WorldWideScience

Sample records for tumor cells resistant

  1. Treatment Resistance Mechanisms of Malignant Glioma Tumor Stem Cells

    International Nuclear Information System (INIS)

    Schmalz, Philip G.R.; Shen, Michael J.; Park, John K.

    2011-01-01

    Malignant gliomas are highly lethal because of their resistance to conventional treatments. Recent evidence suggests that a minor subpopulation of cells with stem cell properties reside within these tumors. These tumor stem cells are more resistant to radiation and chemotherapies than their counterpart differentiated tumor cells and may underlie the persistence and recurrence of tumors following treatment. The various mechanisms by which tumor stem cells avoid or repair the damaging effects of cancer therapies are discussed

  2. Tumor Heterogeneity, Single-Cell Sequencing, and Drug Resistance

    Directory of Open Access Journals (Sweden)

    Felix Schmidt

    2016-06-01

    Full Text Available Tumor heterogeneity has been compared with Darwinian evolution and survival of the fittest. The evolutionary ecosystem of tumors consisting of heterogeneous tumor cell populations represents a considerable challenge to tumor therapy, since all genetically and phenotypically different subpopulations have to be efficiently killed by therapy. Otherwise, even small surviving subpopulations may cause repopulation and refractory tumors. Single-cell sequencing allows for a better understanding of the genomic principles of tumor heterogeneity and represents the basis for more successful tumor treatments. The isolation and sequencing of single tumor cells still represents a considerable technical challenge and consists of three major steps: (1 single cell isolation (e.g., by laser-capture microdissection, fluorescence-activated cell sorting, micromanipulation, whole genome amplification (e.g., with the help of Phi29 DNA polymerase, and transcriptome-wide next generation sequencing technologies (e.g., 454 pyrosequencing, Illumina sequencing, and other systems. Data demonstrating the feasibility of single-cell sequencing for monitoring the emergence of drug-resistant cell clones in patient samples are discussed herein. It is envisioned that single-cell sequencing will be a valuable asset to assist the design of regimens for personalized tumor therapies based on tumor subpopulation-specific genetic alterations in individual patients.

  3. Tumor cell heterogeneity: impact on mechanisms of therapeutic drug resistance

    International Nuclear Information System (INIS)

    Richardson, Mary E.; Siemann, Dietmar W.

    1997-01-01

    Purpose: The aim of these studies was to determine whether chemotherapy-resistant tumor cell sublines derived from a single starting cell population with identical treatment protocols, have the same mechanism of resistance. Methods and Materials: Twelve cyclophosphamide-resistant sublines were derived from KHT-iv murine sarcoma cells by repeated exposures to 2, 4, or 8 μg/ml doses of 4-hydroperoxycyclophosphamide (4-OOHCP). To investigate possible mechanisms of resistance, glutathione (GSH) levels, glutathione S-transferase (GST) activity, and aldehyde dehydrogenase (ALDH) activity were determined. In addition, studies with the GSH depletor buthionine sulfoximine (BSO) and the ALDH inhibitor diethylamino-benzaldehyde (DEAB) were undertaken. Results: Resistant factors to 4-OOHCP, assessed at 10% clonogenic cell survival, ranged from 1.5-7.0 for the various cell lines. Crossresistance to melphalan and adriamycin also were commonly observed. Increased GSH levels, GST activity and ALDH activity were detected in the sublines but not all exhibited the same pattern of biochemical alterations. The response to GSH and ALDH inhibitors also varied among the sublines; the resistance being reversible in some cell lines but not others. Conclusion: The present results indicate that when resistant sublines are derived simultaneously from the same starting cell population, the observed mechanisms of resistance may not be the same in each of the variants. These findings support the hypothesis that preexisting cellular heterogeneity may affect mechanisms of acquired resistance

  4. Induction of tumor necrosis factor expression and resistance in a human breast tumor cell line.

    OpenAIRE

    Spriggs, D; Imamura, K; Rodriguez, C; Horiguchi, J; Kufe, D W

    1987-01-01

    Tumor necrosis factor (TNF) is a polypeptide cytokine that is cytotoxic to some but not all tumor cells. The basis for resistance to the cytotoxic effects of this agent remains unclear. We have studied the development of TNF resistance in human ZR-75-1 breast carcinoma cells. ZR-75-1 cells have undetectable levels of TNF RNA and protein. However, TNF transcripts are transiently induced in these cells by exposure to recombinant human TNF. This induction of TNF RNA is associated with production...

  5. Translational research in ovarian carcinoma : cell biological aspects of drug resistance and tumor aggressiveness

    NARCIS (Netherlands)

    Zee, Ate Gerard Jan van der

    1994-01-01

    In this thesis diverse cell biological features that in cultured (ovarian) tumor cells have been linked to drug resistance and/or tumor aggressiveness are studied in tumor specimens of epithelial ovarian carcinomas.

  6. Heterogeneity in induced thermal resistance of rat tumor cell clones

    International Nuclear Information System (INIS)

    Tomasovic, S.P.; Rosenblatt, P.L.; Heitzman, D.

    1983-01-01

    Four 13762NF rat mammary adenocarcinoma clones were examined for their survival response to heating under conditions that induced transient thermal resistance (thermotolerance). Clones MTC and MTF7 were isolated from the subcutaneous locally growing tumor, whereas clones MTLn2 and MTLn3 were derived from spontaneous lung metastases. There was heterogeneity among these clones in thermotolerance induced by either fractionated 45 0 C or continuous 42 0 C heating, but the order of sensitivity was not necessarily the same. The clones developed thermal resistance at different rates and to different degrees within the same time intervals. There was heterogeneity between clones isolated from within either the primary site or metastatic lesions. However, clones derived from metastatic foci did not intrinsically acquire more or less thermotolerance to fractionated 45 0 C or continuous 42 0 C heating than did clones from the primary tumor. Further, there was no apparent relationship between any phenotypic properties that conferred more or less thermotolerance in vitro and any phenotypic properties that conferred enhanced metastatic success of these same clones by spontaneous (subcutaneous) or experimental (intravenous) routes in vivo. These tumor clones also differ in their karyotype, metastatic potential, cell surface features, sensitivity to x-irradiation and drugs, and ability to repair sublethal radiation damage. These results provide further credence to the concept that inherent heterogeneity within tumors may be as important in therapeutic success as other known modifiers of outcome such as site and treatment heterogeneity

  7. Sensitivity to ionizing radiation and chemotherapeutic agents in gemcitabine-resistant human tumor cell lines

    NARCIS (Netherlands)

    van Bree, Chris; Castro Kreder, Natasja; Loves, Willem J. P.; Franken, Nicolaas A. P.; Peters, Godefridus J.; Haveman, Jaap

    2002-01-01

    Purpose: To determine cross-resistance to anti-tumor treatments in 2',2'difluorodeoxycytidine (dFdC, gemcitabine)-resistant human tumor cells. Methods and Materials: Human lung carcinoma cells SW-1573 (SWp) were made resistant to dFdC (SWg). Sensitivity to cisplatin (cDDP), paclitaxel,

  8. Phenotypic characterization of drug resistance and tumor initiating cancer stem cells from human bone tumor osteosarcoma cell line OS-77

    Directory of Open Access Journals (Sweden)

    Yue Zhang

    2014-08-01

    Full Text Available The cancer stem cell theory suggest that presence of small subpopulation of cancer stem cells are the major implication in the cancer treatment and also responsible for tumor recurrence. Based on Hoechst 33342 dye exclusion technique, we have identified about 3.3% of cancer stem like side population (SP cells from human osteosarcoma OS-77 cell line whose prevalence is significantly reduced to 0.3% after treatment with verapamil. The sphere formation assay revealed that osteosarcoma SP cells are highly capable to form tumor spheres (sarcospheres. Further by immunocytochemistry and RT-PCR, we show that OS-77 SP cells have enhanced expression of stem cell surface markers such as CD44, Nanog and ATP-binding cassette (ABC transporter gene (ABCG2 which contributes to self-renewal and drug resistance, respectively. Our findings help to designing a novel therapeutic drug which could effectively target the cancer stem cells and prevent the tumor relapse.

  9. Stimulation of cytolytic T lymphocytes by azaguanine-resistant mouse tumor cells in selective hat medium

    International Nuclear Information System (INIS)

    Snick, J. van; Uyttenhove, C.; Pel, A. van; Boon, T.

    1981-01-01

    Primed syngeneic or umprimed allogeneic mouse spleen cells were stimulated with azaguanine-resistant P815 tumor cells that were killed by the addition of aminopterin to the stimulation medium. The recovery of lymphocytes and their cytolytic activity and specificity were similar to those obtained after stimulation with irradiated cells. This method conveniently replaces the inactivation of stimulatory cells by irradiation or mitomycin treatment. Moreover, it has the advantage of inactivating not only the stimulatory cells but also the tumor cells that often contaminate the spleens of tumor-bearing animals, provided these animals have been inoculated with azaguanine-resistant tumor cell mutants. (Auth.)

  10. Inhibition of multidrug resistance-associated protein (MRP) activity by rifampicin in human multidrug-resistant lung tumor cells

    NARCIS (Netherlands)

    Courtois, A; Payen, L; Vernhet, L; de Vries, EGE; Guillouzo, A; Fardel, O

    1999-01-01

    The multidrug resistance-associated protein (MRP) is a drug efflux membrane pump conferring multidrug resistance on tumor cells. In order to look for compounds that can lead to reversal of such a resistance, the antituberculosis compound rifampicin, belonging to the chemical class of rifamycins, was

  11. pH regulation in sensitive and multidrug resistant Ehrlich ascites tumor cells

    DEFF Research Database (Denmark)

    Litman, Thomas; Pedersen, S F; Kramhøft, B

    1998-01-01

    Maintenance and regulation of intracellular pH (pHi) was studied in wild-type Ehrlich ascites tumor cells (EHR2) and five progressively daunorubicin-resistant, P-glycoprotein (P-gp)-expressing strains, the maximally resistant of which is EHR2/1.3. Steady-state pHi was similar in cells expressing...

  12. Combined cytotoxic effects of tumor necrosis factor-alpha with various cytotoxic agents in tumor cell lines that are drug resistant due to mutated p53

    NARCIS (Netherlands)

    Sleijfer, S; Le, T. K. P.; de Jong, S.; Timmer-Bosscha, H; Withoff, S; Mulder, NH

    Several studies suggest that tumor necrosis factor-alpha (TNF) is able to overcome drug resistance in tumors. Whether TNF is able to do so in tumor cell lines that are drug resistant due to a mutation in the tumor suppressor gene p53 is unclear. Therefore, we studied the in vitro cytotoxic effects

  13. Sequential Salinomycin Treatment Results in Resistance Formation through Clonal Selection of Epithelial-Like Tumor Cells

    Directory of Open Access Journals (Sweden)

    Florian Kopp

    2014-12-01

    Full Text Available Acquiring therapy resistance is one of the major obstacles in the treatment of patients with cancer. The discovery of the cancer stem cell (CSC–specific drug salinomycin raised hope for improved treatment options by targeting therapy-refractory CSCs and mesenchymal cancer cells. However, the occurrence of an acquired salinomycin resistance in tumor cells remains elusive. To study the formation of salinomycin resistance, mesenchymal breast cancer cells were sequentially treated with salinomycin in an in vitro cell culture assay, and the resulting differences in gene expression and salinomycin susceptibility were analyzed. We demonstrated that long-term salinomycin treatment of mesenchymal cancer cells resulted in salinomycin-resistant cells with elevated levels of epithelial markers, such as E-cadherin and miR-200c, a decreased migratory capability, and a higher susceptibility to the classic chemotherapeutic drug doxorubicin. The formation of salinomycin resistance through the acquisition of epithelial traits was further validated by inducing mesenchymal-epithelial transition through an overexpression of miR-200c. The transition from a mesenchymal to a more epithelial-like phenotype of salinomycin-treated tumor cells was moreover confirmed in vivo, using syngeneic and, for the first time, transgenic mouse tumor models. These results suggest that the acquisition of salinomycin resistance through the clonal selection of epithelial-like cancer cells could become exploited for improved cancer therapies by antagonizing the tumor-progressive effects of epithelial-mesenchymal transition.

  14. Discontinuing MEK inhibitors in tumor cells with an acquired resistance increases migration and invasion.

    Science.gov (United States)

    Nörz, Dominik; Grottke, Astrid; Bach, Johanna; Herzberger, Christiane; Hofmann, Bianca T; Nashan, Bjorn; Jücker, Manfred; Ewald, Florian

    2015-11-01

    Development of small molecular inhibitors against BRAF and MEK has been a breakthrough in the treatment of malignant melanoma. However, the long-term effect is foiled in virtually all patients by the emergence of resistant tumor cell populations. Therefore, mechanisms resulting in the acquired resistance against BRAF and MEK inhibitors have gained much attention and several strategies have been proposed to overcome tumor resistance, including interval treatment or withdrawal of these compounds after disease progression. Using a panel of cell lines with an acquired resistance against MEK inhibitors, we have evaluated the sensitivity of these cells against compounds targeting AKT/mTOR signaling, as well as novel ERK1/2 inhibitors. Furthermore, the effects of withdrawal of MEK inhibitor on migration in resistant cell lines were analyzed. We demonstrate that withdrawal of BRAF or MEK inhibitors in tumor cells with an acquired resistance results in reactivation of ERK1/2 signaling and upregulation of EMT-inducing transcription factors, leading to a highly migratory and invasive phenotype of cancer cells. Furthermore, we show that migration in these cells is independent from AKT/mTOR signaling. However, combined targeting of AKT/mTOR using MK-2206 and AZD8055 efficiently inhibits proliferation in all resistant tumor cell lines analyzed. We propose that combined targeting of MEK/AKT/mTOR or treatment with a novel ERK1/2 inhibitor downstream of BRAF/MEK suppresses proliferation as well as migration and invasion in resistant tumor cells. We provide a rationale against the discontinuation of BRAF or MEK inhibitors in patients with an acquired resistance, and provide a rationale for combined targeting of AKT/mTOR and MEK/ERK1/2, or direct targeting of ERK1/2 as an effective treatment strategy. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Downregulation of taurine uptake in multidrug resistant Ehrlich ascites tumor cells

    DEFF Research Database (Denmark)

    Poulsen, K A; Litman, Thomas; Eriksen, J

    2002-01-01

    In daunorubicin resistant Ehrlich ascites tumor cells (DNR), the initial taurine uptake was reduced by 56% as compared to the parental, drug sensitive Ehrlich cells. Kinetic experiments indicated that taurine uptake in Ehrlich cells occurs via both high- and low-affinity transporters. The maximal...

  16. Ultraviolet radiation-induced tumors do not arise from a subpopulation of ultraviolet-resistant cells

    International Nuclear Information System (INIS)

    Fisher, M.S.

    1981-01-01

    A study was designed to determine whether UV-induced tumors have a selective growth advantage in the autochthonous host by virtue of possessing a heritable resistance to UV-induced lethality. Several fibrosarcomas were induced either by repeated exposure of C3H mice to UV radiation from FS40 sunlamps or by subcutaneous injection of C3H mice with a chemical carcinogen (methylcholanthrene). Tissue culture lines of these tumors were tested in vitro for susceptibility to the lethal effects of UV radiation from an FS40 sunlamp. Lethality was assessed by measuring colony formation as a function of increasing dose of radiation. Cells from the UV-induced fibrosarcomas were not more resistant to the lethal effects of UV radiation than cells from methylcholanthrene-induced fibrosarcomas or cells from a nontumorigenic C3H fibroblast cell line. This suggests that UV-induced tumors do not arise from a subpopulation of UV-resistant cells. (author)

  17. Endothelial Side Population Cells Contribute to Tumor Angiogenesis and Antiangiogenic Drug Resistance.

    Science.gov (United States)

    Naito, Hisamichi; Wakabayashi, Taku; Kidoya, Hiroyasu; Muramatsu, Fumitaka; Takara, Kazuhiro; Eino, Daisuke; Yamane, Keitaro; Iba, Tomohiro; Takakura, Nobuyuki

    2016-06-01

    Angiogenesis plays a crucial role in tumor growth, with an undisputed contribution of resident endothelial cells (EC) to new blood vessels in the tumor. Here, we report the definition of a small population of vascular-resident stem/progenitor-like EC that contributes predominantly to new blood vessel formation in the tumor. Although the surface markers of this population are similar to other ECs, those from the lung vasculature possess colony-forming ability in vitro and contribute to angiogenesis in vivo These specific ECs actively proliferate in lung tumors, and the percentage of this population significantly increases in the tumor vasculature relative to normal lung tissue. Using genetic recombination and bone marrow transplant models, we show that these cells are phenotypically true ECs and do not originate from hematopoietic cells. After treatment of tumors with antiangiogenic drugs, these specific ECs selectively survived and remained in the tumor. Together, our results established that ECs in the peripheral vasculature are heterogeneous and that stem/progenitor-like ECs play an indispensable role in tumor angiogenesis as EC-supplying cells. The lack of susceptibility of these ECs to antiangiogenic drugs may account for resistance of the tumor to this drug type. Thus, inhibiting these ECs might provide a promising strategy to overcome antiangiogenic drug resistance. Cancer Res; 76(11); 3200-10. ©2016 AACR. ©2016 American Association for Cancer Research.

  18. Sensitivity to ionizing radiation and chemotherapeutic agents in gemcitabine-resistant human tumor cell lines

    International Nuclear Information System (INIS)

    Bree, Chris van; Kreder, Natasja Castro; Loves, Willem J.P.; Franken, Nicolaas A.P.; Peters, Godefridus J.; Haveman, Jaap

    2002-01-01

    Purpose: To determine cross-resistance to anti-tumor treatments in 2',2'difluorodeoxycytidine (dFdC, gemcitabine)-resistant human tumor cells. Methods and Materials: Human lung carcinoma cells SW-1573 (SWp) were made resistant to dFdC (SWg). Sensitivity to cisplatin (cDDP), paclitaxel, 5-fluorouracil (5-FU), methotrexate (MTX), cytarabine (ara-C), and dFdC was measured by a proliferation assay. Radiosensitivity and radioenhancement by dFdC of this cell panel and the human ovarian carcinoma cell line A2780 and its dFdC-resistant variant AG6000 were determined by clonogenic assay. Bivariate flowcytometry was performed to study cell cycle changes. Results: In the SWg, a complete deoxycytidine kinase (dCK) deficiency was found on mRNA and protein level. This was accompanied by a 10-fold decrease in dCK activity which resulted in the >1000-fold resistance to dFdC. Sensitivity to other anti-tumor drugs was not altered, except for ara-C (>100-fold resistance). Radiosensitivity was not altered in the dFdC-resistant cell lines SWg and AG6000. High concentrations (50-100 μM dFdC) induced radioenhancement in the dFdC-resistant cell lines similar to the radioenhancement obtained at lower concentrations (10 nM dFdC) in the parental lines. An early S-phase arrest was found in all cell lines after dFdC treatment where radioenhancement was achieved. Conclusions: In the dFdC-resistant lung tumor cell line SWg, the deficiency in dCK is related to the resistance to dFdC and ara-C. No cross-resistance was observed to other anti-tumor drugs used for the treatment in lung cancer. Sensitivity to ionizing radiation was not altered in two different dFdC-resistant cell lines. Resistance to dFdC does not eliminate the ability of dFdC to sensitize cells to radiation

  19. [Study on active constituents of traditional Chinese medicine reversing multidrug resistance of tumor cells in vitro].

    Science.gov (United States)

    Zhang, H; Yang, L; Liu, S; Ren, L

    2001-09-01

    To screen drugs reversing multidrug resistance of tumor cells from active constituents of traditional Chinese medicine and to study the reversal action. The kill effects of the drugs on tumor cell lines in vitro were determined with MTT method. The Jin's formula was used to analyse the effect of drug combination. 5 micrograms/ml rhynchophylline, 2 micrograms/ml jatrorrhizine and 1.25 micrograms/ml indirulin could reverse multidrug resistance for vincristine on KBv200 cell line by 16.8, 5.1 and 4 fold respectively. 1.56-12.5 micrograms/ml curcumine combining with vincristine could sensitize antitumor effect both on KB and KBv200 cell lines. All rhynchophylline, jatrorrhizine and indirulin could reverse multidrug resistance for vincristine on KBv200 cell line. Curcumine combinating vincristine could sensitize antitumor effect both on kB and kBv200 cell lines.

  20. Downregulation of taurine uptake in multidrug resistant Ehrlich ascites tumor cells

    DEFF Research Database (Denmark)

    Poulsen, K A; Litman, Thomas; Eriksen, J

    2002-01-01

    In daunorubicin resistant Ehrlich ascites tumor cells (DNR), the initial taurine uptake was reduced by 56% as compared to the parental, drug sensitive Ehrlich cells. Kinetic experiments indicated that taurine uptake in Ehrlich cells occurs via both high- and low-affinity transporters. The maximal...... rate constant for the initial taurine uptake was reduced by 45% (high-affinity system) and 49% (low affinity system) in the resistant subline whereas the affinity of the transporters to taurine was unchanged. By immunoblotting we identified 3 TauT protein bands in the 50-70 kDa region. A visible...... reduction in the intensity of the band with the lowest molecular weight was observed in resistant cells. Quantitative RT-PCR indicated a significant reduction in the amount of taurine transporter mRNA in the resistant cells. Drug resistance in DNR Ehrlich cells is associated with overexpression of the mdr1...

  1. Genetic Determinants of Cisplatin Resistance in Patients With Advanced Germ Cell Tumors.

    Science.gov (United States)

    Bagrodia, Aditya; Lee, Byron H; Lee, William; Cha, Eugene K; Sfakianos, John P; Iyer, Gopa; Pietzak, Eugene J; Gao, Sizhi Paul; Zabor, Emily C; Ostrovnaya, Irina; Kaffenberger, Samuel D; Syed, Aijazuddin; Arcila, Maria E; Chaganti, Raju S; Kundra, Ritika; Eng, Jana; Hreiki, Joseph; Vacic, Vladimir; Arora, Kanika; Oschwald, Dayna M; Berger, Michael F; Bajorin, Dean F; Bains, Manjit S; Schultz, Nikolaus; Reuter, Victor E; Sheinfeld, Joel; Bosl, George J; Al-Ahmadie, Hikmat A; Solit, David B; Feldman, Darren R

    2016-11-20

    Purpose Owing to its exquisite chemotherapy sensitivity, most patients with metastatic germ cell tumors (GCTs) are cured with cisplatin-based chemotherapy. However, up to 30% of patients with advanced GCT exhibit cisplatin resistance, which requires intensive salvage treatment, and have a 50% risk of cancer-related death. To identify a genetic basis for cisplatin resistance, we performed whole-exome and targeted sequencing of cisplatin-sensitive and cisplatin-resistant GCTs. Methods Men with GCT who received a cisplatin-containing chemotherapy regimen and had available tumor tissue were eligible to participate in this study. Whole-exome sequencing or targeted exon-capture-based sequencing was performed on 180 tumors. Patients were categorized as cisplatin sensitive or cisplatin resistant by using a combination of postchemotherapy parameters, including serum tumor marker levels, radiology, and pathology at surgical resection of residual disease. Results TP53 alterations were present exclusively in cisplatin-resistant tumors and were particularly prevalent among primary mediastinal nonseminomas (72%). TP53 pathway alterations including MDM2 amplifications were more common among patients with adverse clinical features, categorized as poor risk according to the International Germ Cell Cancer Collaborative Group (IGCCCG) model. Despite this association, TP53 and MDM2 alterations predicted adverse prognosis independent of the IGCCCG model. Actionable alterations, including novel RAC1 mutations, were detected in 55% of cisplatin-resistant GCTs. Conclusion In GCT, TP53 and MDM2 alterations were associated with cisplatin resistance and inferior outcomes, independent of the IGCCCG model. The finding of frequent TP53 alterations among mediastinal primary nonseminomas may explain the more frequent chemoresistance observed with this tumor subtype. A substantial portion of cisplatin-resistant GCTs harbor actionable alterations, which might respond to targeted therapies. Genomic

  2. Sulforaphane reduces molecular response to hypoxia in ovarian tumor cells independently of their resistance to chemotherapy.

    Science.gov (United States)

    Pastorek, Michal; Simko, Veronika; Takacova, Martina; Barathova, Monika; Bartosova, Maria; Hunakova, Luba; Sedlakova, Olga; Hudecova, Sona; Krizanova, Olga; Dequiedt, Franck; Pastorekova, Silvia; Sedlak, Jan

    2015-07-01

    One of the recently emerging anticancer strategies is the use of natural dietary compounds, such as sulforaphane, a cancer-chemopreventive isothiocyanate found in broccoli. Based on the growing evidence, sulforaphane acts through molecular mechanisms that interfere with multiple oncogenic pathways in diverse tumor cell types. Herein, we investigated the anticancer effects of bioavailable concentrations of sulforaphane in ovarian carcinoma cell line A2780 and its two derivatives, adriamycin-resistant A2780/ADR and cisplatin-resistant A2780/CP cell lines. Since tumor microenvironment is characterized by reduced oxygenation that induces aggressive tumor phenotype (such as increased invasiveness and resistance to chemotherapy), we evaluated the effects of sulforaphane in ovarian cancer cells exposed to hypoxia (2% O2). Using the cell-based reporter assay, we identified several oncogenic pathways modulated by sulforaphane in hypoxia by activating anticancer responses (p53, ARE, IRF-1, Pax-6 and XRE) and suppressing responses supporting tumor progression (AP-1 and HIF-1). We further showed that sulforaphane decreases the level of HIF-1α protein without affecting its transcription and stability. It can also diminish transcription and protein level of the HIF-1 target, CA IX, which protects tumor cells from hypoxia-induced pH imbalance and facilitates their migration/invasion. Accordingly, sulforaphane treatment leads to diminished pH regulation and reduced migration of ovarian carcinoma cells. These effects occur in all three ovarian cell lines suggesting that sulforaphane can overcome the chemoresistance of cancer cells. This offers a path potentially exploitable in sensitizing resistant cancer cells to therapy, and opens a window for the combined treatments of sulforaphane either with conventional chemotherapy, natural compounds, or with other small molecules.

  3. Relationship between laminin binding capacity and laminin expression on tumor cells sensitive or resistant to natural cell-mediated cytotoxicity

    International Nuclear Information System (INIS)

    Laybourn, K.A.; Varani, J.; Fligiel, S.E.G.; Hiserodt, J.C.

    1986-01-01

    Previous studies have identified the presence of laminin binding sites on murine NK and NC sensitive tumor cells by 125 I-laminin binding and laminin induced cell-cell aggregation. The finding that the addition of exogenous laminin inhibits NK/NC binding to sensitive tumor cells suggests laminin binding sites may serve as target antigens for NK cells. The present study extends earlier reports by analyzing a large panel of tumor cells for laminin binding capacity, laminin expression and sensitivity to NK/NC killing. The data indicate that all tumor cells which bind to NK/NC cells (8 lines tested) express laminin binding sites. All of these tumor cells were capable of competing for NK lysis of YAC-1 cells in cold target competition assays, and all bound enriched NK cells in direct single cell binding assays. In contrast, tumor cells expressing high levels of surface laminin (B16 melanomas, C57B1/6 fibrosarcomas, and RAS transfected 3T3 fibroblasts) but low levels of laminin binding capacity did not bind NK/NC cells and were resistant to lysis. These data support the hypothesis that expression of laminin/laminin binding sites may contribute to tumor cell sensitivity to NK/NC binding and/or killing

  4. The necrotic signal induced by mycophenolic acid overcomes apoptosis-resistance in tumor cells.

    Directory of Open Access Journals (Sweden)

    Gwendaline Guidicelli

    Full Text Available BACKGROUND: The amount of inosine monophosphate dehydrogenase (IMPDH, a pivotal enzyme for the biosynthesis of the guanosine tri-phosphate (GTP, is frequently increased in tumor cells. The anti-viral agent ribavirin and the immunosuppressant mycophenolic acid (MPA are potent inhibitors of IMPDH. We recently showed that IMPDH inhibition led to a necrotic signal requiring the activation of Cdc42. METHODOLOGY/PRINCIPAL FINDINGS: Herein, we strengthened the essential role played by this small GTPase in the necrotic signal by silencing Cdc42 and by the ectopic expression of a constitutive active mutant of Cdc42. Since resistance to apoptosis is an essential step for the tumorigenesis process, we next examined the effect of the MPA-mediated necrotic signal on different tumor cells demonstrating various mechanisms of resistance to apoptosis (Bcl2-, HSP70-, Lyn-, BCR-ABL-overexpressing cells. All tested cells remained sensitive to MPA-mediated necrotic signal. Furthermore, inhibition of IMPDH activity in Chronic Lymphocytic Leukemia cells was significantly more efficient at eliminating malignant cells than apoptotic inducers. CONCLUSIONS/SIGNIFICANCE: These findings indicate that necrosis and apoptosis are split signals that share few if any common hub of signaling. In addition, the necrotic signaling pathway induced by depletion of the cellular amount of GTP/GDP would be of great interest to eliminate apoptotic-resistant tumor cells.

  5. Verapamil inhibits tumor progression of chemotherapy-resistant pancreatic cancer side population cells

    Science.gov (United States)

    ZHAO, LU; ZHAO, YUE; SCHWARZ, BETTINA; MYSLIWIETZ, JOSEF; HARTIG, ROLAND; CAMAJ, PETER; BAO, QI; JAUCH, KARL-WALTER; GUBA, MAKUS; ELLWART, JOACHIM WALTER; NELSON, PETER JON; BRUNS, CHRISTIANE JOSEPHINE

    2016-01-01

    Tumor side population (SP) cells display stem-like properties that can be modulated by treatment with the calcium channel blocker verapamil. Verapamil can enhance the cytotoxic effects of chemotherapeutic drugs and multi-drug resistance by targeting the transport function of the P-glycoprotein (P-gp). This study focused on the therapeutic potential of verapamil on stem-like SP tumor cells, and further investigated its chemosensitizing effects using L3.6pl and AsPC-1 pancreatic carcinoma models. As compared to parental L3.6pl cells (0.9±0.22%), L3.6pl gemcitabine-resistant cells (L3.6plGres) showed a significantly higher percentage of SP cells (5.38±0.99%) as detected by Hoechst 33342/FACS assays. The L3.6plGres SP cells showed stable gemcitabine resistance, enhanced colony formation ability and increased tumorigenicity. Verapamil effectively inhibited L3.6plGres and AsPC-1 SP cell proliferation in vitro. A pro-apoptotic effect of verapamil was observed in L3.6pl cells, but not in L3.6plGres cells, which was linked to their differential expression of P-gp and equilibrative nucleoside transporter-1 (ENT-1). In an orthotopic pancreatic cancer mouse model, both low and high dose verapamil was shown to substantially reduce L3.6plGres-SP cell tumor growth and metastasis, enhance tumor apoptosis, and reduce microvascular density. PMID:27177126

  6. Factors determining sensitivity or resistance of tumor cell lines towards artesunate.

    Science.gov (United States)

    Sertel, Serkan; Eichhorn, Tolga; Sieber, Sebastian; Sauer, Alexandra; Weiss, Johanna; Plinkert, Peter K; Efferth, Thomas

    2010-04-15

    Clinical oncology is still challenged by the development of drug resistance of tumors that result in poor prognosis for patients. There is an urgent necessity to understand the molecular mechanisms of resistance and to develop novel therapy strategies. Artesunate (ART) is an anti-malarial drug, which also exerts profound cytotoxic activity towards cancer cells. We first applied a gene-hunting approach using cluster and COMPARE analyses of microarray-based transcriptome-wide mRNA expression profiles. Among the genes identified by this approach were genes from diverse functional groups such as structural constituents of ribosomes (RPL6, RPL7, RPS12, RPS15A), kinases (CABC1, CCT2, RPL41), transcriptional and translational regulators (SFRS2, TUFM, ZBTB4), signal transducers (FLNA), control of cell growth and proliferation (RPS6), angiogenesis promoting factors (ITGB1), and others (SLC25A19, NCKAP1, BST1, DBH, FZD7, NACA, MTHFD2). Furthermore, we applied a candidate gene approach and tested the role of resistance mechanisms towards established anti-cancer drugs for ART resistance. By using transfected or knockout cell models we found that the tumor suppressor p16(INK4A) and the anti-oxidant protein, catalase, conferred resistance towards ART, while the oncogene HPV-E6 conferred sensitivity towards ART. The tumor suppressor p53 and its downstream protein, p21, as well as the anti-oxidant manganese-dependent superoxide dismutase did not affect cellular response to ART. In conclusion, our pharmacogenomic approach revealed that response of tumor cells towards ART is multi-factorial and is determined by gene expression associated with either ART sensitivity or resistance. At least some of the functional groups of genes (e.g. angiogenesis promoting factors, cell growth and proliferation-associated genes signal transducers and kinases) are also implicated in clinical responsiveness of tumors towards chemotherapy. It merits further investigation, whether ART is responsive in

  7. Induction of tumor stem cell differentiation--novel strategy to overcome therapy resistance in gastric cancer.

    Science.gov (United States)

    Zieker, Derek; Bühler, Sarah; Ustündag, Zeynep; Königsrainer, Ingmar; Manncke, Sebastian; Bajaeifer, Khaled; Vollmer, Jörg; Fend, Falko; Northoff, Hinnak; Königsrainer, Alfred; Glatzle, Jörg

    2013-04-01

    Metastases are a frequent finding in gastric cancer and are associated with poor prognosis. A recently discovered link between metabolic changes, differentiation, and therapy resistance due to tumor stem cells could depict a novel approach in cancer research and therapy. Phosphoglycerate kinase 1 (PGK1) is a metabolic enzyme and is known to be involved in enabling gastric cancer cells to be invasive and to disseminate. In this study, we investigated if PGK1 is a promising candidate in inducing stem cell differentiation in gastric cancer. MKN45 gastric cancer cells were used due to their known cancer stem cell population, which is defined by the surface marker CD44. MKN45 cells were separated between CD44+ and CD44- cells and, in equal parts, incubated with shRNA anti-PGK1 using fluorescence-activated cell sorting (FACS) analysis; they were then injected into nude mice to evaluate their tumor growth behavior in vivo. Further, the invasive potential of gastric cancer cells was evaluated in vitro using the xCelligence analyzing system. CD44+ gastric cancer cells treated with and without shRNA anti-PGK1 were capable to cause tumor growth in vivo, whereas tumor growth in CD44+ cells treated with shRNA anti-PGK1 was considerably smaller in comparison with that in CD44+ cells without treatment. CD44- cells did not show any noticeable tumor growth in vivo. By targeting PGK1, the invasive potential of gastric cancer cells was impressively reduced in vitro. In all our cells, which were targeted with shRNA anti-PGK1, we did not find any change that is in accordance with the phenotype of the cells using FACS analysis. Our findings suggest that targeting the key metabolic enzyme PGK1 in gastric cancer cells may open a new chapter in cancer treatment, which is well worth for further exploration in combination with recent chemotherapy, and might be a promising possibility to overcome therapy resistance in gastric cancer.

  8. STUDY OF THE RELATIONSHIP BETWEEN CIRCADIAN RHYTHMS AND DRUG RESISTANCE OF BREAST TUMOR CELL LINES

    Directory of Open Access Journals (Sweden)

    A. M. Оgloblina

    2015-01-01

    Full Text Available 10 % of genome mRNA expression is rhythmic and these 24-hrs rhythms are under control of the circadian clock. Epidemiologic studies have revealed a clear link between the disruption of circadian rhythms and cancer development in humans. Growing evidence shows that circadian disruption is associated with development of malignant tumors, including breast cancer. Aim of this study was to investigate: the expression of circadian clock genes in human mammary epithelial cell line MCF10A and breast cancer cell lines MCF-7, ZR-75-1, BT-474 and if the multidrug resistance phenotype of cancer cells is associated with changes in circadian clock genes expression. We have found that Per1 expression significantly reduced in cancer cells. No correlation was detected between the expression of circadian clock genes and cancer breast cell lines drug resistance. Interestingly, the expression of Bmal1, Per1 and Cry1 were increased in multi-drug resistant MCF-7_D cells compare with the parent cells MCF-7 cells, however, if these changes in the expression contribute to the drug-resistance or not is not clear. These results argue for further study.

  9. Alternating current electrical stimulation enhanced chemotherapy: a novel strategy to bypass multidrug resistance in tumor cells

    International Nuclear Information System (INIS)

    Janigro, Damir; Perju, Catalin; Fazio, Vincent; Hallene, Kerri; Dini, Gabriele; Agarwal, Mukesh K; Cucullo, Luca

    2006-01-01

    Tumor burden can be pharmacologically controlled by inhibiting cell division and by direct, specific toxicity to the cancerous tissue. Unfortunately, tumors often develop intrinsic pharmacoresistance mediated by specialized drug extrusion mechanisms such as P-glycoprotein. As a consequence, malignant cells may become insensitive to various anti-cancer drugs. Recent studies have shown that low intensity very low frequency electrical stimulation by alternating current (AC) reduces the proliferation of different tumor cell lines by a mechanism affecting potassium channels while at intermediate frequencies interfere with cytoskeletal mechanisms of cell division. The aim of the present study is to test the hypothesis that permeability of several MDR1 over-expressing tumor cell lines to the chemotherapic agent doxorubicin is enhanced by low frequency, low intensity AC stimulation. We grew human and rodent cells (C6, HT-1080, H-1299, SKOV-3 and PC-3) which over-expressed MDR1 in 24-well Petri dishes equipped with an array of stainless steel electrodes connected to a computer via a programmable I/O board. We used a dedicated program to generate and monitor the electrical stimulation protocol. Parallel cultures were exposed for 3 hours to increasing concentrations (1, 2, 4, and 8 μM) of doxorubicin following stimulation to 50 Hz AC (7.5 μA) or MDR1 inhibitor XR9576. Cell viability was assessed by determination of adenylate kinase (AK) release. The relationship between MDR1 expression and the intracellular accumulation of doxorubicin as well as the cellular distribution of MDR1 was investigated by computerized image analysis immunohistochemistry and Western blot techniques. By the use of a variety of tumor cell lines, we show that low frequency, low intensity AC stimulation enhances chemotherapeutic efficacy. This effect was due to an altered expression of intrinsic cellular drug resistance mechanisms. Immunohistochemical, Western blot and fluorescence analysis revealed

  10. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition

    Science.gov (United States)

    Cherkassky, Leonid; Morello, Aurore; Villena-Vargas, Jonathan; Feng, Yang; Dimitrov, Dimiter S.; Jones, David R.; Sadelain, Michel; Adusumilli, Prasad S.

    2016-01-01

    Following immune attack, solid tumors upregulate coinhibitory ligands that bind to inhibitory receptors on T cells. This adaptive resistance compromises the efficacy of chimeric antigen receptor (CAR) T cell therapies, which redirect T cells to solid tumors. Here, we investigated whether programmed death-1–mediated (PD-1–mediated) T cell exhaustion affects mesothelin-targeted CAR T cells and explored cell-intrinsic strategies to overcome inhibition of CAR T cells. Using an orthotopic mouse model of pleural mesothelioma, we determined that relatively high doses of both CD28- and 4-1BB–based second-generation CAR T cells achieved tumor eradication. CAR-mediated CD28 and 4-1BB costimulation resulted in similar levels of T cell persistence in animals treated with low T cell doses; however, PD-1 upregulation within the tumor microenvironment inhibited T cell function. At lower doses, 4-1BB CAR T cells retained their cytotoxic and cytokine secretion functions longer than CD28 CAR T cells. The prolonged function of 4-1BB CAR T cells correlated with improved survival. PD-1/PD-1 ligand [PD-L1] pathway interference, through PD-1 antibody checkpoint blockade, cell-intrinsic PD-1 shRNA blockade, or a PD-1 dominant negative receptor, restored the effector function of CD28 CAR T cells. These findings provide mechanistic insights into human CAR T cell exhaustion in solid tumors and suggest that PD-1/PD-L1 blockade may be an effective strategy for improving the potency of CAR T cell therapies. PMID:27454297

  11. MicroRNA expression profiles associated with development of drug resistance in Ehrlich ascites tumor cells

    DEFF Research Database (Denmark)

    Husted, Susanne; Søkilde, Rolf; Rask, Lene

    2011-01-01

    Multidrug resistance (MDR) poses a major obstacle to successful chemotherapeutic treatment of cancer, and often involves multiple genes, which may be regulated post-transcriptionally by microRNAs (miRNAs). The purpose of the present study was therefore to identify any resistance-associated changes...... in miRNA expression in a sensitive and five increasingly drug-resistant Ehrlich ascites tumor (EAT) cell lines, representing different steps in the development of resistance. We used an LNA-enhanced microarray platform to study the global miRNA expression profiles in the six murine EAT cell lines......, and identified growth-, hypoxia-, and resistance-specific miRNA patterns. Among the differentially expressed miRNAs, we found the two clusters miR-183∼miR-96∼miR-182 and miR-200b∼miR-200a∼miR-429 as well as miR-141 to be consistently upregulated in the MDR cell lines, while miR-125b-5p and the two clusters mi...

  12. Structure-activity relationships of diverse xanthones against multidrug resistant human tumor cells.

    Science.gov (United States)

    Wang, Qiwen; Ma, Chenyao; Ma, Yun; Li, Xiang; Chen, Yong; Chen, Jianwei

    2017-02-01

    Thirteen xanthones were isolated naturally from the stem of Securidaca inappendiculata Hassk, and structure-activity relationships (SARs) of these compounds were comparatively predicted for their cytotoxic activity against three human multidrug resistant (MDR) cell lines MCF-7/ADR, SMMC-7721/Taxol, and A549/Taxol cells. The results showed that the selected xanthones exhibited different potent cytotoxic activity against the growth of different human tumor cell lines, and most of the xanthones exhibited selective cytotoxicity against SMMC-7721/Taxol cells. Furthermore, some tested xanthones showed stronger cytotoxicity than Cisplatin, which has been used in clinical application extensively. The SARs analysis revealed that the cytotoxic activities of diverse xanthones were affected mostly by the number and position of methoxyl and hydroxyl groups. Xanthones with more free hydroxyl and methoxyl groups increased the cytotoxic activity significantly, especially for those with the presence of C-3 hydroxyl and C-4 methoxyl groups. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. DNA from radiation resistant human tumor cells transfers resistance to NIH/3T3 cells with varying degrees of penetrance

    International Nuclear Information System (INIS)

    Kasid, U.; Dritschilo, A.; Weichselbaum, R.

    1987-01-01

    Experimental evidence suggests that clinical radiation resistance may correlate with in vitro radiation survival parameters. Specifically, they isolated several cell lines from radioresistant head and neck carcinomas with D/sub 0/ values greater than 2 Gy. The authors co-transfected DNA from cell line SQ2OB (D/sub 0/ = 2.4 Gy) with the rhoSVNeO plasmid into NIH/3T3 cells (D/sub 0/ = 1.7 Gy). Antibiotic G418 resistant, transformed clones were isolated and confirmed by Southern blotting to contain human alu, as well as rhoSVNeO sequences. Screening for radiation resistance with 8Gy (Cs-137) revealed that 3 of 4 tested hybrid clones show a radiation survival intermediate between NIH/3T3 and SQ2OB. This suggests that radiation resistance is a dominant, transfectable phenotype of mammalian cells and can be expressed in more sensitive cells. Karyotyping of resistant hybrid clones shows the presence of double minute chromosomes. Secondary transfection results and experiments to clone the genetic factors responsible for radiation resistance are in progress and results will be reported

  14. Nitric oxide inhibits topoisomerase II activity and induces resistance to topoisomerase II-poisons in human tumor cells.

    Science.gov (United States)

    Kumar, Ashutosh; Ehrenshaft, Marilyn; Tokar, Erik J; Mason, Ronald P; Sinha, Birandra K

    2016-07-01

    Etoposide and doxorubicin, topoisomerase II poisons, are important drugs for the treatment of tumors in the clinic. Topoisomerases contain several free sulfhydryl groups which are important for their activity and are also potential targets for nitric oxide (NO)-induced nitrosation. NO, a physiological signaling molecule nitrosates many cellular proteins, causing altered protein and cellular functions. Here, we have evaluated the roles of NO/NO-derived species in the activity/stability of topo II both in vitro and in human tumor cells, and in the cytotoxicity of topo II-poisons, etoposide and doxorubicin. Treatment of purified topo IIα with propylamine propylamine nonoate (PPNO), an NO donor, resulted in inhibition of both the catalytic and relaxation activity in vitro, and decreased etoposide-dependent cleavable complex formation in both human HT-29 colon and MCF-7 breast cancer cells. PPNO treatment also induced significant nitrosation of topo IIα protein in these human tumor cells. These events, taken together, caused a significant resistance to etoposide in both cell lines. However, PPNO had no effect on doxorubicin-induced cleavable complex formation, or doxorubicin cytotoxicity in these cell lines. Inhibition of topo II function by NO/NO-derived species induces significant resistance to etoposide, without affecting doxorubicin cytotoxicity in human tumor cells. As tumors express inducible nitric oxide synthase and generate significant amounts of NO, modulation of topo II functions by NO/NO-derived species could render tumors resistant to certain topo II-poisons in the clinic. Published by Elsevier B.V.

  15. FEN1 promotes tumor progression and confers cisplatin resistance in non-small-cell lung cancer.

    Science.gov (United States)

    He, Lingfeng; Luo, Libo; Zhu, Hong; Yang, Huan; Zhang, Yilan; Wu, Huan; Sun, Hongfang; Jiang, Feng; Kathera, Chandra S; Liu, Lingjie; Zhuang, Ziheng; Chen, Haoyan; Pan, Feiyan; Hu, Zhigang; Zhang, Jing; Guo, Zhigang

    2017-06-01

    Lung cancer is one of the leading causes of cancer mortality worldwide. The therapeutic effect of chemotherapy is limited due to the resistance of cancer cells, which remains a challenge in cancer therapeutics. In this work, we found that flap endonuclease 1 (FEN1) is overexpressed in lung cancer cells. FEN1 is a major component of the base excision repair pathway for DNA repair systems and plays important roles in maintaining genomic stability through DNA replication and repair. We showed that FEN1 is critical for the rapid proliferation of lung cancer cells. Suppression of FEN1 resulted in decreased DNA replication and accumulation of DNA damage, which subsequently induced apoptosis. Manipulating the amount of FEN1 altered the response of lung cancer cells to chemotherapeutic drugs. A small-molecule inhibitor (C20) was used to target FEN1 and this enhanced the therapeutic effect of cisplatin. The FEN1 inhibitor significantly suppressed cell proliferation and induced DNA damage in lung cancer cells. In mouse models, the FEN1 inhibitor sensitized lung cancer cells to a DNA damage-inducing agent and efficiently suppressed cancer progression in combination with cisplatin treatment. Our study suggests that targeting FEN1 may be a novel and efficient strategy for a tumor-targeting therapy for lung cancer. © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  16. Dual responsive promoters to target therapeutic gene expression to radiation-resistant hypoxic tumor cells

    International Nuclear Information System (INIS)

    Chadderton, Naomi; Cowen, Rachel L.; Sheppard, Freda C.D.; Robinson, Suzanne; Greco, Olga; Scott, Simon D.; Stratford, Ian J.; Patterson, Adam V.; Williams, Kaye J.

    2005-01-01

    Purpose: Tumor hypoxia is unequivocally linked to poor radiotherapy outcome. This study aimed to identify enhancer sequences that respond maximally to a combination of radiation and hypoxia for use in genetic radiotherapy approaches. Methods and materials: The influence of radiation (5 Gy) and hypoxia (1% O 2 ) on reporter-gene expression driven by hypoxia (HRE) and radiation (Egr-1) responsive elements was evaluated in tumor cells grown as monolayers or multicellular spheroids. Hypoxia-inducible factor-1α (HIF-1α) and HIF-2α protein expression was monitored in parallel. Results: Of the sequences tested, an HRE from the phosphoglycerate kinase-1 gene (PGK-18[5+]) was maximally induced in response to hypoxia plus radiation in all 5 cell lines tested. The additional radiation treatment afforded a significant increase in the induction of PGK-18[5+] compared with hypoxia alone in 3 cell lines. HIF-1α/2α were induced by radiation but combined hypoxia/radiation treatment did not yield a further increase. The dual responsive nature of HREs was maintained when spheroids were irradiated after delivery of HRE constructs in a replication-deficient adenovirus. Conclusions: Hypoxia-responsive enhancer element sequences are dually responsive to combined radiation and hypoxic treatment. Their use in genetic radiotherapy in vivo could maximize expression in the most radio-resistant population at the time of radiation and also exploit microenvironmental changes after radiotherapy to yield additional switch-on

  17. Hepatic natural killer cells exclusively kill splenic/blood natural killer-resistant tumor cells by the perforin/granzyme pathway

    NARCIS (Netherlands)

    Vermijlen, David; Luo, Dianzhong; Froelich, Christopher J.; Medema, Jan Paul; Kummer, Jean Alain; Willems, Erik; Braet, Filip; Wisse, Eddie

    2002-01-01

    Hepatic natural killer (NK) cells are located in the liver sinusoids adherent to the endothelium. Human and rat hepatic NK cells induce cytolysis in tumor cells that are resistant to splenic or blood NK cells. To investigate the mechanism of cell death, we examined the capacity of isolated, pure

  18. Down-regulation of HSP27 sensitizes TRAIL-resistant tumor cell to TRAIL-induced apoptosis

    DEFF Research Database (Denmark)

    Zhuang, Hongqin; Jiang, Weiwei; Cheng, Wei

    2010-01-01

    Tumor necrosis factor-alpha-related apoptosis-inducing ligand (TRAIL) has recently emerged as a cancer therapeutic agent because it preferentially induces apoptosis in human cancer over normal cells. Most tumor cells, including lung cancer cell line A549, unfortunately, are resistant to TRAIL...... siRNA on drug sensitization of A549 cells to TRAIL treatment. The results showed that treatment of A549 cells with HSP27 siRNA down-regulated HSP27 expression but did not induce significant apoptosis. However, combination of HSP27 siRNA with TRAIL-induced significant apoptosis in TRAIL-resistant A549...... cells. In addition to inducing caspases activation and apoptosis, combined treatment with HSP27 siRNA and TRAIL also increased JNK and p53 expression and activity. Collectively, these findings provide a conclusion that siRNA targeting of the HSP27 gene specifically down-regulated HSP27 expression in A...

  19. Expression of P-glycoprotein and multidrug resistance associated protein in Ehrlich ascites tumor cells after fractionated irradiation

    DEFF Research Database (Denmark)

    Nielsen, D; Maare, C; Eriksen, J

    2001-01-01

    activity was neither stimulated by vinblastine nor VER. CONCLUSION: Irradiation induced a multidrug-resistant phenotype in sensitive tumor cells. This phenotype was characterized by increased expression of Mrp1 mRNA, Mrp1, and PGP but decreased expression of mdr1a + b mRNA. The influence of irradiation...

  20. Identification of I1171N resistance mutation in ALK-positive non-small-cell lung cancer tumor sample and circulating tumor DNA.

    Science.gov (United States)

    Johnson, Alison C; Dô, Pascal; Richard, Nicolas; Dubos, Catherine; Michels, Jean Jacques; Bonneau, Jessica; Gervais, Radj

    2016-09-01

    Anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC) is sensitive to ALK inhibitor therapy, but resistance invariably develops and can be mediated by certain secondary mutations. The detection of these mutations is useful to guide treatment decisions, but tumors are not always easily accessible to re-biopsy. We report the case of a patient with ALK-rearranged NSCLC who presented acquired resistance to crizotinib and then alectinib. Sequencing analyses of DNA from a liver metastasis biopsy sample and circulating tumor DNA both found the same I1171N ALK kinase domain mutation, known to confer resistance to certain ALK inhibitors. However, the patient then received ceritinib, a 2nd generation ALK inhibitor, and achieved another partial response. This case underlines how ALK resistance mutation detection in peripheral blood could be a reliable, safer, and less invasive alternative to tissue-based samples in NSCLC. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. The PSA−/lo prostate cancer cell population harbors self-renewing long-term tumor-propagating cells that resist castration

    Science.gov (United States)

    Qin, Jichao; Liu, Xin; Laffin, Brian; Chen, Xin; Choy, Grace; Jeter, Collene; Calhoun-Davis, Tammy; Li, Hangwen; Palapattu, Ganesh S.; Pang, Shen; Lin, Kevin; Huang, Jiaoti; Ivanov, Ivan; Li, Wei; Suraneni, Mahipal V.; Tang, Dean G.

    2012-01-01

    SUMMARY Prostate cancer (PCa) is heterogeneous and contains both differentiated and undifferentiated tumor cells, but the relative functional contribution of these two cell populations remains unclear. Here we report distinct molecular, cellular, and tumor-propagating properties of PCa cells that express high (PSA+) and low (PSA−/lo) levels of the differentiation marker PSA. PSA−/lo PCa cells are quiescent and refractory to stresses including androgen deprivation, exhibit high clonogenic potential, and possess long-term tumor-propagating capacity. They preferentially express stem cell genes and can undergo asymmetric cell division generating PSA+ cells. Importantly, PSA−/lo PCa cells can initiate robust tumor development and resist androgen ablation in castrated hosts, and harbor highly tumorigenic castration-resistant PCa cells that can be prospectively enriched using ALDH+CD44+α2β1+ phenotype. In contrast, PSA+ PCa cells possess more limited tumor-propagating capacity, undergo symmetric division and are sensitive to castration. Together, our study suggests PSA−/lo cells may represent a critical source of castration-resistant PCa cells. PMID:22560078

  2. Nitric Oxide Down-Regulates Topoisomerase I and Induces Camptothecin Resistance in Human Breast MCF-7 Tumor Cells.

    Directory of Open Access Journals (Sweden)

    Nilesh K Sharma

    Full Text Available Camptothecin (CPT, a topoisomerase I poison, is an important drug for the treatment of solid tumors in the clinic. Nitric oxide (·NO, a physiological signaling molecule, is involved in many cellular functions, including cell proliferation, survival and death. We have previously shown that ·NO plays a significant role in the detoxification of etoposide (VP-16, a topoisomerase II poison in vitro and in human melanoma cells. ·NO/·NO-derived species are reported to modulate activity of several important cellular proteins. As topoisomerases contain a number of free sulfhydryl groups which may be targets of ·NO/·NO-derived species, we have investigated the roles of ·NO/·NO-derived species in the stability and activity of topo I. Here we show that ·NO/·NO-derived species induces a significant down-regulation of topoisomerase I protein via the ubiquitin/26S proteasome pathway in human colon (HT-29 and breast (MCF-7 cancer cell lines. Importantly, ·NO treatment induced a significant resistance to CPT only in MCF-7 cells. This resistance to CPT did not result from loss of topoisomerase I activity as there were no differences in topoisomerase I-induced DNA cleavage in vitro or in tumor cells, but resulted from the stabilization/induction of bcl2 protein. This up-regulation of bcl2 protein in MCF-7 cells was wtp53 dependent as pifithrine-α, a small molecule inhibitor of wtp53 function, completely reversed CPT resistance, suggesting that wtp53 and bcl2 proteins played important roles in CPT resistance. Because tumors in vivo are heterogeneous and contaminated by infiltrating macrophages, ·NO-induced down-regulation of topoisomerase I protein combined with bcl2 protein stabilization could render certain tumors highly resistant to CPT and drugs derived from it in the clinic.

  3. Human breast tumor cells are more resistant to cardiac glycoside toxicity than non-tumorigenic breast cells.

    Directory of Open Access Journals (Sweden)

    Rebecca J Clifford

    Full Text Available Cardiotonic steroids (CTS, specific inhibitors of Na,K-ATPase activity, have been widely used for treating cardiac insufficiency. Recent studies suggest that low levels of endogenous CTS do not inhibit Na,K-ATPase activity but play a role in regulating blood pressure, inducing cellular kinase activity, and promoting cell viability. Higher CTS concentrations inhibit Na,K-ATPase activity and can induce reactive oxygen species, growth arrest, and cell death. CTS are being considered as potential novel therapies in cancer treatment, as they have been shown to limit tumor cell growth. However, there is a lack of information on the relative toxicity of tumor cells and comparable non-tumor cells. We have investigated the effects of CTS compounds, ouabain, digitoxin, and bufalin, on cell growth and survival in cell lines exhibiting the full spectrum of non-cancerous to malignant phenotypes. We show that CTS inhibit membrane Na,K-ATPase activity equally well in all cell lines tested regardless of metastatic potential. In contrast, the cellular responses to the drugs are different in non-tumor and tumor cells. Ouabain causes greater inhibition of proliferation and more extensive apoptosis in non-tumor breast cells compared to malignant or oncogene-transfected cells. In tumor cells, the effects of ouabain are accompanied by activation of anti-apoptotic ERK1/2. However, ERK1/2 or Src inhibition does not sensitize tumor cells to CTS cytotoxicity, suggesting that other mechanisms provide protection to the tumor cells. Reduced CTS-sensitivity in breast tumor cells compared to non-tumor cells indicates that CTS are not good candidates as cancer therapies.

  4. Phenotype switching : tumor cell plasticity as a resistance mechanism and target for therapy

    NARCIS (Netherlands)

    Kemper, K.; de Goeje, P.L.; Peeper, D.S.; van Amerongen, R.

    2014-01-01

    Mutations in BRAF are present in the majority of patients with melanoma, rendering these tumors sensitive to targeted therapy with BRAF and MEK inhibitors. Unfortunately, resistance almost invariably develops. Recently, a phenomenon called "phenotype switching" has been identified as an escape

  5. Targeting Therapy Resistant Tumor Vessels

    National Research Council Canada - National Science Library

    Ruoslahti, Erkki

    2007-01-01

    .... To achieve this, we have developed tumor models for vascular normalization and are using in vivo phage display and isolation of peptides that specifically home to normalized tumor vessels resistant...

  6. Targeting Therapy Resistant Tumor Vessels

    National Research Council Canada - National Science Library

    Ruoslahti, Erkki

    2008-01-01

    .... To achieve this, we have developed tumor models for vascular normalization and are using in vivo phage display and isolation of peptides that specifically home to normalized tumor vessels resistant...

  7. Identifyng mechanisms of resistance to chemotherapy in osteosarcoma tumor stem cells

    OpenAIRE

    Oliveira, Vitor Emanuel Bucete

    2011-01-01

    Introdução: A teoria das células estaminais tumorais propõe que os tumores estão hierarquicamente organizados, onde existe uma pequena subpopulação de células com características de células estaminas (CSCs) responsáveis pela iniciação e manutenção do crescimento tumoral e pela resistência à quimioterapia. Com este trabalho, pretendemos estudar a sensibilidade das CSCs isoladas a partir de uma linha celular humana de osteossarcoma (MNNG/HOS) à doxorrubicina (DOX) e identificar os possíveis mec...

  8. Loss of drug-induced activation of the CD95 apoptotic pathway in a cisplatin-resistant testicular germ cell tumor cell line

    NARCIS (Netherlands)

    Spierings, DCJ; de Vries, EGE; Vellenga, E; de Jong, S

    Testicular germ cell tumors (TGCTs) are unusually sensitive to cisplatin. In the present study the role of the CD95 death pathway in cisplatin sensitivity of TGCT cells was studied in Tera and its in vitro acquired cisplatin-resistant subclone Tera-CP. Cisplatin induced an increase in CD95 membrane

  9. Deregulation of apoptotic volume decrease and ionic movements in multidrug-resistant tumor cells: role of chloride channels

    DEFF Research Database (Denmark)

    Poulsen, Kristian Arild; Andersen, E C; Hansen, C F

    2010-01-01

    Changes in cell volume and ion gradients across the plasma membrane play a pivotal role in the initiation of apoptosis. Here we explore the kinetics of apoptotic volume decrease (AVD) and ion content dynamics in wild-type (WT) and multidrug-resistant (MDR) Ehrlich ascites tumor cells (EATC). In WT...... EATC, induction of apoptosis with cisplatin (5 muM) leads to three distinctive AVD stages: an early AVD(1) (4-12 h), associated with a 30% cell water loss; a transition stage AVD(T) ( approximately 12 to 32 h), where cell volume is partly recovered; and a secondary AVD(2) (past 32 h), where cell volume...... was further reduced. AVD(1) and AVD(2) were coupled to net loss of Cl(-), K(+), Na(+), and amino acids (ninhydrin-positive substances), whereas during AVD(T), Na(+) and Cl(-) were accumulated. MDR EATC was resistant to cisplatin, showing increased viability and less caspase 3 activation. Compared with WT EATC...

  10. Exosomal transfer of tumor-associated macrophage-derived miR-21 confers cisplatin resistance in gastric cancer cells.

    Science.gov (United States)

    Zheng, Peiming; Chen, Lei; Yuan, Xiangliang; Luo, Qin; Liu, Yi; Xie, Guohua; Ma, Yanhui; Shen, Lisong

    2017-04-13

    Cisplatin-based chemotherapy is frequently used to treat advanced gastric cancer (GC). However, the resistance often occurs with the mechanisms being not well understood. Recently, emerging evidence indicates that tumor-associated macrophages (TAMs) play an important role in chemoresistance of cancer. As the important mediators in intercellular communications, exosomes secreted by host cells mediate the exchange of genetic materials and proteins to be involved in tumor aggressiveness. The aim of the study was to investigate whether exosomes derived from TAMs mediate cisplatin resistance in gastric cancer. M2 polarized macrophages were obtained from mouse bone marrow or human PBMCs stimulated with IL-4 and IL-13. Exosomes isolated from M2 macrophages culture medium were characterized, and miRNA expression profiles of M2 derived exosomes (M2-exos) were analyzed using miRNA microarray. In vitro cell coculture was further conducted to investigate M2-exos mediated crosstalk between TAMs and tumor cells. Moreover, the in vivo experiments were performed using a subcutaneous transplantation tumor model in athymic nude mice. In this study, we showed that M2 polarized macrophages promoted cisplatin (DDP) resistance in gastric cancer cells and exosomes derived from M2 macrophages (M2-exos) are involved in mediating the resistance to DDP. Using miRNA profiles assay, we identify significantly higher levels of microRNA-21 (miR21) isomiRNAs in exosomes and cell lysate isolated from M2 polarized macrophage. Functional studies revealed that exosomal miR-21 can be directly transferred from macrophages to the gastric cancer cells, where it suppresses cell apoptosis and enhances activation of PI3K/AKT signaling pathway by down-regulation of PTEN. Our findings suggest that exosomal transfer of tumor-associated macrophages derived miR-21 confer DDP resistance in gastric cancer, and targeting exosome communication may be a promising new therapeutic strategy for gastric cancer

  11. S6Ks isoforms contribute to viability, migration, docetaxel resistance and tumor formation of prostate cancer cells

    International Nuclear Information System (INIS)

    Amaral, Camila L.; Freitas, Lidia B.; Tamura, Rodrigo E.; Tavares, Mariana R.; Pavan, Isadora C. B.; Bajgelman, Marcio C.; Simabuco, Fernando M.

    2016-01-01

    The S6 Kinase (S6K) proteins are some of the main downstream effectors of the mammalian Target Of Rapamycin (mTOR) and act as key regulators of protein synthesis and cell growth. S6K is overexpressed in a variety of human tumors and is correlated to poor prognosis in prostate cancer. Due to the current urgency to identify factors involved in prostate cancer progression, we aimed to reveal the cellular functions of three S6K isoforms–p70-S6K1, p85-S6K1 and p54-S6K2–in prostate cancer, as well as their potential as therapeutic targets. In this study we performed S6K knockdown and overexpression and investigated its role in prostate cancer cell proliferation, colony formation, viability, migration and resistance to docetaxel treatment. In addition, we measured tumor growth in Nude mice injected with PC3 cells overexpressing S6K isoforms and tested the efficacy of a new available S6K1 inhibitor in vitro. S6Ks overexpression enhanced PC3-luc cell line viability, migration, resistance to docetaxel and tumor formation in Nude mice. Only S6K2 knockdown rendered prostate cancer cells more sensitive to docetaxel. S6K1 inhibitor PF-4708671 was particularly effective for reducing migration and proliferation of PC3 cell line. These findings demonstrate that S6Ks play an important role in prostate cancer progression, enhancing cell viability, migration and chemotherapy resistance, and place both S6K1 and S6K2 as a potential targets in advanced prostate cancer. We also provide evidence that S6K1 inhibitor PF-4708671 may be considered as a potential drug for prostate cancer treatment. The online version of this article (doi:10.1186/s12885-016-2629-y) contains supplementary material, which is available to authorized users

  12. The influence of the stem cell marker ALDH and the EGFR-PI3 kinase act signaling pathway on the radiation resistance of human tumor cell lines

    International Nuclear Information System (INIS)

    Mihatsch, Julia

    2014-01-01

    Cancer is the second leading cause of death in industriated nations. Besides surgery and chemotherapy, radiotherapy (RT) is an important approach by which about 60% of patients are treated. The response of these patients to RT is very heterogenous. On the one hand, there are patients with tumors which are radiosensitive and can be cured, but on the other hand patients bear tumors which are quite resistant to radiotherapy. A Radioresistant phenotype of tumor cells causes treatment failure consequently leading to a limited response to radiotherapy. It is proposed, that radiotherapy outcome mainly depends on the potential of radiation on controlling growth, proliferation and survival of a specific population of tumor cells called cancer stem cells (CSCs) or tumor-initiating cells. Based on experimental studies so far reported it is assumed that the population of CSC varies in tumors from different entities and is relatively low compared to the tumor bulk cells in general. According to the CSC hypothesis, it might be concluded that the differential response of tumors to radiotherapy depends on CSC populations, since these supposedly slow replicating cells are able to initiate a tumor, to self renew indefinitely and to generate the differentiated progeny of a tumor. Besides the role of cancer stem cells in radiotherapy response, ionizing radiation (IR) activates the epidermal growth factor receptor (EGFR) and its downstream signaling pathways such as phosphoinositide 3-kinase (PI3K)/Akt, mitogen-activated protein kinase (MAPK) and Janus kinase/Signal Transducer and Activator of Transcription (JAK/STAT) pathways. Among these pathways, PI3K/Akt is one of the most important pathways involved in post-irradiation survival: Activation of Akt results in activation of DNA-dependent protein kinase, catalytic subunit (DNA-PKcs). DNA-PKcs is a core enzyme involved in repair of IR-induced DNA-double strand breaks (DNA-DSB) through non-homologous end joining (NHEJ). The aim of the

  13. Hypoxia-induced tumor cell resistance is overcome by synergistic GAPDH-siRNA and chemotherapy co-delivered by long-circulating and cationic-interior liposomes

    NARCIS (Netherlands)

    Guan, J.; Sun, J.; Sun, F.|info:eu-repo/dai/nl/370549775; Lou, B.|info:eu-repo/dai/nl/37052537X; Zhang, D.; Mashayekhi, V.|info:eu-repo/dai/nl/413278360; Sadeghi, N.; Storm, G.|info:eu-repo/dai/nl/073356328; Mastrobattista, E.|info:eu-repo/dai/nl/228061105; He, Z.

    2017-01-01

    Chemotherapeutic drug resistance of tumor cells under hypoxic conditions is caused by the inhibition of apoptosis by autophagy and drug efflux via adenosine triphosphate (ATP)-dependent transporter activation, among other factors. Here, we demonstrate that disrupting glyceraldehyde-3-phosphate

  14. Laboratory determination of chemotherapeutic drug resistance in tumor cells from patients with leukemia, using a fluorometric microculture cytotoxicity assay (FMCA).

    Science.gov (United States)

    Larsson, R; Kristensen, J; Sandberg, C; Nygren, P

    1992-01-21

    An automated fluorometric microculture cytotoxicity assay (FMCA) based on the measurement of fluorescence generated from cellular hydrolysis of fluorescein diacetate (FDA) to fluorescein was employed for chemotherapeutic-drug-sensitivity testing of tumor-cell suspensions from patients with leukemia. Fluorescence was linearly related to cell number, and reproducible measurements of drug sensitivity could be performed using fresh or cryopreserved leukemia cells. A marked heterogeneity with respect to chemotherapeutic drug sensitivity was observed for a panel of cytotoxic drugs tested in 43 samples from 35 patients with treated or untreated acute and chronic leukemia. For samples obtained from patients with chronic lymphocytic and acute myelocytic leukemia, sensitivity profiles for standard drugs corresponded to known clinical activity and the assay detected primary and acquired drug resistance. Individual in vitro/in vivo correlations indicated high specificity with respect to the identification of drug resistance. The results suggest that the FMCA may be a simple and rapid method for in vivo-representative determinations of chemotherapeutic drug resistance in tumor cells obtained from patients with leukemia.

  15. Novel Imidazopyridine Derivatives Possess Anti-Tumor Effect on Human Castration-Resistant Prostate Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Matthew A Ingersoll

    Full Text Available Prostate cancer (PCa is the second leading cause of cancer-related death afflicting United States males. Most treatments to-date for metastatic PCa include androgen-deprivation therapy and second-generation anti-androgens such as abiraterone acetate and enzalutamide. However, a majority of patients eventually develop resistance to these therapies and relapse into the lethal, castration-resistant form of PCa to which no adequate treatment option remains. Hence, there is an immediate need to develop effective therapeutic agents toward this patient population. Imidazopyridines have recently been shown to possess Akt kinase inhibitory activity; thus in this study, we investigated the inhibitory effect of novel imidazopyridine derivatives HIMP, M-MeI, OMP, and EtOP on different human castration-resistant PCa cells. Among these compounds, HIMP and M-MeI were found to possess selective dose- and time-dependent growth inhibition: they reduced castration-resistant PCa cell proliferation and spared benign prostate epithelial cells. Using LNCaP C-81 cells as the model system, these compounds also reduced colony formation as well as cell adhesion and migration, and M-MeI was the most potent in all studies. Further investigation revealed that while HIMP primarily inhibits PCa cell growth via suppression of PI3K/Akt signaling pathway, M-MeI can inhibit both PI3K/Akt and androgen receptor pathways and arrest cell growth in the G2 phase. Thus, our results indicate the novel compound M-MeI to be a promising candidate for castration-resistant PCa therapy, and future studies investigating the mechanism of imidazopyridine inhibition may aid to the development of effective anti-PCa agents.

  16. Novel Imidazopyridine Derivatives Possess Anti-Tumor Effect on Human Castration-Resistant Prostate Cancer Cells.

    Science.gov (United States)

    Ingersoll, Matthew A; Lyons, Anastesia S; Muniyan, Sakthivel; D'Cunha, Napoleon; Robinson, Tashika; Hoelting, Kyle; Dwyer, Jennifer G; Bu, Xiu R; Batra, Surinder K; Lin, Ming-Fong

    2015-01-01

    Prostate cancer (PCa) is the second leading cause of cancer-related death afflicting United States males. Most treatments to-date for metastatic PCa include androgen-deprivation therapy and second-generation anti-androgens such as abiraterone acetate and enzalutamide. However, a majority of patients eventually develop resistance to these therapies and relapse into the lethal, castration-resistant form of PCa to which no adequate treatment option remains. Hence, there is an immediate need to develop effective therapeutic agents toward this patient population. Imidazopyridines have recently been shown to possess Akt kinase inhibitory activity; thus in this study, we investigated the inhibitory effect of novel imidazopyridine derivatives HIMP, M-MeI, OMP, and EtOP on different human castration-resistant PCa cells. Among these compounds, HIMP and M-MeI were found to possess selective dose- and time-dependent growth inhibition: they reduced castration-resistant PCa cell proliferation and spared benign prostate epithelial cells. Using LNCaP C-81 cells as the model system, these compounds also reduced colony formation as well as cell adhesion and migration, and M-MeI was the most potent in all studies. Further investigation revealed that while HIMP primarily inhibits PCa cell growth via suppression of PI3K/Akt signaling pathway, M-MeI can inhibit both PI3K/Akt and androgen receptor pathways and arrest cell growth in the G2 phase. Thus, our results indicate the novel compound M-MeI to be a promising candidate for castration-resistant PCa therapy, and future studies investigating the mechanism of imidazopyridine inhibition may aid to the development of effective anti-PCa agents.

  17. Nitric oxide inhibits ATPase activity and induces resistance to topoisomerase II-poisons in human MCF-7 breast tumor cells.

    Science.gov (United States)

    Sinha, Birandra K; Kumar, Ashutosh; Mason, Ronald P

    2017-07-01

    Topoisomerase poisons are important drugs for the management of human malignancies. Nitric oxide ( • NO), a physiological signaling molecule, induces nitrosylation (or nitrosation) of many cellular proteins containing cysteine thiol groups, altering their cellular functions. Topoisomerases contain several thiol groups which are important for their activity and are also targets for nitrosation by nitric oxide. Here, we have evaluated the roles of • NO/ • NO-derived species in the stability and activity of topo II (α and β) both in vitro and in human MCF-7 breast tumor cells. Furthermore, we have examined the effects of • NO on the ATPase activity of topo II. Treatment of purified topo IIα and β with propylamine propylamine nonoate (PPNO), an NO donor, resulted in inhibition of the catalytic activity of topo II. Furthermore, PPNO significantly inhibited topo II-dependent ATP hydrolysis. • NO-induced inhibition of these topo II (α and β) functions resulted in a decrease in cleavable complex formation in MCF-7 cells in the presence of m-AMSA and XK469 and induced significant resistance to both drugs in MCF-7 cells. PPNO treatment resulted in the nitrosation of the topo II protein in MCF-7 cancer cells and inhibited both catalytic-, and ATPase activities of topo II. Furthermore, PPNO significantly affected the DNA damage and cytotoxicity of m-AMSA and XK469 in MCF-7 tumor cells. As tumors express nitric oxide synthase and generate • NO, inhibition of topo II functions by • NO/ • NO-derived species could render tumors resistant to certain topo II-poisons in the clinic.

  18. Parallel selection of chemotherapy-resistant cell lines to illuminate mechanisms of drug resistance in human tumors

    DEFF Research Database (Denmark)

    Krzystanek, Marcin; Eklund, Aron Charles; Birkbak, Nicolai Juul

    2011-01-01

    of the experimental system. Doxorubicin is an anthracycline that exerts its anticancer effect through intercalation into DNA and inhibition of topoisomerase II, whereas paclitaxel stabilizes microtubules and disrupts the mitotic spindle. We use expression and copy number data from two cell lines, MDA-231 and MCF-7...... the identification of reliable predictive biomarkers for each drug. Currently, we are developing a framework for systematic biomarker discovery by using a combination of gene expression and CGH arrays to keep track of consistent changes that take place during resistance acquisition in cell lines towards two anti......-cancer drugs: doxorubicin and paclitaxel. By monitoring changes at two different levels (DNA and RNA) of the genome and developing multiple cell lines developing resistance against the same drug under identical conditions, we were able to separate relevant changes from spurious ones and thus reducing the noise...

  19. Ectopic expression of X-linked lymphocyte-regulated protein pM1 renders tumor cells resistant to antitumor immunity.

    Science.gov (United States)

    Kang, Tae Heung; Noh, Kyung Hee; Kim, Jin Hee; Bae, Hyun Cheol; Lin, Ken Y; Monie, Archana; Pai, Sara I; Hung, Chien-Fu; Wu, T-C; Kim, Tae Woo

    2010-04-15

    Tumor immune escape is a major obstacle in cancer immunotherapy, but the mechanisms involved remain poorly understood. We have previously developed an immune evasion tumor model using an in vivo immune selection strategy and revealed Akt-mediated immune resistance to antitumor immunity induced by various cancer immunotherapeutic agents. In the current study, we used microarray gene analysis to identify an Akt-activating candidate molecule overexpressed in immune-resistant tumors compared with parental tumors. X-linked lymphocyte-regulated protein pM1 (XLR) gene was the most upregulated in immune-resistant tumors compared with parental tumor cells. Furthermore, the retroviral transduction of XLR in parental tumor cells led to activation of Akt, resulting in upregulation of antiapoptotic proteins and the induction of immune resistance phenotype in parental tumor cells. In addition, we found that transduction of parental tumor cells with other homologous genes from the mouse XLR family, such as synaptonemal complex protein 3 (SCP3) and XLR-related, meiosis-regulated protein (XMR) and its human counterpart of SCP3 (hSCP3), also led to activation of Akt, resulting in the upregulation of antiapoptotic proteins and induction of immune resistance phenotype. Importantly, characterization of a panel of human cervical cancers revealed relatively higher expression levels of hSCP3 in human cervical cancer tissue compared with normal cervical tissue. Thus, our data indicate that ectopic expression of XLR and its homologues in tumor cells represents a potentially important mechanism for tumor immune evasion and serves as a promising molecular target for cancer immunotherapy. (c) 2010 AACR.

  20. Incidental Leydig Cell Tumor in Patient with Hormone Resistant Prostate Cancer

    Directory of Open Access Journals (Sweden)

    M. Sánchez Pérez

    2017-07-01

    Full Text Available We hereby present the case of a 55 years old patient with clinical diagnosis of high-risk prostate cancer T2bN1Mo Gleason 9 (4 + 5 treated with androgen deprivation therapy and external beam radiotherapy. Despite treatment, castration levels were not achieved and clinical progression was evidenced by the appearance of bone metastases and progression of PSA. After several hormonal treatments without any PSA or testosterone response, surgical castration was performed by bilateral orchiectomy. The pathology results showed an incidental Leydig cell tumor in the right testicle.

  1. Cytotoxic effect of essential oil of thyme (Thymus broussonettii on the IGR-OV1 tumor cells resistant to chemotherapy

    Directory of Open Access Journals (Sweden)

    L. Ait M'Barek

    2007-11-01

    Full Text Available The anti-tumor effect of the Moroccan endemic thyme (Thymus broussonettii essential oil (EOT was investigated in vitro using the human ovarian adenocarcinoma IGR-OV1 parental cell line OV1/P and its chemoresistant counterparts OV1/adriamycin (OV1/ADR, OV1/vincristine (OV1/VCR, and OV1/cisplatin (OV1/CDDP. All of these cell lines elicited various degrees of sensitivity to the cytotoxic effect of EOT. The IC50 values (mean ± SEM, v/v were 0.40 ± 0.02, 0.39 ± 0.02, 0.94 ± 0.05, and 0.65 ± 0.03% for OV1/P, OV1/ADR, OV1/VCR, and OV1/CDDP, respectively. Using the DBA-2/P815 (H2d mouse model, tumors were developed by subcutaneous grafting of tumor fragments of similar size obtained from P815 (murin mastocytoma cell line injected in donor mouse. Interestingly, intra-tumoral injection of EOT significantly reduced solid tumor development. Indeed, by the 30th day of repeated EOT treatment, the tumor volumes of the animals were 2.00 ± 0.27, 1.35 ± 0.20, and 0.85 ± 0.18 cm³ after injection with 10, 30, or 50 µL per 72 h (six times, respectively, as opposed to 3.88 ± 0.50 cm³ for the control animals. This tumoricidal effect was associated with a marked decrease of mouse mortality. In fact, in these groups of mice, the recorded mortality by the 30th day of treatment was 30 ± 4, 18 ± 4, and 8 ± 3%, respectively, while the control animals showed 75 ± 10% of mortality. These data indicate that the EOT which contains carvacrol as the major component has an important in vitro cytotoxic activity against tumor cells resistant to chemotherapy as well as a significant antitumor effect in mice. However, our data do not distinguish between carvacrol and the other components of EOT as the active factor.

  2. Acquired Tumor Cell Radiation Resistance at the Treatment Site Is Mediated Through Radiation-Orchestrated Intercellular Communication

    Energy Technology Data Exchange (ETDEWEB)

    Aravindan, Natarajan, E-mail: naravind@ouhsc.edu [Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (United States); Aravindan, Sheeja; Pandian, Vijayabaskar; Khan, Faizan H.; Ramraj, Satish Kumar; Natt, Praveen [Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (United States); Natarajan, Mohan [Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas (United States)

    2014-03-01

    Purpose: Radiation resistance induced in cancer cells that survive after radiation therapy (RT) could be associated with increased radiation protection, limiting the therapeutic benefit of radiation. Herein we investigated the sequential mechanistic molecular orchestration involved in radiation-induced radiation protection in tumor cells. Results: Radiation, both in the low-dose irradiation (LDIR) range (10, 50, or 100 cGy) or at a higher, challenge dose IR (CDIR), 4 Gy, induced dose-dependent and sustained NFκB-DNA binding activity. However, a robust and consistent increase was seen in CDIR-induced NFκB activity, decreased DNA fragmentation, apoptosis, and cytotoxicity and attenuation of CDIR-inhibited clonal expansion when the cells were primed with LDIR prior to challenge dose. Furthermore, NFκB manipulation studies with small interfering RNA (siRNA) silencing or p50/p65 overexpression unveiled the influence of LDIR-activated NFκB in regulating CDIR-induced DNA fragmentation and apoptosis. LDIR significantly increased the transactivation/translation of the radiation-responsive factors tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α), cMYC, and SOD2. Coculture experiments exhibit LDIR-influenced radiation protection and increases in cellular expression, secretion, and activation of radiation-responsive molecules in bystander cells. Individual gene-silencing approach with siRNAs coupled with coculture studies showed the influence of LDIR-modulated TNF-α, IL-1α, cMYC, and SOD2 in induced radiation protection in bystander cells. NFκB inhibition/overexpression studies coupled with coculture experiments demonstrated that TNF-α, IL-1α, cMYC, and SOD2 are selectively regulated by LDIR-induced NFκB. Conclusions: Together, these data strongly suggest that scattered LDIR-induced NFκB-dependent TNF-α, IL-1α, cMYC, and SOD2 mediate radiation protection to the subsequent challenge dose in tumor cells.

  3. Contribution of tumor endothelial cells to drug resistance: anti-angiogenic tyrosine kinase inhibitors act as p-glycoprotein antagonists.

    Science.gov (United States)

    Bani, MariaRosa; Decio, Alessandra; Giavazzi, Raffaella; Ghilardi, Carmen

    2017-05-01

    Tumor endothelial cells (TEC) differ from the normal counterpart, in both gene expression and functionality. TEC may acquire drug resistance, a characteristic that is maintained in vitro. There is evidence that TEC are more resistant to chemotherapeutic drugs, substrates of ATP-binding cassette (ABC) transporters. TEC express p-glycoprotein (encoded by ABCB1), while no difference in other ABC transporters was revealed compared to normal endothelia. A class of tyrosine kinase inhibitors (TKI), used as angiostatic compounds, interferes with the ATPase activity of p-glycoprotein, thus impairing its functionality. The exposure of ovarian adenocarcinoma TEC to the TKIs sunitinib or sorafenib was found to abrogate resistance (proliferation and motility) to doxorubicin and paclitaxel in vitro, increasing intracellular drug accumulation. A similar effect has been reported by the p-glycoprotein inhibitor verapamil. No beneficial effect was observed in combination with cytotoxic drugs that are not p-glycoprotein substrates. The current paper reviews the mechanisms of TEC chemoresistance and shows the role of p-glycoprotein in mediating such resistance. Inhibition of p-glycoprotein by anti-angiogenic TKI might contribute to the beneficial effect of these small molecules, when combined with chemotherapy, in counteracting acquired drug resistance.

  4. Cytotoxicity and apoptosis induced by alfalfa (Medicago sativa) leaf extracts in sensitive and multidrug-resistant tumor cells.

    Science.gov (United States)

    Gatouillat, Grégory; Magid, Abdulmagid Alabdul; Bertin, Eric; Okiemy-Akeli, Marie-Genevieve; Morjani, Hamid; Lavaud, Catherine; Madoulet, Claudie

    2014-01-01

    Alfalfa (Medicago sativa) has been used to cure a wide variety of ailments. However, only a few studies have reported its anticancer effects. In this study, extracts were obtained from alfalfa leaves and their cytotoxic effects were assessed on several sensitive and multidrug-resistant tumor cells lines. Using the mouse leukaemia P388 cell line and its doxorubicin-resistant counterpart (P388/DOX), we showed that the inhibition of cell growth induced by alfalfa leaf extracts was mediated through the induction of apoptosis, as evidenced by DNA fragmentation analysis. The execution of programmed cell death was achieved via the activation of caspase-3, leading to PARP cleavage. Fractionation of toluene extract (To-1), the most active extract obtained from crude extract, led to the identification of 3 terpene derivatives and 5 flavonoids. Among them, (-)-medicarpin, (-)-melilotocarpan E, millepurpan, tricin, and chrysoeriol showed cytotoxic effects in P388 as well as P388/DOX cells. These results demonstrate that alfalfa leaf extract may have interesting potential in cancer chemoprevention and therapy.

  5. SMAC mimetic BV6 enables sensitization of resistant tumor cells but also affects cytokine-induced killer (CIK cells: a potential challenge for combination therapy

    Directory of Open Access Journals (Sweden)

    Eva eRettinger

    2014-07-01

    Full Text Available Allogeneic hematopoietic stem cell transplantation (HSCT is an established treatment option for high-risk hematological malignancies, and may also be offered to patients with solid malignancies refractory to conventional therapies. In case of patients’ relapse, refractory tumor cells may then be targeted by cellular therapy-based combination strategies. Here, we investigated the potential of small molecule IAP inhibitor (SMAC mimetic BV6 in increasing cytokine-induced killer (CIK cell-mediated cytotoxicity against different tumor targets. Four hour pre-incubation with 2.5 μMol BV6 moderately enhanced CIK cell-mediated lysis of hematological (H9, THP-1, Tanoue and solid malignancies (RH1, RH30, TE671. However, BV6 also increased apoptosis of non-malignant cells like peripheral blood mononuclear cells and most notably had an inhibitory effect on immune cells potentially limiting their cytotoxic potential. Hence, cytotoxicity increased in a dose dependent manner when BV6 was removed before CIK cells were added to tumor targets. However, cytotoxic potential was not further increasable by extending BV6 pre-incubation period of target cells from four to 12 hours. Molecular studies revealed that BV6 sensitization of target cells involved activation of caspases. Here we provide evidence that SMAC mimetic may sensitize targets cells for CIK cell-induced cell death. However, BV6 also increased apoptosis of non-malignant cells like CIK cells and peripheral mononuclear cells. These findings may therefore be important for cell- and small molecule IAP inhibitor- based combination therapies of resistant cancers after allogeneic HSCT.

  6. A study of radiation sensitivity and drug-resistance by DNA methylation in human tumor cell lines

    International Nuclear Information System (INIS)

    Jung, Il Lae; Kim, In Gyu; Kim, Kug Chan

    2009-12-01

    It has recently been known that functional loss of tumor suppressive genes may com from DNA methylation on the chromosome. This kind of tumorigenesis has became one of the major field related to the epigenetics, whose study would be an important fundamental approach in cancer therapy market. In this study, we firstly selected two radiation-resistant mutant H460 cells, which doesn't show any significant cytotoxic effect compared to their parental wild type H460. We found that the two mutants has decreased level of PTEN, whose expression has known to be related to the cell differentiation and growth. We also found that the level of PTEN was greatly different in two lung adenocarcinoma, H460 and A549, in which more radiation-resistant A549 cells showed the decreased PTEN expression. This difference in PTEN expression between two cells was resulted from their different methylation on 5 CpG islands. We expect to know more profoundly through investigating the PTEN-related downstream genes

  7. Lung cancer tumorigenicity and drug resistance are maintained through ALDH(hi)CD44(hi) tumor initiating cells.

    Science.gov (United States)

    Liu, Jing; Xiao, Zhijie; Wong, Sunny Kit-Man; Tin, Vicky Pui-Chi; Ho, Ka-Yan; Wang, Junwen; Sham, Mai-Har; Wong, Maria Pik

    2013-10-01

    Limited improvement in long term survival of lung cancer patients has been achieved by conventional chemotherapy or targeted therapy. To explore the potentials of tumor initiating cells (TIC)-directed therapy, it is essential to identify the cell targets and understand their maintenance mechanisms. We have analyzed the performance of ALDH/CD44 co-expression as TIC markers and treatment targets of lung cancer using well-validated in vitro and in vivo analyses in multiple established and patient-derived lung cancer cells. The ALDH(hi)CD44(hi) subset showed the highest enhancement of stem cell phenotypic properties compared to ALDH(hi)CD44(lo), ALDH(lo)CD44(hi), ALDH(lo)CD44(lo) cells and unsorted controls. They showed higher invasion capacities, pluripotency genes and epithelial-mesenchymal transition transcription factors expression, lower intercellular adhesion protein expression and higher G2/M phase cell cycle fraction. In immunosuppressed mice, the ALDH(hi)CD44(hi)xenografts showed the highest tumor induction frequency, serial transplantability, shortest latency, largest volume and highest growth rates. Inhibition of sonic Hedgehog and Notch developmental pathways reduced ALDH+CD44+ compartment. Chemotherapy and targeted therapy resulted in higher AALDH(hi)CD44(hi) subset viability and ALDH(lo)CD44(lo) subset apoptosis fraction. ALDH inhibition and CD44 knockdown led to reduced stemness gene expression and sensitization to drug treatment. In accordance, clinical lung cancers containing a higher abundance of ALDH and CD44-coexpressing cells was associated with lower recurrence-free survival. Together, results suggested theALDH(hi)CD44(hi)compartment was the cellular mediator of tumorigenicity and drug resistance. Further investigation of the regulatory mechanisms underlying ALDH(hi)CD44(hi)TIC maintenance would be beneficial for the development of long term lung cancer control.

  8. Granular Cell Tumor

    African Journals Online (AJOL)

    Necrosis within the tumor was absent, no mitosis was. Granular cell tumors are seldom diagnosed identified in the section and the edges of the accurately clinically. The lesion in this case was sample were tumor free (Figure 2). mistaken for a sebaceous cyst and following ulceration resembled carcinoma of the vulvar.

  9. GDNF induces RET-SRC-HER2-dependent growth in trastuzumab-sensitive but SRC-independent growth in resistant breast tumor cells.

    Science.gov (United States)

    Gardaneh, Mossa; Shojaei, Sahar; Kaviani, Ahmad; Behnam, Babak

    2017-04-01

    We investigated the role of glial cell line-derived neurotrophic factor (GDNF) in compensating trastuzumab (TZMB)-induced apoptosis in HER2 + breast cancer (BC) cells using xenograft tumors. We generated BC xenografts in nude mice using samples from three patients selected based on their HER2 status and response to TZMB therapy. TZMB treatment resulted in shrinkage of the HER2 + TZMB-sensitive xenograft tumor but not the HER2 - or HER2 + TZMB-resistant ones. GDNF neutralized TZMB activity and induced growth in all tumors. Three distinct cell lines were derived from these tumors and named, respectively, TZMB-sensitive (TSTC), HER2 - (HNTC), and TZMB-resistant (TRTC). Over 50% of TRTC but 1% of TSTC cells expressed CD44, whereas 84% of TSTC were CD24 + compared to only 1% of TRTC, despite comparable levels of HER2 detected in both. TZMB induced profound morphological changes toward apoptosis in TSTC but not in TRTC or HNTC. However, GDNF significantly compensated TZMB-mediated TSTC cell loss and promoted growth by 37 and 50%, respectively, in TSTC and TRTC. Inhibition of SRC by Saracatinib (SARC) blocked GDNF function and accelerated TZMB-mediated cell death in TSTC, but GDNF continued promoting TRTC growth. These changes paralleled with expression levels of the key molecules involved in growth and apoptosis. Collectively, we found in our xenograft samples that firstly SRC mediates GDNF pro-survival functions by bridging RET-HER2 crosstalk in TZMB-responsive BC tumors. Secondly, SARC-TZMB interactions can synergistically eradicate such tumor cells; and thirdly, GDNF can support antibody resistance by acting independent from SRC in tumors with poor HER2 response to TZMB therapy.

  10. Sertoli-Leydig cell tumor

    Science.gov (United States)

    Sertoli-stromal cell tumor; Arrhenoblastoma; Androblastoma; Ovarian cancer - Sertoli-Leydig cell tumor ... PA: Elsevier Saunders; 2013:chap 13. Prat J. Ovarian sex cord - stromal and steroid cell tumors. In: Mutter GL, Prat J, eds. Pathology of ...

  11. Stages of Childhood Extracranial Germ Cell Tumors

    Science.gov (United States)

    ... markers . Most malignant germ cell tumors release tumor markers. The following tumor markers are used to detect extracranial germ cell tumors: ... testicular germ cell tumors, blood levels of the tumor markers help show if the tumor is a seminoma ...

  12. Mesenchymal stem cells support growth and organization of host-liver colorectal-tumor organoids and possibly resistance to chemotherapy.

    Science.gov (United States)

    Devarasetty, Mahesh; Wang, Edina; Soker, Shay; Skardal, Aleksander

    2017-06-07

    Despite having yielded extensive breakthroughs in cancer research, traditional 2D cell cultures have limitations in studying cancer progression and metastasis and screening therapeutic candidates. 3D systems can allow cells to grow, migrate, and interact with each other and the surrounding matrix, resulting in more realistic constructs. Furthermore, interactions between host tissue and developing tumors influence the susceptibility of tumors to drug treatments. Host-liver colorectal-tumor spheroids composed of primary human hepatocytes, mesenchymal stem cells (MSC) and colon carcinoma HCT116 cells were created in simulated microgravity rotating wall vessel (RWV) bioreactors. The cells were seeded on hyaluronic acid-based microcarriers, loaded with liver-specific growth factors and ECM components. Only in the presence of MSC, large tumor foci rapidly formed inside the spheroids and increased in size steadily over time, while not greatly impacting albumin secretion from hepatocytes. The presence of MSC appeared to drive self-organization and formation of a stroma-like tissue surrounding the tumor foci and hepatocytes. Exposure to a commonly used chemotherapeutic 5-FU showed a dose-dependent cytotoxicity. However, if tumor organoids were allowed to mature in the RWV, they were less sensitive to the drug treatment. These data demonstrate the potential utility of liver tumor organoids for cancer progression and drug response modeling.

  13. Decreased drug accumulation and increased tolerance to DNA damage in tumor cells with a low level of cisplatin resistance.

    Science.gov (United States)

    Lanzi, C; Perego, P; Supino, R; Romanelli, S; Pensa, T; Carenini, N; Viano, I; Colangelo, D; Leone, R; Apostoli, P; Cassinelli, G; Gambetta, R A; Zunino, F

    1998-04-15

    In an attempt to examine the cellular changes associated with cisplatin resistance, we selected a cisplatin-resistant (A43 1/Pt) human cervix squamous cell carcinoma cell line following continuous in vitro drug exposure. The resistant subline was characterized by a 2.5-fold degree of resistance. In particular, we investigated the expression of cellular defence systems and other cellular factors probably involved in dealing with cisplatin-induced DNA damage. Resistant cells exhibited decreased platinum accumulation and reduced levels of DNA-bound platinum and interstrand cross-link frequency after short-term drug exposure. Analysis of the effect of cisplatin on cell cycle progression revealed a cisplatin-induced G2M arrest in sensitive and resistant cells. Interestingly, a slowdown in S-phase transit was found in A431/Pt cells. A comparison of the ability of sensitive and resistant cells to repair drug-induced DNA damage suggested that resistant cells were able to tolerate higher levels of cisplatin-induced DNA damage than their parental counterparts. Analysis of the expression of proteins involved in DNA mismatch repair showed a decreased level of MSH2 in resistant cells. Since MSH2 seems to be involved in recognition of drug-induced DNA damage, this change may account for the increased tolerance to DNA damage observed in the resistant subline. In conclusion, the involvement of accumulation defects and the increased tolerance to cisplatin-induced DNA damage in these cisplatin-resistant cells support the notion that multiple changes contribute to confer a low level of cisplatin resistance.

  14. Determinates of tumor response to radiation: Tumor cells, tumor stroma and permanent local control

    International Nuclear Information System (INIS)

    Li, Wende; Huang, Peigen; Chen, David J.; Gerweck, Leo E.

    2014-01-01

    Background and purpose: The causes of tumor response variation to radiation remain obscure, thus hampering the development of predictive assays and strategies to decrease resistance. The present study evaluates the impact of host tumor stromal elements and the in vivo environment on tumor cell kill, and relationship between tumor cell radiosensitivity and the tumor control dose. Material and methods: Five endpoints were evaluated and compared in a radiosensitive DNA double-strand break repair-defective (DNA-PKcs −/− ) tumor line, and its DNA-PKcs repair competent transfected counterpart. In vitro colony formation assays were performed on in vitro cultured cells, on cells obtained directly from tumors, and on cells irradiated in situ. Permanent local control was assessed by the TCD 50 assay. Vascular effects were evaluated by functional vascular density assays. Results: The fraction of repair competent and repair deficient tumor cells surviving radiation did not substantially differ whether irradiated in vitro, i.e., in the absence of host stromal elements and factors, from the fraction of cells killed following in vivo irradiation. Additionally, the altered tumor cell sensitivity resulted in a proportional change in the dose required to achieve permanent local control. The estimated number of tumor cells per tumor, their cloning efficiency and radiosensitivity, all assessed by in vitro assays, were used to predict successfully, the measured tumor control doses. Conclusion: The number of clonogens per tumor and their radiosensitivity govern the permanent local control dose

  15. Mouse Leydig Tumor Cells

    Directory of Open Access Journals (Sweden)

    Bo-Syong Pan

    2011-01-01

    Full Text Available Cordycepin is a natural pure compound extracted from Cordyceps sinensis (CS. We have demonstrated that CS stimulates steroidogenesis in primary mouse Leydig cell and activates apoptosis in MA-10 mouse Leydig tumor cells. It is highly possible that cordycepin is the main component in CS modulating Leydig cell functions. Thus, our aim was to investigate the steroidogenic and apoptotic effects with potential mechanism of cordycepin on MA-10 mouse Leydig tumor cells. Results showed that cordycepin significantly stimulated progesterone production in dose- and time-dependent manners. Adenosine receptor (AR subtype agonists were further used to treat MA-10 cells, showing that A1, A 2A , A 2B , and A3, AR agonists could stimulate progesterone production. However, StAR promoter activity and protein expression remained of no difference among all cordycepin treatments, suggesting that cordycepin might activate AR, but not stimulated StAR protein to regulate MA-10 cell steroidogenesis. Meanwhile, cordycepin could also induce apoptotic cell death in MA-10 cells. Moreover, four AR subtype agonists induced cell death in a dose-dependent manner, and four AR subtype antagonists could all rescue cell death under cordycepin treatment in MA-10 cells. In conclusion, cordycepin could activate adenosine subtype receptors and simultaneously induce steroidogenesis and apoptosis in MA-10 mouse Leydig tumor cells.

  16. Ruthenium(II) Complexes with 2-Phenylimidazo[4,5-f][1,10]phenanthroline Derivatives that Strongly Combat Cisplatin-Resistant Tumor Cells

    Science.gov (United States)

    Zeng, Leli; Chen, Yu; Liu, Jiangping; Huang, Huaiyi; Guan, Ruilin; Ji, Liangnian; Chao, Hui

    2016-01-01

    Cisplatin was the first metal-based therapeutic agent approved for the treatment of human cancers, but its clinical activity is greatly limited by tumor drug resistance. This work utilized the parent complex [Ru(phen)2(PIP)]2+ (1) to develop three Ru(II) complexes (2-4) with different positional modifications. These compounds exhibited similar or superior cytotoxicities compared to cisplatin in HeLa, A549 and multidrug-resistant (A549R) tumor cell lines. Complex 4, the most potent member of the series, was highly active against A549R cancer cells (IC50 = 0.8 μM). This complex exhibited 178-fold better activity than cisplatin (IC50 = 142.5 μM) in A549R cells. 3D multicellular A549R tumor spheroids were also used to confirm the high proliferative and cytotoxic activity of complex 4. Complex 4 had the greatest cellular uptake and had a tendency to accumulate in the mitochondria of A549R cells. Further mechanistic studies showed that complex 4 induced A549R cell apoptosis via inhibition of thioredoxin reductase (TrxR), elevated intracellular ROS levels, mitochondrial dysfunction and cell cycle arrest, making it an outstanding candidate for overcoming cisplatin resistance.

  17. Exploiting nanotechnology to overcome tumor drug resistance: Challenges and opportunities.

    Science.gov (United States)

    Kirtane, Ameya R; Kalscheuer, Stephen M; Panyam, Jayanth

    2013-11-01

    Tumor cells develop resistance to chemotherapeutic drugs through multiple mechanisms. Overexpression of efflux transporters is an important source of drug resistance. Efflux transporters such as P-glycoprotein reduce intracellular drug accumulation and compromise drug efficacy. Various nanoparticle-based approaches have been investigated to overcome efflux-mediated resistance. These include the use of formulation excipients that inhibit transporter activity and co-delivery of the anticancer drug with a specific inhibitor of transporter function or expression. However, the effectiveness of nanoparticles can be diminished by poor transport in the tumor tissue. Hence, adjunct therapies that improve the intratumoral distribution of nanoparticles may be vital to the successful application of nanotechnology to overcome tumor drug resistance. This review discusses the mechanisms of tumor drug resistance and highlights the opportunities and challenges in the use of nanoparticles to improve the efficacy of anticancer drugs against resistant tumors. © 2013.

  18. Herceptin conjugates linked by EDC boost direct tumor cell death via programmed tumor cell necrosis.

    Directory of Open Access Journals (Sweden)

    Jiemiao Hu

    Full Text Available Tumor-targeted antibody therapy is one of the safest biological therapeutics for cancer patients, but it is often ineffective at inducing direct tumor cell death and is ineffective against resistant tumor cells. Currently, the antitumor efficacy of antibody therapy is primarily achieved by inducing indirect tumor cell death, such as antibody-dependent cell cytotoxicity. Our study reveals that Herceptin conjugates, if generated via the crosslinker EDC (1-ethyl-3-(3-dimethylaminopropyl carbodiimide hydrochloride, are capable of engendering human epidermal growth factor receptor 2 (Her2 positive tumor cells death. Using a high-performance liquid chromatography (HPLC system, three peaks with estimated molecular weights of antibody monomer, dimer, and trimer were isolated. Both Herceptin trimer and dimer separated by HPLC induced significant levels of necrotic tumor cell death, although the trimer was more effective than the dimer. Notably, the Herceptin trimer also induced Herceptin-resistant tumor cell death. Surprisingly different from the known cell death mechanism that often results from antibody treatment, the Herceptin trimer elicited effective and direct tumor cell death via a novel mechanism: programmed cell necrosis. In Her2-positive cells, inhibition of necrosis pathways significantly reversed Herceptin trimer-induced cell death. In summary, the Herceptin trimer reported herein harbors great potential for overcoming tumor cell resistance to Herceptin treatment.

  19. Tumor-reactive immune cells protect against metastatic tumor and induce immunoediting of indolent but not quiescent tumor cells.

    Science.gov (United States)

    Payne, Kyle K; Keim, Rebecca C; Graham, Laura; Idowu, Michael O; Wan, Wen; Wang, Xiang-Yang; Toor, Amir A; Bear, Harry D; Manjili, Masoud H

    2016-09-01

    Two major barriers to cancer immunotherapy include tumor-induced immune suppression mediated by myeloid-derived suppressor cells and poor immunogenicity of the tumor-expressing self-antigens. To overcome these barriers, we reprogrammed tumor-immune cell cross-talk by combined use of decitabine and adoptive immunotherapy, containing tumor-sensitized T cells and CD25(+) NKT cells. Decitabine functioned to induce the expression of highly immunogenic cancer testis antigens in the tumor, while also reducing the frequency of myeloid-derived suppressor cells and the presence of CD25(+) NKT cells rendered T cells, resistant to remaining myeloid-derived suppressor cells. This combinatorial therapy significantly prolonged survival of animals bearing metastatic tumor cells. Adoptive immunotherapy also induced tumor immunoediting, resulting in tumor escape and associated disease-related mortality. To identify a tumor target that is incapable of escape from the immune response, we used dormant tumor cells. We used Adriamycin chemotherapy or radiation therapy, which simultaneously induce tumor cell death and tumor dormancy. Resultant dormant cells became refractory to additional doses of Adriamycin or radiation therapy, but they remained sensitive to tumor-reactive immune cells. Importantly, we discovered that dormant tumor cells contained indolent cells that expressed low levels of Ki67 and quiescent cells that were Ki67 negative. Whereas the former were prone to tumor immunoediting and escape, the latter did not demonstrate immunoediting. Our results suggest that immunotherapy could be highly effective against quiescent dormant tumor cells. The challenge is to develop combinatorial therapies that could establish a quiescent type of tumor dormancy, which would be the best target for immunotherapy. © The Author(s).

  20. Effects of combinations of chemotherapy and radiation on the emergence of drug resistant cells in 9L rat brain tumor spheroids

    International Nuclear Information System (INIS)

    Tofilon, P.J.; Arundel, C.; Vines, C.M.

    1987-01-01

    Repeated administration of antineoplastic chemotherapeutic agents is generally considered to induce and/or select for drug resistant cells. The authors recently begun to investigate whether chemotherapy interdigitated with radiation can minimize or eliminate the emergence of drug resiistent cells in 9L rat brain tumor spheroids grown from defined mixtures of cells sensitive (9L) and resistant (R/sub 3/) to BCNU. In this experimental system, the sister chromatid exchange (SCE) assay is used to quantitate the proportions of sensitive and resistant cells within the spheroids. While 9L and R/sub 3/ cell have different sensitivities to BCNU, they are equally sensitive to radiation. Mixed-cell spheroids consisting of 1% R/sub 3/ cells were treated with three doses of BCNU (10 μM) every 72 hr resulting in a shift in the 9L to R/sub 3/ ratio to greater than 50% R/sub 3/ cells. The combined protocols to be investigated will involve γ rays administered either 36 hr before or after each BCNU treatment. By initiating these combined protocols on spheroids of different sizes, the effectiveness of each protocol is evaluated with respect to the number of resistant cells present

  1. Prox1 Promotes Expansion of the Colorectal Cancer Stem Cell Population to Fuel Tumor Growth and Ischemia Resistance

    Directory of Open Access Journals (Sweden)

    Zoltán Wiener

    2014-09-01

    Full Text Available Colorectal cancer (CRC initiation and growth is often attributed to stem cells, yet little is known about the regulation of these cells. We show here that a subpopulation of Prox1-transcription-factor-expressing cells have stem cell activity in intestinal adenomas, but not in the normal intestine. Using in vivo models and 3D ex vivo organoid cultures of mouse adenomas and human CRC, we found that Prox1 deletion reduced the number of stem cells and cell proliferation and decreased intestinal tumor growth via induction of annexin A1 and reduction of the actin-binding protein filamin A, which has been implicated as a prognostic marker in CRC. Loss of Prox1 also decreased autophagy and the survival of hypoxic tumor cells in tumor transplants. Thus, Prox1 is essential for the expansion of the stem cell pool in intestinal adenomas and CRC without being critical for the normal functions of the gut.

  2. Enhanced Anti-Tumor Efficacy of Lipid-Modified Platinum Derivatives in Combination with Survivin Silencing siRNA in Resistant Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Mattheolabakis, George; Ling, Dandan; Ahmad, Gulzar; Amiji, Mansoor

    2016-12-01

    Cisplatin, is recognized as a first line therapeutic for the treatment of non-small cell lung cancer (NSCLC). Cisplatin resistance is identified as the most detrimental complication during treatment and has been associated with upregulation of several genes, such as the anti-apoptotic gene survivin. In this study, we have evaluated the cytotoxic activity of lipid (C6 and C8)-modified platinum compounds in combination with a survivin-silencing siRNA against cisplatin resistant tumors. We synthesized and characterized several lipid-modified platinum compounds and evaluated their cytotoxic activity alone or in combination with survivin-silencing siRNA in vitro and in vivo against A549 DDP cells and in vivo in tumor xenograft model. The lipid-modified compounds exhibited significantly stronger cytotoxic activity in vitro compared to cisplatin, with CDDP-C6 and CDDP-C8 producing the most pronounced effect, in both A549 and A549 DDP cells. Pre-treatment of the A549 DDP cells with survivin-silencing siRNA enhanced the cytotoxic activity of these compounds. In vivo, the co-treatment of the survivin-silencing siRNA and CDDP-C8 produced the strongest tumor growth inhibition effect (64.5%, p cancer mouse model of chemoresistant lung cancer. In contrast, cisplatin treatment exhibited no significant tumor growth inhibition (4.5%, no p). Co-treatment of lipid-modified compounds and survivin-silencing siRNA can constitute a reliable alternative to cisplatin treatment for cisplatin-resistant lung tumors that merit further evaluation.

  3. Unmasking circulating tumor cells

    NARCIS (Netherlands)

    Swennenhuis, Joost Franciscus

    2017-01-01

    The number of Circulating Tumor Cells (CTCs) that can be isolated from blood of cancer patients is prognostic for the course of the disease. A higher number of CTCs correlates with a worse prognosis. A change from a higher number to a lower number of CTCs indicates a benefit of the current treatment

  4. A cyclopalladated complex interacts with mitochondrial membrane thiol-groups and induces the apoptotic intrinsic pathway in murine and cisplatin-resistant human tumor cells

    International Nuclear Information System (INIS)

    Serrano, Fabiana A; Machado, Joel Jr; Santos, Edson L; Pesquero, João B; Martins, Rafael M; Travassos, Luiz R; Caires, Antonio CF; Rodrigues, Elaine G; Matsuo, Alisson L; Monteforte, Priscila T; Bechara, Alexandre; Smaili, Soraya S; Santana, Débora P; Rodrigues, Tiago; Pereira, Felipe V; Silva, Luis S

    2011-01-01

    Systemic therapy for cancer metastatic lesions is difficult and generally renders a poor clinical response. Structural analogs of cisplatin, the most widely used synthetic metal complexes, show toxic side-effects and tumor cell resistance. Recently, palladium complexes with increased stability are being investigated to circumvent these limitations, and a biphosphinic cyclopalladated complex {Pd 2 [S (-) C 2 , N-dmpa] 2 (μ-dppe)Cl 2 } named C7a efficiently controls the subcutaneous development of B16F10-Nex2 murine melanoma in syngeneic mice. Presently, we investigated the melanoma cell killing mechanism induced by C7a, and extended preclinical studies. B16F10-Nex2 cells were treated in vitro with C7a in the presence/absence of DTT, and several parameters related to apoptosis induction were evaluated. Preclinical studies were performed, and mice were endovenously inoculated with B16F10-Nex2 cells, intraperitoneally treated with C7a, and lung metastatic nodules were counted. The cytotoxic effects and the respiratory metabolism were also determined in human tumor cell lines treated in vitro with C7a. Cyclopalladated complex interacts with thiol groups on the mitochondrial membrane proteins, causes dissipation of the mitochondrial membrane potential, and induces Bax translocation from the cytosol to mitochondria, colocalizing with a mitochondrial tracker. C7a also induced an increase in cytosolic calcium concentration, mainly from intracellular compartments, and a significant decrease in the ATP levels. Activation of effector caspases, chromatin condensation and DNA degradation, suggested that C7a activates the apoptotic intrinsic pathway in murine melanoma cells. In the preclinical studies, the C7a complex protected against murine metastatic melanoma and induced death in several human tumor cell lineages in vitro, including cisplatin-resistant ones. The mitochondria-dependent cell death was also induced by C7a in human tumor cells. The cyclopalladated C7a complex is

  5. Benign notochordal cell tumors.

    Science.gov (United States)

    Martínez Gamarra, C; Bernabéu Taboada, D; Pozo Kreilinger, J J; Tapia Viñé, M

    Benign notochordal cell tumors (TBCN) are lesions with notochordal differentiation which affect the axial skeleton. They are characterized by asymptomatic or non-specific symptomatology and are radiologically unnoticed because of their small size, or because they are mistaken with other benign bone lesions, such as vertebral hemangiomas. When they are large, or symptomatic, can be differential diagnosis with metastases, primary bone tumors and chordomas. We present a case of a TBCN in a 50-year-old woman, with a sacral lesion seen in MRI. A CT-guided biopsy was scheduled to analyze the lesion, finding that the tumor was not clearly recognizable on CT, so the anatomical references of MRI were used to select the appropriate plane. The planning of the approach and the radio-pathological correlation were determinant to reach the definitive diagnosis. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Circumvention of the multidrug-resistance protein (MRP-1) by an antitumor drug through specific inhibition of gene transcription in breast tumor cells.

    Science.gov (United States)

    Mansilla, Sylvia; Rojas, Marta; Bataller, Marc; Priebe, Waldemar; Portugal, José

    2007-04-01

    Multidrug-resistance protein 1 (MRP-1) confers resistance to a number of clinically important chemotherapeutic agents. The promoter of the mrp-1 gene contains an Sp1-binding site, which we targeted using the antitumor bis-anthracycline WP631. When MCF-7/VP breast cancer cells, which overexpress MRP-1 protein, were incubated with WP631 the expression of the multidrug-resistance protein gene decreased. Conversely, doxorubicin did not alter mrp-1 gene expression. The inhibition of gene expression was followed by a decrease in the activity of the MRP-1 protein. The IC(75) for WP631 (drug concentration required to inhibit cell growth by 75%) circumvented the drug-efflux pump, without addition of resistant modifiers. After treatment with WP631, MCF-7/VP cells were committed to die after entering mitosis (mitotic catastrophe), while treatment with doxorubicin did not affect cell growth. This is the first report on an antitumor drug molecule inhibiting the mrp-1 gene directly, rather than being simply a poor substrate for the transporter-mediated efflux. However, both situations appeared to coexist, thereby a superior cytotoxic effect was attained. Ours results suggest that WP631 offers great potential for the clinical treatment of tumors displaying a multidrug-resistance phenotype.

  7. Proapoptotic protein Smac mediates apoptosis in cisplatin-resistant ovarian cancer cells when treated with the anti-tumor agent AT101.

    Science.gov (United States)

    Hu, Wenbin; Wang, Fang; Tang, Jingsheng; Liu, Xinyu; Yuan, Zhu; Nie, Chunlai; Wei, Yuquan

    2012-01-02

    Chemoresistance of ovarian cancer has been previously attributed to the expression and activation of Bcl-2 family proteins. BH3-mimetic molecules possessing potential anticancer activity are able to inhibit antiapoptotic Bcl-2 family proteins. AT101 (R-(-)-gossypol), a natural BH3-mimetic molecule, has shown anti-tumor activity as a single agent and in combination with standard anticancer therapies in a variety of tumor models. Here, we report the effect of AT101 on apoptosis in cisplatin-resistant ovarian cancer cells and identify the major molecular events that determine sensitivity. AT101 induced cell apoptosis by activating Bax through a conformational change, translocation, and oligomerization. The inhibition of Bax expression only partially prevented caspase-3 cleavage. However, the gene silencing of Bax had no effect on mitochondrial Smac release. Further experiments demonstrated that Smac reduction inhibited caspase-3 activation and attenuated cell apoptosis. More importantly, the inhibition of Smac or overexpression of XIAP attenuated Bax activation in ovarian cells. Furthermore, our data indicate that the Akt-p53 pathway is involved in the regulation of Smac release. Taken together, our data demonstrate the role of Smac and the molecular mechanisms of AT101-induced apoptosis of chemoresistant ovarian cancer cells. Our findings suggest that AT101 not only triggers Bax activation but also induces mitochondrial Smac release. Activated Smac can enhance Bax-mediated cellular apoptosis. Therefore, Smac mediates Bax activation to determine the threshold for overcoming cisplatin resistance in ovarian cancer cells.

  8. Proapoptotic Protein Smac Mediates Apoptosis in Cisplatin-resistant Ovarian Cancer Cells When Treated with the Anti-tumor Agent AT101*

    Science.gov (United States)

    Hu, Wenbin; Wang, Fang; Tang, Jingsheng; Liu, Xinyu; Yuan, Zhu; Nie, Chunlai; Wei, Yuquan

    2012-01-01

    Chemoresistance of ovarian cancer has been previously attributed to the expression and activation of Bcl-2 family proteins. BH3-mimetic molecules possessing potential anticancer activity are able to inhibit antiapoptotic Bcl-2 family proteins. AT101 (R-(−)-gossypol), a natural BH3-mimetic molecule, has shown anti-tumor activity as a single agent and in combination with standard anticancer therapies in a variety of tumor models. Here, we report the effect of AT101 on apoptosis in cisplatin-resistant ovarian cancer cells and identify the major molecular events that determine sensitivity. AT101 induced cell apoptosis by activating Bax through a conformational change, translocation, and oligomerization. The inhibition of Bax expression only partially prevented caspase-3 cleavage. However, the gene silencing of Bax had no effect on mitochondrial Smac release. Further experiments demonstrated that Smac reduction inhibited caspase-3 activation and attenuated cell apoptosis. More importantly, the inhibition of Smac or overexpression of XIAP attenuated Bax activation in ovarian cells. Furthermore, our data indicate that the Akt-p53 pathway is involved in the regulation of Smac release. Taken together, our data demonstrate the role of Smac and the molecular mechanisms of AT101-induced apoptosis of chemoresistant ovarian cancer cells. Our findings suggest that AT101 not only triggers Bax activation but also induces mitochondrial Smac release. Activated Smac can enhance Bax-mediated cellular apoptosis. Therefore, Smac mediates Bax activation to determine the threshold for overcoming cisplatin resistance in ovarian cancer cells. PMID:22052903

  9. Hsp90 inhibitor 17-AAG reduces ErbB2 levels and inhibits proliferation of the trastuzumab resistant breast tumor cell line JIMT-1.

    Science.gov (United States)

    Zsebik, Barbara; Citri, Ami; Isola, Jorma; Yarden, Yosef; Szöllosi, János; Vereb, György

    2006-04-15

    ErbB2, a member of the EGF receptor family of tyrosine kinases is overexpressed on many tumor cells of epithelial origin and is the molecular target of trastuzumab (Herceptin), the first humanized antibody used in the therapy of solid tumors. Trastuzumab, which is thought to act, at least in part, by downregulating ErbB2 expression is only effective in approximately 30-40% of ErbB2 positive breast tumors. Geldanamycin and its derivative 17-AAG are potential antitumor agents capable of downregulating client proteins of Hsp90, including ErbB2. To investigate the ability of 17-AAG to downregulate ErbB2 in trastuzumab resistant breast cancer cells and the possibility of 17-AAG and trastuzumab potentiating each other's effect, the recently established trastuzumab resistant breast cancer cell line, JIMT-1 was compared to the known trastuzumab sensitive SKBR-3 line. Baseline and stimulus-evoked dimerization and activation levels of ErbB2, and the effects of trastuzumab and 17-AAG alone and in combination on cell proliferation and apoptosis, as well as on ErbB2 expression and phosphorylation have been measured. Baseline activation and amenability to activation and downregulation by trastuzumab was much lower in the resistant line. However, 17-AAG enhanced ErbB2 homodimerization after 5-10 min of treatment in both cell lines, and decreased proliferation with an IC50 of 70 nM for SKBR-3 and 10nM for JIMT-1. Thus, 17-AAG may be a useful drug in trastuzumab resistant ErbB2 overexpressing tumors. The antiproliferative effect of 17-AAG was positively correlated with phosphorylation and downregulation of ErbB2 and was dominated by apoptosis, although, especially at higher doses, necrosis was also present. Interestingly, IC50 values for ErbB2 downregulation and phosphorylation, in the 30-40 nM range, were not significantly different for the two cell lines. This observation and the negative correlation between resting ErbB2 levels and the antiproliferative effect of 17-AAG may

  10. Circulating tumor cells in patients with metastatic castration resistant prostate cancer: exploratory findings at a tertiary referral hospital

    Directory of Open Access Journals (Sweden)

    Fosså SD

    2014-09-01

    Full Text Available Sophie D Fosså,1 Siri L Hess,1 Elisabeth Paus,2 Elin Borgen3 1National Resource Center for Late Effects after Cancer Treatment, 2Department of Medical Biochemistry, 3Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, Radiumhospital, Oslo, Norway Objectives: In patients with metastatic castration-resistant prostate cancer (mCRPC, the finding of less than five circulating tumor cells (CTCs/7.5 mL blood before start of cytotoxic treatment or shortly thereafter indicates prolonged survival. In this descriptive pilot study, we investigated whether this association depends on the sequence of the therapeutic attempts. Patients and methods: CTCs were determined in 41 mCRPC patients before and 2–3 months after starting first-line treatment with docetaxel (group 1 or second-line treatment with either radium-223 (group 2 or placebo/best supportive care (group 3. A "favorable" CTC count was defined as <5 CTC/7.5 mL blood. The results were related to overall survival. Results: Pretreatment, six of ten men in group 1, three of 19 in group 2, and three of 12 patients in group 3 had a favorable CTC count, leading to a significant difference between first- and second-line therapy (P=0.04. Decrease of pretreatment elevated CTCs to a favorable CTC count was significantly more often observed in patients on first-line therapy (three of four patients than on second-line treatment (two of 26 men (P=0.03. A favorable CTC count before or shortly after treatment start was observed in nine of ten patients on first-line and in eight of 31 men on second-line therapy (P=0.01. A favorable CTC count pretreatment or 2–3 months after therapy start was associated with beneficial overall survival in the three groups combined and in each group analyzed separately. Conclusion: In mCRPC, a favorable CTC count before or 2–3 months after start of therapy is associated with length of overall survival, though such favorable CTC counts are observed

  11. Cytotoxicity and modes of action of five Cameroonian medicinal plants against multi-factorial drug resistance of tumor cells.

    Science.gov (United States)

    Kuete, Victor; Tankeo, Simplice B; Saeed, Mohamed E M; Wiench, Benjamin; Tane, Pierre; Efferth, Thomas

    2014-04-11

    Beilschmiedia acuta Kosterm, Clausena anisata (Willd) Hook, Fagara tessmannii Engl., Newbouldia laevis Seem., and Polyscias fulva (Hiern) Harms. are medicinal plants used in Cameroonian traditional medicine in the treatment of various types of cancers. The present study aims at investigating 11 methanolic extracts from the above Cameroonian medicinal plants on a panel of human cancer cell lines, including various drug-resistant phenotypes. Possible modes of action were analyzed for two extracts from Beilschmiedia acuta and Polyscia fulva and alpha-hederin, the representative constituent of Polyscia fulva. Cytotoxicity was determined using a resazurin assay. Cell cycle, apoptosis, mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) were measured by flow cytometry. Cellular response to alpha-hederin was investigated by a mRNA microarray approach. Prescreening of extracts (40µg/mL) showed that three of eleven plant extracts inhibited proliferation of CCRF-CEM cells by more than 50%, i.e. BAL (73.65%), the bark extract of Beilschmiedia acuta (78.67%) and PFR (68.72%). Subsequent investigations revealed IC50 values below or around 30µg/mL of BAL and PFR in 10 cell lines, including drug-resistant models, i.e. P-glycoprotein-overexpressing CEM/ADR5000, breast cancer resistance protein-transfected MDA-MB-231-BCRP, TP53 knockout cells (HCT116 p53(-/-)), and mutation-activated epidermal growth factor receptor-transfected U87MG.ΔEGFR cells. IC50 values below 5µg/mL of BAL were obtained for HCT116 (p53(-/-)) cells. IC50 values below 10µM of alpha-hederin were found for sensitive CCRF-CEM and multidrug-resistant CEM/ADR5000 cells. The BAL and PFR extracts induced cell cycle arrest between G0/G1 and S phases. PFR-induced apoptosis was associated with increased ROS generation and MMP breakdown. Microarray-based cluster analysis revealed a gene expression profile that predicted cellular response to alpha-hederin. BAL, PFL and alpha-hederin, an

  12. Pericytes limit tumor cell metastasis

    DEFF Research Database (Denmark)

    Xian, Xiaojie; Håkansson, Joakim; Ståhlberg, Anders

    2006-01-01

    Previously we observed that neural cell adhesion molecule (NCAM) deficiency in beta tumor cells facilitates metastasis into distant organs and local lymph nodes. Here, we show that NCAM-deficient beta cell tumors grew leaky blood vessels with perturbed pericyte-endothelial cell-cell interactions...... and deficient perivascular deposition of ECM components. Conversely, tumor cell expression of NCAM in a fibrosarcoma model (T241) improved pericyte recruitment and increased perivascular deposition of ECM molecules. Together, these findings suggest that NCAM may limit tumor cell metastasis by stabilizing...... the microvessel wall. To directly address whether pericyte dysfunction increases the metastatic potential of solid tumors, we studied beta cell tumorigenesis in primary pericyte-deficient Pdgfb(ret/ret) mice. This resulted in beta tumor cell metastases in distant organs and local lymph nodes, demonstrating a role...

  13. Mxd1 mediates hypoxia-induced cisplatin resistance in osteosarcoma cells by repression of the PTEN tumor suppressor gene.

    Science.gov (United States)

    Zheng, Datong; Wu, Weiling; Dong, Na; Jiang, Xiuqin; Xu, Jinjin; Zhan, Xi; Zhang, Zhengdong; Hu, Zhenzhen

    2017-10-01

    Hypoxia-induced chemoresistance remains a major obstacle to treating osteosarcoma effectively. Mxd1, a member of the Myc/Max/Mxd family, was shown to be involved in the development of drug resistance under hypoxia. However, the effect of Mxd1 on hypoxia-induced cisplatin (CDDP) resistance and its mechanism in osteosarcoma have not been fully elucidated. In this study, we demonstrated that HIF-1α-induced Mxd1 contributed to CDDP resistance in hypoxic U-2OS and MG-63 cells. The knockdown of Mxd1 expression elevated PTEN expression at both protein and RNA levels in these hypoxic cells. Using Luciferase reporter and ChIP assays, we confirmed that Mxd1 directly bound to the E-box sites within the PTEN promoter region. We further demonstrated that PTEN knockdown decreased CDDP sensitivity in Mxd1 siRNA-transfected U-2OS and MG-63 cells under hypoxia. Our results also showed that Mxd1 deficiency in hypoxic U-2OS and MG-63 cells lead to inactivation of PI3K/AKT signaling, which is the downstream of PTEN. Furthermore, blockade of PI3K/AKT signal re-sensitized hypoxic U-2OS and MG-63 cells to CDDP. Taken together, these findings suggest that HIF-1α-induced Mxd1 up-regulation suppresses the expression of PTEN under hypoxia, which leads to the activation of PI3K/AKT antiapoptotic and survival pathway. As a result CDDP resistance in osteosarcoma cells is induced. © 2017 Wiley Periodicals, Inc.

  14. Anti-tumor compound RY10-4 suppresses multidrug resistance in MCF-7/ADR cells by inhibiting PI3K/Akt/NF-κB signaling.

    Science.gov (United States)

    Yang, Xiaofan; Ding, Yufeng; Xiao, Miao; Liu, Xin; Ruan, Jinlan; Xue, Pingping

    2017-12-25

    RY10-4, an anti-tumor agent, exerts cytotoxicity to various human cancer cell lines. However, few studies reported the effect of combined application of RY10-4 and chemotherapeutic drugs against cancer cells with multidrug resistance (MDR). In this study, P-glycoprotein (P-gp), which is reported to mediate MDR to anti-cancer drugs, was proved to be overexpressed in the adriamycin (ADR)-resistant human breast cancer cells, namely MCF-7/ADR cells. Furthermore, RY10-4 application resulted in a downregulation of P-gp in MCF-7/ADR cells, thus leading to higher chemosensitivity to ADR. Our study further demonstrated that the MDR phenomenon was under the control of the PI3K/Akt/NF-κB pathway, which was suppressed by RY10-4, leading to MDR reversal effects in MCF-7/ADR cells. In vivo, MCF-7/ADR cells were effectively suppressed by the combined ADR/RY10-4 treatment compared with the ADR-alone treatment. Taken together, these results demonstrated that RY10-4 reverses the MDR phenotype in MCF-7/ADR cells by suppressing the PI3K/Akt/NF-κB pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The anti-diabetic drug metformin suppresses self-renewal and proliferation of trastuzumab-resistant tumor-initiating breast cancer stem cells.

    Science.gov (United States)

    Vazquez-Martin, Alejandro; Oliveras-Ferraros, Cristina; Del Barco, Sonia; Martin-Castillo, Begoña; Menendez, Javier A

    2011-04-01

    We here demonstrate that the anti-diabetic drug metformin interacts synergistically with the anti-HER2 monoclonal antibody trastuzumab (Tzb; Herceptin™) to eliminate stem/progenitor cell populations in HER2-gene-amplified breast carcinoma cells. When using the mammosphere culture technique, graded concentrations of single-agent metformin (range 50-1,000 μmol/l) were found to dose-dependently reduce the number of mammospheres formed by SKBR3 (a Tzb-naïve model), SKBR3 TzbR (a model of acquired auto-resistance to Tzb) and JIMT-1 (a model of refractoriness to Tzb and other HER2-targeted therapies ab initio) HER2-overexpressing breast cancer cells. Single-agent Tzb likewise reduced mammosphere-forming efficiency (MSFE) in Tzb-naïve SKBR3 cells, but it failed to significantly decrease MSFE in Tzb-resistant SKBR3 TzbR and JIMT-1 cells. Of note, CD44-overexpressing Tzb-refractory SKBR3 TzbR and JIMT-1 cells retained an exquisite sensitivity to single-agent metformin. Concurrent combination of metformin with Tzb synergistically reduced MSFE as well as the size of mammospheres in Tzb-refractory SKBR3 TzbR and JIMT-1 cells. Flow cytometry analyses confirmed that metformin and Tzb functioned synergistically to down-regulate the percentage of Tzb-refractory JIMT-1 cells displaying the CD44(pos)/CD24(neg/low) stem/progenitor immunophenotype. Given that MSFE and mammosphere size are indicators of stem self-renewal and progenitor cell proliferation, respectively, our current findings reveal for the first time that: (a) Tzb refractoriness in HER2 overexpressors can be explained in terms of Tzb-resistant/CD44-overexpressing/tumor-initiating stem cells; (b) metformin synergistically interacts with Tzb to suppress self-renewal and proliferation of cancer stem/progenitor cells in HER2-positive carcinomas.

  16. Cancer Stem Cells, Tumor Dormancy, And Metastasis

    Directory of Open Access Journals (Sweden)

    Purvi ePatel

    2012-10-01

    Full Text Available Tumor cells can persist undetectably for an extended period of time in primary tumors and in disseminated cancer cells. Very little is known about why and how these tumors persist for extended periods of time and then evolve to malignancy. The discovery of cancer stem cells (CSCs in human tumors challenges our current understanding of tumor recurrence, drug resistance, and metastasis, and opens up new research directions on how cancer cells are capable of switching from dormancy to malignancy. Although overlapping molecules and pathways have been reported to regulate the stem-like phenotype of CSCs and metastasis, accumulated evidence has suggested additional clonal diversity within the stem-like cancer cell subpopulation. This review will describe the current hypothesis linking CSCs and metastasis and summarize mechanisms important for metastatic CSCs to re-initiate tumors in the secondary sites. A better understanding of CSCs’ contribution to clinical tumor dormancy and metastasis will provide new therapeutic revenues to eradicate metastatic tumors and significantly reduce the mortality of cancer patients.

  17. ENO1 promotes tumor proliferation and cell adhesion mediated drug resistance (CAM-DR) in Non-Hodgkin's Lymphomas

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xinghua; Miao, Xiaobing; Wu, Yaxun; Li, Chunsun; Guo, Yan; Liu, Yushan; Chen, Yali; Lu, Xiaoyun [Department of Pathology, Affiliated Cancer Hospital of Nantong University, 30 North Tongyang Road, Pingchao, Nantong 226361, Jiangsu (China); Wang, Yuchan, E-mail: wangyuchannt@126.com [Department of Pathogen and Immunology, Medical College, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu (China); He, Song, E-mail: hesongnt@126.com [Department of Pathology, Affiliated Cancer Hospital of Nantong University, 30 North Tongyang Road, Pingchao, Nantong 226361, Jiangsu (China)

    2015-07-15

    Enolases are glycolytic enzymes responsible for the ATP-generated conversion of 2-phosphoglycerate to phosphoenolpyruvate. In addition to the glycolytic function, Enolase 1 (ENO1) has been reported up-regulation in several tumor tissues. In this study, we investigated the expression and biologic function of ENO1 in Non-Hodgkin's Lymphomas (NHLs). Clinically, by western blot analysis we observed that ENO1 expression was apparently higher in diffuse large B-cell lymphoma than in the reactive lymphoid tissues. Subsequently, immunohistochemical staining of 144 NHLs suggested that the expression of ENO1 was significantly lower in the indolent lymphomas compared with the progressive lymphomas. Further, we identified ENO1 as an independent prognostic factor, and it was significantly correlated with overall survival of NHL patients. In addition, we found that ENO1 could promote cell proliferation, regulate cell cycle associated gene and PI3K/AKT signaling pathway in NHLs. Finally, we verified that ENO1 participated in the process of lymphoma cell adhesion mediated drug resistance (CAM-DR). Adhesion to FN or HS5 cells significantly protected OCI-Ly8 and Daudi cells from cytotoxicity compared with those cultured in suspension, and these effects were attenuated when transfected with ENO1-siRNA. Based on the study, we propose that inhibition of ENO1 expression may be a novel strategy for therapy for NHLs patients, and it may be a target for drug resistance. - Highlights: • ENO1 expression is reversely correlated with clinical outcomes of patients with NHLs. • ENO1 promotes the proliferation of NHL cells. • ENO1 regulates cell adhesion mediated drug resistance.

  18. A decrease in ubiquitination and resulting prolonged life-span of KIT underlies the KIT overexpression-mediated imatinib resistance of KIT mutation-driven canine mast cell tumor cells.

    Science.gov (United States)

    Kobayashi, Masato; Kuroki, Shiori; Kurita, Sena; Miyamoto, Ryo; Tani, Hiroyuki; Tamura, Kyoichi; Bonkobara, Makoto

    2017-10-01

    Overexpression of KIT is one of the mechanisms that contributes to imatinib resistance in KIT mutation-driven tumors. Here, the mechanism underlying this overexpression of KIT was investigated using an imatinib-sensitive canine mast cell tumor (MCT) line CoMS, which has an activating mutation in KIT exon 11. A KIT-overexpressing imatinib-resistant subline, rCoMS1, was generated from CoMS cells by their continuous exposure to increasing concentrations of imatinib. Neither a secondary mutation nor upregulated transcription of KIT was detected in rCoMS1 cells. A decrease in KIT ubiquitination, a prolonged KIT life-span, and KIT overexpression were found in rCoMS1 cells. These events were suppressed by withdrawal of imatinib and were re-induced by re‑treatment with imatinib. These findings suggest that imatinib elicited overexpression of KIT via suppression of its ubiquitination. These results also indicated that imatinib-induced overexpression of KIT in rCoMS1 cells was not a permanently acquired feature but was a reversible response of the cells. Moreover, the pan deubiquitinating enzyme inhibitor PR619 prevented imatinib induction of KIT overexpression, suggesting that the imatinib-induced decrease in KIT ubiquitination could be mediated by upregulation and/or activation of deubiquitinating enzyme(s). It may be possible that a similar mechanism of KIT overexpression underlies the acquisition of imatinib resistance in some human tumors that are driven by KIT mutation.

  19. Mode of Action Analyses of Neferine, a Bisbenzylisoquinoline Alkaloid of Lotus (Nelumbo nucifera against Multidrug-Resistant Tumor Cells

    Directory of Open Access Journals (Sweden)

    Onat Kadioglu

    2017-05-01

    Full Text Available Neferine, a bisbenzylisoquinoline alkaloid isolated from the green seed embryos of Lotus (Nelumbo nucifera Gaertn, has been previously shown to have various anti-cancer effects. In the present study, we evaluated the effect of neferine in terms of P-glycoprotein (P-gp inhibition via in vitro cytotoxicity assays, R123 uptake assays in drug-resistant cancer cells, in silico molecular docking analysis on human P-gp and in silico absorption, distribution, metabolism, and excretion (ADME, quantitative structure activity relationships (QSAR and toxicity analyses. Lipinski rule of five were mainly considered for the ADME evaluation and the preset descriptors including number of hydrogen bond donor, acceptor, hERG IC50, logp, logD were considered for the QSAR analyses. Neferine revealed higher toxicity toward paclitaxel- and doxorubicin-resistant breast, lung or colon cancer cells, implying collateral sensitivity of these cells toward neferine. Increased R123 uptake was observed in a comparable manner to the control P-gp inhibitor, verapamil. Molecular docking analyses revealed that neferine still interacts with P-gp, even if R123 was pre-bound. Bioinformatical ADME and toxicity analyses revealed that neferine possesses the druggability parameters with no predicted toxicity. In conclusion, neferine may allocate the P-gp drug-binding pocket and prevent R123 binding in agreement with P-gp inhibition experiments, where neferine increased R123 uptake.

  20. Vindesine in plasma cell tumors.

    Science.gov (United States)

    Salvagno, L; Paccagnella, A; Chiarion Sileni, V; De Besi, P; Frizzarin, M; Casara, D; Fiorentino, M V

    1985-12-31

    Twenty-one patients with plasma cell tumors received vindesine (VDS) at the dose of 3 mg/m2 i.v. on day 1 plus prednisone at the dose of 100 mg p.o. from day 1 to 5, recycling every 8 days 3 times and then every 10-12 days. In 3 patients with gastric or duodenal ulcer prednisone was not administered. All but one patient were heavily pretreated and resistant to M-2 regimen. Overall there were 4 objective responses (19%): 2 among 15 patients (13%) with multiple myeloma and 2 among 6 patients (33%) with extramedullary plasmacytoma (EMP). The responses lasted for 2, 12, 15 and 48+ months. One previously untreated EMP patient received VDS without prednisone and obtained a complete long-lasting remission. The association of VDS with high-dose prednisone seems to have some activity in plasma cell tumors; probably in multiple myeloma the objective responses are due to the high dose of cortisone rather than to VDS. On the contrary, in EMP patients, VDS may be an active agent, even if administered without cortisone.

  1. RRx-001-Induced Tumor Necrosis and Immune Cell Infiltration in an EGFR Mutation-Positive NSCLC with Resistance to EGFR Tyrosine Kinase Inhibitors: A Case Report

    Directory of Open Access Journals (Sweden)

    Christina Brzezniak

    2016-01-01

    Full Text Available We present the case of a 49-year-old male with metastatic epidermal growth factor receptor (EGFR mutation-positive adenocarcinoma of the lung that continues to outlive stage IV diagnosis of non-small cell lung cancer after treatment with RRx-001, an experimental anticancer agent with epigenetic and immunologic activity, in the context of a phase II clinical trial called TRIPLE THREAT. Currently, no adequate treatment options exist for patients with EGFR mutation-positive tumors who have failed a 1st-generation tyrosine kinase inhibitor (erlotinib or gefitinib treatment and do not develop a resistant mutation. Biopsy of a large pancreatic metastasis after RRx-001 demonstrated extensive necrosis with CD3+ and CD8+ immune cell infiltration that appears to correlate with prolonged survival despite end-stage disease. These results suggest that the mode of action of RRx-001 is related to immune stimulation in addition to epigenetic inhibition.

  2. INPP4B-mediated tumor resistance is associated with modulation of glucose metabolism via hexokinase 2 regulation in laryngeal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Min, Joong Won [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Kwang Il [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Hyun-Ah; Kim, Eun-Kyu; Noh, Woo Chul [Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Jeon, Hong Bae [Biomedical Research Institute, MEDIPOST Co., Ltd., Seoul (Korea, Republic of); Cho, Dong-Hyung [Graduate School of East-West Medical Science, Kyung Hee University, Gyeonggi-do (Korea, Republic of); Oh, Jeong Su [Department of Genetic Engineering, Sungkyunkwan University, Suwon (Korea, Republic of); Park, In-Chul; Hwang, Sang-Gu [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Jae-Sung, E-mail: jaesung@kirams.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2013-10-11

    Highlights: •HIF-1α-regulated INPP4B enhances glycolysis. •INPP4B regulates aerobic glycolysis by inducing HK2 via Akt-mTOR pathway. •Blockage of INPP4B and HK2 sensitizes radioresistant laryngeal cancer cells to radiation and anticancer drug. •INPP4B is associated with HK2 in human laryngeal cancer tissues. -- Abstract: Inositol polyphosphate 4-phosphatase type II (INPP4B) was recently identified as a tumor resistance factor in laryngeal cancer cells. Herein, we show that INPP4B-mediated resistance is associated with increased glycolytic phenotype. INPP4B expression was induced by hypoxia and irradiation. Intriguingly, overexpression of INPP4B enhanced aerobic glycolysis. Of the glycolysis-regulatory genes, hexokinase 2 (HK2) was mainly regulated by INPP4B and this regulation was mediated through the Akt-mTOR pathway. Notably, codepletion of INPP4B and HK2 markedly sensitized radioresistant laryngeal cancer cells to irradiation or anticancer drug. Moreover, INPP4B was significantly associated with HK2 in human laryngeal cancer tissues. Therefore, these results suggest that INPP4B modulates aerobic glycolysis via HK2 regulation in radioresistant laryngeal cancer cells.

  3. INPP4B-mediated tumor resistance is associated with modulation of glucose metabolism via hexokinase 2 regulation in laryngeal cancer cells

    International Nuclear Information System (INIS)

    Min, Joong Won; Kim, Kwang Il; Kim, Hyun-Ah; Kim, Eun-Kyu; Noh, Woo Chul; Jeon, Hong Bae; Cho, Dong-Hyung; Oh, Jeong Su; Park, In-Chul; Hwang, Sang-Gu; Kim, Jae-Sung

    2013-01-01

    Highlights: •HIF-1α-regulated INPP4B enhances glycolysis. •INPP4B regulates aerobic glycolysis by inducing HK2 via Akt-mTOR pathway. •Blockage of INPP4B and HK2 sensitizes radioresistant laryngeal cancer cells to radiation and anticancer drug. •INPP4B is associated with HK2 in human laryngeal cancer tissues. -- Abstract: Inositol polyphosphate 4-phosphatase type II (INPP4B) was recently identified as a tumor resistance factor in laryngeal cancer cells. Herein, we show that INPP4B-mediated resistance is associated with increased glycolytic phenotype. INPP4B expression was induced by hypoxia and irradiation. Intriguingly, overexpression of INPP4B enhanced aerobic glycolysis. Of the glycolysis-regulatory genes, hexokinase 2 (HK2) was mainly regulated by INPP4B and this regulation was mediated through the Akt-mTOR pathway. Notably, codepletion of INPP4B and HK2 markedly sensitized radioresistant laryngeal cancer cells to irradiation or anticancer drug. Moreover, INPP4B was significantly associated with HK2 in human laryngeal cancer tissues. Therefore, these results suggest that INPP4B modulates aerobic glycolysis via HK2 regulation in radioresistant laryngeal cancer cells

  4. Resistance to Platinum-Containing Chemotherapy in Testicular Germ Cell Tumors Is Associated with Downregulation of the Protein Kinase SRPK1

    Directory of Open Access Journals (Sweden)

    Paul W. Schenk

    2004-07-01

    Full Text Available Male germ cell tumors (GCTs are extremely sensitive to platinum-containing chemotherapy, with only 10% of patients showing therapy resistance. However, the biological basis of the high curability of disseminated GCTs by chemotherapy is still unknown. Recently, we demonstrated that the mammalian serine/arginine rich protein-specific kinase 1 (SRPK1 is a cisplatinsensitive gene, inactivation of which leads to cisplatin resistance. Because, in mammalians, the expression of SRPK1 is preferentially high in testicular tissues, cisplatin responsiveness of male GCTs might be associated with SRPKi levels. In the present study, we monitored SRPK1 protein expression in a unique series of nonseminomatous GCTs by immunohistochemistry. Randomly selected GCTs (n = 70 and tumors from patients responding to standard chemotherapy (n = 20 generally showed strong SRPKi staining. In contrast, expression in refractory GCTs (n = 20 as well as in GCTs from poor-prognosis patients responding to high-dose chemotherapy only (n = 11 was significantly lower (two-sided Wilcoxon rank sum test: P < .001. In conclusion, our data suggest that SRPK1 expression might be an important prognostic indicator for the chemoresponsiveness of nonseminomatous GCTs.

  5. Molecular biology of testicular germ cell tumors.

    Science.gov (United States)

    Gonzalez-Exposito, R; Merino, M; Aguayo, C

    2016-06-01

    Testicular germ cell tumors (TGCTs) are the most common solid tumors in young adult men. They constitute a unique pathology because of their embryonic and germ origin and their special behavior. Genetic predisposition, environmental factors involved in their development and genetic aberrations have been under study in many works throughout the last years trying to explain the susceptibility and the transformation mechanism of TGCTs. Despite the high rate of cure in this type of tumors because its particular sensitivity to cisplatin, there are tumors resistant to chemotherapy for which it is needed to find new therapies. In the present work, it has been carried out a literature review on the most important molecular aspects involved in the onset and development of such tumors, as well as a review of the major developments regarding prognostic factors, new prognostic biomarkers and the possibility of new targeted therapies.

  6. Epidermal Growth Factor Receptor Status in Circulating Tumor Cells as a Predictive Biomarker of Sensitivity in Castration-Resistant Prostate Cancer Patients Treated with Docetaxel Chemotherapy

    Directory of Open Access Journals (Sweden)

    Takatsugu Okegawa

    2016-11-01

    Full Text Available Objective: We examined whether epidermal growth factor receptor (EGFR expression in circulating tumor cells (CTCs can be used to predict survival in a population of bone-metastatic castration-resistant prostate cancer (mCRPC patients treated with docetaxel chemotherapy. Methods: All patients with mCRPC who had experienced treatment failure with androgen-deprivation therapy and had received docetaxel chemotherapy were eligible. CTCs and EGFR expression in CTCs were enumerated with the CellSearch System in whole blood. This system is a semi-automated system that detects and enriches epithelial cells from whole blood using an EpCAM antibody-based immunomagnetic capture. In addition, the EGFR-positive CTCs were assessed using CellSearch® Tumor Phenotyping Reagent EGFR. Results: The median CTC count at baseline before starting trial treatment was eight CTCs per 7.5 mL of blood (range 0–184. There were 37 patients (61.7% who had ≥5 CTCs, with median overall survival of 11.5 months compared with 20.0 months for 23 patients (38.3% with <5 CTCs (p < 0.001. A total of 15 patients (40.5%, 15/37 with five or more CTCs were subjected to automated immunofluorescence staining and cell sorting for EGFR protein. Patients with EGFR-positive CTCs had a shorter overall survival (OS (5.5 months than patients with EGFR-negative CTCs (20.0 months. CTCs, EGFR-positive CTCs, and alkaline phosphatase (ALP were independent predictors of overall survival time (p = 0.002, p < 0.001, and p = 0.017, respectively. Conclusion: CTCs may be an independent predictor of OS in CRPC treated with docetaxel chemotherapy. The EGFR expression detected in CTCs was important for assessing the response to chemotherapy and predicting disease outcome.

  7. Tumor stem cells from glioblastoma multiforme

    Directory of Open Access Journals (Sweden)

    Z. N. Nikiforova

    2016-01-01

    Full Text Available Glioblastoma multiforme, a World Health Organization grade IV malignant glioma, is the most common and lethal primary brain tumor with the median survival of approximately 15–25 months after treatment. Glioblastoma multiforme has been shown to be resistant to radiotherapy and chemotherapy and invariably recurs following surgical resection and chemoradiation. The characteristics of this tumor are exemplified by heterogeneous cell population with diverse biologic properties and genetic changes, the ability to form cancer stem cells (CSC and divided into four molecular subtypes – proneural, neural, classical and mesenchymal. Despite some success, the mechanisms leading to the formation of the most malignant tumor subtype are unclear. The aim of this review was a synthesis of modern information about the role and biological characteristics of tumor stem cells in tumor progression and the pathogenesis of glioblastoma multiforme. CSCs reside in niches, which are anatomically distinct regions within the tumor microenvironment. These niches maintain the principle properties of CSCs, preserve their phenotypic plasticity, adhesion, survival, resistance to standard cancer treatment and metastatic potential. The presence of aberrant signaling pathways (Notch, Hedgehog-Gli, Wnt/β-catenin, TGF-β/SMAD, PI3K/Akt/mTOR, both in the tumor and in the population of CSC, the dysregulation of microRNAs (miR-21, miR-128, miR-326, miR-34a, influence of epithelial-to-mesenchymal transition explains the availability of typical biological characteristics of the CSC. One needs to consider the influence of the therapy on normal stem cells in the development of drugs directed against the CSC. Regulatory mechanisms and markers found over the last decade can be used as the basis for creation of the new drugs with targeted action in the treatment of glioblastoma multiforme.

  8. Treatment Options for Childhood Extracranial Germ Cell Tumors

    Science.gov (United States)

    ... markers . Most malignant germ cell tumors release tumor markers. The following tumor markers are used to detect extracranial germ cell tumors: ... testicular germ cell tumors, blood levels of the tumor markers help show if the tumor is a seminoma ...

  9. General Information about Childhood Extracranial Germ Cell Tumors

    Science.gov (United States)

    ... markers . Most malignant germ cell tumors release tumor markers. The following tumor markers are used to detect extracranial germ cell tumors: ... testicular germ cell tumors, blood levels of the tumor markers help show if the tumor is a seminoma ...

  10. DNA repair rate and etoposide (VP16) resistance of tumor cell subpopulations derived from a single human small cell lung cancer

    DEFF Research Database (Denmark)

    Hansen, Lasse Tengbjerg; Lundin, Cecilia; Helleday, Thomas

    2003-01-01

    sublines both in vivo and in vitro. Here we measured the etoposide (VP16) sensitivity together with the induction and repair of VP16- and IR-induced DNA double-strand breaks (DSBs). The two subpopulations were found to differ significantly in sensitivity to VP16, with the radioresistant 54B subline also......, a significant difference in repair of both VP16- and IR-induced DSBs, together with a difference in the levels of the DSB repair proteins DNA-dependent protein kinase (DNA-PK(cs)) and RAD51 was observed. The VP16- and radioresistant 54B subline exhibited a pronounced higher repair rate of DSBs and higher...... protein levels of both DNA-PK(cs) and RAD51 compared with the sensitive 54A subline. We suggest, that different DSB repair rates among tumor cell subpopulations of individual SCLC tumors may be a major determinant for the variation in clinical treatment effect observed in human SCLC tumors of identical...

  11. Association of apoptosis with the inhibition of extracellular signal-regulated protein kinase activity in the tumor necrosis factor alpha-resistant ovarian carcinoma cell line UCI 101.

    Science.gov (United States)

    Yazlovitskaya, E M; Pelling, J C; Persons, D L

    1999-05-01

    Tumor necrosis factor-alpha (TNF alpha) can function as both an autocrine and a paracrine growth factor and may therefore play a role in ovarian tumor progression. TNF alpha initiates multiple cellular responses, many of which are mediated through the mitogen-activated protein kinase pathways, which transduce signals from the TNF alpha receptors through the cytoplasm to the nucleus, resulting in regulation of gene expression. We examined the role of c-jun N-terminal kinase 1 (JNK1) and extracellular signal-regulated protein kinase (ERK) 1 and 2 in the cellular growth response to TNF alpha in the ovarian carcinoma cell line UCI 101. JNK1 activity was increased to a maximum level ninefold above the basal level after 10-20 min of treatment with 10 ng/mL TNF alpha. A maximum threefold induction of ERK1/2 activity was observed after 1 min of treatment. At concentrations up to 100 ng/mL, TNF alpha had neither a stimulatory nor an inhibitory effect on growth of UCI 101 cells. However, inhibition of TNF alpha-induced ERK1/2 activity by the MAP/ERK kinase 1 inhibitor PD 98059 resulted in 60% inhibition of cell growth in TNF alpha-treated UCI 101 cells. This decrease in cell growth was accompanied by apoptosis, as demonstrated by the presence of a 180-bp DNA ladder. Thus, the inhibition of TNF alpha-induced ERK1/2 activity was associated with induction of apoptosis in the TNF alpha-resistant cell line UCI 101. Inhibition of TNF alpha-induced ERK1/2 activity was accompanied by a subsequent transient increase in TNF alpha-induced JNK1 activity. The significance of this increase with respect to apoptosis induction remains to be determined. These findings demonstrated that ERK1/2 activity can modulate cellular sensitivity to TNF alpha and suggested that the balance between the levels of ERK1/2 and JNK1 activation may be critical in the cellular growth response to TNF alpha.

  12. Inhibition of phosphatidylinositol 3-kinase promotes tumor cell resistance to chemotherapeutic agents via a mechanism involving delay in cell cycle progression

    International Nuclear Information System (INIS)

    McDonald, Gail T.; Sullivan, Richard; Pare, Genevieve C.; Graham, Charles H.

    2010-01-01

    Approaches to overcome chemoresistance in cancer cells have involved targeting specific signaling pathways such as the phosphatidylinositol 3-kinase (PI3K) pathway, a stress response pathway known to be involved in the regulation of cell survival, apoptosis and growth. The present study determined the effect of PI3K inhibition on the clonogenic survival of human cancer cells following exposure to various chemotherapeutic agents. Treatment with the PI3K inhibitors LY294002 or Compound 15e resulted in increased survival of MDA-MB-231 breast carcinoma cells after exposure to doxorubicin, etoposide, 5-fluorouracil, and vincristine. Increased survival following PI3K inhibition was also observed in DU-145 prostate, HCT-116 colon and A-549 lung carcinoma cell lines exposed to doxorubicin. Increased cell survival mediated by LY294002 was correlated with a decrease in cell proliferation, which was linked to an increase in the proportion of cells in the G 1 phase of the cell cycle. Inhibition of PI3K signaling also resulted in higher levels of the cyclin-dependent kinase inhibitors p21 Waf1/Cip1 and p27 Kip1 ; and knockdown of p27 kip1 with siRNA attenuated resistance to doxorubicin in cells treated with LY294002. Incubation in the presence of LY294002 after exposure to doxorubicin resulted in decreased cell survival. These findings provide evidence that PI3K inhibition leads to chemoresistance in human cancer cells by causing a delay in cell cycle; however, the timing of PI3K inhibition (either before or after exposure to anti-cancer agents) may be a critical determinant of chemosensitivity.

  13. Differential thermo-resistance of multicellular tumor spheroids

    International Nuclear Information System (INIS)

    Khoei, S.; Goliaei, B.; Neshasteh-Rize, A.

    2004-01-01

    Many cell lines, when cultured under proper conditions, can form three dimensional structures called multicellular spheroids. These spheroids resemble in vivo tumor models in several aspects. Therefore, studying growth characteristics and behavior of spheroids is beneficial in understanding the behavior of tumors under various experimental conditions. In this work, we have studied the growth properties, along with the thermal characteristics of spheroids of Du 145 human prostate carcinoma cell lines and compared the results to monolayer cultures of these cells. For this purpose, The Du 145 cells were cultured either as monolayer or spheroids. At various times after initiation of cultures, the growth properties of spheroids as a function of seeding cell number was determined. To evaluate the thermal characteristics of spheroids, they were heated at various stages of growth at 43 d ig c for various periods. The thermal response was judged by the survival fraction of colony forming cells in spheroids or monolayer culture following heat treatment. The results showed spheroids were more resistant to heat than monolayer cultures at all stages of development. However, the extent of this thermal resistant was dependent on the age, and consequently, the size of the spheroid. The result suggests that the differential thermal resistance of the spheroid cultures develop gradually during the growth of spheroid cultures of Du 145 cell line

  14. Synthetic Nanoparticles That Promote Tumor Necrosis Factor Receptor 2 Expressing Regulatory T Cells in the Lung and Resistance to Allergic Airways Inflammation

    Directory of Open Access Journals (Sweden)

    Rohimah Mohamud

    2017-12-01

    Full Text Available Synthetic glycine coated 50 nm polystyrene nanoparticles (NP (PS50G, unlike ambient NP, do not promote pulmonary inflammation, but instead, render lungs resistant to the development of allergic airway inflammation. In this study, we show that PS50G modulate the frequency and phenotype of regulatory T cells (Treg in the lung, specifically increasing the proportion of tumor necrosis factor 2 (TNFR2 expressing Treg. Mice pre-exposed to PS50G, which were sensitized and then challenged with an allergen a month later, preferentially expanded TNFR2+Foxp3+ Treg, which further expressed enhanced levels of latency associated peptide and cytotoxic T-lymphocyte associated molecule-4. Moreover, PS50G-induced CD103+ dendritic cell activation in the lung was associated with the proliferative expansion of TNFR2+Foxp3+ Treg. These findings provide the first evidence that engineered NP can promote the selective expansion of maximally suppressing TNFR2+Foxp3+ Treg and further suggest a novel mechanism by which NP may promote healthy lung homeostasis.

  15. Mathematical models of tumor heterogeneity and drug resistance

    Science.gov (United States)

    Greene, James

    In this dissertation we develop mathematical models of tumor heterogeneity and drug resistance in cancer chemotherapy. Resistance to chemotherapy is one of the major causes of the failure of cancer treatment. Furthermore, recent experimental evidence suggests that drug resistance is a complex biological phenomena, with many influences that interact nonlinearly. Here we study the influence of such heterogeneity on treatment outcomes, both in general frameworks and under specific mechanisms. We begin by developing a mathematical framework for describing multi-drug resistance to cancer. Heterogeneity is reflected by a continuous parameter, which can either describe a single resistance mechanism (such as the expression of P-gp in the cellular membrane) or can account for the cumulative effect of several mechanisms and factors. The model is written as a system of integro-differential equations, structured by the continuous "trait," and includes density effects as well as mutations. We study the limiting behavior of the model, both analytically and numerically, and apply it to study treatment protocols. We next study a specific mechanism of tumor heterogeneity and its influence on cell growth: the cell-cycle. We derive two novel mathematical models, a stochastic agent-based model and an integro-differential equation model, each of which describes the growth of cancer cells as a dynamic transition between proliferative and quiescent states. By examining the role all parameters play in the evolution of intrinsic tumor heterogeneity, and the sensitivity of the population growth to parameter values, we show that the cell-cycle length has the most significant effect on the growth dynamics. In addition, we demonstrate that the agent-based model can be approximated well by the more computationally efficient integro-differential equations, when the number of cells is large. The model is closely tied to experimental data of cell growth, and includes a novel implementation of

  16. Studies on cross-immunity among syngeneic tumors by immunization with gamma-irradiated tumor cells

    International Nuclear Information System (INIS)

    Ito, Izumi

    1977-01-01

    In order to clarify whether cross-immunity among 3-methyl-cholanthrene (MCA)-induced sarcomas in C3H/He mice can be established or not, transplantations of syngeneic tumors were carried out in mice immunized with gamma-irradiated (13,000 rad 60 Co) tumor cells and in those immunized with living tumor cells thereafter. The following results were obtained. By using immunizing procedure with only gamma-irradiated tumor cells, a pair of tumors originating from one and the same mouse showed cross-resistance to each other. However, no such evidence was seen among tumors originating from different mice. Cross-immunity among syngeneic tumors originating from different mice could be clearly observed, when immunizing procedure using living tumor cells was added after the treatment with gamma-irradiated tumor cells. It was considered that common antigenicity among MCA-induced sarcoma cells was decreased by gamma-irradiation and that individual differences of tumor antigenecity were shown distinctly under such conditions. (auth.)

  17. NK cells in the tumor microenvironment

    DEFF Research Database (Denmark)

    Larsen, Stine K; Gao, Yanhua; Basse, Per H

    2014-01-01

    The presence of natural killer (NK) cells in the tumor microenvironment correlates with outcome in a variety of cancers. However, the role of intratumoral NK cells is unclear. Preclinical studies have shown that, while NK cells efficiently kill circulating tumor cells of almost any origin......, they seem to have very little effect against the same type of tumor cells when these have extravasated. The ability to kill extravasated tumor cells is, however, is dependent of the level of activation of the NK cells, as more recent published and unpublished studies, discussed below, have demonstrated...... that interleukin-2-activated NK cells are able to attack well-established solid tumors....

  18. Multiparametric classification links tumor microenvironments with tumor cell phenotype.

    Directory of Open Access Journals (Sweden)

    Bojana Gligorijevic

    2014-11-01

    Full Text Available While it has been established that a number of microenvironment components can affect the likelihood of metastasis, the link between microenvironment and tumor cell phenotypes is poorly understood. Here we have examined microenvironment control over two different tumor cell motility phenotypes required for metastasis. By high-resolution multiphoton microscopy of mammary carcinoma in mice, we detected two phenotypes of motile tumor cells, different in locomotion speed. Only slower tumor cells exhibited protrusions with molecular, morphological, and functional characteristics associated with invadopodia. Each region in the primary tumor exhibited either fast- or slow-locomotion. To understand how the tumor microenvironment controls invadopodium formation and tumor cell locomotion, we systematically analyzed components of the microenvironment previously associated with cell invasion and migration. No single microenvironmental property was able to predict the locations of tumor cell phenotypes in the tumor if used in isolation or combined linearly. To solve this, we utilized the support vector machine (SVM algorithm to classify phenotypes in a nonlinear fashion. This approach identified conditions that promoted either motility phenotype. We then demonstrated that varying one of the conditions may change tumor cell behavior only in a context-dependent manner. In addition, to establish the link between phenotypes and cell fates, we photoconverted and monitored the fate of tumor cells in different microenvironments, finding that only tumor cells in the invadopodium-rich microenvironments degraded extracellular matrix (ECM and disseminated. The number of invadopodia positively correlated with degradation, while the inhibiting metalloproteases eliminated degradation and lung metastasis, consistent with a direct link among invadopodia, ECM degradation, and metastasis. We have detected and characterized two phenotypes of motile tumor cells in vivo, which

  19. Coccydynia due to a benign notochordal cell tumor.

    Science.gov (United States)

    Haasper, Carl; Länger, Florian; Rosenthal, Herbert; Knobloch, Karsten; Mössinger, Eckart; Krettek, Christian; Bastian, Leonhard

    2007-06-15

    Case report. To present a rare case of a notochordal cell tumor. We report on a 27-year-old female patient with pain at the lower back and muscle cramps in the area of the right hip. Image studies demonstrated a cystic lesion of the coccyx. As clinical symptoms became chronic and were resistant to conservative treatment, a resection of the coccyx was performed. Histology revealed an intraosseous benign notochordal cell tumor. This tumor represents a recently described notochordal cell proliferation biologically distinct from chordomas. Overdiagnosis of these notochordal cell proliferations as chordomas may occur if clinicians and pathologists are unfamiliar with the spectrum of notochordal proliferations.

  20. Patient-Derived Antibody Targets Tumor Cells

    Science.gov (United States)

    An NCI Cancer Currents blog on an antibody derived from patients that killed tumor cells in cell lines of several cancer types and slowed tumor growth in mouse models of brain and lung cancer without evidence of side effects.

  1. Circulating Tumor Cells Measurements in Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Franck Chiappini

    2012-01-01

    Full Text Available Liver cancer is the fifth most common cancer in men and the seventh in women. During the past 20 years, the incidence of HCC has tripled while the 5-year survival rate has remained below 12%. The presence of circulating tumor cells (CTC reflects the aggressiveness nature of a tumor. Many attempts have been made to develop assays that reliably detect and enumerate the CTC during the development of the HCC. In this case, the challenges are (1 there are few markers specific to the HCC (tumor cells versus nontumor cells and (2 they can be used to quantify the number of CTC in the bloodstream. Another technical challenge consists of finding few CTC mixed with million leukocytes and billion erythrocytes. CTC detection and identification can be used to estimate prognosis and may serve as an early marker to assess antitumor activity of treatment. CTC can also be used to predict progression-free survival and overall survival. CTC are an interesting source of biological information in order to understand dissemination, drug resistance, and treatment-induced cell death. Our aim is to review and analyze the different new methods existing to detect, enumerate, and characterize the CTC in the peripheral circulation of patients with HCC.

  2. Molecular determinants of treatment response in human germ cell tumors

    NARCIS (Netherlands)

    F. Mayer; J.A. Stoop (Hans); G.L. Scheffer (George); R. Scheper; J.W. Oosterhuis (Wolter); L.H.J. Looijenga (Leendert); C. Bokemeyer

    2003-01-01

    textabstractPURPOSE: Germ cell tumors (GCTs) are highly sensitive to cisplatin-based chemotherapy. This feature is unexplained, as is the intrinsic chemotherapy resistance of mature teratomas and the resistant phenotype of a minority of refractory GCTs. Various cellular pathways

  3. Human neutrophils facilitate tumor cell transendothelial migration.

    LENUS (Irish Health Repository)

    Wu, Q D

    2012-02-03

    Tumor cell extravasation plays a key role in tumor metastasis. However, the precise mechanisms by which tumor cells migrate through normal vascular endothelium remain unclear. In this study, using an in vitro transendothelial migration model, we show that human polymorphonuclear neutrophils (PMN) assist the human breast tumor cell line MDA-MB-231 to cross the endothelial barrier. We found that tumor-conditioned medium (TCM) downregulated PMN cytocidal function, delayed PMN apoptosis, and concomitantly upregulated PMN adhesion molecule expression. These PMN treated with TCM attached to tumor cells and facilitated tumor cell migration through different endothelial monolayers. In contrast, MDA-MB-231 cells alone did not transmigrate. FACScan analysis revealed that these tumor cells expressed high levels of intercellular adhesion molecule-1 (ICAM-1) but did not express CD11a, CD11b, or CD18. Blockage of CD11b and CD18 on PMN and of ICAM-1 on MDA-MB-231 cells significantly attenuated TCM-treated, PMN-mediated tumor cell migration. These tumor cells still possessed the ability to proliferate after PMN-assisted transmigration. These results indicate that TCM-treated PMN may serve as a carrier to assist tumor cell transendothelial migration and suggest that tumor cells can exploit PMN and alter their function to facilitate their extravasation.

  4. Peripheral dentinogenic ghost cell tumor

    Directory of Open Access Journals (Sweden)

    Sushant S Kamat

    2013-01-01

    Full Text Available Dentinogenic ghost cell tumors (DGCT are uncommon lesions mainly with rare peripheral types. This report presents a case of peripheral DGCT on the left side of the mandibular alveolar ridge of a heavy smoker, a 68-year-old man, with main presenting feature as a mild pain. Submandibular lymphadenopathy and radiological "saucerization" were evident. Differential diagnosis included fibroma, neurofibroma, peripheral ameloblastoma, peripheral odontogenic fibroma, and peripheral giant cell granuloma. Histologically, ameloblastoma-like epithelial elements were seen in association with grouped ghost cells. Proliferating polyhedral cells and stellate reticulum-like cells with various densities were spread over a wide range of the field. The lesion was curetted and after 2 years of follow up, it did not recur.

  5. Cervical squamous carcinoma cells are resistant to the combined action of tumor necrosis factor-alpha and histamine whereas normal keratinocytes undergo cytolysis.

    Science.gov (United States)

    Diaconu, Nicolae-Costin; Rummukainen, Jaana; Mättö, Mikko; Naukkarinen, Anita; Harvima, Rauno J; Pelkonen, Jukka; Harvima, Ilkka T

    2008-02-07

    Previous reports showed that mast cells can typically be found in the peritumoral stroma of cervix carcinomas as well as in many other cancers. Both histamine and TNF-alpha are potent preformed mast cell mediators and they can act simultaneously after release from mast cells. Thus, the effect of TNF-alpha and histamine on cervical carcinoma cell lines was studied. TNF-alpha alone induced slight growth inhibition and cell cycle arrest at G0/G1 phase in SiHa cells, but increased their migration. Histamine alone had no effect on cells. In addition, TNF-alpha and histamine in combination showed no additional effect over that by TNF-alpha alone, although SiHa cells were even pretreated with a protein synthesis inhibitor. Furthermore, TNF-alpha-sensitive ME-180 carcinoma cells were also resistant to the combination effect of TNF-alpha and histamine. In comparison, TNF-alpha or histamine alone induced growth inhibition in a non-cytolytic manner in normal keratinocytes, an effect that was further enhanced to cell cytolysis when both mediators acted in combination. Keratinocytes displayed strong TNF receptor (TNFR) I and II immunoreactivity, whereas SiHa and ME-180 cells did not. Furthermore, cervix carcinoma specimens revealed TNF-alpha immunoreactivity in peritumoral cells and carcinoma cells. However, the immunoreactivity of both TNFRs was less intense in carcinoma cells than that in epithelial cells in cervical specimens with non-specific inflammatory changes. SiHa and ME-180 cells are resistant to the cytolytic effect of TNF-alpha and histamine whereas normal keratinocytes undergo cytolysis, possibly due to the smaller amount of TNFRs in SiHa and ME-180 cells. In the cervix carcinoma, the malignant cells may resist this endogenous cytolytic action and TNF-alpha could even enhance carcinoma cell migration.

  6. Cervical squamous carcinoma cells are resistant to the combined action of tumor necrosis factor-α and histamine whereas normal keratinocytes undergo cytolysis

    Directory of Open Access Journals (Sweden)

    Harvima Rauno J

    2008-02-01

    Full Text Available Abstract Background Previous reports showed that mast cells can typically be found in the peritumoral stroma of cervix carcinomas as well as in many other cancers. Both histamine and TNF-α are potent preformed mast cell mediators and they can act simultaneously after release from mast cells. Thus, the effect of TNF-α and histamine on cervical carcinoma cell lines was studied. Methods and results TNF-α alone induced slight growth inhibition and cell cycle arrest at G0/G1 phase in SiHa cells, but increased their migration. Histamine alone had no effect on cells. In addition, TNF-α and histamine in combination showed no additional effect over that by TNF-α alone, although SiHa cells were even pretreated with a protein synthesis inhibitor. Furthermore, TNF-α-sensitive ME-180 carcinoma cells were also resistant to the combination effect of TNF-α and histamine. In comparison, TNF-α or histamine alone induced growth inhibition in a non-cytolytic manner in normal keratinocytes, an effect that was further enhanced to cell cytolysis when both mediators acted in combination. Keratinocytes displayed strong TNF receptor (TNFR I and II immunoreactivity, whereas SiHa and ME-180 cells did not. Furthermore, cervix carcinoma specimens revealed TNF-α immunoreactivity in peritumoral cells and carcinoma cells. However, the immunoreactivity of both TNFRs was less intense in carcinoma cells than that in epithelial cells in cervical specimens with non-specific inflammatory changes. Conclusion SiHa and ME-180 cells are resistant to the cytolytic effect of TNF-α and histamine whereas normal keratinocytes undergo cytolysis, possibly due to the smaller amount of TNFRs in SiHa and ME-180 cells. In the cervix carcinoma, the malignant cells may resist this endogenous cytolytic action and TNF-α could even enhance carcinoma cell migration.

  7. Smac Mimetic Bypasses Apoptosis Resistance in FADD- or Caspase-8-Deficient Cells by Priming for Tumor Necrosis Factor α-Induced Necroptosis

    Directory of Open Access Journals (Sweden)

    Bram Laukens

    2011-10-01

    Full Text Available Searching for new strategies to bypass apoptosis resistance, we investigated the potential of the Smac mimetic BV6 in Jurkat leukemia cells deficient in key molecules of the death receptor pathway. Here, we demonstrate for the first time that Smac mimetic primes apoptosis-resistant, FADD- or caspase-8-deficient leukemia cells for TNFα-induced necroptosis in a synergistic manner. In contrast to TNFα, Smac mimetic significantly enhances CD95-induced apoptosis in wild-type but not in FADD-deficient cells. Interestingly, Smac mimetic- and TNFα-mediated cell death occurs without characteristic features of apoptosis (i.e., caspase activation, DNA fragmentation in FADD-deficient cells. By comparison, Smac mimetic and TNFα trigger activation of caspase-8, -9, and -3 and DNA fragmentation in wild-type cells. Consistently, the caspase inhibitor zVAD.fmk fails to block Smac mimetic- and TNFα-triggered cell death in FADD- or caspase-8-deficient cells, while it confers protection in wild-type cells. By comparison, necrostatin-1, an RIP1 kinase inhibitor, abolishes Smac mimetic- and TNFα-induced cell death in FADD- or caspase-8-deficient. Thus, Smac mimetic enhances TNFα-induced cell death in leukemia cells via two distinct pathways in a context-dependent manner: it primes apoptosis-resistant cells lacking FADD or caspase-8 to TNFα-induced, RIP1-dependent and caspase-independent necroptosis, whereas it sensitizes apoptosis-proficient cells to TNFα-mediated, caspase-dependent apoptosis. These findings have important implications for the therapeutic exploitation of necroptosis as an alternative cell death program to overcome apoptosis resistance.

  8. Smac Mimetic Bypasses Apoptosis Resistance in FADD- or Caspase-8-Deficient Cells by Priming for Tumor Necrosis Factor α-Induced Necroptosis12

    Science.gov (United States)

    Laukens, Bram; Jennewein, Claudia; Schenk, Barbara; Vanlangenakker, Nele; Schier, Alexander; Cristofanon, Silvia; Zobel, Kerry; Deshayes, Kurt; Vucic, Domagoj; Jeremias, Irmela; Bertrand, Mathieu JM; Vandenabeele, Peter; Fulda, Simone

    2011-01-01

    Searching for new strategies to bypass apoptosis resistance, we investigated the potential of the Smac mimetic BV6 in Jurkat leukemia cells deficient in key molecules of the death receptor pathway. Here, we demonstrate for the first time that Smac mimetic primes apoptosis-resistant, FADD- or caspase-8-deficient leukemia cells for TNFα-induced necroptosis in a synergistic manner. In contrast to TNFα, Smac mimetic significantly enhances CD95-induced apoptosis in wild-type but not in FADD-deficient cells. Interestingly, Smac mimetic- and TNFα-mediated cell death occurs without characteristic features of apoptosis (i.e., caspase activation, DNA fragmentation) in FADD-deficient cells. By comparison, Smac mimetic and TNFα trigger activation of caspase-8, -9, and -3 and DNA fragmentation in wild-type cells. Consistently, the caspase inhibitor zVAD.fmk fails to block Smac mimetic- and TNFα-triggered cell death in FADD- or caspase-8-deficient cells, while it confers protection in wild-type cells. By comparison, necrostatin-1, an RIP1 kinase inhibitor, abolishes Smac mimetic- and TNFα-induced cell death in FADD- or caspase-8-deficient. Thus, Smac mimetic enhances TNFα-induced cell death in leukemia cells via two distinct pathways in a context-dependent manner: it primes apoptosis-resistant cells lacking FADD or caspase-8 to TNFα-induced, RIP1-dependent and caspase-independent necroptosis, whereas it sensitizes apoptosis-proficient cells to TNFα-mediated, caspase-dependent apoptosis. These findings have important implications for the therapeutic exploitation of necroptosis as an alternative cell death program to overcome apoptosis resistance. PMID:22028622

  9. Smac mimetic bypasses apoptosis resistance in FADD- or caspase-8-deficient cells by priming for tumor necrosis factor α-induced necroptosis.

    Science.gov (United States)

    Laukens, Bram; Jennewein, Claudia; Schenk, Barbara; Vanlangenakker, Nele; Schier, Alexander; Cristofanon, Silvia; Zobel, Kerry; Deshayes, Kurt; Vucic, Domagoj; Jeremias, Irmela; Bertrand, Mathieu J M; Vandenabeele, Peter; Fulda, Simone

    2011-10-01

    Searching for new strategies to bypass apoptosis resistance, we investigated the potential of the Smac mimetic BV6 in Jurkat leukemia cells deficient in key molecules of the death receptor pathway. Here, we demonstrate for the first time that Smac mimetic primes apoptosis-resistant, FADD- or caspase-8-deficient leukemia cells for TNFα-induced necroptosis in a synergistic manner. In contrast to TNFα, Smac mimetic significantly enhances CD95-induced apoptosis in wild-type but not in FADD-deficient cells. Interestingly, Smac mimetic- and TNFα-mediated cell death occurs without characteristic features of apoptosis (i.e., caspase activation, DNA fragmentation) in FADD-deficient cells. By comparison, Smac mimetic and TNFα trigger activation of caspase-8, -9, and -3 and DNA fragmentation in wild-type cells. Consistently, the caspase inhibitor zVAD.fmk fails to block Smac mimetic- and TNFα-triggered cell death in FADD- or caspase-8-deficient cells, while it confers protection in wild-type cells. By comparison, necrostatin-1, an RIP1 kinase inhibitor, abolishes Smac mimetic- and TNFα-induced cell death in FADD- or caspase-8-deficient. Thus, Smac mimetic enhances TNFα-induced cell death in leukemia cells via two distinct pathways in a context-dependent manner: it primes apoptosis-resistant cells lacking FADD or caspase-8 to TNFα-induced, RIP1-dependent and caspase-independent necroptosis, whereas it sensitizes apoptosis-proficient cells to TNFα-mediated, caspase-dependent apoptosis. These findings have important implications for the therapeutic exploitation of necroptosis as an alternative cell death program to overcome apoptosis resistance.

  10. Brain tumor stem cell dancing.

    Science.gov (United States)

    Bozzuto, Giuseppina; Toccacieli, Laura; Mazzoleni, Stefania; Frustagli, Gianluca; Chistolini, Pietro; Galli, Rossella; Molinari, Agnese

    2014-01-01

    Issues regarding cancer stem cell (CSC) movement are important in neurosphere biology as cell-cell or cell-environment interactions may have significant impacts on CSC differentiation and contribute to the heterogeneity of the neurosphere. Despite the growing body of literature data on the biology of brain tumor stem cells, floating CSC-derived neurospheres have been scarcely characterized from a morphological and ultrastructural point of view. Here we report a morphological and ultrastructural characterization performed by live imaging and scanning electron microscopy. Glioblastoma multiforme (GBM) CSC-derived neurospheres are heterogeneous and are constituted by cells, morphologically different, capable of forming highly dynamic structures. These dynamic structures are regulated by not serendipitous cell-cell interactions, and they synchronously pulsate following a cyclic course made of "fast" and "slow" alternate phases. Autocrine/paracrine non canonical Wnt signalling appears to be correlated with the association status of neurospheres. The results obtained suggest that GBM CSCs can behave both as independents cells and as "social" cells, highly interactive with other members of its species, giving rise to a sort of "multicellular organism".

  11. Accelerated Tumor Cell Death by Angiogenic Modifiers

    National Research Council Canada - National Science Library

    Chung, Leland W. K

    2002-01-01

    ... cancer cells in vitro and xenografts tumor models in vivo While in vitro synergistic interaction was demonstrated specifically in human prostate cancer cell lines containing a functional androgen...

  12. Experimental rat lung tumor model with intrabronchial tumor cell implantation.

    Science.gov (United States)

    Gomes Neto, Antero; Simão, Antônio Felipe Leite; Miranda, Samuel de Paula; Mourão, Lívia Talita Cajaseiras; Bezerra, Nilfácio Prado; Almeida, Paulo Roberto Carvalho de; Ribeiro, Ronaldo de Albuquerque

    2008-01-01

    The objective of this study was to develop a rat lung tumor model for anticancer drug testing. Sixty-two female Wistar rats weighing 208 +/- 20 g were anesthetized intraperitoneally with 2.5% tribromoethanol (1 ml/100 g live weight), tracheotomized and intubated with an ultrafine catheter for inoculation with Walker's tumor cells. In the first step of the experiment, a technique was established for intrabronchial implantation of 10(5) to 5 x 10(5) tumor cells, and the tumor take rate was determined. The second stage consisted of determining tumor volume, correlating findings from high-resolution computed tomography (HRCT) with findings from necropsia and determining time of survival. The tumor take rate was 94.7% for implants with 4 x 10(5) tumor cells, HRCT and necropsia findings matched closely (r=0.953; p<0.0001), the median time of survival was 11 days, and surgical mortality was 4.8%. The present rat lung tumor model was shown to be feasible: the take rate was high, surgical mortality was negligible and the procedure was simple to perform and easily reproduced. HRCT was found to be a highly accurate tool for tumor diagnosis, localization and measurement and may be recommended for monitoring tumor growth in this model.

  13. Neuroblastoma cell lines contain pluripotent tumor initiating cells that are susceptible to a targeted oncolytic virus.

    Directory of Open Access Journals (Sweden)

    Yonatan Y Mahller

    Full Text Available Although disease remission can frequently be achieved for patients with neuroblastoma, relapse is common. The cancer stem cell theory suggests that rare tumorigenic cells, resistant to conventional therapy, are responsible for relapse. If true for neuroblastoma, improved cure rates may only be achieved via identification and therapeutic targeting of the neuroblastoma tumor initiating cell. Based on cues from normal stem cells, evidence for tumor populating progenitor cells has been found in a variety of cancers.Four of eight human neuroblastoma cell lines formed tumorspheres in neural stem cell media, and all contained some cells that expressed neurogenic stem cell markers including CD133, ABCG2, and nestin. Three lines tested could be induced into multi-lineage differentiation. LA-N-5 spheres were further studied and showed a verapamil-sensitive side population, relative resistance to doxorubicin, and CD133+ cells showed increased sphere formation and tumorigenicity. Oncolytic viruses, engineered to be clinically safe by genetic mutation, are emerging as next generation anticancer therapeutics. Because oncolytic viruses circumvent typical drug-resistance mechanisms, they may represent an effective therapy for chemotherapy-resistant tumor initiating cells. A Nestin-targeted oncolytic herpes simplex virus efficiently replicated within and killed neuroblastoma tumor initiating cells preventing their ability to form tumors in athymic nude mice.These results suggest that human neuroblastoma contains tumor initiating cells that may be effectively targeted by an oncolytic virus.

  14. Migrating glioma cells express stem cell markers and give rise to new tumors upon xenografting

    DEFF Research Database (Denmark)

    Munthe, Sune; Sørensen, Mia D; Thomassen, Mads

    2016-01-01

    Glioblastoma (GBM) is the most frequent and malignant brain tumor with an overall survival of only 14.6 months. Although these tumors are treated with surgery, radiation and chemotherapy, recurrence is inevitable. A critical population of tumor cells in terms of therapy, the so-called cancer stem...... cells (CSCs), has been identified in gliomas and many other cancers. These tumor cells have a stem cell-like phenotype and are suggested to be responsible for tumor growth, chemo- and radio-resistance as well as recurrence. However, functional evidence for migrating glioma cells having a stem cell......-like phenotype is currently lacking. In the present study, the aim was to characterize the phenotype of migrating tumor cells using a novel migration assay based on serum-free stem cell medium and patient-derived spheroid cultures. The results showed pronounced migration of five different GBM spheroid cultures...

  15. Granulosa Cell Tumor in a Dog,

    Science.gov (United States)

    canine ova rian neoplasms, however, is the granulosa cell tumor. This tumor arises from the specialized gonadal stroma of the ovary, which is responsible... pyometra ; cystic endometrial hyperlasia; pseudocyesis; and irregular, prolonged, or persistent estrus. Dogs with nonfunctional granulosa cell tumors

  16. Combination immunotherapy with radiation and CpG-based tumor vaccination for the eradication of radio- and immuno-resistant lung carcinoma cells

    International Nuclear Information System (INIS)

    Chamoto, Kenji; Wakita, Daiko; Takeshima, Tsuguhide

    2009-01-01

    Unmethylated cytosine-phosphorothioate-guanine containing oligodeoxynucleotides (CpG-ODN) is known as a ligand of toll-like receptor 9 (TLR9), which selectively activates type-1 immunity. We have already reported that the vaccination of tumor-bearing mice with liposome-CpG coencapsulated with model-tumor antigen, ovalbumin (OVA) (CpG+OVA-liposome) caused complete cure of the mice bearing OVA-expressing EG-7 lymphoma cells. However, the same therapy was not effective to eradicate Lewis lung carcinoma (LLC)-OVA-carcinoma. To overcome the refractoriness of LLC-OVA, we tried the combination therapy of radiation with CpG-based tumor vaccination. When LLC-OVA-carcinoma intradermally (i.d.) injected into C57BL/6 became palpable (7-8 mm), the mice were irradiated twice with a dose of 14 Gy at intervals of 24 h. After the second radiation, CpG+OVA-liposome was i.d. administered near the draining lymph node (DLN) of the tumor mass. The tumor growth of mice treated with radiation plus CpG+OVA-liposome was greatly inhibited and approximately 60% of mice treated were completely cured. Moreover, the combined therapy with radiation and CpG+OVA-liposome allowed the augmented induction of OVA-tetramer + LLC-OVA-specific cytotoxic T lymphocyte (CTL) in DLN of tumor-bearing mice. These results indicate that the combined therapy of radiation with CpG-based tumor vaccine is a useful strategy to eradicate intractable carcinoma. (author)

  17. MicroRNA-9 functions as a tumor suppressor and enhances radio-sensitivity in radio-resistant A549 cells by targeting neuropilin 1.

    Science.gov (United States)

    Xiong, Kai; Shao, Li Hong; Zhang, Hai Qin; Jin, Linlin; Wei, Wei; Dong, Zhuo; Zhu, Yue Quan; Wu, Ning; Jin, Shun Zi; Xue, Li Xiang

    2018-03-01

    Radiotherapy is commonly used to treat lung cancer but may not kill all cancer cells, which may be attributed to the radiotherapy resistance that often occurs in non-small cell lung cancer (NSCLC). At present, the molecular mechanism of radio-resistance remains unclear. Neuropilin 1 (NRP1), a co-receptor for vascular endothelial growth factor (VEGF), was demonstrated to be associated with radio-resistance of NSCLC cells via the VEGF-phosphoinositide 3-kinase-nuclear factor-κB pathway in our previous study. It was hypothesized that certain microRNAs (miRs) may serve crucial functions in radio-sensitivity by regulating NRP1. Bioinformatics predicted that NRP1 was a potential target of miR-9, and this was validated by luciferase reporter assays. Functionally, miR-9-transfected A549 cells exhibited a decreased proliferation rate, increased apoptosis rate and attenuated migratory and invasive abilities. Additionally, a high expression of miR-9 also significantly enhanced the radio-sensitivity of A549 cells in vitro and in vivo . These data improve understanding of the mechanisms of cell radio-resistance, and suggest that miR-9 may be a molecular target for the prediction of radio-sensitivity in NSCLC.

  18. Glioblastoma angiogenesis: VEGF resistance solutions and new strategies based on molecular mechanisms of tumor vessel formation.

    Science.gov (United States)

    Takano, Shingo

    2012-04-01

    Glioblastomas are highly vascular tumors. Recent preclinical and clinical investigations have revealed that agents targeting angiogenesis may have efficacy against this type of tumor. Antibodies to vascular endothelial growth factor are being studied in this patient population. Unfortunately, treatment inevitably fails. This review provides an update on recent research on the mechanisms by which tumor cells acquire resistance, and discusses recent preclinical and experimental development of novel new-generation anti-angiogenic agents that overcome this problem, especially those based on the molecular mechanisms of tumor vessel formation. The tumor vasculature not only nourishes glioblastomas, but also provides a specialized microenvironment for tumor stem-like cells and for the brain tumor. The factors, pathways, and interactions described in this review provide information about the cell biology of glioblastomas which may ultimately result in new modes of treatment.

  19. DNA repair rate and etoposide (VP16) resistance of tumor cell subpopulations derived from a single human small cell lung cancer

    DEFF Research Database (Denmark)

    Hansen, Lasse Tengbjerg; Lundin, Cecilia; Helleday, Thomas

    2003-01-01

    being VP16 resistant. In order to explain the VP16 resistant phenotype several mechanisms where considered. The p53 status, P-glycoprotein, MRP, topoisomerase IIalpha, and Mre11 protein levels, as well as growth kinetics, provided no explanations of the observed VP16 resistance. In contrast......, a significant difference in repair of both VP16- and IR-induced DSBs, together with a difference in the levels of the DSB repair proteins DNA-dependent protein kinase (DNA-PK(cs)) and RAD51 was observed. The VP16- and radioresistant 54B subline exhibited a pronounced higher repair rate of DSBs and higher...

  20. AR-V7 in circulating tumor cells cluster as a predictive biomarker of abiraterone acetate and enzalutamide treatment in castration-resistant prostate cancer patients.

    Science.gov (United States)

    Okegawa, Takatsugu; Ninomiya, Naoki; Masuda, Kazuki; Nakamura, Yu; Tambo, Mitsuhiro; Nutahara, Kikuo

    2018-03-05

    We examined whether androgen receptor splice variant 7 (AR-V7) in circulating tumor cell(CTC)clusters can be used to predict survival in patients with bone metastatic castration resistant-prostate cancer (mCRPC) treated with abiraterone or enzalutamide. We retrospectively enrolled 98 patients with CRPC on abiraterone or enzalutamide, and investigated the prognostic value of CTC cluster detection (+ v -) and AR-V7 detection (+ v -) using a CTC cluster detection - based AR-V7 mRNA assay. We examined ≤50% prostate-specific antigen (PSA) responses, PSA progression-free survival (PSA-PFS), clinical and radiological progression-free survival (radiologic PSF), and overall survival (OS). We then assessed whether AR-V7 expression in CTC clusters identified after On-chip multi-imaging flow cytometry was related to disease progression and survival after first-line systemic therapy. All abiraterone-treated or enzalutamide-treated patients received prior docetaxel. The median follow-up was 20.7 (range: 3.0-37.0) months in the abiraterone and enzalutamide cohorts, respectively. Forty-nine of the 98 men (50.0%) were CTC cluster (-), 23 of the 98 men (23.5%) were CTC cluster(+)/AR-V7(-), and 26 of the 98 men (26.5%) were CTC cluster(+)/AR-V7(+). CTC cluster(+)/AR-V7(+) patients were more likely to have EOD ≥3 at diagnosis (P = 0.003), pain (P = 0.023), higher alkaline phosphatase levels (P cluster(+), CTC cluster(+)/AR-V7(-), and ALP >UNL were independently associated with a poor PSA-PFS, radiographic PFS, and OS in abiraterone-treated patients and enzalutamide-treated patients. The CTC clusters and AR-V7-positive CTC clusters detected were important for assessing the response to abiraterone or enzalutamide therapy and for predicting disease outcome. © 2018 Wiley Periodicals, Inc.

  1. Immunotherapy with BCG cell wall plus irradiated tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Mizukuro, Tomoyuki (Kyoto Prefectural Univ. of Medicine (Japan))

    1983-04-01

    Two different fibrosarcomas (MCB-I, MCB-II) were induced by methylcholcholanthrene in syngeneic Balb/C mice were used. The tumor cells irradiated with 5,000 to 30,000 rads did not growth in mice on 30 days after inoculation. The viable tumor cells were challenged intradermally to mice on 7 days after inoculation of the tumor cells irradiated with 5,000 to 30,000 rads. The challenged tumor cells were all rejected at 30 days after inoculation. Mice were challenged with 5 x 10/sup 5/ viable tumor cells on 7 days after inoculation of 10/sup 3/ to 10/sup 8/ irradiated tumor cells. Mice pretreated with 10/sup 5/ or 10/sup 6/ irradiated tumor cells rejected the tumor cells completely. The viable tumor cells were challenged to mice on 7 days after inoculation of BCG-CW emulsion plus 10/sup 6/ irradiated tumor cells. 0, 50, 100, 200, and 400 mu g of BCG-CW emulsion were mixed in 10/sup 6/ irradiated tumor cells. Optimal dosage of BCG-CW emulsion was 50 or 100 mu g. BCG-CW emulsion plus irradiated tumor cells were injected subcutaneously to the mice after tumor cells inoculation. Three injections of the vaccine significantly suppressed the tumor outgrowth, but not one or two injections in no-treated mice. However, in the mice pretreated with BCG-CW emulsion, the tumor growth was significantly suppressed by one or two injections of the vaccine. Especially, the three injections of the vaccine significantly suppressed the tumor growth and the 25% of the mice were completely cured. The effect of the vaccine was almost the same grade by contralateral or ipsilateral treatment. The irradiated MCB-II tumor cells plus BCG-CW emulsion were not effective to the MCB-1 tumor bearing mice, suggesting the anti-tumor effect of this vaccine was immunologically specific.

  2. Glioma Cells in the Tumor Periphery Have a Stem Cell Phenotype.

    Directory of Open Access Journals (Sweden)

    Sune Munthe

    Full Text Available Gliomas are highly infiltrative tumors incurable with surgery. Although surgery removes the bulk tumor, tumor cells in the periphery are left behind resulting in tumor relapses. The aim of the present study was to characterize the phenotype of tumor cells in the periphery focusing on tumor stemness, proliferation and chemo-resistance. This was investigated in situ in patient glioma tissue as well as in orthotopic glioblastoma xenografts. We identified 26 gliomas having the R132 mutation in Isocitrate DeHydrogenase 1 (mIDH1. A double immunofluorescence approach identifying mIDH1 positive tumor cells and a panel of markers was used. The panel comprised of six stem cell-related markers (CD133, Musashi-1, Bmi-1, Sox-2, Nestin and Glut-3, a proliferation marker (Ki-67 as well as a chemo-resistance marker (MGMT. Computer-based automated classifiers were designed to measure the mIDH1 positive nucleus area-fraction of the chosen markers. Moreover, orthotopic glioblastoma xenografts from five different patient-derived spheroid cultures were obtained and the tumor cells identified by human specific immunohistochemical markers. The results showed that tumor cells in the periphery of patient gliomas expressed stem cell markers, however for most markers at a significantly lower level than in the tumor core. The Ki-67 level was slightly reduced in the periphery, whereas the MGMT level was similar. In orthotopic glioblastoma xenografts all markers showed similar levels in the core and periphery. In conclusion tumor cells in the periphery of patient gliomas have a stem cell phenotype, although it is less pronounced than in the tumor core. Novel therapies aiming at preventing recurrence should therefore take tumor stemness into account. Migrating cells in orthotopic glioblastoma xenografts preserve expression and stem cell markers. The orthotopic model therefore has a promising translational potential.

  3. Sox2, a stemness gene, regulates tumor-initiating and drug-resistant properties in CD133-positive glioblastoma stem cells

    Directory of Open Access Journals (Sweden)

    Wen-Shin Song

    2016-10-01

    Conclusion: SOX2 plays a crucial role in regulating tumorigenicity in CD133+ GBM cells. Our results not only revealed the genetic plasticity contributing to drug resistance and stemness but also demonstrated the dominant role of SOX2 in maintenance of GBM CSCs, which may provide a novel therapeutic target to overcome the conundrum of poor survival of brain cancers.

  4. Apoptotic response of malignant rhabdoid tumor cells

    Directory of Open Access Journals (Sweden)

    Nocentini Silvano

    2003-07-01

    Full Text Available Abstract Background Malignant rhabdoid tumors (MRTs are extremely aggressive and resist current radio- and chemotherapic treatments. To gain insight into the dysfunctions of MRT cells, the apoptotic response of a model cell line, MON, was analyzed after exposure to several genotoxic and non-genotoxic agents employed separately or in association. Results Fluorescence microscopy of chromatin morphology and electrophoretic analysis of internucleosomal DNA fragmentation revealed that MON cells were, comparatively to HeLa cells, resistant to apoptosis after treatment with etoposide, cisplatin (CisPt or X-rays, but underwent some degree of apoptosis after ultraviolet (UV C irradiation. Concomitant treatment of MON cells with X-rays or vinblastine and the phosphatidylinositol 3-kinase (PI3-K inhibitor wortmannin resulted in synergistic induction of apoptosis. Western blot analysis showed that the p53 protein was upregulated in MON cells after exposure to all the different agents tested, singly or in combination. In treated cells, the p53 downstream effectors p21WAF1/CIP1, Mdm2 and Bax were induced with some inconsistency with regard to the accumulation of p53. Poly ADP-ribose polymerase (PARP cleavage, indicative of ongoing apoptosis, occurred in UVC-irradiated cells and, especially, in cells treated with combinations of X-rays or vinblastine with wortmannin. However, there was moderate or no PARP cleavage in cells treated with CisPt, X-rays, vinblastine or wortmannin singly or with the combinations X-rays plus CisPt or vinblastine and CisPt plus vinblastine or wortmannin. The synergistic effect on the induction of apoptosis exerted by some agent combinations corresponded with synergy in respect of MON cell growth inhibition. Conclusion These results suggest abnormalities in the p53 pathway and apoptosis control in MRT cells. The Ras/PI3-K/AKT signaling pathway might also be deregulated in these cells by generating an excess of survival factors. These

  5. Stroma Cells in Tumor Microenvironment and Breast Cancer

    Science.gov (United States)

    Mao, Yan; Keller, Evan T.; Garfield, David H.; Shen, Kunwei; Wang, Jianhua

    2015-01-01

    Cancer is a systemic disease, encompassing multiple components of both tumor cells themselves and host stromal cells. It is now clear that stromal cells in the tumor microenvironment play an important role in cancer development. Molecular events through which reactive stromal cells affect cancer cells can be defined so that biomarkers and therapeutic targets can be identified. Cancer-associated fibroblasts (CAFs) make up the bulk of cancer stroma and affect the tumor microenvironment such that they promote cancer initiation, angiogenesis, invasion and metastasis. In breast cancer, CAFs not only promote tumor progression, but also induce therapeutic resistances. Accordingly, targeting CAFs provides a novel way to control tumors with therapeutic resistances. This review summarizes the current understanding of tumor stroma in breast cancer with a particular emphasis on the role of CAFs and the therapeutic implications of CAFs. The effects of other stromal components such as endothelial cells, macrophages and adipocytes in breast cancer are also discussed. Finally, we describe the biologic markers to sort patients into a specific and confirmed subtype for personalized treatment. PMID:23114846

  6. Drug resistance following irradiation of RIF-1 tumors: Influence of the interval between irradiation and drug treatment

    International Nuclear Information System (INIS)

    Hopwood, L.E.; Davies, B.M.; Moulder, J.E.

    1990-01-01

    RIF-1 tumors contain a small number of cells (1 to 100 per 10(6) cells) that are resistant to 5-fluorouracil, methotrexate, or adriamycin. The frequency of drug-resistant cells among individual untreated tumors is highly variable. Radiation, delivered in vivo at doses of 3 to 12 Gy, increases the frequency of methotrexate- and 5-fluorouracil-resistant cells, but not the frequency of adriamycin-resistant cells. The magnitude of induction of 5-fluorouracil and methotrexate resistance shows a complex dependence on the radiation dose and on the interval between irradiation and assessment of drug resistance. For a dose of 3 Gy, induced 5-fluorouracil and methotrexate resistance is seen only after an interval of 5 to 7 days, whereas for a dose of 12 Gy, high levels of induced resistance are observed 1 to 3 days after irradiation. The maximum absolute risk for induction of resistance is 4 per 10(4) cells per Gy for methotrexate, and 3 per 10(6) cells per Gy for 5-fluorouracil. These results indicate that tumor hypoxia may play a role in the increased levels of drug resistance seen after irradiation, and that both genetic and environmental factors may influence radiation-induction of drug resistance. These studies provide essential data for models of the development of tumor drug resistance, and imply that some of the drug resistance seen when chemotherapy follows radiotherapy may be caused by radiation-induced drug resistance

  7. Role of Axumin PET Scan in Germ Cell Tumor

    Science.gov (United States)

    2018-05-01

    Testis Cancer; Germ Cell Tumor; Testicular Cancer; Germ Cell Tumor of Testis; Germ Cell Tumor, Testicular, Childhood; Testicular Neoplasms; Testicular Germ Cell Tumor; Testicular Yolk Sac Tumor; Testicular Choriocarcinoma; Testicular Diseases; Germ Cell Cancer Metastatic; Germ Cell Neoplasm of Retroperitoneum; Germ Cell Cancer, Nos

  8. Influence of docosahexaenoic acid in vitro on intracellular adriamycin concentration in lymphocytes and human adriamycin-sensitive and -resistant small-cell lung cancer cell lines, and on cytotoxicity in the tumor cell lines

    NARCIS (Netherlands)

    Zijlstra, J G; de Vries, E G; Muskiet, F A; Martini, I A; Timmer-Bosscha, H; Mulder, N H

    1987-01-01

    An increase in the therapeutic effects of cancer chemotherapeutic agents and circumvention of drug resistance in cancer cells might result from an increase in the intracellular drug level. Alteration of the lipid domain of the cell membrane can result in a higher intracellular drug level. This

  9. Multidrug-resistant hepatocellular carcinoma cells are enriched for ...

    African Journals Online (AJOL)

    Chemotherapy is a main treatment for cancer, while multidrug-resistance is the main reason for chemotherapy failure, and tumor relapse and metastasis. Cancer stem cells or cancer stem-like cells (CSCs) are a small subset of cancer cells, which may be inherently resistant to the cytotoxic effect of chemotherapy.

  10. Tissue Force Programs Cell Fate and Tumor Aggression.

    Science.gov (United States)

    Northey, Jason J; Przybyla, Laralynne; Weaver, Valerie M

    2017-11-01

    Biomechanical and biochemical cues within a tissue collaborate across length scales to direct cell fate during development and are critical for the maintenance of tissue homeostasis. Loss of tensional homeostasis in a tissue not only accompanies malignancy but may also contribute to oncogenic transformation. High mechanical stress in solid tumors can impede drug delivery and may additionally drive tumor progression and promote metastasis. Mechanistically, biomechanical forces can drive tumor aggression by inducing a mesenchymal-like switch in transformed cells so that they attain tumor-initiating or stem-like cell properties. Given that cancer stem cells have been linked to metastasis and treatment resistance, this raises the intriguing possibility that the elevated tissue mechanics in tumors could promote their aggression by programming their phenotype toward that exhibited by a stem-like cell. Significance: Recent findings argue that mechanical stress and elevated mechanosignaling foster malignant transformation and metastasis. Prolonged corruption of tissue tension may drive tumor aggression by altering cell fate specification. Thus, strategies that could reduce tumor mechanics might comprise effective approaches to prevent the emergence of treatment-resilient metastatic cancers. Cancer Discov; 7(11); 1224-37. ©2017 AACR. ©2017 American Association for Cancer Research.

  11. Biodegradable nanocomplex from hyaluronic acid and arginine based poly(ester amide)s as the delivery vehicles for improved photodynamic therapy of multidrug resistant tumor cells: An in vitro study of the performance of chlorin e6 photosensitizer.

    Science.gov (United States)

    Ji, Ying; Zhao, Jihui; Chu, Chih-Chang

    2017-05-01

    Photodynamic therapy (PDT), which enables the localized therapeutic effect by light irradiation, provides an alternative and complementary modality for the treatment of tumor. However, the aggregation of photosensitizers in acidic microenvironment of tumor and the non-targeted distribution of photosensitizers in normal tissues significantly affect the PDT efficiency. In this study, we developed a biodegradable nanocomplex HA-Arg-PEA from hyaluronic acid (HA) and arginine based poly(ester amide)s (Arg-PEA) as the nanocarrier for chlorin e6 (Ce6). HA enhanced the tumor-specific endocytosis mediated by the overexpression of CD44 receptor. Arg-PEA not only provide electrostatic interaction with HA to form self-assembled nanostructure, but also improve the monomerization of Ce6 at physiological pH as well as mildly acidic pH. The biodegradable characteristic of HA-Arg-PEA nanocomplex enabled the intracellular delivery of Ce6, in which its release and generation of singlet oxygen can be accelerated by enzymatic degradation of the carrier. The in vitro PDT efficiency of Ce6-loaded HA-Arg-PEA nanocomplex was examined in CD44 positive MDA-MB-435/MDR multidrug resistant melanoma cells. CD44-mediated uptake of Ce6-loaded HA-Arg-PEA nanocomplex significantly improved Ce6 level in MDA-MB-435/MDR cells within short incubation time, and the PDT efficiency in inhibiting multidrug resistant tumor cells was also enhanced at higher Ce6 concentrations. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1487-1499, 2017. © 2017 Wiley Periodicals, Inc.

  12. Cisplatin Resistant Spheroids Model Clinically Relevant Survival Mechanisms in Ovarian Tumors.

    Directory of Open Access Journals (Sweden)

    Winyoo Chowanadisai

    Full Text Available The majority of ovarian tumors eventually recur in a drug resistant form. Using cisplatin sensitive and resistant cell lines assembled into 3D spheroids we profiled gene expression and identified candidate mechanisms and biological pathways associated with cisplatin resistance. OVCAR-8 human ovarian carcinoma cells were exposed to sub-lethal concentrations of cisplatin to create a matched cisplatin-resistant cell line, OVCAR-8R. Genome-wide gene expression profiling of sensitive and resistant ovarian cancer spheroids identified 3,331 significantly differentially expressed probesets coding for 3,139 distinct protein-coding genes (Fc >2, FDR < 0.05 (S2 Table. Despite significant expression changes in some transporters including MDR1, cisplatin resistance was not associated with differences in intracellular cisplatin concentration. Cisplatin resistant cells were significantly enriched for a mesenchymal gene expression signature. OVCAR-8R resistance derived gene sets were significantly more biased to patients with shorter survival. From the most differentially expressed genes, we derived a 17-gene expression signature that identifies ovarian cancer patients with shorter overall survival in three independent datasets. We propose that the use of cisplatin resistant cell lines in 3D spheroid models is a viable approach to gain insight into resistance mechanisms relevant to ovarian tumors in patients. Our data support the emerging concept that ovarian cancers can acquire drug resistance through an epithelial-to-mesenchymal transition.

  13. Tumor senescence and radioresistant tumor-initiating cells (TICs): let sleeping dogs lie!

    Science.gov (United States)

    Zafarana, Gaetano; Bristow, Robert G

    2010-01-01

    Preclinical data from cell lines and experimental tumors support the concept that breast cancer-derived tumor-initiating cells (TICs) are relatively resistant to ionizing radiation and chemotherapy. This could be a major determinant of tumor recurrence following treatment. Increased clonogenic survival is observed in CD24-/low/CD44+ TICs derived from mammosphere cultures and is associated with (a) reduced production of reactive oxygen species, (b) attenuated activation of γH2AX and CHK2-p53 DNA damage signaling pathways, (c) reduced propensity for ionizing radiation-induced apoptosis, and (d) altered DNA double-strand or DNA single-strand break repair. However, recent data have shed further light on TIC radioresistance as irradiated TICs are resistant to tumor cell senescence following DNA damage. Taken together, the cumulative data support a model in which DNA damage signaling and repair pathways are altered in TICs and lead to an altered mode of cell death with unique consequences for long-term clonogen survival. The study of TIC senescence lays the foundation for future experiments in isogenic models designed to directly test the capacity for senescence and local control (that is, not solely local regression) and spontaneous metastases following treatment in vivo. The study also supports the targeting of tumor cell senescence pathways to increase TIC clonogen kill if the targeting also maintains the therapeutic ratio.

  14. The influence of the stem cell marker ALDH and the EGFR-PI3 kinase act signaling pathway on the radiation resistance of human tumor cell lines; Der Einfluss des Stammzellmarkers ALDH und des EGFR-PI3 Kinase-Akt Signalwegs auf die Strahlenresistenz humaner Tumorzelllinien

    Energy Technology Data Exchange (ETDEWEB)

    Mihatsch, Julia

    2014-07-14

    Cancer is the second leading cause of death in industriated nations. Besides surgery and chemotherapy, radiotherapy (RT) is an important approach by which about 60% of patients are treated. The response of these patients to RT is very heterogenous. On the one hand, there are patients with tumors which are radiosensitive and can be cured, but on the other hand patients bear tumors which are quite resistant to radiotherapy. A Radioresistant phenotype of tumor cells causes treatment failure consequently leading to a limited response to radiotherapy. It is proposed, that radiotherapy outcome mainly depends on the potential of radiation on controlling growth, proliferation and survival of a specific population of tumor cells called cancer stem cells (CSCs) or tumor-initiating cells. Based on experimental studies so far reported it is assumed that the population of CSC varies in tumors from different entities and is relatively low compared to the tumor bulk cells in general. According to the CSC hypothesis, it might be concluded that the differential response of tumors to radiotherapy depends on CSC populations, since these supposedly slow replicating cells are able to initiate a tumor, to self renew indefinitely and to generate the differentiated progeny of a tumor. Besides the role of cancer stem cells in radiotherapy response, ionizing radiation (IR) activates the epidermal growth factor receptor (EGFR) and its downstream signaling pathways such as phosphoinositide 3-kinase (PI3K)/Akt, mitogen-activated protein kinase (MAPK) and Janus kinase/Signal Transducer and Activator of Transcription (JAK/STAT) pathways. Among these pathways, PI3K/Akt is one of the most important pathways involved in post-irradiation survival: Activation of Akt results in activation of DNA-dependent protein kinase, catalytic subunit (DNA-PKcs). DNA-PKcs is a core enzyme involved in repair of IR-induced DNA-double strand breaks (DNA-DSB) through non-homologous end joining (NHEJ). The aim of the

  15. Molecular aspects of tumor cell migration and invasion

    Directory of Open Access Journals (Sweden)

    Giuseppina Bozzuto

    2010-03-01

    Full Text Available Cell migration and invasion are crucial steps in many physiological events. However, they are also implicated in the physiopathology of many diseases, such as cancer. To spread through the tissues, tumor cells use mechanisms that involve several molecular actors: adhesion receptor families, receptor tyrosine kinases, cytoskeleton proteins, adapter and signalling proteins interplay in a complex scenario. The balance of cellular signals for proliferation and survival responses also regulates migratory behaviours of tumor cells. To complicate the scene of crime drug resistance players can interfere thus worsening this delicate situation. The complete understanding of this molecular jungle is an impossible mission: some molecular aspects are reviewed in this paper.

  16. Immune Cells in Blood Recognize Tumors

    Science.gov (United States)

    NCI scientists have developed a novel strategy for identifying immune cells circulating in the blood that recognize specific proteins on tumor cells, a finding they believe may have potential implications for immune-based therapies.

  17. Giant Cell Tumor of the Infratemporal Fossa

    OpenAIRE

    Gibbons, Kevin; Singh, Anand; Kuriakose, M. Abraham; Loree, Thom R.; Harris, Kenneth; Rubenfeld, Ari; Goodloe, Samuel; Hicks, Wesley L.

    2000-01-01

    Giant cell tumors are an uncommon neoplasm; most are found in the long bones, formed by endochondral ossification. This article presents a case of giant cell tumor of the infratemporal fossa, which by radiographic and clinical examination appears to have originated in the squamous portion of the temporal bone.

  18. Giant Cell Tumor of the Infratemporal Fossa

    Science.gov (United States)

    Gibbons, Kevin; Singh, Anand; Kuriakose, M. Abraham; Loree, Thom R.; Harris, Kenneth; Rubenfeld, Ari; Goodloe, Samuel; Hicks, Wesley L.

    2000-01-01

    Giant cell tumors are an uncommon neoplasm; most are found in the long bones, formed by endochondral ossification. This article presents a case of giant cell tumor of the infratemporal fossa, which by radiographic and clinical examination appears to have originated in the squamous portion of the temporal bone. ImagesFigure 1Figure 2Figure 3 PMID:17171141

  19. Cell structure and proliferative activity of organ cultures of normal embryonic lung tissue of mice resistant (C57BL) and predisposed (A) to lung tumors

    International Nuclear Information System (INIS)

    Kolesnichenko, T.S.; Gor'kova, T.G.

    1985-01-01

    Local factors such as proliferative activity and the numerical ratio between epithelial and mesenchymal cells, and also the character of interaction between the tissue components in ontogeny may play an important role in the realization of sensitivity of mice of a particular line to the development of lung tumors. These characteristics of lung tissue in mice of lines A and C57BL are investigated under normal conditions and during induced carcinogenesis. Results are given of a comparative study of the relative numbers of epithelial and mesenchymal cells in organ cultures of embryonic lungs. 3 H-thymidine was added to the cultures on the 14th day of the experiment in a concentration of 1 microCi/m1 medium. An autoradiographic study of the cultures was performed

  20. Salinomycin efficiency assessment in non-tumor (HB4a) and tumor (MCF-7) human breast cells.

    Science.gov (United States)

    Niwa, Andressa Megumi; D Epiro, Gláucia Fernanda Rocha; Marques, Lilian Areal; Semprebon, Simone Cristine; Sartori, Daniele; Ribeiro, Lúcia Regina; Mantovani, Mário Sérgio

    2016-06-01

    The search for anticancer drugs has led researchers to study salinomycin, an ionophore antibiotic that selectively destroys cancer stem cells. In this study, salinomycin was assessed in two human cell lines, a breast adenocarcinoma (MCF-7) and a non-tumor breast cell line (HB4a), to verify its selective action against tumor cells. Real-time assessment of cell proliferation showed that HB4a cells are more resistant to salinomycin than MCF-7 tumor cell line, and these data were confirmed in a cytotoxicity assay. The half maximal inhibitory concentration (IC50) values show the increased sensitivity of MCF-7 cells to salinomycin. In the comet assay, only MCF-7 cells showed the induction of DNA damage. Flow cytometric analysis showed that cell death by apoptosis/necrosis was only induced in the MCF-7 cells. The increased expression of GADD45A and CDKN1A genes was observed in all cell lines. Decreased expression of CCNA2 and CCNB1 genes occurred only in tumor cells, suggesting G2/M cell cycle arrest. Consequently, cell death was activated in tumor cells through strong inhibition of the antiapoptotic genes BCL-2, BCL-XL, and BIRC5 genes in MCF-7 cells. These data demonstrate the selectivity of salinomycin in killing human mammary tumor cells. The cell death observed only in MCF-7 tumor cells was confirmed by gene expression analysis, where there was downregulation of antiapoptotic genes. These data contribute to clarifying the mechanism of action of salinomycin as a promising antitumor drug and, for the first time, we observed the higher resistance of HB4a non-tumor breast cells to salinomycin.

  1. Molecular mechanisms of bortezomib resistant adenocarcinoma cells.

    Directory of Open Access Journals (Sweden)

    Erika Suzuki

    Full Text Available Bortezomib (Velcade™ is a reversible proteasome inhibitor that is approved for the treatment of multiple myeloma (MM. Despite its demonstrated clinical success, some patients are deprived of treatment due to primary refractoriness or development of resistance during therapy. To investigate the role of the duration of proteasome inhibition in the anti-tumor response of bortezomib, we established clonal isolates of HT-29 adenocarcinoma cells adapted to continuous exposure of bortezomib. These cells were ~30-fold resistant to bortezomib. Two novel and distinct mutations in the β5 subunit, Cys63Phe, located distal to the binding site in a helix critical for drug binding, and Arg24Cys, found in the propeptide region were found in all resistant clones. The latter mutation is a natural variant found to be elevated in frequency in patients with MM. Proteasome activity and levels of both the constitutive and immunoproteasome were increased in resistant cells, which correlated to an increase in subunit gene expression. These changes correlated with a more rapid recovery of proteasome activity following brief exposure to bortezomib. Increased recovery rate was not due to increased proteasome turnover as similar findings were seen in cells co-treated with cycloheximide. When we exposed resistant cells to the irreversible proteasome inhibitor carfilzomib we noted a slower rate of recovery of proteasome activity as compared to bortezomib in both parental and resistant cells. Importantly, carfilzomib maintained its cytotoxic potential in the bortezomib resistant cell lines. Therefore, resistance to bortezomib, can be overcome with irreversible inhibitors, suggesting prolonged proteasome inhibition induces a more potent anti-tumor response.

  2. Granular cell tumor of the orbit.

    Science.gov (United States)

    Salour, Hossein; Tavakoli, Mehdi; Karimi, Saeed; Rezaei Kanavi, Mozhgan; Faghihi, Mohammad

    2013-10-01

    To report a case of granular cell tumor as a rare orbital pathology. A 50-year-old female presented with a 4-year history of diplopia, right ocular displacement and a firm nontender mass in her right lower lid. Computed tomography (CT) scan of the orbit disclosed a well-defined mass in the right inferior orbit involving the right inferior rectus. Subtotal excision of the mass was performed, and histopathologic and immunohistochemical studies revealed granular cell tumor. Subsequently, the tumor recurred and exenteration was required as multiple sessions of radiotherapy failed to prevent the residual tumor from growing. Granular cell tumor, though very rare in the orbit, should be considered in patients with orbital masses especially in cases with involvement of the inferior rectus muscle. Infiltrative tumors may be impossible to completely resect and can rapidly recur following surgery.

  3. Granular Cell Tumor of the Orbit

    Directory of Open Access Journals (Sweden)

    Hossein Salour

    2013-01-01

    Full Text Available Purpose: To report a case of granular cell tumor as a rare orbital pathology. Case report: A 50-year-old female presented with a 4-year history of diplopia, right ocular displacement and a firm nontender mass in her right lower lid. Computed tomography (CT scan of the orbit disclosed a well-defined mass in the right inferior orbit involving the right inferior rectus. Subtotal excision of the mass was performed, and histopathologic and immunohistochemical studies revealed granular cell tumor. Subsequently, the tumor recurred and exenteration was required as multiple sessions of radiotherapy failed to prevent the residual tumor from growing. Conclusion: Granular cell tumor, though very rare in the orbit, should be considered in patients with orbital masses especially in cases with involvement of the inferior rectus muscle. Infiltrative tumors may be impossible to completely resect and can rapidly recur following surgery.

  4. Pathway-specific differences between tumor cell lines and normal and tumor tissue cells

    Directory of Open Access Journals (Sweden)

    Tozeren Aydin

    2006-11-01

    Full Text Available Abstract Background Cell lines are used in experimental investigation of cancer but their capacity to represent tumor cells has yet to be quantified. The aim of the study was to identify significant alterations in pathway usage in cell lines in comparison with normal and tumor tissue. Methods This study utilized a pathway-specific enrichment analysis of publicly accessible microarray data and quantified the gene expression differences between cell lines, tumor, and normal tissue cells for six different tissue types. KEGG pathways that are significantly different between cell lines and tumors, cell lines and normal tissues and tumor and normal tissue were identified through enrichment tests on gene lists obtained using Significance Analysis of Microarrays (SAM. Results Cellular pathways that were significantly upregulated in cell lines compared to tumor cells and normal cells of the same tissue type included ATP synthesis, cell communication, cell cycle, oxidative phosphorylation, purine, pyrimidine and pyruvate metabolism, and proteasome. Results on metabolic pathways suggested an increase in the velocity nucleotide metabolism and RNA production. Pathways that were downregulated in cell lines compared to tumor and normal tissue included cell communication, cell adhesion molecules (CAMs, and ECM-receptor interaction. Only a fraction of the significantly altered genes in tumor-to-normal comparison had similar expressions in cancer cell lines and tumor cells. These genes were tissue-specific and were distributed sparsely among multiple pathways. Conclusion Significantly altered genes in tumors compared to normal tissue were largely tissue specific. Among these genes downregulation was a major trend. In contrast, cell lines contained large sets of significantly upregulated genes that were common to multiple tissue types. Pathway upregulation in cell lines was most pronounced over metabolic pathways including cell nucleotide metabolism and oxidative

  5. Cancer Stem Cell Plasticity Drives Therapeutic Resistance

    Directory of Open Access Journals (Sweden)

    Mary R. Doherty

    2016-01-01

    Full Text Available The connection between epithelial-mesenchymal (E-M plasticity and cancer stem cell (CSC properties has been paradigm-shifting, linking tumor cell invasion and metastasis with therapeutic recurrence. However, despite their importance, the molecular pathways involved in generating invasive, metastatic, and therapy-resistant CSCs remain poorly understood. The enrichment of cells with a mesenchymal/CSC phenotype following therapy has been interpreted in two different ways. The original interpretation posited that therapy kills non-CSCs while sparing pre-existing CSCs. However, evidence is emerging that suggests non-CSCs can be induced into a transient, drug-tolerant, CSC-like state by chemotherapy. The ability to transition between distinct cell states may be as critical for the survival of tumor cells following therapy as it is for metastatic progression. Therefore, inhibition of the pathways that promote E-M and CSC plasticity may suppress tumor recurrence following chemotherapy. Here, we review the emerging appreciation for how plasticity confers therapeutic resistance and tumor recurrence.

  6. An Uncommon Presentation of Giant Cell Tumor

    Science.gov (United States)

    Al-Kindi, Hunaina; George, Mina; Malhotra, Gopal; Al-Muzahmi, Khamis

    2011-01-01

    Giant Cell Tumors commonly occur at the ends of long bones. However in rare cases, they can occur in the bones of the hands and feet. Tumors in these locations occur in younger patients; in addition, these tumors are more commonly multifocal and are associated with a higher risk for local recurrence than tumors at the ends of long bones. Since lesions in the small bones may be multifocal, a patient with a giant cell tumor of the small bones should undergo a skeletal survey to exclude similar lesions elsewhere. Primary surgical treatment ranges from curettage or excision with or without bone grafting to amputation. The success of surgical treatment depends on the completeness with which the tumor was removed. We are presenting a case report of a 34 year old female, who presented with a swelling in the right hand, following trauma. X-ray of the hand showed an osteolytic expansile lesion at the base of the 1st metacarpal bone. The lesion was initially curetted and then treated by local resection with bone grafting. Histological examination revealed a typical benign giant cell tumor composed of closely packed stromal cells with a variable admixture of giant cells. Follow up at the end of one year did not reveal any recurrence of the tumor. PMID:22125733

  7. Isolation and characterization of circulating tumor cells in prostate cancer

    Directory of Open Access Journals (Sweden)

    Elan Shlomo Diamond

    2012-10-01

    Full Text Available Circulating tumor cells (CTCs are tumor cells found in the peripheral blood that originate from established sites of malignancy and likely have metastatic potential. Analysis of circulating tumor cells CTCs has shown great promise as a prognostic marker as well as a potential source of novel therapeutics. Isolation and characterization these cells for study, however, remain challenging due to their rarity in comparison with other cellular components of peripheral blood. Several techniques that exploit the unique biochemical properties of CTCs have been developed to facilitate isolation of these cells. Positive selection of CTCs is achieved using microfluidic surfaces coated with antibodies against epithelial cell markers or tumor specific antigens such as EpCAM or prostate specific membrane antigen (PSMA. Following isolation, characterization of CTCs may help guide clinical decision-making. For instance, molecular and genetic characterization may shed light on the development of chemotherapy resistance and mechanisms of metastasis without the need for tissue biopsy. This paper will review novel isolation techniques to capture CTCs from patients with advanced cancers, as well as efforts to characterize the CTCs. We will also review ways in which these analyses can assist in clinical decision-making,Conclusion: The study of CTCs provides insight into the molecular biology of their tumors of origin that will eventually guide the development tailored therapeutics. These advances are predicated on high yield and accurate isolation techniques that exploit the unique biochemical features of these cells.

  8. Harnessing Dendritic Cells for Tumor Antigen Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Nierkens, Stefan [Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Geert Grooteplein 28, Nijmegen 6525 GA (Netherlands); Janssen, Edith M., E-mail: edith.janssen@cchmc.org [Division of Molecular Immunology, Cincinnati Children' s Hospital Research Foundation, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229 (United States)

    2011-04-26

    Dendritic cells (DC) are professional antigen presenting cells that are crucial for the induction of anti-tumor T cell responses. As a consequence, research has focused on the harnessing of DCs for therapeutic interventions. Although current strategies employing ex vivo-generated and tumor-antigen loaded DCs have been proven feasible, there are still many obstacles to overcome in order to improve clinical trial successes and offset the cost and complexity of customized cell therapy. This review focuses on one of these obstacles and a pivotal step for the priming of tumor-specific CD8{sup +} and CD4{sup +} T cells; the in vitro loading of DCs with tumor antigens.

  9. Let-7 Sensitizes KRAS Mutant Tumor Cells to Chemotherapy.

    Directory of Open Access Journals (Sweden)

    Xin Dai

    Full Text Available KRAS is the most commonly mutated oncogene in human cancers and is associated with poor prognosis and drug resistance. Let-7 is a family of tumor suppressor microRNAs that are frequently suppressed in solid tumors, where KRAS mutations are highly prevalent. In this study, we investigated the potential use of let-7 as a chemosensitizer. We found that let-7b repletion selectively sensitized KRAS mutant tumor cells to the cytotoxicity of paclitaxel and gemcitabine. Transfection of let-7b mimic downregulated the expression of mutant but not wild-type KRAS. Combination of let-7b mimic with paclitaxel or gemcitabine diminished MEK/ERK and PI3K/AKT signaling concurrently, triggered the onset of apoptosis, and reverted the epithelial-mesenchymal transition in KRAS mutant tumor cells. In addition, let-7b repletion downregulated the expression of β-tubulin III and ribonucleotide reductase subunit M2, two proteins known to mediate tumor resistance to paclitaxel and gemcitabine, respectively. Let-7 may represent a new class of chemosensitizer for the treatment of KRAS mutant tumors.

  10. Detection of circulating tumor cells in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Annkathrin eHanssen

    2015-09-01

    Full Text Available Lung Cancer is the most common cause of cancer related deaths that frequently metastasizes prior to disease diagnosis. Circulating tumor cells (CTCs are found in many different types of epithelial tumors and are of great clinical interest in terms of prognosis and therapy intervention. Here, we present and discuss EpCAM-dependent and -independent capture of CTCs in non-small cell lung cancer (NSCLC and the clinical relevance of CTC detection and characterization. Taking blood samples and analyzing CTCs as liquid biopsy might be a far less invasive diagnostic strategy than biopsies of lung tumors or metastases. Moreover, sequential blood sampling allows to study the dynamic changes of tumor cells during therapy, in particular the development of resistant tumor cell clones.

  11. Effects of charged particles on human tumor cells

    Directory of Open Access Journals (Sweden)

    Kathryn D Held

    2016-02-01

    Full Text Available The use of charged particle therapy in cancer treatment is growing rapidly, in large part because the exquisite dose localization of charged particles allows for higher radiation doses to be given to tumor tissue while normal tissues are exposed to lower doses and decreased volumes of normal tissues are irradiated. In addition, charged particles heavier than protons have substantial potential clinical advantages because of their additional biological effects including greater cell killing effectiveness, decreased radiation resistance of hypoxic cells in tumors and reduced cell cycle dependence of radiation response. These biological advantages depend on many factors such as endpoint, cell or tissue type, dose, dose rate or fractionation, charged particle type and energy, and oxygen concentration. This review summarizes the unique biological advantages of charged particle therapy and highlights recent research and areas of particular research needs, such as quantification of Relative Biological Effectiveness (RBE for various tumor types and radiation qualities, role of genetic background of tumor cells in determining response to charged particles, sensitivity of cancer stem-like cells to charged particles, role of charged particles in tumors with hypoxic fractions and importance of fractionation, including use of hypofractionation, with charged particles.

  12. A new mixed-backbone oligonucleotide against glucosylceramide synthase sensitizes multidrug-resistant tumors to apoptosis.

    Directory of Open Access Journals (Sweden)

    Gauri A Patwardhan

    2009-09-01

    Full Text Available Enhanced ceramide glycosylation catalyzed by glucosylceramide synthase (GCS limits therapeutic efficiencies of antineoplastic agents including doxorubicin in drug-resistant cancer cells. Aimed to determine the role of GCS in tumor response to chemotherapy, a new mixed-backbone oligonucleotide (MBO-asGCS with higher stability and efficiency has been generated to silence human GCS gene. MBO-asGCS was taken up efficiently in both drug-sensitive and drug-resistant cells, but it selectively suppressed GCS overexpression, and sensitized drug-resistant cells. MBO-asGCS increased doxorubicin sensitivity by 83-fold in human NCI/ADR-RES, and 43-fold in murine EMT6/AR1 breast cancer cells, respectively. In tumor-bearing mice, MBO-asGCS treatment dramatically inhibited the growth of multidrug-resistant NCI/ADR-RE tumors, decreasing tumor volume to 37%, as compared with scrambled control. Furthermore, MBO-asGCS sensitized multidrug-resistant tumors to chemotherapy, increasing doxorubicin efficiency greater than 2-fold. The sensitization effects of MBO-asGCS relied on the decreases of gene expression and enzyme activity of GCS, and on the increases of C(18-ceramide and of caspase-executed apoptosis. MBO-asGCS was accumulation in tumor xenografts was greater in other tissues, excepting liver and kidneys; but MBO-asGCS did not exert significant toxic effects on liver and kidneys. This study, for the first time in vivo, has demonstrated that GCS is a promising therapeutic target for cancer drug resistance, and MBO-asGCS has the potential to be developed as an antineoplastic agent.

  13. ADAM12 produced by tumor cells rather than stromal cells accelerates breast tumor progression

    DEFF Research Database (Denmark)

    Frohlich, Camilla; Nehammer, Camilla; Albrechtsen, Reidar

    2011-01-01

    Expression of ADAM12 is low in most normal tissues, but is markedly increased in numerous human cancers, including breast carcinomas. We have previously shown that overexpression of ADAM12 accelerates tumor progression in a mouse model of breast cancer (PyMT). In the present study, we found...... that ADAM12 deficiency reduces breast tumor progression in the PyMT model. However, the catalytic activity of ADAM12 appears to be dispensable for its tumor-promoting effect. Interestingly, we demonstrate that ADAM12 endogenously expressed in tumor-associated stroma in the PyMT model does not influence...... tumor progression, but that ADAM12 expression by tumor cells is necessary for tumor progression in these mice. This finding is consistent with our observation that in human breast carcinoma ADAM12 is almost exclusively located in tumor cells and only rarely seen in the tumor-associated stroma. We...

  14. Radiation Therapy of Suprasellar Germ Cell Tumors

    International Nuclear Information System (INIS)

    Park, Woo Yoon; Choi, Doo Ho; Choi, Eun Kyung; Kim, Il Han; Ha, Sung Whan; Park, Charn Il

    1988-01-01

    A retrospective study was performed on 15 patients with suprasellar germ cell tumors treated by megavoltage external beam irradiation between Feb. 1979 and Dec. 1985. Follow-up period of survivors was 30 to 91 months. Histologic diagnosis was obtained before radiation therapy in 10 patients (9 germinomas and 1 mixed). Five patients were treated without histologic verification. In 9 patients with biopsy-proven germinomas radiation therapy was delivered to the craniospinal axis in 6, to the whole brain in 3. In 5 patients with mixed germ cell tumor or elevated tumor marker, irradiation was delivered to the craniospinal axis in 2, to the whole brain in 2, and to the primary site only in 1. Total doses ranged from 5,000 to 5,500 cGy to the primary site, 3,000 to 4,400 cGy to the whole brain, and 1,300 to 3,000 cGy to the spine. In these 14, local tumor was controlled and primary or spinal failure was not observed. One patient without elevated tumor marker was treated to the whole brain, The tumor was not controlled and he had spinal recurrence. It is proven that radiation therapy is an effective treatment for suprasellar germ cell tumors. The neuroendocrinologic presentation, tumor marker status, early response to radiation measured on CT seem to be useful means for selecting patients for radiation therapy when tissue diagnosis is not available

  15. CD133 expression in chemo-resistant Ewing sarcoma cells

    Directory of Open Access Journals (Sweden)

    Kovar Heinrich

    2010-03-01

    Full Text Available Abstract Background Some human cancers demonstrate cellular hierarchies in which tumor-initiating cancer stem cells generate progeny cells with reduced tumorigenic potential. This cancer stem cell population is proposed to be a source of therapy-resistant and recurrent disease. Ewing sarcoma family tumors (ESFT are highly aggressive cancers in which drug-resistant, relapsed disease remains a significant clinical problem. Recently, the cell surface protein CD133 was identified as a putative marker of tumor-initiating cells in ESFT. We evaluated ESFT tumors and cell lines to determine if high levels of CD133 are associated with drug resistance. Methods Expression of the CD133-encoding PROM1 gene was determined by RT-PCR in ESFT tumors and cell lines. CD133 protein expression was assessed by western blot, FACS and/or immunostaining. Cell lines were FACS-sorted into CD133+ and CD133- fractions and proliferation, colony formation in soft agar, and in vivo tumorigenicity compared. Chemosensitivity was measured using MTS (3-(4,5-dimethylthiazol-2-yl-5-(3-carboxy-methoxyphenyl-2-(4-sulfophenyl-2H-tetrazolium assays. Results PROM1 expression was either absent or extremely low in most tumors. However, PROM1 was highly over-expressed in 4 of 48 cases. Two of the 4 patients with PROM1 over-expressing tumors rapidly succumbed to primary drug-resistant disease and two are long-term, event-free survivors. The expression of PROM1 in ESFT cell lines was similarly heterogeneous. The frequency of CD133+ cells ranged from 2-99% and, with one exception, no differences in the chemoresistance or tumorigenicity of CD133+ and CD133- cell fractions were detected. Importantly, however, the STA-ET-8.2 cell line was found to retain a cellular hierarchy in which relatively chemo-resistant, tumorigenic CD133+ cells gave rise to relatively chemo-sensitive, less tumorigenic, CD133- progeny. Conclusions Up to 10% of ESFT express high levels of PROM1. In some tumors and cell

  16. Tumor sialylation impedes T cell mediated anti-tumor responses while promoting tumor associated-regulatory T cells

    NARCIS (Netherlands)

    Perdicchio, Maurizio; Cornelissen, Lenneke A. M.; Streng-Ouwehand, Ingeborg; Engels, Steef; Verstege, Marleen I.; Boon, Louis; Geerts, Dirk; van Kooyk, Yvette; Unger, Wendy W. J.

    2016-01-01

    The increased presence of sialylated glycans on the tumor surface has been linked to poor prognosis, yet the effects on tumor-specific T cell immunity are hardly studied. We here show that hypersialylation of B16 melanoma substantially influences tumor growth by preventing the formation of effector

  17. Breast cancer cells with acquired antiestrogen resistance are sensitized to cisplatin-induced cell death

    DEFF Research Database (Denmark)

    Yde, Christina Westmose; Gyrd-Hansen, Mads; Lykkesfeldt, Anne E

    2007-01-01

    for future breast cancer treatment. In this study, we have investigated the effect of the chemotherapeutic compound cisplatin using a panel of antiestrogen-resistant breast cancer cell lines established from the human breast cancer cell line MCF-7. We show that the antiestrogen-resistant cells...... with parental MCF-7 cells. Our data show that Bcl-2 can protect antiestrogen-resistant breast cancer cells from cisplatin-induced cell death, indicating that the reduced expression of Bcl-2 in the antiestrogen-resistant cells plays a role in sensitizing the cells to cisplatin treatment.......Antiestrogens are currently used for treating breast cancer patients who have estrogen receptor-positive tumors. However, patients with advanced disease will eventually develop resistance to the drugs. Therefore, compounds effective on antiestrogen-resistant tumors will be of great importance...

  18. Energy and Redox Homeostasis in Tumor Cells

    Directory of Open Access Journals (Sweden)

    Marcus Fernandes de Oliveira

    2012-01-01

    Full Text Available Cancer cells display abnormal morphology, chromosomes, and metabolism. This review will focus on the metabolism of tumor cells integrating the available data by way of a functional approach. The first part contains a comprehensive introduction to bioenergetics, mitochondria, and the mechanisms of production and degradation of reactive oxygen species. This will be followed by a discussion on the oxidative metabolism of tumor cells including the morphology, biogenesis, and networking of mitochondria. Tumor cells overexpress proteins that favor fission, such as GTPase dynamin-related protein 1 (Drp1. The interplay between proapoptotic members of the Bcl-2 family that promotes Drp 1-dependent mitochondrial fragmentation and fusogenic antiapoptotic proteins such as Opa-1 will be presented. It will be argued that contrary to the widespread belief that in cancer cells, aerobic glycolysis completely replaces oxidative metabolism, a misrepresentation of Warburg’s original results, mitochondria of tumor cells are fully viable and functional. Cancer cells also carry out oxidative metabolism and generally conform to the orthodox model of ATP production maintaining as well an intact electron transport system. Finally, data will be presented indicating that the key to tumor cell survival in an ROS rich environment depends on the overexpression of antioxidant enzymes and high levels of the nonenzymatic antioxidant scavengers.

  19. Circulating Tumor Cells and Circulating Tumor DNA Provide New Insights into Pancreatic Cancer.

    Science.gov (United States)

    Gao, Yang; Zhu, Yayun; Yuan, Zhou

    2016-01-01

    Pancreatic cancer has a rather dismal prognosis mainly due to high malignance of tumor biology. Up to now, the relevant researches on pancreatic cancer lag behind seriously partly due to the obstacles for tissue biopsy, which handicaps the understanding of molecular and genetic features of pancreatic cancer. In the last two decades, liquid biopsy, including circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA), is promising to provide new insights into the biological and clinical characteristics of malignant tumors. Both CTCs and ctDNA provide an opportunity for studying tumor heterogeneity, drug resistance, and metastatic mechanism for pancreatic cancer. Furthermore, they can also play important roles in detecting early-stage tumors, providing prognostic information, monitoring tumor progression and guiding treatment regimens. In this review, we will introduce the latest findings on biological features and clinical applications of both CTCs and ctDNA in pancreatic cancer. In a word, CTCs and ctDNA are promising to promote precision medicine in pancreatic cancer.

  20. The cell-cell interaction between tumor-associated macrophages and small cell lung cancer cells is involved in tumor progression via STAT3 activation.

    Science.gov (United States)

    Iriki, Toyohisa; Ohnishi, Koji; Fujiwara, Yukio; Horlad, Hasita; Saito, Yoichi; Pan, Cheng; Ikeda, Koei; Mori, Takeshi; Suzuki, Makoto; Ichiyasu, Hidenori; Kohrogi, Hirotsugu; Takeya, Motohiro; Komohara, Yoshihiro

    2017-04-01

    Small cell lung cancer (SCLC) is an aggressive tumor with a poor prognosis. It is well known that various stromal cells, including macrophages, play a role in tumor progression in several types of malignant tumors; however, the significance of tumor-associated macrophages (TAMs) in SCLC has not been fully elucidated. Signal transducer and activator of transcription 3 (STAT3) is a molecule well-known to be related to tumor progression. In the present study, we investigated the relationship of TAMs and SCLC cells to test the hypothesis that TAMs induce tumor progression in SCLC via STAT3 activation. We performed immunohistochemical analysis using surgically resected tumor specimens and in vitro co-culture experiments using human SCLC cell lines and human monocyte-derived macrophages. We first demonstrated via immunostaining that STAT3 activation in tumor cells was predominantly observed in the peripheral areas of tumor nests existing near TAMs in stroma. The indirect co-culture of SCLC cells and macrophages induced STAT3 activation in both cell types, and macrophage-derived culture supernatant (CS) significantly activated STAT3 in SCLC cells. Macrophage-derived CS induced tumor cell proliferation and invasion via STAT3 activation. In addition, chemo-resistance and sphere formation were also increased by macrophage-derived CS. Macrophage-derived interleukin-6 and CC chemokine ligand 4 (CCL4/MIP-1β) were suggested to be associated with STAT3 activation in SCLC cells. CS-induced STAT3 activation in SCLC cells was suppressed by anti-IL-6 receptor antibody, but not by anti-CCL4/MIP-1β antibody. These results suggest that TAMs are likely involved in SCLC progression via STAT3 activation and TAM-derived IL-6 is indicated to be one of molecules related to STAT3 activation in SCLC cells. Thus, the cell-cell interaction between TAMs and SCLC cells might be a target for therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Transformation Resistance in a Premature Aging Disorder Identifies a Tumor-Protective Function of BRD4

    Directory of Open Access Journals (Sweden)

    Patricia Fernandez

    2014-10-01

    Full Text Available Summary: Advanced age and DNA damage accumulation are prominent risk factors for cancer. The premature aging disorder Hutchinson-Gilford progeria syndrome (HGPS provides a unique opportunity for studying the interplay between DNA damage and aging-associated tumor mechanisms, given that HGPS patients do not develop tumors despite elevated levels of DNA damage. Here, we have used HGPS patient cells to identify a protective mechanism to oncogenesis. We find that HGPS cells are resistant to neoplastic transformation. Resistance is mediated by the bromodomain protein BRD4, which exhibits altered genome-wide binding patterns in transformation-resistant cells, leading to inhibition of oncogenic dedifferentiation. BRD4 also inhibits, albeit to a lower extent, the tumorigenic potential of transformed cells from healthy individuals. BRD4-mediated tumor protection is clinically relevant given that a BRD4 gene signature predicts positive clinical outcome in breast and lung cancer. Our results demonstrate a protective function for BRD4 and suggest tissue-specific roles for BRD4 in tumorigenesis. : The premature aging disorder Hutchinson-Gilford progeria syndrome (HGPS provides a unique tool for studying the interplay between DNA damage and aging-associated tumor mechanisms, given that HGPS patients do not develop tumors despite elevated levels of DNA damage. Using a genome-wide RNAi screen, Fernandez et al. now identify the bromodomain protein BRD4 as a mediator of the oncogenic resistance of HGPS cells. This tumor-protective function of BRD4 involves inhibition of oncogenic dedifferentiation and is also active in non-HGPS cells in a tissue-specific manner.

  2. Effects of a tumor promoter and an anti-promoter on spontaneous and UV-induced 6-thioguanine-resistant mutations and sister-chromatid exchanges in V79 Chinese hamster cells

    International Nuclear Information System (INIS)

    Fujiwara, Y.; Kano, Y.; Tatsumi, M.; Paul, P.

    1980-01-01

    The effects of a tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) and/or an anti-promoter antipain (protease inhibitor) on spontaneous and ultraviolet-induced sister-chromatid exchanges (SCEs) and 6-thioguanine-resistant (6TGsup(r)) recessive mutations were examined in V79 Chinese hamster cells in culture. TPA and/or antipain neither significantly altered base-line and UV-induced immediate SCE frequencies, nor decreased the level of delayed SCEs which persisted 6-7 days after irradiation. TPA and/or antipain appeared to enhance the recovery of UV-induced 6TGsup(r) colonies at the plateau expression phase despite non-mutagenicity by themselves and unaltered metabolic cooperation. Thus, the results conceivably imply that the 6TGsup(r)-recessive mutation expression, but not fixation, can be modulated at the cell level by TPA and/or antipain. Our results, together with the recent results of Loveday and Latt, may argue against the notion that TPA enhances the antipain-suppressible SCEs as an index of mitotic recombination in relevance with a tumor-promotion mechanism. (orig.)

  3. Disrupting Hypoxia-Induced Bicarbonate Transport Acidifies Tumor Cells and Suppresses Tumor Growth.

    Science.gov (United States)

    McIntyre, Alan; Hulikova, Alzbeta; Ledaki, Ioanna; Snell, Cameron; Singleton, Dean; Steers, Graham; Seden, Peter; Jones, Dylan; Bridges, Esther; Wigfield, Simon; Li, Ji-Liang; Russell, Angela; Swietach, Pawel; Harris, Adrian L

    2016-07-01

    Tumor hypoxia is associated clinically with therapeutic resistance and poor patient outcomes. One feature of tumor hypoxia is activated expression of carbonic anhydrase IX (CA9), a regulator of pH and tumor growth. In this study, we investigated the hypothesis that impeding the reuptake of bicarbonate produced extracellularly by CA9 could exacerbate the intracellular acidity produced by hypoxic conditions, perhaps compromising cell growth and viability as a result. In 8 of 10 cancer cell lines, we found that hypoxia induced the expression of at least one bicarbonate transporter. The most robust and frequent inductions were of the sodium-driven bicarbonate transporters SLC4A4 and SLC4A9, which rely upon both HIF1α and HIF2α activity for their expression. In cancer cell spheroids, SLC4A4 or SLC4A9 disruption by either genetic or pharmaceutical approaches acidified intracellular pH and reduced cell growth. Furthermore, treatment of spheroids with S0859, a small-molecule inhibitor of sodium-driven bicarbonate transporters, increased apoptosis in the cell lines tested. Finally, RNAi-mediated attenuation of SLC4A9 increased apoptosis in MDA-MB-231 breast cancer spheroids and dramatically reduced growth of MDA-MB-231 breast tumors or U87 gliomas in murine xenografts. Our findings suggest that disrupting pH homeostasis by blocking bicarbonate import might broadly relieve the common resistance of hypoxic tumors to anticancer therapy. Cancer Res; 76(13); 3744-55. ©2016 AACR. ©2016 American Association for Cancer Research.

  4. Establishment of a Novel Model for Anticancer Drug Resistance in Three-Dimensional Primary Culture of Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Tatsuya Usui

    2016-01-01

    Full Text Available Tumor microenvironment has been implicated in tumor development and progression. As a three-dimensional tumor microenvironment model, air liquid interface (ALI organoid culture from oncogene transgenic mouse gastrointestinal tissues was recently produced. However, ALI organoid culture system from tissues of colorectal cancer patients has not been established. Here, we developed an ALI organoid model from normal and tumor colorectal tissues of human patients. Both organoids were successfully generated and showed cystic structures containing an epithelial layer and surrounding mesenchymal stromal cells. Structures of tumor organoids closely resembled primary tumor epithelium. Expression of an epithelial cell marker, E-cadherin, a goblet cell marker, MUC2, and a fibroblast marker, vimentin, but not a myofibroblast marker, α-smooth muscle actin (SMA, was observed in normal organoids. Expression of E-cadherin, MUC2, vimentin, and α-SMA was observed in tumor organoids. Expression of a cancer stem cell marker, LGR5 in tumor organoids, was higher than that in primary tumor tissues. Tumor organoids were more resistant to toxicity of 5-fluorouracil and Irinotecan than colorectal cancer cell lines, SW480, SW620, and HCT116. These findings indicate that ALI organoid culture from colorectal cancer patients may become a novel model that is useful for examining resistance to chemotherapy in tumor microenvironment.

  5. CD8+ Tumor-Infiltrating T Cells Are Trapped in the Tumor-Dendritic Cell Network

    Directory of Open Access Journals (Sweden)

    Alexandre Boissonnas

    2013-01-01

    Full Text Available Chemotherapy enhances the antitumor adaptive immune T cell response, but the immunosuppressive tumor environment often dominates, resulting in cancer relapse. Antigen-presenting cells such as tumor-associated macrophages (TAMs and tumor dendritic cells (TuDCs are the main protagonists of tumor-infiltrating lymphocyte (TIL immuno-suppression. TAMs have been widely investigated and are associated with poor prognosis, but the immuno-suppressive activity of TuDCs is less well understood. We performed two-photon imaging of the tumor tissue to examine the spatiotemporal interactions between TILs and TuDCs after chemotherapy. In a strongly immuno-suppressive murine tumor model, cyclophosphamide-mediated chemotherapy transiently enhanced the antitumor activity of adoptively transferred ovalbumin-specific CD8+ T cell receptor transgenic T cells (OTI but barely affected TuDC compartment within the tumor. Time lapse imaging of living tumor tissue showed that TuDCs are organized as a mesh with dynamic interconnections. Once infiltrated into the tumor parenchyma, OTI T cells make antigen-specific and long-lasting contacts with TuDCs. Extensive analysis of TIL infiltration on histologic section revealed that after chemotherapy the majority of OTI T cells interact with TuDCs and that infiltration is restricted to TuDC-rich areas. We propose that the TuDC network exerts antigen-dependent unproductive retention that trap T cells and limit their antitumor effectiveness.

  6. Acquired Immune Resistance Follows Complete Tumor Regression without Loss of Target Antigens or IFN gamma Signaling

    DEFF Research Database (Denmark)

    Donia, Marco; Harbst, Katja; van Buuren, Marit

    2017-01-01

    disease recurrence following an initial, unequivocal radiologic complete regression after T-cell-based immunotherapy. Functional cytotoxic T-cell responses, including responses to one mutant neoantigen, were amplified effectively with therapy and generated durable immunologic memory. However, these immune...... responses, including apparently effective surveillance of the tumor mutanome, did not prevent recurrence. Alterations of the MHC class I antigen-processing and presentation machinery (APM) in resistant cancer cells, but not antigen loss or impaired IFN gamma signaling, led to impaired recognition by tumor......-specific CD8(+) T cells. Our results suggest that future immunotherapy combinations should take into account targeting cancer cells with intact and impaired MHC class I-related APM. Loss of target antigens or impaired IFN gamma signaling does not appear to be mandatory for tumor relapse after a complete...

  7. Epigenetics, Nervous System Tumors, and Cancer Stem Cells

    International Nuclear Information System (INIS)

    Qureshi, Irfan A.; Mehler, Mark F.

    2011-01-01

    Recent advances have begun to elucidate how epigenetic regulatory mechanisms are responsible for establishing and maintaining cell identity during development and adult life and how the disruption of these processes is, not surprisingly, one of the hallmarks of cancer. In this review, we describe the major epigenetic mechanisms (i.e., DNA methylation, histone and chromatin modification, non-coding RNA deployment, RNA editing, and nuclear reorganization) and discuss the broad spectrum of epigenetic alterations that have been uncovered in pediatric and adult nervous system tumors. We also highlight emerging evidence that suggests epigenetic deregulation is a characteristic feature of so-called cancer stem cells (CSCs), which are thought to be present in a range of nervous system tumors and responsible for tumor maintenance, progression, treatment resistance, and recurrence. We believe that better understanding how epigenetic mechanisms operate in neural cells and identifying the etiologies and consequences of epigenetic deregulation in tumor cells and CSCs, in particular, are likely to promote the development of enhanced molecular diagnostics and more targeted and effective therapeutic agents for treating recalcitrant nervous system tumors

  8. Epigenetics, Nervous System Tumors, and Cancer Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, Irfan A. [Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Mehler, Mark F., E-mail: mark.mehler@einstein.yu.edu [Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States)

    2011-09-13

    Recent advances have begun to elucidate how epigenetic regulatory mechanisms are responsible for establishing and maintaining cell identity during development and adult life and how the disruption of these processes is, not surprisingly, one of the hallmarks of cancer. In this review, we describe the major epigenetic mechanisms (i.e., DNA methylation, histone and chromatin modification, non-coding RNA deployment, RNA editing, and nuclear reorganization) and discuss the broad spectrum of epigenetic alterations that have been uncovered in pediatric and adult nervous system tumors. We also highlight emerging evidence that suggests epigenetic deregulation is a characteristic feature of so-called cancer stem cells (CSCs), which are thought to be present in a range of nervous system tumors and responsible for tumor maintenance, progression, treatment resistance, and recurrence. We believe that better understanding how epigenetic mechanisms operate in neural cells and identifying the etiologies and consequences of epigenetic deregulation in tumor cells and CSCs, in particular, are likely to promote the development of enhanced molecular diagnostics and more targeted and effective therapeutic agents for treating recalcitrant nervous system tumors.

  9. Whole tumor antigen vaccination using dendritic cells: Comparison of RNA electroporation and pulsing with UV-irradiated tumor cells

    Directory of Open Access Journals (Sweden)

    Benencia Fabian

    2008-04-01

    Full Text Available Abstract Because of the lack of full characterization of tumor associated antigens for solid tumors, whole antigen use is a convenient approach to tumor vaccination. Tumor RNA and apoptotic tumor cells have been used as a source of whole tumor antigen to prepare dendritic cell (DC based tumor vaccines, but their efficacy has not been directly compared. Here we compare directly RNA electroporation and pulsing of DCs with whole tumor cells killed by ultraviolet (UV B radiation using a convenient tumor model expressing human papilloma virus (HPV E6 and E7 oncogenes. Although both approaches led to DCs presenting tumor antigen, electroporation with tumor cell total RNA induced a significantly higher frequency of tumor-reactive IFN-gamma secreting T cells, and E7-specific CD8+ lymphocytes compared to pulsing with UV-irradiated tumor cells. DCs electroporated with tumor cell RNA induced a larger tumor infiltration by T cells and produced a significantly stronger delay in tumor growth compared to DCs pulsed with UV-irradiated tumor cells. We conclude that electroporation with whole tumor cell RNA and pulsing with UV-irradiated tumor cells are both effective in eliciting antitumor immune response, but RNA electroporation results in more potent tumor vaccination under the examined experimental conditions.

  10. Enxtraoviarian granulosa cell tumor: a case report | Jai | Pan African ...

    African Journals Online (AJOL)

    ... negative thus confirming the diagnosis of granulosa cell tumor. A diagnosis of extraovarian granulosa cell tumor can only be done after excluding any previous history of granulosa cell tumor of the ovary. Immunostains help to differentiate granulosa cell tumors from other neoplasms. Pan African Medical Journal 2016; 23 ...

  11. Tumor-Infiltrating Immune Cells Promoting Tumor Invasion and Metastasis: Existing Theories

    Directory of Open Access Journals (Sweden)

    Yan-gao Man, Alexander Stojadinovic, Jeffrey Mason, Itzhak Avital, Anton Bilchik, Bjoern Bruecher, Mladjan Protic, Aviram Nissan, Mina Izadjoo, Xichen Zhang, Anahid Jewett

    2013-01-01

    Full Text Available It is a commonly held belief that infiltration of immune cells into tumor tissues and direct physical contact between tumor cells and infiltrated immune cells is associated with physical destructions of the tumor cells, reduction of the tumor burden, and improved clinical prognosis. An increasing number of studies, however, have suggested that aberrant infiltration of immune cells into tumor or normal tissues may promote tumor progression, invasion, and metastasis. Neither the primary reason for these contradictory observations, nor the mechanism for the reported diverse impact of tumor-infiltrating immune cells has been elucidated, making it difficult to judge the clinical implications of infiltration of immune cells within tumor tissues. This mini-review presents several existing hypotheses and models that favor the promoting impact of tumor-infiltrating immune cells on tumor invasion and metastasis, and also analyzes their strength and weakness.

  12. Ellagic acid radiosensitizes tumor cells by evoking apoptotic pathway

    International Nuclear Information System (INIS)

    Ahire, Vidhula R.; Mishra, K.P.

    2016-01-01

    Cancer causes millions of deaths each year globally. In most patients, the cause of treatment failure is found associated with the resistance to chemotherapy and radiotherapy. The development of tumor cell resistance evokes multiple intracellular molecular pathways. In addition, the limitation in treatment outcome arises due to unintended cytotoxic effects of the synthetic anticancer drugs to normal cells and tissues. Considerable focus of research is, therefore, devoted to examine plant-based herbal compounds which may prove potential anticancer drug for developing effective cancer therapy. Research results from our laboratory have shown that ellagic acid (EA), a natural flavonoid displays enhanced tumor toxicity in combination with gamma radiation to many types of cancers in vitro as well as in vivo. Studies on the underlying mechanisms of toxicity suggest that EA employs the cellular signaling pathways in producing the observed effects. This paper gives an account of molecular mechanisms of EA-induced apoptosis process in tumor cytotoxicity. It is suggested that EA acts as a novel radiosensitizer for tumors and a radioprotector for normal cells which may offer a novel protocol for cancer treatment. (author)

  13. [Granular cell tumor of the male breast].

    Science.gov (United States)

    Kadiri, Youssef; Boufettal, Houssine; Samouh, Naïma; Benayad, Samira; Karkouri, Mehdi; Zamiati, Soumaya; Kadiri, Bouchaïb

    2013-04-01

    The granular cell tumor of the breast (TCGS) is a rare benign tumor, which grows from Schwann cells. It can be confused with a cancerous tumor clinically and radiologically. Only the histological appearance can make the diagnosis. We report a case of TCGS in a man, discovered as a result of self-examination of a breast lump. The authors emphasize the problem of differential diagnosis with breast cancer: clinically, a hard lump with an occasional skin retraction or a fixity to the deep plane; radiologically a stellar opaque appearance with irregular contours, sonographically unspecific, and even macroscopically during surgery, this lesion having morphological characteristics which need histologic examination and even immunohistochemistry in order to exclude a malignant tumor. They are cured by wide local excision and have generally a good prognosis. Copyright © 2013. Published by Elsevier Masson SAS.

  14. Malignant Solitary Fibrous Tumor Metastatic to Widely Invasive Hurthle Cell Thyroid Carcinoma: A Distinct Tumor-to-Tumor Metastasis.

    Science.gov (United States)

    Kolson Kokohaare, Eva; Riva, Francesco M G; Bernstein, Jonathan M; Miah, Aisha B; Thway, Khin

    2018-04-01

    We illustrate a case of synchronous malignant solitary fibrous tumor of the thoracic cavity, and widely invasive thyroid Hurthle cell carcinoma. The Hurthle cell carcinoma was found to harbor distinct areas of malignant solitary fibrous tumor. This is a unique case of tumor-to-tumor metastasis that, to the best of our knowledge, has not been previously reported.

  15. Epigenetic Modifications and Head and Neck Cancer: Implications for Tumor Progression and Resistance to Therapy

    Directory of Open Access Journals (Sweden)

    Rogerio M. Castilho

    2017-07-01

    Full Text Available Head and neck squamous carcinoma (HNSCC is the sixth most prevalent cancer and one of the most aggressive malignancies worldwide. Despite continuous efforts to identify molecular markers for early detection, and to develop efficient treatments, the overall survival and prognosis of HNSCC patients remain poor. Accumulated scientific evidences suggest that epigenetic alterations, including DNA methylation, histone covalent modifications, chromatin remodeling and non-coding RNAs, are frequently involved in oral carcinogenesis, tumor progression, and resistance to therapy. Epigenetic alterations occur in an unsystematic manner or as part of the aberrant transcriptional machinery, which promotes selective advantage to the tumor cells. Epigenetic modifications also contribute to cellular plasticity during tumor progression and to the formation of cancer stem cells (CSCs, a small subset of tumor cells with self-renewal ability. CSCs are involved in the development of intrinsic or acquired therapy resistance, and tumor recurrences or relapse. Therefore, the understanding and characterization of epigenetic modifications associated with head and neck carcinogenesis, and the prospective identification of epigenetic markers associated with CSCs, hold the promise for novel therapeutic strategies to fight tumors. In this review, we focus on the current knowledge on epigenetic modifications observed in HNSCC and emerging Epi-drugs capable of sensitizing HNSCC to therapy.

  16. Circulating Tumor Cells Versus Circulating Tumor DNA in Colorectal Cancer: Pros and Cons.

    Science.gov (United States)

    Tan, Carlyn Rose C; Zhou, Lanlan; El-Deiry, Wafik S

    2016-06-01

    Circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) are emerging noninvasive multifunctional biomarkers in liquid biopsy allowing for early diagnosis, accurate prognosis, therapeutic target selection, spatiotemporal monitoring of metastasis, as well as monitoring response and resistance to treatment. CTCs and ctDNA are released from different tumor types at different stages and contribute complementary information for clinical decision. Although big strides have been taken in technology development for detection, isolation and characterization of CTCs and sensitive and specific detection of ctDNA, CTC-, and ctDNA-based liquid biopsies may not be widely adopted for routine cancer patient care until the suitability, accuracy, and reliability of these tests are validated and more standardized protocols are corroborated in large, independent, prospectively designed trials. This review covers CTC- and ctDNA-related technologies and their application in colorectal cancer. The promise of CTC-and ctDNA-based liquid biopsies is envisioned.

  17. The role of cancer-associated fibroblasts, solid stress and other microenvironmental factors in tumor progression and therapy resistance.

    Science.gov (United States)

    Kharaishvili, Gvantsa; Simkova, Dana; Bouchalova, Katerina; Gachechiladze, Mariam; Narsia, Nato; Bouchal, Jan

    2014-01-01

    Tumors are not merely masses of neoplastic cells but complex tissues composed of cellular and noncellular elements. This review provides recent data on the main components of a dynamic system, such as carcinoma associated fibroblasts that change the extracellular matrix (ECM) topology, induce stemness and promote metastasis-initiating cells. Altered production and characteristics of collagen, hyaluronan and other ECM proteins induce increased matrix stiffness. Stiffness along with tumor growth-induced solid stress and increased interstitial fluid pressure contribute to tumor progression and therapy resistance. Second, the role of immune cells, cytokines and chemokines is outlined. We discuss other noncellular characteristics of the tumor microenvironment such as hypoxia and extracellular pH in relation to neoangiogenesis. Overall, full understanding of the events driving the interactions between tumor cells and their environment is of crucial importance in overcoming treatment resistance and improving patient outcome.

  18. Hypofractionation results in reduced tumor cell kill compared to conventional fractionation for tumors with regions of hypoxia.

    Science.gov (United States)

    Carlson, David J; Keall, Paul J; Loo, Billy W; Chen, Zhe J; Brown, J Martin

    2011-03-15

    Tumor hypoxia has been observed in many human cancers and is associated with treatment failure in radiation therapy. The purpose of this study is to quantify the effect of different radiation fractionation schemes on tumor cell killing, assuming a realistic distribution of tumor oxygenation. A probability density function for the partial pressure of oxygen in a tumor cell population is quantified as a function of radial distance from the capillary wall. Corresponding hypoxia reduction factors for cell killing are determined. The surviving fraction of a tumor consisting of maximally resistant cells, cells at intermediate levels of hypoxia, and normoxic cells is calculated as a function of dose per fraction for an equivalent tumor biological effective dose under normoxic conditions. Increasing hypoxia as a function of distance from blood vessels results in a decrease in tumor cell killing for a typical radiotherapy fractionation scheme by a factor of 10(5) over a distance of 130 μm. For head-and-neck cancer and prostate cancer, the fraction of tumor clonogens killed over a full treatment course decreases by up to a factor of ∼10(3) as the dose per fraction is increased from 2 to 24 Gy and from 2 to 18 Gy, respectively. Hypofractionation of a radiotherapy regimen can result in a significant decrease in tumor cell killing compared to standard fractionation as a result of tumor hypoxia. There is a potential for large errors when calculating alternate fractionations using formalisms that do not account for tumor hypoxia. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Amplification of tumor inducing putative cancer stem cells (CSCs) by vitamin A/retinol from mammary tumors

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Rohit B. [Department of Microbiology and Molecular Genetics, University of Pittsburgh, PA 15261 (United States); Wang, Qingde [Department of Surgery, University of Pittsburgh, PA 15261 (United States); Khillan, Jaspal S., E-mail: khillan@pitt.edu [Department of Microbiology and Molecular Genetics, University of Pittsburgh, PA 15261 (United States)

    2013-07-12

    Highlights: •Vitamin A supports self renewal of putative CSCs from mammary tumors. •These cells exhibit impaired retinol metabolism into retinoic acid. •CSCs from mammary tumors differentiate into mammary specific cell lineages. •The cells express mammary stem cell specific CD29 and CD49f markers. •Putative CSCs form highly metastatic tumors in NOD SCID mouse. -- Abstract: Solid tumors contain a rare population of cancer stem cells (CSCs) that are responsible for relapse and metastasis. The existence of CSC however, remains highly controversial issue. Here we present the evidence for putative CSCs from mammary tumors amplified by vitamin A/retinol signaling. The cells exhibit mammary stem cell specific CD29{sup hi}/CD49f{sup hi}/CD24{sup hi} markers, resistance to radiation and chemo therapeutic agents and form highly metastatic tumors in NOD/SCID mice. The cells exhibit indefinite self renewal as cell lines. Furthermore, the cells exhibit impaired retinol metabolism and do not express enzymes that metabolize retinol into retinoic acid. Vitamin A/retinol also amplified putative CSCs from breast cancer cell lines that form highly aggressive tumors in NOD SCID mice. The studies suggest that high purity putative CSCs can be isolated from solid tumors to establish patient specific cell lines for personalized therapeutics for pre-clinical translational applications. Characterization of CSCs will allow understanding of basic cellular and molecular pathways that are deregulated, mechanisms of tumor metastasis and evasion of therapies that has direct clinical relevance.

  20. Acinic cell tumor of the epipharynx

    International Nuclear Information System (INIS)

    Tsuruta, Yoshihiro; Umatani, Katsunori; Yoshino, Kunitoshi; Miyahara, Hiroshi; Sato, Takeo; Teshima, Teruki; Chatani, Masashi; Inoue, Toshihiko

    1985-01-01

    A case of acinic cell tumor of the epipharynx is reported. The patient was a 41-year-old man. The tumor was surgically removed by the transpalatal approach. Light microscopically, the lesion was composed of serous acinic cells with eosinophilic granules, clear cells with water-clear cytoplasm and their intermediate type, vacuolated cells. The serous acinic cells were PAS (periodic acid-Schiff)- and DPAS (PAS with diastase predigestion)-positive. The clear and vacuolated cells were PAS- and DPAS-negative. The patient underwent early postoperative radiation therapy; high-dose intracavitary radiation therapy using remote-controlled afterloading equipment was given subsequent to the external radiation therapy. The patient has been free of recurrence and abnormal findings for one year after treatment. (author)

  1. Giant cell tumor of bone: Multimodal approach

    Directory of Open Access Journals (Sweden)

    Gupta A

    2007-01-01

    Full Text Available Background: The clinical behavior and treatment of giant cell tumor of bone is still perplexing. The aim of this study is to clarify the clinico-pathological correlation of tumor and its relevance in treatment and prognosis. Materials and Methods: Ninety -three cases of giant cell tumor were treated during 1980-1990 by different methods. The age of the patients varied from 18-58 yrs with male and female ratio as 5:4. The upper end of the tibia was most commonly involved (n=31, followed by the lower end of the femur(n=21, distal end of radius(n=14,upper end of fibula (n=9,proximal end of femur(n=5, upper end of the humerus(n=3, iliac bone(n=2,phalanx (n=2 and spine(n=1. The tumors were also encountered on uncommon sites like metacarpals (n=4 and metatarsal(n=1. Fifty four cases were treated by curettage and bone grafting. Wide excision and reconstruction was performed in twenty two cases . Nine cases were treated by wide excision while primary amputation was performed in four cases. One case required only curettage. Three inaccessible lesions of ilium and spine were treated by radiotherapy. Results: 19 of 54 treated by curettage and bone grafting showed a recurrence. The repeat curettage and bone grafting was performed in 18 cases while amputation was done in one. One each out of the cases treated by wide excision and reconstruction and wide excision alone recurred. In this study we observed that though curettage and bone grafting is still the most commonly adopted treatment, wide excision of tumor with reconstruction has shown lesser recurrence. Conclusion: For radiologically well-contained and histologically typical tumor, curettage and autogenous bone grafting is the treatment of choice . The typical tumors with radiologically deficient cortex, clinically aggressive tumors and tumors with histological Grade III should be treated by wide excision and reconstruction.

  2. Glucocorticoid receptor knockdown decreases the antioxidant protection of B16 melanoma cells: an endocrine system-related mechanism that compromises metastatic cell resistance to vascular endothelium-induced tumor cytotoxicity.

    Science.gov (United States)

    Obrador, Elena; Valles, Soraya L; Benlloch, María; Sirerol, J Antoni; Pellicer, José A; Alcácer, Javier; Coronado, Javier Alcácer-F; Estrela, José M

    2014-01-01

    We previously reported an interorgan system in which stress-related hormones (corticosterone and noradrenaline), interleukin-6, and glutathione (GSH) coordinately regulate metastatic growth of highly aggressive B16-F10 melanoma cells. Corticosterone, at levels measured in tumor-bearing mice, also induces apoptotic cell death in metastatic cells with low GSH content. In the present study we explored the potential role of glucocorticoids in the regulation of metastatic cell death/survival during the early stages of organ invasion. Glucocorticoid receptor (GCR) knockdown decreased the expression and activity of γ-glutamylcysteine synthetase (γ-GCS), the rate-limiting step in GSH synthesis, in metastatic cells in vivo independent of the tumor location (liver, lung, or subcutaneous). The decrease in γ-GCS activity was associated with lower intracellular GSH levels. Nrf2- and p53-dependent down-regulation of γ-GCS was associated with a decrease in the activities of superoxide dismutase 1 and 2, catalase, glutathione peroxidase, and glutathione reductase, but not of the O2--generating NADPH oxidase. The GCR knockdown-induced decrease in antioxidant protection caused a drastic decrease in the survival of metastatic cells during their interaction with endothelial cells, both in vitro and in vivo; only 10% of cancer cells attached to the endothelium survived compared to 90% survival observed in the controls. This very low rate of metastatic cell survival was partially increased (up to 52%) in vivo by inoculating B16-F10 cells preloaded with GSH ester, which enters the cell and delivers free GSH. Taken together, our results indicate that glucocorticoid signaling influences the survival of metastatic cells during their interaction with the vascular endothelium.

  3. Oriented collagen fibers direct tumor cell intravasation

    KAUST Repository

    Han, Weijing

    2016-09-24

    In this work, we constructed a Collagen I-Matrigel composite extracellular matrix (ECM). The composite ECM was used to determine the influence of the local collagen fiber orientation on the collective intravasation ability of tumor cells. We found that the local fiber alignment enhanced cell-ECM interactions. Specifically, metastatic MDA-MB-231 breast cancer cells followed the local fiber alignment direction during the intravasation into rigid Matrigel (∼10 mg/mL protein concentration).

  4. Molecular biomarker analyses using circulating tumor cells.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Punnoose

    2010-09-01

    Full Text Available Evaluation of cancer biomarkers from blood could significantly enable biomarker assessment by providing a relatively non-invasive source of representative tumor material. Circulating Tumor Cells (CTCs isolated from blood of metastatic cancer patients hold significant promise in this regard.Using spiked tumor-cells we evaluated CTC capture on different CTC technology platforms, including CellSearch and two biochip platforms, and used the isolated CTCs to develop and optimize assays for molecular characterization of CTCs. We report similar performance for the various platforms tested in capturing CTCs, and find that capture efficiency is dependent on the level of EpCAM expression. We demonstrate that captured CTCs are amenable to biomarker analyses such as HER2 status, qRT-PCR for breast cancer subtype markers, KRAS mutation detection, and EGFR staining by immunofluorescence (IF. We quantify cell surface expression of EGFR in metastatic lung cancer patient samples. In addition, we determined HER2 status by IF and FISH in CTCs from metastatic breast cancer patients. In the majority of patients (89% we found concordance with HER2 status from patient tumor tissue, though in a subset of patients (11%, HER2 status in CTCs differed from that observed in the primary tumor. Surprisingly, we found CTC counts to be higher in ER+ patients in comparison to HER2+ and triple negative patients, which could be explained by low EpCAM expression and a more mesenchymal phenotype of tumors belonging to the basal-like molecular subtype of breast cancer.Our data suggests that molecular characterization from captured CTCs is possible and can potentially provide real-time information on biomarker status. In this regard, CTCs hold significant promise as a source of tumor material to facilitate clinical biomarker evaluation. However, limitations exist from a purely EpCAM based capture system and addition of antibodies to mesenchymal markers could further improve CTC

  5. Retrotransposon Targeting of Tumor Cells

    National Research Council Canada - National Science Library

    Wu, Dongdong; DeVaux, George

    2005-01-01

    .... These treatments have enjoyed only limited success. We propose to use suicide gene therapy transfection of cancer cells with genes that encode enzymes able to activate nontoxic pro-drugs in situ to form cytotoxic products...

  6. Granulosa cell tumor of ovary: US findings

    International Nuclear Information System (INIS)

    Jin, Yong Hyun; Jeon, Hae Jeong; Lee, Chang Dea; Cho, Young Kwon; Kang, Chang Ho; Park, Yong Hyun; Kim, Myung Gyu; Lee, Yeon Hee; Kim, Young Hwa; Lee, Hye Kyung

    1999-01-01

    To describe ultrasonographic findings of ovarian granulosa cell tumor (GCT) and to determine their possible value in the differential diagnosis of ovarian tumors. Sonographic appearances of ten cases of pathologically proven GC Ts were retrospectively reviewed regarding their location, size, outer margin, the echo pattern of the tumor, endometrial thickness, presence of ascites, and metastasis to adjacent tissue or distant sites. 3.0-3.5 MHz trans-abdominal US or 5.0-6.5 MHz transvaginal US were used. The sonographic features could be classified as follows: unilocular cystic mass without nodule or septation (type 1), multilocular cystic mass (type 2), and solid mass (type 3). Pathologically nine cases were adult type granulosa cell tumors (GCT) and one was a juvenile type. All cases were unilateral. GCT arising from left ovary were seven, right, three. The largest diameter of the tumors ranged from 6.8 to 24 cm (mean: 11.9 cm). All had well-defined margins. Ascites was seen in four cases. Among ten cases of GCT, six were mainly solid (type 3). One case manifested as a unilocular cystic mass without mural nodule or septation. Three were multilocular cystic masses and no mural nodule was found in all three cases. Metastases to peritoneum and lymph nodes was seen in one case. The ultrasonographic findings of GCT are various but combined with clinical and laboratory findings they could be helpful in the differential diagnosis of ovarian tumors.

  7. Cancer stem cells and drug resistance: the potential of nanomedicine

    Science.gov (United States)

    Vinogradov, Serguei; Wei, Xin

    2012-01-01

    Properties of the small group of cancer cells called tumor-initiating or cancer stem cells (CSCs) involved in drug resistance, metastasis and relapse of cancers can significantly affect tumor therapy. Importantly, tumor drug resistance seems to be closely related to many intrinsic or acquired properties of CSCs, such as quiescence, specific morphology, DNA repair ability and overexpression of antiapoptotic proteins, drug efflux transporters and detoxifying enzymes. The specific microenvironment (niche) and hypoxic stability provide additional protection against anticancer therapy for CSCs. Thus, CSC-focused therapy is destined to form the core of any effective anticancer strategy. Nanomedicine has great potential in the development of CSC-targeting drugs, controlled drug delivery and release, and the design of novel gene-specific drugs and diagnostic modalities. This review is focused on tumor drug resistance-related properties of CSCs and describes current nanomedicine approaches, which could form the basis of novel combination therapies for eliminating metastatic and CSCs. PMID:22471722

  8. Resistance of renal cell carcinoma to sorafenib is mediated by potentially reversible gene expression.

    Directory of Open Access Journals (Sweden)

    Liang Zhang

    Full Text Available PURPOSE: Resistance to antiangiogenic therapy is an important clinical problem. We examined whether resistance occurs at least in part via reversible, physiologic changes in the tumor, or results solely from stable genetic changes in resistant tumor cells. EXPERIMENTAL DESIGN: Mice bearing two human RCC xenografts were treated with sorafenib until they acquired resistance. Resistant 786-O cells were harvested and reimplanted into naïve mice. Mice bearing resistant A498 cells were subjected to a 1 week treatment break. Sorafenib was then again administered to both sets of mice. Tumor growth patterns, gene expression, viability, blood vessel density, and perfusion were serially assessed in treated vs control mice. RESULTS: Despite prior resistance, reimplanted 786-O tumors maintained their ability to stabilize on sorafenib in sequential reimplantation steps. A transcriptome profile of the tumors revealed that the gene expression profile of tumors upon reimplantation reapproximated that of the untreated tumors and was distinct from tumors exhibiting resistance to sorafenib. In A498 tumors, revascularization was noted with resistance and cessation of sorafenib therapy and tumor perfusion was reduced and tumor cell necrosis enhanced with re-exposure to sorafenib. CONCLUSIONS: In two RCC cell lines, resistance to sorafenib appears to be reversible. These results support the hypothesis that resistance to VEGF pathway therapy is not solely the result of a permanent genetic change in the tumor or selection of resistant clones, but rather is due to a great extent to reversible changes that likely occur in the tumor and/or its microenvironment.

  9. Efficacy of a Cell-Cycle Decoying Killer Adenovirus on 3-D Gelfoam®-Histoculture and Tumor-Sphere Models of Chemo-Resistant Stomach Carcinomatosis Visualized by FUCCI Imaging.

    Directory of Open Access Journals (Sweden)

    Shuya Yano

    Full Text Available Stomach cancer carcinomatosis peritonitis (SCCP is a recalcitrant disease. The goal of the present study was to establish an in vitro-in vivo-like imageable model of SCCP to develop cell-cycle-based therapeutics of SCCP. We established 3-D Gelfoam® histoculture and tumor-sphere models of SCCP. FUCCI-expressing MKN-45 stomach cancer cells were transferred to express the fluorescence ubiquinized cell-cycle indicator (FUCCI. FUCCI-expressing MKN-45 cells formed spheres on agarose or on Gelfoam® grew into tumor-like structures with G0/G1 cancer cells in the center and S/G2 cancer cells located in the surface as indicated by FUCCI imaging when the cells fluoresced red or green, respectively. We treated FUCCI-expressing cancer cells forming SCCP tumors in Gelfoam® histoculture with OBP-301, cisplatinum (CDDP, or paclitaxel. CDDP or paclitaxel killed only cycling cancer cells and were ineffective against G1/G2 MKN-45 cells in tumors growing on Gelfoam®. In contrast, the telomerase-dependent adenovirus OBP-301 decoyed the MKN-45 cells in tumors on Gelfoam® to cycle from G0/G1 phase to S/G2 phase and reduced their viability. CDDP- or paclitaxel-treated MKN-45 tumors remained quiescent and did not change in size. In contrast, OB-301 reduced the size of the MKN-45 tumors on Gelfoam®. We examined the cell cycle-related proteins using Western blotting. CDDP increased the expression of p53 and p21 indicating cell cycle arrest. In contrast, OBP-301 decreased the expression of p53 and p21 Furthermore, OBP-301 increased the expression of E2F and pAkt as further indication of cell cycle decoy. This 3-D Gelfoam® histoculture and FUCCI imaging are powerful tools to discover effective therapy of SCCP such as OBP-301.

  10. Overcoming Multidrug Resistance in Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Karobi Moitra

    2015-01-01

    Full Text Available The principle mechanism of protection of stem cells is through the expression of ATP-binding cassette (ABC transporters. These transporters serve as the guardians of the stem cell population in the body. Unfortunately these very same ABC efflux pumps afford protection to cancer stem cells in tumors, shielding them from the adverse effects of chemotherapy. A number of strategies to circumvent the function of these transporters in cancer stem cells are currently under investigation. These strategies include the development of competitive and allosteric modulators, nanoparticle mediated delivery of inhibitors, targeted transcriptional regulation of ABC transporters, miRNA mediated inhibition, and targeting of signaling pathways that modulate ABC transporters. The role of ABC transporters in cancer stem cells will be explored in this paper and strategies aimed at overcoming drug resistance caused by these particular transporters will also be discussed.

  11. Biophysical Profiling of Tumor Cell Lines

    Directory of Open Access Journals (Sweden)

    Frederick Coffman

    2011-01-01

    Full Text Available Despite significant differences in genetic profiles, cancer cells share common phenotypic properties, including membrane-associated changes that facilitate invasion and metastasis. The Corning Epic® optical biosensor was used to monitor dynamic mass rearrangements within and proximal to the cell membrane in tumor cell lines derived from cancers of the colon, bone, cervix, lung and breast. Data was collected in real time and required no exogenously added signaling moiety (signal-free technology. Cell lines displayed unique profiles over the time-courses: the time-courses all displayed initial signal increases to maximal values, but the rate of increase to those maxima and the value of those maxima were distinct for each cell line. The rate of decline following the maxima also differed among cell lines. There were correlations between the signal maxima and the observed metastatic behavior of the cells in xenograft experiments; for most cell types the cells that were more highly metastatic in mice had lower time-course maxima values, however the reverse was seen in breast cancer cells. The unique profiles of these cell lines and the correlation of at least one profile characteristic with metastatic behavior demonstrate the potential utility of biophysical tumor cell profiling in the study of cancer biology.

  12. CDC20 maintains tumor initiating cells

    Science.gov (United States)

    Xie, Qi; Wu, Qiulian; Mack, Stephen C.; Yang, Kailin; Kim, Leo; Hubert, Christopher G.; Flavahan, William A.; Chu, Chengwei; Bao, Shideng; Rich, Jeremy N.

    2015-01-01

    Glioblastoma is the most prevalent and lethal primary intrinsic brain tumor. Glioblastoma displays hierarchical arrangement with a population of self-renewing and tumorigenic glioma tumor initiating cells (TICs), or cancer stem cells. While non-neoplastic neural stem cells are generally quiescent, glioblastoma TICs are often proliferative with mitotic control offering a potential point of fragility. Here, we interrogate the role of cell-division cycle protein 20 (CDC20), an essential activator of anaphase-promoting complex (APC) E3 ubiquitination ligase, in the maintenance of TICs. By chromatin analysis and immunoblotting, CDC20 was preferentially expressed in TICs relative to matched non-TICs. Targeting CDC20 expression by RNA interference attenuated TIC proliferation, self-renewal and in vivo tumor growth. CDC20 disruption mediated its effects through induction of apoptosis and inhibition of cell cycle progression. CDC20 maintains TICs through degradation of p21CIP1/WAF1, a critical negative regulator of TICs. Inhibiting CDC20 stabilized p21CIP1/WAF1, resulting in repression of several genes critical to tumor growth and survival, including CDC25C, c-Myc and Survivin. Transcriptional control of CDC20 is mediated by FOXM1, a central transcription factor in TICs. These results suggest CDC20 is a critical regulator of TIC proliferation and survival, linking two key TIC nodes – FOXM1 and p21CIP1/WAF1 — elucidating a potential point for therapeutic intervention. PMID:25938542

  13. Bisphenol A activates EGFR and ERK promoting proliferation, tumor spheroid formation and resistance to EGFR pathway inhibition in estrogen receptor negative inflammatory breast cancer cells

    Science.gov (United States)

    Background: Inflammatory breast cancer (IBC) is a distinct and the deadliest breast cancer variant, which shows a rapid rate of progression and acquired therapeutic resistance. Epidemiological studies suggest that chemical exposure in the environment and consumer products can aff...

  14. Aurora kinase B is important for antiestrogen resistant cell growth and a potential biomarker for tamoxifen resistant breast cancer

    DEFF Research Database (Denmark)

    Larsen, Sarah L; Yde, Christina W.; Laenkholm, Anne-Vibeke

    2015-01-01

    resistant T47D breast cancer cell lines. Compared with parental cells, phosphorylation of Aurora kinase B was higher in the fulvestrant resistant T47D cells. Barasertib induced degradation of Aurora kinase B, caused mitotic errors, and induced apoptotic cell death as measured by accumulation of SubG1 cells...... and PARP cleavage in the fulvestrant resistant cells. Barasertib also exerted preferential growth inhibition of tamoxifen resistant T47D cell lines. Finally, high percentage of Aurora kinase B positive tumor cells was significantly associated with reduced disease-free and overall survival in 261 ER...

  15. Peculiarities in the CT findings of germ cell tumors in various tumor localizations

    International Nuclear Information System (INIS)

    Tazoe, Makoto; Miyagami, Mitsusuke; Tsubokawa, Takashi

    1991-01-01

    The CT findings of 17 germ cell tumors were studied in relation to the locations of the tumor, the pathological diagnoses, and the tumor markers (AFP and HCG). Generally, the CT findings of germ cell tumors depended on the pathological diagnoses more strongly than on the location of the tumors. On plain CT of 7 germ cell tumors in the pineal region, all of them demonstrated heterogeneous findings. Hydrocephalus was seen in 6 cases (86%) and calcification in 6 cases (86%) of the germ cell tumors in the pineal region. Calcification and hydrocephalus that appeared more often than in other regions were characteristic of germ cell tumors of the pineal region. The germ cell tumors in the basal ganglia had a slightly homogenous high density, with small cysts and calcification in most of them on plain CT. On enhanced CT, the tumors were moderately enhanced in all cases located in the basal ganglia. Four cases of germ cell tumors located in the basal ganglia revealed the dilatation of lateral ventricle due to hemispheric atrophy in the tumor side. The germ cell tumors showing an increase in the tumor markers such as AFP and HCG, which were usually malignant germ cell tumors, were strongly enhanced on enhanced CT. (author)

  16. Maintenance of Clonogenic KIT+ Human Colon Tumor Cells Requires Secretion of Stem Cell Factor by Differentiated Tumor Cells

    NARCIS (Netherlands)

    Fatrai, Szabolcs; Van Schelven, Susanne J.; Ubink, Inge; Govaert, Klaas M.; Raats, Danielle; Koster, Jan; Verheem, Andre; Borel Rinkes, Inne H M; Kranenburg, Onno

    2015-01-01

    Background & Aims Colon tumors contain a fraction of undifferentiated stem cell-like cancer cells with high tumorigenic potential. Little is known about the signals that maintain these stem-like cells. We investigated whether differentiated tumor cells provide support. Methods We established

  17. Tumor suppressor WWOX and p53 alterations and drug resistance in glioblastomas

    Directory of Open Access Journals (Sweden)

    Ming-Fu eChiang

    2013-03-01

    Full Text Available Tumor suppressor p53 are frequently mutated in glioblastomas (GBMs and appears to contribute, in part, to resistance to temozolomide and therapeutic drugs. WW domain-containing oxidoreductase WWOX (FOR or WOX1 is a proapoptotic protein and is considered as a tumor suppressor. Loss of WWOX gene expression is frequently seen in malignant cancer cells due to promoter hypermethylation, genetic alterations, and translational blockade. Intriguingly, ectopic expression of wild type WWOX preferentially induces apoptosis in human glioblastoma cells harboring mutant p53. WWOX is known to physically bind and stabilize wild type p53. Here, we provide an overview for the updated knowledge in p53 and WWOX, and postulate a potential scenarios that wild type and mutant p53, or isoforms, modulate the apoptotic function of WWOX. We propose that triggering WWOX activation by therapeutic drugs under p53 functional deficiency is needed to overcome TMZ resistance and induce GBM cell death.

  18. Circulating tumor cells: utopia or reality?

    Science.gov (United States)

    Conteduca, Vincenza; Zamarchi, Rita; Rossi, Elisabetta; Condelli, Valentina; Troiani, Laura; Aieta, Michele

    2013-09-01

    Circulating tumor cells (CTCs) could be considered a sign of tumor aggressiveness, but highly sensitive and specific methods of CTC detection are necessary owing to the rarity and heterogeneity of CTCs in peripheral blood. This review summarizes recent studies on tumor biology, with particular attention to the metastatic cascade, and the molecular characterization and clinical significance of CTCs. Recent technological approaches to enrich and detect these cells and challenges of CTCs for individualized cancer treatment are also discussed. This review also provides an insight into the positive and negative features of the future potential applications of CTC detection, which sometimes remains still a 'utopia', but its actual utility remains among the fastest growing research fields in oncology.

  19. Escape from Tumor Cell Dormancy

    Science.gov (United States)

    2012-10-01

    vascular endothelial growth factor- induced endothelial cell motility and tube formation via inhibition of calpain. Circ Res, 98(5), 617-25 (2006...derived from a 51-year-old woman with a pleural effusion in 1977 [55]. It has a doubling time of 2.5–3 days [56] and demonstrates a slow migratory

  20. Multidrug-resistance proteins are weak tumor associated antigens for colorectal carcinoma

    Directory of Open Access Journals (Sweden)

    Linnebacher Michael

    2011-07-01

    Full Text Available Abstract Background Multidrug resistance (MDR is a clinically, highly relevant phenomenon. Under chemotherapy many tumors show an increasing resistance towards the applied substance(s and to a certain extent also towards other agents. An important molecular cause of this phenomenon is an increased expression of transporter proteins. The functional relationship between high expression levels and chemotherapy resistance makes these MDR and MRP (MDR related protein proteins to interesting therapeutic targets. We here wanted to systematically analyze, whether these proteins are tumor specific antigens which could be targeted immunologically. Results Using the reverse immunology approach, 30 HLA-A2.1 restricted MDR and MRP derived peptides (MDP were selected. Stimulated T cell lines grew well and mainly contained activated CD8+ cells. Peptide specificity and HLA-A2.1 restriction were proven in IFN-γ-ELISpot analyses and in cytotoxicity tests against MDP loaded target cells for a total of twelve peptides derived from MDR-1, MDR-3, MRP-1, MRP-2, MRP-3 and MRP-5. Of note, two of these epitopes are shared between MDR-1 and MDR-3 as well as MRP-2 and MRP-3. However, comparably weak cytotoxic activities were additionally observed against HLA-A2.1+ tumor cells even after upregulation of MDR protein expression by in vitro chemotherapy. Conclusions Taken together, these data demonstrate that human T cells can be sensitised towards MDPs and hence, there is no absolute immunological tolerance. However, our data also hint towards rather low endogenous tumor cell processing and presentation of MDPs in the context of HLA-A2.1 molecules. Consequently, we conclude that MDR and MRP proteins must be considered as weak tumor specific antigens-at least for colorectal carcinoma. Their direct contribution to therapy-failure implies however, that it is worth to further pursue this approach.

  1. Multifunctional Nucleic Acids for Tumor Cell Treatment

    DEFF Research Database (Denmark)

    Pofahl, Monika; Wengel, Jesper; Mayer, Günter

    2014-01-01

    -proliferative and antimiR function in one 37-nucleotide nucleic acid molecule. It inhibits cancer cell growth and induces gene expression that is pathologically damped by an oncomir. These findings will have a strong impact on future developments regarding aptamer- and antimiR-related applications for tumor targeting...

  2. Microfluidic Platform for Circulating Tumor Cells Isolation

    Energy Technology Data Exchange (ETDEWEB)

    Figueras-Mari, I.; Rodriguez-Trujillo, L.; Samitier-Marti, J.

    2016-07-01

    Circulating tumor cells (CTCs) are released from primary tumors into the bloodstream and transported to distant organs, promoting metastasis, which is known to be responsible for most cancer‐related deaths. Currently tumors are not found until symptoms appear or by chance when the patient undergoes a medical test, which in both situations can be too late. Once a tumor is found it is studied from tissue samples obtained directly from the patient in an invasive way. This invasive procedure is known as biopsy and apart from being invasive, it is costly, time consuming and can sometimes be painful and even risky for the patients’ health condition. Therefore, CTCs detection in blood also addressed as “liquid biopsy” would be very useful because by running routine blood analysis CTCs could be detected and collected suggesting tumor presence. However, due to the scarce presence in blood of these cells and to the huge amount of contamination from other cellular components a perfect method providing good capture and purity of CTCs has not been developed yet. In this project, a spiral size sorter microfluidic device has been manufactured and tested in order to determine its performance and limitations. Device performance was tested with different dilutions of healthy donor blood samples mixed with 30 micron particles simulating CTCs. The results obtained from these experiments show very good CTC recovery of up to 100% and the depletion of blood cellular components is around 99.9%. (Author)

  3. IL-6 Potentiates Tumor Resistance to Photodynamic Therapy (PDT)

    Science.gov (United States)

    Brackett, Craig M.; Owczarczak, Barbara; Ramsey, Kimberley; Maier, Patricia G.; Gollnick, Sandra O.

    2013-01-01

    Background and Objective Photodynamic therapy (PDT) is an anticancer modality approved for the treatment of early disease and palliation of late stage disease. PDT of tumors results in the generation of an acute inflammatory response. The extent and duration of the inflammatory response is dependent upon the PDT regimen employed and is characterized by rapid induction of proinflammatory cytokines, such as IL-6, and activation and mobilization of innate immune cells. The importance of innate immune cells in long-term PDT control of tumor growth has been well defined. In contrast the role of IL-6 in long-term tumor control by PDT is unclear. Previous studies have shown that IL-6 can diminish or have no effect on PDT antitumor efficacy. Study Design/Materials and Methods In the current study we used mice deficient for IL-6, Il6−/−, to examine the role of IL-6 in activation of antitumor immunity and PDT efficacy by PDT regimens known to enhance antitumor immunity. Results Our studies have shown that elimination of IL-6 had no effect on innate cell mobilization into the treated tumor bed or tumor draining lymph node (TDLN) and did not affect primary antitumor T-cell activation by PDT. However, IL-6 does appear to negatively regulate the generation of antitumor immune memory and PDT efficacy against murine colon and mammary carcinoma models. The inhibition of PDT efficacy by IL-6 appears also to be related to regulation of Bax protein expression. Increased apoptosis was observed following treatment of tumors in Il6−/− mice 24 hours following PDT. Conclusions The development of PDT regimens that enhance antitumor immunity has led to proposals for the use of PDT as an adjuvant treatment. However, our results show that the potential for PDT induced expression of IL-6 to enhance tumor survival following PDT must be considered. PMID:22057495

  4. Emergent Stratification in Solid Tumors Selects for Reduced Cohesion of Tumor Cells: A Multi-Cell, Virtual-Tissue Model of Tumor Evolution Using CompuCell3D.

    Directory of Open Access Journals (Sweden)

    Maciej H Swat

    Full Text Available Tumor cells and structure both evolve due to heritable variation of cell behaviors and selection over periods of weeks to years (somatic evolution. Micro-environmental factors exert selection pressures on tumor-cell behaviors, which influence both the rate and direction of evolution of specific behaviors, especially the development of tumor-cell aggression and resistance to chemotherapies. In this paper, we present, step-by-step, the development of a multi-cell, virtual-tissue model of tumor somatic evolution, simulated using the open-source CompuCell3D modeling environment. Our model includes essential cell behaviors, microenvironmental components and their interactions. Our model provides a platform for exploring selection pressures leading to the evolution of tumor-cell aggression, showing that emergent stratification into regions with different cell survival rates drives the evolution of less cohesive cells with lower levels of cadherins and higher levels of integrins. Such reduced cohesivity is a key hallmark in the progression of many types of solid tumors.

  5. Advances in the Relationship Between Tumor Cell Metabolism and Tumor Metastasis

    Directory of Open Access Journals (Sweden)

    Yalong ZHANG

    2014-11-01

    Full Text Available Intracellular nutrients and the rate of energy flowing in tumor cells are often higher than that in normal cells due to the prolonged stress of tumor-specific microenvironment. In this context, the metabolism of tumor cells provides the fuel of bio-synthesis and energy required for tumor metastasis. Consistent with this, the abnormal metabolism such as extremely active glucose metabolism and excessive accumulating of fatty acid is also discovered in metastatic tumors. Previous Studies have confirmed that the regulation of tumor metabolism can affect the tumor metastasis, and some of these have been successfully applied in clinical effective, positive way. Thus, targeting metabolism of tumor cells might be an effectively positive way to prevent the metastasis of tumor. So, our review is focused on the research development of the relationship between tumor metabolism and metastasis as well as the underlying mechanism.

  6. Physicians' behavior influences the health and economic impact of applying circulating tumor cells as response marker in metastatic castration-resistant prostate cancer

    NARCIS (Netherlands)

    Degeling, K; Mehra, N.; Koffijberg, H; de Bono, J.S.; Ijzerman, M J

    2016-01-01

    Objectives: Treatment decisions in metastatic castration-resistant prostate cancer (mCRPC) vary between physicians, even though expert opinion guidelines exist to guide the interpretation of information from multiple time-dependent imaging modalities and markers. We aimed to investigate whether

  7. Intravital imaging of cancer stem cell plasticity in mammary tumors

    NARCIS (Netherlands)

    Zomer, A.; Ellenbroek, S.I.; Ritsma, L.; Beerling, E.; Vrisekoop, N.; van Rheenen, J.

    2013-01-01

    It is widely debated whether all tumor cells in mammary tumors have the same potential to propagate and maintain tumor growth or whether there is a hierarchical organization. Evidence for the latter theory is mainly based on the ability or failure of transplanted tumor cells to produce detectable

  8. In Vitro Efficient Expansion of Tumor Cells Deriving from Different Types of Human Tumor Samples

    Directory of Open Access Journals (Sweden)

    Ilaria Turin

    2014-03-01

    Full Text Available Obtaining human tumor cell lines from fresh tumors is essential to advance our understanding of antitumor immune surveillance mechanisms and to develop new ex vivo strategies to generate an efficient anti-tumor response. The present study delineates a simple and rapid method for efficiently establishing primary cultures starting from tumor samples of different types, while maintaining the immuno-histochemical characteristics of the original tumor. We compared two different strategies to disaggregate tumor specimens. After short or long term in vitro expansion, cells analyzed for the presence of malignant cells demonstrated their neoplastic origin. Considering that tumor cells may be isolated in a closed system with high efficiency, we propose this methodology for the ex vivo expansion of tumor cells to be used to evaluate suitable new drugs or to generate tumor-specific cytotoxic T lymphocytes or vaccines.

  9. Chemo-radioresistance of small cell lung cancer cell lines derived from untreated primary tumors obtained by diagnostic bronchofiberscopy

    International Nuclear Information System (INIS)

    Tanio, Yoshiro; Watanabe, Masatoshi; Inoue, Tamotsu

    1990-01-01

    New cell lines of small cell lung cancer (SCLC) were established from specimens of untreated primary tumors biopsied by diagnostic bronchofiberscopy. The advantage of this method was ease of obtaining specimens from lung tumors. Establishment of cell lines was successful with 4 of 13 specimens (30%). Clinical responses of the tumors showed considerable variation, but were well correlated with the in vitro sensitivity of the respective cell lines to chemotherapeutic drugs and irradiation. One of the cell lines was resistant to all drugs tested and irradiation, while another was sensitive to all of them. Although the acquired resistance of SCLC is the biggest problem in treatment, the natural resistance to therapy is another significant problem. Either acquired or natural, resistance mechanisms of SCLC may be elucidated by the use of such cell lines derived from untreated tumors. This method and these SCLC cell lines are expected to be useful for the serial study of biologic and genetic changes of untreated and pre-treated tumors, or primary and secondary tumors. (author)

  10. Vasculatures in Tumors Growing From Preirradiated Tissues: Formed by Vasculogenesis and Resistant to Radiation and Antiangiogenic Therapy

    International Nuclear Information System (INIS)

    Chen, Fang-Hsin; Chiang, Chi-Shiun; Wang, Chun-Chieh; Fu, Sheng-Yung; Tsai, Chien-Sheng; Jung, Shih-Ming; Wen, Chih-Jen; Lee, Chung-Chi; Hong, Ji-Hong

    2011-01-01

    Purpose: To investigate vasculatures and microenvironment in tumors growing from preirradiated tissues (pre-IR tumors) and study the vascular responses of pre-IR tumors to radiation and antiangiogenic therapy. Methods and Materials: Transgenic adenocarcinoma of the mouse prostate C1 tumors were implanted into unirradiated or preirradiated tissues and examined for vascularity, hypoxia, and tumor-associated macrophage (TAM) infiltrates by immunohistochemistry. The origin of tumor endothelial cells was studied by green fluorescent protein-tagged bone marrow (GFP-BM) transplantation. The response of tumor endothelial cells to radiation and antiangiogenic agent was evaluated by apoptotic assay. Results: The pre-IR tumors had obvious tumor bed effects (TBE), with slower growth rate, lower microvascular density (MVD), and more necrotic and hypoxic fraction compared with control tumors. The vessels were dilated, tightly adhered with pericytes, and incorporated with transplanted GFP-BM cells. In addition, hypoxic regions became aggregated with TAM. As pre-IR tumors developed, the TBE was overcome at the tumor edge where the MVD increased, TAM did not aggregate, and the GFP-BM cells did not incorporate into the vessels. The vessels at tumor edge were more sensitive to the following ionizing radiation and antiangiogenic agent than those in the central low MVD regions. Conclusions: This study demonstrates that vasculatures in regions with TBE are mainly formed by vasculogenesis and resistant to radiation and antiangiogenic therapy. Tumor bed effects could be overcome at the edge of larger tumors, but where vasculatures are formed by angiogenesis and sensitive to both treatments. Vasculatures formed by vasculogenesis should be the crucial target for the treatment of recurrent tumors after radiotherapy.

  11. Glioma Cells in the Tumor Periphery Have a Stem Cell Phenotype

    DEFF Research Database (Denmark)

    Munthe, Sune; Petterson, Stine Asferg; Dahlrot, Rikke Hedegaard

    2016-01-01

    and a panel of markers was used. The panel comprised of six stem cell-related markers (CD133, Musashi-1, Bmi-1, Sox-2, Nestin and Glut-3), a proliferation marker (Ki-67) as well as a chemo-resistance marker (MGMT). Computer-based automated classifiers were designed to measure the mIDH1 positive nucleus area...... markers, however for most markers at a significantly lower level than in the tumor core. The Ki-67 level was slightly reduced in the periphery, whereas the MGMT level was similar. In orthotopic glioblastoma xenografts all markers showed similar levels in the core and periphery. In conclusion tumor cells...

  12. The role of tumor microenvironment in resistance to anti-angiogenic therapy

    Science.gov (United States)

    Ma, Shaolin; Pradeep, Sunila; Hu, Wei; Zhang, Dikai; Coleman, Robert; Sood, Anil

    2018-01-01

    Anti-angiogenic therapy has been demonstrated to increase progression-free survival in patients with many different solid cancers. Unfortunately, the benefit in overall survival is modest and the rapid emergence of drug resistance is a significant clinical problem. Over the last decade, several mechanisms have been identified to decipher the emergence of resistance. There is a multitude of changes within the tumor microenvironment (TME) in response to anti-angiogenic therapy that offers new therapeutic opportunities. In this review, we compile results from contemporary studies related to adaptive changes in the TME in the development of resistance to anti-angiogenic therapy. These include preclinical models of emerging resistance, dynamic changes in hypoxia signaling and stromal cells during treatment, and novel strategies to overcome resistance by targeting the TME. PMID:29560266

  13. Primary brain tumors, neural stem cell, and brain tumor cancer cells: where is the link?

    Science.gov (United States)

    Germano, Isabelle; Swiss, Victoria; Casaccia, Patrizia

    2010-01-01

    The discovery of brain tumor-derived cells (BTSC) with the properties of stem cells has led to the formulation of the hypothesis that neural stem cells could be the cell of origin of primary brain tumors (PBT). In this review we present the most common molecular changes in PBT, define the criteria of identification of BTSC and discuss the similarities between the characteristics of these cells and those of the endogenous population of neural stem cells (NPCs) residing in germinal areas of the adult brain. Finally, we propose possible mechanisms of cancer initiation and progression and suggest a model of tumor initiation that includes intrinsic changes of resident NSC and potential changes in the microenvironment defining the niche where the NSC reside. PMID:20045420

  14. Collateral methotrexate resistance in cisplatin-selected murine leukemia cells

    Directory of Open Access Journals (Sweden)

    Bhushan A.

    1999-01-01

    Full Text Available Resistance to anticancer drugs is a major cause of failure of many therapeutic protocols. A variety of mechanisms have been proposed to explain this phenomenon. The exact mechanism depends upon the drug of interest as well as the tumor type treated. While studying a cell line selected for its resistance to cisplatin we noted that the cells expressed a >25,000-fold collateral resistance to methotrexate. Given the magnitude of this resistance we elected to investigate this intriguing collateral resistance. From a series of investigations we have identified an alteration in a membrane protein of the resistant cell as compared to the sensitive cells that could be the primary mechanism of resistance. Our studies reviewed here indicate decreased tyrosine phosphorylation of a protein (molecular mass = 66 in the resistant cells, which results in little or no transfer of methotrexate from the medium into the cell. Since this is a relatively novel function for tyrosine phosphorylation, this information may provide insight into possible pharmacological approaches to modify therapeutic regimens by analyzing the status of this protein in tumor samples for a better survival of the cancer patients.

  15. Cryo-ablation improves anti-tumor immunity through recovering tumor educated dendritic cells in tumor-draining lymph nodes.

    Science.gov (United States)

    He, Xiao-Zheng; Wang, Qi-Fu; Han, Shuai; Wang, Hui-Qing; Ye, Yong-Yi; Zhu, Zhi-Yuan; Zhang, Shi-Zhong

    2015-01-01

    In addition to minimally invasive destruction of tumors, cryo-ablation of tumors to some extent modulated anti-tumor immunity. Cryo-ablated tumors in glioma mice models induced anti-tumor cellular immunologic response which increases the percentage of CD3(+) and CD4(+)T cells in blood as well as natural killer cells. As a crucial role in triggering anti-tumor immunity, dendritic cells (DCs) were educated by tumors to adopt a tolerance phenotype which helps the tumor escape from immune monitoring. This study aims to study whether cryo-ablation could influence the tolerogenic DCs, and influence anti-tumor immunity in tumor-draining lymph nodes (TDLNs). Using the GL261 subcutaneous glioma mouse model, we created a tumor bearing group, cryo-ablation group, and surgery group. We analyzed alteration in phenotype and function of tolerogenic DCs, and evaluated the factors of anti-tumor immunity inhibition. DCs in TDLNs in GL261 subcutaneous glioma mouse model expressed tolerogenic phenotype. In contrast to surgery, cryo-ablation improved the quantity and quality of these tolerogenic DCs. Moreover, the DCs decreased the expression of intracellular interleukin-10 (IL-10) and extra-cellular IL-10. In vitro, DCs from the cryo-ablation group recovered their specific function and induced potent anti-tumor immunity through triggering T cells. In vivo, cryo-ablation showed weak anti-tumor immunity, only inhibiting the growth of rechallenged tumors. But many IL-10-low DCs, rather than IL-10-high DCs, infiltrated the tumors. More importantly, Tregs inhibited the performance of these DCs; and depletion of Tregs greatly improved anti-tumor immunity in vivo. Cryo-ablation could recover function of tumor induced tolerogenic DCs in vitro; and depletion of Tregs could improve this anti-tumor effect in vivo. The Tregs/CD4(+)T and Tregs/CD25(+)T cells in TDLNs inhibit DCs' activity and function.

  16. Granular cell tumors of the urinary bladder

    Directory of Open Access Journals (Sweden)

    Kayani Naila

    2007-03-01

    Full Text Available Abstract Background Granular cell tumors (GCTs are extremely rare lesions of the urinary bladder with only nine cases being reported in world literature of which one was malignant. Generally believed to be of neural origin based on histochemical, immunohistochemical, and ultrastructural studies; they mostly follow a clinically benign course but are commonly mistaken for malignant tumors since they are solid looking, ulcerated tumors with ill-defined margins. Materials and methods We herein report two cases of GCTs, one benign and one malignant, presenting with gross hematuria in a 14- and a 47-year-old female, respectively. Results Histopathology revealed characteristic GCTs with positive immunostaining for neural marker (S-100 and negative immunostaining for epithelial (cytokeratin, Cam 5.2, AE/A13, neuroendocrine (neuron specific enolase, chromogranin A, and synaptophysin and sarcoma (desmin, vimentin markers. The benign tumor was successfully managed conservatively with transurethral resection alone while for the malignant tumor, radical cystectomy, hysterectomy with bilateral salpingo-oophorectomy, anterior vaginectomy, plus lymph node dissection was done. Both cases show long-term disease free survival. Conclusion We recommend careful pathologic assessment for establishing the appropriate diagnosis and either a conservative or aggressive surgical treatment for benign or localized malignant GCT of the urinary bladder, respectively.

  17. Cells competition in tumor growth poroelasticity

    Science.gov (United States)

    Fraldi, Massimiliano; Carotenuto, Angelo R.

    2018-03-01

    Growth of biological tissues has been recently treated within the framework of Continuum Mechanics, by adopting heterogeneous poroelastic models where the interaction between soft matrix and interstitial fluid flow is coupled with inelastic effects ad hoc introduced to simulate the macroscopic volumetric growth determined by cells division, cells growth and extracellular matrix changes occurring at the micro-scale level. These continuum models seem to overcome some limitations intrinsically associated to other alternative approaches based on mass balances in multiphase systems, because the crucial role played by residual stresses accompanying growth and nutrients walkway is preserved. Nevertheless, when these strategies are applied to analyze solid tumors, mass growth is usually assigned in a prescribed form that essentially copies the in vitro measured intrinsic growth rates of the cell species. As a consequence, some important cell-cell dynamics governing mass evolution and invasion rates of cancer cells, as well as their coupling with feedback mechanisms associated to in situ stresses, are inevitably lost and thus the spatial distribution and the evolution with time of the growth inside the tumor -which would be results rather than inputs- are forced to enter in the model simply as data. In order to solve this paradox, it is here proposed an enhanced multi-scale poroelastic model undergoing large deformations and embodying inelastic growth, where the net growth terms directly result from the "interspecific" predator-prey (Volterra/Lotka-like) competition occurring at the micro-scale level between healthy and abnormal cell species. In this way, a system of fully-coupled non-linear PDEs is derived to describe how the fight among cell species to grab the available common resources, stress field, pressure gradients, interstitial fluid flows driving nutrients and inhomogeneous growth all simultaneously interact to decide the tumor fate.

  18. Identification of epigenetically silenced genes in tumor endothelial cells

    NARCIS (Netherlands)

    Hellebrekers, Debby M. E. I.; Melotte, Veerle; Vire, Emmanuelle; Langenkamp, Elise; Molema, Grietje; Fuks, Francois; Herman, James G.; Van Criekinge, Wim; Griffioen, Arjan W.; van Engeland, Manon

    2007-01-01

    Tumor angiogenesis requires intricate regulation of gene expression in endothelial cells. We recently showed that DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors directly repress endothelial cell growth and tumor angiogenesis, suggesting that epigenetic modifications mediated

  19. Does Royal jelly affect tumor cells?

    Directory of Open Access Journals (Sweden)

    Shirzad Maryam

    2013-04-01

    Full Text Available Introduction: Royal jelly is a substance that appears to be effective on immune system and it appears to be effective on both prevention and growth of cancer cells. In this study, we aimed to carry out a research to investigate the effect of royal jelly on the growth of WEHI-164 fibrosarcoma cell in syngenic Balb/c mice. Methods: In an experimental study, 28 male Balb/c mice were designated into four equal groups. The mice were subcutaneously injected with 5x105 WEHI-164 tumor cells on the day zero in the chest area of the animal. Animals in groups 1 to 4 were orally given 100, 200, 300 mg/kg of royal jelly or vehicle, respectively. In every individual mouse, the tumour size was measured every 2 days from day 5 (days 5, 7, 9, 11, 13, 15 and 17. Data were statistically analyzed using Kruskal-Wallis and Mann Whitney-U tests. Result: Our results showed that the mean size of tumor in case group was significantly smaller than the control group in days 11, 13, 15 and 17 (P<0.05. No metastasis was seen in test and control groups. Conclusion: With emphasize on antitumor effect of royal jelly, it seems that royal jelly has important role in control and regression of fibrosarcoma cells. Since royal jelly showed a delayed effect in control of fibrosarcoma, we suggest that royal jelly be used at least 10 days before tumor inoculation.

  20. Engineered Breast Cancer Cell Spheroids Reproduce Biologic Properties of Solid Tumors.

    Science.gov (United States)

    Ham, Stephanie L; Joshi, Ramila; Luker, Gary D; Tavana, Hossein

    2016-11-01

    Solid tumors develop as 3D tissue constructs. As tumors grow larger, spatial gradients of nutrients and oxygen and inadequate diffusive supply to cells distant from vasculature develops. Hypoxia initiates signaling and transcriptional alterations to promote survival of cancer cells and generation of cancer stem cells (CSCs) that have self-renewal and tumor-initiation capabilities. Both hypoxia and CSCs are associated with resistance to therapies and tumor relapse. This study demonstrates that 3D cancer cell models, known as tumor spheroids, generated with a polymeric aqueous two-phase system (ATPS) technology capture these important biological processes. Similar to solid tumors, spheroids of triple negative breast cancer cells deposit major extracellular matrix proteins. The molecular analysis establishes presence of hypoxic cells in the core region and expression of CSC gene and protein markers including CD24, CD133, and Nanog. Importantly, these spheroids resist treatment with chemotherapy drugs. A combination treatment approach using a hypoxia-activated prodrug, TH-302, and a chemotherapy drug, doxorubicin, successfully targets drug resistant spheroids. This study demonstrates that ATPS spheroids recapitulate important biological and functional properties of solid tumors and provide a unique model for studies in cancer research. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Tumor associated macrophages protect colon cancer cells from TRAIL-induced apoptosis through IL-1beta-dependent stabilization of Snail in tumor cells.

    Directory of Open Access Journals (Sweden)

    Pawan Kaler

    2010-07-01

    Full Text Available We recently reported that colon tumor cells stimulate macrophages to release IL-1beta, which in turn inactivates GSK3beta and enhances Wnt signaling in colon cancer cells, generating a self-amplifying loop that promotes the growth of tumor cells.Here we describe that macrophages protect HCT116 and Hke-3 colon cancer cells from TRAIL-induced apoptosis. Inactivation of IL-1beta by neutralizing IL-1beta antibody, or silencing of IL-1beta in macrophages inhibited their ability to counter TRAIL-induced apoptosis. Accordingly, IL-1beta was sufficient to inhibit TRAIL-induced apoptosis. TRAIL-induced collapse of the mitochondrial membrane potential (Delta psi and activation of caspases were prevented by macrophages or by recombinant IL-1beta. Pharmacological inhibition of IL-1beta release from macrophages by vitamin D(3, a potent chemopreventive agent for colorectal cancer, restored the ability of TRAIL to induce apoptosis of tumor cells cultured with macrophages. Macrophages and IL-1beta failed to inhibit TRAIL-induced apoptosis in HCT116 cells expressing dnIkappaB, dnAKT or dnTCF4, confirming that they oppose TRAIL-induced cell death through induction of Wnt signaling in tumor cells. We showed that macrophages and IL-1beta stabilized Snail in tumor cells in an NF-kappaB/Wnt dependent manner and that Snail deficient tumor cells were not protected from TRAIL-induced apoptosis by macrophages or by IL-1beta, demonstrating a crucial role of Snail in the resistance of tumor cells to TRAIL.We have identified a positive feedback loop between tumor cells and macrophages that propagates the growth and promotes the survival of colon cancer cells: tumor cells stimulate macrophages to secrete IL-1beta, which in turn, promotes Wnt signaling and stabilizes Snail in tumor cells, conferring resistance to TRAIL. Vitamin D(3 halts this amplifying loop by interfering with the release of IL-1beta from macrophages. Accordingly, vitamin D(3 sensitizes tumor cells to TRAIL

  2. Platelet-Activating Factor Receptor Ligands Protect Tumor Cells from Radiation-Induced Cell Death

    Directory of Open Access Journals (Sweden)

    Ildefonso Alves da Silva-Junior

    2018-02-01

    Full Text Available Irradiation generates oxidized phospholipids that activate platelet-activating factor receptor (PAFR associated with pro-tumorigenic effects. Here, we investigated the involvement of PAFR in tumor cell survival after irradiation. Cervical cancer samples presented higher levels of PAF-receptor gene (PTAFR when compared with normal cervical tissue. In cervical cancer patients submitted to radiotherapy (RT, the expression of PTAFR was significantly increased. Cervical cancer-derived cell lines (C33, SiHa, and HeLa and squamous carcinoma cell lines (SCC90 and SCC78 express higher levels of PAFR mRNA and protein than immortalized keratinocytes. Gamma radiation increased PAFR expression and induced PAFR ligands and prostaglandin E2 (PGE2 in these tumor cells. The blocking of PAFR with the antagonist CV3938 before irradiation inhibited PGE2 and increased tumor cells death. Similarly, human carcinoma cells transfected with PAFR (KBP were more resistant to radiation compared to those lacking the receptor (KBM. PGE2 production by irradiated KBP cells was also inhibited by CV3988. These results show that irradiation of carcinoma cells generates PAFR ligands that protect tumor cells from death and suggests that the combination of RT with a PAFR antagonist could be a promising strategy for cancer treatment.

  3. Overcoming photodynamic resistance and tumor targeting dual-therapy mediated by indocyanine green conjugated gold nanospheres.

    Science.gov (United States)

    Li, Wei; Guo, Xiaomeng; Kong, Fenfen; Zhang, Hanbo; Luo, Lihua; Li, Qingpo; Zhu, Chunqi; Yang, Jie; Du, Yongzhong; You, Jian

    2017-07-28

    Photodynamic therapy (PDT) and photothermal therapy (PTT) have captured much attention due to the great potential to cure malignant tumor. Nevertheless, photodynamic resistance of cancer cells has limited the further efficacy of PDT. Unfortunately, the resistance mechanism and efforts to overcome the resistance still have been rarely reported so far. Here, we report a nanosystem with specific tumor targeting for combined PDT and PTT mediated by near-infrared (NIR) light, which was established by covalently conjugating indocyanine green (ICG) and TNYL peptide onto the surface of hollow gold nanospheres (HAuNS). Our nanosystem (TNYL-ICG-HAuNS) was proved to possess significantly increased light stability, reactive oxygen species (ROS) production and photothermal effect under NIR light irradiation, thus presenting a remarkably enhanced antitumor efficacy. The up-regulation of nuclear factor erythroid 2-related factor 2 (NFE2L2, Nrf2) in cancer cells during PDT induced a significant increase of ABCG2, NQO-1 and HIF-1α expression, causing PDT resistance of the cells. Interestingly, ABCG2 expression could almost keep a normal level in the whole PDT process mediated by TNYL-ICG-HAuNS. After repeated irradiations, TNYL-ICG-HAuNS could still produce almost constant ROS in cells while the Nrf2 expression reduced significantly. Furthermore, PDT resistance induced an obvious decrease of the internalization of free ICG, but didn't influence the cell uptake of TNYL-ICG-HAuNS. Our data explained that TNYL-ICG-HAuNS could overcome the photodynamic resistance of cancer cells, acting as a promising modality for simultaneous photothermal and photodynamic cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Ovarian tumor-initiating cells display a flexible metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Angela S. [Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA (United States); Roberts, Paul C. [Biomedical Science and Pathobiology, Virginia Tech, Blacksburg, VA (United States); Frisard, Madlyn I. [Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA (United States); Hulver, Matthew W., E-mail: hulvermw@vt.edu [Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA (United States); Schmelz, Eva M., E-mail: eschmelz@vt.edu [Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA (United States)

    2014-10-15

    An altered metabolism during ovarian cancer progression allows for increased macromolecular synthesis and unrestrained growth. However, the metabolic phenotype of cancer stem or tumor-initiating cells, small tumor cell populations that are able to recapitulate the original tumor, has not been well characterized. In the present study, we compared the metabolic phenotype of the stem cell enriched cell variant, MOSE-L{sub FFLv} (TIC), derived from mouse ovarian surface epithelial (MOSE) cells, to their parental (MOSE-L) and benign precursor (MOSE-E) cells. TICs exhibit a decrease in glucose and fatty acid oxidation with a concomitant increase in lactate secretion. In contrast to MOSE-L cells, TICs can increase their rate of glycolysis to overcome the inhibition of ATP synthase by oligomycin and can increase their oxygen consumption rate to maintain proton motive force when uncoupled, similar to the benign MOSE-E cells. TICs have an increased survival rate under limiting conditions as well as an increased survival rate when treated with AICAR, but exhibit a higher sensitivity to metformin than MOSE-E and MOSE-L cells. Together, our data show that TICs have a distinct metabolic profile that may render them flexible to adapt to the specific conditions of their microenvironment. By better understanding their metabolic phenotype and external environmental conditions that support their survival, treatment interventions can be designed to extend current therapy regimens to eradicate TICs. - Highlights: • Ovarian cancer TICs exhibit a decreased glucose and fatty acid oxidation. • TICs are more glycolytic and have highly active mitochondria. • TICs are more resistant to AICAR but not metformin. • A flexible metabolism allows TICs to adapt to their microenvironment. • This flexibility requires development of specific drugs targeting TIC-specific changes to prevent recurrent TIC outgrowth.

  5. The Role of Tumor Associated Macrophage in Recurrent Growth of Tumor Stem Cell

    Science.gov (United States)

    2011-09-01

    recent cancer stem cell (CSC) theory, recurrent tumor must arise from a dormant tumor stem cell whose re-growth is triggered by shifting of...microenvironment. This project aims at clarifying the roles of TAM in recurrent growth of dormant stem cell in breast cancer. We hypothesize that the balance of...dormancy and recurrence is determined by the ability of the tumor stem cells to recruit TAM which in turn promotes self-renewal of the stem cell . We

  6. Oxygen microenvironment affects the uptake of nanoparticles in head and neck tumor cells

    Science.gov (United States)

    Chen, Eunice Y.; Hodge, Sasson; Tai, Katherine; Hou, Huagang; Khan, Nadeem; Hoopes, P. Jack; Samkoe, Kimberley S.

    2013-02-01

    Survival of head and neck cancer patients has not improved in several decades despite advances in diagnostic and therapeutic techniques. Tumor hypoxia in head and neck cancers is a critical factor that leads to poor prognosis, resistance to radiation and chemotherapies, and increased metastatic potential. Magnetic nanoparticle hyperthermia (mNPHT) is a promising therapy for hypoxic tumors because nanoparticles (NP) can be directly injected into, or targeted to, hypoxic tumor cells and exposed to alternating magnetic fields (AMF) to induce hyperthermia. Magnetic NPHT can improve therapeutic effectiveness by two modes of action: 1) direct killing of hypoxic tumor cells; and 2) increase in tumor oxygenation, which has the potential to make the tumor more susceptible to adjuvant therapies such as radiation and chemotherapy. Prior studies in breast cancer cells demonstrated that a hypoxic microenvironment diminished NP uptake in vitro; however, mNPHT with intratumoral NP injection in hypoxic tumors increased tumor oxygenation and delayed tumor growth. In this study, head and neck squamous cell carcinoma (HNSCC) cell lines were incubated in normoxic, hypoxic, and hyperoxic conditions with iron oxide NP for 4-72 hours. After incubation, the cells were analyzed for iron uptake by mass spectrometry, Prussian blue staining, and electron microscopy. In contrast to breast cancer cells, uptake of NPs was increased in hypoxic microenvironments as compared to normoxic conditions in HNSCC cells. In future studies, we will confirm the effect of the oxygen microenvironment on NP uptake and efficacy of mNPHT both in vitro and in vivo.

  7. Severe hypoxia induces chemo-resistance in clinical cervical tumors through MVP over-expression

    Directory of Open Access Journals (Sweden)

    Apolinario Rosa M

    2009-08-01

    Full Text Available Abstract Oxygen molecule modulates tumour response to radiotherapy. Higher radiation doses are required under hypoxic conditions to induce cell death. Hypoxia may inhibit the non-homologous end-joining DNA repair through down regulating Ku70/80 expression. Hypoxia induces drug resistance in clinical tumours, although the mechanism is not clearly elucidated. Vaults are ribonucleoprotein particles with a hollow barrel-like structure composed of three proteins: major vault protein (MVP, vault poly(ADP-ribose polymerase, and telomerase associated protein-1 and small untranslated RNA. Over-expression of MVP has been associated with chemotherapy resistance. Also, it has been related to poor outcome in patients treated with radiotherapy alone. The aim of the present study was to assess the relation of Major Vault Protein expression and tumor hypoxia in clinical cervical tumors. MVP, p53 and angiogenesis, together with tumor oxygenation, were determined in forty-three consecutive patients suffering from localized cervix carcinoma. High MVP expression was related to severe hypoxia compared to low MVP expressing tumors (p = 0.022. Tumors over-expressing MVP also showed increased angiogenesis (p = 0.003. Besides it, in this study we show for the first time that severe tumor hypoxia is associated with high MVP expression in clinical cervical tumors. Up-regulation of MVP by hypoxia is of critical relevance as chemotherapy is currently a standard treatment for those patients. From our results it could be suggested that hypoxia not only induces increased genetic instability, oncogenic properties and metastatization, but through the correlation observed with MVP expression, another pathway of chemo and radiation resistance could be developed.

  8. Cisplatin-induced Casepase-3 activation in different tumor cells

    Science.gov (United States)

    Shi, Hua; Li, Xiao; Su, Ting; Zhang, Yu-Hai

    2008-12-01

    Apoptosis plays an essential role in normal organism development which is one of the main types of programmed cell death to help tissues maintain homeostasis. Defective apoptosis can result in cell accumulation and therefore effects on tumor pathogenesis, progression and therapy resistance. A family of proteins, known as caspases, is typically activated in the early stages of apoptosis. Therefore, studying the kinetics of activation of caspases induced by antitumor drugs can contribute to antitumor drug discovery and explanation of the molecular mechanisms. This paper detected the Caspase-3 activity induced by cisplatin in human adenoid cystic carcinoma cell line (ACC-M), human hepatocellular liver carcinoma cell line (HepG2) and human epithelial carcinoma cell line (Hela) with stably expressing ECFP-DEVDDsRed (CD3) probe, a fluorescent probe consisting of Enhanced Cyan Fluorescent Protein (ECFP), red fluorescent protein (DsRed) and a linker with a recognition site of Caspase-3, by using the capillary electrophoresis (CE) and fluorescence resonance energy transfer (FRET) imaging system. Under the same concentration of cisplatin, ACC-M cells responded the most rapidly, and then HepG2 cells and Hela cells, respectively, in the early 30 hours. Later, HepG2 cells represented acceleration in the Caspase-3 activation speed and reached full activation the earliest comparing to other two cell types. The results demonstrated that ACC-M cell is more sensitive than the other two cell types under the treatment of cisplatin.

  9. Contributing Factors of Temozolomide Resistance in MCF-7 Tumor Xenograft Models

    OpenAIRE

    Kato, Yoshinori; Okollie, Baasil; Raman, Venu; Vesuna, Farhad; Zhao, Ming; Baker, Sharyn D.; Bhujwalla, Zaver M.; Artemov, Dmitri

    2007-01-01

    Vasculature mediated drug resistance in tumors was studied in female SCID mice bearing wild type MCF-7 and adriamycin resistant MCF-7/ADR xenograft using temozolomide (TMZ). A strong tumor growth inhibitory effect of TMZ treatment was observed in MCF-7 tumors during the initial treatment phase with subsequent relapse, but not in MCF-7/ADR tumors. Non-invasive MRI measurements of tumor vascular volume and vascular permeability-surface area product (PS) demonstrated significant reduction of PS ...

  10. Interferon-gamma and tumor necrosis factor-alpha sensitize primarily resistant human endometrial stromal cells to Fas-mediated apoptosis

    DEFF Research Database (Denmark)

    Fluhr, Herbert; Krenzer, Stefanie; Stein, Gerburg M

    2007-01-01

    of Fas by an agonistic anti-Fas antibody. Incubation of ESCs with the early embryonic signal human chorionic gonadotropin (hCG, CGB) does not influence their reaction to Fas stimulation. The sensitizing effect of IFN-gamma and TNF-alpha was accompanied by a significant upregulation of Fas and FLICE......The subtle interaction between the implanting embryo and the maternal endometrium plays a pivotal role during the process of implantation. Human endometrial stromal cells (ESCs) express Fas and the implanting trophoblast cells secrete Fas ligand (FASLG, FasL), suggesting a possible role for Fas...

  11. Repair in Ehrlich ascites tumor cells

    International Nuclear Information System (INIS)

    Wanna-Nakamura, S.S.

    1981-01-01

    Unscheduled DNA synthesis (UDS), an indicator of excision repair, was induced in freshly drawn Ehrlich ascites tumor cells (EAT), using ionizing radiation, far ultraviolet light (254 nm) or near uv light (365 nm) in combination with 8-methoxypsoralen. UDS was scored by grain counts in autoradiographs following the incorporation of tritium-labelled thymidine. The amount of UDS after each of these agents was expressed in terms of two parameters, viz. numer of cells showing repair and the mean number of grains per nucleus. The influence of radiation dose and of the duration of radioactive thymidine incubation were also examined. To test for a possible relationship between low mitotic index and repair capability, EAT cells were incubated in buffered salt media to lower the mitotic index. Cells kept in a buffered salt solution for 7 h show a marked drop in mitotic index compared to those incubated in minimal medium containing 15% fetal calf serum (MEM + FCS). This drop in mitotic index was reversible for up to 5 h, if cells were returned to MEM + FCS. Cells incubated in MEM + FCS also showed a decrease in mitotic activity compared to freshly drawn cells. This reduced mitotic index is approximately constant for up to 24 h. With the drop in mitotic index, EAT cells also show a drop in repair compared to freshly drawn cells. The repair capability of cells incubated in buffer can be restored by returning cells to MEM + FCS

  12. Establishment and Characterization of a Tumor Stem Cell-Based Glioblastoma Invasion Model

    DEFF Research Database (Denmark)

    Jensen, Stine Skov; Meyer, Morten; Petterson, Stine Asferg

    2016-01-01

    AIMS: Glioblastoma is the most frequent and malignant brain tumor. Recurrence is inevitable and most likely connected to tumor invasion and presence of therapy resistant stem-like tumor cells. The aim was therefore to establish and characterize a three-dimensional in vivo-like in vitro model taking...... invasion and tumor stemness into account. METHODS: Glioblastoma stem cell-like containing spheroid (GSS) cultures derived from three different patients were established and characterized. The spheroids were implanted in vitro into rat brain slice cultures grown in stem cell medium and in vivo into brains...... of immuno-compromised mice. Invasion was followed in the slice cultures by confocal time-lapse microscopy. Using immunohistochemistry, we compared tumor cell invasion as well as expression of proliferation and stem cell markers between the models. RESULTS: We observed a pronounced invasion into brain slice...

  13. Prognostic Importance of Circulating Tumor Cells in Nonsmall Cell ...

    African Journals Online (AJOL)

    Purpose: To investigate the prognostic value of circulating tumor cells (CTCs) and to predict the treatment response in a non-small cell lung cancer (NSCLC). Methodology: A single-center prospective study involving 93 patients with NSCLC was conducted. Blood samples were analyzed for CTC count before and after ...

  14. Dendritic cell-tumor cell hybrids and immunotherapy

    DEFF Research Database (Denmark)

    Cathelin, Dominique; Nicolas, Alexandra; Bouchot, André

    2011-01-01

    Dendritic cells (DC) are professional antigen-presenting cells currently being used as a cellular adjuvant in cancer immunotherapy strategies. Unfortunately, DC-based vaccines have not demonstrated spectacular clinical results. DC loading with tumor antigens and DC differentiation and activation...

  15. TRAIL-induced programmed necrosis as a novel approach to eliminate tumor cells

    International Nuclear Information System (INIS)

    Voigt, Susann; Kalthoff, Holger; Adam, Dieter; Philipp, Stephan; Davarnia, Parvin; Winoto-Morbach, Supandi; Röder, Christian; Arenz, Christoph; Trauzold, Anna; Kabelitz, Dieter; Schütze, Stefan

    2014-01-01

    The cytokine TRAIL represents one of the most promising candidates for the apoptotic elimination of tumor cells, either alone or in combination therapies. However, its efficacy is often limited by intrinsic or acquired resistance of tumor cells to apoptosis. Programmed necrosis is an alternative, molecularly distinct mode of programmed cell death that is elicited by TRAIL under conditions when the classical apoptosis machinery fails or is actively inhibited. The potential of TRAIL-induced programmed necrosis in tumor therapy is, however, almost completely uncharacterized. We therefore investigated its impact on a panel of tumor cell lines of wide-ranging origin. Cell death/viability was measured by flow cytometry/determination of intracellular ATP levels/crystal violet staining. Cell surface expression of TRAIL receptors was detected by flow cytometry, expression of proteins by Western blot. Ceramide levels were quantified by high-performance thin layer chromatography and densitometric analysis, clonogenic survival of cells was determined by crystal violet staining or by soft agarose cloning. TRAIL-induced programmed necrosis killed eight out of 14 tumor cell lines. Clonogenic survival was reduced in all sensitive and even one resistant cell lines tested. TRAIL synergized with chemotherapeutics in killing tumor cell lines by programmed necrosis, enhancing their effect in eight out of 10 tested tumor cell lines and in 41 out of 80 chemotherapeutic/TRAIL combinations. Susceptibility/resistance of the investigated tumor cell lines to programmed necrosis seems to primarily depend on expression of the pro-necrotic kinase RIPK3 rather than the related kinase RIPK1 or cell surface expression of TRAIL receptors. Furthermore, interference with production of the lipid ceramide protected all tested tumor cell lines. Our study provides evidence that TRAIL-induced programmed necrosis represents a feasible approach for the elimination of tumor cells, and that this treatment may

  16. Preparation and characterization of platinum(II) and (IV) complexes of 1,3-diaminepropane and 1,4-diaminebutane: circumvention of cisplatin resistance and DNA interstrand cross-link formation in CH1cisR ovarian tumor cells.

    Science.gov (United States)

    Alvarez-Valdés, Amparo; Pérez, José Manuel; López-Solera, Isabel; Lannegrand, Raúl; Continente, José Manuel; Amo-Ochoa, Pilar; Camazón, María José; Solans, Xavier; Font-Bardía, Mercè; Navarro-Ranninger, Carmen

    2002-04-25

    The reaction of Pt(dimethyl sulfoxide)(2)CBDCA (CBDCA = 1,1-cyclobutanedicarboxylate) with 1,4-diaminebutane and 1,3-diaminepropane ligands yields, under certain conditions, new [Pt(diamine)(2)]CBDCA complexes (1a,b), where the CBDCA ligand has been removed from the coordination sphere of the platinum atom by the diamine ligand, instead of forming the expected [Pt(diamine)CBDCA] complexes (1'a,b). The structure of complexes 1a and 1'b was solved by X-ray diffraction. Complex 1a crystallizes in the orthorhombic system, in the noncentrosymmetric C222 space group, with unit cell parameters: a = 20.053(2) A; b = 8.655(2) A, c = 5.711(3) A; V = 991.2(6) A(3); delta (calcd) = 1.627 mg/m(3); and R = 0.050. The Pt atom displays an unexpected distorted tetrahedral coordination with a N-Pt-N inner bond angle equal to 81(2) degrees for N atoms of the same 1,3-propanediamine ligand and a N-Pt-N bond angle for different ligands equal to 135.4(9) degrees. Complex 1'b crystallizes in the monoclinic system, in the centrosymmetric P2(1)/c space group, with unit cell parameters: a = 6.007(2) A; b = 15.336(4) A, c = 13.232(5) A; beta = 101.90(3) degrees; V = 1192.8(7) A(3); delta (calcd) = 2.369 mg/m(3); and R = 0.067. Cytotoxicity data show that of all the synthesized compounds, only complexes 1'a and 1'b exhibit remarkable cytotoxic properties. Thus, in contrast with carboplatin (cis-diammine-1,1-cyclobutane dicarboxilatoplatinum(II)), compounds 1'a and 1'b, which also contain the CBDCA ligand, are able to circumvent cisplatin (cis-diamminedichloroplatinum(II)) resistance in several tumor cells. Moreover, after 24 h of incubation of CH1cisR ovarian tumor cells with 10 microM of compounds 1'a and 1'b, the level of DNA interstrand cross-links (ICLs) induced by compounds 1'a and 1'b is 3.3 and 3.8 times higher, respectively, than that of carboplatin and 3.5 and 4.0 times higher, respectively, than that of cisplatin. Interestingly, under the same conditions, the intracellular

  17. Nanodrug Delivery in Reversing Multidrug Resistance in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Sonali eKapse-Mistry

    2014-07-01

    Full Text Available Different mechanisms in cancer cells become resistant to one or more chemotherapeutics is known as multidrug resistance(MDR which hinders chemotherapy efficacy. Potential factors for MDR includes enhanced drug detoxification, decreased drug uptake, increased intracellular nucleophiles levels, enhanced repair of drug induced DNA damage, overexpression of drug transporter such as P-glycoprotein(P-gp, multidrug resistance-associated proteins(MRP1, MRP2 and breast cancer resistance protein(BCRP. Currently nanoassemblies such as polymeric/solid lipid/inorganic/metal nanoparticles, quantum dots, dendrimers, liposomes, micelles has emerged as an innovative, effective and promising platforms for treatment of drug resistant cancer cells. Nanocarriers have potential to improve drug therapeutic index, ability for multifunctionality, divert ABC-transporter mediated drug efflux mechanism and selective targeting to tumor cells, cancer stem cells, tumor initiating cells or cancer microenvironment. Selective nanocarrier targeting to tumor overcomes dose-limiting side effects, lack of selectivity, tissue toxicity, limited drug access to tumor tissues, high drug doses and emergence of multiple drug resistance with conventional or combination chemotherapy. Current review highlights various nanodrug delivery systems to overcome mechanism of MDR by neutralizing, evading or exploiting the drug efflux pumps and those independent of drug efflux pump mechanism by silencing Bcl-2 and HIF1 gene expressions by siRNA and miRNA, modulating ceramide levels and targeting NF-B. Theragnostics combining a cytotoxic agent, targeting moiety, chemosensitizing agent and diagnostic imaging aid are highlighted as effective and innovative systems for tumor localization and overcoming MDR. Physical approaches such as combination of drug with thermal/ultrasound/photodynamic therapies to overcome MDR are focused. The review focuses on newer drug delivery systems developed to overcome

  18. Distribution of mast cells in benign odontogenic tumors.

    Science.gov (United States)

    de Assis Caldas Pereira, Francisco; Gurgel, Clarissa Araújo Silva; Ramos, Eduardo Antônio Gonçalves; Vidal, Manuela Torres Andion; Pinheiro, Antônio Luiz Barbosa; Jurisic, Vladimir; Sales, Caroline Brandi Schlaepfer; Cury, Patrícia Ramos; dos Santos, Jean Nunes

    2012-04-01

    The aim of this study was to investigate the presence of mast cells in a series of odontogenic tumors. Forty-five cases of odontogenic tumors were investigated using immunohistochemistry for mast cell triptase, and differences between groups were statistically evaluated. Mast cells were present in 96% of odontogenic tumors. Mast cells present in solid ameloblastoma were observed in the tumor stroma surrounding more solid and follicular epithelial islands, with or without squamous metaplasia. The odontogenic mixoma showed few mast cells. In odontogenic tumors with a cystic structure, the mast cells were distributed throughout all areas of the lesions, mainly in keratocystic odontogenic tumor. In addition, the total density of mast cells between all odontogenic tumors showed no significant difference (p > 0.05). A greater mast cells distribution was found in keratocystic odontogenic tumor in relation to adenomatoid odontogenic tumor (p < 0.01), and when the unicystic ameloblastoma and keratocistic odontogenic tumor were compared to the odontogenic myxoma (p < 0.05). Syndrome keratocystic odontogenic tumor showed a higher mean of mast cells when compared with the other tumors of the sample. Mast cells values presented by syndrome keratocystic odontogenic tumor were significantly greater than those of the sporadic keratocystic odontogenic tumor that were not associated with the syndrome (p = 0.03). Mast cells are probably one of the major components of the stromal scaffold in odontogenic tumors. We found significant differences of mast cells between syndrome nonsyndrome keratocystic odontogenic tumors, although their distribution did not seem to have any influence on the biologic behavior of benign odontogenic tumors.

  19. Breast tumor stroma: A driving force in the development of resistance to therapies.

    Science.gov (United States)

    Majidinia, Maryam; Yousefi, Bahman

    2017-03-01

    Breast cancer is the most common cancer and the second leading cause of cancer-related death in women worldwide. In spite of huge advancements in early detection and ever-increasing knowledge of breast cancer biology, approximately 30% of patients with early-stage breast cancer experience disease recurrence. Most patients are chemosensitive and cancer free immediately after the treatment. About 50% to 70% of breast cancer patients, however, will relapse within 1 year. Such a relapse is usually concomitant with adenocarcinoma cells acquiring a chemoresistant phenotype. Both de novo and acquired chemoresistance are poorly understood and present a major burden in the treatment of breast cancer. Although, previously, chemoresistance was largely linked to genetic alterations within the cancer cells, recent investigations are indicating that chemoresistance can also be associated with the tumor microenvironment. Nowadays, it is widely believed that tumor microenvironment is a key player in tumor progression and response to treatment. In this study, we will review the interactions of breast tumor cells with their microenvironment, present the latest research on the resistance mediated by the stromal component in breast cancer, and discuss the potential therapeutic strategies that can be exploited to treat breast cancers by targeting tumor microenvironment. © 2017 John Wiley & Sons A/S.

  20. Immune response to UV-induced tumors: mediation of progressor tumor rejection by natural killer cells

    International Nuclear Information System (INIS)

    Streeter, P.R.; Fortner, G.W.

    1986-01-01

    Skin tumors induced in mice by chronic ultraviolet (UV) irradiation are highly antigenic and can induce a state of transplantation immunity in syngeneic animals. In the present study, the authors compared the in vitro cytolytic activity of splenic lymphocytes from mice immunized with either regressor or progressor UV-tumors. The results of this comparison implicated tumor-specific cytolytic T (Tc) lymphocytes in rejection of regressor UV-tumors, and revealed that immunization with the progressor UV-tumor 2237 failed to elicit detectable levels of progressor tumor-specific Tc cells even as the tumors rejected. Following in vitro resensitization of spleen cells from either regressor or progressor tumor immune animals, the authors found NK-like lymphocytes with anti-tumor activity. As the authors had not detected cells with this activity in splenic lymphocyte preparations prior to in vitro resensitization, the authors examined lymphocytes from the local tumor environment during the course of progressor tumor rejection for this activity. This analysis revealed NK lymphocytes exhibiting significant levels of cytolytic activity against UV-tumors. These results implicate NK cells as potential effector cells in the rejection of progressor UV-tumors by immune animals, and suggests that these cells may be regulated by T lymphocytes

  1. Endogenous markers of tumor hypoxia. Predictors of clinical radiation resistance?

    International Nuclear Information System (INIS)

    Vordermark, D.; Brown, J.M.

    2003-01-01

    Background: Eppendorf electrode measurements of tumor oxygenation have defined an adverse effect of tumor hypoxia on prognosis after radiotherapy and other treatment modalities, in particular in head and neck and cervix carcinomas as well as soft tissue sarcomas. Recently, the immunohistochemical detection of proteins involved in the ''hypoxic response'' of tumor cells has been discussed as a method to estimate hypoxia in clinical tumor specimens. Material and Methods: This review focuses on clinical and experimental data, regarding prognostic impact and comparability with other methods of hypoxia detection, for three proteins suggested as endogenous markers of tumor hypoxia: hypoxia-inducible factor-1α (HIF-1α), carbonic anhydrase 9 (CA 9), and glucose transporter 1 (GLUT1). Results: None of the three potential hypoxia markers is exclusively hypoxia-specific, and in each case protein can be detected under normoxic conditions in vitro. HIF-1α responds rapidly to hypoxia but also to reoxygenation, making this marker quite unstable in the context of clinical sample collection. The perinecrotic labeling pattern typical of chronic hypoxia and a reasonable agreement with injectable hypoxia markers such as pimonidazole have most consistently been described for CA 9. All three markers showed correlation with Eppendorf electrode measurements of tumor oxygenation in carcinoma of the cervix. In nine of 13 reports, among them all three that refer to curative radiotherapy for head and neck cancer, HIF-1α overexpression was associated with poor outcome. CA 9 was an adverse prognostic factor in cervix, head and neck and lung cancer, but not in two other head and neck cancer reports. GLUT1 predicted for poor survival in colorectal, cervix and lung cancer. Conclusion: Endogenous markers have the potential to indicate therapeutically relevant levels of hypoxia within tumors. Clinical trials assessing a marker's ability to predict a benefit from specific hypoxia

  2. Tumor-infiltrating plasmacytoid dendritic cells promote immunosuppression by Tr1 cells in human liver tumors

    NARCIS (Netherlands)

    A. Pedroza-Gonzalez (Alexander); G. Zhou (Guoying); E. Vargas-Mendez (Ernesto); P.P.C. Boor (Patrick); S. Mancham (Shanta); C. Verhoef (Kees); W.G. Polak (Wojciech G); D.J. Grunhagen (Dirk Jan); Q. Pan (Qiuwei); H.L.A. Janssen (Harry); G.S. García-Romo (Gina); K. Biermann (Katharina); E.T.T.L. Tjwa (Eric); J.N.M. IJzermans (Jan); J. Kwekkeboom (Jaap); D. Sprengers (Dave)

    2015-01-01

    textabstractCD4+ type 1 T regulatory (Tr1) cells have a crucial role in inducing tolerance. Immune regulation by these cells is mainly mediated through the secretion of high amounts of IL-10. Several studies have suggested that this regulatory population may be involved in tumor-mediated

  3. Vertebral bony tumor of giant cells

    International Nuclear Information System (INIS)

    Jaramillo Carling, Eduardo

    2005-01-01

    This is a report of a 37 years old, masculine patient, in whom a unique primary bone injury was demonstrated, located at T-11, diagnosed as a giant cells tumor (osteoclastoma). Location is described in the literature as unusual. The clinical presentation of the injury is described, as the initial radiological studies and magnetic resonance images 8 years after surgical treatment, with no neoplasic recurrences. The medical literature of these primary bone injuries and its treatment was also reviewed. Objectives: to present a patient with an unusual extramedullar tumor injury, of primary bone origin, benign, treated surgically and who has a post surgical follow-up of 8 years. Local tumor recurrence and not pulmonary metastasis was demonstrated. The medical literature of this bone pathology that affects the spine in an infrequent manner, was also reviewed, specially the related to medical, surgical and radio-therapeutic treatments. Methodology: the clinical history of the patient is described, who was successfully operated, because the expansive tumor was totally drawn out, without neurological injury; inter operating or post-operating vertebral instability was not observed or diagnosed. The patient was controlled in periodic form, with last medical checkup and of magnetic resonance 8 years after the surgery. The medical publications existing are reviewed

  4. Irradiated tumor cells of lipopolysaccharide stimulation elicit an enhanced anti-tumor immunity.

    Science.gov (United States)

    Li, Yuli; Shen, Guobo; Nie, Wen; Li, Zhimian; Sang, Yaxiong; Zhang, Binglan; Wei, Yuquan

    2014-11-01

    Lipopolysaccharide (LPS) is a major component of the outer surface membrane of Gram-negative bacteria which has been proved an effective immune enhancer. Here, we investigated the anti-tumor effect of irradiated tumor cells that stimulated by LPS in mouse xenografts models. Tumor cells were irradiated after stimulation with 1 μg/mL LPS for 48 h. The C57BL/6 mice were immunized subcutaneously with irradiated tumor cells. The anti-tumor effect of lymphocytes of immunized mice was investigated. The cytotoxicity of spleen lymphocytes from immunized mice was determined by a standard (51)Cr-release assay. The roles of immune cell subsets in anti-tumor activity were assessed by injected intraperitoneally with monoclonal antibodies. We observed that the vaccine of irradiated tumor cell with LPS-stimulated elicited a stronger protective anti-tumor immunity than other controls. Adoptive transfer of lymphocytes of immunized mice showed that the cellular immune response was involved in the anti-tumor effect. And this effect was achieved by activation of antigen-specific CD8(+) T cell response and reduction of myeloid-derived suppressor cells (MDSCs, Gr1(+) CD11b (+) ), which were confirmed by depletion of immune cell subsets and flow cytometry analysis. In summary, our study showed that stimulation of LPS was able to enhance anti-tumor immunity of vaccination with tumor cells after irradiation treatment, which might be a new strategy for cancer therapy.

  5. Assessing tumor vascularization as a potential biomarker of imatinib resistance in gastrointestinal stromal tumors by dynamic contrast-enhanced magnetic resonance imaging.

    Science.gov (United States)

    Consolino, Lorena; Longo, Dario Livio; Sciortino, Marianna; Dastrù, Walter; Cabodi, Sara; Giovenzana, Giovanni Battista; Aime, Silvio

    2017-07-01

    Most metastatic gastrointestinal stromal tumors (GISTs) develop resistance to the first-line imatinib treatment. Recently, increased vessel density and angiogenic markers were reported in GISTs with a poor prognosis, suggesting that angiogenesis is implicated in GIST tumor progression and resistance. The purpose of this study was to investigate the relationship between tumor vasculature and imatinib resistance in different GIST mouse models using a noninvasive magnetic resonance imaging (MRI) functional approach. Immunodeficient mice (n = 8 for each cell line) were grafted with imatinib-sensitive (GIST882 and GIST-T1) and imatinib-resistant (GIST430) human cell lines. Dynamic contrast-enhanced MRI (DCE-MRI) was performed on GIST xenografts to quantify tumor vessel permeability (K trans ) and vascular volume fraction (v p ). Microvessel density (MVD), permeability (mean dextran density, MDD), and angiogenic markers were evaluated by immunofluorescence and western blot assays. Dynamic contrast-enhanced magnetic resonance imaging showed significantly increased vessel density (P < 0.0001) and permeability (P = 0.0002) in imatinib-resistant tumors compared to imatinib-sensitive ones. Strong positive correlations were observed between MRI estimates, K trans and v p , and their related ex vivo values, MVD (r = 0.78 for K trans and r = 0.82 for v p ) and MDD (r = 0.77 for K trans and r = 0.94 for v p ). In addition, higher expression of vascular endothelial growth factor receptors (VEGFR2 and VEFGR3) was seen in GIST430. Dynamic contrast-enhanced magnetic resonance imaging highlighted marked differences in tumor vasculature and microenvironment properties between imatinib-resistant and imatinib-sensitive GISTs, as also confirmed by ex vivo assays. These results provide new insights into the role that DCE-MRI could play in GIST characterization and response to GIST treatment. Validation studies are needed to confirm these findings.

  6. Breast Cancer Stem Cells in Antiestrogen Resistance

    Science.gov (United States)

    2014-10-01

    Schafer JIM ,O’Regan RM, Jordan VC. Antitumor action of physiological estradiol on tamox- ifen stimulated breast tumors grown in athymic mice. Clin. Cancer...JS, Crowe DL (2009) Tumor initiating cancer stem cells from human breast cancer cell lines. Int J Oncol 34:1449–1453. 10. Woodward WA, Chen MS... Crowe DL (2009) Tumor initiating cancer stem cells from human breast cancer cell lines. Int J Oncol 34: 1449–1453. 49. Woodward WA, Chen MS, Behbod F

  7. Combination cisplatin and sulforaphane treatment reduces proliferation, invasion, and tumor formation in epidermal squamous cell carcinoma.

    Science.gov (United States)

    Kerr, Candace; Adhikary, Gautam; Grun, Daniel; George, Nicholas; Eckert, Richard L

    2018-01-01

    Epidermal squamous cell carcinoma is an extremely common type of cancer. Early tumors can be successfully treated by surgery, but recurrent disease is aggressive and resistant to therapy. Cisplatin is often used as a treatment, but the outcome is rarely satisfactory. For this reason new strategies are required. Sulforaphane is a diet-derived cancer prevention agent that is effective in suppressing tumor growth in animal models of skin cancer. We monitored the efficacy of sulforaphane and cisplatin as a combined therapy for squamous cell carcinoma. Both agents suppress cell proliferation, growth of cancer stem cell spheroids, matrigel invasion and migration of SCC-13 and HaCaT cells, and combination treatment is more efficient. In addition, SCC-13 cell derived cancer stem cells are more responsive to these agents than non-stem cancer cells. Both agents suppress tumor formation, but enhanced suppression is observed with combined treatment. Moreover, both agents reduce the number of tumor-resident cancer stem cells. SFN treatment of cultured cells or tumors increases apoptosis and p21 Cip1 level, and both agents increase tumor apoptosis. We suggest that combined therapy with sulforaphane and cisplatin is efficient in suppressing tumor formation and may be a treatment option for advanced epidermal squamous cell carcinoma. © 2017 Wiley Periodicals, Inc.

  8. Chronic inhibition of tumor cell-derived VEGF enhances the malignant phenotype of colorectal cancer cells

    International Nuclear Information System (INIS)

    Yamagishi, Naoko; Teshima-Kondo, Shigetada; Masuda, Kiyoshi; Nishida, Kensei; Kuwano, Yuki; Dang, Duyen T; Dang, Long H; Nikawa, Takeshi; Rokutan, Kazuhito

    2013-01-01

    Vascular endothelial growth factor-a (VEGF)-targeted therapies have become an important treatment for a number of human malignancies. The VEGF inhibitors are actually effective in several types of cancers, however, the benefits are transiently, and the vast majority of patients who initially respond to the therapies will develop resistance. One of possible mechanisms for the acquired resistance may be the direct effect(s) of VEGF inhibitors on tumor cells expressing VEGF receptors (VEGFR). Thus, we investigated here the direct effect of chronic VEGF inhibition on phenotype changes in human colorectal cancer (CRC) cells. To chronically inhibit cancer cell-derived VEGF, human CRC cell lines (HCT116 and RKO) were chronically exposed (2 months) to an anti-VEGF monoclonal antibody (mAb) or were disrupted the Vegf gene (VEGF-KO). Effects of VEGF family members were blocked by treatment with a VEGF receptor tyrosine kinase inhibitor (VEGFR-TKI). Hypoxia-induced apoptosis under VEGF inhibited conditions was measured by TUNEL assay. Spheroid formation ability was assessed using a 3-D spheroid cell culture system. Chronic inhibition of secreted/extracellular VEGF by an anti-VEGF mAb redundantly increased VEGF family member (PlGF, VEGFR1 and VEGFR2), induced a resistance to hypoxia-induced apoptosis, and increased spheroid formation ability. This apoptotic resistance was partially abrogated by a VEGFR-TKI, which blocked the compensate pathway consisted of VEGF family members, or by knockdown of Vegf mRNA, which inhibited intracellular function(s) of all Vegf gene products. Interestingly, chronic and complete depletion of all Vegf gene products by Vegf gene knockout further augmented these phenotypes in the compensate pathway-independent manner. These accelerated phenotypes were significantly suppressed by knockdown of hypoxia-inducible factor-1α that was up-regulated in the VEGF-KO cell lines. Our findings suggest that chronic inhibition of tumor cell-derived VEGF

  9. Case Report: A Testicular Leydig Cell Tumor with Azoospermia; Re ...

    African Journals Online (AJOL)

    Leydig tumor is relatively a rare testicular tumor but the most common non-germ cell gonadal tumor. It constitutes about 1-3% of all testicular tumors. Clinically, it is usually presented as a testicular mass or with endocrine symptoms, which include gynecomastia, increased sex hormone levels, and other correlated symptoms.

  10. Doxorubicin fails to eradicate cancer stem cells derived from anaplastic thyroid carcinoma cells: characterization of resistant cells.

    Science.gov (United States)

    Zheng, Xuqin; Cui, Dai; Xu, Shuhang; Brabant, Georg; Derwahl, Michael

    2010-08-01

    Current chemotherapy with doxorubicin fails to eradicate anaplastic thyroid cancer or even to stop tumor progress which may be due to the failure of these drugs to effectively target putative cancer stem cells. To test this hypothesis, anaplastic thyroid cell lines were characterized by FACS for their content of cancer stem cells, their in vitro sphere-forming capacity and their expression of multidrug resistance transporters of the ABC gene family which may confer drug resistance to the cells. Cells were treated with doxorubicin in short-term and long-term culture up to 6 months to establish a resistant cell line. The survival of cancer and cancer stem cells and the differential expression of transporters were analyzed. Anaplastic thyroid cancer cell lines that consisted of 0.4-0.8% side population cells, expressed ABCG2 and multi-drug-resistant 1 (MDR1) transporters. Treatment with doxorubicin gradually killed the non-side population of cancer cells derived from anaplastic thyroid carcinoma cells. This conferred a growth advantage to cancer stem cells which in turn overgrew the culture. Resistant cell line consisted of a 70% side population fraction enriched with Oct4-positive cancer stem cells. Inhibition of ABCG2 and/or MDR1 revealed that resistance of cancer stem cells to doxorubicin may be mainly due to the expression of these ABC transporters that were highly up-regulated in the resistant subline. The poor outcome of chemotherapy with doxorubicin in anaplastic thyroid carcinoma may be partly explained by up-regulation of ABCG2 and MDR1 transporters that confers resistance to cancer stem cells. Thus an effective treatment of anaplastic thyroid cancer has not only to destroy cancer cells that represent the bulk of tumor cell population but also cancer stem cells that may drive tumor progression.

  11. Plexin D1 is ubiquitously expressed on tumor vessels and tumor cells in solid malignancies

    International Nuclear Information System (INIS)

    Roodink, Ilse; Verrijp, Kiek; Raats, Jos; Leenders, William PJ

    2009-01-01

    Plexin D1 is expressed on both tumor-associated endothelium and malignant cells in a number of clinical brain tumors. Recently we demonstrated that Plexin D1 expression is correlated with tumor invasion level and metastasis in a human melanoma progression series. The objective of this study was to examine whether Plexin D1 might be clinically useful as a pan-tumor vessel and pan-tumor cell target in solid tumors. We examined Plexin D1 expression in clinical solid tumors (n = 77) of different origin, a selection of pre-malignant lesions (n = 29) and a variety of non-tumor related tissues (n = 52) by immunohistochemistry. Signals were verified in a selection of tissues via mRNA in situ hybridization. Plexin D1 is abundantly expressed on both activated established tumor vasculature and malignant cells in the majority of primary and metastatic clinical tumors, as well as on macrophages and fibroblasts. Importantly, in non-tumor related tissues Plexin D1 expression is restricted to a subset of, presumably activated, fibroblasts and macrophages. We demonstrate that Plexin D1 is in general ubiquitously expressed in tumor but not normal vasculature, as well as in malignant cells in a wide range of human tissues. This expression profile highlights Plexin D1 as a potentially valuable therapeutic target in clinical solid tumors, enabling simultaneous targeting of different tumor compartments

  12. Imaging of giant cell tumor of bone

    Directory of Open Access Journals (Sweden)

    Purohit Shaligram

    2007-01-01

    Full Text Available Giant cell tumor (GCT of bone is a benign but locally aggressive and destructive lesion generally occurring in skeletally mature individuals. Typically involving the epiphysiometaphyseal region of long bones, the most common sites include the distal femur, proximal tibia and distal radius. On radiographs, GCT demonstrates a lytic lesion centered in the epiphysis but involving the metaphysis and extending at least in part to the adjacent articular cortex. Most are eccentric, but become symmetric and centrally located with growth. Most cases show circumscribed borders or so-called geographical destruction with no periosteal reaction unless a pathological fracture is present. There is no mineralized tumor matrix. Giant cell tumor can produce wide-ranging appearances depending on site, complications such as hemorrhage or pathological fracture and after surgical intervention. This review demonstrates a spectrum of these features and describes the imaging characteristics of GCT in conventional radiographs, computerized tomography scans, magnetic resonance imaging, bone scans, positron emission tomography scans and angiography.

  13. Snail1 induces epithelial-to-mesenchymal transition and tumor initiating stem cell characteristics

    International Nuclear Information System (INIS)

    Dang, Hien; Ding, Wei; Emerson, Dow; Rountree, C Bart

    2011-01-01

    Tumor initiating stem-like cells (TISCs) are a subset of neoplastic cells that possess distinct survival mechanisms and self-renewal characteristics crucial for tumor maintenance and propagation. The induction of epithelial-mesenchymal-transition (EMT) by TGFβ has been recently linked to the acquisition of TISC characteristics in breast cancer. In HCC, a TISC and EMT phenotype correlates with a worse prognosis. In this work, our aim is to elucidate the underlying mechanism by which cells acquire tumor initiating characteristics after EMT. Gene and protein expression assays and Nanog-promoter luciferase reporter were utilized in epithelial and mesenchymal phenotype liver cancer cell lines. EMT was analyzed with migration/invasion assays. TISC characteristics were analyzed with tumor-sphere self-renewal and chemotherapy resistance assays. In vivo tumor assay was performed to investigate the role of Snail1 in tumor initiation. TGFβ induced EMT in epithelial cells through the up-regulation of Snail1 in Smad-dependent signaling. Mesenchymal liver cancer post-EMT demonstrates TISC characteristics such as tumor-sphere formation but are not resistant to cytotoxic therapy. The inhibition of Snail1 in mesenchymal cells results in decreased Nanog promoter luciferase activity and loss of self-renewal characteristics in vitro. These changes confirm the direct role of Snail1 in some TISC traits. In vivo, the down-regulation of Snail1 reduced tumor growth but was not sufficient to eliminate tumor initiation. In summary, TGFβ induces EMT and TISC characteristics through Snail1 and Nanog up-regulation. In mesenchymal cells post-EMT, Snail1 directly regulates Nanog expression, and loss of Snail1 regulates tumor growth without affecting tumor initiation

  14. BMI-1 targeting interferes with patient-derived tumor-initiating cell survival and tumor growth in prostate cancer

    Science.gov (United States)

    Yusuff, Shamila; Davis, Stephani; Flaherty, Kathleen; Huselid, Eric; Patrizii, Michele; Jones, Daniel; Cao, Liangxian; Sydorenko, Nadiya; Moon, Young-Choon; Zhong, Hua; Medina, Daniel J.; Kerrigan, John; Stein, Mark N.; Kim, Isaac Y.; Davis, Thomas W.; DiPaola, Robert S.; Bertino, Joseph R.; Sabaawy, Hatem E.

    2016-01-01

    Purpose Current prostate cancer (PCa) management calls for identifying novel and more effective therapies. Self-renewing tumor-initiating cells (TICs) hold intrinsic therapy-resistance and account for tumor relapse and progression. As BMI-1 regulates stem cell self-renewal, impairing BMI-1 function for TICs-tailored therapies appears to be a promising approach. Experimental design We have previously developed a combined immunophenotypic and time-of-adherence assay to identify CD49bhiCD29hiCD44hi cells as human prostate TICs. We utilized this assay with patient derived prostate cancer cells and xenograft models to characterize the effects of pharmacological inhibitors of BMI-1. Results We demonstrate that in cell lines and patient-derived TICs, BMI-1 expression is upregulated and associated with stem cell-like traits. From a screened library, we identified a number of post-transcriptional small molecules that target BMI-1 in prostate TICs. Pharmacological inhibition of BMI-1 in patient-derived cells significantly decreased colony formation in vitro and attenuated tumor initiation in vivo, thereby functionally diminishing the frequency of TICs, particularly in cells resistant to proliferation- and androgen receptor (AR)-directed therapies, without toxic effects on normal tissues. Conclusions Our data offer a paradigm for targeting TICs and support the development of BMI-1-targeting therapy for a more effective PCa treatment. PMID:27307599

  15. Granular cell tumors of the head and neck.

    Science.gov (United States)

    Regezi, J A; Batsakis, J G; Courtney, R M

    1979-06-01

    Forth-two granular cell tumors of the head and neck were collected and studied with light and electron microscopy. Granular cells were found in four odontogenic tumors, two congenital epulides of newborn infants, and 36 myoblastoma lesions of the skin and mucous membranes. Support is presented for the hypothesis that granular cells represent an unusual nonspecific degenerative process and that nonodontogenic granular cell tumors develop from undifferentiated mesenchymal cells that subsequently undergo autophagocytosis.

  16. Isolation of Circulating Tumor Cells by Dielectrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Gascoyne, Peter R. C., E-mail: pgascoyn@mdanderson.org [Department of Imaging Physics Research, The University of Texas M.D. Anderson Cancer Center Unit 951, 1515 Holcombe Boulevard, Houston, TX 77030 (United States); Shim, Sangjo [Department of Imaging Physics Research, The University of Texas M.D. Anderson Cancer Center Unit 951, 1515 Holcombe Boulevard, Houston, TX 77030 (United States); Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station, C0800, Austin, TX 78712 (United States); Present address: Micro & Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, 208 North Wright Street, Urbana, IL 61801 (United States)

    2014-03-12

    Dielectrophoresis (DEP) is an electrokinetic method that allows intrinsic dielectric properties of suspended cells to be exploited for discrimination and separation. It has emerged as a promising method for isolating circulation tumor cells (CTCs) from blood. DEP-isolation of CTCs is independent of cell surface markers. Furthermore, isolated CTCs are viable and can be maintained in culture, suggesting that DEP methods should be more generally applicable than antibody-based approaches. The aim of this article is to review and synthesize for both oncologists and biomedical engineers interested in CTC isolation the pertinent characteristics of DEP and CTCs. The aim is to promote an understanding of the factors involved in realizing DEP-based instruments having both sufficient discrimination and throughput to allow routine analysis of CTCs in clinical practice. The article brings together: (a) the principles of DEP; (b) the biological basis for the dielectric differences between CTCs and blood cells; (c) why such differences are expected to be present for all types of tumors; and (d) instrumentation requirements to process 10 mL blood specimens in less than 1 h to enable routine clinical analysis. The force equilibrium method of dielectrophoretic field-flow fractionation (DEP-FFF) is shown to offer higher discrimination and throughput than earlier DEP trapping methods and to be applicable to clinical studies.

  17. Isolation of Circulating Tumor Cells by Dielectrophoresis

    Directory of Open Access Journals (Sweden)

    Peter R. C. Gascoyne

    2014-03-01

    Full Text Available Dielectrophoresis (DEP is an electrokinetic method that allows intrinsic dielectric properties of suspended cells to be exploited for discrimination and separation. It has emerged as a promising method for isolating circulation tumor cells (CTCs from blood. DEP-isolation of CTCs is independent of cell surface markers. Furthermore, isolated CTCs are viable and can be maintained in culture, suggesting that DEP methods should be more generally applicable than antibody-based approaches. The aim of this article is to review and synthesize for both oncologists and biomedical engineers interested in CTC isolation the pertinent characteristics of DEP and CTCs. The aim is to promote an understanding of the factors involved in realizing DEP-based instruments having both sufficient discrimination and throughput to allow routine analysis of CTCs in clinical practice. The article brings together: (a the principles of DEP; (b the biological basis for the dielectric differences between CTCs and blood cells; (c why such differences are expected to be present for all types of tumors; and (d instrumentation requirements to process 10 mL blood specimens in less than 1 h to enable routine clinical analysis. The force equilibrium method of dielectrophoretic field-flow fractionation (DEP-FFF is shown to offer higher discrimination and throughput than earlier DEP trapping methods and to be applicable to clinical studies.

  18. Circulating Tumor Cells, Enumeration and Beyond

    Directory of Open Access Journals (Sweden)

    Jian-Mei Hou

    2010-06-01

    Full Text Available The detection and enumeration of circulating tumor cells (CTCs has shown significant clinical utility with respect to prognosis in breast, colorectal and prostate cancers. Emerging studies show that CTCs can provide pharmacodynamic information to aid therapy decision making. CTCs as a ‘virtual and real-time biopsy’ have clear potential to facilitate exploration of tumor biology, and in particular, the process of metastasis. The challenge of profiling CTC molecular characteristics and generating CTC signatures using current technologies is that they enrich rather than purify CTCs from whole blood; we face the problem of looking for the proverbial ‘needle in the haystack’. This review summarizes the current methods for CTC detection and enumeration, focuses on molecular characterization of CTCs, unveils some aspects of CTC heterogeneity, describes attempts to purify CTCs and scans the horizon for approaches leading to comprehensive dissection of CTC biology.

  19. Circulating Tumor Cells, Enumeration and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Jian-Mei [Clinical and Experimental Pharmacology Group, Paterson Institute for Cancer Research, Manchester M20 4BX (United Kingdom); Krebs, Matthew [Clinical and Experimental Pharmacology Group, Paterson Institute for Cancer Research, Manchester M20 4BX (United Kingdom); Christie Hospital Foundation NHS Trust, Manchester M20 4BX (United Kingdom); Ward, Tim; Morris, Karen; Sloane, Robert [Clinical and Experimental Pharmacology Group, Paterson Institute for Cancer Research, Manchester M20 4BX (United Kingdom); Blackhall, Fiona [Clinical and Experimental Pharmacology Group, Paterson Institute for Cancer Research, Manchester M20 4BX (United Kingdom); School of Cancer and Enabling Sciences, University of Manchester, Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, Manchester M20 4BX (United Kingdom); Christie Hospital Foundation NHS Trust, Manchester M20 4BX (United Kingdom); Dive, Caroline, E-mail: cdive@picr.man.ac.uk [Clinical and Experimental Pharmacology Group, Paterson Institute for Cancer Research, Manchester M20 4BX (United Kingdom); School of Cancer and Enabling Sciences, University of Manchester, Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, Manchester M20 4BX (United Kingdom)

    2010-06-09

    The detection and enumeration of circulating tumor cells (CTCs) has shown significant clinical utility with respect to prognosis in breast, colorectal and prostate cancers. Emerging studies show that CTCs can provide pharmacodynamic information to aid therapy decision making. CTCs as a ‘virtual and real-time biopsy’ have clear potential to facilitate exploration of tumor biology, and in particular, the process of metastasis. The challenge of profiling CTC molecular characteristics and generating CTC signatures using current technologies is that they enrich rather than purify CTCs from whole blood; we face the problem of looking for the proverbial ‘needle in the haystack’. This review summarizes the current methods for CTC detection and enumeration, focuses on molecular characterization of CTCs, unveils some aspects of CTC heterogeneity, describes attempts to purify CTCs and scans the horizon for approaches leading to comprehensive dissection of CTC biology.

  20. Circulating Tumor Cells, Enumeration and Beyond

    International Nuclear Information System (INIS)

    Hou, Jian-Mei; Krebs, Matthew; Ward, Tim; Morris, Karen; Sloane, Robert; Blackhall, Fiona; Dive, Caroline

    2010-01-01

    The detection and enumeration of circulating tumor cells (CTCs) has shown significant clinical utility with respect to prognosis in breast, colorectal and prostate cancers. Emerging studies show that CTCs can provide pharmacodynamic information to aid therapy decision making. CTCs as a ‘virtual and real-time biopsy’ have clear potential to facilitate exploration of tumor biology, and in particular, the process of metastasis. The challenge of profiling CTC molecular characteristics and generating CTC signatures using current technologies is that they enrich rather than purify CTCs from whole blood; we face the problem of looking for the proverbial ‘needle in the haystack’. This review summarizes the current methods for CTC detection and enumeration, focuses on molecular characterization of CTCs, unveils some aspects of CTC heterogeneity, describes attempts to purify CTCs and scans the horizon for approaches leading to comprehensive dissection of CTC biology

  1. Concomitant tumor and autoantigen vaccination supports renal cell carcinoma rejection.

    Science.gov (United States)

    Herbert, Nicolás; Haferkamp, Axel; Schmitz-Winnenthal, Hubertus F; Zöller, Margot

    2010-07-15

    Efficient tumor vaccination frequently requires adjuvant. Concomitant induction of an autoimmune response is discussed as a means to strengthen a weak tumor Ag-specific response. We asked whether the efficacy of dendritic cell (DC) vaccination with the renal cell carcinoma Ags MAGE-A9 (MAGE9) and G250 could be strengthened by covaccination with the renal cell carcinoma autoantigen GOLGA4. BALB/c mice were vaccinated with DC loaded with MHC class I-binding peptides of MAGE9 or G250 or tumor lysate, which sufficed for rejection of low-dose RENCA-MAGE9 and RENCA-G250 tumor grafts, but only retarded tumor growth at 200 times the tumor dose at which 100% of animals will develop a tumor. Instead, 75-100% of mice prevaccinated concomitantly with Salmonella typhimurium transformed with GOLGA4 cDNA in a eukaryotic expression vector rejected 200 times the tumor dose at which 100% of animals will develop tumor. In a therapeutic setting, the survival rate increased from 20-40% by covaccination with S. typhimurium-GOLGA4. Autoantigen covaccination significantly strengthened tumor Ag-specific CD4(+) and CD8(+) T cell expansion, particularly in peptide-loaded DC-vaccinated mice. Covaccination was accompanied by an increase in inflammatory cytokines, boosted IL-12 and IFN-gamma expression, and promoted a high tumor Ag-specific CTL response. Concomitant autoantigen vaccination also supported CCR6, CXCR3, and CXCR4 upregulation and T cell recruitment into the tumor. It did not affect regulatory T cells, but slightly increased myeloid-derived suppressor cells. Thus, tumor cell eradication was efficiently strengthened by concomitant induction of an immune response against a tumor Ag and an autoantigen expressed by the tumor cell. Activation of autoantigen-specific Th cells strongly supports tumor-specific Th cells and thereby CTL activation.

  2. Tumor-altered dendritic cell function: implications for anti-tumor immunity

    Directory of Open Access Journals (Sweden)

    Kristian Michael Hargadon

    2013-07-01

    Full Text Available Dendritic cells are key regulators of both innate and adaptive immunity, and the array of immunoregulatory functions exhibited by these cells is dictated by their differentiation, maturation, and activation status. Although a major role for these cells in the induction of immunity to pathogens has long been appreciated, data accumulated over the last several years has demonstrated that DC are also critical regulators of anti-tumor immune responses. However, despite the potential for stimulation of robust anti-tumor immunity by DC, tumor-altered DC function has been observed in many cancer patients and tumor-bearing animals and is often associated with tumor immune escape. Such dysfunction has significant implications for both the induction of natural anti-tumor immune responses as well as the efficacy of immunotherapeutic strategies that target endogenous DC in situ or that employ exogenous DC as part of anti-cancer immunization maneuvers. In this review, the major types of tumor-altered DC function will be described, with emphasis on recent insights into the mechanistic bases for the inhibition of DC differentiation from hematopoietic precursors, the altered programming of DC precursors to differentiate into myeloid-derived suppressor cells or tumor-associated macrophages, the suppression of DC maturation and activation, and the induction of immunoregulatory DC by tumors, tumor-derived factors, and tumor-associated cells within the milieu of the tumor microenvironment. The impact of these tumor-altered cells on the quality of the overall anti-tumor immune response will also be discussed. Finally, this review will also highlight questions concerning tumor-altered DC function that remain unanswered, and it will address factors that have limited advances in the study of this phenomenon in order to focus future research efforts in the field on identifying strategies for interfering with tumor-associated DC dysfunction and improving DC-mediated anti-tumor

  3. Tumor-altered dendritic cell function: implications for anti-tumor immunity.

    Science.gov (United States)

    Hargadon, Kristian M

    2013-01-01

    Dendritic cells (DC) are key regulators of both innate and adaptive immunity, and the array of immunoregulatory functions exhibited by these cells is dictated by their differentiation, maturation, and activation status. Although a major role for these cells in the induction of immunity to pathogens has long been appreciated, data accumulated over the last several years has demonstrated that DC are also critical regulators of anti-tumor immune responses. However, despite the potential for stimulation of robust anti-tumor immunity by DC, tumor-altered DC function has been observed in many cancer patients and tumor-bearing animals and is often associated with tumor immune escape. Such dysfunction has significant implications for both the induction of natural anti-tumor immune responses as well as the efficacy of immunotherapeutic strategies that target endogenous DC in situ or that employ exogenous DC as part of anti-cancer immunization maneuvers. In this review, the major types of tumor-altered DC function will be described, with emphasis on recent insights into the mechanistic bases for the inhibition of DC differentiation from hematopoietic precursors, the altered programing of DC precursors to differentiate into myeloid-derived suppressor cells or tumor-associated macrophages, the suppression of DC maturation and activation, and the induction of immunoregulatory DC by tumors, tumor-derived factors, and tumor-associated cells within the milieu of the tumor microenvironment. The impact of these tumor-altered cells on the quality of the overall anti-tumor immune response will also be discussed. Finally, this review will also highlight questions concerning tumor-altered DC function that remain unanswered, and it will address factors that have limited advances in the study of this phenomenon in order to focus future research efforts in the field on identifying strategies for interfering with tumor-associated DC dysfunction and improving DC-mediated anti-tumor immunity.

  4. Severe acute tumor lysis syndrome in patients with germ-cell tumors

    Directory of Open Access Journals (Sweden)

    Guilherme Alvarenga Feres

    2008-01-01

    Full Text Available Germ-cell tumors are a high-proliferative type of cancer that may evolve to significant bulky disease. Tumor lysis syndrome is rarely reported in this setting. The reports of three patients with germ-cell tumors who developed severe acute tumor lysis syndrome following the start of their anticancer therapy are presented. All patients developed renal dysfunction and multiorgan failure. Patients with extensive germ-cell tumors should be kept on close clinical and laboratory monitoring. Physicians should be aware of this uncommon but severe complication and consider early admission to the intensive care unit for the institution of measures to prevent acute renal failure.

  5. Metabolic regulation of glioma stem-like cells in the tumor micro-environment.

    Science.gov (United States)

    Thomas, Tom M; Yu, John S

    2017-11-01

    Cancer metabolism has emerged as one of the most interesting old ideas being revisited from a new perspective. In the early 20th century Otto Warburg declared metabolism the prime cause in a disease of many secondary causes, and this statement seems more prescient in view of modern expositions into the true nature of tumor evolution. As the complexity of tumor heterogeneity becomes more clear from a genetic perspective, it is important to consider the inevitably heterogeneous metabolic components of the tumor and the tumor microenvironment. High grade gliomas remain one of the most difficult to treat solid tumors, due in part to the highly vascularized nature of the tumor and the maintenance of more resistant stem-like subpopulations within the tumor. Maintenance of glioma stem cells (GSCs) requires specific alterations within the cells and the greater tumor microenvironment with regards to signaling and metabolism. Specific niches within gliomas help foster the survival of stem-like sub-populations of cells with high tumorigenicity and high metabolic plasticity. Understanding these maintenance pathways and the metabolic dependencies within the niche may highlight potential avenues of addressing tumor resistance and recurrence in glioma patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Induction of oncogene addiction shift to NF-κB by camptothecin in solid tumor cells

    International Nuclear Information System (INIS)

    Togano, Tomiteru; Sasaki, Masataka; Watanabe, Mariko; Nakashima, Makoto; Tsuruo, Takashi; Umezawa, Kazuo; Higashihara, Masaaki; Watanabe, Toshiki; Horie, Ryouichi

    2009-01-01

    The biological basis of the resistance of solid tumor cells to chemotherapy is not well understood. While addressing this problem, we found that gastric cancer cell line St-4/CPT, lung cancer cell line A549/CPT, and colon cancer cell line HT-29/CPT, all of which are resistant to camptothecin (CPT), showed strong and constitutive nuclear factor (NF)-κB activity driven by IκB kinase compared with their parental cell lines St-4, A549, and HT-29. A new NF-κB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), reduced viability and induced apoptosis in St-4/CPT, A549/CPT, and HT-29/CPT cell lines, while their parental cell lines were resistant to DHMEQ. The results in this study present an example of the shift in signals that support the survival of solid tumor cells to NF-κB during the acquisition of resistance to CPT. The results also indicate that solid tumor cells that become resistant to chemotherapy may be more easily treated by NF-κB inhibitors.

  7. Induction of oncogene addiction shift to NF-{kappa}B by camptothecin in solid tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Togano, Tomiteru; Sasaki, Masataka; Watanabe, Mariko; Nakashima, Makoto [Department of Hematology, School of Medicine, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555 (Japan); Tsuruo, Takashi [Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-10-6 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Umezawa, Kazuo [Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-0061 (Japan); Higashihara, Masaaki [Department of Hematology, School of Medicine, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555 (Japan); Watanabe, Toshiki [Laboratory of Tumor Cell Biology, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Horie, Ryouichi, E-mail: rhorie@med.kitasato-u.ac.jp [Department of Hematology, School of Medicine, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555 (Japan)

    2009-12-04

    The biological basis of the resistance of solid tumor cells to chemotherapy is not well understood. While addressing this problem, we found that gastric cancer cell line St-4/CPT, lung cancer cell line A549/CPT, and colon cancer cell line HT-29/CPT, all of which are resistant to camptothecin (CPT), showed strong and constitutive nuclear factor (NF)-{kappa}B activity driven by I{kappa}B kinase compared with their parental cell lines St-4, A549, and HT-29. A new NF-{kappa}B inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), reduced viability and induced apoptosis in St-4/CPT, A549/CPT, and HT-29/CPT cell lines, while their parental cell lines were resistant to DHMEQ. The results in this study present an example of the shift in signals that support the survival of solid tumor cells to NF-{kappa}B during the acquisition of resistance to CPT. The results also indicate that solid tumor cells that become resistant to chemotherapy may be more easily treated by NF-{kappa}B inhibitors.

  8. Osteoclastic giant cell tumor of the pancreas: an immunohistochemical study

    DEFF Research Database (Denmark)

    Dizon, M A; Multhaupt, H A; Paskin, D L

    1996-01-01

    A case of an osteoclastic giant cell tumor of the pancreas is presented. Immunohistochemical studies were performed, which showed keratin (CAM, AE1) and epithelial membrane antigen positivity in the tumor cells. The findings support an epithelial origin for this tumor....

  9. Osteoclastic giant cell tumor of the pancreas: an immunohistochemical study.

    Science.gov (United States)

    Dizon, M A; Multhaupt, H A; Paskin, D L; Warhol, M J

    1996-03-01

    A case of an osteoclastic giant cell tumor of the pancreas is presented. Immunohistochemical studies were performed, which showed keratin (CAM, AE1) and epithelial membrane antigen positivity in the tumor cells. The findings support an epithelial origin for this tumor.

  10. Cytogenetics of testicular germ cell tumors of adults

    NARCIS (Netherlands)

    van Echten, J; de Jong, B

    1998-01-01

    In this article, not intended to be a review of the literature, we present our view about the oncogenesis, pathogenesis and tumor progression of testicular germ cell tumors of adults. This view is based on our cytogenetic analyses df primary testicular germ cell tumors (seminomas and non-seminomas),

  11. CXCR5+CD8+T cells could induce the death of tumor cells in HBV-related hepatocellular carcinoma.

    Science.gov (United States)

    Jin, Yun; Lang, Cuicui; Tang, Jianzhong; Geng, Jiawei; Song, Haihan K; Sun, Zhiwei; Wang, Jinfeng

    2017-12-01

    The follicular CXCR5 + CD8 + T cells have recently emerged as a critical cell type in mediating peripheral tolerance as well as antiviral immune responses during chronic infections. In this study, we investigated the function of CXCR5 + CD8 + T cells in HBV-related hepatocellular carcinoma patients. Compared to CXCR5 - CD8 + T cells, CXCR5 + CD8 + T cells presented elevated PD-1 expression but reduced Tim-3 and CTLA-4 expression. Upon anti-CD3/CD28 stimulation, CXCR5 + CD8 + T cells demonstrated higher proliferation potency than CXCR5 - CD8 + T cells, especially after PD-1 blockade. CXCR5 + CD8 + T cells also demonstrated significantly higher granzyme B synthesis and release, as well as higher level of degranulation. Tumor cells were more readily eliminated by CXCR5 + CD8 + T cells than by CXCR5 - CD8 + T cells. Interestingly, we found that B cells were more resistant to CXCR5 + CD8 + T cell-mediated killing than tumor cells, possibly through IL-10-mediated protection. In addition, the CXCR5 + CD8 + T cell-mediated cytotoxic effects on tumor cells could be significantly enhanced by PD-L1 blockade. Together, we presented that in patients with in HBV-related hepatocellular carcinoma, CXCR5 + CD8 + T cells could mediate tumor cell death more potently than the CXCR5 - CD8 + T cells in vitro while the autologous B cells were protected. Copyright © 2017. Published by Elsevier B.V.

  12. Induction of cancer cell death by proton beam in tumor hypoxic region

    International Nuclear Information System (INIS)

    Hur, T. R.; Lee, Y. M.; Park, J. W.; Sohn, E. J.

    2006-05-01

    The physical properties of charged particles such as protons are uniquely suited to target the radiation dose precisely in the tumor. In proton therapy, the Bragg peak is spread out by modulating or degrading the energy of the particles to cover a well defined target volume at a given depth. Due to heterogeneity in the various tumors and end-points as well as in the physical properties of the beams considered, it is difficult to fit the various results into a clear general description of the biological effect of proton in tumor therapy. Tumor hypoxia is a main obstacle to radiotherapy, including gamma-ray. Survived tumor cells under hypoxic region are resistant to radiation and more aggressive to be metastasized. To investigate the dose of proton beam to induce cell death of various tumor cells and hypoxic tumor cells at the Bragg peak in vitro, we used 3 kinds of tumor cells, lung cancer, leukemia and hepatoma cells. Proton beam induces apoptosis in Lewis lung carcinoma cells dose dependently and, slightly in leukemia but not in hepatoma cells at all. Above 1000 gray of proton beam, 60% of cells died even the hypoxic cells in Lewis lung carcinoma cells. But the Molt-4 leukemia cells showed milder effect, 20% cell death by the above 1000 Gray of proton beam and typical resistant pattern (5-10%) of hypoxia in desferrioxamine treated cells. Hepatoma cells (HepG2) were not responsive to proton beam even in rather higher dose (4000G). However, by the gamma-irradiation, Molt-4 was more sensitive than hepatoma or lung cancer cells, but still showed hypoxic resistance. The cell death by proton beam in Lewis lung carcinoma cells was confirmed by PARP cleavage and may be mediated by increased p53. Pro-caspases were also activated and cleaved by the proton beam irradiations for lung cancer cell death. In conclusion, high dose of proton beam (above 1000 gray) may be a good therapeutic radiation even in hypoxic region at the Bragg peak, but further investigations about the

  13. Mixed germ cell tumors: Report of two cases

    Directory of Open Access Journals (Sweden)

    Pradhan M Pagaro

    2013-01-01

    Full Text Available Germ cell tumors arise in the ovaries and testis and rarely in other tissues. Mixed germ cell tumors are rare. We report two cases of mixed germ cell tumors, one consisting of seminoma and immature teratoma in the testis of a 30-year-old male and second consisting of a yolk sac tumor and immature teratoma in the ovary of a 17-year-old female. Many combinations of mixed germ cell tumors have been reported but very few cases of the above-mentioned combinations have been reported in literature.

  14. Tumor Budding Cells, Cancer Stem Cells and Epithelial-Mesenchymal Transition-type Cells in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Eva eKaramitopoulou

    2013-01-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC is one of the most lethal cancers with a 5-year survival rate of less than 5%. Moreover, PDAC escapes early detection and resists treatment. Multiple combinations of genetic alterations are known to occur in PDAC including mutational activation of KRAS, inactivation of p16/CDKN2A and SMAD4 (DPC4 and dysregulation of PTEN/PI3K/AKT signaling. Through their interaction with WNT pathway, the downstream molecules of these pathways have been implicated in the promotion of epithelial-mesenchymal transition (EMT. Emerging evidence has demonstrated that cancer stem cells (CSCs, small populations of which have been identified in PDAC, and EMT-type cells play critical roles in drug resistance, invasion and metastasis in pancreatic cancer. EMT may be histologically represented by the presence of tumor budding which is described as the occurrence of single tumor cells or small clusters (<5 of dedifferentiated cells at the invasive front of gastrointestinal (including colorectal, oesophageal, gastric and ampullary carcinomas and is linked to poor prognosis. Tumor budding has recently been shown to occur frequently in PDAC and to be associated with adverse clinicopathological features and decreased disease-free and overall survival. The aim of this review is to present a short overview on the morphological and molecular aspects that underline the relationship between tumor budding cells, CSCs and EMT-type cells in PDAC.

  15. Rapid maturation of effector T cells in tumors, but not lymphoid organs, during tumor regression.

    Directory of Open Access Journals (Sweden)

    Lyse A Norian

    2007-09-01

    Full Text Available Increasing the efficacy of adoptively transferred, tumor antigen specific T cells is a major goal of immunotherapy. Clearly, a more thorough understanding of the effector phase of T cell responses, within the tumor site itself, would be beneficial. To examine this issue, we adoptively transferred tumor antigen-specific effector T cells into tumor-bearing mice, then performed kinetic evaluations of their phenotype, function, and survival in tumors, draining lymph nodes (dLNs, and spleens during regression of murine fibrosarcomas. Effector function in tumors was quantitated through the use of a novel intratumoral cytolytic assay. This approach revealed dynamic changes in the phenotype, cytolytic capacity, and viability of tumor infiltrating effector T cells during the course of tumor regression. Over a period of days, T cells within tumors rapidly transitioned from a CD25(hi/CD27(hi to a CD25(low/CD27(low phenotype and displayed an increase in cytolytic capacity, indicative of effector maturation. Simultaneously, however, the viability of maturing T cells within tumors diminished. In contrast, transferred T cells trafficking through lymphoid organs were much more static, as they maintained a stable phenotype, robust cytolytic activity, and high viability. Therefore, there exists a marked phenotypic and functional divergence between tumor-infiltrating effector T cells and their counterparts in lymphoid organs. Our results indicate that the population of tumor-infiltrating T cells is unique in experiencing rapid effector maturation post-transfer, and suggest that strategies aimed at prolonging the survival of CD25(low/CD27(low full effectors, which displayed the highest levels of intratumoral cytolytic activity, should enhance the efficacy of T cell based tumor immunotherapies.

  16. Circulating tumor cells in melanoma patients.

    Directory of Open Access Journals (Sweden)

    Gary A Clawson

    Full Text Available Circulating tumor cells (CTCs are of recognized importance for diagnosis and prognosis of cancer patients. With melanoma, most studies do not show any clear relationship between CTC levels and stage of disease. Here, CTCs were enriched (∼400X from blood of melanoma patients using a simple centrifugation device (OncoQuick, and 4 melanocyte target RNAs (TYR, MLANA, MITF, and MIF were quantified using QPCR. Approximately one-third of melanoma patients had elevated MIF and MLANA transcripts (p<0.0001 and p<0.001, respectively compared with healthy controls. In contrast, healthy controls had uniformly higher levels of TYR and MITF than melanoma patients (p<0.0001. There was a marked shift of leukocytes into the CTC-enriched fractions (a 430% increase in RNA recovery, p<0.001, and no relationship between CTC levels and stage of disease was found. CTCs were captured on microfabricated filters and cultured. Captured melanoma CTCs were large cells, and consisted of 2 subpopulations, based on immunoreactivity. One subpopulation (∼50% stained for both pan-cytokeratin (KRT markers and the common leukocyte marker CD-45, whereas the second subpopulation stained for only KRT. Since similar cells are described in many cancers, we also examined blood from colorectal and pancreatic cancer patients. We observed analogous results, with most captured CTCs staining for both CD-45/KRT markers (and for the monocyte differentiation marker CD-14. Our results suggest that immature melanocyte-related cells (expressing TYR and MITF RNA may circulate in healthy controls, although they are not readily detectable without considerable enrichment. Further, as early-stage melanomas develop, immature melanocyte migration into the blood is somehow curtailed, whereas a significant proportion of patients develop elevated CTC levels (based on MIF and MLANA RNAs. The nature of the captured CTCs is consistent with literature describing leukocyte/macrophage-tumor cell fusion hybrids

  17. Treatment Option Overview (Extragonadal Germ Cell Tumors)

    Science.gov (United States)

    ... a picture of areas inside the body. Serum tumor marker test : A procedure in which a sample of ... increased levels in the blood. These are called tumor markers . The following three tumor markers are used to ...

  18. General Information about Extragonadal Germ Cell Tumors

    Science.gov (United States)

    ... a picture of areas inside the body. Serum tumor marker test : A procedure in which a sample of ... increased levels in the blood. These are called tumor markers . The following three tumor markers are used to ...

  19. Boswellia sacra essential oil induces tumor cell-specific apoptosis and suppresses tumor aggressiveness in cultured human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Suhail Mahmoud M

    2011-12-01

    Full Text Available Abstract Background Gum resins obtained from trees of the Burseraceae family (Boswellia sp. are important ingredients in incense and perfumes. Extracts prepared from Boswellia sp. gum resins have been shown to possess anti-inflammatory and anti-neoplastic effects. Essential oil prepared by distillation of the gum resin traditionally used for aromatic therapy has also been shown to have tumor cell-specific anti-proliferative and pro-apoptotic activities. The objective of this study was to optimize conditions for preparing Boswellea sacra essential oil with the highest biological activity in inducing tumor cell-specific cytotoxicity and suppressing aggressive tumor phenotypes in human breast cancer cells. Methods Boswellia sacra essential oil was prepared from Omani Hougari grade resins through hydrodistillation at 78 or 100 oC for 12 hours. Chemical compositions were identified by gas chromatography-mass spectrometry; and total boswellic acids contents were quantified by high-performance liquid chromatography. Boswellia sacra essential oil-mediated cell viability and death were studied in established human breast cancer cell lines (T47D, MCF7, MDA-MB-231 and an immortalized normal human breast cell line (MCF10-2A. Apoptosis was assayed by genomic DNA fragmentation. Anti-invasive and anti-multicellular tumor properties were evaluated by cellular network and spheroid formation models, respectively. Western blot analysis was performed to study Boswellia sacra essential oil-regulated proteins involved in apoptosis, signaling pathways, and cell cycle regulation. Results More abundant high molecular weight compounds, including boswellic acids, were present in Boswellia sacra essential oil prepared at 100 oC hydrodistillation. All three human breast cancer cell lines were sensitive to essential oil treatment with reduced cell viability and elevated cell death, whereas the immortalized normal human breast cell line was more resistant to essential oil

  20. Boswellia sacra essential oil induces tumor cell-specific apoptosis and suppresses tumor aggressiveness in cultured human breast cancer cells

    Science.gov (United States)

    2011-01-01

    Background Gum resins obtained from trees of the Burseraceae family (Boswellia sp.) are important ingredients in incense and perfumes. Extracts prepared from Boswellia sp. gum resins have been shown to possess anti-inflammatory and anti-neoplastic effects. Essential oil prepared by distillation of the gum resin traditionally used for aromatic therapy has also been shown to have tumor cell-specific anti-proliferative and pro-apoptotic activities. The objective of this study was to optimize conditions for preparing Boswellea sacra essential oil with the highest biological activity in inducing tumor cell-specific cytotoxicity and suppressing aggressive tumor phenotypes in human breast cancer cells. Methods Boswellia sacra essential oil was prepared from Omani Hougari grade resins through hydrodistillation at 78 or 100 oC for 12 hours. Chemical compositions were identified by gas chromatography-mass spectrometry; and total boswellic acids contents were quantified by high-performance liquid chromatography. Boswellia sacra essential oil-mediated cell viability and death were studied in established human breast cancer cell lines (T47D, MCF7, MDA-MB-231) and an immortalized normal human breast cell line (MCF10-2A). Apoptosis was assayed by genomic DNA fragmentation. Anti-invasive and anti-multicellular tumor properties were evaluated by cellular network and spheroid formation models, respectively. Western blot analysis was performed to study Boswellia sacra essential oil-regulated proteins involved in apoptosis, signaling pathways, and cell cycle regulation. Results More abundant high molecular weight compounds, including boswellic acids, were present in Boswellia sacra essential oil prepared at 100 oC hydrodistillation. All three human breast cancer cell lines were sensitive to essential oil treatment with reduced cell viability and elevated cell death, whereas the immortalized normal human breast cell line was more resistant to essential oil treatment. Boswellia sacra

  1. A Retinoic Acid—Rich Tumor Microenvironment Provides Clonal Survival Cues for Tumor-Specific CD8+ T Cells

    OpenAIRE

    Guo, Yanxia; Pino-Lagos, Karina; Ahonen, Cory A.; Bennett, Kathy A.; Wang, Jinshan; Napoli, Joseph L.; Blomhoff, Rune; Sockanathan, Shanthini; Chandraratna, Roshantha A.; Dmitrovsky, Ethan; Turk, Mary Jo; Noelle, Randolph J.

    2012-01-01

    While vitamin A has been implicated in host resistance to infectious disease, little is known about the role of vitamin A and its active metabolite, retinoic acid (RA) in host defenses against cancer. Here, we show that local RA production within the tumor microenvironment (TME) is increased up to 5-fold as compared with naïve surrounding tissue, with a commensurate increase in RA signaling to regionally infiltrating tumor-reactive T cells. Conditional disruption of RA signaling in CD8+ T cel...

  2. Endogenous markers of tumor hypoxia. Predictors of clinical radiation resistance?

    Energy Technology Data Exchange (ETDEWEB)

    Vordermark, D. [Dept. of Radiation Oncology, Univ. of Wuerzburg (Germany); Dept. of Radiation Oncology, Stanford Univ. School of Medicine, Stanford, CA (United States); Brown, J.M. [Dept. of Radiation Oncology, Stanford Univ. School of Medicine, Stanford, CA (United States)

    2003-12-01

    Background: Eppendorf electrode measurements of tumor oxygenation have defined an adverse effect of tumor hypoxia on prognosis after radiotherapy and other treatment modalities, in particular in head and neck and cervix carcinomas as well as soft tissue sarcomas. Recently, the immunohistochemical detection of proteins involved in the ''hypoxic response'' of tumor cells has been discussed as a method to estimate hypoxia in clinical tumor specimens. Material and Methods: This review focuses on clinical and experimental data, regarding prognostic impact and comparability with other methods of hypoxia detection, for three proteins suggested as endogenous markers of tumor hypoxia: hypoxia-inducible factor-1{alpha} (HIF-1{alpha}), carbonic anhydrase 9 (CA 9), and glucose transporter 1 (GLUT1). Results: None of the three potential hypoxia markers is exclusively hypoxia-specific, and in each case protein can be detected under normoxic conditions in vitro. HIF-1{alpha} responds rapidly to hypoxia but also to reoxygenation, making this marker quite unstable in the context of clinical sample collection. The perinecrotic labeling pattern typical of chronic hypoxia and a reasonable agreement with injectable hypoxia markers such as pimonidazole have most consistently been described for CA 9. All three markers showed correlation with Eppendorf electrode measurements of tumor oxygenation in carcinoma of the cervix. In nine of 13 reports, among them all three that refer to curative radiotherapy for head and neck cancer, HIF-1{alpha} overexpression was associated with poor outcome. CA 9 was an adverse prognostic factor in cervix, head and neck and lung cancer, but not in two other head and neck cancer reports. GLUT1 predicted for poor survival in colorectal, cervix and lung cancer. Conclusion: Endogenous markers have the potential to indicate therapeutically relevant levels of hypoxia within tumors. Clinical trials assessing a marker's ability to predict a

  3. Tumor initiating cells and chemoresistance: which is the best strategy to target colon cancer stem cells?

    Science.gov (United States)

    Paldino, Emanuela; Tesori, Valentina; Casalbore, Patrizia; Gasbarrini, Antonio; Puglisi, Maria Ausiliatrice

    2014-01-01

    There is an emerging body of evidence that chemoresistance and minimal residual disease result from selective resistance of a cell subpopulation from the original tumor that is molecularly and phenotypically distinct. These cells are called "cancer stem cells" (CSCs). In this review, we analyze the potential targeting strategies for eradicating CSCs specifically in order to develop more effective therapeutic strategies for metastatic colon cancer. These include induction of terminal epithelial differentiation of CSCs or targeting some genes expressed only in CSCs and involved in self-renewal and chemoresistance. Ideal targets could be cell regulators that simultaneously control the stemness and the resistance of CSCs. Another important aspect of cancer biology, which can also be harnessed to create novel broad-spectrum anticancer agents, is the Warburg effect, also known as aerobic glycolysis. Actually, little is yet known with regard to the metabolism of CSCs population, leaving an exciting unstudied avenue in the dawn of the emerging field of metabolomics.

  4. Delayed menopause due to granulosa cell tumor of the ovary

    Directory of Open Access Journals (Sweden)

    Bhushan Murkey

    2011-01-01

    Full Text Available A 52-year-old patient presented with complaints of menorrhagia. Endometrial biopsy revealed simple hyperplasia of the endometrium. Total abdominal hysterectomy with bilateral oophorectomy was carried out. The ovaries looked grossly normal, but histopathology reported granulosa cell tumor of the right ovary. Granulosa cell tumors belong to the sexcord stromal category and account for approximately 2% of all ovarian tumors. We review the features and treatment of granulosa cell tumors and the importance of screening for ovarian tumors in a case of endometrial hyperplasia and delayed menopause.

  5. Non-cell autonomous or secretory tumor suppression.

    Science.gov (United States)

    Chua, Christelle En Lin; Chan, Shu Ning; Tang, Bor Luen

    2014-10-01

    Many malignancies result from deletions or loss-of-function mutations in one or more tumor suppressor genes, the products of which curb unrestrained growth or induce cell death in those with dysregulated proliferative capacities. Most tumor suppressors act in a cell autonomous manner, and only very few proteins are shown to exert a non-cell autonomous tumor suppressor function on other cells. Examples of these include members of the secreted frizzled-related protein (SFRP) family and the secreted protein acidic and rich in cysteine (SPARC)-related proteins. Very recent findings have, however, considerably expanded our appreciation of non-cell autonomous tumor suppressor functions. Broadly, this may occur in two ways. Intracellular tumor suppressor proteins within cells could in principle inhibit aberrant growth of neighboring cells by conditioning an antitumor microenvironment through secreted factors. This is demonstrated by an apparent non-cell autonomous tumor suppressing property of p53. On the other hand, a tumor suppressor produced by a cell may be secreted extracellularly, and taken up by another cell with its activity intact. Intriguingly, this has been recently shown to occur for the phosphatase and tensin homolog (PTEN) by both conventional and unconventional modes of secretion. These recent findings would aid the development of therapeutic strategies that seek to reinstate tumor suppression activity in therapeutically recalcitrant tumor cells, which have lost it in the first place. © 2014 Wiley Periodicals, Inc.

  6. Mesenchymal stem cells promote formation of colorectal tumors in mice.

    Science.gov (United States)

    Tsai, Kuo-Shu; Yang, Shung-Haur; Lei, Yen-Ping; Tsai, Chih-Chien; Chen, Hsin-Wei; Hsu, Chih-Yuan; Chen, Ling-Lan; Wang, Hsei-Wei; Miller, Stephanie A; Chiou, Shih-Hwa; Hung, Mien-Chie; Hung, Shih-Chieh

    2011-09-01

    Tumor-initiating cells are a subset of tumor cells with the ability to form new tumors; however, they account for less than 0.001% of the cells in colorectal or other types of tumors. Mesenchymal stem cells (MSCs) integrate into the colorectal tumor stroma; we investigated their involvement in tumor initiation. Human colorectal cancer cells, MSCs, and a mixture of both cell types were injected subcutaneously into immunodeficient mice. We compared the ability of each injection to form tumors and investigated the signaling pathway involved in tumor initiation. A small number (≤ 10) of unsorted, CD133⁻, CD166⁻, epithelial cell adhesion molecule⁻(EpCAM⁻), or CD133⁻/CD166⁻/EpCAM⁻ colorectal cancer cells, when mixed with otherwise nontumorigenic MSCs, formed tumors in mice. Secretion of interleukin (IL)-6 by MSCs increased the expression of CD133 and activation of Janus kinase 2-signal transducer and activator of transcription 3 (STAT3) in the cancer cells, and promoted sphere and tumor formation. An antibody against IL-6 or lentiviral-mediated transduction of an interfering RNA against IL-6 in MSCs or STAT3 in cancer cells prevented the ability of MSCs to promote sphere formation and tumor initiation. IL-6, secreted by MSCs, signals through STAT3 to increase the numbers of colorectal tumor-initiating cells and promote tumor formation. Reagents developed to disrupt this process might be developed to treat patients with colorectal cancer. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  7. An in vivo-like tumor stem cell-related glioblastoma in vitro model for drug discovery

    DEFF Research Database (Denmark)

    Jensen, Stine Skov; Aaberg-Jessen, Charlotte; Nørregaard, Annette

    the effects of new drugs on tumor cells including tumor stem cells. Implantation of glioblastoma cells into organotypic brain slice cultures has previously been published as a model system, but not using a stem cell favourable environment. Organotypic corticostriatal rat brain slice cultures were prepared...... and cultured in a serum containing medium replaced after three days with a serum-free stem cell medium. Thereafter fluorescent DiI labelled glioblastoma spheroids from the cell line U87 and the tumor stem cell line SJ-1 established in our laboratory were implanted into the brain slices between cortex......The discovery of tumor stem cells being highly resistant against therapy makes new demands to model systems suitable for evaluation of the effects of new drugs on tumor stem cells. The aim of the present study was therefore to develop an in vivo-like in vitro glioblastoma model for testing...

  8. Hypoxia increases tumor cell shedding of MHC class I chain-related molecule: role of nitric oxide.

    Science.gov (United States)

    Siemens, D Robert; Hu, Nianping; Sheikhi, Abdol Karim; Chung, Eugene; Frederiksen, Lisa J; Pross, Hugh; Graham, Charles H

    2008-06-15

    The MHC class I chain-related (MIC) molecules play important roles in tumor immune surveillance through their interaction with the NKG2D receptor on natural killer and cytotoxic T cells. Thus, shedding of the MIC molecules from the tumor cell membrane represents a potential mechanism of escape from NKG2D-mediated immune surveillance. Tumor hypoxia is associated with a poor clinical outcome for cancer patients. We show that hypoxia contributes to tumor cell shedding of MIC through a mechanism involving impaired nitric oxide (NO) signaling. Whereas hypoxia increased MIC shedding in human prostate cancer cells, activation of NO signaling inhibited hypoxia-mediated MIC shedding. Similar to incubation in hypoxia, pharmacologic inhibition of endogenous NO signaling increased MIC shedding. Parallel studies showed hypoxia-mediated tumor cell resistance to lysis by interleukin 2-activated peripheral blood lymphocytes (PBL) and NO-mediated attenuation of this resistance to lysis. Inhibition of NO production also led to resistance to PBL-mediated lysis. Interference of MIC-NKG2D interaction with a blocking anti-MIC antibody abrogated the effect of hypoxia and NO signaling on tumor cell sensitivity to PBL-mediated lysis. Finally, continuous transdermal delivery of the NO mimetic glyceryl trinitrate (7.3 mug/h) attenuated the growth of xenografted MIC-expressing human prostate tumors. These findings suggest that the hypoxic tumor microenvironment contributes to resistance to immune surveillance and that activation of NO signaling is of potential use in cancer immunotherapy.

  9. Mechanisms of therapeutic resistance in cancer (stem cells with emphasis on thyroid cancer cells.

    Directory of Open Access Journals (Sweden)

    Sabine eHombach-Klonisch

    2014-03-01

    Full Text Available Tissue invasion, metastasis and therapeutic resistance to anti-cancer treatments are common and main causes of death in cancer patients. Tumor cells mount complex and still poorly understood molecular defense mechanisms to counteract and evade oxygen deprivation, nutritional restrictions as well as radio- and chemotherapeutic treatment regimens aimed at destabilizing their genomes and important cellular processes. In thyroid cancer, as in other tumors, such defense strategies include the reactivation in cancer cells of early developmental programs normally active exclusively in stem cells, the stimulation of cancer stem-like cells resident within the tumor tissue and the recruitment of bone marrow-derived progenitors into the tumor (Thomas et al., 2008;Klonisch et al., 2009;Derwahl, 2011. Metastasis and therapeutic resistance in cancer (stem cells involves the epithelial-to-mesenchymal transition- (EMT- mediated enhancement in cellular plasticity, which includes coordinated dynamic biochemical and nuclear changes (Ahmed et al., 2010. The purpose of the present review is to provide an overview of the role of DNA repair mechanisms contributing to therapeutic resistance in thyroid cancer and highlight the emerging roles of autophagy and damage associated molecular pattern (DAMP responses in EMT and chemoresistance in tumor cells. Finally, we use the stem cell factor and nucleoprotein High Mobility Group A2 (HMGA2 as an example to demonstrate how factors intended to protect stem cells are wielded by cancer (stem cells to gain increased transformative cell plasticity which enhances metastasis, therapeutic resistance and cell survival. Wherever possible, we have included information on these cellular processes and associated factors as they relate to thyroid cancer cells.

  10. TUMOR-RELATED METHYLATED CELL-FREE DNA AND CIRCULATING TUMOR CELLS IN MELANOMA

    Directory of Open Access Journals (Sweden)

    Francesca eSalvianti

    2016-01-01

    Full Text Available Solid tumor release into the circulation cell-free DNA (cfDNA and circulating tumor cells (CTCs which represent promising biomarkers for cancer diagnosis. Circulating tumor DNA may be studied in plasma from cancer patients by detecting tumor specific alterations, such as genetic or epigenetic modifications. Ras association domain family 1 isoform A (RASSF1A is a tumor suppressor gene silenced by promoter hypermethylation in a variety of human cancers including melanoma.The aim of the present study was to assess the diagnostic performance of a tumor-related methylated cfDNA marker in melanoma patients and to compare this parameter with the presence of CTCs.RASSF1A promoter methylation was quantified in cfDNA by qPCR in a consecutive series of 84 melanoma patients and 68 healthy controls. In a subset of 68 cases, the presence of CTCs was assessed by a filtration method (Isolation by Size of Epithelial Tumor Cells, ISET as well as by an indirect method based on the detection of tyrosinase mRNA by RT-qPCR. The distribution of RASSF1A methylated cfDNA was investigated in cases and controls and the predictive capability of this parameter was assessed by means of the area under the ROC curve (AUC.The percentage of cases with methylated RASSF1A promoter in cfDNA was significantly higher in each class of melanoma patients (in situ, invasive and metastatic than in healthy subjects (Pearson chi-squared test, p<0.001. The concentration of RASSF1A methylated cfDNA in the subjects with a detectable quantity of methylated alleles was significantly higher in melanoma patients than in controls. The biomarker showed a good predictive capability (in terms of AUC in discriminating between melanoma patients and healthy controls. This epigenetic marker associated to cfDNA did not show a significant correlation with the presence of CTCs, but, when the two parameters are jointly considered, we obtain a higher sensitivity of the detection of positive cases in invasive

  11. IDENTIFYING AND TARGETING TUMOR-INITIATING CELLS IN THE TREATMENT OF BREAST CANCER

    Science.gov (United States)

    Wei, Wei; Lewis, Michael T.

    2015-01-01

    Breast cancer is the most common cancer in women (exclusive of skin cancer), and is the second leading cause of cancer-related deaths. Although conventional and targeted therapies have improved survival rates, there are still considerable challenges in treating breast cancer, including treatment resistance, disease recurrence, and metastasis. Treatment resistance can be either de novo - due to traits that tumor cells possess prior to treatment, or acquired, - due to traits that tumor cells gain in response to treatment. A recently proposed mechanism of de novo resistance invokes existence of a specialized subset of cancer cells defined as tumor-initiating cells (TICs), or cancer stem cells (CSC). TICs have the capacity to self-renew and regenerate new tumors that consist of all clonally-derived cell types present in the parental tumor. There are data to suggest that TICs are resistant to many conventional cancer therapies, and survive treatment in spite of dramatic shrinkage of the tumor. Residual TICs can then eventually regrow resulting in disease relapse. It is also hypothesized that TIC may be responsible for metastatic disease. If these hypotheses are correct, targeting TICs may be imperative to achieve cure. In this review, we discuss evidence for breast TICs and their apparent resistance to conventional chemotherapy and radiotherapy, as well as to various targeted therapies. We also address the potential impact of breast TIC plasticity and metastatic potential on therapeutic strategies. Finally, we describe several genes and signaling pathways that appear important for TIC function that may represent promising therapeutic targets. PMID:25876646

  12. Antitumor action of 3-bromopyruvate implicates reorganized tumor growth regulatory components of tumor milieu, cell cycle arrest and induction of mitochondria-dependent tumor cell death.

    Science.gov (United States)

    Yadav, Saveg; Kujur, Praveen Kumar; Pandey, Shrish Kumar; Goel, Yugal; Maurya, Babu Nandan; Verma, Ashish; Kumar, Ajay; Singh, Rana Pratap; Singh, Sukh Mahendra

    2018-01-15

    Evidences demonstrate that metabolic inhibitor 3-bromopyruvate (3-BP) exerts a potent antitumor action against a wide range of malignancies. However, the effect of 3-BP on progression of the tumors of thymic origin remains unexplored. Although, constituents of tumor microenvironment (TME) plays a pivotal role in regulation of tumor progression, it remains unclear if 3-BP can alter the composition of the crucial tumor growth regulatory components of the external surrounding of tumor cells. Thus, the present investigation attempts to understand the effect of 3-BP administration to a host bearing a progressively growing tumor of thymic origin on tumor growth regulatory soluble, cellular and biophysical components of tumor milieu vis-à-vis understanding its association with tumor progression, accompanying cell cycle events and mode of cell death. Further, the expression of cell survival regulatory molecules and hemodynamic characteristics of the tumor milieu were analysed to decipher mechanisms underlying the antitumor action of 3-BP. Administration of 3-BP to tumor-bearing hosts retarded tumor progression accompanied by induction of tumor cell death, cell cycle arrest, declined metabolism, inhibited mitochondrial membrane potential, elevated release of cytochrome c and altered hemodynamics. Moreover, 3-BP reconstituted the external milieu, in concurrence with deregulated glucose and pH homeostasis and increased tumor infiltration by NK cells, macrophages, and T lymphocytes. Further, 3-BP administration altered the expression of key regulatory molecules involved in glucose uptake, intracellular pH and tumor cell survival. The outcomes of this study will help in optimizing the therapeutic application of 3-BP by targeting crucial tumor growth regulatory components of tumor milieu. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. EGFR overexpressing cells and tumors are dependent on autophagy for growth and survival

    International Nuclear Information System (INIS)

    Jutten, Barry; Keulers, Tom G.; Schaaf, Marco B.E.; Savelkouls, Kim; Theys, Jan; Span, Paul N.; Vooijs, Marc A.; Bussink, Johan; Rouschop, Kasper M.A.

    2013-01-01

    Background and purpose: The epidermal growth factor receptor (EGFR) is overexpressed, amplified or mutated in various human epithelial tumors, and is associated with tumor aggressiveness and therapy resistance. Autophagy activation provides a survival advantage for cells in the tumor microenvironment. In the current study, we assessed the potential of autophagy inhibition (using chloroquine (CQ)) in treatment of EGFR expressing tumors. Material and methods: Quantitative PCR, immunohistochemistry, clonogenic survival, proliferation assays and in vivo tumor growth were used to assess this potential. Results: We show that EGFR overexpressing xenografts are sensitive to CQ treatment and are sensitized to irradiation by autophagy inhibition. In HNSSC xenografts, a correlation between EGFR and expression of the autophagy marker LC3b is observed, suggesting a role for autophagy in EGFR expressing tumors. This observation was substantiated in cell lines, showing high EGFR expressing cells to be more sensitive to CQ addition as reflected by decreased proliferation and survival. Surprisingly high EGFR expressing cells display a lower autophagic flux. Conclusions: The EGFR high expressing cells and tumors investigated in this study are highly dependent on autophagy for growth and survival. Inhibition of autophagy may therefore provide a novel treatment opportunity for EGFR overexpressing tumors

  14. Overcoming Multidrug Resistance in Human Cancer Cells by Natural Compounds

    Directory of Open Access Journals (Sweden)

    Tomohiro Nabekura

    2010-05-01

    Full Text Available Multidrug resistance is a phenomenon whereby tumors become resistant to structurally unrelated anticancer drugs. P-glycoprotein belongs to the large ATP-binding cassette (ABC transporter superfamily of membrane transport proteins. P-glycoprotein mediates resistance to various classes of anticancer drugs including vinblastine, daunorubicin, and paclitaxel, by actively extruding the drugs from the cells. The quest for inhibitors of anticancer drug efflux transporters has uncovered natural compounds, including (--epigallocatechin gallate, curcumin, capsaicin, and guggulsterone, as promising candidates. In this review, studies on the effects of natural compounds on P-glycoprotein and anticancer drug efflux transporters are summarized.

  15. Tumor Architecture and Notch Signaling Modulate Drug Response in Basal Cell Carcinoma.

    Science.gov (United States)

    Eberl, Markus; Mangelberger, Doris; Swanson, Jacob B; Verhaegen, Monique E; Harms, Paul W; Frohm, Marcus L; Dlugosz, Andrzej A; Wong, Sunny Y

    2018-02-12

    Hedgehog (Hh) pathway inhibitors such as vismodegib are highly effective for treating basal cell carcinoma (BCC); however, residual tumor cells frequently persist and regenerate the primary tumor upon drug discontinuation. Here, we show that BCCs are organized into two molecularly and functionally distinct compartments. Whereas interior Hh + /Notch + suprabasal cells undergo apoptosis in response to vismodegib, peripheral Hh +++ /Notch - basal cells survive throughout treatment. Inhibiting Notch specifically promotes tumor persistence without causing drug resistance, while activating Notch is sufficient to regress already established lesions. Altogether, these findings suggest that the three-dimensional architecture of BCCs establishes a natural hierarchy of drug response in the tumor and that this hierarchy can be overcome, for better or worse, by modulating Notch. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Tumor-infiltrating B lymphocytes as an efficient source of highly specific immunoglobulins recognizing tumor cells

    Directory of Open Access Journals (Sweden)

    Pelliccia Angela

    2007-10-01

    Full Text Available Abstract Background There is much evidence that tumor cells elicit a humoral immune response in patients. In most cases, the presence of antibodies in peripheral blood is detected only in small proportion of patients with tumors overexpressing the corresponding antigen. In the present study, we analyzed the significance of local humoral response provided by tumor-infiltrating lymphocytes in breast cancer patients. Methods The ability of a patient's immune system to produce specific antibodies inside tumor tissue, capable of recognizing tumor cells, was explored through analysis of the oligoclonality of antibodies derived from tumor-infiltrating lymphocytes and construction of a series of recombinant antibody libraries in scFv format, derived from breast tumor-infiltrating B lymphocytes. These libraries and one from peripheral blood lymphocytes of a single breast cancer patient were panned against three purified surface tumor antigens, such as CEA, MUC1 and ED-B domain, and against intact MCF7 breast carcinoma cells. Results Application of novel display vector, pKM19, allowed isolation of a large panel of breast cancer-specific antibodies against known tumor antigens, as well as against breast carcinoma cells. Reactivity of novel scFvs was confirmed by ELISA, immunohistochemistry, fluorescence staining and flow cytometry. We demonstrated that seven of ten primary breast tumor specimens, obtained using discarded surgical material, could be exploited as an appropriate source for generation of phage display libraries, giving highly specific antitumor antibodies which recognize heterologous tumor cells. Conclusion Local humoral immune response within tumor tissue in breast cancer patients frequently has an oligoclonal character. Efficient selection of specific antitumor antibodies from recombinant antibody libraries, derived from such oligoclonal tumor-infiltrated B lymphocytes, indicates the presence of natural immune response against tumor antigens

  17. Granular Cell Tumor - a Rare Tumor of the Mons Pubis: Case Report ...

    African Journals Online (AJOL)

    Objective: Granular cell tumor of the mons pubis is rare. A case is reported with literature review. Material and Method: Study of the management and outcome of a 23 year old Nigerian woman with granular cell tumor in the mons pubis. Literature review was done utilizing a Medline search for the last ten years. Results: The ...

  18. The use of bispecific antibodies in tumor cell and tumor vasculature directed immunotherapy

    NARCIS (Netherlands)

    Molema, G; Kroesen, BJ; Helfrich, W; Meijer, DKF; de Leij, LFMH

    2000-01-01

    To overcome dose limiting toxicities and to increase efficacy of immunotherapy of cancer, a number of strategies are under development for selectively redirecting effector cells/molecules towards tumor cells. Many of these strategies exploit the specificity of tumor associated antigen recognition by

  19. T cell avidity and tumor recognition: implications and therapeutic strategies

    Directory of Open Access Journals (Sweden)

    Roszkowski Jeffrey J

    2005-09-01

    Full Text Available Abstract In the last two decades, great advances have been made studying the immune response to human tumors. The identification of protein antigens from cancer cells and better techniques for eliciting antigen specific T cell responses in vitro and in vivo have led to improved understanding of tumor recognition by T cells. Yet, much remains to be learned about the intricate details of T celltumor cell interactions. Though the strength of interaction between T cell and target is thought to be a key factor influencing the T cell response, investigations of T cell avidity, T cell receptor (TCR affinity for peptide-MHC complex, and the recognition of peptide on antigen presenting targets or tumor cells reveal complex relationships. Coincident with these investigations, therapeutic strategies have been developed to enhance tumor recognition using antigens with altered peptide structures and T cells modified by the introduction of new antigen binding receptor molecules. The profound effects of these strategies on T celltumor interactions and the clinical implications of these effects are of interest to both scientists and clinicians. In recent years, the focus of much of our work has been the avidity and effector characteristics of tumor reactive T cells. Here we review concepts and current results in the field, and the implications of therapeutic strategies using altered antigens and altered effector T cells.

  20. Tumor-derived circulating endothelial cell clusters in colorectal cancer.

    KAUST Repository

    Cima, Igor

    2016-06-29

    Clusters of tumor cells are often observed in the blood of cancer patients. These structures have been described as malignant entities for more than 50 years, although their comprehensive characterization is lacking. Contrary to current consensus, we demonstrate that a discrete population of circulating cell clusters isolated from the blood of colorectal cancer patients are not cancerous but consist of tumor-derived endothelial cells. These clusters express both epithelial and mesenchymal markers, consistent with previous reports on circulating tumor cell (CTC) phenotyping. However, unlike CTCs, they do not mirror the genetic variations of matched tumors. Transcriptomic analysis of single clusters revealed that these structures exhibit an endothelial phenotype and can be traced back to the tumor endothelium. Further results show that tumor-derived endothelial clusters do not form by coagulation or by outgrowth of single circulating endothelial cells, supporting a direct release of clusters from the tumor vasculature. The isolation and enumeration of these benign clusters distinguished healthy volunteers from treatment-naïve as well as pathological early-stage (≤IIA) colorectal cancer patients with high accuracy, suggesting that tumor-derived circulating endothelial cell clusters could be used as a means of noninvasive screening for colorectal cancer. In contrast to CTCs, tumor-derived endothelial cell clusters may also provide important information about the underlying tumor vasculature at the time of diagnosis, during treatment, and throughout the course of the disease.

  1. Effects of alkylating carcinogens on human tumor cells in culture

    International Nuclear Information System (INIS)

    Goth-Goldstein, R.; Hughes, M.

    1987-01-01

    In Escherichia coli 3-methyladenine and 3-methylguanine have been identified as lethal lesions, since two types of alkylating agent-sensitive mutants were deficient in repair of either of these lesions. Similar alkylation-sensitive human cell lines exist. These are the tumor cell lines of the complex Mer - phenotype. All Mer - cells examined were hypersensitive to killing by MNNG and other alkylating agents, and failed to repair O 6 -methylguanine. The widely studied HeLa S3 cell line has the Mer + phenotype, but a Mer - variant (HeLa MR) has arisen. This offers the possibility to study Mer - and Mer + cells of otherwise similar genetic background. We are using these two variants to analyze the Mer - phenotype further. When HeLa S3 and HeLa MR were treated with a highly dose of MNNG, and the surviving population exposed to a second dose of MNNG 2-3 weeks later, HeLa S3 (Mer + ) cells were equally or even slightly more sensitive to a second exposure of MNNG, whereas the surviving HeLa MR (Mer - ) population was much more resistant to MNNG. 1 fig., 1 tab

  2. Therapy-activated stromal cells can dictate tumor fate

    OpenAIRE

    Kerbel, Robert S.; Shaked, Yuval

    2016-01-01

    In this issue of JEM, Chan et al. describe a novel way by which an investigational form of chemotherapy known as low-dose metronomic chemotherapy can inhibit tumor growth, which also has therapeutic implications for targeting tumor-initiating cells (TICs), the tumor stroma, and chemokine receptors, as well as invasion and metastasis.

  3. Feasibility of cell-free circulating tumor DNA testing for lung cancer.

    Science.gov (United States)

    Santarpia, Mariacarmela; Karachaliou, Niki; González-Cao, Maria; Altavilla, Giuseppe; Giovannetti, Elisa; Rosell, Rafael

    2016-01-01

    Tumor tissue genotyping is used routinely for lung cancer to identify specific targetable oncogenic alterations, including EGFR mutations and ALK rearrangements. However, tumor tissue from a single biopsy is often insufficient for molecular testing, may offer a limited evaluation because of tumor heterogeneity and can be difficult to obtain. Cell-free circulating tumor DNA has been widely investigated as a potential surrogate for tissue biopsy for noninvasive assessment of tumor-related genomic alterations. New techniques have improved EGFR mutations detection in ctDNA, thus supporting the use of this liquid biopsy for predicting response to EGFR tyrosine kinase inhibitors (TKIs) and monitoring the emergence of resistance. The serial evaluation of ctDNA during treatment is feasible and can be used to track tumor changes in real time and for a wide range of clinically useful applications.

  4. Glycan Markers as Potential Immunological Targets in Circulating Tumor Cells.

    Science.gov (United States)

    Wang, Denong; Wu, Lisa; Liu, Xiaohe

    2017-01-01

    We present here an experimental approach for exploring a new class of tumor biomarkers that are overexpressed by circulating tumor cells (CTCs) and are likely targetable in immunotherapy against tumor metastasis. Using carbohydrate microarrays, anti-tumor monoclonal antibodies (mAbs) were scanned against a large panel of carbohydrate antigens to identify potential tumor glycan markers. Subsequently, flow cytometry and fiber-optic array scanning technology (FAST) were applied to determine whether the identified targets are tumor-specific cell-surface markers and are, therefore, likely suitable for targeted immunotherapy. Finally, the tumor glycan-specific antibodies identified were validated using cancer patients' blood samples for their performance in CTC-detection and immunotyping analysis. In this article, identifying breast CTC-specific glycan markers and targeting mAbs serve as examples to illustrate this tumor biomarker discovery strategy.

  5. Exploiting tumor cell senescence in anticancer therapy

    Science.gov (United States)

    Lee, Minyoung; Lee, Jae-Seon

    2014-01-01

    Cellular senescence is a physiological process of irreversible cell-cycle arrest that contributes to various physiological and pathological processes of aging. Whereas replicative senescence is associated with telomere attrition after repeated cell division, stress-induced premature senescence occurs in response to aberrant oncogenic signaling, oxidative stress, and DNA damage which is independent of telomere dysfunction. Recent evidence indicates that cellular senescence provides a barrier to tumorigenesis and is a determinant of the outcome of cancer treatment. However, the senescence-associated secretory phenotype, which contributes to multiple facets of senescent cancer cells, may influence both cancer-inhibitory and cancer-promoting mechanisms of neighboring cells. Conventional treatments, such as chemo- and radiotherapies, preferentially induce premature senescence instead of apoptosis in the appropriate cellular context. In addition, treatment-induced premature senescence could compensate for resistance to apoptosis via alternative signaling pathways. Therefore, we believe that an intensive effort to understand cancer cell senescence could facilitate the development of novel therapeutic strategies for improving the efficacy of anticancer therapies. This review summarizes the current understanding of molecular mechanisms, functions, and clinical applications of cellular senescence for anticancer therapy. [BMB Reports 2014; 47(2): 51-59] PMID:24411464

  6. Adipose Expression of Tumor Necrosis Factor-α: Direct Role in Obesity-Linked Insulin Resistance

    Science.gov (United States)

    Hotamisligil, Gokhan S.; Shargill, Narinder S.; Spiegelman, Bruce M.

    1993-01-01

    Tumor necrosis factor-α (TNF-α) has been shown to have certain catabolic effects on fat cells and whole animals. An induction of TNF-α messenger RNA expression was observed in adipose tissue from four different rodent models of obesity and diabetes. TNF-α protein was also elevated locally and systemically. Neutralization of TNF-α in obese fa/fa rats caused a significant increase in the peripheral uptake of glucose in response to insulin. These results indicate a role for TNF-α in obesity and particularly in the insulin resistance and diabetes that often accompany obesity.

  7. Vaccination with Necroptotic Cancer Cells Induces Efficient Anti-tumor Immunity

    Directory of Open Access Journals (Sweden)

    Tania Løve Aaes

    2016-04-01

    Full Text Available Successful immunogenic apoptosis in experimental cancer therapy depends on the induction of strong host anti-tumor responses. Given that tumors are often resistant to apoptosis, it is important to identify alternative molecular mechanisms that elicit immunogenic cell death. We have developed a genetic model in which direct dimerization of FADD combined with inducible expression of RIPK3 promotes necroptosis. We report that necroptotic cancer cells release damage-associated molecular patterns and promote maturation of dendritic cells, the cross-priming of cytotoxic T cells, and the production of IFN-γ in response to tumor antigen stimulation. Using both FADD-dependent and FADD-independent RIPK3 induction systems, we demonstrate the efficient vaccination potential of immunogenic necroptotic cells. Our study broadens the current concept of immunogenic cell death and opens doors for the development of new strategies in cancer therapy.

  8. [Morphology of the cells in myxoid tumors].

    Science.gov (United States)

    Cejas, H A; Rodríguez, A; Martínez, M; Fonseca, M; Gendelman, H

    2000-01-01

    We describe a morphologic study of myxoid cells in myxoid tumors or with myxoid regions: myxoid fibrosarcoma, myxoma, myxoid liposarcoma, embryonal rhabdomyosarcoma, chondroma, chondrosarcoma, myxoid leiomyosarcoma, schwannoma, and odontoameloblastoma; and we compare with fibroblasts of umbilical cord, embryonal mesenquima and loose connective tissue in inflammatory conditions. Histologic techniques: H-E, PAS, Masson's trichrom, and Del Río Hortega's panoptic silver staining. Histologically Del Río Hortega's technique reveals bipolar fibroblasts with long processes. In myxoma and myxoid fibrosarcoma they are stellated with abundant processes and mucin cytoplasm secretion contained in bowls that slides through cytoplasmic expansions and discharge into intercellular space. The lipoblasts of myxoid liposarcoma are also stellated with abundant processes and contain drops of lipids. The rhabdomyoblasts are raquetoid cells with cross striated cytoplasm, myofibrils and cigar-shaped nuclei. Schwannomas are composed of spindle and bipolar cells with long and thin cytoplasmic extensions. The chondroblasts in chondromas and chondrosarcomas have wide cytoplasm with short processes. The odontoblasts in odontoameloblastomas have wide cytoplasm and long processes directly extended toward adjacent dentinal. These morphologic details can help in the differential diagnosis associated with immunoperoxidase stains.

  9. In Silico Analysis of Microarray-Based Gene Expression Profiles Predicts Tumor Cell Response to Withanolides

    Directory of Open Access Journals (Sweden)

    Thomas Efferth

    2012-05-01

    Full Text Available Withania somnifera (L. Dunal (Indian ginseng, winter cherry, Solanaceae is widely used in traditional medicine. Roots are either chewed or used to prepare beverages (aqueous decocts. The major secondary metabolites of Withania somnifera are the withanolides, which are C-28-steroidal lactone triterpenoids. Withania somnifera extracts exert chemopreventive and anticancer activities in vitro and in vivo. The aims of the present in silico study were, firstly, to investigate whether tumor cells develop cross-resistance between standard anticancer drugs and withanolides and, secondly, to elucidate the molecular determinants of sensitivity and resistance of tumor cells towards withanolides. Using IC50 concentrations of eight different withanolides (withaferin A, withaferin A diacetate, 3-azerininylwithaferin A, withafastuosin D diacetate, 4-B-hydroxy-withanolide E, isowithanololide E, withafastuosin E, and withaperuvin and 19 established anticancer drugs, we analyzed the cross-resistance profile of 60 tumor cell lines. The cell lines revealed cross-resistance between the eight withanolides. Consistent cross-resistance between withanolides and nitrosoureas (carmustin, lomustin, and semimustin was also observed. Then, we performed transcriptomic microarray-based COMPARE and hierarchical cluster analyses of mRNA expression to identify mRNA expression profiles predicting sensitivity or resistance towards withanolides. Genes from diverse functional groups were significantly associated with response of tumor cells to withaferin A diacetate, e.g. genes functioning in DNA damage and repair, stress response, cell growth regulation, extracellular matrix components, cell adhesion and cell migration, constituents of the ribosome, cytoskeletal organization and regulation, signal transduction, transcription factors, and others.

  10. MUC16 provides immune protection by inhibiting synapse formation between NK and ovarian tumor cells

    Directory of Open Access Journals (Sweden)

    Migneault Martine

    2010-01-01

    Full Text Available Abstract Background Cancer cells utilize a variety of mechanisms to evade immune detection and attack. Effective immune detection largely relies on the formation of an immune synapse which requires close contact between immune cells and their targets. Here, we show that MUC16, a heavily glycosylated 3-5 million Da mucin expressed on the surface of ovarian tumor cells, inhibits the formation of immune synapses between NK cells and ovarian tumor targets. Our results indicate that MUC16-mediated inhibition of immune synapse formation is an effective mechanism employed by ovarian tumors to evade immune recognition. Results Expression of low levels of MUC16 strongly correlated with an increased number of conjugates and activating immune synapses between ovarian tumor cells and primary naïve NK cells. MUC16-knockdown ovarian tumor cells were more susceptible to lysis by primary NK cells than MUC16 expressing controls. This increased lysis was not due to differences in the expression levels of the ligands for the activating receptors DNAM-1 and NKG2D. The NK cell leukemia cell line (NKL, which does not express KIRs but are positive for DNAM-1 and NKG2D, also conjugated and lysed MUC16-knockdown cells more efficiently than MUC16 expressing controls. Tumor cells that survived the NKL challenge expressed higher levels of MUC16 indicating selective lysis of MUC16low targets. The higher csMUC16 levels on the NKL resistant tumor cells correlated with more protection from lysis as compared to target cells that were never exposed to the effectors. Conclusion MUC16, a carrier of the tumor marker CA125, has previously been shown to facilitate ovarian tumor metastasis and inhibits NK cell mediated lysis of tumor targets. Our data now demonstrates that MUC16 expressing ovarian cancer cells are protected from recognition by NK cells. The immune protection provided by MUC16 may lead to selective survival of ovarian cancer cells that are more efficient in

  11. Tumor-Initiating Cells and Methods of Use

    Science.gov (United States)

    Hlatky, Lynn (Inventor)

    2014-01-01

    Provided herein are an isolated or enriched population of tumor initiating cells derived from normal cells, cells susceptible to neoplasia, or neoplastic cells. Methods of use of the cells for screening for anti-hyperproliferative agents, and use of the cells for animal models of hyperproliferative disorders including metastatic cancer, diagnostic methods, and therapeutic methods are provided.

  12. Binimetinib inhibits MEK and is effective against neuroblastoma tumor cells with low NF1 expression.

    Science.gov (United States)

    Woodfield, Sarah E; Zhang, Linna; Scorsone, Kathleen A; Liu, Yin; Zage, Peter E

    2016-03-01

    Novel therapies are needed for children with high-risk and relapsed neuroblastoma. We hypothesized that MAPK/ERK kinase (MEK) inhibition with the novel MEK1/2 inhibitor binimetinib would be effective in neuroblastoma preclinical models. Levels of total and phosphorylated MEK and extracellular signal-regulated kinase (ERK) were examined in primary neuroblastoma tumor samples and in neuroblastoma cell lines by Western blot. A panel of established neuroblastoma tumor cell lines was treated with increasing concentrations of binimetinib, and their viability was determined using MTT assays. Western blot analyses were performed to examine changes in total and phosphorylated MEK and ERK and to measure apoptosis in neuroblastoma tumor cells after binimetinib treatment. NF1 protein levels in neuroblastoma cell lines were determined using Western blot assays. Gene expression of NF1 and MEK1 was examined in relationship to neuroblastoma patient outcomes. Both primary neuroblastoma tumor samples and cell lines showed detectable levels of total and phosphorylated MEK and ERK. IC50 values for cells sensitive to binimetinib ranged from 8 nM to 1.16 μM, while resistant cells did not demonstrate any significant reduction in cell viability with doses exceeding 15 μM. Sensitive cells showed higher endogenous expression of phosphorylated MEK and ERK. Gene expression of NF1, but not MEK1, correlated with patient outcomes in neuroblastoma, and NF1 protein expression also correlated with responses to binimetinib. Neuroblastoma tumor cells show a range of sensitivities to the novel MEK inhibitor binimetinib. In response to binimetinib, sensitive cells demonstrated complete loss of phosphorylated ERK, while resistant cells demonstrated either incomplete loss of ERK phosphorylation or minimal effects on MEK phosphorylation, suggesting alternative mechanisms of resistance. NF1 protein expression correlated with responses to binimetinib, supporting the use of NF1 as a biomarker to identify

  13. Dielectrophoretic capture and genetic analysis of single neuroblastoma tumor cells

    Directory of Open Access Journals (Sweden)

    Erica L Carpenter

    2014-07-01

    Full Text Available Our understanding of the diversity of cells that escape the primary tumor and seed micrometastases remains rudimentary, and approaches for studying circulating and disseminated tumor cells have been limited by low throughput and sensitivity, reliance on single parameter sorting, and a focus on enumeration rather than phenotypic and genetic characterization. Here we utilize a highly sensitive microfluidic and dielectrophoretic approach for the isolation and genetic analysis of individual tumor cells. We employed fluorescence labeling to isolate 208 single cells from spiking experiments conducted with 11 cell lines, including 8 neuroblastoma cell lines, and achieved a capture sensitivity of 1 tumor cell per 106 white blood cells. Sample fixation or freezing had no detectable effect on cell capture. Point mutations were accurately detected in the whole genome amplification product of captured single tumor cells but not in negative control white blood cells. We applied this approach to capture 144 single tumor cells from 10 bone marrow samples from patients suffering from neuroblastoma. In this pediatric malignancy, high-risk patients often exhibit wide-spread hematogenous metastasis, but access to primary tumor can be difficult or impossible. Here we used flow-based sorting to pre-enrich samples with tumor involvement below 0.02%. For all patients for whom a mutation in the Anaplastic Lymphoma Kinase gene had already been detected in their primary tumor, the same mutation was detected in single cells from their marrow. These findings demonstrate a novel, non-invasive, and adaptable method for the capture and genetic analysis of single tumor cells from cancer patients.

  14. A genetic perspective of male germ cell tumors.

    Science.gov (United States)

    Murty, V V; Chaganti, R S

    1998-04-01

    Adult human male germ cell tumors (GCTs) arise by transformation of germ cells (GCs). The transformed GCs exhibit pluripotentiality to differentiate into embryonic, extra-embryonic, and somatic tissue types, and are highly sensitive to cisplatin-based chemotherapy. Recent investigations into the genetics of GCTs have advanced methods of diagnosis and provided leads to the understanding of molecular basis of transformation, differentiation, and sensitivity/resistance. Cytogenetic and molecular cytogenetic studies have identified multiplication of 12p, manifested in i(12p) or tandem duplication of 12p, as a unique change in GCTs which serves as a diagnostic marker. Ectopic over-expression of cyclin D2, a gene mapped to 12p, as early as in carcinoma in situ identifies a candidate gene in GC transformation. Genetic alterations identified in the tumor suppressor genes deleted in colorectal cancer, retinoblastoma 1 and non-metastatic protein 23 (NME) in GCT suggest that their inactivation play a key role in transformation or differentiation. A number of regions of chromosomal deletion have been identified including those previously known to be deleted in various tumor types and novel candidate tumor suppressor gene sites such as 12q13, 12q22, and 5p15.1-15.2. Identification and characterization of the genes in these sites will provide important clues in understanding the biology of GCT. The molecular studies have also enumerated several possible differentiation controls such as switching of KIT and mast cell growth factor gene expression in a lineage-associated manner, and loss of certain types of genes such as NME in teratomas that may act in a dominant negative fashion in differentiation. The exquisite sensitivity of these tumors to chemotherapy is reflected in their over-expression of wild-type p53 protein and lack of TP53 mutations. These data indicate that multiple genetic events play a role in distinct pathways in the development of GCT, and further elucidation of

  15. Blood Outgrowth Endothelial Cells Increase Tumor Growth Rates and Modify Tumor Physiology: Relevance for Therapeutic Targeting

    International Nuclear Information System (INIS)

    Pagan, Jonathan; Przybyla, Beata; Jamshidi-Parsian, Azemat; Gupta, Kalpna; Griffin, Robert J.

    2013-01-01

    Endothelial cell precursors from human peripheral blood have been shown to home to areas of neovascularization and may assist tumor growth by increasing or fortifying blood vessel growth. In the present study, the influence of these cells on tumor growth and physiology was investigated and the role of these cells as a therapeutic target or in determining treatment sensitivity was tested. After isolation from human blood and expansion in vitro, actively growing cells with verified endothelial phenotype (Blood Outgrowth Endothelial Cell, BOEC) were injected i.v. into tumor bearing mice for three consecutive days. The growth rate was significantly enhanced in relatively small RERF human lung tumors (i.e., less than 150 mm 3 ) grown in immunocompromised mice by an average of 1.5-fold while it had no effect when injections were given to animals bearing larger tumors. There were no signs of toxicity or unwanted systemic effects. We also observed evidence of increased perfusion, vessel number, response to 15 Gy radiation and oxygenation in RERF tumors of animals injected with BOECs compared to control tumors. In addition, FSaII murine fibrosarcoma tumors were found to grow faster upon injection of BOECs. When FSaII tumors were subjected to a partial thermal ablation treatment using high intensity focused ultrasound (HIFU) there was consistently elevated detection of fluorescently labeled and i.v. injected endothelial precursors in the tumor when analyzed with optical imaging and/or histological preparations. Importantly, we also observed that BOECs treated with the novel anti-angiogenic peptide anginex in-vitro, show decreased proliferation and increased sensitivity to radiation. In vivo, the normal increase in FSaII tumor growth induced by injected BOECs was blunted by the addition of anginex treatment. It appears that endothelial precursors may significantly contribute to tumor vessel growth, tumor progression and/or repair of tumor damage and may improve the

  16. Fatty acid synthase - Modern tumor cell biology insights into a classical oncology target.

    Science.gov (United States)

    Buckley, Douglas; Duke, Gregory; Heuer, Timothy S; O'Farrell, Marie; Wagman, Allan S; McCulloch, William; Kemble, George

    2017-09-01

    Decades of preclinical and natural history studies have highlighted the potential of fatty acid synthase (FASN) as a bona fide drug target for oncology. This review will highlight the foundational concepts upon which this perspective is built. Published studies have shown that high levels of FASN in patient tumor tissues are present at later stages of disease and this overexpression predicts poor prognosis. Preclinical studies have shown that experimental overexpression of FASN in previously normal cells leads to changes that are critical for establishing a tumor phenotype. Once the tumor phenotype is established, FASN elicits several changes to the tumor cell and becomes intertwined with its survival. The product of FASN, palmitate, changes the biophysical nature of the tumor cell membrane; membrane microdomains enable the efficient assembly of signaling complexes required for continued tumor cell proliferation and survival. Membranes densely packed with phospholipids containing saturated fatty acids become resistant to the action of other chemotherapeutic agents. Inhibiting FASN leads to tumor cell death while sparing normal cells, which do not have the dependence of this enzyme for normal functions, and restores membrane architecture to more normal properties thereby resensitizing tumors to killing by chemotherapies. One compound has recently reached clinical studies in solid tumor patients and highlights the need for continued evaluation of the role of FASN in tumor cell biology. Significant advances have been made and much remains to be done to optimally apply this class of pharmacological agents for the treatment of specific cancers. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Role of multidrug resistance protein (MRP) in glutathione S-conjugate transport in mammalian cells

    NARCIS (Netherlands)

    Muller, M; deVries, EGE; Jansen, PLM

    1996-01-01

    The human multidrug resistance protein (MRP), a 190-kDa member of the ABC-protein superfamily, is an ATP-dependent glutathione S-conjugate carrier (GS-X pump) and is present in membranes of many, if not all, cells, Overexpression of MRP in tumor cells contributes to resistance to natural product

  18. Role of multidrug resistance protein (MRP) in glutathione S-conjugate transport in mammalian cells

    NARCIS (Netherlands)

    Müller, M.; de Vries, E. G.; Jansen, P. L.

    1996-01-01

    The human multidrug resistance protein (MRP), a 190-kDa member of the ABC-protein superfamily, is an ATP-dependent glutathione S-conjugate carrier (GS-X pump) and is present in membranes of many, if not all, cells. Overexpression of MRP in tumor cells contributes to resistance to natural product

  19. Tumor-infiltrating tryptase+mast cells predict unfavorable clinical outcome in solid tumors.

    Science.gov (United States)

    Hu, Guoming; Wang, Shimin; Cheng, Pu

    2018-02-15

    The prognostic role of tumor-infiltrating tryptase + mast cells in human solid tumors remains controversial. Herein, we conducted a meta-analysis including 28 published studies with 4224 patients identified from PubMed and EBSCO to assess the prognostic impact of tumor-infiltrating tryptase + mast cells in human solid tumors. We found that tryptase + mast cell infiltration significantly decreased overall survival (OS) and disease-free survival (DFS) in all types of solid tumors. In stratified analyses, tryptase + mast cell infiltration was significantly associated with worse OS in non-small cell lung cancer, hepatocellular carcinoma and 5-year survival in colorectal cancer. And these cells were inversely associated with DFS in hepatocellular and colorectal cancer. In addition, high density of intratumoral tryptase + mast cells significantly correlated with lymph node metastasis of solid tumor. In conclusion, Tryptase + mast cell infiltration leads to an unfavorable clinical outcome in solid tumors, implicating that it is a valuable biomarker for prognostic prediction for human solid malignances and targeting it may have a potential for effective treatment. © 2017 UICC.

  20. Global expression profile of tumor stem-like cells isolated from MMQ rat prolactinoma cell

    OpenAIRE

    Su, Zhipeng; Cai, Lin; Lu, Jianglong; Li, Chuzhong; Gui, Songbai; Liu, Chunhui; Wang, Chengde; Li, Qun; Zhuge, Qichuan; Zhang, Yazhuo

    2017-01-01

    Background Cancer stem cells (CSCs), which have been isolated from various malignancies, were closely correlated with the occurrence, progression, metastasis and recurrence of the malignant cancer. Little is known about the tumor stem-like cells (TSLCs) isolated from benign tumors. Here we want to explore the global expression profile of RNA of tumor stem-like cells isolated from MMQ rat prolactinoma cells. Methods In this study, total RNA was extracted from MMQ cells and MMQ tumor stem-like ...

  1. Novel nanostructured enoxaparin sodium-PLGA hybrid carriers overcome tumor multidrug resistance of doxorubicin hydrochloride.

    Science.gov (United States)

    Wang, Jia; Wu, Lei; Kou, Longfa; Xu, Meng; Sun, Jin; Wang, Yongjun; Fu, Qiang; Zhang, Peng; He, Zhonggui

    2016-11-20

    Novel enoxaparin sodium-PLGA hybrid nanocarries (EPNs) were successfully designed for sustained delivery of hydrophilic cationic doxorubicin hydrochloride (DOX) and to overcome multidrug resistance (MDR). By incorporation of the negative polymer of enoxaparin sodium (ES), DOX was highly encapsulated into EPNs with an encapsulation efficiency of 92.49%, and ES effectively inhibited the proliferation of HUVEC cell lines. The in vivo pharmacokinetics study after intravenous injection indicated that DOX-loaded EPNs (DOX-EPNs) exhibited a higher area under the curve (AUC) and a longer half-life (t 1/2 ) in comparison with DOX solution (DOX-Sol). The biodistribution study demonstrated that DOX-EPNs increased the DOX level in plasma and decreased the accumulation of DOX in liver and spleen. Compared with DOX-Sol, DOX-EPNs increased the cytotoxicity in P-gp over-expressing MCF-7/Adr cells, attributed to the higher intracellular efficiency of DOX produced by the EPNs. DOX-EPNs entered into resistant tumor cells by multiple endocytosis pathways, which resulted in overcoming the multidrug resistance of MCF-7/Adr cells by escaping the efflux induced by P-gp transporters. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Tumor Immunology and Immunotherapy for Head and Neck Squamous Cell Carcinoma.

    Science.gov (United States)

    Moskovitz, J M; Ferris, R L

    2018-02-01

    The immune system plays an important role in the evolution of malignancy and has become an important target for novel antineoplastic agents. This review article focuses on key features of tumor immunology, including the role of immunotherapy in general and as it pertains to head and neck squamous cell carcinoma. Side effects, resistance mechanisms, and therapeutic monitoring strategies pertaining to immunotherapy are discussed.

  3. An Effective Approach for Immunotherapy Using Irradiated Tumor Cells

    International Nuclear Information System (INIS)

    Mostafa, D.M.B.

    2011-01-01

    This study has been aimed to investigate the effect of injection of Irradiated Ehrlich tumor cells alone or concurrent with immunomodulator in mice before and after challenge with viable Ehrlich tumor cells for enhancement of immune system. This study includes the estimation of survival, tumor size, lymphocyte count, LDH, MTT, granzyme B, and DNA fragmentation. In order to fulfill the target of this study, a total of 120 female swiss albino mice were used. They were divided into two classes vaccinated (injection of vaccine before challenge) and therapeutic class (injection of vaccine after challenge). Each class was divided into four groups, group (1) mice injected with viable Ehrlich tumor cells (G1), group (2) mice injected with irradiated tumor cells (G2), group (3) mice injected with immunomodulator (G3), and group (4) mice injected with irradiated tumor cells + immunomodulator (G4). Results obtained from this study demonstrated that, the lymphocyte count and granzyme B activity were increased in both the vaccinated and therapeutic classes compared with control group. LDH activity was decreased in all groups of vaccinated class and also in G2 and G4 groups of therapeutic class compared with control group. There was a significant increase in percent apoptosis of tumor cells cultured with spleenocytes of the groups of vaccinated class as compared with control group. Cellular DNA from Ehrlich tumor cell line cultured with spleenocytes of immunized groups was fragmented into discrete bands of approximate multiples of 200 bp. Revealing significant apoptosis in tumor cells due to vaccination. It is concluded that, vaccination with irradiated tumor cells is an effective approach in stimulation of immune system against viable tumor cells.

  4. Cancer systems biology in the genome sequencing era: part 2, evolutionary dynamics of tumor clonal networks and drug resistance.

    Science.gov (United States)

    Wang, Edwin; Zou, Jinfeng; Zaman, Naif; Beitel, Lenore K; Trifiro, Mark; Paliouras, Miltiadis

    2013-08-01

    A tumor often consists of multiple cell subpopulations (clones). Current chemo-treatments often target one clone of a tumor. Although the drug kills that clone, other clones overtake it and the tumor recurs. Genome sequencing and computational analysis allows to computational dissection of clones from tumors, while singe-cell genome sequencing including RNA-Seq allows profiling of these clones. This opens a new window for treating a tumor as a system in which clones are evolving. Future cancer systems biology studies should consider a tumor as an evolving system with multiple clones. Therefore, topics discussed in Part 2 of this review include evolutionary dynamics of clonal networks, early-warning signals (e.g., genome duplication events) for formation of fast-growing clones, dissecting tumor heterogeneity, and modeling of clone-clone-stroma interactions for drug resistance. The ultimate goal of the future systems biology analysis is to obtain a 'whole-system' understanding of a tumor and therefore provides a more efficient and personalized management strategies for cancer patients. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  5. Metastasis of tumor cells is enhanced by downregulation of Bit1.

    Directory of Open Access Journals (Sweden)

    Priya Prakash Karmali

    Full Text Available Resistance to anoikis, which is defined as apoptosis induced by loss of integrin-mediated cell attachment to the extracellular matrix, is a determinant of tumor progression and metastasis. We have previously identified the mitochondrial Bit1 (Bcl-2 inhibitor of transcription protein as a novel anoikis effector whose apoptotic function is independent from caspases and is uniquely controlled by integrins. In this report, we examined the possibility that Bit1 is suppressed during tumor progression and that Bit1 downregulation may play a role in tumor metastasis.Using a human breast tumor tissue array, we found that Bit1 expression is suppressed in a significant fraction of advanced stages of breast cancer. Targeted disruption of Bit1 via shRNA technology in lowly aggressive MCF7 cells conferred enhanced anoikis resistance, adhesive and migratory potential, which correlated with an increase in active Extracellular kinase regulated (Erk levels and a decrease in Erk-directed phosphatase activity. These pro-metastasis phenotypes were also observed following downregulation of endogenous Bit1 in Hela and B16F1 cancer cell lines. The enhanced migratory and adhesive potential of Bit1 knockdown cells is in part dependent on their high level of Erk activation since down-regulating Erk in these cells attenuated their enhanced motility and adhesive properties. The Bit1 knockdown pools also showed a statistically highly significant increase in experimental lung metastasis, with no differences in tumor growth relative to control clones in vivo using a BALB/c nude mouse model system. Importantly, the pulmonary metastases of Bit1 knockdown cells exhibited increased phospho-Erk staining.These findings indicate that downregulation of Bit1 conferred cancer cells with enhanced anoikis resistance, adhesive and migratory properties in vitro and specifically potentiated tumor metastasis in vivo. These results underscore the therapeutic importance of restoring Bit1

  6. A Rare Cause of Prepubertal Gynecomastia: Sertoli Cell Tumor

    Directory of Open Access Journals (Sweden)

    Fatma Dursun

    2015-01-01

    Full Text Available Prepubertal gynecomastia due to testis tumors is a very rare condition. Nearly 5% of the patients with testicular mass present with gynecomastia. Sertoli cell tumors are sporadic in 60% of the reported cases, while the remaining is a component of multiple neoplasia syndromes such as Peutz-Jeghers syndrome and Carney complex. We present a 4-year-old boy with gynecomastia due to Sertoli cell tumor with no evidence of Peutz-Jeghers syndrome or Carney complex.

  7. INDOLEAMINE 2,3-DIOXYGENASE INDUCES EXPRESSION OF A NOVEL TRYPTOPHAN TRANSPORTER IN MOUSE AND HUMAN TUMOR CELLS1

    Science.gov (United States)

    Silk, Jonathan D.; Lakhal, Samira; Laynes, Robert; Vallius, Laura; Karydis, Ioannis; Marcea, Cornelius; Boyd, C. A. Richard; Cerundolo, Vincenzo

    2011-01-01

    Indoleamine 2,3 dioxygenase (IDO) is the rate-limiting enzyme in the kynurenine pathway, catabolizing tryptophan to kynurenine. Tryptophan depletion by IDO expressing tumors is a common mechanism of immune evasion inducing regulatory T cells and inhibiting effector T cells. As mammalian cells cannot synthesize tryptophan, it remains unclear how IDO positive tumor cells overcome the detrimental effects of local tryptophan depletion. We demonstrate that IDO positive tumor cells express a novel amino acid transporter, which accounts for approximately 50% of the tryptophan uptake. The induced transporter is biochemically distinguished from the constitutively expressed tryptophan transporter System L by increased resistance to inhibitors of System L, resistance to inhibition by high concentrations of most amino acids tested, and high substrate specificity for tryptophan. Under conditions of low extracellular tryptophan, expression of this novel transporter significantly increases tryptophan entry into IDO positive tumors relative to tryptophan uptake through the low affinity System L alone, and further decreases tryptophan levels in the microenvironment. Targeting this additional tryptophan transporter could be a way of pharmacological inhibition of IDO mediated tumor escape. These findings highlight the ability of IDO-expressing tumor cells to thrive in a tryptophan depleted microenvironment by expressing a novel, highly tryptophan-specific transporter, which is resistant to inhibition by most other amino acids. The additional transporter allows tumor cells to strike the ideal balance between supply of tryptophan essential for their own proliferation and survival, and depleting the extracellular milieu of tryptophan to inhibit T cell proliferation. PMID:21742973

  8. Cytokine-Induced Killer Cells Modulates Resistance to Cisplatin in the A549/DDP Cell Line.

    Science.gov (United States)

    Yang, Lili; Du, Chunjuan; Wu, Lei; Yu, Jinpu; An, Xiumei; Yu, Wenwen; Cao, Shui; Li, Hui; Ren, Xiubao

    2017-01-01

    Background Cytokine-induced killer (CIK) cells can potentially enhance the tumor-killing activity of chemotherapy. Objective This study aimed to evaluate the effects of CIK cells on cisplatin (DDP) resistance in the human lung adenocarcinoma cell line A549/DDP. Methods The detect resistance index, drug resistance related-genes and cytokine secretion of A549/DDP co-cultured with CIK cells were assayed in vitro . Results After A549/DDP co-culture with CIK cells, the DDP resistance of A549/DDP significantly decreased in a time-dependent manner. The DDP resistance of A549/DDP co-cultured with CIK cells for 20 h decreased 4.93-fold compared with that of A549/DDP cells cultured alone ( P A549/DDP significantly decreased after co-culture with CIK cells ( P A549/DDP with CIK cells. The expression of GST-π was restored by adding the neutralizing IFN-γ. Conclusion CIK cells can reverse the drug resistance of A549/DDP in a time-dependent manner by reducing GST-π expression to increase the accumulation of DDP. The effect of CIK cells on re-sensitizing lung cancer cells to the chemotherapy drug was partially dependent on the secretion of IFN-γ.

  9. Resistance exercise attenuates skeletal muscle oxidative stress, systemic pro-inflammatory state, and cachexia in Walker-256 tumor-bearing rats.

    Science.gov (United States)

    Padilha, Camila Souza; Borges, Fernando Henrique; Costa Mendes da Silva, Lilian Eslaine; Frajacomo, Fernando Tadeu Trevisan; Jordao, Alceu Afonso; Duarte, José Alberto; Cecchini, Rubens; Guarnier, Flávia Alessandra; Deminice, Rafael

    2017-09-01

    The aim of this study was to investigate the effects of resistance exercise training (RET) on oxidative stress, systemic inflammatory markers, and muscle wasting in Walker-256 tumor-bearing rats. Male (Wistar) rats were divided into 4 groups: sedentary controls (n = 9), tumor-bearing (n = 9), exercised (n = 9), and tumor-bearing exercised (n = 10). Exercised and tumor-bearing exercised rats were exposed to resistance exercise of climbing a ladder apparatus with weights tied to their tails for 6 weeks. The physical activity of control and tumor-bearing rats was confined to the space of the cage. After this period, tumor-bearing and tumor-bearing exercised animals were inoculated subcutaneously with Walker-256 tumor cells (11.0 × 10 7 cells in 0.5 mL of phosphate-buffered saline) while control and exercised rats were injected with vehicle. Following inoculation, rats maintained resistance exercise training (exercised and tumor-bearing exercised) or sedentary behavior (control and tumor-bearing) for 12 more days, after which they were euthanized. Results showed muscle wasting in the tumor-bearing group, with body weight loss, increased systemic leukocytes, and inflammatory interleukins as well as muscular oxidative stress and reduced mTOR signaling. In contrast, RET in the tumor-bearing exercised group was able to mitigate the reduced body weight and muscle wasting with the attenuation of muscle oxidative stress and systemic inflammatory markers. RET also prevented loss of muscle strength associated with tumor development. RET, however, did not prevent the muscle proteolysis signaling via FBXO32 gene messenger RNA expression in the tumor-bearing group. In conclusion, RET performed prior tumor implantation prevents cachexia development by attenuating tumor-induced systemic pro-inflammatory condition with muscle oxidative stress and muscle damage.

  10. The renaissance of anti-neoplastic immunity from tumor cell demise.

    Science.gov (United States)

    Ma, Yuting; Pitt, Jonathan M; Li, Qingqing; Yang, Heng

    2017-11-01

    Cancer therapies can temporarily reduce tumor burdens by inducing malignant cell death. However, cancer cure is still far from realization because tumors often gain resistance to current treatment and eventually relapse. Accumulating evidence suggests that successful cancer interventions require anti-tumor immunity. Therapy-induced cell stress responses ultimately result in one or more cell death modalities, including apoptosis, autophagy, necroptosis, and pyroptosis. These irreversible dying processes are accompanied by active or passive release of cell death-associated molecular patterns (CDAMPs), which can be sensed by corresponding pattern recognition receptors (PRR) on tumor-infiltrating immune cells. This crosstalk with the immune system can reawaken immune surveillance in the tumor microenvironment (TME). This review focuses on immune-modulatory properties of anti-cancer regimens and CDAMP-mediated communications between cell stress responses and the immune contexture of TME. In addition, we describe how immunogenic cell death can elicit strong and durable anti-tumor immune responses. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Intensive chemotherapy as salvage treatment for solid tumors: focus on germ cell cancer

    Energy Technology Data Exchange (ETDEWEB)

    Selle, F.; Gligorov, J. [Medical Oncology and Cellular Therapy Department, Hospital Tenon, Public Assistance Hospitals of Paris, Alliance for Cancer Research (APREC), Paris (France); Pierre & Marie Curie University (UPMC Paris VI), Paris (France); Richard, S.; Khalil, A. [Medical Oncology and Cellular Therapy Department, Hospital Tenon, Public Assistance Hospitals of Paris, Alliance for Cancer Research (APREC), Paris (France); Alexandre, I. [Medical Oncology Department, Hospital Centre of Bligny, Briis-sous-Forges (France); Avenin, D.; Provent, S.; Soares, D.G. [Medical Oncology and Cellular Therapy Department, Hospital Tenon, Public Assistance Hospitals of Paris, Alliance for Cancer Research (APREC), Paris (France); Lotz, J.P. [Medical Oncology and Cellular Therapy Department, Hospital Tenon, Public Assistance Hospitals of Paris, Alliance for Cancer Research (APREC), Paris (France); Pierre & Marie Curie University (UPMC Paris VI), Paris (France)

    2014-11-04

    Germ cell tumors present contrasting biological and molecular features compared to many solid tumors, which may partially explain their unusual sensitivity to chemotherapy. Reduced DNA repair capacity and enhanced induction of apoptosis appear to be key factors in the sensitivity of germ cell tumors to cisplatin. Despite substantial cure rates, some patients relapse and subsequently die of their disease. Intensive doses of chemotherapy are used to counter mechanisms of drug resistance. So far, high-dose chemotherapy with hematopoietic stem cell support for solid tumors is used only in the setting of testicular germ cell tumors. In that indication, high-dose chemotherapy is given as the first or late salvage treatment for patients with either relapsed or progressive tumors after initial conventional salvage chemotherapy. High-dose chemotherapy is usually given as two or three sequential cycles using carboplatin and etoposide with or without ifosfamide. The administration of intensive therapy carries significant side effects and can only be efficiently and safely conducted in specialized referral centers to assure optimum patient care outcomes. In breast and ovarian cancer, most studies have demonstrated improvement in progression-free survival (PFS), but overall survival remained unchanged. Therefore, most of these approaches have been dropped. In germ cell tumors, clinical trials are currently investigating novel therapeutic combinations and active treatments. In particular, the integration of targeted therapies constitutes an important area of research for patients with a poor prognosis.

  12. 3D cell culture systems modeling tumor growth determinants in cancer target discovery.

    Science.gov (United States)

    Thoma, Claudio R; Zimmermann, Miriam; Agarkova, Irina; Kelm, Jens M; Krek, Wilhelm

    2014-04-01

    Phenotypic heterogeneity of cancer cells, cell biological context, heterotypic crosstalk and the microenvironment are key determinants of the multistep process of tumor development. They sign responsible, to a significant extent, for the limited response and resistance of cancer cells to molecular-targeted therapies. Better functional knowledge of the complex intra- and intercellular signaling circuits underlying communication between the different cell types populating a tumor tissue and of the systemic and local factors that shape the tumor microenvironment is therefore imperative. Sophisticated 3D multicellular tumor spheroid (MCTS) systems provide an emerging tool to model the phenotypic and cellular heterogeneity as well as microenvironmental aspects of in vivo tumor growth. In this review we discuss the cellular, chemical and physical factors contributing to zonation and cellular crosstalk within tumor masses. On this basis, we further describe 3D cell culture technologies for growth of MCTS as advanced tools for exploring molecular tumor growth determinants and facilitating drug discovery efforts. We conclude with a synopsis on technological aspects for on-line analysis and post-processing of 3D MCTS models. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Intensive chemotherapy as salvage treatment for solid tumors: focus on germ cell cancer

    International Nuclear Information System (INIS)

    Selle, F.; Gligorov, J.; Richard, S.; Khalil, A.; Alexandre, I.; Avenin, D.; Provent, S.; Soares, D.G.; Lotz, J.P.

    2014-01-01

    Germ cell tumors present contrasting biological and molecular features compared to many solid tumors, which may partially explain their unusual sensitivity to chemotherapy. Reduced DNA repair capacity and enhanced induction of apoptosis appear to be key factors in the sensitivity of germ cell tumors to cisplatin. Despite substantial cure rates, some patients relapse and subsequently die of their disease. Intensive doses of chemotherapy are used to counter mechanisms of drug resistance. So far, high-dose chemotherapy with hematopoietic stem cell support for solid tumors is used only in the setting of testicular germ cell tumors. In that indication, high-dose chemotherapy is given as the first or late salvage treatment for patients with either relapsed or progressive tumors after initial conventional salvage chemotherapy. High-dose chemotherapy is usually given as two or three sequential cycles using carboplatin and etoposide with or without ifosfamide. The administration of intensive therapy carries significant side effects and can only be efficiently and safely conducted in specialized referral centers to assure optimum patient care outcomes. In breast and ovarian cancer, most studies have demonstrated improvement in progression-free survival (PFS), but overall survival remained unchanged. Therefore, most of these approaches have been dropped. In germ cell tumors, clinical trials are currently investigating novel therapeutic combinations and active treatments. In particular, the integration of targeted therapies constitutes an important area of research for patients with a poor prognosis

  14. Vitamin C deficiency aggravates tumor necrosis factor α-induced insulin resistance.

    Science.gov (United States)

    Qing, Zhou; Xiao-Hui, Wu; Xi-Mei, Wu; Chao-Chun, Zou

    2018-04-03

    Chronic low-grade inflammation plays a major role in the development of insulin resistance. The potential role and underlying mechanism of vitamin C, an antioxidant and anti-inflammatory agent, was investigated in tumor necrosis factor-α (TNF-α)-induced insulin resistance. Gulonolactone oxidase knockout (Gulo -/- ) mice genetically unable to synthesize vitamin C were used to induce insulin resistance by continuously pumping small doses of TNF-α for seven days, and human liver hepatocellular carcinoma cells (HepG2 cells) were used to induce insulin resistance by treatment with TNF-α. Vitamin C deficiency aggravated TNF-α-induced insulin resistance in Gulo -/- mice, resulting in worse glucose tolerance test (GTT) results, higher fasting plasma insulin level, and the inactivation of the protein kinase B (AKT)/glycogen synthase kinase-3β (GSK3β) pathway in the liver. Vitamin C deficiency also worsened liver lipid accumulation and inflammation in TNF-α-treated Gulo -/- mice. In HepG2 cells, vitamin C reversed the TNF-α-induced reduction of glucose uptake and glycogen synthesis, which were mediated by increasing GLUT2 levels and the activation of the insulin receptor substrate (IRS-1)/AKT/GSK3β pathway. Furthermore, vitamin C inhibited the TNF-α-induced activation of not only the mitogen-activated protein kinase (MAPKs), but also nuclear factor-kappa B (NF-κB) signaling. Taken together, vitamin C is essential for preventing and improving insulin resistance, and the supplementing with vitamin C may be an effective therapeutic intervention for metabolic disorders. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Granular Cell Tumor Of The Esophagus: An Unusual Cause Of ...

    African Journals Online (AJOL)

    We report an uncommon case of dysphagia caused by a granular cell tumor in a 38 year old black female. Previously documented granular cell tumors are reported as being small and treated endoscopically. This is probably the largest reported in literature and possibly the fi rst documented in the West African subregion.

  16. Targeted liposomes for cytosolic drug delivery to tumor cells

    NARCIS (Netherlands)

    Mastrobattista, E.

    2001-01-01

    In this thesis, a Trojan horse strategy with antibody-targeted liposomes has been followed to obtain cytosolic delivery of biotherapeutics to tumor cells in vitro. This strategy involves targeting of immunoliposomes to specific receptors on tumor cells that result in receptor-mediated uptake of the

  17. Effects of tea polyphenol components on reversion of tumor multidrug resistance

    International Nuclear Information System (INIS)

    Ran Tiecheng; Wang Yi; Liu Xinqi; Chu Taiwei; Wei Xionghui; Wang Xiangyun; Guo Zhenquan; Wei Bing

    2003-01-01

    The effects of tea polyphenol (TP) and its main components, (-)-epicatechin (EC), (-)-epicatechin gallate (ECG), epigallocatechin (EGC) and (-)-epigallocatechin gallate (EGCG) with caffeine on reversion of tumor multidrug resistance (MDR) are investigated by using MCF-7/Adr cell line and 99 Tc m -MIBI as a substrate of P-glucoprotein (P-gp). MCF-7/Adr cells are incubated with 99 Tc m -MIBI in the presence or absence of TP or its main components (separate or mixed). The cell uptake of 99 Tc m -MIBI is measured and compared with a contrast to estimate the MDR reversion effect. The experimental results indicate that the native tea polyphenol exhibits a moderate MDR reversion effect. The MDR reversion efficacies of the four main components of TP are found in the sequence ECG>EGC>EC>EGCG. Caffeine as well as the mixture of EGCG-ECG-EGC-EC in the mass ratio 10:3:2:1 shows practically no MDR reversion effect

  18. Colorectal cancer stem cells : regulation of the phenotype and implications for therapy resistance

    OpenAIRE

    Emmink, B.L.

    2014-01-01

    In this thesis different aspects of cancer stem cells in colorectal cancer are discribed. We focus on the therapy resistance of cancer stem cells and the effect that reactive oxygen species and hypoxia have on the cancer stem cell phenotype. For this purpose a novel culture method to propagate cancer stem cells form resected tumor specimens was used.

  19. Extracorporeal Photo-Immunotherapy for Circulating Tumor Cells

    OpenAIRE

    Kim, Gwangseong; Gaitas, Angelo

    2015-01-01

    It is well established that metastasis through the circulatory system is primarily caused by circulating tumor cells (CTCs). In this preliminary effort, we report an approach to eliminate circulating tumor cells from the blood stream by flowing the blood though an extracorporeal tube and applying photodynamic therapy (PDT). Chlorin e6 (Ce6), a photosensitizer, was conjugated to CD44 antibody in order to target PC-3, a prostate cancer cell line. PC-3 cells were successfully stained by the Ce6-...

  20. Tumor-Induced Generation of Splenic Erythroblast-like Ter-Cells Promotes Tumor Progression.

    Science.gov (United States)

    Han, Yanmei; Liu, Qiuyan; Hou, Jin; Gu, Yan; Zhang, Yi; Chen, Zhubo; Fan, Jia; Zhou, Weiping; Qiu, Shuangjian; Zhang, Yonghong; Dong, Tao; Li, Ning; Jiang, Zhengping; Zhu, Ha; Zhang, Qian; Ma, Yuanwu; Zhang, Lianfeng; Wang, Qingqing; Yu, Yizhi; Li, Nan; Cao, Xuetao

    2018-04-19

    Identifying tumor-induced leukocyte subsets and their derived circulating factors has been instrumental in understanding cancer as a systemic disease. Nevertheless, how primary tumor-induced non-leukocyte populations in distal organs contribute to systemic spread remains poorly defined. Here, we report one population of tumor-inducible, erythroblast-like cells (Ter-cells) deriving from megakaryocyte-erythroid progenitor cells with a unique Ter-119 + CD45 - CD71 + phenotype. Ter-cells are enriched in the enlarged spleen of hosts bearing advanced tumors and facilitate tumor progression by secreting neurotrophic factor artemin into the blood. Transforming growth factor β (TGF-β) and Smad3 activation are important in Ter-cell generation. In vivo blockade of Ter-cell-derived artemin inhibits hepatocellular carcinoma (HCC) growth, and artemin deficiency abolishes Ter-cells' tumor-promoting ability. We confirm the presence of splenic artemin-positive Ter-cells in human HCC patients and show that significantly elevated serum artemin correlates with poor prognosis. We propose that Ter-cells and the secreted artemin play important roles in cancer progression with prognostic and therapeutic implications. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Tumor-Derived Cell Lines as Molecular Models of Cancer Pharmacogenomics.

    Science.gov (United States)

    Goodspeed, Andrew; Heiser, Laura M; Gray, Joe W; Costello, James C

    2016-01-01

    Compared with normal cells, tumor cells have undergone an array of genetic and epigenetic alterations. Often, these changes underlie cancer development, progression, and drug resistance, so the utility of model systems rests on their ability to recapitulate the genomic aberrations observed in primary tumors. Tumor-derived cell lines have long been used to study the underlying biologic processes in cancer, as well as screening platforms for discovering and evaluating the efficacy of anticancer therapeutics. Multiple -omic measurements across more than a thousand cancer cell lines have been produced following advances in high-throughput technologies and multigroup collaborative projects. These data complement the large, international cancer genomic sequencing efforts to characterize patient tumors, such as The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC). Given the scope and scale of data that have been generated, researchers are now in a position to evaluate the similarities and differences that exist in genomic features between cell lines and patient samples. As pharmacogenomics models, cell lines offer the advantages of being easily grown, relatively inexpensive, and amenable to high-throughput testing of therapeutic agents. Data generated from cell lines can then be used to link cellular drug response to genomic features, where the ultimate goal is to build predictive signatures of patient outcome. This review highlights the recent work that has compared -omic profiles of cell lines with primary tumors, and discusses the advantages and disadvantages of cancer cell lines as pharmacogenomic models of anticancer therapies. ©2015 American Association for Cancer Research.

  2. [Isolation and identification of brain tumor stem cells from human brain neuroepithelial tumors].

    Science.gov (United States)

    Fang, Jia-sheng; Deng, Yong-wen; Li, Ming-chu; Chen, Feng-Hua; Wang, Yan-jin; Lu, Ming; Fang, Fang; Wu, Jun; Yang, Zhuan-yi; Zhou, Xang-yang; Wang, Fei; Chen, Cheng

    2007-01-30

    To establish a simplified culture system for the isolation of brain tumor stem cells (BTSCs) from the tumors of human neuroepithelial tissue, to observe the growth and differentiation pattern of BTSCs, and to investigate their expression of the specific markers. Twenty-six patients with brain neuroepithelial tumors underwent tumor resection. Two pieces of tumor tissues were taken from each tumor to be dissociated, triturated into single cells in sterile DMEM-F12 medium, and then filtered. The tumor cells were seeded at a concentration of 200,000 viable cells per mL into serum-free DMEM-F12 medium simply supplemented with B27, human basic fibroblast growth factor (20 microg/L), human epidermal growth factor (20 microg /L), insulin (4 U/L), L-glutamine, penicillin and streptomycin. After the primary brain tumor spheres (BTSs) were generated, they were triturated again and passed in fresh medium. Limiting dilution assay was performed to observe the monoclone formation. 5-bromodeoxyuridine (BrdU) incorporation test was performed to observe the proliferation of the BTS. The BTSCs were cultured in mitogen-free DMEM-F12 medium supplemented with 10% fetal bovine serum to observe their differentiation. Immunocytochemistry was used to examine the expression of CD133 and nestin, specific markers of BTSC, and the rate of CD133 positive cells. Only a minority of subsets of cells from the tumors of neuroepithelial tissue had the capacity to survive, proliferate, and generate free-floating neurosphere-like BTSs in the simplified serum-free medium. These cells attached to the poly-L-lysine coated coverslips in the serum-supplemented medium and differentiated. The BTSCs were CD133 and nestin positive. The rate of CD133 positive cells in the tumor specimens was (21 +/- 6.2)% - (38 +/- 7.0)%. A new simplified culture system for the isolation of BTSCs is established. The tumors of human neuroepithelial tissue contain CD133 and nestin positive tumor stem cells which can be isolated

  3. Malignant small cell tumor of the thoracopulmonary region(Askin tumor)

    International Nuclear Information System (INIS)

    Choi, Young Chil; Oh, Yu Whan; Park, Cheol Min; Chung, Kyoo Byung; Choi, Myung Sun; Choi, Young Ho

    1989-01-01

    A series of malignant small cell tumors primarily involve the soft tissue of the chest wall and lung was described by Askin in 1970. This rate tumor has a neuroepithelial origin and affects children and young adult, characteristically. Histologic overlap between other small cell neoplasms usually makes differentiation difficult, and immunochemical and electron microscopic features play a role in differentiation. Radiologic appearance was chest wall or pleural based mass with or without rib destruction and/or pleural change. Authors experienced two cases of malignant small cell tumor of the thoracopulmonary region, and report with review of literatures

  4. Tumor-stem cells interactions by fluorescence imaging

    Science.gov (United States)

    Meleshina, Aleksandra V.; Cherkasova, Elena I.; Sergeeva, Ekaterina; Turchin, Ilya V.; Kiseleva, Ekaterina V.; Dashinimaev, Erdem B.; Shirmanova, Marina V.; Zagaynova, Elena V.

    2013-02-01

    Recently, great deal of interest is investigation the function of the stem cells (SC) in tumors. In this study, we studied «recipient-tumor- fluorescent stem cells » system using the methods of in vivo imaging and laser scanning microscopy (LSM). We used adipose-derived adult stem (ADAS) cells of human lentiviral transfected with the gene of fluorescent protein Turbo FP635. ADAS cells were administrated into nude mice with transplanted tumor HeLa Kyoto (human cervical carcinoma) at different stages of tumor growth (0-8 days) intravenously or into tumor. In vivo imaging was performed on the experimental setup for epi - luminescence bioimaging (IAP RAS, Nizhny Novgorod). The results of the imaging showed localization of fluorophore tagged stem cells in the spleen on day 5-9 after injection. The sensitivity of the technique may be improved by spectral separation autofluorescence and fluorescence of stem cells. We compared the results of in vivo imaging and confocal laser scanning microscopy (LSM 510 META, Carl Zeiss, Germany). Internal organs of the animals and tumor tissue were investigated. It was shown that with i.v. injection of ADAS, bright fluorescent structures with spectral characteristics corresponding to TurboFP635 protein are locally accumulated in the marrow, lungs and tumors of animals. These findings indicate that ADAS cells integrate in the animal body with transplanted tumor and can be identified by fluorescence bioimaging techniques in vivo and ex vivo.

  5. Attack the tumor counterattack-c-FLIP expression in Jurkat-T-cells protects against apoptosis induced by coculture with SW620 colorectal adenocarcinoma cells.

    Science.gov (United States)

    Steiert, Andreas E; Sendler, Daniel; Burke, Willam F; Choi, Claudia Y; Reimers, Kerstin; Vogt, Peter M

    2012-07-01

    Cancer development relies on a variety of mechanisms that facilitate tumor growth despite the presence of a functioning immune system, employing different mechanisms to escape immune rejection. Tumors may eliminate tumor-infiltrating lymphocytes and suppress anti-tumor immune responses, a process called "tumor counterattack," based on activation-induced cell death via the FAS/FAS-ligand system. To overcome this tumor-cell survival strategy, we examined the hypothesis that the sensitivity of FAS mediated apoptosis of Jurkat-T-cells can be suppressed by FLIP transfection of Jurkat-T-cells. Jurkat-T-cells were transfected with the FLICE-inhibitory protein FLIP in order to bestow them with a resistance to FAS-receptor-mediated apoptosis. FLIP-transfected and non-transfected Jurkat-T-cells were grown in coincubation with SW620 cells and the rates of apoptosis measured via FACS-analysis of Annexin-V. First, the tumor-counterattack described in the literature was confirmed. About 20% of Jurkat-T-Cells underwent apoptosis in coculture with SW620 cells. After coincubation of SW620 cells with FLIP transfected Jurkat-T-cells the apoptotic rate was significant reduced at levels below 4%. Transfection of Jurkat-T-cells with FLIP reduces the sensitivity of Jurkat-T-cells to FAS-mediated apoptosis and may lead to an improved capability to antagonize the inherent tumor survival strategy of SW620 cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Hypoxia targeting therapy with prodrug specifically stabilized and activated in hypoxic tumor cells

    International Nuclear Information System (INIS)

    Kondoh, S.K.; Ueda, T.; Harada, H.; Hiraoka, M.; Akagi, K.

    2003-01-01

    Hypoxia fraction in tumors is associated with increased metastasis and poor survival in patients suffering from malignant tumors such as the head and neck, cervical or breast cancers. Hypoxia can be a direct cause of therapeutic resistance because some drugs and radiation require oxygen to be maximally cytotoxic. Recently we have reported a novel hypoxia targeting prodrug, TOP3, which is a fusion protein, composed of HIV TAT protein transduction domain, a part of HIF1 α ODD domain, and Procaspase-3. TOP3 can be transferred into every cell both in vitro and in vivo but becomes stable only in hypoxic cells, in which TOP3 is activated and induces apoptosis. The application of this fusion protein to a tumor-bearing mouse resulted in significant suppression of the tumor growth and even in reduction of the tumor mass without any obvious side effects. The administrations of TOP3 in combination with a low dose of X-ray showed an additive antitumor effect on pancreatic tumor cells. Furthermore, we show that the rodent model of ascites generated by malignant cells provides an excellent platform of testing hypoxia targeting drugs, since it comprises homogeneous fluid with tumor cells surviving and proliferating under hypoxic condition. TOP3 induced apoptosis of AH130, rat ascites hepatoma cells, in vitro only under hypoxic but not normoxic condition. Intraperitoneal administration of TOP3 prolonged life span of the rats with AH130 derived malignant ascites. Sixty percent of the treated rats were cured of ascites without recurrence for more than six months, in contrast all untreated rats died within 20 days after tumor cell inoculation. These results strongly suggest that TOP3 would provide a new strategy for hypoxia targeting therapy and that the combination of TOP3 with radiotherapy or chemotherapy may provide a new strategy for annihilating malignant tumors

  7. O-naphthoquinone isolated from Capraria biflora L. induces selective cytotoxicity in tumor cell lines.

    Science.gov (United States)

    de S Wisintainer, G G N; Scola, G; Moura, S; Lemos, T L G; Pessoa, C; de Moraes, M O; Souza, L G S; Roesch-Ely, M; Henriques, J A P

    2015-12-21

    Biflorin is an o-naphthoquinone isolated from the roots of the plant Capraria biflora L. (Scrophulariaceae). In this study, the cytotoxic effects of biflorin were verified, and late apoptosis was detected in various cancer cell lines by in situ analysis. The cytotoxicity was further evaluated exclusively for 48 h of treatment in different tumor and non-tumor cell lines (Hep-2, HeLa, HT-29, A-375, and A-549, and HEK-293, respectively). The results indicated that biflorin induced selective cytotoxicity in tumor cells. HeLa cells were more susceptible to biflorin, followed by HT-29, A-549, A-375, and Hep-2 at all concentrations (range 5-50 μg/mL), and the highest half-maximal inhibitory concentration IC50 (56.01 ± 1.17 μg/mL) was observed in HEK-293 cells. Late apoptotic/necrotic events, observed by in situ immunostaining with Annexin V, varied with each cell line; an increase in late apoptotic events was observed corresponding to the increase in biflorin dosage. Hep-2 cells showed a greater percentage of late apoptotic events among the tumor cell lines when treated with higher concentrations of biflorin (69.63 ± 2.28%). The non-tumor HEK-293 line showed greater resistance to late apoptotic events, as well as a lower level of cytotoxicity (77.69 ± 6.68%) than the tested tumor lines. The data presented indicate that biflorin showed an important, possibly selective, cytotoxicity against tumor cell lines, thereby revealing a promising novel substance with potential anticancer activity for tumor therapy.

  8. Evaluation of resistance as a measure of successful tumor ablation during irreversible electroporation of the pancreas.

    Science.gov (United States)

    Dunki-Jacobs, Erik M; Philips, Prejesh; Martin, Robert C G

    2014-02-01

    Intraoperative evaluation of successful pancreatic tumor ablation using irreversible electroporation (IRE) is difficult secondary to lack of visual confirmation. The IRE generator provides feedback by reporting current (amperage), which can be used to calculate changes in tumor tissue resistance. The purpose of the study was to determine if resistance can be used to predict successful tumor ablation during IRE for pancreatic cancers. All patients undergoing pancreatic IRE from March 2010 to December 2012 were evaluated using a prospective database. Intraoperative information, including change in tumor resistance during ablation and slope of the resistance curve, were used to evaluate effectiveness of tumor ablation in terms of local failure or recurrence (LFR) and disease-free survival (DFS). A total of 65 patients underwent IRE for locally advanced pancreatic cancer. Median follow-up was 23 months. Local failure or recurrence was seen in 17 patients at 3, 6, or 9 months post IRE. Change in tumor tissue resistance and the slope of the resistance curve were both significant in predicting LFR (p = 0.02 and p = 0.01, respectively). The median local disease-free survival was 5.5 months in patients who had recurrence compared with 12.6 months in patients who did not recur (p = 0.03). Neither mean change in tumor tissue resistance nor the slope of the resistance curve significantly predicted overall DFS. Mean change in tumor tissue resistance and the slope of the resistance curve could be used intraoperatively to assess successful tumor ablation during IRE. Larger sample size and longer follow-up are needed to determine if these parameters can be used to predict DFS. Copyright © 2014 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  9. Pulmonary tumor thrombotic microangiopathy with cor pulmonale due to desmoplastic small round cell tumor.

    Science.gov (United States)

    Sadimin, Evita T; Collier, Adrienne G; Gaffney, Joseph W; Fyfe, Billie

    2012-04-01

    A 12-year-old boy presented acutely after an episode of syncope with perioral cyanosis. He died 19 hours after admission due to cor pulmonale as a complication of metastatic desmoplastic small round cell tumor in the lungs with associated tumor thrombotic microangiopathy. Copyright © 2012 Mosby, Inc. All rights reserved.

  10. NKT cells as an ideal anti-tumor immunotherapeutic.

    Science.gov (United States)

    Fujii, Shin-Ichiro; Shimizu, Kanako; Okamoto, Yoshitaka; Kunii, Naoki; Nakayama, Toshinori; Motohashi, Shinichiro; Taniguchi, Masaru

    2013-12-02

    Human natural killer T (NKT) cells are characterized by their expression of an invariant T cell antigen receptor α chain variable region encoded by a Vα24Jα18 rearrangement. These NKT cells recognize α-galactosylceramide (α-GalCer) in conjunction with the MHC class I-like CD1d molecule and bridge the innate and acquired immune systems to mediate efficient and augmented immune responses. A prime example of one such function is adjuvant activity: NKT cells augment anti-tumor responses because they can rapidly produce large amounts of IFN-γ, which acts on NK cells to eliminate MHC negative tumors and also on CD8 cytotoxic T cells to kill MHC positive tumors. Thus, upon administration of α-GalCer-pulsed DCs, both MHC negative and positive tumor cells can be effectively eliminated, resulting in complete tumor eradication without tumor recurrence. Clinical trials have been completed in a cohort of 17 patients with advanced non-small cell lung cancers and 10 cases of head and neck tumors. Sixty percent of advanced lung cancer patients with high IFN-γ production had significantly prolonged median survival times of 29.3 months with only the primary treatment. In the case of head and neck tumors, 10 patients who completed the trial all had stable disease or partial responses 5 weeks after the combination therapy of α-GalCer-DCs and activated NKT cells. We now focus on two potential powerful treatment options for the future. One is to establish artificial adjuvant vector cells containing tumor mRNA and α-GalCer/CD1d. This stimulates host NKT cells followed by DC maturation and NK cell activation but also induces tumor-specific long-term memory CD8 killer T cell responses, suppressing tumor metastasis even 1 year after the initial single injection. The other approach is to establish induced pluripotent stem (iPS) cells that can generate unlimited numbers of NKT cells with adjuvant activity. Such iPS-derived NKT cells produce IFN-γ in vitro and in vivo upon

  11. Ovarian Tumor Cells Studied Aboard the International Space Station (ISS)

    Science.gov (United States)

    2001-01-01

    In August 2001, principal investigator Jeanne Becker sent human ovarian tumor cells to the International Space Station (ISS) aboard the STS-105 mission. The tumor cells were cultured in microgravity for a 14 day growth period and were analyzed for changes in the rate of cell growth and synthesis of associated proteins. In addition, they were evaluated for the expression of several proteins that are the products of oncogenes, which cause the transformation of normal cells into cancer cells. This photo, which was taken by astronaut Frank Culbertson who conducted the experiment for Dr. Becker, shows two cell culture bags containing LN1 ovarian carcinoma cell cultures.

  12. Cisplatin as an Anti-Tumor Drug: Cellular Mechanisms of Activity, Drug Resistance and Induced Side Effects

    International Nuclear Information System (INIS)

    Florea, Ana-Maria; Büsselberg, Dietrich

    2011-01-01

    Platinum complexes are clinically used as adjuvant therapy of cancers aiming to induce tumor cell death. Depending on cell type and concentration, cisplatin induces cytotoxicity, e.g., by interference with transcription and/or DNA replication mechanisms. Additionally, cisplatin damages tumors via induction of apoptosis, mediated by the activation of various signal transduction pathways, including calcium signaling, death receptor signaling, and the activation of mitochondrial pathways. Unfortunately, neither cytotoxicity nor apoptosis are exclusively induced in cancer cells, thus, cisplatin might also lead to diverse side-effects such as neuro- and/or renal-toxicity or bone marrow-suppression. Moreover, the binding of cisplatin to proteins and enzymes may modulate its biochemical mechanism of action. While a combination-chemotherapy with cisplatin is a cornerstone for the treatment of multiple cancers, the challenge is that cancer cells could become cisplatin-resistant. Numerous mechanisms of cisplatin resistance were described including changes in cellular uptake, drug efflux, increased detoxification, inhibition of apoptosis and increased DNA repair. To minimize cisplatin resistance, combinatorial therapies were developed and have proven more effective to defeat cancers. Thus, understanding of the biochemical mechanisms triggered by cisplatin in tumor cells may lead to the design of more efficient platinum derivates (or other drugs) and might provide new therapeutic strategies and reduce side effects

  13. Cancer Stem Cell Plasticity as Tumor Growth Promoter and Catalyst of Population Collapse

    Directory of Open Access Journals (Sweden)

    Jan Poleszczuk

    2016-01-01

    Full Text Available It is increasingly argued that cancer stem cells are not a cellular phenotype but rather a transient state that cells can acquire, either through intrinsic signaling cascades or in response to environmental cues. While cancer stem cell plasticity is generally associated with increased aggressiveness and treatment resistance, we set out to thoroughly investigate the impact of different rates of plasticity on early and late tumor growth dynamics and the response to therapy. We develop an agent-based model of cancer stem cell driven tumor growth, in which plasticity is defined as a spontaneous transition between stem and nonstem cancer cell states. Simulations of the model show that plasticity can substantially increase tumor growth rate and invasion. At high rates of plasticity, however, the cells get exhausted and the tumor will undergo spontaneous remission in the long term. In a series of in silico trials, we show that such remission can be facilitated through radiotherapy. The presented study suggests that stem cell plasticity has rather complex, nonintuitive implications on tumor growth and treatment response. Further theoretical, experimental, and integrated studies are needed to fully decipher cancer stem cell plasticity and how it can be harnessed for novel therapeutic approaches.

  14. CD4+ and Perivascular Foxp3+ T Cells in Glioma Correlate with Angiogenesis and Tumor Progression

    Directory of Open Access Journals (Sweden)

    Luyan Mu

    2017-11-01

    Full Text Available BackgroundAngiogenesis and immune cell infiltration are key features of gliomas and their manipulation of the microenvironment, but their prognostic significance remains indeterminate. We evaluate the interconnection between tumor-infiltrating lymphocyte (TIL and tumor blood-vasculatures in the context of glioma progression.MethodsPaired tumor tissues of 44 patients from three tumor-recurrent groups: diffuse astrocytomas (DA recurred as DA, DA recurred as glioblastomas (GBM, and GBM recurred as GBM were evaluated by genetic analysis, immunohistochemistry for tumor blood vessel density, TIL subsets, and clinical outcomes. These cells were geographically divided into perivascular and intratumoral TILs. Associations were examined between these TILs, CD34+ tumor blood vessels, and clinical outcomes. To determine key changes in TIL subsets, microarray data of 15-paired tumors from patients who failed antiangiogenic therapy- bevacizumab, and 16-paired tumors from chemo-naïve recurrent GBM were also evaluated and compared.ResultsUpon recurrence in primary gliomas, similar kinetic changes were found between tumor blood vessels and each TIL subset in all groups, but only CD4+ including Foxp3+ TILs, positively correlated with the density of tumor blood vessels. CD4 was the predominant T cell population based on the expression of gene-transcripts in primary GBMs, and increased activated CD4+ T cells were revealed in Bevacizumab-resistant recurrent tumors (not in chemo-naïve recurrent tumors. Among these TILs, 2/3 of them were found in the perivascular niche; Foxp3+ T cells in these niches not only correlated with the tumor vessels but were also an independent predictor of shortened recurrence-free survival (RFS (HR = 4.199, 95% CI 1.522–11.584, p = 0.006.ConclusionThe minimal intratumoral T cell infiltration and low detection of CD8 transcripts expression in primary GBMs can potentially limit antitumor response. CD4+ and perivascular Foxp3

  15. Malignant phyllodes tumors display mesenchymal stem cell features and aldehyde dehydrogenase/disialoganglioside identify their tumor stem cells.

    Science.gov (United States)

    Lin, Jin-Jin; Huang, Chiun-Sheng; Yu, John; Liao, Guo-Shiou; Lien, Huang-Chun; Hung, Jung-Tung; Lin, Ruey-Jen; Chou, Fen-Pi; Yeh, Kun-Tu; Yu, Alice L

    2014-03-26

    Although breast phyllodes tumors are rare, there is no effective therapy other than surgery. Little is known about their tumor biology. A malignant phyllodes tumor contains heterologous stromal elements, and can transform into rhabdomyosarcoma, liposarcoma and osteosarcoma. These versatile properties prompted us to explore their possible relationship to mesenchymal stem cells (MSCs) and to search for the presence of cancer stem cells (CSCs) in phyllodes tumors. Paraffin sections of malignant phyllodes tumors were examined for various markers by immunohistochemical staining. Xenografts of human primary phyllodes tumors were established by injecting freshly isolated tumor cells into the mammary fat pad of non-obese diabetic-severe combined immunodeficient (NOD-SCID) mice. To search for CSCs, xenografted tumor cells were sorted into various subpopulations by flow cytometry and examined for their in vitro mammosphere forming capacity, in vivo tumorigenicity in NOD-SCID mice and their ability to undergo differentiation. Immunohistochemical analysis revealed the expression of the following 10 markers: CD44, CD29, CD106, CD166, CD105, CD90, disialoganglioside (GD2), CD117, Aldehyde dehydrogenase 1 (ALDH), and Oct-4, and 7 clinically relevant markers (CD10, CD34, p53, p63, Ki-67, Bcl-2, vimentin, and Globo H) in all 51 malignant phyllodes tumors examined, albeit to different extents. Four xenografts were successfully established from human primary phyllodes tumors. In vitro, ALDH+ cells sorted from xenografts displayed approximately 10-fold greater mammosphere-forming capacity than ALDH- cells. GD2+ cells showed a 3.9-fold greater capacity than GD2- cells. ALDH+/GD2+cells displayed 12.8-fold greater mammosphere forming ability than ALDH-/GD2- cells. In vivo, the tumor-initiating frequency of ALDH+/GD2+ cells were up to 33-fold higher than that of ALDH+ cells, with as few as 50 ALDH+/GD2+ cells being sufficient for engraftment. Moreover, we provided the first evidence for

  16. Desmoplastic Small Round Cell Tumor of Stomach

    Directory of Open Access Journals (Sweden)

    Ahmed Abu-Zaid

    2013-01-01

    Full Text Available Desmoplastic small round cell tumor (DSRCT is an extremely uncommon, highly aggressive, and malignant mesenchymal neoplasm of undetermined histogenesis. Less than 200 case reports have been documented in literature so far. Herein, we report a 26-year-old otherwise healthy female patient who presented with a 1-month history of epigastric pain. On physical examination, a palpable, slightly mobile, and tender epigastric mass was detected. All laboratory tests were normal. A chest, abdominal, and pelvic contrast-enhanced computed tomography (CT scans showed a 3.8 × 7.2 × 8.7 cm ill-defined mass, involving gastric fundus and extending into gastric cardia and lower gastroesophageal junction. It was associated with multiple enlarged gastrohepatic lymph nodes; the largest measured 1.2 cm. There was no evidence of ascites or retroperitoneal or mesenteric lymphatic metastases. Patient underwent total gastrectomy with D2 lymphadenectomy, splenectomy, and antecolic Roux-en-Y esophagojejunal anastomosis. Histopathological examination revealed coexpression of mesenchymal, epithelial, and neural markers. The characteristic chromosomal translocation (t(11; 22(p13; q12 was demonstrated on fluorescence in situ hybridization (FISH technique. Diagnosis of DSRCT of stomach was confirmed. Patient received no postoperative radiotherapy or chemotherapy. A postoperative 3-month followup failed to show any recurrence. In addition, a literature review on DSRCT is included.

  17. Cancer vaccines: Trafficking of tumor-specific T cells to tumor after therapeutic vaccination.

    Science.gov (United States)

    Hailemichael, Yared; Overwijk, Willem W

    2014-08-01

    Cancer vaccines can induce robust activation of tumor-specific CD8(+) T cells that can destroy tumors. Understanding the mechanism by which cancer vaccines work is essential in designing next-generation vaccines with more potent therapeutic activity. We recently reported that short peptides emulsified in poorly biodegradable, Incomplete Freund's Adjuvant (IFA) primed CD8(+) T cells that did not localize to the tumor site but accumulated at the persisting, antigen-rich vaccination site. The vaccination site eventually became a T cell graveyard where T cells responded to chronically released gp100 peptide by releasing cytokines, including interferon-γ (IFN-γ), which in turn upregulated Fas ligand (FasL) on host cells, causing apoptosis of Fas(+) T cells. T cells that escaped apoptosis rapidly became exhausted, memory formation was poor, and therapeutic impact was minimal. Replacing the non-biodegradable IFA-based formulation with water-based, short-lived formulation in the presence of immunostimulatory molecules allowed T cells to traffic to tumors, causing their regression. In this review, we discuss recent advances in immunotherapeutic approaches that could enhance vaccine-primed immune cells fitness and render the tumor microenvironment more accessible for immune cell infiltration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Myeloid-derived cells in tumors: effects of radiation.

    Science.gov (United States)

    Vatner, Ralph E; Formenti, Silvia C

    2015-01-01

    The discrepancy between the in vitro and in vivo response to radiation is readily explained by the fact that tumors do not exist independently of the host organism; cancer cells grow in the context of a complex microenvironment composed of stromal cells, vasculature, and elements of the immune system. As the antitumor effect of radiotherapy depends in part on the immune system, and myeloid-derived cells in the tumor microenvironment modulate the immune response to tumors, it follows that understanding the effect of radiation on myeloid cells in the tumor is likely to be essential for comprehending the antitumor effects of radiotherapy. In this review, we describe the phenotype and function of these myeloid-derived cells, and stress the complexity of studying this important cell compartment owing to its intrinsic plasticity. With regard to the response to radiation of myeloid cells in the tumor, evidence has emerged demonstrating that it is both model and dose dependent. Deciphering the effects of myeloid-derived cells in tumors, particularly in irradiated tumors, is key for attempting to pharmacologically modulate their actions in the clinic as part of cancer therapy. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Tumors That Acquire Resistance to Low-Dose Metronomic Cyclophosphamide Retain Sensitivity to Maximum Tolerated Dose Cyclophosphamide

    Directory of Open Access Journals (Sweden)

    Urban Emmenegger

    2011-01-01

    Full Text Available Low-dose metronomic (LDM chemotherapy is emerging as an alternative or supplemental dosing strategy to conventional maximum tolerated dose (MTD chemotherapy. It is characterized primarily, but not exclusively, by antiangiogenic mechanisms of action and the absence of high-grade adverse effects commonly seen with MTD chemotherapy. However, similar to other anticancer therapies, inherent resistance to LDM chemotherapy is common. Moreover, even tumors that initially respond to metronomic regimens eventually develop resistance through mechanisms that are as yet unknown. Thus, we have developed in vivo models of PC-3 human prostate cancer cells resistant to extended LDM cyclophosphamide therapy. Such PC-3 variants show stable resistance to LDM cyclophosphamide in vivo yet retain in vitro sensitivity to 4-hydroperoxy-cyclophosphamide (precursor of the active cyclophosphamide metabolite 4-hydroxy-cyclophosphamide and other chemotherapeutic agents, namely, docetaxel and doxorubicin. Moreover, LDM cyclophosphamide–resistant PC-3 variants remain sensitive to MTD cyclophosphamide therapy in vivo. Conversely, PC-3 variants made resistant in vivo to MTD cyclophosphamide show varying levels of resistance to metronomic cyclophosphamide when grown in mice. These results and additional studies of variants of the breast cancer cell line MDA-MB-231 suggest that resistance to LDM cyclophosphamide is a distinct phenomenon from resistance to MTD cyclophosphamide and that LDM cyclophosphamide administration does not select for MTD chemotherapy resistance. As such, our findings have various implications for the clinical use of metronomic chemotherapy.

  20. Radiologic findings of granulosa cell tumor of the ovary

    International Nuclear Information System (INIS)

    Sohn, Jung Eun; Kim, Kie Hwan; Yoo, Ji Young; Lee, Eun Chun; Lee, Tae Hyun; Chin, Soo Il

    1997-01-01

    To evaluate the radiologic findings of granulosa cell tumor of the ovary. Fourteen cases(fifteen tumors) of pathologically confirmed ovarian granulosa cell tumor were retrospectively analyzed on the basis of CT(n=10), MR imaging(n=4), and ultrasound(n=7) findings. The patients' mean age was 44.3(range, 5-71)years. The mean diameter of the tumors was 12.1(range, 5-26.5)cm. Thirteen cases were unilateral, and one was bilateral. Eleven tumors(ten cases) were mainly solid and eight of these had focal cystic components. Multilocular cysts accounted for three cases, and in two of these, mural nodules were present. One case was a unilocular cyst with no mural nodule. Ten cases were well demarcated. All the solid tumors were enhanced on postcontrast CT and MR imaging. Endometrial thickening was seen in five cases, ascites in six, and peritoneal implants or omental fat infiltration in five. One was associated with lymph node metastasis. All the postmenopausal patients had solid tumors, whereas 66.7%(4 of 6 cases) of young adults and children had cystic tumors. Granulosa cell tumors of the ovary were solid or cystic;the former were more common. There were no characteristic findings which permitted definitive differentiation from other ovarian tumors

  1. Nanoscale quantification of the biophysical characterization of combretastatin A-4-treated tumor cells using atomic force microscopy.

    Science.gov (United States)

    Li, Yanchun; Chen, Jv; Liu, Yutong; Zhang, Weige; He, Wenhui; Xu, Hanying; Liu, Lianqing; Ma, Enlong

    2017-01-01

    As an inhibitor of microtubule assembly, combretastatin A-4 (CA-4)-induced biological responses in tumor cells have been well known, but the corresponding changes in nano-biophysical properties were not investigated given the lack of an ideal tool. Using AFM technique, we investigated the alteration of nano-biophysical properties when CA-4-treated tumor cells underwent the different biological processes, including cell cycle arrest, apoptosis and autophagy. We found that CA-4-resistant cells were rougher with the presence of characteristic "ridges", indicating that the development of "ridge" structure may be a determinant of the sensitivity of cells to CA-4 compounds. CA-4 induced G2/M arrest and apoptosis in sensitive cells but triggered anti-apoptotic autophagy in resistant cells. CA-4 treatment caused an increase in stiffness in both sensitive and resistant cells. However, these cells exhibited different changes in cell surface roughness. CA-4 decreased Ra and Rq values in sensitive cells but increased these values in resistant cells. The reorganization of F-actin might contribute to the different changes of nano-biophysical properties in CA-4-sensitive and-resistant cells. Our results suggest that cellular nano-biophysical properties, such as "ridges", roughness and stiffness, could be applied as potential biomarkers for evaluating CA-4 compounds, and knowledge regarding how biological alterations cause changes in cellular nano-biophysical properties is helpful to develop a new high-resolution screening tool for anti-tumor agents.

  2. Drug resistance in cancer cells

    National Research Council Canada - National Science Library

    Mehta, Kapil, Dr; Siddik, Zahid H

    2009-01-01

    ... from disappointment with the drug resistance reversal strategies that were carried out in the 1990s using pump inhibitors to block drug resistance mediated by P-glycoprotein, product of the MDR-1 gene. However, if one takes the larger definition - multidrug resistance as simultaneous resistance to multiple structurally unrelated anticancer therapies - its...

  3. Vulnerability of cultured canine lung tumor cells to NK cell-mediated cytolysis

    International Nuclear Information System (INIS)

    Haley, P.J.; Kohr, J.M.; Kelly, G.; Muggenburg, B.A.; Guilmette, B.A.

    1988-01-01

    Five cell lines, designated as canine lung epithelial cell (CLEP), derived from radiation induced canine lung tumors and canine thyroid adeno-carcinoma (CTAC) cells were compared for their susceptibility to NK cell-mediated cytolysis using peripheral blood lymphocytes from normal, healthy Beagle dogs as effector cells. Effector cells and chromium 51 radiolabeled target cells were incubated for 16 h at ratios of 12.5:1, 25:1, 50:1, and 100:1. Increasing cytolysis was observed for all cell lines as the effector-to-target-cell ratios increased from 12.5:1 to 100:1. The percent cytotoxicity was significantly less for all lung tumor cell lines as compared to CTAC at the 100:1 ratio. One lung tumor cell line, CLEP-9, had 85% of the lytic vulnerability of the CTAC cell line and significantly greater susceptibility to NK cell-mediated lysis than all of the other lung tumor cell lines. Susceptibility to NK cell cytolysis did not correlate with in vivo malignant behavior of the original tumor. These data suggest that cultured canine lung tumor cells are susceptible to NK cell cytolytic activity in vitro and that at least one of these cell lines (CLEP-9) is a candidate for substitution of the standard canine NK cell target, CTAC, in NK cell assays. The use of lung tumor cells in NK cell assays may provide greater insight into the control of lung tumors by immune mechanisms. (author)

  4. Transformation of non-tumor host cells during tumor progression: theories and evidence.

    Science.gov (United States)

    García-Olmo, Dolores C; Picazo, María G; García-Olmo, Damián

    2012-06-01

    Most cancer deaths are due to the development of metastases and this phenomenon is still a hard challenge for researchers. A number of theories have tried to unravel the metastatic machinery, but definitive results that link the evidence with conventional concepts of metastatic disease remain to be reported. Considerable evidence suggests interactions between tumor cells and host cells that might be essential for tumor progression and metastasis. Most such evidence is suggestive of fusion phenomena, but some suggest the transfer of cell-free DNA (cfDNA). Such evidence is often ignored or overlooked in the assessment and management of malignancy. In this article, we review the available evidence for the importance of cell fusion and cfDNA in metastasis, and we present some preliminary data that support the hypothesis that tumor progression might be based not only on the division of tumor cells but also on the transformation of normal cells. Future success in the search for cancer therapies will surely require advances in our knowledge of the pathways of tumor invasion by unexpected mechanisms. Thus, no well supported evidence for roles of cell-free nucleic acids and fusion of cells or of cells with vesicles should be ignored.

  5. Suprabasin as a novel tumor endothelial cell marker

    OpenAIRE

    Alam, Mohammad T.; Nagao-Kitamoto, Hiroko; Ohga, Noritaka; Akiyama, Kosuke; Maishi, Nako; Kawamoto, Taisuke; Shinohara, Nobuo; Taketomi, Akinobu; Shindoh, Masanobu; Hida, Yasuhiro; Hida, Kyoko

    2014-01-01

    Recent studies have reported that stromal cells contribute to tumor progression. We previously demonstrated that tumor endothelial cells (TEC) characteristics were different from those of normal endothelial cells (NEC). Furthermore, we performed gene profile analysis in TEC and NEC, revealing that suprabasin (SBSN) was upregulated in TEC compared with NEC. However, its role in TEC is still unknown. Here we showed that SBSN expression was higher in isolated human and mouse TEC than in NEC. SBS...

  6. Inhibition of YAP function overcomes BRAF inhibitor resistance in melanoma cancer stem cells

    Science.gov (United States)

    Fisher, Matthew L.; Grun, Daniel; Adhikary, Gautam; Xu, Wen; Eckert, Richard L.

    2017-01-01

    Treating BRAF inhibitor-resistant melanoma is an important therapeutic goal. Thus, it is important to identify and target mechanisms of resistance to improve therapy. The YAP1 and TAZ proteins of the Hippo signaling pathway are important drivers of cancer cell survival, and are BRAF inhibitor resistant factors in melanoma. We examine the role of YAP1/TAZ in melanoma cancer stem cells (MCS cells). We demonstrate that YAP1, TAZ and TEAD (TEA domain transcription factor) levels are elevated in BRAF inhibitor resistant MCS cells and enhance cell survival, spheroid formation, matrigel invasion and tumor formation. Moreover, increased YAP1, TAZ and TEAD are associated with sustained ERK1/2 activity that is not suppressed by BRAF inhibitor. Xenograft studies show that treating BRAF inhibitor-resistant tumors with verteporfin, an agent that interferes with YAP1 function, reduces YAP1/TAZ level, restores BRAF inhibitor suppression of ERK1/2 signaling and reduces tumor growth. Verteporfin is highly effective as concentrations of verteporfin that do not impact tumor formation restore BRAF inhibitor suppression of tumor formation, suggesting that co-treatment with agents that inhibit YAP1 and BRAF(V600E) may be a viable therapy for cancer stem cell-derived BRAF inhibitor-resistant melanoma. PMID:29299145

  7. Enhanced Radiosensitivity of Tumor Cells Treated with Vanadate in Vitro

    International Nuclear Information System (INIS)

    Lee, Myung Za; Lee, Won Young

    1994-01-01

    Intracellular ions which have a major role in cellular function have been reported to affect repair of radiation damage. Recently it has been reported that ouabain sensitizes A549 tumor cells hut not CCL-120 normal cells to radiation. Ouabain inhibits the Na+-K+-pump rapidly thus it increases intracellular Na concentration. Vanadate which is distributed extensively in almost all living organisms in known to be a Na+-K+-ATPase inhibitors. This study was performed to see any change in radiosensitivity of tumor cell by vanadate and any role of Na+-K+-ATPase in radiosensitization. Experiments have been carried out by pretreatment with vanadate in human cell line(A549, JMG) and mouse cell line(L1210, spleen). For the cell survival MTT assay was performed for A549 and JMG cell and trypan blue dye exclusion test for L120, and spleen cells. Measurements of Na+-K+-ATPase activity in control, vanadate treated cell, radiation treated cell (9 Gy for A549 and JMG, 2 Gy for L1201, spleen), and combined 10-6 M vanadate and radiation treated cells were done. The results were summarized as follows. 1. L1210 cell was most radiosensitive, and spleen cell and JMG cell were intermediate, and A549 cell was least radiosensitive. 2. Minimum or cytotoxicity was seen with vanadate below concentration of 10-6 M. 3. In A549 cells there was a little change in radiosensitivity with treatment of vanadate. However radiation sensitization was shown in low dose level of radiation i. E. 2-Gy. In JMG cells no change in radiosensitivity was noted. Both L1210 and spleen cell had radiosensitization but change was greater in tumor cell. 4. Na+-K+-ATPase activity was inhibited significantly in tumor cell by treatment of vanadate. 5. Radiation itself inhibited Na+-K+-ATPase activity of tumor cell with high Na+- K+-ATPase concention. Increase in radiosensitivity by vanadate was closely associated with original Na+-K+-ATPase contents. From the above results vanadate had little cytotoxicity and it sensitized

  8. Tumor cells and neovasculature dual targeting delivery for glioblastoma treatment.

    Science.gov (United States)

    Gao, Huile; Yang, Zhi; Cao, Shijie; Xiong, Yang; Zhang, Shuang; Pang, Zhiqing; Jiang, Xinguo

    2014-02-01

    Glioblastoma multiforme (GBM), one of the most common primary malignant brain tumors, was characterized by angiogenesis and tumor cells proliferation. Antiangiogenesis and antitumor combination treatment gained much attention because of the potency in dual inhibition of both the tumor proliferation and the tumor invasion. In this study, a neovasculature and tumor cell dual targeting delivery system was developed through modification of nanoparticles with interleukin-13 peptide and RGD (IRNPs), in which interleukin-13 peptide was targeting GBM cells and RGD was targeting neovasculature. To evaluate the potency in GBM treatment, docetaxel was loaded into IRNPs. In vitro, interleukin-13 peptide and RGD could enhance the corresponding cells (C6 and human umbilical vein endothelial cells) uptake and cytotoxicity. In combination, IRNPs showed high uptake in both cells and increased the cytotoxicity on both cells. In vivo, IRNPs could effectively deliver cargoes to GBM with higher intensity than mono-modified nanoparticles. Correspondingly, docetaxel-IRNPs displayed best anti-tumor effect with a median survival time of 35 days, which was significantly longer than that of mono-modified and unmodified nanoparticles. Importantly, treatment with docetaxel-IRNPs could avoid the accumulation of HIF1α in GBM site, which was crucial for the tumor invasion. After the treatment, there was no obvious change in normal organs of mice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9.  An Uncommon Presentation of Giant Cell Tumor

    Directory of Open Access Journals (Sweden)

    Gopal Malhotra

    2011-09-01

    Full Text Available  Giant Cell Tumors commonly occur at the ends of long bones. However in rare cases, they can occur in the bones of the hands and feet. Tumors in these locations occur in younger patients; in addition, these tumors are more commonly multifocal and are associated with a higher risk for local recurrence than tumors at the ends of long bones. Since lesions in the small bones may be multifocal, a patient with a giant cell tumor of the small bones should undergo a skeletal survey to exclude similar lesions elsewhere. Primary surgical treatment ranges from curettage or excision with or without bone grafting to amputation. The success of surgical treatment depends on the completeness with which the tumor was removed. We are presenting a case report of a 34 year old female, who presented with a swelling in the right hand, following trauma. X-ray of the hand showed an osteolytic expansile lesion at the base of the 1st metacarpal bone. The lesion was initially curetted and then treated by local resection with bone grafting. Histological examination revealed a typical benign giant cell tumor composed of closely packed stromal cells with a variable admixture of giant cells. Follow up at the end of one year did not reveal any recurrence of the tumor.

  10. Expression of parafibromin in major renal cell tumors

    Directory of Open Access Journals (Sweden)

    C. Cui

    2012-10-01

    Full Text Available Parafibromin, encoded by HRPT2 gene, is a recently identified tumor suppressor. Complete and partial loss of its expression have been observed in hyperparathyroidism-jaw tumor (HPT-JT, parathyroid carcinoma, breast carcinoma, lung carcinoma, gastric and colorectal carcinoma. However, little has been known about its expression in renal tumors. In order to study the expression of parafibromin in a series of the 4 major renal cell tumors - clear cell renal cell carcinoma (ccRCC, papillary renal cell carcinoma (pRCC, chromophobe renal cell carcinoma (chRCC and oncocytoma. One hundred thirty nine renal tumors including 61 ccRCCs, 37 pRCCs, 22 chRCCs and 19 oncocytomas were retrieved and used for the construction of renal tissue microarrays (TMAs. The expression of parafibromin was detected by immunohistochemical method on the constructed TMAs. Positive parafibromin stains are seen in 4 out of 61 ccRCCs (7%, 7 out of 37 pRCCs (19%, 12 out of 23 chRCCs (52% and all 19 oncocytomas (100%. Parafibromin expression varies significantly (P< 8.8 x10-16 among the four major renal cell tumors and were correlated closely with tumor types. No correlation of parafibromin expression with tumor staging in ccRCCs, pRCCs and chRCCs, and Fuhrman nuclear grading in ccRCCs and pRCCs. In summary, parafibromin expression was strongly correlated with tumor types, which may suggest that it plays a role in the tumorigenesis in renal cell tumors.

  11. Vasculature analysis of patient derived tumor xenografts using species-specific PCR assays: evidence of tumor endothelial cells and atypical VEGFA-VEGFR1/2 signalings

    International Nuclear Information System (INIS)

    Bieche, Ivan; Marangoni, Elisabetta; Roman-Roman, Sergio; Decaudin, Didier; Dangles-Marie, Virginie; Vacher, Sophie; Vallerand, David; Richon, Sophie; Hatem, Rana; De Plater, Ludmilla; Dahmani, Ahmed; Némati, Fariba; Angevin, Eric

    2014-01-01

    Tumor endothelial transdifferentiation and VEGFR1/2 expression by cancer cells have been reported in glioblastoma but remain poorly documented for many other cancer types. To characterize vasculature of patient-derived tumor xenografts (PDXs), largely used in preclinical anti-angiogenic assays, we designed here species-specific real-time quantitative RT-PCR assays. Human and mouse PECAM1/CD31, ENG/CD105, FLT1/VEGFR1, KDR/VEGFR2 and VEGFA transcripts were analyzed in a large series of 150 PDXs established from 8 different tumor types (53 colorectal, 14 ovarian, 39 breast and 15 renal cell cancers, 6 small cell and 5 non small cell lung carcinomas, 13 cutaneous melanomas and 5 glioblastomas) and in two bevacizumab-treated non small cell lung carcinomas xenografts. As expected, mouse cell proportion in PDXs -evaluated by quantifying expression of the housekeeping gene TBP- correlated with all mouse endothelial markers and human VEGFA RNA levels. More interestingly, we observed human PECAM1/CD31 and ENG/CD105 expression in all tumor types, with higher rate in glioblastoma and renal cancer xenografts. Human VEGFR expression profile varied widely depending on tumor types with particularly high levels of human FLT1/VEGFR1 transcripts in colon cancers and non small cell lung carcinomas, and upper levels of human KDR/VEGFR2 transcripts in non small cell lung carcinomas. Bevacizumab treatment induced significant low expression of mouse Pecam1/Cd31, Eng/Cd105, Flt1/Vegfr1 and Kdr/Vefr2 while the human PECAM1/CD31 and VEGFA were upregulated. Taken together, our results strongly suggest existence of human tumor endothelial cells in all tumor types tested and of both stromal and tumoral autocrine VEGFA-VEGFR1/2 signalings. These findings should be considered when evaluating molecular mechanisms of preclinical response and resistance to tumor anti-angiogenic strategies

  12. Stromal Cell-Derived Factor-1 Promotes Cell Migration, Tumor Growth of Colorectal Metastasis

    Directory of Open Access Journals (Sweden)

    Otto Kollmar

    2007-10-01

    Full Text Available In a mouse model of established extrahepatic colorectal metastasis, we analyzed whether stromal cellderived factor (SDF 1 stimulates tumor cell migration in vitro, angiogenesis, tumor growth in vivo. METHODS: Using chemotaxis chambers, CT26.WT colorectal tumor cell migration was studied under stimulation with different concentrations of SDF-1. To evaluate angiogenesis, tumor growth in vivo, green fluorescent protein-transfected CT26.WT cells were implanted in dorsal skinfold chambers of syngeneic BALB/c mice. After 5 days, tumors were locally exposed to SDF-1. Cell proliferation, tumor microvascularization, growth were studied during a further 9-day period using intravital fluorescence microscopy, histology, immunohistochemistry. Tumors exposed to PBS only served as controls. RESULTS:In vitro, > 30% of unstimulated CT26.WT cells showed expression of the SDF-1 receptor CXCR4. On chemotaxis assay, SDF-1 provoked a dose-dependent increase in cell migration. In vivo, SDF-1 accelerated neovascularization, induced a significant increase in tumor growth. Capillaries of SDF-1-treated tumors showed significant dilation. Of interest, SDF-1 treatment was associated with a significantly increased expression of proliferating cell nuclear antigen, a downregulation of cleaved caspase-3. CONCLUSION: Our study indicates that the CXC chemokine SDF-1 promotes tumor cell migration in vitro, tumor growth of established extrahepatic metastasis in vivo due to angiogenesis-dependent induction of tumor cell proliferation, inhibition of apoptotic cell death.

  13. Establishment and Characterization of a Tumor Stem Cell-Based Glioblastoma Invasion Model.

    Directory of Open Access Journals (Sweden)

    Stine Skov Jensen

    Full Text Available Glioblastoma is the most frequent and malignant brain tumor. Recurrence is inevitable and most likely connected to tumor invasion and presence of therapy resistant stem-like tumor cells. The aim was therefore to establish and characterize a three-dimensional in vivo-like in vitro model taking invasion and tumor stemness into account.Glioblastoma stem cell-like containing spheroid (GSS cultures derived from three different patients were established and characterized. The spheroids were implanted in vitro into rat brain slice cultures grown in stem cell medium and in vivo into brains of immuno-compromised mice. Invasion was followed in the slice cultures by confocal time-lapse microscopy. Using immunohistochemistry, we compared tumor cell invasion as well as expression of proliferation and stem cell markers between the models.We observed a pronounced invasion into brain slice cultures both by confocal time-lapse microscopy and immunohistochemistry. This invasion closely resembled the invasion in vivo. The Ki-67 proliferation indexes in spheroids implanted into brain slices were lower than in free-floating spheroids. The expression of stem cell markers varied between free-floating spheroids, spheroids implanted into brain slices and tumors in vivo.The established invasion model kept in stem cell medium closely mimics tumor cell invasion into the brain in vivo preserving also to some extent the expression of stem cell markers. The model is feasible and robust and we suggest the model as an in vivo-like model with a great potential in glioma studies and drug discovery.

  14. Clusters of Circulating Tumor Cells: a Biophysical and Technological Perspective.

    Science.gov (United States)

    Au, Sam H; Edd, Jon; Haber, Daniel A; Maheswaran, Shyamala; Stott, Shannon L; Toner, Mehmet

    2017-09-01

    The vast majority of cancer associated deaths result from metastasis, yet the behaviors of its most potent cellular driver, circulating tumor cell clusters, are only beginning to be revealed. This review highlights recent advances to our understanding of tumor cell clusters with emphasis on enabling technologies. The importance of intercellular adhesions among cells in clusters have begun to be unraveled with the aid of promising microfluidic strategies for isolating clusters from patient blood. Due to their metastatic potency, the utility of circulating tumor cell clusters for cancer diagnosis, drug screening, precision oncology and as targets of antimetastatic therapeutics are being explored. The continued development of tools for exploring circulating tumor cell clusters will enhance our fundamental understanding of the metastatic process and may be instrumental in devising new strategies to suppress and eliminate metastasis.

  15. T cells enhance gold nanoparticle delivery to tumors in vivo

    Directory of Open Access Journals (Sweden)

    Bear Adham

    2011-01-01

    Full Text Available Abstract Gold nanoparticle-mediated photothermal therapy (PTT has shown great potential for the treatment of cancer in mouse studies and is now being evaluated in clinical trials. For this therapy, gold nanoparticles (AuNPs are injected intravenously and are allowed to accumulate within the tumor via the enhanced permeability and retention (EPR effect. The tumor is then irradiated with a near infrared laser, whose energy is absorbed by the AuNPs and translated into heat. While reliance on the EPR effect for tumor targeting has proven adequate for vascularized tumors in small animal models, the efficiency and specificity of tumor delivery in vivo, particularly in tumors with poor blood supply, has proven challenging. In this study, we examine whether human T cells can be used as cellular delivery vehicles for AuNP transport into tumors. We first demonstrate that T cells can be efficiently loaded with 45 nm gold colloid nanoparticles without affecting viability or function (e.g. migration and cytokine production. Using a human tumor xenograft mouse model, we next demonstrate that AuNP-loaded T cells retain their capacity to migrate to tumor sites in vivo. In addition, the efficiency of AuNP delivery to tumors in vivo is increased by more than four-fold compared to injection of free PEGylated AuNPs and the use of the T cell delivery system also dramatically alters the overall nanoparticle biodistribution. Thus, the use of T cell chaperones for AuNP delivery could enhance the efficacy of nanoparticle-based therapies and imaging applications by increasing AuNP tumor accumulation.

  16. Bilateral giant cell tumor of tendon sheath of tendoachilles

    Directory of Open Access Journals (Sweden)

    Soma Datta

    2014-01-01

    Full Text Available Giant cell tumor of tendon sheath arises from the synovium of tendon sheaths, joints, or bursae, mostly affects adults between 30 and 50 years of age, and is slightly more common in females. We report the case of a 32-years-old male presenting with pain in both ankles without any history of trauma. On clinical examination, tenderness on both tendoachilles and local thickening were observed. Ultrasonography showed thickening of local tendinous area with increase in anteroposterior diameter, and Doppler demonstrated increased flow in peritendinous area. MRI findings showed that most of the tumor had intermediate signal intensity and portions of the tumor had low signal intensity. Fine needle aspiration cytology confirmed the diagnosis of giant cell tumor of tendon sheath. Excision biopsy was done with no recurrence on five month follow-up. Review of literature did not reveal any similar result; so, bilateral giant cell tumor of tendon sheath of tendoachilles is a rare presentation.

  17. "Mixed germ cell testicular tumor" in an adult female

    Directory of Open Access Journals (Sweden)

    Udasimath Shivakumarswamy

    2012-01-01

    Full Text Available The androgen insensitivity (testicular feminization syndrome was described by Morris in phenotypic females with 46XY karyotype, presenting with primary amenorrhea, adequate breast development, and absent or scanty pubic or axillary hair. Gonads consist usually of seminiferous tubules without spermatogenesis. These patients have a 5-10% risk of developing germ cell tumors, usually after the complete development of secondary female sexual characteristics. We hereby report a case considered as a female with married life of 15 years, who was operated for severe abdominal pain. Phenotype characters were that of female. Microscopic examination of the tumor from the abdomen revealed germinoma and yolk sac tumor with adjacent seminiferous tubules. Karyotyping showed 46XY. Final diagnosis of malignant mixed germ cell tumor in androgen insensitivity syndrome was made. Surveillance may be the most appropriate option when these conditions are initially diagnosed in adulthood to prevent development of germ cell tumors.

  18. Exosome-Based Cell-Cell Communication in the Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Joana Maia

    2018-02-01

    Full Text Available Tumors are not isolated entities, but complex systemic networks involving cell-cell communication between transformed and non-transformed cells. The milieu created by tumor-associated cells may either support or halt tumor progression. In addition to cell-cell contact, cells communicate through secreted factors via a highly complex system involving characteristics such as ligand concentration, receptor expression and integration of diverse signaling pathways. Of these, extracellular vesicles, such as exosomes, are emerging as novel cell-cell communication mediators in physiological and pathological scenarios. Exosomes, membrane vesicles of endocytic origin released by all cells (both healthy and diseased, ranging in size from 30 to 150 nm, transport all the main biomolecules, including lipids, proteins, DNAs, messenger RNAs and microRNA, and perform intercellular transfer of components, locally and systemically. By acting not only in tumor cells, but also in tumor-associated cells such as fibroblasts, endothelium, leukocytes and progenitor cells, tumor- and non-tumor cells-derived exosomes have emerged as new players in tumor growth and invasion, tumor-associated angiogenesis, tissue inflammation and immunologic remodeling. In addition, due to their property of carrying molecules from their cell of origin to the peripheral circulation, exosomes have been increasingly studied as sources of tumor biomarkers in liquid biopsies. Here we review the current literature on the participation of exosomes in the communication between tumor and tumor-associated cells, highlighting the role of this process in the setup of tumor microenvironments that modulate tumor initiation and metastasis.

  19. Molecular markers for tumor cell dissemination in female cancers

    International Nuclear Information System (INIS)

    Obermayr, E.

    2009-01-01

    In the fight against cancer many advances have been made in early detection and treatment of the disease during the last few decades. Nevertheless, many patients still die of cancer due to metastatic spreading of the disease. Tumor cell dissemination may occur very early and usually is not discovered at the time of initial diagnosis. In these cases, the mere excision of the primary tumor is an insufficient treatment. Microscopic tumor residues will remain in the blood, lymph nodes, or the bone marrow and will cause disease recurrence. To improve the patient's prognosis, a sensitive tool for the detection of single tumor cells supplementing conventional diagnostic procedures is required. As the blood is more easily accessible than the bone marrow or tissue biopsies, we intended to identify gene markers for the detection of circulating tumor cells in the blood of cancer patients. We focused on patients with breast, ovarian, endometrial or cervical cancer. Starting from a genome-wide gene expression analysis of tumor cells and blood cells, we found six genes higher expression levels in cancer patients compared to healthy women. These findings suggest that an increased expression of these genes in the blood indicates the presence of circulating tumor cells inducing future metastases and thus the need for adjuvant therapy assisting the primary treatment. Measuring the expression levels of these six genes in the blood may supplement conventional diagnostic tests and improve the patient's prognosis. (author) [de

  20. Morphological differences between circulating tumor cells from prostate cancer patients and cultured prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Sunyoung Park

    Full Text Available Circulating tumor cell (CTC enumeration promises to be an important predictor of clinical outcome for a range of cancers. Established CTC enumeration methods primarily rely on affinity capture of cell surface antigens, and have been criticized for underestimation of CTC numbers due to antigenic bias. Emerging CTC capture strategies typically distinguish these cells based on their assumed biomechanical characteristics, which are often validated using cultured cancer cells. In this study, we developed a software tool to investigate the morphological properties of CTCs from patients with castrate resistant prostate cancer and cultured prostate cancer cells in order to establish whether the latter is an appropriate model for the former. We isolated both CTCs and cultured cancer cells from whole blood using the CellSearch® system and examined various cytomorphological characteristics. In contrast with cultured cancer cells, CTCs enriched by CellSearch® system were found to have significantly smaller size, larger nuclear-cytoplasmic ratio, and more elongated shape. These CTCs were also found to exhibit significantly more variability than cultured cancer cells in nuclear-cytoplasmic ratio and shape profile.

  1. Turnover rate of hypoxic cells in solid tumors

    International Nuclear Information System (INIS)

    Ljungkvist, A.S.E.; Bussink, J.; Rijken, P.F.J.W.; Van Der Kogel, A.J.

    2003-01-01

    Most solid tumors contain hypoxic cells, and both the amount and duration of tumor hypoxia has been shown to influence the effect of radiation treatment negatively. It is important to understand the dynamic processes within the hypoxic cell population in non-treated tumors, and the effect of different treatment modalities on the kinetics of hypoxic cells to be able to design optimal combined modality treatments. The turnover rate of hypoxic cells was analyzed in three different solid tumor models with a double bio-reductive hypoxic marker assay with sequential injection of the two hypoxic markers. Previously it was shown that this assay could be used to detect both a decrease and an increase of tumor hypoxia in relation to the tumor vasculature with high spatial resolution. In this study the first hypoxic marker, pimonidazole, was administered at variable times relative to tumor harvest, and the second hypoxic marker, CCI-103F, was injected at a fixed time before harvest. The hypoxic cell turnover rate was calculated as the loss of pimonidazole positive cells relative to CCI-103F. The murine C38 line had the fastest hypoxic turnover rate of 60% /24h and the human xenograft line SCCNij3 had the slowest hypoxic turnover rate of 30% /24 h. The hypoxic turnover rate was most heterogeneous in the SCCNij3 line that even contained viable groups of cells that had been hypoxic for at least 5 days. The human xenograft line MEC82 fell in between with a hypoxic turnover rate of 50% /24 h. The hypoxic cell turnover was related to the potential tumor volume doubling time (Tpot) with a Tpot of 26h in C38 and 103h in SCCNij3. The dynamics of hypoxic cells, quantified with a double hypoxic marker method, showed large differences in hypoxic cell turnover rate and were related to Tpot

  2. Tumorer

    DEFF Research Database (Denmark)

    Prause, J.U.; Heegaard, S.

    2005-01-01

    oftalmologi, øjenlågstumorer, conjunctivale tumorer, malignt melanom, retinoblastom, orbitale tumorer......oftalmologi, øjenlågstumorer, conjunctivale tumorer, malignt melanom, retinoblastom, orbitale tumorer...

  3. Multifocal Abrikossoff's granular cell tumor of the oesophagus: Case report

    Directory of Open Access Journals (Sweden)

    Ranđelović Tomislav D.

    2008-01-01

    Full Text Available INTRODUCTION Granular cell tumors, relatively uncommon soft tissue tumors, have been a matter of debate among pathologists regarding histogenesis for a long time. Less common locations are in the aerodigestive tract including the oesophagus. CASE OUTLINE We have recently treated a rare case, a 37-year old male, who was admitted due to dysphagia and a painful swallow with occasional pharyngo-nasal regurgitation followed with a mild loss of weight. Standard clinical examination including X-ray chest, ECG and laboratory tests did not show pathological findings. Barium contrast oesophagography demonstrated multiple ovoid defects in the wall of the oesophagus. CT scan of the chest confirmed luminal narrowing owing to the tumor of the upper oesophagus. Upper endoscopy showed unusual multifocal nodular lesions alongside the oesophageal axis covered by smooth mucosa. A primary biopsy specimen taken from the largest nodules confirmed an unusual pathological finding of the granular cell tumor. Subtotal, transpleural oesophagectomy was performed and reconstruction was derived by long colon segment interposition through the posterior mediastinum. The postoperative course was uneventful. The operative specimen consisted of four ovoid tumors alongside the oesophagus (the greatest diameter 0.5-1.8, average 1.25. All verified tumors histologicaly consisted of a spindle-shaped or polygonal cells containing small and large eosinophilic granules and central nuclei. Most tumor cells showed strongly positive immunohistochemical staining for S-100 protein. These tumor cells were partially positive for p-53 and Ki-67. No lymph node metastases were detected histologically. CONCLUSION Multifocal granular cell tumor of the oesophagus is an unusual finding with low incidence, and rarely caused symptoms. Pathological features and multiplicity of such tumors emphasized malignant predisposition requiring surgical resection of the oesophagus.

  4. Regulation of Glioblastoma Tumor-Propagating Cells by the Integrin Partner Tetraspanin CD151

    Directory of Open Access Journals (Sweden)

    Jessica Tilghman

    2016-03-01

    Full Text Available Glioblastoma (GBM stem cells (GSCs represent tumor-propagating cells with stem-like characteristics (stemness that contribute disproportionately to GBM drug resistance and tumor recurrence. Understanding the mechanisms supporting GSC stemness is important for developing therapeutic strategies for targeting GSC-dependent oncogenic mechanisms. Using GBM-derived neurospheres, we identified the cell surface tetraspanin family member CD151 as a novel regulator of glioma cell stemness, GSC self-renewal capacity, migration, and tumor growth. CD151 was found to be overexpressed in GBM tumors and GBM neurospheres enriched in GSCs. Silencing CD151 inhibited neurosphere forming capacity, neurosphere cell proliferation, and migration and attenuated the expression of markers and transcriptional drivers of the GSC phenotype. Conversely, forced CD151 expression promoted neurosphere self-renewal, cell migration, and expression of stemness-associated transcription factors. CD151 was found to complex with integrins α3, α6, and β1 in neurosphere cells, and blocking CD151 interactions with integrins α3 and α6 inhibited AKT phosphorylation, a downstream effector of integrin signaling, and impaired sphere formation and neurosphere cell migration. Additionally, targeting CD151 in vivo inhibited the growth of GBM neurosphere-derived xenografts. These findings identify CD151 and its interactions with integrins α3 and α6 as potential therapeutic targets for inhibiting stemness-driving mechanisms and stem cell populations in GBM.

  5. Accelerated Tumor Cell Death by Anglogenic Modifiers

    Science.gov (United States)

    2005-08-01

    morphologic "desmoplastic" stromal response tumor may be responsible for carcinogenesis in to tumor epithelium often occurs around either primary primary ...differentiation of enamel tooth epithelium. Based 2001; Hsieh et al., 2002). This concept of bone targeting upon this and other published data, we proposed that...synergism between squalamine and VEGF (or castration), and assessment of the biochemical and morphologic changes of the prostatic tissues in vivo: This task

  6. Noninvasive Assessment of Tumor Cell Proliferation in Animal Models

    Directory of Open Access Journals (Sweden)

    Matthias Edinger

    1999-10-01

    Full Text Available Revealing the mechanisms of neoplastic disease and enhancing our ability to intervene in these processes requires an increased understanding of cellular and molecular changes as they occur in intact living animal models. We have begun to address these needs by developing a method of labeling tumor cells through constitutive expression of an optical reporter gene, noninvasively monitoring cellular proliferation in vivo using a sensitive photon detection system. A stable line of HeLa cells that expressed a modified firefly luciferase gene was generated, proliferation of these cells in irradiated severe combined immunodeficiency (SCID mice was monitored. Tumor cells were introduced into animals via subcutaneous, intraperitoneal and intravenous inoculation and whole body images, that revealed tumor location and growth kinetics, were obtained. The number of photons that were emitted from the labeled tumor cells and transmitted through murine tissues was sufficient to detect 1×103 cells in the peritoneal cavity, 1×104 cells at subcutaneous sites and 1×106 circulating cells immediately following injection. The kinetics of cell proliferation, as measured by photon emission, was exponential in the peritoneal cavity and at subcutaneous sites. Intravenous inoculation resulted in detectable colonies of tumor cells in animals receiving more than 1×103 cells. Our demonstrated ability to detect small numbers of tumor cells in living animals noninvasively suggests that therapies designed to treat minimal disease states, as occur early in the disease course and after elimination of the tumor mass, may be monitored using this approach. Moreover, it may be possible to monitor micrometastases and evaluate the molecular steps in the metastatic process. Spatiotemporal analyses of neoplasia will improve the predictability of animal models of human disease as study groups can be followed over time, this method will accelerate development of novel therapeutic

  7. Knockdown of asparagine synthetase (ASNS) suppresses cell proliferation and inhibits tumor growth in gastric cancer cells.

    Science.gov (United States)

    Yu, Qingxiang; Wang, Xiaoyu; Wang, Li; Zheng, Jia; Wang, Jiang; Wang, Bangmao

    2016-10-01

    Asparagine synthetase (ASNS) gene encodes an enzyme that catalyzes the glutamine- and ATP-dependent conversion of aspartic acid to asparagine. ASNS is deemed as a promising therapeutic target and its expression is associated with the chemotherapy resistance in several human cancers. However, its role in gastric cancer tumorigenesis has not been investigated. In this study, we employed small interfering RNA (siRNA) to transiently knockdown ASNS in two gastric cancer cell lines, AGS and MKN-45, followed by growth rate assay and colony formation assay. Dose response curve analysis was performed in AGS and MKN-45 cells with stable ASNS knockdown to assess sensitivity to cisplatin. Xenograft experiment was performed to examine in vivo synergistic effects of ASNS depletion and cisplatin on tumor growth. Expression level of ASNS was evaluated in human patient samples using quantitative PCR. Kaplan-Meier curve analysis was performed to evaluate association between ASNS expression and patient survival. Transient knockdown of ASNS inhibited cell proliferation and colony formation in AGS and MKN-45 cells. Stable knockdown of ASNS conferred sensitivity to cisplatin in these cells. Depletion of ASNS and cisplatin treatment exerted synergistic effects on tumor growth in AGS xenografts. Moreover, ASNS was found to be up-regulated in human gastric cancer tissues compared with matched normal colon tissues. Low expression of ASNS was significantly associated with better survival in gastric cancer patients. ASNS may contribute to gastric cancer tumorigenesis and may represent a novel therapeutic target for prevention or intervention of gastric cancer.

  8. Bactofection of sequences encoding a Bax protein peptide chemosensitizes prostate cancer tumor cells.

    Science.gov (United States)

    Hernández-Luna, Marco Antonio; Díaz de León-Ortega, Ricardo; Hernández-Cueto, Daniel Dimitri; Gaxiola-Centeno, Ricardo; Castro-Luna, Raúl; Martínez-Cristóbal, Leonel; Huerta-Yépez, Sara; Luria-Pérez, Rosendo

    Tumor cell resistance to chemotherapy agents is one of the main problems in the eradication of different neoplasias. One of the mechanisms of this process is the overexpression of anti-apoptotic proteins such as Bcl-2 and Bcl- XL ; blocking the activity of these proteins may contribute to the sensitization of tumor cells and allow the adequate effects of chemotherapeutic drugs. This study adressed the transfection of prostate cancer cells (PC3) with a plasmid encoding a recombinant protein with an antagonist peptide from the BH3 region of the Bax protein fused to the GFP reporter protein (BaxGFP). This protein induced apoptosis of these tumor cells; further, selective transport of this plasmid to the tumor cell with Salmonella enterica serovar Typhimurium (strain SL3261), a live-attenuated bacterial vector, can induce sensitization of the tumor cell to the action of drugs such as cisplatin, through a process known as bactofection. These results suggest that Salmonella enterica can be used as a carrier vector of nucleotide sequences encoding heterologous molecules used in antitumor therapy. Copyright © 2016 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.

  9. Uncommon vascular tumor of the ovary. Primary ovarian epithelioid hemangioendothelioma or vascular sarcomatous transformation in ovarian germ cell tumor?

    Science.gov (United States)

    Illueca, Carmen; Machado, Isidro; García, Ana; Covisa, Amparo; Morales, Javier; Cruz, Julia; Traves, Victor; Almenar, Sergio

    2011-12-01

    Epithelioid hemangioendothelioma (EHE) is an unusual vascular tumor, which usually occurs in the soft tissue, liver, breast, lung and bone. We submit a case of EHE, a tumor never before reported in the ovary. A 20-year-old woman was admitted with a medical history of unilateral ovarian tumor. The right ovary was totally removed and histologically, the tumor was composed of epithelioid cells with eosinophilic cytoplasm and prominent intracytoplasmic vacuoles associated with myxohyaline matrix. No morphologic evidence of germ cell tumor was observed. Immunohistochemically, the tumor cells were positive for CD31 and CD34. However, all germ cell tumor markers were negative. The final diagnosis was EHE of the ovarian gland and sarcomatous transformation in ovarian germ cell tumor was excluded after extensive histopathological and immunohistochemical study. EHE is an uncommon vascular tumor, which is rarely seen in female genital tract and this is the first report of EHE in ovarian gland. Final diagnosis depends on histopathological and immunohistochemical features.

  10. Chimeric antigen receptor T-cell therapy for solid tumors

    Directory of Open Access Journals (Sweden)

    Kheng Newick

    2016-01-01

    Full Text Available Chimeric antigen receptor (CAR T cells are engineered constructs composed of synthetic receptors that direct T cells to surface antigens for subsequent elimination. Many CAR constructs are also manufactured with elements that augment T-cell persistence and activity. To date, CAR T cells have demonstrated tremendous success in eradicating hematological malignancies (e.g., CD19 CARs in leukemias. This success is not yet extrapolated to solid tumors, and the reasons for this are being actively investigated. Here in this mini-review, we discuss some of the key hurdles encountered by CAR T cells in the solid tumor microenvironment.

  11. Chemotherapy-Induced IL34 Enhances Immunosuppression by Tumor-Associated Macrophages and Mediates Survival of Chemoresistant Lung Cancer Cells

    OpenAIRE

    Baghdadi, Muhammad; Wada, Haruka; Nakanishi, Sayaka; Abe, Hirotake; Han, Nanumi; Putra, Wira Eka; Endo, Daisuke; Watari, Hidemichi; Sakuragi, Noriaki; Hida, Yasuhiro; Kaga, Kichizo; Miyagi, Yohei; Yokose, Tomoyuki; Takano, Atsushi; Daigo, Yataro

    2016-01-01

    The ability of tumor cells to escape immune destruction and their acquired resistance to chemotherapy are major obstacles to effective cancer therapy. Although immune checkpoint therapies such as anti-PD-1 address these issues in part, clinical responses remain limited to a subpopulation of patients. In this report, we identified IL34 produced by cancer cells as a driver of chemoresistance. In particular, we found that IL34 modulated the functions of tumor-associated macrophages to enhance lo...

  12. Quantitative proteomics as a tool to identify resistance mechanisms in erlotinib-resistant subclones of the non-small cell lung cancer cell line HCC827

    DEFF Research Database (Denmark)

    Jacobsen, Kirstine

    Background: Erlotinib (Tarceva®, Roche) has significantly changed the treatment of non-small cell lung cancer (NSCLC) as approximately 70% of patients show significant tumor regression when treated (Santarpia et. al., 2013). However, all patients relapse due to development of acquired resistance...... line HCC827. Materials & Methods: We established 3 erlotinib-resistant subclones (resistant to 10, 20, 30 µM erlotinib, respectively), and performed comparative quantitative proteomic analysis of these and the parental HCC827 cell line. The resistant subclones were examined both in absence and presence...... the identification of novel resistance mechanisms. We identified 2875 cytoplasmic proteins present in all 4 cell lines. Of these 87, 56 and 23 are upregulated >1.5 fold; and 117, 72 and 32 are downregulated >1.5 fold, respectively, in the 3 resistant clones compared to the parental cell line. By network analysis, we...

  13. New Functional Signatures for Understanding Melanoma Biology from Tumor Cell Lineage-Specific Analysis

    Directory of Open Access Journals (Sweden)

    Florian Rambow

    2015-10-01

    Full Text Available Molecular signatures specific to particular tumor types are required to design treatments for resistant tumors. However, it remains unclear whether tumors and corresponding cell lines used for drug development share such signatures. We developed similarity core analysis (SCA, a universal and unsupervised computational framework for extracting core molecular features common to tumors and cell lines. We applied SCA to mRNA/miRNA expression data from various sources, comparing melanoma cell lines and metastases. The signature obtained was associated with phenotypic characteristics in vitro, and the core genes CAPN3 and TRIM63 were implicated in melanoma cell migration/invasion. About 90% of the melanoma signature genes belong to an intrinsic network of transcription factors governing neural development (TFAP2A, DLX2, ALX1, MITF, PAX3, SOX10, LEF1, and GAS7 and miRNAs (211-5p, 221-3p, and 10a-5p. The SCA signature effectively discriminated between two subpopulations of melanoma patients differing in overall survival, and classified MEKi/BRAFi-resistant and -sensitive melanoma cell lines.

  14. Androgen - secreting steroid cell tumor of the ovary

    Directory of Open Access Journals (Sweden)

    Paras Ratilal Udhreja

    2014-01-01

    Full Text Available Steroid cell tumors (SCTs, not otherwise specified of the ovary are rare subgroup of sex cord tumors, which account for less than 0.1% of all ovarian tumors and also that will present at any age. The majority of these tumors produce steroids with testosterone being the most common. A case of a 28-year-old woman who presented with symptoms of virilization is reported. Although SCTs are generally benign, there is a risk for malignant transformation. Surgery is the most important and hallmark treatment.

  15. Unlocking the chromatin of adenoid cystic carcinomas using HDAC inhibitors sensitize cancer stem cells to cisplatin and induces tumor senescence

    Directory of Open Access Journals (Sweden)

    Luciana O. Almeida

    2017-05-01

    Full Text Available Adenoid cystic carcinoma (ACC is an uncommon malignancy of the salivary glands that is characterized by local recurrence and distant metastasis due to its resistance to conventional therapy. Platinum-based therapies have been extensively explored as a treatment for ACC, but they show little effectiveness. Studies have shown that a specific group of tumor cells, harboring characteristics of cancer stem cells (CSCs, are involved in chemoresistance of myeloid leukemias, breast, colorectal and pancreatic carcinomas. Therapeutic strategies that target CSCs improve the survival of patients by decreasing the rates of tumor relapse, and epigenetic drugs, such as histone deacetylase inhibitors (HDACi, have shown promising results in targeting CSCs. In this study, we investigated the effect of the HDACi Suberoylanilide hydroxamic acid (Vorinostat, and cisplatin, alone or in combination, on CSCs and non-CSCs from ACC. We used CSCs as a biological marker for tumor resistance to therapy in patient-derived xenograft (PDX samples and ACC primary cells. We found that cisplatin reduced tumor viability, but enriched the population of CSCs. Systemic administration of Vorinostat reduced the number of detectable CSCs in vivo and in vitro, and a low dose of Vorinostat decreased tumor cell viability. However, the combination of Vorinostat and cisplatin was extremely effective in depleting CSCs and reducing tumor viability in all ACC primary cells by activating cellular senescence. These observations suggest that HDACi and intercalating agents act more efficiently in combination to destroy tumor cells and their stem cells.

  16. SRC drives growth of antiestrogen resistant breast cancer cell lines and is a marker for reduced benefit of tamoxifen treatment

    DEFF Research Database (Denmark)

    Larsen, Sarah L; Laenkholm, Anne-Vibeke; Duun-Henriksen, Anne Katrine

    2015-01-01

    effect on tamoxifen resistant cell growth, whereas dasatinib in combination with tamoxifen had no additive inhibitory effect on fulvestrant resistant growth. When performing immunohistochemical staining on 268 primary tumors from breast cancer patients who had received tamoxifen as first line endocrine...... treatment, we found that membrane expression of Src in the tumor cells was significant associated with reduced disease-free and overall survival. In conclusion, Src was identified as target for treatment of antiestrogen resistant T47D breast cancer cells. For tamoxifen resistant T47D cells, combined...

  17. Malignant Ganglioneuroma Arising from Mediastinal Mixed Germ Cell Tumor

    Directory of Open Access Journals (Sweden)

    Pi-Yu Chen

    2007-02-01

    Full Text Available Mixed germ cell tumors with non-germ cell malignant components rarely occur in the anterior mediastinum. We report a case of a 34-year-old man who presented with an anterior mediastinum mass. Mixed germ cell tumor was initially diagnosed based on the pathologic findings of germinoma on thoracoscopic biopsy and clinical findings of elevated serum a-fetoprotein and β-human chorionic gonadotropin. The patient received preoperative chemotherapy and subsequent complete resection of the residual tumor. Pathologic examination of the excised specimen showed predominantly malignant ganglioneuroma and small residual foci of teratoma. To our knowledge, this is the first reported case of a malignant ganglioneuroma arising from mediastinal mixed germ cell tumor.

  18. Dutasteride and enzalutamide synergistically suppress prostate tumor cell proliferation

    NARCIS (Netherlands)

    Hamid, A.R.; Verhaegh, G.W.C.T.; Smit, F.P.; RIjt-van de Westerlo, C.; Armandari, I.; Brandt, A.; Sweep, F.C.; Sedelaar, J.P.M.; Schalken, J.A.

    2015-01-01

    PURPOSE: Dihydrotestosterone is the main active androgen in the prostate and it has a role in prostate cancer progression. After androgen deprivation therapy androgen receptor signaling is still active in tumor cells. Persistent intratumor steroidogenesis and androgen receptor changes are

  19. Bortezomib resistance in mantle cell lymphoma is associated with plasmacytic differentiation

    DEFF Research Database (Denmark)

    Pérez-Galán, Patricia; Mora-Jensen, Helena; Weniger, Marc A

    2011-01-01

    Bortezomib induces remissions in 30%-50% of patients with relapsed mantle cell lymphoma (MCL). Conversely, more than half of patients' tumors are intrinsically resistant to bortezomib. The molecular mechanism of resistance has not been defined. We generated a model of bortezomib-adapted subclones...

  20. Genome wide single cell analysis of chemotherapy resistant metastatic cells in a case of gastroesophageal adenocarcinoma

    International Nuclear Information System (INIS)

    Hjortland, Geir Olav; Fodstad, Oystein; Smeland, Sigbjorn; Hovig, Eivind; Meza-Zepeda, Leonardo A; Beiske, Klaus; Ree, Anne H; Tveito, Siri; Hoifodt, Hanne; Bohler, Per J; Hole, Knut H; Myklebost, Ola

    2011-01-01

    Metastatic progression due to development or enrichment of therapy-resistant tumor cells is eventually lethal. Molecular characterization of such chemotherapy resistant tumor cell clones may identify markers responsible for malignant progression and potential targets for new treatment. Here, in a case of stage IV adenocarcinoma of the gastroesophageal junction, we report the successful genome wide analysis using array comparative genomic hybridization (CGH) of DNA from only fourteen tumor cells using a bead-based single cell selection method from a bone metastasis progressing during chemotherapy. In a case of metastatic adenocarcinoma of the gastroesophageal junction, the progression of bone metastasis was observed during a chemotherapy regimen of epirubicin, oxaliplatin and capecitabine, whereas lung-, liver and lymph node metastases as well as the primary tumor were regressing. A bone marrow aspirate sampled at the site of progressing metastasis in the right iliac bone was performed, and single cell molecular analysis using array-CGH of Epithelial Specific Antigen (ESA)-positive metastatic cells, and revealed two distinct regions of amplification, 12p12.1 and 17q12-q21.2 amplicons, containing the KRAS (12p) and ERBB2 (HER2/NEU) (17q) oncogenes. Further intrapatient tumor heterogeneity of these highlighted gene copy number changes was analyzed by fluorescence in situ hybridization (FISH) in all available primary and metastatic tumor biopsies, and ErbB2 protein expression was investigated by immunohistochemistry. ERBB2 was heterogeneously amplified by FISH analysis in the primary tumor, as well as liver and bone metastasis, but homogenously amplified in biopsy specimens from a progressing bone metastasis after three initial cycles of chemotherapy, indicating a possible enrichment of erbB2 positive tumor cells in the progressing bone marrow metastasis during chemotherapy. A similar amplification profile was detected for wild-type KRAS, although more heterogeneously

  1. Inhibition of Notch signaling alters the phenotype of orthotopic tumors formed from glioblastoma multiforme neurosphere cells but does not hamper intracranial tumor growth regardless of endogene Notch pathway signature

    DEFF Research Database (Denmark)

    Kristoffersen, Karina; Nedergaard, Mette Kjølhede; Villingshøj, Mette

    2014-01-01

    BACKGROUND: Brain cancer stem-like cells (bCSC) are cancer cells with neural stem cell (NSC)-like properties found in the devastating brain tumor glioblastoma multiforme (GBM). bCSC are proposed a central role in tumor initiation, progression, treatment resistance and relapse and as such present...... that more strongly induces angiogenesis if the treatment is not sustained. However, this more differentiated cell type might prove to be more sensitive to conventional therapies....

  2. Training stem cells for treatment of malignant brain tumors

    Science.gov (United States)

    Li, Shengwen Calvin; Kabeer, Mustafa H; Vu, Long T; Keschrumrus, Vic; Yin, Hong Zhen; Dethlefs, Brent A; Zhong, Jiang F; Weiss, John H; Loudon, William G

    2014-01-01

    The treatment of malignant brain tumors remains a challenge. Stem cell technology has been applied in the treatment of brain tumors largely because of the ability of some stem cells to infiltrate into regions within the brain where tumor cells migrate as shown in preclinical studies. However, not all of these efforts can translate in the effective treatment that improves the quality of life for patients. Here, we perform a literature review to identify the problems in the field. Given the lack of efficacy of most stem cell-based agents used in the treatment of malignant brain tumors, we found that stem cell distribution (i.e., only a fraction of stem cells applied capable of targeting tumors) are among the limiting factors. We provide guidelines for potential improvements in stem cell distribution. Specifically, we use an engineered tissue graft platform that replicates the in vivo microenvironment, and provide our data to validate that this culture platform is viable for producing stem cells that have better stem cell distribution than with the Petri dish culture system. PMID:25258664

  3. Loss of 53BP1 causes PARP inhibitor resistance in Brca1-mutated mouse mammary tumors

    NARCIS (Netherlands)

    Jaspers, Janneke E.; Kersbergen, Ariena; Boon, Ute; Sol, Wendy; van Deemter, Liesbeth; Zander, Serge A.; Drost, Rinske; Wientjens, Ellen; Ji, Jiuping; Aly, Amal; Doroshow, James H.; Cranston, Aaron; Martin, Niall M. B.; Lau, Alan; O'Connor, Mark J.; Ganesan, Shridar; Borst, Piet; Jonkers, Jos; Rottenberg, Sven

    2013-01-01

    Inhibition of PARP is a promising therapeutic strategy for homologous recombination-deficient tumors, such as BRCA1-associated cancers. We previously reported that BRCA1-deficient mouse mammary tumors may acquire resistance to the clinical PARP inhibitor (PARPi) olaparib through activation of the

  4. Tubulin binding cofactor C (TBCC) suppresses tumor growth and enhances chemosensitivity in human breast cancer cells

    International Nuclear Information System (INIS)

    Hage-Sleiman, Rouba; Herveau, Stéphanie; Matera, Eva-Laure; Laurier, Jean-Fabien; Dumontet, Charles

    2010-01-01

    results underline the essential role of fine tuned regulation of tubulin content in tumor cells and the major impact of dysregulation of tubulin dimer content on tumor cell phenotype and response to chemotherapy. A better understanding of how the microtubule cytoskeleton is dysregulated in cancer cells would greatly contribute to a better understanding of tumor cell biology and characterisation of resistant phenotypes

  5. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway* | Office of Cancer Genomics

    Science.gov (United States)

    Plasticity of the cell state has been proposed to drive resistance to multiple classes of cancer therapies, thereby limiting their effectiveness. A high-mesenchymal cell state observed in human tumors and cancer cell lines has been associated with resistance to multiple treatment modalities across diverse cancer lineages, but the mechanistic underpinning for this state has remained incompletely understood.

  6. Localized tenosynovial giant cell tumor in both knee joints

    International Nuclear Information System (INIS)

    Kim, Hyun Su; Kwon, Jong Won; Ahn, Jin Hwan; Chang, Moon Jong; Cho, Eun Yoon

    2010-01-01

    Tenosynovial giant cell tumor, previously called pigmented villonodular synovitis (PVNS), is a rare benign neoplastic process that may involve the synovium of the joint. The disorder is usually monoarticular and only a few cases have been reported on polyarticular involvement. Herein, we present a case of localized intra-articular tenosynovial giant cell tumor in a 29-year-old man involving both knee joints with a description of the MR imaging and histological findings. (orig.)

  7. Ultrastructure and pathology of desmoplastic small round cell tumor

    International Nuclear Information System (INIS)

    Xu Bin; Wang Bo; Gu Junlian; Li Xin; Li Yang

    2010-01-01

    Objective: To observe the change of ultrastructure and pathology of desmoplastic small round cell tumor (DSRCT) and recognize the characteristics of DSRCT and improve the standard of diagnosis. Methods: One case of primary DSRCT in right leg was observed by light microscope, immunohistochemical method and electron microscope and analyzed with review of the literatures. Results: The size of tumor was 3.2 cm x 2.4 cm x 1.3 cm with gray-yellow on cross-section. Foci of hemorrhage and necrosis were noted. Under light microscope, the tumor was composed of sharply demarcated nests of small rounded or oval cells. The cellular aggregates were surrounded and separated by abundant fibrous connective tissue. The tumor cells were uniform in size and shape, and showed small to moderate amounts of pale cytoplasm with indistinct cell borders. The nuclei were round to oval, with clumped chromatin and marked hyperchromasia. Some cells had one or two indistinct nucleoli. Numerous mitotic figures and areas of necrosis were dentified. The immunohistochemical results showed that the tumor cells were strongly positive for CK, EMA and NSE. There was focal positive staining for desmin with a perinuclear dot-like pattern. However, the tumor cells were negative for CgA, Myogenin, Syn, LCA, SMA, S-100, NF, GFAP, HMB45, HHF-35, CD3, CD10, Actin, CD99, and CD20. Under electron microscope, the tumor cells showed paranuclear cytoplasmic intermediate filaments arranging in globular or whorl array. Conclusion: DSRCT occurs both in the abdomen and at other sites. The patients with DSRCT range widely in age. DSRCT has distinctive histopathologic and ultrastructural features. This tumor shows immunohistochemical feature of epithelial, mesenchymal as well as neural multidirectional differentiation. RT-PCR may be served as an important diagnostic adjunct for DSRAT. The prognosis of the patients with DSRCT is very poor. (authors)

  8. Quantitative proteomics identifies central players in erlotinib resistance of the non-small cell lung cancer cell line HCC827

    DEFF Research Database (Denmark)

    Jacobsen, Kirstine; Lund, Rikke Raaen; Beck, Hans Christian

    Background: Erlotinib (Tarceva®, Roche) has significantly changed the treatment of non-small cell lung cancer (NSCLC) as 70% of patients show significant tumor regression when treated. However, all patients relapse due to development of acquired resistance, which in 43-50% of cases are caused...... by a secondary mutation (T790M) in EGFR. Importantly, a majority of resistance cases are still unexplained. Our aim is to identify novel resistance mechanisms in erlotinib-resistant subclones of the NSCLC cell line HCC827. Materials & Methods: We established 3 erlotinib-resistant subclones (resistant to 10, 20...... or other EGFR or KRAS mutations, potentiating the identification of novel resistance mechanisms. We identified 2875 cytoplasmic proteins present in all 4 cell lines. Of these 87, 56 and 23 are upregulated >1.5 fold; and 117, 72 and 32 are downregulated >1.5 fold, respectively, in the 3 resistant clones...

  9. Crude ethanol extract from babassu (Orbignya speciosa: cytotoxicity on tumoral and non-tumoral cell lines

    Directory of Open Access Journals (Sweden)

    Magdalena N. Rennó

    2008-09-01

    Full Text Available Plant-derived substances have been considered as important sources of drugs, including antineoplasic agents. Babassu mesocarp is popularly used in Brazil as a food additive, and in popular medicine against several conditions, such as inflammations, menstrual pains and leukaemia. From babassu Orbignya speciosa (Mart. Barb. Rodr. [Arecaceae (Palmae] epicarp/mesocarp, an ethanol extract was prepared and named OSEME, which was tested on the viability,morphology and metabolism of several cell lines, such as the leukaemic cell lines, HL-60, K562 and the latter multidrug resistant counterpart K562-Lucena 1, the human breast cancer cell line MCF-7, the mouse fibroblast cell line 3T3-L1 and fresh human lymphocytes. OSEME promoted a dose-dependent decrease on the viability of all cells. This effect was much more pronounced on the tumoral cell lines than on non-tumoral cells, a phenomenon revealed by the dose of OSEME which promotes half of maximal effect (ID50. The decrease on viability was followed by shrinkage of cells, alteration on their morphology, and a markedly nuclear condensation. Curiously, stimulation of 6-phosphofructokinase activity (6.6-times was observed on HL-60 cells, treated with OSEME, when compared to control treated with ethanol (vehicle. These results support evidences to suggest OSEME as a promising source of novel antineoplasic agents.Substâncias derivadas de plantas têm sido usadas como importante fonte de agentes antineoplásicos. O mesocarpo do babaçu é popularmente usado no Brasil como suplemento alimentar e na medicina popular para o tratamento de várias afecções, tais como: inflamações, cólicas menstruais e leucemia. A partir do epicarpo/mesocarpo do babaçu Orbignya speciosa (Mart. Barb. Rodr. [Arecaceae (Palmae] foi preparado um extrato etanólico, denominado OSEME, o qual foi incubado com as seguintes linhagens humanas leucêmicas: HL-60, K562 e a sua derivada resistente a múltiplas drogas, K562-Lucena 1; al

  10. Perivascular epithelioid cell tumor of the liver coexisting with a gastrointestinal stromal tumor

    DEFF Research Database (Denmark)

    Paiva, Carlos Eduardo; Moraes Neto, Francisco Alves; Agaimy, Abbas

    2008-01-01

    Approximately 10% of patients with gastrointestinal stromal tumors (GIST) develop other neoplasms, either synchronously or metachronously. In this report we describe coexistence of a gastrointestinal stromal tumor and a hepatic perivascular epithelioid cell tumor (PEComa) in a 51-year-old woman...... with no evidence of tuberous sclerosis. A subcapsular hepatic nodule (0.8 cm in diameter) was found during surgery for symptomatic gastric neoplasm (15 cm in diameter) arising from the lesser curvature. Both tumors revealed histomorphological and immunohistochemical features confirming a diagnosis of a small...... incidental hepatic PEComa and a high risky extramural gastric GIST, respectively. The patient remained disease-free 25 mo after surgery with no evidence of tumor recurrence or new neoplasms. To our knowledge, this is the first report of PEComa in a patient with GIST. Hepatic lesions detected synchronously...

  11. Mediastinal germ cell tumors: a radiologic-pathologic review

    Energy Technology Data Exchange (ETDEWEB)

    Drevelegas, A. [Dept. of Radiology, Aristoteles Univ., Thessaloniki (Greece); Palladas, P. [Dept. of Radiology, G. Papanicolaou Hospital, Thessaloniki (Greece); Scordalaki, A. [Dept. of Pathology, G. Papanicolaou Hospital, Thessaloniki (Greece)

    2001-10-01

    Germ cell tumors of the mediastinum are histologically identical to those found in the testes and ovaries. Early diagnosis and treatment improve the survival rate. Imaging studies of teratoma demonstrate a rounded, often lobulated heterogeneous mass containing soft tissue elements with fluid and fat attenuation. Calcification is present in 20-43% of cases. Seminomas are large masses of homogeneous soft tissue attenuation. Malignant nonseminomatous germ cell tumors are heterogeneous tumors with irregular borders due to invasion of adjacent structures. CT shows the location and extent of the tumors as well as intrinsic elements including soft tissue, fat, fluid, and calcification. CT is the modality of choice for the diagnostic evaluation of these tumors. MRI reveals masses of heterogeneous signal intensity, is more sensitive in depicting infiltration of the adjacent structures by fat plane obliteration, and is performed as an ancillary study. (orig.)

  12. The histone deacetylase inhibitor SAHA acts in synergism with fenretinide and doxorubicin to control growth of rhabdoid tumor cells

    International Nuclear Information System (INIS)

    Kerl, Kornelius; Eveslage, Maria; Jung, Manfred; Meisterernst, Michael; Frühwald, Michael; Ries, David; Unland, Rebecca; Borchert, Christiane; Moreno, Natalia; Hasselblatt, Martin; Jürgens, Heribert; Kool, Marcel; Görlich, Dennis

    2013-01-01

    Rhabdoid tumors are highly aggressive malignancies affecting infants and very young children. In many instances these tumors are resistant to conventional type chemotherapy necessitating alternative approaches. Proliferation assays (MTT), apoptosis (propidium iodide/annexin V) and cell cycle analysis (DAPI), RNA expression microarrays and western blots were used to identify synergism of the HDAC (histone deacetylase) inhibitor SAHA with fenretinide, tamoxifen and doxorubicin in rhabdoidtumor cell lines. HDAC1 and HDAC2 are overexpressed in primary rhabdoid tumors and rhabdoid tumor cell lines. Targeting HDACs in rhabdoid tumors induces cell cycle arrest and apoptosis. On the other hand HDAC inhibition induces deregulated gene programs (MYCC-, RB program and the stem cell program) in rhabdoid tumors. These programs are in general associated with cell cycle progression. Targeting these activated pro-proliferative genes by combined approaches of HDAC-inhibitors plus fenretinide, which inhibits cyclinD1, exhibit strong synergistic effects on induction of apoptosis. Furthermore, HDAC inhibition sensitizes rhabdoid tumor cell lines to cell death induced by chemotherapy. Our data demonstrate that HDAC inhibitor treatment in combination with fenretinide or conventional chemotherapy is a promising tool for the treatment of chemoresistant rhabdoid tumors

  13. Improved Methods to Generate Spheroid Cultures from Tumor Cells, Tumor Cells & Fibroblasts or Tumor-Fragments: Microenvironment, Microvesicles and MiRNA.

    Directory of Open Access Journals (Sweden)

    Zheng Lao

    Full Text Available Diagnostic and prognostic indicators are key components to achieve the goal of personalized cancer therapy. Two distinct approaches to this goal include predicting response by genetic analysis and direct testing of possible therapies using cultures derived from biopsy specimens. Optimally, the latter method requires a rapid assessment, but growing xenograft tumors or developing patient-derived cell lines can involve a great deal of time and expense. Furthermore, tumor cells have much different responses when grown in 2D versus 3D tissue environments. Using a modification of existing methods, we show that it is possible to make tumor-fragment (TF spheroids in only 2-3 days. TF spheroids appear to closely model characteristics of the original tumor and may be used to assess critical therapy-modulating features of the microenvironment such as hypoxia. A similar method allows the reproducible development of spheroids from mixed tumor cells and fibroblasts (mixed-cell spheroids. Prior literature reports have shown highly variable development and properties of mixed-cell spheroids and this has hampered the detailed study of how individual tumor-cell components interact. In this study, we illustrate this approach and describe similarities and differences using two tumor models (U87 glioma and SQ20B squamous-cell carcinoma with supporting data from additional cell lines. We show that U87 and SQ20B spheroids predict a key microenvironmental factor in tumors (hypoxia and that SQ20B cells and spheroids generate similar numbers of microvesicles. We also present pilot data for miRNA expression under conditions of cells, tumors, and TF spheroids.

  14. Dendritic-cell-based immunotherapy evokes potent anti-tumor immune responses in CD105+ human renal cancer stem cells.

    Science.gov (United States)

    Zhang, Xiao-Fei; Weng, De-Sheng; Pan, Ke; Zhou, Zi-Qi; Pan, Qiu-Zhong; Zhao, Jing-Jing; Tang, Yan; Jiang, Shan-Shan; Chen, Chang-Long; Li, Yong-Qiang; Zhang, Hong-Xia; Chang, Alfred E; Wicha, Max S; Zeng, Yi-Xin; Li, Qiao; Xia, Jian-Chuan

    2017-11-01

    Cancer stem cells (CSCs) are responsible for tumor initiation, progression, and resistance to therapeutic agents; they are usually less sensitive to conventional cancer therapies, and could cause tumor relapse. An ideal therapeutic strategy would therefore be to selectively target and destroy CSCs, thereby preventing tumor relapse. The aim of the present study was to evaluate the effectiveness of dendritic cells (DCs) pulsed with antigen derived from CD105+ human renal cell carcinoma (RCC) CSCs against renal cancer cells in vitro and in vivo. We identified "stem-like" characteristics of CD105+ cells in two human RCC cell lines: A498 and SK-RC-39. Loading with cell lysates did not change the characteristics of the DCs. However, DCs loaded with lysates derived from CD105+ CSCs induced more functionally specific active T cells and specific antibodies against CSCs, and clearly depressed the tumor growth in mice. Our results could form the basis for a novel strategy to improve the efficacy of DC-based immunotherapy for human RCC. © 2017 Wiley Periodicals, Inc.

  15. Frequency and distribution of Notch mutations in tumor cell lines

    International Nuclear Information System (INIS)

    Mutvei, Anders Peter; Fredlund, Erik; Lendahl, Urban

    2015-01-01

    Deregulated Notch signaling is linked to a variety of tumors and it is therefore important to learn more about the frequency and distribution of Notch mutations in a tumor context. In this report, we use data from the recently developed Cancer Cell Line Encyclopedia to assess the frequency and distribution of Notch mutations in a large panel of cancer cell lines in silico. Our results show that the mutation frequency of Notch receptor and ligand genes is at par with that for established oncogenes and higher than for a set of house-keeping genes. Mutations were found across all four Notch receptor genes, but with notable differences between protein domains, mutations were for example more prevalent in the regions encoding the LNR and PEST domains in the Notch intracellular domain. Furthermore, an in silico estimation of functional impact showed that deleterious mutations cluster to the ligand-binding and the intracellular domains of NOTCH1. For most cell line groups, the mutation frequency of Notch genes is higher than in associated primary tumors. Our results shed new light on the spectrum of Notch mutations after in vitro culturing of tumor cells. The higher mutation frequency in tumor cell lines indicates that Notch mutations are associated with a growth advantage in vitro, and thus may be considered to be driver mutations in a tumor cell line context. The online version of this article (doi:10.1186/s12885-015-1278-x) contains supplementary material, which is available to authorized users

  16. Active targeting of tumor cells using light emitting bacteria

    International Nuclear Information System (INIS)

    Moon, Sung Min; Min, Jung Joon; Hong, Yeong Jin; Kim, Hyun Ju; Le, Uuenchi N.; Rhee, Joon Haeng; Song, Ho Chun; Heo, Young Jun; Bom, Hee Seung; Choy, Hyon E

    2004-01-01

    The presence of bacteria and viruses in human tumors has been recognized for more than 50 years. Today, with the discovery of bacterial strains that specifically target tumors, and aided by genomic sequencing and genetic engineering, there is new interest in the use of bacteria as tumor vectors. Here, we show that bacteria injected intravenously into live animals entered and replicated in solid tumors and metastases using the novel imaging technology of biophotonics. Bioluminescence operon (LuxCDABE) or fluorescence protein, GFP) has been cloned into pUC19 plasmid to engineer pUC19lux or pUC19gfp. Engineered plasmid was transformed into different kinds of wild type (MG1655) or mutant E. coli (DH5, ppGpp, fnr, purE, crpA, flagella, etc.) strains to construct light emitting bacteria. Xenograft tumor model has been established using CT26 colon cancer cell line. Light emitting bacteria was injected via tail vein into tumor bearing mouse. In vivo bioluminescence imaging has been done after 20 min to 14 days of bacterial injection. We observed localization of tumors by light-emitting E. coli in tumor (CT-26) bearing mice. We confirmed the presence of light-emitting bacteria under the fluorescence microscope with E. coli expressing GFP. Althoug varying mutants strain with deficient invading function has been found in tumor tissues, mutant strains of movement (flagella) couldn't show any light signal from the tumor tissue under the cooled CCD camera, indicating bacteria may actively target the tumor cells. Based on their 'tumor-finding' nature, bacteria may be designed to carry multiple genes or drugs for detection and treatment of cancer, such as prodrug-converting enzymes, toxins, angiogenesis inhibitors and cytokines

  17. Cancer Stem Cells, Epithelial to Mesenchymal Markers, and Circulating Tumor Cells in Small Cell Lung Cancer

    NARCIS (Netherlands)

    Pore, M.M.; Meijer, C.; de Bock, G.H.; Boersma-van Ek, W.; Terstappen, Leonardus Wendelinus Mathias Marie; Groen, H.J.M.; Timens, W.; Kruyt, F.A.E.; Hiltermann, T.N.J.

    2016-01-01

    Background Small cell lung cancer (SCLC) has a poor prognosis, and even with localized (limited) disease, the 5-year survival has only been around 20%. Elevated levels of circulating tumor cells (CTCs) have been associated with a worse prognosis, and markers of cancer stem cells (CSCs) and

  18. A whole-cell tumor vaccine modified to express fibroblast activation protein induces antitumor immunity against both tumor cells and cancer-associated fibroblasts.

    Science.gov (United States)

    Chen, Meihua; Xiang, Rong; Wen, Yuan; X