WorldWideScience

Sample records for tumor cells ht29

  1. Cell Free DNA of Tumor Origin Induces a 'Metastatic' Expression Profile in HT-29 Cancer Cell Line.

    Directory of Open Access Journals (Sweden)

    István Fűri

    Full Text Available Epithelial cells in malignant conditions release DNA into the extracellular compartment. Cell free DNA of tumor origin may act as a ligand of DNA sensing mechanisms and mediate changes in epithelial-stromal interactions.To evaluate and compare the potential autocrine and paracrine regulatory effect of normal and malignant epithelial cell-related DNA on TLR9 and STING mediated pathways in HT-29 human colorectal adenocarcinoma cells and normal fibroblasts.DNA isolated from normal and tumorous colonic epithelia of fresh frozen surgically removed tissue samples was used for 24 and 6 hour treatment of HT-29 colon carcinoma and HDF-α fibroblast cells. Whole genome mRNA expression analysis and qRT-PCR was performed for the elements/members of TLR9 signaling pathway. Immunocytochemistry was performed for epithelial markers (i.e. CK20 and E-cadherin, DNA methyltransferase 3a (DNMT3a and NFκB (for treated HDFα cells.Administration of tumor derived DNA on HT29 cells resulted in significant (p<0.05 mRNA level alteration in 118 genes (logFc≥1, p≤0.05, including overexpression of metallothionein genes (i.e. MT1H, MT1X, MT1P2, MT2A, metastasis-associated genes (i.e. TACSTD2, MACC1, MALAT1, tumor biomarker (CEACAM5, metabolic genes (i.e. INSIG1, LIPG, messenger molecule genes (i.e. DAPP, CREB3L2. Increased protein levels of CK20, E-cadherin, and DNMT3a was observed after tumor DNA treatment in HT-29 cells. Healthy DNA treatment affected mRNA expression of 613 genes (logFc≥1, p≤0.05, including increased expression of key adaptor molecules of TLR9 pathway (e.g. MYD88, IRAK2, NFκB, IL8, IL-1β, STING pathway (ADAR, IRF7, CXCL10, CASP1 and the FGF2 gene.DNA from tumorous colon epithelium, but not from the normal epithelial cells acts as a pro-metastatic factor to HT-29 cells through the overexpression of pro-metastatic genes through TLR9/MYD88 independent pathway. In contrast, DNA derived from healthy colonic epithelium induced TLR9 and STING signaling

  2. Purine-Metabolizing Ectoenzymes Control IL-8 Production in Human Colon HT-29 Cells

    Directory of Open Access Journals (Sweden)

    Fariborz Bahrami

    2014-01-01

    Full Text Available Interleukin-8 (IL-8 plays key roles in both chronic inflammatory diseases and tumor modulation. We previously observed that IL-8 secretion and function can be modulated by nucleotide (P2 receptors. Here we investigated whether IL-8 release by intestinal epithelial HT-29 cells, a cancer cell line, is modulated by extracellular nucleotide metabolism. We first identified that HT-29 cells regulated adenosine and adenine nucleotide concentration at their surface by the expression of the ectoenzymes NTPDase2, ecto-5′-nucleotidase, and adenylate kinase. The expression of the ectoenzymes was evaluated by RT-PCR, qPCR, and immunoblotting, and their activity was analyzed by RP-HPLC of the products and by detection of Pi produced from the hydrolysis of ATP, ADP, and AMP. In response to poly (I:C, with or without ATP and/or ADP, HT-29 cells released IL-8 and this secretion was modulated by the presence of NTPDase2 and adenylate kinase. Taken together, these results demonstrate the presence of 3 ectoenzymes at the surface of HT-29 cells that control nucleotide levels and adenosine production (NTPDase2, ecto-5′-nucleotidase and adenylate kinase and that P2 receptor-mediated signaling controls IL-8 release in HT-29 cells which is modulated by the presence of NTPDase2 and adenylate kinase.

  3. Inhibitory Effects of Probiotic Lactobacillus on the Growth of Human Colonic Carcinoma Cell Line HT-29

    Directory of Open Access Journals (Sweden)

    Zhung-Yuan Chen

    2017-01-01

    Full Text Available This study was conducted to investigate the inhibitory effect of Lactobacillus cells and supernatants on the growth of the human colon cancer cell line HT-29. Our study results indicated that the PM153 strain exhibits the best adhesion ability and the highest survival in the gastrointestinal tract simulation experiment. Furthermore, after an 8-h co-culture of PM153 and HT-29 cells, the PM153 strain can induce the secretion of nitric oxide from the HT-29 cells. In addition, after the co-culture of the BCRC17010 strain (109 cfu/mL and HT-29 cells, the Bax/Bcl-2 ratio in the HT-29 cells was 1.19, which showed a significant difference from the other control and LAB groups (p < 0.05, which therefore led to the inference that the BCRC17010 strain exerts a pro-apoptotic effect on the HT-29 cells. Upon co-culture with HT-29 cells for 4, 8 and 12 h, the BCRC14625 strain (109 cfu/mL demonstrated a significant increase in lactate dehydrogenase (LDH activity (p < 0.05, causing harm to the HT-29 cell membrane; further, after an 8-h co-culture with the HT-29 cells, it induced the secretion of nitric oxide (NO from the HT-29 cells. Some lactic acid bacteria (LAB strains have ability to inhibit the growth of the colorectal cancer cell line HT-29 Bax/Bcl-2 pathway or NO production. In summary, we demonstrated that the BCRC17010 strain, good abilities of adhesion and increased LDH release, was the best probiotic potential for inhibition of HT-29 growth amongst the seven LAB strains tested in vitro.

  4. Human colon cancer HT-29 cell death responses to doxorubicin and Morus Alba leaves flavonoid extract.

    Science.gov (United States)

    Fallah, S; Karimi, A; Panahi, G; Gerayesh Nejad, S; Fadaei, R; Seifi, M

    2016-03-31

    The mechanistic basis for the biological properties of Morus alba flavonoid extract (MFE) and chemotherapy drug of doxorubicin on human colon cancer HT-29 cell line death are unknown. The effect of doxorubicin and flavonoid extract on colon cancer HT-29 cell line death and identification of APC gene expression and PARP concentration of HT-29 cell line were investigated. The results showed that flavonoid extract and doxorubicin induce a dose dependent cell death in HT-29 cell line. MFE and doxorubicin exert a cytotoxic effect on human colon cancer HT-29 cell line by probably promoting or induction of apoptosis.

  5. Inhibitory Effects of Probiotic Lactobacillus on the Growth of Human Colonic Carcinoma Cell Line HT-29.

    Science.gov (United States)

    Chen, Zhung-Yuan; Hsieh, You-Miin; Huang, Chun-Chih; Tsai, Cheng-Chih

    2017-01-10

    This study was conducted to investigate the inhibitory effect of Lactobacillus cells and supernatants on the growth of the human colon cancer cell line HT-29. Our study results indicated that the PM153 strain exhibits the best adhesion ability and the highest survival in the gastrointestinal tract simulation experiment. Furthermore, after an 8-h co-culture of PM153 and HT-29 cells, the PM153 strain can induce the secretion of nitric oxide from the HT-29 cells. In addition, after the co-culture of the BCRC17010 strain (10⁸ cfu/mL) and HT-29 cells, the Bax/Bcl-2 ratio in the HT-29 cells was 1.19, which showed a significant difference from the other control and LAB groups ( p strain exerts a pro-apoptotic effect on the HT-29 cells. Upon co-culture with HT-29 cells for 4, 8 and 12 h, the BCRC14625 strain (10⁸ cfu/mL) demonstrated a significant increase in lactate dehydrogenase (LDH) activity ( p strains have ability to inhibit the growth of the colorectal cancer cell line HT-29 Bax/Bcl-2 pathway or NO production. In summary, we demonstrated that the BCRC17010 strain, good abilities of adhesion and increased LDH release, was the best probiotic potential for inhibition of HT-29 growth amongst the seven LAB strains tested in vitro.

  6. Cytotoxic effects of chloroform and hydroalcoholic extracts of aerial parts of Cuscuta chinensis and Cuscuta epithymum on Hela, HT29 and MDA-MB-468 tumor cells.

    Science.gov (United States)

    Jafarian, A; Ghannadi, A; Mohebi, B

    2014-01-01

    Previous studies have indicated that some species of Cuscuta possess anticancer activity on various cell lines. Due to the lack of detailed researches on the cytotoxic effects of Cuscuta chinensis and Cuscuta epithymum, the aim of the present study was to evaluate cytotoxic effects of chloroform and hydroalcoholic extracts of these plants on the human breast carcinoma cell line (MDA-MB-468), human colorectal adenocarcinoma cell line (HT29) and human uterine cervical carcinoma (Hela). Using maceration method, different extracts of aerial parts of C. chinensis and C. epithymum were prepared. Extraction was performed using chloroform and ethanol/water (70/30). Total phenolic contents of the extracts were determined according to the Folin-Ciocalteu method. Using MTT assay, the cytotoxic activity of the extracts against HT29, Hela and MDA-MB-468 tumor cells was evaluated. Extracts were considered cytotoxic when more than 50% reduction on cell survival was observed. The poly-phenolic content of the hydroalcoholic and chloroform extracts of C. chinensis and C. epithymum were 56.08 ± 4.11, 21.49 ± 2.00, 10.64 ± 0.86 and 4.81 ± 0.38, respectively. Our findings showed that the chloroform extracts of C. chinensis and C. epithyum significantly reduced the viability of Hela, HT-29 and MDA-MB-468 cells. Also, hydroalcoholic extracts of C. chinensis significantly decreased the viability of HT29, Hela and MDA-MB-468 cells. However, in the case of hydroalcoholic extracts of C. epithymum only significant decrease in the viability of MDA-MB-468 cells was observed (IC50 = 340 μg/ml). From these findings it can be concluded that C. chinensis and C. epithymum are good candidates for further study to find new possible cytotoxic agents.

  7. Curcumin induces apoptosis and cell cycle arrest via the activation of reactive oxygen species-independent mitochondrial apoptotic pathway in Smad4 and p53 mutated colon adenocarcinoma HT29 cells.

    Science.gov (United States)

    Agarwal, Ayushi; Kasinathan, Akiladdevi; Ganesan, Ramamoorthi; Balasubramanian, Akhila; Bhaskaran, Jahnavi; Suresh, Samyuktha; Srinivasan, Revanth; Aravind, K B; Sivalingam, Nageswaran

    2018-03-01

    Curcumin is a natural dietary polyphenol compound that has various pharmacological activities such as antiproliferative and cancer-preventive activities on tumor cells. Indeed, the role reactive oxygen species (ROS) generated by curcumin on cell death and cell proliferation inhibition in colon cancer is poorly understood. In the present study, we hypothesized that curcumin-induced ROS may promote apoptosis and cell cycle arrest in colon cancer. To test this hypothesis, the apoptosis-inducing potential and cell cycle inhibition effect of ROS induced by curcumin was investigated in Smd4 and p53 mutated HT-29 colon adenocarcinoma cells. We found that curcumin treatment significantly increased the level of ROS in HT-29 cells in a dose- and time-dependent manner. Furthermore, curcumin treatment markedly decreased the cell viability and proliferation potential of HT-29 cells in a dose- and time-dependent manner. Conversely, generation of ROS and inhibitory effect of curcumin on HT-29 cells were abrogated by N-acetylcysteine treatment. In addition, curcumin treatment did not show any cytotoxic effects on HT-29 cells. Furthermore, curcumin-induced ROS generation caused the DNA fragmentation, chromatin condensation, and cell nuclear shrinkage and significantly increased apoptotic cells in a dose- and time-dependent manner in HT-29 cells. However, pretreatment of N-acetylcysteine inhibited the apoptosis-triggering effect of curcumin-induced ROS in HT-29 cells. In addition, curcumin-induced ROS effectively mediated cell cycle inhibition in HT-29 cells. In conclusion, our data provide the first evidence that curcumin induces ROS independent apoptosis and cell cycle arrest in colon cancer cells that carry mutation on Smad4 and p53. Copyright © 2018. Published by Elsevier Inc.

  8. Effect of Agaricus blazei Murrill extract on HT-29 human colon cancer cells in SCID mice in vivo.

    Science.gov (United States)

    Wu, Ming-Fang; Chen, Yung-Liang; Lee, Mei-Hui; Shih, Yung-Luen; Hsu, Yu-Ming; Tang, Ming-Chu; Lu, Hsu-Feng; Tang, Nou-Ying; Yang, Su-Tso; Chueh, Fu-Shin; Chung, Jing-Gung

    2011-01-01

    Agaricus blazei Murrill (ABM) popularly known as 'Cogumelo do Sol' in Brazil, or 'Himematsutake' in Japan, is a mushroom native to Brazil and widely cultivated in Japan for its medicinal uses and is now considered one of the most important edible and culinary-medicinal biotechnological species. This study is the first tumor growth model to evaluate the amelioratory effect of ABM extract using HT-29 human colon cancer cells in severe combined immunodeficiency (SCID) mice. Forty SCID mice were inoculated with HT-29 cells to induce tumor formation and were then divided into four groups. All the four groups (control, low, medium and high concentration treatment) of mice were separately orally administered 0 mg, 1.125 mg, 4.5 mg or 45 mg ABM extract daily. After six weeks of treatment, 8 out of the 40 mice had not survived including one mouse which scored +++ (tumor up to 15 mm diameter) and four mice which scored ++++ (tumor over 15 mm diameter) in the control group and three mice which scored ++++ on the low-dose ABM treatment. After high- or medium-dose treatment, all ten mice in each group survived. The oral administration of ABM does not prevent tumor growth, as shown by increased tumor mass, but compared with the control group, the tumor mass seems to grow more slowly depending on the ABM dose.

  9. Necrosis - the dominant form of cell death after phototoxicity impact of hypericin in colon adenocarcinoma cells HT29

    International Nuclear Information System (INIS)

    Mikes, J.; Kleban, J.; Sackova, V.; Solar, P.; Fedorocko, P.

    2006-01-01

    Photodynamic therapy (PDT) is a therapeutical approach for the treatment of malignant as well as non-malignant disorders based on administration of nontoxic/weakly toxic photosensitive compound and its activation with light. Hypericin, one of the promising photosensitizers, is known to induce apoptosis with high efficiency in various cell line models. However, here we report the prevalence of necrosis in colon adenocarcinoma HT-29 cells exposed to an extensive range of PDT doses evoked by variations in two variables - hypericin concentration and light dose. Necrosis was the principal mode of cell death despite different PDT doses and the absence of anti-apoptotic Bcl-2 expression. It is likely that the mutation in p53 plays a crucial role in cell death signaling in HT-29. Data indicating proliferation shifting in HT29 cells, incidence of cell death (apoptosis, necrosis and secondary necrosis) and comparison of cytotoxicity and caspase-3 activity of HT29 with HeLa cells are presented. (authors)

  10. Short communication: Antiproliferative effect of wild Lactobacillus strains isolated from fermented foods on HT-29 cells.

    Science.gov (United States)

    Tuo, Y F; Zhang, L W; Yi, H X; Zhang, Y C; Zhang, W Q; Han, X; Du, M; Jiao, Y H; Wang, S M

    2010-06-01

    In vitro studies, animal models, epidemiology, and human intervention studies provide evidence that some lactic acid bacteria can reduce the risk of certain cancers. In this study, heat-killed bacterial cells, genomic DNA, and cell wall of 7 wild Lactobacillus strains isolated from traditional fermented foods in western China were tested in vitro for cytotoxicity on colonic cancer cell line HT-29 by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The heat-killed bacterial cells, genomic DNA, and cell wall of the 7 strains exhibited direct antiproliferative activities against HT-29 cells. Among the strains, the cellular components of Lactobacillus coryniformis ssp. torquens T3L exerted marked antiproliferative activities against HT-29 cells. The maximum inhibition rates of HT-29 cells by the heat-killed bacterial cells (1x10(7) cfu/mL), cell wall (20 microg of protein/mL) and genomic DNA (100 microg/mL) of L. coryniformis ssp. torquens T3L were 30, 44.9, and 35.9%, respectively. The results indicate that the heat-killed bacterial cells, cell wall, and genomic DNA of the 7 wild Lactobacillus strains could inhibit the growth of HT-29 cells. 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Goniothalamin prevents the development of chemically induced and spontaneous colitis in rodents and induces apoptosis in the HT-29 human colon tumor cell line

    Energy Technology Data Exchange (ETDEWEB)

    Vendramini-Costa, Débora Barbosa, E-mail: vendramini.debora@gmail.com [Department of Organic Chemistry, Institute of Chemistry, University of Campinas, Campinas, SP (Brazil); Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), University of Campinas, Campinas, SP (Brazil); Alcaide, Antonio [Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville (Spain); Pelizzaro-Rocha, Karin Juliane [Department of Biochemistry, Institute of Biology, University of Campinas, Campinas, SP (Brazil); Talero, Elena; Ávila-Román, Javier [Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville (Spain); Garcia-Mauriño, Sofia [Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Seville (Spain); Pilli, Ronaldo Aloise [Department of Organic Chemistry, Institute of Chemistry, University of Campinas, Campinas, SP (Brazil); Carvalho, João Ernesto de [Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), University of Campinas, Campinas, SP (Brazil); Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP (Brazil); Motilva, Virginia [Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville (Spain)

    2016-06-01

    Colon cancer is the third most incident type of cancer worldwide. One of the most important risk factors for colon cancer development are inflammatory bowel diseases (IBD), thus therapies focusing on IBD treatment have great potential to be used in cancer prevention. Nature has been a source of new therapeutic and preventive agents and the racemic form of the styryl-lactone goniothalamin (GTN) has been shown to be a promising antiproliferative agent, with gastroprotective, antinociceptive and anti-inflammatory effects. As inflammation is a well-known tumor promoter, the major goal of this study was to evaluate the therapeutic and preventive potentials of GTN on chemically induced and spontaneous colitis, as well as the cytotoxic effects of GTN on a human colon tumor cell line (HT-29). GTN treatments inhibited TNBS-induced acute and chronic colitis development in Wistar rats, reducing myeloperoxidase levels and inflammatory cells infiltration in the mucosa. In spontaneous-colitis using IL-10 deficient mice (C57BL/6 background), GTN prevented colitis development through downregulation of TNF-α, upregulation of SIRT-1 and inhibition of proliferation (PCNA index), without signs of toxicity after three months of treatment. In HT-29 cells, treatment with 10 μM of GTN induced apoptosis by increasing BAX/BCL2, p-JNK1/JNK1, p-P38/P38 ratios as well as through ROS generation. Caspase 8, 9 and 3 activation also occurred, suggesting caspase-dependent apoptotic pathway, culminating in PARP-1 cleavage. Together with previous data, these results show the importance of GTN as a pro-apoptotic, preventive and therapeutic agent for IBD and highlight its potential as a chemopreventive agent for colon cancer. - Highlights: • Goniothalamin (GTN) inhibits the development of TNBS-induced colitis in rats. • Moreover, GTN prevents the development of spontaneous colitis in IL-10 deficient mice. • This activity relies on downregulation of TNF-α and upregulation of SIRT-1 expression

  12. Methanolic extracts of Uncaria rhynchophylla induce cytotoxicity and apoptosis in HT-29 human colon carcinoma cells.

    Science.gov (United States)

    Jo, Kyung-Jin; Cha, Mi-Ran; Lee, Mi-Ra; Yoon, Mi-Young; Park, Hae-Ryong

    2008-06-01

    In this paper, we report the anticancer activities of Uncaria rhynchophylla extracts, a Rubiaceae plant native to China. Traditionally, Uncaria rhynchophylla has been used in the prevention and treatment of neurotoxicity. However, the cytotoxic activity of Uncaria rhynchophylla against human colon carcinoma cells has not, until now, been elucidated. We found that the methanolic extract of Uncaria rhynchophylla (URE) have cytotoxic effects on HT-29 cells. The URE showed highly cytotoxic effects via the MTT reduction assay, LDH release assay, and colony formation assay. As expected, URE inhibited the growth of HT-29 cells in a dose-dependent manner. In particular, the methanolic URE of the 500 microg/ml showed 15.8% inhibition against growth of HT-29 cells. It induced characteristic apoptotic effects in HT-29 cells, including chromatin condensation and sharking occurring 24 h when the cells were treated at a concentration of the 500 microg/ml. The activation of caspase-3 and the specific proteolytic cleavage of poly (ADP-ribose) polymerase were detected over the course of apoptosis induction. These results indicate that URE contains bioactive materials with strong activity, and is a potential chemotherapeutic agent candidate against HT-29 human colon carcinoma cells.

  13. Cellular Homeostasis and Antioxidant Response in Epithelial HT29 Cells on Titania Nanotube Arrays Surface

    Directory of Open Access Journals (Sweden)

    Rabiatul Basria SMN Mydin

    2017-01-01

    Full Text Available Cell growth and proliferative activities on titania nanotube arrays (TNA have raised alerts on genotoxicity risk. Present toxicogenomic approach focused on epithelial HT29 cells with TNA surface. Fledgling cell-TNA interaction has triggered G0/G1 cell cycle arrests and initiates DNA damage surveillance checkpoint, which possibly indicated the cellular stress stimuli. A profound gene regulation was observed to be involved in cellular growth and survival signals such as p53 and AKT expressions. Interestingly, the activation of redox regulator pathways (antioxidant defense was observed through the cascade interactions of GADD45, MYC, CHECK1, and ATR genes. These mechanisms furnish to protect DNA during cellular division from an oxidative challenge, set in motion with XRRC5 and RAD50 genes for DNA damage and repair activities. The cell fate decision on TNA-nanoenvironment has been reported to possibly regulate proliferative activities via expression of p27 and BCL2 tumor suppressor proteins, cogent with SKP2 and BCL2 oncogenic proteins suppression. Findings suggested that epithelial HT29 cells on the surface of TNA may have a positive regulation via cell-homeostasis mechanisms: a careful circadian orchestration between cell proliferation, survival, and death. This nanomolecular knowledge could be beneficial for advanced medical applications such as in nanomedicine and nanotherapeutics.

  14. Adrenaline promotes cell proliferation and increases chemoresistance in colon cancer HT29 cells through induction of miR-155

    International Nuclear Information System (INIS)

    Pu, Jun; Bai, Danna; Yang, Xia; Lu, Xiaozhao; Xu, Lijuan; Lu, Jianguo

    2012-01-01

    Highlights: ► Adrenaline increases colon cancer cell proliferation and its resistance to cisplatin. ► Adrenaline activates NFκB in a dose dependent manner. ► NFκB–miR-155 pathway contributes to cell proliferation and resistance to cisplatin. -- Abstract: Recently, catecholamines have been described as being involved in the regulation of cancer genesis and progression. Here, we reported that adrenaline increased the cell proliferation and decreased the cisplatin induced apoptosis in HT29 cells. Further study found that adrenaline increased miR-155 expression in an NFκB dependent manner. HT29 cells overexpressing miR-155 had a higher cell growth rate and more resistance to cisplatin induced apoptosis. In contrast, HT29 cells overexpressing miR-155 inhibitor displayed decreased cell proliferation and sensitivity to cisplatin induced cell death. In summary, our study here revealed that adrenaline–NFκB–miR-155 pathway at least partially contributes to the psychological stress induced proliferation and chemoresistance in HT29 cells, shedding light on increasing the therapeutic strategies of cancer chemotherapy.

  15. BDNF/TrkB signaling protects HT-29 human colon cancer cells from EGFR inhibition

    International Nuclear Information System (INIS)

    Brunetto de Farias, Caroline; Heinen, Tiago Elias; Pereira dos Santos, Rafael; Abujamra, Ana Lucia; Schwartsmann, Gilberto

    2012-01-01

    Highlights: ► BDNF protected HT-29 colorectal cancer cells from the antitumor effect of cetuximab. ► TrkB inhibition potentiated the antitumor effect of cetuximab. ► BDNF/TrkB signaling might be involved in resistance to anti-EGFR therapy. -- Abstract: The clinical success of targeted treatment of colorectal cancer (CRC) is often limited by resistance to anti-epidermal growth factor receptor (EGFR) therapy. The neurotrophin brain-derived neurotrophic factor (BDNF) and its receptor TrkB have recently emerged as anticancer targets, and we have previously shown increased BDNF levels in CRC tumor samples. Here we report the findings from in vitro experiments suggesting that BDNF/TrkB signaling can protect CRC cells from the antitumor effects of EGFR blockade. The anti-EGFR monoclonal antibody cetuximab reduced both cell proliferation and the mRNA expression of BDNF and TrkB in human HT-29 CRC cells. The inhibitory effect of cetuximab on cell proliferation and survival was counteracted by the addition of human recombinant BDNF. Finally, the Trk inhibitor K252a synergistically enhanced the effect of cetuximab on cell proliferation, and this effect was blocked by BDNF. These results provide the first evidence that increased BDNF/TrkB signaling might play a role in resistance to EGFR blockade. Moreover, it is possible that targeting TrkB could potentiate the anticancer effects of anti-EGFR therapy.

  16. Mechanisms underlying apoptosis-inducing effects of Kaempferol in HT-29 human colon cancer cells.

    Science.gov (United States)

    Lee, Hyun Sook; Cho, Han Jin; Yu, Rina; Lee, Ki Won; Chun, Hyang Sook; Park, Jung Han Yoon

    2014-02-17

    We previously noted that kaempferol, a flavonol present in vegetables and fruits, reduced cell cycle progression of HT-29 cells. To examine whether kaempferol induces apoptosis of HT-29 cells and to explore the underlying molecular mechanisms, cells were treated with various concentrations (0-60 μmol/L) of kaempferol and analyzed by Hoechst staining, Annexin V staining, JC-1 labeling of the mitochondria, immunoprecipitation, in vitro kinase assays, Western blot analyses, and caspase-8 assays. Kaempferol increased chromatin condensation, DNA fragmentation and the number of early apoptotic cells in HT-29 cells in a dose-dependent manner. In addition, kaempferol increased the levels of cleaved caspase-9, caspase-3 and caspase-7 as well as those of cleaved poly (ADP-ribose) polymerase. Moreover, it increased mitochondrial membrane permeability and cytosolic cytochrome c concentrations. Further, kaempferol decreased the levels of Bcl-xL proteins, but increased those of Bik. It also induced a reduction in Akt activation and Akt activity and an increase in mitochondrial Bad. Additionally, kaempferol increased the levels of membrane-bound FAS ligand, decreased those of uncleaved caspase-8 and intact Bid and increased caspase-8 activity. These results indicate that kaempferol induces the apoptosis of HT-29 cells via events associated with the activation of cell surface death receptors and the mitochondrial pathway.

  17. The natural triterpene maslinic acid induces apoptosis in HT29 colon cancer cells by a JNK-p53-dependent mechanism

    International Nuclear Information System (INIS)

    Reyes-Zurita, Fernando J; Pachón-Peña, Gisela; Lizárraga, Daneida; Rufino-Palomares, Eva E; Cascante, Marta; Lupiáñez, José A

    2011-01-01

    Maslinic acid, a pentacyclic triterpene found in the protective wax-like coating of the leaves and fruit of Olea europaea L., is a promising agent for the prevention of colon cancer. We have shown elsewhere that maslinic acid inhibits cell proliferation to a significant extent and activates mitochondrial apoptosis in colon cancer cells. In our latest work we have investigated further this compound's apoptotic molecular mechanism. We used HT29 adenocarcinoma cells. Changes genotoxicity were analyzed by single-cell gel electrophoresis (comet assay). The cell cycle was determined by flow cytometry. Finally, changes in protein expression were examined by western blotting. Student's t-test was used for statistical comparison. HT29 cells treated with maslinic acid showed significant increases in genotoxicity and cell-cycle arrest during the G0/G1 phase after 72 hours' treatment and an apoptotic sub-G0/G1 peak after 96 hours. Nevertheless, the molecular mechanism for this cytotoxic effect of maslinic acid has never been properly explored. We show here that the anti-tumoral activity of maslinic acid might proceed via p53-mediated apoptosis by acting upon the main signaling components that lead to an increase in p53 activity and the induction of the rest of the factors that participate in the apoptotic pathway. We found that in HT29 cells maslinic acid activated the expression of c-Jun NH2-terminal kinase (JNK), thus inducing p53. Treatment of tumor cells with maslinic acid also resulted in an increase in the expression of Bid and Bax, repression of Bcl-2, release of cytochrome-c and an increase in the expression of caspases -9, -3, and -7. Moreover, maslinic acid produced belated caspase-8 activity, thus amplifying the initial mitochondrial apoptotic signaling. All these results suggest that maslinic acid induces apoptosis in human HT29 colon-cancer cells through the JNK-Bid-mediated mitochondrial apoptotic pathway via the activation of p53. Thus we propose

  18. Adrenaline promotes cell proliferation and increases chemoresistance in colon cancer HT29 cells through induction of miR-155

    Energy Technology Data Exchange (ETDEWEB)

    Pu, Jun [Department of General Surgery, Tangdu Hospital of the Fourth Military Medical University, Xi' an 710038 (China); Bai, Danna [Department of Cardiology, 323 Hospital of PLA, Xi' an 710054 (China); Yang, Xia [Department of Teaching and Medical Administration, Tangdu Hospital of the Fourth Military Medical University, Xi' an 710038 (China); Lu, Xiaozhao [Department of Nephrology, The 323 Hospital of PLA, Xi' an 710054 (China); Xu, Lijuan, E-mail: 13609296272@163.com [Department of Nephrology, The 323 Hospital of PLA, Xi' an 710054 (China); Lu, Jianguo, E-mail: lujianguo029@yahoo.com.cn [Department of General Surgery, Tangdu Hospital of the Fourth Military Medical University, Xi' an 710038 (China)

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer Adrenaline increases colon cancer cell proliferation and its resistance to cisplatin. Black-Right-Pointing-Pointer Adrenaline activates NF{kappa}B in a dose dependent manner. Black-Right-Pointing-Pointer NF{kappa}B-miR-155 pathway contributes to cell proliferation and resistance to cisplatin. -- Abstract: Recently, catecholamines have been described as being involved in the regulation of cancer genesis and progression. Here, we reported that adrenaline increased the cell proliferation and decreased the cisplatin induced apoptosis in HT29 cells. Further study found that adrenaline increased miR-155 expression in an NF{kappa}B dependent manner. HT29 cells overexpressing miR-155 had a higher cell growth rate and more resistance to cisplatin induced apoptosis. In contrast, HT29 cells overexpressing miR-155 inhibitor displayed decreased cell proliferation and sensitivity to cisplatin induced cell death. In summary, our study here revealed that adrenaline-NF{kappa}B-miR-155 pathway at least partially contributes to the psychological stress induced proliferation and chemoresistance in HT29 cells, shedding light on increasing the therapeutic strategies of cancer chemotherapy.

  19. Downregulation of CD147 expression by RNA interference inhibits HT29 cell proliferation, invasion and tumorigenicity in vitro and in vivo.

    Science.gov (United States)

    Li, Rui; Pan, Yuqin; He, Bangshun; Xu, Yeqiong; Gao, Tianyi; Song, Guoqi; Sun, Huiling; Deng, Qiwen; Wang, Shukui

    2013-12-01

    We investigated the effect of CD147 silencing on HT29 cell proliferation and invasion. We constructed a novel short hairpin RNA (shRNA) expression vector pYr-mir30-shRNA. The plasmid was transferred to HT29 cells. The expression of CD147, MCT1 (lactate transporters monocarboxylate transporter 1) and MCT4 (lactate transporters monocarboxylate transporter 4) were monitored by quantitative PCR and western blotting, respectively. The MMP-2 (matrix metalloproteinase-2) and MMP-9 (matrix metalloproteinase-9) activities were determined by gelatin zymography assay, while the intracellular lactate concentration was determined by the lactic acid assay kit. WST-8 assay was used to determine the HT29 cell proliferation and the chemosensitivity. Invasion assay was used to determine the invasion of HT29 cells. In addition, we established a colorectal cancer model, and detected CD147 expression in vivo. The results showed that the expression of CD147 and MCT1 was significantly reduced at both mRNA and protein levels, and also the activity of MMP-2 and MMP-9 was reduced. The proliferation and invasion were decreased, but chemosensitivity to cisplatin was increased. In vivo, the CD147 expression was also significantly decreased, and reduced the tumor growth after CD147 gene silencing. The results demonstrated that silencing of CD147 expression inhibited the proliferation and invasion, suggesting CD147 silencing might be an adjuvant gene therapy strategy to chemotherapy.

  20. BDNF/TrkB signaling protects HT-29 human colon cancer cells from EGFR inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Brunetto de Farias, Caroline [Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS (Brazil); Children' s Cancer Institute, 90420-140 Porto Alegre, RS (Brazil); Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, 90050-170 Porto Alegre, RS (Brazil); National Institute for Translational Medicine (INCT-TM), 90035-003 Porto Alegre, RS (Brazil); Heinen, Tiago Elias; Pereira dos Santos, Rafael [Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS (Brazil); Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, 90050-170 Porto Alegre, RS (Brazil); National Institute for Translational Medicine (INCT-TM), 90035-003 Porto Alegre, RS (Brazil); Abujamra, Ana Lucia [Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS (Brazil); Children' s Cancer Institute, 90420-140 Porto Alegre, RS (Brazil); National Institute for Translational Medicine (INCT-TM), 90035-003 Porto Alegre, RS (Brazil); Schwartsmann, Gilberto [Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS (Brazil); National Institute for Translational Medicine (INCT-TM), 90035-003 Porto Alegre, RS (Brazil); Department of Internal Medicine, School of Medicine, Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS (Brazil); and others

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer BDNF protected HT-29 colorectal cancer cells from the antitumor effect of cetuximab. Black-Right-Pointing-Pointer TrkB inhibition potentiated the antitumor effect of cetuximab. Black-Right-Pointing-Pointer BDNF/TrkB signaling might be involved in resistance to anti-EGFR therapy. -- Abstract: The clinical success of targeted treatment of colorectal cancer (CRC) is often limited by resistance to anti-epidermal growth factor receptor (EGFR) therapy. The neurotrophin brain-derived neurotrophic factor (BDNF) and its receptor TrkB have recently emerged as anticancer targets, and we have previously shown increased BDNF levels in CRC tumor samples. Here we report the findings from in vitro experiments suggesting that BDNF/TrkB signaling can protect CRC cells from the antitumor effects of EGFR blockade. The anti-EGFR monoclonal antibody cetuximab reduced both cell proliferation and the mRNA expression of BDNF and TrkB in human HT-29 CRC cells. The inhibitory effect of cetuximab on cell proliferation and survival was counteracted by the addition of human recombinant BDNF. Finally, the Trk inhibitor K252a synergistically enhanced the effect of cetuximab on cell proliferation, and this effect was blocked by BDNF. These results provide the first evidence that increased BDNF/TrkB signaling might play a role in resistance to EGFR blockade. Moreover, it is possible that targeting TrkB could potentiate the anticancer effects of anti-EGFR therapy.

  1. Troglitazone induced apoptosis via PPARγ activated POX-induced ROS formation in HT29 cells.

    Science.gov (United States)

    Wang, Jing; Lv, XiaoWen; Shi, JiePing; Hu, XiaoSong; DU, YuGuo

    2011-08-01

    In order to investigate the potential mechanisms in troglitazone-induced apoptosis in HT29 cells, the effects of PPARγ and POX-induced ROS were explored. [3- (4, 5)-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay, Annexin V and PI staining using FACS, plasmid transfection, ROS formation detected by DCFH staining, RNA interference, RT-PCR & RT-QPCR, and Western blotting analyses were employed to investigate the apoptotic effect of troglitazone and the potential role of PPARγ pathway and POX-induced ROS formation in HT29 cells. Troglitazone was found to inhibit the growth of HT29 cells by induction of apoptosis. During this process, mitochondria related pathways including ROS formation, POX expression and cytochrome c release increased, which were inhibited by pretreatment with GW9662, a specific antagonist of PPARγ. These results illustrated that POX upregulation and ROS formation in apoptosis induced by troglitazone was modulated in PPARγ-dependent pattern. Furthermore, the inhibition of ROS and apoptosis after POX siRNA used in troglitazone-treated HT29 cells indicated that POX be essential in the ROS formation and PPARγ-dependent apoptosis induced by troglitazone. The findings from this study showed that troglitazone-induced apoptosis was mediated by POX-induced ROS formation, at least partly, via PPARγ activation. Copyright © 2011 The Editorial Board of Biomedical and Environmental Sciences. Published by Elsevier B.V. All rights reserved.

  2. Bovine lactoferrin and lactoferricin exert antitumor activities on human colorectal cancer cells (HT-29) by activating various signaling pathways.

    Science.gov (United States)

    Jiang, Rulan; Lönnerdal, Bo

    2017-02-01

    Lactoferrin (Lf) is an iron-binding glycoprotein that is present at high concentrations in milk. Bovine lactoferricin (LfcinB) is a peptide fragment generated by pepsin proteolysis of bovine lactoferrin (bLf). LfcinB consists of amino acid residues 17-41 proximal to the N-terminus of bLf and a disulfide bond between residues 19 and 36, forming a loop. Both bLf and LfcinB have been demonstrated to have antitumor activities. Colorectal cancer is the second most common cause of cancer death in developed countries. We hypothesized that bLf and LfcinB exert antitumor activities on colon cancer cells (HT-29) by triggering various signaling pathways. bLf and LfcinB significantly induced apoptosis in HT-29 cells but not in normal human intestinal epithelial cells, as revealed by the ApoTox-Glo Triplex Assay. The LIVE/DEAD cell viability assay showed that both bLf and LfcinB reduced the viability of HT-29 cells. Transcriptome analysis indicated that bLf, cyclic LfcinB, and linear LfcinB exerted antitumor activities by differentially activating diverse signaling pathways, including p53, apoptosis, and angiopoietin signaling. Immunoblotting results confirmed that both bLf and LfcinBs increased expression of caspase-8, p53, and p21, critical proteins in tumor suppression. These results provide valuable information regarding bLf and LfcinB for potential clinical applications in colon cancer therapy.

  3. Catabolism of neurotensin by neural (neuroblastoma clone N1E115) and extraneural (HT29) cell lines

    International Nuclear Information System (INIS)

    Checler, F.; Amar, S.; Kitabgi, P.; Vincent, J.P.

    1986-01-01

    The mechanisms by which neurotensin (NT) was inactivated by differentiated neuroblastoma and HT29 cells were characterized. In both cell lines, the sites of primary cleavages of NT were Pro7-Arg8, Arg8-Arg9 and Pro10-Tyr11 bonds. The cleavage at the Pro7-Arg8 bond was totally inhibited by N-benzyloxycarbonyl-Prolyl-Prolinal and therefore resulted from the action of proline endopeptidase. This peptidase also contributed in a major way to the cleavage at the Pro10-Tyr11 bond. However the latter breakdown was partly due to an NT-degrading neutral metallopeptidase. Finally, we demonstrated the involvement of a recently purified rat brain soluble metalloendopeptidase at the Arg8-Arg9 site by the use of its specific inhibitor N-[1(R,S)-carboxy-2-Phenylethyl]-alanylalanylphenylalanine-p-amino benzoate. The secondary processing of NT degradation products revealed differences between HT29 and N1E115 cells. Angiotensin converting enzyme was shown to degrade NT1-10 and NT1-7 in N1E115 cells but was not detected in HT29 cells. A post-proline dipeptidyl aminopeptidase activity converted NT9-13 into NT11-13 in HT29 cells but not in N1E115 cells. Finally, bestatin-sensitive aminopeptidases rapidly broke down NT11-13 to Tyr in both cell lines. Models for the inactivation of NT in HT29 and N1E115 cells are proposed and compared to that previously described for purified rat brain synaptic membranes

  4. Milk fat globule membrane isolate induces apoptosis in HT-29 human colon cancer cells.

    Science.gov (United States)

    Zanabria, Romina; Tellez, Angela M; Griffiths, Mansel; Corredig, Milena

    2013-02-01

    A native milk fat globule membrane (MFGM) isolate obtained from raw milk was assessed for its anticarcinogenic capacity using a colon cancer cell line (HT-29). To prevent microbial contamination and eliminate the presence of lipopolysaccharide (LPS) in the milk used for MFGM isolation, the milk was obtained from the mammary glands of cows using a catheter. Cell proliferation assays demonstrated a reduction of exponentially growing cancer cells of up to 53%, expressed as DNA synthesis (BrdU test), after 72 h stimulation with 100 μg of MFGM protein per mL. Using a similar MFGM concentration, the sulforhodamine B assay resulted in 57% reduction of cell density after 48 h incubation. This bioactivity was comparable to that of known anticancer drugs, 0.1 mM melphalan and 20 μM C2-ceramide, which achieved a cell division reduction of 25 and 40%, respectively, under the same experimental conditions. The toxic effect of the MFGM extracts on HT-29 cells was confirmed by the significant reduction in lactate dehydrogenase enzyme (LDH) by the residual viable cells. An increase of caspase-3 activity (up to 26%) led to the conclusion that MFGM has an apoptotic effect on HT-29 cancer cells.

  5. Comprehensive and Holistic Analysis of HT-29 Colorectal Cancer Cells and Tumor-Bearing Nude Mouse Model: Interactions Among Fractions Derived From the Chinese Medicine Formula Tian Xian Liquid in Effects on Human Colorectal Carcinoma.

    Science.gov (United States)

    Leigh, Annballaw Bridget; Cheung, Ho Pan; Lin, Li-Zhu; Ng, Tzi Bun; Lao, Lixing; Zhang, Yanbo; Zhang, Zhang-Jin; Tong, Yao; Sze, Stephen Cho Wing

    2017-09-01

    The Chinese medicine formula Tian Xian Liquid (TXL) has been used clinically for cancer therapy in China for more than 25 years. However, the comprehensive and holistic effects of its bioactive fractions for various antitumor therapeutic effects have not been unraveled. This is the first study to scientifically elucidate the holistic effect of Chinese medicine formula for treating colon cancer, hence allowing a better understanding of the essence of Chinese medicine formula, through the comparison of the actions of TXL and its functional constituent fractions, including ethyl acetate (EA), butanol (BU), and aqueous (WA) fractions. Tissue-specific proliferative/antiproliferative effects of these fractions on human colorectal carcinoma HT-29 cells and splenocytes were studied by using the MTT assay. Their modulations on the expression of markers of antiproliferation, antimetastasis, reversion of multidrug resistance in treated HT-29 cells were examined with real-time polymerase chain reaction and Western blot analysis, and their modulations in a xenografted nude mouse model were examined by Western blot analysis. Results revealed that EA fraction slightly inhibited the proliferation of HT-29 cells, but tissue-specifically exerted the most potent antiproliferative effect on splenocytes. On the contrary, only TXL and BU fraction tissue-specifically contributed to the proliferation of splenocytes, but inhibited the proliferation of HT-29 cells. WA fraction exerted the most potent antiproliferative effect on HT-29 cells and also the strongest inhibitory action on tumor size in the nude mouse model in our previous study. In the HT-29 model, TXL and WA fraction exerted the most pronounced effect on upregulation of p21 mRNA and protein; TXL, and EA and WA fractions exerted the effect on downregulation of G1 phase cell cycle protein, cyclin D1 mRNA and protein; EA and BU fractions exerted the most prominent anti-invasive effect on anti-invasion via downregulation of MMP-1 m

  6. Kynurenine promotes the goblet cell differentiation of HT-29 colon carcinoma cells by modulating Wnt, Notch and AhR signals.

    Science.gov (United States)

    Park, Joo-Hung; Lee, Jeong-Min; Lee, Eun-Jin; Kim, Da-Jeong; Hwang, Won-Bhin

    2018-04-01

    Various amino acids regulate cell growth and differentiation. In the present study, we examined the ability of HT-29 cells to differentiate into goblet cells in RPMI and DMEM which are largely different in the amounts of numerous amino acids. Most of the HT-29 cells differentiated into goblet cells downregulating the stem cell marker Lgr5 when cultured in DMEM, but remained undifferentiated in RPMI. The goblet cell differentiation in DMEM was inhibited by 1-methyl-tryptophan (1-MT), an inhibitor of indoleamine 2,3 dioxygenase-1 which is the initial enzyme in tryptophan metabolism along the kynurenine (KN) pathway, whereas tryptophan and KN induced goblet cell differentiation in RPMI. The levels of Notch1 and its activation product Notch intracytoplasmic domain in HT-29 cells were lower in DMEM than those in RPMI and were increased by 1-MT in both media. HT-29 cells grown in both media expressed β-catenin at the same level on day 2 when goblet cell differentiation was not observed. β-catenin expression, which was increased by 1-MT in both media, was decreased by KN. DMEM reduced Hes1 expression while enhancing Hath1 expression. Finally, aryl hydrocarbon receptor (AhR) activation moderately induced goblet cell differentiation. Our results suggest that KN promotes goblet cell differentiation by regulating Wnt, Notch, and AhR signals and expression of Hes1 and Hath1.

  7. Bifidobacterium breve - HT-29 cell line interaction: modulation of TNF-α induced gene expression.

    Science.gov (United States)

    Boesten, R J; Schuren, F H J; Willemsen, L E M; Vriesema, A; Knol, J; De Vos, W M

    2011-06-01

    To provide insight in the molecular basis for intestinal host-microbe interactions, we determined the genome-wide transcriptional response of human intestinal epithelial cells following exposure to cells of Bifidobacterium breve. To select an appropriate test system reflecting inflammatory conditions, the responsiveness to TNF-α was compared in T84, Caco-2 and HT-29 cells. The highest TNF-α response was observed in HT-29 cells and this cell line was selected for exposure to the B. breve strains M-16V, NR246 and UCC2003. After one hour of bacterial pre-incubation followed by two hours of additional TNF-α stimulation, B. breve M-16V (86%), but to a much lesser extent strains NR246 (50%) or UCC2003 (32%), showed a strain-specific reduction of the HT-29 transcriptional response to the inflammatory treatment. The most important functional groups of genes that were transcriptionally suppressed by the presence of B. breve M-16V, were found to be involved in immune regulation and apoptotic processes. About 54% of the TNF-α induced genes were solely suppressed by the presence of B. breve M-16V. These included apoptosis-related cysteine protease caspase 7 (CASP7), interferon regulatory factor 3 (IRF3), amyloid beta (A4) precursor proteinbinding family A member 1 (APBA1), NADPH oxidase (NOX5), and leukemia inhibitory factor receptor (LIFR). The extracellular IL-8 concentration was determined by an immunological assay but did not change significantly, indicating that B. breve M-16V only partially modulates the TNF-α pathway. In conclusion, this study shows that B. breve strains modulate gene expression in HT-29 cells under inflammatory conditions in a strain-specific way.

  8. Metabolism and apoptotic properties of elevated ceramide in HT29(rev) cells

    NARCIS (Netherlands)

    Veldman, R J; Klappe, K; Hoekstra, D; Kok, J W

    1998-01-01

    Ceramide (Cer) has been implicated in the regulation of apoptosis. In this study, we elevated cellular Cer levels in human colon-carcinoma (HT29(rev)) cells by incubating the cells in the presence of bacterial sphingomyelinase (bSMase) or, alternatively, in the presence of C2-Cer, a short-chain

  9. The effects of Bifidobacterium breve on immune mediators and proteome of HT29 cells monolayers.

    Science.gov (United States)

    Sánchez, Borja; González-Rodríguez, Irene; Arboleya, Silvia; López, Patricia; Suárez, Ana; Ruas-Madiedo, Patricia; Margolles, Abelardo; Gueimonde, Miguel

    2015-01-01

    The use of beneficial microorganisms, the so-called probiotics, to improve human health is gaining popularity. However, not all of the probiotic strains trigger the same responses and they differ in their interaction with the host. In spite of the limited knowledge on mechanisms of action some of the probiotic effects seem to be exerted through maintenance of the gastrointestinal barrier function and modulation of the immune system. In the present work, we have addressed in vitro the response of the intestinal epithelial cell line HT29 to the strain Bifidobacterium breve IPLA20004. In the array of 84 genes involved in inflammation tested, the expression of 12 was modified by the bifidobacteria. The genes of chemokine CXCL6, the chemokine receptor CCR7, and, specially, the complement component C3 were upregulated. Indeed, HT29 cells cocultivated with B. breve produced significantly higher levels of protein C3a. The proteome of HT29 cells showed increased levels of cytokeratin-8 in the presence of B. breve. Altogether, it seems that B. breve IPLA20004 could favor the recruitment of innate immune cells to the mucosa reinforcing, as well as the physical barrier of the intestinal epithelium.

  10. Recombinant Lactococcus lactis NZ9000 secretes a bioactive kisspeptin that inhibits proliferation and migration of human colon carcinoma HT-29 cells.

    Science.gov (United States)

    Zhang, Bo; Li, Angdi; Zuo, Fanglei; Yu, Rui; Zeng, Zhu; Ma, Huiqin; Chen, Shangwu

    2016-06-10

    Proteinaceous bioactive substances and pharmaceuticals are most conveniently administered orally. However, the facing problems are the side effects of proteolytic degradation and denaturation in the gastrointestinal tract. In recent years, lactic acid bacteria (LAB) have been verified to be a promising delivery vector for susceptible functional proteins and drugs. KiSS-1 peptide, a cancer suppressor, plays a critical role in inhibiting cancer metastasis and its activity has been confirmed by direct administration. However, whether this peptide can be functionally expressed in LAB and exert activity on cancer cells, thus providing a potential alternative administration manner in the future, has not been demonstrated. A recombinant Lactococcus lactis strain NZ9000-401-kiss1 harboring a plasmid containing the gene of the tumor metastasis-inhibiting peptide KiSS1 was constructed. After optimization of the nisin induction conditions, the recombinant strain efficiently secreted KiSS1 with a maximum detectable amount of 27.9 μg/ml in Dulbecco's Modified Eagle medium. The 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide and would healing assays, respectively, indicated that the secreted KiSS1 peptide remarkably inhibited HT-29 cell proliferation and migration. Furthermore, the expressed KiSS1 was shown to induce HT-29 cell morphological changes, apoptosis and reduce the expression of matrix metalloproteinase 9 (MMP-9) at both mRNA and protein levels. A recombinant L. lactis NZ9000-401-kiss1 successfully expressing the human kiss1 was constructed. The secreted KiSS1 peptide inhibited human HT-29 cells' proliferation and migration probably by invoking, or mediating the cell-apoptosis pathway and by down regulating MMP-9 expression, respectively. Our results suggest that L. lactis is an ideal cell factory for secretory expression of tumor metastasis-inhibiting peptide KiSS1, and the KiSS1-producing L. lactis strain may serve as a new tool for cancer therapy in

  11. Cetuximab improves AZD6244 antitumor activity in colorectal cancer HT29 cells in vitro and in nude mice by attenuating HER3/Akt pathway activation.

    Science.gov (United States)

    Zhang, Qin; Xiao, He; Jin, Feng; Li, Mengxia; Luo, Jia; Wang, Ge

    2018-07-01

    The present study investigated the molecular mechanism by which the epidermal growth factor receptor (EGFR) inhibitor cetuximab enhances the antitumor activity of the mitogen-activated protein kinase kinase (MEK) inhibitor AZD6244 in colorectal cancer HT29 cells. HT29 cells were treated with AZD6244 plus cetuximab and then subjected to the following assays: Cell Counting kit-8, BrdU-incorporation, flow cytometric cell cycle distribution and apoptosis analysis, western blot analysis, and nude mouse xenografts. The combination of AZD6244 and cetuximab significantly reduced HT29 cell viability and proliferation compared with AZD6244 alone. The combination treatment reduced the IC 50 value from 108.12±10.05 to 28.45±1.92 nM. AZD6244 and cetuximab also induced cell cycle arrest at G1 phase and reduced S phase (88.53% vs. 93.39%, P=0.080; 8.73% vs. 4.24%, P=0.082, respectively). Combination of AZD6244 with cetuximab significantly induced tumor cells apoptosis (14.61% vs. 8.99%, P=0.046). Inhibition of EGFR activity using cetuximab partially abrogated the feedback-activation of phosphorylated receptor tyrosine-protein kinase erB-3 (p-HER3) and p-AKT serine/threonine kinase (AKT), as well as prevented reactivation of p-extracellular regulated kinase (ERK) conferred by AZD6244 treatment. Combination of AZD6244 and cetuximab also inhibited HT29 cell xenograft growth in nude mice and suppressed HER3 and p-AKT levels in xenografts. The EGFR inhibitor cetuximab enhanced the antitumor activity of the MEK inhibitor AZD6244 in colorectal cells in vitro and in vivo . Co-inhibition of MEK and EGFR may be a promising treatment strategy in colorectal cancers.

  12. Antiproliferative activity of tea catechins associated with casein micelles, using HT29 colon cancer cells.

    Science.gov (United States)

    Haratifar, S; Meckling, K A; Corredig, M

    2014-02-01

    Numerous studies have shown that green tea polyphenols display anticancer activities in many organ sites by using different experimental models in rodents and in cultured cell lines in vitro. The present study tested the ability of casein micelles to deliver biologically active concentrations of polyphenols to HT-29 colon cancer cells. Epigallocatechin gallate (EGCG), the major catechin found in green tea, was used as the model molecule, as it has been shown to have antiproliferative activity on colon cancer cells. In the present work, we hypothesized that due to the binding of caseins with EGCG, casein micelles may be an ideal platform for the delivery of this bioactive molecule and that the binding would not affect the bioaccessibility of EGCG. The cytotoxicity and proliferation behavior of HT-29 colon cancer cells when exposed to free EGCG was compared with that of nanoencapsulated EGCG in casein micelles of skim milk. Epigallocatechin gallate-casein complexes were able to decrease the proliferation of HT-29 cancer cells, demonstrating that bioavailability may not be reduced by the nanoencapsulation. As casein micelles may act as protective carriers for EGCG in foods, it was concluded that nanoencapsulation of tea catechins in casein micelles may not diminish their antiproliferative activity on colon cancer cells compared with free tea catechins. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. The Effects of Bifidobacterium breve on Immune Mediators and Proteome of HT29 Cells Monolayers

    Directory of Open Access Journals (Sweden)

    Borja Sánchez

    2015-01-01

    Full Text Available The use of beneficial microorganisms, the so-called probiotics, to improve human health is gaining popularity. However, not all of the probiotic strains trigger the same responses and they differ in their interaction with the host. In spite of the limited knowledge on mechanisms of action some of the probiotic effects seem to be exerted through maintenance of the gastrointestinal barrier function and modulation of the immune system. In the present work, we have addressed in vitro the response of the intestinal epithelial cell line HT29 to the strain Bifidobacterium breve IPLA20004. In the array of 84 genes involved in inflammation tested, the expression of 12 was modified by the bifidobacteria. The genes of chemokine CXCL6, the chemokine receptor CCR7, and, specially, the complement component C3 were upregulated. Indeed, HT29 cells cocultivated with B. breve produced significantly higher levels of protein C3a. The proteome of HT29 cells showed increased levels of cytokeratin-8 in the presence of B. breve. Altogether, it seems that B. breve IPLA20004 could favor the recruitment of innate immune cells to the mucosa reinforcing, as well as the physical barrier of the intestinal epithelium.

  14. Luteolin inhibits the colon cancer HT-29 cell proliferation, migration and epithelial-mesenchymal transition: an experimental study

    Directory of Open Access Journals (Sweden)

    Xin Meng

    2017-11-01

    Full Text Available Objective: To study the regulating effect of luteolin on colon cancer HT-29 cell proliferation, migration and epithelial-mesenchymal transition. Methods: Colon cancer HT-29 cells were cultured and randomly divided into two groups, control group were treated with serum-free medium without drugs and LUT group were treated with serum-free medium containing luteolin. After 24 h of treatment, cells were collected to extract RNA, and then fluorescent quantitative PCR method was used to determine the mRNA expression of proliferation genes, migration genes and epithelial-mesenchymal transition genes. Results: After 24 h of luteolin treatment, Lrig1, TSPYL5, Bim, SOX15 and DLC1 mRNA expression in LUT group were significantly higher than those in control group while RPS15a, Bad, TRPV5, TRPV6, PLD2, IBP, SphK1, FAK, Vimentin and N-cadherin mRNA expression were significantly lower than those in control group. Conclusion: Luteolin has inhibiting effect on colon cancer HT-29 cell proliferation, migration and epithelial-mesenchymal transition.

  15. Luffa echinata Roxb. Induces Human Colon Cancer Cell (HT-29 Death by Triggering the Mitochondrial Apoptosis Pathway

    Directory of Open Access Journals (Sweden)

    Yan Yu

    2012-05-01

    Full Text Available The antiproliferative properties and cell death mechanism induced by the extract of the fruits of Luffa echinata Roxb. (LER were investigated. The methanolic extract of LER inhibited the proliferation of human colon cancer cells (HT-29 in both dose-dependent and time-dependent manners and caused a significant increase in the population of apoptotic cells. In addition, obvious shrinkage and destruction of the monolayer were observed in LER-treated cells, but not in untreated cells. Analysis of the cell cycle after treatment of HT-29 cells with various concentrations indicated that LER extracts inhibited the cellular proliferation of HT-29 cells via G2/M phase arrest of the cell cycle. The Reactive oxygen species (ROS level determination revealed that LER extracts induced apoptotic cell death via ROS generation. In addition, LER treatment led to a rapid drop in mitochondrial membrane potential (MMP as a decrease in fluorescence. The transcripts of several apoptosis-related genes were investigated by RT-PCR analysis. The caspase-3 transcripts of HT-29 cells significantly accumulated and the level of Bcl-XL mRNA was decreased after treatment with LER extract. Furthermore, the ratio of mitochondria-dependent apoptosis genes (Bax and Bcl-2 was sharply increased from 1.6 to 54.1. These experiments suggest that LER has anticancer properties via inducing the apoptosis in colon cancer cells, which provided the impetus for further studies on the therapeutic potential of LER against human colon carcinoma.

  16. Development of a serum-free co-culture of human intestinal epithelium cell-lines (Caco-2/HT29-5M21)

    Science.gov (United States)

    Nollevaux, Géraldine; Devillé, Christelle; El Moualij, Benaïssa; Zorzi, Willy; Deloyer, Patricia; Schneider, Yves-Jacques; Peulen, Olivier; Dandrifosse, Guy

    2006-01-01

    Background The absorptive and goblet cells are the main cellular types encountered in the intestine epithelium. The cell lineage Caco-2 is a model commonly used to reproduce the features of the bowel epithelium. However, there is a strong debate regarding the value of Caco-2 cell culture to mimick in vivo situation. Indeed, some authors report in Caco-2 a low paracellular permeability and an ease of access of highly diffusible small molecules to the microvilli, due to an almost complete lack of mucus. The HT29-5M21 intestinal cell lineage is a mucin-secreting cellular population. A co-culture system carried out in a serum-free medium and comprising both Caco-2 and HT29-5M21 cells was developed. The systematic use of a co-culture system requires the characterization of the monolayer under a given experimental procedure. Results In this study, we investigated the activity and localization of the alkaline phosphatase and the expression of IAP and MUC5AC genes to determine a correlation between these markers and the cellular composition of a differentiated monolayer obtained from a mixture of Caco-2 and HT29-5M21 cells. We observed that the culture conditions used (serum-free medium) did not change the phenotype of each cell type, and produced a reproducible model. The alkaline phosphatase expression characterizing Caco-2 cells was influenced by the presence of HT29-5M21 cells. Conclusion The culture formed by 75% Caco-2 and 25% HT29-5M21 produce a monolayer containing the two main cell types of human intestinal epithelium and characterized by a reduced permeability to macromolecules. PMID:16670004

  17. Development of a serum-free co-culture of human intestinal epithelium cell-lines (Caco-2/HT29-5M21

    Directory of Open Access Journals (Sweden)

    Schneider Yves-Jacques

    2006-05-01

    Full Text Available Abstract Background The absorptive and goblet cells are the main cellular types encountered in the intestine epithelium. The cell lineage Caco-2 is a model commonly used to reproduce the features of the bowel epithelium. However, there is a strong debate regarding the value of Caco-2 cell culture to mimick in vivo situation. Indeed, some authors report in Caco-2 a low paracellular permeability and an ease of access of highly diffusible small molecules to the microvilli, due to an almost complete lack of mucus. The HT29-5M21 intestinal cell lineage is a mucin-secreting cellular population. A co-culture system carried out in a serum-free medium and comprising both Caco-2 and HT29-5M21 cells was developed. The systematic use of a co-culture system requires the characterization of the monolayer under a given experimental procedure. Results In this study, we investigated the activity and localization of the alkaline phosphatase and the expression of IAP and MUC5AC genes to determine a correlation between these markers and the cellular composition of a differentiated monolayer obtained from a mixture of Caco-2 and HT29-5M21 cells. We observed that the culture conditions used (serum-free medium did not change the phenotype of each cell type, and produced a reproducible model. The alkaline phosphatase expression characterizing Caco-2 cells was influenced by the presence of HT29-5M21 cells. Conclusion The culture formed by 75% Caco-2 and 25% HT29-5M21 produce a monolayer containing the two main cell types of human intestinal epithelium and characterized by a reduced permeability to macromolecules.

  18. Induction of oncogene addiction shift to NF-κB by camptothecin in solid tumor cells

    International Nuclear Information System (INIS)

    Togano, Tomiteru; Sasaki, Masataka; Watanabe, Mariko; Nakashima, Makoto; Tsuruo, Takashi; Umezawa, Kazuo; Higashihara, Masaaki; Watanabe, Toshiki; Horie, Ryouichi

    2009-01-01

    The biological basis of the resistance of solid tumor cells to chemotherapy is not well understood. While addressing this problem, we found that gastric cancer cell line St-4/CPT, lung cancer cell line A549/CPT, and colon cancer cell line HT-29/CPT, all of which are resistant to camptothecin (CPT), showed strong and constitutive nuclear factor (NF)-κB activity driven by IκB kinase compared with their parental cell lines St-4, A549, and HT-29. A new NF-κB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), reduced viability and induced apoptosis in St-4/CPT, A549/CPT, and HT-29/CPT cell lines, while their parental cell lines were resistant to DHMEQ. The results in this study present an example of the shift in signals that support the survival of solid tumor cells to NF-κB during the acquisition of resistance to CPT. The results also indicate that solid tumor cells that become resistant to chemotherapy may be more easily treated by NF-κB inhibitors.

  19. Induction of oncogene addiction shift to NF-{kappa}B by camptothecin in solid tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Togano, Tomiteru; Sasaki, Masataka; Watanabe, Mariko; Nakashima, Makoto [Department of Hematology, School of Medicine, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555 (Japan); Tsuruo, Takashi [Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-10-6 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Umezawa, Kazuo [Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-0061 (Japan); Higashihara, Masaaki [Department of Hematology, School of Medicine, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555 (Japan); Watanabe, Toshiki [Laboratory of Tumor Cell Biology, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Horie, Ryouichi, E-mail: rhorie@med.kitasato-u.ac.jp [Department of Hematology, School of Medicine, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555 (Japan)

    2009-12-04

    The biological basis of the resistance of solid tumor cells to chemotherapy is not well understood. While addressing this problem, we found that gastric cancer cell line St-4/CPT, lung cancer cell line A549/CPT, and colon cancer cell line HT-29/CPT, all of which are resistant to camptothecin (CPT), showed strong and constitutive nuclear factor (NF)-{kappa}B activity driven by I{kappa}B kinase compared with their parental cell lines St-4, A549, and HT-29. A new NF-{kappa}B inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), reduced viability and induced apoptosis in St-4/CPT, A549/CPT, and HT-29/CPT cell lines, while their parental cell lines were resistant to DHMEQ. The results in this study present an example of the shift in signals that support the survival of solid tumor cells to NF-{kappa}B during the acquisition of resistance to CPT. The results also indicate that solid tumor cells that become resistant to chemotherapy may be more easily treated by NF-{kappa}B inhibitors.

  20. Synthesis of glycosaminoglycans by undifferentiated and differentiated HT29 human colonic cancer cells.

    Science.gov (United States)

    Simon-Assmann, P; Bouziges, F; Daviaud, D; Haffen, K; Kedinger, M

    1987-08-15

    Among the extracellular matrix components which have been suggested to be involved in developmental and neoplastic changes are glycosaminoglycans (GAGs). To try to correlate their amount and nature with the process of enterocytic differentiation, we studied glycosaminoglycan synthesis of human colonic adenocarcinoma cells (HT29 cell line) by [3H]glucosamine and [35S]sulfate incorporation. Enterocytic differentiation of the cells obtained in a sugar-free medium (for review, see A. Zweibaum et al. In: Handbook of Physiology. Intestinal Transport of the Gastrointestinal System, in press, 1987) resulted in a marked increase in total incorporation of labeled precursors (20-fold for [3H]glucosamine, 4.5-fold for [35S]sulfate) as well as in uronic acid content (5-fold); most of the synthesized GAGs were found associated with the cell pellet. Chromatographic and electrophoretic analysis of the labeled GAGs revealed that undifferentiated cells synthesized and secreted hyaluronic acid, heparan sulfate, and one class of chondroitin sulfate. Differentiation of HT29 cells because associated with the synthesis of an additional class of chondroitin sulfate (CS4) concomitant to a decrease in heparan sulfate which is no longer found secreted in the medium. Furthermore, the charge density of this latter GAG component varied as assessed by a shift of its affinity on ion-exchange chromatography.

  1. Modulation of pathogen-induced CCL20 secretion from HT-29 human intestinal epithelial cells by commensal bacteria.

    LENUS (Irish Health Repository)

    Sibartie, Shomik

    2009-01-01

    BACKGROUND: Human intestinal epithelial cells (IECs) secrete the chemokine CCL20 in response to infection by various enteropathogenic bacteria or exposure to bacterial flagellin. CCL20 recruits immature dendritic cells and lymphocytes to target sites. Here we investigated IEC responses to various pathogenic and commensal bacteria as well as the modulatory effects of commensal bacteria on pathogen-induced CCL20 secretion. HT-29 human IECs were incubated with commensal bacteria (Bifidobacterium infantis or Lactobacillus salivarius), or with Salmonella typhimurium, its flagellin, Clostridium difficile, Mycobacterium paratuberculosis, or Mycobacterium smegmatis for varying times. In some studies, HT-29 cells were pre-treated with a commensal strain for 2 hr prior to infection or flagellin stimulation. CCL20 and interleukin (IL)-8 secretion and nuclear factor (NF)-kappaB activation were measured using enzyme-linked immunosorbent assays. RESULTS: Compared to untreated cells, S. typhimurium, C. difficile, M. paratuberculosis, and flagellin activated NF-kappaB and stimulated significant secretion of CCL20 and IL-8 by HT-29 cells. Conversely, B. infantis, L. salivarius or M. smegmatis did not activate NF-kappaB or augment CCL20 or IL-8 production. Treatment with B. infantis, but not L. salivarius, dose-dependently inhibited the baseline secretion of CCL20. In cells pre-treated with B. infantis, C. difficile-, S. typhimurium-, and flagellin-induced CCL20 were significantly attenuated. B. infantis did not limit M. Paratuberculosis-induced CCL20 secretion. CONCLUSION: This study is the first to demonstrate that a commensal strain can attenuate CCL20 secretion in HT-29 IECs. Collectively, the data indicate that M. paratuberculosis may mediate mucosal damage and that B. infantis can exert immunomodulatory effects on IECs that mediate host responses to flagellin and flagellated enteric pathogens.

  2. Aqueous Fraction of Nephelium ramboutan-ake Rind Induces Mitochondrial-Mediated Apoptosis in HT-29 Human Colorectal Adenocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Muhamad Noor Alfarizal Kamarudin

    2012-05-01

    Full Text Available The aim of this study was to investigate the cytotoxic and apoptotic effects of Nephelium ramboutan-ake (pulasan rind in selected human cancer cell lines. The crude ethanol extract and fractions (ethyl acetate and aqueous of N. ramboutan-ake inhibited the growth of HT-29, HCT-116, MDA-MB-231, Ca Ski cells according to MTT assays. The N. ramboutan-ake aqueous fraction (NRAF was found to exert the greatest cytotoxic effect against HT-29 in a dose-dependent manner. Evidence of apoptotic cell death was revealed by features such as chromatin condensation, nuclear fragmentation and apoptotic body formation. The result from a TUNEL assay strongly suggested that NRAF brings about DNA fragmentation in HT-29 cells. Phosphatidylserine (PS externalization on the outer leaflet of plasma membranes was detected with annexin V-FITC/PI binding, confirming the early stage of apoptosis. The mitochondrial permeability transition is an important step in the induction of cellular apoptosis, and the results clearly suggested that NRAF led to collapse of mitochondrial transmembrane potential in HT-29 cells. This attenuation of mitochondrial membrane potential (Δψm was accompanied by increased production of ROS and depletion of GSH, an increase of Bax protein expression, and induced-activation of caspase-3/7 and caspase-9. These combined results suggest that NRAF induces mitochondrial-mediated apoptosis.

  3. In vitro differentiation of HT-29 M6 mucus-secreting colon cancer cells involves a trychostatin A and p27(KIP1)-inducible transcriptional program of gene expression.

    Science.gov (United States)

    Mayo, Clara; Lloreta, Josep; Real, Francisco X; Mayol, Xavier

    2007-07-01

    Tumor cell dedifferentiation-such as the loss of cell-to-cell adhesion in epithelial tumors-is associated with tumor progression. To better understand the mechanisms that maintain carcinoma cells in a differentiated state, we have dissected in vitro differentiation pathways in the mucus-secretor HT-29 M6 colon cancer cell line, which spontaneously differentiates in postconfluent cultures. By lowering the extracellular calcium concentration to levels that prevent intercellular adhesion and epithelial polarization, our results reveal that differentiation is calcium-dependent and involves: (i) a process of cell cycle exit to G(0) and (ii) the induction of a transcriptional program of differentiation gene expression (i.e., mucins MUC1 and MUC5AC, and the apical membrane peptidase DPPIV). In calcium-deprived, non-differentiated postconfluent cultures, differentiation gene promoters are repressed by a trichostatin A (TSA)-sensitive mechanism, indicating that loss of gene expression by dedifferentiation is driven by histone deacetylases (HDAC). Since TSA treatment or extracellular calcium restoration allow gene promoter activation to similar levels, we suggest that induction of differentiation is one mechanism of HDAC inhibitor antitumor action. Moreover, transcriptional de-repression can also be induced in non-differentiating culture conditions by overexpressing the cyclin-dependent kinase inhibitor p27(KIP1), which is normally induced during spontaneous differentiation. Since p27(KIP1) downregulation in colon cancer is associated with poor prognosis independently of tumor cell division rates, we propose that p27 (KIP1) may prevent tumor progression by, at least in part, enhancing the expression of some differentiation genes. Therefore, the HT-29 M6 model allows the identification of some basic mechanisms of cancer cell differentiation control, so far revealing HDAC and p27(KIP1) as key regulatory factors of differentiation gene expression.

  4. Cyclin D1 negatively regulates the expression of differentiation genes in HT-29 M6 mucus-secreting colon cancer cells.

    Science.gov (United States)

    Mayo, Clara; Mayol, Xavier

    2009-08-28

    HT-29 M6 colon cancer cells differentiate to a mucus-secreting phenotype in culture. We found that the pattern of cyclin D1 expression in HT-29 M6 cells did not correlate with instances of cell proliferation but was specifically induced during a dedifferentiation process following disaggregation of epithelial cell layers, even under conditions that did not allow cell cycle reentrance. Interestingly, ectopic expression of cyclin D1 in differentiated cells led to the inhibition of the transcriptional activity of differentiation gene promoters, such as the mucin MUC1. We thus propose that the overexpression of cyclin D1 found in colon cancer favours tumour dedifferentiation as one mechanism of tumour progression.

  5. Interaction of cruciferin-based nanoparticles with Caco-2 cells and Caco-2/HT29-MTX co-cultures.

    Science.gov (United States)

    Akbari, Ali; Lavasanifar, Afsaneh; Wu, Jianping

    2017-12-01

    The objective of this work was to assess the potential of Cruciferin/Calcium (Cru/Ca) and Cruciferin/Chitosan (Cru/Cs) nanoparticles for oral drug delivery. For this purpose, Cru/Ca and Cru/Cs nanoparticles were developed through cold gelation of Cruciferin, a major canola protein, and in interaction with calcium and chitosan, respectively. The extent and rate of particle uptake in Caco-2 cells and Caco-2/HT29 co-culture was then evaluated by fluorescence spectroscopy as well as flow cytometry. Through pre-incubation of Caco-2 cell monolayer with specific endocytosis inhibitors, the mechanism of cell uptake was investigated. Our results showed that the uptake of negatively-charged Cru/Ca particles to be ∼3 times higher than positively-charged Cru/Cs ones by Caco-2 cells. Presence of mucus secreted by HT29 cells in their co-culture with Caco-2 had negligible influence on the uptake and transport of both particles. In contrast to Cru/Ca particles which were dissociated in the simulated gastrointestinal conditions, digestion of Cru/Cs particles resulted in 6- and 2-fold increase in the cellular uptake and transport of encapsulated coumarin in the latter particles, respectively. While the presence of mucus in Caco-2/HT29 co-culture caused 40-50% decrease of cellular uptake and transport for coumarin encapsulated in digested Cru/Cs particles, it had no significant effect on the cell uptake and transport of coumarin associated with Cru/Ca particles after digestion. Energy-dependent mechanisms were the dominant mechanism for uptake of both undigested and digested particles. Therefore, in Caco-2/HT29 co-culture which closely simulated intestinal epithelial cells, undigested Cru/Ca and Cru/Cs particles had the ability to penetrate mucus layers, while digested Cru/Cs particles showed mucoadhesive property, and digested Cru/Ca particles were dissociated. Our results points to a potential for cruciferin based nanoparticles for oral drug delivery. The long-term objective of

  6. Mycophenolate mofetil modulates adhesion receptors of the beta1 integrin family on tumor cells: impact on tumor recurrence and malignancy

    International Nuclear Information System (INIS)

    Engl, Tobias; Makarević, Jasmina; Relja, Borna; Natsheh, Iyad; Müller, Iris; Beecken, Wolf-Dietrich; Jonas, Dietger; Blaheta, Roman A

    2005-01-01

    Tumor development remains one of the major obstacles following organ transplantation. Immunosuppressive drugs such as cyclosporine and tacrolimus directly contribute to enhanced malignancy, whereas the influence of the novel compound mycophenolate mofetil (MMF) on tumor cell dissemination has not been explored. We therefore investigated the adhesion capacity of colon, pancreas, prostate and kidney carcinoma cell lines to endothelium, as well as their beta1 integrin expression profile before and after MMF treatment. Tumor cell adhesion to endothelial cell monolayers was evaluated in the presence of 0.1 and 1 μM MMF and compared to unstimulated controls. beta1 integrin analysis included alpha1beta1 (CD49a), alpha2beta1 (CD49b), alpha3beta1 (CD49c), alpha4beta1 (CD49d), alpha5beta1 (CD49e), and alpha6beta1 (CD49f) receptors, and was carried out by reverse transcriptase-polymerase chain reaction, confocal microscopy and flow cytometry. Adhesion of the colon carcinoma cell line HT-29 was strongly reduced in the presence of 0.1 μM MMF. This effect was accompanied by down-regulation of alpha3beta1 and alpha6beta1 surface expression and of alpha3beta1 and alpha6beta1 coding mRNA. Adhesion of the prostate tumor cell line DU-145 was blocked dose-dependently by MMF. In contrast to MMF's effects on HT-29 cells, MMF dose-dependently up-regulated alpha1beta1, alpha2beta1, alpha3beta1, and alpha5beta1 on DU-145 tumor cell membranes. We conclude that MMF possesses distinct anti-tumoral properties, particularly in colon and prostate carcinoma cells. Adhesion blockage of HT-29 cells was due to the loss of alpha3beta1 and alpha6beta1 surface expression, which might contribute to a reduced invasive behaviour of this tumor entity. The enhancement of integrin beta1 subtypes observed in DU-145 cells possibly causes re-differentiation towards a low-invasive phenotype

  7. Effect of sulindac sulfide on metallohydrolases in the human colon cancer cell line HT-29.

    Directory of Open Access Journals (Sweden)

    Hector Guillen-Ahlers

    Full Text Available Matrix metalloproteinase 7 (MMP7, a metallohydrolase involved in the development of several cancers, is downregulated in the Apc(Min/+ colon cancer mouse model following sulindac treatment. To determine whether this effect is relevant to the human condition, HT-29 human colon cancer cells were treated with sulindac and its metabolites, and compared to results obtained from in vivo mouse studies. The expression of MMP7 was monitored. The results demonstrated that sulindac sulfide effectively downregulated both MMP7 expression and activity. Furthermore, activity-based proteomics demonstrated that sulindac sulfide dramatically decreased the activity of leukotriene A4 hydrolase in HT-29 cells as reflected by a decrease in the level of its product, leukotriene B4. This study demonstrates that the effect of sulindac treatment in a mouse model of colon cancer may be relevant to the human counterpart and highlights the effect of sulindac treatment on metallohydrolases.

  8. Hyaluronic acid–nimesulide conjugates as anticancer drugs against CD44-overexpressing HT-29 colorectal cancer in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Jian YS

    2017-03-01

    Full Text Available You-Sin Jian,1 Ching-Wen Chen,1 Chih-An Lin,2 Hsiu-Ping Yu,1 Hua-Yang Lin,3 Ming-Yuan Liao,1 Shu-Huan Wu,1 Yan-Fu Lin,1 Ping-Shan Lai1,2,4,5 1Department of Chemistry, 2PhD Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, 3Preclinical Development Research Department, Holy Stone Healthcare Co., Ltd., Taipei, 4Research Center for Sustainable Energy and Nanotechnology, 5Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan Abstract: Carrier-mediated drug delivery systems are promising therapeutics for targeted delivery and improved efficacy and safety of potent cytotoxic drugs. Nimesulide is a multifactorial cyclooxygenase 2 nonsteroidal anti-inflammatory drug with analgesic, antipyretic and potent anticancer properties; however, the low solubility of nimesulide limits its applications. Drugs conjugated with hyaluronic acid (HA are innovative carrier-mediated drug delivery systems characterized by CD44-mediated endocytosis of HA and intracellular drug release. In this study, hydrophobic nimesulide was conjugated to HA of two different molecular weights (360 kDa as HA with high molecular weight [HAH] and 43kDa as HA with low molecular weight [HAL] to improve its tumor-targeting ability and hydrophilicity. Our results showed that hydrogenated nimesulide (N-[4-amino-2-phenoxyphenyl]methanesulfonamide was successfully conjugated with both HA types by carbodiimide coupling and the degree of substitution of nimesulide was 1%, which was characterized by 1H nuclear magnetic resonance 400 MHz and total correlation spectroscopy. Both Alexa Fluor® 647 labeled HAH and HAL could selectively accumulate in CD44-overexpressing HT-29 colorectal tumor area in vivo, as observed by in vivo imaging system. In the in vitro cytotoxic test, HA–nimesulide conjugate displayed >46% cell killing ability at a nimesulide concentration of 400 µM in HT-29 cells, whereas

  9. Glycosylation-related gene expression in HT29-MTX-E12 cells upon infection by Helicobacter pylori.

    Science.gov (United States)

    Cairns, Michael T; Gupta, Ananya; Naughton, Julie A; Kane, Marian; Clyne, Marguerite; Joshi, Lokesh

    2017-10-07

    To identify glycosylation-related genes in the HT29 derivative cell line, HT29-MTX-E12, showing differential expression on infection with Helicobacter pylori ( H. pylori ). Polarised HT29-MTX-E12 cells were infected for 24 h with H. pylori strain 26695. After infection RNA was isolated from both infected and non-infected host cells. Sufficient infections were carried out to provide triplicate samples for microarray analysis and for qRT-PCR analysis. RNA was isolated and hybridised to Affymetrix arrays. Analysis of microarray data identified genes significantly differentially expressed upon infection. Genes were grouped into gene ontology functional categories. Selected genes associated with host glycan structure (glycosyltransferases, hydrolases, lectins, mucins) were validated by real-time qRT-PCR analysis. Infection of host cells was confirmed by the isolation of live bacteria after 24 h incubation and by PCR amplification of bacteria-specific genes from the host cell RNA. H. pylori do not survive incubation under the adopted culture conditions unless they associate with the adherent mucus layer of the host cell. Microarray analysis identified a total of 276 genes that were significantly differentially expressed ( P < 0.05) upon H. pylori infection and where the fold change in expression was greater than 2. Six of these genes are involved in glycosylation-related processes. Real-time qRT-PCR demonstrated significant downregulation (1.8-fold, P < 0.05) of the mucin MUC20. REG4 was heavily expressed and significantly downregulated (3.1-fold, P < 0.05) upon infection. Gene ontology analysis was consistent with previous studies on H. pylori infection. Gene expression data suggest that infection with H. pylori causes a decrease in glycan synthesis, resulting in shorter and simpler glycan structures.

  10. Lichen secondary metabolites are responsible for induction of apoptosis in HT-29 and A2780 human cancer cell lines.

    Science.gov (United States)

    Bačkorová, M; Jendželovský, R; Kello, M; Bačkor, M; Mikeš, J; Fedoročko, P

    2012-04-01

    Lichens are a known source of approximately 800 unique secondary metabolites, many of which play important ecological roles, including regulating the equilibrium between symbionts. However, only a few of these compounds have been assessed for their effectiveness against various in vitro cancer models. Moreover, the mechanisms of biological activity of lichen secondary metabolites on living cells (including cancer cells) are still almost entirely unknown. In the present study, we investigated the mechanisms of cytotoxicity of four lichen secondary metabolites (parietin, atranorin, usnic acid and gyrophoric acid) on A2780 and HT-29 cancer cell lines. We found that usnic acid and atranorin were more effective anti-cancer compounds when compared to parietin and gyrophoric acid. Usnic acid and atranorin were capable of inducing a massive loss in the mitochondrial membrane potential, along with caspase-3 activation (only in HT-29 cells) and phosphatidylserine externalization in both tested cell lines. Induction of both ROS and especially RNS may be responsible, at least in part, for the cytotoxic effects of the tested compounds. Based on the detection of protein expression (PARP, p53, Bcl-2/Bcl-xL, Bax, p38, pp38) we found that usnic acid and atranorin are activators of programmed cell death in A2780 and HT-29, probably through the mitochondrial pathway. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Nicotine promotes cell proliferation via α7-nicotinic acetylcholine receptor and catecholamine-synthesizing enzymes-mediated pathway in human colon adenocarcinoma HT-29 cells

    International Nuclear Information System (INIS)

    Wong, Helen Pui Shan; Yu Le; Lam, Emily Kai Yee; Tai, Emily Kin Ki; Wu, William Ka Kei; Cho, Chi Hin

    2007-01-01

    Cigarette smoking has been implicated in colon cancer. Nicotine is a major alkaloid in cigarette smoke. In the present study, we showed that nicotine stimulated HT-29 cell proliferation and adrenaline production in a dose-dependent manner. The stimulatory action of nicotine was reversed by atenolol and ICI 118,551, a β 1 - and β 2 -selective antagonist, respectively, suggesting the role of β-adrenoceptors in mediating the action. Nicotine also significantly upregulated the expression of the catecholamine-synthesizing enzymes [tyrosine hydroxylase (TH), dopamine-β-hydroxylase (DβH) and phenylethanolamine N-methyltransferase]. Inhibitor of TH, a rate-limiting enzyme in the catecholamine-biosynthesis pathway, reduced the actions of nicotine on cell proliferation and adrenaline production. Expression of α7-nicotinic acetylcholine receptor (α7-nAChR) was demonstrated in HT-29 cells. Methyllycaconitine, an α7-nAChR antagonist, reversed the stimulatory actions of nicotine on cell proliferation, TH and DβH expression as well as adrenaline production. Taken together, through the action on α7-nAChR nicotine stimulates HT-29 cell proliferation via the upregulation of the catecholamine-synthesis pathway and ultimately adrenaline production and β-adrenergic activation. These data reveal the contributory role α7-nAChR and β-adrenoceptors in the tumorigenesis of colon cancer cells and partly elucidate the carcinogenic action of cigarette smoke on colon cancer

  12. Synergistic inhibitory effects of curcumin and 5-fluorouracil on the growth of the human colon cancer cell line HT-29.

    Science.gov (United States)

    Du, Boyu; Jiang, Liping; Xia, Quan; Zhong, Laifu

    2006-01-01

    The synergistic effect of combination treatment with COX-2 inhibitors and chemotherapy may be another promising therapy regimen in the future treatment of colorectal cancer. Curcumin, a major yellow pigment in turmeric which is used widely all over the world, inhibits the growth of human colon cancer cell line HT-29 significantly and specifically inhibits the expression of COX-2 protein. However, the worldwide exposure of populations to curcumin raised the question of whether this agent would enhance or inhibit the effects of chemotherapy. In this report, we evaluated the growth-inhibitory effect of curcumin and a traditional chemotherapy agent, 5-FU, against the proliferation of a human colon cancer cell line (HT-29). The combination effect was quantitatively determined using the method of median-effect principle and the combination index. The inhibition of COX-2 expression after treatment with the curcumin-5-FU combination was also evaluated by Western blot analysis. The IC(50) value in the HT-29 cells for curcumin was 15.9 +/- 1.96 microM and for 5-FU it was 17.3 +/- 1.85 microM. When curcumin and 5-FU were used concurrently, synergistic inhibition of growth was quantitatively demonstrated. The level of COX-2 protein expression was reduced almost 6-fold after the combination treatment. Our results demonstrate synergism between curcumin and 5-FU at higher doses against the human colon cancer cell line HT-29. This synergism was associated with the decreased expression of COX-2 protein. Copyright 2006 S. Karger AG, Basel.

  13. Induction of G1 and G2/M cell cycle arrests by the dietary compound 3,3'-diindolylmethane in HT-29 human colon cancer cells

    Directory of Open Access Journals (Sweden)

    Choi Hyun

    2009-05-01

    Full Text Available Abstract Background 3,3'-Diindolylmethane (DIM, an indole derivative produced in the stomach after the consumption of broccoli and other cruciferous vegetables, has been demonstrated to exert anti-cancer effects in both in vivo and in vitro models. We have previously determined that DIM (0 – 30 μmol/L inhibited the growth of HT-29 human colon cancer cells in a concentration-dependent fashion. In this study, we evaluated the effects of DIM on cell cycle progression in HT-29 cells. Methods HT-29 cells were cultured with various concentrations of DIM (0 – 30 μmol/L and the DNA was stained with propidium iodide, followed by flow cytometric analysis. [3H]Thymidine incorporation assays, Western blot analyses, immunoprecipitation and in vitro kinase assays for cyclin-dependent kinase (CDK and cell division cycle (CDC2 were conducted. Results The percentages of cells in the G1 and G2/M phases were dose-dependently increased and the percentages of cells in S phase were reduced within 12 h in DIM-treated cells. DIM also reduced DNA synthesis in a dose-dependent fashion. DIM markedly reduced CDK2 activity and the levels of phosphorylated retinoblastoma proteins (Rb and E2F-1, and also increased the levels of hypophosphorylated Rb. DIM reduced the protein levels of cyclin A, D1, and CDK4. DIM also increased the protein levels of CDK inhibitors, p21CIP1/WAF1 and p27KIPI. In addition, DIM reduced the activity of CDC2 and the levels of CDC25C phosphatase and cyclin B1. Conclusion Here, we have demonstrated that DIM induces G1 and G2/M phase cell cycle arrest in HT-29 cells, and this effect may be mediated by reduced CDK activity.

  14. Induction of G1 and G2/M cell cycle arrests by the dietary compound 3,3'-diindolylmethane in HT-29 human colon cancer cells.

    Science.gov (United States)

    Choi, Hyun Ju; Lim, Do Young; Park, Jung Han Yoon

    2009-05-29

    3,3'-Diindolylmethane (DIM), an indole derivative produced in the stomach after the consumption of broccoli and other cruciferous vegetables, has been demonstrated to exert anti-cancer effects in both in vivo and in vitro models. We have previously determined that DIM (0 - 30 micromol/L) inhibited the growth of HT-29 human colon cancer cells in a concentration-dependent fashion. In this study, we evaluated the effects of DIM on cell cycle progression in HT-29 cells. HT-29 cells were cultured with various concentrations of DIM (0 - 30 micromol/L) and the DNA was stained with propidium iodide, followed by flow cytometric analysis. [3H]Thymidine incorporation assays, Western blot analyses, immunoprecipitation and in vitro kinase assays for cyclin-dependent kinase (CDK) and cell division cycle (CDC)2 were conducted. The percentages of cells in the G1 and G2/M phases were dose-dependently increased and the percentages of cells in S phase were reduced within 12 h in DIM-treated cells. DIM also reduced DNA synthesis in a dose-dependent fashion. DIM markedly reduced CDK2 activity and the levels of phosphorylated retinoblastoma proteins (Rb) and E2F-1, and also increased the levels of hypophosphorylated Rb. DIM reduced the protein levels of cyclin A, D1, and CDK4. DIM also increased the protein levels of CDK inhibitors, p21CIP1/WAF1 and p27KIPI. In addition, DIM reduced the activity of CDC2 and the levels of CDC25C phosphatase and cyclin B1. Here, we have demonstrated that DIM induces G1 and G2/M phase cell cycle arrest in HT-29 cells, and this effect may be mediated by reduced CDK activity.

  15. Expression of adrenomedullin in human colorectal tumors and its role in cell growth and invasion in vitro and in xenograft growth in vivo

    International Nuclear Information System (INIS)

    Nouguerède, Emilie; Berenguer, Caroline; Garcia, Stéphane; Bennani, Bahia; Delfino, Christine; Nanni, Isabelle; Dahan, Laetitia; Gasmi, Mohamed; Seitz, Jean-François; Martin, Pierre-Marie; Ouafik, L'Houcine

    2013-01-01

    Adrenomedullin (AM) is a multifunctional peptide vasodilator that transduces its effects through calcitonin receptor-like receptor/receptor activity-modifying protein-2 and -3 (CLR/RAMP2 and CLR/RAMP3). In this study, real-time quantitative reverse transcription demonstrated a significant expression of AM mRNA in tumor samples from colorectal cancer (CRC) patients in clinical stage II, III, and IV when compared with normal colorectal tissue. AM, CLR, RAMP2, and RAMP3 proteins were immunohistochemically localized in the carcinomatous epithelial compartment of CRC tissue. Tissue microarray analysis revealed a clear increase of AM, CLR, RAMP2, and RAMP3 staining in lymph node and distant metastasis when compared with primary tumors. The human colon carcinoma cells HT-29 expressed and secreted AM into the culture medium with a significant increase under hypoxia. Treatment of HT-29 cells with synthetic AM stimulated cell proliferation and invasion in vitro. Incubation with anti-AM antibody (αAM), anti-AM receptors antibodies (αAMR), or AM antagonist AM 22–52 inhibited significantly basal levels of proliferation of HT-29 cells, suggesting that AM may function as an autocrine growth factor for CRC cells. Treatment with αAM significantly suppressed the growth of HT-29 tumor xenografts in vivo. Histological examination of αAM-treated tumors showed evidence of disruption of tumor vascularity with decreased microvessel density, depletion of endothelial cells and pericytes, and increased tumor cell apoptosis. These findings highlight the potential importance of AM and its receptors in the progression of CRC and support the conclusion that αAM treatment inhibits tumor growth by suppression of angiogenesis and tumor growth, suggesting that AM may be a useful therapeutic target

  16. The apoptotic effects of Brucea javanica fruit extract against HT29 cells associated with p53 upregulation and inhibition of NF-κB translocation

    Directory of Open Access Journals (Sweden)

    Bagheri E

    2018-03-01

    Full Text Available Elham Bagheri,1 Fatemeh Hajiaghaalipour,2 Shaik Nyamathulla,1 Nur’Ain Salehen3 1Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; 2Institute of Biological Science, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia; 3Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia Background: Brucea javanica (L. Merr. is a plant from the genus Brucea, which is used in local traditional medicine to treat various diseases. Recent studies revealed an impressive anticancer efficiency of B. javanica extract in different types of cancer cells.Purpose: In this study, we have investigated the cytotoxic effects of the B. javanica hexane, ethanolic extracts against colon cancer cells. HT29 colon cells were selected as an in vitro cancer model to evaluate the anticancer activity of B. javanica ethanolic extract (BJEE and the possible mechanisms of action that induced apoptosis.Methods: 3-(4,5-dimethylthiazol-2-yl-2, 5,-diphenyltetrazolium bromide (MTT, lactate dehydrogenase, acridine orange/propidium iodide, and annexin-V-fluorescein isothiocyanate assays were performed to determine the antiproliferative and apoptosis validation of BJEE on cancer cells. Measurement of reactive oxygen species (ROS production, caspase activities, nucleus factor-κB activity, and gene expression experiments was done to investigate the potential mechanisms of action in the apoptotic process.Results: The results obtained from this study illustrated the significant antiproliferative effect of BJEE on colorectal cancer cells, with a concentration value that inhibits 50% of the cell growth of 25±3.1 µg/mL after 72 h of treatment. MTT assay demonstrated that the BJEE is selectively toxic to cancer cells, and BJEE induced cell apoptosis via activation of caspase-8 along with modulation of apoptosis-related proteins such as Fas, CD40, tumor necrosis factor-related apoptosis-inducing ligands

  17. Morusin induces apoptosis and suppresses NF-κB activity in human colorectal cancer HT-29 cells

    International Nuclear Information System (INIS)

    Lee, J.-C.; Won, S.-J.; Chao, C.-L.; Wu, F.-L.; Liu, H.-S.; Ling Pin; Lin, C.-N.; Su, C.-L.

    2008-01-01

    Morusin is a pure compound isolated from root bark of Morusaustralis (Moraceae). In this study, we demonstrated that morusin significantly inhibited the growth and clonogenicity of human colorectal cancer HT-29 cells. Apoptosis induced by morusin was characterized by accumulation of cells at the sub-G 1 phase, fragmentation of DNA, and condensation of chromatin. Morusin also inhibited the phosphorylation of IKK-α, IKK-β and IκB-α, increased expression of IκB-α, and suppressed nuclear translocation of NF-κB and its DNA binding activity. Dephosphorylation of NF-κB upstream regulators PI3K, Akt and PDK1 was also displayed. In addition, activation of caspase-8, change of mitochondrial membrane potential, release of cytochrome c and Smac/DIABLO, and activation of caspase-9 and -3 were observed at the early time point. Downregulation in the expression of Ku70 and XIAP was exhibited afterward. Caspase-8 or wide-ranging caspase inhibitor suppressed morusin-induced apoptosis. Therefore, the antitumor mechanism of morusin in HT-29 cells may be via activation of caspases and inhibition of NF-κB

  18. Combined ginger extract & Gelam honey modulate Ras/ERK and PI3K/AKT pathway genes in colon cancer HT29 cells.

    Science.gov (United States)

    Tahir, Analhuda Abdullah; Sani, Nur Fathiah Abdul; Murad, Noor Azian; Makpol, Suzana; Ngah, Wan Zurinah Wan; Yusof, Yasmin Anum Mohd

    2015-04-01

    The interconnected Ras/ERK and PI3K/AKT pathways play a central role in colorectal tumorigenesis, and they are targets for elucidating mechanisms involved in attempts to induce colon cancer cell death. Both ginger (Zingiber officinale) and honey have been shown to exhibit anti-tumor and anti-inflammation properties against many types of cancer, including colorectal cancer. However, there are currently no reports showing the combined effect of these two dietary compounds in cancer growth inhibition. The aim of this study was to evaluate the synergistic effect of crude ginger extract and Gelam honey in combination as potential cancer chemopreventive agents against the colorectal cancer cell line HT29. The cells were divided into 4 groups: the first group represents HT29 cells without treatment, the second and third groups were cells treated singly with either ginger or Gelam honey, respectively, and the last group represents cells treated with ginger and Gelam honey combined. The results of MTS assay showed that the IC50 of ginger and Gelam honey alone were 5.2 mg/ml and 80 mg/ml, respectively, whereas the IC50 of the combination treatment was 3 mg/ml of ginger plus 27 mg/ml of Gelam honey with a combination index of ginger and Gelam honey treatment was associated with the stimulation of early apoptosis (upregulation of caspase 9 and IκB genes) accompanied by downregulation of the KRAS, ERK, AKT, Bcl-xL, NFkB (p65) genes in a synergistic manner. In conclusion, the combination of ginger and Gelam honey may be an effective chemopreventive and therapeutic strategy for inducing the death of colon cancer cells.

  19. Mycophenolate mofetil modulates adhesion receptors of the beta1 integrin family on tumor cells: impact on tumor recurrence and malignancy

    Directory of Open Access Journals (Sweden)

    Beecken Wolf-Dietrich

    2005-01-01

    Full Text Available Abstract Background Tumor development remains one of the major obstacles following organ transplantation. Immunosuppressive drugs such as cyclosporine and tacrolimus directly contribute to enhanced malignancy, whereas the influence of the novel compound mycophenolate mofetil (MMF on tumor cell dissemination has not been explored. We therefore investigated the adhesion capacity of colon, pancreas, prostate and kidney carcinoma cell lines to endothelium, as well as their beta1 integrin expression profile before and after MMF treatment. Methods Tumor cell adhesion to endothelial cell monolayers was evaluated in the presence of 0.1 and 1 μM MMF and compared to unstimulated controls. beta1 integrin analysis included alpha1beta1 (CD49a, alpha2beta1 (CD49b, alpha3beta1 (CD49c, alpha4beta1 (CD49d, alpha5beta1 (CD49e, and alpha6beta1 (CD49f receptors, and was carried out by reverse transcriptase-polymerase chain reaction, confocal microscopy and flow cytometry. Results Adhesion of the colon carcinoma cell line HT-29 was strongly reduced in the presence of 0.1 μM MMF. This effect was accompanied by down-regulation of alpha3beta1 and alpha6beta1 surface expression and of alpha3beta1 and alpha6beta1 coding mRNA. Adhesion of the prostate tumor cell line DU-145 was blocked dose-dependently by MMF. In contrast to MMF's effects on HT-29 cells, MMF dose-dependently up-regulated alpha1beta1, alpha2beta1, alpha3beta1, and alpha5beta1 on DU-145 tumor cell membranes. Conclusion We conclude that MMF possesses distinct anti-tumoral properties, particularly in colon and prostate carcinoma cells. Adhesion blockage of HT-29 cells was due to the loss of alpha3beta1 and alpha6beta1 surface expression, which might contribute to a reduced invasive behaviour of this tumor entity. The enhancement of integrin beta1 subtypes observed in DU-145 cells possibly causes re-differentiation towards a low-invasive phenotype.

  20. Involvement of AMPK signaling cascade in capsaicin-induced apoptosis of HT-29 colon cancer cells.

    Science.gov (United States)

    Kim, Young Min; Hwang, Jin-Taek; Kwak, Dong Wook; Lee, Yun Kyung; Park, Ock Jin

    2007-01-01

    Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is activated during ATP-depleting metabolic states, such as hypoxia, heat shock, oxidative stress, and exercise. As a highly conserved heterotrimeric kinase that functions as a major metabolic switch to maintain energy homeostasis, AMPK has been shown to exert as an intrinsic regulator of mammalian cell cycle. Moreover, AMPK cascade has emerged as an important pathway implicated in cancer control. In this article, we have investigated the effects of capsaicin on apoptosis in relation to AMPK activation in colon cancer cell. Capsaicin-induced apoptosis was revealed by the presence of nucleobodies in the capsaicin-treated HT-29 colon cancer cells. Concomitantly, the activation of AMPK and the increased expression of the inactive form of acetyl-CoA carboxylase (ACC) were detected in capsaicin-treated colon cancer cells. We showed that both capsaicin and 5'-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoside (AICAR), an AMPK activator possess the AMPK-activating capacity as well as apoptosis-inducing properties. Evidence of the association between AMPK activation and the increased apoptosis in HT-29 colon cancer cells by capsaicin treatment, and further findings of the correlation of the activated AMPK and the elevated apoptosis by cotreatment of AICAR and capsaicin support AMPK as an important component of apoptosis, as well as a possible target of cancer control.

  1. Strong synergy of heat and modulated electromagnetic field in tumor cell killing.

    Science.gov (United States)

    Andocs, Gabor; Renner, Helmut; Balogh, Lajos; Fonyad, Laszlo; Jakab, Csaba; Szasz, Andras

    2009-02-01

    Hyperthermia is an emerging complementary method in radiooncology. Despite many positive studies and comprehensive reviews, the method is not widely accepted as a combination to radiotherapy. Modulated electrohyperthermia (mEHT; capacitive, electric field modulated, 13.56 MHz) has been used in clinical practice for almost 2 decades in Germany, Austria and Hungary. This in vivo study in nude mice xenograft tumors compares mEHT with "classic" radiative hyperthermia (radHT). Nude mice were xenografted with HT29 human colorectal carcinoma cells. 28 mice in four groups with seven animals each and two tumors per animal (totally 56 tumors) were included in the present study: group 1 as untreated control; group 2 treated with radHT at 42 degrees C; group 3 treated with mEHT at identical 42 degrees C; group 4 treated with mEHT at 38 degrees C (by intensively cooling down the tumor). 24 h after treatment, animals were sacrificed and the tumor cross sections studied by precise morphological methods for the respective relative amount of "dead" tumor cells. The effect of mEHT established a double effect as a synergy between the purely thermal (temperature-dependent) and nonthermal (not directly temperature-dependent) effects. The solely thermal enhancement ratio (TER) of cell killing was shown to be 2.9. The field enhancement ratio (FER) at a constant temperature of 42 degrees C was measured as 3.2. Their complex application significantly increased the therapeutic enhancement to 9.4. mEHT had a remarkable cancer cell-killing effect in a nude mice xenograft model.

  2. Strong synergy of heat and modulated electromagnetic field in tumor cell killing

    International Nuclear Information System (INIS)

    Andocs, Gabor; Fonyad, Laszlo; Jakab, Csaba; Szasz, Andras

    2009-01-01

    Hyperthermia is an emerging complementary method in radiooncology. Despite many positive studies and comprehensive reviews, the method is not widely accepted as a combination to radiotherapy. Modulated electrohyperthermia (mEHT; capacitive, electric field modulated, 13.56 MHz) has been used in clinical practice for almost 2 decades in Germany, Austria and Hungary. This in vivo study in nude mice xenograft tumors compares mEHT with ''classic'' radiative hyperthermia (radHT). Nude mice were xenografted with HT29 human colorectal carcinoma cells. 28 mice in four groups with seven animals each and two tumors per animal (totally 56 tumors) were included in the present study: group 1 as untreated control; group 2 treated with radHT at 42 C; group 3 treated with mEHT at identical 42 C; group 4 treated with mEHT at 38 C (by intensively cooling down the tumor). 24 h after treatment, animals were sacrificed and the tumor cross sections studied by precise morphological methods for the respective relative amount of ''dead'' tumor cells. The effect of mEHT established a double effect as a synergy between the purely thermal (temperature-dependent) and nonthermal (not directly temperature-dependent) effects. The solely thermal enhancement ratio (TER) of cell killing was shown to be 2.9. The field enhancement ratio (FER) at a constant temperature of 42 C was measured as 3.2. Their complex application significantly increased the therapeutic enhancement to 9.4. mEHT had a remarkable cancer cell-killing effect in a nude mice xenograft model. (orig.)

  3. Strong synergy of heat and modulated electromagnetic field in tumor cell killing

    Energy Technology Data Exchange (ETDEWEB)

    Andocs, Gabor [Frederic Joliot Curie National Research Inst. for Radiobiology and Radiohygiene, Budapest (Hungary)]|[St. Istvan Univ., Budapest (Hungary). Dept. of Pharmacology and Toxicology; Renner, Helmut [Klinikum Nuernberg (Germany). Clinic of Radiooncology; Balogh, Lajos [Frederic Joliot Curie National Research Inst. for Radiobiology and Radiohygiene, Budapest (Hungary); Fonyad, Laszlo [Semmelweis Univ., Budapest (Hungary). 1. Dept. of of Pathology and Experimental Cancer Research; Jakab, Csaba [St. Istvan Univ., Budapest (Hungary). Dept. of Pathology; Szasz, Andras [St. Istvan Univ., Goedoelloe (Hungary). Biotechnics Dept.

    2009-02-15

    Hyperthermia is an emerging complementary method in radiooncology. Despite many positive studies and comprehensive reviews, the method is not widely accepted as a combination to radiotherapy. Modulated electrohyperthermia (mEHT; capacitive, electric field modulated, 13.56 MHz) has been used in clinical practice for almost 2 decades in Germany, Austria and Hungary. This in vivo study in nude mice xenograft tumors compares mEHT with 'classic' radiative hyperthermia (radHT). Nude mice were xenografted with HT29 human colorectal carcinoma cells. 28 mice in four groups with seven animals each and two tumors per animal (totally 56 tumors) were included in the present study: group 1 as untreated control; group 2 treated with radHT at 42 C; group 3 treated with mEHT at identical 42 C; group 4 treated with mEHT at 38 C (by intensively cooling down the tumor). 24 h after treatment, animals were sacrificed and the tumor cross sections studied by precise morphological methods for the respective relative amount of 'dead' tumor cells. The effect of mEHT established a double effect as a synergy between the purely thermal (temperature-dependent) and nonthermal (not directly temperature-dependent) effects. The solely thermal enhancement ratio (TER) of cell killing was shown to be 2.9. The field enhancement ratio (FER) at a constant temperature of 42 C was measured as 3.2. Their complex application significantly increased the therapeutic enhancement to 9.4. mEHT had a remarkable cancer cell-killing effect in a nude mice xenograft model. (orig.)

  4. Micropropagation effect on the anti-carcinogenic activitiy of polyphenolics from Mexican oregano (Poliomintha glabrescens Gray) in human colon cancer cells HT-29.

    Science.gov (United States)

    García-Pérez, Enrique; Noratto, Giuliana D; García-Lara, Silverio; Gutiérrez-Uribe, Janet A; Mertens-Talcott, Susanne U

    2013-06-01

    Phenolic extracts obtained from spices are known to have anti-carcinogenic activities but little is known about the effect of micropropagation on these beneficial effects. The main objective of this study was to evaluate the cytotoxic activity of flavonoid-enriched extracts (FEE) from the leaves of wild (WT), in vitro (IN), and ex vitro (EX) grown oregano plants in colon cancer cells HT-29 and the non-cancer cells CCD-18Co. Cell proliferation of HT-29 cells was reduced to 50 % by WT, IN, and EX at concentrations of 4.01, 1.32, and 4.84 mg of gallic acid equivalents (GAE)/L, respectively. In contrast, in CCD-18Co cells, higher concentrations were required for the same cytotoxic effect. At 6 mg GAE/L, WT and IN reduced the production of reactive oxygen species (ROS) of lipopolysaccharides (LPS)-stimulated control cells to 59.89 and 59.43 %, respectively, and EX to 73.89 %. The mRNA of Caspase-3 was increased 1.53-fold when cells were treated with 4 mg GAE/L of IN extract, and tumor necrosis factor receptor superfamily, member 6 (FAS), and BCL2-associated X protein (BAX) mRNA increased 2.55 and 1.53 fold, respectively. Results on protein expression corroborated the apoptotic effects with a significant decrease of B-cell lymphoma 2 (BCL2) expression for all treatments but more remarkable for EX that also showed the most intense signal of BAX. Overall, FEE extracts derived from micropropagation had increased pro-apoptotic effects, however extracts from the in vitro plants produced more efficacy at the transcriptional level while extracts from the ex vitro plant were superior at the traductional level.

  5. Induction of apoptosis by tomato using space mutation breeding in human colon cancer SW480 and HT-29 cells.

    Science.gov (United States)

    Shi, Jiahui; Yang, Bin; Feng, Pan; Li, Duo; Zhu, Jiajin

    2010-03-15

    As far as we know, there have been no reports concerning the functional characteristics of tomatoes using space mutation breeding. The aim of this study was to evaluate the anti-colon cancer effect of tomatoes M1 and M2 using space mutation breeding. In the present study, obvious anti-cancer activity was shown with tomato juice of M1 and M2 and their parent CK treatment in colon cancer cell lines SW480 and HT-29 in cell growth inhibition. In addition, SW480 cells were more sensitive to M1 and M2 than HT-29 cells in cell apoptosis. Furthermore, M1 and M2 induced cell cycle arrest both in G0-G1 and G2/M phases. These data suggest that consumption of tomato using space mutation breeding may provide benefits to inhibit growth of colon cancer cells. Therefore, tomato production using space mutation breeding may be a good candidate for development as a dietary supplement in drug therapy for colon cancer.

  6. Regulatory effect of evodiamine on the malignant biological behaviors and Wnt/β-catenin signaling pathway of colorectal cancer cell lines HT29

    Directory of Open Access Journals (Sweden)

    Yuan-Hui Wang

    2016-04-01

    Full Text Available Objective: To study the regulatory effect of evodiamine on the malignant biological behaviors and Wnt/β-catenin signaling pathway of colorectal cancer cell lines HT29. Methods: Colorectal cancer cell lines HT29 were cultured and divided into blank control group and evodiamine group, and after different treatment, cell viability, proportion of different cell cycle as well as the contents of VEGFA, VEGFB, VEGFC, MMP3, MMP14, Wnt and β-catenin were detected. Results: (1 Cell viability: MTT value of evodiamine group was significantly lower than that of blank control group; (2 Cell cycle: proportion of both S phase and G2/M phase of evodiamine group were lower than those of blank control group, and proportion of G0/ G1 phase was higher than that of blank control group; (3 VEGF and MMP contents: VEGFA, VEGFB, VEGFC, MMP3 and MMP14 contents of evodiamine group were lower than those of blank control group; (4 Wnt/β-catenin signaling pathway: Wnt and β-catenin contents of evodiamine group were lower than those of blank control group. Conclusion: Evodiamine can inhibit the proliferation of colorectal cancer cell lines HT29 and down-regulate the expression of VEGF and MMP, and the effect may be achieved by inhibiting the activation of Wnt/β-catenin signaling pathway.

  7. Effect of carrageenans alone and in combination with casein or lipopolysaccharide on human epithelial intestinal HT-29 cells.

    Science.gov (United States)

    Sokolova, E V; Kuz'mich, A S; Byankina, A O; Yermak, I M

    2017-10-01

    The research described here was focused on the effect on human intestinal epithelial cell monolayers of sulfated red algal polysaccharides (κ-, λ-, and κ/β-carrageenans) alone and in combination with casein or lipopolysaccharide (LPS). HT-29 cells were investigated under normal and stress conditions; stress was induced by exposure to ethanol. Cell viability was monitored with a real-time system. The change in binding properties of negatively sulfated red algal polysaccharides assessed by the measurement of free carrageenans in mixtures with casein or McCoy's 5 A culture medium by means of toluidine blue O. Low sulfate content and the presence of 3,6-anhydogalactose are prerequisites for the recovery of ethanol-exposed HT-29 cells by carrageenans. Analysis of carrageenan binding ability confirmed that casein and LPS should affect carrageenan activity. Whether the combined action of the mucin-containing layer and carrageenans or the action of carrageenans alone was responsible for enhanced cell viability under stress conditions induced by ethanol is a subject for further research. © 2017 Wiley Periodicals Inc. J Biomed Mater Res Part A: 105A: 2843-2850, 2017. © 2017 Wiley Periodicals, Inc.

  8. O-naphthoquinone isolated from Capraria biflora L. induces selective cytotoxicity in tumor cell lines.

    Science.gov (United States)

    de S Wisintainer, G G N; Scola, G; Moura, S; Lemos, T L G; Pessoa, C; de Moraes, M O; Souza, L G S; Roesch-Ely, M; Henriques, J A P

    2015-12-21

    Biflorin is an o-naphthoquinone isolated from the roots of the plant Capraria biflora L. (Scrophulariaceae). In this study, the cytotoxic effects of biflorin were verified, and late apoptosis was detected in various cancer cell lines by in situ analysis. The cytotoxicity was further evaluated exclusively for 48 h of treatment in different tumor and non-tumor cell lines (Hep-2, HeLa, HT-29, A-375, and A-549, and HEK-293, respectively). The results indicated that biflorin induced selective cytotoxicity in tumor cells. HeLa cells were more susceptible to biflorin, followed by HT-29, A-549, A-375, and Hep-2 at all concentrations (range 5-50 μg/mL), and the highest half-maximal inhibitory concentration IC50 (56.01 ± 1.17 μg/mL) was observed in HEK-293 cells. Late apoptotic/necrotic events, observed by in situ immunostaining with Annexin V, varied with each cell line; an increase in late apoptotic events was observed corresponding to the increase in biflorin dosage. Hep-2 cells showed a greater percentage of late apoptotic events among the tumor cell lines when treated with higher concentrations of biflorin (69.63 ± 2.28%). The non-tumor HEK-293 line showed greater resistance to late apoptotic events, as well as a lower level of cytotoxicity (77.69 ± 6.68%) than the tested tumor lines. The data presented indicate that biflorin showed an important, possibly selective, cytotoxicity against tumor cell lines, thereby revealing a promising novel substance with potential anticancer activity for tumor therapy.

  9. Radiosensitivity of four human tumor xenografts. Influence of hypoxia and cell-cell contact

    International Nuclear Information System (INIS)

    Guichard, M.; Dertinger, H.; Malaise, E.P.

    1983-01-01

    Contact effect (CE) and hypoxia have been studied in human tumor cell lines transplanted in athymic nude mice. Four cell lines - one melanoma (Bell) and three colorectal adenocarcinomas (HT29, HRT18, and HCT8) - were studied. Cell survival was determined with an in vivo in vitro colony-forming assay. Survival curves were obtained under three different conditions: (1) tumor cells irradiated in air-breathing mice, (2) tumor cells irradiated in animals asphyxiated for 10 min, and (3) tumor cells plated and irradiated either immediately or 5 hr later. For all cell lines, radiosensitivity appeared to be lower when cells were irradiated in vivo than when they were irradiated in vitro. Only in the case of the HCT8 tumor did the relative in vivo radioresistance seem to be linked to hypoxia; in the other cell lines, hypoxia alone could not account for the lower in vivo radiosensitivity. Our results suggest that a CE plays an important role in the response of human xenografts to irradiation

  10. Stat6 activity-related Th2 cytokine profile and tumor growth advantage of human colorectal cancer cells in vitro and in vivo.

    Science.gov (United States)

    Li, Ben Hui; Xu, Shuang Bing; Li, Feng; Zou, Xiao Guang; Saimaiti, Abudukeyoumu; Simayi, Dilixia; Wang, Ying Hong; Zhang, Yan; Yuan, Jia; Zhang, Wen Jie

    2012-03-01

    Signal transducer and activator of transcription 6 (Stat6) is critical in Th2 polarization of immune cells and active Stat6 activity has been suggested in anti-tumor immunity in animal models. The present study aims at investigating the impact of natural Stat6 activity on tumor microenvironment in human colorectal cancer cells in vitro and in vivo. Using colorectal cancer cell lines HT-29 and Caco-2 whose IL-4/Stat6 activities were known and nude mice as a model, we examined correlative relationships between Stat6 activities and gene expression profiles together with cellular behaviors in vitro and in vivo. HT-29 cells carrying active Stat6 signaling displayed spontaneous expression profiles favoring Th2 cytokines, cell cycle promotion, anti-apoptosis and pro-metastasis with increased mRNA levels of IL-4, IL-13, GATA-3, CDK4, CD44v6 and S100A4 using RT-PCR. In contrast, Caco-2 cells carrying defective Stat6 signaling exhibited spontaneous expression profiles favoring Th1 and Th17 cytokines, cell cycle inhibition, pro-apoptosis and anti-metastasis with elevated mRNA expression of IFNγ, TNFα, IL-12A, IL-17, IL-23, T-bet, CDKN1A, CDKNIB, CDKN2A and NM23-H1. Xenograft tumors of Stat6-active HT-29 cells showed a growth advantage over those of Stat6-defective Caco-2 cells. Furthermore, mice bearing HT-29 tumors expressed increased levels of Th2 cytokines IL-4 and IL-5 in the blood and pro-growth and/or pro-metastasis proteins CDK4 and CD44v6 in the tumor. To the contrary, mice bearing Caco-2 tumors expressed heightened levels of Th1 cytokines IFNγ and TNF in the blood and pro-apoptosis and anti-metastatic proteins p53 and p27(kip1) in the tumor. Colorectal cancer cells carrying active Stat6 signaling may create a microenvironment favoring Th2 cytokines and promoting expression of genes related to pro-growth, pro-metastasis and anti-apoptosis, which leads to a tumor growth advantage in vivo. These findings may imply why Stat6 pathway is constitutively activated in a

  11. Ellagitannins from pomegranate ameliorates 5-fluorouracil-induced intestinal mucositis in rats while enhancing its chemotoxicity against HT-29 colorectal cancer cells through intrinsic apoptosis induction.

    Science.gov (United States)

    Chen, Xiao-Xin; Lam, Kar Ho; Feng, Yibin; Xu, Kai; Sze, Stephen C W; Tang, Chi Wai; Leung, George P H; Lee, Calvin Kai-Fai; Shi, Jun; Yang, Zhijun; Li, Sheng-Tao; Zhang, Zhang-Jin; Zhang, Yanbo

    2018-06-19

    Worldwide, colorectal cancer (CRC) is a deleterious disease causing millions of death annually. 5-Fluorouracil (5-FU) is a first-line chemotherapy for CRC, but chemoresistance and gastrointestinal mucositis limit its efficacy. Polyphenol-rich foods are increasingly popular due to their potential beneficial role in cancer. Ellagitannins is a group of phenolic compounds commonly found in pomegranate, strawberries, raspberries, etc. The objective of this study was to explore whether ellagitannins from pomegranate (PETs) could ameliorate 5-FU-induced intestinal mucositis and enhance its efficacy against CRC. The results showed that PETs (100 mg/kg) counteracted 5-FU-induced intestinal mucositis in rats. The number of apoptotic cells per crypt was reduced from 1.50±0.21 to 0.85±0.18 (P<0.05). Moreover, PETs induced HT-29 CRC cell death through intrinsic apoptosis as demonstrated by dissipation of mitochondrial membrane potential, increased Bax to Bcl-2 ratio, and cleavage of caspase 9 and caspase 3. PETs and 5-FU combination treatments exhibited synergistic cytotoxicity against HT-29 cells with a weighted combination index of 0.3494. PETs (80 µg/mL) and 5-FU (40 µg/mL) treatments for 48 h induced 14.03±0.76% and 16.42±1.15% of HT-29 cells to undergo apoptosis while the combination treatment further increased apoptosis cells to 34.00±1.54% (P<0.05). Combination treatment of the cells also enhanced S phase cell cycle arrest as compared with PETs or 5-FU monotherapy (P<0.05). These results suggest that dietary ellagitannins from pomegranate could alleviate intestinal mucositis in rats induced by 5-FU while enhancing its toxicity against HT-29 cells through potentiation of apoptosis and cell cycle arrest.

  12. Geoditin A Induces Oxidative Stress and Apoptosis on Human Colon HT29 Cells

    Directory of Open Access Journals (Sweden)

    Wing-Keung Liu

    2010-01-01

    Full Text Available Geoditin A, an isomalabaricane triterpene isolated from the marine sponge Geodia japonica, has been demonstrated to dissipate mitochondrial membrane potential, activate caspase 3, decrease cytoplasmic proliferating cell nuclear antigen (PCNA, and induce apoptosis of leukemia cells, but the underlying mechanism remains unclear [1]. In this study, we found fragmentation of Golgi structure, suppression of transferrin receptor expression, production of oxidants, and DNA fragmentation in human colon cancer HT29 cells after treatment with geoditin A for 24 h. This apoptosis was not abrogated by chelation of intracellular iron with salicylaldehyde isonicotinoyl hydrazone (SIH, but suppressed by N-acetylcysteine (NAC, a thiol antioxidant and GSH precursor, indicating that the cytotoxic effect of geoditin A is likely mediated by a NAC-inhibitable oxidative stress. Our results provide a better understanding of the apoptotic properties and chemotherapeutical potential of this marine triterpene.

  13. Dietary compounds that induce cancer preventive phase 2 enzymes activate apoptosis at comparable doses in HT29 colon carcinoma cells.

    Science.gov (United States)

    Kirlin, W G; Cai, J; DeLong, M J; Patten, E J; Jones, D P

    1999-10-01

    Dietary agents that induce glutathione S-transferases and related detoxification systems (Phase 2 enzyme inducers) are thought to prevent cancer by enhancing elimination of chemical carcinogens. The present study shows that compounds of this group (benzyl isothiocyanate, allyl sulfide, dimethyl fumarate, butylated hydroxyanisole) activated apoptosis in human colon carcinoma (HT29) cells in culture over the same concentration ranges that elicited increases in enzyme activity (5-25, 25-100, 10-100, 15-60 micromol/L, respectively). Pretreatment of cells with sodium butyrate, an agent that induces HT29 cell differentiation, resulted in parallel increases in Phase 2 enzyme activities and induction of apoptosis in response to the inducers. Cell death characteristics included apoptotic morphological changes, appearance of cells at sub-G1 phase on flow cytometry, caspase activation, DNA fragmentation and TUNEL-positive staining. The results suggest that dietary Phase 2 inducers may protect against cancer by a mechanism distinct from and in addition to that associated with enhanced elimination of carcinogens. If this occurs in vivo, diets high in such compounds could eliminate precancerous cells by apoptosis at time points well after initial exposure to chemical mutagens and carcinogens.

  14. Piper betle leaf extract enhances the cytotoxicity effect of 5-fluorouracil in inhibiting the growth of HT29 and HCT116 colon cancer cells*

    Science.gov (United States)

    Ng, Pek Leng; Rajab, Nor Fadilah; Then, Sue Mian; Mohd Yusof, Yasmin Anum; Wan Ngah, Wan Zurinah; Pin, Kar Yong; Looi, Mee Lee

    2014-01-01

    Objective: The combination effect of Piper betle (PB) and 5-fluorouracil (5-FU) in enhancing the cytotoxic potential of 5-FU in inhibiting the growth of colon cancer cells was investigated. Methods: HT29 and HCT116 cells were subjected to 5-FU or PB treatment. 5-FU and PB were then combined and their effects on both cell lines were observed after 24 h of treatment. PB-5-FU interaction was elucidated by isobologram analysis. Apoptosis features of the treated cells were revealed by annexin V/PI stain. High-performance liquid chromatography (HPLC) was performed to exclude any possible chemical interaction between the compounds. Results: In the presence of PB extract, the cytotoxicity of 5-FU was observed at a lower dose (IC50 12.5 μmol/L) and a shorter time (24 h) in both cell lines. Both cell lines treated with 5-FU or PB alone induced a greater apoptosis effect compared with the combination treatment. Isobologram analysis indicated that PB and 5-FU interacted synergistically and antagonistically in inhibiting the growth of HT29 and HCT116 cells, respectively. Conclusions: In the presence of PB, a lower dosage of 5-FU is required to achieve the maximum drug effect in inhibiting the growth of HT29 cells. However, PB did not significantly reduce 5-FU dosage in HCT116 cells. Our result showed that this interaction may not solely contribute to the apoptosis pathway. PMID:25091987

  15. Piper betle leaf extract enhances the cytotoxicity effect of 5-fluorouracil in inhibiting the growth of HT29 and HCT116 colon cancer cells.

    Science.gov (United States)

    Ng, Pek Leng; Rajab, Nor Fadilah; Then, Sue Mian; Mohd Yusof, Yasmin Anum; Wan Ngah, Wan Zurinah; Pin, Kar Yong; Looi, Mee Lee

    2014-08-01

    The combination effect of Piper betle (PB) and 5-fluorouracil (5-FU) in enhancing the cytotoxic potential of 5-FU in inhibiting the growth of colon cancer cells was investigated. HT29 and HCT116 cells were subjected to 5-FU or PB treatment. 5-FU and PB were then combined and their effects on both cell lines were observed after 24 h of treatment. PB-5-FU interaction was elucidated by isobologram analysis. Apoptosis features of the treated cells were revealed by annexin V/PI stain. High-performance liquid chromatography (HPLC) was performed to exclude any possible chemical interaction between the compounds. In the presence of PB extract, the cytotoxicity of 5-FU was observed at a lower dose (IC50 12.5 µmol/L) and a shorter time (24 h) in both cell lines. Both cell lines treated with 5-FU or PB alone induced a greater apoptosis effect compared with the combination treatment. Isobologram analysis indicated that PB and 5-FU interacted synergistically and antagonistically in inhibiting the growth of HT29 and HCT116 cells, respectively. In the presence of PB, a lower dosage of 5-FU is required to achieve the maximum drug effect in inhibiting the growth of HT29 cells. However, PB did not significantly reduce 5-FU dosage in HCT116 cells. Our result showed that this interaction may not solely contribute to the apoptosis pathway.

  16. HT-29 and Caco-2 Reporter Cell Lines for Functional Studies of Nuclear Factor Kappa B Activation

    Directory of Open Access Journals (Sweden)

    Giuliana Mastropietro

    2015-01-01

    Full Text Available The NF-κB is a transcription factor which plays a key role in regulating biological processes. In response to signals, NF-κB activation occurs via phosphorylation of its inhibitor, which dissociates from the NF-κB dimer allowing the translocation to the nucleus, inducing gene expression. NF-κB activation has direct screening applications for drug discovery for several therapeutic indications. Thus, pathway-specific reporter cell systems appear as useful tools to screen and unravel the mode of action of probiotics and natural and synthetic compounds. Here, we describe the generation, characterization, and validation of human epithelial reporter cell lines for functional studies of NF-κB activation by different pro- and anti-inflammatory agents. Caco-2 and HT-29 cells were transfected with a pNF-κB-hrGFP plasmid which contains the GFP gene under the control of NF-κB binding elements. Three proinflammatory cytokines (TNF-α, IL-1β, and LPS were able to activate the reporter systems in a dose-response manner, which corresponds to the activation of the NF-κB signaling pathway. Finally, the reporter cell lines were validated using lactic acid bacteria and a natural compound. We have established robust Caco-2-NF-κB-hrGFP and HT-29-NF-κB-hrGFP reporter cell lines which represent a valuable tool for primary screening and identification of bacterial strains and compounds with a potential therapeutic interest.

  17. Protective effect of surface layer proteins isolated from four Lactobacillus strains on hydrogen-peroxide-induced HT-29 cells oxidative stress.

    Science.gov (United States)

    Zhao, Bin-Bin; Meng, Jun; Zhang, Qiu-Xiang; Kang, Ting-Ting; Lu, Rong-Rong

    2017-09-01

    The objective of this study was to explore the antioxidant effect of the surface layer proteins (SLPs) and their mechanism. We investigated four SLPs which were extracted from L. casei zhang, L. rhamnosus, L. gasseri and L. acidophilus NCFM respectively using LiCl. The protective effect of SLPs on H 2 O 2 -induced HT-29 cells oxidative injury was investigated. As results, SLPs (100μg/mL) could significantly mitigate HT-29 cells cytotoxicity, improve the activities of total antioxidant capacity (T-AOC), catalase (CAT) and superoxide dismutase (SOD), decrease the contents of malondialdehyde (MDA) and lactate dehydrogenase (LDH), compared with H 2 O 2 -induced group (Pproteins of caspase-3 and caspase-9 (Pcells induced by H 2 O 2 , and the mechanism could be attributed to SLPs' ability to enhance the activity of the intracellular antioxidant enzyme system, reduce ROS accumulation and to inhibit apoptosis by regulating mitochondrial pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Pharmacological inhibition of radiation induced in vitro tumor cell/endothelium cell interactions and in vivo metastasis processes

    International Nuclear Information System (INIS)

    Herzog, Melanie

    2013-01-01

    Exposure of endothelial cells with ionizing radiation (IR) or treatment with inflammatory cytokines (e. g. TNFα) induces a Rho-GTPase and NF-κB dependent activation of the expression of various cell adhesion molecules, including E-selectin. E-selectin mediates the adhesion of tumor cells (TC) to endothelial cells and is probably involved in the extravasation step of circulating tumor cells. HMG-CoA reductase inhibitors (e. g. lovastatin) inhibit the function of Rho-GTPases and thus are anticipated to attenuate Rho-regulated cell-cell-adhesion as well. This study focuses on the influence of IR and TNFα on the expression of endothelial- and/or tumor cell-specific pro-adhesive factors and whether these effects are influenced by lovastatin. To this end, the effect of IR and TNFα on cell-cell-interactions between human colon carcinoma cells (HT29) and human umbilical vein endothelial cells (HUVEC) was investigated using an ELISA-based cell adhesion-assay. Moreover, the influence of pre-treatment with lovastatin and other types of inhibitors on HUVEC-HT29 adhesion was monitored. Additionally, we investigated the effect of lovastatin on mRNA expression level of different cell adhesion molecules, metastatic factors and DNA-repair genes upon radiation exposure by qRT-PCR. To scrutinize the in vivo relevance of the data obtained, we investigated the effect of total body irradiation (TBI) on the mRNA expression of pro-adhesive factors in BALB/c mice. To analyze tumor cell extravasation, tumor cells were injected into the lateral tail vein of immundeficient mice, followed by total body irradiation (TBI, 4 Gy). After four weeks a large increase of lung metastases was monitored, which could be blocked by preatreatment of the mice with lovastatin, the Rac1-specific small-molecule inhibitor NSC23766 as well as the sLe x -mimetic glycyrrhizin. Summarizing, we provide evidence, that irradiation promotes upregulation of different cell adhesion molecules in vitro and stimulates

  19. Characterization of four clones derived from human adenocarcinoma cell line, HT29, and analysis of their response to sodium butyrate

    Czech Academy of Sciences Publication Activity Database

    Štokrová, Jitka; Šloncová, Eva; Sovová, Vlasta; Kučerová, Dana; Žíla, Vojtěch; Turečková, Jolana; Vojtěchová, Martina; Korb, Jan; Tuháčková, Zdena

    2006-01-01

    Roč. 28, č. 2 (2006), s. 559-565 ISSN 1019-6439 R&D Projects: GA AV ČR(CZ) KJB5052302 Institutional research plan: CEZ:AV0Z50520514 Keywords : adenocarcinoma * HT29 cell line * ultrastructure analysis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.556, year: 2006

  20. Omega-3 fatty acid supplementation in cancer therapy. Does eicosapentanoic acid influence the radiosensitivity of tumor cells?

    Energy Technology Data Exchange (ETDEWEB)

    Manda, Katrin; Kriesen, Stephan; Hildebrandt, Guido [Rostock Univ. (Germany). Dept. of Radiotherapy; Fietkau, Rainer; Klautke, Gunther [Univ. Hospital Erlangen, Erlangen (Germany). Dept. of Radiation Oncology

    2011-02-15

    Purpose: The aim of this study was to evaluate whether the omega-3 polyunsaturated fatty acid cis-5,8,11,14,17-eicosapentanoic acid (EPA) can enhance the radiosensitivity of different human tumor cell lines. Materials and Methods: Colon adenocarcinoma cells HT-29, and two glioblastoma multiforme tumor cells T98G and U251 were cultured under standard conditions. Cell growth was observed during administration with different concentrations of EPA, using it as the free fatty acid dissolved in ethanol or bound to bovine serum albumin. To investigate the influence of EPA (free and bound) on radiosensitivity, tumor cells were pretreated 30 minutes or 24 hours prior to irradiation with the fatty acid. Cell survival was measured by colony-forming assays. Results: When combined with irradiation, incubation with EPA was found to result in enhanced radiosensitivity with substantial variation: while there was strong radiosensitization for HT-29 and U251 cells, almost no effect for T98G cells was observed. A marked radiosensitization was clearly dependent on the treatment schedule. Conclusion: The observations suggest that EPA is not only a nutritional adjuvant but also may be a potential candidate to enhance the efficacy of irradiation on human cancer cells. (orig.)

  1. Down-regulation of 5-HT1B and 5-HT1D receptors inhibits proliferation, clonogenicity and invasion of human pancreatic cancer cells.

    Directory of Open Access Journals (Sweden)

    Nilgun Gurbuz

    Full Text Available Pancreatic ductal adenocarcinoma is characterized by extensive local tumor invasion, metastasis and early systemic dissemination. The vast majority of pancreatic cancer (PaCa patients already have metastatic complications at the time of diagnosis, and the death rate of this lethal type of cancer has increased over the past decades. Thus, efforts at identifying novel molecularly targeted therapies are priorities. Recent studies have suggested that serotonin (5-HT contributes to the tumor growth in a variety of cancers including prostate, colon, bladder and liver cancer. However, there is lack of evidence about the impact of 5-HT receptors on promoting pancreatic cancer. Having considered the role of 5-HT-1 receptors, especially 5-HT1B and 5-HT1D subtypes in different types of malignancies, the aim of this study was to investigate the role of 5-HT1B and 5-HT1D receptors in PaCa growth and progression and analyze their potential as cytotoxic targets. We found that knockdown of 5-HT1B and 5-HT1D receptors expression, using specific small interfering RNA (siRNA, induced significant inhibition of proliferation and clonogenicity of PaCa cells. Also, it significantly suppressed PaCa cells invasion and reduced the activity of uPAR/MMP-2 signaling and Integrin/Src/Fak-mediated signaling, as integral tumor cell pathways associated with invasion, migration, adhesion, and proliferation. Moreover, targeting 5-HT1B and 5-HT1D receptors down-regulates zinc finger ZEB1 and Snail proteins, the hallmarks transcription factors regulating epithelial-mesenchymal transition (EMT, concomitantly with up-regulating of claudin-1 and E-Cadherin. In conclusion, our data suggests that 5-HT1B- and 5-HT1D-mediated signaling play an important role in the regulation of the proliferative and invasive phenotype of PaCa. It also highlights the therapeutic potential of targeting of 5-HT1B/1D receptors in the treatment of PaCa, and opens a new avenue for biomarkers identification

  2. Down-regulation of 5-HT1B and 5-HT1D receptors inhibits proliferation, clonogenicity and invasion of human pancreatic cancer cells.

    Directory of Open Access Journals (Sweden)

    Nilgun Gurbuz

    Full Text Available Pancreatic ductal adenocarcinoma is characterized by extensive local tumor invasion, metastasis and early systemic dissemination. The vast majority of pancreatic cancer (PaCa patients already have metastatic complications at the time of diagnosis, and the death rate of this lethal type of cancer has increased over the past decades. Thus, efforts at identifying novel molecularly targeted therapies are priorities. Recent studies have suggested that serotonin (5-HT contributes to the tumor growth in a variety of cancers including prostate, colon, bladder and liver cancer. However, there is lack of evidence about the impact of 5-HT receptors on promoting pancreatic cancer. Having considered the role of 5-HT-1 receptors, especially 5-HT1B and 5-HT1D subtypes in different types of malignancies, the aim of this study was to investigate the role of 5-HT1B and 5-HT1D receptors in PaCa growth and progression and analyze their potential as cytotoxic targets. We found that knockdown of 5-HT1B and 5-HT1D receptors expression, using specific small interfering RNA (siRNA, induced significant inhibition of proliferation and clonogenicity of PaCa cells. Also, it significantly suppressed PaCa cells invasion and reduced the activity of uPAR/MMP-2 signaling and Integrin/Src/Fak-mediated signaling, as integral tumor cell pathways associated with invasion, migration, adhesion, and proliferation. Moreover, targeting 5-HT1B and 5-HT1D receptors down-regulates zinc finger ZEB1 and Snail proteins, the hallmarks transcription factors regulating epithelial-mesenchymal transition (EMT, concomitantly with up-regulating of claudin-1 and E-Cadherin. In conclusion, our data suggests that 5-HT1B- and 5-HT1D- mediated signaling play an important role in the regulation of the proliferative and invasive phenotype of PaCa. It also highlights the therapeutic potential of targeting of 5-HT1B/1D receptors in the treatment of PaCa, and opens a new avenue for biomarkers identification

  3. Control de la diferenciación celular in vitro en células HT-29 de cáncer colorectal

    OpenAIRE

    Mayo de las Casas, Clara de la Caridad

    2005-01-01

    La línea celular HT-29 M6 es una línea tumoral humana derivada de adenocarcinoma de colon, con capacidad de diferenciación in vitro hacia un fenotipo mucosecretor, obtenida por selección con 10-7 M y 10-6 M de metotrexato, en tratamientos sucesivos, de la línea parental indiferenciada HT-29 (Lesuffleur T, et al, 1990). Nosotros utilizamos esta línea celular como modelo para estudiar el proceso de diferenciación in vitro que ocurre de manera espontánea durante el crecimiento hacia confluencia....

  4. Three-dimensional tumor spheroids for in vitro analysis of bacteria as gene delivery vectors in tumor therapy.

    Science.gov (United States)

    Osswald, Annika; Sun, Zhongke; Grimm, Verena; Ampem, Grace; Riegel, Karin; Westendorf, Astrid M; Sommergruber, Wolfgang; Otte, Kerstin; Dürre, Peter; Riedel, Christian U

    2015-12-12

    Several studies in animal models demonstrated that obligate and facultative anaerobic bacteria of the genera Bifidobacterium, Salmonella, or Clostridium specifically colonize solid tumors. Consequently, these and other bacteria are discussed as live vectors to deliver therapeutic genes to inhibit tumor growth. Therapeutic approaches for cancer treatment using anaerobic bacteria have been investigated in different mouse models. In the present study, solid three-dimensional (3D) multicellular tumor spheroids (MCTS) of the colorectal adenocarcinoma cell line HT-29 were generated and tested for their potential to study prodrug-converting enzyme therapies using bacterial vectors in vitro. HT-29 MCTS resembled solid tumors displaying all relevant features with an outer zone of proliferating cells and hypoxic and apoptotic regions in the core. Upon incubation with HT-29 MCTS, Bifidobacterium bifidum S17 and Salmonella typhimurium YB1 selectively localized, survived and replicated in hypoxic areas inside MCTS. Furthermore, spores of the obligate anaerobe Clostridium sporogenes germinated in these hypoxic areas. To further evaluate the potential of MCTS to investigate therapeutic approaches using bacteria as gene delivery vectors, recombinant bifidobacteria expressing prodrug-converting enzymes were used. Expression of a secreted cytosine deaminase in combination with 5-fluorocytosine had no effect on growth of MCTS due to an intrinsic resistance of HT-29 cells to 5-fluorouracil, i.e. the converted drug. However, a combination of the prodrug CB1954 and a strain expressing a secreted chromate reductase effectively inhibited MCTS growth. Collectively, the presented results indicate that MCTS are a suitable and reliable model to investigate live bacteria as gene delivery vectors for cancer therapy in vitro.

  5. Influence of in vitro supplementation with lipids from conventional and Alpine milk on fatty acid distribution and cell growth of HT-29 cells

    Directory of Open Access Journals (Sweden)

    Dänicke Sven

    2011-08-01

    Full Text Available Abstract Background To date, the influence of milk and dairy products on carcinogenesis remains controversial. However, lipids of ruminant origin such as conjugated linoleic acids (CLA are known to exhibit beneficial effects in vitro and in vivo. The aim of the present study was to determine the influence of milk lipids of different origin and varying quality presenting as free fatty acid (FFA solutions on cellular fatty acid distribution, cellular viability, and growth of human colon adenocarcinoma cells (HT-29. Methods FAME of conventional and Alpine milk lipids (MLcon, MLalp and cells treated with FFA derivatives of milk lipids were analyzed by means of GC-FID and Ag+-HPLC. Cellular viability and growth of the cells were determined by means of CellTiter-Blue®-assay and DAPI-assay (4',6-diamidino-2-phenylindole dihydrochloride, respectively. Results Supplementation with milk lipids significantly decreased viability and growth of HT-29 cells in a dose- and time-dependent manner. MLalp showed a lower SFA/MUFA ratio, a 8 fold increased CLA content, and different CLA profile compared to MLcon but did not demonstrate additional growth-inhibitory effects. In addition, total concentration and fatty acid distribution of cellular lipids were altered. In particular, treatment of the cells yielded highest amounts of two types of milk specific major fatty acids (μg FA/mg cellular protein after 8 h of incubation compared to 24 h; 200 μM of MLcon (C16:0, 206 ± 43, 200 μM of MLalp (C18:1 c9, (223 ± 19. Vaccenic acid (C18:1 t11 contained in milk lipids was converted to c9,t11-CLA in HT-29 cells. Notably, the ratio of t11,c13-CLA/t7,c9-CLA, a criterion for pasture feeding of the cows, was significantly changed after incubation for 8 h with lipids from MLalp (3.6 - 4.8, compared to lipids from MLcon (0.3 - 0.6. Conclusions Natural lipids from conventional and Alpine milk showed similar growth inhibitory effects. However, different changes in cellular

  6. Increased Serotonin Signaling Contributes to the Warburg Effect in Pancreatic Tumor Cells Under Metabolic Stress and Promotes Growth of Pancreatic Tumors in Mice.

    Science.gov (United States)

    Jiang, Shu-Heng; Li, Jun; Dong, Fang-Yuan; Yang, Jian-Yu; Liu, De-Jun; Yang, Xiao-Mei; Wang, Ya-Hui; Yang, Min-Wei; Fu, Xue-Liang; Zhang, Xiao-Xin; Li, Qing; Pang, Xiu-Feng; Huo, Yan-Miao; Li, Jiao; Zhang, Jun-Feng; Lee, Ho-Young; Lee, Su-Jae; Qin, Wen-Xin; Gu, Jian-Ren; Sun, Yong-Wei; Zhang, Zhi-Gang

    2017-07-01

    Desmoplasia and poor vascularity cause severe metabolic stress in pancreatic ductal adenocarcinomas (PDACs). Serotonin (5-HT) is a neuromodulator with neurotransmitter and neuroendocrine functions that contributes to tumorigenesis. We investigated the role of 5-HT signaling in the growth of pancreatic tumors. We measured the levels of proteins that regulate 5-HT synthesis, packaging, and degradation in pancreata from Kras G12D/+ /Trp53 R172H/+ /Pdx1-Cre (KPC) mice, which develop pancreatic tumors, as well as in PDAC cell lines and a tissue microarray containing 81 human PDAC samples. We also analyzed expression levels of proteins involved in 5-HT synthesis and degradation by immunohistochemical analysis of a tissue microarray containing 311 PDAC specimens, and associated expression levels with patient survival times. 5-HT level in 14 matched PDAC tumor and non-tumor tissues were analyzed by ELISA. PDAC cell lines were incubated with 5-HT and cell survival and apoptosis were measured. We analyzed expression of the 5-HT receptor HTR2B in PDAC cells and effects of receptor agonists and antagonists, as well as HTR2B knockdown with small hairpin RNAs. We determined the effects of 5-HT stimulation on gene expression profiles of BxPC-3 cells. Regulation of glycolysis by 5-HT signaling via HTR2B was assessed by immunofluorescence and immunoprecipitation analyses, as well as by determination of the extracellular acid ratio, glucose consumption, and lactate production. Primary PDACs, with or without exposure to SB204741 (a selective antagonist of HTR2B), were grown as xenograft tumors in mice, and SB204741 was administered to tumor-bearing KPC mice; tumor growth and metabolism were measured by imaging analyses. In immunohistochemical analysis of a tissue microarray of PDAC specimens, increased levels of TPH1 and decreased level of MAOA, which regulate 5-HT synthesis and degradation, correlated with stage and size of PDACs and shorter patient survival time. We found levels

  7. In vitro study of alpha 2-adrenoceptor turnover and metabolism using the adenocarcinoma cell line HT29

    International Nuclear Information System (INIS)

    Paris, H.; Taouis, M.; Galitzky, J.

    1987-01-01

    The biosynthesis rate of the receptor was studied in postconfluent HT29 cells, when its density expressed as fmol/mg of cell membrane protein is constant, by following the recovery of the receptor binding capacity after blockade with the non-reversible alpha-adrenergic antagonist benextramine. Study of the inhibition of [ 3 H]yohimbine and [ 3 H]UK-14,304 binding showed that benextramine was a more potent antagonist at alpha 2-adrenoceptor than phenoxybenzamine. The incubation of intact HT29 cells for 30 min in the presence of 10(-5) M benextramine irreversibly blocked more than 95% of the alpha 2-adrenoceptors and totally suppressed the inhibitory effect of UK-14,304 on cyclic AMP production. The blockade appeared specific, since benextramine effects were prevented by alpha 2-adrenergic agents. Moreover, neither vasoactive intestinal polypeptide responsiveness nor other tested aspects of the regulation of the adenylate cyclase was altered by the treatment. Study of the time course of receptor recovery after irreversible blockade indicated that alpha 2-adrenoceptors reappeared in the cells with a monoexponential kinetic. The linearization of the repopulation curve obtained with the labeled antagonist [ 3 H]yohimbine allowed the determination of the rate constant for receptor degradation (k = 0.0268 +/- 0.0025 hr-1) and the rate of receptor synthesis (6.91 +/- 0.64 fmol/mg of cell membrane protein/hr) corresponding to the synthesis of about 500 receptors/cell/hr. The alpha 2-adrenoceptor half-life was 26 +/- 3 hr. Measurement of the biological effects associated to the alpha-adrenoceptor stimulation during the course of receptor recovery indicated a relationship between the number of cell receptors and the percentage of inhibition of the cyclic AMP accumulation induced by forskolin

  8. Cytotoxic Activity of Kenaf Seed Oils from Supercritical Carbon Dioxide Fluid Extraction towards Human Colorectal Cancer (HT29) Cell Lines.

    Science.gov (United States)

    Abd Ghafar, Siti Aisyah; Ismail, Maznah; Saiful Yazan, Latifah; Fakurazi, Sharida; Ismail, Norsharina; Chan, Kim Wei; Md Tahir, Paridah

    2013-01-01

    Kenaf (Hibiscus cannabinus) from the family Malvaceae, is a valuable fiber plant native to India and Africa and is currently planted as the fourth commercial crop in Malaysia. Kenaf seed oil contains alpha-linolenic acid, phytosterol such as β -sitosterol, vitamin E, and other antioxidants with chemopreventive properties. Kenaf seeds oil (KSO) was from supercritical carbon dioxide extraction fluid (SFE) at 9 different permutations of parameters based on range of pressures from 200 to 600 bars and temperature from 40 to 80°C. They were 200/40, 200/60, 200/80, 400/40, 400/60, 400/80, 600/40, 600/60, and 600/80. Extraction from 9 parameters of KSO-SFE was screened for cytotoxicity towards human colorectal cancer cell lines (HT29) and mouse embryonic fibroblast (NIH/3T3) cell lines using MTS assay. KSO-SFE at 600/40 showed the strongest cytotoxicity towards HT29 with IC50 of 200 µg/mL. The IC50 for NIH/3T3 was not detected even at highest concentration employed. Cell cycle analysis showed a significant increase in the accumulation of KSO-SFE-treated cells at sub-G1 phase, indicating the induction of apoptosis by KSO-SFE. Further apoptosis induction was confirmed by Annexin V/PI and AO/PI staining.

  9. DNA Tetrahedron Delivery Enhances Doxorubicin-Induced Apoptosis of HT-29 Colon Cancer Cells

    Science.gov (United States)

    Zhang, Guiyu; Zhang, Zhiyong; Yang, Junen

    2017-08-01

    As a nano-sized drug carrier with the advantage of modifiability and proper biocompatibility, DNA tetrahedron (DNA tetra) delivery is hopeful to enhance the inhibitory efficiency of nontargeted anticancer drugs. In this investigation, doxorubicin (Dox) was assembled to a folic acid-modified DNA tetra via click chemistry to prepare a targeted antitumor agent. Cellular uptake efficiency was measured via fluorescent imaging. Cytotoxicity, inhibition efficiency, and corresponding mechanism on colon cancer cell line HT-29 were evaluated by MTT assay, cell proliferation curve, western blot, and flow cytometry. No cytotoxicity was induced by DNA tetra, but the cellular uptake ratio increased obviously resulting from the DNA tetra-facilitated penetration through cellular membrane. Accordingly, folic acid-DNA tetra-Dox markedly increased the antitumor efficiency with increased apoptosis levels. In details, 100 μM was the effective concentration and a 6-h incubation period was needed for apoptosis induction. In conclusion, nano-sized DNA tetrahedron was a safe and effective delivery system for Dox and correspondingly enhanced the anticancer efficiency.

  10. Poly-γ-Glutamic Acid Induces Apoptosis via Reduction of COX-2 Expression in TPA-Induced HT-29 Human Colorectal Cancer Cells

    Directory of Open Access Journals (Sweden)

    Eun Ju Shin

    2015-04-01

    Full Text Available Poly-γ-glutamic acid (PGA is one of the bioactive compounds found in cheonggukjang, a fast-fermented soybean paste widely utilized in Korean cooking. PGA is reported to have a number of beneficial health effects, and interestingly, it has been identified as a possible anti-cancer compound through its ability to promote apoptosis in cancer cells, although the precise molecular mechanisms remain unclear. Our findings demonstrate that PGA inhibits the pro-proliferative functions of the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA, a known chemical carcinogen in HT-29 human colorectal cancer cells. This inhibition was accompanied by hallmark apoptotic phenotypes, including DNA fragmentation and the cleavage of poly (ADP-ribose polymerase (PARP and caspase 3. In addition, PGA treatment reduced the expression of genes known to be overexpressed in colorectal cancer cells, including cyclooxygenase 2 (COX-2 and inducible nitric oxide synthase (iNOS. Lastly, PGA promoted activation of 5' adenosine monophosphate-activated protein (AMPK in HT-29 cells. Taken together, our results suggest that PGA treatment enhances apoptosis in colorectal cancer cells, in part by modulating the activity of the COX-2 and AMPK signaling pathways. These anti-cancer functions of PGA make it a promising compound for future study.

  11. Sp1 is a transcription repressor to stanniocalcin-1 expression in TSA-treated human colon cancer cells, HT29.

    Science.gov (United States)

    Law, Alice Y S; Yeung, B H Y; Ching, L Y; Wong, Chris K C

    2011-08-01

    Our previous study demonstrated that, stanniocalcin-1 (STC1) was a target of histone deacetylase (HDAC) inhibitors and was involved in trichostatin A (TSA) induced apoptosis in the human colon cancer cells, HT29. In this study, we reported that the transcriptional factor, specificity protein 1 (Sp1) in association with retinoblastoma (Rb) repressed STC1 gene transcription in TSA-treated HT29 cells. Our data demonstrated that, a co-treatment of the cells with TSA and Sp1 inhibitor, mithramycin A (MTM) led to a marked synergistic induction of STC1 transcript levels, STC1 promoter (1 kb)-driven luciferase activity and an increase of apoptotic cell population. The knockdown of Sp1 gene expression in TSA treated cells, revealed the repressor role of Sp1 in STC1 transcription. Using a protein phosphatase inhibitor okadaic acid (OKA), an increase of Sp1 hyperphosphorylation and so a reduction of its transcriptional activity, led to a significant induction of STC1 gene expression. Chromatin immunoprecipitation (ChIP) assay revealed that Sp1 binding on STC1 proximal promoter in TSA treated cells. The binding of Sp1 to STC1 promoter was abolished by the co-treatment of MTM or OKA in TSA-treated cells. Re-ChIP assay illustrated that Sp1-mediated inhibition of STC1 transcription was associated with the recruitment of another repressor molecule, Rb. Collectively our findings identify STC1 is a downstream target of Sp1. Copyright © 2011 Wiley-Liss, Inc.

  12. Double-stabilized neurotensin analogues as potential radiopharmaceuticals for NTR-positive tumors.

    Science.gov (United States)

    García-Garayoa, Elisa; Maes, Veronique; Bläuenstein, Peter; Blanc, Alain; Hohn, Alexander; Tourwé, Dirk; Schubiger, P August

    2006-05-01

    Overexpression of neurotensin (NT) receptors in exocrine pancreatic cancer and other neuroendocrine cancers make them interesting targets for tumor imaging and therapy. Modifications at the cleavage bonds 8-9 and 11-12 led to the synthesis of NT-XII, NT-XIII and NT-XVIII, three new stabilized analogues. (NalphaHis)Ac was coupled to the N-terminus for labeling with [(99m)Tc]-tricarbonyl. Stability was tested in vitro in human plasma and HT-29 cells. Binding to NT1 receptors and internalization/efflux were analyzed in intact HT-29 cells. Biodistribution studies were performed in nude mice bearing HT-29 xenografts. All analogues were very stable in human plasma, with half-lives of 20-21 days. Degradation in HT-29 cells was more rapid (t(1/2) of 6.5, 5 and 2.5 h for NT-XII, NT-XIII and NT-XVIII, respectively). They also showed high affinity and specificity for NT1 receptors. Bound activity was rapidly internalized at 37 degrees C. The pattern of externalization was different. NT-XII was released more slowly than NT-XIII and NT-XVIII (half of the activity still inside the cells after 24 h). Bigger differences were found in the biodistribution studies. NT-XII showed the highest tumor uptake as well as the best tumor to nontumor ratios. The modifications introduced in NT(8-13) increased plasma stability, maintaining unaffected the in vitro binding properties. The best biodistribution corresponded to NT-XII, which shows to be a good candidate for NT1 receptors overexpressing tumors. First clinical trials are ongoing.

  13. Effect of Uncaria tomentosa Extract on Apoptosis Triggered by Oxaliplatin Exposure on HT29 Cells

    Directory of Open Access Journals (Sweden)

    Liliane Z. de Oliveira

    2014-01-01

    Full Text Available Background/Aim. The use of herbal products as a supplement to minimize the effects of chemotherapy for cancer treatment requires further attention with respect to the activity and toxicity of chemotherapy. Uncaria tomentosa extract, which contains oxindole alkaloids, is one of these herbal products. The objective of this study was to evaluate whether Uncaria tomentosa extract modulates apoptosis induced by chemotherapy exposure. Materials and Methods. Colorectal adenocarcinoma cells (HT29 cells were grown in the presence of oxaliplatin and/or Uncaria tomentosa extract. Results. The hydroalcoholic extract of Uncaria tomentosa enhanced chemotherapy-induced apoptosis, with an increase in the percentage of Annexin positive cells, an increase in caspase activities, and an increase of DNA fragments in culture of the neoplastic cells. Moreover, antioxidant activity may be related to apoptosis. Conclusion. Uncaria tomentosa extract has a role for cancer patients as a complementary therapy. Further studies evaluating these beneficial effects with other chemotherapy drugs are recommended.

  14. Portulaca oleracea extract can inhibit nodule formation of colon cancer stem cells by regulating gene expression of the Notch signal transduction pathway.

    Science.gov (United States)

    Jin, Heiying; Chen, Li; Wang, Shuiming; Chao, Deng

    2017-07-01

    To investigate whether Portulaca oleracea extract affects tumor formation in colon cancer stem cells and its chemotherapy sensitivity. In addition, to analyze associated genetic changes within the Notch signal transduction pathway. Serum-free cultures of colon cancer cells (HT-29) and HT-29 cancer stem cells were treated with the chemotherapeutic drug 5-fluorouracil to assess sensitivity. Injections of the stem cells were also given to BALB/c mice to confirm tumor growth and note its characteristics. In addition, the effect of different concentrations of P. oleracea extract was tested on the growth of HT-29 colon cancer cells and HT-29 cancer stem cells, as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. The effects of P. oleracea extract on the expression of β-catenin, Notch1, and Notch2 in the HT-29 cells were studied using reverse transcription polymerase chain reaction and Western blotting. The tumor volume of the HT29 cells was two times larger than that of HT29 cancer stem cells. Treatment with P. oleracea extract inhibited the proliferation of both HT-29 cancer cells and HT-29 cancer stem cells at doses from 0.07 to 2.25 µg/mL. Apoptosis of HT-29 cancer cells and HT-29 cancer stem cells was assessed by flow cytometry; it was enhanced by the addition of P. oleracea extract. Finally, treatment with P. oleracea extract significantly downregulated the expression of the Notch1 and β-catenin genes in both cell types. The results of this study show that P. oleracea extract inhibits the growth of colon cancer stem cells in a dose-dependent manner. Furthermore, it inhibits the expression of the Notch1 and β-catenin genes. Taken together, this suggests that it may elicit its effects through regulatory and target genes that mediate the Notch signal transduction pathway.

  15. Cytotoxic Activity of Kenaf Seed Oils from Supercritical Carbon Dioxide Fluid Extraction towards Human Colorectal Cancer (HT29 Cell Lines

    Directory of Open Access Journals (Sweden)

    Siti Aisyah Abd Ghafar

    2013-01-01

    Full Text Available Kenaf (Hibiscus cannabinus from the family Malvaceae, is a valuable fiber plant native to India and Africa and is currently planted as the fourth commercial crop in Malaysia. Kenaf seed oil contains alpha-linolenic acid, phytosterol such as β-sitosterol, vitamin E, and other antioxidants with chemopreventive properties. Kenaf seeds oil (KSO was from supercritical carbon dioxide extraction fluid (SFE at 9 different permutations of parameters based on range of pressures from 200 to 600 bars and temperature from 40 to 80°C. They were 200/40, 200/60, 200/80, 400/40, 400/60, 400/80, 600/40, 600/60, and 600/80. Extraction from 9 parameters of KSO-SFE was screened for cytotoxicity towards human colorectal cancer cell lines (HT29 and mouse embryonic fibroblast (NIH/3T3 cell lines using MTS assay. KSO-SFE at 600/40 showed the strongest cytotoxicity towards HT29 with IC50 of 200 µg/mL. The IC50 for NIH/3T3 was not detected even at highest concentration employed. Cell cycle analysis showed a significant increase in the accumulation of KSO-SFE-treated cells at sub-G1 phase, indicating the induction of apoptosis by KSO-SFE. Further apoptosis induction was confirmed by Annexin V/PI and AO/PI staining.

  16. 1-(2,6-Dihydroxy-4-methoxyphenyl-2-(4-hydroxyphenyl Ethanone-Induced Cell Cycle Arrest in G1/G0 in HT-29 Cells Human Colon Adenocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Ma Ma Lay

    2014-01-01

    Full Text Available 1-(2,6-Dihydroxy-4-methoxyphenyl-2-(4-hydroxyphenyl ethanone (DMHE was isolated from the ethyl acetate fraction of Phaleria macrocarpa (Scheff. Boerl fruits and the structure confirmed by GC-MS (gas chromatography-mass spectrometry and NMR (nuclear magnetic resonance analysis. This compound was tested on the HT-29 human colon adenocarcinoma cell line using MTT (method of transcriptional and translational cell proliferation assay. The results of MTT assay showed that DMHE exhibited good cytotoxic effect on HT-29 cells in a dose- and time-dependent manner but no cytotoxic effect on the MRC-5 cell line after 72 h incubation. Morphological features of apoptotic cells upon treatment by DMHE, e.g., cell shrinkage and membrane blebbing, were examined by an inverted and phase microscope. Other features, such as chromatin condension and nuclear fragmentation were studied using acridine orange and propidium iodide staining under the fluorescence microscope. Future evidence of apoptosis/necrosis was provided by result fromannexin V-FITC/PI (fluorescein-isothiocyanate/propidium iodide staining revealed the percentage of early apoptotic, late apoptotic, necrotic and live cells in a dose- and time-dependent manner using flow cytometry. Cell cycle analysis showed G0/G1 arrest in a time-dependent manner. A western blot analysis indicated that cell death might be associated with the up-regulation of the pro-apoptotic proteins Bax PUMA. However, the anit-apotptic proteins Bcl-2, Bcl-xL, and Mcl-1 were also found to increase in a time-dependent manner. The expression of the pro-apoptotic protein Bak was not observed.

  17. Pyruvate induces transient tumor hypoxia by enhancing mitochondrial oxygen consumption and potentiates the anti-tumor effect of a hypoxia-activated prodrug TH-302.

    Directory of Open Access Journals (Sweden)

    Yoichi Takakusagi

    Full Text Available BACKGROUND: TH-302 is a hypoxia-activated prodrug (HAP of bromo isophosphoramide mustard that is selectively activated within hypoxic regions in solid tumors. Our recent study showed that intravenously administered bolus pyruvate can transiently induce hypoxia in tumors. We investigated the mechanism underlying the induction of transient hypoxia and the combination use of pyruvate to potentiate the anti-tumor effect of TH-302. METHODOLOGY/RESULTS: The hypoxia-dependent cytotoxicity of TH-302 was evaluated by a viability assay in murine SCCVII and human HT29 cells. Modulation in cellular oxygen consumption and in vivo tumor oxygenation by the pyruvate treatment was monitored by extracellular flux analysis and electron paramagnetic resonance (EPR oxygen imaging, respectively. The enhancement of the anti-tumor effect of TH-302 by pyruvate treatment was evaluated by monitoring the growth suppression of the tumor xenografts inoculated subcutaneously in mice. TH-302 preferentially inhibited the growth of both SCCVII and HT29 cells under hypoxic conditions (0.1% O2, with minimal effect under aerobic conditions (21% O2. Basal oxygen consumption rates increased after the pyruvate treatment in SCCVII cells in a concentration-dependent manner, suggesting that pyruvate enhances the mitochondrial respiration to consume excess cellular oxygen. In vivo EPR oxygen imaging showed that the intravenous administration of pyruvate globally induced the transient hypoxia 30 min after the injection in SCCVII and HT29 tumors at the size of 500-1500 mm(3. Pretreatment of SCCVII tumor bearing mice with pyruvate 30 min prior to TH-302 administration, initiated with small tumors (∼ 550 mm(3, significantly delayed tumor growth. CONCLUSIONS/SIGNIFICANCE: Our in vitro and in vivo studies showed that pyruvate induces transient hypoxia by enhancing mitochondrial oxygen consumption in tumor cells. TH-302 therapy can be potentiated by pyruvate pretreatment if started at the

  18. Pyruvate induces transient tumor hypoxia by enhancing mitochondrial oxygen consumption and potentiates the anti-tumor effect of a hypoxia-activated prodrug TH-302.

    Science.gov (United States)

    Takakusagi, Yoichi; Matsumoto, Shingo; Saito, Keita; Matsuo, Masayuki; Kishimoto, Shun; Wojtkowiak, Jonathan W; DeGraff, William; Kesarwala, Aparna H; Choudhuri, Rajani; Devasahayam, Nallathamby; Subramanian, Sankaran; Munasinghe, Jeeva P; Gillies, Robert J; Mitchell, James B; Hart, Charles P; Krishna, Murali C

    2014-01-01

    TH-302 is a hypoxia-activated prodrug (HAP) of bromo isophosphoramide mustard that is selectively activated within hypoxic regions in solid tumors. Our recent study showed that intravenously administered bolus pyruvate can transiently induce hypoxia in tumors. We investigated the mechanism underlying the induction of transient hypoxia and the combination use of pyruvate to potentiate the anti-tumor effect of TH-302. The hypoxia-dependent cytotoxicity of TH-302 was evaluated by a viability assay in murine SCCVII and human HT29 cells. Modulation in cellular oxygen consumption and in vivo tumor oxygenation by the pyruvate treatment was monitored by extracellular flux analysis and electron paramagnetic resonance (EPR) oxygen imaging, respectively. The enhancement of the anti-tumor effect of TH-302 by pyruvate treatment was evaluated by monitoring the growth suppression of the tumor xenografts inoculated subcutaneously in mice. TH-302 preferentially inhibited the growth of both SCCVII and HT29 cells under hypoxic conditions (0.1% O2), with minimal effect under aerobic conditions (21% O2). Basal oxygen consumption rates increased after the pyruvate treatment in SCCVII cells in a concentration-dependent manner, suggesting that pyruvate enhances the mitochondrial respiration to consume excess cellular oxygen. In vivo EPR oxygen imaging showed that the intravenous administration of pyruvate globally induced the transient hypoxia 30 min after the injection in SCCVII and HT29 tumors at the size of 500-1500 mm(3). Pretreatment of SCCVII tumor bearing mice with pyruvate 30 min prior to TH-302 administration, initiated with small tumors (∼ 550 mm(3)), significantly delayed tumor growth. Our in vitro and in vivo studies showed that pyruvate induces transient hypoxia by enhancing mitochondrial oxygen consumption in tumor cells. TH-302 therapy can be potentiated by pyruvate pretreatment if started at the appropriate tumor size and oxygen concentration.

  19. Epithelial-mesenchymal transition increases tumor sensitivity to COX-2 inhibition by apricoxib.

    Science.gov (United States)

    Kirane, Amanda; Toombs, Jason E; Larsen, Jill E; Ostapoff, Katherine T; Meshaw, Kathryn R; Zaknoen, Sara; Brekken, Rolf A; Burrows, Francis J

    2012-09-01

    Although cyclooxygenase-2 (COX-2) inhibitors, such as the late stage development drug apricoxib, exhibit antitumor activity, their mechanisms of action have not been fully defined. In this study, we characterized the mechanisms of action of apricoxib in HT29 colorectal carcinoma. Apricoxib was weakly cytotoxic toward naive HT29 cells in vitro but inhibited tumor growth markedly in vivo. Pharmacokinetic analyses revealed that in vivo drug levels peaked at 2-4 µM and remained sufficient to completely inhibit prostaglandin E(2) production, but failed to reach concentrations cytotoxic for HT29 cells in monolayer culture. Despite this, apricoxib significantly inhibited tumor cell proliferation and induced apoptosis without affecting blood vessel density, although it did promote vascular normalization. Strikingly, apricoxib treatment induced a dose-dependent reversal of epithelial-mesenchymal transition (EMT), as shown by robust upregulation of E-cadherin and the virtual disappearance of vimentin and ZEB1 protein expression. In vitro, either anchorage-independent growth conditions or forced EMT sensitized HT29 and non-small cell lung cancer cells to apricoxib by 50-fold, suggesting that the occurrence of EMT may actually increase the dependence of colon and lung carcinoma cells on COX-2. Taken together, these data suggest that acquisition of mesenchymal characteristics sensitizes carcinoma cells to apricoxib resulting in significant single-agent antitumor activity.

  20. Growth and adhesion to HT-29 cells inhibition of Gram-negatives by Bifidobacterium longum BB536 e Lactobacillus rhamnosus HN001 alone and in combination.

    Science.gov (United States)

    Inturri, R; Stivala, A; Furneri, P M; Blandino, G

    2016-12-01

    The aim of this study was to test the inhibitory effect of supernatants of broth cultures of Bifidobacterium longum BB536 and Lactobacillus rhamnosus HN001, both individually and in combination, against Gram-negative strains (uropathogens, enteropathogens and a reference strain). Moreover, in vitro protection of B. longum BB536 and L. rhamnosus HN001, both individually and in combination, against pathogen adhesion to HT-29 cell line, was investigated. The inhibitory activity was performed by the agar diffusion test and in vitro antagonistic activity against pathogen adhesion to human epithelial intestinal HT-29 cells was performed using standardized culture techniques. The study showed that B. longum BB536 and L. rhamnosus HN001, individually and in combination have inhibitory activity against the majority of the Gram negative strains tested. Furthermore, the results showed that both probiotic strains have a good capacity to inhibit pathogenic adhesion to HT-29 cells. Moreover, the ability of B. longum BB536 and L. rhamnosus HN001 to inhibit pathogenic adhesion increased when they were used in combination. The combination of B. longum BB536 and L. rhamnosus HN001 showed inhibitory activity against Gram-negatives and an improved ability to reduce their adhesion properties and to compete with them. The simultaneous presence of the two-probiotic strains could promote competitive mechanisms able to reduce the adhesion properties of pathogen strains and have an important ecological role within the highly competitive environment of the human gut.

  1. Double-stabilized neurotensin analogues as potential radiopharmaceuticals for NTR-positive tumors

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Garayoa, Elisa [Center for Radiopharmaceutical Science, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)]. E-mail: elisa.garcia@psi.ch; Maes, Veronique [Vrije Universiteit Brussel, Department of Organic Chemistry, B-1050 Brussel (Belgium); Blaeuenstein, Peter [Center for Radiopharmaceutical Science, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Blanc, Alain [Center for Radiopharmaceutical Science, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Hohn, Alexander [Center for Radiopharmaceutical Science, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Tourwe, Dirk [Vrije Universiteit Brussel, Department of Organic Chemistry, B-1050 Brussel (Belgium); Schubiger, P. August [Center for Radiopharmaceutical Science, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

    2006-05-15

    Introduction: Overexpression of neurotensin (NT) receptors in exocrine pancreatic cancer and other neuroendocrine cancers make them interesting targets for tumor imaging and therapy. Modifications at the cleavage bonds 8-9 and 11-12 led to the synthesis of NT-XII, NT-XIII and NT-XVIII, three new stabilized analogues. (N{alpha}His)Ac was coupled to the N-terminus for labeling with [{sup 99m}Tc]-tricarbonyl. Methods: Stability was tested in vitro in human plasma and HT-29 cells. Binding to NT1 receptors and internalization/efflux were analyzed in intact HT-29 cells. Biodistribution studies were performed in nude mice bearing HT-29 xenografts. Results: All analogues were very stable in human plasma, with half-lives of 20-21 days. Degradation in HT-29 cells was more rapid (t {sub 1/2} of 6.5, 5 and 2.5 h for NT-XII, NT-XIII and NT-XVIII, respectively). They also showed high affinity and specificity for NT1 receptors. Bound activity was rapidly internalized at 37{sup o}C. The pattern of externalization was different. NT-XII was released more slowly than NT-XIII and NT-XVIII (half of the activity still inside the cells after 24 h). Bigger differences were found in the biodistribution studies. NT-XII showed the highest tumor uptake as well as the best tumor to nontumor ratios. Conclusion: The modifications introduced in NT(8-13) increased plasma stability, maintaining unaffected the in vitro binding properties. The best biodistribution corresponded to NT-XII, which shows to be a good candidate for NT1 receptors overexpressing tumors. First clinical trials are ongoing.

  2. Double-stabilized neurotensin analogues as potential radiopharmaceuticals for NTR-positive tumors

    International Nuclear Information System (INIS)

    Garcia-Garayoa, Elisa; Maes, Veronique; Blaeuenstein, Peter; Blanc, Alain; Hohn, Alexander; Tourwe, Dirk; Schubiger, P. August

    2006-01-01

    Introduction: Overexpression of neurotensin (NT) receptors in exocrine pancreatic cancer and other neuroendocrine cancers make them interesting targets for tumor imaging and therapy. Modifications at the cleavage bonds 8-9 and 11-12 led to the synthesis of NT-XII, NT-XIII and NT-XVIII, three new stabilized analogues. (NαHis)Ac was coupled to the N-terminus for labeling with [ 99m Tc]-tricarbonyl. Methods: Stability was tested in vitro in human plasma and HT-29 cells. Binding to NT1 receptors and internalization/efflux were analyzed in intact HT-29 cells. Biodistribution studies were performed in nude mice bearing HT-29 xenografts. Results: All analogues were very stable in human plasma, with half-lives of 20-21 days. Degradation in HT-29 cells was more rapid (t 1/2 of 6.5, 5 and 2.5 h for NT-XII, NT-XIII and NT-XVIII, respectively). They also showed high affinity and specificity for NT1 receptors. Bound activity was rapidly internalized at 37 o C. The pattern of externalization was different. NT-XII was released more slowly than NT-XIII and NT-XVIII (half of the activity still inside the cells after 24 h). Bigger differences were found in the biodistribution studies. NT-XII showed the highest tumor uptake as well as the best tumor to nontumor ratios. Conclusion: The modifications introduced in NT(8-13) increased plasma stability, maintaining unaffected the in vitro binding properties. The best biodistribution corresponded to NT-XII, which shows to be a good candidate for NT1 receptors overexpressing tumors. First clinical trials are ongoing

  3. In vitro study of the effects of radio frequency generated for plasma in neoplastic cells HT-29

    International Nuclear Information System (INIS)

    Andrighetto, Daniela; Dornelles, Eduardo Bortoluzzi; Cruz, Ivana Beatrice Manica da; Lüdke, Everton

    2014-01-01

    The goal of this study is to develop an in vitro irradiation cell system with controllable irradiation intensities of 27 MHz produced by an argon plasma column with variable amplitude modulation in the 100-700 kHz range. This paper presents and discusses a proposed experiment, with toxicity analysis (DNA Picogreen®) and cell viability (MTT assay) in the radiation-induced HT-29 cell line (colon adenocarcinoma). The data allow us to observe that cellular toxicity effects may occur with exposure to fields produced by argon plasma with intensities on the order of at least 3.2 W / cm2 and exposure times above 3.5 hours continuously. An analysis of cell populations for cell toxicity tests using the Student's t-test did not show significant changes (p 0.34). Cytotoxic effects due to the destruction of cell wall by heating the samples were not detected in any of the tests

  4. Cytotoxic effects of Urtica dioica radix on human colon (HT29) and gastric (MKN45) cancer cells mediated through oxidative and apoptotic mechanisms.

    Science.gov (United States)

    Ghasemi, S; Moradzadeh, M; Mousavi, S H; Sadeghnia, H R

    2016-10-15

    Defects in the apoptotic pathways are responsible for both the colorectal cancer pathogenesis and resistance to therapy. In this study, we examined the level of cellular oxidants, cytotoxicity and apoptosis induced by hydroalcoholic extract of U. dioica radix (0-2000 µg/mL) and oxaliplatin (0-1000 µg/mL, as positive control) in human gastric (MKN45) and colon (HT29) cancer, as well as normal human foreskin fibroblast (HFF) cells. Exposure to U. dioica or oxaliplatin showed a concentration dependent suppression in cell survival with IC50 values of 24.7, 249.9 and 857.5 µg/mL for HT29, MKN45 and HFF cells after 72 h treatment, respectively. ROS formation and lipid peroxidation were also concentration-dependently increased following treatment with U. dioica, similar to oxaliplatin. In addition, the number of apoptotic cells significantly increased concomitantly with concentration of U. dioica as compared with control cells, which is similar to oxaliplatin and serum-deprived cancer cells. In conclusion, the present study demonstrated that U. dioica inhibited proliferation of gastric and colorectal cancer cells while posing no significant toxic effect on normal cells. U. dioica not only increased levels of oxidants, but also induced concomitant increase of apoptosis. The precise signaling pathway by which U. dioica induce apoptosis needs further research.

  5. Formation of hydrogen peroxide in cell culture media by apple polyphenols and its effect on antioxidant biomarkers in the colon cell line HT-29.

    Science.gov (United States)

    Bellion, Phillip; Olk, Melanie; Will, Frank; Dietrich, Helmut; Baum, Matthias; Eisenbrand, Gerhard; Janzowski, Christine

    2009-10-01

    Beneficial health effects of diets containing fruits have partly been attributed to polyphenols which display a spectrum of bioactive effects, including antioxidant activity. However, polyphenols can also exert prooxidative effects in vitro. In this study, polyphenol-mediated hydrogen peroxide (H(2)O(2)) formation was determined after incubation of apple juice extracts (AEs) and polyphenols in cell culture media. Effects of extracellular H(2)O(2 )on total glutathione (tGSH; =GSH + GSSG) and cellular reactive oxygen species (ROS) level of HT-29 cells were studied by coincubation +/- catalase (CAT). AEs ( > or =30 microg/mL) significantly generated H(2)O(2) in DMEM, depending on their composition. Similarly, H(2)O(2) was measured for individual apple polyphenols/degradation products (phenolic acids > epicatechin, flavonols > dihydrochalcones). Highest concentrations were generated by compounds bearing the o-catechol moiety. H(2)O(2) formation was found to be pH dependent; addition of CAT caused a complete decomposition of H(2)O(2) whereas superoxide dismutase was less/not effective. At incubation of HT-29 cells with quercetin (1-100 microM), generated H(2)O(2) slightly contributed to antioxidant cell protection by modulation of tGSH- and ROS-level. In conclusion, H(2)O(2) generation in vitro by polyphenols has to be taken into consideration when interpreting results of such cell culture experiments. Unphysiologically high polyphenol concentrations, favoring substantial H(2)O(2 )formation, are not expected to be met in vivo, even under conditions of high end nutritional uptake.

  6. Biogenic Synthesis, Characterization and Evaluation of Silver Nanoparticles from Aspergillus niger JX556221 Against Human Colon Cancer Cell Line HT-29.

    Science.gov (United States)

    Chengzheng, Wang; Jiazhi, Wen; Shuangjiang, Chen; Swamy, Mallappa Kumara; Sinniah, Uma Rani; Akhtar, Mohd Sayeed; Umar, Ahmad

    2018-05-01

    Nanobiotechnology has emerged as a promising technology to develop new therapeutically active nanomaterials. The present study was aimed to biosynthesize AgNPs extracellularly using Aspergillus niger JX556221 fungal extract and to evaluate their anticancer potential against colon cancer cell line, HT-29. UV-visible spectral characterization of the synthesized AgNPs showed higher absorption peak at 440 nm wavelength. Transmission Electron Microscopy (TEM) analysis revealed the monodispersed nature of synthesized AgNPs occurring in spherical shape with a size in the range of 20-25 nm. Further, characterization using Energy Dispersive Spectroscopy (EDX) confirmed the face-centred cubic crystalline structure of metallic AgNPs. FTIR data revealed the occurrence of various phytochemicals in the cell free fungal extract which substantiated the fungal extract mediated AgNPs synthesis. The cytotoxic effect of AgNPs was studied by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results evidenced the cytotoxic effect of AgNPs on HT-29 cell lines in a dose dependent manner. The highest activity was found at 100 μg/ml concentration after 24 h of incubation. Use of propidium iodide staining examination method confirmed the cytotoxic effect of AgNPs through inducing cell apoptosis. AgNPs cytotoxicity was found to be through elevating reactive oxygen species (ROS), and caspase-3 activation resulting in induced apoptosis. Therefore, this research finding provides an insight towards the development of novel anticancer agents using biological sources.

  7. Chemopreventive Potential of Powdered Red Wine Pomace Seasonings against Colorectal Cancer in HT-29 Cells.

    Science.gov (United States)

    Del Pino-García, Raquel; Rivero-Pérez, María D; González-SanJosé, María L; Ortega-Heras, Miriam; García Lomillo, Javier; Muñiz, Pilar

    2017-01-11

    This study evaluates the antiproliferative and antigenotoxic actions of powdered red wine pomace seasonings (Sk-S, seedless; W-S, whole; Sd-S, seeds). In vitro gastrointestinal digested and colonic fermented fractions of the seasonings were used as cell treatments. Phenolic acids from Sk-S showed the highest bioaccessibility in the small intestine, whereas polyphenols contained in Sd-S might be the most fermentable in the colon. Dietary fiber from Sk-S was the best substrate for short chain fatty acids production by gut microbiota. Colon cancerous (HT-29) cell viability was inhibited by 50% (IC 50 values) at treatment concentrations ranging from 845 (Sk-S) to 1085 (Sd-S) μg/mL prior digestion, but all digested fractions exhibited similar antiproliferative activities (mean IC 50 = 814 μg/mL). Oxidative DNA damage in cells was also attenuated by the treatments (200 μg/mL, 24 h preincubation), with all colonic fermented fractions displaying similar genoprotective action. These results suggest the potential of red wine pomace seasonings as chemopreventive agents in colorectal cancer.

  8. Primula auriculata Extracts Exert Cytotoxic and Apoptotic Effects against HT-29 Human Colon Adenocarcinoma Cells.

    Science.gov (United States)

    Behzad, Sahar; Ebrahim, Karim; Mosaddegh, Mahmoud; Haeri, Ali

    2016-01-01

    Primula auriculata (Tootia) is one of the most important local medicinal plants in Hamedan district, Iran. To investigate cytotoxicity and apoptosis induction of crude methanolic extract and different fraction of it, we compared several methods on HT-29 human colon Adenocarcinoma cells. Cancer cell proliferation was measured by 3-(4, 5‑dimethylthiazolyl)2, 5‑diphenyl‑tetrazolium bromide (MTT) assay and apoptosis induction was analyzed by fluorescence microscopy (acridin orange/ethidium bromide, annexin V/propidium iodide staining, TUNEL assay and Caspase-3 activity assay). Crude methanolic extract (CM) inhibited the growth of malignant cells in a dose-dependent manner. Among solvent fractions, the dichloromethane fraction (CF) was found to be the most toxic compared to other fractions. With double staining methods, high percentage of 40 µg/mL of (CM) and (CF) treated cells exhibited typical characteristics of apoptotic cells. Apoptosis induction was also revealed by apoptotic fragmentation of nuclear DNA and activation of caspas-3 in treated cells. These findings indicate that crude methanolic extract and dichloromethan fraction of P.auriculata induced apoptosis and inhibited proliferation in colon cancer cells and could be used as a source for new lead structures in drug design to combat colon cancer.

  9. Arsenic downregulates tight junction claudin proteins through p38 and NF-κB in intestinal epithelial cell line, HT-29

    International Nuclear Information System (INIS)

    Jeong, Chang Hee; Seok, Jin Sil; Petriello, Michael C.; Han, Sung Gu

    2017-01-01

    Arsenic is a naturally occurring metalloid that often is found in foods and drinking water. Human exposure to arsenic is associated with the development of gastrointestinal problems such as fluid loss, diarrhea and gastritis. Arsenic is also known to induce toxic responses including oxidative stress in cells of the gastrointestinal track. Tight junctions (TJs) regulate paracellular permeability and play a barrier role by inhibiting the movement of water, solutes and microorganisms in the paracellular space. Since oxidative stress and TJ damage are known to be associated, we examined whether arsenic produces TJ damage such as downregulation of claudins in the human colorectal cell line, HT-29. To confirm the importance of oxidative stress in arsenic-induced TJ damage, effects of the antioxidant compound (e.g., N-acetylcysteine (NAC)) were also determined in cells. HT-29 cells were treated with arsenic trioxide (40 μM, 12 h) to observe the modified expression of TJ proteins. Arsenic decreased expression of TJ proteins (i.e., claudin-1 and claudin-5) and transepithelial electrical resistance (TEER) whereas pretreatment of NAC (5–10 mM, 1 h) attenuated the observed claudins downregulation and TEER. Arsenic treatment produced cellular oxidative stress via superoxide generation and lowering glutathione (GSH) levels, while NAC restored cellular GSH levels and decreased oxidative stress. Arsenic increased phosphorylation of p38 and nuclear translocation of nuclear factor-kappa B (NF-κB) p65, while NAC attenuated these intracellular events. Results demonstrated that arsenic can damage intestinal epithelial cells by proinflammatory process (oxidative stress, p38 and NF-κB) which resulted in the downregulation of claudins and NAC can protect intestinal TJs from arsenic toxicity.

  10. Carcino-embryonic antigen in monitoring the growth of human colon adenocarcinoma tumour cells SK-CO-1 and HT-29 in vitro and in nude mice

    DEFF Research Database (Denmark)

    Sölétormos, G; Fogh, J M; Sehested-Hansen, B

    1997-01-01

    A set of experimental model systems were designed to investigate (a) the inter-relationship between growth of two human cancer cell lines (SK-CO-1, HT-29) and carcino-embryonic antigen (CEA) kinetics; and (b) whether neoplastic growth or CEA concentration is modulated by human growth hormone (hGH...

  11. Rottlerin Inhibits ROS Formation and Prevents NFκB Activation in MCF-7 and HT-29 Cells

    Directory of Open Access Journals (Sweden)

    Emanuela Maioli

    2009-01-01

    Full Text Available Rottlerin, a polyphenol isolated from Mallotus Philippinensis, has been recently used as a selective inhibitor of PKC δ, although it can inhibit many kinases and has several biological effects. Among them, we recently found that Rottlerin inhibits the Nuclear Factor κB (NFκB, activated by either phorbol esters or H2O2. Because of the redox sensitivity of NFκB and on the basis of Rottlerin antioxidant property, we hypothesized that Rottlerin could prevent NFκB activation acting as a free radicals scavenger, as other natural polyphenols. The current study confirms the antioxidant property of Rottlerin against the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH in vitro and against oxidative stress induced by H2O2 and by menadione in culture cells. We also demonstrate that Rottlerin prevents TNFα-dependent NFκB activation in MCF-7 cells and in HT-29 cells transfected with the NFκB-driven plasmid pBIIX-LUC, suggesting that Rottlerin can inhibit NFκB via several pathways and in several cell types.

  12. In vitro study of the effects of radio frequency generated for plasma in neoplastic cells HT-29; Estudo in vitro dos efeitos da radiofrequencia gerada por plasmas em celulas neoplasicas HT-29

    Energy Technology Data Exchange (ETDEWEB)

    Andrighetto, Daniela; Dornelles, Eduardo Bortoluzzi; Cruz, Ivana Beatrice Manica da; Lüdke, Everton, E-mail: daniela.andrighetto@hotmail.com, E-mail: dornellesedu@gmail.com, E-mail: ibmcruz@hotmail.com, E-mail: evertonludke@gmail.com [Universidade Federal de Santa Maria (UFSM), RS (BRazil)

    2014-07-01

    The goal of this study is to develop an in vitro irradiation cell system with controllable irradiation intensities of 27 MHz produced by an argon plasma column with variable amplitude modulation in the 100-700 kHz range. This paper presents and discusses a proposed experiment, with toxicity analysis (DNA Picogreen®) and cell viability (MTT assay) in the radiation-induced HT-29 cell line (colon adenocarcinoma). The data allow us to observe that cellular toxicity effects may occur with exposure to fields produced by argon plasma with intensities on the order of at least 3.2 W / cm2 and exposure times above 3.5 hours continuously. An analysis of cell populations for cell toxicity tests using the Student's t-test did not show significant changes (p <0.05) in the amount of DNA released by the action of radiofrequency, although it has been found that cell viability (MTT) is not significantly altered by long exposures to radiation induced plasma RF signals in 27 MHz (p> 0.34). Cytotoxic effects due to the destruction of cell wall by heating the samples were not detected in any of the tests.

  13. Title of paper: the induction of P-53 independent programmed cell death (apoptosis) with ionizing radiation and 5-fluorouracil (5-FU) in the HT-29 human colon carcinoma cell line

    International Nuclear Information System (INIS)

    Blackstock, A. Wm.; Gill, Misha; Hess, Suzanne M.; Fisher, Robert W.; Leadon, Steven A.; Tepper, Joel E.

    1996-01-01

    Purpose/Objective: The role of programmed cell death (apoptosis) as a cellular response to cancer therapy such as radiation or chemotherapy is the subject of much study, and manipulation of the apoptotic response in tumor cells may be valuable in the treatment of a variety of cancers. Both p53 dependent and independent apoptotic pathways have been identified; p53 is mutated in at least 50 % of human cancers and a majority of radiation resistant tumors contain p53 mutations. This study is designed to examine the induction of programmed cell death in a human colon carcinoma cell line that possesses two mutated p53 alleles. Ionizing radiation alone, or in combination with the chemotherapeutic drug 5-fluorouracil (5-FU), were used to elicit the apoptotic response. This study will focus on whether these treatments can induce a significant apoptotic response in cells that have mutated p53 alleles. Materials and Methods: HT-29 cells were assessed for clonogenic survival after being plated at a variety of densities, and treated with single graded doses of radiation (0, 1, 2, 4, 6, 8, 10 Gy) either alone or immediately prior to a 24 hour exposure to 5-FU (2 ug/ml). The extent of radiation and 5-FU-induced apoptosis was determined in the HT-29 cell line after single doses of 0, 2, 5, and 10 Gy either alone or immediately prior to a 24 hour incubation in 5-FU (2 ug/ml). Three separate assays were used to evaluate the apoptotic response. Cells undergoing apoptosis undergo gross morphological changes including a condensation of chromatin, membrane blebbing, and an eventual release of membrane bound cytoplasmic fragments. Hematoxylin and eosin staining were used to visualize some of these morphological changes. Another characteristic of the apoptotic response is the activation of an endonuclease that cleaves DNA into specific fragments. Accordingly, an ELISA cell death assay (Boehringer Mannheim, Indianapolis IN) was used to quantitate cytoplasmic histone-associated DNA

  14. Oral and fecal Campylobacter concisus strains perturb barrier function by apoptosis induction in HT-29/B6 intestinal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Hans Linde Nielsen

    Full Text Available Campylobacter concisus infections of the gastrointestinal tract can be accompanied by diarrhea and inflammation, whereas colonization of the human oral cavity might have a commensal nature. We focus on the pathophysiology of C. concisus and the effects of different clinical oral and fecal C. concisus strains on human HT-29/B6 colon cells. Six oral and eight fecal strains of C. concisus were isolated. Mucus-producing HT-29/B6 epithelial monolayers were infected with the C. concisus strains. Transepithelial electrical resistance (R(t and tracer fluxes of different molecule size were measured in Ussing chambers. Tight junction (TJ protein expression was determined by Western blotting, and subcellular TJ distribution was analyzed by confocal laser-scanning microscopy. Apoptosis induction was examined by TUNEL-staining and Western blot of caspase-3 activation. All strains invaded confluent HT-29/B6 cells and impaired epithelial barrier function, characterized by a time- and dose-dependent decrease in R(t either after infection from the apical side but even more from the basolateral compartment. TJ protein expression changes were sparse, only in apoptotic areas of infected monolayers TJ proteins were redistributed. Solely the barrier-forming TJ protein claudin-5 showed a reduced expression level to 66±8% (P<0.05, by expression regulation from the gene. Concomitantly, Lactate dehydrogenase release was elevated to 3.1±0.3% versus 0.7±0.1% in control (P<0.001, suggesting cytotoxic effects. Furthermore, oral and fecal C. concisus strains elevated apoptotic events to 5-fold. C. concisus-infected monolayers revealed an increased permeability for 332 Da fluorescein (1.74±0.13 vs. 0.56±0.17 10(-6 cm/s in control, P<0.05 but showed no difference in permeability for 4 kDa FITC-dextran (FD-4. The same was true in camptothecin-exposed monolayers, where camptothecin was used for apoptosis induction.In conclusion, epithelial barrier dysfunction by oral and

  15. Protein expression profile of HT-29 human colon cancer cells after treatment with a cytotoxic daunorubicin-GnRH-III derivative bioconjugate.

    Directory of Open Access Journals (Sweden)

    Verena Natalie Schreier

    Full Text Available Targeted delivery of chemotherapeutic agents is a new approach for the treatment of cancer, which provides increased selectivity and decreased systemic toxicity. We have recently developed a promising drug delivery system, in which the anticancer drug daunorubicin (Dau was attached via oxime bond to a gonadotropin-releasing hormone-III (GnRH-III derivative used as a targeting moiety (Glp-His-Trp-Lys(Ac-His-Asp-Trp-Lys(Da  = Aoa-Pro-Gly-NH2; Glp = pyroglutamic acid, Ac = acetyl; Aoa = aminooxyacetyl. This bioconjugate exerted in vitro cytostatic/cytotoxic effect on human breast, prostate and colon cancer cells, as well as significant in vivo tumor growth inhibitory effect on colon carcinoma bearing mice. In our previous studies, H-Lys(Dau = Aoa-OH was identified as the smallest metabolite produced in the presence of rat liver lysosomal homogenate, which was able to bind to DNA in vitro. To get a deeper insight into the mechanism of action of the bioconjugate, changes in the protein expression profile of HT-29 human colon cancer cells after treatment with the bioconjugate or free daunorubicin were investigated by mass spectrometry-based proteomics. Our results indicate that several metabolism-related proteins, molecular chaperons and proteins involved in signaling are differently expressed after targeted chemotherapeutic treatment, leading to the conclusion that the bioconjugate exerts its cytotoxic action by interfering with multiple intracellular processes.

  16. Pharmacological inhibition of radiation induced in vitro tumor cell/endothelium cell interactions and in vivo metastasis processes; Pharmakologische Hemmung strahleninduzierter Tumorzell-Endothelzell-Interaktionen in vitro und Metastasierungsprozesse in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, Melanie

    2013-05-07

    Exposure of endothelial cells with ionizing radiation (IR) or treatment with inflammatory cytokines (e. g. TNFα) induces a Rho-GTPase and NF-κB dependent activation of the expression of various cell adhesion molecules, including E-selectin. E-selectin mediates the adhesion of tumor cells (TC) to endothelial cells and is probably involved in the extravasation step of circulating tumor cells. HMG-CoA reductase inhibitors (e. g. lovastatin) inhibit the function of Rho-GTPases and thus are anticipated to attenuate Rho-regulated cell-cell-adhesion as well. This study focuses on the influence of IR and TNFα on the expression of endothelial- and/or tumor cell-specific pro-adhesive factors and whether these effects are influenced by lovastatin. To this end, the effect of IR and TNFα on cell-cell-interactions between human colon carcinoma cells (HT29) and human umbilical vein endothelial cells (HUVEC) was investigated using an ELISA-based cell adhesion-assay. Moreover, the influence of pre-treatment with lovastatin and other types of inhibitors on HUVEC-HT29 adhesion was monitored. Additionally, we investigated the effect of lovastatin on mRNA expression level of different cell adhesion molecules, metastatic factors and DNA-repair genes upon radiation exposure by qRT-PCR. To scrutinize the in vivo relevance of the data obtained, we investigated the effect of total body irradiation (TBI) on the mRNA expression of pro-adhesive factors in BALB/c mice. To analyze tumor cell extravasation, tumor cells were injected into the lateral tail vein of immundeficient mice, followed by total body irradiation (TBI, 4 Gy). After four weeks a large increase of lung metastases was monitored, which could be blocked by preatreatment of the mice with lovastatin, the Rac1-specific small-molecule inhibitor NSC23766 as well as the sLe{sup x}-mimetic glycyrrhizin. Summarizing, we provide evidence, that irradiation promotes upregulation of different cell adhesion molecules in vitro and

  17. LA-12 overcomes confluence-dependent resistance of HT-29 colon cancer cells to Pt (II) compounds

    Czech Academy of Sciences Publication Activity Database

    Šindlerová, Lenka; Foltinová, V.; Vaculová, Alena; Horváth, Viktor; Souček, Karel; Sova, P.; Hofmanová, Jiřina; Kozubík, Alois

    2010-01-01

    Roč. 30, č. 4 (2010), s. 1183-1188 ISSN 0250-7005 R&D Projects: GA ČR(CZ) GA301/07/1557 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : LA-12 * resistance * HT-29 Subject RIV: BO - Biophysics Impact factor: 1.656, year: 2010

  18. Different Serotonergic Expression in Nevomelanocytic Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Naimi-Akbar, Clara; Ritter, Markus; Demel, Sasika; El-Nour, Husameldin; Hedblad, Mari-Anne [Dermatology and Venereology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Solna (Sweden); Azmitia, Efrain C. [Department of Biology and Psychiatry, New York University, NY (United States); Nordlind, Klas, E-mail: klas.nordlind@karolinska.se [Dermatology and Venereology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Solna (Sweden)

    2010-06-07

    The neuromediator serotonin (5-hydroxytryptamine; 5-HT) has been proposed to play a role in tumor progression. Thus, the aim of the present investigation was to determine whether alterations in the serotonergic system occur in nevomelanocytic tumors. For this purpose, paraffin-embedded biopsies of superficial spreading malignant melanoma (SSM), dysplastic compound nevi (DN) and benign compound nevi (BCN) were characterized with regard to their expression of 5-HT, the 5-HT1A and 5-HT2A receptors, and the serotonin transporter protein (SERT), by immunohistochemical analysis. Melanocytes in the region surrounding the tumor were found to express both the 5-HT1A and 5-HT2A receptors. Tumor cells that immunostained positively for the different serotonergic markers were observed in the suprabasal epidermis of DN tissue and, to an even greater extent, in the case of SSM. Furthermore, some of these latter cells expressed both 5-HT1AR and 5-HT2AR. The level of expression of 5-HT1AR at the junctional area was lower for SSM than for DN or BCN. As the degree of atypia increased, the intensity of tumor cell staining in the dermis for 5-HT1AR and SERT declined. Vessel immunoreactivity for 5-HT2A was more intense in SSM than in BCN tissue. Round-to-dendritic cells that expressed both SERT and 5-HT1AR were seen to infiltrate into the dermal region of the tumor, this infiltration being more evident in the case of DN and SSM. These latter cells were also tryptase-positive, indicating that they are mast cells. Thus, alterations in serotonergic system may be involved in nevomelanocytic tumors and mast cells may play an important role in this connection.

  19. The effect of milk fat globules on adherence and internalization of Salmonella Enteritidis to HT-29 cells.

    Science.gov (United States)

    Guri, A; Griffiths, M; Khursigara, C M; Corredig, M

    2012-12-01

    Milk fat globules were extracted from bovine and goat milk and incubated with HT-29 human adenocarcinoma cells to assess the attachment and internalization of Salmonella Enteritidis. Because the expression of bacterial adhesins is highly affected by the presence of antibiotic, the attachment was studied with and without antibiotic in the cell growth medium. Although no inhibitory effect of the fat globules was observed in the presence of the antibiotic, milk fat globules significantly inhibited the binding and internalization of Salmonella in medium free of antibiotic. The fat globules from both bovine and goat milk markedly reduced bacterial binding and invasion compared with controls, and the cells treated with goat milk-derived fat globules demonstrated greater protective properties than those derived from bovine milk. The effect of heat treatment on bovine fat globules was also investigated, and it was shown that the fat globules from heated milk had a higher degree of inhibition than those from unheated milk. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Screening of bifidobacteria and lactobacilli able to antagonise the cytotoxic effect of Clostridium difficile upon intestinal epithelial HT29 monolayer

    Directory of Open Access Journals (Sweden)

    Lorena eValdés-Varela

    2016-04-01

    Full Text Available Clostridium difficile is an opportunistic pathogen inhabiting the human gut, often being the aetiological agent of infections after a microbiota dysbiosis following, for example, an antibiotic treatment. C. difficile infections (CDI constitute a growing health problem with increasing rates of morbidity and mortality at groups of risk, such as elderly and hospitalized patients, but also in populations traditionally considered low-risk. This could be related to the occurrence of virulent strains which, among other factors, have high-level of resistance to fluoroquinolones, more efficient sporulation and markedly high toxin production. Several novel intervention strategies against CDI are currently under study, such as the use of probiotics to counteract the growth and/or toxigenic activity of C. difficile.In this work, we have analysed the capability of twenty Bifidobacterium and Lactobacillus strains, from human intestinal origin, to counteract the toxic effect of C. difficile LMG21717 upon the human intestinal epithelial cell line HT29. For this purpose, we incubated the bacteria together with toxigenic supernatants obtained from C. difficile. After this co-incubation new supernatants were collected in order to quantify the remnant A and B toxins, as well as to determine their residual toxic effect upon HT29 monolayers. To this end, the real time cell analyser (RTCA model, recently developed in our group to monitor C. difficile toxic effect, was used. Results obtained showed that strains of Bifidobacterium longum and Bifidobacterium breve were able to reduce the toxic effect of the pathogen upon HT29, the RTCA normalized cell-index values being inversely correlated with the amount of remnant toxin in the supernatant. The strain B. longum IPLA20022 showed the highest ability to counteract the cytotoxic effect of C. difficile acting directly against the toxin, also having the highest capability for removing the toxins from the clostridial

  1. Relationship between α/β and radiosensitivity and biologic effect of fractional irradiation of tumor cells

    International Nuclear Information System (INIS)

    Guo Chuanling; Chinese Academy of Sciences, Beijing; Wang Jufang; Jin Xiaodong; Li Wenjian

    2006-01-01

    Five kinds of malignant human tumor cells, i.e. SMMC-7721, HeLa, A549, HT29 and PC3 cell lines, were irradiated by 60 Co γ-rays to 1-6 Gy in a single irradiation or two irradiations of half dose. The radiosensitivity was compared with the dose-survival curves and D 50 and D 10 values. Differences in the D 50 and D 10 between the single and fractional irradiation groups showed the effect of fractional irradiation. Except for PC3 cells, all the cell lines showed obvious relationship between radiosensitivity and biologic effect of fractional irradiation and the α/β value. A cell line with bigger α/β was more radiation sensitive, with less obvious effect of fractional irradiation. The results indicate that there were obvious differences in radiosensitivity, repair ability and biologic effect of fractional irradiation between tumor cells from different tissues. To some tumor cell lines, the relationship between radiosensitivity, biologic effect of fractional irradiation and repair ability was attested. The α/β value of single irradiation can be regarded as a parameter to investigate the radiosensitivity and biologic effect of fractional irradiation of tumor cells. (authors)

  2. Phytochemical Compositions of Immature Wheat Bran, and Its Antioxidant Capacity, Cell Growth Inhibition, and Apoptosis Induction through Tumor Suppressor Gene

    Directory of Open Access Journals (Sweden)

    Mi Jeong Kim

    2016-09-01

    Full Text Available The purpose of this study was to investigate the phytochemical compositions and antioxidant capacity, cell growth inhibition, and apoptosis induction in extracts of immature wheat bran. Immature wheat bran (IWB was obtained from immature wheat harvested 10 days earlier than mature wheat. The phytochemical compositions of bran extract samples were analyzed by ultra-high performance liquid chromatography. The total ferulic acid (3.09 mg/g and p-coumaric acid (75 µg/g in IWB were significantly higher than in mature wheat bran (MWB, ferulic acid: 1.79 mg/g; p-coumaric acid: 55 µg/g. The oxygen radical absorbance capacity (ORAC: 327 µM Trolox equivalents (TE/g and cellular antioxidant activity (CAA: 4.59 µM Quercetin equivalents (QE/g of the IWB were higher than those of the MWB (ORAC: 281 µM TE/g; CAA: 0.63 µM QE/g. When assessing cell proliferation, the IWB extracts resulted in the lowest EC50 values against HT-29 (18.9 mg/mL, Caco-2 (7.74 mg/mL, and HeLa cells (8.17 mg/mL among bran extract samples. Additionally, the IWB extracts increased the gene expression of p53 and PTEN (tumor suppressor genes in HT-29 cells, indicating inhibited cell growth and induced apoptosis through tumor suppressor genes.

  3. TFF3-dependent resistance of human colorectal adenocarcinoma cells HT-29/B6 to apoptosis is mediated by miR-491-5p regulation of lncRNA PRINS

    OpenAIRE

    Hanisch, Carlos; Sharbati, Jutta; Kutz-Lohroff, Barbara; Huber, Otmar; Einspanier, Ralf; Sharbati, Soroush

    2017-01-01

    Tumour necrosis factor-? (TNF-?) is a double-edged cytokine associated with pathogenesis of inflammatory-related cancers being also able to induce cancer cell death. In the process of tumour development or metastasis, cancer cells can become resistant to TNF-?. In trefoil factor 3 (TFF3) overexpressing colorectal adenocarcinoma cells (HT-29/B6), we observed enhanced resistance against TNF-?/interferon gamma-induced apoptosis. TFF3 is a secreted small peptide that supports intestinal tissue re...

  4. Cytotoxic activity of isolated constituents from leaves of Premna serratifolia on MCF-7 and HT-29 cell lines

    Directory of Open Access Journals (Sweden)

    Mahesh Biradi

    2015-03-01

    Full Text Available Premna serratifolia (Syn: Premna integrifolia is an important medicinal herb known as “Agnimantha” in Ayurveda and traditionally used for anticancer activity. The objective of present study was to isolate the cytotoxic phytoconstituents from the n-hexane soluble fraction of P. serratifolia leaf extract. Unsaponifiable portion of n-hexane soluble fraction was subjected to silica based column chromatography. The major constituents present in all the sub-fractions were identified by TLC and phytochemical tests. Two constituents were isolated and they were purified. Sub-fractions with isolates were tested for cytotoxic effect by BSL bioassay. Two isolates were found to be active and which were tested on cancer cell lines MCF-7 and HT-29 for their cytotoxicity. Among two isolates, one compound has shown significant cytotoxicity. From the results we conclude that the plant isolates showed cytotoxicity against selected human cancer cell lines.

  5. Induction of apoptosis in HT-29 cells by extracts from isothiocyanates-rich varieties of Brassica oleracea.

    Science.gov (United States)

    Mas, Sergi; Crescenti, Anna; Gassó, Patricia; Deulofeu, Ramon; Molina, Rafael; Ballesta, Antonio; Kensler, Thomas W; Lafuente, Amalia

    2007-01-01

    Among the vegetables with anti-carcinogenic properties, members of the genus Brassica are the most effective at reducing the risk of cancer. This property may be explained by their principle bioactive compounds, isothiocyanates (ITCs). The aim of this study was to measure the amounts of ITCs in extracts from vegetables of the Brasssica genus and assay them for potency of induction of apoptosis in a colorectal cancer cell line (HT-29). ITCs were determined by the cyclocondensation assay with 1,2-benzenedithiol and induction of apoptosis by assessment of cell viability, caspase-3 activity and DNA fragmentation. Purple cabbage extract showed the highest ITC concentration per gram, fresh weight, followed by black cabbage and Romanesco cauliflower. At ITC concentrations of 7.08 microg/mL these extracts decreased cell viability and induced caspase-3 and DNA fragmentation at 48h. Brussels sprouts showed the strongest effects on cell viability and caspase-3 activity. Varieties of Brassica Oleracea are rich sources of ITCs that potently inhibit the growth of colon cancer cells by inducting apoptosis. All the extracts showed anticancer activity at ITC concentrations of between 3.54 to 7.08 mug/mL, which are achievable in vivo. Our results showed that ITC concentration and the chemopreventive responses of plant extracts vary among the varieties of Brassica Oleracea studied and among their cultivars.

  6. 99mTc-Labeled Cyclic RGD Peptides for Noninvasive Monitoring of Tumor Integrin αvβ3 Expression

    Directory of Open Access Journals (Sweden)

    Yang Zhou

    2011-09-01

    Full Text Available This report describes the biologic evaluations of [99mTc(HYNIC-3P-RGD2(tricine(TPPTS] (99mTc-3P-RGD2: 6-hydrazinonicotinyl; 3P-RGD2 = PEG4-E[PEG4-c(RGDfK]2; PEG4 = 15-amino-4,7,10,13-tetraoxapentadecanoic acid; and TPPTS = trisodium triphenylpho-sphine-3,3′,3“-trisulfonate, [99mTc(HYNIC-3G-RGD2(tricine(TPPTS] (99mTc-3G-RGD2: 3G-RGD2 = G3-E[G3-c(RGDfK]2 and G3 = Gly-Gly-Gly, and 99mTcO(MAG2−3G-RGD2 (MAG2 = mercaptoacetylglycylglycyl as radiotracers for noninvasive imaging of tumor integrin αvβ3 expression in five xenografted tumor-bearing models. Biodistribution and imaging studies were performed in athymic nude mice bearing U87MG, MDA-MB-435, A549, HT29, or PC-3 tumor xenografts. Immunochemistry was performed using the cultured primary tumor cells and xenografted tumor tissues. It was found that the radiotracer tumor uptake followed the trend U87MG > MDA-MB-435 ≈ HT29 ≈ A549 > PC-3. The total integrin β3 expression levels followed the general trend: U87MG > MDA-MB-435 ≈ A549~HT29 > PC-3. There is a linear relationship between the radiotracer injected dose per gram tumor uptake and the total integrin β3 expression levels. On the basis of these, it was concluded that radiotracer tumor uptake is contributed by integrin αVβ3 expressed on tumor cells and activated endothelial cells of the tumor neovasculature. 99mTc-3P-RGD2 has the capability to monitor integrin αvβ3 expression in a noninvasive fashion.

  7. Oral and Fecal Campylobacter concisus Strains induce Barrier dysfunction by Apoptosis in HT-29/B6 Intestinal Epithelial Cells

    DEFF Research Database (Denmark)

    Nielsen, Hans Linde; Nielsen, Henrik Ib; Ejlertsen, Tove

    in Ussing chambers. Tight junction (TJ) protein expression was determined by Western blotting, and subcellular TJ distribution was analyzed by confocal laser-scanning microscopy. Apoptosis induction was examined by TUNEL-staining and Western blot of caspase-3 activation. All strains invaded confluent HT-29...

  8. Tumor cell survival dependence on helical tomotherapy, continuous arc and segmented dose delivery

    International Nuclear Information System (INIS)

    Yang Wensha; Wang Li; Larner, James; Read, Paul; Benedict, Stan; Sheng Ke

    2009-01-01

    The temporal pattern of radiation delivery has been shown to influence the tumor cell survival fractions for the same radiation dose. To study the effect more specifically for state of the art rotational radiation delivery modalities, 2 Gy of radiation dose was delivered to H460 lung carcinoma, PC3 prostate cancer cells and MCF-7 breast tumor cells by helical tomotherapy (HT), seven-field LINAC (7F), and continuous dose delivery (CDD) over 2 min that simulates volumetric rotational arc therapy. Cell survival was measured by the clonogenic assay. The number of viable H460 cell colonies was 23.2 ± 14.4% and 27.7 ± 15.6% lower when irradiated by CDD compared with HT and 7F, respectively, and the corresponding values were 36.8 ± 18.9% and 35.3 ± 18.9% lower for MCF7 cells (p < 0.01). The survival of PC3 was also lower when irradiated by CDD than by HT or 7F but the difference was not as significant (p = 0.06 and 0.04, respectively). The higher survival fraction from HT delivery was unexpected because 90% of the 2 Gy was delivered in less than 1 min at a significantly higher dose rate than the other two delivery techniques. The results suggest that continuous dose delivery at a constant dose rate results in superior in vitro tumor cell killing compared with prolonged, segmented or variable dose rate delivery.

  9. Noninvasive monitoring of radiation-induced treatment response using proton magnetic resonance spectroscopy and diffusion-weighted magnetic resonance imaging in a colorectal tumor model

    International Nuclear Information System (INIS)

    Seierstad, Therese; Roe, Kathrine; Olsen, Dag Rune

    2007-01-01

    Background and purpose: To examine whether in vivo proton magnetic resonance spectroscopy ( 1 H MRS) and diffusion-weighted magnetic resonance imaging (DW-MRI) can monitor radiation-induced changes in HT29 xenografts in mice. Materials and methods: HT29 xenografts in mice received a dose of 15 Gy. In vivo 1 H MRS and DW-MRI were acquired pretreatment and 1, 3, 6 and 10 days post-irradiation. After imaging, tumors were excised for histological analysis. The amounts of necrosis, fibrosis and viable cells in the cross sections were scored and compared to changes in apparent diffusion coefficient (ADC) and choline/water ratio. Results: Radiation-induced necrosis in the xenografts was observed as increased tumor ADC. In-growth of fibrosis three days post-irradiation restricting water mobility was accompanied by decreased tumor ADC. Choline/water ratio correlated with metabolic activity and tumor growth. Conclusions: ADC and choline/water ratio assessed by in vivo DW-MRI and 1 H MRS depicts radiation-induced changes in HT29 xenografts following irradiation

  10. Effect of beta-carotene-rich tomato lycopene beta-cyclase ( tlcy-b) on cell growth inhibition in HT-29 colon adenocarcinoma cells.

    Science.gov (United States)

    Palozza, Paola; Bellovino, Diana; Simone, Rossella; Boninsegna, Alma; Cellini, Francesco; Monastra, Giovanni; Gaetani, Sancia

    2009-07-01

    Lycopene beta-cyclase (tlcy-b) tomatoes, obtained by modulating carotenogenesis via genetic engineering, contain a large amount of beta-carotene, as clearly visible by their intense orange colour. In the present study we have subjected tlcy-b tomatoes to an in vitro simulated digestion and analysed the effects of digestate on cell proliferation. To this aim we used HT-29 human colon adenocarcinoma cells, grown in monolayers, as a model. Digested tomatoes were diluted (20 ml, 50 ml and 100 ml/l) in culture medium and added to the cells for different incubation times (24 h, 48 h and 72 h). Inhibition of cell growth by tomato digestate was dose-dependent and resulted from an arrest of cell cycle progression at the G0/G1 and G2/M phase and by apoptosis induction. A down-regulation of cyclin D1, Bcl-2 and Bcl-xl expression was observed. We also found that heat treatment of samples before digestion enhanced beta-carotene release and therefore cell growth inhibition. To induce with purified beta-carotene solubilised in tetrahydrofuran the same cell growth inhibition obtained with the tomato digestate, a higher amount of the carotenoid was necessary, suggesting that beta-carotene micellarised during digestion is utilised more efficiently by the cells, but also that other tomato molecules, reasonably made available during digestion, may be present and cooperate with beta-carotene in promoting cell growth arrest.

  11. Cell Penetrating Capacity and Internalization Mechanisms Used by the Synthetic Peptide CIGB-552 and Its Relationship with Tumor Cell Line Sensitivity.

    Science.gov (United States)

    Astrada, Soledad; Fernández Massó, Julio Raúl; Vallespí, Maribel G; Bollati-Fogolín, Mariela

    2018-03-30

    CIGB-552 is a twenty-amino-acid novel synthetic peptide that has proven to be effective in reducing tumor size and increasing lifespan in tumor-bearing mice. Such capability is conferred by its cell-penetrating peptide character, which allows it to enter cells and elicit a pro-apoptotic effect through its major mediator, COMMD1 protein. Cell-penetrating peptides are able to use different internalization mechanisms, such as endocytosis or direct transduction through the plasma membrane. Although CIGB-552 cytotoxicity has been evaluated in several non-tumor- and tumor-derived cell lines, no data regarding the relationship between cell line sensitivity, cell penetrating capacity, the internalization mechanisms involved, COMMD1 expression levels, or its subcellular localization has yet been produced. Here, we present the results obtained from a comparative analysis of CIGB-552 sensitivity, internalization capacity and the mechanisms involved in three human tumor-derived cell lines from different origins: mammary gland, colon and lung (MCF-7, HT-29 and H460, respectively). Furthermore, cell surface markers relevant for internalization processes such as phosphatidylserine, as well as CIGB-552 target COMMD1 expression/localization, were also evaluated. We found that both endocytosis and transduction are involved in CIGB-552 internalization in the three cell lines evaluated. However, CIGB-552 incorporation efficiency and contribution of each mechanism is cell-line dependent. Finally, sensitivity was directly correlated with high internalization capacity in those cell lines where endocytosis had a major contribution on CIGB-552 internalization.

  12. Microfluidic bead-based multienzyme-nanoparticle amplification for detection of circulating tumor cells in the blood using quantum dots labels

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, He, E-mail: mzhang_he@126.com; Fu, Xin; Hu, Jiayi; Zhu, Zhenjun

    2013-05-24

    -channel delivers fresh analyte solution to the reaction site which maintains a high concentration gradient differential to enhance mass transport. Based on the dual signal amplification strategy, the developed microfluidic bead-based nucleic acid sensor could discriminate as low as 5 fM (signal-to-noise (S/N) 3) of synthesized carcinoembryonic antigen (CEA) gene fragments and showed a 1000-fold increase in detection limit compared to the off-chip test. In addition, using spiked colorectal cancer cell lines (HT29) in the blood as a model system, the detection limit of this chip-based approach was found to be as low as 1 HT29 in 1 mL blood sample. This microfluidic bead-based nucleic acid sensor is a promising platform for disease-related nucleic acid molecules at the lowest level at their earliest incidence.

  13. A redox-based mechanism for induction of interleukin-1 production by nitric oxide in a human colonic epithelial cell line (HT29-Cl.16E).

    OpenAIRE

    Vallette, G; Jarry, A; Branka, J E; Laboisse, C L

    1996-01-01

    We evaluated the effects of two NO donors, sodium nitroprusside (SNP) and 3-morpholino-sydnonimine (SIN-1), characterized by alternative redox states, i.e. nitrosonium ion (NO+) and nitric oxide (NO.) respectively, on intracellular interleukin-1 (IL-1) production, by a human colonic epithelial cell line (HT29-Cl.16E). SNP was able to induce intracellular IL-1 alpha production up to 10 h incubation, in a dose-dependent manner. Several experiments provide evidence that the NO+ redox form, and n...

  14. Discerning apical and basolateral properties of HT-29/B6 and IPEC-J2 cell layers by impedance spectroscopy, mathematical modeling and machine learning.

    Directory of Open Access Journals (Sweden)

    Thomas Schmid

    Full Text Available Quantifying changes in partial resistances of epithelial barriers in vitro is a challenging and time-consuming task in physiology and pathophysiology. Here, we demonstrate that electrical properties of epithelial barriers can be estimated reliably by combining impedance spectroscopy measurements, mathematical modeling and machine learning algorithms. Conventional impedance spectroscopy is often used to estimate epithelial capacitance as well as epithelial and subepithelial resistance. Based on this, the more refined two-path impedance spectroscopy makes it possible to further distinguish transcellular and paracellular resistances. In a next step, transcellular properties may be further divided into their apical and basolateral components. The accuracy of these derived values, however, strongly depends on the accuracy of the initial estimates. To obtain adequate accuracy in estimating subepithelial and epithelial resistance, artificial neural networks were trained to estimate these parameters from model impedance spectra. Spectra that reflect behavior of either HT-29/B6 or IPEC-J2 cells as well as the data scatter intrinsic to the used experimental setup were created computationally. To prove the proposed approach, reliability of the estimations was assessed with both modeled and measured impedance spectra. Transcellular and paracellular resistances obtained by such neural network-enhanced two-path impedance spectroscopy are shown to be sufficiently reliable to derive the underlying apical and basolateral resistances and capacitances. As an exemplary perturbation of pathophysiological importance, the effect of forskolin on the apical resistance of HT-29/B6 cells was quantified.

  15. Targeting Colorectal Cancer Proliferation, Stemness and Metastatic Potential Using Brassicaceae Extracts Enriched in Isothiocyanates: A 3D Cell Model-Based Study

    Science.gov (United States)

    Pereira, Lucília P.; Silva, Patrícia; Duarte, Marlene; Rodrigues, Liliana; Duarte, Catarina M. M.; Albuquerque, Cristina; Serra, Ana Teresa

    2017-01-01

    Colorectal cancer (CRC) recurrence is often attributable to circulating tumor cells and/or cancer stem cells (CSCs) that resist to conventional therapies and foster tumor progression. Isothiocyanates (ITCs) derived from Brassicaceae vegetables have demonstrated anticancer effects in CRC, however little is known about their effect in CSCs and tumor initiation properties. Here we examined the effect of ITCs-enriched Brassicaceae extracts derived from watercress and broccoli in cell proliferation, CSC phenotype and metastasis using a previously developed three-dimensional HT29 cell model with CSC-like traits. Both extracts were phytochemically characterized and their antiproliferative effect in HT29 monolayers was explored. Next, we performed cell proliferation assays and flow cytometry analysis in HT29 spheroids treated with watercress and broccoli extracts and respective main ITCs, phenethyl isothiocyanate (PEITC) and sulforaphane (SFN). Soft agar assays and relative quantitative expression analysis of stemness markers and Wnt/β-catenin signaling players were performed to evaluate the effect of these phytochemicals in stemness and metastasis. Our results showed that both Brassicaceae extracts and ITCs exert antiproliferative effects in HT29 spheroids, arresting cell cycle at G2/M, possibly due to ITC-induced DNA damage. Colony formation and expression of LGR5 and CD133 cancer stemness markers were significantly reduced. Only watercress extract and PEITC decreased ALDH1 activity in a dose-dependent manner, as well as β-catenin expression. Our research provides new insights on CRC therapy using ITC-enriched Brassicaceae extracts, specially watercress extract, to target CSCs and circulating tumor cells by impairing cell proliferation, ALDH1-mediated chemo-resistance, anoikis evasion, self-renewal and metastatic potential. PMID:28394276

  16. Targeting Colorectal Cancer Proliferation, Stemness and Metastatic Potential Using Brassicaceae Extracts Enriched in Isothiocyanates: A 3D Cell Model-Based Study

    Directory of Open Access Journals (Sweden)

    Lucília P. Pereira

    2017-04-01

    Full Text Available Colorectal cancer (CRC recurrence is often attributable to circulating tumor cells and/or cancer stem cells (CSCs that resist to conventional therapies and foster tumor progression. Isothiocyanates (ITCs derived from Brassicaceae vegetables have demonstrated anticancer effects in CRC, however little is known about their effect in CSCs and tumor initiation properties. Here we examined the effect of ITCs-enriched Brassicaceae extracts derived from watercress and broccoli in cell proliferation, CSC phenotype and metastasis using a previously developed three-dimensional HT29 cell model with CSC-like traits. Both extracts were phytochemically characterized and their antiproliferative effect in HT29 monolayers was explored. Next, we performed cell proliferation assays and flow cytometry analysis in HT29 spheroids treated with watercress and broccoli extracts and respective main ITCs, phenethyl isothiocyanate (PEITC and sulforaphane (SFN. Soft agar assays and relative quantitative expression analysis of stemness markers and Wnt/β-catenin signaling players were performed to evaluate the effect of these phytochemicals in stemness and metastasis. Our results showed that both Brassicaceae extracts and ITCs exert antiproliferative effects in HT29 spheroids, arresting cell cycle at G2/M, possibly due to ITC-induced DNA damage. Colony formation and expression of LGR5 and CD133 cancer stemness markers were significantly reduced. Only watercress extract and PEITC decreased ALDH1 activity in a dose-dependent manner, as well as β-catenin expression. Our research provides new insights on CRC therapy using ITC-enriched Brassicaceae extracts, specially watercress extract, to target CSCs and circulating tumor cells by impairing cell proliferation, ALDH1-mediated chemo-resistance, anoikis evasion, self-renewal and metastatic potential.

  17. Preparation and evaluation of a new neurotensin analog labeled with 99mTc for targeted imaging of neurotensin receptor positive tumors

    International Nuclear Information System (INIS)

    Nakisa Zarrabi Ahrabi; Kazem Parivar; Davood Beiki

    2014-01-01

    Neurotensin receptors are overexpressed in several human tumors and can be targets for tumors diagnosis and therapy. In this study, a new neurotensin analogue was labeled with 99m Tc via HYNIC and tricine/EDDA as coligands and investigated further. [HYNIC 0 , Gly 7 , Lys 9 , d-Tyr 11 ]-Neurotensin (7-13) was synthesized using a standard Fmoc strategy. Labeling with 99m Tc was performed at 100 deg C for 10 min and radiochemical analysis involved ITLC and HPLC methods. The stability of radiopeptide was checked in the presence of humane serum at 37 deg C up to 24 h. The receptor bound internalization and externalization rates were studied in neurotensin receptor expressing HT-29 cells. Biodistribution of radiopeptide was studied in nude mice bearing HT-29 tumor. Labeling yield of 98.6 ± 0.54 % (n = 3) was obtained corresponding to a specific activity of 81 MBq/nmol. Peptide conjugate showed good stability in the presence of human serum. The radioligand showed specific internalization into HT-29 cells (12.43 ± 0.52 % at 4 h). In biodistribution studies, a receptor-specific uptake was observed in neurotensin receptor positive organs so that after 1 h the uptakes in mouse intestine and tumor were 0.87 ± 0.16 and 0.63 ± 0.12 % ID/g respectively. (author)

  18. NF-κB2 mutation targets survival, proliferation and differentiation pathways in the pathogenesis of plasma cell tumors

    Directory of Open Access Journals (Sweden)

    McCarthy Brian A

    2012-05-01

    Full Text Available Abstract Background Abnormal NF-κB2 activation has been implicated in the pathogenesis of multiple myeloma, a cancer of plasma cells. However, a causal role for aberrant NF-κB2 signaling in the development of plasma cell tumors has not been established. Also unclear is the molecular mechanism that drives the tumorigenic process. We investigated these questions by using a transgenic mouse model with lymphocyte-targeted expression of p80HT, a lymphoma-associated NF-κB2 mutant, and human multiple myeloma cell lines. Methods We conducted a detailed histopathological characterization of lymphomas developed in p80HT transgenic mice and microarray gene expression profiling of p80HT B cells with the goal of identifying genes that drive plasma cell tumor development. We further verified the significance of our findings in human multiple myeloma cell lines. Results Approximately 40% of p80HT mice showed elevated levels of monoclonal immunoglobulin (M-protein in the serum and developed plasma cell tumors. Some of these mice displayed key features of human multiple myeloma with accumulation of plasma cells in the bone marrow, osteolytic bone lesions and/or diffuse osteoporosis. Gene expression profiling of B cells from M-protein-positive p80HT mice revealed aberrant expression of genes known to be important in the pathogenesis of multiple myeloma, including cyclin D1, cyclin D2, Blimp1, survivin, IL-10 and IL-15. In vitro assays demonstrated a critical role of Stat3, a key downstream component of IL-10 signaling, in the survival of human multiple myeloma cells. Conclusions These findings provide a mouse model for human multiple myeloma with aberrant NF-κB2 activation and suggest a molecular mechanism for NF-κB2 signaling in the pathogenesis of plasma cell tumors by coordinated regulation of plasma cell generation, proliferation and survival.

  19. Behavior of LASL-made graphite, ZrC, and ZrC-containing coated particles in irradiation tests HT-28 and HT-29

    International Nuclear Information System (INIS)

    Reiswig, R.D.; Wagner, P.; Hollabaugh, C.M.; White, R.W.; O'Rourke, J.A.; Davidson, K.V.; Schell, D.H.

    1976-01-01

    Three types of materials, extruded graphite, hot-pressed ZrC, and particles with ZrC coatings, were irradiated in ORNL High Fluence Isotope Reactor Irradiation tests HT-28 and HT-29. The ZrC seemed unaffected. The graphite changed in dimensions, x-ray diffraction parameters, and thermal conductivity. The four types of coated particles tested all resisted the irradiation well, except one set of particles with double-graded C-ZrC-C coats. Overall, the results were considered encouraging for use of ZrC and extruded graphite fuel matrices. 16 fig

  20. A combination of indol-3-carbinol and genistein synergistically induces apoptosis in human colon cancer HT-29 cells by inhibiting Akt phosphorylation and progression of autophagy

    Directory of Open Access Journals (Sweden)

    Watanabe Hirotsuna

    2009-11-01

    Full Text Available Abstract Background The chemopreventive effects of dietary phytochemicals on malignant tumors have been studied extensively because of a relative lack of toxicity. To achieve desirable effects, however, treatment with a single agent mostly requires high doses. Therefore, studies on effective combinations of phytochemicals at relatively low concentrations might contribute to chemopreventive strategies. Results Here we found for the first time that co-treatment with I3C and genistein, derived from cruciferous vegetables and soy, respectively, synergistically suppressed the viability of human colon cancer HT-29 cells at concentrations at which each agent alone was ineffective. The suppression of cell viability was due to the induction of a caspase-dependent apoptosis. Moreover, the combination effectively inhibited phosphorylation of Akt followed by dephosphorylation of caspase-9 or down-regulation of XIAP and survivin, which contribute to the induction of apoptosis. In addition, the co-treatment also enhanced the induction of autophagy mediated by the dephosphorylation of mTOR, one of the downstream targets of Akt, whereas the maturation of autophagosomes was inhibited. These results give rise to the possibility that co-treatment with I3C and genistein induces apoptosis through the simultaneous inhibition of Akt activity and progression of the autophagic process. This possibility was examined using inhibitors of Akt combined with inhibitors of autophagy. The combination effectively induced apoptosis, whereas the Akt inhibitor alone did not. Conclusion Although in vivo study is further required to evaluate physiological efficacies and toxicity of the combination treatment, our findings might provide a new insight into the development of novel combination therapies/chemoprevention against malignant tumors using dietary phytochemicals.

  1. RNA sequencing supports distinct reactive oxygen species-mediated pathways of apoptosis by high and low size mass fractions of Bay leaf (Lauris nobilis) in HT-29 cells.

    Science.gov (United States)

    Rodd, Annabelle L; Ververis, Katherine; Sayakkarage, Dheeshana; Khan, Abdul W; Rafehi, Haloom; Ziemann, Mark; Loveridge, Shanon J; Lazarus, Ross; Kerr, Caroline; Lockett, Trevor; El-Osta, Assam; Karagiannis, Tom C; Bennett, Louise E

    2015-08-01

    Anti-proliferative and pro-apoptotic effects of Bay leaf (Laurus nobilis) in mammalian cancer and HT-29 adenocarcinoma cells have been previously attributed to effects of polyphenolic and essential oil chemical species. Recently, we demonstrated differentiated growth-regulating effects of high (HFBL) versus low molecular mass (LFBL) aqueous fractions of bay leaf and now confirm by comparative effects on gene expression, that HFBL and LFBL suppress HT-29 growth by distinct mechanisms. Induction of intra-cellular lesions including DNA strand breakage by extra-cellular HFBL, invoked the hypothesis that iron-mediated reactive oxygen species with capacity to penetrate cell membrane, were responsible for HFBL-mediated effects, supported by equivalent effects of HFBL in combination with γ radiation. Activities of HFBL and LFBL were interpreted to reflect differentiated responses to iron-mediated reactive oxygen species (ROS), occurring either outside or inside cells. In the presence of LFBL, apoptotic death was relatively delayed compared with HFBL. ROS production by LFBL mediated p53-dependent apoptosis and recovery was suppressed by promoting G1/S phase arrest and failure of cellular tight junctions. In comparison, intra-cellular anti-oxidant protection exerted by LFBL was absent for extra-cellular HFBL (likely polysaccharide-rich), which potentiated more rapid apoptosis by producing DNA double strand breaks. Differentiated effects on expression of genes regulating ROS defense and chromatic condensation by LFBL versus HFBL, were observed. The results support ferrous iron in cell culture systems and potentially in vivo, can invoke different extra-cellular versus intra-cellular ROS-mediated chemistries, that may be regulated by exogenous, including dietary species.

  2. Vasculogenic Mimicry of HT1080 Tumour Cells In Vivo: Critical Role of HIF-1α-Neuropilin-1 Axis

    Science.gov (United States)

    Misra, Roli M.; Bajaj, Manmohan S.; Kale, Vaijayanti P.

    2012-01-01

    HT1080 - a human fibrosarcoma-derived cell line – forms aggressive angiogenic tumours in immuno-compromised mice. In spite of its extensive use as a model of tumour angiogenesis, the molecular event(s) initiating the angiogenic program in these cells are not known. Since hypoxia stimulates tumour angiogenesis, we examined the hypoxia-induced events evoked in these cells. In contrast to cells grown under normoxic conditions, hypoxia-primed (1% O2) HT1080 cells formed robust tubules on growth factor-reduced matrigel and formed significantly larger tumours in xenograft models in a chetomin-sensitive manner, indicating the role of HIF-1α-mediated transcription in these processes. Immuno-histochemical analyses of tumours formed by GFP-expressing HT1080 cells clearly showed that the tumour cells themselves expressed various angiogenic markers including Neuropilin-1 (NRP-1) and formed functional vessels containing red blood cells, thereby unambiguously demonstrating the vasculogenic mimicry of HT1080 cells in vivo. Experiments performed with the HT1080 cells stably transfected with plasmid constructs expressing shNRP-1 or full-length NRP-1 clearly established that the HIF1α-mediated up-regulation of NRP-1 played a deterministic role in the process. Hypoxia-exposure resulted in an up-regulation of c-Myc and OCT3/4 and a down-regulation of KLF4 mRNAs, suggesting their involvement in the tumour formation and angiogenesis. However, silencing of NRP-1 alone, though not affecting proliferation in culture, was sufficient to abrogate the tumour formation completely; clearly establishing that the hypoxia-mediated HIF-1α-dependent up-regulation of NRP-1 is a critical molecular event involved in the vasculogenic mimicry and tumor formation by HT1080 cells in vivo. PMID:23185562

  3. The intraportal injection model: A practical animal model for hepatic metastases and tumor cell dissemination in human colon cancer

    International Nuclear Information System (INIS)

    Thalheimer, Andreas; Waaga-Gasser, Ana M; Otto, Christoph; Bueter, Marco; Illert, Bertram; Gattenlohner, Stefan; Gasser, Martin; Meyer, Detlef; Fein, Martin; Germer, Christoph T

    2009-01-01

    The development of new therapeutic strategies for treatment of metastasized colorectal carcinoma requires biologically relevant and adequate animal models that generate both reproducible metastasis and the dissemination of tumor cells in the form of so-called minimal residual disease (MRD), an expression of the systemic character of neoplastic disease. We injected immunoincompetent nude mice intraportally with different numbers (1 × 10 5 , 1 × 10 6 and 5 × 10 6 cells) of the human colon carcinoma cell lines HT-29 and SW-620 and investigated by histological studies and CK-20 RT-PCR the occurrence of hematogenous metastases and the dissemination of human tumor cells in bone marrow. Only the injection of 1 × 10 6 cells of each colon carcinoma cell line produced acceptable perioperative mortality with reproducible induction of hepatic metastases in up to 89% of all animals. The injection of 1 × 10 6 cells also generated tumor cell dissemination in the bone marrow in up to 63% of animals with hepatic metastases. The present intraportal injection model in immunoincompetent nude mice represents a biologically relevant and adequate animal model for the induction of both reproducible hepatic metastasis and tumor cell dissemination in the bone marrow as a sign of MRD

  4. Inhibition of CD147 expression by RNA interference reduces proliferation, invasion and increases chemosensitivity in cancer stem cell-like HT-29 cells.

    Science.gov (United States)

    Chen, Jie; Pan, Yuqin; He, Bangshun; Ying, Houqun; Wang, Feng; Sun, Huiling; Deng, Qiwen; Liu, Xian; Lin, Kang; Peng, Hongxin; Cho, William C; Wang, Shukui

    2015-10-01

    The association between CD147 and cancer stem cells (CSCs) provides a new angle for cancer treatments. The aim of this study was to investigate the biological roles of CD147 in colorectal CSCs. The Oct4-green fluorescent protein (GFP) vector was used to isolate CSCs and pYr-mir30-shRNA was used to generate short hairpin RNA (shRNA) specifically for CD147. After RNA interference (RNAi), CD147 was evaluated by reverse transcription‑quantitative PCR and western blot analysis, and its biological functions were assessed by MTT and invasion assays. The results showed that the differentiation of isolated CSC-like HT-29 cells was blocked and these cells were highly positive for CD44 and CD147. RNAi-mediated CD147 silencing reduced the expression of CD147 at both mRNA and protein levels. Moreover, the activities of proliferation and invasion were decreased obviously in CSCs. Knockdown of CD147 increased the chemosensitivity of CSC-like cells to gemcitabine, cisplatin, docetaxel at 0.1, 1 and 10 µM respectively, however, there was no significant difference among the three groups to paclitaxel at 10 µM. In conclusion, these results suggest that CD147 plays an important role in colorectal CSCs and might be regarded as a novel CSC-specific targeted strategy against colorectal cancer.

  5. Crataegus azarolus Leaves Induce Antiproliferative Activity, Cell Cycle Arrest, and Apoptosis in Human HT-29 and HCT-116 Colorectal Cancer Cells.

    Science.gov (United States)

    Mustapha, Nadia; Pinon, Aline; Limami, Youness; Simon, Alain; Ghedira, Kamel; Hennebelle, Thierry; Chekir-Ghedira, Leila

    2016-05-01

    Limited success has been achieved in extending the survival of patients with metastatic colorectal cancer (CRC). There is a strong need for novel agents in the treatment and prevention of CRC. Therefore, in the present study we evaluated the antiproliferative and pro-apoptotic potential of Crataegus azarolus ethyl acetate extract in HCT-116 and HT-29 human colorectal cancer cell lines. Moreover, we attempted to investigate the signaling pathways that should be involved in its cytotoxic effect. The Crataegus azarolus ethyl acetate extract-induced growth inhibitory effect was associated with DNA fragmentation, sub-G1 peak, loss of mitochondrial potential, and poly (ADP-ribose) polymerase (PARP) cleavage. In addition, ethyl acetate extract of Crataegus azarolus induced the cleavage of caspase-8. It has no effect on steady-state levels of total Bcl-2 protein. Whereas Bax levels decreased significantly in a dose-dependent manner in both tested cell lines. Taken together, these findings confirm the involvement of the extrinsic pathway of apoptosis. The apoptotic cell death induced by ethyl acetate extract of Crataegus azarolus was accompanied by an enhancement of the p21 expression but not through p53 activation in human colorectal cancer cells. The above-mentioned data provide insight into the molecular mechanisms of Crataegus azarolus ethyl acetate extract-induced apoptosis in CRC. Therefore, this compound should be a potential anticancer agent for the treatment of CRC. © 2015 Wiley Periodicals, Inc.

  6. Effects of X-irradiation on artificial blood vessel wall degradation by invasive tumor cells

    International Nuclear Information System (INIS)

    Heisel, M.A.; Laug, W.E.; Stowe, S.M.; Jones, P.A.

    1984-01-01

    Artificial vessel wall cultures, constructed by growing arterial endothelial cells on preformed layers of rat smooth muscle cells, were used to evaluate the effects of X-irradiation on tumor cell-induced tissue degradation. Bovine endothelial cells had radiation sensitivities similar to those of rat smooth muscle cells. Preirradiation of smooth muscle cells, before the addition of human fibrosarcoma (HT 1080) cells, did not increase the rate of degradation and destruction by the invasive cells. However, the degradation rate was decreased if the cultures were irradiated after the addition of HT 1080 cells. The presence of bovine endothelial cells markedly inhibited the destructive abilities of fibrosarcoma cells, but preirradiation of artificial vessel walls substantially decreased their capabilities to resist HT 1080-induced lysis. These findings suggest that the abilities of blood vessels to limit extravasation may be compromised by ionizing radiation

  7. Hormone therapy in ovarian granulosa cell tumors: a systematic review

    NARCIS (Netherlands)

    van Meurs, Hannah S.; van Lonkhuijzen, Luc R. C. W.; Limpens, Jacqueline; van der Velden, Jacobus; Buist, Marrije R.

    2014-01-01

    This systematic review assessed the effectiveness of hormone therapy (HT) in patients with a granulosa cell tumor (GCT) of the ovary. Medline (OVID), EMBASE (OVID), the Cochrane Central Register of Controlled Trials (CENTRAL), prospective trial registers and PubMed (as supplied by publisher-subset)

  8. Effect of low frequency magnetic fields on the growth of MNP-treated HT29 colon cancer cells

    Science.gov (United States)

    Spyridopoulou, K.; Makridis, A.; Maniotis, N.; Karypidou, N.; Myrovali, E.; Samaras, T.; Angelakeris, M.; Chlichlia, K.; Kalogirou, O.

    2018-04-01

    Recent investigations have attempted to understand and exploit the impact of magnetic field-actuated internalized magnetic nanoparticles (MNPs) on the proliferation rate of cancer cells. Due to the complexity of the parameters governing magnetic field-exposure though, individual studies to date have raised contradictory results. In our approach we performed a comparative analysis of key parameters related to the cell exposure of cancer cells to magnetic field-actuated MNPs, and to the magnetic field, in order to better understand the factors affecting cellular responses to magnetic field-stimulated MNPs. We used magnetite MNPs with a hydrodynamic diameter of 100 nm and studied the proliferation rate of MNPs-treated versus untreated HT29 human colon cancer cells, exposed to either static or alternating low frequency magnetic fields with varying intensity (40-200 mT), frequency (0-8 Hz) and field gradient. All three parameters, field intensity, frequency, and field gradient affected the growth rate of cells, with or without internalized MNPs, as compared to control MNPs-untreated and magnetic field-untreated cells. We observed that the growth inhibitory effects induced by static and rotating magnetic fields were enhanced by pre-treating the cells with MNPs, while the growth promoting effects observed in alternating field-treated cells were weakened by MNPs. Compared to static, rotating magnetic fields of the same intensity induced a similar extend of cell growth inhibition, while alternating fields of varying intensity (70 or 100 mT) and frequency (0, 4 or 8 Hz) induced cell proliferation in a frequency-dependent manner. These results, highlighting the diverse effects of mode, intensity, and frequency of the magnetic field on cell growth, indicate that consistent and reproducible results can be achieved by controlling the complexity of the exposure of biological samples to MNPs and external magnetic fields, through monitoring crucial experimental parameters. We

  9. Oxaliplatin immuno hybrid nanoparticles for active targeting: an approach for enhanced apoptotic activity and drug delivery to colorectal tumors.

    Science.gov (United States)

    Tummala, Shashank; Gowthamarajan, K; Satish Kumar, M N; Wadhwani, Ashish

    2016-06-01

    Tumor necrosis factor related apoptosis inducing ligand (TRAIL) proved to be a promising new target for colorectal cancer treatment. Elevated expression of TRAIL protein in tumor cells distinguishes it from healthy cells, thereby delivering the drug at the specific site. Here, we formulated oxaliplatin immunohybrid nanoparticles (OIHNPs) to deliver oxaliplatin and anti-TRAIL for colorectal cancer treatment in xenograft tumor models. The polymeric chitosan layer binds to the lipid film with the mixture of phospholipids by an ultra sound method followed by conjugating with thiolated antibody using DSPE-PEG-mal3400, resulting in the formation of OIHNPs. The polymer layer helps in more encapsulation of the drug (71 ± 0.09%) with appreciable particle size (95 ± 0.01 nm), and lipid layer prevents degradation of the drug in serum by preventing nanoparticle aggregation. OIHNPs have shown a 4-fold decrease in the IC50 value compared to oxaliplatin in HT-29 cells by the MTT assay. These immuno-nanoparticles represent the successful uptake and internalization of oxaliplatin in HT-29 cells rather than in MCF-7 cells determined by triple fluorescence method. Apoptotic activity in vitro of OIHNPs was determined by the change in the mitochondria membrane potential that further elevates its anti-tumor property. Furthermore, the conjugated nanoparticles can effectively deliver the drug to the tumor sites, which can be attributed to its ability in reducing tumor mass and tumor volume in xenograft tumor models in vivo along with sustaining its release in vitro. These findings indicated that the oxaliplatin immuno-hybrid nanoparticles would be a promising nano-sized active targeted formulation for colorectal-tumor targeted therapy.

  10. Evaluation of response to hormone therapy in patients with measurable adult granulosa cell tumors of the ovary

    NARCIS (Netherlands)

    van Meurs, Hannah S.; van der Velden, Jacobus; Buist, Marrije R.; van Driel, Willemien J.; Kenter, Gemma G.; van Lonkhuijzen, Luc R. C. W.

    2015-01-01

    The aim of this study was to retrospectively determine the objective response rate to hormone therapy (HT) for patients with a measurable adult granulosa cell tumor (GCT) of the ovary in a consecutive series of patients. All patients with an adult GCT who were treated with HT [steroidal progestins,

  11. CP-31398 prevents the growth of p53-mutated colorectal cancer cells in vitro and in vivo.

    Science.gov (United States)

    He, Xingxing; Kong, Xinjuan; Yan, Junwei; Yan, Jingjun; Zhang, Yunan; Wu, Qian; Chang, Ying; Shang, Haitao; Dou, Qian; Song, Yuhu; Liu, Fang

    2015-03-01

    Rescuing the function of mutant p53 protein is an attractive cancer therapeutic strategy. Small molecule CP-31398 was shown to restore mutant p53 tumor suppressor functions in cancer cells. Here, we determined the effects of CP-31398 on the growth of p53-mutated colorectal cancer (CRC) cells in vitro and in vivo. CRC cells which carry p53 mutation in codon 273 were treated with CP-31398 and the control, and the effects of CP-31398 on cell cycle, cell apoptosis, and proliferation were determined. The expression of p53-responsive downstream genes was evaluated by quantitative reverse transcriptase PCR (RT-PCR) and Western blot. CP-31398 was administrated into xenograft tumors created by the inoculation of HT-29 cells, and then the effect of CP-31398 on the growth of xenograft tumors was examined. CP-31398 induced p53 downstream target molecules in cultured HT-29 cells, which resulted in the inhibition of CRC cell growth assessed by the determination of cell cycle, apoptosis, and cell proliferation. In xenograft tumors, CP-31398 modulated the expression of Bax, Bcl-2, caspase 3, cyclin D, and Mdm2 and then blocked the growth of xenograft tumors. CP-31398 would be developed as a therapeutic candidate for p53-mutated CRC due to the restoration of mutant p53 tumor suppressor functions.

  12. Utilization of solid lipid nanoparticles for enhanced delivery of curcumin in cocultures of HT29-MTX and Caco-2 cells.

    Science.gov (United States)

    Guri, Anilda; Gülseren, Ibrahim; Corredig, Milena

    2013-09-01

    Solid lipid nanoparticles (SLN) have shown potential for encapsulation, protection and delivery of lipophilic functional components. In this study, we have investigated the capabilities of SLN to deliver a hydrophobic polyphenol compound, curcumin, in a coculture system of absorptive Caco-2 and mucus secreting HT29-MTX cells. The cells were grown on transport filters to mimic the human intestinal epithelium. Because of the hydrophobic nature of curcumin, its delivery to the basolateral compartment is expected to take place via a paracellular route. The changes in curcumin concentration in various compartments (i.e., apical, basolateral, mucus, and cell lysates) were evaluated using fluorescence spectroscopy. Two SLN systems were prepared with different emulsifying agents. The encapsulation of curcumin in SLN caused enhanced delivery compared to unencapsulated curcumin. In addition, SLN showed enhanced delivery compared to emulsion droplets containing liquid soy oil. The SLN were retained on the apical mucosal layer to a greater extent than emulsion droplets. The presence of SLN did not affect the integrity of the cellular junctions, as indicated by the TEER values, and the route of transport of the solid particles was simple diffusion, with permeability rates of about 7 × 10(-6) cm s(-1). Approximately 1% of total curcumin was delivered to the basolateral compartment, suggesting that most of the curcumin was absorbed and metabolized by the cell.

  13. Probiotics promote endocytic allergen degradation in gut epithelial cells

    International Nuclear Information System (INIS)

    Song, Chun-Hua; Liu, Zhi-Qiang; Huang, Shelly; Zheng, Peng-Yuan; Yang, Ping-Chang

    2012-01-01

    Highlights: ► Knockdown of A20 compromised the epithelial barrier function. ► The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. ► Antigens transported across A20-deficient HT-29 monolayers conserved antigenicity. ► Probiotic proteins increased the expression of A20 in HT-29 cells. -- Abstract: Background and aims: Epithelial barrier dysfunction plays a critical role in the pathogenesis of allergic diseases; the mechanism is to be further understood. The ubiquitin E3 ligase A20 (A20) plays a role in the endocytic protein degradation in the cells. This study aims to elucidate the role of A20 in the maintenance of gut epithelial barrier function. Methods: Gut epithelial cell line, HT-29 cell, was cultured into monolayers to evaluate the barrier function in transwells. RNA interference was employed to knock down the A20 gene in HT-29 cells to test the role of A20 in the maintenance of epithelial barrier function. Probiotic derived proteins were extracted from the culture supernatants using to enhance the expression of A20 in HT-29 cells. Results: The results showed that the knockdown of A20 compromised the epithelial barrier function in HT-29 monolayers, mainly increased the intracellular permeability. The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Allergens collected from the transwell basal chambers of A20-deficient HT-29 monolayers still conserved functional antigenicity. Treating with probiotic derived proteins increased the expression of A20 in HT-29 cells and promote the barrier function. Conclusion: A20 plays an important role in the maintenance of epithelial barrier function as shown by HT-29 monolayer. Probiotic derived protein increases the expression of A20 and promote the HT-29 monolayer barrier function.

  14. Probiotics promote endocytic allergen degradation in gut epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chun-Hua [Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou (China); Liu, Zhi-Qiang [Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou (China); Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada); Huang, Shelly [Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada); Zheng, Peng-Yuan, E-mail: medp7123@126.com [Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou (China); Yang, Ping-Chang, E-mail: yangp@mcmaster.ca [Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada)

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Knockdown of A20 compromised the epithelial barrier function. Black-Right-Pointing-Pointer The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Black-Right-Pointing-Pointer Antigens transported across A20-deficient HT-29 monolayers conserved antigenicity. Black-Right-Pointing-Pointer Probiotic proteins increased the expression of A20 in HT-29 cells. -- Abstract: Background and aims: Epithelial barrier dysfunction plays a critical role in the pathogenesis of allergic diseases; the mechanism is to be further understood. The ubiquitin E3 ligase A20 (A20) plays a role in the endocytic protein degradation in the cells. This study aims to elucidate the role of A20 in the maintenance of gut epithelial barrier function. Methods: Gut epithelial cell line, HT-29 cell, was cultured into monolayers to evaluate the barrier function in transwells. RNA interference was employed to knock down the A20 gene in HT-29 cells to test the role of A20 in the maintenance of epithelial barrier function. Probiotic derived proteins were extracted from the culture supernatants using to enhance the expression of A20 in HT-29 cells. Results: The results showed that the knockdown of A20 compromised the epithelial barrier function in HT-29 monolayers, mainly increased the intracellular permeability. The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Allergens collected from the transwell basal chambers of A20-deficient HT-29 monolayers still conserved functional antigenicity. Treating with probiotic derived proteins increased the expression of A20 in HT-29 cells and promote the barrier function. Conclusion: A20 plays an important role in the maintenance of epithelial barrier function as shown by HT-29 monolayer. Probiotic derived protein increases the expression of A20 and promote the HT-29 monolayer barrier function.

  15. Umbilical cord blood-derived natural killer cells combined with Bevacizumab for colorectal cancer treatment.

    Science.gov (United States)

    Xu, Chen; Liu, Dongning; Chen, Zhixin; Zhuo, Fan; Sun, Huankui; Hu, Jiaping; Li, Taiyuan

    2018-06-19

    Colorectal cancer (CRC) is among cancers with highest incidence globally and currently ranks fourth as the leading cause of cancer-related deaths worldwide. It remains an urgent need for novel strategies in the management of patients with advanced CRC. Adoptive transfer of allogeneic natural killer (NK) cells represent an attractive option in the treatment of patients with CRC. In this study, we successfully expanded NK cells from umbilical cord blood (UCB) with membrane-bound IL-21, termed eUCB-NK cells. eUCB-NK cells efficiently lysed CRC cell lines in vitro and secreted significantly higher levels of IFN-γ, TNF-α, GM-CSF and CCL3 compared with IL-2 stimulated NK cells. Adoptive transfer of these NK cells significantly inhibited the growth of HT29 xenografts, whereas LoVo tumors were not effectively controlled with eUCB-NK cells. More NK cells inside HT29 tumors, not seen in LoVo tumors, might contribute to the differences in response to eUCB-NK cells. Combination of bevacizumab can increase extravasation of adoptively transferred NK cells into the LoVo tumors and improve the therapeutic activity of eUCB-NK cells. These results justified clinical translation of this UCB-derived NK cell-based therapeutics, either used alone or combined with bevacizumab, as a novel treatment option for patients with CRC.

  16. Amplification of tumor inducing putative cancer stem cells (CSCs) by vitamin A/retinol from mammary tumors

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Rohit B. [Department of Microbiology and Molecular Genetics, University of Pittsburgh, PA 15261 (United States); Wang, Qingde [Department of Surgery, University of Pittsburgh, PA 15261 (United States); Khillan, Jaspal S., E-mail: khillan@pitt.edu [Department of Microbiology and Molecular Genetics, University of Pittsburgh, PA 15261 (United States)

    2013-07-12

    Highlights: •Vitamin A supports self renewal of putative CSCs from mammary tumors. •These cells exhibit impaired retinol metabolism into retinoic acid. •CSCs from mammary tumors differentiate into mammary specific cell lineages. •The cells express mammary stem cell specific CD29 and CD49f markers. •Putative CSCs form highly metastatic tumors in NOD SCID mouse. -- Abstract: Solid tumors contain a rare population of cancer stem cells (CSCs) that are responsible for relapse and metastasis. The existence of CSC however, remains highly controversial issue. Here we present the evidence for putative CSCs from mammary tumors amplified by vitamin A/retinol signaling. The cells exhibit mammary stem cell specific CD29{sup hi}/CD49f{sup hi}/CD24{sup hi} markers, resistance to radiation and chemo therapeutic agents and form highly metastatic tumors in NOD/SCID mice. The cells exhibit indefinite self renewal as cell lines. Furthermore, the cells exhibit impaired retinol metabolism and do not express enzymes that metabolize retinol into retinoic acid. Vitamin A/retinol also amplified putative CSCs from breast cancer cell lines that form highly aggressive tumors in NOD SCID mice. The studies suggest that high purity putative CSCs can be isolated from solid tumors to establish patient specific cell lines for personalized therapeutics for pre-clinical translational applications. Characterization of CSCs will allow understanding of basic cellular and molecular pathways that are deregulated, mechanisms of tumor metastasis and evasion of therapies that has direct clinical relevance.

  17. Inactivation of Adenomatous Polyposis Coli Reduces Bile Acid/Farnesoid X Receptor Expression through Fxr gene CpG Methylation in Mouse Colon Tumors and Human Colon Cancer Cells.

    Science.gov (United States)

    Selmin, Ornella I; Fang, Changming; Lyon, Adam M; Doetschman, Tom C; Thompson, Patricia A; Martinez, Jesse D; Smith, Jeffrey W; Lance, Peter M; Romagnolo, Donato F

    2016-02-01

    The farnesoid X receptor (FXR) regulates bile acid (BA) metabolism and possesses tumor suppressor functions. FXR expression is reduced in colorectal tumors of subjects carrying inactivated adenomatous polyposis coli (APC). Identifying the mechanisms responsible for this reduction may offer new molecular targets for colon cancer prevention. We investigated how APC inactivation influences the regulation of FXR expression in colonic mucosal cells. We hypothesized that APC inactivation would epigenetically repress nuclear receptor subfamily 1, group H, member 4 (FXR gene name) expression through increased CpG methylation. Normal proximal colonic mucosa and normal-appearing adjacent colonic mucosa and colon tumors were collected from wild-type C57BL/6J and Apc-deficient (Apc(Min) (/+)) male mice, respectively. The expression of Fxr, ileal bile acid-binding protein (Ibabp), small heterodimer partner (Shp), and cyclooxygenase-2 (Cox-2) were determined by real-time polymerase chain reaction. In both normal and adjacent colonic mucosa and colon tumors, we measured CpG methylation of Fxr in bisulfonated genomic DNA. In vitro, we measured the impact of APC inactivation and deoxycholic acid (DCA) treatment on FXR expression in human colon cancer HCT-116 cells transfected with silencing RNA for APC and HT-29 cells carrying inactivated APC. In Apc(Min) (/+) mice, constitutive CpG methylation of the Fxrα3/4 promoter was linked to reduced (60-90%) baseline Fxr, Ibabp, and Shp and increased Cox-2 expression in apparently normal adjacent mucosa and colon tumors. Apc knockdown in HCT-116 cells increased cellular myelocytomatosis (c-MYC) and lowered (∼50%) FXR expression, which was further reduced (∼80%) by DCA. In human HCT-116 but not HT-29 colon cancer cells, DCA induced FXR expression and lowered CpG methylation of FXR. We conclude that the loss of APC function favors the silencing of FXR expression through CpG hypermethylation in mouse colonic mucosa and human colon cells

  18. Human CD34+ cells engineered to express membrane-bound tumor necrosis factor-related apoptosis-inducing ligand target both tumor cells and tumor vasculature.

    Science.gov (United States)

    Lavazza, Cristiana; Carlo-Stella, Carmelo; Giacomini, Arianna; Cleris, Loredana; Righi, Marco; Sia, Daniela; Di Nicola, Massimo; Magni, Michele; Longoni, Paolo; Milanesi, Marco; Francolini, Maura; Gloghini, Annunziata; Carbone, Antonino; Formelli, Franca; Gianni, Alessandro M

    2010-03-18

    Adenovirus-transduced CD34+ cells expressing membrane-bound tumor necrosis factor-related apoptosis-inducing ligand (CD34-TRAIL+ cells) exert potent antitumor activity. To further investigate the mechanism(s) of action of CD34-TRAIL+ cells, we analyzed their homing properties as well as antitumor and antivascular effects using a subcutaneous myeloma model in immunodeficient mice. After intravenous injection, transduced cells homed in the tumor peaking at 48 hours when 188 plus or minus 25 CD45+ cells per 10(5) tumor cells were detected. Inhibition experiments showed that tumor homing of CD34-TRAIL+ cells was largely mediated by vascular cell adhesion molecule-1 and stromal cell-derived factor-1. Both CD34-TRAIL+ cells and soluble (s)TRAIL significantly reduced tumor volume by 40% and 29%, respectively. Computer-aided analysis of TdT-mediated dUTP nick end-labeling-stained tumor sections demonstrated significantly greater effectiveness for CD34-TRAIL+ cells in increasing tumor cell apoptosis and necrosis over sTRAIL. Proteome array analysis indicated that CD34-TRAIL+ cells and sTRAIL activate similar apoptotic machinery. In vivo staining of tumor vasculature with sulfosuccinimidyl-6-(biotinamido) hexanoate-biotin revealed that CD34-TRAIL+ cells but not sTRAIL significantly damaged tumor vasculature, as shown by TdT-mediated dUTP nick end-labeling+ endothelial cells, appearance of hemorrhagic areas, and marked reduction of endothelial area. These results demonstrate that tumor homing of CD34-TRAIL+ cells induces early vascular disruption, resulting in hemorrhagic necrosis and tumor destruction.

  19. Anti-proliferative effects of Bifidobacterium adolescentis SPM0212 extract on human colon cancer cell lines

    International Nuclear Information System (INIS)

    Lee, Do Kyung; Jang, Seok; Kim, Mi Jin; Kim, Jung Hyun; Chung, Myung Jun; Kim, Kyung Jae; Ha, Nam Joo

    2008-01-01

    Lactic acid bacteria (LAB) are beneficial probiotic organisms that contribute to improved nutrition, microbial balance, and immuno-enhancement of the intestinal tract, as well as anti-tumor activity. The aim of the present work was to study the growth inhibition of tumor cells by butanol extract of Bifidobacterium adolescentis isolated from healthy young Koreans. The anti-proliferative activity of B. adolescentis isolates was assessed by XTT assays on three human colon cancer cell lines (Caco-2, HT-29, and SW480). The effects of B. adolescentis SPM0212 butanol extract on tumor necrosis factor-α (TNF-α) and nitric oxide (NO) production were tested using the murine macrophage RAW 264.7 cell line. The butanol extract of B. adolescentis SPM0212 dose-dependently inhibited the growth of Caco-2, HT-29, and SW480 cells by 70%, 30%, and 40%, respectively, at 200 μg/mL. Additionally, the butanol extract of B. adolescentis SPM0212 induced macrophage activation and significantly increased the production of TNF-α and NO, which regulate immune modulation and are cytotoxic to tumor cells. The butanol extract of B. adolescentis SPM0212 increased activity of the host immune system and may improve human health by helping to prevent colon cancer as a biological response modifier

  20. Tumor cell invasion of collagen matrices requires coordinate lipid agonist-induced G-protein and membrane-type matrix metalloproteinase-1-dependent signaling

    Directory of Open Access Journals (Sweden)

    Anthis Nicholas J

    2006-12-01

    Full Text Available Abstract Background Lysophosphatidic acid (LPA and sphingosine 1-phosphate (S1P are bioactive lipid signaling molecules implicated in tumor dissemination. Membrane-type matrix metalloproteinase 1 (MT1-MMP is a membrane-tethered collagenase thought to be involved in tumor invasion via extracellular matrix degradation. In this study, we investigated the molecular requirements for LPA- and S1P-regulated tumor cell migration in two dimensions (2D and invasion of three-dimensional (3D collagen matrices and, in particular, evaluated the role of MT1-MMP in this process. Results LPA stimulated while S1P inhibited migration of most tumor lines in Boyden chamber assays. Conversely, HT1080 fibrosarcoma cells migrated in response to both lipids. HT1080 cells also markedly invaded 3D collagen matrices (~700 μm over 48 hours in response to either lipid. siRNA targeting of LPA1 and Rac1, or S1P1, Rac1, and Cdc42 specifically inhibited LPA- or S1P-induced HT1080 invasion, respectively. Analysis of LPA-induced HT1080 motility on 2D substrates vs. 3D matrices revealed that synthetic MMP inhibitors markedly reduced the distance (~125 μm vs. ~45 μm and velocity of invasion (~0.09 μm/min vs. ~0.03 μm/min only when cells navigated 3D matrices signifying a role for MMPs exclusively in invasion. Additionally, tissue inhibitors of metalloproteinases (TIMPs-2, -3, and -4, but not TIMP-1, blocked lipid agonist-induced invasion indicating a role for membrane-type (MT-MMPs. Furthermore, MT1-MMP expression in several tumor lines directly correlated with LPA-induced invasion. HEK293s, which neither express MT1-MMP nor invade in the presence of LPA, were transfected with MT1-MMP cDNA, and subsequently invaded in response to LPA. When HT1080 cells were seeded on top of or within collagen matrices, siRNA targeting of MT1-MMP, but not other MMPs, inhibited lipid agonist-induced invasion establishing a requisite role for MT1-MMP in this process. Conclusion LPA is a

  1. Therapeutic benefits in grid irradiation on Tomotherapy for bulky, radiation-resistant tumors.

    Science.gov (United States)

    Narayanasamy, Ganesh; Zhang, Xin; Meigooni, Ali; Paudel, Nava; Morrill, Steven; Maraboyina, Sanjay; Peacock, Loverd; Penagaricano, Jose

    2017-08-01

    Spatially fractionated radiation therapy (SFRT or grid therapy) has proven to be effective in management of bulky tumors. The aim of this project is to study the therapeutic ratio (TR) of helical Tomotherapy (HT)-based grid therapy using linear-quadratic cell survival model. HT-based grid (or HT-GRID) plan was generated using a patient-specific virtual grid pattern of high-dose cylindrical regions using MLCs. TR was defined as the ratio of normal tissue surviving fraction (SF) under HT-GRID irradiation to an open debulking field of an equivalent dose that result in the same tumor cell SF. TR was estimated from DVH data on ten HT-GRID patient plans with deep seated, bulky tumor. Dependence of the TR values on radiosensitivity of the tumor cells and prescription dose was analyzed. The mean ± standard deviation (SD) of TR was 4.0 ± 0.7 (range: 3.1-5.5) for the 10 patients with single fraction maximum dose of 20 Gy to GTV assuming a tumor cell SF at 2 Gy (SF2 t ) value of 0·5. In addition, the mean ± SD of TR values for SF2 t values of 0.3 and 0.7 were found to be 1 ± 0.1 and 18.0 ± 5.1, respectively. Reducing the prescription dose to 15 and 10 Gy lowered the respective TR values to 2.0 ± 0.2 and 1.2 ± 0.04 for a SF2 t value of 0.5. HT-GRID therapy demonstrates a significant therapeutic advantage over uniform dose from an open field irradiation for the same tumor cell kill. TR increases with the radioresistance of the tumor cells and with prescription dose.

  2. Lactobacillus casei Exerts Anti-Proliferative Effects Accompanied by Apoptotic Cell Death and Up-Regulation of TRAIL in Colon Carcinoma Cells

    Science.gov (United States)

    Santarmaki, Valentina; Aindelis, Georgios; Tompoulidou, Evgenia; Lamprianidou, Eleftheria E.; Saxami, Georgia; Ypsilantis, Petros; Lampri, Evangeli S.; Simopoulos, Constantinos; Kotsianidis, Ioannis; Galanis, Alex; Kourkoutas, Yiannis; Dimitrellou, Dimitra; Chlichlia, Katerina

    2016-01-01

    Probiotic microorganisms such as lactic acid bacteria (LAB) exert a number of strain-specific health-promoting activities attributed to their immunomodulatory, anti-inflammatory and anti-carcinogenic properties. Despite recent attention, our understanding of the biological processes involved in the beneficial effects of LAB strains is still limited. To this end, the present study investigated the growth-inhibitory effects of Lactobacillus casei ATCC 393 against experimental colon cancer. Administration of live Lactobacillus casei (as well as bacterial components thereof) on murine (CT26) and human (HT29) colon carcinoma cell lines raised a significant concentration- and time-dependent anti-proliferative effect, determined by cell viability assays. Specifically, a dramatic decrease in viability of colon cancer cells co-incubated with 109 CFU/mL L. casei for 24 hours was detected (78% for HT29 and 52% for CT26 cells). In addition, live L. casei induced apoptotic cell death in both cell lines as revealed by annexin V and propidium iodide staining. The significance of the in vitro anti-proliferative effects was further confirmed in an experimental tumor model. Oral daily administration of 109 CFU live L. casei for 13 days significantly inhibited in vivo growth of colon carcinoma cells, resulting in approximately 80% reduction in tumor volume of treated mice. Tumor growth inhibition was accompanied by L. casei-driven up-regulation of the TNF-related apoptosis-inducing ligand TRAIL and down-regulation of Survivin. Taken together, these findings provide evidence for beneficial tumor-inhibitory, anti-proliferative and pro-apoptotic effects driven by this probiotic LAB strain. PMID:26849051

  3. Lactobacillus casei Exerts Anti-Proliferative Effects Accompanied by Apoptotic Cell Death and Up-Regulation of TRAIL in Colon Carcinoma Cells.

    Directory of Open Access Journals (Sweden)

    Angeliki Tiptiri-Kourpeti

    Full Text Available Probiotic microorganisms such as lactic acid bacteria (LAB exert a number of strain-specific health-promoting activities attributed to their immunomodulatory, anti-inflammatory and anti-carcinogenic properties. Despite recent attention, our understanding of the biological processes involved in the beneficial effects of LAB strains is still limited. To this end, the present study investigated the growth-inhibitory effects of Lactobacillus casei ATCC 393 against experimental colon cancer. Administration of live Lactobacillus casei (as well as bacterial components thereof on murine (CT26 and human (HT29 colon carcinoma cell lines raised a significant concentration- and time-dependent anti-proliferative effect, determined by cell viability assays. Specifically, a dramatic decrease in viability of colon cancer cells co-incubated with 10(9 CFU/mL L. casei for 24 hours was detected (78% for HT29 and 52% for CT26 cells. In addition, live L. casei induced apoptotic cell death in both cell lines as revealed by annexin V and propidium iodide staining. The significance of the in vitro anti-proliferative effects was further confirmed in an experimental tumor model. Oral daily administration of 10(9 CFU live L. casei for 13 days significantly inhibited in vivo growth of colon carcinoma cells, resulting in approximately 80% reduction in tumor volume of treated mice. Tumor growth inhibition was accompanied by L. casei-driven up-regulation of the TNF-related apoptosis-inducing ligand TRAIL and down-regulation of Survivin. Taken together, these findings provide evidence for beneficial tumor-inhibitory, anti-proliferative and pro-apoptotic effects driven by this probiotic LAB strain.

  4. Lactobacillus casei Exerts Anti-Proliferative Effects Accompanied by Apoptotic Cell Death and Up-Regulation of TRAIL in Colon Carcinoma Cells.

    Science.gov (United States)

    Tiptiri-Kourpeti, Angeliki; Spyridopoulou, Katerina; Santarmaki, Valentina; Aindelis, Georgios; Tompoulidou, Evgenia; Lamprianidou, Eleftheria E; Saxami, Georgia; Ypsilantis, Petros; Lampri, Evangeli S; Simopoulos, Constantinos; Kotsianidis, Ioannis; Galanis, Alex; Kourkoutas, Yiannis; Dimitrellou, Dimitra; Chlichlia, Katerina

    2016-01-01

    Probiotic microorganisms such as lactic acid bacteria (LAB) exert a number of strain-specific health-promoting activities attributed to their immunomodulatory, anti-inflammatory and anti-carcinogenic properties. Despite recent attention, our understanding of the biological processes involved in the beneficial effects of LAB strains is still limited. To this end, the present study investigated the growth-inhibitory effects of Lactobacillus casei ATCC 393 against experimental colon cancer. Administration of live Lactobacillus casei (as well as bacterial components thereof) on murine (CT26) and human (HT29) colon carcinoma cell lines raised a significant concentration- and time-dependent anti-proliferative effect, determined by cell viability assays. Specifically, a dramatic decrease in viability of colon cancer cells co-incubated with 10(9) CFU/mL L. casei for 24 hours was detected (78% for HT29 and 52% for CT26 cells). In addition, live L. casei induced apoptotic cell death in both cell lines as revealed by annexin V and propidium iodide staining. The significance of the in vitro anti-proliferative effects was further confirmed in an experimental tumor model. Oral daily administration of 10(9) CFU live L. casei for 13 days significantly inhibited in vivo growth of colon carcinoma cells, resulting in approximately 80% reduction in tumor volume of treated mice. Tumor growth inhibition was accompanied by L. casei-driven up-regulation of the TNF-related apoptosis-inducing ligand TRAIL and down-regulation of Survivin. Taken together, these findings provide evidence for beneficial tumor-inhibitory, anti-proliferative and pro-apoptotic effects driven by this probiotic LAB strain.

  5. Genistein inhibits proliferation of colon cancer cells by attenuating a negative effect of epidermal growth factor on tumor suppressor FOXO3 activity

    International Nuclear Information System (INIS)

    Qi, Wentao; Weber, Christopher R; Wasland, Kaarin; Savkovic, Suzana D

    2011-01-01

    Soy consumption is associated with a lower incidence of colon cancer which is believed to be mediated by one of its of components, genistein. Genistein may inhibit cancer progression by inducing apoptosis or inhibiting proliferation, but mechanisms are not well understood. Epidermal growth factor (EGF)-induced proliferation of colon cancer cells plays an important role in colon cancer progression and is mediated by loss of tumor suppressor FOXO3 activity. The aim of this study was to assess if genistein exerts anti-proliferative properties by attenuating the negative effect of EGF on FOXO3 activity. The effect of genistein on proliferation stimulated by EGF-mediated loss of FOXO3 was examined in human colonic cancer HT-29 cells. EGF-induced FOXO3 phosphorylation and translocation were assessed in the presence of genistein. EGF-mediated loss of FOXO3 interactions with p53 (co-immunoprecipitation) and promoter of p27kip1 (ChIP assay) were examined in presence of genistein in cells with mutated p53 (HT-29) and wild type p53 (HCT116). Silencing of p53 determined activity of FOXO3 when it is bound to p53. Genistein inhibited EGF-induced proliferation, while favoring dephosphorylation and nuclear retention of FOXO3 (active state) in colon cancer cells. Upstream of FOXO3, genistein acts via the PI3K/Akt pathway to inhibit EGF-stimulated FOXO3 phosphorylation (i.e. favors active state). Downstream, EGF-induced disassociation of FOXO3 from mutated tumor suppressor p53, but not wild type p53, is inhibited by genistein favoring FOXO3-p53(mut) interactions with the promoter of the cell cycle inhibitor p27kip1 in colon cancer cells. Thus, the FOXO3-p53(mut) complex leads to elevated p27kip1 expression and promotes cell cycle arrest. These novel anti-proliferative mechanisms of genistein suggest a possible role of combining genistein with other chemoreceptive agents for the treatment of colon cancer

  6. Effects of HIF-1 inhibition by chetomin on hypoxia-related transcription and radiosensitivity in HT 1080 human fibrosarcoma cells

    International Nuclear Information System (INIS)

    Staab, Adrian; Einsele, Hermann; Flentje, Michael; Vordermark, Dirk; Loeffler, Jürgen; Said, Harun M; Diehlmann, Désirée; Katzer, Astrid; Beyer, Melanie; Fleischer, Markus; Schwab, Franz; Baier, Kurt

    2007-01-01

    Hypoxia-inducible factor-1 (HIF-1) overexpression has been linked to tumor progression and poor prognosis. We investigated whether targeting of HIF-1 using chetomin, a disrupter of the interaction of HIF-1 with the transcriptional coactivator p300, influences the radiosensitivity of hypoxic HT 1080 human fibrosarcoma cells. Optimal dose of chetomin was determined by EGFP-HRE gene reporter assay in stably transfected HT 1080 cells. Cells were assayed for expression of the hypoxia-inducible genes carbonic anhydrase 9 (CA9) and vascular endothelial growth factor (VEGF) by RT-PCR and for clonogenic survival after irradiation with 2, 5 or 10 Gy, under normoxic or hypoxic (0.1% O 2 , 12 h) conditions in the presence or absence of chetomin (150 nM, 12 h, pre-treatment of 4 h). Chetomin treatment significantly reduced CA9 and VEGF mRNA expression in hypoxic cells to 44.4 ± 7.2% and 39.6 ± 16.0%, respectively, of untreated hypoxic controls. Chetomin clearly reduced the modified oxygen enhancement ratio (OER') compared to untreated cells, from 2.02 to 1.27, from 1.86 to 1.22 and from 1.49 to 1.06 at the 50%, 37% and 10% clonogenic survival levels, respectively. HIF-1 inhibition by chetomin effectively reduces hypoxia-dependent transcription and radiosensitizes hypoxic HT 1080 human fibrosarcoma cells in vitro

  7. Mechanisms underlying 3-bromopyruvate-induced cell death in colon cancer.

    Science.gov (United States)

    Sun, Yiming; Liu, Zhe; Zou, Xue; Lan, Yadong; Sun, Xiaojin; Wang, Xiu; Zhao, Surong; Jiang, Chenchen; Liu, Hao

    2015-08-01

    3-Bromopyruvate (3BP) is an energy-depleting drug that inhibits Hexokinase II activity by alkylation during glycolysis, thereby suppressing the production of ATP and inducing cell death. As such, 3BP can potentially serve as an anti-tumorigenic agent. Our previous research showed that 3BP can induce apoptosis via AKT /protein Kinase B signaling in breast cancer cells. Here we found that 3BP can also induce colon cancer cell death by necroptosis and apoptosis at the same time and concentration in the SW480 and HT29 cell lines; in the latter, autophagy was also found to be a mechanism of cell death. In HT29 cells, combined treatment with 3BP and the autophagy inhibitor 3-methyladenine (3-MA) exacerbated cell death, while viability in 3BP-treated cells was enhanced by concomitant treatment with the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp fluoromethylketone (z-VAD-fmk) and the necroptosis inhibitor necrostatin (Nec)-1. Moreover, 3BP inhibited tumor growth in a SW480 xenograft mouse model. These results indicate that 3BP can suppress tumor growth and induce cell death by multiple mechanisms at the same time and concentration in different types of colon cancer cell by depleting cellular energy stores.

  8. The stimulatory adenosine receptor ADORA2B regulates serotonin (5-HT synthesis and release in oxygen-depleted EC cells in inflammatory bowel disease.

    Directory of Open Access Journals (Sweden)

    Rikard Dammen

    Full Text Available We recently demonstrated that hypoxia, a key feature of IBD, increases enterochromaffin (EC cell 5-HT secretion, which is also physiologically regulated by the ADORA2B mechanoreceptor. Since hypoxia is associated with increased extracellular adenosine, we wanted to examine whether this nucleotide amplifies HIF-1α-mediated 5-HT secretion.The effects of hypoxia were studied on IBD mucosa, isolated IBD-EC cells, isolated normal EC cells and the EC cell tumor derived cell line KRJ-1. Hypoxia (0.5% O2 was compared to NECA (adenosine agonist, MRS1754 (ADORA2B receptor antagonist and SCH442146 (ADORA2A antagonist on HIF signaling and 5-HT secretion. Antisense approaches were used to mechanistically evaluate EC cells in vitro. PCR and western blot were used to analyze transcript and protein levels of HIF-1α signaling and neuroendocrine cell function. An animal model of colitis was evaluated to confirm hypoxia:adenosine signaling in vivo.HIF-1α is upregulated in IBD mucosa and IBD-EC cells, the majority (~90% of which express an activated phenotype in situ. Hypoxia stimulated 5-HT release maximally at 30 mins, an effect amplified by NECA and selectively inhibited by MRS1754, through phosphorylation of TPH-1 and activation of VMAT-1. Transient transfection with Renilla luciferase under hypoxia transcriptional response element (HRE control identified that ADORA2B activated HIF-1α signaling under hypoxic conditions. Additional signaling pathways associated with hypoxia:adenosine included MAP kinase and CREB. Antisense approaches mechanistically confirmed that ADORA2B signaling was linked to these pathways and 5-HT release under hypoxic conditions. Hypoxia:adenosine activation which could be reversed by 5'-ASA treatment was confirmed in a TNBS-model.Hypoxia induced 5-HT synthesis and secretion is amplified by ADORA2B signaling via MAPK/CREB and TPH-1 activation. Targeting ADORA2s may decrease EC cell 5-HT production and secretion in IBD.

  9. Enhancement of hypoxia-activated prodrug TH-302 anti-tumor activity by Chk1 inhibition.

    Science.gov (United States)

    Meng, Fanying; Bhupathi, Deepthi; Sun, Jessica D; Liu, Qian; Ahluwalia, Dharmendra; Wang, Yan; Matteucci, Mark D; Hart, Charles P

    2015-05-21

    The hypoxia-activated prodrug TH-302 is reduced at its nitroimidazole group and selectively under hypoxic conditions releases the DNA cross-linker bromo-isophosphoramide mustard (Br-IPM). Here, we have explored the effect of Chk1 inhibition on TH-302-mediated pharmacological activities. We employed in vitro cell viability, DNA damage, cellular signaling assays and the in vivo HT29 human tumor xenograft model to study the effect of Chk1inhibition on TH-302 antitumor activities. TH-302 cytotoxicity is greatly enhanced by Chk1 inhibition in p53-deficient but not in p53-proficient human cancer cell lines. Chk1 inhibitors reduced TH-302-induced cell cycle arrest via blocking TH-302-induced decrease of phosphorylation of histone H3 and increasing Cdc2-Y15 phosphorylation. Employing the single-cell gel electrophoresis (comet) assay, we observed a potentiation of the TH-302 dependent tail moment. TH-302 induced γH2AX and apoptosis were also increased upon the addition of Chk1 inhibitor. Potentiation of TH-302 cytotoxicity by Chk1 inhibitor was only observed in cell lines proficient in, but not deficient in homology-directed DNA repair. We also show that combination treatment led to lowering of Rad51 expression levels as compared to either agent alone. In vivo data demonstrate that Chk1 inhibitor enhances TH-302 anti-tumor activity in p53 mutant HT-29 human tumor xenografts, supporting the hypothesis that these in vitro results can translate to enhanced in vivo efficacy of the combination. TH-302-mediated in vitro and in vivo anti-tumor activities were greatly enhanced by the addition of Chk1 inhibitors. The preclinical data presented in this study support a new approach for the treatment of p53-deficient hypoxic cancers by combining Chk1 inhibitors with the hypoxia-activated prodrug TH-302.

  10. Mechanosensory Signaling in Enterochromaffin Cells and 5-HT Release: Potential Implications for Gut Inflammation

    Directory of Open Access Journals (Sweden)

    Andromeda Linan Rico

    2016-12-01

    Full Text Available Enterochromaffin cells (EC synthesize 95% of the body 5-HT and release 5-HT in response to mechanical or chemical stimulation. EC cell 5-HT has physiological effects on gut motility, secretion and visceral sensation. Abnormal regulation of 5-HT occurs in gastrointestinal disorders and Inflammatory Bowel Diseases (IBD where 5-HT may represent a key player in the pathogenesis of intestinal inflammation. The focus of this review is on mechanism(s involved in EC cell ‘mechanosensation’ and critical gaps in our knowledge for future research. Much of our knowledge and concepts are from a human BON cell model of EC, although more recent work has included other cell lines, native EC cells from mouse and human and intact mucosa. EC cells are ‘mechanosensors’ that respond to physical forces generated during peristaltic activity by translating the mechanical stimulus (MS into an intracellular biochemical response leading to 5-HT and ATP release. The emerging picture of mechanosensation includes Piezo 2 channels, caveolin-rich microdomains and tight regulation of 5-HT release by purines. The ‘purinergic hypothesis’ is that MS releases purines to act in an autocrine / paracrine manner to activate excitatory (P2Y1, P2Y4, P2Y6, A2A/A2B or inhibitory (P2Y12, A1, A3 receptors to regulate 5-HT release. MS activates a P2Y1/Gαq/PLC/IP3-IP3R/SERCA Ca2+signaling pathway, an A2A/A2B–Gs/AC/cAMP-PKA signaling pathway, an ATP-gated P2X3 channel, and an inhibitory P2Y12 -Gi/o/AC-cAMP pathway. In human IBD, P2X3 is down regulated and A2B is up regulated in EC cells, but the pathophysiological consequences of abnormal mechanosensory or purinergic 5-HT signaling remain unknown. EC cell mechanosensation remains poorly understood.

  11. Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical applications: Cytotoxicity effect of nanoparticles against HT-29 cancer cells.

    Science.gov (United States)

    Ezhilarasi, A Angel; Vijaya, J Judith; Kaviyarasu, K; Maaza, M; Ayeshamariam, A; Kennedy, L John

    2016-11-01

    Green protocols for the synthesis of nickel oxide nanoparticles using Moringa oleifera plant extract has been reported in the present study as they are cost effective and ecofriendly, moreover this paper records that the nickel oxide (NiO) nanoparticles prepared from green method shows better cytotoxicity and antibacterial activity. The NiO nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), High resolution transmission electron microscopy (HRTEM), Energy dispersive X-ray analysis (EDX), and Photoluminescence spectroscopy (PL). The formation of a pure nickel oxide phase was confirmed by XRD and FTIR. The synthesized NiO nanoparticles was single crystalline having face centered cubic phase and has two intense photoluminescence emissions at 305.46nm and 410nm. The formation of nano- and micro-structures was confirmed by HRTEM. The in-vitro cytotoxicity and cell viability of human cancer cell HT-29 (Colon Carcinoma cell lines) and antibacterial studies against various bacterial strains were studied with various concentrations of nickel oxide nanoparticles prepared from Moringa oleifera plant extract. MTT assay measurements on cell viability and morphological studies proved that the synthesized NiO nanoparticles posses cytotoxic activity against human cancer cells and the various zones of inhibition (mm), obtained revealed the effective antibacterial activity of NiO nanoparticles against various Gram positive and Gram negative bacterial pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Morphological modulation of human fibrosarcoma HT-1080 cells by hydroxybenzoate compounds during apoptosis

    Directory of Open Access Journals (Sweden)

    Jassem G Mahdi

    2015-10-01

    Full Text Available Hydroxybenzoate (HB compounds have shown to modulate the morphology in human fibrosarcoma HT-1080 cells. The changes in HT-1080 cells showed marker signs of apoptosis, which included the condensation of nucleus, cell round, blebbing and the formation of apoptotic bodies. The different stages of apoptosis were assessed microscopically using different staining and immunohistochemical techniques, as well as scanning electron microscopy. In addition, HB compounds increased the expression of caspase-3, which is closely associated with the development of the modulation in HT-1080 cells that are undergoing the programmed cell death. Both acetyl salicylic acid (ASA and HBZn compounds were dose and treatment duration dependent.

  13. Differential expression of nanog1 and nanogp8 in colon cancer cells

    International Nuclear Information System (INIS)

    Ishiguro, Tatsuya; Sato, Ai; Ohata, Hirokazu; Sakai, Hiroaki; Nakagama, Hitoshi; Okamoto, Koji

    2012-01-01

    Highlights: ► Nanog is expressed in a majority of colon cancer cell lines examined. ► Both nanog1 and nanogp8 are expressed in colon cancer cells with varying ratios. ► Nanog mediates cell proliferation of colon cancer cells. ► Nanog predominantly localizes in cytoplasm of colon cancer cells. -- Abstract: Nanog, a homeodomain transcription factor, is an essential regulator for promotion of self-renewal of embryonic stem cells and inhibition of their differentiation. It has been demonstrated that nanog1 as well as nanogp8, a retrogene of nanog1, is preferentially expressed in advanced stages of several types of cancer, suggesting their involvement during cancer progression. Here, we investigated the expression of Nanog in well-characterized colon cancer cell lines. Expression of Nanog was detectable in 5 (HCT116, HT29, RKO, SW48, SW620) out of seven cell lines examined. RNA expression analyses of nanog1 and nanogp8 indicated that, while nanog1 was a major form in SW620 as well as in teratoma cells Tera-2, nanogp8 was preferentially expressed in HT29 and HCT116. In accordance with this, shRNA-mediated knockdown of nanog1 caused the reduction of Nanog in SW620 but not in HT29. Inhibition of Nanog in SW620 cells negatively affected cell proliferation and tumor formation in mouse xenograft. Biochemical subcellular fractionation and immunostaining analyses revealed predominant localization of Nanog in cytoplasm in SW620 and HT29, while it was mainly localized in nucleus in Tera-2. Our data indicate that nanog1 and nanogp8 are differentially expressed in colon cancer cells, and suggest that their expression contributes to proliferation of colon cancer cells.

  14. Differential expression of nanog1 and nanogp8 in colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Ishiguro, Tatsuya; Sato, Ai; Ohata, Hirokazu; Sakai, Hiroaki [Division of Cancer Differentiation, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Nakagama, Hitoshi, E-mail: hnakagam@ncc.go.jp [Division of Cancer Development System, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Okamoto, Koji, E-mail: kojokamo@ncc.go.jo [Division of Cancer Differentiation, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Nanog is expressed in a majority of colon cancer cell lines examined. Black-Right-Pointing-Pointer Both nanog1 and nanogp8 are expressed in colon cancer cells with varying ratios. Black-Right-Pointing-Pointer Nanog mediates cell proliferation of colon cancer cells. Black-Right-Pointing-Pointer Nanog predominantly localizes in cytoplasm of colon cancer cells. -- Abstract: Nanog, a homeodomain transcription factor, is an essential regulator for promotion of self-renewal of embryonic stem cells and inhibition of their differentiation. It has been demonstrated that nanog1 as well as nanogp8, a retrogene of nanog1, is preferentially expressed in advanced stages of several types of cancer, suggesting their involvement during cancer progression. Here, we investigated the expression of Nanog in well-characterized colon cancer cell lines. Expression of Nanog was detectable in 5 (HCT116, HT29, RKO, SW48, SW620) out of seven cell lines examined. RNA expression analyses of nanog1 and nanogp8 indicated that, while nanog1 was a major form in SW620 as well as in teratoma cells Tera-2, nanogp8 was preferentially expressed in HT29 and HCT116. In accordance with this, shRNA-mediated knockdown of nanog1 caused the reduction of Nanog in SW620 but not in HT29. Inhibition of Nanog in SW620 cells negatively affected cell proliferation and tumor formation in mouse xenograft. Biochemical subcellular fractionation and immunostaining analyses revealed predominant localization of Nanog in cytoplasm in SW620 and HT29, while it was mainly localized in nucleus in Tera-2. Our data indicate that nanog1 and nanogp8 are differentially expressed in colon cancer cells, and suggest that their expression contributes to proliferation of colon cancer cells.

  15. Ethanol stimulates tumor progression and expression of vascular endothelial growth factor in chick embryos.

    Science.gov (United States)

    Gu, Jian-Wei; Bailey, Amelia Purser; Sartin, Amanda; Makey, Ian; Brady, Ann L

    2005-01-15

    The mechanisms by which alcohol consumption causes cancer have not been established due to a lack of experimental studies. A chick embryo chorioallantoic membrane (CAM) model that bore human fibrosarcoma (HT1080) was used to determine whether the administration of physiologically relevant doses of ethanol could stimulate tumor growth, angiogenesis, metastasis, and vascular endothelial growth factor (VEGF) expression in tumors. HT1080 cells were inoculated onto the "upper CAM" on Day 8, saline or ethanol was administrated at a dose of 0.25 g/kg per day on the CAM, and the tumors were harvested on Day 17. VEGF mRNA and protein were determined by Northern blot analysis and enzyme-linked immunosorbent assay. Intratumoral vascular volume density (IVVD) was determined by point counting on periodic acid-Schiff-stained sections. Intravasation of HT1080 cells was determined using human-Alu polymerase chain reaction analysis. The effects of ethanol on VEGF expression and cell proliferation were examined in cultured HT1080 cells. Ethanol treatment for 9 days caused a 2.2-fold increase in tumor volume (867 +/- 138 mm(3) vs. 402 +/- 28 mm(3)), a 2.1-fold increase in IVVD (0.021 +/- 0.004 mm(3)/mm(3) vs. 0.010 mm(3)/mm(3) +/- 0.002 mm(3)/mm(3)), and a significant increase in VEGF mRNA or protein expression in tumors compared with a group of control embryos (n = 6 embryos; P 8-fold in the intravasated HT1080 cells in the CAM group compared with the control group (n = 6 embryos; P < 0.01). Physiologically relevant levels of ethanol (10 mM and 20 mM) caused a dose-related increase in VEGF mRNA and protein expression in cultured HT1080 cells. The ethanol-HT1080-conditioned media increased the proliferation of endothelial cells, but not of HT1080 cells. The findings suggest that the induction of angiogenesis and VEGF expression by ethanol represents an important mechanism of cancer progression associated with alcoholic beverage consumption. (c) 2004 American Cancer Society.

  16. Anti-tumor effects of novel 5-O-acyl plumbagins based on the inhibition of mammalian DNA replicative polymerase activity.

    Directory of Open Access Journals (Sweden)

    Moe Kawamura

    Full Text Available We previously found that vitamin K3 (menadione, 2-methyl-1,4-naphthoquinone inhibits the activity of human mitochondrial DNA polymerase γ (pol γ. In this study, we focused on plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone, and chemically synthesized novel plumbagins conjugated with C2:0 to C22:6 fatty acids (5-O-acyl plumbagins. These chemically modified plumbagins enhanced mammalian pol inhibition and their cytotoxic activity. Plumbagin conjugated with chains consisting of more than C18-unsaturated fatty acids strongly inhibited the activities of calf pol α and human pol γ. Plumbagin conjugated with oleic acid (C18:1-acyl plumbagin showed the strongest suppression of human colon carcinoma (HCT116 cell proliferation among the ten synthesized 5-O-acyl plumbagins. The inhibitory activity on pol α, a DNA replicative pol, by these compounds showed high correlation with their cancer cell proliferation suppressive activity. C18:1-Acyl plumbagin selectively inhibited the activities of mammalian pol species, but did not influence the activities of other pols and DNA metabolic enzymes tested. This compound inhibited the proliferation of various human cancer cell lines, and was the cytotoxic inhibitor showing strongest inhibition towards HT-29 colon cancer cells (LD50 = 2.9 µM among the nine cell lines tested. In an in vivo anti-tumor assay conducted on nude mice bearing solid tumors of HT-29 cells, C18:1-acyl plumbagin was shown to be a promising tumor suppressor. These data indicate that novel 5-O-acyl plumbagins act as anti-cancer agents based on mammalian DNA replicative pol α inhibition. Moreover, the results suggest that acylation of plumbagin is an effective chemical modification to improve the anti-cancer activity of vitamin K3 derivatives, such as plumbagin.

  17. Composition and antiproliferative effect of essential oil of Origanum vulgare against tumor cell lines.

    Science.gov (United States)

    Begnini, Karine Rech; Nedel, Fernanda; Lund, Rafael Guerra; Carvalho, Pedro Henrique de Azambuja; Rodrigues, Maria Regina Alves; Beira, Fátima Tereza Alves; Del-Pino, Francisco Augusto Burkert

    2014-10-01

    Cancer is a leading cause of death and is responsible for one in eight deaths worldwide. The use of herbs as complementary medicine for cancer, especially advanced cancer, has recently increased. The aim of this study was to evaluate in vitro, the antiproliferative effect of Origanum vulgare against human breast adenocarcinoma (MCF-7), and human colon adenocarcinoma (HT-29). The essential oil (EO) was extracted from a bought amount of O. vulgare dried leaves and analyzed in a gas chromatograph interfaced with a mass selective detector. The cytotoxicity test was performed by sulforhodamine B assay. The results show that the EO is composed mostly of 4-terpineol and induces a high cytotoxicity effect in HT-29. In the MCF-7 cell line the EO was less effective. In conclusion, this study showed that O. vulgare main component is 4-terpineol and was effective in inducing cancer cell growth inhibition.

  18. Investigation of the roles of exosomes in colorectal cancer liver metastasis.

    Science.gov (United States)

    Wang, Xia; Ding, Xiaoling; Nan, Lijuan; Wang, Yiting; Wang, Jing; Yan, Zhiqiang; Zhang, Wei; Sun, Jihong; Zhu, Wei; Ni, Bing; Dong, Suzhen; Yu, Lei

    2015-05-01

    The leading cause of death among cancer patients is tumor metastasis. Tumor-derived exosomes are emerging as mediators of metastasis. In the present study, we demonstrated that exosomes play a pivotal role in the metastatic progression of colorectal cancer. First, a nude mouse model of colorectal cancer liver metastasis was established and characterized. Then, we demonstrated that exosomes from a highly liver metastatic colorectal cancer cell line (HT-29) could significantly increase the metastatic tumor burden and distribution in the mouse liver of Caco-2 colorectal cancer cells, which ordinarily exhibit poor liver metastatic potential. We further investigated the mechanisms by which HT-29-derived-exosomes influence the liver metastasis of colorectal cancer and found that mice treated with HT-29-derived exosomes had a relatively higher level of CXCR4 in the metastatic microenvironment, indicating that exosomes may promote colorectal cancer metastasis by recruiting CXCR4-expressing stromal cells to develop a permissive metastatic microenvironment. Finally, the migration of Caco-2 cells was significantly increased following treatment with HT-29-derived exosomes in vitro, further supporting a role for exosomes in modulating colorectal tumor-derived liver metastasis. The data from the present study may facilitate further translational medicine research into the prevention and treatment of colorectal cancer liver metastasis.

  19. Functional expression of 5-HT{sub 2A} receptor in osteoblastic MC3T3-E1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, Takao; Kaneshige, Kota; Kurosaki, Teruko [Department of Molecular Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 1 Gakuen-cho, Fukuyama, Hiroshima 729-0292 (Japan); Nishio, Hiroaki, E-mail: nishio@fupharm.fukuyama-u.ac.jp [Department of Molecular Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 1 Gakuen-cho, Fukuyama, Hiroshima 729-0292 (Japan)

    2010-05-28

    In the previous study, we reported the gene expression for proteins related to the function of 5-hydroxytryptamine (5-HT, serotonin) and elucidated the expression patterns of 5-HT{sub 2} receptor subtypes in mouse osteoblasts. In the present study, we evaluated the possible involvement of 5-HT receptor subtypes and its inactivation system in MC3T3-E1 cells, an osteoblast cell line. DOI, a 5-HT{sub 2A} and 5-HT{sub 2C} receptor selective agonist, as well as 5-HT concentration-dependently increased proliferative activities of MC3T3-E1 cells in their premature period. This effect of 5-HT on cell proliferation were inhibited by ketanserin, a 5-HT{sub 2A} receptor specific antagonist. Moreover, both DOI-induced cell proliferation and phosphorylation of ERK1 and 2 proteins were inhibited by PD98059 and U0126, selective inhibitors of MEK in a concentration-dependent manner. Furthermore, treatment with fluoxetine, a 5-HT specific re-uptake inhibitor which inactivate the function of extracellular 5-HT, significantly increased the proliferative activities of MC3T3-E1 cells in a concentration-dependent manner. Our data indicate that 5-HT fill the role for proliferation of osteoblast cells in their premature period. Notably, 5-HT{sub 2A} receptor may be functionally expressed to regulate mechanisms underlying osteoblast cell proliferation, at least in part, through activation of ERK/MAPK pathways in MC3T3-E1 cells.

  20. CRF2 signaling is a novel regulator of cellular adhesion and migration in colorectal cancer cells.

    Science.gov (United States)

    Ducarouge, Benjamin; Pelissier-Rota, Marjolaine; Lainé, Michèle; Cristina, Nadine; Vachez, Yvan; Scoazec, Jean-Yves; Bonaz, Bruno; Jacquier-Sarlin, Muriel

    2013-01-01

    Stress has been proposed to be a tumor promoting factor through the secretion of specific neuromediators, such as Urocortin2 and 3 (Ucn2/3), however its role in colorectal cancer (CRC) remains elusive. We observed that Ucn2/3 and their receptor the Corticotropin Releasing Factor receptor 2 (CRF2) were up-regulated in high grade and poorly differentiated CRC. This suggests a role for CRF2 in the loss of cellular organization and tumor progression. Using HT-29 and SW620 cells, two CRC cell lines differing in their abilities to perform cell-cell contacts, we found that CRF2 signals through Src/ERK pathway to induce the alteration of cell-cell junctions and the shuttle of p120ctn and Kaiso in the nucleus. In HT-29 cells, this signaling pathway also leads to the remodeling of cell adhesion by i) the phosphorylation of Focal Adhesion Kinase and ii) a modification of actin cytoskeleton and focal adhesion complexes. These events stimulate cell migration and invasion. In conclusion, our findings indicate that CRF2 signaling controls cellular organization and may promote metastatic potential of human CRC cells through an epithelial-mesenchymal transition like process. This contributes to the comprehension of the tumor-promoting effects of stress molecules and designates Ucn2/3-CRF2 tandem as a target to prevent CRC progression and aggressiveness.

  1. Influences mass concentration of P3HT and PCBM to application of organic solar cells

    International Nuclear Information System (INIS)

    Supriyanto, A.; Maya; Iriani, Y.; Ramelan, A. H.; Nurosyid, F; Rosa, E. S.

    2016-01-01

    Poly (3-hexylthiophene) (P3HT) and [6, 6] -phenyl-C61-butyric acid methyl ester (PCBM) are used for the organic solar cell applications. P3HT and PCBM act as donors and acceptors, respectively. In this study the efficiency of the P3HT: PCBM organic solar cells as function of the mass concentration of the blend P3HT: PCBM with 1, 2, 8, 16 mg/ml. Deposition P3HT:PCBM film using spin coating with a rotary speed of 2500 rpm for 10 seconds. Optical properties of absorption spectra characteristic using a UV-Visible Spectrometer Lambda 25 and electrical properties of I-V characteristic using Keithley 2602 instrument. The results of absoption spectra for P3HT:PCBM within different mass concentration obtained 500-600 nm wavelengths. The Energy-gap obtained about 1.9eV. The organic solar cells device performance were investigated using I-V cahractyeristic. For mass concentration of 1, 2, 8 and 16 mg/ml P3HT:PCBM were obtained 0.5×10 -3 %, 2.2×10 -3 %, 5.9×10 -3 %, and 6.1×10 -3 % efficiency of organics solar cells respectively. (paper)

  2. c-Myc Represses Tumor-Suppressive microRNAs, let-7a, miR-16 and miR-29b, and Induces Cyclin D2-Mediated Cell Proliferation in Ewing's Sarcoma Cell Line.

    Directory of Open Access Journals (Sweden)

    Masanori Kawano

    Full Text Available Myc oncogenic transcription factor is known to inhibit tumor suppressive microRNAs (miRNAs, resulting in greater expression of their target protein related to cell cycle, invasion or anti-apoptotic factors in human cancer cells. To explore possible oncogenic factors in Ewing's sarcoma (ES, we conducted microarray-based approach to profile the changes in the expression of miRNAs and its downstream mRNAs in five ES cell lines and human mesenchymal stem cells (hMSCs. Three miRNAs, let-7a, miR-16 and miR-29b were significantly down-regulated, whereas c-Myc and cyclin D2 (CCND2 were significantly up-regulated in all tested ES cells compared with hMSCs. To verify that let-7a, miR-16 and miR-29b were the targets of c-Myc in ES cell lines, we transfected siRNA against c-Myc and confirmed the coordinate up-regulation of let-7a, miR-16 and miR-29b through the repression of c-Myc. The ES cells transfected with c-Myc-siRNA and let-7a, miR-16 and miR-29b exhibited the inhibition of the cell cycle progression. The increased expression of let-7a, miR-16 and miR-29b resulted in the reduction of CCND2 protein expression. We also demonstrated that c-Myc-siRNA treatment of ES cells was associated with the decreased expression of CCND2 as a down-stream of three miRNAs. Furthermore, the introduction of let-7a, miR-16 and miR-29b in ES cells could inhibit the c-Myc-mediated up-regulation of CCND2 resulted in the prevention of cell cycle progression. In addition, the transfection of let-7a, miR-16 and miR-29b in ES cells suppressed tumor growth ex vivo treatment. These findings suggests that the up-regulation of c-Myc inhibited the expression of let-7a, miR-16 and miR-29b subsequently induced CCND2 expression in ES cells. The present study might identify a novel oncogenic axis that c-Myc regulates the expression of CCND2 via let-7a, miR-16 and miR-29b, leading to the development new therapeutic targets for ES.

  3. Serotonin 5-HT4 receptors and forebrain cholinergic system: receptor expression in identified cell populations.

    Science.gov (United States)

    Peñas-Cazorla, Raúl; Vilaró, M Teresa

    2015-11-01

    Activation of serotonin 5-HT4 receptors has pro-cognitive effects on memory performance. The proposed underlying neurochemical mechanism is the enhancement of acetylcholine release in frontal cortex and hippocampus elicited by 5-HT4 agonists. Although 5-HT4 receptors are present in brain areas related to cognition, e.g., hippocampus and cortex, the cellular localization of the receptors that might modulate acetylcholine release is unknown at present. We have analyzed, using dual label in situ hybridization, the cellular localization of 5-HT4 receptor mRNA in identified neuronal populations of the rat basal forebrain, which is the source of the cholinergic innervation to cortex and hippocampus. 5-HT4 receptor mRNA was visualized with isotopically labeled oligonucleotide probes, whereas cholinergic, glutamatergic, GABAergic and parvalbumin-synthesizing neurons were identified with digoxigenin-labeled oligonucleotide probes. 5-HT4 receptor mRNA was not detected in the basal forebrain cholinergic cell population. In contrast, basal forebrain GABAergic, parvalbumin synthesizing, and glutamatergic cells contained 5-HT4 receptor mRNA. Hippocampal and cortical glutamatergic neurons also express this receptor. These results indicate that 5-HT4 receptors are not synthesized by cholinergic cells, and thus would be absent from cholinergic terminals. In contrast, several non-cholinergic cell populations within the basal forebrain and its target hippocampal and cortical areas express these receptors and are thus likely to mediate the enhancement of acetylcholine release elicited by 5-HT4 agonists.

  4. Gadolinium-Loaded Solid Lipid Nanoparticles as a Tumor-Absorbable Contrast Agent for Early Diagnosis of Colorectal Tumors Using Magnetic Resonance Colonography.

    Science.gov (United States)

    Sun, Jihong; Zhang, Shizheng; Jiang, Shaojie; Bai, Weixian; Liu, Fei; Yuan, Hong; Ji, Jiansong; Luo, Jingfeng; Han, Guocan; Chen, Lumin; Jin, Yin; Hu, Peng; Yu, Lei; Yang, Xiaoming

    2016-09-01

    Magnetic resonance (MR) contrast agents focusing on special functions are required to improve cancer diagnosis, particularly in the early stages. Here, we designed multifunctional solid lipid nanoparticles (SLNs) with simultaneous loading of gadolinium (Gd) diethylenetriaminepentaacetic acid (Gd-DTPA) and octadecylamine fluorescein isothiocyanate (FITC) to obtain Gd-FITC-SLNs as a tumor-absorbable nanoparticle contrast agent for the histological confirmation of MR imaging (MRI) findings. Colorectal tumors were evaluated in vitro and in vivo via direct uptake of this contrast agent, which displayed reasonable T1 relaxivity and no significant cytotoxicity at the experimental concentrations in human colon carcinoma cells (HT29) and mouse colon carcinoma cells (CT26). In vitro cell uptake experiments demonstrated that contrast agent absorption by the two types of cancer cells was concentration-dependent in the safe concentration range. During in vivo MRI, transrectal infusion of Gd-FITC-SLNs showed more significant enhancement at the tumor site compared with the infusion of Gd-DTPA in female C57/BL mice with azoxymethane/dextran sulfate sodium-induced colorectal highgrade intraepithelial neoplasia. Subsequent confocal fluorescence microscopy demonstrated Gd-FITC-SLNs as highly concentrated green fluorescent spots distributed from the tumor capsule into the tumor. This study establishes the "proof-of-principle" of a new MRI technique wherein colorectal tumors are enhanced via direct absorption or uptake of the nanoparticle contrast agent.

  5. Rab27A mediated by NF-κB promotes the stemness of colon cancer cells via up-regulation of cytokine secretion.

    Science.gov (United States)

    Feng, Feixue; Jiang, Yinghao; Lu, Huanyu; Lu, Xiaozhao; Wang, Shan; Wang, Lifeng; Wei, Mengying; Lu, Wei; Du, Zhichao; Ye, Zichen; Yang, Guodong; Yuan, Fang; Ma, Yanxia; Lei, Xiaoying; Lu, Zifan

    2016-09-27

    Recent evidences have unveiled critical roles of cancer stem cells (CSCs) in tumorigenicity, but how interactions between CSC and tumor environments help maintain CSC initiation remains obscure. The small GTPases Rab27A regulates autocrine and paracrine cytokines by monitoring exocytosis of extracellular vesicles, and is reported to promote certain tumor progression. We observe that overexpression of Rab27A increased sphere formation efficiency (SFE) by increasing the proportion of CD44+ and PKH26high cells in HT29 cell lines, and accelerating the growth of colosphere with higher percentage of cells at S phase. Mechanism study revealed that the supernatant derived from HT29 sphere after Rab27A overexpression was able to expand sphere numbers with elevated secretion of VEGF and TGF-β. In tumor implanting nude mice model, tumor initiation rates and tumor sizes were enhanced by Rab27A with obvious angiogenesis. As a contrast, knocking down Rab27A impaired the above effects. More importantly, the correlation between higher p65 level and Rab27A in colon sphere was detected, p65 was sufficient to induce up-regulation of Rab27A and a functional NF-κB binding site in the Rab27A promoter was demonstrated. Altogether, our findings reveal a unique mechanism that tumor environment related NF-κB signaling promotes various colon cancer stem cells (cCSCs) properties via an amplified paracrine mechanism regulated by higher Rab27A level.

  6. Isoginkgetin inhibits tumor cell invasion by regulating phosphatidylinositol 3-kinase/Akt-dependent matrix metalloproteinase-9 expression.

    Science.gov (United States)

    Yoon, Sang-Oh; Shin, Sejeong; Lee, Ho-Jae; Chun, Hyo-Kon; Chung, An-Sik

    2006-11-01

    Matrix metalloproteinase (MMP)-9 plays a key role in tumor invasion. Inhibitors of MMP-9 were screened from Metasequoia glyptostroboides (Dawn redwood) and one potent inhibitor, isoginkgetin, a biflavonoid, was identified. Noncytotoxic levels of isoginkgetin decreased MMP-9 production profoundly, but up-regulated the level of tissue inhibitor of metalloproteinase (TIMP)-1, an inhibitor of MMP-9, in HT1080 human fibrosarcoma cells. The major mechanism of Ras-dependent MMP-9 production in HT1080 cells was phosphatidylinositol 3-kinase (PI3K)/Akt/nuclear factor-kappaB (NF-kappaB) activation. Expression of dominant-active H-Ras and p85 (a subunit of PI3K) increased MMP-9 activity, whereas dominant-negative forms of these molecules decreased the level of MMP-9. H-Ras did not increase MMP-9 in the presence of a PI3K inhibitor, LY294002, and a NF-kappaB inhibitor, SN50. Further studies showed that isoginkgetin regulated MMP-9 production via PI3K/Akt/NF-kappaB pathway, as evidenced by the findings that isoginkgetin inhibited activities of both Akt and NF-kappaB. PI3K/Akt is a well-known key pathway for cell invasion, and isoginkgetin inhibited HT1080 tumor cell invasion substantially. Isoginkgetin was also quite effective in inhibiting the activities of Akt and MMP-9 in MDA-MB-231 breast carcinomas and B16F10 melanoma. Moreover, isoginkgetin treatment resulted in marked decrease in invasion of these cells. In summary, PI3K/Akt is a major pathway for MMP-9 expression and isoginkgetin markedly decreased MMP-9 expression and invasion through inhibition of this pathway. This suggests that isoginkgetin could be a potential candidate as a therapeutic agent against tumor invasion.

  7. Gc, gc-ms analysis of lipophilic fractions of aerial parts of fagonia indica burm.f. showing growth inhibitory effect on ht 29 colorectal cancer cells

    International Nuclear Information System (INIS)

    Farheen, R.; Mahmood, I.

    2016-01-01

    Fagonia indica Burm.f. is a small genus of herbs and under shrubs. The plant contains potentially active substances and has been used traditionally for the treatment of many illnesses including cancer. Many polar compounds have been reported from this plant but its non-polar constituents have only been rarely studied. In the present studies these constituents of aerial parts of Fagonia indica Burm.f. and its sub fractions showing growth inhibitory effect on HT 29 colorectal cancer cells were analyzed using flame ionization detector (GC-FID) and GC-EIMS analysis. The present studies exhibited the presence of free fatty acids and their esters along with structurally diverse constituents including triterpene, heterocyclic organic compound, aromatics, hydrocarbons, alcohols, lactone and sterols which may be responsible for this activity. The results suggest that the non-polar constituents of F. indica bear a potential of further studies. (author)

  8. Bacterial invasion of HT29-MTX-E12 monolayers: effects of human breast milk.

    Science.gov (United States)

    Hall, Tim; Dymock, David; Corfield, Anthony P; Weaver, Gillian; Woodward, Mark; Berry, Monica

    2013-02-01

    The supramucosal gel, crucial for gut barrier function, might be compromised in necrotizing enterocolitis (NEC). Breast milk is associated with a reduced incidence of NEC. We compared the effects of human breast milk (BM) versus a neonatal formula, Nutriprem 1 (FF), on adherence, internalisation, and penetration of NEC-associated Escherichia coli through monolayers of mucus producing intestinal cells, HT29-MTX-E12 (E12). E12 cells were grown to confluence on membranes permeable to bacteria. E. coli, reference strain and isolated from a NEC-affected intestine, were cultured in LB broth, labelled with fluorescein and biotinylated. Bacteria were suspended in tissue culture medium (TC) or mixtures of TC with BM or FF and applied to the E12 cultures. Bacterial numbers were assessed by fluorescence. DyLight 650-labelled neutravidin, which cannot cross cell membrane, evaluated extracellular bacteria. Fluorescence of basolateral medium was measured to quantify translocation. Bacterial concentrations were compared using the Mann Whitney U test. After 1h exposure, E12 cultures adhered or internalised more NEC-derived bacteria than standard strain E. coli and more suspended in FF than BM (Pmilk was associated with relatively less adhesion and internalisation of NEC-associated E. coli to mucus covered E12s compared to formula milk. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Use of the vasodilator sodium nitroprusside during local hyperthermia: effects on tumor temperature and tumor response in a rat tumor model

    International Nuclear Information System (INIS)

    Krossnes, Baard Kronen; Mella, Olav; Dahl, Olav

    1996-01-01

    Purpose: The effect of a decrease in the mean arterial blood pressure (MAP) induced by sodium nitroprusside (SNP) on the tumor temperature during hyperthermia (HT), and on the cytotoxic effect of HT, was studied in the BT 4 An tumor transplanted to the hind limb of BD IX rats. Experiments with two different anesthetics, pentobarbital and the midazolam/fentanyl/fluanisone combination (MFF), were performed to secure reliable conclusions. Methods and Materials: In the tumor response experiments local waterbath HT at 44.0 deg. C was given for 60 min. Sodium nitroprusside was administered as a continuous intravenous infusion to lower the MAP to 60 or 80 mmHg during HT. In two other experiments the temperature at the base of the tumor during HT was measured before and during SNP infusion. In animals without tumor the temperature was measured subcutaneously on the foot during HT with or without SNP-induced hypotension. Results: When SNP was given to lower the MAP to 60 mmHg during HT in MFF anesthetized animals, the median tumor growth time (TGT) was 70 days, compared to 14.5 days in the HT alone group. The corresponding figures were 127 and 12.1 days with pentobarbital anesthesia. In the HT + SNP group, more than 40% cure was observed in both experiments. No cures were seen in any of the other groups. Hyperthermia alone prolonged the TGT slightly, whereas SNP given alone had no effect, compared to controls. When the MAP was lowered to 80 mmHg by SNP infusion during HT (MFF anesthesia), the median TGT was 19.9 days, which was significantly longer than that in the HT alone group (10.9 days). In the MAP range from 60 to 120 mmHg, a nearly linear relationship between the MAP and the tumor temperature was found during HT in MFF anesthetized animals. With both anesthetics, the median temperature at the base of the tumor was about 0.8 deg. C higher during HT when the MAP was lowered to 60 mmHg by SNP. In animals without tumors, the temperature subcutaneously on the foot was 0

  10. What do we really know about 5-HT1A receptor signaling in neuronal cells?

    Directory of Open Access Journals (Sweden)

    JENNY LUCY FIEDLER

    2016-11-01

    Full Text Available Serotonin (5-HT is a neurotransmitter that plays an important role in neuronal plasticity. Variations in the levels of 5-HT at the synaptic cleft, expression or dysfunction of serotonin receptors may alter brain development and predispose to various mental diseases. Here, we review the transduction pathways described in various cell types transfected with recombinant 5-HT1A receptor (5-HT1AR, specially contrasting with those findings obtained in neuronal cells. The 5-HT1AR is detected in early stages of neural development and is located in the soma, dendrites and spines of hippocampal neurons. The 5-HT1AR differs from other serotonin receptors because it is coupled to different pathways, depending on the targeted cell. The signaling pathway associated with this receptor is determined by Gα isoforms and some cascades involve βγ signaling. The activity of 5-HT1AR usually promotes a reduction in neuronal excitability and firing, provokes a variation in cAMP and Ca2+, levels which may be linked to specific types of behavior and cognition. Furthermore, evidence indicates that 5-HT1AR induces neuritogesis and synapse formation, probably by modulation of the neuronal cytoskeleton through MAPK and PI3K-Akt signaling pathways. Advances in understanding the actions of 5-HT1AR and its association with different signaling pathways in the central nervous system will reveal their pivotal role in health and disease.

  11. Celecoxib and tauro-ursodeoxycholic acid co-treatment inhibits cell growth in familial adenomatous polyposis derived LT97 colon adenoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Heumen, Bjorn W.H. van, E-mail: b.vanheumen@mdl.umcn.nl [Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Roelofs, Hennie M.J.; Morsche, Rene H.M. te [Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Marian, Brigitte [Institute of Cancer Research, Wien University, Vienna (Austria); Nagengast, Fokko M.; Peters, Wilbert H.M. [Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands)

    2012-04-15

    Chemoprevention would be a desirable strategy to avoid duodenectomy in patients with familial adenomatous polyposis (FAP) suffering from duodenal adenomatosis. We investigated the in vitro effects on cell proliferation, apoptosis, and COX-2 expression of the potential chemopreventives celecoxib and tauro-ursodeoxycholic acid (UDCA). HT-29 colon cancer cells and LT97 colorectal micro-adenoma cells derived from a patient with FAP, were exposed to low dose celecoxib and UDCA alone or in combination with tauro-cholic acid (CA) and tauro-chenodeoxycholic acid (CDCA), mimicking bile of FAP patients treated with UDCA. In HT-29 cells, co-treatment with low dose celecoxib and UDCA resulted in a decreased cell growth (14-17%, p < 0.01). A more pronounced decrease (23-27%, p < 0.01) was observed in LT97 cells. Cell growth of HT-29 cells exposed to 'artificial bile' enriched with UDCA, was decreased (p < 0.001), either in the absence or presence of celecoxib. In LT97 cells incubated with 'artificial bile' enriched with UDCA, cell growth was decreased only in the presence of celecoxib (p < 0.05). No clear evidence was found for involvement of proliferating cell nuclear antigen, caspase-3, or COX-2 in the cellular processes leading to the observed changes in cell growth. In conclusion, co-treatment with low dose celecoxib and UDCA has growth inhibitory effects on colorectal adenoma cells derived from a patient with FAP, and further research on this combination as promising chemopreventive strategy is desired. -- Highlights: Black-Right-Pointing-Pointer Celecoxib and UDCA acid co-treatment decreases cell growth in colon tumor cells. Black-Right-Pointing-Pointer UDCA enriched 'artificial bile' decreases LT-97 cell growth only in presence of celecoxib. Black-Right-Pointing-Pointer PCNA, caspase-3, nor COX-2 seem to be involved in the observed changes in cell growth.

  12. Celecoxib and tauro-ursodeoxycholic acid co-treatment inhibits cell growth in familial adenomatous polyposis derived LT97 colon adenoma cells

    International Nuclear Information System (INIS)

    Heumen, Bjorn W.H. van; Roelofs, Hennie M.J.; Morsche, René H.M. te; Marian, Brigitte; Nagengast, Fokko M.; Peters, Wilbert H.M.

    2012-01-01

    Chemoprevention would be a desirable strategy to avoid duodenectomy in patients with familial adenomatous polyposis (FAP) suffering from duodenal adenomatosis. We investigated the in vitro effects on cell proliferation, apoptosis, and COX-2 expression of the potential chemopreventives celecoxib and tauro-ursodeoxycholic acid (UDCA). HT-29 colon cancer cells and LT97 colorectal micro-adenoma cells derived from a patient with FAP, were exposed to low dose celecoxib and UDCA alone or in combination with tauro-cholic acid (CA) and tauro-chenodeoxycholic acid (CDCA), mimicking bile of FAP patients treated with UDCA. In HT-29 cells, co-treatment with low dose celecoxib and UDCA resulted in a decreased cell growth (14–17%, p < 0.01). A more pronounced decrease (23–27%, p < 0.01) was observed in LT97 cells. Cell growth of HT-29 cells exposed to ‘artificial bile’ enriched with UDCA, was decreased (p < 0.001), either in the absence or presence of celecoxib. In LT97 cells incubated with ‘artificial bile’ enriched with UDCA, cell growth was decreased only in the presence of celecoxib (p < 0.05). No clear evidence was found for involvement of proliferating cell nuclear antigen, caspase-3, or COX-2 in the cellular processes leading to the observed changes in cell growth. In conclusion, co-treatment with low dose celecoxib and UDCA has growth inhibitory effects on colorectal adenoma cells derived from a patient with FAP, and further research on this combination as promising chemopreventive strategy is desired. -- Highlights: ► Celecoxib and UDCA acid co-treatment decreases cell growth in colon tumor cells. ► UDCA enriched ‘artificial bile’ decreases LT-97 cell growth only in presence of celecoxib. ► PCNA, caspase-3, nor COX-2 seem to be involved in the observed changes in cell growth.

  13. 2-Dodecylcyclobutanone, a radiolytic product of palmitic acid, is genotoxic in primary human colon cells and in cells from preneoplastic lesions

    International Nuclear Information System (INIS)

    Knoll, Nadine; Weise, Anja; Claussen, Uwe; Sendt, Wolfgang; Marian, Brigitte; Glei, Michael; Pool-Zobel, Beatrice L.

    2006-01-01

    The irradiation of fat results in the formation of 2-alkylcyclobutanones, a new class of food contaminants. Results of previous in vitro studies with primary human colon cells and in vivo experiments with rats fed with 2-alkylcyclobutanones indicated that these radiolytic derivatives may be genotoxic and enhance the progression of colon tumors. The underlying mechanisms of these effects, however, are not clearly understood. Therefore we performed additional investigations to elucidate the genotoxic potential of 2-dodecylcyclobutanone (2dDCB) that is generated from palmitic acid. In particular, we explored the relative sensitivities of human colon cells, representing different stages of tumor development and healthy colon tissues, respectively. HT29clone19A cells, LT97 adenoma cells and primary human epithelial cells were exposed to 2dDCB (150-2097 μM). We determined cytotoxic effects using trypan blue exclusion. Genotoxicity, reflected as strand breaks, was assessed using the alkaline version of the comet assay and chromosomal abnormalities were investigated by 24-color fluorescence-in-situ-hybridization. 2dDCB was cytotoxic in a time- and dose-dependent manner in LT97 adenoma cells and in freshly isolated primary cells but not in the human colon tumor cell line. Associated with this was a marked induction of DNA damage by 2dDCB in LT97 adenoma cells and in freshly isolated colonocytes, whereas in the HT29clone19A cells no strand breaks were detectable. A long-term incubation of LT97 adenoma cells with lower concentrations of 2dDCB revealed cytogenetic effects. In summary, 2dDCB was clearly genotoxic in healthy human colon epithelial cells and in cells representing preneoplastic colon adenoma. These findings provide additional evidence that this compound may be regarded as a possible risk factor for processes in colon carcinogenesis related to initiation and progression

  14. CD155/PVR plays a key role in cell motility during tumor cell invasion and migration

    International Nuclear Information System (INIS)

    Sloan, Kevin E; Ilag, Leodevico L; Jay, Daniel G; Eustace, Brenda K; Stewart, Jean K; Zehetmeier, Carol; Torella, Claudia; Simeone, Marina; Roy, Jennifer E; Unger, Christine; Louis, David N

    2004-01-01

    Invasion is an important early step of cancer metastasis that is not well understood. Developing therapeutics to limit metastasis requires the identification and validation of candidate proteins necessary for invasion and migration. We developed a functional proteomic screen to identify mediators of tumor cell invasion. This screen couples Fluorophore Assisted Light Inactivation (FALI) to a scFv antibody library to systematically inactivate surface proteins expressed by human fibrosarcoma cells followed by a high-throughput assessment of transwell invasion. Using this screen, we have identified CD155 (the poliovirus receptor) as a mediator of tumor cell invasion through its role in migration. Knockdown of CD155 by FALI or by RNAi resulted in a significant decrease in transwell migration of HT1080 fibrosarcoma cells towards a serum chemoattractant. CD155 was found to be highly expressed in multiple cancer cell lines and primary tumors including glioblastoma (GBM). Knockdown of CD155 also decreased migration of U87MG GBM cells. CD155 is recruited to the leading edge of migrating cells where it colocalizes with actin and αv-integrin, known mediators of motility and adhesion. Knockdown of CD155 also altered cellular morphology, resulting in cells that were larger and more elongated than controls when plated on a Matrigel substrate. These results implicate a role for CD155 in mediating tumor cell invasion and migration and suggest that CD155 may contribute to tumorigenesis

  15. Inhibition of Lipopolysaccharide-Induced Interleukin 8 in Human Adenocarcinoma Cell Line HT-29 by Spore Probiotics: B. coagulans and B. subtilis (natto).

    Science.gov (United States)

    Azimirad, Masoumeh; Alebouyeh, Masoud; Naji, Tahereh

    2017-03-01

    Probiotics are used as a treatment for different intestinal disorders. They confer health benefits by different ways. This study was aimed to investigate immunomodulatory effect of Bacillus probiotic spores on the production of lipopolysaccharide (LPS)-induced interleukin 8 (IL-8) in HT-29 intestinal epithelial cells. Differentiated intestinal epithelial cell line was used as a model for the study of colonization of purified spores (Bacillus subtilis (natto) and B. coagulans) and their anti-inflammatory effects. MTT assay and trypan blue staining were used for the detection of optimal concentration of the purified spores and LPS. Pre-treatment assay was done by treatment of the cells with the purified spores for 2 h, followed by challenges with LPS for 3 and 18 h. Post-treatment assay was done by initial treatment of the cells with LPS for 18 h, followed by the spores for 3 and 6 h. Levels of IL-8 secretion and its mRNA expression were measured by ELISA and relative Q real-time PCR. Our results showed similar rates of adherence to intestinal epithelial cells by the spore probiotics, while displaying no cytotoxic effect. In the pre-treatment assay, a significant decrease in IL-8, at both protein and mRNA levels, was measured for B. coagulans spores after the addition of LPS, which was higher than those observed for Bacillus subtilis (natto) spores. In the post-treatment assay, while Bacillus subtilis (but not B. coagulans) diminished the LPS-stimulated IL-8 levels after 3 h of incubation, the inhibitory effect was not constant. In conclusion, ability of Bacillus spore probiotics for adherence to intestinal epithelial cell and their anti-inflammatory effects, through interference with LPS/IL-8 signaling, was shown in this study. Further studies are needed to characterize responsible bacterial compounds associated with these effects.

  16. Radiolabeling of VEGF165 with 99mTc to evaluate VEGFR expression in tumor angiogenesis.

    Science.gov (United States)

    Galli, Filippo; Artico, Marco; Taurone, Samanta; Manni, Isabella; Bianchi, Enrica; Piaggio, Giulia; Weintraub, Bruce D; Szkudlinski, Mariusz W; Agostinelli, Enzo; Dierckx, Rudi A J O; Signore, Alberto

    2017-06-01

    Angiogenesis is the main process responsible for tumor growth and metastatization. The principal effector of such mechanism is the vascular endothelial growth factor (VEGF) secreted by cancer cells and other components of tumor microenvironment. Radiolabeled VEGF analogues may provide a useful tool to noninvasively image tumor lesions and evaluate the efficacy of anti-angiogenic drugs that block the VEGFR pathway. Aim of the present study was to radiolabel the human VEGF165 analogue with 99mTechnetium (99mTc) and to evaluate the expression of VEGFR in both cancer and endothelial cells in the tumor microenvironment. 99mTc-VEGF showed in vitro binding to HUVEC cells and in vivo to xenograft tumors in mice (ARO, K1 and HT29). By comparing in vivo data with immunohistochemical analysis of excised tumors we found an inverse correlation between 99mTc-VEGF165 uptake and VEGF histologically detected, but a positive correlation with VEGF receptor expression (VEGFR1). Results of our studies indicate that endogenous VEGF production by cancer cells and other cells of tumor microenvironment should be taken in consideration when performing scintigraphy with radiolabeled VEGF, because of possible false negative results due to saturation of VEGFRs.

  17. Combretastatin A-4 derived 5-(1-methyl-4-phenyl-imidazol-5-yl)indoles with superior cytotoxic and anti-vascular effects on chemoresistant cancer cells and tumors.

    Science.gov (United States)

    Mahal, Katharina; Biersack, Bernhard; Schruefer, Sebastian; Resch, Marcus; Ficner, Ralf; Schobert, Rainer; Mueller, Thomas

    2016-08-08

    5-(1-Methyl-4-phenyl-imidazol-5-yl)indoles 5 were prepared and tested as analogs of the natural vascular-disrupting agent combretastatin A-4 (CA-4). The 3-bromo-4,5-dimethoxyphenyl derivative 5c was far more active than CA-4 with low nanomolar IC50 concentrations against multidrug-resistant KB-V1/Vbl cervix and MCF-7/Topo mamma carcinoma cells, and also against CA-4-resistant HT-29 colon carcinoma cells. While not interfering markedly with the polymerization of tubulin in vitro, indole 5c completely disrupted the microtubule cytoskeleton of cancer cells at low concentrations. It also destroyed real blood vessels, both in the chorioallantoic membrane (CAM) of fertilized chicken eggs and within tumor xenografts in mice, without harming embryo or mouse, respectively. Indole 5c was less toxic than CA-4 to endothelial cells, fibroblasts, and cardiomyocytes. In highly vascularized xenograft tumors 5c induced distinct discolorations and histological features typical of vascular-disrupting agents, such as disrupted vessel structures, hemorrhages, and extensive necrosis. In a first preliminary therapy trial, indole 5c retarded the growth of resistant xenograft tumors in mice. © 2016 Elsevier Science Ltd. All rights reserved. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Localized tenosynovial giant cell tumor in both knee joints

    International Nuclear Information System (INIS)

    Kim, Hyun Su; Kwon, Jong Won; Ahn, Jin Hwan; Chang, Moon Jong; Cho, Eun Yoon

    2010-01-01

    Tenosynovial giant cell tumor, previously called pigmented villonodular synovitis (PVNS), is a rare benign neoplastic process that may involve the synovium of the joint. The disorder is usually monoarticular and only a few cases have been reported on polyarticular involvement. Herein, we present a case of localized intra-articular tenosynovial giant cell tumor in a 29-year-old man involving both knee joints with a description of the MR imaging and histological findings. (orig.)

  19. Cytotoxicity and analysis of apoptosis gene expression in colon cancer cell line treated with cell extract of Lactobacillus casei as indigenous probiotic bacterium

    Directory of Open Access Journals (Sweden)

    Amir Mirzaie

    2017-03-01

    Full Text Available Background and aim: Nowadays, the probiotic bacteria such as lactobacilli are known as prevention factor for various disease especially cancer. The aim of this study was to investigate the cytotoxic effect of Lactobacillus casei PTCC 1608 cell extract as probiotic bacteria on colon cancer cell line (HT29 and analysis of Bax and Bcl2 apoptosis gene expression. Methods: In this experimental study, the cell extract of heat killed L. casei was prepared in 0.01, 0.1, 1, 10, 100 and 1000 µg/ml concentration and subsequently, the cytotoxicity of various cell extracts on HT29 and HEC293 cell lines were evaluated in 24 hours using MTT assay. Moreover, the Bax and Bcl2 apoptosis gene expression level in HT29 cell line was analyzed using Real Time PCR. The apoptotic effects of cell extract was determined using Flow-cytometry technique. Finally, the collected data were statistically analyzed using one-way anal­ysis of variance with the SPSS/18 software. Results: The results of MTT test show that cell extracts of L. casei is able to reduce the survival rate of HT29 cell line to 0.95±0.44, 73.45±0.21, 51.49±0.87, 39.5±0.45 and 19.7±0.55. In addition to, the Real Time PCR results indicated the expression level of Bax and Bcl2 was increased and decreased respectively, in HT29 cell line (2.76 ± 0.54 (P<0.05, 0.21 ± 0.43 (P< 0.05 in 24 h. Moreover, the flow cytometry results indicated the 35.62 % apoptosis in HT29 cell line treated with IC50 value. Conclusion: The results show that the cell extract of L. casei PTCC 1608 could induced the apoptosis in HT29 cell line and it had low toxicity on HEC293 cell line. Therefore, it seems that L. casei has potential uses as probiotic for pharmaceutical applications including prevention and treatment of colon cancer.

  20. Cathelicidin suppresses colon cancer development by inhibition of cancer associated fibroblasts

    Directory of Open Access Journals (Sweden)

    Cheng M

    2014-12-01

    Full Text Available Michelle Cheng,1,* Samantha Ho,1,* Jun Hwan Yoo,1,2,* Deanna Hoang-Yen Tran,1,* Kyriaki Bakirtzi,1 Bowei Su,1 Diana Hoang-Ngoc Tran,1 Yuzu Kubota,1 Ryan Ichikawa,1 Hon Wai Koon1 1Center for Inflammatory Bowel Diseases, Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; 2Digestive Disease Center, CHA University Bundang Medical Center, Seongnam, Republic of Korea *These authors share co-first authorship Background: Cathelicidin (LL-37 in humans and mCRAMP in mice represents a family of endogenous antimicrobial and anti-inflammatory peptides. Cancer-associated fibroblasts can promote the proliferation of colon cancer cells and growth of colon cancer tumors. Methods: We examined the role of cathelicidin in the development of colon cancer, using subcutaneous human HT-29 colon-cancer-cell-derived tumor model in nude mice and azoxymethane- and dextran sulfate-mediated colon cancer model in C57BL/6 mice. We also determined the indirect antitumoral mechanism of cathelicidin via the inhibition of epithelial–mesenchymal transition (EMT of colon cancer cells and fibroblast-supported colon cancer cell proliferation. Results: Intravenous administration of cathelicidin expressing adeno-associated virus significantly reduced the size of tumors, tumor-derived collagen expression, and tumor-derived fibroblast expression in HT-29-derived subcutaneous tumors in nude mice. Enema administration of the mouse cathelicidin peptide significantly reduced the size and number of colonic tumors in azoxymethane- and dextran sulfate-treated mice without inducing apoptosis in tumors and the adjacent normal colonic tissues. Cathelicidin inhibited the collagen expression and vimentin-positive fibroblast expression in colonic tumors. Cathelicidin did not directly affect HT-29 cell viability, but did significantly reduce tumor growth factor-ß1-induced EMT of colon cancer cells. Media conditioned by the

  1. CDH1 and IL1-beta expression dictates FAK and MAPKK-dependent cross-talk between cancer cells and human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Al-toub, Mashael; Vishnubalaji, Radhakrishnan; Hamam, Rimi

    2015-01-01

    in signaling pathways related to bone formation, FAK and MAPKK signaling. Co-culturing hMSCs with MCF7 cells increased their growth evidenced by increase in Ki67 and PCNA staining in tumor cells in direct contact with hMSCs niche. On the other hand, co-culturing hMSCs with FaDu, HT-29 or MDA-MB-231 cells led......INTRODUCTION: Tumor microenvironment conferred by stromal (mesenchymal) stem cells (MSCs) plays a key role in tumor development, progression, and response to therapy. Defining the role of MSCs in tumorigenesis is crucial for their safe utilization in regenerative medicine. Herein, we conducted...... comprehensive investigation of the cross-talk between human MSCs (hMSCs) and 12 cancer cell lines derived from breast, prostate, colon, head/neck and skin. METHODS: Human bone marrow-derived MSC line expressing green fluorescence protein (GFP) (hMSC-GFP) were co-cultured with the following cancer cell lines...

  2. GM-CSF enhances tumor invasion by elevated MMP-2, -9, and -26 expression

    International Nuclear Information System (INIS)

    Gutschalk, Claudia M; Yanamandra, Archana K; Linde, Nina; Meides, Alice; Depner, Sofia; Mueller, Margareta M

    2013-01-01

    Granulocyte–macrophage colony-stimulating factor (GM-CSF) promotes tumor progression in different tumor models in an autocrine and paracrine manner. However, at the same time GM-CSF is used in cancer therapies to ameliorate neutropenia. We have previously shown in GM-CSF and G-CSF expressing or negative skin or head and neck squamous cell carcinoma that GM-CSF expression is associated with a highly angiogenic and invasive tumor phenotype. To determine the functional contribution of GM-CSF to tumor invasion, we stably transfected a GM-CSF negative colon adenocarcinoma cell line HT-29 with GM-CSF or treated the same cell line with exogenous GM-CSF. While GM-CSF overexpression and treatment reduced tumor cell proliferation and tumor growth in vitro and in vivo, respectively, it contributed to tumor progression. Together with an enhanced migratory capacity in vitro, we observed a striking increase in tumor cell invasion into the surrounding tissue concomitant with the induction of an activated tumor stroma in GM-CSF overexpressing or GM-CSF treated tumors. In a complex 3D in vitro model, enhanced GM-CSF expression was associated with a discontinued basement membrane deposition that might be mediated by the increased expression and activation of MMP-2, -9, and -26. Treatment with GM-CSF blocking antibodies reversed this effect. The increased presence and activity of these tumor cell derived proteases was confirmed in vivo. Here, expression of MMP-26 protein was predominantly located in pre- and early-invasive areas suggesting MMP-26 expression as an early event in promoting GM-CSF dependent tumor invasion

  3. Friend or foe: Endoplasmic reticulum protein 29 (ERp29) in epithelial cancer

    Science.gov (United States)

    Chen, Shaohua; Zhang, Daohai

    2015-01-01

    The endoplasmic reticulum (ER) protein 29 (ERp29) is a molecular chaperone that plays a critical role in protein secretion from the ER in eukaryotic cells. Recent studies have also shown that ERp29 plays a role in cancer. It has been demonstrated that ERp29 is inversely associated with primary tumor development and functions as a tumor suppressor by inducing cell growth arrest in breast cancer. However, ERp29 has also been reported to promote epithelial cell morphogenesis, cell survival against genotoxic stress and distant metastasis. In this review, we summarize the current understanding on the biological and pathological functions of ERp29 in cancer and discuss the pivotal aspects of ERp29 as “friend or foe” in epithelial cancer. PMID:25709888

  4. Control of Amygdala Circuits by 5-HT Neurons via 5-HT and Glutamate Cotransmission.

    Science.gov (United States)

    Sengupta, Ayesha; Bocchio, Marco; Bannerman, David M; Sharp, Trevor; Capogna, Marco

    2017-02-15

    The serotonin (5-HT) system and the amygdala are key regulators of emotional behavior. Several lines of evidence suggest that 5-HT transmission in the amygdala is implicated in the susceptibility and drug treatment of mood disorders. Therefore, elucidating the physiological mechanisms through which midbrain 5-HT neurons modulate amygdala circuits could be pivotal in understanding emotional regulation in health and disease. To shed light on these mechanisms, we performed patch-clamp recordings from basal amygdala (BA) neurons in brain slices from mice with channelrhodopsin genetically targeted to 5-HT neurons. Optical stimulation of 5-HT terminals at low frequencies (≤1 Hz) evoked a short-latency excitation of BA interneurons (INs) that was depressed at higher frequencies. Pharmacological analysis revealed that this effect was mediated by glutamate and not 5-HT because it was abolished by ionotropic glutamate receptor antagonists. Optical stimulation of 5-HT terminals at higher frequencies (10-20 Hz) evoked both slow excitation and slow inhibition of INs. These effects were mediated by 5-HT because they were blocked by antagonists of 5-HT 2A and 5-HT 1A receptors, respectively. These fast glutamate- and slow 5-HT-mediated responses often coexisted in the same neuron. Interestingly, fast-spiking and non-fast-spiking INs displayed differential modulation by glutamate and 5-HT. Furthermore, optical stimulation of 5-HT terminals did not evoke glutamate release onto BA principal neurons, but inhibited these cells directly via activation of 5-HT 1A receptors and indirectly via enhanced GABA release. Collectively, these findings suggest that 5-HT neurons exert a frequency-dependent, cell-type-specific control over BA circuitry via 5-HT and glutamate co-release to inhibit the BA output. SIGNIFICANCE STATEMENT The modulation of the amygdala by serotonin (5-HT) is important for emotional regulation and is implicated in the pathogenesis and treatment of affective disorders

  5. The inhibition of cholera toxin-induced 5-HT release by the 5-HT3 receptor antagonist, granisetron, in the rat

    Science.gov (United States)

    Turvill, J L; Connor, P; Farthing, M J G

    2000-01-01

    The secretagogue 5-hydroxytryptamine (5-HT) is implicated in the pathophysiology of cholera. 5-HT released from enterochromaffin cells after cholera toxin exposure is thought to activate non-neuronally (5-HT2 dependent) and neuronally (5-HT3 dependent) mediated water and electrolyte secretion. CT-secretion can be reduced by preventing the release of 5-HT. Enterochromaffin cells possess numerous receptors that, under basal conditions, modulate 5-HT release. These include basolateral 5-HT3 receptors, the activation of which is known to enhance 5-HT release. Until now, 5-HT3 receptor antagonists (e.g. granisetron) have been thought to inhibit cholera toxin-induced fluid secretion by blockading 5-HT3 receptors on secretory enteric neurones. Instead we postulated that they act by inhibiting cholera toxin-induced enterochromaffin cell degranulation. Isolated intestinal segments in anaesthetized male Wistar rats, pre-treated with granisetron 75 μg kg−1, lidoocaine 6 mg kg−1 or saline, were instilled with a supramaximal dose of cholera toxin or saline. Net fluid movement was determined by small intestinal perfusion or gravimetry and small intestinal and luminal fluid 5-HT levels were determined by HPLC with fluorimetric detection. Intraluminal 5-HT release was proportional to the reduction in tissue 5-HT levels and to the onset of water and electrolyte secretion, suggesting that luminal 5-HT levels reflect enterochromaffin cell activity. Both lidocaine and granisetron inhibited fluid secretion. However, granisetron alone, and proportionately, reduced 5-HT release. The simultaneous inhibition of 5-HT release and fluid secretion by granisetron suggests that 5-HT release from enterochromaffin cells is potentiated by endogenous 5-HT3 receptors. The accentuated 5-HT release promotes cholera toxin-induced fluid secretion. PMID:10882387

  6. Inhibition of hypoxia inducible factor-1alpha by dihydroxyphenylethanol, a product from olive oil, blocks microsomal prostaglandin-E synthase-1/vascular endothelial growth factor expression and reduces tumor angiogenesis.

    Science.gov (United States)

    Terzuoli, Erika; Donnini, Sandra; Giachetti, Antonio; Iñiguez, Miguel A; Fresno, Manuel; Melillo, Giovanni; Ziche, Marina

    2010-08-15

    2-(3,4-dihydroxyphenil)-ethanol (DPE), a polyphenol present in olive oil, has been found to attenuate the growth of colon cancer cells, an effect presumably related to its anti-inflammatory activity. To further explore the effects of DPE on angiogenesis and tumor growth we investigated the in vivo efficacy of DPE in a HT-29 xenograft model and in vitro activities in colon cancer cells exposed to interleukin-1beta (IL-1beta) and prostaglandin E-2 (PGE-2). DPE (10 mg/kg/day for 14 days) inhibited tumor growth, reducing vessel lumina and blood perfusion to tumor, and diminished expression of hypoxia inducible factor-1alpha (HIF-1alpha), vascular endothelial growth factor (VEGF), and microsomal prostaglandin-E synthase-1 (mPGEs-1). In vitro, DPE (100 mumol/L) neither affected cell proliferation nor induced apoptosis in HT-29 and WiDr cells. DPE prevented the IL-1beta-mediated increase of mPGEs-1 expression and PGE-2 generation, as it did the silencing of HIF-1alpha. Moreover, DPE blocked mPGEs-1-dependent expression of VEGF and inhibited endothelial sprouting induced by tumor cells in a coculture system. PGE-2 triggers a feed-forward loop involving HIF-1alpha, which impinges on mPGEs-1 and VEGF expression, events prevented by DPE via extracellular signal-related kinase 1/2. The reduction of PGE-2 and VEGF levels, caused by DPE, was invariably associated with a marked decrease in HIF-1alpha expression and activity, independent of proteasome activity, indicating that the DPE effects on tumor growth and angiogenesis are dependent on the inhibition of HIF-1alpha translation. We show that the in vivo DPE antitumor effect is associated with anti-inflammatory and antiangiogenic activities resulting from the downregulation of the HIF-1alpha/mPGEs-1/VEGF axis.

  7. NKT cells as an ideal anti-tumor immunotherapeutic.

    Science.gov (United States)

    Fujii, Shin-Ichiro; Shimizu, Kanako; Okamoto, Yoshitaka; Kunii, Naoki; Nakayama, Toshinori; Motohashi, Shinichiro; Taniguchi, Masaru

    2013-12-02

    Human natural killer T (NKT) cells are characterized by their expression of an invariant T cell antigen receptor α chain variable region encoded by a Vα24Jα18 rearrangement. These NKT cells recognize α-galactosylceramide (α-GalCer) in conjunction with the MHC class I-like CD1d molecule and bridge the innate and acquired immune systems to mediate efficient and augmented immune responses. A prime example of one such function is adjuvant activity: NKT cells augment anti-tumor responses because they can rapidly produce large amounts of IFN-γ, which acts on NK cells to eliminate MHC negative tumors and also on CD8 cytotoxic T cells to kill MHC positive tumors. Thus, upon administration of α-GalCer-pulsed DCs, both MHC negative and positive tumor cells can be effectively eliminated, resulting in complete tumor eradication without tumor recurrence. Clinical trials have been completed in a cohort of 17 patients with advanced non-small cell lung cancers and 10 cases of head and neck tumors. Sixty percent of advanced lung cancer patients with high IFN-γ production had significantly prolonged median survival times of 29.3 months with only the primary treatment. In the case of head and neck tumors, 10 patients who completed the trial all had stable disease or partial responses 5 weeks after the combination therapy of α-GalCer-DCs and activated NKT cells. We now focus on two potential powerful treatment options for the future. One is to establish artificial adjuvant vector cells containing tumor mRNA and α-GalCer/CD1d. This stimulates host NKT cells followed by DC maturation and NK cell activation but also induces tumor-specific long-term memory CD8 killer T cell responses, suppressing tumor metastasis even 1 year after the initial single injection. The other approach is to establish induced pluripotent stem (iPS) cells that can generate unlimited numbers of NKT cells with adjuvant activity. Such iPS-derived NKT cells produce IFN-γ in vitro and in vivo upon

  8. Ethacrynic acid: a novel radiation enhancer in human carcinoma cells

    International Nuclear Information System (INIS)

    Khil, Mark S.; Sang, Hie Kim; Pinto, John T.; Jae, Ho Kim

    1996-01-01

    Purpose: Because agents that interfere with thiol metabolism and glutathione S-transferase (GST) functions have been shown to enhance antitumor effects of alkylating agents in vitro and in vivo, the present study was conceived on the basis that an inhibitor of GST would enhance the radiation response of some selected human carcinoma cells. Ethacrynic acid (EA) was chosen for the study because it is an effective inhibitor of GST and is a well known diuretic in humans. Methods and Materials: Experiments were carried out with well-established human tumor cells in culture growing in Eagle's minimum essential medium (MEM) supplemented with 10% fetal calf serum (FCS). Cell lines used were MCF-7, MCF-7 adriamycin resistant (AR) cells (breast carcinoma), HT-29 cells (colon carcinoma), DU-145 cells (prostate carcinoma), and U-373 cells (malignant glioma). Cell survival following the exposure of cells to drug alone, radiation alone, and a combined treatment was assayed by determining the colony-forming ability of single plated cells in culture to obtain dose-survival curves. The drug enhancement ratio was correlated with levels of GST. Results: The cytotoxicity of EA was most pronounced in MCF-7, U-373, and DU-145 cells compared to MCF-7 AR and HT-29 cells. The levels of GST activity were found to be lower in those EA-sensitive cells. A significant radiation enhancement was obtained with EA-sensitive cells exposed to nontoxic concentrations of the drug immediately before or after irradiation. The sensitizer enhancement ratio (SER) of MCF-7 cells was 1.55 with EA (20 μg/ml), while the SER of MCF-7 AR was less than 1.1. Based on five different human tumor cells, a clear inverse relationship was demonstrated between the magnitude of SER and GST levels of tumor cells prior to the combined treatment. Conclusion: The present results suggest that EA, which acts as both a reversible and irreversible inhibitor of GST activity, could significantly enhance the radiation response of

  9. Differentiation Affects the Release of Exosomes from Colon Cancer Cells and Their Ability to Modulate the Behavior of Recipient Cells.

    Science.gov (United States)

    Lucchetti, Donatella; Calapà, Federica; Palmieri, Valentina; Fanali, Caterina; Carbone, Federica; Papa, Alfredo; De Maria, Ruggero; De Spirito, Marco; Sgambato, Alessandro

    2017-07-01

    Exosomes are involved in intercellular communication. We previously reported that sodium butyrate-induced differentiation of HT29 colon cancer cells is associated with a reduced CD133 expression. Herein, we analyzed the role of exosomes in the differentiation of HT29 cells. Exosomes were prepared using ultracentrifugation. Gene expression levels were evaluated by real-time PCR. The cell proliferation rate was assessed by MTT assay and with the electric cell-substrate impedance sensing system, whereas cell motility was assessed using the scratch test and confocal microscopy. Sodium butyrate-induced differentiation of HT29 and Caco-2 cells increased the levels of released exosomes and their expression of CD133. Cell differentiation and the decrease of cellular CD133 expression levels were prevented by blocking multivesicular body maturation. Exosomes released by HT29 differentiating cells carried increased levels of miRNAs, induced an increased proliferation and motility of both colon cancer cells and normal fibroblasts, increased the colony-forming efficiency of cancer cells, and reduced the sodium butyrate-induced differentiation of HT29 cells. Such effects were associated with an increased phosphorylation level of both Src and extracellular signal regulated kinase proteins and with an increased expression of epithelial-to-mesenchymal transition-related genes. Release of exosomes is affected by differentiation of colon cancer cells; exosomes might be used by differentiating cells to get rid of components that are no longer necessary but might continue to exert their effects on recipient cells. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  10. Small interfering RNA targeting HIF-1{alpha} reduces hypoxia-dependent transcription and radiosensitizes hypoxic HT 1080 human fibrosarcoma cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Staab, Adrian [Wuerzburg Univ. (Germany). Dept. of Radiation Oncology; Paul Scherrer Institute (PSI), Villigen (Switzerland); Fleischer, Markus [Wuerzburg Univ. (Germany). Dept. of Radiation Oncology; Wuerzburg Univ. (Germany). Medical Clinic II; Loeffler, Juergen; Einsele, Herrmann [Wuerzburg Univ. (Germany). Medical Clinic II; Said, Harun M.; Katzer, Astrid; Flentje, Michael [Wuerzburg Univ. (Germany). Dept. of Radiation Oncology; Plathow, Christian [Freiburg Univ. (Germany). Dept. of Nuclear Medicine; Vordermark, Dirk [Wuerzburg Univ. (Germany). Dept. of Radiation Oncology; Halle-Wittenberg Univ. (Germany). Dept. of Radiation Oncology

    2011-04-15

    Background: Hypoxia inducible factor-1 has been identified as a potential target to overcome hypoxia-induced radioresistance The aim of the present study was to investigate whether selective HIF-1 inhibition via small interfering RNA (siRNA) targeting hypoxia-inducible factor 1{alpha} (HIF-1{alpha}) affects hypoxia-induced radioresistance in HT 1080 human fibrosarcoma cells. Material and Methods: HIF-1{alpha} expression in HT 1080 human fibrosarcoma cells in vitro was silenced using HIF-1{alpha} siRNA sequence primers. Quantitative real-time polymerase chain reaction assay was performed to quantify the mRNA expression of HIF-1{alpha}. HIF-1{alpha} protein levels were studied by Western blotting at 20% (air) or after 12 hours at 0.1% O{sub 2} (hypoxia). Cells were assayed for clonogenic survival after irradiation with 2, 5, or 10 Gy, under normoxic or hypoxic conditions in the presence of HIF-1{alpha}-targeted or control siRNA sequences. A modified oxygen enhancement ratio (OER') was calculated as the ratio of the doses to achieve the same survival at 0.1% O{sub 2} as at ambient oxygen tensions. OER' was obtained at cell survival levels of 50%, 37%, and 10%. Results: HIF-1{alpha}-targeted siRNA enhanced radiation treatment efficacy under severely hypoxic conditions compared to tumor cells treated with scrambled control siRNA. OER was reduced on all survival levels after treatment with HIF-1{alpha}-targeted siRNA, suggesting that inhibition of HIF-1 activation by using HIF-1{alpha}-targeted siRNA increases radiosensitivity of hypoxic tumor cells in vitro. Conclusion: Inhibition of HIF-1 activation by using HIF-1{alpha}-targeted siRNA clearly acts synergistically with radiotherapy and increase radiosensitivity of hypoxic cells in vitro. (orig.)

  11. Small interfering RNA targeting HIF-1α reduces hypoxia-dependent transcription and radiosensitizes hypoxic HT 1080 human fibrosarcoma cells in vitro

    International Nuclear Information System (INIS)

    Staab, Adrian; Fleischer, Markus; Wuerzburg Univ.; Loeffler, Juergen; Einsele, Herrmann; Said, Harun M.; Katzer, Astrid; Flentje, Michael; Plathow, Christian; Vordermark, Dirk; Halle-Wittenberg Univ.

    2011-01-01

    Background: Hypoxia inducible factor-1 has been identified as a potential target to overcome hypoxia-induced radioresistance The aim of the present study was to investigate whether selective HIF-1 inhibition via small interfering RNA (siRNA) targeting hypoxia-inducible factor 1α (HIF-1α) affects hypoxia-induced radioresistance in HT 1080 human fibrosarcoma cells. Material and Methods: HIF-1α expression in HT 1080 human fibrosarcoma cells in vitro was silenced using HIF-1α siRNA sequence primers. Quantitative real-time polymerase chain reaction assay was performed to quantify the mRNA expression of HIF-1α. HIF-1α protein levels were studied by Western blotting at 20% (air) or after 12 hours at 0.1% O 2 (hypoxia). Cells were assayed for clonogenic survival after irradiation with 2, 5, or 10 Gy, under normoxic or hypoxic conditions in the presence of HIF-1α-targeted or control siRNA sequences. A modified oxygen enhancement ratio (OER') was calculated as the ratio of the doses to achieve the same survival at 0.1% O 2 as at ambient oxygen tensions. OER' was obtained at cell survival levels of 50%, 37%, and 10%. Results: HIF-1α-targeted siRNA enhanced radiation treatment efficacy under severely hypoxic conditions compared to tumor cells treated with scrambled control siRNA. OER was reduced on all survival levels after treatment with HIF-1α-targeted siRNA, suggesting that inhibition of HIF-1 activation by using HIF-1α-targeted siRNA increases radiosensitivity of hypoxic tumor cells in vitro. Conclusion: Inhibition of HIF-1 activation by using HIF-1α-targeted siRNA clearly acts synergistically with radiotherapy and increase radiosensitivity of hypoxic cells in vitro. (orig.)

  12. A redox-based mechanism for induction of interleukin-1 production by nitric oxide in a human colonic epithelial cell line (HT29-Cl.16E).

    Science.gov (United States)

    Vallette, G; Jarry, A; Branka, J E; Laboisse, C L

    1996-01-01

    We evaluated the effects of two NO donors, sodium nitroprusside (SNP) and 3-morpholino-sydnonimine (SIN-1), characterized by alternative redox states, i.e. nitrosonium ion (NO+) and nitric oxide (NO.) respectively, on intracellular interleukin-1 (IL-1) production, by a human colonic epithelial cell line (HT29-Cl.16E). SNP was able to induce intracellular IL-1 alpha production up to 10 h incubation, in a dose-dependent manner. Several experiments provide evidence that the NO+ redox form, and not the free radical NO., is implicated in the IL-1 alpha production: (i) SIN-1, devoid of any NO+ character, led to a very weak IL-1 production as compared with SNP; (ii) the reductive action of a thiol such as cysteine on NO+ led to a dose-dependent increase in NO, concentration, measured as NO2-/NO3- accumulation, and to large decrease in IL-1 production. Dibutyryl cGMP had no effect on IL-1 production, this finding supporting the concept that a cGMP-independent pathway is involved in the intracellular signalling of NO+. Together these results point out that NO, depending on its redox form, is able to modulate IL-1 production in cultured colonic epithelial cells. PMID:8546706

  13. Triptolide, a diterpenoid triepoxide, induces antitumor proliferation via activation of c-Jun NH2-terminal kinase 1 by decreasing phosphatidylinositol 3-kinase activity in human tumor cells

    International Nuclear Information System (INIS)

    Miyata, Yoshiki; Sato, Takashi; Ito, Akira

    2005-01-01

    Triptolide, a diterpenoid triepoxide extracted from the Chinese herb Tripterygium wilfordii Hook f., exerts antitumorigenic actions against several tumor cells, but the intracellular target signal molecule(s) for this antitumorigenesis activity of triptolide remains to be identified. In the present study, we demonstrated that triptolide, in a dose-dependent manner, inhibited the proliferation of human fibrosarcoma HT-1080, human squamous carcinoma SAS, and human uterine cervical carcinoma SKG-II cells. In addition, triptolide was found to decrease phosphatidylinositol 3-kinase (PI3K) activity. A PI3K inhibitor, LY-294002, mimicked the triptolide-induced antiproliferative activity in HT-1080, SAS, and SKG-II cells. There was no change in the activity of Akt or protein kinase C (PKC), both of which are downstream effectors in the PI3K pathway. Furthermore, the phosphorylation of Ras, Raf, and mitogen-activated protein/extracellular signal-regulated kinase 1/2 was not modified in HT-1080 cells treated with triptolide. However, the phosphorylation of c-Jun NH 2 -terminal kinase 1 (JNK1) was found to increase in both triptolide- and LY-294002-treated cells. Furthermore, the triptolide-induced inhibition of HT-1080 cell proliferation was not observed by JNK1 siRNA-treatment. These results provide novel evidence that PI3K is a crucial target molecule in the antitumorigenic action of triptolide. They further suggest a possible triptolide-induced inhibitory signal for tumor cell proliferation that is initiated by the decrease in PI3K activity, which in turn leads to the augmentation of JNK1 phosphorylation via the Akt and/or PKC-independent pathway(s). Moreover, it is likely that the activation of JNK1 is required for the triptolide-induced inhibition of tumor proliferation

  14. Giant Cell Tumor of the Thoracic Spine Presenting as a Posterior Mediastinal Tumor with Benign Pulmonary Metastases: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Hun [Daegu Fatima Hospital College of Medicine, Daegu (Korea, Republic of); Rho, Byung Hak; Bahn, Young Eun; Choi, Won Il [Dongsan Medical Center, Keimyung University School of Medicine, Daegu (Korea, Republic of)

    2010-11-15

    Giant cell tumor of bone is a benign, but potentially aggressive lesion that can show local recurrence and metastases. We report here on a case of a 29-year-old man who presented with an incidentally found mediastinal mass. Chest radiography and computed tomography showed a huge mediastinal mass with bilateral pulmonary nodules and the diagnosis of giant cell tumor with benign pulmonary metastasis was confirmed. To the best of our knowledge, this is the first reported case of primary thoracic spinal giant cell tumor manifesting as a huge mediastinal mass with pulmonary metastases

  15. Effect of Proton Beam on Cancer Progressive and Metastatic Enzymes

    International Nuclear Information System (INIS)

    Sohn, Y. H.; Nam, K. S.; Oh, Y. H.; Kim, M. K.; Kim, M. Y.; Jang, J. S.

    2008-04-01

    The purpose of this study was to investigate the effect of proton beam on enzymes for promotion/progression of carcinogenesis and metastasis of malignant tumor cells to clarify proton beam-specific biological effects. The changes of cancer chemopreventive enzymes in human colorectal adenocarcinoma HT-29 cells irradiated with proton beams were tested by measuring the activities of quinine reductase (QR), glutathione S-transferase (GST), and ornithine decarboxylase (ODC), glutathione (GSH) levels, and expression of cyclooxygenase-2 (COX-2). We also examined the effect of proton beam on the ODC activity and expression of COX-2 in human breast cancer cell. We then assessed the metastatic capabilities of HT-29 and MDA-MB-231 cells irradiated with proton beam by measuring the invasiveness of cells through Matrigel-coated membrane and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced MMP activity in MDA-MB-231 and HT-29 cells. QR activity of irradiated HT-29 cells was slightly increased. Proton irradiation at dose of 32 Gy in HT-29 cells increased GST activity by 1.23-fold. In addition GSH levels in HT-29 cells was significantly increased 1.23- (p<0.05), 1.32- (p<0.01) and 1.34-fold (p<0.01) with the proton irradiation at doses of 8, 16 and 32 Gy, respectively. These results suggest that colon cancer chemopreventive activity was increased with the proton irradiation by increasing QR and GST activities and GSH levels and inhibiting ODC activity. Proton ion irradiation decreased the invasiveness of TPA-treated HT-29 cells and MDA-MB-231 cells through Matrigel-coated membrane. Proton ion irradiation pretreatment decreased TPA-induced MMP activity in MDA-MB-231 and HT-29 cells. Further studies are necessary to investigate if these findings could be translated to in vivo situations

  16. Phenolic composition of selected herbal infusions and their anti-inflammatory effect on a colonic model in vitro in HT-29 cells

    Directory of Open Access Journals (Sweden)

    Elda Herrera-Carrera

    2015-12-01

    Full Text Available Some herbal infusions used in folk medicine in Mexico to treat gastrointestinal disorders were evaluated. Antioxidant activity and phenolic compounds were analyzed on the lyophilized aqueous crude extracts (LACE of arnica (Aster gymnocephalus, chamomile (Chamaemelum nobile, cumin (Cominum cyminum, desert resurrection plant (DRP (Selaginella lepidophylla, laurel (Listea glaucescens, marjoram (Origanum majorana, mint (Mentha spicata, salvilla (Buddleia scordioides and yerbaniz (Tagetes lucida. Total phenolic content ranged from 8.0 to 70.7 μg GAE/mg for DRP and laurel respectively. Major phenolic compounds were identified by gas chromatography–mass spectrometry and high-performance liquid chromatography. The IC50 determined by the degradation of the deoxy-d-ribose ranged from 2,452.53 to 5,097.11 μg/mL. The cytoprotective effect of the LACE alone and on indomethacin-induced oxidative stress in HT-29 cells was tested. The tetrazolium dye MTT assay was performed in concentrations of 0.125–10 mg/mL allowing choosing the lowest concentration for this experimentation. Inflammation markers were measured by Western blotting. None of the extracts inhibited COX-1 by themselves; however, it was observed that extracts have a modulation effect over COX-2, TNFα, NFκB, and IL-8. By the decrease in the expression of pro-inflammatory cytokines, it follows that salvilla, chamomile, and laurel show promising anti-inflammatory effects.

  17. Inhibition of human MCF-7 breast cancer cells and HT-29 colon cancer cells by rice-produced recombinant human insulin-like growth binding protein-3 (rhIGFBP-3.

    Directory of Open Access Journals (Sweden)

    Stanley C K Cheung

    Full Text Available BACKGROUND: Insulin-like growth factor binding protein-3 (IGFBP-3 is a multifunctional molecule which is closely related to cell growth, apoptosis, angiogenesis, metabolism and senescence. It combines with insulin-like growth factor-I (IGF-I to form a complex (IGF-I/IGFBP-3 that can treat growth hormone insensitivity syndrome (GHIS and reduce insulin requirement in patients with diabetes. IGFBP-3 alone has been shown to have anti-proliferation effect on numerous cancer cells. METHODOLOGY/PRINCIPAL FINDINGS: We reported here an expression method to produce functional recombinant human IGFBP-3 (rhIGFBP-3 in transgenic rice grains. Protein sorting sequences, signal peptide and endoplasmic reticulum retention tetrapeptide (KDEL were included in constructs for enhancing rhIGFBP-3 expression. Western blot analysis showed that only the constructs with signal peptide were successfully expressed in transgenic rice grains. Both rhIGFBP-3 proteins, with or without KDEL sorting sequence inhibited the growth of MCF-7 human breast cancer cells (65.76 ± 1.72% vs 45.00 ± 0.86%, p < 0.05; 50.84 ± 1.97% vs 45.00 ± 0.86%, p < 0.01 respectively and HT-29 colon cancer cells (65.14 ± 3.84% vs 18.01 ± 13.81%, p < 0.05 and 54.7 ± 9.44% vs 18.01 ± 13.81%, p < 0.05 respectively when compared with wild type rice. CONCLUSION/SIGNIFICANCE: These findings demonstrated the feasibility of producing biological active rhIGFBP-3 in rice using a transgenic approach, which will definitely encourage more research on the therapeutic use of hIGFBP-3 in future.

  18. Treatment Efficiency of Free and Nanoparticle-Loaded Mitoxantrone for Magnetic Drug Targeting in Multicellular Tumor Spheroids

    Directory of Open Access Journals (Sweden)

    Annkathrin Hornung

    2015-09-01

    Full Text Available Major problems of cancer treatment using systemic chemotherapy are severe side effects. Magnetic drug targeting (MDT employing superparamagnetic iron oxide nanoparticles (SPION loaded with chemotherapeutic agents may overcome this dilemma by increasing drug accumulation in the tumor and reducing toxic side effects in the healthy tissue. For translation of nanomedicine from bench to bedside, nanoparticle-mediated effects have to be studied carefully. In this study, we compare the effect of SPION, unloaded or loaded with the cytotoxic drug mitoxantrone (MTO with the effect of free MTO, on the viability and proliferation of HT-29 cells within three-dimensional multicellular tumor spheroids. Fluorescence microscopy and flow cytometry showed that both free MTO, as well as SPION-loaded MTO (SPIONMTO are able to penetrate into tumor spheroids and thereby kill tumor cells, whereas unloaded SPION did not affect cellular viability. Since SPIONMTO has herewith proven its effectivity also in complex multicellular tumor structures with its surrounding microenvironment, we conclude that it is a promising candidate for further use in magnetic drug targeting in vivo.

  19. Tc-99m Glu-Cys-Gly-His-Gly-Lys (ECG-HGK), a novel Tc-99m labeled hexapeptide for molecular tumor imaging.

    Science.gov (United States)

    Kim, Dae-Weung; Kim, Myoung Hyoun; Kim, Chang Guhn

    2016-03-01

    Domain 5 of kinin-free high molecular weight kininogen inhibits the adhesion of many tumor cell lines, and it has been reported that the histidine-glycine-lysine (HGK)-rich region might be responsible for inhibition of cell adhesion. The authors developed HGK-containing hexapeptide, glutamic acid-cysteine-glycine (ECG)-HGK, and evaluated the utility of Tc-99m ECG-HGK for tumor imaging. Hexapeptide, ECG-HGK was synthesized using Fmoc solid-phase peptide synthesis. Radiolabeling efficiency was evaluated. The uptake of Tc-99m ECG-HGK within HT-1080 cells was evaluated in vitro. In HT-1080 tumor-bearing mice, gamma imaging and biodistribution studies were performed. The complexes Tc-99m ECG-HGK was prepared in high yield. The uptake of Tc-99m ECG-HGK within the HT-1080 tumor cells had been demonstrated by in vitro studies. The gamma camera imaging in the murine model showed that Tc-99m ECG-HGK was accumulated substantially in the HT-1080 tumor (tumor-to-muscle ratio = 5.7 ± 1.4 at 4 h), and the tumoral uptake was blocked by the co-injection of excess HGK (tumor-to-muscle ratio = 2.8 ± 0.6 at 4 h). In the present study, Tc-99m ECG-HGK was developed as a new tumor imaging agents. Our in vitro and in vivo studies revealed specific function of Tc-99m ECG-HGK for tumor imaging. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Hypertonic saline impedes tumor cell-endothelial cell interaction by reducing adhesion molecule and laminin expression.

    LENUS (Irish Health Repository)

    Shields, Conor J

    2012-02-03

    BACKGROUND: Hypertonic saline infusion dampens inflammatory responses and suppresses neutrophil-endothelial interaction by reducing adhesion molecule expression. This study tested the hypothesis that hypertonic saline attenuates tumor cell adhesion to the endothelium through a similar mechanism. METHODS: Human colon cancer cells (LS174T) were transfected with green fluorescent protein and exposed to lipopolysaccharide, tumor necrosis factor-alpha, and interleukin-6 under hypertonic and isotonic conditions for 1 and 4 hours. Confluent human umbilical vein endothelial cells were similarly exposed. Cellular apoptosis and expression of adhesion molecules and laminin were measured by flow cytometry. Tumor cell adhesion to endothelium and laminin was assessed with fluorescence microscopy. Data are represented as mean +\\/- standard error of mean, and an ANOVA test was performed to gauge statistical significance, with P <.05 considered significant. RESULTS: Hypertonic exposure significantly reduced tumor cell adhesion despite the presence of the perioperative cell stressors (42 +\\/- 2.9 vs 172.5 +\\/- 12.4, P <.05), attenuated tumor cell beta-1 integrin (14.43 vs 23.84, P <.05), and endothelial cell laminin expression (22.78 +\\/- 2.2 vs 33.74 +\\/- 2.4, P <.05), but did not significantly alter cell viability. CONCLUSION: Hypertonic saline significantly attenuates tumor cell adhesion to endothelium by inhibiting adhesion molecule and laminin expression. This may halt the metastatic behavior of tumor cells shed at surgery.

  1. Anti-tumor effect of total body irradiation of low doses on WHT/Ht mice

    International Nuclear Information System (INIS)

    Miyamoto, Miyako; Sakamoto, Kiyohiko

    1987-01-01

    The effect of low dose (0.05 - 1.0 Gy) of total body irradiation (TBI) on non-tumor bearing and tumor bearing mice were investigated. Mice received TBI of 0.1 Gy during 6 - 12 hours before tumor cell inoculation demonstrated to need larger number of tumor cells (approximately 2.5 times) for 50 per cent tumor incidence, compared to recipient mice not to receive TBI. On the other hand, in tumor bearing mice given 0.1 Gy of TBI only tumor cell killing effect was not detected, however enhancement of tumor cell killing effect and prolonged growth delay were observed when tumor bearing mice were treated with 0.1 Gy of TBI in combined with local irradiation on tumors, especially cell killing effect was remarkable in dose range over 6 Gy of local exposure. The mechanism of the effect of 0.1 Gy TBI is considered to be host mediated reactions from the other our experimental results. (author)

  2. Blocking the proliferation of human tumor cell lines by peptidase inhibitors from Bauhinia seeds.

    Science.gov (United States)

    Nakahata, Adriana Miti; Mayer, Barbara; Neth, Peter; Hansen, Daiane; Sampaio, Misako Uemura; Oliva, Maria Luiza Vilela

    2013-03-01

    In cancer tumors, growth, invasion, and formation of metastasis at a secondary site play a pivotal role, participating in diverse processes in the development of the pathology, such as degradation of extracellular matrix. Bauhinia seeds contain relatively large quantities of peptidase inhibitors, and two Bauhinia inhibitors were obtained in a recombinant form from the Bauhinia bauhinioides species, B. bauhinoides cruzipain inhibitor, which is a cysteine and serine peptidase inhibitor, and B. bauhinioides kallikrein inhibitor, which is a serine peptidase inhibitor. While recombinant B. bauhinoides cruzipain inhibitor inhibits human neutrophil elastase cathepsin G and the cysteine proteinase cathepsin L, recombinant B. bauhinioides kallikrein inhibitor inhibits plasma kallikrein and plasmin. The effects of recombinant B. bauhinoides cruzipain inhibitor and recombinant B. bauhinioides kallikrein inhibitor on the viability of tumor cell lines with a distinct potential of growth from the same tissue were compared to those of the clinical cytotoxic drug 5-fluorouracil. At 12.5 µM concentration, recombinant B. bauhinoides cruzipain inhibitor and recombinant B. bauhinioides kallikrein inhibitor were more efficient than 5-fluorouracil in inhibiting MKN-28 and Hs746T (gastric), HCT116 and HT29 (colorectal), SkBr-3 and MCF-7 (breast), and THP-1 and K562 (leukemia) cell lines. Additionally, recombinant B. bauhinoides cruzipain inhibitor inhibited 40 % of the migration of Hs746T, the most invasive gastric cell line, while recombinant B. bauhinioides kallikrein inhibitor did not affect cell migration. Recombinant B. bauhinioides kallikrein inhibitor and recombinant B. bauhinoides cruzipain inhibitor, even at high doses, did not affect hMSC proliferation while 5-fluorouracil greatly reduced the proliferation rates of hMSCs. Therefore, both recombinant B. bauhinoides cruzipain inhibitor and recombinant B. bauhinioides kallikrein inhibitor might be considered for further studies

  3. Differential signal pathway activation and 5-HT function: the role of gut enterochromaffin cells as oxygen sensors.

    Science.gov (United States)

    Haugen, Martin; Dammen, Rikard; Svejda, Bernhard; Gustafsson, Bjorn I; Pfragner, Roswitha; Modlin, Irvin; Kidd, Mark

    2012-11-15

    The chemomechanosensory function of the gut enterochromaffin (EC) cell enables it to respond to dietary agents and mechanical stretch. We hypothesized that the EC cell, which also sensed alterations in luminal or mucosal oxygen level, was physiologically sensitive to fluctuations in O(2). Given that low oxygen levels induce 5-HT production and secretion through a hypoxia inducible factor 1α (HIF-1α)-dependent pathway, we also hypothesized that increasing O(2) would reduce 5-HT production and secretion. Isolated normal EC cells as well as the well-characterized EC cell model KRJ-I were used to examine HIF signaling (luciferase-assays), hypoxia transcriptional response element (HRE)-mediated transcription (PCR), signaling pathways (Western blot), and 5-HT release (ELISA) during exposure to different oxygen levels. Normal EC cells and KRJ-I cells express HIF-1α, and transient transfection with Renilla luciferase under HRE control identified a hypoxia-mediated pathway in these cells. PCR confirmed activation of HIF-downstream targets, GLUT1, IGF2, and VEGF under reduced O(2) levels (0.5%). Reducing O(2) also elevated 5-HT secretion (2-3.2-fold) as well as protein levels of HIF-1α (1.7-3-fold). Increasing O(2) to 100% inhibited HRE-mediated signaling, transcription, reduced 5-HT secretion, and significantly lowered HIF-1α levels (∼75% of control). NF-κB signaling was also elevated during hypoxia (1.2-1.6-fold), but no significant changes were noted in PKA/cAMP. We concluded that gut EC cells are oxygen responsive, and alterations in O(2) levels differentially activate HIF-1α and tryptophan hydroxylase 1, as well as NF-κB signaling. This results in alterations in 5-HT production and secretion and identifies that the chemomechanosensory role of EC cells extends to oxygen sensing.

  4. Low toxic and high soluble camptothecin derivative 2–47 effectively induces apoptosis of tumor cells in vitro

    International Nuclear Information System (INIS)

    Zhou, Yao; Zhao, Hong-Ye; Jiang, Du; Wang, Lu-Yao; Xiang, Cen; Wen, Shao-Peng; Fan, Zhen-Chuan; Zhang, Yong-Min; Guo, Na; Teng, Yu-Ou; Yu, Peng

    2016-01-01

    The cytotoxic activity of camptothecin derivatives is so high that these compounds need to be further modified before their successful application as anti-cancer agents clinically. In this study, we reported the synthesis and biological evaluation of a novel camptothecin derivative called compound 2–47. The changes in structure did not reduce its activity to inhibit DNA topoisomerase I. Compound 2–47 induced apoptosis of many tumor cells including leukemia cells K562, Jurkat, HL-60, breast cancer cell BT-549, colon cancer cell HT-29 and liver cancer cell HepG2 with a half maximal inhibitory concentration (IC 50 ) of 2- to 3-fold lower than HCPT as a control. In particular, 2–47 inhibited the proliferation of Jurkat cells with an IC 50 of as low as 40 nM. By making use of Jurkat cell as a model, following treatment of Jurkat cells, compound 2–47 activated caspase-3 and PARP, resulting in a decreased Bcl-2/Bax ratio. These data showed that compound 2–47 induces Jurkat cell death through the mitochondrial apoptotic pathway. In addition, compound 2–47 showed a decreased cytotoxic activity against normal cells and an improved solubility in low-polar solvent. For example, compound 2–47 solutes in CHCl 3 130-fold higher than HCPT. Taken together, our data demonstrated that camptothecin derivative 2–47 notably inhibits the tumor cell proliferation through mitochondrial-mediated apoptosis in vitro. - Highlights: • Compound 2–47 showed a wide inhibitory effect on the tested tumor cell lines with an IC 50 of 3 times lower than that of HCPT in general. • Compound 2–47 inhibited the proliferation of the human leukemia cell Jurkat at an IC 50 of as low as 40 nM. • As compared to HCPT, compound 2–47 showed much reduced cytotoxicity on normal human cells. • As compared to others, compound 2–47 showed a hundreds-fold higher solubility in non-polar organic solution.

  5. Time- and dose-dependent effects of curcumin on gene expression in human colon cancer cells

    Directory of Open Access Journals (Sweden)

    van Erk Marjan J

    2004-05-01

    Full Text Available Abstract Background Curcumin is a spice and a coloring food compound with a promising role in colon cancer prevention. Curcumin protects against development of colon tumors in rats treated with a colon carcinogen, in colon cancer cells curcumin can inhibit cell proliferation and induce apoptosis, it is an anti-oxidant and it can act as an anti-inflammatory agent. The aim of this study was to elucidate mechanisms and effect of curcumin in colon cancer cells using gene expression profiling. Methods Gene expression changes in response to curcumin exposure were studied in two human colon cancer cell lines, using cDNA microarrays with four thousand human genes. HT29 cells were exposed to two different concentrations of curcumin and gene expression changes were followed in time (3, 6, 12, 24 and 48 hours. Gene expression changes after short-term exposure (3 or 6 hours to curcumin were also studied in a second cell type, Caco-2 cells. Results Gene expression changes (>1.5-fold were found at all time points. HT29 cells were more sensitive to curcumin than Caco-2 cells. Early response genes were involved in cell cycle, signal transduction, DNA repair, gene transcription, cell adhesion and xenobiotic metabolism. In HT29 cells curcumin modulated a number of cell cycle genes of which several have a role in transition through the G2/M phase. This corresponded to a cell cycle arrest in the G2/M phase as was observed by flow cytometry. Functional groups with a similar expression profile included genes involved in phase-II metabolism that were induced by curcumin after 12 and 24 hours. Expression of some cytochrome P450 genes was downregulated by curcumin in HT29 and Caco-2 cells. In addition, curcumin affected expression of metallothionein genes, tubulin genes, p53 and other genes involved in colon carcinogenesis. Conclusions This study has extended knowledge on pathways or processes already reported to be affected by curcumin (cell cycle arrest, phase

  6. Hypoxia-Inducible Regulation of a Prodrug-Activating Enzyme for Tumor-Specific Gene Therapy

    Directory of Open Access Journals (Sweden)

    Toru Shibata

    2002-01-01

    Full Text Available Previous studies have suggested that tumor hypoxia could be exploited for cancer gene therapy. Using hypoxia-responsive elements derived from the human vascular endothelial growth factor gene, we have generated vectors expressing a bacterial nitroreductase. (20NTR gene that can activate the anticancer prodrug CB1954. Stable transfectants of human HT1080 tumor cells with hypoxia-inducible vectors were established with G418 selection. Hypoxic induction of NTR protein correlated with increased sensitivity to in vitro exposure of HT 1080 cells to the prodrug. Growth delay assays were performed with established tumor xenografts derived from the same cells to detect the in vivo efficacy of CB1954 conversion to its cytotoxic form. Significant antitumor effects were achieved with intraperitoneal injections of CB1954 both in tumors that express NTR constitutively or with a hypoxia-inducible promoter. In addition, respiration of 10% O2 increased tumor hypoxia in vivo and enhanced the antitumor effects. Taken together, these results demonstrate that hypoxia-inducible vectors may be useful for tumor-selective gene therapy, although the problem of delivery of the vector to the tumors, particularly to the hypoxic cells in the tumors, is not addressed by these studies.

  7. Efecto citotóxico del extracto metanólico de tres ecotipos de Lepidium peruvianum Chacón sobre líneas celulares HeLa y HT-29

    Directory of Open Access Journals (Sweden)

    Libertad Alzamora

    2013-05-01

    Full Text Available La búsqueda de compuestos naturales con actividad citotóxica y antitumoral es una de las prioridades actuales de la lucha contra el cáncer; motivo por el cual el objetivo del presente trabajo fue evaluar la actividad citotóxica de los extractos metanólicos (EM de los ecotipos negro, morado y amarillo de Lepidium peruvianum, Chacón (conocida también como Lepidium meyenii Walp. (maca sobre las líneas celulares HeLa (Human Epithelial Carcinoma y HT-29 (Human Colon Adenocarcinoma. Se determinó que la concentración inhibitoria del 50% del crecimiento celular (IC50 para la línea celular HT-29, con los ecotipos negro, morado y amarillo fue de 8,32 mg/ml, 9,28 mg/ml y 0,487 mg/ml respectivamente, mientras que para la línea celular HeLa fue de 2,4 mg/ml, 1,93 mg/ml y 0,66 mg/ml respectivamente. Adicionalmente, se evaluó un EM del ecotipo amarillo con dos años de almacenamiento (10 ºC determinándose como IC50 4,29 mg/ml para HT-29 y 4,17 mg/ml para HeLa. Se concluye que el efecto citotóxico del ecotipo amarillo sobre HT-29 y HeLa fue superior al mostrado por los ecotipos negro y morado; que la línea celular más sensible a los ecotipos amarillo, negro y morado es HeLa, y que el EM del ecotipo amarillo conservó sus propiedades citotóxicas pese al tiempo de almacenamiento, aunque éstas disminuyeron.

  8. Cytotoxicity effect of Zataria multiflora Boiss. on two human colon carcinoma cell lines

    Directory of Open Access Journals (Sweden)

    F. Sharififar

    2017-10-01

    Full Text Available Background and objectives: Natural products are one of the major sources for investigations of novel medicines. Zataria multiflora Boiss (ZM has shown pharmacological activities especially in gastrointestinal tract; however, there are limited studies about its cytotoxicity effects. In this study, the effect of Zataria multiflora was examined on two colon cancer cell lines (SW-48 and HT-29. Methods: Hydro-alcoholic extract of ZM and its fractions including chloroform, petroleum ether and methanol extract were prepared by warm maceration method. Different concentrations were prepared and examined on SW-48 and HT-29 cell lines using 2-(4, 5-dimethylthiazol-2-yl 2, 5-diphenyltetrazolium bromide (MTT assay. Results: The results of the present study have shown the cytotoxic effect of some fractions of ZM. The most considerable cytotoxic effect was shown against HT-29 cell line. Also, total ZM extract and the petroleum ether fraction demonstrated cytotoxic effects with IC50 values of 44.22 and 33.42 µg/ml on SW-48 and HT-29 cell lines, respectively. Conclusion: Zataria multiflora was cytotoxic to against colon cancer cell lines HT-29 and SW-48.

  9. Tumor-reactive immune cells protect against metastatic tumor and induce immunoediting of indolent but not quiescent tumor cells.

    Science.gov (United States)

    Payne, Kyle K; Keim, Rebecca C; Graham, Laura; Idowu, Michael O; Wan, Wen; Wang, Xiang-Yang; Toor, Amir A; Bear, Harry D; Manjili, Masoud H

    2016-09-01

    Two major barriers to cancer immunotherapy include tumor-induced immune suppression mediated by myeloid-derived suppressor cells and poor immunogenicity of the tumor-expressing self-antigens. To overcome these barriers, we reprogrammed tumor-immune cell cross-talk by combined use of decitabine and adoptive immunotherapy, containing tumor-sensitized T cells and CD25(+) NKT cells. Decitabine functioned to induce the expression of highly immunogenic cancer testis antigens in the tumor, while also reducing the frequency of myeloid-derived suppressor cells and the presence of CD25(+) NKT cells rendered T cells, resistant to remaining myeloid-derived suppressor cells. This combinatorial therapy significantly prolonged survival of animals bearing metastatic tumor cells. Adoptive immunotherapy also induced tumor immunoediting, resulting in tumor escape and associated disease-related mortality. To identify a tumor target that is incapable of escape from the immune response, we used dormant tumor cells. We used Adriamycin chemotherapy or radiation therapy, which simultaneously induce tumor cell death and tumor dormancy. Resultant dormant cells became refractory to additional doses of Adriamycin or radiation therapy, but they remained sensitive to tumor-reactive immune cells. Importantly, we discovered that dormant tumor cells contained indolent cells that expressed low levels of Ki67 and quiescent cells that were Ki67 negative. Whereas the former were prone to tumor immunoediting and escape, the latter did not demonstrate immunoediting. Our results suggest that immunotherapy could be highly effective against quiescent dormant tumor cells. The challenge is to develop combinatorial therapies that could establish a quiescent type of tumor dormancy, which would be the best target for immunotherapy. © The Author(s).

  10. In vivo imaging of tumor vascular endothelial cells

    Science.gov (United States)

    Zhao, Dawen; Stafford, Jason H.; Zhou, Heling; Thorpe, Philip E.

    2013-02-01

    Phosphatidylserine (PS), normally restricted to the inner leaflet of the plasma membrane, becomes exposed on the outer surface of viable (non-apoptotic) endothelial cells in tumor blood vessels, probably in response to oxidative stresses present in the tumor microenvironment. In the present study, we optically imaged exposed PS on tumor vasculature in vivo using PGN635, a novel human monoclonal antibody that targets PS. PGN635 F(ab')2 was labeled with the near infrared (NIR) dye, IRDye 800CW. Human glioma U87 cells or breast cancer MDA-MB-231 cells were implanted subcutaneously or orthotopically into nude mice. When the tumors reached ~5 mm in diameter, 800CW- PGN635 was injected via a tail vein and in vivo dynamic NIR imaging was performed. For U87 gliomas, NIR imaging allowed clear detection of tumors as early as 4 h later, which improved over time to give a maximal tumor/normal ratio (TNR = 2.9 +/- 0.5) 24 h later. Similar results were observed for orthotopic MDA-MB-231 breast tumors. Localization of 800CW-PGN635 to tumors was antigen specific since 800CW-Aurexis, a control probe of irrelevant specificity, did not localize to the tumors, and pre-administration of unlabeled PGN635 blocked the uptake of 800CW-PGN635. Fluorescence microscopy confirmed that 800CW-PGN635 was binding to PS-positive tumor vascular endothelium. Our studies suggest that tumor vasculature can be successfully imaged in vivo to provide sensitive tumor detection.

  11. Characterisation of 5-HT3C, 5-HT3D and 5-HT3E receptor subunits: evolution, distribution and function.

    Science.gov (United States)

    Holbrook, Joanna D; Gill, Catherine H; Zebda, Noureddine; Spencer, Jon P; Leyland, Rebecca; Rance, Kim H; Trinh, Han; Balmer, Gemma; Kelly, Fiona M; Yusaf, Shahnaz P; Courtenay, Nicola; Luck, Jane; Rhodes, Andrew; Modha, Sundip; Moore, Stephen E; Sanger, Gareth J; Gunthorpe, Martin J

    2009-01-01

    The 5-HT(3) receptor is a member of the 'Cys-loop' family of ligand-gated ion channels that mediate fast excitatory and inhibitory transmission in the nervous system. Current evidence points towards native 5-HT(3) receptors originating from homomeric assemblies of 5-HT(3A) or heteromeric assembly of 5-HT(3A) and 5-HT(3B). Novel genes encoding 5-HT(3C), 5-HT(3D), and 5-HT(3E) have recently been described but the functional importance of these proteins is unknown. In the present study, in silico analysis (confirmed by partial cloning) indicated that 5-HT(3C), 5-HT(3D), and 5-HT(3E) are not human-specific as previously reported: they are conserved in multiple mammalian species but are absent in rodents. Expression profiles of the novel human genes indicated high levels in the gastrointestinal tract but also in the brain, Dorsal Root Ganglion (DRG) and other tissues. Following the demonstration that these subunits are expressed at the cell membrane, the functional properties of the recombinant human subunits were investigated using patch clamp electrophysiology. 5-HT(3C), 5-HT(3D), and 5-HT(3E) were all non-functional when expressed alone. Co-transfection studies to determine potential novel heteromeric receptor interactions with 5-HT(3A) demonstrated that the expression or function of the receptor was modified by 5-HT(3C) and 5-HT(3E), but not 5-HT(3D). The lack of distinct effects on current rectification, kinetics or pharmacology of 5-HT(3A) receptors does not however provide unequivocal evidence to support a direct contribution of 5-HT(3C) or 5-HT(3E) to the lining of the ion channel pore of novel heteromeric receptors. The functional and pharmacological contributions of these novel subunits to human biology and diseases such as irritable bowel syndrome for which 5-HT(3) receptor antagonists have major clinical usage, therefore remains to be fully determined.

  12. 4-[125I]iodo-(2,5-dimethoxy)phenylisopropylamine and [3H]ketanserin labeling of 5-hydroxytryptamine2 (5HT2) receptors in mammalian cells transfected with a rat 5HT2 cDNA: Evidence for multiple states and not multiple 5HT2 receptor subtypes

    International Nuclear Information System (INIS)

    Teitler, M.; Leonhardt, S.; Weisberg, E.L.; Hoffman, B.J.

    1990-01-01

    Evidence has accumulated indicating that the radioactive hallucinogens 4-bromo-[3H](2,5-dimethoxy)phenylisopropylamine ([3H]DOB) and 4-[125I]iodo-(2,5-dimethoxy)phenylisopropylamine ([125I]DOI) label an agonist high affinity state of the 5-hydroxytryptamine2 (5HT2) receptor and [3H]ketanserin labels both agonist high and low affinity states. Recently, an alternative hypothesis has been put forward proposing that the radioactive hallucinogens are labeling a 5HT2 receptor subtype distinct from the receptor labeled by [3H]ketanserin. In order to provide definitive evidence as to which of these hypotheses is correct, the rat 5HT2 receptor gene was transfected into NIH-3T3 cells and COS cells. Neither nontransfected cell type expresses 5HT2 receptors; the transfected cells expressed high affinity binding sites for both [125I] DOI (KD = 0.8 nM and Bmax = 363 fmol/mg in NIH-3T3 cells; KD = 0.2 nM and Bmax = 26 fmol/mg in COS cells) and [3H]ketanserin (KD = 0.4 nM and Bmax = 5034 fmol/mg in NIH-3T3 cells; KD = 1.0 nM and Bmax = 432 fmol/mg in COS cells). The affinities of agonists and antagonists for the [125I]DOI-labeled receptor were significantly higher than for the [3H]ketanserin-labeled receptor. The affinities of agonists and antagonists for these binding sites were essentially identical to their affinities for the sites radiolabeled by these radioligands in mammalian brain homogenates. The [125I]DOI binding was guanyl nucleotide sensitive, indicating a coupling to a GTP-binding protein. These data indicate that the 5HT2 receptor gene product contains both the guanyl nucleotide-sensitive [125I]DOI binding site and the [3H]ketanserin binding site. Therefore, these data indicate that the 5HT2 receptor gene product can produce a high affinity binding site for the phenylisopropylamine hallucinogen agonists as well as for the 5HT2 receptor antagonists

  13. Cytoplasmic transfer of heritable elements other than mtDNA from SAMP1 mice into mouse tumor cells suppresses their ability to form tumors in C57BL6 mice.

    Science.gov (United States)

    Shimizu, Akinori; Tani, Haruna; Takibuchi, Gaku; Ishikawa, Kaori; Sakurazawa, Ryota; Inoue, Takafumi; Hashimoto, Tetsuo; Nakada, Kazuto; Takenaga, Keizo; Hayashi, Jun-Ichi

    2017-11-04

    In a previous study, we generated transmitochondrial P29mtSAMP1 cybrids, which had nuclear DNA from the C57BL6 (referred to as B6) mouse strain-derived P29 tumor cells and mitochondrial DNA (mtDNA) exogenously-transferred from the allogeneic strain SAMP1. Because P29mtSAMP1 cybrids did not form tumors in syngeneic B6 mice, we proposed that allogeneic SAMP1 mtDNA suppressed tumor formation of P29mtSAMP1 cybrids. To test this hypothesis, current study generated P29mt(sp)B6 cybrids carrying all genomes (nuclear DNA and mtDNA) from syngeneic B6 mice by eliminating SAMP1 mtDNA from P29mtSAMP1 cybrids and reintroducing B6 mtDNA. However, the P29mt(sp)B6 cybrids did not form tumors in B6 mice, even though they had no SAMP1 mtDNA, suggesting that SAMP1 mtDNA is not involved in tumor suppression. Then, we examined another possibility of whether SAMP1 mtDNA fragments potentially integrated into the nuclear DNA of P29mtSAMP1 cybrids are responsible for tumor suppression. We generated P29 H (sp)B6 cybrids by eliminating nuclear DNA from P29mt(sp)B6 cybrids and reintroducing nuclear DNA with no integrated SAMP1 mtDNA fragment from mtDNA-less P29 cells resistant to hygromycin in selection medium containing hygromycin. However, the P29 H (sp)B6 cybrids did not form tumors in B6 mice, even though they carried neither SAMP1 mtDNA nor nuclear DNA with integrated SAMP1 mtDNA fragments. Moreover, overproduction of reactive oxygen species (ROS) and bacterial infection were not involved in tumor suppression. These observations suggest that tumor suppression was caused not by mtDNA with polymorphic mutations or infection of cytozoic bacteria but by hypothetical heritable cytoplasmic elements other than mtDNA from SAMP1 mice. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Transcription factor Runx2 knockdown regulates colon cancer transplantation tumor growth in vitro: an experimental study

    Directory of Open Access Journals (Sweden)

    Bin Xu1

    2017-05-01

    Full Text Available Objective: To study the effect of transcription factor Runx2 knockdown on colon cancer transplantation tumor growth in vitro. Methods: Colon cancer cell lines HT29 were cultured and transfected with negative control (NC - shRNA plasmids and Runx2-shRNA plasmids respectively, the colon cancer cells transfected with shRNA were subcutaneously injected into C57 nude mice, and they were included in NC group and Runx2 knockdown group respectively. 1 week, 2 weeks and 3 weeks after model establishment, serum was collected to determine the contents of tumor markers, and tumor lesions were collected to determine proliferation and apoptosis gene expression. Results: CCSA-2, CEA and CA19-9 levels in serum as well as Rac1, Wnt3a, PLD2 and FAM96B protein expression in transplantation tumor lesions of Runx2 knockdown group were significantly lower than those of NC group while MS4A12, ASPP2 and Fas protein expression in transplantation tumor lesions of Runx2 knockdown group were significantly higher than those of NC group. Conclusion: Transcription factor Runx2 knockdown could inhibit the colon cancer transplantation tumor growth in vitro.

  15. Enhancement of P53-Mutant Human Colorectal Cancer Cells Radiosensitivity by Flavonoid Fisetin

    International Nuclear Information System (INIS)

    Chen Wenshu; Lee Yijang; Yu Yichu; Hsaio Chinghui

    2010-01-01

    Purpose: The aim of this study was to investigate whether fisetin is a potential radiosensitizer for human colorectal cancer cells, which are relatively resistant to radiotherapy. Methods and Materials: Cell survival was examined by clonogenic survival assay, and DNA fragmentation was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. The effects of treatments on cell cycle distribution and apoptosis were examined by flow cytometry. Western blot analysis was performed to ascertain the protein levels of γ-H2AX, phospho-Chk2, active caspase-3, PARP cleavage, phospho-p38, phospho-AKT, and phospho-ERK1/2. Results: Fisetin pretreatment enhanced the radiosensitivity of p53-mutant HT-29 human colorectal cancer cells but not human keratocyte HaCaT cells; it also prolonged radiation-induced G 2 /M arrest, enhanced radiation-induced cell growth arrest in HT-29 cells, and suppressed radiation-induced phospho-H2AX (Ser-139) and phospho-Chk2 (Thr-68) in p53-mutant HT-29 cells. Pretreatment with fisetin enhanced radiation-induced caspase-dependent apoptosis in HT-29 cells. Fisetin pretreatment augmented radiation-induced phosphorylation of p38 mitogen-activated protein kinase, which is involved in caspase-mediated apoptosis, and SB202190 significantly reduced apoptosis and radiosensitivity in fisetin-pretreated HT-29 cells. By contrast, both phospho-AKT and phospho-ERK1/2, which are involved in cell proliferation and antiapoptotic pathways, were suppressed after irradiation combined with fisetin pretreatment. Conclusions: To our knowledge, this study is the first to provide evidence that fisetin exerts a radiosensitizing effect in p53-mutant HT-29 cells. Fisetin could potentially be developed as a novel radiosensitizer against radioresistant human cancer cells.

  16. Excitons dynamics of 1-chloronaphthalene added P3HT:PC{sub 61}BM solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Xing [Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044 (China); Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044 (China); Zhao, Suling, E-mail: slzhao@bjtu.edu.cn [Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044 (China); Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044 (China); Huang, Qingyu; Yang, Qianqian; Gong, Wei; Xu, Zheng [Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044 (China); Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044 (China)

    2014-08-01

    The charge photogeneration and recombination are comprehensively investigated in blend films based on poly(3-hexylthiophene) (P3HT) as an electron donor and [6,6]-phenyl-C 61-butyric acid methyl ester (PC{sub 61}BM) as an electron accepter. Transient absorption spectroscopy (TAS) together with absorption, photoluminescence (PL) are used respectively to measure optical properties of these blend films. In this paper, we demonstrate that solvent additive 1-chloronaphthalene (CN) has a unique influence on improving the performance of P3HT:PC{sub 61}BM heterojunction solar cell. It is observed that the absorption of additive-added blends has a higher intensity and is red-shifted than that of the P3HT:PC{sub 61}BM blend. The PL intensity increases which suggest that the conjugation length increases or the domain size of P3HT increases. Large domains with serious phase separation influence the interface area between P3HT and PC{sub 61}BM. Excitons are generated in both the P3HT phase and the PC{sub 61}BM phase. In all the film blends with or without additive, strongly bound interfacial CT states are formed by a large fraction of the excitons indicating geminate recombination may occur. It is demonstrated that in the blend with CN added the enhanced fraction of CT states comes from the more crystalline P3HT phases and the slower CT states and mobile charges decay indicates reduced recombination losses from early time recombination. - Highlights: • 1-chloronaphthalene(CN) can enhance the efficiency of P3HT:PCBM Solar Cells from charge photogeneration and recombination. • The enhanced fraction of CT states with CN added comes from the more crystalline P3HT phases and the slower CT states. • Mobile charges decay of blend with CN added indicates reduced recombination losses from early time recombination.

  17. Pancreatic islet cell tumor

    Science.gov (United States)

    ... cell tumors; Islet of Langerhans tumor; Neuroendocrine tumors; Peptic ulcer - islet cell tumor; Hypoglycemia - islet cell tumor ... stomach acid. Symptoms may include: Abdominal pain Diarrhea ... and small bowel Vomiting blood (occasionally) Glucagonomas make ...

  18. Anti-tumor activity of N-hydroxy-7-(2-naphthylthio) heptanomide, a novel histone deacetylase inhibitor

    International Nuclear Information System (INIS)

    Kim, Dong Hoon; Lee, Jiyong; Kim, Kyung Noo; Kim, Hye Jin; Jeung, Hei Cheul; Chung, Hyun Cheol; Kwon, Ho Jeong

    2007-01-01

    Histone deacetylase (HDAC), a key enzyme in gene expression and carcinogenesis, is considered an attractive target molecule for cancer therapy. Here, we report a new synthetic small molecule, N-hydroxy-7-(2-naphthylthio) heptanomide (HNHA), as a HDAC inhibitor with anti-tumor activity both in vitro and in vivo. The compound inhibited HDAC enzyme activity as well as proliferation of human fibrosarcoma cells (HT1080) in vitro. Treatment of cells with HNHA elicited histone hyperacetylation leading to an up-regulation of p21 transcription, cell cycle arrest, and an inhibition of HT1080 cell invasion. Moreover, HNHA effectively inhibited the growth of tumor tissue in a mouse xenograph assay in vivo. Together, these data demonstrate that this novel HDAC inhibitor could be developed as a potential anti-tumor agent targeting HDAC

  19. Interferon-β lipofection II. Mechanisms involved in cell death and bystander effect induced by cationic lipid-mediated interferon-β gene transfer to human tumor cells.

    Science.gov (United States)

    Villaverde, M S; Gil-Cardeza, M L; Glikin, G C; Finocchiaro, L M E

    2012-06-01

    We evaluated the cytotoxic effects (apoptosis, necrosis and early senescence) of human interferon-β (hIFNβ) gene lipofection. The cytotoxicity of hIFNβ gene lipofection resulted equivalent to that of the corresponding addition of the recombinant protein (rhIFNβ) on human tumor cell lines derived from Ewing's sarcoma (EW7 and COH) and colon (HT-29) carcinomas. However, it was stronger than rhIFNβ on melanoma (M8) and breast adenocarcinoma (MCF7). To reveal the mechanisms involved in these differences, we compared the effects of hIFNβ gene and rhIFNβ protein on EW7 and M8 (sensitive and resistant to rhIFNβ protein, respectively). Lipofection with hIFNβ gene caused a mitochondrial potential decrease simultaneous with an increase of oxidative stress in both cell lines. However, rhIFNβ protein displayed the same pattern of response only in EW7-sensitive cell line. The great bystander effect of the hIFNβ gene lipofection, involving the production of reactive oxygen species, would be among the main causes of its success. In EW7, this effect killed >60% of EW7 cell population, even though only 1% of cells were expressing the transgene. As hIFNβ gene was effective even in the rhIFNβ protein-resistant M8 cell line and in a way not limited by low lipofection efficiency, these results strongly support the clinical potential of this approach.

  20. Changes of Serotonin (5-HT), 5-HT2A Receptor, and 5-HT Transporter in the Sprague-Dawley Rats of Depression,Myocardial Infarction and Myocardial Infarction Co-exist with Depression

    Institute of Scientific and Technical Information of China (English)

    Mei-Yan Liu; Yah-Ping Ren; Wan-Lin Wei; Guo-Xiang Tian; Guo Li

    2015-01-01

    Background:To evaluate whether serotonin (5-HT),5-HT2A receptor (5-HT2AR),and 5-HT transporter (serotonin transporter [SERT]) are associated with different disease states of depression,myocardial infarction (MI) and MI co-exist with depression in Sprague-Dawley rats.Methods:After established the animal model of four groups include control,depression,MI and MI with depression,we measured 5-HT,5-HT2AR and SERT from serum and platelet lysate.Results:The serum concentration of 5-HT in depression rats decreased significantly compared with the control group (303.25 ± 9.99 vs.352.98 ± 13.73;P =0.000),while that in MI group increased (381.78 ± 14.17 vs.352.98 ± 13.73;P =0.000).However,the depression + MI group had no change compared with control group (360.62 ± 11.40 vs.352.98 ± 13.73;P =0.036).The changes of the platelet concentration of 5-HT in the depression,MI,and depression + MI group were different from that of serum.The levels of 5-HT in above three groups were lower than that in the control group (380.40 ± 17.90,387.75 ± 22.28,246.40 ± 18.99 vs.500.29 ± 20.91;P =0.000).The platelet lysate concentration of 5-HT2AR increased in depression group,MI group,and depression + MI group compared with the control group (370.75 ± 14.75,393.47 ± 15.73,446.66 ± 18.86 vs.273.66 ± 16.90;P =0.000).The serum and platelet concentration of SERT in the depression group,MI group and depression + MI group were all increased compared with the control group (527.51 ± 28.32,602.02 ± 23.32,734.76 ± 29.59 vs.490.56 ± 16.90;P =0.047,P =0.000,P =0.000 in each and 906.38 ± 51.84,897.33 ± 60.34,1030.17 ± 58.73 vs.708.62 ± 51.15;P =0.000 in each).Conclusions:The concentration of 5-HT2AR in platelet lysate and SERT in serum and platelet may be involved in the pathway of MI with depression.Further studies should examine whether elevated 5-HT2AR and SERT may contribute to the biomarker in MI patients with depression.

  1. HIV Nef-M1 Effects on Colorectal Cancer Growth in Tumor-induced Spleens and Hepatic Metastasis

    Science.gov (United States)

    Harrington, Willie; Bond, Vincent; Huang, Ming Bo; Powell, Michael; Lillard, James; Manne, Upender; Bumpers, Harvey

    2010-01-01

    CXCR4 receptors have been implicated in tumorigenesis and proliferation, making it a potential target for colorectal cancer therapy. Expression of this chemokine receptor on cellular surfaces appears to promote metastasis by directly stimulating tumor cell migration and invasion. The receptor/ligand, CXCR4/SDF-1α, pair are critically important to angiogenesis and vascular remodeling which supports cancer proliferation. Our work has shown that a novel apoptotic peptide of HIV-1, Nef-M1, can act as a CXCR4 antagonist, inducing apoptosis in CXCR4 containing cells. Four colorectal tumor cell lines (HT-29, LS174t, SW480, WiDr), were evaluated for their response to Nef-M1 peptide via in vivo and in vitro. The presence of CXCR4 receptors on tumor cells was determined using immunohistochemical and RT-PCR analyses. Solid xenografts derived from tumor cell lines grown in SCID mice, were evaluated for the persistence of the receptor. Xenografts propagated in SCID mice from each of the four cell lines demonstrated high levels of receptor expression as well. The effects of Nef-M1 in vivo via splenic injected mice and subsequent hepatic metastasis also demonstrated dramatic reduction of primary tumor growth in the spleen and secondary invasion of the liver. We concluded that Nef-M1 peptide, through physical interaction(s) with CXCR4, drives apoptotic reduction in in vivo primary tumor growth and metastasis. PMID:20383296

  2. Reparative properties of the traditional Chinese medicine Cordyceps sinensis (Chinese caterpillar mushroom) using HT29 cell culture and rat gastric damage models of injury.

    Science.gov (United States)

    Marchbank, Tania; Ojobo, Ehighale; Playford, Christopher J; Playford, Raymond J

    2011-05-01

    Cordyceps sinensis (CS) is a traditional Chinese medicine and health food used to support many organ systems. It is commercially produced by cultivation in a liquid medium or on a solid (grain/potato) phase. We tested the effects of hot water extracts of liquid-phase and solid-phase commercially grown CS on its ability to influence proliferation (using Alamar blue, an oxidation/reduction indicator), migration (serial-wounded monolayer photomicroscopy), invasion through collagen gel (fluorometric assay) and indomethacin-induced apoptosis (active caspase-3 colorimetric assay) of human colon cancer HT29 cells. An in vivo study used a rat gastric damage model (indomethacin 20 mg/kg and 4 h restraint with oral administration). The CS extract stimulated cell proliferation threefold when added at 10 μg/ml (P < 0·01). Cell migration increased by 69 % and invasion by 17 % when CS was added at 5 mg/ml (P < 0·01). The results also showed that 93 % of the pro-proliferative activity was soluble in ethanol, whereas pro-migratory activity was divided (61:49) into both ethanol-soluble and ethanol-insoluble sub-fractions. Indomethacin-induced apoptosis was not affected by the presence of CS. CS reduced the amount of gastric injury by 63 % when administered orally at 20 mg/ml (P < 0·01), the results being similar to using the potent cytoprotective agent epidermal growth factor at 25 μg/ml (83 % reduction). We conclude that both methods of cultivated CS possess biological activity when analysed using a variety of gut models of injury and repair. Functional foods, such as CS, could provide a novel approach for the prevention and treatment of injury to the bowel.

  3. Method of hyperthermia and tumor size influence effectiveness of doxorubicin release from thermosensitive liposomes in experimental tumors.

    Science.gov (United States)

    Willerding, Linus; Limmer, Simone; Hossann, Martin; Zengerle, Anja; Wachholz, Kirsten; Ten Hagen, Timo L M; Koning, Gerben A; Sroka, Ronald; Lindner, Lars H; Peller, Michael

    2016-01-28

    Systemic chemotherapy of solid tumors could be enhanced by local hyperthermia (HT) in combination with thermosensitive liposomes (TSL) as drug carriers. In such an approach, effective HT of the tumor is considered essential for successful triggering local drug release and targeting of the drug to the tumor. To investigate the effect of HT method on the effectiveness of drug delivery, a novel laser-based HT device designed for the use in magnetic resonance imaging (MRI) was compared systematically with the frequently used cold light lamp and water bath HT. Long circulating phosphatidyldiglycerol-based TSL (DPPG2-TSL) with encapsulated doxorubicin (DOX) were used as drug carrier enabling intravascular drug release. Experiments were performed in male Brown Norway rats with a syngeneic soft tissue sarcoma (BN 175) located on both hind legs. One tumor was heated while the second tumor remained unheated as a reference. Six animals were investigated per HT method. DPPG2-TSL were injected i.v. at a stable tumor temperature above 40°C. Thereafter, temperature was maintained for 60min. Total DOX concentration in plasma, tumor tissue and muscle was determined post therapy by HPLC. Finally, the new laser-based device was tested in a MRI environment at 3T using DPPG2-TSL with encapsulated Gd-based contrast agent. All methods showed effective DOX delivery by TSL with 4.5-23.1ng/mg found in the heated tumors. In contrast, DOX concentration in the non-heated tumors was 0.5±0.1ng/mg. Independent of used HT methods, higher DOX levels were found in the smaller tumors. In comparison water bath induced lowest DOX delivery but still showing fourfold higher DOX concentrations compared to the non-heated tumors. With the laser-based applicator, a 13 fold higher DOX deposition was possible for large tumors and a 15 fold higher for the small tumors, respectively. Temperature gradients in the tumor tissue were higher with the laser and cold light lamp (-0.3°C/mm to -0.5°C/mm) compared to

  4. A New in Vitro Anti-Tumor Polypeptide Isolated from Arca inflata

    Directory of Open Access Journals (Sweden)

    Jian Xu

    2013-12-01

    Full Text Available A new in vitro anti-tumor polypeptide, coded as J2-C3, was isolated from Arca inflata Reeve and purified by diethyl-aminoethanol (DEAE-sepharose Fast Flow anion exchange and phenyl sepharose CL-4B hydrophobic chromatography. J2-C3 was identified to be a homogeneous compound by native polyacrylamide gel electrophoresis (Native-PAGE. The purity of J2-C3 was over 99% in reversed phase-high performance liquid chromatography (RP-HPLC. The molecular weight was determined as 20,538.0 Da by electrospray-ionization mass spectrometry (ESI-MS/MS. J2-C3 was rich in Glx (Gln + Glu, Lys, and Asx (Asp + Asn according to amino acid analysis. Four partial amino acid sequences of this peptide were determined as L/ISMEDVEESR, KNGMHSI/LDVNHDGR, AMKI/LI/LNPKKGI/LVPR and AMGAHKPPKGNEL/IGHR via MALDI-TOF/TOF-MS and de novo sequencing. Secondary structural analysis by CD spectroscopy revealed that J2-C3 had the α-helix (45.2%, β-sheet (2.9%, β-turn (26.0% and random coil (25.9%. The anti-tumor effect of J2-C3 against human tumor cells was measured by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay, and the IC50 values of J2-C3 were 65.57, 93.33 and 122.95 µg/mL against A549, HT-29 and HepG2 cell lines, respectively. Therefore, J2-C3 might be developed as a potential anti-tumor agent.

  5. Pathway-specific differences between tumor cell lines and normal and tumor tissue cells

    Directory of Open Access Journals (Sweden)

    Tozeren Aydin

    2006-11-01

    Full Text Available Abstract Background Cell lines are used in experimental investigation of cancer but their capacity to represent tumor cells has yet to be quantified. The aim of the study was to identify significant alterations in pathway usage in cell lines in comparison with normal and tumor tissue. Methods This study utilized a pathway-specific enrichment analysis of publicly accessible microarray data and quantified the gene expression differences between cell lines, tumor, and normal tissue cells for six different tissue types. KEGG pathways that are significantly different between cell lines and tumors, cell lines and normal tissues and tumor and normal tissue were identified through enrichment tests on gene lists obtained using Significance Analysis of Microarrays (SAM. Results Cellular pathways that were significantly upregulated in cell lines compared to tumor cells and normal cells of the same tissue type included ATP synthesis, cell communication, cell cycle, oxidative phosphorylation, purine, pyrimidine and pyruvate metabolism, and proteasome. Results on metabolic pathways suggested an increase in the velocity nucleotide metabolism and RNA production. Pathways that were downregulated in cell lines compared to tumor and normal tissue included cell communication, cell adhesion molecules (CAMs, and ECM-receptor interaction. Only a fraction of the significantly altered genes in tumor-to-normal comparison had similar expressions in cancer cell lines and tumor cells. These genes were tissue-specific and were distributed sparsely among multiple pathways. Conclusion Significantly altered genes in tumors compared to normal tissue were largely tissue specific. Among these genes downregulation was a major trend. In contrast, cell lines contained large sets of significantly upregulated genes that were common to multiple tissue types. Pathway upregulation in cell lines was most pronounced over metabolic pathways including cell nucleotide metabolism and oxidative

  6. Molecular and pharmacological characterization of serotonin 5-HT2α and 5-HT7 receptors in the salivary glands of the blowfly Calliphora vicina.

    Science.gov (United States)

    Röser, Claudia; Jordan, Nadine; Balfanz, Sabine; Baumann, Arnd; Walz, Bernd; Baumann, Otto; Blenau, Wolfgang

    2012-01-01

    Secretion in blowfly (Calliphora vicina) salivary glands is stimulated by the biogenic amine serotonin (5-hydroxytryptamine, 5-HT), which activates both inositol 1,4,5-trisphosphate (InsP(3))/Ca(2+) and cyclic adenosine 3',5'-monophosphate (cAMP) signalling pathways in the secretory cells. In order to characterize the signal-inducing 5-HT receptors, we cloned two cDNAs (Cv5-ht2α, Cv5-ht7) that share high similarity with mammalian 5-HT(2) and 5-HT(7) receptor genes, respectively. RT-PCR demonstrated that both receptors are expressed in the salivary glands and brain. Stimulation of Cv5-ht2α-transfected mammalian cells with 5-HT elevates cytosolic [Ca(2+)] in a dose-dependent manner (EC(50) = 24 nM). In Cv5-ht7-transfected cells, 5-HT produces a dose-dependent increase in [cAMP](i) (EC(50) = 4 nM). We studied the pharmacological profile for both receptors. Substances that appear to act as specific ligands of either Cv5-HT(2α) or Cv5-HT(7) in the heterologous expression system were also tested in intact blowfly salivary gland preparations. We observed that 5-methoxytryptamine (100 nM) activates only the Cv5-HT(2α) receptor, 5-carboxamidotryptamine (300 nM) activates only the Cv5-HT(7) receptor, and clozapine (1 µM) antagonizes the effects of 5-HT via Cv5-HT(7) in blowfly salivary glands, providing means for the selective activation of each of the two 5-HT receptor subtypes. This study represents the first comprehensive molecular and pharmacological characterization of two 5-HT receptors in the blowfly and permits the analysis of the physiological role of these receptors, even when co-expressed in cells, and of the modes of interaction between the Ca(2+)- and cAMP-signalling cascades.

  7. Molecular and pharmacological characterization of serotonin 5-HT2α and 5-HT7 receptors in the salivary glands of the blowfly Calliphora vicina.

    Directory of Open Access Journals (Sweden)

    Claudia Röser

    Full Text Available Secretion in blowfly (Calliphora vicina salivary glands is stimulated by the biogenic amine serotonin (5-hydroxytryptamine, 5-HT, which activates both inositol 1,4,5-trisphosphate (InsP(3/Ca(2+ and cyclic adenosine 3',5'-monophosphate (cAMP signalling pathways in the secretory cells. In order to characterize the signal-inducing 5-HT receptors, we cloned two cDNAs (Cv5-ht2α, Cv5-ht7 that share high similarity with mammalian 5-HT(2 and 5-HT(7 receptor genes, respectively. RT-PCR demonstrated that both receptors are expressed in the salivary glands and brain. Stimulation of Cv5-ht2α-transfected mammalian cells with 5-HT elevates cytosolic [Ca(2+] in a dose-dependent manner (EC(50 = 24 nM. In Cv5-ht7-transfected cells, 5-HT produces a dose-dependent increase in [cAMP](i (EC(50 = 4 nM. We studied the pharmacological profile for both receptors. Substances that appear to act as specific ligands of either Cv5-HT(2α or Cv5-HT(7 in the heterologous expression system were also tested in intact blowfly salivary gland preparations. We observed that 5-methoxytryptamine (100 nM activates only the Cv5-HT(2α receptor, 5-carboxamidotryptamine (300 nM activates only the Cv5-HT(7 receptor, and clozapine (1 µM antagonizes the effects of 5-HT via Cv5-HT(7 in blowfly salivary glands, providing means for the selective activation of each of the two 5-HT receptor subtypes. This study represents the first comprehensive molecular and pharmacological characterization of two 5-HT receptors in the blowfly and permits the analysis of the physiological role of these receptors, even when co-expressed in cells, and of the modes of interaction between the Ca(2+- and cAMP-signalling cascades.

  8. Ovarian steroid cell tumor in women with polycystic ovarian syndrome: a case report

    Directory of Open Access Journals (Sweden)

    Yarandi F

    2013-04-01

    Full Text Available Background: Steroid cell tumor is one of the rare ovarian tumors and forms 0.1% of all ovarian tumors, divided to three subgroups. Steroid cell tumor that are not otherwise specified (NOS are the most common type and represent 60% of steroid cell tumors. One of the most known signs of this tumor is hormonal function, especially androgenic effects of it. Primary treatment consists of eradication of tumor via surgery.Case presentation: The patient is a 29 years old female with history of poly cystic ovarian syndrome since 10 years ago, who attended to the clinic of General Women Hospital of Tehran in January 2011. In pelvic ultrasonography, there was a 6449mm mass in the right adnexa consisting of homogeneous component. She underwent laparotomy and unilateral salpingoophorectomy was done. Pathological report was steroid cell tumor of ovary.Conclusion: The aim of this study is reporting one of the rare tumors of ovary and assessment of the correct way of diagnosis and treatment of it.

  9. Electron transport limitation in P3HT:CdSe nanorods hybrid solar cells.

    Science.gov (United States)

    Lek, Jun Yan; Xing, Guichuan; Sum, Tze Chien; Lam, Yeng Ming

    2014-01-22

    Hybrid solar cells have the potential to be efficient solar-energy-harvesting devices that can combine the benefits of solution-processable organic materials and the extended absorption offered by inorganic materials. In this work, an understanding of the factors limiting the performance of hybrid solar cells is explored. Through photovoltaic-device characterization correlated with transient absorption spectroscopy measurements, it was found that the interfacial charge transfer between the organic (P3HT) and inorganic (CdSe nanorods) components is not the factor limiting the performance of these solar cells. The insulating original ligands retard the charge recombination between the charge-transfer states across the CdSe-P3HT interface, and this is actually beneficial for charge collection. These cells are, in fact, limited by the subsequent electron collection via CdSe nanoparticles to the electrodes. Hence, the design of a more continuous electron-transport pathway should greatly improve the performance of hybrid solar cells in the future.

  10. Rapid desensitization and resensitization of 5-HT2 receptor mediated phosphatidyl inositol hydrolysis by serotonin agonists in quiescent calf aortic smooth muscle cells

    International Nuclear Information System (INIS)

    Pauwels, P.J.; Van Gompel, P.; Leysen, J.E.

    1990-01-01

    Agonist regulation of 5-hydroxytryptamine 2 (5-HT 2 ) receptors was studied in calf aortic smooth muscle cultures incubated in a quiescent, defined synthetic medium that does not stimulate cell proliferation, but that provides cells with supplements that maintain cell viability. In these cells, 5-hydroxytryptamine (5-HT)-induced [ 3 H]inositol phosphates accumulation showed the characteristics of a 5-HT 2 receptor coupled transducing system according to the inhibition of the response by 5-HT 2 antagonists at nanomolar concentrations. The 5-HT 2 receptor coupled response became rapidly desensitized during continued incubation with 5-HT and 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM); nearly full desensitization was obtained in two hours with 10 μM 5-HT and DOM pretreatment. The recovery of the response had a half-live of 5 hours after 2 hours pretreatment and of 9.5 to 12.5 hours after 24 to 96 hours agonist pretreatment. The DOM-induced desensitization of the 5-HT 2 receptor coupled response was fully blocked by 0.1 μM cinanserin. Cinanserin alone did not induce desensitization or up-regulation of the 5-HT 2 receptor coupled response at 0.1 μM

  11. Multiparametric classification links tumor microenvironments with tumor cell phenotype.

    Directory of Open Access Journals (Sweden)

    Bojana Gligorijevic

    2014-11-01

    Full Text Available While it has been established that a number of microenvironment components can affect the likelihood of metastasis, the link between microenvironment and tumor cell phenotypes is poorly understood. Here we have examined microenvironment control over two different tumor cell motility phenotypes required for metastasis. By high-resolution multiphoton microscopy of mammary carcinoma in mice, we detected two phenotypes of motile tumor cells, different in locomotion speed. Only slower tumor cells exhibited protrusions with molecular, morphological, and functional characteristics associated with invadopodia. Each region in the primary tumor exhibited either fast- or slow-locomotion. To understand how the tumor microenvironment controls invadopodium formation and tumor cell locomotion, we systematically analyzed components of the microenvironment previously associated with cell invasion and migration. No single microenvironmental property was able to predict the locations of tumor cell phenotypes in the tumor if used in isolation or combined linearly. To solve this, we utilized the support vector machine (SVM algorithm to classify phenotypes in a nonlinear fashion. This approach identified conditions that promoted either motility phenotype. We then demonstrated that varying one of the conditions may change tumor cell behavior only in a context-dependent manner. In addition, to establish the link between phenotypes and cell fates, we photoconverted and monitored the fate of tumor cells in different microenvironments, finding that only tumor cells in the invadopodium-rich microenvironments degraded extracellular matrix (ECM and disseminated. The number of invadopodia positively correlated with degradation, while the inhibiting metalloproteases eliminated degradation and lung metastasis, consistent with a direct link among invadopodia, ECM degradation, and metastasis. We have detected and characterized two phenotypes of motile tumor cells in vivo, which

  12. Polyphenols from evening primrose ( Oenothera paradoxa ) defatted seeds induce apoptosis in human colon cancer Caco-2 cells.

    Science.gov (United States)

    Gorlach, Sylwia; Wagner, Waldemar; Podsedek, Anna; Sosnowska, Dorota; Dastych, Jarosław; Koziołkiewicz, Maria

    2011-07-13

    Polyphenols extracted from evening primrose seeds (industrial waste product) were studied as apoptosis inducers in human colorectal adenocarcinoma Caco-2 and HT-29 cell lines and in rat normal intestinal IEC-6 cells. The extract dose-dependently inhibited the growth of Caco-2, HT-29, and IEC-6 cells. However, nuclear DNA fragmentation characteristic of apoptosis was observed only in Caco-2. After 72 h of incubation with the extract at 150 μM gallic acid equivalents (44.1 μg extract/mL), Caco-2 cell numbers decreased to 19% of control and 48.8% of the cells were identified by flow cytometry as apoptotic. Under the same conditions only 8% of HT-29 cells and 12.6% of IEC-6 cells exhibited hypodiploid DNA content. The effects of the extract and its fractions on phosphatidylserine exposure and cell membrane integrity were assessed by high content screening image cytometry. The fractions strongly and dose-dependently reduced Caco-2 cell numbers, whereas HT-29 and IEC-6 cells were affected to lesser extents.

  13. Conservation of 5-HT1A receptor-mediated autoinhibition of serotonin (5-HT neurons in mice with altered 5-HT homeostasis

    Directory of Open Access Journals (Sweden)

    Naozumi eAraragi

    2013-08-01

    Full Text Available Firing activity of serotonin (5-HT neurons in the dorsal raphe nucleus (DRN is controlled by inhibitory somatodendritic 5-HT1A autoreceptors. This autoinhibitory mechanism is implicated in the etiology of disorders of emotion regulation, such as anxiety disorders and depression, as well as in the mechanism of antidepressant action. Here, we investigated how persistent alterations in brain 5-HT availability affect autoinhibition in two genetically modified mouse models lacking critical mediators of serotonergic transmission: 5-HT transporter knockout (Sert -/- and tryptophan hydroxylase-2 knockout (Tph2 -/- mice. The degree of autoinhibition was assessed by loose-seal cell-attached recording in DRN slices. First, application of the 5-HT1A-selective agonist R(+-8-hydroxy-2-(di-n-propylaminotetralin showed mild sensitization and marked desensitization of 5-HT1A receptors in Tph2 -/- mice and Sert -/- mice, respectively. While 5-HT neurons from Tph2 -/- mice did not display autoinhibition in response to L-tryptophan, autoinhibition of these neurons was unaltered in Sert -/- mice despite marked desensitization of their 5-HT1A autoreceptors. When the Tph2-dependent 5-HT synthesis step was bypassed by application of 5-hydroxy-L-tryptophan (5-HTP, neurons from both Tph2 -/- and Sert -/- mice decreased their firing rates at significantly lower concentrations of 5-HTP compared to wildtype controls. Our findings demonstrate that, as opposed to the prevalent view, sensitivity of somatodendritic 5-HT1A receptors does not predict the magnitude of 5-HT neuron autoinhibition. Changes in 5-HT1A receptor sensitivity may rather be seen as an adaptive mechanism to keep autoinhibition functioning in response to extremely altered levels of extracellular 5-HT resulting from targeted inactivation of mediators of serotonergic signaling.

  14. Traditional Chinese Medicine Curcumin Sensitizes Human Colon Cancer to Radiation by Altering the Expression of DNA Repair-related Genes.

    Science.gov (United States)

    Yang, Guangen; Qiu, Jianming; Wang, Dong; Tao, Yong; Song, Yihuan; Wang, Hongtao; Tang, Juping; Wang, Xing; Sun, Y U; Yang, Zhijian; Hoffman, Robert M

    2018-01-01

    The aim of the present study was to investigate the radio-sensitizing efficacy of curcumin, a traditional Chinese medicine (TCM) on colon cancer cells in vitro and in vivo. Human colon cancer HT-29 cells were treated with curcumin (2.5 μM), irradiation (10 Gy) and the combination of irradiation and curcumin. Cell proliferation was assessed using the MTT assay. Apoptotic cells were detected by Annexin V-PE/7-AAD analysis. PCR was performed to determine differential-expression profiling of 95 DNA-repair genes in irradiated cells and cells treated with both irradiation and curcumin. Differentially-expressed genes were confirmed by Western blotting. In vivo radio-sensitizing efficacy of curcumin was assessed in a xenograft mouse model of HT-29 colon cancer. Curcumin was administrated daily by intraperitoneal injection at 20 mg/kg/dose. Mice received irradiation (10 Gy) twice weekly. Apoptosis of the cancer cells following treatment was determined by TUNEL staining. Irradiation induced proliferation inhibition and apoptosis of HT-29 cells in vitro. Concurrent curcumin treatment sensitized the HT-29 tumor to irradiation (pcurcumin and irradiation compared with irradiation alone (pcurcumin and irradiation resulted in a significantly greater tumor-growth inhibition and apoptosis compared to irradiation treatment alone (pCurcumin sensitizes human colon cancer in vitro and in vivo to radiation. Downregulation of LIG4 and PNKP and upregulation of XRCC5 and CCNH DNA-repair-related genes were involved in the radio-sensitizing efficacy of curcumin in colon cancer. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  15. h5-HT(1B) receptor-mediated constitutive Galphai3-protein activation in stably transfected Chinese hamster ovary cells: an antibody capture assay reveals protean efficacy of 5-HT.

    Science.gov (United States)

    Newman-Tancredi, Adrian; Cussac, Didier; Marini, Laetitia; Touzard, Manuelle; Millan, Mark J

    2003-03-01

    1. Serotonin 5-HT(1B) receptors couple to G-proteins of the Gi/o family. However, their activation of specific G-protein subtypes is poorly characterised. Using an innovative antibody capture/guanosine-5'-0-(3-[(35)S]thio)-triphosphate ([(35)S]GTPgammaS) binding strategy, we characterised Galpha(i3) subunit activation by h5-HT(1B) receptors stably expressed in Chinese hamster ovary (CHO) cells. 2. The agonists, 5-HT, alniditan and BMS181,101, stimulated Galpha(i3), whereas methiothepin and SB224,289 behaved as inverse agonists. The selective 5-HT(1B) receptor ligand, S18127, modestly stimulated Galpha(i3) and reversed the actions of both 5-HT and methiothepin. S18127 (1 micro M) also produced parallel, dextral shifts of the 5-HT and methiothepin isotherms. 3. Isotopic dilution experiments ([(35)S]GTPgammaS versus GTPgammaS) revealed high-affinity [(35)S]GTPgammaS binding to Galpha(i3) subunits in the absence of receptor ligands indicating constitutive activity. High-affinity [(35)S]GTPgammaS binding was increased 2.8-fold by 5-HT with an increase in the affinity of GTPgammaS for Galpha(i3) subunits. In contrast, methiothepin halved the number of high-affinity binding sites and decreased their affinity. 4. h5-HT(1B) receptor-mediated Galpha(i3) subunit activation was dependent on the concentration of NaCl. At 300 mM, 5-HT stimulated [(35)S]GTPgammaS binding, basal Galpha(i3) activation was low and methiothepin was inactive. In contrast, at 10 mM NaCl, basal activity was enhanced and the inverse agonist activity of methiothepin was accentuated. Under these conditions, 5-HT decreased Galpha(i3) activation. 5. In conclusion, at h5-HT(1B) receptors expressed in CHO cells: (i) inverse agonist induced inhibition of Galpha(i3), and its reversal by S18127, reveals constitutive activation of this Galpha subunit; (ii) constitutive Galpha(i3) activation can be quantified by isotopic dilution [(35)S]GTPgammaS binding and (iii) decreasing NaCl concentrations enhances Galpha(i3

  16. Optimizing P3HT/PCBM/MWCNT films for increased stability in polymer bulk heterojunction solar cells

    International Nuclear Information System (INIS)

    Singh, Vinamrita; Arora, Swati; Arora, Manoj; Sharma, Vishal; Tandon, R.P.

    2014-01-01

    The effect of multi-walled carbon nanotubes on the properties of P3HT:PCBM based solar cells has been studied. The concentration of MWCNT was optimized at 0.2% and the concentration of P3HT:PCBM was increased from 20mg/ml to 30mg/ml to obtain highest efficiency. An increase in charge carrier mobility was also observed, which is attributed to high charge transport properties of MWCNT. The active layer was optically stable with respect to absorption, whereas the emission spectra revealed an increase in charge recombination with time. The solar cells doped with MWCNT exhibited increased stability as compared to undoped cells. - Highlights: • MWCNT doped P3HT:PCBM based solar cells are optimized for increased efficiency. • Degradation studies showed that MWCNT stabilizes the cell performance. • Mobility and basic device characteristics decreased with time. • Photoluminescence studies with time showed an increase in charge recombination. • Degradation for devices kept in air is faster as compared to the samples in vacuum

  17. Optimizing P3HT/PCBM/MWCNT films for increased stability in polymer bulk heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Vinamrita [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Arora, Swati, E-mail: drswatia@yahoo.com [Department of Physics, Zakir Husain Delhi College, University of Delhi, Delhi 110002 (India); Arora, Manoj [Department of Physics, Ramjas College, University of Delhi, Delhi 110007 (India); Sharma, Vishal; Tandon, R.P. [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2014-08-22

    The effect of multi-walled carbon nanotubes on the properties of P3HT:PCBM based solar cells has been studied. The concentration of MWCNT was optimized at 0.2% and the concentration of P3HT:PCBM was increased from 20mg/ml to 30mg/ml to obtain highest efficiency. An increase in charge carrier mobility was also observed, which is attributed to high charge transport properties of MWCNT. The active layer was optically stable with respect to absorption, whereas the emission spectra revealed an increase in charge recombination with time. The solar cells doped with MWCNT exhibited increased stability as compared to undoped cells. - Highlights: • MWCNT doped P3HT:PCBM based solar cells are optimized for increased efficiency. • Degradation studies showed that MWCNT stabilizes the cell performance. • Mobility and basic device characteristics decreased with time. • Photoluminescence studies with time showed an increase in charge recombination. • Degradation for devices kept in air is faster as compared to the samples in vacuum.

  18. Thermal annealing study on P3HT: PCBM based bulk heterojunction organic solar cells using impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gollu, Sankara Rao, E-mail: sankar.gollu@gmail.com [Plastic Electronics and Energy Lab (PEEL), Department of Metallurgical Engineering and Material Science, Indian Institute of Technology Bombay, Powai, Mumbai-400076 (India); Sharma, Ramakant, E-mail: diptig@iitb.ac.in; G, Srinivas, E-mail: diptig@iitb.ac.in; Gupta, Dipti, E-mail: diptig@iitb.ac.in [Plastic Electronics and Energy Lab (PEEL) Department of Metallurgical Engineering and Material Science, Indian Institute of Technology Bombay, Powai, Mumbai-400076 (India)

    2014-10-15

    Recently, Thermal annealing is an important process for bulk heterojunction organic solar cells (BHJ OSCs) to improve the device efficiency and performance of the organic solar cells. Here in, we have examined the changes in the efficiency and morphology of P3HT: PCBM film according to the thermal annealing temperature to find the changes during the annealing process by measuring the optical absorption, atomic force microscope and X-ray diffraction. We also investigated the effect of different annealing process conditions (without, pre- and post-annealing) on the device performance of the inverted bulk heterojunction organic solar cells consist the structure of ITO/ ZnO / P3HT: PCBM / MoO{sub 3}/ Al by measuring AC impedance characteristics. Particularly, the power conversion efficiency (PCE), crystalline nature of the polymer, light absorption and the surface smoothness of P3HT: PCBM films are significantly improved after the annealing process. These results indicated the improvement in terms of PCE, interface smoothness between the P3HT: PCBM and MoO{sub 3} layers of the post annealed device originated from the decrease of series resistance between P3HT: PCBM layer and Al electrodes, which could be due to decrease in the effective life time of charge carriers.

  19. The Fabrication of Bulk Heterojunction P3HT: PCBM Organic Photovoltaics

    Science.gov (United States)

    Darwis, D.; Sesa, E.; Farhamza, D.; Iqbal

    2018-05-01

    Bulk heterojunction Organic photovoltaic (OPV) devices are gaining a lot of interest due to their potential for ease of processing and lower manufacturing cost sustainable energy generation. In consequence, the number of studies into the properties and characteristics of organic solar cell devices has been increased to improving their power conversion. A further advancement over past decade has shown that improved efficiency could be obtained by mixed of poly(3 - hexylthiophene) (P3HT) and [1] – phenyl - C61-butyric acid methyl ester (PCBM) as an active layer. A series of optimizations of this P3HT: PCBM blends, such as the mixture ratio variation, the annealing treatments, and solvent treatment, have been emerged to improve the efficiency of the OPV. As a result, significant improvements were achieved. Here, we report the fabrication heterojunction devices of 2.9 % efficiency. This result has been achieved using the configuration of a typical heterojunction solar cell modules consists of layered glass/ITO/PEDOT: PSS/active layer/cathode interlayer

  20. CYTOTOXICITY OF ARTEMISININ-RELATED ENDOPEROXIDES TO EHRLICH ASCITES TUMOR-CELLS

    NARCIS (Netherlands)

    WOERDENBAG, HJ; MOSKAL, TA; PRAS, N; MALINGRE, TM; ELFERALY, FS; KAMPINGA, HH; KONINGS, AWT

    A series of artemisinin-related endoperoxides was tested for cytotoxicity to Ehrlich ascites tumor (EAT) cells using the microculture tetrazolium (MTT) assay. Artemisinin [1] had an IC50 value of 29.8 muM. Derivatives of dihydroartemisinin [2], being developed as antimalarial drugs (artemether [3],

  1. Low toxic and high soluble camptothecin derivative 2–47 effectively induces apoptosis of tumor cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yao; Zhao, Hong-Ye; Jiang, Du; Wang, Lu-Yao; Xiang, Cen; Wen, Shao-Peng [Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, Sino-French Joint Laboratory of Food Nutrition, Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin 300457 (China); Fan, Zhen-Chuan [Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Ministry of Education, Tianjin, 300457 (China); Obesita & Algaegen LLC, College Station, TX 77845 (United States); Zhang, Yong-Min [Université Pierre et Marie Curie-Paris 6, Institut Parisien de Chimie Moléculaire UMR CNRS 8232, 4 place Jussieu, 75005, Paris (France); Guo, Na [Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, Sino-French Joint Laboratory of Food Nutrition, Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin 300457 (China); Teng, Yu-Ou, E-mail: tyo201485@tust.edu.cn [Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, Sino-French Joint Laboratory of Food Nutrition, Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin 300457 (China); Yu, Peng, E-mail: yupeng@tust.edu.cn [Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, Sino-French Joint Laboratory of Food Nutrition, Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin 300457 (China)

    2016-04-08

    The cytotoxic activity of camptothecin derivatives is so high that these compounds need to be further modified before their successful application as anti-cancer agents clinically. In this study, we reported the synthesis and biological evaluation of a novel camptothecin derivative called compound 2–47. The changes in structure did not reduce its activity to inhibit DNA topoisomerase I. Compound 2–47 induced apoptosis of many tumor cells including leukemia cells K562, Jurkat, HL-60, breast cancer cell BT-549, colon cancer cell HT-29 and liver cancer cell HepG2 with a half maximal inhibitory concentration (IC{sub 50}) of 2- to 3-fold lower than HCPT as a control. In particular, 2–47 inhibited the proliferation of Jurkat cells with an IC{sub 50} of as low as 40 nM. By making use of Jurkat cell as a model, following treatment of Jurkat cells, compound 2–47 activated caspase-3 and PARP, resulting in a decreased Bcl-2/Bax ratio. These data showed that compound 2–47 induces Jurkat cell death through the mitochondrial apoptotic pathway. In addition, compound 2–47 showed a decreased cytotoxic activity against normal cells and an improved solubility in low-polar solvent. For example, compound 2–47 solutes in CHCl{sub 3} 130-fold higher than HCPT. Taken together, our data demonstrated that camptothecin derivative 2–47 notably inhibits the tumor cell proliferation through mitochondrial-mediated apoptosis in vitro. - Highlights: • Compound 2–47 showed a wide inhibitory effect on the tested tumor cell lines with an IC{sub 50} of 3 times lower than that of HCPT in general. • Compound 2–47 inhibited the proliferation of the human leukemia cell Jurkat at an IC{sub 50} of as low as 40 nM. • As compared to HCPT, compound 2–47 showed much reduced cytotoxicity on normal human cells. • As compared to others, compound 2–47 showed a hundreds-fold higher solubility in non-polar organic solution.

  2. Proliferative and antiproliferative effects of interferon-gamma and tumor necrosis factor-alpha on cell lines derived from cervical and ovarian malignancies

    International Nuclear Information System (INIS)

    Mutch, D.G.; Massad, L.S.; Kao, M.S.; Collins, J.L.

    1990-01-01

    Four human cell lines derived from cervical carcinomas (ME-180, SiHa, HT-3, and MS751) and three human cell lines derived from ovarian carcinomas (SK-OV-3, Caov-3, and NIH:OVCAR-3) were analyzed in vitro to determine the effect of recombinant interferon-gamma and recombinant human tumor necrosis factor-alpha on cell growth and survival. The effects of interferon-gamma, tumor necrosis factor-alpha, and both interferon-gamma and tumor necrosis factor-alpha on cell growth were measured after 24 and 72 hours of incubation by the incorporation of chromium 51. The results of this analysis showed that all seven cell lines were resistant to the antiproliferative action of tumor necrosis factor-alpha, that the growth of most cell lines was inhibited by interferon-gamma by 72 hours of incubation, and that after 72 hours of incubation all cell lines demonstrated a synergistic antiproliferative response to the combination of interferon-gamma and tumor necrosis factor-alpha. However, the effects of these cytokines on cell growth were found to differ among cell lines and varied with the concentration and the duration of incubation. The growth of one cell line (Caov-3) was stimulated by both tumor necrosis factor-alpha and interferon-gamma. These results suggest that the clinical effects of these cytokines on the growth of gynecologic cancers may be more complex than previously supposed

  3. IL-29 Enhances CXCL10 Production in TNF-α-stimulated Human Oral Epithelial Cells.

    Science.gov (United States)

    Hosokawa, Yoshitaka; Hosokawa, Ikuko; Shindo, Satoru; Ozaki, Kazumi; Matsuo, Takashi

    2017-08-01

    Interleukin-29 (IL-29) is a cytokine belonging to the Type III interferon family. It was recently detected in the gingival crevicular fluid of periodontitis patients. However, the role of IL-29 in the pathogenesis of periodontal disease remains unknown. The aim of this study was to examine the effects of IL-29 on C-X-C motif chemokine ligand 10 (CXCL10) production in human oral epithelial cells. We measured CXCL10 production in TR146 cells, which is a human oral epithelial cell line, using an enzyme-linked immunosorbent assay. We used a Western blot analysis to detect IL-29 receptor expression and the phosphorylation levels of signal transduction molecules, including p38 mitogen-activated protein kinases (MAPK), signal transducer and activator of transcription 3 (STAT3), and nuclear factor (NF)- κB p65, in the TR146 cells. The TR146 cells expressed the IL-29 receptor. IL-29 induced CXCL10 production in the TR146 cells. IL-29 significantly enhanced CXCL10 production in tumor necrosis factor (TNF)-α-stimulated TR146 cells. The p38 MAPK, STAT3, and NF-κB pathways were found to be related to the IL-29-induced enhancement of CXCL10 production in TNF-α-stimulated TR146 cells. IL-29 promotes T helper 1-cell accumulation in periodontal lesions by inducing CXCL10 production in oral epithelial cells.

  4. Synthesis and evaluation of novel Tc-99m labeled NGR-containing hexapeptides as tumor imaging agents.

    Science.gov (United States)

    Kim, Dae-Weung; Kim, Woo Hyoung; Kim, Myoung Hyoun; Kim, Chang Guhn

    2015-02-01

    Asparagine-glycine-arginine (NGR)-containing peptides targeting aminopeptidase N (APN)/CD13 can be an excellent candidate for targeting ligands in molecular tumor imaging. In this study, we developed two NGR-containing hexapeptides, and evaluated the diagnostic performance of Tc-99m labeled hexapeptides as molecular imaging agents in an HT-1080 fibrosarcoma-bearing murine model. Peptides were synthesized using Fmoc solid-phase peptide synthesis. Radiochemical purity of Tc-99m was evaluated using instant thin-layer chromatography. The uptake of two NGR-containing hexapeptides within HT-1080 cells was evaluated in vitro. In HT-1080 fibrosarcoma tumor-bearing mice, gamma images were acquired. A biodistribution study was performed to calculate percentage of the injected dose per gram of tissue (%ID/g). Two hexapeptides, glutamic acid-cysteine-glycine (ECG)-NGR and NGR-ECG were successfully synthesized. After radiolabeling procedures with Tc-99m, the complexes Tc-99m hexapeptides were prepared in high yield. The uptake of Tc-99m ECG-NGR within the tumor cells had been assured by in vitro studies. The gamma camera imaging in the murine model showed that Tc-99m ECG-NGR was accumulated substantially in the subcutaneously engrafted tumor. However, Tc-99m NGR-ECG was accumulated minimally in the tumor. Two NGR-containing hexapeptides, ECG-NGR and NGR-ECG were developed as molecular imaging agents to target APN/CD13 in HT-1080 fibrosarcoma. Tc-99m ECG-NGR showed a significant uptake in the tumor, and it is a good candidate for tumor imaging. Copyright © 2015 John Wiley & Sons, Ltd.

  5. APC senses cell-cell contacts and moves to the nucleus upon their disruption.

    Science.gov (United States)

    Brocardo, M G; Bianchini, M; Radrizzani, M; Reyes, G B; Dugour, A V; Taminelli, G L; Gonzalez Solveyra, C; Santa-Coloma, T A

    2001-06-22

    The adenomatous polyposis coli (APC) tumor suppressor protein is involved in the Wnt/wingless pathway, modulating beta-catenin activity. We report the development of a highly specific, chemically synthesized oligobody (oligonucleotide-based synthetic antibody), directed against the N-terminal region of APC. Using this reagent, we found that within 16 h of disrupting HT-29 cell-cell contacts by harvesting cells with trypsin/EDTA treatment and replating, APC was translocated from the cytoplasm to the nucleus. Five days after plating the cells, when the cells had returned to their normal confluent phenotype and cell-cell contacts were reestablished, APC returned to the cytoplasm. These results suggest that APC functions as part of a "sensor" system, and responds to the loss of cell-cell contacts by moving to the nucleus, and returning to the cytoplasm when the contacts are fully restored. Copyright 2001 Academic Press.

  6. Tumor hypoxia modulates podoplanin/CCL21 interactions in CCR7+ NK cell recruitment and CCR7+ tumor cell mobilization.

    Science.gov (United States)

    Tejchman, Anna; Lamerant-Fayel, Nathalie; Jacquinet, Jean-Claude; Bielawska-Pohl, Aleksandra; Mleczko-Sanecka, Katarzyna; Grillon, Catherine; Chouaib, Salem; Ugorski, Maciej; Kieda, Claudine

    2017-05-09

    Podoplanin (PDPN), an O-glycosylated, transmembrane, mucin-type glycoprotein, is expressed by cancer associated fibroblasts (CAFs). In malignant transformation, PDPN is subjected to changes and its role is yet to be established. Here we show that it is involved in modulating the activity of the CCL21/CCR7 chemokine/receptor axis in a hypoxia-dependent manner. In the present model, breast cancer MDA-MB-231 cells and NKL3 cells express the surface CCR7 receptor for CCL21 chemokine which is a potent chemoattractant able to bind to PDPN. The impact of the CCL21/CCR7 axis in the molecular mechanism of the adhesion of NKL3 cells and of MDA-MB-231 breast cancer cells was reduced in a hypoxic tumor environment. In addition to its known effect on migration, CCL21/CCR7 interaction was shown to allow NK cell adhesion to endothelial cells (ECs) and its reduction by hypoxia. A PDPN expressing model of CAFs made it possible to demonstrate the same CCL21/CCR7 axis involvement in the tumor cells to CAFs recognition mechanism through PDPN binding of CCL21. PDPN was induced by hypoxia and its overexpression undergoes a reduction of adhesion, making it an anti-adhesion molecule in the absence of CCL21, in the tumor. CCL21/CCR7 modulated NK cells/ECs and MDA-MB-231 cells/CAF PDPN-dependent interactions were further shown to be linked to hypoxia-dependent microRNAs as miRs: miR-210 and specifically miR-21, miR-29b which influence PDPN expression.

  7. Plant Polyphenols and Oxidative Metabolites of the Herbal Alkenylbenzene Methyleugenol Suppress Histone Deacetylase Activity in Human Colon Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Isabel Anna Maria Groh

    2013-01-01

    Full Text Available Evidence has been provided that diet and environmental factors directly influence epigenetic mechanisms associated with cancer development in humans. The inhibition of histone deacetylase (HDAC activity and the disruption of the HDAC complex have been recognized as a potent strategy for cancer therapy and chemoprevention. In the present study, we investigated whether selected plant constituents affect HDAC activity or HDAC1 protein status in the human colon carcinoma cell line HT29. The polyphenols (−-epigallocatechin-3-gallate (EGCG and genistein (GEN as well as two oxidative methyleugenol (ME metabolites were shown to inhibit HDAC activity in intact HT29 cells. Concomitantly, a significant decrease of the HDAC1 protein level was observed after incubation with EGCG and GEN, whereas the investigated ME metabolites did not affect HDAC1 protein status. In conclusion, dietary compounds were found to possess promising HDAC-inhibitory properties, contributing to epigenetic alterations in colon tumor cells, which should be taken into account in further risk/benefit assessments of polyphenols and alkenylbenzenes.

  8. Tumor cell proliferation kinetics and tumor growth rate

    Energy Technology Data Exchange (ETDEWEB)

    Tubiana, M

    1989-01-01

    The present knowledge on the growth rate and the proliferation kinetics of human tumor is based on the measurement of the tumor doubling times (DT) in several hundred patients and on the determination of the proportion of proliferating cells with radioactive thymidine or by flow cytometry in large numbers of patients. The results show that the DT of human tumor varies widely, from less than one week to over one year with a median value of approximately 2 months. The DTs are significantly correlated with the histological type. They depend upon (1) the duration of the cell cycle whose mean duration is 2 days with small variations from tumor to tumor, (2) the proportion of proliferating cells and consequently the cell birth rate which varies widely among tumors and which is significantly correlated to the DT, (3) the cell loss factors which also vary widely and which are the greatest when proliferation is most intensive. These studies have several clinical implications: (a) they have further increased our understanding of the natural history of human tumor, (b) they have therapeutic implications since tumor responsiveness and curability by radiation and drugs are strongly influenced by the cell kinetic parameters of the tumor, (c) the proportion of proliferating cells is of great prognostic value in several types of human cancers. The investigation of the molecular defects, which are correlated with the perturbation of control of cell proliferation, should lead to significant fundamental and therapeutic advances. (orig.).

  9. Tumor cell surface proteins

    International Nuclear Information System (INIS)

    Kennel, S.J.; Braslawsky, G.R.; Flynn, K.; Foote, L.J.; Friedman, E.; Hotchkiss, J.A.; Huang, A.H.L.; Lankford, P.K.

    1982-01-01

    Cell surface proteins mediate interaction between cells and their environment. Unique tumor cell surface proteins are being identified and quantified in several tumor systems to address the following questions: (i) how do tumor-specific proteins arise during cell transformation; (ii) can these proteins be used as markers of tumor cell distribution in vivo; (iii) can cytotoxic drugs be targeted specifically to tumor cells using antibody; and (iv) can solid state radioimmunoassay of these proteins provide a means to quantify transformation frequencies. A tumor surface protein of 180,000 M/sub r/ (TSP-180) has been identified on cells of several lung carcinomas of BALB/c mice. TSP-180 was not detected on normal lung tissue, embryonic tissue, or other epithelial or sarcoma tumors, but it was found on lung carcinomas of other strains of mice. Considerable amino acid sequence homology exists among TSP-180's from several cell sources, indicating that TSP-180 synthesis is directed by normal cellular genes although it is not expressed in normal cells. The regulation of synthesis of TSP-180 and its relationship to normal cell surface proteins are being studied. Monoclonal antibodies (MoAb) to TSP-180 have been developed. The antibodies have been used in immunoaffinity chromatography to isolate TSP-180 from tumor cell sources. This purified tumor antigen was used to immunize rats. Antibody produced by these animals reacted at different sites (epitopes) on the TSP-180 molecule than did the original MoAb. These sera and MoAb from these animals are being used to identify normal cell components related to the TSP-180 molecule

  10. h5-HT1B receptor-mediated constitutive Gαi3-protein activation in stably transfected Chinese hamster ovary cells: an antibody capture assay reveals protean efficacy of 5-HT

    Science.gov (United States)

    Newman-Tancredi, Adrian; Cussac, Didier; Marini, Laetitia; Touzard, Manuelle; Millan, Mark J

    2003-01-01

    Serotonin 5-HT1B receptors couple to G-proteins of the Gi/o family. However, their activation of specific G-protein subtypes is poorly characterised. Using an innovative antibody capture/guanosine-5′-0-(3-[35S]thio)-triphosphate ([35S]GTPγS) binding strategy, we characterised Gαi3 subunit activation by h5-HT1B receptors stably expressed in Chinese hamster ovary (CHO) cells. The agonists, 5-HT, alniditan and BMS181,101, stimulated Gαi3, whereas methiothepin and SB224,289 behaved as inverse agonists. The selective 5-HT1B receptor ligand, S18127, modestly stimulated Gαi3 and reversed the actions of both 5-HT and methiothepin. S18127 (1 μM) also produced parallel, dextral shifts of the 5-HT and methiothepin isotherms. Isotopic dilution experiments ([35S]GTPγS versus GTPγS) revealed high-affinity [35S]GTPγS binding to Gαi3 subunits in the absence of receptor ligands indicating constitutive activity. High-affinity [35S]GTPγS binding was increased 2.8-fold by 5-HT with an increase in the affinity of GTPγS for Gαi3 subunits. In contrast, methiothepin halved the number of high-affinity binding sites and decreased their affinity. h5-HT1B receptor-mediated Gαi3 subunit activation was dependent on the concentration of NaCl. At 300 mM, 5-HT stimulated [35S]GTPγS binding, basal Gαi3 activation was low and methiothepin was inactive. In contrast, at 10 mM NaCl, basal activity was enhanced and the inverse agonist activity of methiothepin was accentuated. Under these conditions, 5-HT decreased Gαi3 activation. In conclusion, at h5-HT1B receptors expressed in CHO cells: (i) inverse agonist induced inhibition of Gαi3, and its reversal by S18127, reveals constitutive activation of this Gα subunit; (ii) constitutive Gαi3 activation can be quantified by isotopic dilution [35S]GTPγS binding and (iii) decreasing NaCl concentrations enhances Gαi3 activation and leads to protean agonist properties of 5-HT: that is a switch to inhibition of Gαi3. PMID:12684263

  11. The use of nanofibers of P3HT in bulk heterojunction solar cells: the effect of order and morphology on the performance of P3HT:PCBM blends

    Science.gov (United States)

    Vanderzande, Dirk J. M.; Oosterbaan, Wibren D.; Vrindts, Veerle; Bertho, Sabine; Bolsée, Jean Christophe; Gadisa, Abay; Vandewal, Koen; Manca, Jean; Lutsen, Laurence; Cleij, Thomas J.; D'Haen, Jan; Zhao, Jun; Van Assche, Guy; Van Mele, Bruno

    2009-08-01

    Poly-3-AlkylThiophenes (P3ATs) with an n-alkyl chain length varying from C3 till C9 were synthesized by using the Rieke method. Subsequently, these materials were used to make P3AT/PCBM blends which were investigated in bulk heterojunction (BHJ) solar cells. The phase diagram of a P3H(exyl)T:PCBM blend was measured by means of standard and modulated temperature differential scanning calorimetry (DSC and MTDSC). A single glass transition is observed for all compositions. The glass transition temperature (Tg) increases with increasing PCBM concentration: from 12 °C for pure P3HT to 131 °C for pure PCBM. The observed range of Tg's defines the operating window for thermal annealing and explains the long-term instability of both morphology and photovoltaic performance of P3HT:PCBM solar cells. All regioregular P3ATs allow for efficient fiber formation in several solvents. The fibers formed are typically 15 to 25 nm wide and 0.5 to >4 μm long and mainly crystalline. By means of temperature control the fiber content in the casting solution for P3AT:PCBM BHJ solar cells is controlled while keeping the overall molecular weight of the polymer in the blend constant. In this way, fiber isolation and the use of solvent mixtures are avoided and with P3HT nanofibers, a power conversion efficiency of 3.2 % was achieved. P3AT:PCBM BHJ solar cells were also prepared from P3B(utyl)T, P3P(entyl)T and P3HT using the good solvent o-dichlorobenzene and a combination of slow drying and thermal annealing. In this way, power conversion efficiencies of 3.2, 4.3, and 4.6 % were obtained, respectively. P3PT is proved to be a potentially competitive material compared to P3HT.

  12. Pleiotropic effects of cancer cells' secreted factors on human stromal (mesenchymal) stem cells

    DEFF Research Database (Denmark)

    Al-toub, Mashael; Almusa, Abdulaziz; Almajed, Mohammed

    2013-01-01

    cells' secreted factors as represented by a panel of human cancer cell lines (breast (MCF7 and MDA-MB-231); prostate (PC-3); lung (NCI-H522); colon (HT-29) and head & neck (FaDu)) on the biological characteristics of MSCs. METHODS: Morphological changes were assessed using fluorescence microscopy......, but not from MCF7 and HT-29, developed an elongated, spindle-shaped morphology with bipolar processes. In association with phenotypic changes, genome-wide gene expression and bioinformatics analysis revealed an enhanced pro-inflammatory response of those MSCs. Pharmacological inhibitions of FAK and MAPKK...

  13. Adult type granulosa cell tumor in adult testis: report of a case and review of the literature

    Directory of Open Access Journals (Sweden)

    Zhanyong Bing

    2011-10-01

    Full Text Available Granulosa cell tumors can be classified into juvenile and adult types and more commonly occur in ovaries. Adult testicular granulosa cell tumors are extremely rare and only 29 cases of adult type have previously been reported. We report here a 28-year-old Caucasian man with a left testicular adult type granulosa cell tumor. The tumor measured 2.6 x 2.6 x 2.5 cm and was mitotically active (10/10 HPF. Immunohistochemical stains showed the tumor diffusely positive for inhibin and vimentin, and negative for epithelial membrane antigen, cytokeratins, synaptophysin, HMB-45, OCT-4, placental-like alkaline phosphatase and lymphoid markers . The reported granulosa cell tumors in adult testis were briefly reviewed.

  14. The role of IgG4 (+) plasma cells in the association of Hashimoto's thyroiditis with papillary carcinoma.

    Science.gov (United States)

    Taşli, Funda; Ozkök, Güliz; Argon, Asuman; Ersöz, Didem; Yağci, Ayşe; Uslu, Adam; Erkan, Nazif; Salman, Tarik; Vardar, Enver

    2014-12-01

    Hashimoto's thyroiditis (HT) is considered to be a risk factor for the formation of papillary carcinoma. The association of IgG4-related sclerosing disease with tumor is reported to be as sporadic cases in many organs. In this study, it was intended to re-classify the HT diagnosed cases on the basis of the existence of IgG4 (+) plasma cells; to investigate the clinicopathologic and histopathologic features of the both groups; and in addition, to evaluate the papillary carcinoma prevalence in IgG4 (+) and IgG4 (-) HT cases as well as the prognostic parameters between these groups. Totally 59 cases between the years 2008-2013, 29 of which contain Hashimoto thyroiditis diagnosis in total thyroidectomy materials, and 30 of which contain the diagnosis of HT+papillary carcinoma, were included in the study. The materials were immunohistochemically applied IgG and IgG4; and the cases were classified in two groups as IgG4-positive HT and IgG4-negative HT containing cases, on the basis of IgG4/IgG rate. All histopathologic and clinicopathologic parameters between these two groups, as well as their association with papillary carcinoma were investigated. Thirty eight (64.4%) of total 59 cases were NonIgG4 thyroiditis, and 21 (35.5%) were IgG4 thyroiditis. Tumors were detected in 14 (36.8%) of the NonIgG4 thyroiditis cases, and in 16 (76.1%) of the IgG4 thyroiditis cases. The association of IgG4 thyroiditis with tumor is statistically significant (p thyroiditis cases. Perithyroidal extension was detected in six of the cases with tumor, and five of the six cases were IgG4 thyroiditis cases. The association of IgG4 (+) HT cases with increased papillary carcinoma prevalence is suggestive of that IgG4 (+) plasma cells can play a role in carcinogenesis in papillary carcinomas developed in HTs, without a chronic sclerosing ground. In addition, although the number of cases is limited, the high-association of IgG4 (+) plasma cells with adverse prognostic parameters such as

  15. A new fluorescence/PET probe for targeting intracellular human telomerase reverse transcriptase (hTERT) using Tat peptide-conjugated IgM

    International Nuclear Information System (INIS)

    Jung, Kyung oh; Youn, Hyewon; Kim, Seung Hoo; Kim, Young-Hwa; Kang, Keon Wook; Chung, June-Key

    2016-01-01

    Despite an increasing need for methods to visualize intracellular proteins in vivo, the majority of antibody-based imaging methods available can only detect membrane proteins. The human telomerase reverse transcriptase (hTERT) is an intracellular target of great interest because of its high expression in several types of cancer. In this study, we developed a new probe for hTERT using the Tat peptide. An hTERT antibody (IgG or IgM) was conjugated with the Tat peptide, a fluorescence dye and "6"4Cu. HT29 (hTERT+) and U2OS (hTERT−) were used to visualize the intracellular hTERT. The hTERT was detected by RT-PCR and western blot. Fluorescence signals for hTERT were obtained by confocal microscopy, live cell imaging, and analyzed by Tissue-FAXS. In nude mice, tumors were visualized using the fluorescence imaging devices Maestro™ and PETBOX. In RT-PCR and western blot, the expression of hTERT was detected in HT29 cells, but not in U2OS cells. Fluorescence signals were clearly observed in HT29 cells and in U2OS cells after 1 h of treatment, but signals were only detected in HT29 cells after 24 h. Confocal microscopy showed that 9.65% of U2OS and 78.54% of HT29 cells had positive hTERT signals. 3D animation images showed that the probe could target intranuclear hTERT in the nucleus. In mice models, fluorescence and PET imaging showed that hTERT in HT29 tumors could be efficiently visualized. In summary, we developed a new method to visualize intracellular and intranuclear proteins both in vitro and in vivo. - Highlights: • We developed new probes for imaging hTERT using Tat-conjugated IgM antibodies labeled with a fluorescent dye and radioisotope. • This probes could be used to overcome limitation of conventional antibody imaging system in live cell imaging. • This system could be applicable to monitor intracellular and intranuclear proteins in vitro and in vivo.

  16. A new fluorescence/PET probe for targeting intracellular human telomerase reverse transcriptase (hTERT) using Tat peptide-conjugated IgM

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Kyung oh [Department of Nuclear Medicine, Seoul National University College of Medicine (Korea, Republic of); Biomedical Sciences, Seoul National University College of Medicine (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine (Korea, Republic of); Tumor Microenvironment Global Core Research Center, Seoul National University (Korea, Republic of); Youn, Hyewon, E-mail: hwyoun@snu.ac.kr [Department of Nuclear Medicine, Seoul National University College of Medicine (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine (Korea, Republic of); Tumor Microenvironment Global Core Research Center, Seoul National University (Korea, Republic of); Cancer Imaging Center, Seoul National University Hospital, Seoul (Korea, Republic of); Kim, Seung Hoo [Department of Nuclear Medicine, Seoul National University College of Medicine (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine (Korea, Republic of); Kim, Young-Hwa [Department of Nuclear Medicine, Seoul National University College of Medicine (Korea, Republic of); Biomedical Sciences, Seoul National University College of Medicine (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine (Korea, Republic of); Kang, Keon Wook [Department of Nuclear Medicine, Seoul National University College of Medicine (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine (Korea, Republic of); Chung, June-Key, E-mail: jkchung@snu.ac.kr [Department of Nuclear Medicine, Seoul National University College of Medicine (Korea, Republic of); Biomedical Sciences, Seoul National University College of Medicine (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine (Korea, Republic of); Tumor Microenvironment Global Core Research Center, Seoul National University (Korea, Republic of)

    2016-08-26

    Despite an increasing need for methods to visualize intracellular proteins in vivo, the majority of antibody-based imaging methods available can only detect membrane proteins. The human telomerase reverse transcriptase (hTERT) is an intracellular target of great interest because of its high expression in several types of cancer. In this study, we developed a new probe for hTERT using the Tat peptide. An hTERT antibody (IgG or IgM) was conjugated with the Tat peptide, a fluorescence dye and {sup 64}Cu. HT29 (hTERT+) and U2OS (hTERT−) were used to visualize the intracellular hTERT. The hTERT was detected by RT-PCR and western blot. Fluorescence signals for hTERT were obtained by confocal microscopy, live cell imaging, and analyzed by Tissue-FAXS. In nude mice, tumors were visualized using the fluorescence imaging devices Maestro™ and PETBOX. In RT-PCR and western blot, the expression of hTERT was detected in HT29 cells, but not in U2OS cells. Fluorescence signals were clearly observed in HT29 cells and in U2OS cells after 1 h of treatment, but signals were only detected in HT29 cells after 24 h. Confocal microscopy showed that 9.65% of U2OS and 78.54% of HT29 cells had positive hTERT signals. 3D animation images showed that the probe could target intranuclear hTERT in the nucleus. In mice models, fluorescence and PET imaging showed that hTERT in HT29 tumors could be efficiently visualized. In summary, we developed a new method to visualize intracellular and intranuclear proteins both in vitro and in vivo. - Highlights: • We developed new probes for imaging hTERT using Tat-conjugated IgM antibodies labeled with a fluorescent dye and radioisotope. • This probes could be used to overcome limitation of conventional antibody imaging system in live cell imaging. • This system could be applicable to monitor intracellular and intranuclear proteins in vitro and in vivo.

  17. Enrichment of tumor cells for cell kinetic analysis in human tumor biopsies using cytokeratin gating

    International Nuclear Information System (INIS)

    Haustermans, K.; Hofland, I.; Ramaekers, M.; Ivanyi, D.; Balm, A.J.M.; Geboes, K.; Lerut, T.; Schueren, E. van der; Begg, A.C.

    1996-01-01

    Purpose: To determine the feasibility of using cytokeratin antibodies to distinguish normal and malignant cells in human tumors using flow cytometry. The goal was ultimately to increase the accuracy of cell kinetic measurements on human tumor biopsies. Material and methods: A panel of four antibodies was screened on a series of 48 tumors from two centres; 22 head and neck tumors (Amsterdam) and 26 esophagus carcinomas (Leuven). First, screening was carried out by immunohistochemistry on frozen sections to test intensity of staining and the fraction of cytokeratin-positive tumor cells. The antibody showing the most positive staining was then used for flow cytometry on the same tumor. Results: The two broadest spectrum antibodies (AE1/AE3, E3/C4) showed overall the best results with immunohistochemical staining, being positive in over 95% of tumors. Good cell suspensions for DNA flow cytometry could be made from frozen material by a mechanical method, whereas enzymatic methods with trypsin or collagenase were judged failures in almost all cases. >From fresh material, both collagenase and trypsin produced good suspensions for flow cytometry, although the fraction of tumor cells, judged by proportion aneuploid cells, was markedly higher for trypsin. Using the best cytokeratin antibody for each tumor, two parameter flow cytometry was done (cytokeratin versus DNA content). Enrichment of tumor cells was then tested by measuring the fraction of aneuploid cells (the presumed malignant population) of cytokeratin-positive cells versus all cells. An enrichment factor ranging between 0 (no enrichment) and 1 (perfect enrichment, tumor cells only) was then calculated. The average enrichment was 0.60 for head and neck tumors and 0.59 for esophagus tumors. Conclusions: We conclude that this method can substantially enrich the proportion of tumor cells in biopsies from carcinomas. Application of this method could significantly enhance accuracy of tumor cell kinetic measurements

  18. Hath1 inhibits proliferation of colon cancer cells probably through up-regulating expression of Muc2 and p27 and down-regulating expression of cyclin D1.

    Science.gov (United States)

    Zhu, Dai-Hua; Niu, Bai-Lin; Du, Hui-Min; Ren, Ke; Sun, Jian-Ming; Gong, Jian-Ping

    2012-01-01

    Previous studies showed that Math1 homologous to human Hath1 can cause mouse goblet cells to differentiate. In this context it is important that the majority of colon cancers have few goblet cells. In the present study, the potential role of Hath1 in colon carcinogenesis was investigated. Sections of paraffin-embedded tissues were used to investigate the goblet cell population of normal colon mucosa, mucosa adjacent colon cancer and colon cancer samples from 48 patients. Hath1 and Muc2 expression in these samples were tested by immunohistochemistry, quantitative real-time reverse transcription -PCR and Western blotting. After the recombinant plasmid, pcDNA3.1(+)-Hath1 had been transfected into HT29 colon cancer cells, three clones were selected randomly to test the levels of Hath1 mRNA, Muc2 mRNA, Hath1, Muc2, cyclin D1 and p27 by quantitative real-time reverse transcription-PCR and Western blotting. Moreover, the proliferative ability of HT29 cells introduced with Hath1 was assessed by means of colony formation assay and xenografting. Expression of Hath1, Muc2, cyclin D1 and p27 in the xenograft tumors was also detected by Western blotting. No goblet cells were to be found in colon cancer and levels of Hath1 mRNA and Hath1, Muc2 mRNA and Muc2 were significantly down-regulated. Hath1 could decrease cyclin D1, increase p27 and Muc2 in HT29 cells and inhibit their proliferation. Hath1 may be an anti-oncogene in colon carcinogenesis.

  19. In Vitro Evaluation of the Impact of the Probiotic E. coli Nissle 1917 on Campylobacter jejuni's Invasion and Intracellular Survival in Human Colonic Cells.

    Science.gov (United States)

    Helmy, Yosra A; Kassem, Issmat I; Kumar, Anand; Rajashekara, Gireesh

    2017-01-01

    Campylobacter jejuni is a leading cause of bacterial food poisoning in humans. Due to the rise in antibiotic-resistant Campylobacter , there exists a need to develop antibiotic-independent interventions to control infections in humans. Here, we evaluated the impact of Escherichia coli Nissle 1917 (EcN), a probiotic strain, on C. jejuni's invasion and intracellular survival in polarized human colonic cells (HT-29). To further understand how EcN mediates its impact, the expression of 84 genes associated with tight junctions and cell adhesion was profiled in HT-29 cells after treatment with EcN and challenge with C. jejuni . The pre-treatment of polarized HT-29 cells with EcN for 4 h showed a significant effect on C. jejuni 's invasion (∼2 log reduction) of the colonic cells. Furthermore, no intracellular C. jejuni were recovered from EcN pre-treated HT-29 cells at 24 h post-infection. Other probiotic strains tested had no significant impact on C. jejuni invasion and intracellular survival. C. jejuni decreased the expression of genes associated with epithelial cells permeability and barrier function in untreated HT-29 cells. However, EcN positively affected the expression of genes that are involved in enhanced intestinal barrier function, decreased cell permeability, and increased tight junction integrity. The results suggest that EcN impedes C. jejuni invasion and subsequent intracellular survival by affecting HT-29 cells barrier function and tight junction integrity. We conclude that EcN might be a viable alternative for controlling C. jejuni infections.

  20. P3HT:PCBM-based organic solar cells : Optimisation of active layer nanostructure and interface properties

    Science.gov (United States)

    Kadem, Burak Yahya

    Organic solar cells (OSCs) have attracted a significant attention during the last decade due to their simple processability on a flexible substrate as well as scope for large-scale production using role to role technique. Improving the performance of the organic solar cells and their lifetime stability are one of the main challenges faced by researchers in this field. In this thesis, work has been carried out using a blend of Poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-Phenyl C[61] butyric acid methyl ester (PCBM) as an active layer in the ratio of (1:1) (P3HT:PCBM). The efficiency and stability of P3HT:PCBM-based solar cells have been examined using different methods and employing novel materials such as1-[N-(2-ethoxyethyl) pent-4-ynamide] -8 (11), 15 (18), 22 (25) -tris-{2-[2-(2-ethoxyethoxy) ethoxy]-1-[2-((2- ethoxyethoxy) - ethoxy) methyl] ethyloxy} phthalocyaninato zinc (II) (ZnPc) to construct a ternary hybrid as the active layer. Controlling the morphology and crystallinity of P3HT:PCBM active layer was carried out using different solvents including chloroform (CF), chlorobenzene (CB) and dichlorobenzene (DCB) and their co-solvents in the ratio of (1:1) to dissolve the P3HT:PCBM blend. Optimum morphology and crystallinity were achieved using a co-solvent made of CB:CF with the obtained solar cell exhibiting the highest performance with PCE reaching 2.73% among other devices prepared using different solvents. Further device performance improvement was observed through optimization of active layer thickness with studied thickness falling in range 65-266 nm. Measurements of the PV characteristics of the investigated OSC devices have revealed optimum performance when active layer thickness was 95 nm with PCE=3.846%. The stability of the P3HT:PCBM-based devices on optimisation of the active layer thickness has shown a decrease in PCE of about 71% over a period of 41 days. Furthermore, P3HT has been blended with different fullerene derivatives (PC[60]BM, PC

  1. Musa paradisiaca inflorescence induces human colon cancer cell death by modulating cascades of transcriptional events.

    Science.gov (United States)

    K B, Arun; Madhavan, Aravind; T R, Reshmitha; Thomas, Sithara; Nisha, P

    2018-01-24

    Colorectal cancer (CRC) is one of the leading causes of cancer death, and diet plays an important role in the etiology of CRC. Traditional medical practitioners in many South Asian countries use plantain inflorescence to treat various gastro-intestinal ailments. The aim of the present study was to investigate the anticancer effects of extracts of inflorescence of Musa paradisiaca against HT29 human colon cancer cells and elucidate the mechanism of these effects by studying the modulation of cascades of transcriptional events. In vitro assays depicted that methanol extract of Musa paradisiaca inflorescence (PIMET) was cytotoxic to HT29 cells. PIMET induced DNA damage and arrested the cell cycle at the G2/M phase. Expression studies showed that PIMET pretreatment upregulates pro-apoptotic Bcl2 and downregulates anti-apoptotic Bax proteins. Different assays showed that the deregulation of pro/antiapoptotic proteins reduces the mitochondrial membrane potential and ATP production; moreover, it enhances cytochrome c release, which triggers the apoptotic pathway, and further cleaves caspase 3 and PARP proteins, resulting in apoptosis. Changes in the protein expression profile of HT29 cells after PIMET treatment were analyzed using mass-spectrometry-based proteomics. PIMET treatment significantly altered the expression of HT29 protein; interestingly, X-linked inhibitor of apoptosis protein was also downregulated. Alteration in the expression of this protein has significant effects, leading to HT29 cell death.

  2. Radiation immunomodulatory gene tumor therapy of rats with intracerebral glioma tumors

    DEFF Research Database (Denmark)

    Persson, Bertil R R; Koch, Catrin Bauréus; Grafström, Gustav

    2010-01-01

    Single-fraction radiation therapy with 5 or 15 Gy (60)Co gamma radiation was combined with intraperitoneal injections of syngeneic interferon gamma (IFN-gamma)-transfected cells in rats with intracerebral N29 or N32 glioma tumors at days 7, 21 and 35 after inoculation. For intracerebral N29 tumor...

  3. 5-HT3A -driven green fluorescent protein delineates gustatory fibers innervating sour-responsive taste cells: A labeled line for sour taste?

    Science.gov (United States)

    Stratford, J M; Larson, E D; Yang, R; Salcedo, E; Finger, T E

    2017-07-01

    Taste buds contain multiple cell types with each type expressing receptors and transduction components for a subset of taste qualities. The sour sensing cells, Type III cells, release serotonin (5-HT) in response to the presence of sour (acidic) tastants and this released 5-HT activates 5-HT 3 receptors on the gustatory nerves. We show here, using 5-HT 3A GFP mice, that 5-HT 3 -expressing nerve fibers preferentially contact and receive synaptic contact from Type III taste cells. Further, these 5-HT 3 -expressing nerve fibers terminate in a restricted central-lateral portion of the nucleus of the solitary tract (nTS)-the same area that shows increased c-Fos expression upon presentation of a sour tastant (30 mM citric acid). This acid stimulation also evokes c-Fos in the laterally adjacent mediodorsal spinal trigeminal nucleus (DMSp5), but this trigeminal activation is not associated with the presence of 5-HT 3 -expressing nerve fibers as it is in the nTS. Rather, the neuronal activation in the trigeminal complex likely is attributable to direct depolarization of acid-sensitive trigeminal nerve fibers, for example, polymodal nociceptors, rather than through taste buds. Taken together, these findings suggest that transmission of sour taste information involves communication between Type III taste cells and 5-HT 3 -expressing afferent nerve fibers that project to a restricted portion of the nTS consistent with a crude mapping of taste quality information in the primary gustatory nucleus. © 2017 Wiley Periodicals, Inc.

  4. Interplay of Nanoscale, Hybrid P3HT/ZTO Interface on Optoelectronics and Photovoltaic Cells.

    Science.gov (United States)

    Lai, Jian-Jhong; Li, Yu-Hsun; Feng, Bo-Rui; Tang, Shiow-Jing; Jian, Wen-Bin; Fu, Chuan-Min; Chen, Jiun-Tai; Wang, Xu; Lee, Pooi See

    2017-09-27

    Photovoltaic effects in poly(3-hexylthiophene-2,5-diyl) (P3HT) have attracted much attention recently. Here, natively p-type doped P3HT nanofibers and n-type doped zinc tin oxide (ZTO) nanowires are used for making not only field-effect transistors (FETs) but also p-n nanoscale diodes. The hybrid P3HT/ZTO p-n heterojunction shows applications in many directions, and it also facilitates the investigation of photoelectrons and photovoltaic effects on the nanoscale. As for applications, the heterojunction device shows a simultaneously high on/off ratio of n- and p-type FETs, gatable p-n junction diodes, tristate buffer devices, gatable photodetectors, and gatable solar cells. On the other hand, P3HT nanofibers are taken as a photoactive layer and the role played by the p-n heterojunction in the photoelectric and photovoltaic effects is investigated. It is found that the hybrid P3HT/ZTO p-n heterojunction assists in increasing photocurrents and enhancing photovoltaic effects. Through the controllable gating of the heterojunction, we can discuss the background mechanisms of photocurrent generation and photovoltaic energy harvesting.

  5. [The Role of Membrane-Bound Heat Shock Proteins Hsp90 in Migration of Tumor Cells in vitro and Involvement of Cell Surface Heparan Sulfate Proteoglycans in Protein Binding to Plasma Membrane].

    Science.gov (United States)

    Snigireva, A V; Vrublevskaya, V V; Skarga, Y Y; Morenkov, O S

    2016-01-01

    Heat shock protein Hsp90, detected in the extracellular space and on the membrane of cells, plays an important role in cell motility, migration, invasion and metastasis of tumor cells. At present, the functional role and molecular mechanisms of Hsp90 binding to plasma membrane are not elucidated. Using isoform-specific antibodies against Hsp90, Hsp9α and Hsp90β, we showed that membrane-bound Hsp90α and Hsp90β play a significant role in migration of human fibrosarcoma (HT1080) and glioblastoma (A-172) cells in vitro. Disorders of sulfonation of cell heparan sulfates, cleavage of cell heparan. sulfates by heparinase I/III as well as treatment of cells with heparin lead to an abrupt reduction in the expression level of Hsp90 isoforms. Furthermore, heparin significantly inhibits tumor cell migration. The results obtained demonstrate that two isoforms of membrane-bound Hsp90 are involved in migration of tumor cells in vitro and that cell surface heparan sulfate proteoglycans play a pivotal role in the "anchoring" of Hsp90α and Hsp90β to the plasma membrane.

  6. Neurotensin-induced Erk1/2 phosphorylation and growth of human colonic cancer cells are independent from growth factors receptors activation

    Energy Technology Data Exchange (ETDEWEB)

    Massa, Fabienne; Tormo, Aurelie; Beraud-Dufour, Sophie; Coppola, Thierry [Institut de Pharmacologie Moleculaire et Cellulaire, Universite de Nice-Sophia Antipolis, CNRS UMR 6097, 660 route des Lucioles, 06560 Valbonne (France); Mazella, Jean, E-mail: mazella@ipmc.cnrs.fr [Institut de Pharmacologie Moleculaire et Cellulaire, Universite de Nice-Sophia Antipolis, CNRS UMR 6097, 660 route des Lucioles, 06560 Valbonne (France)

    2011-10-14

    Highlights: {yields} We compare intracellular pathways of NT and EGF in HT29 cells. {yields} NT does not transactivate EGFR. {yields} Transactivation of EGFR is not a general rule in cancer cell growth. -- Abstract: Neurotensin (NT) promotes the proliferation of human colonic cancer cells by undefined mechanisms. We already demonstrated that, in the human colon adenocarcinoma cell line HT29, the effects of NT were mediated by a complex formed between the NT receptor-1 (NTSR1) and-3 (NTSR3). Here we examined cellular mechanisms that led to NT-induced MAP kinase phosphorylation and growth factors receptors transactivation in colonic cancer cells and proliferation in HT29 cells. With the aim to identify upstream signaling involved in NT-elicited MAP kinase activation, we found that the stimulatory effects of the peptide were totally independent from the activation of the epidermal growth factor receptor (EGFR) both in the HT29 and the HCT116 cells. NT was unable to promote phosphorylation of EGFR and to compete with EGF for its binding to the receptor. Pharmacological approaches allowed us to differentiate EGF and NT signaling in HT29 cells since only NT activation of Erk1/2 was shown to be sensitive to PKC inhibitors and since only NT increased the intracellular level of calcium. We also observed that NT was not able to transactivate Insulin-like growth factor receptor. Our findings indicate that, in the HT29 and HCT116 cell lines, NT stimulates MAP kinase phosphorylation and cell growth by a pathway which does not involve EGF system but rather NT receptors which transduce their own intracellular effectors. These results indicate that depending on the cell line used, blocking EGFR is not the general rule to inhibit NT-induced cancer cell proliferation.

  7. Participation of MT3 melatonin receptors in the synergistic effect of melatonin on cytotoxic and apoptotic actions evoked by chemotherapeutics.

    Science.gov (United States)

    Pariente, Roberto; Bejarano, Ignacio; Espino, Javier; Rodríguez, Ana B; Pariente, José A

    2017-11-01

    Melatonin has antitumor activity via several mechanisms including its antiproliferative and proapoptotic effects in addition to its potent antioxidant actions. Therefore, melatonin may be useful in the treatment of tumors in association with chemotherapy drugs. This study was performed to study the role of melatonin receptors on the cytotoxicity and apoptosis induced by the chemotherapeutic agents cisplatin and 5-fluorouracil in two tumor cell lines, such as human colorectal cancer HT-29 cells and cervical cancer HeLa cells. We found that both melatonin and the two chemotherapeutic agents tested induced a decrease in HT-29 and HeLa cell viability. Furthermore, melatonin significantly increased the cytotoxic effect of chemotherapeutic agents, particularly, in 5-fluorouracil-challenged cells. Stimulation of cells with either of the two chemotherapeutic agents in the presence of melatonin further increased caspase-3 activation. Concomitant treatments with melatonin and chemotherapeutic agents augmented the population of apoptotic cells compared to the treatments with chemotherapeutics alone. Blockade of MT1 and/or MT2 receptors with luzindole or 4-P-PDOT was unable to reverse the enhancing effects of melatonin on both cytotoxicity, caspase-3 activation and the amount of apoptotic cells evoked by the chemotherapeutic agents, whereas when MT3 receptors were blocked with prazosin, the synergistic effect of melatonin with chemotherapy on cytotoxicity and apoptosis was reversed. Our findings provided evidence that in vitro melatonin strongly enhances chemotherapeutic-induced cytotoxicity and apoptosis in two tumor cell lines, namely HT-29 and HeLa cells and, this potentiating effect of melatonin is mediated by MT3 receptor stimulation.

  8. Exosome-Based Cell-Cell Communication in the Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Joana Maia

    2018-02-01

    Full Text Available Tumors are not isolated entities, but complex systemic networks involving cell-cell communication between transformed and non-transformed cells. The milieu created by tumor-associated cells may either support or halt tumor progression. In addition to cell-cell contact, cells communicate through secreted factors via a highly complex system involving characteristics such as ligand concentration, receptor expression and integration of diverse signaling pathways. Of these, extracellular vesicles, such as exosomes, are emerging as novel cell-cell communication mediators in physiological and pathological scenarios. Exosomes, membrane vesicles of endocytic origin released by all cells (both healthy and diseased, ranging in size from 30 to 150 nm, transport all the main biomolecules, including lipids, proteins, DNAs, messenger RNAs and microRNA, and perform intercellular transfer of components, locally and systemically. By acting not only in tumor cells, but also in tumor-associated cells such as fibroblasts, endothelium, leukocytes and progenitor cells, tumor- and non-tumor cells-derived exosomes have emerged as new players in tumor growth and invasion, tumor-associated angiogenesis, tissue inflammation and immunologic remodeling. In addition, due to their property of carrying molecules from their cell of origin to the peripheral circulation, exosomes have been increasingly studied as sources of tumor biomarkers in liquid biopsies. Here we review the current literature on the participation of exosomes in the communication between tumor and tumor-associated cells, highlighting the role of this process in the setup of tumor microenvironments that modulate tumor initiation and metastasis.

  9. Pericytes limit tumor cell metastasis

    DEFF Research Database (Denmark)

    Xian, Xiaojie; Håkansson, Joakim; Ståhlberg, Anders

    2006-01-01

    Previously we observed that neural cell adhesion molecule (NCAM) deficiency in beta tumor cells facilitates metastasis into distant organs and local lymph nodes. Here, we show that NCAM-deficient beta cell tumors grew leaky blood vessels with perturbed pericyte-endothelial cell-cell interactions...... the microvessel wall. To directly address whether pericyte dysfunction increases the metastatic potential of solid tumors, we studied beta cell tumorigenesis in primary pericyte-deficient Pdgfb(ret/ret) mice. This resulted in beta tumor cell metastases in distant organs and local lymph nodes, demonstrating a role...... and deficient perivascular deposition of ECM components. Conversely, tumor cell expression of NCAM in a fibrosarcoma model (T241) improved pericyte recruitment and increased perivascular deposition of ECM molecules. Together, these findings suggest that NCAM may limit tumor cell metastasis by stabilizing...

  10. Selected chemo-ecological studies of marine opisthobranchs from Indian coasts

    Digital Repository Service at National Institute of Oceanography (India)

    Fontana, A.; Ciavatta, M.L.; DeSouza, L.; Mollo, E.; Naik, C.G.; Parameswaran, P.S.; Wahidullah, S.; Cimino, G.

    ),27?29 tunicates (ecteinascidins, e.g. 12)30, 31 and sponges (renieramycins, e.g. 13).32?34 Jorumycin (10) was indeed cytotoxic against several tumor cell lines [HT29 (human colon carcinoma), A549 (human lung carcinoma), Mel28 (human melanoma), P388 (mouse lym...

  11. Generation of herpesvirus entry mediator (HVEM)-restricted herpes simplex virus type 1 mutant viruses: resistance of HVEM-expressing cells and identification of mutations that rescue nectin-1 recognition.

    Science.gov (United States)

    Uchida, Hiroaki; Shah, Waris A; Ozuer, Ali; Frampton, Arthur R; Goins, William F; Grandi, Paola; Cohen, Justus B; Glorioso, Joseph C

    2009-04-01

    Both initial infection and cell-to-cell spread by herpes simplex virus type 1 (HSV-1) require the interaction of the viral glycoprotein D (gD) with an entry receptor on the cell surface. The two major HSV entry receptors, herpesvirus entry mediator (HVEM) and nectin-1, mediate infection independently but are coexpressed on a variety of cells. To determine if both receptors are active in these instances, we have established mutant viruses that are selectively impaired for recognition of one or the other receptor. In plaque assays, these viruses showed approximately 1,000-fold selectivity for the matched receptor over the mismatched receptor. Separate assays showed that each virus is impaired for both infection and spread through the mismatched receptor. We tested several human tumor cell lines for susceptibility to these viruses and observed that HT29 colon carcinoma cells are susceptible to infection by nectin-1-restricted virus but are highly resistant to HVEM-restricted virus infection, despite readily detectable HVEM expression on the cell surface. HVEM cDNA isolated from HT29 cells rendered HSV-resistant cells permissive for infection by the HVEM-restricted virus, suggesting that HT29 cells lack a cofactor for HVEM-mediated infection or express an HVEM-specific inhibitory factor. Passaging of HVEM-restricted virus on nectin-1-expressing cells yielded a set of gD missense mutations that each restored functional recognition of nectin-1. These mutations identify residues that likely play a role in shaping the nectin-1 binding site of gD. Our findings illustrate the utility of these receptor-restricted viruses in studying the early events in HSV infection.

  12. Tumor-Infiltrating Immune Cells Promoting Tumor Invasion and Metastasis: Existing Theories

    Directory of Open Access Journals (Sweden)

    Yan-gao Man, Alexander Stojadinovic, Jeffrey Mason, Itzhak Avital, Anton Bilchik, Bjoern Bruecher, Mladjan Protic, Aviram Nissan, Mina Izadjoo, Xichen Zhang, Anahid Jewett

    2013-01-01

    Full Text Available It is a commonly held belief that infiltration of immune cells into tumor tissues and direct physical contact between tumor cells and infiltrated immune cells is associated with physical destructions of the tumor cells, reduction of the tumor burden, and improved clinical prognosis. An increasing number of studies, however, have suggested that aberrant infiltration of immune cells into tumor or normal tissues may promote tumor progression, invasion, and metastasis. Neither the primary reason for these contradictory observations, nor the mechanism for the reported diverse impact of tumor-infiltrating immune cells has been elucidated, making it difficult to judge the clinical implications of infiltration of immune cells within tumor tissues. This mini-review presents several existing hypotheses and models that favor the promoting impact of tumor-infiltrating immune cells on tumor invasion and metastasis, and also analyzes their strength and weakness.

  13. Modulation by calcineurin of 5-HT3 receptor function in NG108-15 neuroblastoma x glioma cells

    NARCIS (Netherlands)

    Boddeke, HWGM; Meigel, [No Value; Boeijinga, P; Arbuckle, J; Docherty, RJ

    1 We have investigated the mechanism of regulation of 5-HT3 receptor channel sensitivity in voltage-clamped (-80 mV) NG108-15 neuroblastoma cells. 2 The 5-HT-induced inward current activated rapidly. The fast onset was followed by a biphasic decay which was characterized by two time constants,

  14. Modulation by calcineurin of 5-HT3receptor function in NG108-15 neuroblastoma x glioma cells

    NARCIS (Netherlands)

    Boddeke, H.W.G.M.; Meigel, I.; Boeijinga, P.; Arbuckle, J.; Docherty, R.J.

    1996-01-01

    1. We have investigated the mechanism of regulation of 5-HT3receptor channel sensitivity in voltage-clamped (-80 mV) NG108-15 neuroblastoma cells. 2. The 5-HT-induced inward current activated rapidly. The fast onset was followed by a biphasic decay which was characterized by two time constants,

  15. Interferon-gamma sensitizes colonic epithelial cell lines to physiological and therapeutic inducers of colonocyte apoptosis.

    LENUS (Irish Health Repository)

    O'Connell, J

    2012-02-03

    Homeostasis in the colonic epithelium is achieved by a continuous cycle of proliferation and apoptosis, in which imbalances are associated with disease. Inflammatory bowel disease (IBD) and colon cancer are associated with either excessive or insufficient apoptosis of colonic epithelial cells, respectively. By using two colonic epithelial cell lines, HT29 and SW620, we investigated how the epithelial cell\\'s sensitivity to apoptosis was regulated by the proinflammatory cytokine interferon-gamma (IFN-gamma). We found that IFN-gamma sensitized HT29 cells, and to a lesser extent SW620, to diverse inducers of apoptosis of physiologic or therapeutic relevance to the colon. These apoptosis inducers included Fas (CD95\\/APO-1) ligand (FasL), short-chain fatty acids, and chemotherapeutic drugs. The extent of IFN-gamma-mediated apoptosis sensitization in these two cell lines correlated well with the degree of IFN-gamma-mediated upregulation of the proapoptotic protease caspase-1. Although IFN-gamma alone effectively sensitized HT29 cells to apoptosis, inclusion of the protein synthesis inhibitor cyclohexamide (CHX) during apoptotic challenge was necessary for maximal sensitization of SW620. The requirement of CHX to sensitize SW620 cells to apoptosis implies a need to inhibit translation of antiapoptotic proteins absent from HT29. In particular, the antiapoptotic protein Bcl-2 was strongly expressed in SW620 cells but absent from HT29. Our results indicate that IFN-gamma increases the sensitivity of colonic epithelial cells to diverse apoptotic stimuli in concert, via upregulation of caspase-1. Our findings implicate caspase-1 and Bcl-2 as important central points of control determining the general sensitivity of colonic epithelial cells to apoptosis.

  16. Determinates of tumor response to radiation: Tumor cells, tumor stroma and permanent local control

    International Nuclear Information System (INIS)

    Li, Wende; Huang, Peigen; Chen, David J.; Gerweck, Leo E.

    2014-01-01

    Background and purpose: The causes of tumor response variation to radiation remain obscure, thus hampering the development of predictive assays and strategies to decrease resistance. The present study evaluates the impact of host tumor stromal elements and the in vivo environment on tumor cell kill, and relationship between tumor cell radiosensitivity and the tumor control dose. Material and methods: Five endpoints were evaluated and compared in a radiosensitive DNA double-strand break repair-defective (DNA-PKcs −/− ) tumor line, and its DNA-PKcs repair competent transfected counterpart. In vitro colony formation assays were performed on in vitro cultured cells, on cells obtained directly from tumors, and on cells irradiated in situ. Permanent local control was assessed by the TCD 50 assay. Vascular effects were evaluated by functional vascular density assays. Results: The fraction of repair competent and repair deficient tumor cells surviving radiation did not substantially differ whether irradiated in vitro, i.e., in the absence of host stromal elements and factors, from the fraction of cells killed following in vivo irradiation. Additionally, the altered tumor cell sensitivity resulted in a proportional change in the dose required to achieve permanent local control. The estimated number of tumor cells per tumor, their cloning efficiency and radiosensitivity, all assessed by in vitro assays, were used to predict successfully, the measured tumor control doses. Conclusion: The number of clonogens per tumor and their radiosensitivity govern the permanent local control dose

  17. CD8+ Tumor-Infiltrating T Cells Are Trapped in the Tumor-Dendritic Cell Network

    Directory of Open Access Journals (Sweden)

    Alexandre Boissonnas

    2013-01-01

    Full Text Available Chemotherapy enhances the antitumor adaptive immune T cell response, but the immunosuppressive tumor environment often dominates, resulting in cancer relapse. Antigen-presenting cells such as tumor-associated macrophages (TAMs and tumor dendritic cells (TuDCs are the main protagonists of tumor-infiltrating lymphocyte (TIL immuno-suppression. TAMs have been widely investigated and are associated with poor prognosis, but the immuno-suppressive activity of TuDCs is less well understood. We performed two-photon imaging of the tumor tissue to examine the spatiotemporal interactions between TILs and TuDCs after chemotherapy. In a strongly immuno-suppressive murine tumor model, cyclophosphamide-mediated chemotherapy transiently enhanced the antitumor activity of adoptively transferred ovalbumin-specific CD8+ T cell receptor transgenic T cells (OTI but barely affected TuDC compartment within the tumor. Time lapse imaging of living tumor tissue showed that TuDCs are organized as a mesh with dynamic interconnections. Once infiltrated into the tumor parenchyma, OTI T cells make antigen-specific and long-lasting contacts with TuDCs. Extensive analysis of TIL infiltration on histologic section revealed that after chemotherapy the majority of OTI T cells interact with TuDCs and that infiltration is restricted to TuDC-rich areas. We propose that the TuDC network exerts antigen-dependent unproductive retention that trap T cells and limit their antitumor effectiveness.

  18. Tumor Cells Express FcγRl Which Contributes to Tumor Cell Growth and a Metastatic Phenotype

    Directory of Open Access Journals (Sweden)

    M. Bud Nelson

    2001-01-01

    Full Text Available High levels of circulating immune complexes containing tumor-associated antigens are associated with a poor prognosis for individuals with cancer. The ability of B cells, previously exposed to tumor-associated antigens, to promote both in vitro and in vivo tumor growth formed the rationale to evaluate the mechanism by which immune complexes may promote tumor growth. In elucidating this mechanism, FcγRl expression by tumor cells was characterized by flow cytometry, polymerase chain reaction, and sequence analysis. Immune complexes containing shed tumor antigen and anti-shed tumor antigen Ab cross-linked FcγRl-expressing tumor cells, which resulted in an induction of tumor cell proliferation and of shed tumor antigen production. Use of selective tyrosine kinase inhibitors demonstrated that tumor cell proliferation induced by immune complex cross-linking of FcγRl is dependent on the tyrosine kinase signal transduction pathway. A selective inhibitor of phosphatidylinositol-3 kinase also inhibited this induction of tumor cell proliferation. These findings support a role for immune complexes and FcγRl expression by tumor cells in augmentation of tumor growth and a metastatic phenotype.

  19. Tumor stem cells: A new approach for tumor therapy (Review)

    Science.gov (United States)

    MENG, MIN; ZHAO, XIN-HAN; NING, QIAN; HOU, LEI; XIN, GUO-HONG; LIU, LI-FENG

    2012-01-01

    Recent studies have demonstrated the existence of a minority of tumor cells possessing the stem cell properties of self-renewal and differentiation in leukemia and several solid tumors. However, these cells do not possess the normal regulatory mechanisms of stem cells. Following transplantation, they are capable of initiating tumorigenesis and are therefore known as ‘tumor stem cells’. Cellular origin analysis of tumor stem cells has resulted in three hypotheses: Embryonal rest hypothesis, anaplasia and maturation arrest. Several signaling pathways which are involved in carcinogenesis, including Wnt/β-catenin, Notch and Oct-4 signaling pathways are crucial in normal stem cell self-renewal decisions, suggesting that breakdown in the regulation of self-renewal may be a key event in the development of tumors. Thus, tumors can be regarded as an abnormal organ in which stem cells have escaped from the normal constraints on self-renewal, thus, leading to abnormally differentiated tumor cells that lose the ability to form tumors. This new model for maligancies has significance for clinical research and treatment. PMID:22844351

  20. Interferon-β lipofection I. Increased efficacy of chemotherapeutic drugs on human tumor cells derived monolayers and spheroids.

    Science.gov (United States)

    Villaverde, M S; Gil-Cardeza, M L; Glikin, G C; Finocchiaro, L M E

    2012-07-01

    We evaluated the effect of hIFNβ gene transfer alone or in combination with different antineoplastic drugs commonly used in cancer treatment. Five human tumor-derived cell lines were cultured as monolayers and spheroids. Four cell lines (Ewing sarcomas EW7 and COH, melanoma M8 and mammary carcinoma MCF-7) were sensitive to hIFNβ gene lipofection. Although this effect appeared in both culture configurations, spheroids showed a relative multicellular resistance (insensitive colon carcinoma HT-29 excluded). EW7 and M8 hIFNβ-expressing cells were exposed to different concentrations of bleomycin, bortezomib, carboplatin, doxorubicin, etoposide, methotrexate, paclitaxel and vincristine in both configuration models. In chemotherapy-sensitive EW7 monolayers, the combination of hIFNβ gene and antineoplastic drugs displayed only additive or counteractive (methotrexate) effects, suggesting that cytotoxic mechanisms triggered by hIFNβ gene lipofection could be saturating the signaling pathways. Conversely, in chemotherapy-resistant EW7 spheroids or M8 cells, the combination of hIFNβ with drugs that mainly operate at the genotoxic level (doxorubicin, methotrexate and paclitaxel) presented only additive effects. However, drugs that also increase pro-oxidant species can complement the antitumor efficacy of the hIFNβ gene and clearly caused potentiated effects (bleomycin, bortezomib, carboplatin, etoposide and vincristine). The great bystander effect induced by hIFNβ gene lipofection could be among the main causes of its effectiveness, because only 1 or 2% of EW7 or M8 hIFNβ-expressing cells killed more than 60 or 80% of cell population, respectively.

  1. Whole tumor antigen vaccination using dendritic cells: Comparison of RNA electroporation and pulsing with UV-irradiated tumor cells

    Directory of Open Access Journals (Sweden)

    Benencia Fabian

    2008-04-01

    Full Text Available Abstract Because of the lack of full characterization of tumor associated antigens for solid tumors, whole antigen use is a convenient approach to tumor vaccination. Tumor RNA and apoptotic tumor cells have been used as a source of whole tumor antigen to prepare dendritic cell (DC based tumor vaccines, but their efficacy has not been directly compared. Here we compare directly RNA electroporation and pulsing of DCs with whole tumor cells killed by ultraviolet (UV B radiation using a convenient tumor model expressing human papilloma virus (HPV E6 and E7 oncogenes. Although both approaches led to DCs presenting tumor antigen, electroporation with tumor cell total RNA induced a significantly higher frequency of tumor-reactive IFN-gamma secreting T cells, and E7-specific CD8+ lymphocytes compared to pulsing with UV-irradiated tumor cells. DCs electroporated with tumor cell RNA induced a larger tumor infiltration by T cells and produced a significantly stronger delay in tumor growth compared to DCs pulsed with UV-irradiated tumor cells. We conclude that electroporation with whole tumor cell RNA and pulsing with UV-irradiated tumor cells are both effective in eliciting antitumor immune response, but RNA electroporation results in more potent tumor vaccination under the examined experimental conditions.

  2. Psychopharmacology of 5-HT1A receptors

    International Nuclear Information System (INIS)

    Cowen, Philip J.

    2000-01-01

    Serotonin 1A (5-HT 1A ) receptors are located on both 5-HT cell bodies where they act as inhibitory autoreceptors and at postsynaptic sites where they mediate the effects of 5-HT released from nerve terminals. The sensitivity of 5-HT 1A receptors in humans can be measured using the technique of pharmacological challenge. For example, acute administration of a selective 5-HT 1A receptor agonist, such as ipsapirone, decreases body temperature and increases plasma cortisol through activation of pre- and postsynaptic 5-HT 1A receptors, respectively. Use of this technique has demonstrated that unmedicated patients with major depression have decreased sensitivity of both pre- and postsynaptic 5-HT 1A receptors. Treatment with selective serotonin reuptake inhibitors further down-regulates 5-HT 1A receptor activity. Due to the hypotheses linking decreased sensitivity of 5-HT 1A autoreceptors with the onset of antidepressant activity, there is current interest in the therapeutic efficacy of combined treatment with selective serotonin reuptake inhibitors and 5-HT 1A receptor antagonists

  3. Receptor⁻Receptor Interactions in Multiple 5-HT1A Heteroreceptor Complexes in Raphe-Hippocampal 5-HT Transmission and Their Relevance for Depression and Its Treatment.

    Science.gov (United States)

    Borroto-Escuela, Dasiel O; Narváez, Manuel; Ambrogini, Patrizia; Ferraro, Luca; Brito, Ismel; Romero-Fernandez, Wilber; Andrade-Talavera, Yuniesky; Flores-Burgess, Antonio; Millon, Carmelo; Gago, Belen; Narvaez, Jose Angel; Odagaki, Yuji; Palkovits, Miklos; Diaz-Cabiale, Zaida; Fuxe, Kjell

    2018-06-03

    Due to the binding to a number of proteins to the receptor protomers in receptor heteromers in the brain, the term "heteroreceptor complexes" was introduced. A number of serotonin 5-HT1A heteroreceptor complexes were recently found to be linked to the ascending 5-HT pathways known to have a significant role in depression. The 5-HT1A⁻FGFR1 heteroreceptor complexes were involved in synergistically enhancing neuroplasticity in the hippocampus and in the dorsal raphe 5-HT nerve cells. The 5-HT1A protomer significantly increased FGFR1 protomer signaling in wild-type rats. Disturbances in the 5-HT1A⁻FGFR1 heteroreceptor complexes in the raphe-hippocampal 5-HT system were found in a genetic rat model of depression (Flinders sensitive line (FSL) rats). Deficits in FSL rats were observed in the ability of combined FGFR1 and 5-HT1A agonist cotreatment to produce antidepressant-like effects. It may in part reflect a failure of FGFR1 treatment to uncouple the 5-HT1A postjunctional receptors and autoreceptors from the hippocampal and dorsal raphe GIRK channels, respectively. This may result in maintained inhibition of hippocampal pyramidal nerve cell and dorsal raphe 5-HT nerve cell firing. Also, 5-HT1A⁻5-HT2A isoreceptor complexes were recently demonstrated to exist in the hippocampus and limbic cortex. They may play a role in depression through an ability of 5-HT2A protomer signaling to inhibit the 5-HT1A protomer recognition and signaling. Finally, galanin (1⁻15) was reported to enhance the antidepressant effects of fluoxetine through the putative formation of GalR1⁻GalR2⁻5-HT1A heteroreceptor complexes. Taken together, these novel 5-HT1A receptor complexes offer new targets for treatment of depression.

  4. Receptor–Receptor Interactions in Multiple 5-HT1A Heteroreceptor Complexes in Raphe-Hippocampal 5-HT Transmission and Their Relevance for Depression and Its Treatment

    Directory of Open Access Journals (Sweden)

    Dasiel O. Borroto-Escuela

    2018-06-01

    Full Text Available Due to the binding to a number of proteins to the receptor protomers in receptor heteromers in the brain, the term “heteroreceptor complexes” was introduced. A number of serotonin 5-HT1A heteroreceptor complexes were recently found to be linked to the ascending 5-HT pathways known to have a significant role in depression. The 5-HT1A–FGFR1 heteroreceptor complexes were involved in synergistically enhancing neuroplasticity in the hippocampus and in the dorsal raphe 5-HT nerve cells. The 5-HT1A protomer significantly increased FGFR1 protomer signaling in wild-type rats. Disturbances in the 5-HT1A–FGFR1 heteroreceptor complexes in the raphe-hippocampal 5-HT system were found in a genetic rat model of depression (Flinders sensitive line (FSL rats. Deficits in FSL rats were observed in the ability of combined FGFR1 and 5-HT1A agonist cotreatment to produce antidepressant-like effects. It may in part reflect a failure of FGFR1 treatment to uncouple the 5-HT1A postjunctional receptors and autoreceptors from the hippocampal and dorsal raphe GIRK channels, respectively. This may result in maintained inhibition of hippocampal pyramidal nerve cell and dorsal raphe 5-HT nerve cell firing. Also, 5-HT1A–5-HT2A isoreceptor complexes were recently demonstrated to exist in the hippocampus and limbic cortex. They may play a role in depression through an ability of 5-HT2A protomer signaling to inhibit the 5-HT1A protomer recognition and signaling. Finally, galanin (1–15 was reported to enhance the antidepressant effects of fluoxetine through the putative formation of GalR1–GalR2–5-HT1A heteroreceptor complexes. Taken together, these novel 5-HT1A receptor complexes offer new targets for treatment of depression.

  5. miR-29c targets TNFAIP3, inhibits cell proliferation and induces apoptosis in hepatitis B virus-related hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Wang, Chun-Mei; Wang, Yan; Fan, Chun-Guang; Xu, Fei-Fei; Sun, Wen-Sheng; Liu, Yu-Gang; Jia, Ji-Hui

    2011-01-01

    Highlights: → miR-29c was significantly downregulated in HBV-related HCC. → TNFAIP3 was found to be inversely correlated with miR-29c levels and identified as a target of miR-29c. → Overexpression of miR-29c suppressed TNFAIP3. → miR-29c inhibited HBV DNA replication, cell proliferation and induced apoptosis. -- Abstract: Recent studies have revealed that microRNA-29c (miR-29c) is involved in a variety of biological processes including carcinogenesis. Here, we report that miR-29c was significantly downregulated in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) cell lines as well as in clinical tissues compared with their corresponding controls. Tumor necrosis factor alpha-induced protein 3 (TNFAIP3), a key regulator in inflammation and immunity, was found to be inversely correlated with miR-29c levels and was identified as a target of miR-29c. Overexpression of miR-29c in HepG2.2.15 cells effectively suppressed TNFAIP3 expression and HBV DNA replication as well as inhibited cell proliferation and induced apoptosis. We conclude that miR-29c may play an important role as a tumor suppressive microRNA in the development and progression of HBV-related HCC by targeting TNFAIP3. Thus miR-29c and TNFAIP3 represent key diagnostic markers and potential therapeutic targets for the prevention and treatment of HBV infection.

  6. miR-29c targets TNFAIP3, inhibits cell proliferation and induces apoptosis in hepatitis B virus-related hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chun-Mei [Department of Microbiology, Shandong University School of Medicine, Jinan 250012 (China); Department of Pathophysiology, Shandong University School of Medicine, Jinan 250012 (China); Wang, Yan; Fan, Chun-Guang; Xu, Fei-Fei [Department of Pathophysiology, Shandong University School of Medicine, Jinan 250012 (China); Sun, Wen-Sheng [Institute of Immunology, Shandong University School of Medicine, Jinan 250012 (China); Liu, Yu-Gang, E-mail: liu.yugang@sdu.edu.cn [Department of Pathophysiology, Shandong University School of Medicine, Jinan 250012 (China); Jia, Ji-Hui, E-mail: jiajihui@sdu.edu.cn [Department of Microbiology, Shandong University School of Medicine, Jinan 250012 (China)

    2011-08-05

    Highlights: {yields} miR-29c was significantly downregulated in HBV-related HCC. {yields} TNFAIP3 was found to be inversely correlated with miR-29c levels and identified as a target of miR-29c. {yields} Overexpression of miR-29c suppressed TNFAIP3. {yields} miR-29c inhibited HBV DNA replication, cell proliferation and induced apoptosis. -- Abstract: Recent studies have revealed that microRNA-29c (miR-29c) is involved in a variety of biological processes including carcinogenesis. Here, we report that miR-29c was significantly downregulated in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) cell lines as well as in clinical tissues compared with their corresponding controls. Tumor necrosis factor alpha-induced protein 3 (TNFAIP3), a key regulator in inflammation and immunity, was found to be inversely correlated with miR-29c levels and was identified as a target of miR-29c. Overexpression of miR-29c in HepG2.2.15 cells effectively suppressed TNFAIP3 expression and HBV DNA replication as well as inhibited cell proliferation and induced apoptosis. We conclude that miR-29c may play an important role as a tumor suppressive microRNA in the development and progression of HBV-related HCC by targeting TNFAIP3. Thus miR-29c and TNFAIP3 represent key diagnostic markers and potential therapeutic targets for the prevention and treatment of HBV infection.

  7. CysLT(1)R antagonists inhibit tumor growth in a xenograft model of colon cancer.

    Science.gov (United States)

    Savari, Sayeh; Liu, Minghui; Zhang, Yuan; Sime, Wondossen; Sjölander, Anita

    2013-01-01

    The expression of the inflammatory G-protein coupled receptor CysLT1R has been shown to be upregulated in colon cancer patients and associated with poor prognosis. The present study investigated the correlation between CysLT1R and colon cancer development in vivo using CysLT1R antagonists (ZM198,615 or Montelukast) and the nude mouse xenograft model. Two drug administration regimens were established. The first regimen was established to investigate the importance of CysLT1R in tumor initiation. Nude mice were inoculated with 50 µM CysLT1R antagonist-pretreated HCT-116 colon cancer cells and received continued treatment (5 mg/kg/day, intraperitoneally). The second regimen aimed to address the role of CysLT1R in tumor progression. Nude mice were inoculated with non-pretreated HCT-116 cells and did not receive CysLT1R antagonist treatment until recordable tumor appearance. Both regimens resulted in significantly reduced tumor size, attributed to changes in proliferation and apoptosis as determined by reduced Ki-67 levels and increased levels of p21(WAF/Cip1) (Pcolon cancer cell line HCT-116 and CysLT1R antagonists. In addition to significant reductions in cell proliferation, adhesion and colony formation, we observed induction of cell cycle arrest and apoptosis in a dose-dependent manner. The ability of Montelukast to inhibit growth of human colon cancer xenograft was further validated by using two additional colon cancer cell lines, SW-480 and HT-29. Our results demonstrate that CysLT1R antagonists inhibit growth of colon cancer xenografts primarily by reducing proliferation and inducing apoptosis of the tumor cells.

  8. Development of a Fluorescent Bodipy Probe for Visualization of the Serotonin 5-HT1A Receptor in Native Cells of the Immune System.

    Science.gov (United States)

    Hernández-Torres, Gloria; Enríquez-Palacios, Ernesto; Mecha, Miriam; Feliú, Ana; Rueda-Zubiaurre, Ainoa; Angelina, Alba; Martín-Cruz, Leticia; Martín-Fontecha, Mar; Palomares, Oscar; Guaza, Carmen; Peña-Cabrera, Eduardo; López-Rodríguez, María L; Ortega-Gutiérrez, Silvia

    2018-05-14

    Serotonin (5-HT) modulates key aspects of the immune system. However, its precise function and the receptors involved in the observed effects have remained elusive. Among the different serotonin receptors, 5-HT 1A plays an important role in the immune system given its presence in cells involved in both the innate and adaptive immune responses, but its actual levels of expression under different conditions have not been comprehensively studied due to the lack of suitable tools. To further clarify the role of 5-HT 1A receptor in the immune system, we have developed a fluorescent small molecule probe that enables the direct study of the receptor levels in native cells. This probe allows direct profiling of the receptor expression in immune cells using flow cytometry. Our results show that important subsets of immune cells including human monocytes and dendritic cells express functional 5-HT 1A and that its activation is associated with anti-inflammatory signaling. Furthermore, application of the probe to the experimental autoimmune encephalomyelitis model of multiple sclerosis demonstrates its potential to detect the specific overexpression of the 5-HT 1A receptor in CD4+ T cells. Accordingly, the probe reported herein represents a useful tool whose use can be extended to study the levels of 5-HT 1A receptor in ex vivo samples of different immune system conditions.

  9. Binding and internalization of NGR-peptide-targeted liposomal doxorubicin (TVT-DOX) in CD13-expressing cells and its antitumor effects.

    Science.gov (United States)

    Garde, Seema V; Forté, André J; Ge, Michael; Lepekhin, Eugene A; Panchal, Chandra J; Rabbani, Shafaat A; Wu, Jinzi J

    2007-11-01

    In an effort to develop new agents and molecular targets for the treatment of cancer, aspargine-glycine-arginine (NGR)-targeted liposomal doxorubicin (TVT-DOX) is being studied. The NGR peptide on the surface of liposomal doxorubicin (DOX) targets an aminopeptidase N (CD13) isoform, specific to the tumor neovasculature, making it a promising strategy. To further understand the molecular mechanisms of action, we investigated cell binding, kinetics of internalization as well as cytotoxicity of TVT-DOX in vitro. We demonstrate the specific binding of TVT-DOX to CD13-expressing endothelial [human umbilical vein endothelial cells (HUVEC) and Kaposi sarcoma-derived endothelial cells (SLK)] and tumor (fibrosarcoma, HT-1080) cells in vitro. Following binding, the drug was shown to internalize through the endosomal pathway, eventually leading to the localization of doxorubicin in cell nuclei. TVT-DOX showed selective toxicity toward CD13-expressing HUVEC, sparing the CD13-negative colon-cancer cells, HT-29. Additionally, the nontargeted counterpart of TVT-DOX, Caelyx, was less cytotoxic to the CD13-positive HUVECs demonstrating the advantages of NGR targeting in vitro. The antitumor activity of TVT-DOX was tested in nude mice bearing human prostate-cancer xenografts (PC3). A significant growth inhibition (up to 60%) of PC3 tumors in vivo was observed. Reduction of tumor vasculature following treatment with TVT-DOX was also apparent. We further compared the efficacies of TVT-DOX and free doxorubicin in the DOX-resistant colon-cancer model, HCT-116, and observed the more pronounced antitumor effects of the TVT-DOX formulation over free DOX. The potential utility of TVT-DOX in a variety of vascularized solid tumors is promising.

  10. BMI-1 targeting interferes with patient-derived tumor-initiating cell survival and tumor growth in prostate cancer

    Science.gov (United States)

    Yusuff, Shamila; Davis, Stephani; Flaherty, Kathleen; Huselid, Eric; Patrizii, Michele; Jones, Daniel; Cao, Liangxian; Sydorenko, Nadiya; Moon, Young-Choon; Zhong, Hua; Medina, Daniel J.; Kerrigan, John; Stein, Mark N.; Kim, Isaac Y.; Davis, Thomas W.; DiPaola, Robert S.; Bertino, Joseph R.; Sabaawy, Hatem E.

    2016-01-01

    Purpose Current prostate cancer (PCa) management calls for identifying novel and more effective therapies. Self-renewing tumor-initiating cells (TICs) hold intrinsic therapy-resistance and account for tumor relapse and progression. As BMI-1 regulates stem cell self-renewal, impairing BMI-1 function for TICs-tailored therapies appears to be a promising approach. Experimental design We have previously developed a combined immunophenotypic and time-of-adherence assay to identify CD49bhiCD29hiCD44hi cells as human prostate TICs. We utilized this assay with patient derived prostate cancer cells and xenograft models to characterize the effects of pharmacological inhibitors of BMI-1. Results We demonstrate that in cell lines and patient-derived TICs, BMI-1 expression is upregulated and associated with stem cell-like traits. From a screened library, we identified a number of post-transcriptional small molecules that target BMI-1 in prostate TICs. Pharmacological inhibition of BMI-1 in patient-derived cells significantly decreased colony formation in vitro and attenuated tumor initiation in vivo, thereby functionally diminishing the frequency of TICs, particularly in cells resistant to proliferation- and androgen receptor (AR)-directed therapies, without toxic effects on normal tissues. Conclusions Our data offer a paradigm for targeting TICs and support the development of BMI-1-targeting therapy for a more effective PCa treatment. PMID:27307599

  11. Increased autoimmune activity against 5-HT: a key component of depression that is associated with inflammation and activation of cell-mediated immunity, and with severity and staging of depression.

    Science.gov (United States)

    Maes, Michael; Ringel, Karl; Kubera, Marta; Berk, Michael; Rybakowski, Janusz

    2012-02-01

    Depression is characterized by inflammation and cell-mediated immune (CMI) activation and autoimmune reactions directed against a multitude of self-epitopes. There is evidence that the inflammatory response in depression causes dysfunctions in the metabolism of 5-HT, e.g. lowering the 5-HT precursor tryptophan, and upregulating 5-HT receptor mRNA. This study has been undertaken to examine autoimmune activity directed against 5-HT in relation to CMI activation and inflammation. 5-HT antibodies were examined in major depressed patients (n=109) versus normal controls (n=35) in relation to serum neopterin and lysozyme, and plasma pro-inflammatory cytokines (PIC), i.e. interleukin-1 (IL-1) and tumor necrosis factor-α (TNFα). Severity of depression was assessed with the Hamilton Depression Rating Scale (HDRS) and severity of fatigue and somatic symptoms with the Fibromyalgia and Chronic Fatigue Syndrome (FF) Rating Scale. The incidence of anti-5-HT antibody activity was significantly higher in depressed patients (54.1%), and in particular in those with melancholia (82.9%), than in controls (5.7%). Patients with positive 5-HT antibodies showed increased serum neopterin and lysozyme, and plasma TNFα and IL-1; higher scores on the HDRS and FF scales, and more somatic symptoms, including malaise and neurocognitive dysfunctions. There was a significant association between autoimmune activity to 5-HT and the number of previous depressive episodes. The autoimmune reactions directed against 5-HT might play a role in the pathophysiology of depression and the onset of severe depression. The strong association between autoimmune activity against 5-HT and inflammation/CMI activation is explained by multiple, reciprocal pathways between these factors. Exposure to previous depressive episodes increases the incidence of autoimmune activity directed against 5-HT, which in turn may increase the likelihood to develop new depressive episodes. These findings suggest that sensitization

  12. Preclinical evaluation of a new, stabilized neurotensin(8--13) pseudopeptide radiolabeled with (99m)tc.

    Science.gov (United States)

    García-Garayoa, Elisa; Bläuenstein, Peter; Bruehlmeier, Matthias; Blanc, Alain; Iterbeke, Koen; Conrath, Peter; Tourwé, Dirk; Schubiger, P August

    2002-03-01

    The rapid degradation of neurotensin (NT) limits its clinical use in cancer imaging and therapy. Thus, a new NT(8--13) pseudopeptide, NT-VIII, was synthesized. Some changes were introduced in the sequence of NT(8--13) to stabilize the molecule against enzymatic degradation: Arg(8) was N-methylated, and Lys and Tle replaced Arg(9) and Ile(12), respectively. Finally, (NalphaHis)Ac was coupled to the N-terminus for (99m)Tc(CO)(3) labeling. This peptide was characterized both in vitro and in vivo. The new analog was labeled with (99m)Tc(CO)(3). Its metabolic stability was analyzed both in human plasma and in HT-29 cells. Binding properties, receptor downregulation, and internalization were tested with HT-29 cells. Biodistribution was evaluated in nude mice with HT-29 xenografts. (99m)Tc(CO)(3)NT-VIII showed a high stability in plasma, where most of the peptide remained intact after 24 h of incubation at 37 degreesC. However, the degradation in HT-29 cells was more rapid (46% of intact (99m)Tc(CO)(3)NT-VIII after 24 h at 37 degreesC). Binding to NT1 receptors (NTR1) was saturable and specific. Scatchard analysis showed a high affinity for (99m)Tc(CO)(3)NT-VIII, with a dissociation constant similar to (125)I-NT (1.8 vs. 1.6 nmol/L). After interacting with NTR1, (99m)Tc(CO)(3)NT-VIII was rapidly internalized, with more than 90% internalized after 30 min. It also distributed and cleared rapidly in nude mice bearing HT-29 xenografts. The highest rates of accumulation were found in kidney and tumor at all time points tested. Tumor uptake was highly specific because it could be blocked by coinjection with a high dose of (NalphaHis)Ac-NT(8--13). Tumors were clearly visualized in scintigraphy images. The changes that were introduced stabilized the molecule against enzymatic degradation without affecting binding properties. Moreover, the increase in stability enhanced tumor uptake, making this derivative a promising candidate for clinical use.

  13. Induction of apoptosis in colon cancer cells treated with isorhamnetin glycosides from Opuntia ficus-indica pads.

    Science.gov (United States)

    Antunes-Ricardo, Marilena; Moreno-García, Beatriz E; Gutiérrez-Uribe, Janet A; Aráiz-Hernández, Diana; Alvarez, Mario M; Serna-Saldivar, Sergio O

    2014-12-01

    (OFI) contains health-promoting compounds like flavonoids, being the isorhamnetin glycosides the most abundant. We evaluated the effect of OFI extracts with different isorhamnetin glycosides against two different human colon cancer cells (HT-29 and Caco2). The extracts were obtained by alkaline hydrolysis with NaOH at 40 °C during 15, 30 or 60 min. Tri and diglycosides were the most abundant isorhamnetin glycosides, therefore these compounds were isolated to compare their cytotoxic effect with the obtained from the extracts. The OFI extracts and purified isorhamnetin glycosides were more cytotoxic against HT-29 cells than Caco2 cells. OFI-30 exhibited the lowest IC50 value against HT-29 (4.9 ± 0.5 μg/mL) and against Caco2 (8.2 ± 0.3 μg/mL). Isorhamnetin diglycosides IG5 and IG6 were more cytotoxic than pure isorhamnetin aglycone or triglycosides when they were tested in HT-29 cells. Bioluminescent analysis revealed increased activity of caspase 3/7 in OFI extracts-treated cells, particularly for the extract with the highest concentration of isorhamnetin triglycosides. Flow cytometry analysis confirmed that OFI extract and isorhamnetin glycosides induced a higher percentage of apoptosis in HT-29 than in Caco2, while isorhamnetin was more apoptotic in Caco2. This research demonstrated that glycosilation affected antiproliferative effect of pure isorhamnetin glycosides or when they are mixed with other phytochemicals in an extract obtained from OFI.

  14. Kefir-isolated bacteria and yeasts inhibit Shigella flexneri invasion and modulate pro-inflammatory response on intestinal epithelial cells.

    Science.gov (United States)

    Bolla, P A; Abraham, A G; Pérez, P F; de Los Angeles Serradell, M

    2016-02-01

    The aim of this work was to evaluate the ability of a kefir-isolated microbial mixture containing three bacterial and two yeast strains (MM) to protect intestinal epithelial cells against Shigella flexneri invasion, as well as to analyse the effect on pro-inflammatory response elicited by this pathogen. A significant decrease in S. flexneri strain 72 invasion was observed on both HT-29 and Caco-2 cells pre-incubated with MM. Pre-incubation with the individual strains Saccharomyces cerevisiae CIDCA 8112 or Lactococcus lactis subsp. lactis CIDCA 8221 also reduced the internalisation of S. flexneri into HT-29 cells although in a lesser extent than MM. Interestingly, Lactobacillus plantarum CIDCA 83114 exerted a protective effect on the invasion of Caco-2 and HT-29 cells by S. flexneri. Regarding the pro-inflammatory response on HT-29 cells, S. flexneri infection induced a significant activation of the expression of interleukin 8 (IL-8), chemokine (C-C motif) ligand 20 (CCL20) and tumour necrosis factor alpha (TNF-α) encoding genes (P<0.05), whereas incubation of cells with MM did not induce the expression of any of the mediators assessed. Interestingly, pre-incubation of HT-29 monolayer with MM produced an inhibition of S. flexneri-induced IL-8, CCL20 and TNF-α mRNA expression. In order to gain insight on the effect of MM (or the individual strains) on this pro-inflammatory response, a series of experiments using a HT-29-NF-κB-hrGFP reporter system were performed. Pre-incubation of HT-29-NF-κB-hrGFP cells with MM significantly dampened Shigella-induced activation. Our results showed that the contribution of yeast strain Kluyveromyces marxianus CIDCA 8154 seems to be crucial in the observed effect. In conclusion, results presented in this study demonstrate that pre-treatment with a microbial mixture containing bacteria and yeasts isolated from kefir, resulted in inhibition of S. flexneri internalisation into human intestinal epithelial cells, along with the

  15. Targeting carbonic anhydrase IX by nitroimidazole based sulfamides enhances the therapeutic effect of tumor irradiation: A new concept of dual targeting drugs

    International Nuclear Information System (INIS)

    Dubois, Ludwig; Peeters, Sarah G.J.A.; Kuijk, Simon J.A. van; Yaromina, Ala; Lieuwes, Natasja G.; Saraya, Ruchi; Biemans, Rianne; Rami, Marouan; Parvathaneni, Nanda Kumar; Vullo, Daniela; Vooijs, Marc; Supuran, Claudiu T.; Winum, Jean-Yves

    2013-01-01

    Background and purpose: Carbonic anhydrase IX (CAIX) plays an important role in pH regulation processes critical for tumor cell growth and metastasis. We hypothesize that a dual targeting bioreductive nitroimidazole based anti-CAIX sulfamide drug (DH348) will reduce tumor growth and sensitize tumors to irradiation in a CAIX dependent manner. Material and methods: The effect of the dual targeting anti-CAIX (DH348) and its single targeting control drugs on extracellular acidification and radiosensitivity was examined in HT-29 colorectal carcinoma cells. Tumor growth and time to reach 4× start volume (T4×SV) was monitored for animals receiving DH348 (10 mg/kg) combined with tumor single dose irradiation (10 Gy). Results: In vitro, DH348 reduced hypoxia-induced extracellular acidosis, but did not change hypoxic radiosensitivity. In vivo, DH348 monotherapy decreased tumor growth rate and sensitized tumors to radiation (enhancement ratio 1.50) without systemic toxicity only for CAIX expressing tumors. Conclusions: A newly designed nitroimidazole and sulfamide dual targeting drug reduces hypoxic extracellular acidification, slows down tumor growth at nontoxic doses and sensitizes tumors to irradiation all in a CAIX dependent manner, suggesting no “off-target” effects. Our data therefore indicate the potential utility of a dual drug approach as a new strategy for tumor-specific targeting

  16. Use of the Concept of Equivalent Biologically Effective Dose (BED) to Quantify the Contribution of Hyperthermia to Local Tumor Control in Radiohyperthermia Cervical Cancer Trials, and Comparison With Radiochemotherapy Results

    International Nuclear Information System (INIS)

    Plataniotis, George A.; Dale, Roger G.

    2009-01-01

    Purpose: To express the magnitude of contribution of hyperthermia to local tumor control in radiohyperthermia (RT/HT) cervical cancer trials, in terms of the radiation-equivalent biologically effective dose (BED) and to explore the potential of the combined modalities in the treatment of this neoplasm. Materials and Methods: Local control rates of both arms of each study (RT vs. RT+HT) reported from randomized controlled trials (RCT) on concurrent RT/HT for cervical cancer were reviewed. By comparing the two tumor control probabilities (TCPs) from each study, we calculated the HT-related log cell-kill and then expressed it in terms of the number of 2 Gy fraction equivalents, for a range of tumor volumes and radiosensitivities. We have compared the contribution of each modality and made some exploratory calculations on the TCPs that might be expected from a combined trimodality treatment (RT+CT+HT). Results: The HT-equivalent number of 2-Gy fractions ranges from 0.6 to 4.8 depending on radiosensitivity. Opportunities for clinically detectable improvement by the addition of HT are only available in tumors with an alpha value in the approximate range of 0.22-0.28 Gy -1 . A combined treatment (RT+CT+HT) is not expected to improve prognosis in radioresistant tumors. Conclusion: The most significant improvements in TCP, which may result from the combination of RT/CT/HT for locally advanced cervical carcinomas, are likely to be limited only to those patients with tumors of relatively low-intermediate radiosensitivity.

  17. Malignant granular cell tumor of the abdominal wall mimicking desmoid tumor: A case report with CT imaging findings and literature review

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Je Hong; Ahn, Sung Eun; Lee, Dong Ho; Park, Seong Jin; Moon, Sung Kyoung; Lim, Joo Won [Dept. Radiology, Kyung Hee University Hospital, Kyung Hee University School of Medicine, Seoul (Korea, Republic of)

    2016-08-15

    Granular cell tumors (GCTs) are extremely rare mesenchymal neoplasms of Schwann cell origin. Malignant GCTs (MGCTs) comprise 0.5-2% of all GCTs. In the present report, we describe a case of a 66-year-old man with MGCT of the abdominal wall. The patient visited our hospital due to a recently growing palpable soft tissue mass in the abdominal wall. Computed tomography scan revealed a 4.3 × 4.1 × 2.9 cm sized mass arising from the left abdominal wall, which was contemplated as a desmoid tumor before surgical excision. Histopathological examination confirmed MGCT.

  18. Liposomes containing alkylated methotrexate analogues for phospholipase A(2) mediated tumor targeted drug delivery

    DEFF Research Database (Denmark)

    Kaasgaard, Thomas; Andresen, Thomas Lars; Jensen, Simon Skøde

    2009-01-01

    of alkylated compounds in liposomes, it was demonstrated that the MTX-analogue partitioned into the water phase and thereby became available for cell uptake. It was concluded that liposomes containing alkylated MTX-analogues show promise as a drug delivery system, although the MTX-analogue needs to be more......Two lipophilic methotrexate analogues have been synthesized and evaluated for cytotoxicity against KATO III and HT-29 human colon cancer cells. Both analogues contained a C-16-alkyl chain attached to the gamma-carboxylic acid and one of the analogues had an additional benzyl group attached...... cytotoxicity was incorporated into liposomes that were designed to be particularly Susceptible to a liposome degrading enzyme, secretory phospholipase A(2) (sPLA(2)), which is found in high concentrations in tumors of several different cancer types. Liposome incorporation was investigated by differential...

  19. Arctigenin induces apoptosis in colon cancer cells through ROS/p38MAPK pathway.

    Science.gov (United States)

    Li, Qing-chun; Liang, Yun; Tian, Yuan; Hu, Guang-rui

    2016-01-01

    In the current study the antiproliferative effect of arctigenin, plant lignin, was evaluated on human colon cancer cell line HT-29. Furthermore, attempts were made to explore the signaling mechanism which may be responsible for its effect. Cell growth inhibition was assessed by MTT and LDH assays. Flow cytometric analysis was performed to determine cell arrest in the cell cycle phase and apoptosis. Furthermore, to confirm the apoptotic activity of arctigenin, caspase-9 and -3 activities analysis was performed. The levels of reactive oxygen species (ROS) and p38 mitogen activated protein kinase (MAPK) were investigated to determine their role in inducing apoptosis in arctigenin-treated HT-29 colon cancer cell line. MTT and LDH results demonstrated significant cell growth inhibitory effect of arctigenin on HT-29 cells in a dose-dependent manner. Furthermore, increase in cell number arrested at G2/M phase was observed in flow cytometric analysis upon arctigenin treatment. In addition, arctigenin increased the apoptotic ratio in a dose-dependent manner. The involvement of intrinsic apoptotic pathway was indicated by the activation of caspase-9 and -3. Moreover, increased ROS production, activation of p38 MAPK and changes in mitochondrial membrane potential (ΔΨm) also revealed the role of intrinsic apoptotic signaling pathway in cell growth inhibition after arctigenin exposure. Arctigenin induces apoptosis in HT-29 colon cancer cells by regulating ROS and p38 MAPK pathways.

  20. Inhibition of colon cancer growth by methylselenocysteine-induced angiogenic chemomodulation is influenced by histologic characteristics of the tumor.

    Science.gov (United States)

    Bhattacharya, Arup; Tóth, Károly; Sen, Arindam; Seshadri, Mukund; Cao, Shousong; Durrani, Farukh A; Faber, Erik; Repasky, Elizabeth A; Rustum, Youcef M

    2009-07-01

    Despite an armamentarium that is wide in range, scope of action, and target, chemotherapy has limited success in colorectal cancer (CRC). Novel approaches are needed to overcome tumor barriers to chemotherapy that includes an abnormal tumor vasculature constituting a poor drug delivery system. We have previously shown that 5-methylselenocysteine (MSC) enhances therapeutic efficacy of irinotecan in various human tumor xenografts. We have recently demonstrated that MSC through vascular normalization leads to better tumor vascular function in vivo. In this study, we examined the role of MSC on tumor vasculature, interstitial fluid pressure (IFP) and drug delivery in 2 histologically distinct CRC xenografts, HCT-8 (uniformly poorly differentiated) and HT-29 (moderately differentiated tumor with avascular glandular regions). The presence of specific histologic structures as a barrier to therapy in these xenografts and their clinical relevance was studied using tissue microarray of human surgical samples of CRC. MSC led to a significant tumor growth inhibition, a reduced microvessel density, and a more normalized vasculature in both colorectal xenografts. While IFP was found to be significantly improved in HCT-8, an improved intratumoral doxorubicin delivery seen in both xenografts could explain the observed increase in therapeutic efficacy. Differentiated, glandular, avascular and hypoxic regions that contribute to tumor heterogeneity in HT-29 were also evident in the majority of surgical samples of CRC. Such regions constitute a physical barrier to chemotherapy and can confer drug resistance. Our results indicate that MSC could enhance chemotherapeutic efficacy in human CRC, especially in CRC with few or no hypoxic regions.

  1. Neuroprotective Properties of Compounds Extracted from Dianthus superbus L. against Glutamate-induced Cell Death in HT22 Cells.

    Science.gov (United States)

    Yun, Bo-Ra; Yang, Hye Jin; Weon, Jin Bae; Lee, Jiwoo; Eom, Min Rye; Ma, Choong Je

    2016-01-01

    Dianthus superbus L. has been used in Chinese herbal medicine as a diuretic and anti-inflammatory agent. In this study, we isolated ten bioactive compounds from D. superbus and evaluated their neuroprotective activity against glutamate-induced cell death in the hippocampal neuronal HT22 cells. New compound, (E)-methyl-4-hydroxy-4-(8a-methyl-3-oxodecahydronaphthalen-4a-yl) (1) and, nine known compounds, diosmetin-7-O (2'',6''-di-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside (2), 4-hydroxy-3-methoxy-pentyl ester benzenepropanoic acid (3), vanillic acid (4), 4-hydroxy-benzeneacetic acid (5), 4-methoxybenzeneacetic acid (6), (E)-4-methoxycinnamic acid (7), 3-methoxy-4-hydroxyphenylethanol (8), hydroferulic acid (9), and methyl hydroferulate (10), were isolated by bioactivity-guided separation. Structures of the isolated compounds were identified on the basis of (1)H nuclear magnetic resonance (NMR), (13)C NMR, and two-dimensional NMR spectra, while their neuroprotective properties were evaluated by performing the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. D. superbus extract had a neuroprotective effect and isolated 10 compounds. Among the compounds, compounds 5 and 6 effectively protected HT22 cells against glutamate toxicity. In conclusion, the extract of D. superbus and compounds isolated from it exhibited neuroprotective properties, suggesting therapeutic potential for applications in neurotoxic diseases. D. superbus extract significantly protected on glutamate-induced cell death in HT22 cellsNew compound, (E)-methyl-4-hydroxy-4-(8a-methyl-3-oxodecahydronaphthalen-4a-yl) (1) and, nine known compounds, diosmetin-7-O(2'',6''-di-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside (2), 4-hydroxy-3-methoxy-pentyl ester benzenepropanoic acid (3), vanillic acid (4), 4-hydroxy-benzeneacetic acid (5), 4-methoxybenzeneacetic acid (6), (E)-4-methoxycinnamic acid (7), 3-methoxy-4-hydroxyphenylethanol (8), hydroferulic acid (9), and methyl hydroferulate (10

  2. Tumor-altered dendritic cell function: implications for anti-tumor immunity

    Directory of Open Access Journals (Sweden)

    Kristian Michael Hargadon

    2013-07-01

    Full Text Available Dendritic cells are key regulators of both innate and adaptive immunity, and the array of immunoregulatory functions exhibited by these cells is dictated by their differentiation, maturation, and activation status. Although a major role for these cells in the induction of immunity to pathogens has long been appreciated, data accumulated over the last several years has demonstrated that DC are also critical regulators of anti-tumor immune responses. However, despite the potential for stimulation of robust anti-tumor immunity by DC, tumor-altered DC function has been observed in many cancer patients and tumor-bearing animals and is often associated with tumor immune escape. Such dysfunction has significant implications for both the induction of natural anti-tumor immune responses as well as the efficacy of immunotherapeutic strategies that target endogenous DC in situ or that employ exogenous DC as part of anti-cancer immunization maneuvers. In this review, the major types of tumor-altered DC function will be described, with emphasis on recent insights into the mechanistic bases for the inhibition of DC differentiation from hematopoietic precursors, the altered programming of DC precursors to differentiate into myeloid-derived suppressor cells or tumor-associated macrophages, the suppression of DC maturation and activation, and the induction of immunoregulatory DC by tumors, tumor-derived factors, and tumor-associated cells within the milieu of the tumor microenvironment. The impact of these tumor-altered cells on the quality of the overall anti-tumor immune response will also be discussed. Finally, this review will also highlight questions concerning tumor-altered DC function that remain unanswered, and it will address factors that have limited advances in the study of this phenomenon in order to focus future research efforts in the field on identifying strategies for interfering with tumor-associated DC dysfunction and improving DC-mediated anti-tumor

  3. Parallel mRNA, proteomics and miRNA expression analysis in cell line models of the intestine.

    Science.gov (United States)

    O'Sullivan, Finbarr; Keenan, Joanne; Aherne, Sinead; O'Neill, Fiona; Clarke, Colin; Henry, Michael; Meleady, Paula; Breen, Laura; Barron, Niall; Clynes, Martin; Horgan, Karina; Doolan, Padraig; Murphy, Richard

    2017-11-07

    To identify miRNA-regulated proteins differentially expressed between Caco2 and HT-29: two principal cell line models of the intestine. Exponentially growing Caco-2 and HT-29 cells were harvested and prepared for mRNA, miRNA and proteomic profiling. mRNA microarray profiling analysis was carried out using the Affymetrix GeneChip Human Gene 1.0 ST array. miRNA microarray profiling analysis was carried out using the Affymetrix Genechip miRNA 3.0 array. Quantitative Label-free LC-MS/MS proteomic analysis was performed using a Dionex Ultimate 3000 RSLCnano system coupled to a hybrid linear ion trap/Orbitrap mass spectrometer. Peptide identities were validated in Proteome Discoverer 2.1 and were subsequently imported into Progenesis QI software for further analysis. Hierarchical cluster analysis for all three parallel datasets (miRNA, proteomics, mRNA) was conducted in the R software environment using the Euclidean distance measure and Ward's clustering algorithm. The prediction of miRNA and oppositely correlated protein/mRNA interactions was performed using TargetScan 6.1. GO biological process, molecular function and cellular component enrichment analysis was carried out for the DE miRNA, protein and mRNA lists via the Pathway Studio 11.3 Web interface using their Mammalian database. Differential expression (DE) profiling comparing the intestinal cell lines HT-29 and Caco-2 identified 1795 Genes, 168 Proteins and 160 miRNAs as DE between the two cell lines. At the gene level, 1084 genes were upregulated and 711 were downregulated in the Caco-2 cell line relative to the HT-29 cell line. At the protein level, 57 proteins were found to be upregulated and 111 downregulated in the Caco-2 cell line relative to the HT-29 cell line. Finally, at the miRNAs level, 104 were upregulated and 56 downregulated in the Caco-2 cell line relative to the HT-29 cell line. Gene ontology (GO) analysis of the DE mRNA identified cell adhesion, migration and ECM organization, cellular lipid

  4. Performance and stability of P3HT/PCBM bulk heterojunction organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yumnam, Nivedita; Bom, Sidhant; Wagner, Veit [School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen (Germany)

    2011-07-01

    Organic photovoltaic cells are promising candidates for large-area, low-cost production of solar cells. However, the low stability in conjunction with their medium performance is one of the major drawbacks in comparison to their inorganic counterparts. In this investigation environmental conditions for degradation of bulk heterojunction P3HT/PCBM solar cells are systematically analyzed over a period of one week. Devices were prepared by spin coating from different compositions of P3HT and PCBM in Chlorobenzene (C{sub 6}H{sub 5}Cl). Performance parameters, efficiency and I-V characteristics were determined in a N{sub 2} glove box showing optimized efficiency for a 1:1 ratio. Degradation behavior in N{sub 2} atmosphere, vacuum and solvent-enriched atmosphere (Chlorobenzene) showed best results for vacuum stored solar cells while for solvent-enriched atmosphere rapid degradation was observed. Remarkable degradation (open-circuit voltage and short-circuit current reduced to 90% and 60% after one week) was also found for N{sub 2} atmosphere of the glove box used for the solar cell production. Residual solvent vapor left dispersed in the atmosphere of the glovebox after the spin coating process is identified as an important parameter of this degradation.

  5. Preclinical evaluation of destruxin B as a novel Wnt signaling target suppressing proliferation and metastasis of colorectal cancer using non-invasive bioluminescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Chi-Tai [Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan (China); Center of Excellence for Cancer Research, Taipei Medical University, Taipei, Taiwan (China); Department of Surgery, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan (China); Rao, Yerra Koteswara [Institute of Biochemical Sciences and Technology, Chaoyang University of Technology, Taichung, Taiwan (China); Ye, Min [Department of Natural Medicine, School of Pharmaceutical Sciences, Peking University, Beijing (China); Wu, Wen-Shi [Department of Horticulture and Biotechnology, Chinese Culture University, Taipei, Taiwan (China); Chang, Tung-Chen [Department of Surgery, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan (China); Wang, Liang-Shun [Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan (China); Division of Thoracic Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan (China); Wu, Chih-Hsiung [Center of Excellence for Cancer Research, Taipei Medical University, Taipei, Taiwan (China); Department of Surgery, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan (China); Wu, Alexander T.H., E-mail: chaw1211@tmu.edu.tw [Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan (China); Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, Taiwan (China); Tzeng, Yew-Min, E-mail: ymtzeng@cyut.edu.tw [Institute of Biochemical Sciences and Technology, Chaoyang University of Technology, Taichung, Taiwan (China)

    2012-05-15

    In continuation to our studies toward the identification of direct anti-cancer targets, here we showed that destruxin B (DB) from Metarhizium anisopliae suppressed the proliferation and induced cell cycle arrest in human colorectal cancer (CRC) HT29, SW480 and HCT116 cells. Additionally, DB induced apoptosis in HT29 cells by decreased expression level of anti-apoptotic proteins Bcl-2 and Bcl-xL while increased pro-apoptotic Bax. On the other hand, DB attenuated Wnt-signaling by downregulation of β-catenin, Tcf4 and β-catenin/Tcf4 transcriptional activity, concomitantly with decreased expression of β-catenin target genes cyclin D1, c-myc and survivin. Furthermore, DB affected the migratory and invasive ability of HT29 cells through suppressed MMPs-2 and -9 enzymatic activities. We also found that DB targeted the MAPK and/or PI3K/Akt pathway by reduced expression of Akt, IKK-α, JNK, NF-κB, c-Jun and c-Fos while increased that of IκBα. Finally, we demonstrated that DB inhibited tumorigenesis in HT29 xenograft mice using non-invasive bioluminescence technique. Consistently, tumor samples from DB-treated mice demonstrated suppressed expression of β-catenin, cyclin D1, survivin, and endothelial marker CD31 while increased caspase-3 expression. Collectively, our data supports DB as an inhibitor of Wnt/β-catenin/Tcf signaling pathway that may be beneficial in the CRC management. Highlights: ► Destruxin B (DB) inhibited colorectal cancer cells growth and induced apoptosis. ► MAPK and/or PI3K/Akt cascade cooperates in DB induced apoptosis. ► DB affected the migratory and invasive ability of HT29 cells through MMP-9. ► DB attenuated Wnt-signaling components β-catenin, Tcf4. ► DB attenuated cyclin D1, c-myc, survivin and tumorigenesis in HT29 xenograft mice.

  6. Bipolar polaron pair recombination in P3HT/PCBM solar cells

    DEFF Research Database (Denmark)

    Kupijai, Alexander J.; Behringer, Konstantin M.; Corazza, Michael

    2015-01-01

    . However, in organic devices the nature of the dominant spin-dependent processes is still subject to considerable debate. Using multi-frequency pulsed electrically detected magnetic resonance (pEDMR), we show that the spin-dependent response of P3HT/PCBM solar cells at low temperatures is governed...... of the electron spin on charge transport which can be exploited in spintronic devices or to improve solar cell eciencies. Magnetic resonance techniques are particularly helpful to elucidate the microscopic structure of paramagnetic states in semiconductors as well as the transport processes they are involved in...

  7. Emergent Stratification in Solid Tumors Selects for Reduced Cohesion of Tumor Cells: A Multi-Cell, Virtual-Tissue Model of Tumor Evolution Using CompuCell3D.

    Directory of Open Access Journals (Sweden)

    Maciej H Swat

    Full Text Available Tumor cells and structure both evolve due to heritable variation of cell behaviors and selection over periods of weeks to years (somatic evolution. Micro-environmental factors exert selection pressures on tumor-cell behaviors, which influence both the rate and direction of evolution of specific behaviors, especially the development of tumor-cell aggression and resistance to chemotherapies. In this paper, we present, step-by-step, the development of a multi-cell, virtual-tissue model of tumor somatic evolution, simulated using the open-source CompuCell3D modeling environment. Our model includes essential cell behaviors, microenvironmental components and their interactions. Our model provides a platform for exploring selection pressures leading to the evolution of tumor-cell aggression, showing that emergent stratification into regions with different cell survival rates drives the evolution of less cohesive cells with lower levels of cadherins and higher levels of integrins. Such reduced cohesivity is a key hallmark in the progression of many types of solid tumors.

  8. Expression of CD74 in bladder cancer and its suppression in association with cancer proliferation, invasion and angiogenesis in HT-1376 cells

    Science.gov (United States)

    Gai, Jun-Wei; Wahafu, Wasilijiang; Song, Liming; Ping, Hao; Wang, Mingshuai; Yang, Feiya; Niu, Yinong; Qing, Wei; Xing, Nianzeng

    2018-01-01

    The aim of the present study was to investigate the expression and potential roles of CD74 in human urothelial cell carcinoma of the bladder (UCB) in vitro and in vivo. CD74 and macrophage migration inhibitory factor (MIF) were located and assayed in normal and UCB samples and cell lines using immunostaining. CD74 was knocked down using CD74 shRNA lentiviral particles in HT-1376 cells. The proliferative, invasive potential and microvessel density (MVD) of knockdown-CD74 HT-1376 cells were analyzed in vitro or in vivo. The expression of CD74 in an additional high grade UCB J82 cell line was also verified in vivo. All experiments were repeated at least 3 times. The majority of muscle-invasive bladder cancer (MIBC) samples, and only one high grade UCB cell line, HT-1376, expressed CD74, compared with normal, non-muscle-invasive bladder cancer (NMIBC) samples and other cell lines. The levels of proliferation and invasion were decreased in the CD74 knockdown-HT-1376 cells, and western blotting assay indicated that the levels of proteins associated with proliferation, apoptosis and invasion in the cells were affected correspondingly by different treatments in vitro. The tumorigenesis and MVD assays indicated less proliferation and angiogenesis in the knockdown-HT-1376 cells compared with the scramble cells. Notably, J82 cells exhibiting no signal of CD74 in vitro presented the expression of CD74 in vivo. The present study revealed the potential roles of CD74 in the proliferation, invasion and angiogenesis of MIBC, and that it may serve as a potential therapeutic target for UCB, but additional studies are required.

  9. Antiangiogenic Agent Might Upgrade tumor Cell Sensitivity to Ionizing Radiation

    International Nuclear Information System (INIS)

    Badr, N.M.S.A.

    2013-01-01

    The understanding of the fundamental role of angiogenesis and metastasis in cancer growth has led to tremendous interest in research regarding its regulatory mechanisms and clinical implications in the management of cancer. The present study was conducted to evaluate the influence of the angiogenic regulators modification on the tumor growth and the cell sensitivity to ionizing radiation targeting the improvement of cancer therapeutic protocols. Accordingly, the antiangiogenic activity of apigenin and selenium was tested in vitro via MTT assay. The action of Apigenin and or Selenium was examined in vivo by using a model of solid tumor carcinoma (EAC). The growth rate of solid tumor in all experimental groups was measured by Caliper. The irradiated mice were exposed to 6.5 Gy of gamma rays. Apigenin 50 mg/kg body weight and selenium 5 μg per mice were daily administrated for 14 consecutive days after tumor volume reached 1mm 3 . The angiogenic activators TNF-α (key cytokine) in spleen, serum MMP 2 and MMP 9, liver and tumor NO, the lipid peroxidation (LPx) and angiogenic inhibitor TIMP-1 in spleen as well as, antioxidant markers (CAT, SOD, GPX) in tumor and liver tissue and DNA fragmentation in splenocytes were estimated to monitor efficacy of Apigenin and selenium in cancer treatment strategy. All parameters were determined as a time course on days 16 and 22 after tumor volume reached 1mm 3 . The using of MTT assay on EAC cells shows inhibition in EAC cell proliferation after the incubation with apigenin and /or selenium. The administration of apigenin and /or selenium to mice bearing tumor and to irradiated mice bearing tumor reduce significantly the TNF-α expression, MMP 2,9 , NO , LPx level and increased the antioxidant enzymes (GPx , SOD and CAT) activities. The DNA fragmentation and the antiangiogenic factors TIMP-1 were significantly increased when compared with their values in mice bearing tumor or in irradiated mice bearing tumor. From the results

  10. The novel anthraquinone derivative IMP1338 induces death of human cancer cells by p53-independent S and G2/M cell cycle arrest.

    Science.gov (United States)

    Choi, Hyun Kyung; Ryu, Hwani; Son, A-Rang; Seo, Bitna; Hwang, Sang-Gu; Song, Jie-Young; Ahn, Jiyeon

    2016-04-01

    To identify novel small molecules that induce selective cancer cell death, we screened a chemical library containing 1040 compounds in HT29 colon cancer and CCD18-Co normal colon cells, using a phenotypic cell-based viability assay system with the Cell Counting Kit-8 (CCK-8). We discovered a novel anthraquinone derivative, N-(4-[{(9,10-dioxo-9,10-dihydro-1-anthracenyl)sulfonyl}amino]phenyl)-N-methylacetamide (IMP1338), which was cytotoxic against the human colon cancer cells tested. The MTT cell viability assay showed that treatment with IMP1338 selectively inhibited HCT116, HCT116 p53(-/-), HT29, and A549 cancer cell proliferation compared to that of Beas2B normal epithelial cells. To elucidate the cellular mechanism underlying the cytotoxicity of IMP1338, we examined the effect of IMP1338 on the cell cycle distribution and death of cancer cells. IMP1338 treatment significantly arrested the cell cycle at S and G2/M phases by DNA damage and led to apoptotic cell death, which was determined using FACS analysis with Annexin V/PI double staining. Furthermore, IMP1338 increased caspase-3 cleavage in wild-type p53, p53 knockout HCT116, and HT29 cells as determined using immunoblotting. In addition, IMP1338 markedly induced the phosphorylation of histone H2AX and Chk1 in both cell lines while the combination of 5-fluorouracil (5-FU) and radiation inhibited the viability of HCT116, HCT116 p53(-/-), and HT29 cells compared to 5-FU or radiation alone. Our findings indicated that IMP1338 induced p53-independent cell death through S and G2/M phase arrest as well as DNA damage. These results provide a basis for future investigations assessing the promising anticancer properties of IMP1338. Copyright © 2016. Published by Elsevier Masson SAS.

  11. Lebein, a snake venom disintegrin, suppresses human colon cancer cells proliferation and tumor-induced angiogenesis through cell cycle arrest, apoptosis induction and inhibition of VEGF expression.

    Science.gov (United States)

    Zakraoui, Ons; Marcinkiewicz, Cezary; Aloui, Zohra; Othman, Houcemeddine; Grépin, Renaud; Haoues, Meriam; Essafi, Makram; Srairi-Abid, Najet; Gasmi, Ammar; Karoui, Habib; Pagès, Gilles; Essafi-Benkhadir, Khadija

    2017-01-01

    Lebein, is an heterodimeric disintegrin isolated from Macrovipera lebetina snake venom that was previously characterized as an inhibitor of ADP-induced platelet aggregation. In this study, we investigated the effect of Lebein on the p53-dependent growth of human colon adenocarcinoma cell lines. We found that Lebein significantly inhibited LS174 (p53wt), HCT116 (p53wt), and HT29 (p53mut) colon cancer cell viability by inducing cell cycle arrest through the modulation of expression levels of the tumor suppression factor p53, cell cycle regulating proteins cyclin D1, CDK2, CDK4, retinoblastoma (Rb), CDK1, and cyclin-dependent kinase inhibitors p21 and p27. Interestingly, Lebein-induced apoptosis of colon cancer cells was dependent on their p53 status. Thus, in LS174 cells, cell death was associated with PARP cleavage and the activation of caspases 3 and 8 while in HCT116 cells, Lebein induced caspase-independent apoptosis through increased expression of apoptosis inducing factor (AIF). In LS174 cells, Lebein triggers the activation of the MAPK ERK1/2 pathway through induction of reactive oxygen species (ROS). It also decreased cell adhesion and migration to fibronectin through down regulation of α5β1 integrin. Moreover, Lebein significantly reduced the expression of two angiogenesis stimulators, Vascular Endothelial Growth Factor (VEGF) and Neuropilin 1 (NRP1). It inhibited the VEGF-induced neovascularization process in the quail embryonic CAM system and blocked the development of human colon adenocarcinoma in nude mice. Overall, our work indicates that Lebein may be useful to design a new therapy against colon cancer. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Effects of tumor necrosis factor-alpha and interferon-gamma on expressions of matrix metalloproteinase-2 and -9 in human bladder cancer cells.

    Science.gov (United States)

    Shin, K Y; Moon, H S; Park, H Y; Lee, T Y; Woo, Y N; Kim, H J; Lee, S J; Kong, G

    2000-10-31

    We have investigated the effects of tumor necrosis factor-alpha (TNF-alpha) and interferon (INF-gamma), the potent Bacillus Calmette-Guerin (BCG)-induced cytokines on the production of MMP-2, MMP-9, TIMP-1, TIMP-2 and MT1-MMP in high grade human bladder cancer cell lines, T-24, J-82 and HT-1376 cell lines. MMP-2 expression and activity were decreased in T-24 cells treated with both cytokines in a dose dependent manner. However, J-82 cells treated with TNF-alpha and INF-gamma revealed dose dependent increases of MMP-9 expression and activity with similar baseline expression and activity of MMP-2. HT-1376 cells after exposure to TNF-alpha only enhanced the expression and activity of MMP-9. These results indicate that TNF-alpha and INF-gamma could regulate the production of MMP-2 or MMP-9 on bladder cancer cells and their patterns of regulation are cell specific. Furthermore, this diverse response of bladder cancer cells to TNF-alpha and INF-gamma suggests that BCG immunotherapy may enhance the invasiveness of bladder cancer in certain conditions with induction of MMPs.

  13. The Mutational Landscape of Circulating Tumor Cells in Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Yuji Mishima

    2017-04-01

    Full Text Available The development of sensitive and non-invasive “liquid biopsies” presents new opportunities for longitudinal monitoring of tumor dissemination and clonal evolution. The number of circulating tumor cells (CTCs is prognostic in multiple myeloma (MM, but there is little information on their genetic features. Here, we have analyzed the genomic landscape of CTCs from 29 MM patients, including eight cases with matched/paired bone marrow (BM tumor cells. Our results show that 100% of clonal mutations in patient BM were detected in CTCs and that 99% of clonal mutations in CTCs were present in BM MM. These include typical driver mutations in MM such as in KRAS, NRAS, or BRAF. These data suggest that BM and CTC samples have similar clonal structures, as discordances between the two were restricted to subclonal mutations. Accordingly, our results pave the way for potentially less invasive mutation screening of MM patients through characterization of CTCs.

  14. Tumor-specific CD4+ T cells develop cytotoxic activity and eliminate virus-induced tumor cells in the absence of regulatory T cells.

    Science.gov (United States)

    Akhmetzyanova, Ilseyar; Zelinskyy, Gennadiy; Schimmer, Simone; Brandau, Sven; Altenhoff, Petra; Sparwasser, Tim; Dittmer, Ulf

    2013-02-01

    The important role of tumor-specific cytotoxic CD8(+) T cells is well defined in the immune control of the tumors, but the role of effector CD4(+) T cells is poorly understood. In the current research, we have used a murine retrovirus-induced tumor cell line of C57BL/6 mouse origin, namely FBL-3 cells, as a model to study basic mechanisms of immunological control and escape during tumor formation. This study shows that tumor-specific CD4(+) T cells are able to protect against virus-induced tumor cells. We show here that there is an expansion of tumor-specific CD4(+) T cells producing cytokines and cytotoxic molecule granzyme B (GzmB) in the early phase of tumor growth. Importantly, we demonstrate that in vivo depletion of regulatory T cells (Tregs) and CD8(+) T cells in FBL-3-bearing DEREG transgenic mice augments IL-2 and GzmB production by CD4(+) T cells and increases FV-specific CD4(+) T-cell effector and cytotoxic responses leading to the complete tumor regression. Therefore, the capacity to reject tumor acquired by tumor-reactive CD4(+) T cells largely depends on the direct suppressive activity of Tregs. We suggest that a cytotoxic CD4(+) T-cell immune response may be induced to enhance resistance against oncovirus-associated tumors.

  15. Psychopharmacology of 5-HT{sub 1A} receptors

    Energy Technology Data Exchange (ETDEWEB)

    Cowen, Philip J

    2000-07-01

    Serotonin{sub 1A} (5-HT{sub 1A}) receptors are located on both 5-HT cell bodies where they act as inhibitory autoreceptors and at postsynaptic sites where they mediate the effects of 5-HT released from nerve terminals. The sensitivity of 5-HT{sub 1A} receptors in humans can be measured using the technique of pharmacological challenge. For example, acute administration of a selective 5-HT{sub 1A} receptor agonist, such as ipsapirone, decreases body temperature and increases plasma cortisol through activation of pre- and postsynaptic 5-HT{sub 1A} receptors, respectively. Use of this technique has demonstrated that unmedicated patients with major depression have decreased sensitivity of both pre- and postsynaptic 5-HT{sub 1A} receptors. Treatment with selective serotonin reuptake inhibitors further down-regulates 5-HT{sub 1A} receptor activity. Due to the hypotheses linking decreased sensitivity of 5-HT{sub 1A} autoreceptors with the onset of antidepressant activity, there is current interest in the therapeutic efficacy of combined treatment with selective serotonin reuptake inhibitors and 5-HT{sub 1A} receptor antagonists.

  16. Novel oxindole derivatives prevent oxidative stress-induced cell death in mouse hippocampal HT22 cells.

    Science.gov (United States)

    Hirata, Yoko; Yamada, Chika; Ito, Yuki; Yamamoto, Shotaro; Nagase, Haruna; Oh-Hashi, Kentaro; Kiuchi, Kazutoshi; Suzuki, Hiromi; Sawada, Makoto; Furuta, Kyoji

    2018-03-15

    The current medical and surgical therapies for neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease offer symptomatic relief but do not provide a cure. Thus, small synthetic compounds that protect neuronal cells from degeneration are critically needed to prevent and treat these. Oxidative stress has been implicated in various pathophysiological conditions, including neurodegenerative diseases. In a search for neuroprotective agents against oxidative stress using the murine hippocampal HT22 cell line, we found a novel oxindole compound, GIF-0726-r, which prevented oxidative stress-induced cell death, including glutamate-induced oxytosis and erastin-induced ferroptosis. This compound also exerted a protective effect on tunicamycin-induced ER stress to a lesser extent but had no effect on campthothecin-, etoposide- or staurosporine-induced apoptosis. In addition, GIF-0726-r was also found to be effective after the occurrence of oxidative stress. GIF-0726-r was capable of inhibiting reactive oxygen species accumulation and Ca 2+ influx, a presumed executor in cell death, and was capable of activating the antioxidant response element, which is a cis-acting regulatory element in promoter regions of several genes encoding phase II detoxification enzymes and antioxidant proteins. These results suggest that GIF-0726-r is a low-molecular-weight compound that prevents neuronal cell death through attenuation of oxidative stress. Among the more than 200 derivatives of the GIF-0726-r synthesized, we identified the 11 most potent activators of the antioxidant response element and characterized their neuroprotective activity in HT22 cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Synthesis and evaluation of Tc-99m-labeled RRL-containing peptide as a non-invasive tumor imaging agent in a mouse fibrosarcoma model.

    Science.gov (United States)

    Kim, Dae-Weung; Kim, Woo Hyoung; Kim, Myoung Hyoun; Kim, Chang Guhn

    2015-11-01

    Arginine-arginine-leucine (RRL) is considered a tumor endothelial cell-specific binding sequence. RRL-containing peptide targeting tumor vessels is an excellent candidate for tumor imaging. In this study, we developed RRL-containing hexapeptides and evaluated their feasibility as a tumor imaging agent in a HT-1080 fibrosarcoma-bearing murine model. The hexapeptide, glutamic acid-cysteine-glycine (ECG)-RRL was synthesized using Fmoc solid-phase peptide synthesis. Radiolabeling efficiency was evaluated using instant thin-layer chromatography. Uptake of Tc-99m ECG-RRL within HT-1080 cells was evaluated in vitro by confocal microscopy and cellular binding affinity was calculated. Gamma images were acquired In HT-1080 fibrosarcoma tumor-bearing mice, and the tumor-to-muscle uptake ratio was calculated. The inflammatory-to-normal muscle uptake ratio was also calculated in an inflammation mouse model. A biodistribution study was performed to calculate %ID/g. A high yield of Tc-99m ECG-RRL complexes was prepared after Tc-99m radiolabeling. Binding of Tc-99m ECG-RRL to tumor cells had was confirmed by in vitro studies. Gamma camera imaging in the murine model showed that Tc-99m ECG-RRL accumulated substantially in the subcutaneously engrafted tumor and that tumoral uptake was blocked by co-injecting excess RRL. Moreover, Tc-99m ECG-RRL accumulated minimally in inflammatory lesions. We successfully developed Tc-99m ECG-RRL as a new tumor imaging candidate. Specific tumoral uptake of Tc-99m ECG-RRL was evaluated both in vitro and in vivo, and it was determined to be a good tumor imaging candidate. Additionally, Tc-99m ECG-RRL effectively distinguished between cancerous tissue and inflammatory lesions.

  18. Beneficial Phytochemicals with Anti-Tumor Potential Revealed through Metabolic Profiling of New Red Pigmented Lettuces (Lactuca sativa L.

    Directory of Open Access Journals (Sweden)

    Xiao-Xiao Qin

    2018-04-01

    Full Text Available The present study aimed to compare polyphenols among red lettuce cultivars and identify suitable cultivars for the development and utilization of healthy vegetables. Polyphenols, mineral elements, and antioxidant activity were analyzed in the leaves of six red pigmented lettuce (Lactuca sativa L. cultivars; thereafter, we assessed the anti-tumor effects of cultivar B-2, which displayed the highest antioxidant activity. Quadrupole–Orbitrap mass spectrometry analysis revealed four classes of polyphenols in these cultivars. The composition and contents of these metabolites varied significantly among cultivars and primarily depended on leaf color. The B-2 cultivar had the highest antioxidant potential than others because it contained the highest levels of polyphenols, especially anthocyanin, flavone, and phenolic acid; furthermore, this cultivar displayed anti-tumor effects against the human lung adenocarcinoma cell line A549, human hepatoma cell line Bel7402, human cancer colorectal adenoma cell line HCT-8, and HT-29 human colon cancer cell line. Hence, the new red-leaf lettuce cultivar B-2 has a distinct metabolite profile, with high potential for development and utilization of natural phytochemical and mineral resources in lettuces and can be used as a nutrient-dense food product.

  19. Beneficial Phytochemicals with Anti-Tumor Potential Revealed through Metabolic Profiling of New Red Pigmented Lettuces (Lactuca sativa L.).

    Science.gov (United States)

    Qin, Xiao-Xiao; Zhang, Ming-Yue; Han, Ying-Yan; Hao, Jing-Hong; Liu, Chao-Jie; Fan, Shuang-Xi

    2018-04-11

    The present study aimed to compare polyphenols among red lettuce cultivars and identify suitable cultivars for the development and utilization of healthy vegetables. Polyphenols, mineral elements, and antioxidant activity were analyzed in the leaves of six red pigmented lettuce ( Lactuca sativa L.) cultivars; thereafter, we assessed the anti-tumor effects of cultivar B-2, which displayed the highest antioxidant activity. Quadrupole-Orbitrap mass spectrometry analysis revealed four classes of polyphenols in these cultivars. The composition and contents of these metabolites varied significantly among cultivars and primarily depended on leaf color. The B-2 cultivar had the highest antioxidant potential than others because it contained the highest levels of polyphenols, especially anthocyanin, flavone, and phenolic acid; furthermore, this cultivar displayed anti-tumor effects against the human lung adenocarcinoma cell line A549, human hepatoma cell line Bel7402, human cancer colorectal adenoma cell line HCT-8, and HT-29 human colon cancer cell line. Hence, the new red-leaf lettuce cultivar B-2 has a distinct metabolite profile, with high potential for development and utilization of natural phytochemical and mineral resources in lettuces and can be used as a nutrient-dense food product.

  20. Tumor Volume Estimation and Quasi-Continuous Administration for Most Effective Bevacizumab Therapy.

    Science.gov (United States)

    Sápi, Johanna; Kovács, Levente; Drexler, Dániel András; Kocsis, Pál; Gajári, Dávid; Sápi, Zoltán

    2015-01-01

    Bevacizumab is an exogenous inhibitor which inhibits the biological activity of human VEGF. Several studies have investigated the effectiveness of bevacizumab therapy according to different cancer types but these days there is an intense debate on its utility. We have investigated different methods to find the best tumor volume estimation since it creates the possibility for precise and effective drug administration with a much lower dose than in the protocol. We have examined C38 mouse colon adenocarcinoma and HT-29 human colorectal adenocarcinoma. In both cases, three groups were compared in the experiments. The first group did not receive therapy, the second group received one 200 μg bevacizumab dose for a treatment period (protocol-based therapy), and the third group received 1.1 μg bevacizumab every day (quasi-continuous therapy). Tumor volume measurement was performed by digital caliper and small animal MRI. The mathematical relationship between MRI-measured tumor volume and mass was investigated to estimate accurate tumor volume using caliper-measured data. A two-dimensional mathematical model was applied for tumor volume evaluation, and tumor- and therapy-specific constants were calculated for the three different groups. The effectiveness of bevacizumab administration was examined by statistical analysis. In the case of C38 adenocarcinoma, protocol-based treatment did not result in significantly smaller tumor volume compared to the no treatment group; however, there was a significant difference between untreated mice and mice who received quasi-continuous therapy (p = 0.002). In the case of HT-29 adenocarcinoma, the daily treatment with one-twelfth total dose resulted in significantly smaller tumors than the protocol-based treatment (p = 0.038). When the tumor has a symmetrical, solid closed shape (typically without treatment), volume can be evaluated accurately from caliper-measured data with the applied two-dimensional mathematical model. Our results

  1. Hyaluronan and calcium carbonate hybrid nanoparticles for colorectal cancer chemotherapy

    Science.gov (United States)

    Bai, Jinghui; Xu, Jian; Zhao, Jian; Zhang, Rui

    2017-09-01

    A hybrid drug delivery system (DDS) composed of hyaluronan and calcium carbonate (CC) was developed. By taking advantage of the tumor-targeting ability of hyaluronan and the drug-loading property of CC, the well-formed hyaluronan-CC nanoparticles were able to serve as a DDS targeting colorectal cancer with a decent drug loading content, which is beneficial in the chemotherapy of colorectal cancer. In this study, hyaluronan-CC nanoparticles smaller than 100 nm were successfully developed to load the wide-range anti-cancer drug adriamycin (Adr) to construct hyaluronan-CC/Adr nanoparticles. On the other hand, we also found that hyaluronan-CC/Adr nanoparticles can possibly increase the uptake ratio of Adr into HT29 colorectal cancer cells when compared with hyaluronan-free nanoparticles (CC/Adr) via the CD44 receptor-mediated endocytosis via competitive uptake and in vivo imaging assays. Note that both in vitro (CCK-8 assay on HT29 cells) and in vivo (anti-cancer assay on HT-29 tumor-bearing nude mice model) experiments revealed that hyaluronan-CC/Adr nanoparticles exhibited stronger anti-cancer activity than free Adr or CC/Adr nanoparticles with minimized toxic side effects and preferable cancer-suppression potential.

  2. Combination of exogenous cell transplantation and 5-HT4 receptor agonism induce endogenous enteric neural crest-derived cells in a rat hypoganglionosis model

    International Nuclear Information System (INIS)

    Yu, Hui; Zheng, Bai-Jun; Pan, Wei-Kang; Wang, Huai-Jie; Xie, Chong; Zhao, Yu-Ying; Chen, Xin-Lin; Liu, Yong; Gao, Ya

    2017-01-01

    Enteric neural crest-derived cells (ENCCs) can migrate into endogenous ganglia and differentiate into progeny cells, and have even partially rescued bowel function; however, poor reliability and limited functional recovery after ENCC transplantation have yet to be addressed. Here, we investigated the induction of endogenous ENCCs by combining exogenous ENCC transplantation with a 5-HT 4 receptor agonist mosapride in a rat model of hypoganglionosis, established by benzalkonium chloride treatment. ENCCs, isolated from the gut of newborn rats, were labeled with a lentiviral eGFP reporter. ENCCs and rats were treated with the 5-HT 4 receptor agonist/antagonist. The labeled ENCCs were then transplanted into the muscular layer of benzalkonium chloride-treated colons. At given days post-intervention, colonic tissue samples were removed for histological analysis. ENCCs and neurons were detected by eGFP expression and immunoreactivity to p75 NTR and peripherin, respectively. eGFP-positive ENCCs and neurons could survive and maintain levels of fluorescence after transplantation. With longer times post-intervention, the number of peripherin-positive cells gradually increased in all groups. Significantly more peripherin-positive cells were found following ENCCs plus mosapride treatment, compared with the other groups. These results show that exogenous ENCCs combined with the 5-HT 4 receptor agonist effectively induced endogenous ENCCs proliferation and differentiation in a rat hypoganglionosis model. - Highlights: • Survival and differentiation of exogenous ENCCs in treated colons. • With longer times post-intervention, the number of ENCCs and their progeny cells gradually increased. • Exogenous ENCCs combined with the 5-HT4 receptor agonist ffectively induced ENCCs proliferation and differentiation.

  3. HAMLET (human alpha-lactalbumin made lethal to tumor cells) triggers autophagic tumor cell death.

    Science.gov (United States)

    Aits, Sonja; Gustafsson, Lotta; Hallgren, Oskar; Brest, Patrick; Gustafsson, Mattias; Trulsson, Maria; Mossberg, Ann-Kristin; Simon, Hans-Uwe; Mograbi, Baharia; Svanborg, Catharina

    2009-03-01

    HAMLET, a complex of partially unfolded alpha-lactalbumin and oleic acid, kills a wide range of tumor cells. Here we propose that HAMLET causes macroautophagy in tumor cells and that this contributes to their death. Cell death was accompanied by mitochondrial damage and a reduction in the level of active mTOR and HAMLET triggered extensive cytoplasmic vacuolization and the formation of double-membrane-enclosed vesicles typical of macroautophagy. In addition, HAMLET caused a change from uniform (LC3-I) to granular (LC3-II) staining in LC3-GFP-transfected cells reflecting LC3 translocation during macroautophagy, and this was blocked by the macroautophagy inhibitor 3-methyladenine. HAMLET also caused accumulation of LC3-II detected by Western blot when lysosomal degradation was inhibited suggesting that HAMLET caused an increase in autophagic flux. To determine if macroautophagy contributed to cell death, we used RNA interference against Beclin-1 and Atg5. Suppression of Beclin-1 and Atg5 improved the survival of HAMLET-treated tumor cells and inhibited the increase in granular LC3-GFP staining. The results show that HAMLET triggers macroautophagy in tumor cells and suggest that macroautophagy contributes to HAMLET-induced tumor cell death.

  4. Human neutrophils facilitate tumor cell transendothelial migration.

    LENUS (Irish Health Repository)

    Wu, Q D

    2012-02-03

    Tumor cell extravasation plays a key role in tumor metastasis. However, the precise mechanisms by which tumor cells migrate through normal vascular endothelium remain unclear. In this study, using an in vitro transendothelial migration model, we show that human polymorphonuclear neutrophils (PMN) assist the human breast tumor cell line MDA-MB-231 to cross the endothelial barrier. We found that tumor-conditioned medium (TCM) downregulated PMN cytocidal function, delayed PMN apoptosis, and concomitantly upregulated PMN adhesion molecule expression. These PMN treated with TCM attached to tumor cells and facilitated tumor cell migration through different endothelial monolayers. In contrast, MDA-MB-231 cells alone did not transmigrate. FACScan analysis revealed that these tumor cells expressed high levels of intercellular adhesion molecule-1 (ICAM-1) but did not express CD11a, CD11b, or CD18. Blockage of CD11b and CD18 on PMN and of ICAM-1 on MDA-MB-231 cells significantly attenuated TCM-treated, PMN-mediated tumor cell migration. These tumor cells still possessed the ability to proliferate after PMN-assisted transmigration. These results indicate that TCM-treated PMN may serve as a carrier to assist tumor cell transendothelial migration and suggest that tumor cells can exploit PMN and alter their function to facilitate their extravasation.

  5. Enhancement of the photovoltaic performance in P3HT: PbS hybrid solar cells using small size PbS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Firdaus, Yuliar; Van der Auweraer, Mark, E-mail: mark.vanderauweraer@chem.kuleuven.be [Laboratory of Photochemistry and Spectroscopy, Division of Molecular Imaging and Photonics, Chemistry Department, KULeuven, Celestijnenlaan 200F, 2404, B-3001 Leuven (Belgium); Vandenplas, Erwin; Gehlhaar, Robert; Cheyns, David [Imec vzw, Kapeldreef 75, B-3001 Leuven (Belgium); Justo, Yolanda; Hens, Zeger [Physical Chemistry Laboratory, Ghent University, Krijgslaan 281-S3, 9000 Gent (Belgium)

    2014-09-07

    Different approaches of surface modification of the quantum dots (QDs), namely, solution-phase (octylamine, octanethiol) and post-deposition (acetic acid, 1,4-benzenedithiol) ligand exchange were used in the fabrication of hybrid bulk heterojunction solar cell containing poly (3-hexylthiophene) (P3HT) and small (2.4 nm) PbS QDs. We show that replacing oleic acid by shorter chain ligands improves the figures of merit of the solar cells. This can possibly be attributed to a combination of a reduced thickness of the barrier for electron transfer and an optimized phase separation. The best results were obtained for post-deposition ligand exchange by 1,4-benzenedithiol, which improves the power conversion efficiency of solar cells based on a bulk heterojunction of lead sulfide (PbS) QDs and P3HT up to two orders of magnitude over previously reported hybrid cells based on a bulk heterojunction of P3HT:PbS QDs, where the QDs are capped by acetic acid ligands. The optimal performance was obtained for solar cells with 69 wt. % PbS QDs. Besides the ligand effects, the improvement was attributed to the formation of an energetically favorable bulk heterojunction with P3HT, when small size (2.4 nm) PbS QDs were used. Dark current density-voltage (J-V) measurements carried out on the device provided insight into the working mechanism: the comparison between the dark J-V characteristics of the bench mark system P3HT:PCBM and the P3HT:PbS blends allows us to conclude that a larger leakage current and a more efficient recombination are the major factors responsible for the larger losses in the hybrid system.

  6. Enhancement of the photovoltaic performance in P3HT: PbS hybrid solar cells using small size PbS quantum dots

    International Nuclear Information System (INIS)

    Firdaus, Yuliar; Van der Auweraer, Mark; Vandenplas, Erwin; Gehlhaar, Robert; Cheyns, David; Justo, Yolanda; Hens, Zeger

    2014-01-01

    Different approaches of surface modification of the quantum dots (QDs), namely, solution-phase (octylamine, octanethiol) and post-deposition (acetic acid, 1,4-benzenedithiol) ligand exchange were used in the fabrication of hybrid bulk heterojunction solar cell containing poly (3-hexylthiophene) (P3HT) and small (2.4 nm) PbS QDs. We show that replacing oleic acid by shorter chain ligands improves the figures of merit of the solar cells. This can possibly be attributed to a combination of a reduced thickness of the barrier for electron transfer and an optimized phase separation. The best results were obtained for post-deposition ligand exchange by 1,4-benzenedithiol, which improves the power conversion efficiency of solar cells based on a bulk heterojunction of lead sulfide (PbS) QDs and P3HT up to two orders of magnitude over previously reported hybrid cells based on a bulk heterojunction of P3HT:PbS QDs, where the QDs are capped by acetic acid ligands. The optimal performance was obtained for solar cells with 69 wt. % PbS QDs. Besides the ligand effects, the improvement was attributed to the formation of an energetically favorable bulk heterojunction with P3HT, when small size (2.4 nm) PbS QDs were used. Dark current density-voltage (J-V) measurements carried out on the device provided insight into the working mechanism: the comparison between the dark J-V characteristics of the bench mark system P3HT:PCBM and the P3HT:PbS blends allows us to conclude that a larger leakage current and a more efficient recombination are the major factors responsible for the larger losses in the hybrid system

  7. Peculiarities in the CT findings of germ cell tumors in various tumor localizations

    International Nuclear Information System (INIS)

    Tazoe, Makoto; Miyagami, Mitsusuke; Tsubokawa, Takashi

    1991-01-01

    The CT findings of 17 germ cell tumors were studied in relation to the locations of the tumor, the pathological diagnoses, and the tumor markers (AFP and HCG). Generally, the CT findings of germ cell tumors depended on the pathological diagnoses more strongly than on the location of the tumors. On plain CT of 7 germ cell tumors in the pineal region, all of them demonstrated heterogeneous findings. Hydrocephalus was seen in 6 cases (86%) and calcification in 6 cases (86%) of the germ cell tumors in the pineal region. Calcification and hydrocephalus that appeared more often than in other regions were characteristic of germ cell tumors of the pineal region. The germ cell tumors in the basal ganglia had a slightly homogenous high density, with small cysts and calcification in most of them on plain CT. On enhanced CT, the tumors were moderately enhanced in all cases located in the basal ganglia. Four cases of germ cell tumors located in the basal ganglia revealed the dilatation of lateral ventricle due to hemispheric atrophy in the tumor side. The germ cell tumors showing an increase in the tumor markers such as AFP and HCG, which were usually malignant germ cell tumors, were strongly enhanced on enhanced CT. (author)

  8. E-selectin: sialyl Lewis, a dependent adhesion of colon cancer cells, is inhibited differently by antibodies against E-selectin ligands.

    Science.gov (United States)

    Srinivas, U; Påhlsson, P; Lundblad, A

    1996-09-01

    Recent studies have demonstrated that selectins, a new family of cell-adhesion molecules with similar domain structures, mediate the adhesion of peripheral blood cells to interleukin-1 (IL-1)-activated endothelium. In the present study the authors evaluated the role of E-selectin-Sialyl Lewis x (SLe(x))/ Sialyl Lewis a (SLe(a)) interaction in mediating in vitro adhesion of two colon cancer cell lines, HT-29 and COLO 201, to human umbilical cord endothelial cells (HUVEC). Colon cancer cell lines had a strong expression of blood group-related carbohydrate epitopes as evaluated by fluorescence-activated cell sorter (FACS) analysis. It was established that adhesion of HT-29 and COLO 201 cells to IL-1 stimulated HUVEC was calcium dependent and could be inhibited by a monoclonal antibody directed against E-selectin. Prior incubation of cells with two different antibodies directed against SLe(x) and antibodies directed against related Lewis epitopes, Le(x) and Le(a), had no significant effect on adhesion. Three antibodies directed against SLe(a) differed in their capacity to inhibit the adhesion of HT-29 and COLO 201 cells to HUVEC. Only one antibody directed against the SLe(a) structure was effective in inhibiting adhesion of both COLO 201 and HT-29 cells. The difference could not be attributed to titre, the type or number of glycoproteins, or to a difference in the amount of SLe(a) present on individual proteins, suggesting that presence and right presentation of SLe(a) epitope might be important for adhesion of colon cancer cells. Finally, in the in vitro system used, adhesion of HT-29 and COLO 201 cells to activated HUVEC is mediated predominantly by E-selectin/SLe(a) interaction. SLe(x) and related epitopes, Le(x) and Le(a), seem to have limited relevance for colon cancer cell recognition of E-selectin.

  9. Intensity-Modulated Radiotherapy (IMRT) vs Helical Tomotherapy (HT) in Concurrent Chemoradiotherapy (CRT) for Patients with Anal Canal Carcinoma (ACC): an analysis of dose distribution and toxicities

    International Nuclear Information System (INIS)

    Yeung, Rosanna; McConnell, Yarrow; Warkentin, Heather; Graham, Darren; Warkentin, Brad; Joseph, Kurian; Doll, Corinne M

    2015-01-01

    Intensity-modulated radiotherapy (IMRT) and helical tomotherapy (HT) have been adopted for radiotherapy treatment of anal canal carcinoma (ACC) due to better conformality, dose homogeneity and normal-tissue sparing compared to 3D-CRT. To date, only one published study compares dosimetric parameters of IMRT vs HT in ACC, but there are no published data comparing toxicities. Our objectives were to compare dosimetry and toxicities between these modalities. This is a retrospective study of 35 ACC patients treated with radical chemoradiotherapy at two tertiary cancer institutions from 2008–2010. The use of IMRT vs HT was primarily based on center availability. The majority of patients received fluorouracil (5-FU) and 1–2 cycles of mitomycin C (MMC); 2 received 5-FU and cisplatin. Primary tumor and elective nodes were prescribed to ≥54Gy and ≥45Gy, respectively. Patients were grouped into two cohorts: IMRT vs HT. The primary endpoint was a dosimetric comparison between the cohorts; the secondary endpoint was comparison of toxicities. 18 patients were treated with IMRT and 17 with HT. Most IMRT patients received 5-FU and 1 MMC cycle, while most HT patients received 2 MMC cycles (p < 0.01), based on center policy. HT achieved more homogenous coverage of the primary tumor (HT homogeneity and uniformity index 0.14 and 1.02 vs 0.29 and 1.06 for IMRT, p = 0.01 and p < 0.01). Elective nodal coverage did not differ. IMRT achieved better bladder, femoral head and peritoneal space sparing (V30 and V40, p ≤ 0.01), and lower mean skin dose (p < 0.01). HT delivered lower bone marrow (V10, p < 0.01) and external genitalia dose (V20 and V30, p < 0.01). Grade 2+ hematological and non-hematological toxicities were similar. Febrile neutropenia and unscheduled treatment breaks did not differ (both p = 0.13), nor did 3-year overall and disease-free survival (p = 0.13, p = 0.68). Chemoradiotherapy treatment of ACC using IMRT vs HT results in differences in dose homogenity and

  10. Targeting Mitochondrial Function to Treat Quiescent Tumor Cells in Solid Tumors

    Directory of Open Access Journals (Sweden)

    Xiaonan Zhang

    2015-11-01

    Full Text Available The disorganized nature of tumor vasculature results in the generation of microenvironments characterized by nutrient starvation, hypoxia and accumulation of acidic metabolites. Tumor cell populations in such areas are often slowly proliferating and thus refractory to chemotherapeutical drugs that are dependent on an active cell cycle. There is an urgent need for alternative therapeutic interventions that circumvent growth dependency. The screening of drug libraries using multicellular tumor spheroids (MCTS or glucose-starved tumor cells has led to the identification of several compounds with promising therapeutic potential and that display activity on quiescent tumor cells. Interestingly, a common theme of these drug screens is the recurrent identification of agents that affect mitochondrial function. Such data suggest that, contrary to the classical Warburg view, tumor cells in nutritionally-compromised microenvironments are dependent on mitochondrial function for energy metabolism and survival. These findings suggest that mitochondria may represent an “Achilles heel” for the survival of slowly-proliferating tumor cells and suggest strategies for the development of therapy to target these cell populations.

  11. Targeted tumor theranostics using folate-conjugated and camptothecin-loaded acoustic nanodroplets in a mouse xenograft model.

    Science.gov (United States)

    Chen, Wei-Tsung; Kang, Shih-Tsung; Lin, Jian-Liang; Wang, Chung-Hsin; Chen, Ran-Chou; Yeh, Chih-Kuang

    2015-01-01

    In this study, we aimed to validate the feasibility of receptor-targeted tumor theranostics with folate-conjugated (FA) and camptothecin-loaded (CPT) acoustic nanodroplets (NDs) (collectively termed FA-CPT-NDs). The ND formulation was based on lipid-stabilized low-boiling perfluorocarbon that can undergo acoustic droplet vaporization (ADV) under ultrasound (US) exposure. Conjugation of folate enhanced the selective delivery to tumors expressing high levels of folate receptor (FR) under mediation by the enhanced permeability and retention effect. In vitro and in vivo studies were performed using FR-positive KB and FR-negative HT-1080 cell lines and mouse xenograft tumor models. Simultaneous therapy and imaging were conducted with a clinical US imaging system at mechanical indices of up to 1.4 at a center frequency of 10 MHz. The results demonstrated that FA-CPT-NDs selectively attached to KB cells, but not HT-1080 cells. The targeted ADV caused instant and delayed damage via mechanical disruption and chemical toxicity to decrease the viability of KB cells by up to 45%, a much higher decrease than that achieved by the NDs without folate conjugation. The in vivo experiments showed that FR-mediated targeting successfully enhanced the EPR of FA-CPT-NDs in KB tumors mainly on the tumor periphery as indicated by immunofluorescence microscopy and US B-mode imaging. Treatments with FA-CPT-NDs at a CPT dose of 50 μg/kg inhibited the growth of KB tumors for up to six weeks, whereas treatment with NDs lacking folate produced a 4.6-fold increase in tumor volume. For HT-1080 tumors, neither the treatments with FA-CPT-NDs nor those with the NDs lacking folate presented tumor growth inhibition. In summary, FR-targeted tumor theranostics has been successfully implemented with FA-CPT-NDs and a clinical US unit. The ligand-directed and EPR-mediated accumulation provides active and passive targeting capabilities, permitting the antitumor effects of FA-CPT-NDs to be exerted

  12. Preclinical In Vitro and In Vivo Evaluation of [18F]FE@SUPPY for Cancer PET Imaging: Limitations of a Xenograft Model for Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    T. Balber

    2018-01-01

    Full Text Available Molecular imaging probes such as PET-tracers have the potential to improve the accuracy of tumor characterization by directly visualizing the biochemical situation. Thus, molecular changes can be detected early before morphological manifestation. The A3 adenosine receptor (A3AR is described to be highly expressed in colon cancer cell lines and human colorectal cancer (CRC, suggesting this receptor as a tumor marker. The aim of this preclinical study was the evaluation of F18FE@SUPPY as a PET-tracer for CRC using in vitro imaging and in vivo PET imaging. First, affinity and selectivity of FE@SUPPY and its metabolites were determined, proving the favorable binding profile of FE@SUPPY. The human adenocarcinoma cell line HT-29 was characterized regarding its hA3AR expression and was subsequently chosen as tumor graft. Promising results regarding the potential of F18FE@SUPPY as a PET-tracer for CRC imaging were obtained by autoradiography as ≥2.3-fold higher accumulation of F18FE@SUPPY was found in CRC tissue compared to adjacent healthy colon tissue from the same patient. Nevertheless, first in vivo studies using HT-29 xenografts showed insufficient tumor uptake due to (1 poor conservation of target expression in xenografts and (2 unfavorable pharmacokinetics of F18FE@SUPPY in mice. We therefore conclude that HT-29 xenografts are not adequate to visualize hA3ARs using F18FE@SUPPY.

  13. Rapid phase segregation of P3HT:PCBM composites by thermal annealing for high-performance bulk-heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Fan, X.; Fang, G.J.; Qin, P.L.; Cheng, F.; Zhao, X.Z. [Wuhan University, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Department of Electronic Science and Technology, School of Physics and Technology, Wuhan (China)

    2011-12-15

    The performances of bulk-heterojunction (BHJ) solar cells are investigated for time-dependent thermal annealing with different morphology evolution scales, having special consideration for the diffusion and aggregation of fullerene derivative molecules based on blends of poly(3-hexylthiophene):[6,6]-phenyl-C{sub 61}-butyric acid methyl ester (P3HT:PCBM). Meaningfully, rapid formation of dot-like and needle-like crystalline PCBM structures of a few micrometers up to 60 {mu}m in size is obtained with thermal annealing treatment from 2 to 15 min, which dynamically reflects a fast process of PCBM molecule and cluster aggregation. Upon ultrasonic-assisted processing and annealing treatment, the scale of P3HT crystals is drastically increased in view of X-ray diffraction (XRD) patterns, leading to a high hole mobility. And, the P3HT domains can be gradually converted into larger P3HT crystals approved by the decreased full width at half-maximum in the XRD patterns. Corresponding current-voltage curves are measured in quantity and we propose a model to explain the effect of the crystalline degree of P3HT domains and aggregation of PCBM molecules and clusters on the phase segregation, expressing a viewpoint towards high performance of BHJ solar cells. (orig.)

  14. Tail state-assisted charge injection and recombination at the electron-collecting interface of P3HT:PCBM bulk-heterojunction polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, He [Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544 (United States); Department of Electrical Engineering, Princeton University, Princeton, NJ 08544 (United States); Shah, Manas [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Ganesan, Venkat [Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712 (United States); Chabinyc, Michael L. [Materials Department, University of California Santa Barbara, CA 93106 (United States); Loo, Yueh-Lin [Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2012-12-15

    The systematic insertion of thin films of P3HT and PCBM at the electron- and hole-collecting interfaces, respectively, in bulk-heterojunction polymer solar cells results in different extents of reduction in device characteristics, with the insertion of P3HT at the electron-collecting interface being less disruptive to the output currents compared to the insertion of PCBM at the hole-collecting interface. This asymmetry is attributed to differences in the tail state-assisted charge injection and recombination at the active layer-electrode interfaces. P3HT exhibits a higher density of tail states compared to PCBM; holes in these tail states can thus easily recombine with electrons at the electron-collection interface during device operation. This process is subsequently compensated by the injection of holes from the cathode into these tail states, which collectively enables net current flow through the polymer solar cell. The study presented herein thus provides a plausible explanation for why preferential segregation of P3HT to the cathode interface is inconsequential to device characteristics in P3HT:PCBM bulk-heterojunction solar cells. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Development of the morphology during functional stack build-up of P3HT:PCBM bulk heterojunction solar cells with inverted geometry.

    Science.gov (United States)

    Wang, Weijia; Pröller, Stephan; Niedermeier, Martin A; Körstgens, Volker; Philipp, Martine; Su, Bo; Moseguí González, Daniel; Yu, Shun; Roth, Stephan V; Müller-Buschbaum, Peter

    2015-01-14

    Highly efficient poly(3-hexylthiophene-2,5-diyl) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) bulk heterojunction solar cells are achieved by using an inverted geometry. The development of the morphology is investigated as a function of the multilayer stack assembling during the inverted solar cell preparation. Atomic force microscopy is used to reveal the surface morphology of each stack, and the inner structure is probed with grazing incidence small-angle X-ray scattering. It is found that the smallest domain size of P3HT is introduced by replicating the fluorine-doped tin oxide structure underneath. The structure sizes of the P3HT:PCBM active layer are further optimized after thermal annealing. Compared to devices with standard geometry, the P3HT:PCBM layer in the inverted solar cells shows smaller domain sizes, which are much closer to the exciton diffusion length in the polymer. The decrease in domain sizes is identified as the main reason for the improvement of the device performance.

  16. Altered serotonin physiology in human breast cancers favors paradoxical growth and cell survival.

    Science.gov (United States)

    Pai, Vaibhav P; Marshall, Aaron M; Hernandez, Laura L; Buckley, Arthur R; Horseman, Nelson D

    2009-01-01

    The breast microenvironment can either retard or accelerate the events associated with progression of latent cancers. However, the actions of local physiological mediators in the context of breast cancers are poorly understood. Serotonin (5-HT) is a critical local regulator of epithelial homeostasis in the breast and other organs. Herein, we report complex alterations in the intrinsic mammary gland serotonin system of human breast cancers. Serotonin biosynthetic capacity was analyzed in human breast tumor tissue microarrays using immunohistochemistry for tryptophan hydroxylase 1 (TPH1). Serotonin receptors (5-HT1-7) were analyzed in human breast tumors using the Oncomine database. Serotonin receptor expression, signal transduction, and 5-HT effects on breast cancer cell phenotype were compared in non-transformed and transformed human breast cells. In the context of the normal mammary gland, 5-HT acts as a physiological regulator of lactation and involution, in part by favoring growth arrest and cell death. This tightly regulated 5-HT system is subverted in multiple ways in human breast cancers. Specifically, TPH1 expression undergoes a non-linear change during progression, with increased expression during malignant progression. Correspondingly, the tightly regulated pattern of 5-HT receptors becomes dysregulated in human breast cancer cells, resulting in both ectopic expression of some isoforms and suppression of others. The receptor expression change is accompanied by altered downstream signaling of 5-HT receptors in human breast cancer cells, resulting in resistance to 5-HT-induced apoptosis, and stimulated proliferation. Our data constitutes the first report of direct involvement of 5-HT in human breast cancer. Increased 5-HT biosynthetic capacity accompanied by multiple changes in 5-HT receptor expression and signaling favor malignant progression of human breast cancer cells (for example, stimulated proliferation, inappropriate cell survival). This occurs

  17. Role of tumor size in radiotherapy using modifiers

    International Nuclear Information System (INIS)

    Kozin, S.V.; Furmanchuk, A.V.

    1990-01-01

    Consideration is given to present-day knowledge about changes, taking place in malignant tumor tissues during their growth, important for results of radiotherapy, using modifiers, from a radiobiological viewpoint. It is shown that hypertermia (HT) is the most effective adjuvant of radiotherapy for medium - and large-size tumors. The combined application of artificial hyperglycemia (AH) and HT is investigated as the method for increasing efficiency of radiotherapy. Efficiency of using radioprotectors and electron-acceptor compounds (metronidazole, misonidazole) for large-size malignant tumors in combinations-metronidazole with AH and misonidazole with HT-is noted. Analysis of these data on radiotherapy efficiency depending on size of irradiated tumors will enable an evaluation of radiotherapy potential in different cases in determining the advisability of modifier application

  18. Forced swimming test and fluoxetine treatment: in vivo evidence that peripheral 5-HT in rat platelet-rich plasma mirrors cerebral extracellular 5-HT levels, whilst 5-HT in isolated platelets mirrors neuronal 5-HT changes.

    Science.gov (United States)

    Bianchi, M; Moser, C; Lazzarini, C; Vecchiato, E; Crespi, F

    2002-03-01

    present data show that the initial block of 5-HT reuptake is revealed by the selective increase in 5-HT levels (extracellular content) measured in PRP (not in insulated platelets, IPs) the 1st day of fluoxetine treatment. The initial action of this SSRI upon the 5-HT transporter in brain has also been confirmed by in vivo voltammetric data showing selective increase in the serotonergic signal following local injection of fluoxetine into the brain region studied. Successively, the major effect monitored is a decrease in 5-HT levels, which is more evident in IPs than in PRP. However, it is known that following 2 weeks treatment with an SSRI, 5-HT autoreceptors are desensitized and the serotonin synthesis is restored, together with the intracellular 5-HT levels. The present data showing that the levels of 5-HT in IPs tend to return to control values 12 days after the beginning of chronic fluoxetine treatment suggest that 5-HT levels in IPs (intracellular environment) mirror the influence of SSRI treatment upon the central 5-HT system. On the other hand, at day 12 of the chronic fluoxetine treatment, 5-HT content remains low in PRP. Similarly, low levels of 5-HT have been monitored in brain homogenate of rats chronically treated with fluoxetine. This would support the similarity between PRP preparation and brain homogenate as in both cases cells are disrupted by sample preparation. In conclusion this work supports the literature in proposing platelets as a peripheral model of central functions. In particular, the present data support the idea that peripheral 5-HT platelet levels can reflect the state of the central 5-HT system in conditions of depression. Furthermore, the main outcome of this study is that PRP may mirror central extracellular 5-HT levels, whilst IPs mirror neuronal 5-HT changes.

  19. Association of CA27.29 and Circulating Tumor Cells Before and at Different Times After Adjuvant Chemotherapy in Patients with Early-stage Breast Cancer - The SUCCESS Trial.

    Science.gov (United States)

    Hepp, Philip; Andergassen, Ulrich; Jäger, Bernadette; Trapp, Elisabeth; Alunni-Fabbroni, Marianna; Friedl, Thomas W P; Hecker, Nadeschda; Lorenz, Ralf; Fasching, Peter; Schneeweiss, Andreas; Fehm, Tanja; Janni, Wolfgang; Rack, Brigitte

    2016-09-01

    Evidence for the prognostic value of circulating tumor cells (CTCs) in early-stage breast cancer is swiftly increasing. An alternative approach for identifying patients at risk for recurrence is based on the detection of the mucin-1 (MUC1)-based tumor marker CA27.29. Here we report the association of these two prognostic markers before and immediately after chemotherapy (CHT), as well as after 2 and 5 years of follow-up. The SUCCESS trial compared fluorouracil, epirubicin and cyclophosphamide followed by docetaxel vs. FEC followed by docetaxel plus gemcitabine, and 2 vs. 5 years of treatment with zoledronic acid in 3,754 patients with node-positive or high-risk node-negative early-stage breast cancer. CA27.29 was measured with the ST AIA-PACK CA27.29 reagent (Tosoh Bioscience, Belgium). The cutoff for CA27.29 positivity was >31 U/ml. CTCs were assessed with the CellSearch System (Veridex, USA). The cutoff for CTC positivity was ≥1 CTC/15 ml whole blood. The relationship between CTC positivity and CA27.29 positivity was assessed based on Chi-square statistics and Cramer's V, which varies from 0 (no association between the variables) to 1 (complete association). Samples for CA27.29 and CTC determinations during follow-up were only drawn from patients that had no relapse. Both CA27.29 and CTC data were available for 1,981, 1,602, 1,159 and 707 patients before, immediately after and at 2 and 5 years after CHT, respectively. Positivity rates for CTC were 21.3%, 22.8%, 18.6% and 8.5%, respectively. CA27.29 was positive in 7.9%, 21.0%, 2.8%and 7.5%, respectively. Positivity for both CA27.29 and CTC was found in 2.4%, 4.2%, 0.7% and 1.8% of patients, respectively. The association between CA27.29 and CTC was significant but weak before CHT (p=0.0015; Cramer's V=0.063) and 5 years after CHT (p<0.001; Cramer's V=0.164), and not significant immediately after CHT (p=0.162; Cramer's V=0.035) and 2 years after (p=0.349; Cramer's V=0.028). We showed that CTC and CA27.29

  20. Combination of exogenous cell transplantation and 5-HT{sub 4} receptor agonism induce endogenous enteric neural crest-derived cells in a rat hypoganglionosis model

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hui [Department of Pediatric Surgery, the Second Affiliated Hospital, Xi’an Jiaotong University, No 157, Xi Wu Road, Xi’an 710004, Shaanxi (China); Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi’an Jiaotong University, No 96, Yan Ta Xi Road, Xi’an 710061, Shaanxi (China); Zheng, Bai-Jun; Pan, Wei-Kang; Wang, Huai-Jie; Xie, Chong; Zhao, Yu-Ying [Department of Pediatric Surgery, the Second Affiliated Hospital, Xi’an Jiaotong University, No 157, Xi Wu Road, Xi’an 710004, Shaanxi (China); Chen, Xin-Lin; Liu, Yong [Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi’an Jiaotong University, No 96, Yan Ta Xi Road, Xi’an 710061, Shaanxi (China); Gao, Ya, E-mail: ygao@mail.xjtu.edu.cn [Department of Pediatric Surgery, the Second Affiliated Hospital, Xi’an Jiaotong University, No 157, Xi Wu Road, Xi’an 710004, Shaanxi (China)

    2017-02-01

    Enteric neural crest-derived cells (ENCCs) can migrate into endogenous ganglia and differentiate into progeny cells, and have even partially rescued bowel function; however, poor reliability and limited functional recovery after ENCC transplantation have yet to be addressed. Here, we investigated the induction of endogenous ENCCs by combining exogenous ENCC transplantation with a 5-HT{sub 4} receptor agonist mosapride in a rat model of hypoganglionosis, established by benzalkonium chloride treatment. ENCCs, isolated from the gut of newborn rats, were labeled with a lentiviral eGFP reporter. ENCCs and rats were treated with the 5-HT{sub 4} receptor agonist/antagonist. The labeled ENCCs were then transplanted into the muscular layer of benzalkonium chloride-treated colons. At given days post-intervention, colonic tissue samples were removed for histological analysis. ENCCs and neurons were detected by eGFP expression and immunoreactivity to p75{sup NTR} and peripherin, respectively. eGFP-positive ENCCs and neurons could survive and maintain levels of fluorescence after transplantation. With longer times post-intervention, the number of peripherin-positive cells gradually increased in all groups. Significantly more peripherin-positive cells were found following ENCCs plus mosapride treatment, compared with the other groups. These results show that exogenous ENCCs combined with the 5-HT{sub 4} receptor agonist effectively induced endogenous ENCCs proliferation and differentiation in a rat hypoganglionosis model. - Highlights: • Survival and differentiation of exogenous ENCCs in treated colons. • With longer times post-intervention, the number of ENCCs and their progeny cells gradually increased. • Exogenous ENCCs combined with the 5-HT4 receptor agonist ffectively induced ENCCs proliferation and differentiation.

  1. Correlation between metabolic tumor volume and pathologic tumor volume in squamous cell carcinoma of the oral cavity

    International Nuclear Information System (INIS)

    Murphy, James D.; Chisholm, Karen M.; Daly, Megan E.; Wiegner, Ellen A.; Truong, Daniel; Iagaru, Andrei; Maxim, Peter G.; Loo, Billy W.; Graves, Edward E.; Kaplan, Michael J.; Kong, Christina; Le, Quynh-Thu

    2011-01-01

    Purpose: To explore the relationship between pathologic tumor volume and volume estimated from different tumor segmentation techniques on 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in oral cavity cancer. Materials and methods: Twenty-three patients with squamous cell carcinoma of the oral tongue had PET–CT scans before definitive surgery. Pathologic tumor volume was estimated from surgical specimens. Metabolic tumor volume (MTV) was defined from PET–CT scans as the volume of tumor above a given SUV threshold. Multiple SUV thresholds were explored including absolute SUV thresholds, relative SUV thresholds, and gradient-based techniques. Results: Multiple MTV’s were associated with pathologic tumor volume; however the correlation was poor (R 2 range 0.29–0.58). The ideal SUV threshold, defined as the SUV that generates an MTV equal to pathologic tumor volume, was independently associated with maximum SUV (p = 0.0005) and tumor grade (p = 0.024). MTV defined as a function of maximum SUV and tumor grade improved the prediction of pathologic tumor volume (R 2 = 0.63). Conclusions: Common SUV thresholds fail to predict pathologic tumor volume in head and neck cancer. The optimal technique that allows for integration of PET–CT with radiation treatment planning remains to be defined. Future investigation should incorporate biomarkers such as tumor grade into definitions of MTV.

  2. Cancer stem cells and the tumor microenvironment: interplay in tumor heterogeneity.

    Science.gov (United States)

    Albini, Adriana; Bruno, Antonino; Gallo, Cristina; Pajardi, Giorgio; Noonan, Douglas M; Dallaglio, Katiuscia

    2015-01-01

    Tumor cells able to recapitulate tumor heterogeneity have been tracked, isolated and characterized in different tumor types, and are commonly named Cancer Stem Cells or Cancer Initiating Cells (CSC/CIC). CSC/CIC are disseminated in the tumor mass and are resistant to anti-cancer therapies and adverse conditions. They are able to divide into another stem cell and a "proliferating" cancer cell. They appear to be responsible for disease recurrence and metastatic dissemination even after apparent eradication of the primary tumor. The modulation of CSC/CIC activities by the tumor microenvironment (TUMIC) is still poorly known. CSC/CIC may mutually interact with the TUMIC in a special and unique manner depending on the TUMIC cells or proteins encountered. The TUMIC consists of extracellular matrix components as well as cellular players among which endothelial, stromal and immune cells, providing and responding to signals to/from the CSC/CIC. This interplay can contribute to the mechanisms through which CSC/CIC may reside in a dormant state in a tissue for years, later giving rise to tumor recurrence or metastasis in patients. Different TUMIC components, including the connective tissue, can differentially activate CIC/CSC in different areas of a tumor and contribute to the generation of cancer heterogeneity. Here, we review possible networking activities between the different components of the tumor microenvironment and CSC/CIC, with a focus on its role in tumor heterogeneity and progression. We also summarize novel therapeutic options that could target both CSC/CIC and the microenvironment to elude resistance mechanisms activated by CSC/CIC, responsible for disease recurrence and metastases.

  3. The EspF N-Terminal of Enterohemorrhagic Escherichia coli O157:H7 EDL933w Imparts Stronger Toxicity Effects on HT-29 Cells than the C-Terminal

    Directory of Open Access Journals (Sweden)

    Xiangyu Wang

    2017-09-01

    Full Text Available Enterohemorrhagic Escherichia coli (EHEC O157:H7 EspF is an important multifunctional protein that destroys the tight junctions of intestinal epithelial cells and promotes host cell apoptosis. However, its molecular mechanism remains elusive. We knocked out the espF sequence (747 bp, ΔespF, N-terminal sequence (219 bp, ΔespFN, and C-terminal sequence (528 bp, ΔespFC separately using the pKD46-mediated λ Red homologous recombination system. Then, we built the corresponding complementation strains, namely, ΔespF/pespF, ΔespFN/pespFN, and ΔespFC/pespFC by overlap PCR, which were used in infecting HT-29 cells and BALB/C mice. The level of reactive oxygen species, cell apoptosis, mitochondrial trans-membrane potential, inflammatory factors, transepithelial electrical resistance (TER, and animal mortality were evaluated by DCFH-DA, double staining of Annexin V-FITC/PI, JC-1 staining, ELISA kit, and a mouse assay. The wild-type (WT, ΔespF, ΔespF/pespF, ΔespFC, ΔespFC/pespFC, ΔespFN, and ΔespFN/pespFN groups exhibited apoptotic rates of 68.3, 27.9, 64.9, 65.7, 73.4, 41.3, and 35.3% respectively, and mean TNF-α expression levels of 428 pg/mL, 342, 466, 446, 381, 383, and 374 pg/mL, respectively. In addition, the apoptotic rates and TNF-α levels of the WT, ΔespF/pespF, and ΔespFC were significantly higher than that of ΔespF, ΔespFN, ΔespFC/pespFC, and ΔespFN/pespFN group (p < 0.05. The N-terminal of EspF resulted in an increase in the number of apoptotic cells, TNF-α secretion, ROS generation, mitochondria apoptosis, and pathogenicity in BalB/c mice. In conclusion, the N-terminal domain of the Enterohemorrhagic E. coli O157:H7 EspF more strongly promotes apoptosis and inflammation than the C-terminal domain.

  4. K-RAS and N-RAS mutations in testicular germ cell tumors

    Directory of Open Access Journals (Sweden)

    Bekir Muhammet Hacioglu

    2017-05-01

    Full Text Available Testicular cancer is a relatively rare tumor type, accounting for approximately 1% of all cancers in men. However, among men aged between 15 and 40 years, testicular cancer is the most commonly diagnosed malignancy. Testicular germ cell tumors (TGCTs are classified as seminoma and non-seminoma. The RAS oncogene controls several cellular functions, including cell proliferation, apoptosis, migration, and differentiation. Thus, RAS signaling is important for normal germ cell development. Mutations of the Kirsten RAS (K-RAS gene are present in over 20% of all cancers. RAS gene mutations have also been reported in TGCTs. We investigated K-RAS and N-RAS mutations in seminoma and non-seminoma TGCT patients. A total of 24 (55% pure seminoma cases and 19 (45% non-seminoma cases were included in the study. K-RAS and N-RAS analyses were performed in our molecular pathology laboratory, using K-RAS and N-RAS Pyro Kit 24 V1 (Qiagen. In total, a RAS mutation was present in 12 patients (27%: 7 seminoma (29% and 5 non-seminoma cases (26% [p = 0.55]. A K-RAS mutation was present in 4 pure seminoma tumors (16% and 3 non-seminoma tumors (15% [p = 0.63], and an N-RAS mutation was observed in 4 seminoma tumors (16% and 3 non-seminoma tumors (15% [p = 0.63]. Both, K-RAS and N-RAS mutations were present in two patients: one with seminoma tumor and the other with non-seminoma tumor. To date, no approved targeted therapy is available for the treatment of TGCTs. The analysis of K-RAS and N-RAS mutations in these tumors may provide more treatment options, especially in platinum-resistant tumors.

  5. Recombinant HT{sub m4} gene, protein and assays

    Science.gov (United States)

    Lim, B.; Adra, C.N.; Lelias, J.M.

    1996-09-03

    The invention relates to a recombinant DNA molecule which encodes a HT{sub m4} protein, a transformed host cell which has been stably transfected with a DNA molecule which encodes a HT{sub m4} protein and a recombinant HT{sub m4} protein. The invention also relates to a method for detecting the presence of a hereditary atopy. 2 figs.

  6. LACTB, a novel epigenetic silenced tumor suppressor, inhibits colorectal cancer progression by attenuating MDM2-mediated p53 ubiquitination and degradation.

    Science.gov (United States)

    Zeng, Kaixuan; Chen, Xiaoxiang; Hu, Xiuxiu; Liu, Xiangxiang; Xu, Tao; Sun, Huiling; Pan, Yuqin; He, Bangshun; Wang, Shukui

    2018-06-13

    Colorectal cancer (CRC) is one of the most common aggressive malignancies. Like other solid tumors, inactivation of tumor suppressor genes and activation of oncogenes occur during CRC development and progression. Recently, a novel tumor suppressor, LACTB, was proposed to inhibit tumor progression, but the functional and clinical significance of this tumor suppressor in CRC remains unexplored. Herein, we found LACTB was significantly downregulated in CRC due to promoter methylation and histone deacetylation, which was associated with metastasis and advanced clinical stage. CRC patients with low LACTB expression had poorer overall survival and LACTB also determined to be an independent prognostic factor for poorer outcome. Ectopic expression of LACTB suppressed CRC cells proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) in vitro and inhibited CRC growth and metastasis in vivo, while knockout of LACTB by CRISPR/Cas9 gene editing technique resulted in an opposite phenotype. Interestingly, LACTB could exert antitumorigenic effect only in HCT116 and HCT8 cells harboring wild-type TP53, but not in HT29 and SW480 cells harboring mutant TP53 or HCT116 p53 -/- cells. Mechanistic studies demonstrated that LACTB could directly bind to the C terminus of p53 to inhibit p53 degradation by preventing MDM2 from interacting with p53. Moreover, ablation of p53 attenuated the antitumorigenic effects of LACTB overexpression in CRC. Collectively, our findings successfully demonstrate for the first time that LACTB is a novel epigenetic silenced tumor suppressor through modulating the stability of p53, supporting the pursuit of LACTB as a potential therapeutic target for CRC.

  7. Antitumor action of 3-bromopyruvate implicates reorganized tumor growth regulatory components of tumor milieu, cell cycle arrest and induction of mitochondria-dependent tumor cell death.

    Science.gov (United States)

    Yadav, Saveg; Kujur, Praveen Kumar; Pandey, Shrish Kumar; Goel, Yugal; Maurya, Babu Nandan; Verma, Ashish; Kumar, Ajay; Singh, Rana Pratap; Singh, Sukh Mahendra

    2018-01-15

    Evidences demonstrate that metabolic inhibitor 3-bromopyruvate (3-BP) exerts a potent antitumor action against a wide range of malignancies. However, the effect of 3-BP on progression of the tumors of thymic origin remains unexplored. Although, constituents of tumor microenvironment (TME) plays a pivotal role in regulation of tumor progression, it remains unclear if 3-BP can alter the composition of the crucial tumor growth regulatory components of the external surrounding of tumor cells. Thus, the present investigation attempts to understand the effect of 3-BP administration to a host bearing a progressively growing tumor of thymic origin on tumor growth regulatory soluble, cellular and biophysical components of tumor milieu vis-à-vis understanding its association with tumor progression, accompanying cell cycle events and mode of cell death. Further, the expression of cell survival regulatory molecules and hemodynamic characteristics of the tumor milieu were analysed to decipher mechanisms underlying the antitumor action of 3-BP. Administration of 3-BP to tumor-bearing hosts retarded tumor progression accompanied by induction of tumor cell death, cell cycle arrest, declined metabolism, inhibited mitochondrial membrane potential, elevated release of cytochrome c and altered hemodynamics. Moreover, 3-BP reconstituted the external milieu, in concurrence with deregulated glucose and pH homeostasis and increased tumor infiltration by NK cells, macrophages, and T lymphocytes. Further, 3-BP administration altered the expression of key regulatory molecules involved in glucose uptake, intracellular pH and tumor cell survival. The outcomes of this study will help in optimizing the therapeutic application of 3-BP by targeting crucial tumor growth regulatory components of tumor milieu. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Antioxidant activity and cytotoxic profie of Chuquiraga spinosa Lessing on human tumor cell lines: A promissory plant from Peruvian flra

    Directory of Open Access Journals (Sweden)

    Oscar Herrera-Calderon

    2017-05-01

    Full Text Available Objective: To determine the phytochemical content, antioxidant activity in vitro and cytotoxicity of crude ethanol extract (CEE, n-hexane fraction (NHF, petroleum ether fraction (PEF, chloroform fraction (CLF and ethyl acetate fraction (EAF of aerial parts of Chuquiraga spinosa (C. spinosa Lessing. Methods: Phytochemical screening was developed by color and precipitated formation. The evaluation of antioxidant activity was assessed using hydroxyl and nitric oxide radical. Total phenolic content (TPC and total flavonoids content (TFC were measured by using standard methods by spectrophotometry. The cytotoxic effect was determined on human tumor cell lines including MCF-7, H-460, HT-29, M-14, HUTU-80, K-562 and DU-145. Results: Phytochemical analysis confirmed the presence of phenols, flavonoids in crude extract and its all fractions. The CEE showed the highest antioxidant activity, for OH and NO radical scavenging tests (IC50 = 15.16 ± 3.45 μg/mL and IC50 = 18.91 ± 1.13 μg/mL, respectively. TPC was found to be the highest in the CEE (121.36 mg of gallic acid equivalent/g of dried extract compared to other fractions. The ranking order of NHF, PEF, CLF, EAF and CEE for TFC was 21.17 < 35.20 < 62.19 < 70.25 < 78.25 mg quercetin equivalent/g of dried extract. The crude ethanolic extract (μg/mL showed a high cytotoxicity on MCF-7 (IC50 = 9.25 ± 0.81, K-562 (IC50 = 7.34 ± 1.00, HT-29 (IC50 = 8.52 ± 2.69, H-460 (IC50 = 5.32 ± 1.05, M-14 (IC50 = 8.30 ± 0.60, DU-145 (IC50 = 7.09 ± 0.09, HUTU-80 (IC50 = 6.20 ± 0.50. Conclusions: The study showed that CEE of the aerial parts of C. spinosa can be measured as a natural source of antioxidant which might be effective towards preventing or slowing oxidative stress related to chronic diseases as well as cytotoxic agent.

  9. Stabilization of neurotensin analogues: effect on peptide catabolism, biodistribution and tumor binding

    Energy Technology Data Exchange (ETDEWEB)

    Bruehlmeier, Matthias E-mail: peter.blaeuenstein@psi.ch; Garayoa, Elisa Garcia; Blanc, Alain; Holzer, Barbara; Gergely, Suzanne; Tourwe, Dirk; Schubiger, Pius August; Blaeuenstein, Peter

    2002-04-01

    Neurotensin (NT) receptors in pancreatic and other neuroendocrine tumors are promising targets for imaging and therapeutic purposes. Here, we report on the effect of distinct changes in the peptide chain on catabolism in vitro for five radiolabeled [{sup 99m}Tc] neurotensin analogues having high affinity for neurotensin receptors. Substitution of NT(1-7) by (N{alpha}His)Ac--the Tc-binding moiety--combined with a reduced bond 8-9 (CH{sub 2}NH), N-methylation of peptide bonds or replacement of Ile(12) by tertiary leucin (Tle) led to peptide stabilization of various degrees. Biodistribution studies in nude mice bearing HT29 xenografts showed higher tumor uptake with more stable peptides, yielding high tumor to blood ratios of up to 70.

  10. The short circuit current improvement in P3HT:PCBM based polymer solar cell by introducing PSBTBT as additional electron donor.

    Science.gov (United States)

    Sun, Lu; Shen, Liang; Mengd, Fanxu; Xu, Peng; Guo, Wenbin; Ruan, Shengping

    2014-05-01

    Here we demonstrate the influence of electron-donating polymer addition on the performance of poly(3-hexylthiophene) (P3HT):1 -(3-methoxycarbonyl)-propyl-1-phenyl-(6,6) C61 (PCBM) solar cells. Poly[(4,42-bis(2-ethylhexyl) dithieno [3,2-b:22,32-d] silole)-2,6-diylalt-(2,1,3-benzothiadiazole)-4,7-diyl] (PSBTBT) was chosen as the electron-donating polymer to improve the short circuit current (J(sc)) due to its distinct absorption in the near-IR range and similar HOMO level with that of P3HT. In the study, we found that J(sc) was improved for ternary blend (P3HT:PSBTBT:PCBM) solar cells. The dependence of device performance was investigated. J(sc) got decreased with increasing the ratio of PSBTBT. Result showed that J(sc) of ternary blend solar cells was improved greatly after thermal annealing at 150 degrees C, close to that of the binary blend (PSBTBT:PCBM) solar cells.

  11. The Role of 5-HT3 Receptors in Signaling from Taste Buds to Nerves.

    Science.gov (United States)

    Larson, Eric D; Vandenbeuch, Aurelie; Voigt, Anja; Meyerhof, Wolfgang; Kinnamon, Sue C; Finger, Thomas E

    2015-12-02

    Activation of taste buds triggers the release of several neurotransmitters, including ATP and serotonin (5-hydroxytryptamine; 5-HT). Type III taste cells release 5-HT directly in response to acidic (sour) stimuli and indirectly in response to bitter and sweet tasting stimuli. Although ATP is necessary for activation of nerve fibers for all taste stimuli, the role of 5-HT is unclear. We investigated whether gustatory afferents express functional 5-HT3 receptors and, if so, whether these receptors play a role in transmission of taste information from taste buds to nerves. In mice expressing GFP under the control of the 5-HT(3A) promoter, a subset of cells in the geniculate ganglion and nerve fibers in taste buds are GFP-positive. RT-PCR and in situ hybridization confirmed the presence of 5-HT(3A) mRNA in the geniculate ganglion. Functional studies show that only those geniculate ganglion cells expressing 5-HT3A-driven GFP respond to 10 μM 5-HT and this response is blocked by 1 μM ondansetron, a 5-HT3 antagonist, and mimicked by application of 10 μM m-chlorophenylbiguanide, a 5-HT3 agonist. Pharmacological blockade of 5-HT3 receptors in vivo or genetic deletion of the 5-HT3 receptors reduces taste nerve responses to acids and other taste stimuli compared with controls, but only when urethane was used as the anesthetic. We find that anesthetic levels of pentobarbital reduce taste nerve responses apparently by blocking the 5-HT3 receptors. Our results suggest that 5-HT released from type III cells activates gustatory nerve fibers via 5-HT3 receptors, accounting for a significant proportion of the neural taste response. Copyright © 2015 the authors 0270-6474/15/3515984-12$15.00/0.

  12. Tumor cell-derived microparticles polarize M2 tumor-associated macrophages for tumor progression.

    Science.gov (United States)

    Ma, Ruihua; Ji, Tiantian; Chen, Degao; Dong, Wenqian; Zhang, Huafeng; Yin, Xiaonan; Ma, Jingwei; Liang, Xiaoyu; Zhang, Yi; Shen, Guanxin; Qin, Xiaofeng; Huang, Bo

    2016-04-01

    Despite identification of macrophages in tumors (tumor-associated macrophages, TAM) as potential targets for cancer therapy, the origin and function of TAM in the context of malignancy remain poorly characterized. Here, we show that microparticles (MPs), as a by-product, released by tumor cells act as a general mechanism to mediate M2 polarization of TAM. Taking up tumor MPs by macrophages is a very efficient process, which in turn results in the polarization of macrophages into M2 type, not only leading to promoting tumor growth and metastasis but also facilitating cancer stem cell development. Moreover, we demonstrate that the underlying mechanism involves the activation of the cGAS/STING/TBK1/STAT6 pathway by tumor MPs. Finally, in addition to murine tumor MPs, we show that human counterparts also possess consistent effect on human M2 polarization. These findings provide new insights into a critical role of tumor MPs in remodeling of tumor microenvironment and better understanding of the communications between tumors and macrophages.

  13. HMG-CoA reductase regulates CCL17-induced colon cancer cell migration via geranylgeranylation and RhoA activation

    International Nuclear Information System (INIS)

    Al-Haidari, Amr A.; Syk, Ingvar; Thorlacius, Henrik

    2014-01-01

    Highlights: • Simvastatin blocked CCL17-induced and CCR4-dependent RhoA activation in HT29 cells. • CCL17/CCR4-mediated migration of colon cancer cells was antagonised by simvastatin. • Cell migration recovered by adding Mevalonate and geranylgeranyl pyrophosphate. • Targeting HMG-CoA reductase might be useful to inhibit colon cancer metastasis. - Abstract: Background: Simvastatin is widely used to lower cholesterol levels in patients with cardiovascular diseases, although accumulating evidence suggests that statins, such as simvastatin, also exert numerous anti-tumoral effects. Aim: The aim of this study was to examine the effect of simvastatin on colon cancer cell migration. Methods: Migration assays were performed to evaluate CCL17-induced colon cancer cell (HT-29) chemotaxis. In vitro tumor growth and apoptosis were assessed using a proliferation assay and annexin V assay, respectively. Active RhoA protein levels in CCL17-stimulated colon cancer cells were quantified using a G-LISA assay. Results: We found that simvastatin dose-dependently decreased CCL17-induced colon cancer cell migration. Simvastatin had no effect on colon cancer cell proliferation or apoptosis. Inhibition of beta chemokine receptor 4, CCR4, reduced CCL17-evoked activation of RhoA in colon cancer cells. Moreover, administration of mevalonate reversed the inhibitory effect of simvastatin on CCL17-induced colon cancer cell migration. Interestingly, co-incubation with geranylgeranyl pyrophosphate (GGPP) antagonized the inhibitory impact of simvastatin on colon cancer cell migration triggered by CCL17. Moreover, we observed that simvastatin decreased CCL17-induced activation of RhoA in colon cancer cells. Administration of mevalonate and GGPP reversed the inhibitory effect of simvastatin on CCL17-provoked RhoA activation in colon cancer cells. Conclusions: Taken together, our findings show for the first time that HMG-CoA reductase regulates CCL17-induced colon cancer cell migration via

  14. Cannabis Users Show Enhanced Expression of CB1-5HT2A Receptor Heteromers in Olfactory Neuroepithelium Cells.

    Science.gov (United States)

    Galindo, Liliana; Moreno, Estefanía; López-Armenta, Fernando; Guinart, Daniel; Cuenca-Royo, Aida; Izquierdo-Serra, Mercè; Xicota, Laura; Fernandez, Cristina; Menoyo, Esther; Fernández-Fernández, José M; Benítez-King, Gloria; Canela, Enric I; Casadó, Vicent; Pérez, Víctor; de la Torre, Rafael; Robledo, Patricia

    2018-01-02

    Cannabinoid CB1 receptors (CB 1 R) and serotonergic 2A receptors (5HT 2A R) form heteromers in the brain of mice where they mediate the cognitive deficits produced by delta-9-tetrahydrocannabinol. However, it is still unknown whether the expression of this heterodimer is modulated by chronic cannabis use in humans. In this study, we investigated the expression levels and functionality of CB 1 R-5HT 2A R heteromers in human olfactory neuroepithelium (ON) cells of cannabis users and control subjects, and determined their molecular characteristics through adenylate cyclase and the ERK 1/2 pathway signaling studies. We also assessed whether heteromer expression levels correlated with cannabis consumption and cognitive performance in neuropsychological tests. ON cells from controls and cannabis users expressed neuronal markers such as βIII-tubulin and nestin, displayed similar expression levels of genes related to cellular self-renewal, stem cell differentiation, and generation of neural crest cells, and showed comparable Na + currents in patch clamp recordings. Interestingly, CB 1 R-5HT 2A R heteromer expression was significantly increased in cannabis users and positively correlated with the amount of cannabis consumed, and negatively with age of onset of cannabis use. In addition, a negative correlation was found between heteromer expression levels and attention and working memory performance in cannabis users and control subjects. Our findings suggest that cannabis consumption regulates the formation of CB 1 R-5HT 2A R heteromers, and may have a key role in cognitive processing. These heterodimers could be potential new targets to develop treatment alternatives for cognitive impairments.

  15. ADAM12 produced by tumor cells rather than stromal cells accelerates breast tumor progression

    DEFF Research Database (Denmark)

    Frohlich, Camilla; Nehammer, Camilla; Albrechtsen, Reidar

    2011-01-01

    that ADAM12 deficiency reduces breast tumor progression in the PyMT model. However, the catalytic activity of ADAM12 appears to be dispensable for its tumor-promoting effect. Interestingly, we demonstrate that ADAM12 endogenously expressed in tumor-associated stroma in the PyMT model does not influence......Expression of ADAM12 is low in most normal tissues, but is markedly increased in numerous human cancers, including breast carcinomas. We have previously shown that overexpression of ADAM12 accelerates tumor progression in a mouse model of breast cancer (PyMT). In the present study, we found...... hypothesized, however, that the tumor-associated stroma may stimulate ADAM12 expression in tumor cells, based on the fact that TGF-ß1 stimulates ADAM12 expression and is a well-known growth factor released from tumor-associated stroma. TGF-ß1 stimulation of ADAM12-negative Lewis lung tumor cells induced ADAM12...

  16. Juglans mandshurica Maxim extracts exhibit antitumor activity on HeLa cells in vitro.

    Science.gov (United States)

    Xin, Nian; Hasan, Murtaza; Li, Wei; Li, Yan

    2014-04-01

    The present study examined the potential application of Juglans mandshurica Maxim extracts (HT) for cancer therapy by assessing their anti‑proliferative activity, reduction of telomerase activity, induction of apoptosis and cell cycle arrest in S phase in HeLa cells. From the perspective of using HT as a herbal medicine, photomicroscopy and florescent microscopy techniques were utilized to characterize the effect of the extracts on telomerase activity and cell morphology. Flow cytometry was employed to study apoptosis and cell cycle of HeLa cells, and DNA laddering was performed. The results showed that HT inhibited cell proliferation and telomerase activity, induced apoptosis and caused S phase arrest of HeLa cells in vitro. HT inhibited HeLa cell proliferation significantly, and the highest inhibition rate was 83.7%. A trap‑silver staining assay showed that HT was capable of markedly decreasing telomerase activity of HeLa cells and this inhibition was enhanced in a time‑ and dose‑dependent manner. Results of a Hoechst 33258 staining assay showed that HeLa cells treated by HT induced cell death. Through DNA agarose gel electrophoresis, DNA ladders of HeLa cells treated with HT were observed, indicating apoptosis. In conclusion, the present study demonstrated that HT exhibited anti‑tumor effects comprising the inhibition of growth and telomerase activity as well as apoptosis and cell cycle arrest in HeLa cells.

  17. Non-cell autonomous or secretory tumor suppression.

    Science.gov (United States)

    Chua, Christelle En Lin; Chan, Shu Ning; Tang, Bor Luen

    2014-10-01

    Many malignancies result from deletions or loss-of-function mutations in one or more tumor suppressor genes, the products of which curb unrestrained growth or induce cell death in those with dysregulated proliferative capacities. Most tumor suppressors act in a cell autonomous manner, and only very few proteins are shown to exert a non-cell autonomous tumor suppressor function on other cells. Examples of these include members of the secreted frizzled-related protein (SFRP) family and the secreted protein acidic and rich in cysteine (SPARC)-related proteins. Very recent findings have, however, considerably expanded our appreciation of non-cell autonomous tumor suppressor functions. Broadly, this may occur in two ways. Intracellular tumor suppressor proteins within cells could in principle inhibit aberrant growth of neighboring cells by conditioning an antitumor microenvironment through secreted factors. This is demonstrated by an apparent non-cell autonomous tumor suppressing property of p53. On the other hand, a tumor suppressor produced by a cell may be secreted extracellularly, and taken up by another cell with its activity intact. Intriguingly, this has been recently shown to occur for the phosphatase and tensin homolog (PTEN) by both conventional and unconventional modes of secretion. These recent findings would aid the development of therapeutic strategies that seek to reinstate tumor suppression activity in therapeutically recalcitrant tumor cells, which have lost it in the first place. © 2014 Wiley Periodicals, Inc.

  18. Apoptosis and tumor cell death in response to HAMLET (human alpha-lactalbumin made lethal to tumor cells).

    Science.gov (United States)

    Hallgren, Oskar; Aits, Sonja; Brest, Patrick; Gustafsson, Lotta; Mossberg, Ann-Kristin; Wullt, Björn; Svanborg, Catharina

    2008-01-01

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a molecular complex derived from human milk that kills tumor cells by a process resembling programmed cell death. The complex consists of partially unfolded alpha-lactalbumin and oleic acid, and both the protein and the fatty acid are required for cell death. HAMLET has broad antitumor activity in vitro, and its therapeutic effect has been confirmed in vivo in a human glioblastoma rat xenograft model, in patients with skin papillomas and in patients with bladder cancer. The mechanisms of tumor cell death remain unclear, however. Immediately after the encounter with tumor cells, HAMLET invades the cells and causes mitochondrial membrane depolarization, cytochrome c release, phosphatidyl serine exposure, and a low caspase response. A fraction of the cells undergoes morphological changes characteristic of apoptosis, but caspase inhibition does not rescue the cells and Bcl-2 overexpression or altered p53 status does not influence the sensitivity of tumor cells to HAMLET. HAMLET also creates a state of unfolded protein overload and activates 20S proteasomes, which contributes to cell death. In parallel, HAMLET translocates to tumor cell nuclei, where high-affinity interactions with histones cause chromatin disruption, loss of transcription, and nuclear condensation. The dying cells also show morphological changes compatible with macroautophagy, and recent studies indicate that macroautophagy is involved in the cell death response to HAMLET. The results suggest that HAMLET, like a hydra with many heads, may interact with several crucial cellular organelles, thereby activating several forms of cell death, in parallel. This complexity might underlie the rapid death response of tumor cells and the broad antitumor activity of HAMLET.

  19. Combination of exogenous cell transplantation and 5-HT4 receptor agonism induce endogenous enteric neural crest-derived cells in a rat hypoganglionosis model.

    Science.gov (United States)

    Yu, Hui; Zheng, Bai-Jun; Pan, Wei-Kang; Wang, Huai-Jie; Xie, Chong; Zhao, Yu-Ying; Chen, Xin-Lin; Liu, Yong; Gao, Ya

    2017-02-01

    Enteric neural crest-derived cells (ENCCs) can migrate into endogenous ganglia and differentiate into progeny cells, and have even partially rescued bowel function; however, poor reliability and limited functional recovery after ENCC transplantation have yet to be addressed. Here, we investigated the induction of endogenous ENCCs by combining exogenous ENCC transplantation with a 5-HT 4 receptor agonist mosapride in a rat model of hypoganglionosis, established by benzalkonium chloride treatment. ENCCs, isolated from the gut of newborn rats, were labeled with a lentiviral eGFP reporter. ENCCs and rats were treated with the 5-HT 4 receptor agonist/antagonist. The labeled ENCCs were then transplanted into the muscular layer of benzalkonium chloride-treated colons. At given days post-intervention, colonic tissue samples were removed for histological analysis. ENCCs and neurons were detected by eGFP expression and immunoreactivity to p75 NTR and peripherin, respectively. eGFP-positive ENCCs and neurons could survive and maintain levels of fluorescence after transplantation. With longer times post-intervention, the number of peripherin-positive cells gradually increased in all groups. Significantly more peripherin-positive cells were found following ENCCs plus mosapride treatment, compared with the other groups. These results show that exogenous ENCCs combined with the 5-HT 4 receptor agonist effectively induced endogenous ENCCs proliferation and differentiation in a rat hypoganglionosis model. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Antitumor effects of radioiodinated antisense oligonucleotide mediated by VIP receptor

    International Nuclear Information System (INIS)

    Ou Xiaohong; Tan Tianzhi; Li Yunchun; Kuang Anren

    2004-01-01

    Purpose: we had constructed a targeting delivery system based on intestinal peptide (VIP) for antisense oligonucleotide (ASON) transfer into VIP receptor-positive cells in previous study. The aims of present studies are to observe the antitumor effect of VIP-131I-ASON in HT29 human colon adenocarcinoma xenografts. Methods: A 15-met phosphorothioate ASON, which was complementary to the translation start region of the C-myc oncogene mRNA, was labeled with 131I and the labelled compound was linked to the VIP bound covalently 'to a polylysine chain so as to deliver oligonucleotide into tumor cells. Distribution experiments for evaluating the radiolabeled antisense complexe uptake in tumor tissue were performed in BALB/c nude mice bearing with HT29 tumor xenografts. Nude mice beating HT29 tumor xenografts were adminstered VIP-131I-ASON (3.7,7.4 MBq) or 131I-ASON (3.7 MBq), 131I labeled control sense and nosense DNA (3.7 MBq), or saline. Antitumor effects were assessed using endpoints of tumor growth delay. C-myc-encoded protein expression of tumor was measured by immunocytohistochemical staining. Results: Distribution experiment performed with athymic mice bearing human colon tumor xenografts revealed maximal accumulation of conjugated ASON in the tumor tissue 2 h after administration and significantly higher than that in nude mice injected unconjngated ASON [(5.89±1.03)%ID/g and(1.56±0.31)%ID/g, respectively; t=7.7954 P<0.001]. The radioratio of tumor to muscle was peaked 4h after administration. VIP-131I-ASON exhibited strong antitumor effects against HT29 xenografts, decreasing their growth rate 7-fold compare with that in saline-treated mice(tumor growth delay, 25.4±0.89 day). The antitumor effects of unconjugated 131I-ASON were much less profound than VIP-131I-ASON (tumor growth delay, 3.2±1.3 and 25.4±0.89 day, respectively; q=51.4126 P<0.01). Sense, nosense control ON with VIP carder caused no therapeutic effect. There was no progressive weight loss or

  1. NF-κB functions as a molecular link between tumor cells and Th1/Tc1 T cells in the tumor microenvironment to exert radiation-mediated tumor suppression

    Science.gov (United States)

    Simon, Priscilla S.; Bardhan, Kankana; Chen, May R.; Paschall, Amy V.; Lu, Chunwan; Bollag, Roni J.; Kong, Feng-Chong; Jin, JianYue; Kong, Feng-Ming; Waller, Jennifer L.; Pollock, Raphael E.; Liu, Kebin

    2016-01-01

    Radiation modulates both tumor cells and immune cells in the tumor microenvironment to exert its anti-tumor activity; however, the molecular connection between tumor cells and immune cells that mediates radiation-exerted tumor suppression activity in the tumor microenvironment is largely unknown. We report here that radiation induces rapid activation of the p65/p50 and p50/p50 NF-κB complexes in human soft tissue sarcoma (STS) cells. Radiation-activated p65/p50 and p50/p50 bind to the TNFα promoter to activate its transcription in STS cells. Radiation-induced TNFα induces tumor cell death in an autocrine manner. A sublethal dose of Smac mimetic BV6 induces cIAP1 and cIAP2 degradation to increase tumor cell sensitivity to radiation-induced cell death in vitro and to enhance radiation-mediated suppression of STS xenografts in vivo. Inhibition of caspases, RIP1, or RIP3 blocks radiation/TNFα-induced cell death, whereas inhibition of RIP1 blocks TNFα-induced caspase activation, suggesting that caspases and RIP1 act sequentially to mediate the non-compensatory cell death pathways. Furthermore, we determined in a syngeneic sarcoma mouse model that radiation up-regulates IRF3, IFNβ, and the T cell chemokines CCL2 and CCL5 in the tumor microenvironment, which are associated with activation and increased infiltration of Th1/Tc1 T cells in the tumor microenvironment. Moreover, tumor-infiltrating T cells are in their active form since both the perforin and FasL pathways are activated in irradiated tumor tissues. Consequently, combined BV6 and radiation completely suppressed tumor growth in vivo. Therefore, radiation-induced NF-κB functions as a molecular link between tumor cells and immune cells in the tumor microenvironment for radiation-mediated tumor suppression. PMID:27014915

  2. Structurally related antitumor effects of flavanones in vitro and in vivo: involvement of caspase 3 activation, p21 gene expression, and reactive oxygen species production

    International Nuclear Information System (INIS)

    Shen, S.-C.; Ko, C.H.; Tseng, S.-W.; Tsai, S.-H.; Chen, Y.-C.

    2004-01-01

    Flavonoids exist extensively in plants and Chinese herbs, and several biological effects of flavonoids have been demonstrated. The antitumor effects in colorectal carcinoma cells (HT29, COLO205, and COLO320HSR) of eight flavanones including flavanone, 2'-OH flavanone, 4'-OH flavanone, 6-OH flavanone, 7-OH flavanone, naringenin, nargin, and taxifolin were investigated. Results of the MTT assay indicate that 2'-OH flavanone showed the most potent cytotoxic effect on these three cells, and cell death induced by 2'-OH flavanone was via the occurrence of DNA ladders, apoptotic bodies, and hypodiploid cells, all characteristics of apoptosis. Induction of caspase 3 protein processing and enzyme activity associated with cleavage of poly(ADP-ribose) polymerase (PARP) was identified in 2'-OH flavanone-treated cells, and a peptidyl inhibitor (Ac-DEVD-FMK) of caspase 3 attenuated the cytotoxicity of 2'-OH flavanone in COLO205 and HT-29 cells. Elevation of p21 (but not p53) and a decrease in Mcl-1 protein were found in 2'-OH flavanone-treated COLO205 and HT-29 cells. Elevation of intracellular reactive oxygen species (ROS) was detected in 2'-OH flavanone-treated cells by the 2',7'-dichlorodihydrofluorescein diacetate (DCHF-DA) assay, and ROS scavengers including 4,5-dihydro-1,3-benzene disulfonic acid (tiron), catalase, superoxide dismutase (SOD), and pyrrolidine dithiocarbamate (PDTC) suppressed the 2'-OH flavanone-induced cytotoxic effect. Subcutaneous injection of COLO205 induced tumor formation in nude mice, and 2'-OH flavanone showed a significant inhibitory effect on tumor formation. The appearance of apoptotic cells with H and E staining, and an increase in p21, but not p53, protein by immunohistochemistry were observed in tumor tissues under 2'-OH flavanone treatment. Primary tumor cells (COLO205-X) derived from a tumor specimen elicited by COLO205 were established, and 2'-OH flavanone showed an significant apoptotic effect in COLO205-X cells in accordance with the

  3. Experimental rat lung tumor model with intrabronchial tumor cell implantation.

    Science.gov (United States)

    Gomes Neto, Antero; Simão, Antônio Felipe Leite; Miranda, Samuel de Paula; Mourão, Lívia Talita Cajaseiras; Bezerra, Nilfácio Prado; Almeida, Paulo Roberto Carvalho de; Ribeiro, Ronaldo de Albuquerque

    2008-01-01

    The objective of this study was to develop a rat lung tumor model for anticancer drug testing. Sixty-two female Wistar rats weighing 208 +/- 20 g were anesthetized intraperitoneally with 2.5% tribromoethanol (1 ml/100 g live weight), tracheotomized and intubated with an ultrafine catheter for inoculation with Walker's tumor cells. In the first step of the experiment, a technique was established for intrabronchial implantation of 10(5) to 5 x 10(5) tumor cells, and the tumor take rate was determined. The second stage consisted of determining tumor volume, correlating findings from high-resolution computed tomography (HRCT) with findings from necropsia and determining time of survival. The tumor take rate was 94.7% for implants with 4 x 10(5) tumor cells, HRCT and necropsia findings matched closely (r=0.953; p<0.0001), the median time of survival was 11 days, and surgical mortality was 4.8%. The present rat lung tumor model was shown to be feasible: the take rate was high, surgical mortality was negligible and the procedure was simple to perform and easily reproduced. HRCT was found to be a highly accurate tool for tumor diagnosis, localization and measurement and may be recommended for monitoring tumor growth in this model.

  4. Investigations into the binding affinities of different human 5-HT4 receptor splice variants.

    Science.gov (United States)

    Irving, Helen R; Tochon-Danguy, Nathalie; Chinkwo, Kenneth A; Li, Jian G; Grabbe, Carmen; Shapiro, Marina; Pouton, Colin W; Coupar, Ian M

    2010-01-01

    This study examined whether the drug-receptor-binding sites of 5 selected human 5-HT(4) receptor splice variants [h5-HT4(a), h5-HT4(b), h5-HT4(c), h5-HT4(d) and h5-HT4(g)] display preferential affinities towards agonists. The agonists selected on the basis of chemical diversity and clinical relevance were: 5-HT4 benzamides, renzapride, zacopride and prucalopride; the benzimidazolones, DAU 6236 and BIMU 1; the aromatic ketone, RS67333, and the indole carbazimidamide tegaserod. The rank order of affinities ranging across the splice variants was: tegaserod (pKi: 7.38-7.91) > or = Y-36912 (pKi: 7.03-7.85) = BIMU 1 (pKi: 6.92-7.78) > or = DAU 6236 (pKi: 6.79-7.99) > or = 5-HT (pKi: 5.82-7.29) > or = 5-MeOT (pKi: 5.64-6.83) > or = renzapride (pKi: 4.85-5.56). We obtained affinity values for the 5-HT4(b), (d) and (g) variants for RS67333 (pKi: 7:48-8.29), prucalopride (pKi: 6.86-7.37) and zacopride (pKi: 5.88-7.0). These results indicate that the ligands interact with the same conserved site in each splice variant. Some splice variants have a higher affinity for certain agonists and the direction of selectivity followed a common trend of lowest affinity at the (d) variant. However, this trend was not evident in functional experiments. Our findings suggest that it may be possible to design splice variant selective ligands, which may be of relevance for experimental drugs but may be difficult to develop clinically. 2010 S. Karger AG, Basel.

  5. An AML1-ETO/miR-29b-1 regulatory circuit modulates phenotypic properties of acute myeloid leukemia cells.

    Science.gov (United States)

    Zaidi, Sayyed K; Perez, Andrew W; White, Elizabeth S; Lian, Jane B; Stein, Janet L; Stein, Gary S

    2017-06-20

    Acute myeloid leukemia (AML) is characterized by an aggressive clinical course and frequent cytogenetic abnormalities that include specific chromosomal translocations. The 8;21 chromosomal rearrangement disrupts the key hematopoietic RUNX1 transcription factor, and contributes to leukemia through recruitment of co-repressor complexes to RUNX1 target genes, altered subnuclear localization, and deregulation of the myeloid gene regulatory program. However, a role of non-coding microRNAs (miRs) in t(8;21)-mediated leukemogenesis is minimally understood. We present evidence of an interplay between the tumor suppressor miR-29b-1 and the AML1-ETO (also designated RUNX1-RUNX1T1) oncogene that is encoded by the t(8;21). We find that AML1-ETO and corepressor NCoR co-occupy the miR-29a/b-1 locus and downregulate its expression in leukemia cells. Conversely, re-introduction of miR-29b-1 in leukemia cells expressing AML1-ETO causes significant downregulation at the protein level through direct targeting of the 3' untranslated region of the chimeric transcript. Restoration of miR-29b-1 expression in leukemia cells results in decreased cell growth and increased apoptosis. The AML1-ETO-dependent differentiation block and transcriptional program are partially reversed by miR-29b-1. Our findings establish a novel regulatory circuit between the tumor-suppressive miR-29b-1 and the oncogenic AML1-ETO that controls the leukemic phenotype in t(8;21)-carrying acute myeloid leukemia.

  6. Tumour-Derived Interleukin-1 Beta Induces Pro-inflammatory Response in Human Mesenchymal Stem Cells

    DEFF Research Database (Denmark)

    Alajez, Nehad M; Al-toub, Mashael; Almusa, Abdulaziz

    ’ secreted factors as represented by a panel of human cancer cell lines (breast (MCF7 and MDA-MB-231); prostate (PC-3); lung (NCI-H522); colon (HT-29) and head & neck (FaDu)) on the biological characteristics of MSCs. Background Over the past several years, significant amount of research has emerged......, the goal of this study was to assess the cellular and molecular changes in MSCs in response to secreted factors present in conditioned media (CM) from a panel of human tumor cell lines covering a spectrum of human cancers (Breast, Prostate, Lung, colon, and head and neck). Research Morphological changes...... with bipolar processes. In association with phenotypic changes, genome-wide gene expression and bioinformatics analysis revealed an enhanced pro-inflammatory response of those MSCs. Pharmacological inhibitions of FAK and MAPKK severely impaired the pro-inflammatory response of MSCs to tumor CM (~80-99%, and 55...

  7. In vitro anti-proliferative activity on colon cancer cell line (HT-29) of Thai medicinal plants selected from Thai/Lanna medicinal plant recipe database "MANOSROI III".

    Science.gov (United States)

    Manosroi, Aranya; Akazawa, Hiroyuki; Akihisa, Toshihiro; Jantrawut, Pensak; Kitdamrongtham, Worapong; Manosroi, Worapaka; Manosroi, Jiradej

    2015-02-23

    Thai/Lanna region has its own folklore wisdoms including the traditional medicinal plant recipes. Thai/Lanna medicinal plant recipe database "MANOSROI III" has been developed by Prof. Dr. Jiradej Manosroi. It consists of over 200,000 recipes for all diseases including cancer. To investigate the anti-proliferative and apoptotic activities on human colon cancer cell line (HT-29) as well as the cancer cell selectivity of the methanolic extracts (MEs) and fractions of the 23 selected plants from the "MANOSROI III" database. The 23 selected plants were extracted with methanol under reflux and evaluated for their anti-proliferative activity by sulforhodamine B assay. The 5 plants (Gloriosa superba, Caesalpinia sappan, Fibraurea tinctoria, Ventilago denticulata and Psophocarpus tetragonolobus) with potent anti-proliferative activity were fractionated by liquid-liquid partition to give 4 fractions including each hexane (HF), methanol-water (MF), n-butanol (BF) and water (WF) fractions. They were tested for anti-proliferative activity and cancer cell selectivity. The ME and fractions of G. superba which showed potent anti-proliferative activity were further examined for morphological changes and apoptotic activities by acridine orange (AO)/ethidium bromide (EB) staining. The ME of G. superba root showed active with the highest anti-proliferative activity at 9.17 and 1.58 folds of cisplatin and doxorubicin, respectively. After liquid-liquid partition, HF of V. denticulata, MFs of F. tinctoria, V. denticulata and BF of P. tetragonolobus showed higher anti-proliferative activities than their MEs. The MF of G. superba indicated the highest anti-proliferative activity at 7.73 and 1.34 folds of cisplatin and doxorubicin, respectively, but only 0.86 fold of its ME. The ME and HF, MF and BF of G. superba and MF of F. tinctoria demonstrated high cancer cell selectivity. At 50 µg/ml, ME, HF, MF and BF of G. superba demonstrated higher apoptotic activities than the two standard drugs

  8. Haliotis tuberculata hemocyanin (HtH): analysis of oligomeric stability of HtH1 and HtH2, and comparison with keyhole limpet hemocyanin KLH1 and KLH2.

    Science.gov (United States)

    Harris, J R; Scheffler, D; Gebauer, W; Lehnert, R; Markl, J

    2000-12-01

    The multimeric/higher oligomeric states of the two isoforms of Haliotis tuberculata hemocyanin (HtH1 and HtH2) have been assessed by transmission electron microscopy (TEM) of negatively stained specimens, for comparison with previously published structural data from keyhole limpet hemocyanin (KLH1 and KLH2) [see Harris, J.R., Gebauer, W., Guderian, F.U., Markl, J., 1997a. Keyhole limpet hemocyanin (KLH), I: Reassociation from Immucothel followed by separation of KLH1 and KLH2. Micron, 28, 31-41; Harris, J.R., Gebauer, W., Söhngen, S.M., Nermut, M.V., Markl, J., 1997b. Keyhole limpet hemocyanin (KLH). II: Characteristic reassociation properties of purified KLH1 and KLH2. Micron, 28, 43-56; Harris, J.R., Gebauer, W., Adrian, M., Markl, J., 1998. Keyhole limpet hemocyanin (KLH): Slow in vitro reassociation of KLH1 and KLH2 from Immucothel. Micron, 29, 329-339]. In purified samples of both HtH isoforms, the hollow cylindrical ca 8MDa didecamer predominates together with a small number of decamers, but tri- and longer multidecamers are detectable only in the HtH2. The stability of the two HtH isoforms under varying ionic conditions have been monitored, thereby enabling conditions for the production of stable decamers to be established. The ability of these decamers to reform multimers in the presence of 10 and 100mM concentrations of calcium and magnesium ions in Tris-HCl buffer (pH 7.4), and also of individual HtH1 and HtH2 subunits (produced by pH 9.6 dissociation in glycine-NaOH buffer), to reassociate in the presence of calcium and magnesium ions, has been assessed. For the HtH1 decamers, the predominant multimeric product is the didecamer at 10 and 100mM calcium and magnesium concentrations, whereas for the HtH2 decamers, large numbers of multidecamers are produced, with the reaction proceeding more completely at the higher calcium and magnesium concentration. With the HtH1 subunit, reassociation in the presence of 10 and 100mM calcium and magnesium ions yielded

  9. Intra-Abdominal Desmoplastic Small Round Cell Tumor with Elevated Serum CA 125: A Case Report

    Directory of Open Access Journals (Sweden)

    Sheau-Fang Yang

    2003-10-01

    Full Text Available Desmoplastic small round cell tumor (DSRCT is a rare and highly aggressive tumor usually involving the peritoneum. It occurs more commonly in young males and is characterized by distinctive clinical, histologic, and immunophenotypic features. The histogenesis of DSRCT remains unknown. Coexpression of epithelial, mesenchymal, and neural antigens in the same cell provides evidence that DSRCT may arise from a primitive pluripotent stem cell with divergent differentiation. Recently, according to cytogenetic studies, some authors have proposed that the divergent differentiation of DSRCT may be the result of the fusion of Ewing's sarcoma gene and Wilms' tumor suppressor gene. Clinically, an elevated serum CA 125 concentration is found in some patients with DSRCT. We present the case of a 29-year-old man with diffuse intra-abdominal DSRCT and elevated serum CA 125 concentration and briefly review the relevant literature.

  10. Tumor-Induced Generation of Splenic Erythroblast-like Ter-Cells Promotes Tumor Progression.

    Science.gov (United States)

    Han, Yanmei; Liu, Qiuyan; Hou, Jin; Gu, Yan; Zhang, Yi; Chen, Zhubo; Fan, Jia; Zhou, Weiping; Qiu, Shuangjian; Zhang, Yonghong; Dong, Tao; Li, Ning; Jiang, Zhengping; Zhu, Ha; Zhang, Qian; Ma, Yuanwu; Zhang, Lianfeng; Wang, Qingqing; Yu, Yizhi; Li, Nan; Cao, Xuetao

    2018-04-19

    Identifying tumor-induced leukocyte subsets and their derived circulating factors has been instrumental in understanding cancer as a systemic disease. Nevertheless, how primary tumor-induced non-leukocyte populations in distal organs contribute to systemic spread remains poorly defined. Here, we report one population of tumor-inducible, erythroblast-like cells (Ter-cells) deriving from megakaryocyte-erythroid progenitor cells with a unique Ter-119 + CD45 - CD71 + phenotype. Ter-cells are enriched in the enlarged spleen of hosts bearing advanced tumors and facilitate tumor progression by secreting neurotrophic factor artemin into the blood. Transforming growth factor β (TGF-β) and Smad3 activation are important in Ter-cell generation. In vivo blockade of Ter-cell-derived artemin inhibits hepatocellular carcinoma (HCC) growth, and artemin deficiency abolishes Ter-cells' tumor-promoting ability. We confirm the presence of splenic artemin-positive Ter-cells in human HCC patients and show that significantly elevated serum artemin correlates with poor prognosis. We propose that Ter-cells and the secreted artemin play important roles in cancer progression with prognostic and therapeutic implications. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Curcumin targets fibroblast–tumor cell interactions in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Dudás, József; Fullár, Alexandra; Romani, Angela; Pritz, Christian; Kovalszky, Ilona; Hans Schartinger, Volker; Mathias Sprinzl, Georg; Riechelmann, Herbert

    2013-01-01

    Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of OSCC tumor cells. We hypothesized that Curcumin targets this dynamic mutual interaction between CAFs and tumor cells. Normal and 2 μM Curcumin-treated co-culture were performed for 4 days, followed by analysis of tumor cell invasivity, mRNA/protein expression of EMT-markers and mediators, activity measure of matrix metalloproteinase 9 (MMP-9), and western blot analysis of signal transduction in tumor cells and fibroblasts. In Curcumin-treated co-culture, in tumor cells, the levels of nuclear factor κB (NFκBα) and early response kinase (ERK)—decreased, in fibroblasts, integrin αv protein synthesis decreased compared to corresponding cells in normal co-culture. The signal modulatory changes induced by Curcumin caused decreased release of EMT-mediators in CAFs and reversal of EMT in tumor cells, which was associated with decreased invasion. These data confirm the palliative potential of Curcumin in clinical application. - Graphical abstract: Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of tumor cells. Curcumin targets this dynamic mutual interaction between CAFs and tumor cells by inhibiting the production of EMT mediators in CAFs and by modification of intracellular signaling in tumor cells. This causes less invasivity and reversal of EMT in tumor cells. Highlights: ► Curcumin targets tumor–fibroblast interaction in head and neck cancer. ► Curcumin suppresses mediators of epithelial–mesenchymal transition. ► Curcumin decreases the invasivity of tumor cells

  12. Curcumin targets fibroblast–tumor cell interactions in oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Dudás, József, E-mail: jozsef.dudas@i-med.ac.at [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Fullár, Alexandra, E-mail: fullarsz@gmail.com [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest (Hungary); Romani, Angela, E-mail: angela.romani@i-med.ac.at [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Pritz, Christian, E-mail: christian.pritz@i-med.ac.at [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Kovalszky, Ilona, E-mail: koval@korb1.sote.hu [1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest (Hungary); Hans Schartinger, Volker, E-mail: volker.schartinger@i-med.ac.at [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Mathias Sprinzl, Georg, E-mail: georg.sprinzl@i-med.ac.at [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Riechelmann, Herbert, E-mail: herbert.riechelmann@i-med.ac.at [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria)

    2013-04-01

    Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of OSCC tumor cells. We hypothesized that Curcumin targets this dynamic mutual interaction between CAFs and tumor cells. Normal and 2 μM Curcumin-treated co-culture were performed for 4 days, followed by analysis of tumor cell invasivity, mRNA/protein expression of EMT-markers and mediators, activity measure of matrix metalloproteinase 9 (MMP-9), and western blot analysis of signal transduction in tumor cells and fibroblasts. In Curcumin-treated co-culture, in tumor cells, the levels of nuclear factor κB (NFκBα) and early response kinase (ERK)—decreased, in fibroblasts, integrin αv protein synthesis decreased compared to corresponding cells in normal co-culture. The signal modulatory changes induced by Curcumin caused decreased release of EMT-mediators in CAFs and reversal of EMT in tumor cells, which was associated with decreased invasion. These data confirm the palliative potential of Curcumin in clinical application. - Graphical abstract: Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of tumor cells. Curcumin targets this dynamic mutual interaction between CAFs and tumor cells by inhibiting the production of EMT mediators in CAFs and by modification of intracellular signaling in tumor cells. This causes less invasivity and reversal of EMT in tumor cells. Highlights: ► Curcumin targets tumor–fibroblast interaction in head and neck cancer. ► Curcumin suppresses mediators of epithelial–mesenchymal transition. ► Curcumin decreases the invasivity of tumor cells.

  13. An apple oligogalactan enhances the growth inhibitory effect of 5-fluorouracil on colorectal cancer.

    Science.gov (United States)

    Li, Yuhua; Fan, Lei; Niu, Yinbo; Mian, Wenguang; Zhang, Feng; Xie, Ming; Sun, Yang; Mei, Qibing

    2017-06-05

    Treatment of colorectal cancer (CRC) remains a clinical challenge, since current therapies are associated with obvious side effects and high expenses. These limitations highlight an urgent need for developing novel and safe treatment strategies. It is suggested that combinatorial strategies could be more effective and much safer than monotherapy in cancer treatment. In our previous study, an apple oligogalactan (AOG) has been found to show beneficial effect on treating CRC. This study tried to investigate whether AOG could enhance the growth inhibitory effect of 5-FU in human CRC cells (HT-29 and SW-620), a mouse model of colitis associated colorectal cancer and a murine model of xenograft tumor. The IC 50 values of 5-FU were 26.70±0.21μM in HT-29 cells and 26.71±2.06μM in SW-620 cells. Pretreatment with 0.05 or 0.1mM AOG down-regulated IC 50 values of 5-FU to 22.44±1.01 or 18.67±1.16μM in HT-29 and 21.21±1.49 or 17.99±1.42μM in SW-620 cells. AOG enhanced 5-FU-induced cell apoptosis and S phase arrest. The combination not only protected ICR mice against intestinal toxicities and carcinogenesis induced by 1,2-dimethylhydrazine and dextran sodium sulfate, but also decreased the xenograft tumor size, triggered apoptosis and inhibited proliferation of tumor cells in nude mice. The mechanisms of AOG on enhancing the growth inhibitory effect of 5-FU may be through the influence of TLR-4/NF-κB pathway. Taken together, the combinatorial therapy using AOG and 5-FU is a promising strategy for the treatment of colorectal cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Antitumor Cell-Complex Vaccines Employing Genetically Modified Tumor Cells and Fibroblasts

    Directory of Open Access Journals (Sweden)

    Antonio Miguel

    2014-02-01

    Full Text Available The present study evaluates the immune response mediated by vaccination with cell complexes composed of irradiated B16 tumor cells and mouse fibroblasts genetically modified to produce GM-CSF. The animals were vaccinated with free B16 cells or cell complexes. We employed two gene plasmid constructions: one high producer (pMok and a low producer (p2F. Tumor transplant was performed by injection of B16 tumor cells. Plasma levels of total IgG and its subtypes were measured by ELISA. Tumor volumes were measured and survival curves were obtained. The study resulted in a cell complex vaccine able to stimulate the immune system to produce specific anti-tumor membrane proteins (TMP IgG. In the groups vaccinated with cells transfected with the low producer plasmid, IgG production was higher when we used free B16 cell rather than cell complexes. Nonspecific autoimmune response caused by cell complex was not greater than that induced by the tumor cells alone. Groups vaccinated with B16 transfected with low producer plasmid reached a tumor growth delay of 92% (p ≤ 0.01. When vaccinated with cell complex, the best group was that transfected with high producer plasmid, reaching a tumor growth inhibition of 56% (p ≤ 0.05. Significant survival (40% was only observed in the groups vaccinated with free transfected B16 cells.

  15. Agonist/antagonist interactions with cloned human 5-HT(1A) receptors: Variations in intrinsic activity studied in transfected HeLa cells

    NARCIS (Netherlands)

    Boddeke, H.W.G.M.; Fargin, A.; Raymond, J.R.; Schoeffter, P.; Hoyer, D.

    1992-01-01

    The characteristics of 5-HT(1A)-recognition sites and receptor-mediated release of intracellular calcium were established in two transfected HeLa cell lines (HA 6 and HA 7) expressing different levels of human 5-HT(1A) receptors (about 3000 and 500 fmol/mg protein, Fargin et al. 1989; 1991; Raymond

  16. Studies on cross-immunity among syngeneic tumors by immunization with gamma-irradiated tumor cells

    International Nuclear Information System (INIS)

    Ito, Izumi

    1977-01-01

    In order to clarify whether cross-immunity among 3-methyl-cholanthrene (MCA)-induced sarcomas in C3H/He mice can be established or not, transplantations of syngeneic tumors were carried out in mice immunized with gamma-irradiated (13,000 rad 60 Co) tumor cells and in those immunized with living tumor cells thereafter. The following results were obtained. By using immunizing procedure with only gamma-irradiated tumor cells, a pair of tumors originating from one and the same mouse showed cross-resistance to each other. However, no such evidence was seen among tumors originating from different mice. Cross-immunity among syngeneic tumors originating from different mice could be clearly observed, when immunizing procedure using living tumor cells was added after the treatment with gamma-irradiated tumor cells. It was considered that common antigenicity among MCA-induced sarcoma cells was decreased by gamma-irradiation and that individual differences of tumor antigenecity were shown distinctly under such conditions. (auth.)

  17. Role of Axumin PET Scan in Germ Cell Tumor

    Science.gov (United States)

    2018-05-01

    Testis Cancer; Germ Cell Tumor; Testicular Cancer; Germ Cell Tumor of Testis; Germ Cell Tumor, Testicular, Childhood; Testicular Neoplasms; Testicular Germ Cell Tumor; Testicular Yolk Sac Tumor; Testicular Choriocarcinoma; Testicular Diseases; Germ Cell Cancer Metastatic; Germ Cell Neoplasm of Retroperitoneum; Germ Cell Cancer, Nos

  18. Gastrointestinal cell lines form polarized epithelia with an adherent mucus layer when cultured in semi-wet interfaces with mechanical stimulation.

    Science.gov (United States)

    Navabi, Nazanin; McGuckin, Michael A; Lindén, Sara K

    2013-01-01

    Mucin glycoproteins are secreted in large quantities by mucosal epithelia and cell surface mucins are a prominent feature of the glycocalyx of all mucosal epithelia. Currently, studies investigating the gastrointestinal mucosal barrier use either animal experiments or non-in vivo like cell cultures. Many pathogens cause different pathology in mice compared to humans and the in vitro cell cultures used are suboptimal because they are very different from an in vivo mucosal surface, are often not polarized, lack important components of the glycocalyx, and often lack the mucus layer. Although gastrointestinal cell lines exist that produce mucins or polarize, human cell line models that reproducibly create the combination of a polarized epithelial cell layer, functional tight junctions and an adherent mucus layer have been missing until now. We trialed a range of treatments to induce polarization, 3D-organization, tight junctions, mucin production, mucus secretion, and formation of an adherent mucus layer that can be carried out using standard equipment. These treatments were tested on cell lines of intestinal (Caco-2, LS513, HT29, T84, LS174T, HT29 MTX-P8 and HT29 MTX-E12) and gastric (MKN7, MKN45, AGS, NCI-N87 and its hTERT Clone5 and Clone6) origins using Ussing chamber methodology and (immuno)histology. Semi-wet interface culture in combination with mechanical stimulation and DAPT caused HT29 MTX-P8, HT29 MTX-E12 and LS513 cells to polarize, form functional tight junctions, a three-dimensional architecture resembling colonic crypts, and produce an adherent mucus layer. Caco-2 and T84 cells also polarized, formed functional tight junctions and produced a thin adherent mucus layer after this treatment, but with less consistency. In conclusion, culture methods affect cell lines differently, and testing a matrix of methods vs. cell lines may be important to develop better in vitro models. The methods developed herein create in vitro mucosal surfaces suitable for studies

  19. Gastrointestinal cell lines form polarized epithelia with an adherent mucus layer when cultured in semi-wet interfaces with mechanical stimulation.

    Directory of Open Access Journals (Sweden)

    Nazanin Navabi

    Full Text Available Mucin glycoproteins are secreted in large quantities by mucosal epithelia and cell surface mucins are a prominent feature of the glycocalyx of all mucosal epithelia. Currently, studies investigating the gastrointestinal mucosal barrier use either animal experiments or non-in vivo like cell cultures. Many pathogens cause different pathology in mice compared to humans and the in vitro cell cultures used are suboptimal because they are very different from an in vivo mucosal surface, are often not polarized, lack important components of the glycocalyx, and often lack the mucus layer. Although gastrointestinal cell lines exist that produce mucins or polarize, human cell line models that reproducibly create the combination of a polarized epithelial cell layer, functional tight junctions and an adherent mucus layer have been missing until now. We trialed a range of treatments to induce polarization, 3D-organization, tight junctions, mucin production, mucus secretion, and formation of an adherent mucus layer that can be carried out using standard equipment. These treatments were tested on cell lines of intestinal (Caco-2, LS513, HT29, T84, LS174T, HT29 MTX-P8 and HT29 MTX-E12 and gastric (MKN7, MKN45, AGS, NCI-N87 and its hTERT Clone5 and Clone6 origins using Ussing chamber methodology and (immunohistology. Semi-wet interface culture in combination with mechanical stimulation and DAPT caused HT29 MTX-P8, HT29 MTX-E12 and LS513 cells to polarize, form functional tight junctions, a three-dimensional architecture resembling colonic crypts, and produce an adherent mucus layer. Caco-2 and T84 cells also polarized, formed functional tight junctions and produced a thin adherent mucus layer after this treatment, but with less consistency. In conclusion, culture methods affect cell lines differently, and testing a matrix of methods vs. cell lines may be important to develop better in vitro models. The methods developed herein create in vitro mucosal surfaces

  20. Chloroquine potentiates the anti-cancer effect of 5-fluorouracil on colon cancer cells

    International Nuclear Information System (INIS)

    Sasaki, Kazuhito; Hiyoshi, Masaya; Kaneko, Manabu; Kitayama, Joji; Takahashi, Koki; Nagawa, Hirokazu; Tsuno, Nelson H; Sunami, Eiji; Tsurita, Giichiro; Kawai, Kazushige; Okaji, Yurai; Nishikawa, Takeshi; Shuno, Yasutaka; Hongo, Kumiko

    2010-01-01

    Chloroquine (CQ), the worldwide used anti-malarial drug, has recently being focused as a potential anti-cancer agent as well as a chemosensitizer when used in combination with anti-cancer drugs. It has been shown to inhibit cell growth and/or to induce cell death in various types of cancer. 5-Fluorouracil (5-FU) is the chemotherapeutic agent of first choice in colorectal cancer, but in most cases, resistance to 5-FU develops through various mechanisms. Here, we focused on the combination of CQ as a mechanism to potentiate the inhibitory effect of 5-FU on human colon cancer cells. HT-29 cells were treated with CQ and/or 5-FU, and their proliferative ability, apoptosis and autophagy induction effects, and the affection of the cell cycle were evaluated. The proliferative ability of HT-29 was analyzed by the MTS assay. Apoptosis was quantified by flow-cytometry after double-staining of the cells with AnnexinV/PI. The cell cycle was evaluated by flow-cytometry after staining of cells with PI. Autophagy was quantified by flow-cytometry and Western blot analysis. Finally, to evaluate the fate of the cells treated with CQ and/or 5-FU, the colony formation assay was performed. 5-FU inhibited the proliferative activity of HT-29 cells, which was mostly dependent on the arrest of the cells to the G0/G1-phase but also partially on apoptosis induction, and the effect was potentiated by CQ pre-treatment. The potentiation of the inhibitory effect of 5-FU by CQ was dependent on the increase of p21 Cip1 and p27 Kip1 and the decrease of CDK2. Since CQ is reported to inhibit autophagy, the catabolic process necessary for cell survival under conditions of cell starvation or stress, which is induced by cancer cells as a protective mechanism against chemotherapeutic agents, we also analyzed the induction of autophagy in HT-29. HT-29 induced autophagy in response to 5-FU, and CQ inhibited this induction, a possible mechanism of the potentiation of the anti-cancer effect of 5-FU. Our

  1. Co-culture of 3D tumor spheroids with fibroblasts as a model for epithelial–mesenchymal transition in vitro

    International Nuclear Information System (INIS)

    Kim, Sun-Ah; Lee, Eun Kyung; Kuh, Hyo-Jeong

    2015-01-01

    Epithelial–mesenchymal transition (EMT) acts as a facilitator of metastatic dissemination in the invasive margin of malignant tumors where active tumor–stromal crosstalks take place. Co-cultures of cancer cells with cancer-associated fibroblasts (CAFs) are often used as in vitro models of EMT. We established a tumor–fibroblast proximity co-culture using HT-29 tumor spheroids (TSs) with CCD-18co fibroblasts. When co-cultured with TSs, CCD-18co appeared activated, and proliferative activity as well as cell migration increased. Expression of fibronectin increased whereas laminin and type I collagen decreased in TSs co-cultured with fibroblasts compared to TSs alone, closely resembling the margin of in vivo xenograft tissue. Active TGFβ1 in culture media significantly increased in TS co-cultures but not in 2D co-cultures of cancer cells–fibroblasts, indicating that 3D context-associated factors from TSs may be crucial to crosstalks between cancer cells and fibroblasts. We also observed in TSs co-cultured with fibroblasts increased expression of α-SMA, EGFR and CTGF; reduced expression of membranous β-catenin and E-cadherin, together suggesting an EMT-like changes similar to a marginal region of xenograft tissue in vivo. Overall, our in vitro TS–fibroblast proximity co-culture mimics the EMT-state of the invasive margin of in vivo tumors in early metastasis. - Highlights: • An adjacent co-culture of tumor spheroids and fibroblasts is presented as EMT model. • Activation of fibroblasts and increased cell migration were shown in co-culture. • Expression of EMT-related factors in co-culture was similar to that in tumor tissue. • Crosstalk between spheroids and fibroblasts was demonstrated by secretome analysis

  2. Co-culture of 3D tumor spheroids with fibroblasts as a model for epithelial–mesenchymal transition in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun-Ah, E-mail: j.sarah.k@gmail.com [Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Lee, Eun Kyung, E-mail: leeek@catholic.ac.kr [Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Kuh, Hyo-Jeong, E-mail: hkuh@catholic.ac.kr [Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul 137-701 (Korea, Republic of)

    2015-07-15

    Epithelial–mesenchymal transition (EMT) acts as a facilitator of metastatic dissemination in the invasive margin of malignant tumors where active tumor–stromal crosstalks take place. Co-cultures of cancer cells with cancer-associated fibroblasts (CAFs) are often used as in vitro models of EMT. We established a tumor–fibroblast proximity co-culture using HT-29 tumor spheroids (TSs) with CCD-18co fibroblasts. When co-cultured with TSs, CCD-18co appeared activated, and proliferative activity as well as cell migration increased. Expression of fibronectin increased whereas laminin and type I collagen decreased in TSs co-cultured with fibroblasts compared to TSs alone, closely resembling the margin of in vivo xenograft tissue. Active TGFβ1 in culture media significantly increased in TS co-cultures but not in 2D co-cultures of cancer cells–fibroblasts, indicating that 3D context-associated factors from TSs may be crucial to crosstalks between cancer cells and fibroblasts. We also observed in TSs co-cultured with fibroblasts increased expression of α-SMA, EGFR and CTGF; reduced expression of membranous β-catenin and E-cadherin, together suggesting an EMT-like changes similar to a marginal region of xenograft tissue in vivo. Overall, our in vitro TS–fibroblast proximity co-culture mimics the EMT-state of the invasive margin of in vivo tumors in early metastasis. - Highlights: • An adjacent co-culture of tumor spheroids and fibroblasts is presented as EMT model. • Activation of fibroblasts and increased cell migration were shown in co-culture. • Expression of EMT-related factors in co-culture was similar to that in tumor tissue. • Crosstalk between spheroids and fibroblasts was demonstrated by secretome analysis.

  3. Functional antagonistic properties of clozapine at the 5-HT3 receptor.

    Science.gov (United States)

    Hermann, B; Wetzel, C H; Pestel, E; Zieglgänsberger, W; Holsboer, F; Rupprecht, R

    1996-08-23

    The atypical neuroleptic clozapine is thought to exert its psychopharmacological actions through a variety of neurotransmitter receptors. It binds preferentially to D4 and 5-HT2 receptors; however, little is known on it's interaction with the 5-HT3 receptor. Using a cell line stably expressing the 5-HT3 receptor, whole-cell voltage-clamp analysis revealed functional antagonistic properties of clozapine at low nanomolar concentrations in view of a binding affinity in the upper nanomolar range. Because the concentration of clozapine required for an interaction with the 5-HT3 receptor can be achieved with therapeutical doses, functional antagonistic properties at this ligand-gated ion channel may contribute to its unique psychopharmacological profile.

  4. Increased hypothalamic 5-HT2A receptor gene expression and effects of pharmacologic 5-HT2A receptor inactivation in obese Ay mice

    International Nuclear Information System (INIS)

    Nonogaki, Katsunori; Nozue, Kana; Oka, Yoshitomo

    2006-01-01

    Serotonin (5-hydroxytryptamine; 5-HT) 2A receptors contribute to the effects of 5-HT on platelet aggregation and vascular smooth muscle cell proliferation, and are reportedly involved in decreases in plasma levels of adiponectin, an adipokine, in diabetic subjects. Here, we report that systemic administration of sarpogrelate, a 5-HT2A receptor antagonist, suppressed appetite and increased hypothalamic pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript, corticotropin releasing hormone, 5-HT2C, and 5-HT1B receptor gene expression. A y mice, which have ectopic expression of the agouti protein, significantly increased hypothalamic 5-HT2A receptor gene expression in association with obesity compared with wild-type mice matched for age. Systemic administration of sarpogrelate suppressed overfeeding, body weight gain, and hyperglycemia in obese A y mice, whereas it did not increase plasma adiponectin levels. These results suggest that obesity increases hypothalamic 5-HT2A receptor gene expression, and pharmacologic inactivation of 5-HT2A receptors inhibits overfeeding and obesity in A y mice, but did not increase plasma adiponectin levels

  5. Calorimetric signatures of human cancer cells and their nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Todinova, S. [Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113 (Bulgaria); Stoyanova, E. [Department of Molecular Immunology, Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Tzarigradsko shose Blvd. 73, Sofia 1113 (Bulgaria); Krumova, S., E-mail: sakrumo@gmail.com [Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113 (Bulgaria); Iliev, I. [Institute of Experimental Morphology, Pathology and Anthropology with Museum, Acad. G. Bonchev Str., Bl. 25, Sofia 1113 (Bulgaria); Taneva, S.G. [Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113 (Bulgaria)

    2016-01-10

    Graphical abstract: - Highlights: • Two temperature ranges are distinguished in the thermograms of cells/nuclei. • Different thermodynamic properties of cancer and normal human cells/nuclei. • Dramatic reduction of the enthalpy of the low-temperature range in cancer cells. • Oxaliplatin and 5-FU affect the nuclear matrix proteins and the DNA stability. - Abstract: The human cancer cell lines HeLa, JEG-3, Hep G2, SSC-9, PC-3, HT-29, MCF7 and their isolated nuclei were characterized by differential scanning calorimetry. The calorimetric profiles differed from normal human fibroblast (BJ) cells in the two well distinguished temperature ranges—the high-temperature range (H{sub T}, due to DNA-containing structures) and the low-temperature range (L{sub T}, assigned to the nuclear matrix and cellular proteins). The enthalpy of the L{sub T} range, and, respectively the ratio of the enthalpies of the L{sub T}- vs. H{sub T}-range, ΔH{sub L}/ΔH{sub H}, is strongly reduced for all cancer cells compared to normal fibroblasts. On the contrary, for most of the cancer nuclei this ratio is higher compared to normal nuclei. The HT-29 human colorectal cancer cells/nuclei differed most drastically from normal human fibroblast cells/nuclei. Our data also reveal that the treatment of HT-29 cancer cells with cytostatic drugs affects not only the DNA replication but also the cellular proteome.

  6. Inflammasome-independent NLRP3 is required for epithelial-mesenchymal transition in colon cancer cells.

    Science.gov (United States)

    Wang, Hong; Wang, Yajing; Du, Qianming; Lu, Ping; Fan, Huimin; Lu, Jinrong; Hu, Rong

    2016-03-15

    Inflammasome NLRP3 plays a crucial role in the process of colitis and colitis--associated colon cancer. Even though much is known regarding the NLRP3 inflammasome that regulates pro-inflammatory cytokine release in innate immune cells, the role of NLRP3 in non-immune cells is still unclear. In this study, we showed that NLRP3 was highly expressed in mesenchymal-like colon cancer cells (SW620), and was upregulated by tumor necrosis factors-α (TNF-α) and transforming growth factor-β1 (TGF-β1) respectively, during EMT in colon cancer epithelial cells HCT116 and HT29. Knockdown of NLRP3 retained epithelial spindle-like morphology of HCT116 and HT29 cells and reversed the mesenchymal characteristic of SW620 cells, indicated by the decreased expression of vimentin and MMP9 and increased expression of E-cadherin. In addition, knockdown of NLRP3 in colorectal carcinoma cells displayed diminished cell migration and invasion. Interestingly, during the EMT process induced by TNF-α or TGF-β1, the cleaved caspase-1 and ASC speck were not detected, indicating that NLRP3 functions in an inflammasome-independent way. Further studies demonstrated that NLRP3 protein expression was regulated by NF-κB signaling in TNF-α or TGF-β1-induced EMT, as verified by the NF-κB inhibitor Bay 11-7082. Moreover, NLRP3 knockdown reduced the expression of Snail1, indicating that NLRP3 may promote EMT through regulating Snail1. In summary, our results showed that the NLRP3 expression, not the inflammasome activation, was required for EMT in colorectal cancer cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Hallucinogenic 5-HT2AR agonists LSD and DOI enhance dopamine D2R protomer recognition and signaling of D2-5-HT2A heteroreceptor complexes.

    Science.gov (United States)

    Borroto-Escuela, Dasiel O; Romero-Fernandez, Wilber; Narvaez, Manuel; Oflijan, Julia; Agnati, Luigi F; Fuxe, Kjell

    2014-01-03

    Dopamine D2LR-serotonin 5-HT2AR heteromers were demonstrated in HEK293 cells after cotransfection of the two receptors and shown to have bidirectional receptor-receptor interactions. In the current study the existence of D2L-5-HT2A heteroreceptor complexes was demonstrated also in discrete regions of the ventral and dorsal striatum with in situ proximity ligation assays (PLA). The hallucinogenic 5-HT2AR agonists LSD and DOI but not the standard 5-HT2AR agonist TCB2 and 5-HT significantly increased the density of D2like antagonist (3)H-raclopride binding sites and significantly reduced the pKiH values of the high affinity D2R agonist binding sites in (3)H-raclopride/DA competition experiments. Similar results were obtained in HEK293 cells and in ventral striatum. The effects of the hallucinogenic 5-HT2AR agonists on D2R density and affinity were blocked by the 5-HT2A antagonist ketanserin. In a forskolin-induced CRE-luciferase reporter gene assay using cotransfected but not D2R singly transfected HEK293 cells DOI and LSD but not TCB2 significantly enhanced the D2LR agonist quinpirole induced inhibition of CRE-luciferase activity. Haloperidol blocked the effects of both quinpirole alone and the enhancing actions of DOI and LSD while ketanserin only blocked the enhancing actions of DOI and LSD. The mechanism for the allosteric enhancement of the D2R protomer recognition and signalling observed is likely mediated by a biased agonist action of the hallucinogenic 5-HT2AR agonists at the orthosteric site of the 5-HT2AR protomer. This mechanism may contribute to the psychotic actions of LSD and DOI and the D2-5-HT2A heteroreceptor complex may thus be a target for the psychotic actions of hallunicogenic 5-HT2A agonists. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Targeted inhibition of the phosphoinositide 3-kinase impairs cell proliferation, survival, and invasion in colon cancer.

    Science.gov (United States)

    Yang, Fei; Gao, Jun-Yi; Chen, Hua; Du, Zhen-Hua; Zhang, Xue-Qun; Gao, Wei

    2017-01-01

    Colon cancer is the third most common cancer in the world, and its metastasis and drug resistance are challenging for its effective treatment. The PI3K/Akt/mTOR pathway plays a crucial role in the pathogenesis of colon cancer. The aim of this study was to investigate the targeting of PI3K in colon cancer cells HT-29 and HCT-116 in vitro. In HT-29 and HCT-116 cells, BEZ235, a dual inhibitor of PI3K/mTOR, and shRNAtarget to PI3KCA were used to inhibit PI3K/Akt/mTOR pathway. The inhibition efficiency of PI3K/Akt/mTOR pathway was detected by RT-PCR and Western blot. Cell proliferation, migration, invasion, and apoptosis were evaluated by Cell Counting Kit-8, Transwell, and flow cytometry assays. The expression of apoptosis-related proteins (cleavage caspase 3, Bcl-2, Bax, and Bim) were also detected. We found that in HT-29 and HCT-116 cells, the treatment of BEZ235 (1 μM) and PI3KCA knockdown inhibited the activation of PI3K/Akt/mTOR pathway and significantly suppressed cell proliferation, migration, and invasion of HT-29 and HCT-116 cells. In addition, we confirmed that knockdown of BEZ235 and PI3KCA induced cell apoptosis through the upregulated levels of cleavage caspase 3 and Bax and downregulated expression of Bcl-2 and Bim. Our results indicated that targeted inhibition of the PI3K/Akt/mTOR pathway impaired cell proliferation, survival, and invasion in human colon cancer.

  9. CD44 regulates cell migration in human colon cancer cells via Lyn kinase and AKT phosphorylation.

    Science.gov (United States)

    Subramaniam, Venkateswaran; Vincent, Isabella R; Gardner, Helena; Chan, Emily; Dhamko, Helena; Jothy, Serge

    2007-10-01

    Colon cancer is among the leading causes of cancer death in North America. CD44, an adhesion and antiapoptotic molecule is overexpressed in colon cancer. Cofilin is involved in the directional motility of cells. In the present study, we looked at how CD44 might modulate cell migration in human colon cancer via cofilin. We used a human colon cancer cell line, HT29, which expresses CD44, HT29 where CD44 expression was knocked down by siRNA, SW620, a human colon cancer cell line which does not express CD44, stably transfected exons of CD44 in SW620 cells and the colon from CD44 knockout and wild-type mouse. Western blot analysis of siRNA CD44 lysates showed increased level of AKT phosphorylation and decreased level of cofilin expression. Similar results were also observed with SW620 cells and CD44 knockout mouse colon lysates. Experiments using the AKT phosphorylation inhibitor LY294002 indicate that AKT phosphorylation downregulates cofilin. Immunoprecipitation studies showed CD44 complex formation with Lyn, providing an essential link between CD44 and AKT phosphorylation. LY294002 also stabilized Lyn from phosphorylated AKT, suggesting an interaction between Lyn and AKT phosphorylation. Immunocytochemistry showed that cofilin and Lyn expression were downregulated in siRNA CD44 cells and CD44 knockout mouse colon. siRNA CD44 cells had significantly less migration compared to HT29 vector. Given the well-defined roles of CD44, phosphorylated AKT in apoptosis and cancer, these results indicate that CD44-induced cell migration is dependent on its complex formation with Lyn and its consequent regulation of AKT phosphorylation and cofilin expression.

  10. Tumor cell culture on collagen–chitosan scaffolds as three-dimensional tumor model: A suitable model for tumor studies

    Directory of Open Access Journals (Sweden)

    Aziz Mahmoudzadeh

    2016-07-01

    Full Text Available Tumor cells naturally live in three-dimensional (3D microenvironments, while common laboratory tests and evaluations are done in two-dimensional (2D plates. This study examined the impact of cultured 4T1 cancer cells in a 3D collagen–chitosan scaffold compared with 2D plate cultures. Collagen–chitosan scaffolds were provided and passed confirmatory tests. 4T1 tumor cells were cultured on scaffolds and then tumor cells growth rate, resistance to X-ray radiation, and cyclophosphamide as a chemotherapy drug were analyzed. Furthermore, 4T1 cells were extracted from the scaffold model and were injected into the mice. Tumor growth rate, survival rate, and systemic immune responses were evaluated. Our results showed that 4T1 cells infiltrated the scaffolds pores and constructed a 3D microenvironment. Furthermore, 3D cultured tumor cells showed a slower proliferation rate, increased levels of survival to the X-ray irradiation, and enhanced resistance to chemotherapy drugs in comparison with 2D plate cultures. Transfer of extracted cells to the mice caused enhanced tumor volume and decreased life span. This study indicated that collagen–chitosan nanoscaffolds provide a suitable model of tumor that would be appropriate for tumor studies.

  11. Tumor cell culture on collagen-chitosan scaffolds as three-dimensional tumor model: A suitable model for tumor studies.

    Science.gov (United States)

    Mahmoudzadeh, Aziz; Mohammadpour, Hemn

    2016-07-01

    Tumor cells naturally live in three-dimensional (3D) microenvironments, while common laboratory tests and evaluations are done in two-dimensional (2D) plates. This study examined the impact of cultured 4T1 cancer cells in a 3D collagen-chitosan scaffold compared with 2D plate cultures. Collagen-chitosan scaffolds were provided and passed confirmatory tests. 4T1 tumor cells were cultured on scaffolds and then tumor cells growth rate, resistance to X-ray radiation, and cyclophosphamide as a chemotherapy drug were analyzed. Furthermore, 4T1 cells were extracted from the scaffold model and were injected into the mice. Tumor growth rate, survival rate, and systemic immune responses were evaluated. Our results showed that 4T1 cells infiltrated the scaffolds pores and constructed a 3D microenvironment. Furthermore, 3D cultured tumor cells showed a slower proliferation rate, increased levels of survival to the X-ray irradiation, and enhanced resistance to chemotherapy drugs in comparison with 2D plate cultures. Transfer of extracted cells to the mice caused enhanced tumor volume and decreased life span. This study indicated that collagen-chitosan nanoscaffolds provide a suitable model of tumor that would be appropriate for tumor studies. Copyright © 2016. Published by Elsevier B.V.

  12. Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways

    Directory of Open Access Journals (Sweden)

    Radhakrishnan Sridhar

    2010-05-01

    Full Text Available Abstract Background Obesity is a global phenomenon and is associated with various types of cancer, including colon cancer. There is a growing interest for safe and effective bioactive compounds that suppress the risk for obesity-promoted colon cancer. Resveratrol (trans-3, 4', 5,-trihydroxystilbene, a stilbenoid found in the skin of red grapes and peanuts suppresses many types of cancers by regulating cell proliferation and apoptosis through a variety of mechanisms, however, resveratrol effects on obesity-promoted colon cancer are not clearly established. Methods We investigated the anti-proliferative effects of resveratrol on HT-29 and SW480 human colon cancer cells in the presence and absence of insulin like growth factor-1 (IGF-1; elevated during obesity and elucidated the mechanisms of action using IGF-1R siRNA in HT-29 cells which represents advanced colon carcinogenesis. Results Resveratrol (100-150 μM exhibited anti-proliferative properties in HT-29 cells even after IGF-1 exposure by arresting G0/G1-S phase cell cycle progression through p27 stimulation and cyclin D1 suppression. Treatment with resveratrol suppressed IGF-1R protein levels and concurrently attenuated the downstream Akt/Wnt signaling pathways that play a critical role in cell proliferation. Targeted suppression of IGF-1R using IGF-1R siRNA also affected these signaling pathways in a similar manner. Resveratrol treatment induced apoptosis by activating tumor suppressor p53 protein, whereas IGF-1R siRNA treatment did not affect apoptosis. Our data suggests that resveratrol not only suppresses cell proliferation by inhibiting IGF-1R and its downstream signaling pathways similar to that of IGF-1R siRNA but also enhances apoptosis via activation of the p53 pathway. Conclusions For the first time, we report that resveratrol suppresses colon cancer cell proliferation and elevates apoptosis even in the presence of IGF-1 via suppression of IGF-1R/Akt/Wnt signaling pathways and

  13. Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways

    International Nuclear Information System (INIS)

    Vanamala, Jairam; Reddivari, Lavanya; Radhakrishnan, Sridhar; Tarver, Chris

    2010-01-01

    Obesity is a global phenomenon and is associated with various types of cancer, including colon cancer. There is a growing interest for safe and effective bioactive compounds that suppress the risk for obesity-promoted colon cancer. Resveratrol (trans-3, 4', 5,-trihydroxystilbene), a stilbenoid found in the skin of red grapes and peanuts suppresses many types of cancers by regulating cell proliferation and apoptosis through a variety of mechanisms, however, resveratrol effects on obesity-promoted colon cancer are not clearly established. We investigated the anti-proliferative effects of resveratrol on HT-29 and SW480 human colon cancer cells in the presence and absence of insulin like growth factor-1 (IGF-1; elevated during obesity) and elucidated the mechanisms of action using IGF-1R siRNA in HT-29 cells which represents advanced colon carcinogenesis. Resveratrol (100-150 μM) exhibited anti-proliferative properties in HT-29 cells even after IGF-1 exposure by arresting G 0 /G 1 -S phase cell cycle progression through p27 stimulation and cyclin D1 suppression. Treatment with resveratrol suppressed IGF-1R protein levels and concurrently attenuated the downstream Akt/Wnt signaling pathways that play a critical role in cell proliferation. Targeted suppression of IGF-1R using IGF-1R siRNA also affected these signaling pathways in a similar manner. Resveratrol treatment induced apoptosis by activating tumor suppressor p53 protein, whereas IGF-1R siRNA treatment did not affect apoptosis. Our data suggests that resveratrol not only suppresses cell proliferation by inhibiting IGF-1R and its downstream signaling pathways similar to that of IGF-1R siRNA but also enhances apoptosis via activation of the p53 pathway. For the first time, we report that resveratrol suppresses colon cancer cell proliferation and elevates apoptosis even in the presence of IGF-1 via suppression of IGF-1R/Akt/Wnt signaling pathways and activation of p53, suggesting its potential role as a

  14. Upregulated STAT3 and RhoA signaling in colorectal cancer (CRC) regulate the invasion and migration of CRC cells.

    Science.gov (United States)

    Zhang, G-Y; Yang, W-H; Chen, Z

    2016-05-01

    We aimed to reveal the expression and activation of signal transducers and activators of transcription 3 (STAT3) and RhoA/Rho-associated coiled-coil forming kinase 1 (ROCK1) signaling in CRC tissues, and to investigate the regulatory role of STAT3 and RhoA signaling in the invasion and migration of colorectal cancer cells. We examined the expression of STAT3, RhoA and ROCK1 in CRC tissues with real-time PCR and Western blotting methods. And then we examined the interaction between STAT3 and RhoA/ROCK1 signaling in CRC HT-29 cells with gain-of-function and loss-of-function strategies. In addition, we determined the regulation by STAT3 and RhoA/ROCK1 on the invasion and migration of CRC HT-29 cells. Our study demonstrated a significant upregulation of RhoA and ROCK1 expression and STAT3-Y705 phosphorylation in 32 CRC specimens, compared to the 17 normal CRC tissues. Further study demonstrated there was a coordination between STAT3 and RhoA/Rock signaling in the HT-29 cells. Moreover, STAT3 knockdown or RhoA knockdown significantly repressed the migration and invasion in HT-29 cells and vice versa. STAT3 and RhoA signaling regulate the invasion and migration of CRC cells, implying the orchestrated and oncogenic roles of STAT3 and RhoA/ROCK1 signaling in CRC.

  15. Interaction of tumor cells with the microenvironment

    Directory of Open Access Journals (Sweden)

    Lehnert Hendrik

    2011-09-01

    Full Text Available Abstract Recent advances in tumor biology have revealed that a detailed analysis of the complex interactions of tumor cells with their adjacent microenvironment (tumor stroma is mandatory in order to understand the various mechanisms involved in tumor growth and the development of metastasis. The mutual interactions between tumor cells and cellular and non-cellular components (extracellular matrix = ECM of the tumor microenvironment will eventually lead to a loss of tissue homeostasis and promote tumor development and progression. Thus, interactions of genetically altered tumor cells and the ECM on the one hand and reactive non-neoplastic cells on the other hand essentially control most aspects of tumorigenesis such as epithelial-mesenchymal-transition (EMT, migration, invasion (i.e. migration through connective tissue, metastasis formation, neovascularisation, apoptosis and chemotherapeutic drug resistance. In this mini-review we will focus on these issues that were recently raised by two review articles in CCS.

  16. Vulnerability of cultured canine lung tumor cells to NK cell-mediated cytolysis

    International Nuclear Information System (INIS)

    Haley, P.J.; Kohr, J.M.; Kelly, G.; Muggenburg, B.A.; Guilmette, B.A.

    1988-01-01

    Five cell lines, designated as canine lung epithelial cell (CLEP), derived from radiation induced canine lung tumors and canine thyroid adeno-carcinoma (CTAC) cells were compared for their susceptibility to NK cell-mediated cytolysis using peripheral blood lymphocytes from normal, healthy Beagle dogs as effector cells. Effector cells and chromium 51 radiolabeled target cells were incubated for 16 h at ratios of 12.5:1, 25:1, 50:1, and 100:1. Increasing cytolysis was observed for all cell lines as the effector-to-target-cell ratios increased from 12.5:1 to 100:1. The percent cytotoxicity was significantly less for all lung tumor cell lines as compared to CTAC at the 100:1 ratio. One lung tumor cell line, CLEP-9, had 85% of the lytic vulnerability of the CTAC cell line and significantly greater susceptibility to NK cell-mediated lysis than all of the other lung tumor cell lines. Susceptibility to NK cell cytolysis did not correlate with in vivo malignant behavior of the original tumor. These data suggest that cultured canine lung tumor cells are susceptible to NK cell cytolytic activity in vitro and that at least one of these cell lines (CLEP-9) is a candidate for substitution of the standard canine NK cell target, CTAC, in NK cell assays. The use of lung tumor cells in NK cell assays may provide greater insight into the control of lung tumors by immune mechanisms. (author)

  17. The lifetime of hypoxic human tumor cells

    International Nuclear Information System (INIS)

    Durand, Ralph E.; Sham, Edward

    1998-01-01

    Purpose: For hypoxic and anoxic cells in solid tumors to be a therapeutic problem, they must live long enough to be therapeutically relevant, or else be rapidly recruited into the proliferating compartment during therapy. We have, therefore, estimated lifetime and recruitment rate of hypoxic human tumor cells in multicell spheroids in vitro, or in xenografted tumors in SCID mice. Materials and Methods: Cell turnover was followed by flow cytometry techniques, using antibodies directed at incorporated halogenated pyrimidines. The disappearance of labeled cells was quantified, and verified to be cell loss rather than label dilution. Repopulation was studied in SiHa tumor xenografts during twice-daily 2.5-Gy radiation exposures. Results: The longevity of hypoxic human tumor cells in spheroids or xenografts exceeded that of rodent cell lines, and cell turnover was slower in xenografts than under static growth as spheroids. Human tumor cells remained viable in the hypoxic regions of xenografts for 4-10 days, compared to 3-5 days in spheroids, and 1-3 days for most rodent cells in spheroids. Repopulation was observed within the first few radiation treatments for the SiHa xenografts and, with accumulated doses of more than 10 Gy, virtually all recovered cells had progressed through at least one S-phase. Conclusion: Our results suggest an important difference in the ability of human vs. rodent tumor cells to withstand hypoxia, and raise questions concerning the increased longevity seen in vivo relative to the steady-state spheroid system

  18. The EspF N-Terminal of Enterohemorrhagic Escherichia coli O157:H7 EDL933w Imparts Stronger Toxicity Effects on HT-29 Cells than the C-Terminal.

    Science.gov (United States)

    Wang, Xiangyu; Du, Yanli; Hua, Ying; Fu, Muqing; Niu, Cong; Zhang, Bao; Zhao, Wei; Zhang, Qiwei; Wan, Chengsong

    2017-01-01

    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 EspF is an important multifunctional protein that destroys the tight junctions of intestinal epithelial cells and promotes host cell apoptosis. However, its molecular mechanism remains elusive. We knocked out the espF sequence (747 bp, Δ espF ), N-terminal sequence (219 bp, Δ espF N ), and C-terminal sequence (528 bp, Δ espF C ) separately using the pKD46-mediated λ Red homologous recombination system. Then, we built the corresponding complementation strains, namely, Δ espF/pespF , Δ espF N /pespF N , and Δ espF C /pespF C by overlap PCR, which were used in infecting HT-29 cells and BALB/C mice. The level of reactive oxygen species, cell apoptosis, mitochondrial trans-membrane potential, inflammatory factors, transepithelial electrical resistance (TER), and animal mortality were evaluated by DCFH-DA, double staining of Annexin V-FITC/PI, JC-1 staining, ELISA kit, and a mouse assay. The wild-type (WT), Δ espF , Δ espF/pespF , Δ espF C , Δ espF C /pespF C , Δ espF N , and Δ espF N /pespF N groups exhibited apoptotic rates of 68.3, 27.9, 64.9, 65.7, 73.4, 41.3, and 35.3% respectively, and mean TNF-α expression levels of 428 pg/mL, 342, 466, 446, 381, 383, and 374 pg/mL, respectively. In addition, the apoptotic rates and TNF-α levels of the WT, Δ espF/pespF , and Δ espF C were significantly higher than that of Δ espF , Δ espF N , Δ espF C /pespF C , and Δ espF N /pespF N group ( p < 0.05). The N-terminal of EspF resulted in an increase in the number of apoptotic cells, TNF-α secretion, ROS generation, mitochondria apoptosis, and pathogenicity in BalB/c mice. In conclusion, the N-terminal domain of the Enterohemorrhagic E. coli O157:H7 EspF more strongly promotes apoptosis and inflammation than the C-terminal domain.

  19. Alternating current electrical stimulation enhanced chemotherapy: a novel strategy to bypass multidrug resistance in tumor cells

    International Nuclear Information System (INIS)

    Janigro, Damir; Perju, Catalin; Fazio, Vincent; Hallene, Kerri; Dini, Gabriele; Agarwal, Mukesh K; Cucullo, Luca

    2006-01-01

    Tumor burden can be pharmacologically controlled by inhibiting cell division and by direct, specific toxicity to the cancerous tissue. Unfortunately, tumors often develop intrinsic pharmacoresistance mediated by specialized drug extrusion mechanisms such as P-glycoprotein. As a consequence, malignant cells may become insensitive to various anti-cancer drugs. Recent studies have shown that low intensity very low frequency electrical stimulation by alternating current (AC) reduces the proliferation of different tumor cell lines by a mechanism affecting potassium channels while at intermediate frequencies interfere with cytoskeletal mechanisms of cell division. The aim of the present study is to test the hypothesis that permeability of several MDR1 over-expressing tumor cell lines to the chemotherapic agent doxorubicin is enhanced by low frequency, low intensity AC stimulation. We grew human and rodent cells (C6, HT-1080, H-1299, SKOV-3 and PC-3) which over-expressed MDR1 in 24-well Petri dishes equipped with an array of stainless steel electrodes connected to a computer via a programmable I/O board. We used a dedicated program to generate and monitor the electrical stimulation protocol. Parallel cultures were exposed for 3 hours to increasing concentrations (1, 2, 4, and 8 μM) of doxorubicin following stimulation to 50 Hz AC (7.5 μA) or MDR1 inhibitor XR9576. Cell viability was assessed by determination of adenylate kinase (AK) release. The relationship between MDR1 expression and the intracellular accumulation of doxorubicin as well as the cellular distribution of MDR1 was investigated by computerized image analysis immunohistochemistry and Western blot techniques. By the use of a variety of tumor cell lines, we show that low frequency, low intensity AC stimulation enhances chemotherapeutic efficacy. This effect was due to an altered expression of intrinsic cellular drug resistance mechanisms. Immunohistochemical, Western blot and fluorescence analysis revealed

  20. [Isolation and identification of brain tumor stem cells from human brain neuroepithelial tumors].

    Science.gov (United States)

    Fang, Jia-sheng; Deng, Yong-wen; Li, Ming-chu; Chen, Feng-Hua; Wang, Yan-jin; Lu, Ming; Fang, Fang; Wu, Jun; Yang, Zhuan-yi; Zhou, Xang-yang; Wang, Fei; Chen, Cheng

    2007-01-30

    To establish a simplified culture system for the isolation of brain tumor stem cells (BTSCs) from the tumors of human neuroepithelial tissue, to observe the growth and differentiation pattern of BTSCs, and to investigate their expression of the specific markers. Twenty-six patients with brain neuroepithelial tumors underwent tumor resection. Two pieces of tumor tissues were taken from each tumor to be dissociated, triturated into single cells in sterile DMEM-F12 medium, and then filtered. The tumor cells were seeded at a concentration of 200,000 viable cells per mL into serum-free DMEM-F12 medium simply supplemented with B27, human basic fibroblast growth factor (20 microg/L), human epidermal growth factor (20 microg /L), insulin (4 U/L), L-glutamine, penicillin and streptomycin. After the primary brain tumor spheres (BTSs) were generated, they were triturated again and passed in fresh medium. Limiting dilution assay was performed to observe the monoclone formation. 5-bromodeoxyuridine (BrdU) incorporation test was performed to observe the proliferation of the BTS. The BTSCs were cultured in mitogen-free DMEM-F12 medium supplemented with 10% fetal bovine serum to observe their differentiation. Immunocytochemistry was used to examine the expression of CD133 and nestin, specific markers of BTSC, and the rate of CD133 positive cells. Only a minority of subsets of cells from the tumors of neuroepithelial tissue had the capacity to survive, proliferate, and generate free-floating neurosphere-like BTSs in the simplified serum-free medium. These cells attached to the poly-L-lysine coated coverslips in the serum-supplemented medium and differentiated. The BTSCs were CD133 and nestin positive. The rate of CD133 positive cells in the tumor specimens was (21 +/- 6.2)% - (38 +/- 7.0)%. A new simplified culture system for the isolation of BTSCs is established. The tumors of human neuroepithelial tissue contain CD133 and nestin positive tumor stem cells which can be isolated

  1. CXCL17 expression by tumor cells recruits CD11b+Gr1 high F4/80- cells and promotes tumor progression.

    Directory of Open Access Journals (Sweden)

    Aya Matsui

    Full Text Available BACKGROUND: Chemokines are involved in multiple aspects of pathogenesis and cellular trafficking in tumorigenesis. In this study, we report that the latest member of the C-X-C-type chemokines, CXCL17 (DMC/VCC-1, recruits immature myeloid-derived cells and enhances early tumor progression. METHODOLOGY/PRINCIPAL FINDINGS: CXCL17 was preferentially expressed in some aggressive types of gastrointestinal, breast, and lung cancer cells. CXCL17 expression did not impart NIH3T3 cells with oncogenic potential in vitro, but CXCL17-expressing NIH3T3 cells could form vasculature-rich tumors in immunodeficient mice. Our data showed that CXCL17-expressing tumor cells increased immature CD11b(+Gr1(+ myeloid-derived cells at tumor sites in mice and promoted CD31(+ tumor angiogenesis. Extensive chemotactic assays proved that CXCL17-responding cells were CD11b(+Gr1(highF4/80(- cells (≈ 90% with a neutrophil-like morphology in vitro. Although CXCL17 expression could not increase the number of CD11b(+Gr1(+ cells in tumor-burdened SCID mice or promote metastases of low metastatic colon cancer cells, the existence of CXCL17-responding myeloid-derived cells caused a striking enhancement of xenograft tumor formation. CONCLUSIONS/SIGNIFICANCE: These results suggest that aberrant expression of CXCL17 in tumor cells recruits immature myeloid-derived cells and promotes tumor progression through angiogenesis.

  2. Tumor Mesenchymal Stem-Like Cell as a Prognostic Marker in Primary Glioblastoma

    Directory of Open Access Journals (Sweden)

    Seon-Jin Yoon

    2016-01-01

    Full Text Available The isolation from brain tumors of tumor mesenchymal stem-like cells (tMSLCs suggests that these cells play a role in creating a microenvironment for tumor initiation and progression. The clinical characteristics of patients with primary glioblastoma (pGBM positive for tMSLCs have not been determined. This study analyzed samples from 82 patients with pGBM who had undergone tumor removal, pathological diagnosis, and isolation of tMSLC from April 2009 to October 2014. Survival, extent of resection, molecular markers, and tMSLC culture results were statistically evaluated. Median overall survival was 18.6 months, 15.0 months in tMSLC-positive patients and 29.5 months in tMSLC-negative patients (P=0.014. Multivariate cox regression model showed isolation of tMSLC (OR = 2.5, 95% CI = 1.1~5.6, P=0.021 showed poor outcome while larger extent of resection (OR = 0.5, 95% CI = 0.2~0.8, P=0.011 has association with better outcome. The presence of tMSLCs isolated from the specimen of pGBM is associated with the survival of patient.

  3. Lactococcus lactis subsp. cremoris strain JFR1 attenuates Salmonella adhesion to human intestinal cells in vitro.

    Science.gov (United States)

    Zhang, Justina Su; Guri, Anilda; Corredig, Milena; Morales-Rayas, Rocio; Hassan, Ashraf; Griffiths, Mansel; LaPointe, Gisèle

    2016-12-01

    Lactococcus lactis subsp. cremoris JFR1 has been studied in reduced fat cheese due to its ability to produce exopolysaccharides (EPS) in situ, contributing to improved textural and organoleptic properties. In this study, the effect of strain JFR1 on virulence gene expression and attachment of Salmonella to HT-29 human colon carcinoma cells was investigated. Overnight cultures of L. lactis subsp. cremoris JFR1 containing EPS, grown in M17 media with 0.5% glucose supplementation, decreased attachment as well as down regulated virulence gene expression in Salmonella enterica subsp. enterica when tested on HT-29 cells. However, EPS isolated from milk fermented with L. lactis subsp. cremoris JFR1 did not affect Salmonella virulence gene expression or attachment to HT-29 cells. These results suggest that EPS does not contribute to the attachment of Salmonella to human intestinal cells. However, the possibility that the isolation process may have affected the structural features of EPS cannot be ruled out. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Hydrogen sulfide-releasing naproxen suppresses colon cancer cell growth and inhibits NF-κB signaling

    Directory of Open Access Journals (Sweden)

    Kodela R

    2015-08-01

    Full Text Available Ravinder Kodela,1 Niharika Nath,2 Mitali Chattopadhyay,1 Diandra E Nesbitt,1 Carlos A Velázquez-Martínez,3 Khosrow Kashfi11Department of Physiology, Pharmacology and Neuroscience, Sophie Davis School of Biomedical Education, City University of New York Medical School, 2Department of Life Sciences, New York Institute of Technology, New York, NY, USA; 3Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada Abstract: Colorectal cancer (CRC is the second leading cause of death due to cancer and the third most common cancer in men and women in the USA. Nuclear factor kappa B (NF-κB is known to be activated in CRC and is strongly implicated in its development and progression. Therefore, activated NF-κB constitutes a bona fide target for drug development in this type of malignancy. Many epidemiological and interventional studies have established nonsteroidal anti-inflammatory drugs (NSAIDs as a viable chemopreventive strategy against CRC. Our previous studies have shown that several novel hydrogen sulfide-releasing NSAIDs are promising anticancer agents and are safer derivatives of NSAIDs. In this study, we examined the growth inhibitory effect of a novel H2S-releasing naproxen (HS-NAP, which has a repertoire as a cardiovascular-safe NSAID, for its effects on cell proliferation, cell cycle phase transitions, and apoptosis using HT-29 human colon cancer cells. We also investigated its effect as a chemopreventive agent in a xenograft mouse model. HS-NAP suppressed the growth of HT-29 cells by induction of G0/G1 arrest and apoptosis and downregulated NF-κB. Tumor xenografts in mice were significantly reduced in volume. The decrease in tumor mass was associated with a reduction of cell proliferation, induction of apoptosis, and decreases in NF-κB levels in vivo. Therefore, HS-NAP demonstrates strong anticancer potential in CRC. Keywords: nonsteroidal anti-inflammatory drugs, cell cycle, apoptosis, xenograft, NF

  5. Apelin as a marker for monitoring the tumor vessel normalization window during antiangiogenic therapy.

    Science.gov (United States)

    Zhang, Li; Takara, Kazuhiro; Yamakawa, Daishi; Kidoya, Hiroyasu; Takakura, Nobuyuki

    2016-01-01

    Antiangiogenic agents transiently normalize tumor vessel structure and improve vessel function, thereby providing a window of opportunity for enhancing the efficacy of chemotherapy or radiotherapy. Currently, there are no reliable predictors or markers reflecting this vessel normalization window during antiangiogenic therapy. Apelin, the expression of which is regulated by hypoxia, and which has well-described roles in tumor progression, is an easily measured secreted protein. Here, we show that apelin can be used as a marker for the vessel normalization window during antiangiogenic therapy. Mice bearing s.c. tumors resulting from inoculation of the colon adenocarcinoma cell line HT29 were treated with a single injection of bevacizumab, a mAb neutralizing vascular endothelial growth factor. Tumor growth, vessel density, pericyte coverage, tumor hypoxia, and small molecule delivery were determined at four different times after treatment with bevacizumab (days 1, 3, 5, and 8). Tumor growth and vessel density were significantly reduced after bevacizumab treatment, which also significantly increased tumor vessel maturity, and improved tumor hypoxia and small molecule delivery between days 3 and 5. These effects abated by day 8, suggesting that a time window for vessel normalization was opened between days 3 and 5 during bevacizumab treatment in this model. Apelin mRNA expression and plasma apelin levels decreased transiently at day 5 post-treatment, coinciding with vessel normalization. Thus, apelin is a potential indicator of the vessel normalization window during antiangiogenic therapy. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  6. Experimental immunotargeting therapy for esophageal squamous cell carcinoma using anti-human esophageal monoclonal antibody KIS1

    International Nuclear Information System (INIS)

    Fujii, Teruhiko; Yamana, Hideaki; Higaki, Kensaku; Fujita, Hiromasa; Shirouzu, Kazuo; Morimatsu, Minoru

    1997-01-01

    In recent years, several MoAbs with high specificity to tumor associated antigens, have been produced and investigated for diagnosis and immunotherapy of tumors. We produced murine MoAb KIS1 against human squamous cell carcinoma of the esophagus, and we evaluated it and its F (ab') 2 fragment for experimental radioimmunotherapy (RIT), RIT combined with hyperthermia (HT) and KIS1-vindesine (VDS) conjugate using tumor bearing nude mice. KIS1 has been shown to react specifically with an antigen of human squamous cell carcinoma. Scintigraphy produced high quality tumor images on 3 days following the injection of 131 I-KIS1F (ab') 2 . By 14 days following injection, tumor bearing mice treated with RIT+HT group showed significant tumor growth inhibition about 1.5, 2.1 and 1.7 times greater than that of the KIS1-VDS group, 131 I-intact KIS1 group and 131 I-KIS1F (ab') 2 group. These results suggest that RIT combined with hyperthermia may be clinically useful for tumor targeting therapy for squamous cell carcinoma of the esophagus. (author)

  7. Evidence that the atypical 5-HT3 receptor ligand, [3H]-BRL46470, labels additional 5-HT3 binding sites compared to [3H]-granisetron.

    Science.gov (United States)

    Steward, L. J.; Ge, J.; Bentley, K. R.; Barber, P. C.; Hope, A. G.; Lambert, J. J.; Peters, J. A.; Blackburn, T. P.; Barnes, N. M.

    1995-01-01

    1. The radioligand binding characteristics of the 3H-derivative of the novel 5-HT3 receptor antagonist BRL46470 were investigated and directly compared to the well characterized 5-HT3 receptor radioligand [3H]-granisetron, in tissue homogenates prepared from rat cerebral cortex/hippocampus, rat ileum, NG108-15 cells, HEK-5-HT3As cells and human putamen. 2. In rat cerebral cortex/hippocampus, rat ileum, NG108-15 cell and HEK-5-HT3As cell homogenates, [3H]-BRL46470 bound with high affinity (Kd (nM): 1.57 +/- 0.18, 2.49 +/- 0.30, 1.84 +/- 0.27, 3.46 +/- 0.36, respectively; mean +/- s.e. mean, n = 3-4) to an apparently homogeneous saturable population of sites (Bmax (fmol mg-1 protein): 102 +/- 16, 44 +/- 4, 968 +/- 32 and 2055 +/- 105, respectively; mean +/- s.e. mean, n = 3-4) but failed to display specific binding in human putamen homogenates. 3. In the same homogenates of rat cerebral cortex/hippocampus, rat ileum, NG108-15 cells, HEK-5-HT3As cells and human putamen as used for the [3H]-BRL46470 studies, [3H]-granisetron also bound with high affinity (Kd (nM): 1.55 +/- 0.61, 2.31 +/- 0.44, 1.89 +/- 0.36, 2.03 +/- 0.42 and 6.46 +/- 2.58 respectively; mean +/- s.e. mean, n = 3-4) to an apparently homogeneous saturable population of sites (Bmax (fmol mg-1 protein): 39 +/- 4, 20 +/- 2, 521 +/- 47, 870 +/- 69 and 18 +/- 2, respectively; mean +/- s.e. mean, n = 3-4).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8528560

  8. Metaphyseal giant cell tumor

    International Nuclear Information System (INIS)

    Pereira, L.F.; Hemais, P.M.P.G.; Aymore, I.L.; Carmo, M.C.R. do; Cunha, M.E.P.R. da; Resende, C.M.C.

    1986-01-01

    Three cases of metaphyseal giant cell tumor are presented. A review of the literature is done, demostrating the lesion is rare and that there are few articles about it. Age incidence and characteristics of the tumor are discussed. (Author) [pt

  9. Postirradiation examination report of TRISO and BISO coated ThO2 particles irradiated in capsules HT-31 and HT-33

    International Nuclear Information System (INIS)

    Sedlak, B.J.

    1980-01-01

    Capsules HT-31 and HT-33 were uninstrumented capsule experiments irradiated in the target position of the High-Flux Isotope Reactor at Oak Ridge National Laboratory. The experiments were used to evaluate the irradiation performance of (1) fuel fabricated in a 240-mm-diameter coater for production scale-up, (2) TRISO ThO 2 and BISO ThO 2 particles, and (3) fuel with certain OPyC variables. A total of 16 BISO particle samples and 32 TRISO particle samples were irradiated to fast neutron fluences ranging from 4.0 to 11.7 x 10 25 n/m 2 (E > 29 fJ)/sub HTGR/ and heavy metal burnups between 3.5% and 13.2% FIMA at temperatures from 1150 0 to 1530 0 C

  10. Antigen localization controls T cell-mediated tumor immunity.

    Science.gov (United States)

    Zeelenberg, Ingrid S; van Maren, Wendy W C; Boissonnas, Alexandre; Van Hout-Kuijer, Maaike A; Den Brok, Martijn H M G M; Wagenaars, Jori A L; van der Schaaf, Alie; Jansen, Eric J R; Amigorena, Sebastian; Théry, Clotilde; Figdor, Carl G; Adema, Gosse J

    2011-08-01

    Effective antitumor immunotherapy requires the identification of suitable target Ags. Interestingly, many of the tumor Ags used in clinical trials are present in preparations of secreted tumor vesicles (exosomes). In this study, we compared T cell responses elicited by murine MCA101 fibrosarcoma tumors expressing a model Ag at different localizations within the tumor cell in association with secreted vesicles (exosomes), as a nonsecreted cell-associated protein, or as secreted soluble protein. Remarkably, we demonstrated that only the tumor-secreting vesicle-bound Ag elicited a strong Ag-specific CD8(+) T cell response, CD4(+) T cell help, Ag-specific Abs, and a decrease in the percentage of immunosuppressive regulatory T cells in the tumor. Moreover, in a therapeutic tumor model of cryoablation, only in tumors secreting vesicle-bound Ag could Ag-specific CD8(+) T cells still be detected up to 16 d after therapy. We concluded that the localization of an Ag within the tumor codetermines whether a robust immunostimulatory response is elicited. In vivo, vesicle-bound Ag clearly skews toward a more immunogenic phenotype, whereas soluble or cell-associated Ag expression cannot prevent or even delay outgrowth and results in tumor tolerance. This may explain why particular immunotherapies based on these vesicle-bound tumor Ags are potentially successful. Therefore, we conclude that this study may have significant implications in the discovery of new tumor Ags suitable for immunotherapy and that their location should be taken into account to ensure a strong antitumor immune response.

  11. Radiation induction of drug resistance in RIF-1 tumors and tumor cells

    International Nuclear Information System (INIS)

    Hopwood, L.E.; Moulder, J.E.

    1989-01-01

    The RIF-1 tumor cell line contains a small number of cells (1-20 per 10(6) cells) that are resistant to various single antineoplastic drugs, including 5-fluorouracil (5FU), methotrexate (MTX), and adriamycin (ADR). For 5FU the frequency of drug resistance is lower for tumor-derived cells than for cells from cell culture; for MTX the reverse is true, and for ADR there is no difference. In vitro irradiation at 5 Gy significantly increased the frequency of drug-resistant cells for 5FU, MTX, and ADR. In vivo irradiation at 3 Gy significantly increased the frequency of drug-resistant cells for 5FU and MTX, but not for ADR. The absolute risk for in vitro induction of MTX, 5FU, and ADR resistance, and for in vivo induction of 5FU resistance, was 1-3 per 10(6) cells per Gy; but the absolute risk for in vivo induction of MTX resistance was 54 per 10(6) cells per Gy. The frequency of drug-resistant cells among individual untreated tumors was highly variable; among individual irradiated tumors the frequency of drug-resistant cells was significantly less variable. These studies provide supporting data for models of the development of tumor drug resistance, and imply that some of the drug resistance seen when chemotherapy follows radiotherapy may be due to radiation-induced drug resistance

  12. Influence of ethacrynic acid on glutathione S-transferase pi transcript and protein half-lives in human colon cancer cells.

    Science.gov (United States)

    Shen, H; Ranganathan, S; Kuzmich, S; Tew, K D

    1995-10-12

    Ethacrynic acid (EA) is a plant phenolic acid that is both an inhibitor and an inducer of glutathione S-transferase (GST) activity. To determine contributory factors in the increased GST activity caused by EA treatment, human colon carcinoma HT29 cells were compared with a cloned EA-resistant population (HT6-8) maintained in medium containing 72 microM EA. Several factors are involved in the increased expression of GST pi in HT6-8. For example, nuclear run-on experiments showed an approximately 2-fold increase in the rate of transcription of GST pi. In addition, the half-life of GST pi transcript was increased from 4.1 (wild type, HT29, HT4-1) to 8.4 hr. The half-life of GST pi protein was 1-2 hr in HT4-1 cells versus 8-9 hr in HT6-8 cells. When either human ovarian carcinoma cells (SKOV3) or human prostatic carcinoma cells (DU145) were treated with EA, the half-life of the GST pi transcript was also increased. The transcript half-lives of another thiol-metabolism enzyme, gamma-glutamylcysteine synthetase (gamma-GCS), and a phase II detoxification enzyme, dihydrodiol dehydrogenase (DDH), were also increased in HT6-8, SKOV3 and DU145 cells treated with EA. However, the half-lives of transcripts from "housekeeping genes," such as glyceraldehyde 3-phosphate dehydrogenase (G3PDH), beta-actin and beta-tubulin, were not changed in these cell lines following EA. Apparently, a number of coordinated factors are involved in EA-enhanced expression of GST pi and other detoxification enzymes.

  13. Molecular ordering of spin-coated and electrosprayed P3HT:PCBM thin films and their applications to photovoltaic cell

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Takeshi, E-mail: fukuda@fms.saitama-u.ac.jp [Department of Functional Materials Science, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Toda, Asuki; Takahira, Kazuya; Suzuki, Katsumi [Department of Functional Materials Science, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Liao, Yingjie [CERMAV-CNRS, UPR5301 & Grenoble Alpes University, 601 rue de la Chimie, BP53, 38041 Grenoble Cedex 9 (France); Hirahara, Miru [Department of Functional Materials Science, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Saito, Masahiko; Osaka, Itaru [Emergent Molecular Function Research Group, RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198 (Japan)

    2016-08-01

    Poly(3-hexylthiophene-2,5-diyl) (P3HT) is one of the most popular donor polymers for organic photovoltaic cells; however, annealing-induced molecular ordering is necessary for realizing high photoconversion efficiency. In this study, the ratio of ordered-disordered P3HT Raman signals was calculated as the crystallinity parameter, which can be evaluated as the molecular ordering of P3HT. In the case of spin-coated devices, the crystallinity parameter increases with increasing annealing temperature, and this agrees with the photovoltaic performance. Furthermore, the direct molecular ordering of P3HT during electrospray deposition is reported, detailing the relation between the solvent evaporation time and the crystallinity of P3HT, and is evaluated by Raman spectroscopy and grazing incidence X-ray diffraction. To observe the solvent evaporation phenomena of the electropsray process, in situ measurement of solvent evaporation time was also successfully realized for the first time by placing a CCD camera below the substrate in electrospray deposition. The solvent evaporation time was controlled from 0.036 to 2.8 s by changing the applied voltage and solvent. By investigating the relationship between the solvent evaporation time and the molecular ordering of P3HT, the long solvent evaporation time caused the high crystallinity of P3HT. In addition, the population of P3HT crystallinity with an edge-on orientation also increased with increasing solvent evaporation time by evaluating the grazing incidence X-ray diffraction pattern, in good agreement with the estimated crystallinity from Raman spectroscopy. Finally, a photoconversion efficiency of 2.0% was achieved by electrospray deposition without post thermal annealing. - Highlights: • An orientation of P3HT was controlled due to the solvent evaporation time. • A solvent evaporation time was evaluated for the electrospray deposition. • A crystallinity parameter was evaluated from the Raman spectroscopy. • X

  14. HT-PEM Fuel Cell System with Integrated Thermoelectric Exhaust Heat Recovery

    DEFF Research Database (Denmark)

    Gao, Xin

    This thesis presents two case studies on improving the efficiency and the loadfollowing capability of a high temperature polymer electrolyte membrane (HTPEM) fuel cell system by the application of thermoelectric (TE) devices. TE generators (TEGs) are harnessed to recover the system exhaust gas...... developed three-dimensional numerical model in ANSYS Fluent®. This thesis introduces the progress of this project in a cognitive order. The first chapter initially prepares the theory and characteristics of the fuel cell system and TE devices. Project motivations are conceived. Then similar studies existing...... power output on the subsystem design and performance were also systematically analyzed. The TEG subsystem configuration is optimized. The usefulness and convenience of the model are proved. TE coolers (TECs) are integrated into the methanol evaporator of the HT-PEM system for improving the whole system...

  15. Harnessing Dendritic Cells for Tumor Antigen Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Nierkens, Stefan [Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Geert Grooteplein 28, Nijmegen 6525 GA (Netherlands); Janssen, Edith M., E-mail: edith.janssen@cchmc.org [Division of Molecular Immunology, Cincinnati Children' s Hospital Research Foundation, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229 (United States)

    2011-04-26

    Dendritic cells (DC) are professional antigen presenting cells that are crucial for the induction of anti-tumor T cell responses. As a consequence, research has focused on the harnessing of DCs for therapeutic interventions. Although current strategies employing ex vivo-generated and tumor-antigen loaded DCs have been proven feasible, there are still many obstacles to overcome in order to improve clinical trial successes and offset the cost and complexity of customized cell therapy. This review focuses on one of these obstacles and a pivotal step for the priming of tumor-specific CD8{sup +} and CD4{sup +} T cells; the in vitro loading of DCs with tumor antigens.

  16. SIRT1 exhibits antioxidative effects in HT22 cells induced by tert-butyl alcohol.

    Science.gov (United States)

    Ma, Junxiang; Song, Dongmei; Zhang, Yuanyuan; Chen, Li; Zhang, Shixuan; Jia, Jiaxin; Chen, Tian; Guo, Caixia; Tian, Lin; Gao, Ai; Niu, Piye

    2018-02-01

    Tertiary butyl alcohol (TBA) is a principal metabolite of methyl tertiary-butyl ether (MTBE), a common pollutant worldwide in the ground or underground water, which is found to produce nervous system damage. Nevertheless, few data regarding the effects of TBA has been reported. Studies indicated that oxidative stress plays a pivotal role in MTBE neurotoxic mechanism. Sirtuin 1 (SIRT1) has been reported to exert a neuroprotective effect on various neurologic diseases via resistance to oxidative stress by deacetylating its substrates. In this study, we examined levels of oxidative stress after exposure to TBA for 6 h in HT22 cells and HT22 cells with SIRT1 silencing (transfected with SIRT1 siRNA) or high expression (preconditioned with agonists SRT1720). We found that TBA activated oxidative stress by increasing generation of intracellular reactive oxygen species (ROS), malondialdehyde (MDA) and Oxidized glutathione (GSSG), and decreasing contents of superoxide dismutase (SOD) and glutathione reductase (GSH). In additional, levels of TBA-induced oxidative stress were aggravated when SIRT1 silenced but alleviated when SIRT1 enhanced. Our study indicated that SIRT1 mitigated oxidative stress induced by TBA. © 2017 Wiley Periodicals, Inc.

  17. New insights into the molecular mechanism of Boletus edulis ribonucleic acid fraction (BE3) concerning antiproliferative activity on human colon cancer cells.

    Science.gov (United States)

    Lemieszek, Marta Kinga; Ribeiro, Miguel; Marques, Guilhermina; Nunes, Fernando Milheiro; Pożarowski, Piotr; Rzeski, Wojciech

    2017-05-24

    One of the relatively new and promising strategies of cancer treatment is chemoprevention, which involves the use of natural or synthetic compounds to block, inhibit or reverse carcinogenesis. A valuable and still untapped source of chemopreventive compounds seems to be edible mushrooms belonging to higher Basidiomycetes. Boletus edulis biopolymers extracted with hot water and purified by anion-exchange chromatography showed antiproliferative activity in colon cancer cells, but only fraction BE3, mostly composed of ribonucleic acids, was able to inhibit DNA synthesis in HT-29 cells. The present work aims to elucidate the molecular mechanism of this Boletus edulis ribonucleic acid fraction and in this sense flow cytometry and western blotting were applied to cell cycle analysis in HT-29 cells. We found that the antiproliferative ability of fraction BE3 observed in HT-29 cells was associated with the modulation of expression of cell cycle regulatory proteins (Cyclin D1, Cyclin A, p21 and p27) leading to cell accumulation in the S phase of the cell cycle. Furthermore, the BE3 fraction showed effective silencing of the signal transduction in an MAPK/Erk pathway in HT-29 and LS180 colon cancer cell lines. Thus, the previously and currently obtained results indicate that the BE3 fraction from Boletus edulis has great potential and needs to be further exploited through animal and clinical studies in order to develop a new efficient and safe therapeutic strategy for people who have been threatened by or suffered from colon cancer.

  18. The distribution of a new /sup 111/In-Bleomycin complex in tumor cells by autoradiography

    International Nuclear Information System (INIS)

    Hou, D.Y.; Maruyama, Y.

    1987-01-01

    A new radioactive form of Bleomycin (/sup 111/In-BLMC) was effective for tumor imaging and therapy in mouse glioma and human small cell lung cancer (SCLC) cells. The distribution of drug in tumor cells was investigated by autoradiography. Human small cell lung cancer (N417 and H526, NCI) were exposed to /sup 111/ InCl/sub 3/ and (25-150 μCi/ml) or /sup 111/In-BLMC (25-150 μCi) carried by 15-25 μg BLM/ml) in 37 0 C for 1 hr, 3 hr or 24 hr, washed with fresh medium, and spread. The slides were smeared with NTB/sub 2/ or NTB/sub 3/ emulsion by using wet-mounting or dry-mounting technique and developed 3-14 days. The /sup 111/In-BLMC localized on the cell nucleus (47.8%) and nuclear membrane (29.2%); /sup 111/InCl/sub 3/ located mainly in the cytoplasm (45.8%). This indicates that the mechanism of killing of tumor cells may be related to the drug uptake and distribution of /sup 111/In-BLMC. A nuclear and nuclear membrane localization would favor damage to chromosomes and DNA

  19. In Vitro Efficient Expansion of Tumor Cells Deriving from Different Types of Human Tumor Samples

    Directory of Open Access Journals (Sweden)

    Ilaria Turin

    2014-03-01

    Full Text Available Obtaining human tumor cell lines from fresh tumors is essential to advance our understanding of antitumor immune surveillance mechanisms and to develop new ex vivo strategies to generate an efficient anti-tumor response. The present study delineates a simple and rapid method for efficiently establishing primary cultures starting from tumor samples of different types, while maintaining the immuno-histochemical characteristics of the original tumor. We compared two different strategies to disaggregate tumor specimens. After short or long term in vitro expansion, cells analyzed for the presence of malignant cells demonstrated their neoplastic origin. Considering that tumor cells may be isolated in a closed system with high efficiency, we propose this methodology for the ex vivo expansion of tumor cells to be used to evaluate suitable new drugs or to generate tumor-specific cytotoxic T lymphocytes or vaccines.

  20. The Role of Tumor Associated Macrophage in Recurrent Growth of Tumor Stem Cell

    Science.gov (United States)

    2011-09-01

    recent cancer stem cell (CSC) theory, recurrent tumor must arise from a dormant tumor stem cell whose re-growth is triggered by shifting of...microenvironment. This project aims at clarifying the roles of TAM in recurrent growth of dormant stem cell in breast cancer. We hypothesize that the balance of...dormancy and recurrence is determined by the ability of the tumor stem cells to recruit TAM which in turn promotes self-renewal of the stem cell . We

  1. Sertoli-Leydig cell tumor

    Science.gov (United States)

    Sertoli-Leydig cell tumor (SLCT) is a rare cancer of the ovaries. The cancer cells produce and release a male sex hormone ... lead to cancer. SLCT starts in the female ovaries. The cancer cells release a male sex hormone. As a ...

  2. Immune response to UV-induced tumors: mediation of progressor tumor rejection by natural killer cells

    International Nuclear Information System (INIS)

    Streeter, P.R.; Fortner, G.W.

    1986-01-01

    Skin tumors induced in mice by chronic ultraviolet (UV) irradiation are highly antigenic and can induce a state of transplantation immunity in syngeneic animals. In the present study, the authors compared the in vitro cytolytic activity of splenic lymphocytes from mice immunized with either regressor or progressor UV-tumors. The results of this comparison implicated tumor-specific cytolytic T (Tc) lymphocytes in rejection of regressor UV-tumors, and revealed that immunization with the progressor UV-tumor 2237 failed to elicit detectable levels of progressor tumor-specific Tc cells even as the tumors rejected. Following in vitro resensitization of spleen cells from either regressor or progressor tumor immune animals, the authors found NK-like lymphocytes with anti-tumor activity. As the authors had not detected cells with this activity in splenic lymphocyte preparations prior to in vitro resensitization, the authors examined lymphocytes from the local tumor environment during the course of progressor tumor rejection for this activity. This analysis revealed NK lymphocytes exhibiting significant levels of cytolytic activity against UV-tumors. These results implicate NK cells as potential effector cells in the rejection of progressor UV-tumors by immune animals, and suggests that these cells may be regulated by T lymphocytes

  3. Probing the compressibility of tumor cell nuclei by combined atomic force-confocal microscopy

    Science.gov (United States)

    Krause, Marina; te Riet, Joost; Wolf, Katarina

    2013-12-01

    The cell nucleus is the largest and stiffest organelle rendering it the limiting compartment during migration of invasive tumor cells through dense connective tissue. We here describe a combined atomic force microscopy (AFM)-confocal microscopy approach for measurement of bulk nuclear stiffness together with simultaneous visualization of the cantilever-nucleus contact and the fate of the cell. Using cantilevers functionalized with either tips or beads and spring constants ranging from 0.06-10 N m-1, force-deformation curves were generated from nuclear positions of adherent HT1080 fibrosarcoma cell populations at unchallenged integrity, and a nuclear stiffness range of 0.2 to 2.5 kPa was identified depending on cantilever type and the use of extended fitting models. Chromatin-decondensating agent trichostatin A (TSA) induced nuclear softening of up to 50%, demonstrating the feasibility of our approach. Finally, using a stiff bead-functionalized cantilever pushing at maximal system-intrinsic force, the nucleus was deformed to 20% of its original height which after TSA treatment reduced further to 5% remaining height confirming chromatin organization as an important determinant of nuclear stiffness. Thus, combined AFM-confocal microscopy is a feasible approach to study nuclear compressibility to complement concepts of limiting nuclear deformation in cancer cell invasion and other biological processes.

  4. Synsepalum dulcificum extracts exhibit cytotoxic activity on human colorectal cancer cells and upregulate c-fos and c-jun early apoptotic gene expression

    Directory of Open Access Journals (Sweden)

    Jichang Seong

    2018-01-01

    Full Text Available Objective: To explore cytotoxicity of Synsepalum dulcificum (S. dulcificum Daniell (Sapotaceae on human colon cancer (HCT-116 and HT-29, human monocytic leukemia (THP-1 and normal (HDFn cell lines, and its effect on the expression of early apoptotic genes, c-fos and c-jun. Methods: Leaf, stem and berry of S. dulcificum were separately extracted by using 2 solvents, 10% ethanol (EtOH and 80% methanol (MeOH. PrestoBlue® cell viability assay and qRT-PCR assay were conducted to examine the above objectives respectively. Results: Stem MeOH, stem EtOH, and berry EtOH extracts of S. dulcificum were cytotoxic to HCT-116 and HT-29 human colon cancer cells. For HCT-116, IC50 values of these 3 extracts were not significantly different (P>0.05 from that of the positive control bleomycin (IC50 of 33.57 μg/mL, while for HT-29, IC50 values of these 3 extracts were significantly lower (P<0.05 than that of bleomycin (IC50 of 25.24 μg/mL. None of the extracts were cytotoxic to the THP-1 monocytic leukemia cells and HDFn normal human dermal fibroblasts. For both HCT-116 and HT-29, these extracts significantly up-regulated (P<0.05 the expression of c-fos and c-jun compared to the untreated negative control. Conclusions: The results of this study suggest that cytotoxicity of stem MeOH, stem EtOH, and berry EtOH extracts of S. dulcificum on HCT-116 and HT-29 colon cancer cells is due to the induced apoptosis which is caused by the up-regulation of the expression of early apoptotic genes, c-fos and c-jun.

  5. Precision cancer immunotherapy: optimizing dendritic cell-based strategies to induce tumor antigen-specific T-cell responses against individual patient tumors.

    Science.gov (United States)

    Osada, Takuya; Nagaoka, Koji; Takahara, Masashi; Yang, Xiao Yi; Liu, Cong-Xiao; Guo, Hongtao; Roy Choudhury, Kingshuk; Hobeika, Amy; Hartman, Zachary; Morse, Michael A; Lyerly, H Kim

    2015-05-01

    Most dendritic cell (DC)-based vaccines have loaded the DC with defined antigens, but loading with autologos tumor-derived antigens would generate DCs that activate personalized tumor-specific T-cell responses. We hypothesized that DC matured with an optimized combination of reagents and loaded with tumor-derived antigens using a clinically feasible electroporation strategy would induce potent antitumor immunity. We first studied the effects on DC maturation and antigen presentation of the addition of picibanil (OK432) to a combination of zoledronic acid, tumor necrosis factor-α, and prostaglandin E2. Using DC matured with the optimized combination, we tested 2 clinically feasible sources of autologous antigen for electroloading, total tumor mRNA or total tumor lysate, to determine which stimulated more potent antigen-specific T cells in vitro and activated more potent antitumor immunity in vivo. The combination of tumor necrosis factor-α/prostaglandin E2/zoledronic acid/OK432 generated DC with high expression of maturation markers and antigen-specific T-cell stimulatory function in vitro. Mature DC electroloaded with tumor-derived mRNA [mRNA electroporated dendritic cell (EPDC)] induced greater expansion of antigen-specific T cells in vitro than DC electroloaded with tumor lysate (lysate EPDC). In a therapeutic model of MC38-carcinoembryonic antigen colon cancer-bearing mice, vaccination with mRNA EPDC induced the most efficient anti-carcinoembryonic antigen cellular immune response, which significantly suppressed tumor growth. In conclusion, mature DC electroloaded with tumor-derived mRNA are a potent cancer vaccine, especially useful when specific tumor antigens for vaccination have not been identified, allowing autologous tumor, and if unavailable, allogeneic cell lines to be used as an unbiased source of antigen. Our data support clinical testing of this strategy.

  6. Granular cell tumor: An uncommon benign neoplasm

    Directory of Open Access Journals (Sweden)

    Tirthankar Gayen

    2015-01-01

    Full Text Available Granular cell tumor is a distinctly rare neoplasm of neural sheath origin. It mainly presents as a solitary asymptomatic swelling in the oral cavity, skin, and rarely internal organs in the middle age. Histopathology is characteristic, showing polyhedral cells containing numerous fine eosinophilic granules with indistinct cell margins. We present a case of granular cell tumor on the back of a 48-year-old woman which was painful, mimicking an adnexal tumor.

  7. Quantitative imaging of magnesium distribution at single-cell resolution in brain tumors and infiltrating tumor cells with secondary ion mass spectrometry (SIMS)

    Science.gov (United States)

    Chandra, Subhash; Parker, Dylan J.; Barth, Rolf F.; Pannullo, Susan C.

    2016-01-01

    Glioblastoma multiforme (GBM) is one of the deadliest forms of human brain tumors. The infiltrative pattern of growth of these tumors includes the spread of individual and/or clusters of tumor cells at some distance from the main tumor mass in parts of the brain protected by an intact blood-brain-barrier. Pathophysiological studies of GBM could be greatly enhanced by analytical techniques capable of in situ single-cell resolution measurements of infiltrating tumor cells. Magnesium homeostasis is an area of active investigation in high grade gliomas. In the present study, we have used the F98 rat glioma as a model of human GBM and an elemental/isotopic imaging technique of secondary ion mass spectrometry (SIMS), a CAMECA IMS-3f ion microscope, for studying Mg distributions with single-cell resolution in freeze-dried brain tissue cryosections. Quantitative observations were made on tumor cells in the main tumor mass, contiguous brain tissue, and infiltrating tumor cells in adjacent normal brain. The brain tissue contained a significantly lower total Mg concentration of 4.70 ± 0.93 mmol/Kg wet weight (mean ± SD) in comparison to 11.64 ± 1.96 mmol/Kg wet weight in tumor cells of the main tumor mass and 10.72 ± 1.76 mmol/Kg wet weight in infiltrating tumor cells (p<0.05). The nucleus of individual tumor cells contained elevated levels of bound Mg. These observations demonstrate enhanced Mg-influx and increased binding of Mg in tumor cells and provide strong support for further investigation of GBMs for altered Mg homeostasis and activation of Mg-transporting channels as possible therapeutic targets. PMID:26703785

  8. Tumors of germinal cells

    International Nuclear Information System (INIS)

    Plazas, Ricardo; Avila, Andres

    2002-01-01

    The tumors of germinal cells (TGC) are derived neoplasia of the primordial germinal cells that in the life embryonic migrant from the primitive central nervous system until being located in the gonads. Their cause is even unknown and they represent 95% of the testicular tumors. In them, the intention of the treatment is always healing and the diagnostic has improved thanks to the results of the handling multidisciplinary. The paper includes topics like their incidence and prevalence, epidemiology and pathology, clinic and diagnoses among other topics

  9. Patient-Derived Antibody Targets Tumor Cells

    Science.gov (United States)

    An NCI Cancer Currents blog on an antibody derived from patients that killed tumor cells in cell lines of several cancer types and slowed tumor growth in mouse models of brain and lung cancer without evidence of side effects.

  10. In vitro detection of circulating tumor cells compared by the CytoTrack and CellSearch methods

    DEFF Research Database (Denmark)

    Hillig, T.; Horn, P.; Nygaard, Ann-Britt

    2015-01-01

    .23/p = 0.09). Overall, the recovery of CytoTrack and CellSearch was 68.8 +/- 3.9 %/71.1 +/- 2.9 %, respectively (p = 0.58). In spite of different methodologies, CytoTrack and CellSearch found similar number of CTCs, when spiking was performed with the EpCAM and pan cytokeratin-positive cell line MCF-7......Comparison of two methods to detect circulating tumor cells (CTC) CytoTrack and CellSearch through recovery of MCF-7 breast cancer cells, spiked into blood collected from healthy donors. Spiking of a fixed number of EpCAM and pan-cytokeratin positive MCF-7 cells into 7.5 mL donor blood...... was performed by FACSAria flow sorting. The samples were shipped to either CytoTrack or CellSearch research facilities within 48 h, where evaluation of MCF-7 recovery was performed. CytoTrack and CellSearch analyses were performed simultaneously. Recoveries of MCF-7 single cells, cells in clusters, and clusters...

  11. Effect of Microwave Radiation on the Synthesis of Poly(3-hexylthiophene and the Subsequent Photovoltaic Performance of CdS/P3HT Solar Cells

    Directory of Open Access Journals (Sweden)

    C. H. García-Escobar

    2016-01-01

    Full Text Available Poly(3-hexylthiophene (P3HT is a semiconductor polymer that has been proved to be a good electron donor in organic or hybrid solar cells. In this work, a detailed study of P3HT synthesis in CH2Cl2 solvent by oxidative method with and without MW assistance has been conducted. Effects of synthesis process parameters on the physical properties of P3HT products and their application in hybrid CdS/P3HT photovoltaic devices were studied. It is observed that the use of MW as well as the reaction time affected the reaction yield and properties of the polymer products. It was found that, by the traditional method (without MW, the maximum yield and the properties of the polymer products were similar after 2 h or 24 h of synthesis. The optimal reaction time with MW for P3HT polymerization in CH2Cl2 solvent was 1 h, and the obtained P3HT product showed similar or better properties than those P3HT polymers synthesized by the traditional method in the same solvent. The effect of using MW during the synthesis was to increase yield and crystal size of P3HT. Larger energy conversion efficiency of ITO/CdS/P3HT/CP-Au devices was obtained when the P3HT product had higher molecular weight and head/tail-head/tail (HT-HT triad contents.

  12. κ-Carrageenan Enhances Lipopolysaccharide-Induced Interleukin-8 Secretion by Stimulating the Bcl10-NF-κB Pathway in HT-29 Cells and Aggravates C. freundii-Induced Inflammation in Mice

    Directory of Open Access Journals (Sweden)

    Wei Wu

    2017-01-01

    Full Text Available Background. The dietary usage of carrageenan as common food additive has increased observably over the last 50 years. But there is substantial controversy about its safety. Methods. We investigated whether the κ-carrageenan could enhance lipopolysaccharide-induced IL-8 expression by studying its actions on the TLR4-NF-κB pathway. The aggravating effect of κ-carrageenan on Citrobacter freundii DBS100-induced intestinal inflammation was also investigated in a mouse model. Results. Our data show that κ-carrageenan pretreatment promoted LPS-induced IL-8 expression in HT-29 cells. Although CD14, MD-2, and TLR4 were upregulated, the binding of LPS was not enhanced. However, the pathway of Bcl10-NF-κB was triggered. Interestingly, κ-carrageenan competitively blocked the binding of FITC-LPS. Furthermore, pretreatment with κ-carrageenan for one week previous to gavage with C. freundii DBS100 markedly aggravated weight loss, mortality, and colonic damage. The secretion of cytokines was unbalanced and the ratio of Tregs was decreased significantly. In addition, κ-carrageenan, together with C. freundii DBS100, enhanced the transcription and secretion of TLR4 and NF-κB. Conclusions. κ-Carrageenan can synergistically activate LPS-induced inflammatory through the Bcl10-NF-κB pathway, as indicated by its aggravation of C. freundii DBS100-induced colitis in mice. General Significance. Our results suggest that κ-carrageenan serves as a potential inflammatory agent that magnifies existing intestinal inflammation.

  13. Characterization of cells recovered from the xenotransplanted NG97 human-derived glioma cell line subcultured in a long-term in vitro

    Directory of Open Access Journals (Sweden)

    Heinrich Juliana K

    2008-10-01

    Full Text Available Abstract Background In order to elucidate tumoral progression and drug resistance, cultured cell lines are valuable tools applied on tumor related assays provided they are well established and characterized. Our laboratory settled the NG97 cell line derived from a human astrocytoma grade III, which started to develop and express important phenotypical characteristics of an astrocytoma grade IV after injection in the flank of nude mice. Astrocytomas are extremely aggressive malignancies of the Central Nervous System (CNS and account for 46% of all primary malignant brain tumors. Progression to worse prognosis occurs in 85% of the cases possibly due to changes in cell tumor microenvironment and through biological pathways that are still unclear. Methods This work focused on characterizing the NG97 cell line specifically after being recovered from the xenotransplant, who maintained their undifferentiated characteristics along the following 60th passages in vitro. These cells were subcultivated to evaluate the possible contribution of these undifferentiated characteristics to the malignant progression phenotype. These characteristics were the expression of molecules involved in the processes of migration, dedifferentiation and chromosomal instability. Results Results showed that NG97(ht had an decrease in doubling time through sub cultivation, which was characterized by a converse modulation between the expression of glial fibrillary acidic protein (GFAP and vimentin. In addition, β1 integrins were present in intermediate levels while α5 integrins had a high expression profile as well as fibronectin and laminin. Cytogenetic analysis of NG97(ht revealed several chromosomal abnormalities, 89% of the cells showed to be hyperdiploid and the modal number was assigned to be 63. Several acrocentric chromosomes were visualized and at least 30 figures were attributed to be murine. These findings suggest a possible fusion between the original NG97 cells

  14. Characterization of cells recovered from the xenotransplanted NG97 human-derived glioma cell line subcultured in a long-term in vitro

    International Nuclear Information System (INIS)

    Machado, Camila ML; Boetcher-Luiz, Fátima; Verinaud, Liana; Ikemori, Rafael Y; Zorzeto, Tatiana Q; Nogueira, Ana CMA; Barbosa, Suse DS; Savino, Wilson; Schenka, André A; Vassallo, José; Heinrich, Juliana K

    2008-01-01

    In order to elucidate tumoral progression and drug resistance, cultured cell lines are valuable tools applied on tumor related assays provided they are well established and characterized. Our laboratory settled the NG97 cell line derived from a human astrocytoma grade III, which started to develop and express important phenotypical characteristics of an astrocytoma grade IV after injection in the flank of nude mice. Astrocytomas are extremely aggressive malignancies of the Central Nervous System (CNS) and account for 46% of all primary malignant brain tumors. Progression to worse prognosis occurs in 85% of the cases possibly due to changes in cell tumor microenvironment and through biological pathways that are still unclear. This work focused on characterizing the NG97 cell line specifically after being recovered from the xenotransplant, who maintained their undifferentiated characteristics along the following 60 th passages in vitro. These cells were subcultivated to evaluate the possible contribution of these undifferentiated characteristics to the malignant progression phenotype. These characteristics were the expression of molecules involved in the processes of migration, dedifferentiation and chromosomal instability. Results showed that NG97(ht) had an decrease in doubling time through sub cultivation, which was characterized by a converse modulation between the expression of glial fibrillary acidic protein (GFAP) and vimentin. In addition, β1 integrins were present in intermediate levels while α5 integrins had a high expression profile as well as fibronectin and laminin. Cytogenetic analysis of NG97(ht) revealed several chromosomal abnormalities, 89% of the cells showed to be hyperdiploid and the modal number was assigned to be 63. Several acrocentric chromosomes were visualized and at least 30 figures were attributed to be murine. These findings suggest a possible fusion between the original NG97 cells with stromal murine cells in the xenotransplant. In

  15. Mucus interactions with liposomes encapsulating bioactives: Interfacial tensiometry and cellular uptake on Caco-2 and cocultures of Caco-2/HT29-MTX.

    Science.gov (United States)

    Li, Yang; Arranz, Elena; Guri, Anilda; Corredig, Milena

    2017-02-01

    Structuring of delivery matrices in foods aquires careful designing for optimal delivery and subsiquent absorption of the beneficial compounds in the gut. There has been quite improvement in mimicking digestion and absorption in vitro but as of yet little is understood on mucus interference in nutrient absorption Therefore in this study interactions of human intestinal mucus with milk and soy phospholipids liposomes carring hydrophilic (epigallocatechin-3-gallate) or hydrophobic (β-carotene) bioactive molecules were investigated. Liposomes of about 100nm were obtained using microfluidization and their behaviour with the human intestinal mucus were evaluated using drop shape tensiometry. The chemistry of the liposomes (milk or soy) and the encapsulated bioactive structure can affect the viscoelastic behaviour of the complex itself. Empty or loaded liposomes were differently interacting with the mucus at the interface. Mucus-liposomes interactions were also studied using cell cultures, Caco-2 (without mucus) and cocultures Caco-2/HT29-MTX (mucus producing). The interaction of mucus layer with liposomes was at some extent aligned with rheological studies. This work demonstrated that delivery systems may interact with the mucosal surface of intestinal cells, and in vitro approaches allow for screening of such interactions. These highlights could help us in carefully designing the delivery systems and moreover choosing the right carrier and/or bioactive that does not jeopardize the optimal delivery of the bioactive structure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Tat-antioxidant 1 protects against stress-induced hippocampal HT-22 cells death and attenuate ischaemic insult in animal model.

    Science.gov (United States)

    Kim, So Mi; Hwang, In Koo; Yoo, Dae Young; Eum, Won Sik; Kim, Dae Won; Shin, Min Jea; Ahn, Eun Hee; Jo, Hyo Sang; Ryu, Eun Ji; Yong, Ji In; Cho, Sung-Woo; Kwon, Oh-Shin; Lee, Keun Wook; Cho, Yoon Shin; Han, Kyu Hyung; Park, Jinseu; Choi, Soo Young

    2015-06-01

    Oxidative stress-induced reactive oxygen species (ROS) are responsible for various neuronal diseases. Antioxidant 1 (Atox1) regulates copper homoeostasis and promotes cellular antioxidant defence against toxins generated by ROS. The roles of Atox1 protein in ischaemia, however, remain unclear. In this study, we generated a protein transduction domain fused Tat-Atox1 and examined the roles of Tat-Atox1 in oxidative stress-induced hippocampal HT-22 cell death and an ischaemic injury animal model. Tat-Atox1 effectively transduced into HT-22 cells and it protected cells against the effects of hydrogen peroxide (H2O2)-induced toxicity including increasing of ROS levels and DNA fragmentation. At the same time, Tat-Atox1 regulated cellular survival signalling such as p53, Bad/Bcl-2, Akt and mitogen-activate protein kinases (MAPKs). In the animal ischaemia model, transduced Tat-Atox1 protected against neuronal cell death in the hippocampal CA1 region. In addition, Tat-Atox1 significantly decreased the activation of astrocytes and microglia as well as lipid peroxidation in the CA1 region after ischaemic insult. Taken together, these results indicate that transduced Tat-Atox1 protects against oxidative stress-induced HT-22 cell death and against neuronal damage in animal ischaemia model. Therefore, we suggest that Tat-Atox1 has potential as a therapeutic agent for the treatment of oxidative stress-induced ischaemic damage. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  17. Wide Band-Gap 3,4-Difluorothiophene-Based Polymer with 7% Solar Cell Efficiency: an Alternative to P3HT

    KAUST Repository

    Wolf, Jannic Sebastian; Cruciani, Federico; El Labban, Abdulrahman; Beaujuge, Pierre

    2015-01-01

    We report on a wide band-gap polymer donor composed of benzo[1,2-b:4,5-b']dithiophene (BDT) and 3,4-difluorothiophene ([2F]T) units (Eopt ~2.1 eV), and show that the fluorinated analog PBDT[2F]T performs significantly better than its non-fluorinated counterpart PBDT[2H]T in BHJ solar cells with PC71BM. While control P3HT- and PBDT[2H]T-based devices yield PCEs of ca. 4% and 3% (Max.) respectively, PBDT[2F]T-based devices reach PCEs of ca. 7%, combining a large Voc of ca. 0.9 V and short-circuit current values (ca. 10.7 mA/cm2) comparable to those of the best P3HT-based control devices.

  18. Wide Band-Gap 3,4-Difluorothiophene-Based Polymer with 7% Solar Cell Efficiency: an Alternative to P3HT

    KAUST Repository

    Wolf, Jannic Sebastian

    2015-05-27

    We report on a wide band-gap polymer donor composed of benzo[1,2-b:4,5-b\\']dithiophene (BDT) and 3,4-difluorothiophene ([2F]T) units (Eopt ~2.1 eV), and show that the fluorinated analog PBDT[2F]T performs significantly better than its non-fluorinated counterpart PBDT[2H]T in BHJ solar cells with PC71BM. While control P3HT- and PBDT[2H]T-based devices yield PCEs of ca. 4% and 3% (Max.) respectively, PBDT[2F]T-based devices reach PCEs of ca. 7%, combining a large Voc of ca. 0.9 V and short-circuit current values (ca. 10.7 mA/cm2) comparable to those of the best P3HT-based control devices.

  19. Malignant Solitary Fibrous Tumor Metastatic to Widely Invasive Hurthle Cell Thyroid Carcinoma: A Distinct Tumor-to-Tumor Metastasis.

    Science.gov (United States)

    Kolson Kokohaare, Eva; Riva, Francesco M G; Bernstein, Jonathan M; Miah, Aisha B; Thway, Khin

    2018-04-01

    We illustrate a case of synchronous malignant solitary fibrous tumor of the thoracic cavity, and widely invasive thyroid Hurthle cell carcinoma. The Hurthle cell carcinoma was found to harbor distinct areas of malignant solitary fibrous tumor. This is a unique case of tumor-to-tumor metastasis that, to the best of our knowledge, has not been previously reported.

  20. CT and MRI of germ-cell tumors with metastasis or multi-located tumors

    International Nuclear Information System (INIS)

    Miyagami, Mitsusuke; Tazoe, Makoto; Tsubokawa, Takashi

    1989-01-01

    Twenty-seven cases of germ-cell tumors were examined with a CT scan in our clinic. In the 11 cases of metastasis or multi-localized tumors, the CT findings were studied in connection with the MRI findings. There were 6 cases of germ-cell tumors which had broad infiltrating tumors with multiple lesions on first admission. Their tumor sites were different from that in cases of malignant glioma, being frequently localized in the pineal and/or the suprasellar region, on the wall of the third and/or lateral ventricle, and in the region of the basal ganglia. Five of the cases of germ-cell tumors had metastasis with various patterns connected to a remote area - that is, to spinal cords, to the ventricular wall and basal cistern of the brain stem by CSF dissemination, to a lung by hematogeneous metastasis, and to the peritoneal wall or organs by a V-P shunt. The CT findings of germ-cell tumors were correlated mainly with the results of the histological diagnosis; they were found not to differ with the tumor site. The germinoma in the suprasellar region had less calcification than in the pineal region. Cysts, calcification, and an enlargement of the lateral ventricle on the tumor side were frequently seen in the germinoma of the basal ganglia. On the MRI of 5 cases of germinoma, the T 1 -weighted image revealed a slightly low or iso signal intensity, while the T 2 -weighted image showed a high signal intensity. In the case of multiple tumor lesions, some cases demonstrated different CT findings and radiosensitivities for each tumor. The possibility of a multicentric origin for the tumors is thus suggested in some cases of germ-cell tumors. (author)

  1. The recovery of 5-HT transporter and 5-HT immunoreactivity in injured rat spinal cord.

    Science.gov (United States)

    Saruhashi, Yasuo; Matsusue, Yoshitaka; Fujimiya, Mineko

    2009-09-01

    Experimental spinal cord injury. To determine the role of serotonin (5-HT) and 5-HT transporter in recovery from spinal cord injury. We examined 5-HT and 5-HT transporter of spinal cord immunohistologically and assessed locomotor recovery after extradural compression at the thoracic (T8) spinal cord in 21 rats. Eighteen rats had laminectomy and spinal cord injury, while the remaining three rats received laminectomy only. All rats were evaluated every other day for 4 weeks, using a 0-14 point scale open field test. Extradural compression markedly reduced mean hindlimbs scores from 14 to 1.5 +/- 2.0 (mean +/- standard error of mean). The rats recovered apparently normal walking by 4 weeks. The animals were perfused with fixative 1-3 days, 1, 2 and 4 weeks (three rats in each) after a spinal cord injury. The 5-HT transporter immunohistological study revealed a marked reduction of 5-HT transporter-containing terminals by 1 day after injury. By 4 weeks after injury, 5-HT transporter immunoreactive terminals returned to the control level. The 5-HT immunohistological study revealed a reduction of 5-HT-containing terminals by 1 week after injury. By 4 weeks after injury, 5-HT immunoreactive fibers and terminals returned to the control level. We estimated the recovery of 5-HT transporter and 5-HT neural elements in lumbosacral ventral horn by ranking 5-HT transporter and 5-HT staining intensity and counting 5-HT and 5-HT transporter terminals. The return of 5-HT transporter and 5-HT immunoreactivity of the lumbosacral ventral horn correlated with locomotor recovery, while 5-HT transporter showed closer relationship with locomotor recovery than 5-HT. The presence of 5-HT transporter indicates that the 5-HT fibers certainly function. This study shows that return of the function of 5-HT fibers predict the time course and extent of locomotory recovery after thoracic spinal cord injury.

  2. Autophagy mediates cytotoxicity of human colorectal cancer cells treated with garcinielliptone FC.

    Science.gov (United States)

    Won, Shen-Jeu; Yen, Cheng-Hsin; Lin, Ting-Yu; Jiang-Shieh, Ya-Fen; Lin, Chun-Nan; Chen, Jyun-Ti; Su, Chun-Li

    2018-01-01

    The tautomeric pair of garcinielliptone FC (GFC) is a novel tautomeric pair of polyprenyl benzophenonoid isolated from the pericarps of Garcinia subelliptica Merr. (G. subelliptica, Clusiaceae), a tree with abundant sources of polyphenols. Our previous report demonstrated that GFC induced apoptosis on various types of human cancer cell lines including chemoresistant human colorectal cancer HT-29 cells. In the present study, we observed that many autophagy-related genes in GFC-treated HT-29 cells were up- and down-regulated using a cDNA microarray containing oncogenes and kinase genes. GFC-induced autophagy of HT-29 cells was confirmed by observing the formation of acidic vesicular organelles, LC3 puncta, and double-membrane autophagic vesicles using flow cytometry, confocal microscopy, and transmission electron microscopy, respectively. Inhibition of AKT/mTOR/P70S6K signaling as well as formation of Atg5-Atg12 and PI3K/Beclin-1 complexes were observed using Western blot. Administration of autophagy inhibitor (3-methyladenine and shRNA Atg5) and apoptosis inhibitor Z-VAD showed that the GFC-induced autophagy was cytotoxic form and GFC-induced apoptosis enhanced GFC-induced autophagy. Our data suggest the involvement of autophagy and apoptosis in GFC-induced anticancer mechanisms of human colorectal cancer. © 2017 Wiley Periodicals, Inc.

  3. The role of tumor cell-derived connective tissue growth factor (CTGF/CCN2) in pancreatic tumor growth.

    Science.gov (United States)

    Bennewith, Kevin L; Huang, Xin; Ham, Christine M; Graves, Edward E; Erler, Janine T; Kambham, Neeraja; Feazell, Jonathan; Yang, George P; Koong, Albert; Giaccia, Amato J

    2009-02-01

    Pancreatic cancer is highly aggressive and refractory to existing therapies. Connective tissue growth factor (CTGF/CCN2) is a fibrosis-related gene that is thought to play a role in pancreatic tumor progression. However, CCN2 can be expressed in a variety of cell types, and the contribution of CCN2 derived from either tumor cells or stromal cells as it affects the growth of pancreatic tumors is unknown. Using genetic inhibition of CCN2, we have discovered that CCN2 derived from tumor cells is a critical regulator of pancreatic tumor growth. Pancreatic tumor cells derived from CCN2 shRNA-expressing clones showed dramatically reduced growth in soft agar and when implanted s.c. We also observed a role for CCN2 in the growth of pancreatic tumors implanted orthotopically, with tumor volume measurements obtained by positron emission tomography imaging. Mechanistically, CCN2 protects cells from hypoxia-mediated apoptosis, providing an in vivo selection for tumor cells that express high levels of CCN2. We found that CCN2 expression and secretion was increased in hypoxic pancreatic tumor cells in vitro, and we observed colocalization of CCN2 and hypoxia in pancreatic tumor xenografts and clinical pancreatic adenocarcinomas. Furthermore, we found increased CCN2 staining in clinical pancreatic tumor tissue relative to stromal cells surrounding the tumor, supporting our assertion that tumor cell-derived CCN2 is important for pancreatic tumor growth. Taken together, these data improve our understanding of the mechanisms responsible for pancreatic tumor growth and progression, and also indicate that CCN2 produced by tumor cells represents a viable therapeutic target for the treatment of pancreatic cancer.

  4. Age and cellular context influence rectal prolapse formation in mice with caecal wall colorectal cancer xenografts.

    Science.gov (United States)

    Tommelein, Joke; Gremonprez, Félix; Verset, Laurine; De Vlieghere, Elly; Wagemans, Glenn; Gespach, Christian; Boterberg, Tom; Demetter, Pieter; Ceelen, Wim; Bracke, Marc; De Wever, Olivier

    2016-11-15

    In patients with rectal prolapse is the prevalence of colorectal cancer increased, suggesting that a colorectal tumor may induce rectal prolapse. Establishment of tumor xenografts in immunodeficient mice after orthotopic inoculations of human colorectal cancer cells into the caecal wall is a widely used approach for the study of human colorectal cancer progression and preclinical evaluation of therapeutics. Remarkably, 70% of young mice carrying a COLO320DM caecal tumor showed symptoms of intussusception of the large bowel associated with intestinal lumen obstruction and rectal prolapse. The quantity of the COLO320DM bioluminescent signal of the first three weeks post-inoculation predicts prolapse in young mice. Rectal prolapse was not observed in adult mice carrying a COLO320DM caecal tumor or young mice carrying a HT29 caecal tumor. In contrast to HT29 tumors, which showed local invasion and metastasis, COLO320DM tumors demonstrated a non-invasive tumor with pushing borders without presence of metastasis. In conclusion, rectal prolapse can be linked to a non-invasive, space-occupying COLO320DM tumor in the gastrointestinal tract of young immunodeficient mice. These data reveal a model that can clarify the association of patients showing rectal prolapse with colorectal cancer.

  5. Understanding the phase separation evolution in efficient P3HT:IC70BA-based bulk-heterojunction polymer solar cells

    International Nuclear Information System (INIS)

    Fan Xi; Guo Shishang; Fang Guojia; Li Songzhan

    2013-01-01

    The effects of solvent and thermal annealing on the morphology of the active layers and the photovoltaic performance of bulk-heterojunction (BHJ) polymer solar cells (PSCs) are investigated systematically, for PSCs based on a blend of poly(3-hexylthiophene) (P3HT) as a donor and indene-C 70 bisadduct (IC 70 BA) as an acceptor. IC 70 BA crystallites are found reasonably well dispersed in the P3HT matrix after spin-coating. However, the IC 70 BA crystallites coarsen in size after annealing, which are clearly evidenced by transmission electron microscopy. Simultaneously, space charge limited current measurements demonstrate that solvent and thermal annealing can improve the hole and electron mobility, which reduces charge-carrier recombination and improves charge-carrier transport in the P3HT and IC 70 BA blend layers. The corresponding current-voltage curves are measured in quantity and we propose a model to show the variation of the ordered structure of P3HT domains and IC 70 BA crystallite characteristics in the phase separation process, expressing a viewpoint on the high performance of BHJ PSCs.

  6. Tat-PRAS40 prevent hippocampal HT-22 cell death and oxidative stress induced animal brain ischemic insults.

    Science.gov (United States)

    Shin, Min Jea; Kim, Dae Won; Jo, Hyo Sang; Cho, Su Bin; Park, Jung Hwan; Lee, Chi Hern; Yeo, Eun Ji; Choi, Yeon Joo; Kim, Ji An; Hwang, Jung Soon; Sohn, Eun Jeong; Jeong, Ji-Heon; Kim, Duk-Soo; Kwon, Hyeok Yil; Cho, Yong-Jun; Lee, Keunwook; Han, Kyu Hyung; Park, Jinseu; Eum, Won Sik; Choi, Soo Young

    2016-08-01

    Proline rich Akt substrate (PRAS40) is a component of mammalian target of rapamycin complex 1 (mTORC1) and is known to play an important role against reactive oxygen species-induced cell death. However, the precise function of PRAS40 in ischemia remains unclear. Thus, we investigated whether Tat-PRAS40, a cell-permeable fusion protein, has a protective function against oxidative stress-induced hippocampal neuronal (HT-22) cell death in an animal model of ischemia. We showed that Tat-PRAS40 transduced into HT-22 cells, and significantly protected against cell death by reducing the levels of H2O2 and derived reactive species, and DNA fragmentation as well as via the regulation of Bcl-2, Bax, and caspase 3 expression levels in H2O2 treated cells. Also, we showed that transduced Tat-PARS40 protein markedly increased phosphorylated RRAS40 expression levels and 14-3-3σ complex via the Akt signaling pathway. In an animal ischemia model, Tat-PRAS40 effectively transduced into the hippocampus in animal brain and significantly protected against neuronal cell death in the CA1 region. We showed that Tat-PRAS40 protein effectively transduced into hippocampal neuronal cells and markedly protected against neuronal cell damage. Therefore, we suggest that Tat-PRAS40 protein may be used as a therapeutic protein for ischemia and oxidative stress-induced brain disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Anti-tumor therapy with macroencapsulated endostatin producer cells

    Directory of Open Access Journals (Sweden)

    Balduino Keli N

    2010-03-01

    Full Text Available Abstract Background Theracyte is a polytetrafluoroethylene membrane macroencapsulation system designed to induce neovascularization at the tissue interface, protecting the cells from host's immune rejection, thereby circumventing the problem of limited half-life and variation in circulating levels. Endostatin is a potent inhibitor of angiogenesis and tumor growth. Continuous delivery of endostatin improves the efficacy and potency of the antitumoral therapy. The purpose of this study was to determine whether recombinant fibroblasts expressing endostatin encapsulated in Theracyte immunoisolation devices can be used for delivery of this therapeutic protein for treatment of mice bearing B16F10 melanoma and Ehrlich tumors. Results Mice were inoculated subcutaneously with melanoma (B16F10 cells or Ehrlich tumor cells at the foot pads. Treatment began when tumor thickness had reached 0.5 mm, by subcutaneous implantation of 107 recombinant encapsulated or non-encapsulated endostatin producer cells. Similar melanoma growth inhibition was obtained for mice treated with encapsulated or non-encapsulated endostatin-expressing cells. The treatment of mice bearing melanoma tumor with encapsulated endostatin-expressing cells was decreased by 50.0%, whereas a decrease of 56.7% in tumor thickness was obtained for mice treated with non-encapsulated cells. Treatment of Ehrlich tumor-bearing mice with non-encapsulated endostatin-expressing cells reduced tumor thickness by 52.4%, whereas lower tumor growth inhibition was obtained for mice treated with encapsulated endostatin-expressing cells: 24.2%. Encapsulated endostatin-secreting fibroblasts failed to survive until the end of the treatment. However, endostatin release from the devices to the surrounding tissues was confirmed by immunostaining. Decrease in vascular structures, functional vessels and extension of the vascular area were observed in melanoma microenvironments. Conclusions This study indicates that

  8. Anti-tumor therapy with macroencapsulated endostatin producer cells.

    Science.gov (United States)

    Rodrigues, Danielle B; Chammas, Roger; Malavasi, Natália V; da Costa, Patrícia L N; Chura-Chambi, Rosa M; Balduino, Keli N; Morganti, Ligia

    2010-03-02

    Theracyte is a polytetrafluoroethylene membrane macroencapsulation system designed to induce neovascularization at the tissue interface, protecting the cells from host's immune rejection, thereby circumventing the problem of limited half-life and variation in circulating levels. Endostatin is a potent inhibitor of angiogenesis and tumor growth. Continuous delivery of endostatin improves the efficacy and potency of the antitumoral therapy. The purpose of this study was to determine whether recombinant fibroblasts expressing endostatin encapsulated in Theracyte immunoisolation devices can be used for delivery of this therapeutic protein for treatment of mice bearing B16F10 melanoma and Ehrlich tumors. Mice were inoculated subcutaneously with melanoma (B16F10 cells) or Ehrlich tumor cells at the foot pads. Treatment began when tumor thickness had reached 0.5 mm, by subcutaneous implantation of 107 recombinant encapsulated or non-encapsulated endostatin producer cells. Similar melanoma growth inhibition was obtained for mice treated with encapsulated or non-encapsulated endostatin-expressing cells. The treatment of mice bearing melanoma tumor with encapsulated endostatin-expressing cells was decreased by 50.0%, whereas a decrease of 56.7% in tumor thickness was obtained for mice treated with non-encapsulated cells. Treatment of Ehrlich tumor-bearing mice with non-encapsulated endostatin-expressing cells reduced tumor thickness by 52.4%, whereas lower tumor growth inhibition was obtained for mice treated with encapsulated endostatin-expressing cells: 24.2%. Encapsulated endostatin-secreting fibroblasts failed to survive until the end of the treatment. However, endostatin release from the devices to the surrounding tissues was confirmed by immunostaining. Decrease in vascular structures, functional vessels and extension of the vascular area were observed in melanoma microenvironments. This study indicates that immunoisolation devices containing endostatin

  9. Treatment Resistance Mechanisms of Malignant Glioma Tumor Stem Cells

    International Nuclear Information System (INIS)

    Schmalz, Philip G.R.; Shen, Michael J.; Park, John K.

    2011-01-01

    Malignant gliomas are highly lethal because of their resistance to conventional treatments. Recent evidence suggests that a minor subpopulation of cells with stem cell properties reside within these tumors. These tumor stem cells are more resistant to radiation and chemotherapies than their counterpart differentiated tumor cells and may underlie the persistence and recurrence of tumors following treatment. The various mechanisms by which tumor stem cells avoid or repair the damaging effects of cancer therapies are discussed

  10. Suppression of Wnt signaling by the miR-29 family is mediated by demethylation of WIF-1 in non-small-cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Min [Department of Respiratory Medicine, Shanghai Tenth People’s Hospital, Tongji University, Shanghai 200072 (China); Wu, Junjie, E-mail: wujunjiesh@126.com [Department of Pneumology, Changhai Hospital of Shanghai, Second Military Medical University, Shanghai 200433 (China); State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433 (China); Cai, Yong, E-mail: dryongcai@126.com [Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433 (China)

    2013-09-06

    Highlights: •Dnmt3A and Dnmt3B are involved in the down-regulation of WIF-1 expression in non-small-cell lung cancer. •MiR-29 family members could restore WIF-1 expression through demethylation. •MiR-29s suppress Wnt/β-catenin signaling pathway and inhibit tumor growth. •The expression of miR-29a and miR-29b could be regulated partially in a positive feedback loop. -- Abstract: Wnt inhibitory factor-1 (WIF-1) silencing induced by promoter hypermethylation is a common mechanism of aberrant activation of the Wnt signaling pathway in non-small-cell lung cancer (NSCLC). However, the activity of regulators associated with the methylation of the WIF-1 gene remains unclear. Here, we investigated the role of three DNA methyltransferases (DNMT1, DNMT3A and DNMT3B) in the expression of WIF-1. The three DNMTs were up-regulated in NSCLC tumor tissues and suppression of DNMT3A and DNMT3B restored the expression of WIF-1 in NSCLC cells. The miR-29 family (miR-29a, -29b, and -29c), which negatively regulates DNMT3A and DNMT3B, was examined in association with the Wnt/β-catenin signaling pathway. A positive correlation between the expression of WIF-1 and that of MiR-29s was observed in NSCLC tissues. Methylation-specific PCR and Western blotting indicated that miR-29s positively regulate WIF-1 expression by inhibiting the methylation of its promoter. Furthermore, miR-29 overexpression downregulated β-catenin expression, inhibited cell proliferation and induced apoptosis. The expression of miR-29a and miR-29b was partially regulated by DNMT3A and DNMT3B in a positive feedback loop. Taken together, our findings show that miR-29s suppress the Wnt signaling pathway through demethylation of WIF-1 in NSCLC.

  11. Fabrication of polymer/cadmium sulfide hybrid solar cells [P3HT:CdS and PCPDTBT:CdS] by spray deposition.

    Science.gov (United States)

    Kumar, Neetesh; Dutta, Viresh

    2014-11-15

    This paper investigates fabrication of surfactant free CdS nanoparticles (NPs) and application in the fabrication of P3HT:CdS and PCPDTBT:CdS bulk-heterojunction hybrid solar cells using high-throughput, large-area, low cost spray deposition technique. Both the hybrid active layers and hole transport layers are deposited by spray technique. The CdS/Poly(3-hexylthiophene-2,5-diyl) (P3HT) and CdS/Poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT) hybrid devices are fabricated by spray deposition process at optimized conditions (i.e. film thickness, spray solution volume, distance between sample and spray nozzle, substrate temperature, etc.). The power conversion efficiency of η=0.6% and 1.02% is obtained for P3HT:CdS and PCPDTBT:CdS hybrid devices, respectively. Spray coating holds significant promise as a technique capable of fabricating large-area, high performance hybrid solar cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Novel derivative of aminobenzenesulfonamide (3c) induces apoptosis in colorectal cancer cells through ROS generation and inhibits cell migration.

    Science.gov (United States)

    Al-Khayal, Khayal; Alafeefy, Ahmed; Vaali-Mohammed, Mansoor-Ali; Mahmood, Amer; Zubaidi, Ahmed; Al-Obeed, Omar; Khan, Zahid; Abdulla, Maha; Ahmad, Rehan

    2017-01-03

    Colorectal cancer (CRC) is the 3 rd most common type of cancer worldwide. New anti-cancer agents are needed for treating late stage colorectal cancer as most of the deaths occur due to cancer metastasis. A recently developed compound, 3c has shown to have potent antitumor effect; however the mechanism underlying the antitumor effect remains unknown. 3c-induced inhibition of proliferation was measured in the absence and presence NAC using MTT in HT-29 and SW620 cells and xCELLigence RTCA DP instrument. 3c-induced apoptotic studies were performed using flow cytometry. 3c-induced redox alterations were measured by ROS production using fluorescence plate reader and flow cytometry and mitochondrial membrane potential by flow cytometry; NADPH and GSH levels were determined by colorimetric assays. Bcl2 family protein expression and cytochrome c release and PARP activation was done by western blotting. Caspase activation was measured by ELISA. Cell migration assay was done using the real time xCELLigence RTCA DP system in SW620 cells and wound healing assay in HT-29. Many anticancer therapeutics exert their effects by inducing reactive oxygen species (ROS). In this study, we demonstrate that 3c-induced inhibition of cell proliferation is reversed by the antioxidant, N-acetylcysteine, suggesting that 3c acts via increased production of ROS in HT-29 cells. This was confirmed by the direct measurement of ROS in 3c-treated colorectal cancer cells. Additionally, treatment with 3c resulted in decreased NADPH and glutathione levels in HT-29 cells. Further, investigation of the apoptotic pathway showed increased release of cytochrome c resulting in the activation of caspase-9, which in turn activated caspase-3 and -6. 3c also (i) increased p53 and Bax expression, (ii) decreased Bcl2 and BclxL expression and (iii) induced PARP cleavage in human colorectal cancer cells. Confirming our observations, NAC significantly inhibited induction of apoptosis, ROS production, cytochrome c

  13. Cytotoxic evaluation of essential oil from Zanthoxylum rhoifolium Lam. leaves Avaliação citotóxica do óleo volátil extraído das folhas do Zanthoxylum rhoifolium Lam.

    Directory of Open Access Journals (Sweden)

    Saulo Luis da Silva

    2007-06-01

    Full Text Available Zanthoxylum rhoifolium Lam is a plant popularly used as antimicrobial, for malaria and inflammatory treatment. The essential oil of Z. rhoifolium was extracted and its cytotoxic effects against HeLa (human cervical carcinoma, A-549 (human lung carcinoma, HT-29 (human colon adenocarcinoma, Vero (monkey kidney cell lines and mice macrophages were evaluated. Some of the terpenes of its essential oil (ß-caryophyllene, alpha-humulene, alpha -pinene, myrcene and linalool were also tested to verify their possible influence in the oil cytotoxic activity. The results obtained permitted to confirm that the essential oil is cytotoxic against tumoral cells (CD50 = 82.3, 90.7 and 113.6 µg/ml for A-549, HeLa e HT-29 cell lines, respectively, while it did not show cytotoxicity against non-tumoral cells (Vero and mice macrophages. Thus, the essential oil from Z. rhoifolium leaves seems to present a possible therapeuthic role due to its selective cytotoxic activity against tumoral cell lines.O Zanthoxylum rhoifolium Lam. é uma planta popularmente utilizada como antimicrobianos, no tratamento da malária e de inflamações. O óleo volátil do Z. rhoifolium foi extraído e posteriormente foi avaliada a sua citotoxicidade contra células HeLa (carcinoma cervical humano, A-549 (carcinoma de pulmão humano, HT-29 (adenocarcinoma de cólon humano, Vero (rim de macaco e macrófagos de camundongos. Alguns terpenos constituintes do óleo volátil (beta-cariofileno, alfa -humuleno, alfa -pineno, mirceno e linalool também foram testados para verificar as possíveis influências sobre a citotoxicidade do óleo. Os resultados obtidos permitiram verificar que o óleo volátil é citotóxico contra células as tumorais (CD50 = 82.3, 90.7 e 113.6 µg/ml para A-549, HeLa e HT-29 cell lines, respectivamente, mas não apresenta citotoxicidade contra as células não tumorais (Vero e macrófagos de camundongos. Desta forma o óleo volátil das folhas do Z. rhoifolium demonstra

  14. Hormophysa triquerta polyphenol, an elixir that deters CXCR4- and COX2-dependent dissemination destiny of treatment-resistant pancreatic cancer cells.

    Science.gov (United States)

    Aravindan, Sheeja; Ramraj, Satishkumar; Kandasamy, Kathiresan; Thirugnanasambandan, Somasundaram S; Somasundaram, Dinesh Babu; Herman, Terence S; Aravindan, Natarajan

    2017-01-24

    Therapy-resistant pancreatic cancer (PC) cells play a crucial role in tumor relapse, recurrence, and metastasis. Recently, we showed the anti-PC potential of an array of seaweed polyphenols and identified efficient drug deliverables. Herein, we investigated the benefit of one such deliverable, Hormophysa triquerta polyphenol (HT-EA), in regulating the dissemination physiognomy of therapy-resistant PC cells in vitro,and residual PC in vivo. Human PC cells exposed to ionizing radiation (IR), with/without HT-EA pre-treatment were examined for the alterations in the tumor invasion/metastasis (TIM) transcriptome (93 genes, QPCR-profiling). Utilizing a mouse model of residual PC, we investigated the benefit of HT-EA in the translation regulation of crucial TIM targets (TMA-IHC). Radiation activated 30, 50, 15, and 38 TIM molecules in surviving Panc-1, Panc-3.27, BxPC3, and MiaPaCa-2 cells. Of these, 15, 44, 12, and 26 molecules were suppressed with HT-EA pre-treatment. CXCR4 and COX2 exhibited cell-line-independent increases after IR, and was completely suppressed with HT-EA, across all PC cells. HT-EA treatment resulted in translational repression of IR-induced CXCR4, COX2, β-catenin, MMP9, Ki-67, BAPX, PhPT-1, MEGF10, and GRB10 in residual PC. Muting CXCR4 or COX2 regulated the migration/invasion potential of IR-surviving cells, while forced expression of CXCR4 or COX2 significantly increased migration/invasion capabilities of PC cells. Further, treatment with HT-EA significantly inhibited IR-induced and CXCR4/COX2 forced expression-induced PC cell migration/invasion. This study (i) documents the TIM blueprint in therapy-resistant PC cells, (ii) defines the role of CXCR4 and COX2 in induced metastatic potential, and (iii) recognizes the potential of HT-EA in deterring the CXCR4/COX2-dependent dissemination destiny of therapy-resistant residual PC cells.

  15. Characterization of cell suspensions from solid tumors

    International Nuclear Information System (INIS)

    Pallavicini, M.

    1985-01-01

    The desirable features of cells in suspension will necessarily be dependent upon the use for which the cells were prepared. Adequate cell yield or recovery is defined by the measurement to be performed. Retention of cellular morphology is important for microscopic identification of cell types in a heterogenous cell suspension, and may be used to determine whether the cells in suspension are representative of those in the tumor in situ. Different dispersal protocols may yield cells with different degrees of clonogenicity, as well as altered biochemical features, such as loss of cellular proteins, surface antigens, nucleotide pools, etc. The quality of the cell suspension can be judged by the degree of cell clumping and level of cellular debris, both of which impact on flow cytometric measurements and studies in which the number of cells be known accurately. Finally, if the data measured on the cells in suspension are to be extrapolated to phenomena occurring in the tumor in situ, it is desirable that the cells in suspension are representative of those in the solid tumor in vivo. This report compares characteristics of tumor cell suspensions obtained by different types of selected disaggregation methods. 33 refs., 2 figs., 4 tabs

  16. Periurethral granular cell tumor: a case report

    International Nuclear Information System (INIS)

    Kim, Jeong Kon; Choi, Hyo Gyeong; Cho, Kyoung Sik

    1998-01-01

    Granular cell tumors are uncommon soft tissue tumors which arise as solitary or multiple masses. Lesions commonly arise in the head, neck, and chest wall, but can occur in any part of the body. To our knowledge, periurethral granular cell tumor has not been previously reported. We report one such case

  17. [Circulating tumor cells: cornerstone of personalized medicine].

    Science.gov (United States)

    Rafii, A; Vidal, F; Rathat, G; Alix-Panabières, C

    2014-11-01

    Cancer treatment has evolved toward personalized medicine. It is mandatory for clinicians to ascertain tumor biological features in order to optimize patients' treatment. Identification and characterization of circulating tumor cells demonstrated a prognostic value in many solid tumors. Here, we describe the main technologies for identification and characterization of circulating tumor cells and their clinical application in gynecologic and breast cancers. Copyright © 2014. Published by Elsevier Masson SAS.

  18. Tumor Immunology meets…Immunology: Modified cancer cells as professional APC for priming naïve tumor-specific CD4+ T cells.

    Science.gov (United States)

    Bou Nasser Eddine, Farah; Ramia, Elise; Tosi, Giovanna; Forlani, Greta; Accolla, Roberto S

    2017-01-01

    Although recent therapeutic approaches have revitalized the enthusiasm of the immunological way to combat cancer, still the comprehension of immunity against tumors is largely incomplete. Due to their specific function, CD8+ T cells with cytolytic activity (CTL) have attracted the attention of most investigators because CTL are considered the main effectors against tumor cells. Nevertheless, CTL activity and persistence is largely dependent on the action of CD4+ T helper cells (TH). Thus establishment of tumor-specific TH cell response is key to the optimal response against cancer. Here we describe emerging new strategies to increase the TH cell recognition of tumor antigens. In particular, we review recent data indicating that tumor cells themselves can act as surrogate antigen presenting cells for triggering TH response and how these findings can help in constructing immunotherapeutic protocols for anti-cancer vaccine development.

  19. Differential involvement of 5-HT(1A) and 5-HT(1B/1D) receptors in human interferon-alpha-induced immobility in the mouse forced swimming test.

    Science.gov (United States)

    Zhang, Hongmei; Wang, Wei; Jiang, Zhenzhou; Shang, Jing; Zhang, Luyong

    2010-01-01

    Although Interferon-alpha (IFN-alpha, CAS 9008-11-1) is a powerful drug in treating several viral infections and certain tumors, a considerable amount of neuropsychiatric side-effects such as depression and anxiety are an unavoidable consequence. Combination with the selective serotonin (5-HT) reuptake inhibitor (SSRI) fluoxetine (CAS 56296-78-7) significantly improved the situation. However, the potential 5-HT(1A) receptor- and 5-HT(1B) receptor-signals involved in the antidepressant effects are still unclear. The effects of 5-HT(1A) receptor- and 5-HT(1B) receptor signals were analyzed by using the mouse forced swimming test (FST), a predictive test of antidepressant-like action. The present results indicated that (1) fluoxetine (administrated intragastrically, 30 mg/kg; not subactive dose: 15 mg/kg) significantly reduced IFN-alpha-induced increase of the immobility time in the forced swimming test; (2) 5-HT(1A) receptor- and 5-HT(1B) receptor ligands alone or in combination had no effects on IFN-alpha-induced increase of the immobility time in the FST; (3) surprisingly, WAY 100635 (5-HT(1A) receptor antagonist, 634908-75-1) and 8-OH-DPAT(5-HT(1A) receptor agonist, CAS 78950-78-4) markedly enhanced the antidepressant effect of fluoxetine at the subactive dose (15 mg/kg, i. g.) on the IFN-alpha-treated mice in the FST. Further investigations showed that fluoxetine combined with WAY 100635 and 8-OH-DPAT failed to produce antidepressant effects in the FST. (4) Co-application of CGS 12066A (5-HT(1B) receptor agonist, CAS 109028-09-3) or GR 127935 (5-HT(1B/1D) receptor antagonist, CAS 148642-42-6) with fluoxetine had no synergistic effects on the IFN-alpha-induced increase of immobility time in FST. (5) Interestingly, co-administration of GR 127935, WAY 100635 and fluoxetine significantly reduced the IFN-alpha-induced increase in immobility time of FST, being more effective than co-administration of WAY 100635 and fluoxetine. All results suggest that (1) compared to

  20. Transparent back contacts for P3HT:PCBM bulk heterojunction solar cells

    International Nuclear Information System (INIS)

    Sendova-Vassileva, M; Dikov, H; Popkirov, G; Lazarova, E; Vitanov, P; Gancheva, V; Grancharov, G; Tsocheva, D; Mokreva, P

    2014-01-01

    A new combination of layers functioning as a transparent contact is proposed and tested in real solar cells. The contacts consist of TiO 2 layers and thin metal layers (Ag, Cu) and are deposited by magnetron sputtering. The optical transmission and electrical conductivity of the transparent contact layers (TCL) are measured. The TCLs are applied as back contacts in bulk heterojunction polymer solar cells deposited on ITO covered glass and consisting of the following layers: ITO/PEDOT:PSS/P3HT:PCBM/back contact. The organic layers are deposited by spin-coating. For comparison, the same bulk heterojunction polymer solar cells are prepared with a sputtered Ag back contact. The first results show a dependence of the current-voltage parameters of the studied solar cells on the thickness of the different component layers of the transparent back contacts. There is a balance that has to be observed between the electrical characteristics of the contacts and their optical transparency. Future plans involve their inclusion as intermediate contacts in tandem organic solar cells.

  1. Optimization of dendritic cell loading with tumor cell lysates for cancer immunotherapy.

    Science.gov (United States)

    Hatfield, Paul; Merrick, Alison E; West, Emma; O'Donnell, Dearbhaile; Selby, Peter; Vile, Richard; Melcher, Alan A

    2008-09-01

    The immune response to cancer is critically determined by the way in which tumor cells die. As necrotic, stress-associated death can be associated with activation of antitumor immunity, whole tumor cell antigen loading strategies for dendritic cell (DC)-based vaccination have commonly used freeze-thaw "necrotic" lysates as an immunogenic source of tumor-associated antigens. In this study, the effect of such lysates on the ability of DCs to mature in response to well-established maturation stimuli was examined, and methods to enhance lysate-induced DC activation explored. Freeze-thaw lysates were prepared from murine tumor cell lines and their effects on bone marrow-derived DC maturation and function examined. Unmodified freeze-thaw tumor cell lysates inhibited the toll-like receptor-induced maturation and function of bone marrow-derived DCs, preventing up-regulation of CD40, CD86, and major histocompatibility complex class II, and reducing secretion of inflammatory cytokines [interleukin (IL)-12 p70, tumor necrosis factor-alpha, and IL-6]. Although IL-10 secretion was increased by lysate-pulsed DCs, this was not responsible for the observed suppression of IL-12. Although activation of the nuclear factor-kappaB pathway remained intact, the kinase activity of phosphorylated p38 mitogen-activated protein kinase was inhibited in lysate-pulsed DCs. Lysate-induced DC suppression was partially reversed in vitro by induction of tumor cell stress before lysis, and only DCs loaded with stressed lysates afforded protection against tumor challenge in vivo. These data suggest that ex vivo freeze-thaw of tumor cells does not effectively mimic in vivo immunogenic necrosis, and advocates careful characterization and optimization of tumor cell-derived vaccine sources for cancer immunotherapy.

  2. Energy and Redox Homeostasis in Tumor Cells

    Directory of Open Access Journals (Sweden)

    Marcus Fernandes de Oliveira

    2012-01-01

    Full Text Available Cancer cells display abnormal morphology, chromosomes, and metabolism. This review will focus on the metabolism of tumor cells integrating the available data by way of a functional approach. The first part contains a comprehensive introduction to bioenergetics, mitochondria, and the mechanisms of production and degradation of reactive oxygen species. This will be followed by a discussion on the oxidative metabolism of tumor cells including the morphology, biogenesis, and networking of mitochondria. Tumor cells overexpress proteins that favor fission, such as GTPase dynamin-related protein 1 (Drp1. The interplay between proapoptotic members of the Bcl-2 family that promotes Drp 1-dependent mitochondrial fragmentation and fusogenic antiapoptotic proteins such as Opa-1 will be presented. It will be argued that contrary to the widespread belief that in cancer cells, aerobic glycolysis completely replaces oxidative metabolism, a misrepresentation of Warburg’s original results, mitochondria of tumor cells are fully viable and functional. Cancer cells also carry out oxidative metabolism and generally conform to the orthodox model of ATP production maintaining as well an intact electron transport system. Finally, data will be presented indicating that the key to tumor cell survival in an ROS rich environment depends on the overexpression of antioxidant enzymes and high levels of the nonenzymatic antioxidant scavengers.

  3. Dysfunctional attitudes and 5-HT2 receptors during depression and self-harm.

    Science.gov (United States)

    Meyer, Jeffrey H; McMain, Shelley; Kennedy, Sidney H; Korman, Lorne; Brown, Gregory M; DaSilva, Jean N; Wilson, Alan A; Blak, Thomas; Eynan-Harvey, Rahel; Goulding, Verdell S; Houle, Sylvain; Links, Paul

    2003-01-01

    Dysfunctional attitudes are negatively biased assumptions and beliefs regarding oneself, the world, and the future. In healthy subjects, increasing serotonin (5-HT) agonism with a single dose of d-fenfluramine lowered dysfunctional attitudes. To investigate whether the converse, a low level of 5-HT agonism, could account for the higher levels of dysfunctional attitudes observed in patients with major depression or with self-injurious behavior, cortex 5-HT(2) receptor binding potential and dysfunctional attitudes were measured in patients with major depressive disorder, patients with a history of self-injurious behavior, and healthy comparison subjects (5-HT(2) receptor density increases during 5-HT depletion). Twenty-nine healthy subjects were recruited to evaluate the effect of d-fenfluramine or of clonidine (control condition) on dysfunctional attitudes. Dysfunctional attitudes were assessed with the Dysfunctional Attitude Scale 1 hour before and 1 hour after drug administration. In a second experiment, dysfunctional attitudes and 5-HT(2) binding potential were measured in 22 patients with a major depressive episode secondary to major depressive disorder, 18 patients with a history of self-injurious behavior occurring outside of a depressive episode, and another 29 age-matched healthy subjects. Cortex 5-HT(2) binding potential was measured with [(18)F]setoperone positron emission tomography. In the first experiment, dysfunctional attitudes decreased after administration of d-fenfluramine. In the second experiment, in the depressed group, dysfunctional attitudes were positively associated with cortex 5-HT(2) binding potential, especially in Brodmann's area 9 (after adjustment for age). Depressed subjects with extremely dysfunctional attitudes had higher 5-HT(2) binding potential, compared to healthy subjects, particularly in Brodmann's area 9. Low levels of 5-HT agonism in the brain cortex may explain the severely pessimistic, dysfunctional attitudes associated

  4. Boletus edulis ribonucleic acid - a potent apoptosis inducer in human colon adenocarcinoma cells.

    Science.gov (United States)

    Lemieszek, Marta Kinga; Ribeiro, Miguel; Guichard Alves, Helena; Marques, Guilhermina; Nunes, Fernando Milheiro; Rzeski, Wojciech

    2016-07-13

    Despite the large popularity of the Boletus edulis mushroom, little is known about its influence on human health and the possibilities of its therapeutic use. Nevertheless, several reports revealed the usefulness of biopolymers isolated from it in cancer treatment. Our previous studies have shown that B. edulis water soluble biopolymers are not toxic against normal colon epithelial cells (CCD841 CoTr) and at the same concentration range elicited a very prominent antiproliferative effect in colon cancer cells (LS180) which was accompanied with cell cycle arrest in the G0/G1 phase. The purpose of the present study was to verify the proapoptotic properties of a selected fraction from B. edulis - BE3, as well as determine its chemical nature. The BE3 fraction was extracted with hot water and purified by anion-exchange chromatography. Further chemical examinations revealed that BE3 consists mainly of ribonucleic acid (59.1%). The ability of BE3 to induce programmed cell death was examined in human colon cancer cell lines LS180 and HT-29 by measuring caspase activation, DNA fragmentation and expression of BAX, BCL2, TP53 and CDKN1A genes. The sensitivity of colon cancer cells with silenced BAX, TP53 and CDKN1A expression to BE3 treatment was also evaluated. We have demonstrated for the first time that the BE3 fraction is a potent apoptosis inducer in human colon cancer cells. The revealed mechanism of apoptosis triggering was dependent on the presence of functional p53 and consequently was a little different in investigated cell lines. Our results indicated that BE3 stimulated proapoptotic genes BAX (LS180, HT-29), TP53 (LS180) and CDKN1A (HT-29) while at the same time silenced the expression of the key prosurvival gene BCL2 (LS180, HT-29). The obtained results indicate the high therapeutic potential of the BE3 fraction against colon cancer, yet it is necessary to further confirm fraction efficacy and safety in animal and clinical studies.

  5. Cancer stem cells in solid tumors: elusive or illusive?

    Directory of Open Access Journals (Sweden)

    Lehrach Hans R

    2010-05-01

    Full Text Available Abstract During the past years in vivo transplantation experiments and in vitro colony-forming assays indicated that tumors arise only from rare cells. These cells were shown to bear self-renewal capacities and the ability to recapitulate all cell types within an individual tumor. Due to their phenotypic resemblance to normal stem cells, the term "cancer stem cells" is used. However, some pieces of the puzzle are missing: (a a stringent definition of cancer stem cells in solid tumors (b specific markers that only target cells that meet the criteria for a cancer stem cell in a certain type of tumor. These missing parts started an ongoing debate about which is the best method to identify and characterize cancer stem cells, or even if their mere existence is just an artifact caused by the experimental procedures. Recent findings query the cancer stem cell hypothesis for solid tumors itself since it was shown in xenograft transplantation experiments that under appropriate conditions tumor-initiating cells are not rare. In this review we critically discuss the challenges and prospects of the currently used major methods to identify cancer stem cells. Further on, we reflect the present discussion about the existence of cancer stem cells in solid tumors as well as the amount and characteristics of tumor-initiating cells and finally provide new perspectives like the correlation of cancer stem cells and induced pluripotent cells.

  6. Seahorse-derived peptide suppresses invasive migration of HT1080 fibrosarcoma cells by competing with intracellular α-enolase for plasminogen binding and inhibiting uPA-mediated activation of plasminogen.

    Science.gov (United States)

    Kim, Yong-Tae; Kim, Se-kwon; Jeon, You-Jin; Park, Sun Joo

    2014-12-01

    α-Enolase is a glycolytic enzyme and a surface receptor for plasminogen. α-Enolase-bound plasminogen promotes tumor cell invasion and cancer metastasis by activating plasmin and consequently degrading the extracellular matrix degradation. Therefore, α-enolase and plasminogen are novel targets for cancer therapy. We found that the amino acid sequence of a peptide purified from enzymatic hydrolysates of seahorse has striking similarities to that of α-enolase. In this study, we report that this peptide competes with cellular α-enolase for plasminogen binding and suppresses urokinase plasminogen activator (uPA)-mediated activation of plasminogen, which results in decreased invasive migration of HT1080 fibrosarcoma cells. In addition, the peptide treatment decreased the expression levels of uPA compared to that of untreated controls. These results provide new insight into the mechanism by which the seahorse-derived peptide suppresses invasive properties of human cancer cells. Our findings suggest that this peptide could emerge as a potential therapeutic agent for cancer.

  7. Defective interleukin-4/Stat6 activity correlates with increased constitutive expression of negative regulators SOCS-3, SOCS-7, and CISH in colon cancer cells.

    Science.gov (United States)

    Liu, Xiao Hong; Xu, Shuang Bing; Yuan, Jia; Li, Ben Hui; Zhang, Yan; Yuan, Qin; Li, Pin Dong; Li, Feng; Zhang, Wen Jie

    2009-12-01

    Interleukin-4 (IL-4)-induced Stat6 activities (phenotypes) vary among human cancer cells, of which the HT-29 cell line carries an active Stat6(high) phenotype, while Caco-2 carries a defective Stat6(null) phenotype, respectively. Cancer cells with Stat6(high) show resistance to apoptosis and exaggerated metastasis, suggesting the clinical significance of Stat6 phenotypes. We previously showed that Stat6(high) HT-29 cells exhibited low constitutive expression of Stat6-negative regulators SOCS-1 and SHP-1 because of gene hypermethylation. This study further examined the constitutive expression of other closely related SOCS family numbers including SOCS-3, SOCS-5, SOCS-7, and CISH using RT-PCR. Similar to SOCS-1 and SHP-1, Stat6(high) HT-29 cells expressed low constitutive mRNA of SOCS-3, SOCS-7, and CISH than Stat6(null) Caco-2 cells. Interestingly, DNA demethylation using 5-aza-2'-deoxycytidine in HT-29 cells up-regulated mRNA expression of the above genes, indicating a hypermethylation status, which was confirmed by methylation-specific sequencing in selected SOCS-3 gene. Furthermore, defective Stat6(null) Caco-2 exhibited impaired phosphorylation of Stat6 after IL-4 stimulation by flow cytometry, in keeping with the notion of an over-performed negative regulation. The findings that IL-4/Stat6 phenotypes show differential expression of multiple negative regulators suggest a model that a collective force of powerful negative regulators, directly and indirectly, acts on Stat6 activation, which may result in differential Stat6 phenotypes.

  8. Glioma Cells in the Tumor Periphery Have a Stem Cell Phenotype

    DEFF Research Database (Denmark)

    Munthe, Sune; Petterson, Stine Asferg; Dahlrot, Rikke Hedegaard

    2016-01-01

    and a panel of markers was used. The panel comprised of six stem cell-related markers (CD133, Musashi-1, Bmi-1, Sox-2, Nestin and Glut-3), a proliferation marker (Ki-67) as well as a chemo-resistance marker (MGMT). Computer-based automated classifiers were designed to measure the mIDH1 positive nucleus area......-fraction of the chosen markers. Moreover, orthotopic glioblastoma xenografts from five different patient-derived spheroid cultures were obtained and the tumor cells identified by human specific immunohistochemical markers. The results showed that tumor cells in the periphery of patient gliomas expressed stem cell...... in the periphery of patient gliomas have a stem cell phenotype, although it is less pronounced than in the tumor core. Novel therapies aiming at preventing recurrence should therefore take tumor stemness into account. Migrating cells in orthotopic glioblastoma xenografts preserve expression and stem cell markers...

  9. 5-HT2C Receptor Desensitization Moderates Anxiety in 5-HTT Deficient Mice: From Behavioral to Cellular Evidence

    Science.gov (United States)

    Martin, Cédric BP; Martin, Vincent S.; Trigo, José M.; Chevarin, Caroline; Maldonado, Rafael; Fink, Latham H.; Cunningham, Kathryn A.; Hamon, Michel; Lanfumey, Laurence

    2015-01-01

    Background: Desensitization and blockade of 5-HT2C receptors (5-HT2CR) have long been thought to be central in the therapeutic action of antidepressant drugs. However, besides behavioral pharmacology studies, there is little in vivo data documenting antidepressant-induced 5-HT2CR desensitization in specific brain areas. Methods: Mice lacking the 5-HT reuptake carrier (5-HTT-/-) were used to model the consequences of chronic 5-HT reuptake inhibition with antidepressant drugs. The effect of this mutation on 5-HT2CR was evaluated at the behavioral (social interaction, novelty-suppressed feeding, and 5-HT2CR–induced hypolocomotion tests), the neurochemical, and the cellular (RT-qPCR, mRNA editing, and c-fos–induced expression) levels. Results: Although 5-HTT-/- mice had an anxiogenic profile in the novelty-suppressed feeding test, they displayed less 5-HT2CR–mediated anxiety in response to the agonist m-chlorophenylpiperazine in the social interaction test. In addition, 5-HT2CR–mediated inhibition of a stress-induced increase in 5-HT turnover, measured in various brain areas, was markedly reduced in 5-HTT-/- mutants. These indices of tolerance to 5-HT2CR stimulation were associated neither with altered levels of 5-HT2CR protein and mRNA nor with changes in pre-mRNA editing in the frontal cortex. However, basal c-fos mRNA production in cells expressing 5-HT2CR was higher in 5-HTT-/- mutants, suggesting an altered basal activity of these cells following sustained 5-HT reuptake carrier inactivation. Furthermore, the increased c-fos mRNA expression in 5-HT2CR–like immune-positive cortical cells observed in wild-type mice treated acutely with the 5-HT2CR agonist RO-60,0175 was absent in 5-HTT-/- mutants. Conclusions: Such blunted responsiveness of the 5-HT2CR system, observed at the cell signaling level, probably contributes to the moderation of the anxiety phenotype in 5-HTT-/- mice. PMID:25522398

  10. Tumor associated macrophages protect colon cancer cells from TRAIL-induced apoptosis through IL-1beta-dependent stabilization of Snail in tumor cells.

    Directory of Open Access Journals (Sweden)

    Pawan Kaler

    2010-07-01

    Full Text Available We recently reported that colon tumor cells stimulate macrophages to release IL-1beta, which in turn inactivates GSK3beta and enhances Wnt signaling in colon cancer cells, generating a self-amplifying loop that promotes the growth of tumor cells.Here we describe that macrophages protect HCT116 and Hke-3 colon cancer cells from TRAIL-induced apoptosis. Inactivation of IL-1beta by neutralizing IL-1beta antibody, or silencing of IL-1beta in macrophages inhibited their ability to counter TRAIL-induced apoptosis. Accordingly, IL-1beta was sufficient to inhibit TRAIL-induced apoptosis. TRAIL-induced collapse of the mitochondrial membrane potential (Delta psi and activation of caspases were prevented by macrophages or by recombinant IL-1beta. Pharmacological inhibition of IL-1beta release from macrophages by vitamin D(3, a potent chemopreventive agent for colorectal cancer, restored the ability of TRAIL to induce apoptosis of tumor cells cultured with macrophages. Macrophages and IL-1beta failed to inhibit TRAIL-induced apoptosis in HCT116 cells expressing dnIkappaB, dnAKT or dnTCF4, confirming that they oppose TRAIL-induced cell death through induction of Wnt signaling in tumor cells. We showed that macrophages and IL-1beta stabilized Snail in tumor cells in an NF-kappaB/Wnt dependent manner and that Snail deficient tumor cells were not protected from TRAIL-induced apoptosis by macrophages or by IL-1beta, demonstrating a crucial role of Snail in the resistance of tumor cells to TRAIL.We have identified a positive feedback loop between tumor cells and macrophages that propagates the growth and promotes the survival of colon cancer cells: tumor cells stimulate macrophages to secrete IL-1beta, which in turn, promotes Wnt signaling and stabilizes Snail in tumor cells, conferring resistance to TRAIL. Vitamin D(3 halts this amplifying loop by interfering with the release of IL-1beta from macrophages. Accordingly, vitamin D(3 sensitizes tumor cells to TRAIL

  11. MicroRNA-29b-1 impairs in vitro cell proliferation, self‑renewal and chemoresistance of human osteosarcoma 3AB-OS cancer stem cells.

    Science.gov (United States)

    Di Fiore, Riccardo; Drago-Ferrante, Rosa; Pentimalli, Francesca; Di Marzo, Domenico; Forte, Iris Maria; D'Anneo, Antonella; Carlisi, Daniela; De Blasio, Anna; Giuliano, Michela; Tesoriere, Giovanni; Giordano, Antonio; Vento, Renza

    2014-11-01

    Osteosarcoma (OS) is the most common type of bone cancer, with a peak incidence in the early childhood. Emerging evidence suggests that treatments targeting cancer stem cells (CSCs) within a tumor can halt cancer and improve patient survival. MicroRNAs (miRNAs) have been implicated in the maintenance of the CSC phenotype, thus, identification of CSC-related miRNAs would provide information for a better understanding of CSCs. Downregulation of miRNA-29 family members (miR-29a/b/c; miR‑29s) was observed in human OS, however, little is known about the functions of miR-29s in human OS CSCs. Previously, during the characterization of 3AB-OS cells, a CSC line selected from human OS MG63 cells, we showed a potent downregulation of miR-29b. In this study, after stable transfection of 3AB-OS cells with miR-29b-1, we investigated the role of miR-29b-1 in regulating cell proliferation, sarcosphere-forming ability, clonogenic growth, chemosensitivity, migration and invasive ability of 3AB-OS cells, in vitro. We found that, miR-29b-1 overexpression consistently reduced both, 3AB-OS CSCs growth in two- and three-dimensional culture systems and their sarcosphere- and colony-forming ability. In addition, while miR-29b-1 overexpression sensitized 3AB-OS cells to chemotherapeutic drug-induced apoptosis, it did not influence their migratory and invasive capacities, thus suggesting a context-depending role of miR-29b-1. Using publicly available databases, we proceeded to identify potential miR-29b target genes, known to play a role in the above reported functions. Among these targets we analyzed CD133, N-Myc, CCND2, E2F1 and E2F2, Bcl-2 and IAP-2. We also analyzed the most important stemness markers as Oct3/4, Sox2 and Nanog. Real-time RT-PCR and western-blot analyses showed that miR-29b-1 negatively regulated the expression of these markers. Overall, the results show that miR-29b-1 suppresses stemness properties of 3AB-OS CSCs and suggest that developing miR-29b-1 as a novel

  12. Tumor Cells and Tumor-Associated Macrophages: Secreted Proteins as Potential Targets for Therapy

    OpenAIRE

    Baay, Marc; Brouwer, Anja; Pauwels, Patrick; Peeters, Marc; Lardon, Filip

    2011-01-01

    Inflammatory pathways, meant to defend the organism against infection and injury, as a byproduct, can promote an environment which favors tumor growth and metastasis. Tumor-associated macrophages (TAMs), which constitute a significant part of the tumor-infiltrating immune cells, have been linked to the growth, angiogenesis, and metastasis of a variety of cancers, most likely through polarization of TAMs to the M2 (alternative) phenotype. The interaction between tumor cells and macrophages pro...

  13. The radiation hypersensitivity of cells at mitosis.

    Science.gov (United States)

    Stobbe, C C; Park, S J; Chapman, J D

    2002-12-01

    Mitotic cells are hypersensitive to ionizing radiation, exhibiting single-hit inactivation coefficients near to those of repair deficient cell lines and lymphocytes. To elucidate possible mechanisms for this hypersensitivity, the kinetics of oxygen radiosensitization, the proportion of indirect effect by OH radicals and the kinetics of radiation-induced DNA strand breakage in the chromatin of mitotic cells were investigated. Synchronized populations of >90% mitotic HT-29 cells were obtained by the mitotic shake-off method. Cells were irradiated at indirect effect of OH radicals was investigated with the radical scavenger, DMSO. DNA strand breakage was measured by the comet assay. Mitotic HT-29 cell inactivation is well described by a single-hit inactivation coefficient (alpha) of 1.14 +/- 0.06 Gy(-1). The oxygen enhancement ratio of mitotic cells (at 10% survival) was found to be approximately 2.0, significantly lower than the value of 2.8 measured for interphase (asynchronous) cells. More than 60% of mitotic cell killing was eliminated when the media contained 2 M DMSO, indicating that indirect effect is as important in the killing of mitotic cells as it is for interphase cells. The chromatin in mitotic cells was found to be ~2.8 times more sensitive to radiation-induced DNA single-strand breakage than the chromatin of interphase cells. The alpha-inactivation coefficient of mitotic HT-29 cells was ~30 times larger than that of interphase cells. Mitotic cell chromatin appears to contain intrinsic DNA breaks that are not lethal. In addition, chromatin in mitotic cells was found to be more susceptible to radiation-induced DNA strand-breakage than the dispersed chromatin of interphase cells. How the enhanced production of these simple DNA lesions (that are usually reparable) translates into the lethal (non-reparable) events associated with alpha-inactivation is not known. The compaction/dispersion status of DNA throughout the cell cycle appears to be an important

  14. Chitosan-modified porous silicon microparticles for enhanced permeability of insulin across intestinal cell monolayers.

    Science.gov (United States)

    Shrestha, Neha; Shahbazi, Mohammad-Ali; Araújo, Francisca; Zhang, Hongbo; Mäkilä, Ermei M; Kauppila, Jussi; Sarmento, Bruno; Salonen, Jarno J; Hirvonen, Jouni T; Santos, Hélder A

    2014-08-01

    Porous silicon (PSi) based particulate systems are emerging as an important drug delivery system due to its advantageous properties such as biocompatibility, biodegradability and ability to tailor the particles' physicochemical properties. Here, annealed thermally hydrocarbonized PSi (AnnTHCPSi) and undecylenic acid modified AnnTHCPSi (AnnUnTHCPSi) microparticles were developed as a PSi-based platform for oral delivery of insulin. Chitosan (CS) was used to modify the AnnUnTHCPSi microparticles to enhance the intestinal permeation of insulin. Surface modification with CS led to significant increase in the interaction of PSi microparticles with Caco-2/HT-29 cell co-culture monolayers. Compared to pure insulin, the CS-conjugated microparticles significantly improved the permeation of insulin across the Caco-2/HT-29 cell monolayers, with ca. 20-fold increase in the amount of insulin permeated and ca. 7-fold increase in the apparent permeability (P(app)) value. Moreover, among all the investigated particles, the CS-conjugated microparticles also showed the highest amount of insulin associated with the mucus layer and the intestinal Caco-2 cells and mucus secreting HT-29 cells. Our results demonstrate that CS-conjugated AnnUnTHCPSi microparticles can efficiently enhance the insulin absorption across intestinal cells, and thus, they are promising microsystems for the oral delivery of proteins and peptides across the intestinal cell membrane. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Prolonged exposure of colon cancer cells to 5-fluorouracil nanoparticles improves its anticancer activity

    Directory of Open Access Journals (Sweden)

    Essam Tawfik

    2017-02-01

    Full Text Available In this study, we aimed to improve the anticancer effect of 5-FU on human colon cancer cell lines by incorporating in poly(d,l lactic-co-glycolic acid (PLGA nanoparticles (NPs. The 5-FU-PLGA NPs were prepared by nanoprecipitation technique. Prepared NPs were moderately dispersed with an average diameter of 133 ± 25.19 nm. Scanning Electron Microscope (SEM images revealed spherical structures with subtle surface irregularity. Free 5-FU dose–response curves were constructed (12.5–2000 μM using MTT assay on HCT 116 and HT-29 cell lines for 1, 3, and 5 days. The calculated IC50 on HCT 116 were 185 μM after 1 day, 11.3 μM after 3 days, and 1.48 μM after 5 days. On HT-29, IC50 was only reached after 5 days of 5-FU treatment (11.25 μM. The HCT 116 viability following treatment with 100 μM 5-FU in free or NPs forms for 3 days was 38.8% and 18.6%, respectively. Similarly, when 250 μM was applied, HCT 116 viability was 17.03% and 14.6% after treatment with free and NPs forms of 5-FU, respectively. Moreover, HT-29 cell viability after 250 μM 5-FU treatment in free or NPs forms was 55.45% and 34.01%, respectively. We also noticed that HCT 116 cells were more sensitive to 5-FU-PLGA NPs as compared to HT-29 cells. Overall, our data indicate that 5-FU activity is time dependent and the prolonged effects created by PLGA NPs may contribute, at least in part, to the noticed enhancement of the anticancer activity of 5-FU drug.

  16. Monoclonal TCR-redirected tumor cell killing.

    Science.gov (United States)

    Liddy, Nathaniel; Bossi, Giovanna; Adams, Katherine J; Lissina, Anna; Mahon, Tara M; Hassan, Namir J; Gavarret, Jessie; Bianchi, Frayne C; Pumphrey, Nicholas J; Ladell, Kristin; Gostick, Emma; Sewell, Andrew K; Lissin, Nikolai M; Harwood, Naomi E; Molloy, Peter E; Li, Yi; Cameron, Brian J; Sami, Malkit; Baston, Emma E; Todorov, Penio T; Paston, Samantha J; Dennis, Rebecca E; Harper, Jane V; Dunn, Steve M; Ashfield, Rebecca; Johnson, Andy; McGrath, Yvonne; Plesa, Gabriela; June, Carl H; Kalos, Michael; Price, David A; Vuidepot, Annelise; Williams, Daniel D; Sutton, Deborah H; Jakobsen, Bent K

    2012-06-01

    T cell immunity can potentially eradicate malignant cells and lead to clinical remission in a minority of patients with cancer. In the majority of these individuals, however, there is a failure of the specific T cell receptor (TCR)–mediated immune recognition and activation process. Here we describe the engineering and characterization of new reagents termed immune-mobilizing monoclonal TCRs against cancer (ImmTACs). Four such ImmTACs, each comprising a distinct tumor-associated epitope-specific monoclonal TCR with picomolar affinity fused to a humanized cluster of differentiation 3 (CD3)-specific single-chain antibody fragment (scFv), effectively redirected T cells to kill cancer cells expressing extremely low surface epitope densities. Furthermore, these reagents potently suppressed tumor growth in vivo. Thus, ImmTACs overcome immune tolerance to cancer and represent a new approach to tumor immunotherapy.

  17. Mesothelioma tumor cells modulate dendritic cell lipid content, phenotype and function.

    Directory of Open Access Journals (Sweden)

    Joanne K Gardner

    Full Text Available Dendritic cells (DCs play an important role in the generation of anti-cancer immune responses, however there is evidence that DCs in cancer patients are dysfunctional. Lipid accumulation driven by tumor-derived factors has recently been shown to contribute to DC dysfunction in several human cancers, but has not yet been examined in mesothelioma. This study investigated if mesothelioma tumor cells and/or their secreted factors promote increases in DC lipid content and modulate DC function. Human monocyte-derived DCs (MoDCs were exposed to human mesothelioma tumor cells and tumor-derived factors in the presence or absence of lipoproteins. The data showed that immature MoDCs exposed to mesothelioma cells or factors contained increased lipid levels relative to control DCs. Lipid accumulation was associated with reduced antigen processing ability (measured using a DQ OVA assay, upregulation of the co-stimulatory molecule, CD86, and production of the tolerogenic cytokine, IL-10. Increases in DC lipid content were further enhanced by co-exposure to mesothelioma-derived factors and triglyceride-rich lipoproteins, but not low-density lipoproteins. In vivo studies using a murine mesothelioma model showed that the lipid content of tumor-infiltrating CD4+ CD8α- DCs, CD4- CD8α- DCs DCs and plasmacytoid DCs increased with tumor progression. Moreover, increasing tumor burden was associated with reduced proliferation of tumor-antigen-specific CD8+ T cells in tumor-draining lymph nodes. This study shows that mesothelioma promotes DC lipid acquisition, which is associated with altered activation status and reduced capacity to process and present antigens, which may impair the ability of DCs to generate effective anti mesothelioma T cell responses.

  18. Enhancement of Power Efficiency and Stability of P3HT-Based Organic Solar Cells under Elevated Operating-Temperatures by Using a Nanocomposite Photoactive Layer

    Directory of Open Access Journals (Sweden)

    Tran Thi Thao

    2015-01-01

    Full Text Available With the aim to find out an enhanced operating-temperature range for photovoltaic device parameters, two types of the photoactive layer were prepared: poly(3-hexylthiophene (P3HT and P3HT+nc-TiO2 (PTC thin films. The enhancement obtained for the photoelectrical conversion efficiency of the composite based OSCs is attributed to the presence of nanoheterojunctions of TiO2/P3HT. For the temperature range of 30–70°C, the decrease of the open-circuit potential was compensated by an increase of the fill factor; and the increase in the short-circuit current resulted in an overall increase of the energy conversion efficiency. At elevated temperatures of 60–80°C the efficiency of the P3HT- and PTC-based cells reached a maximum value of 1.6% and 2.1%, respectively. Over this temperature range the efficiency of P3HT-based OSC decreased strongly to zero, whereas for the PTC cells it maintained a value as large as 1.2% at the temperature range of 110–140°C. The improved thermal stability of the composite-based device was attributed to the lowered thermal expansion coefficient of the nanocomposite photoactive layer.

  19. Selective drug-induced reduction of blood flow in tumor transplants

    International Nuclear Information System (INIS)

    Knapp, W.H.; Debatin, J.; Layer, K.; Helus, F.; Altmann, A.; Sinn, H.J.; Ostertag, H.

    1985-01-01

    The effect of a calcium antagonist and a physiological amine on tumor and muscle perfusion was investigated with the aim of improving the preconditions for external hyperthermia treatment of cancer. Nisoldipine and 5-hydroxy tryptamine (5-HT) were administered ip in Sprague-Dawley rats bearing Walker 256 carcinoma, Yoshida sarcoma, or a homologous tumor transplant derived from a spontaneous leiomyosarcoma of the uterus. At the maximum dosage used, nisoldipine injection caused a decrease of the regional washout rate of Xenon-133 in the Walker carcinoma and an increase in the muscle of the hind leg. 5-HT caused a drop in the Walker carcinoma and only a slight fall of the washout rate in muscle. Tumor-to-muscle uptake ratios of 11 C-butanol fell. Both drugs representing two different rationales of vasomotor action were able to reduce blood flow specifically in transplanted tumors; nisoldipine increased muscle blood flow and decreased arterial blood pressure, whereas 5-HT acted without substantial systemic effects

  20. Blood vessel endothelium-directed tumor cell streaming in breast tumors requires the HGF/C-Met signaling pathway.

    Science.gov (United States)

    Leung, E; Xue, A; Wang, Y; Rougerie, P; Sharma, V P; Eddy, R; Cox, D; Condeelis, J

    2017-05-11

    During metastasis to distant sites, tumor cells migrate to blood vessels. In vivo, breast tumor cells utilize a specialized mode of migration known as streaming, where a linear assembly of tumor cells migrate directionally towards blood vessels on fibronectin-collagen I-containing extracellular matrix (ECM) fibers in response to chemotactic signals. We have successfully reconstructed tumor cell streaming in vitro by co-plating tumors cells, macrophages and endothelial cells on 2.5 μm thick ECM-coated micro-patterned substrates. We found that tumor cells and macrophages, when plated together on the micro-patterned substrates, do not demonstrate sustained directional migration in only one direction (sustained directionality) but show random bi-directional walking. Sustained directionality of tumor cells as seen in vivo was established in vitro when beads coated with human umbilical vein endothelial cells were placed at one end of the micro-patterned 'ECM fibers' within the assay. We demonstrated that these endothelial cells supply the hepatocyte growth factor (HGF) required for the chemotactic gradient responsible for sustained directionality. Using this in vitro reconstituted streaming system, we found that directional streaming is dependent on, and most effectively blocked, by inhibiting the HGF/C-Met signaling pathway between endothelial cells and tumor cells. Key observations made with the in vitro reconstituted system implicating C-Met signaling were confirmed in vivo in mammary tumors using the in vivo invasion assay and intravital multiphoton imaging of tumor cell streaming. These results establish HGF/C-Met as a central organizing signal in blood vessel-directed tumor cell migration in vivo and highlight a promising role for C-Met inhibitors in blocking tumor cell streaming and metastasis in vivo, and for use in human trials.