically localize and eliminate tumor cells by interacting with the tumor-associated antigens (TAAs expressing on tumor cell surface. Current studies demonstrated that various TAAs could act as target antigens for CAR-T cells, for instance, the type III variant epidermal growth factor receptor (EGFRvIII was considered as an ideal target for its aberrant expression on the cell surface of several tumor types. CAR-T cell therapy has achieved gratifying breakthrough in hematological malignancies and promising outcome in solid tumor as showed in various clinical trials. The third generation of CAR-T demonstrates increased antitumor cytotoxicity and persistence through modification of CAR structure. In this review, we summarized the preclinical and clinical progress of CAR-T cells targeting EGFR, human epidermal growth factor receptor 2 (HER2, and mesothelin (MSLN, as well as the challenges for CAR-T cell therapy.

  13. Stabilization of beta-catenin induces pancreas tumor formation.

    Science.gov (United States)

    Heiser, Patrick W; Cano, David A; Landsman, Limor; Kim, Grace E; Kench, James G; Klimstra, David S; Taketo, Maketo M; Biankin, Andrew V; Hebrok, Matthias

    2008-10-01

    beta-Catenin signaling within the canonical Wnt pathway is essential for pancreas development. However, the pathway is normally down-regulated in the adult organ. Increased cytoplasmic and nuclear localization of beta-catenin can be detected in nearly all human solid pseudopapillary neoplasms (SPN), a rare tumor with low malignant potential. Conversely, pancreatic ductal adenocarcinoma (PDA) accounts for the majority of pancreatic tumors and is among the leading causes of cancer death. Whereas activating mutations within beta-catenin and other members of the canonical Wnt pathway are rare, recent reports have implicated Wnt signaling in the development and progression of human PDA. Here, we sought to address the role of beta-catenin signaling in pancreas tumorigenesis. Using Cre/lox technology, we conditionally activated beta-catenin in a subset of murine pancreatic cells in vivo. Activation of beta-catenin results in the formation of large pancreatic tumors at a high frequency in adult mice. These tumors resemble human SPN based on morphologic and immunohistochemical comparisons. Interestingly, stabilization of beta-catenin blocks the formation of pancreatic intraepithelial neoplasia (PanIN) in the presence of an activating mutation in Kras that is known to predispose individuals to PDA. Instead, mice in which beta-catenin and Kras are concurrently activated develop distinct ductal neoplasms that do not resemble PanIN lesions. These results demonstrate that activation of beta-catenin is sufficient to induce pancreas tumorigenesis. Moreover, they indicate that the sequence in which oncogenic mutations are acquired has profound consequences on the phenotype of the resulting tumor.

  14. Development of real-time tumor tracking system for stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Yamanaka, Seiji; Sasagawa, Tsuyoshi; Uno, Yukimichi

    2011-01-01

    We are now developing the real-time tumor tracking system for stereotactic radiotherapy (SRT) to provide precise information on the location of a tumor and to reduce the irradiation to healthy tissue in a patient. The system has the following features: A motion tracking and processing unit recognizes a gold marker inserted in or near a tumor in real time by the pattern matching of a predetermined template image and acquired X-ray fluoroscopic images. When the gold marker is within a planned area, that is to say, when a tumor enters a target irradiation area, a gate signal is sent to a linear accelerator. A railway unit is equipped with two X-ray tubes and two detectors, which are controlled separately with their own drive mechanism. They travel with high accuracy and reproducibility to the best position for monitoring the gold marker. A synchronization controller controls the timing for X-ray fluoroscopy and the gate signals to the linear accelerator. The controller works for two types of detectors: a color X-ray detector and a flat panel detector (FPD). (author)

  15. Anti-angiogenic SPARC peptides inhibit progression of neuroblastoma tumors

    Directory of Open Access Journals (Sweden)

    Tian Yufeng

    2010-06-01

    Full Text Available Abstract Background New, more effective strategies are needed to treat highly aggressive neuroblastoma. Our laboratory has previously shown that full-length Secreted Protein Acidic and Rich in Cysteine (SPARC and a SPARC peptide corresponding to the follistatin domain of the protein (FS-E potently block angiogenesis and inhibit the growth of neuroblastoma tumors in preclinical models. Peptide FS-E is structurally complex and difficult to produce, limiting its potential as a therapeutic in the clinic. Results In this study, we synthesized two smaller and structurally more simple SPARC peptides, FSEN and FSEC, that respectively correspond to the N-and C-terminal loops of peptide FS-E. We show that both peptides FSEN and FSEC have anti-angiogenic activity in vitro and in vivo, although FSEC is more potent. Peptide FSEC also significantly inhibited the growth of neuroblastoma xenografts. Histologic examination demonstrated characteristic features of tumor angiogenesis with structurally abnormal, tortuous blood vessels in control neuroblastoma xenografts. In contrast, the blood vessels observed in tumors, treated with SPARC peptides, were thin walled and structurally more normal. Using a novel method to quantitatively assess blood vessel abnormality we demonstrated that both SPARC peptides induced changes in blood vessel architecture that are consistent with blood vessel normalization. Conclusion Our results demonstrate that SPARC peptide FSEC has potent anti-angiogenic and anti-tumorigenic effects in neuroblastoma. Its simple structure and ease of production indicate that it may have clinical utility in the treatment of high-risk neuroblastoma and other types of pediatric and adult cancers, which depend on angiogenesis.

  16. Cancer stem cells and the tumor microenvironment: interplay in tumor heterogeneity.

    Science.gov (United States)

    Albini, Adriana; Bruno, Antonino; Gallo, Cristina; Pajardi, Giorgio; Noonan, Douglas M; Dallaglio, Katiuscia

    2015-01-01

    Tumor cells able to recapitulate tumor heterogeneity have been tracked, isolated and characterized in different tumor types, and are commonly named Cancer Stem Cells or Cancer Initiating Cells (CSC/CIC). CSC/CIC are disseminated in the tumor mass and are resistant to anti-cancer therapies and adverse conditions. They are able to divide into another stem cell and a "proliferating" cancer cell. They appear to be responsible for disease recurrence and metastatic dissemination even after apparent eradication of the primary tumor. The modulation of CSC/CIC activities by the tumor microenvironment (TUMIC) is still poorly known. CSC/CIC may mutually interact with the TUMIC in a special and unique manner depending on the TUMIC cells or proteins encountered. The TUMIC consists of extracellular matrix components as well as cellular players among which endothelial, stromal and immune cells, providing and responding to signals to/from the CSC/CIC. This interplay can contribute to the mechanisms through which CSC/CIC may reside in a dormant state in a tissue for years, later giving rise to tumor recurrence or metastasis in patients. Different TUMIC components, including the connective tissue, can differentially activate CIC/CSC in different areas of a tumor and contribute to the generation of cancer heterogeneity. Here, we review possible networking activities between the different components of the tumor microenvironment and CSC/CIC, with a focus on its role in tumor heterogeneity and progression. We also summarize novel therapeutic options that could target both CSC/CIC and the microenvironment to elude resistance mechanisms activated by CSC/CIC, responsible for disease recurrence and metastases.

  17. Obesity, expression of adipocytokines, and macrophage infiltration in canine mammary tumors.

    Science.gov (United States)

    Lim, H Y; Im, K S; Kim, N H; Kim, H W; Shin, J I; Sur, J H

    2015-03-01

    Obesity influences the development, progression and prognosis of human breast cancer and canine mammary cancer (MC) but the precise underlying mechanism is not well-documented in the fields of either human or veterinary oncology. In the present study, the expression of major adipocytokines, including leptin, adiponectin, and leptin receptor (ObR) in benign (n = 28) and malignant (n = 70) canine mammary tumors was investigated by immunohistochemistry and on the basis of the subject's body condition score (BCS). To evaluate the relationship between obesity and chronic inflammation of the mammary gland, macrophages infiltrating within and around tumoral areas were counted. The mean age of MC development was lower in overweight or obese dogs (9.0 ± 1.8 years) than in lean dogs or optimal bodyweight (10.2 ± 2.9 years), and the evidence of lymphatic invasion of carcinoma cells was found more frequently in overweight or obese group than in lean or optimal groups. Decreased adiponectin expression and increased macrophage numbers in overweight or obese subjects were significantly correlated with factors related to a poor prognosis, such as high histological grade and lymphatic invasion. Leptin expression was correlated with progesterone receptor status, and ObR expression was correlated with estrogen receptor status of MCs, regardless of BCS. Macrophage infiltration within and around the tumor may play an important role in tumor progression and metastasis in obese female dogs and may represent a prognostic factor for canine MCs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. An inhibitor of K+ channels modulates human endometrial tumor-initiating cells

    Directory of Open Access Journals (Sweden)

    Leslie Kimberly K

    2011-08-01

    Full Text Available Abstract Background Many potassium ion (K+ channels function as oncogenes to sustain growth of solid tumors, but their role in cancer progression is not well understood. Emerging evidence suggests that the early progenitor cancer cell subpopulation, termed tumor initiating cells (TIC, are critical to cancer progression. Results A non-selective antagonist of multiple types of K+ channels, tetraethylammonium (TEA, was found to suppress colony formation in endometrial cancer cells via inhibition of putative TIC. The data also indicated that withdrawal of TEA results in a significant enhancement of tumorigenesis. When the TIC-enriched subpopulation was isolated from the endometrial cancer cells, TEA was also found to inhibit growth in vitro. Conclusions These studies suggest that the activity of potassium channels significantly contributes to the progression of endometrial tumors, and the antagonists of potassium channels are candidate anti-cancer drugs to specifically target tumor initiating cells in endometrial cancer therapy.

  19. Biological stoichiometry in tumor micro-environments.

    Directory of Open Access Journals (Sweden)

    Irina Kareva

    Full Text Available Tumors can be viewed as evolving ecological systems, in which heterogeneous populations of cancer cells compete with each other and somatic cells for space and nutrients within the ecosystem of the human body. According to the growth rate hypothesis (GRH, increased phosphorus availability in an ecosystem, such as the tumor micro-environment, may promote selection within the tumor for a more proliferative and thus potentially more malignant phenotype. The applicability of the GRH to tumor growth is evaluated using a mathematical model, which suggests that limiting phosphorus availability might promote intercellular competition within a tumor, and thereby delay disease progression. It is also shown that a tumor can respond differently to changes in its micro-environment depending on the initial distribution of clones within the tumor, regardless of its initial size. This suggests that composition of the tumor as a whole needs to be evaluated in order to maximize the efficacy of therapy.

  20. Toward the development of intrafraction tumor deformation tracking using a dynamic multi-leaf collimator

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Yuanyuan; O’Brien, Ricky T.; Shieh, Chun-Chien; Keall, Paul J., E-mail: paul.keall@sydney.edu.au [Radiation Physics Laboratory, University of Sydney, NSW 2006 (Australia); Booth, Jeremy T. [Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065 (Australia)

    2014-06-15

    Purpose: Intrafraction deformation limits targeting accuracy in radiotherapy. Studies show tumor deformation of over 10 mm for both single tumor deformation and system deformation (due to differential motion between primary tumors and involved lymph nodes). Such deformation cannot be adapted to with current radiotherapy methods. The objective of this study was to develop and experimentally investigate the ability of a dynamic multi-leaf collimator (DMLC) tracking system to account for tumor deformation. Methods: To compensate for tumor deformation, the DMLC tracking strategy is to warp the planned beam aperture directly to conform to the new tumor shape based on real time tumor deformation input. Two deformable phantoms that correspond to a single tumor and a tumor system were developed. The planar deformations derived from the phantom images in beam's eye view were used to guide the aperture warping. An in-house deformable image registration software was developed to automatically trigger the registration once new target image was acquired and send the computed deformation to the DMLC tracking software. Because the registration speed is not fast enough to implement the experiment in real-time manner, the phantom deformation only proceeded to the next position until registration of the current deformation position was completed. The deformation tracking accuracy was evaluated by a geometric target coverage metric defined as the sum of the area incorrectly outside and inside the ideal aperture. The individual contributions from the deformable registration algorithm and the finite leaf width to the tracking uncertainty were analyzed. Clinical proof-of-principle experiment of deformation tracking using previously acquired MR images of a lung cancer patient was implemented to represent the MRI-Linac environment. Intensity-modulated radiation therapy (IMRT) treatment delivered with enabled deformation tracking was simulated and demonstrated. Results: The first

  1. Patterns of somatic alterations between matched primary and metastatic colorectal tumors characterized by whole-genome sequencing.

    Science.gov (United States)

    Xie, Tao; Cho, Yong Beom; Wang, Kai; Huang, Donghui; Hong, Hye Kyung; Choi, Yoon-La; Ko, Young Hyeh; Nam, Do-Hyun; Jin, Juyoun; Yang, Heekyoung; Fernandez, Julio; Deng, Shibing; Rejto, Paul A; Lee, Woo Yong; Mao, Mao

    2014-10-01

    Colorectal cancer (CRC) patients have poor prognosis after formation of distant metastasis. Understanding the molecular mechanisms by which genetic changes facilitate metastasis is critical for the development of targeted therapeutic strategies aimed at controlling disease progression while minimizing toxic side effects. A comprehensive portrait of somatic alterations in CRC and the changes between primary and metastatic tumors has yet to be developed. We performed whole genome sequencing of two primary CRC tumors and their matched liver metastases. By comparing to matched germline DNA, we catalogued somatic alterations at multiple scales, including single nucleotide variations, small insertions and deletions, copy number aberrations and structural variations in both the primary and matched metastasis. We found that the majority of these somatic alterations are present in both sites. Despite the overall similarity, several de novo alterations in the metastases were predicted to be deleterious, in genes including FBXW7, DCLK1 and FAT2, which might contribute to the initiation and progression of distant metastasis. Through careful examination of the mutation prevalence among tumor cells at each site, we also proposed distinct clonal evolution patterns between primary and metastatic tumors in the two cases. These results suggest that somatic alterations may play an important role in driving the development of colorectal cancer metastasis and present challenges and opportunities when considering the choice of treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. CXCL12 MODULATION OF CXCR4 AND CXCR7 ACTIVITY IN HUMAN GLIOBLASTOMA STEM-LIKE CELLS AND REGULATION OF THE TUMOR MICROENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Roberto eWurth

    2014-05-01

    Full Text Available Chemokines are crucial autocrine and paracrine players in tumor development. In particular, CXCL12, through its receptors CXCR4 and CXCR7, affects tumor progression by controlling cancer cell survival, proliferation and migration, and, indirectly, via angiogenesis or recruiting immune cells.Glioblastoma (GBM is the most prevalent primary malignant brain tumor in adults and despite current multimodal therapies it remains almost incurable. The aggressive and recurrent phenotype of GBM is ascribed to high growth rate, invasiveness to normal brain, marked angiogenesis, ability to escape the immune system and resistance to standard of care therapies. Tumor molecular and cellular heterogeneity severely hinders GBM therapeutic improvement. In particular, a subpopulation of chemo- and radio-therapy resistant tumorigenic cancer stem–like cells (CSCs is believed to be the main responsible for tumor cell dissemination to the brain.GBM cells display heterogeneous expression levels of CXCR4 and CXCR7 that are overexpressed in CSCs, representing a molecular correlate for the invasive potential of GBM. The microenvironment contribution in GBM development is increasingly emphasized. An interplay exists between CSCs, differentiated GBM cells, and the microenvironment, mainly through secreted chemokines (e.g. CXCL12 causing recruitment of fibroblasts, endothelial, mesenchymal and inflammatory cells to the tumor, via specific receptors such as CXCR4.This review covers recent developments on the role of CXCL12/CXCR4-CXCR7 networks in GBM progression and the potential translational impact of their targeting. The biological and molecular understanding of the heterogeneous GBM cell behavior, phenotype and signaling is still limited. Progress in the identification of chemokine-dependent mechanisms that affect GBM cell survival, trafficking and chemo-attractive functions, opens new perspectives for development of more specific therapeutic approaches that include

  3. Human Papillomavirus Infections and Cancer Stem Cells of Tumors from the Uterine Cervix

    Science.gov (United States)

    López, Jacqueline; Ruíz, Graciela; Organista-Nava, Jorge; Gariglio, Patricio; García-Carrancá, Alejandro

    2012-01-01

    Different rate of development of productive infections (as low grade cervical intraepithelial neoplasias), or high grade lesions and cervical malignant tumors associated with infections of the Transformation zone (TZ) by High-Risk Human Papillomavirus (HR-HPV), could suggest that different epithelial host target cells could exist. If there is more than one target cell, their differential infection by HR-HPV may play a central role in the development of cervical cancer. Recently, the concept that cancer might arise from a rare population of cells with stem cell-like properties has received support in several solid tumors, including cervical cancer (CC). According to the cancer stem cell (CSC) hypothesis, CC can now be considered a disease in which stem cells of the TZ are converted to cervical cancer stem cells by the interplay between HR-HPV viral oncogenes and cellular alterations that are thought to be finally responsible for tumor initiation and maintenance. Current studies of CSC could provide novel insights regarding tumor initiation and progression, their relation with viral proteins and interplay with the tumor micro-environment. This review will focus on the biology of cervical cancer stem cells, which might contribute to our understanding of the mechanisms responsible for cervical tumor development. PMID:23341858

  4. Simultaneous resection of pulmonary tumor following cardiovascular surgery

    Directory of Open Access Journals (Sweden)

    Ryosuke Kaku

    2017-03-01

    Conclusion: The simultaneous resection of pulmonary tumor following cardiovascular surgery is safely performed, and is useful for the pathological diagnosis of the tumor. Further studies are warranted, however, this procedure may contribute to controlling the progression of lung cancer in patients with cardiovascular disease with comorbidities.

  5. Association between absolute tumor burden and serum bone-specific alkaline phosphatase in canine appendicular osteosarcoma.

    Science.gov (United States)

    Sternberg, R A; Pondenis, H C; Yang, X; Mitchell, M A; O'Brien, R T; Garrett, L D; Helferich, W G; Hoffmann, W E; Fan, T M

    2013-01-01

    In dogs with appendicular osteosarcoma (OSA), increased pretreatment serum bone-specific alkaline phosphatase (BALP) activity is a negative prognostic factor, associated with shorter disease-free intervals and survival times, but a biologic basis for observed differential serum BALP activities in canine OSA patients remains incompletely defined. Serum BALP activity will correlate with absolute tumor burden in dogs with OSA. This study included 96 client-owned dogs with appendicular OSA. In canine OSA cell lines, the expression and membranous release of BALP was evaluated in vitro. The correlation between serum BALP activity and radiographic primary tumor size was evaluated in OSA-bearing dogs. In dogs developing visceral OSA metastases, serial changes in serum BALP activities were evaluated in relation to progression of macroscopic metastases, and visceral metastatic OSA cells were evaluated for BALP expression. In vitro, BALP expression was not associated with either tumorigenic or metastatic phenotype, rather the quantity of membranous BALP released was proportional with cell density. In dogs devoid of macroscopic metastases, there was a positive correlation between serum BALP activity and absolute primary tumor size. In dogs with progressive OSA metastases, serum BALP activity increased and coincided with the development of macroscopic metastases. OSA cells derived from visceral metastatic lesions retained BALP expression. Tumor burden is a determinant of serum BALP activity in dogs with appendicular OSA. The association between increased pretreatment BALP activity and negative clinical prognosis may simply be attributed to greater initial tumor burden, and consequently more advanced tumor stage. Copyright © 2013 by the American College of Veterinary Internal Medicine.

  6. G-protein inwardly rectifying potassium channel 1 (GIRK 1) gene expression correlates with tumor progression in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Takanami, Iwao; Inoue, Yoshimasa; Gika, Masatoshi

    2004-01-01

    G-protein inwardly rectifying potassium channel 1 (GIRK1) is thought to play a role in cell proliferation in cancer, and GIRK1 gene expression level may define a more aggressive phenotype. We detected GIRK1 expression in tissue specimens from patients with non-small cell lung cancers (NSCLCs) and assessed their clinical characteristics. Using reverse transcription-polymerase chain reaction (RT-PCR) analyses, we quantified the expression of GIRK1 in 72 patients with NSCLCs to investigate the relationship between GIRK1 expression and clinicopathologic factors and prognosis. In 72 NSCLC patients, 50 (69%) samples were evaluated as having high GIRK1 gene expression, and 22 (31%) were evaluated as having low GIRK1 gene expression. GIRK1 gene expression was significantly associated with lymph node metastasis, stage (p = 0.0194 for lymph node metastasis; p = 0.0207 for stage). The overall and stage I survival rates for patients with high GIRK1 gene expressed tumors was significantly worse than for those individuals whose tumors had low GIRK1 expression (p = 0.0004 for the overall group; p = 0.0376 for stage I). These data indicate that GIRK1 may contribute to tumor progression and GIRK1 gene expression can serve as a useful prognostic marker in the overall and stage I NSCLCs

  7. The anti-tumor activity of a neutralizing nanobody targeting leptin receptor in a mouse model of melanoma.

    Directory of Open Access Journals (Sweden)

    Travis McMurphy

    Full Text Available Environmental and genetic activation of a brain-adipocyte axis inhibits cancer progression. Leptin is the primary peripheral mediator of this anticancer effect in a mouse model of melanoma. In this study we assessed the effect of a leptin receptor antagonist on melanoma progression. Local administration of a neutralizing nanobody targeting the leptin receptor at low dose adjacent to tumor decreased tumor mass with no effects on body weight or food intake. In contrast, systemic administration of the nanobody failed to suppress tumor growth. Daily intraperitoneal injection of high-dose nanobody led to weight gain, hyperphagia, increased adiposity, hyperleptinemia, and hyperinsulinemia, and central effects mimicking leptin deficiency. The blockade of central actions of leptin by systemic delivery of nanobody may compromise its anticancer effect, underscoring the need to develop peripherally acting leptin antagonists coupled with efficient cancer-targeting delivery.

  8. The anti-tumor activity of a neutralizing nanobody targeting leptin receptor in a mouse model of melanoma.

    Science.gov (United States)

    McMurphy, Travis; Xiao, Run; Magee, Daniel; Slater, Andrew; Zabeau, Lennart; Tavernier, Jan; Cao, Lei

    2014-01-01

    Environmental and genetic activation of a brain-adipocyte axis inhibits cancer progression. Leptin is the primary peripheral mediator of this anticancer effect in a mouse model of melanoma. In this study we assessed the effect of a leptin receptor antagonist on melanoma progression. Local administration of a neutralizing nanobody targeting the leptin receptor at low dose adjacent to tumor decreased tumor mass with no effects on body weight or food intake. In contrast, systemic administration of the nanobody failed to suppress tumor growth. Daily intraperitoneal injection of high-dose nanobody led to weight gain, hyperphagia, increased adiposity, hyperleptinemia, and hyperinsulinemia, and central effects mimicking leptin deficiency. The blockade of central actions of leptin by systemic delivery of nanobody may compromise its anticancer effect, underscoring the need to develop peripherally acting leptin antagonists coupled with efficient cancer-targeting delivery.

  9. Msx and dlx homeogene expression in epithelial odontogenic tumors.

    Science.gov (United States)

    Ruhin-Poncet, Blandine; Ghoul-Mazgar, Sonia; Hotton, Dominique; Capron, Frédérique; Jaafoura, Mohamed Habib; Goubin, Gérard; Berdal, Ariane

    2009-01-01

    Epithelial odontogenic tumors are rare jaw pathologies that raise clinical diagnosis and prognosis dilemmas notably between ameloblastomas and clear cell odontogenic carcinomas (CCOCs). In line with previous studies, the molecular determinants of tooth development-amelogenin, Msx1, Msx2, Dlx2, Dlx3, Bmp2, and Bmp4-were analyzed by RT-PCR, ISH, and immunolabeling in 12 recurrent ameloblastomas and in one case of CCOC. Although Msx1 expression imitates normal cell differentiation in these tumors, other genes showed a distinct pattern depending on the type of tumor and the tissue involved. In benign ameloblastomas, ISH localized Dlx3 transcripts and inconstantly detected Msx2 transcripts in epithelial cells. In the CCOC, ISH established a lack of both Dlx3 and Msx2 transcripts but allowed identification of the antisense transcript of Msx1, which imitates the same scheme of distribution between mesenchyme and epithelium as in the cup stage of tooth development. Furthermore, while exploring the expression pattern of signal molecules by RT-PCR, Bmp2 was shown to be completely inactivated in the CCOC and irregularly noticeable in ameloblastomas. Bmp4 was always expressed in all the tumors. Based on the established roles of Msx and Dlx transcription factors in dental cell fates, these data suggest that their altered expression is a proposed trail to explain the genesis and/or the progression of odontogenic tumors.

  10. The axon guidance molecule semaphorin 3F is a negative regulator of tumor progression and proliferation in ileal neuroendocrine tumors

    Science.gov (United States)

    Vercherat, Cécile; Blanc, Martine; Lepinasse, Florian; Gadot, Nicolas; Couderc, Christophe; Poncet, Gilles; Walter, Thomas; Joly, Marie-Odile; Hervieu, Valérie; Scoazec, Jean-Yves; Roche, Colette

    2015-01-01

    Gastro-intestinal neuroendocrine tumors (GI-NETs) are rare neoplasms, frequently metastatic, raising difficult clinical and therapeutic challenges due to a poor knowledge of their biology. As neuroendocrine cells express both epithelial and neural cell markers, we studied the possible involvement in GI-NETs of axon guidance molecules, which have been shown to decrease tumor cell proliferation and metastatic dissemination in several tumor types. We focused on the role of Semaphorin 3F (SEMA3F) in ileal NETs, one of the most frequent subtypes of GI-NETs. SEMA3F expression was detected in normal neuroendocrine cells but was lost in most of human primary tumors and all their metastases. SEMA3F loss of expression was associated with promoter gene methylation. After increasing endogenous SEMA3F levels through stable transfection, enteroendocrine cell lines STC-1 and GluTag showed a reduced proliferation rate in vitro. In two different xenograft mouse models, SEMA3F-overexpressing cells exhibited a reduced ability to form tumors and a hampered liver dissemination potential in vivo. This resulted, at least in part, from the inhibition of mTOR and MAPK signaling pathways. This study demonstrates an anti-tumoral role of SEMA3F in ileal NETs. We thus suggest that SEMA3F and/or its cellular signaling pathway could represent a target for ileal NET therapy. PMID:26447612

  11. Addition of 2-(ethylamino)acetonitrile group to nitroxoline results in significantly improved anti-tumor activity in vitro and in vivo.

    Science.gov (United States)

    Mitrović, Ana; Sosič, Izidor; Kos, Špela; Tratar, Urša Lampreht; Breznik, Barbara; Kranjc, Simona; Mirković, Bojana; Gobec, Stanislav; Lah, Tamara; Serša, Gregor; Kos, Janko

    2017-08-29

    Lysosomal cysteine peptidase cathepsin B, involved in multiple processes associated with tumor progression, is validated as a target for anti-cancer therapy. Nitroxoline, a known antimicrobial agent, is a potent and selective inhibitor of cathepsin B, hence reducing tumor progression in vitro and in vivo . In order to further improve its anti-cancer properties we developed a number of derivatives using structure-based chemical synthesis. Of these, the 7-aminomethylated derivative (compound 17 ) exhibited significantly improved kinetic properties over nitroxoline, inhibiting cathepsin B endopeptidase activity selectively. In the present study, we have evaluated its anti-cancer properties. It was more effective than nitroxoline in reducing tumor cell invasion and migration, as determined in vitro on two-dimensional cell models and tumor spheroids, under either endpoint or real time conditions. Moreover, it exhibited improved action over nitroxoline in impairing tumor growth in vivo in LPB mouse fibrosarcoma tumors in C57Bl/6 mice. Taken together, the addition of a 2-(ethylamino)acetonitrile group to nitroxoline at position 7 significantly improves its pharmacological characteristics and its potential for use as an anti-cancer drug.

  12. Clonal expansion to anaplasia in Wilms` tumors is associated with p53 mutations

    Energy Technology Data Exchange (ETDEWEB)

    Pelletier, J.; Beckwith, B.; Bardeesy, N. [Loma Linda Univ., CA (United States)]|[McGill Univ., Montreal (Canada)

    1994-09-01

    The genetics of Wilms` tumor (WT), a pediatric malignancy of the kidney, is complex. Three loci are implicated in WT initiation and include the WT1 tumor suppressor gene (residing at 11p13), an 11p15 locus, and a non-11p locus. As well, allelic loss at 16q24 in {approximately}20% of sporadic WTs suggests the location of (an) additional gene(s) involved in tumor progression. Initiation and progression in WTs is associated with multiple histological variants. Anaplasia is a rare WT subtype associated with poor prognosis and defined by enlarged and multipolar mitotic figures, a threefold nuclear enlargement (compared with adjacent nuclei of the same cell type), and hyperchromasia of the enlarged nuclei. We have previously demonstrated that p53 gene mutations are exclusively associated with anaplastic WTs, being absent from a large number of non-anaplastic WTs analyzed. To determine if such mutations are involved in clonal progression to anaplasia, we performed a retrospective analysis of histologically defined sections from tumor specimens. Six of ten WTs demonstrated p53 mutations by PCR-single stranded conformational polymorphism analysis. Two of these samples were paired, consisting of geographically demarcated anaplastic cells embedded within a non-anaplastic tumor bed. In these cases, p53 mutations were only present in the anaplastic region of the tumor. An overall decrease in the number of apoptotic cells was found associated with the anaplastic tumor region, compared to adjacent non-anaplastic tumor bed. These results indicate that p53 mutations arise during progression to anaplasia late in Wilms` tumor etiology and are associated with a more aggressive form of this cancer.

  13. Tumor targeted delivery of doxorubicin in malignant peripheral nerve sheath tumors.

    Directory of Open Access Journals (Sweden)

    A B Madhankumar

    Full Text Available Peripheral nerve sheath tumors are benign tumors that have the potential to transform into malignant peripheral nerve sheath tumors (MPNSTs. Interleukin-13 receptor alpha 2 (IL13Rα2 is a cancer associated receptor expressed in glioblastoma and other invasive cancers. We analyzed IL13Rα2 expression in several MPNST cell lines including the STS26T cell line, as well as in several peripheral nerve sheath tumors to utilize the IL13Rα2 receptor as a target for therapy. In our studies, we demonstrated the selective expression of IL13Rα2 in several peripheral nerve sheath tumors by immunohistochemistry (IHC and immunoblots. We established a sciatic nerve MPNST mouse model in NIH III nude mice using a luciferase transfected STS26T MPNST cell line. Similarly, analysis of the mouse sciatic nerves after tumor induction revealed significant expression of IL13Rα2 by IHC when compared to a normal sciatic nerve. IL13 conjugated liposomal doxorubicin was formulated and shown to bind and internalized in the MPNST cell culture model demonstrating cytotoxic effect. Our subsequent in vivo investigation in the STS26T MPNST sciatic nerve tumor model indicated that IL13 conjugated liposomal doxorubicin (IL13LIPDXR was more effective in inhibiting tumor progression compared to unconjugated liposomal doxorubicin (LIPDXR. This further supports that IL13 receptor targeted nanoliposomes is a potential approach for treating MPNSTs.

  14. Histone Demethylase RBP2 Is Critical for Breast Cancer Progression and Metastasis

    Directory of Open Access Journals (Sweden)

    Jian Cao

    2014-03-01

    Full Text Available Metastasis is a major clinical challenge for cancer treatment. Emerging evidence suggests that aberrant epigenetic modifications contribute significantly to tumor formation and progression. However, the drivers and roles of such epigenetic changes in tumor metastasis are still poorly understood. Using bioinformatic analysis of human breast cancer gene-expression data sets, we identified histone demethylase RBP2 as a putative mediator of metastatic progression. By using both human breast cancer cells and genetically engineered mice, we demonstrated that RBP2 is critical for breast cancer metastasis to the lung in multiple in vivo models. Mechanistically, RBP2 promotes metastasis as a pleiotropic positive regulator of many metastasis genes, including TNC. In addition, RBP2 loss suppresses tumor formation in MMTV-neu transgenic mice. These results suggest that therapeutic targeting of RBP2 is a potential strategy for inhibition of tumor progression and metastasis.

  15. Dose-dependent effects of calorie restriction on gene expression, metabolism, and tumor progression are partially mediated by insulin-like growth factor-1

    International Nuclear Information System (INIS)

    Nogueira, Leticia M; Lavigne, Jackie A; Chandramouli, Gadisetti V R; Lui, Huaitian; Barrett, J Carl; Hursting, Stephen D

    2012-01-01

    The prevalence of obesity, an established risk and progression factor for breast and many other cancer types, remains very high in the United States and throughout the world. Calorie restriction (CR), a reduced-calorie dietary regimen typically involving a 20–40% reduction in calorie consumption, prevents or reverses obesity, and inhibits mammary and other types of cancer in multiple tumor model systems. Unfortunately, the mechanisms underlying the tumor inhibitory effects of CR are poorly understood, and a better understanding of these mechanisms may lead to new intervention targets and strategies for preventing or controlling cancer. We have previously shown that the anticancer effects of CR are associated with decreased systemic levels of insulin-like growth factor-1 (IGF-1), the primary source of which is liver. We have also reported that CR strongly suppresses tumor development and growth in multiple mammary cancer models. To identify CR-responsive genes and pathways, and to further characterize the role of IGF-1 as a mediator of the anticancer effects of CR, we assessed hepatic and mammary gland gene expression, hormone levels and growth of orthotopically transplanted mammary tumors in control and CR mice with and without exogenous IGF-1. C57BL/6 mice were fed either control AIN-76A diet ad libitum (AL), subjected to 20%, 30%, or 40% CR plus placebo timed-release pellets, or subjected to 30% or 40% CR plus timed-release pellets delivering murine IGF-1 (mIGF-1, 20 μg/day). Compared with AL-fed controls, body weights were decreased 14.3% in the 20% CR group, 18.5% in the 30% CR group, and 38% in the 40% CR group; IGF-1 infusion had no effect on body weight. Hepatic transcriptome analyses indicated that compared with 20% CR, 30% CR significantly modulated more than twice the number of genes and 40% CR more than seven times the number of genes. Many of the genes specific to the 40% CR regimen were hepatic stress-related and/or DNA damage-related genes

  16. The potential of tumor-derived exosomes for noninvasive cancer monitoring.

    Science.gov (United States)

    Whiteside, Theresa L

    2015-01-01

    Tumor-derived exosomes (TEX) are emerging as a new type of cancer biomarker. TEX are membrane-bound, virus-size vesicles of endocytic origin present in all body fluids of cancer patients. Based on the expanding albeit incomplete knowledge of their biogenesis, secretion by tumor cells and cancer cell-specific molecular and genetic contents, TEX are viewed as promising, clinically-relevant surrogates of cancer progression and response to therapy. Preliminary proteomic, genetic and functional profiling of tumor cell-derived or cancer plasma-derived exosomes confirms their unique characteristics. Alterations in protein or nucleic acid profiles of exosomes in plasma of cancer patients responding to therapies appear to correlate with clinical endpoints. However, methods for TEX isolation and separation from the bulk of human plasma-derived exosomes are not yet established and their role as biomarkers remains to be confirmed. Further development and validation of TEX as noninvasive, liquid equivalents of tumor biopsies are necessary to move this effort forward.

  17. Exome Sequencing of Bilateral Testicular Germ Cell Tumors Suggests Independent Development Lineages

    Directory of Open Access Journals (Sweden)

    Sigmund Brabrand

    2015-02-01

    Full Text Available Intratubular germ cell neoplasia, the precursor of testicular germ cell tumors (TGCTs, is hypothesized to arise during embryogenesis from developmentally arrested primordial germ cells (PGCs or gonocytes. In early embryonal life, the PGCs migrate from the yolk sac to the dorsal body wall where the cell population separates before colonizing the genital ridges. However, whether the malignant transformation takes place before or after this separation is controversial. We have explored the somatic exome-wide mutational spectra of bilateral TGCT to provide novel insight into the in utero critical time frame of malignant transformation and TGCT pathogenesis. Exome sequencing was performed in five patients with bilateral TGCT (eight tumors, of these three patients in whom both tumors were available (six tumors and two patients each with only one available tumor (two tumors. Selected loci were explored by Sanger sequencing in 71 patients with bilateral TGCT. From the exome-wide mutational spectra, no identical mutations in any of the three bilateral tumor pairs were identified. Exome sequencing of all eight tumors revealed 87 somatic non-synonymous mutations (median 10 per tumor; range 5-21, some in already known cancer genes such as CIITA, NEB, platelet-derived growth factor receptor α (PDGFRA, and WHSC1. SUPT6H was found recurrently mutated in two tumors. We suggest independent development lineages of bilateral TGCT. Thus, malignant transformation into intratubular germ cell neoplasia is likely to occur after the migration of PGCs. We reveal possible drivers of TGCT pathogenesis, such as mutated PDGFRA, potentially with therapeutic implications for TGCT patients.

  18. Expression and functional role of orphan receptor GPR158 in prostate cancer growth and progression.

    Directory of Open Access Journals (Sweden)

    Nitin Patel

    Full Text Available Prostate cancer (PCa is the second-leading cause of cancer-related mortality, after lung cancer, in men from developed countries. In its early stages, primary tumor growth is dependent on androgens, thus generally can be controlled by androgen deprivation therapy (ADT. Eventually however, the disease progresses to castration-resistant prostate cancer (CRPC, a lethal form in need of more effective treatments. G-protein coupled receptors (GPCRs comprise a large clan of cell surface proteins that have been implicated as therapeutic targets in PCa growth and progression. The findings reported here provide intriguing evidence of a role for the newly characterized glutamate family member GPR158 in PCa growth and progression. We found that GPR158 promotes PCa cell proliferation independent of androgen receptor (AR functionality and that this requires its localization in the nucleus of the cell. This suggests that GPR158 acts by mechanisms different from other GPCRs. GPR158 expression is stimulated by androgens and GPR158 stimulates AR expression, implying a potential to sensitize tumors to low androgen conditions during ADT via a positive feedback loop. Further, we found GPR158 expression correlates with a neuroendocrine (NE differentiation phenotype and promotes anchorage-independent colony formation implying a role for GPR158 in therapeutic progression and tumor formation. GPR158 expression was increased at the invading front of prostate tumors that formed in the genetically defined conditional Pten knockout mouse model, and co-localized with elevated AR expression in the cell nucleus. Kaplan-Meier analysis on a dataset from the Memorial Sloan Kettering cancer genome portal showed that increased GPR158 expression in tumors is associated with lower disease-free survival. Our findings strongly suggest that pharmaceuticals targeting GPR158 activities could represent a novel and innovative approach to the prevention and management of CRPC.

  19. Correlating tumor metabolic progression index measured by serial FDG PET-CT, apparent diffusion coefficient measured by magnetic resonance imaging (MRI) and blood genomics to patient’s outcome in advanced colorectal cancer: the CORIOLAN study

    International Nuclear Information System (INIS)

    Deleporte, Amelie; Charette, Nicolas; Machiels, Godelieve; Piccart, Martine; Flamen, Patrick; Hendlisz, Alain; Paesmans, Marianne; Garcia, Camilo; Vandeputte, Caroline; Lemort, Marc; Engelholm, Jean-Luc; Hoerner, Frederic; Aftimos, Philippe; Awada, Ahmad

    2014-01-01

    Metastatic colorectal cancer (mCRC) may present various behaviours that define different courses of tumor evolution. There is presently no available tool designed to assess tumor aggressiveness, despite the fact that this is considered to have a major impact on patient outcome. CORIOLAN is a single-arm prospective interventional non-therapeutic study aiming mainly to assess the natural tumor metabolic progression index (TMPI) measured by serial FDG PET-CT without any intercurrent antitumor therapy as a prognostic factor for overall survival (OS) in patients with mCRC. Secondary objectives of the study aim to test the TMPI as a prognostic marker for progression-free survival (PFS), to assess the prognostic value of baseline tumor FDG uptake on PFS and OS, to compare TMPI to classical clinico-biological assessment of prognosis, and to test the prognostic value on OS and PFS of MRI-based apparent diffusion coefficient (ADC) and variation of vADC using voxel-based diffusion maps. Additionally, this study intends to identify genomic and epigenetic factors that correlate with progression of tumors and the OS of patients with mCRC. Consequently, this analysis will provide information about the signaling pathways that determine the natural and therapy-free course of the disease. Finally, it would be of great interest to investigate whether in a population of patients with mCRC, for which at present no known effective therapy is available, tumor aggressiveness is related to elevated levels of circulating tumor cells (CTCs) and to patient outcome. Tumor aggressiveness is one of the major determinants of patient outcome in advanced disease. Despite its importance, supported by findings reported in the literature of extreme outcomes for patients with mCRC treated with chemotherapy, no objective tool allows clinicians to base treatment decisions on this factor. The CORIOLAN study will characterize TMPI using FDG-PET-based metabolic imaging of patients with chemorefractory m

  20. Gamma knife radiosurgery of radiation-induced intracranial tumors: Local control, outcomes, and complications

    International Nuclear Information System (INIS)

    Jensen, Ashley W.; Brown, Paul D.; Pollock, Bruce E.; Stafford, Scott L.; Link, Michael J.; Garces, Yolanda I.; Foote, Robert L.; Gorman, Deborah A.; Schomberg, Paula J.

    2005-01-01

    Purpose: To determine local control (LC) and complication rates for patients who underwent radiosurgery for radiation-induced intracranial tumors. Methods and Materials: Review of a prospectively maintained database (2,714 patients) identified 16 patients (20 tumors) with radiation-induced tumors treated with radiosurgery between 1990 and 2004. Tumor types included typical meningioma (n = 17), atypical meningioma (n = 2), and schwannoma (n 1). Median patient age at radiosurgery was 47.5 years (range, 27-70 years). The median tumor margin dose was 16 Gy (range, 12-20 Gy). Median follow-up was 40.2 months (range, 10.8-146.2 months). Time-to-event outcomes were calculated with Kaplan-Meier estimates. Results: Three-year and 5-year LC rates were 100%. Three-year and 5-year overall survival rates were 92% and 80%, respectively. Cause-specific survival rates at 3 and 5 years were 100%. Three patients died: 1 had in-field progression 65.1 months after radiosurgery and later died of the tumor, 1 died of progression of a preexisting brain malignancy, and 1 died of an unrelated cause. One patient had increased seizure activity that correlated with development of edema seen on neuroimaging. Conclusions: LC, survival, and complication rates in our series are comparable to those in previous reports of radiosurgery for intracranial meningiomas. Also, LC rates with radiosurgery are at least comparable to those of surgical series for radiation-induced meningiomas. Radiosurgery is a safe and effective treatment option for radiation-induced intracranial tumors, most of which are typical meningiomas

  1. Novel levamisole derivative induces extrinsic pathway of apoptosis in cancer cells and inhibits tumor progression in mice.

    Directory of Open Access Journals (Sweden)

    Mahesh Hegde

    Full Text Available BACKGROUND: Levamisole, an imidazo(2,1-bthiazole derivative, has been reported to be a potential antitumor agent. In the present study, we have investigated the mechanism of action of one of the recently identified analogues, 4a (2-benzyl-6-(4'-fluorophenyl-5-thiocyanato-imidazo[2,1-b][1], [3], [4]thiadiazole. MATERIALS AND METHODS: ROS production and expression of various apoptotic proteins were measured following 4a treatment in leukemia cell lines. Tumor animal models were used to evaluate the effect of 4a in comparison with Levamisole on progression of breast adenocarcinoma and survival. Immunohistochemistry and western blotting studies were performed to understand the mechanism of 4a action both ex vivo and in vivo. RESULTS: We have determined the IC(50 value of 4a in many leukemic and breast cancer cell lines and found CEM cells most sensitive (IC(50 5 µM. Results showed that 4a treatment leads to the accumulation of ROS. Western blot analysis showed upregulation of pro-apoptotic proteins t-BID and BAX, upon treatment with 4a. Besides, dose-dependent activation of p53 along with FAS, FAS-L, and cleavage of CASPASE-8 suggest that it induces death receptor mediated apoptotic pathway in CEM cells. More importantly, we observed a reduction in tumor growth and significant increase in survival upon oral administration of 4a (20 mg/kg, six doses in mice. In comparison, 4a was found to be more potent than its parental analogue Levamisole based on both ex vivo and in vivo studies. Further, immunohistochemistry and western blotting studies indicate that 4a treatment led to abrogation of tumor cell proliferation and activation of apoptosis by the extrinsic pathway even in animal models. CONCLUSION: Thus, our results suggest that 4a could be used as a potent chemotherapeutic agent.

  2. Fascin overexpression promotes neoplastic progression in oral squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Alam Hunain

    2012-01-01

    Full Text Available Abstract Background Fascin is a globular actin cross-linking protein, which plays a major role in forming parallel actin bundles in cell protrusions and is found to be associated with tumor cell invasion and metastasis in various type of cancers including oral squamous cell carcinoma (OSCC. Previously, we have demonstrated that fascin regulates actin polymerization and thereby promotes cell motility in K8-depleted OSCC cells. In the present study we have investigated the role of fascin in tumor progression of OSCC. Methods To understand the role of fascin in OSCC development and/or progression, fascin was overexpressed along with vector control in OSCC derived cells AW13516. The phenotype was studied using wound healing, Boyden chamber, cell adhesion, Hanging drop, soft agar and tumorigenicity assays. Further, fascin expression was examined in human OSCC samples (N = 131 using immunohistochemistry and level of its expression was correlated with clinico-pathological parameters of the patients. Results Fascin overexpression in OSCC derived cells led to significant increase in cell migration, cell invasion and MMP-2 activity. In addition these cells demonstrated increased levels of phosphorylated AKT, ERK1/2 and JNK1/2. Our in vitro results were consistent with correlative studies of fascin expression with the clinico-pathological parameters of the OSCC patients. Fascin expression in OSCC showed statistically significant correlation with increased tumor stage (P = 0.041, increased lymph node metastasis (P = 0.001, less differentiation (P = 0.005, increased recurrence (P = 0.038 and shorter survival (P = 0.004 of the patients. Conclusion In conclusion, our results indicate that fascin promotes tumor progression and activates AKT and MAPK pathways in OSCC-derived cells. Further, our correlative studies of fascin expression in OSCC with clinico-pathological parameters of the patients indicate that fascin may prove to be useful in prognostication and

  3. Fascin overexpression promotes neoplastic progression in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Alam, Hunain; Kannanl, Sadhna; Gude, Rajiv; Kane, Shubhada; Dalal, Sorab N; Vaidya, Milind M; Bhate, Amruta V; Gangadaran, Prakash; Sawant, Sharda S; Salot, Shimul; Sehgal, Lalit; Dange, Prerana P; Chaukar, Devendra A; D'cruz, Anil K

    2012-01-01

    Fascin is a globular actin cross-linking protein, which plays a major role in forming parallel actin bundles in cell protrusions and is found to be associated with tumor cell invasion and metastasis in various type of cancers including oral squamous cell carcinoma (OSCC). Previously, we have demonstrated that fascin regulates actin polymerization and thereby promotes cell motility in K8-depleted OSCC cells. In the present study we have investigated the role of fascin in tumor progression of OSCC. To understand the role of fascin in OSCC development and/or progression, fascin was overexpressed along with vector control in OSCC derived cells AW13516. The phenotype was studied using wound healing, Boyden chamber, cell adhesion, Hanging drop, soft agar and tumorigenicity assays. Further, fascin expression was examined in human OSCC samples (N = 131) using immunohistochemistry and level of its expression was correlated with clinico-pathological parameters of the patients. Fascin overexpression in OSCC derived cells led to significant increase in cell migration, cell invasion and MMP-2 activity. In addition these cells demonstrated increased levels of phosphorylated AKT, ERK1/2 and JNK1/2. Our in vitro results were consistent with correlative studies of fascin expression with the clinico-pathological parameters of the OSCC patients. Fascin expression in OSCC showed statistically significant correlation with increased tumor stage (P = 0.041), increased lymph node metastasis (P = 0.001), less differentiation (P = 0.005), increased recurrence (P = 0.038) and shorter survival (P = 0.004) of the patients. In conclusion, our results indicate that fascin promotes tumor progression and activates AKT and MAPK pathways in OSCC-derived cells. Further, our correlative studies of fascin expression in OSCC with clinico-pathological parameters of the patients indicate that fascin may prove to be useful in prognostication and treatment of OSCC

  4. Denosumab treatment for progressive skull base giant cell tumor of bone in a 14 year old female - a case report and literature review.

    Science.gov (United States)

    Bardakhchyan, Samvel; Kager, Leo; Danielyan, Samvel; Avagyan, Armen; Karamyan, Nerses; Vardevanyan, Hovhannes; Mkhitaryan, Sergey; Papyan, Ruzanna; Zohrabyan, Davit; Safaryan, Liana; Sargsyan, Lilit; Harutyunyan, Lilit; Hakobyan, Lusine; Iskanyan, Samvel; Tamamyan, Gevorg

    2017-03-29

    Giant cell tumor of bone (GCT) is a rare primary bone tumor, which can metastasize and undergo malignant transformation. The standard treatment of GCT is surgery. In patients with unresectable or metastatic disease, additional therapeutic options are available. These include blocking of the receptor activator of NF-kappa B ligand (RANKL) signaling pathway, which plays a role in the pathogenesis of GCT of bone, via the anti-RANKL monoclonal antibody denosumab. Herein we report on a female teenager who presented in a very poor clinical condition (cachexia, diplopia, strabismus, dysphonia with palsy of cranial nerves V, VI, VIII, IX, X, XI and XII) due to progressive disease, after incomplete resection and adjuvant radiotherapy, of a GCT which affected the cervical spine (C1 and C2) as well as the skull base; and who had an impressive clinical response to denosumab therapy. To the best of our knowledge, this is the youngest patient ever reported with a skull base tumor treated with denosumab. In situations when surgery can be postponed and local aggressiveness of the tumor does not urge for acute surgical intervention, upfront use of denosumab in order to reduce the tumor size might be considered. Principally, the goal of denosumab therapy is to reduce tumor size as much as possible, with the ultimate goal to make local surgery (or as in our case re-surgery) amenable. However, improvement in quality of life, as demonstrated in our patient, is also an important aspect of such targeted therapies.

  5. Detection and quantitation of circulating tumor cell dynamics by bioluminescence imaging in an orthotopic mammary carcinoma model.

    Directory of Open Access Journals (Sweden)

    Laura Sarah Sasportas

    Full Text Available Circulating tumor cells (CTCs have been detected in the bloodstream of both early-stage and advanced cancer patients. However, very little is know about the dynamics of CTCs during cancer progression and the clinical relevance of longitudinal CTC enumeration. To address this, we developed a simple bioluminescence imaging assay to detect CTCs in mouse models of metastasis. In a 4T1 orthotopic metastatic mammary carcinoma mouse model, we demonstrated that this quantitative method offers sensitivity down to 2 CTCs in 0.1-1mL blood samples and high specificity for CTCs originating from the primary tumor, independently of their epithelial status. In this model, we simultaneously monitored blood CTC dynamics, primary tumor growth, and lung metastasis progression over the course of 24 days. Early in tumor development, we observed low numbers of CTCs in blood samples (10-15 cells/100 µL and demonstrated that CTC dynamics correlate with viable primary tumor growth. To our knowledge, these data represent the first reported use of bioluminescence imaging to detect CTCs and quantify their dynamics in any cancer mouse model. This new assay is opening the door to the study of CTC dynamics in a variety of animal models. These studies may inform clinical decision on the appropriate timing of blood sampling and value of longitudinal CTC enumeration in cancer patients.

  6. Kinetic and biochemical studies on tumor growth. Comprehensive progress report, October 1, 1967--April 1, 1975

    International Nuclear Information System (INIS)

    Dethlefsen, L.A.

    1975-01-01

    The growth kinetics of four lines of the C3H mammary tumor have been studied by standard autoradiographic procedures in combination with volumetric growth curve analysis. Thus, such parameters as volumetric doubling time, mean cell generation time, growth fraction, and cell loss have been measured. Two of these lines (Slow and S102F) are currently being used for studying hormone responsiveness both in vivo and in vitro and the perturbed kinetics following insults with therapeutic agents. The respective values for the above parameters are: Slow; 21.0 days, 34 hours, 0.20, 9 percent per day, and S102F; 2.5 days, 17 hours, 0.60, 27 percent per day. A direct method ( 125 I-IUdR Method) for measuring cell loss has also been developed. This method consists of injecting mice with 125 I-IUdR and then measuring the loss of 125 I-activity from the tumor. The antigenic status of these tumors has been studied as one possible factor underlying the different growth kinetics. The mouse's immunological system was either suppressed (thymectomy and whole-body x-irradiation) or stimulated (previous exposure to tumor cells) and the percent takes, latent period, and growth rates measured. There was no evidence for a strong antigenic factor in any of these tumors. Hydroxyurea is being used as a tool for studying the perturbed cellular kinetics of the duodenum and the Slow and S102F tumors. The methods used are autoradiography, volumetric growth curve analysis, and measurements of the rates of DNA synthesis. Hormone effects on growth have been studied. Insulin had no effect but large doses of corticosterone (20 μg/ml and greater) were inhibitory and prolactin appeared to partially reverse these effects in the Slow line. (U.S.)

  7. Selector genes display tumor cooperation and inhibition in Drosophila epithelium in a developmental context-dependent manner

    OpenAIRE

    Ram Prakash Gupta; Anjali Bajpai; Pradip Sinha

    2017-01-01

    During animal development, selector genes determine identities of body segments and those of individual organs. Selector genes are also misexpressed in cancers, although their contributions to tumor progression per se remain poorly understood. Using a model of cooperative tumorigenesis, we show that gain of selector genes results in tumor cooperation, but in only select developmental domains of the wing, haltere and eye-antennal imaginal discs of Drosophila larva. Thus, the field selector, Ey...

  8. Selector genes display tumor cooperation and inhibition in Drosophila epithelium in a developmental context-dependent manner

    OpenAIRE

    Gupta, Ram Prakash; Bajpai, Anjali; Sinha, Pradip

    2017-01-01

    ABSTRACT During animal development, selector genes determine identities of body segments and those of individual organs. Selector genes are also misexpressed in cancers, although their contributions to tumor progression per se remain poorly understood. Using a model of cooperative tumorigenesis, we show that gain of selector genes results in tumor cooperation, but in only select developmental domains of the wing, haltere and eye-antennal imaginal discs of Drosophila larva. Thus, the field sel...

  9. Lessons for tumor biomarker trials: vicious cycles, scientific method & developing guidelines.

    Science.gov (United States)

    Hayes, Daniel; Raison, Claire

    2015-02-01

    Interview with Daniel Hayes, by Claire Raison (Commissioning Editor) Daniel F Hayes, M.D. is the Stuart A Padnos Professor of Breast Cancer Research and co-Director of the Breast Oncology Program at the University of Michigan Comprehensive Cancer Center (Ann Arbor, MI, USA). Dr Hayes has extensive experience in clinical and translational breast cancer biomarker research, and in drug development and clinical trials. Around 30 years ago, he led the discovery of the circulating breast tumor biomarker, CA15-3, which started his career into further tumor biomarker work. The main thrust of his work since then has been in clinical trials, tumor biomarkers and trying to integrate the two. Dr Hayes is Chair of the Correlative Sciences Committee of the North American Breast Cancer Group (now called the Breast Cancer Steering Committee), and co-chairs the Expert Panel for Tumor Biomarker Practice Guidelines for the American Society of Clinical Oncology.

  10. The progress of tumor gene-radiotherapy induced by Egr-1 promoter

    International Nuclear Information System (INIS)

    Guo Rui; Li Biao

    2010-01-01

    The promoter of early growth response gene-1 (Egr-1) is a cis-acting element of Egr-1, and its activity is regulated by inducers such as ionizing radiation, free radical. In designated gene-radiotherapy system, radiation combined with therapeutic gene (such as tumor necrosis factor-α gene, suicide gene) can spatially and temporally regulate therapeutic gene expression in the irradiated field, produced a marked effect, while little systemic toxicities were observed. The combination of radiotherapy and gene therapy is promising in tumor therapy. (authors)

  11. Albumin-bound paclitaxel in solid tumors: clinical development and future directions.

    Science.gov (United States)

    Kundranda, Madappa N; Niu, Jiaxin

    2015-01-01

    Albumin-bound paclitaxel (nab-paclitaxel) is a solvent-free formulation of paclitaxel that was initially developed more than a decade ago to overcome toxicities associated with the solvents used in the formulation of standard paclitaxel and to potentially improve efficacy. Nab-paclitaxel has demonstrated an advantage over solvent-based paclitaxel by being able to deliver a higher dose of paclitaxel to tumors and decrease the incidence of serious toxicities, including severe allergic reactions. To date, nab-paclitaxel has been indicated for the treatment of three solid tumors in the USA. It was first approved for the treatment of metastatic breast cancer in 2005, followed by locally advanced or metastatic non-small-cell lung cancer in 2012, and most recently for metastatic pancreatic cancer in 2013. Nab-paclitaxel is also under investigation for the treatment of a number of other solid tumors. This review highlights key clinical efficacy and safety outcomes of nab-paclitaxel in the solid tumors for which it is currently indicated, discusses ongoing trials that may provide new data for the expansion of nab-paclitaxel's indications into other solid tumors, and provides a clinical perspective on the use of nab-paclitaxel in practice.

  12. Rapamycin delays growth of Wnt-1 tumors in spite of suppression of host immunity

    International Nuclear Information System (INIS)

    Svirshchevskaya, Elena V; Mariotti, Jacopo; Wright, Mollie H; Viskova, Natalia Y; Telford, William; Fowler, Daniel H; Varticovski, Lyuba

    2008-01-01

    Rapamycin, an inhibitor of mammalian target of Rapamycin (mTOR), is an immunosuppressive agent that has anti-proliferative effects on some tumors. However, the role of Rapamycin-induced immune suppression on tumor progression has not been examined. We developed a transplantation model for generation of mammary tumors in syngeneic recipients that can be used to address the role of the immune system on tumor progression. We examined the effect of Rapamycin on the immune system and growth of MMTV-driven Wnt-1 mammary tumors which were transplanted into irradiated and bone marrow-reconstituted, or naïve mice. Rapamycin induced severe immunosuppression and significantly delayed the growth of Wnt-1 tumors. T cell depletion in spleen and thymus and reduction in T cell cytokine secretion were evident within 7 days of therapy. By day 20, splenic but not thymic T cell counts, and cytokine secretion recovered. We determined whether adoptive T cell therapy enhances the anti-cancer effect using ex vivo generated Rapamycin-resistant T cells. However, T cell transfer during Rapamycin therapy did not improve the outcome relative to drug therapy alone. Thus, we could not confirm that suppression of T cell immunity contributes to tumor growth in this model. Consistent with suppression of the mTOR pathway, decreased 4E-BP1, p70 S6-kinase, and S6 protein phosphorylation correlated with a decrease in Wnt-1 tumor cell proliferation. Rapamycin has a direct anti-tumor effect on Wnt-1 breast cancer in vivo that involves inhibition of the mTOR pathway at doses that also suppress host immune responses

  13. Importance of hyaluronan biosynthesis and degradation in cell differentiation and tumor formation

    Directory of Open Access Journals (Sweden)

    Heldin P.

    2003-01-01

    Full Text Available Hyaluronan is an important connective tissue glycosaminoglycan. Elevated hyaluronan biosynthesis is a common feature during tissue remodeling under both physiological and pathological conditions. Through its interactions with hyaladherins, hyaluronan affects several cellular functions such as cell migration and differentiation. The activities of hyaluronan-synthesizing and -degrading enzymes have been shown to be regulated in response to growth factors. During tumor progression hyaluronan stimulates tumor cell growth and invasiveness. Thus, elucidation of the molecular mechanisms which regulate the activities of hyaluronan-synthesizing and -degrading enzymes during tumor progression is highly desired.

  14. Tumor Suppressor Function of CYLD in Nonmelanoma Skin Cancer

    Directory of Open Access Journals (Sweden)

    K. C. Masoumi

    2011-01-01

    Full Text Available Ubiquitin and ubiquitin-related proteins posttranslationally modify substrates, and thereby alter the functions of their targets. The ubiquitination process is involved in various physiological responses, and dysregulation of components of the ubiquitin system has been linked to many diseases including skin cancer. The ubiquitin pathways activated among skin cancers are highly diverse and may reflect the various characteristics of the cancer type. Basal cell carcinoma and squamous cell carcinoma, the most common types of human skin cancer, are instances where the involvement of the deubiquitination enzyme CYLD has been recently highlighted. In basal cell carcinoma, the tumor suppressor protein CYLD is repressed at the transcriptional levels through hedgehog signaling pathway. Downregulation of CYLD in basal cell carcinoma was also shown to interfere with TrkC expression and signaling, thereby promoting cancer progression. By contrast, the level of CYLD is unchanged in squamous cell carcinoma, instead, catalytic inactivation of CYLD in the skin has been linked to the development of squamous cell carcinoma. This paper will focus on the current knowledge that links CYLD to nonmelanoma skin cancers and will explore recent insights regarding CYLD regulation of NF-κB and hedgehog signaling during the development and progression of these types of human tumors.

  15. Modulation of miR-203 and its regulators as a function of time during the development of 7, 12 dimethylbenz [a] anthracene induced mouse skin tumors in presence or absence of the antitumor agents

    International Nuclear Information System (INIS)

    Tiwari, Prakash; Gupta, Krishna P.

    2014-01-01

    We investigated the chemopreventive effects of naturally occurring compounds like butyric acid (BA), nicotinamide (NA) and calcium glucarate (CAG) individually or in combination in 7, 12-dimethylbenz [a] anthracene (DMBA) treated mouse skin at 4 and 16 weeks, the time before and after the tumor development. DMBA application did not show any skin tumors at 4 weeks but well defined tumors appeared at 16 weeks. BA, NA or CAG prevented the tumor development significantly but the protection was highly enhanced when all these compounds were given together. In order to see the molecular changes progressing with tumors, we showed the downregulation of tumor suppressor miR-203 at 16 weeks and upregulation of histone deacetylases (HDAC), DNA methyltransferase, promoter methylation of miR-203 at 4 or 16 weeks. Regulators of micro RNA biogenesis such as DICER1 and Ago2 were also deregulated by DMBA. Proto-oncogene c-myc and BMI1 were upregulated and tumor suppressor gene p16 was downregulated by DMBA as a function of time. Effects of BA, NA or CAG were more pronounced after 16 weeks as compared to 4 weeks in preventing the tumor development and altered gene expression. Concomitant administration of BA, NA and CAG tried to prevent these alterations more effectively than that of individual compound possibly by regulating miR-203 status through epigenetic or biogenetic modulations before and after the tumor development. Study provides a rationale for chemoprevention by combination of different compounds targeting miR-203. - Highlights: • DMBA modulates miR-203 and its regulator before and after the onset of tumors. • Suppression of miR-203 and p16 could be the result of gene promoter methylation. • BA, NA or CAG prevents the effects of DMBA. • Combination of BA, NA or CAG is more effective in preventing the DMBA modulations

  16. Hypoxia promotes tumor growth in linking angiogenesis to immune escape

    Directory of Open Access Journals (Sweden)

    Salem eCHOUAIB

    2012-02-01

    Full Text Available Despite the impressive progress over the past decade, in the field of tumor immunology, such as the identification of tumor antigens and antigenic peptides as potential targets, there are still many obstacles in eliciting an effective immune response to eradicate cancer. It has become increasingly clear that tumor microenvironment plays a crucial role in the control of immune protection and contains many overlapping mechanisms to evade antigen specific immunotherapy. Obviously, tumors have evolved to utilize hypoxic stress to their own advantage by activating key biochemical and cellular pathways that are important in progression, survival and metastasis. Among the hypoxia-induced genes, hypoxia-inducible factor (HIF-1 and vascular endothelial growth factor (VEGF play a determinant role in promoting tumor cell growth and survival. In this regard, hypoxia is emerging as an attractive target for cancer therapy. How the microenvironmental hypoxia poses both obstacles and opportunities for new therapeutic immune interventions will be discussed.

  17. Crosstalk between Innate Lymphoid Cells and Other Immune Cells in the Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Fabian Flores-Borja

    2016-01-01

    Full Text Available Our knowledge and understanding of the tumor microenvironment (TME have been recently expanded with the recognition of the important role of innate lymphoid cells (ILC. Three different groups of ILC have been described based on their ability to produce cytokines that mediate the interactions between innate and adaptive immune cells in a variety of immune responses in infection, allergy, and autoimmunity. However, recent evidence from experimental models and clinical studies has demonstrated that ILC contribute to the mechanisms that generate suppressive or tolerant environments that allow tumor regression or progression. Defining the complex network of interactions and crosstalk of ILC with other immune cells and understanding the specific contributions of each type of ILC leading to tumor development will allow the manipulation of their function and will be important to develop new interventions and therapeutic strategies.

  18. Crosstalk between Innate Lymphoid Cells and Other Immune Cells in the Tumor Microenvironment

    Science.gov (United States)

    Irshad, Sheeba; Gordon, Peter; Wong, Felix; Sheriff, Ibrahim; Tutt, Andrew; Ng, Tony

    2016-01-01

    Our knowledge and understanding of the tumor microenvironment (TME) have been recently expanded with the recognition of the important role of innate lymphoid cells (ILC). Three different groups of ILC have been described based on their ability to produce cytokines that mediate the interactions between innate and adaptive immune cells in a variety of immune responses in infection, allergy, and autoimmunity. However, recent evidence from experimental models and clinical studies has demonstrated that ILC contribute to the mechanisms that generate suppressive or tolerant environments that allow tumor regression or progression. Defining the complex network of interactions and crosstalk of ILC with other immune cells and understanding the specific contributions of each type of ILC leading to tumor development will allow the manipulation of their function and will be important to develop new interventions and therapeutic strategies. PMID:27882334

  19. Role of tumor necrosis factor in flavone acetic acid-induced tumor vasculature shutdown

    International Nuclear Information System (INIS)

    Mahadevan, V.; Malik, S.T.; Meager, A.; Fiers, W.; Lewis, G.P.; Hart, I.R.

    1990-01-01

    Flavone acetic acid (FAA), a novel investigational antitumor agent, has been shown to cause early vascular shutdown in several experimental murine tumors, and this phenomenon is believed to be crucial to FAA's antitumor effects. However, the basis of this FAA-induced tumor vascular shutdown is unknown. In this study a radioactive tracer-clearance technique has been used as an objective indication of tumor blood flow to show that i.p. administered FAA induces a progressive and sustained reduction in blood flow in a colon 26 tumor growing s.c. in syngeneic mice. As early as 1 h after administration, there was a significant increase in the t1/2 clearance value for intratumorally injected 133Xe, reaching a peak at 3 h (117.3 +/- 36.4 versus 7.8 +/- 0.85 min for controls). Significant inhibition of blood flow was still apparent 48 h after a single injection of drug. This FAA-induced vascular shutdown was virtually abolished in tumor-bearing mice pretreated with an antiserum against tumor necrosis factor, while no such effect was observed in controls pretreated with nonimmune serum (t1/2 of 10.8 +/- 1.2 versus 65.6 +/- 8.0 min for controls). Furthermore, in vitro FAA was seen to induce tumor necrosis factor secretion from murine peritoneal cells and splenocytes. These studies suggest that FAA-induced tumor vascular shutdown in the colon 26 tumor is mediated by tumor necrosis factor

  20. CD133, CD15/SSEA-1, CD34 or side populations do not resume tumor-initiating properties of long-term cultured cancer stem cells from human malignant glio-neuronal tumors

    Directory of Open Access Journals (Sweden)

    Mihalescu-Maingot Maria

    2010-02-01

    Full Text Available Abstract Background Tumor initiating cells (TICs provide a new paradigm for developing original therapeutic strategies. Methods We screened for TICs in 47 human adult brain malignant tumors. Cells forming floating spheres in culture, and endowed with all of the features expected from tumor cells with stem-like properties were obtained from glioblastomas, medulloblastoma but not oligodendrogliomas. Results A long-term self-renewal capacity was particularly observed for cells of malignant glio-neuronal tumors (MGNTs. Cell sorting, karyotyping and proteomic analysis demonstrated cell stability throughout prolonged passages. Xenografts of fewer than 500 cells in Nude mouse brains induced a progressively growing tumor. CD133, CD15/LeX/Ssea-1, CD34 expressions, or exclusion of Hoechst dye occurred in subsets of cells forming spheres, but was not predictive of their capacity to form secondary spheres or tumors, or to resist high doses of temozolomide. Conclusions Our results further highlight the specificity of a subset of high-grade gliomas, MGNT. TICs derived from these tumors represent a new tool to screen for innovative therapies.

  1. CD133, CD15/SSEA-1, CD34 or side populations do not resume tumor-initiating properties of long-term cultured cancer stem cells from human malignant glio-neuronal tumors

    International Nuclear Information System (INIS)

    Patru, Cristina; Berhneim, Alain; Mihalescu-Maingot, Maria; Haiech, Jacques; Bièche, Ivan; Moura-Neto, Vivaldo; Daumas-Duport, Catherine; Junier, Marie-Pierre; Chneiweiss, Hervé; Romao, Luciana; Varlet, Pascale; Coulombel, Laure; Raponi, Eric; Cadusseau, Josette; Renault-Mihara, François; Thirant, Cécile; Leonard, Nadine

    2010-01-01

    Tumor initiating cells (TICs) provide a new paradigm for developing original therapeutic strategies. We screened for TICs in 47 human adult brain malignant tumors. Cells forming floating spheres in culture, and endowed with all of the features expected from tumor cells with stem-like properties were obtained from glioblastomas, medulloblastoma but not oligodendrogliomas. A long-term self-renewal capacity was particularly observed for cells of malignant glio-neuronal tumors (MGNTs). Cell sorting, karyotyping and proteomic analysis demonstrated cell stability throughout prolonged passages. Xenografts of fewer than 500 cells in Nude mouse brains induced a progressively growing tumor. CD133, CD15/LeX/Ssea-1, CD34 expressions, or exclusion of Hoechst dye occurred in subsets of cells forming spheres, but was not predictive of their capacity to form secondary spheres or tumors, or to resist high doses of temozolomide. Our results further highlight the specificity of a subset of high-grade gliomas, MGNT. TICs derived from these tumors represent a new tool to screen for innovative therapies

  2. Targeting epigenetics for the treatment of prostate cancer: recent progress and future directions.

    Science.gov (United States)

    Lin, Jianqing; Wang, Chenguang; Kelly, Wm Kevin

    2013-06-01

    Epigenetic aberrations contribute to prostate cancer carcinogenesis and disease progression. Efforts have been made to target DNA methyltransferase and histone deacetylases (HDACs) in prostate cancer and other solid tumors but have not had the success that was seen in the hematologic malignancies. Oral, less toxic, and more specific agents are being developed in solid tumors including prostate cancer. Combinations of epigenetic agents alone or with a targeted agent such as androgen receptor signaling inhibitors are promising approaches and will be discussed further. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Exome sequencing of bilateral testicular germ cell tumors suggests independent development lineages.

    Science.gov (United States)

    Brabrand, Sigmund; Johannessen, Bjarne; Axcrona, Ulrika; Kraggerud, Sigrid M; Berg, Kaja G; Bakken, Anne C; Bruun, Jarle; Fosså, Sophie D; Lothe, Ragnhild A; Lehne, Gustav; Skotheim, Rolf I

    2015-02-01

    Intratubular germ cell neoplasia, the precursor of testicular germ cell tumors (TGCTs), is hypothesized to arise during embryogenesis from developmentally arrested primordial germ cells (PGCs) or gonocytes. In early embryonal life, the PGCs migrate from the yolk sac to the dorsal body wall where the cell population separates before colonizing the genital ridges. However, whether the malignant transformation takes place before or after this separation is controversial. We have explored the somatic exome-wide mutational spectra of bilateral TGCT to provide novel insight into the in utero critical time frame of malignant transformation and TGCT pathogenesis. Exome sequencing was performed in five patients with bilateral TGCT (eight tumors), of these three patients in whom both tumors were available (six tumors) and two patients each with only one available tumor (two tumors). Selected loci were explored by Sanger sequencing in 71 patients with bilateral TGCT. From the exome-wide mutational spectra, no identical mutations in any of the three bilateral tumor pairs were identified. Exome sequencing of all eight tumors revealed 87 somatic non-synonymous mutations (median 10 per tumor; range 5-21), some in already known cancer genes such as CIITA, NEB, platelet-derived growth factor receptor α (PDGFRA), and WHSC1. SUPT6H was found recurrently mutated in two tumors. We suggest independent development lineages of bilateral TGCT. Thus, malignant transformation into intratubular germ cell neoplasia is likely to occur after the migration of PGCs. We reveal possible drivers of TGCT pathogenesis, such as mutated PDGFRA, potentially with therapeutic implications for TGCT patients. Copyright © 2014 Neoplasia Press, Inc. Published by Elsevier Inc. All rights reserved.

  4. Treatment of Liver Tumors with Lipiodol TACE: Technical Recommendations from Experts Opinion

    Energy Technology Data Exchange (ETDEWEB)

    Baere, Thierry de, E-mail: thierry.debaere@gustaveroussy.fr [Gustave Roussy, Department of Interventional Radiology (France); Arai, Yasuaki, E-mail: arai-y3111@mvh.biglobe.ne.jp [National Cancer Center, Department of Diagnostic Radiology (Japan); Lencioni, Riccardo, E-mail: riccardo.lencioni@med.unipi.it [Pisa University School of Medicine, Division of Diagnostic Imaging and Intervention (R.L.) (Italy); Geschwind, Jean-Francois, E-mail: jfg@jhmi.edu [The Johns Hopkins Hospital, Vascular and Interventional Radiology (United States); Rilling, William, E-mail: wrilling@mcw.edu [Medical College of Wisconsin, Division of Vascular and Interventional Radiology Rm2803 (United States); Salem, Riad, E-mail: r-salem@northwestern.edu [Northwestern University, Department of Radiology (United States); Matsui, Osamu, E-mail: matsuio@med.kanazawa-u.ac.jp [Kanazawa University Graduate School of Medical Sciences, Department of Advanced Medical Imaging (Japan); Soulen, Michael C., E-mail: michael.soulen@uphs.upenn.edu [University of Pennsylvania, Division of Interventional Radiology (MCS) (United States)

    2016-03-15

    Transarterial chemoembolization with Lipiodol (Lipiodol TACE), also called conventional TACE, was developed in the early 1980s and widely adopted worldwide after randomized control trials and meta-analysis demonstrated superiority of Lipiodol TACE to best supportive care. Presently, there is no level one evidence that other TACE techniques are superior to Lipiodol TACE for intermediate stage hepatocellular carcinoma (HCC), which includes patients with preserved liver function and nonsurgical large or multinodular HCC without distant metastases. In addition, TACE is part of the treatment for progressive or symptomatic liver metastases from gastroenteropancreatic neuroendocrine tumors. When injected into the hepatic artery, Lipiodol has the unique property of selective uptake and retention in hyperarterialyzed liver tumors. Lipiodol/drug emulsion followed by particle embolization has been demonstrated to improve the pharmacokinetic of the drug and tumor response. Radio opacity of Lipiodol helps to monitor treatment delivery, with retention of Lipiodol serving as an imaging biomarker for tumor response. For 30 years, Lipiodol TACE has been inconsistently referenced in many publications with various levels of details for the method of preparation and administration, with reported progressive outcomes following improvements in the technique and the devices used to deliver the treatment and better patient selection. Consequently, there is no consensus on the standard method of TACE regarding the use of anticancer agents, embolic material, technical details, and the treatment schedule. In order to develop an internationally validated technical recommendation to standardize the Lipiodol TACE procedure, a worldwide panel of experts participated in a consensus meeting held on May 10, 2014.

  5. AECL's progress in DUPIC fuel development

    International Nuclear Information System (INIS)

    Sullivan, J.D.; Ryz, M.A.; Lee, J.W.

    1997-01-01

    Previous papers described progress in choosing a fabrication route for the DUPIC (Direct Use of Spent PWR Fuel in CANDU) fuel cycle [1], details of the OREOX (Oxidation Reduction of Oxide fuel) process, and preliminary results of out-cell and small-scale in-cell experiments [2]. AECL's project to develop the DUPIC fuel cycle has now progressed to the stage of fabricating DUPIC fuel elements for irradiation testing in a research reactor. Because of the high radiation fields around the spent PWR fuel, all work is being done in hot cells. The equipment used for fabrication of the DUPIC fuel elements is described in this paper. The commissioning, in-cell installation and current status of the fabrication process are also described and plans for the completion of this phase of the DUPIC project are outlined. The goal of this phase of the project is demonstration of the technical feasibility of the DUPIC fuel cycle. (author)

  6. Development of RIA kits for tumor-markers monitoring

    International Nuclear Information System (INIS)

    Suprarop, P.

    1997-01-01

    All reagents for tumor markers assays are imported from various manufacturers mainly CIS bio international. The average cost of these reagents is ranged from 80-150 bath/test (2-4 dollars test). The screening test for cancers could not be done especially in other regions of Thailand whose budgets and resources are so limited. If the reagents are made locally, many laboratories can perform the tests and use as primary diagnosis, screening or monitor the course of the disease following treatment. In addition, these reagents could help clinicians and give complementary information on the tumor status to improve quality of life in Thailand. Research objectives include: 1. Development of IRMA reagent kits suitable for diagnosing staging and monitoring prostrate and breast cancer. 2. Transfer of technology and reagent kits to relevant laboratories in Thailand. 3. Routine distribution of the reagents kits to the end users

  7. Circulating Tumor Cells Measurements in Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Franck Chiappini

    2012-01-01

    Full Text Available Liver cancer is the fifth most common cancer in men and the seventh in women. During the past 20 years, the incidence of HCC has tripled while the 5-year survival rate has remained below 12%. The presence of circulating tumor cells (CTC reflects the aggressiveness nature of a tumor. Many attempts have been made to develop assays that reliably detect and enumerate the CTC during the development of the HCC. In this case, the challenges are (1 there are few markers specific to the HCC (tumor cells versus nontumor cells and (2 they can be used to quantify the number of CTC in the bloodstream. Another technical challenge consists of finding few CTC mixed with million leukocytes and billion erythrocytes. CTC detection and identification can be used to estimate prognosis and may serve as an early marker to assess antitumor activity of treatment. CTC can also be used to predict progression-free survival and overall survival. CTC are an interesting source of biological information in order to understand dissemination, drug resistance, and treatment-induced cell death. Our aim is to review and analyze the different new methods existing to detect, enumerate, and characterize the CTC in the peripheral circulation of patients with HCC.

  8. Involvement of FFA1 and FFA4 in the regulation of cellular functions during tumor progression in colon cancer cells.

    Science.gov (United States)

    Takahashi, Kaede; Fukushima, Kaori; Onishi, Yuka; Minami, Kanako; Otagaki, Shiho; Ishimoto, Kaichi; Fukushima, Nobuyuki; Honoki, Kanya; Tsujiuchi, Toshifumi

    2018-08-01

    Free fatty acid receptor 1 (FFA1) and FFA4 mediate a variety of biological responses through binding of medium- and long-chain free fatty acids. The aim of this study was to investigate an involvement of FFA1 and FFA4 in the regulation of cellular functions during tumor progression in colon cancer cells. The long-term fluorouracil (5-FU) and cisplatin (CDDP) treated cells were generated from DLD1 cells (DLD-5FU and DLD-CDDP cells, respectively). FFAR1 expressions were lower in DLD-5FU and DLD-CDDP cells than in DLD1 cells. In contrast, DLD-5FU and DLD-CDDP cells showed the high FFAR4 expressions, compared with DLD1 cells. The cell motile activities of DLD-5FU and DLD-CDDP cells were reduced by GW9508 which is an agonist of FFA1 and FFA4. Moreover, GW1100, an antagonist of FFA1, inhibited the cell motile activities of DLD-5FU and DLD-CDDP cells. To evaluate whether FFA1 and FFA4 regulate the enhancement of cell motility, invasion and colony formation, highly migratory (hmDLD1) cells were established from DLD1 cells. FFAR1 expression was significantly higher in hmDLD1 cells than in DLD1 cells, but no change of FFAR4 expression was observed. The elevated cell motile and invasive activities and colony formation of hmDLD1 cells were suppressed by FFA1 inhibition. These results suggest that FFA1 and FFA4 are involved in the regulation of cellular functions during tumor progression in colon cancer DLD1 cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Exploring the Climate Literacy Development Utilizing a Learning Progressions Approach

    Science.gov (United States)

    Drewes, A.; Breslyn, W.; McGinnis, J. R.; Hestness, E.; Mouza, C.

    2017-12-01

    Climate change encompasses a broad and complex set of concepts that is often challenging for students and educators. Using a learning progressions framework, in this exploratory study we report our efforts to identify, describe, and organize the development of learners' understanding of climate change in an empirically supported learning progression (LP). The learning progression framework is a well suited analytical tool for investigating how student thinking develops over time (Duschl et al., 2007). Our primary research question is "How do learners progress over time from an initial to a more sophisticated understanding of climate change?"We followed a development process that involved drafting a hypothetical learning progression based on the science education research literature, consensus documents such as the Next Generation Science Standards and the Atlas of Science Literacy. Additionally, we conducted expert reviews with both climate scientists and educational researchers on the content and pedagogical expectations. Data are then collected from learners, which are used to modify the hypothetical learning progression based on how well it describes actual student learning. In this current analysis, we present findings from written assessments (N=294) and in-depth interviews (n=27) with middle school students in which we examine their understanding of the role of human activity, the greenhouse effect as the mechanism of climate change, local and global impacts, and strategies for the adaptation and mitigation of climate change. The culmination of our research is a proposed, empirically supported LP for climate change. Our LP is framed by consideration of four primary constructs: Human Activity, Mechanism, Impacts, and Mitigation and Adaptation. The conditional LP provides a solid foundation for continued research as well as providing urgently needed guidance to the education community on climate change education (for curriculum, instruction, and assessment

  10. Tumor imaging using Tc(V)-99m dimercaptosuccinic acid, a newly developed radiopharmaceutical

    International Nuclear Information System (INIS)

    Ohta, Hitoya; Endo, Keigo; Koizumi, Mitsuru

    1985-01-01

    Being aware of the ideal nuclear properties of Tc-99m, we have developed a new tumor seeking agent, Tc-99m (V) dimercaptosuccinic acid (Tc(V)-DMS). In order to evaluate its clinical usefulness of Tc(V)-DMS, 400 untreated patients with histologically proven diagnoses were studied, and, in some selected cases, the results were compared with those of Ga-67 citrate. The Tc(V)-DMS scintigraphy was found especially useful in patients with head and neck tumors, medullary thyroid carcinomas, soft tissue tumors and bone tumors. But in patients with lung tumors, liver tumors, malignant melanoma or malignant lymphomas, it revealed no obvious advantage over Ga-67 scintigraphy, the results seemed to the different uptake mechanism of Tc(V)-DMS from that of Ga-67 citrate. Nevertheless the superiority of physical properties of Tc-99m, pharmacological advantage that may enable satisfactory imaging, and lower supply cost, Tc(V)-DMS would certainly offer good clinical applicability in some regions. (author)

  11. DEMARCATE: Density-based magnetic resonance image clustering for assessing tumor heterogeneity in cancer.

    Science.gov (United States)

    Saha, Abhijoy; Banerjee, Sayantan; Kurtek, Sebastian; Narang, Shivali; Lee, Joonsang; Rao, Ganesh; Martinez, Juan; Bharath, Karthik; Rao, Arvind U K; Baladandayuthapani, Veerabhadran

    2016-01-01

    Tumor heterogeneity is a crucial area of cancer research wherein inter- and intra-tumor differences are investigated to assess and monitor disease development and progression, especially in cancer. The proliferation of imaging and linked genomic data has enabled us to evaluate tumor heterogeneity on multiple levels. In this work, we examine magnetic resonance imaging (MRI) in patients with brain cancer to assess image-based tumor heterogeneity. Standard approaches to this problem use scalar summary measures (e.g., intensity-based histogram statistics) that do not adequately capture the complete and finer scale information in the voxel-level data. In this paper, we introduce a novel technique, DEMARCATE (DEnsity-based MAgnetic Resonance image Clustering for Assessing Tumor hEterogeneity) to explore the entire tumor heterogeneity density profiles (THDPs) obtained from the full tumor voxel space. THDPs are smoothed representations of the probability density function of the tumor images. We develop tools for analyzing such objects under the Fisher-Rao Riemannian framework that allows us to construct metrics for THDP comparisons across patients, which can be used in conjunction with standard clustering approaches. Our analyses of The Cancer Genome Atlas (TCGA) based Glioblastoma dataset reveal two significant clusters of patients with marked differences in tumor morphology, genomic characteristics and prognostic clinical outcomes. In addition, we see enrichment of image-based clusters with known molecular subtypes of glioblastoma multiforme, which further validates our representation of tumor heterogeneity and subsequent clustering techniques.

  12. Microwave ablation of renal tumors: state of the art and development trends.

    Science.gov (United States)

    Floridi, Chiara; De Bernardi, Irene; Fontana, Federico; Muollo, Alessandra; Ierardi, Anna Maria; Agostini, Andrea; Fonio, Paolo; Squillaci, Ettore; Brunese, Luca; Fugazzola, Carlo; Carrafiello, Gianpaolo

    2014-07-01

    In the last decades an increased incidence of new renal tumor cases has been for clinically localized, small tumors elderly patients, with medical comorbidities whom the risk of surgical complications may pose a greater risk of death than that due to the tumor itself. In these patients, unsuitable for surgical approach, thermal ablation represents a valid alternative to traditional surgery. Thermal ablation is a less invasive, less morbid treatment option thanks to reduced blood loss, lower incidence of complications during the procedure and a less long convalescence. At present, the most widely used thermal ablative techniques are cryoablation, radiofrequency ablation and microwave ablation (MWA). MWA offers many benefits of other ablation techniques and offers several other advantages: higher intratumoral temperatures, larger tumor ablation volumes, faster ablation times, the ability to use multiple applicators simultaneously, optimal heating of cystic masses and tumors close to the vessels and less procedural pain. This review aims to provide the reader with an overview about the state of the art of microwave ablation for renal tumors and to cast a glance on the new development trends of this technique.

  13. An allometric approach of tumor-angiogenesis.

    Science.gov (United States)

    Szasz, Oliver; Vincze, Gyula; Szigeti, Gyula Peter; Benyo, Zoltan; Szasz, Andras

    2018-07-01

    Angiogenesis is one of the main supporting factors of tumor-progression. It is a complex set of interactions together with hypoxia and inflammation, regulating tumor growth. The objective of this study is to examine the effect of angiogenesis with an allometric approach applied to angiogenesis and the regulating factors. The results show that allometry has the potential to describe this aspect, including the sigmoid-like transport function. There are particular conditions under which the complex control maximizes the relative tumor mass. Linear growth of malignancy diameter with an allometric approach was proven. Copyright © 2018. Published by Elsevier Ltd.

  14. Research progress of PARP-1 inhibitors in antitumor drugs and radionuclide markers

    International Nuclear Information System (INIS)

    Zhao Lingzhou; Zhang Huabei

    2011-01-01

    Poly(ADP-ribose)polymerase (PARP) is a new target in the cancer treatment nowadays. PARP not only can repair DNA damage, regulate and control transcription, maintain the stability of intracellular environment and genome, regulate the process of cell survival and death, but also is the main transcription factor in the development of inflammation and the process of cancer. To inhibit PARP activity can reduce the DNA repair function in tumor cells, and increase the sensibility to DNA damage agents, so as to improve the efficacy of radiation therapy and chemotherapy for tumor. A number of studies have suggested that, whether used alone or combination with other chemotherapy drugs, PARP inhibitors show the potential in the anti-tumor therapeutic areas. In this paper, PARP-1 inhibitors were reviewed in antitumor research progress. According to the stage of development , PARP-1 inhibitors are classified. Several representative PARP-1 inhibitors, in clinical trials, with potential clinical value were introduced. Positron emission tomography (PET), uses the main short half-life elementary in human body as tracer, and at the molecular level, achieve the no wound, quantitative and dynamic observation about the different changes of metabolites or drugs in the body. PET is the most advanced contemporary video diagnostic technology, and this paper simply introduce the research progress of PARP-1 inhibitors labeled with radioactive nuclides. (authors)

  15. Triptolide downregulates Rac1 and the JAK/STAT3 pathway and inhibits colitis-related colon cancer progression

    DEFF Research Database (Denmark)

    Wang, Zhipeng; Jin, Haifeng; Xu, Ruodan

    2009-01-01

    ability to block progress of colitis to colon cancer, and its molecular mechanism of action are investigated. A mouse model for colitis-induced colorectal cancer was used to test the effect of triptolide on cancer progression. Treatment of mice with triptolide decreased the incidence of colon cancer...... formation, and increased survival rate. Moreover, triptolide decreased the incidence of tumors in nude mice inoculated with cultured colon cancer cells dose-dependently. In vitro, triptolide inhibited the proliferation, migration and colony formation of colon cancer cells. Secretion of IL6 and levels of JAK....... This suggests that triptolide might be a candidate for prevention of colitis induced colon cancer because it reduces inflammation and prevents tumor formation and development....

  16. Complex of MUC1, CIN85 and Cbl in Colon Cancer Progression and Metastasis

    International Nuclear Information System (INIS)

    Cascio, Sandra; Finn, Olivera J.

    2015-01-01

    We previously reported that CIN85, an 85 KDa protein known to be involved in tumor cell migration and metastasis through its interaction with Cbl, associates with MUC1 in tumor cells. MUC1/CIN85 complex also regulates migration and invasion of tumor cells in vitro. Here, we examined specifically human colon carcinoma tissue microarrays (TMA) by immunohistochemistry for the expression of MUC1 and CIN85 and their potential role in cancer progression and metastasis. We detected a significant increase in expression of both MUC1 and CIN85 associated with advanced tumor stage and lymph node metastasis. We further investigated if Cbl could also be present in the MUC1/CIN85 complex. Co-immunoprecipitation assay showed that Cbl co-localized both with CIN85 and with MUC1 in a human colon cancer cell line. To begin to investigate the in vivo relevance of MUC1 overexpression and association with CIN85 and Cbl in cancer development and progression, we used human MUC1 transgenic mice that express MUC1 on the colonic epithelial cells, treated with azoxymethane to initiate and dextran sulfate sodium (AOM/DSS) to promote colorectal carcinogenesis. MUC1.Tg mice showed higher tumor incidence and decreased survival when compared with wild-type mice. Consistent with the in vitro data, the association of MUC1, CIN85 and Cbl was detected in colon tissues of AOM/DSS-treated MUC1 transgenic mice. MUC1/CIN85/Cbl complex appears to contribute to promotion and progression of colon cancer and thus increased expression of MUC1, CIN85 and Cbl in early stage colon cancer might be predictive of poor prognosis

  17. Complex of MUC1, CIN85 and Cbl in Colon Cancer Progression and Metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Cascio, Sandra, E-mail: sac131@pitt.edu [Department of Immunology, University of Pittsburgh School of Medicine, E1040 Biomedical Science Tower, Pittsburgh, PA 15261 (United States); Fondazione Ri.Med, via Bandiera, Palermo 90133 (Italy); Finn, Olivera J., E-mail: sac131@pitt.edu [Department of Immunology, University of Pittsburgh School of Medicine, E1040 Biomedical Science Tower, Pittsburgh, PA 15261 (United States)

    2015-02-10

    We previously reported that CIN85, an 85 KDa protein known to be involved in tumor cell migration and metastasis through its interaction with Cbl, associates with MUC1 in tumor cells. MUC1/CIN85 complex also regulates migration and invasion of tumor cells in vitro. Here, we examined specifically human colon carcinoma tissue microarrays (TMA) by immunohistochemistry for the expression of MUC1 and CIN85 and their potential role in cancer progression and metastasis. We detected a significant increase in expression of both MUC1 and CIN85 associated with advanced tumor stage and lymph node metastasis. We further investigated if Cbl could also be present in the MUC1/CIN85 complex. Co-immunoprecipitation assay showed that Cbl co-localized both with CIN85 and with MUC1 in a human colon cancer cell line. To begin to investigate the in vivo relevance of MUC1 overexpression and association with CIN85 and Cbl in cancer development and progression, we used human MUC1 transgenic mice that express MUC1 on the colonic epithelial cells, treated with azoxymethane to initiate and dextran sulfate sodium (AOM/DSS) to promote colorectal carcinogenesis. MUC1.Tg mice showed higher tumor incidence and decreased survival when compared with wild-type mice. Consistent with the in vitro data, the association of MUC1, CIN85 and Cbl was detected in colon tissues of AOM/DSS-treated MUC1 transgenic mice. MUC1/CIN85/Cbl complex appears to contribute to promotion and progression of colon cancer and thus increased expression of MUC1, CIN85 and Cbl in early stage colon cancer might be predictive of poor prognosis.

  18. Shigella mediated depletion of macrophages in a murine breast cancer model is associated with tumor regression.

    Directory of Open Access Journals (Sweden)

    Katharina Galmbacher

    Full Text Available A tumor promoting role of macrophages has been described for a transgenic murine breast cancer model. In this model tumor-associated macrophages (TAMs represent a major component of the leukocytic infiltrate and are associated with tumor progression. Shigella flexneri is a bacterial pathogen known to specificly induce apotosis in macrophages. To evaluate whether Shigella-induced removal of macrophages may be sufficient for achieving tumor regression we have developed an attenuated strain of S. flexneri (M90TDeltaaroA and infected tumor bearing mice. Two mouse models were employed, xenotransplantation of a murine breast cancer cell line and spontanous breast cancer development in MMTV-HER2 transgenic mice. Quantitative analysis of bacterial tumor targeting demonstrated that attenuated, invasive Shigella flexneri primarily infected TAMs after systemic administration. A single i.v. injection of invasive M90TDeltaaroA resulted in caspase-1 dependent apoptosis of TAMs followed by a 74% reduction in tumors of transgenic MMTV-HER-2 mice 7 days post infection. TAM depletion was sustained and associated with complete tumor regression.These data support TAMs as useful targets for antitumor therapy and highlight attenuated bacterial pathogens as potential tools.

  19. A Genomics Approach to Tumor Gemome Analysis

    National Research Council Canada - National Science Library

    Collins, Colin

    2002-01-01

    Genomes of solid tumors are often highly rearranged and these rearrangements promote cancer progression through disruption of genes mediating immortality, survival, metastasis, and resistance to therapy...

  20. S4S8-RPA phosphorylation as an indicator of cancer progression in oral squamous cell carcinomas.

    Science.gov (United States)

    Rector, Jeff; Kapil, Sasha; Treude, Kelly J; Kumm, Phyllis; Glanzer, Jason G; Byrne, Brendan M; Liu, Shengqin; Smith, Lynette M; DiMaio, Dominick J; Giannini, Peter; Smith, Russell B; Oakley, Greg G

    2017-02-07

    Oral cancers are easily accessible compared to many other cancers. Nevertheless, oral cancer is often diagnosed late, resulting in a poor prognosis. Most oral cancers are squamous cell carcinomas that predominantly develop from cell hyperplasias and dysplasias. DNA damage is induced in these tissues directly or indirectly in response to oncogene-induced deregulation of cellular proliferation. Consequently, a DNA Damage response (DDR) and a cell cycle checkpoint is activated. As dysplasia transitions to cancer, proteins involved in DNA damage and checkpoint signaling are mutated or silenced decreasing cell death while increasing genomic instability and allowing continued tumor progression. Hyperphosphorylation of Replication Protein A (RPA), including phosphorylation of Ser4 and Ser8 of RPA2, is a well-known indicator of DNA damage and checkpoint activation. In this study, we utilize S4S8-RPA phosphorylation as a marker for cancer development and progression in oral squamous cell carcinomas (OSCC). S4S8-RPA phosphorylation was observed to be low in normal cells, high in dysplasias, moderate in early grade tumors, and low in late stage tumors, essentially supporting the model of the DDR as an early barrier to tumorigenesis in certain types of cancers. In contrast, overall RPA expression was not correlative to DDR activation or tumor progression. Utilizing S4S8-RPA phosphorylation to indicate competent DDR activation in the future may have clinical significance in OSCC treatment decisions, by predicting the susceptibility of cancer cells to first-line platinum-based therapies for locally advanced, metastatic and recurrent OSCC.