WorldWideScience

Sample records for tumor biology-based approach

  1. Lateral skull base approaches in the management of benign parapharyngeal space tumors.

    Science.gov (United States)

    Prasad, Sampath Chandra; Piccirillo, Enrico; Chovanec, Martin; La Melia, Claudio; De Donato, Giuseppe; Sanna, Mario

    2015-06-01

    To evaluate the role of lateral skull base approaches in the management of benign parapharyngeal space tumors and to propose an algorithm for their surgical approach. Retrospective study of patients with benign parapharyngeal space tumors. The clinical features, radiology and preoperative management of skull base neurovasculature, the surgical approaches and overall results were recorded. 46 patients presented with 48 tumors. 12 were prestyloid and 36 poststyloid. 19 (39.6%) tumors were paragangliomas, 15 (31.25%) were schwannomas and 11 (23%) were pleomorphic adenomas. Preoperative embolization was performed in 19, stenting of the internal carotid artery in 4 and permanent balloon occlusion in 2 patients. 19 tumors were approached by the transcervical, 13 by transcervical-transparotid, 5 by transcervical-transmastoid, 6, 1 and 2 tumors by the infratemporal fossa approach types A, B and D, respectively. Total radical tumor removal was achieved in 46 (96%) of the cases. Lateral skull base approaches have an advantage over other approaches in the management of benign tumors of the parapharyngeal space due to the fact that they provide excellent exposure with less morbidity. The use of microscope combined with bipolar cautery reduces morbidity. Stenting of internal carotid artery gives a chance for complete tumor removal with arterial preservation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Dose prescription complexity versus tumor control probability in biologically conformal radiotherapy

    International Nuclear Information System (INIS)

    South, C. P.; Evans, P. M.; Partridge, M.

    2009-01-01

    The technical feasibility and potential benefits of voxel-based nonuniform dose prescriptions for biologically heterogeneous tumors have been widely demonstrated. In some cases, an ''ideal'' dose prescription has been generated by individualizing the dose to every voxel within the target, but often this voxel-based prescription has been discretized into a small number of compartments. The number of dose levels utilized and the methods used for prescribing doses and assigning tumor voxels to different dose compartments have varied significantly. The authors present an investigation into the relationship between the complexity of the dose prescription and the tumor control probability (TCP) for a number of these methods. The linear quadratic model of cell killing was used in conjunction with a number of modeled tumors heterogeneous in clonogen density, oxygenation, or proliferation. Models based on simple mathematical functions, published biological data, and biological image data were investigated. Target voxels were assigned to dose compartments using (i) simple rules based on the initial biological distribution, (ii) iterative methods designed to maximize the achievable TCP, or (iii) methods based on an ideal dose prescription. The relative performance of the simple rules was found to depend on the form of heterogeneity of the tumor, while the iterative and ideal dose methods performed comparably for all models investigated. In all cases the maximum achievable TCP was approached within the first few (typically two to five) compartments. Results suggest that irrespective of the pattern of heterogeneity, the optimal dose prescription can be well approximated using only a few dose levels but only if both the compartment boundaries and prescribed dose levels are well chosen.

  3. Oncomirs: from tumor biology to molecularly targeted anticancer strategies.

    Science.gov (United States)

    Mocellin, Simone; Pasquali, Sandro; Pilati, Pierluigi

    2009-01-01

    Deregulation of microRNA (miRNA) promotes carcinogenesis, as these molecules can act as oncogenes or tumor suppressor genes. Here we provide an overview of miRNA biology, discuss the most recent findings on miRNA and cancer development/progression, and report on how tumor-related miRNAs (oncomirs) are being used to develop novel cancer specific therapeutic approaches.

  4. Molecular biology III - Oncogenes and tumor suppressor genes

    International Nuclear Information System (INIS)

    Giaccia, Amato J.

    1996-01-01

    Purpose: The purpose of this course is to introduce to radiation oncologists the basic concepts of tumorigenesis, building on the information that will be presented in the first and second part of this series of lectures. Objective: Our objective is to increase the current understanding of radiation oncologists with the process of tumorigenesis, especially focusing on genes that are altered in many tumor types that are potential candidates for novel molecular strategies. As strategies to treat cancer of cancer are becoming more sophisticated, it will be important for both the practitioner and academician to develop a basic understanding of the function of cancer 'genes'. This will be the third in a series of refresher courses that are meant to address recent advances in Cancer Biology in a way that both clinicians without previous knowledge of molecular biology or experienced researchers will find interesting. The lecture will begin with a basic overview of tumorigenesis; methods of detecting chromosome/DNA alterations, approaches used to isolate oncogenes and tumor suppressor genes, and their role in cell killing by apoptosis. Special attention will be given to oncogenes and tumor suppressor genes that are modulated by ionizing radiation and the tumor microenvironment. We will relate the biology of oncogenes and tumor suppressor genes to basic aspects of radiation biology that would be important in clinical practice. Finally, we will review recent studies on the prognostic significance of p53 mutations and apoptosis in tumor specimens. The main point of this lecture is to relate both researcher and clinician what are the therapeutic ramifications of oncogene and tumor suppressor gene mutations found in human neoptasia

  5. Dendritic Cells in the Context of Human Tumors: Biology and Experimental Tools.

    Science.gov (United States)

    Volovitz, Ilan; Melzer, Susanne; Amar, Sarah; Bocsi, József; Bloch, Merav; Efroni, Sol; Ram, Zvi; Tárnok, Attila

    2016-01-01

    Dendritic cells (DC) are the most potent and versatile antigen-presenting cells (APC) in the immune system. DC have an exceptional ability to comprehend the immune context of a captured antigen based on molecular signals identified from its vicinity. The analyzed information is then conveyed to other immune effector cells. Such capability enables DC to play a pivotal role in mediating either an immunogenic response or immune tolerance towards an acquired antigen. This review summarizes current knowledge on DC in the context of human tumors. It covers the basics of human DC biology, elaborating on the different markers, morphology and function of the different subsets of human DC. Human blood-borne DC are comprised of at least three subsets consisting of one plasmacytoid DC (pDC) and two to three myeloid DC (mDC) subsets. Some tissues have unique DC. Each subset has a different phenotype and function and may induce pro-tumoral or anti-tumoral effects. The review also discusses two methods fundamental to the research of DC on the single-cell level: multicolor flow cytometry (FCM) and image-based cytometry (IC). These methods, along with new genomics and proteomics tools, can provide high-resolution information on specific DC subsets and on immune and tumor cells with which they interact. The different layers of collected biological data may then be integrated using Immune-Cytomics modeling approaches. Such novel integrated approaches may help unravel the complex network of cellular interactions that DC carry out within tumors, and may help harness this complex immunological information into the development of more effective treatments for cancer.

  6. Tumor Biology and Microenvironment Research

    Science.gov (United States)

    Part of NCI's Division of Cancer Biology's research portfolio, research in this area seeks to understand the role of tumor cells and the tumor microenvironment (TME) in driving cancer initiation, progression, maintenance and recurrence.

  7. NK cell-based cancer immunotherapy: from basic biology to clinical application.

    Science.gov (United States)

    Li, Yang; Yin, Jie; Li, Ting; Huang, Shan; Yan, Han; Leavenworth, JianMei; Wang, Xi

    2015-12-01

    Natural killer (NK) cells, which recognize and kill target cells independent of antigen specificity and major histocompatibility complex (MHC) matching, play pivotal roles in immune defence against tumors. However, tumor cells often acquire the ability to escape NK cell-mediated immune surveillance. Thus, understanding mechanisms underlying regulation of NK cell phenotype and function within the tumor environment is instrumental for designing new approaches to improve the current cell-based immunotherapy. In this review, we elaborate the main biological features and molecular mechanisms of NK cells that pertain to regulation of NK cell-mediated anti-tumor activity. We further overview current clinical approaches regarding NK cell-based cancer therapy, including cytokine infusion, adoptive transfer of autologous or allogeneic NK cells, applications of chimeric antigen receptor (CAR)-expressing NK cells and adoptive transfer of memory-like NK cells. With these promising clinical outcomes and fuller understanding the basic questions raised in this review, we foresee that NK cell-based approaches may hold great potential for future cancer immunotherapy.

  8. Biological impact of geometric uncertainties: what margin is needed for intra-hepatic tumors?

    International Nuclear Information System (INIS)

    Kuo, Hsiang-Chi; Liu, Wen-Shan; Wu, Andrew; Mah, Dennis; Chuang, Keh-Shih; Hong, Linda; Yaparpalvi, Ravi; Guha, Chandan; Kalnicki, Shalom

    2010-01-01

    To evaluate and compare the biological impact on different proposed margin recipes for the same geometric uncertainties for intra-hepatic tumors with different tumor cell types or clinical stages. Three different margin recipes based on tumor motion were applied to sixteen IMRT plans with a total of twenty two intra-hepatic tumors. One recipe used the full amplitude of motion measured from patients to generate margins. A second used 70% of the full amplitude of motion, while the third had no margin for motion. The biological effects of geometric uncertainty in these three situations were evaluated with Equivalent Uniform Doses (EUD) for various survival fractions at 2 Gy (SF 2 ). There was no significant difference in the biological impact between the full motion margin and the 70% motion margin. Also, there was no significant difference between different tumor cell types. When the margin for motion was eliminated, the difference of the biological impact was significant among different cell types due to geometric uncertainties. Elimination of the motion margin requires dose escalation to compensate for the biological dose reduction due to the geometric misses during treatment. Both patient-based margins of full motion and of 70% motion are sufficient to prevent serious dosimetric error. Clinical implementation of margin reduction should consider the tumor sensitivity to radiation

  9. Skull base tumors: a comprehensive review of transfacial swing osteotomy approaches.

    Science.gov (United States)

    Moreira-Gonzalez, Andrea; Pieper, Daniel R; Cambra, Jorge Balaguer; Simman, Richard; Jackson, Ian T

    2005-03-01

    Numerous techniques have been proposed for the resection of skull base tumors, each one unique with regard to the region exposed and degree of technical complexity. This study describes the use of transfacial swing osteotomies in accessing lesions located at various levels of the cranial base. Eight patients who underwent transfacial swings for exposure and resection of cranial base lesions between 1996 and 2002 were studied. The mandible was the choice when wide exposure of nasopharyngeal and midline skull base tumors was necessary, especially when they involved the infratemporal fossa. The midfacial swing osteotomy was an option when access to the entire clivus was necessary. An orbital swing approach was used to access large orbital tumors lying inferior to the optic nerve and posterior to the globe, a region that is often difficult to visualize. Gross total tumor excision was possible in all patients. Six patients achieved disease control and two had recurrences. The complications of cerebrospinal fluid leak, infection, hematoma, or cranial nerve damage did not occur. After surgery, some patients experienced temporary symptoms caused by local swelling. The aesthetic result was considered good. Transfacial swing osteotomies provide a wide exposure to tumors that occur in the central skull base area. Excellent knowledge of the detailed anatomy of this region is paramount to the success of this surgery. The team concept is essential; it is built around the craniofacial surgeon and an experienced skull base neurosurgeon.

  10. Tumor necrosis factor (TNF) biology and cell death.

    Science.gov (United States)

    Bertazza, Loris; Mocellin, Simone

    2008-01-01

    Tumor necrosis factor (TNF) was the first cytokine to be used in humans for cancer therapy. However, its role in the treatment of cancer patients is debated. Most uncertainties in this field stem from the knowledge that the pathways directly activated or indirectly affected upon TNF engagement with its receptors can ultimately lead to very different outcomes in terms of cell survival. In this article, we summarize the fundamental molecular biology aspects of this cytokine. Such a basis is a prerequisite to critically approach the sometimes conflicting preclinical and clinical findings regarding the relationship between TNF, tumor biology and anticancer therapy. Although the last decade has witnessed remarkable advances in this field, we still do not know in detail how cells choose between life and death after TNF stimulation. Understanding this mechanism will not only shed new light on the physiological significance of TNF-driven programmed cell death but also help investigators maximize the anticancer potential of this cytokine.

  11. The dual role of tumor necrosis factor (TNF) in cancer biology.

    Science.gov (United States)

    Bertazza, Loris; Mocellin, Simone

    2010-01-01

    Tumor necrosis factor (TNF) is a cytokine with well known anticancer properties and is being utilized as anticancer agent for the treatment of patients with locally advanced solid tumors. However, TNF role in cancer biology is debated. In fact, in spite of the wealth of evidence supporting its antitumor activity, the cascade of molecular events underlying TNF-mediated tumor regression observed in vivo is still incompletely elucidated. Furthermore, some preclinical findings suggest that TNF may even promote cancer development and progression. With this work we intend to summarize the molecular biology of TNF (with particular regard to its tumor-related activities) and review the experimental and clinical evidence currently available describing the complex and sometime apparently conflicting relationship between this cytokine, cancer biology and antitumor therapy. We also propose a model to explain the dual effect of TNF based on the exposure time and cytokine levels reached within the tumor microenvironment. Finally, we overview recent research findings that might lead to new ways for exploiting the anticancer potential of TNF in the clinical setting.

  12. Engineered Breast Cancer Cell Spheroids Reproduce Biologic Properties of Solid Tumors.

    Science.gov (United States)

    Ham, Stephanie L; Joshi, Ramila; Luker, Gary D; Tavana, Hossein

    2016-11-01

    Solid tumors develop as 3D tissue constructs. As tumors grow larger, spatial gradients of nutrients and oxygen and inadequate diffusive supply to cells distant from vasculature develops. Hypoxia initiates signaling and transcriptional alterations to promote survival of cancer cells and generation of cancer stem cells (CSCs) that have self-renewal and tumor-initiation capabilities. Both hypoxia and CSCs are associated with resistance to therapies and tumor relapse. This study demonstrates that 3D cancer cell models, known as tumor spheroids, generated with a polymeric aqueous two-phase system (ATPS) technology capture these important biological processes. Similar to solid tumors, spheroids of triple negative breast cancer cells deposit major extracellular matrix proteins. The molecular analysis establishes presence of hypoxic cells in the core region and expression of CSC gene and protein markers including CD24, CD133, and Nanog. Importantly, these spheroids resist treatment with chemotherapy drugs. A combination treatment approach using a hypoxia-activated prodrug, TH-302, and a chemotherapy drug, doxorubicin, successfully targets drug resistant spheroids. This study demonstrates that ATPS spheroids recapitulate important biological and functional properties of solid tumors and provide a unique model for studies in cancer research. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Biological-based and physical-based optimization for biological evaluation of prostate patient's plans

    Science.gov (United States)

    Sukhikh, E.; Sheino, I.; Vertinsky, A.

    2017-09-01

    Modern modalities of radiation treatment therapy allow irradiation of the tumor to high dose values and irradiation of organs at risk (OARs) to low dose values at the same time. In this paper we study optimal radiation treatment plans made in Monaco system. The first aim of this study was to evaluate dosimetric features of Monaco treatment planning system using biological versus dose-based cost functions for the OARs and irradiation targets (namely tumors) when the full potential of built-in biological cost functions is utilized. The second aim was to develop criteria for the evaluation of radiation dosimetry plans for patients based on the macroscopic radiobiological criteria - TCP/NTCP. In the framework of the study four dosimetric plans were created utilizing the full extent of biological and physical cost functions using dose calculation-based treatment planning for IMRT Step-and-Shoot delivery of stereotactic body radiation therapy (SBRT) in prostate case (5 fractions per 7 Gy).

  14. Mast cells: potential positive and negative roles in tumor biology.

    Science.gov (United States)

    Marichal, Thomas; Tsai, Mindy; Galli, Stephen J

    2013-11-01

    Mast cells are immune cells that reside in virtually all vascularized tissues. Upon activation by diverse mechanisms, mast cells can secrete a broad array of biologically active products that either are stored in the cytoplasmic granules of the cells (e.g., histamine, heparin, various proteases) or are produced de novo upon cell stimulation (e.g., prostaglandins, leukotrienes, cytokines, chemokines, and growth factors). Mast cells are best known for their effector functions during anaphylaxis and acute IgE-associated allergic reactions, but they also have been implicated in a wide variety of processes that maintain health or contribute to disease. There has been particular interest in the possible roles of mast cells in tumor biology. In vitro studies have shown that mast cells have the potential to influence many aspects of tumor biology, including tumor development, tumor-induced angiogenesis, and tissue remodeling, and the shaping of adaptive immune responses to tumors. Yet, the actual contributions of mast cells to tumor biology in vivo remain controversial. Here, we review some basic features of mast cell biology with a special emphasis on those relevant to their potential roles in tumors. We discuss how using in vivo tumor models in combination with models in which mast cell function can be modulated has implicated mast cells in the regulation of host responses to tumors. Finally, we summarize data from studies of human tumors that suggest either beneficial or detrimental roles for mast cells in tumors. ©2013 AACR.

  15. Synthetic biology in cell-based cancer immunotherapy.

    Science.gov (United States)

    Chakravarti, Deboki; Wong, Wilson W

    2015-08-01

    The adoptive transfer of genetically engineered T cells with cancer-targeting receptors has shown tremendous promise for eradicating tumors in clinical trials. This form of cellular immunotherapy presents a unique opportunity to incorporate advanced systems and synthetic biology approaches to create cancer therapeutics with novel functions. We first review the development of synthetic receptors, switches, and circuits to control the location, duration, and strength of T cell activity against tumors. In addition, we discuss the cellular engineering and genome editing of host cells (or the chassis) to improve the efficacy of cell-based cancer therapeutics, and to reduce the time and cost of manufacturing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. The “Trojan Horse” Approach to Tumor Immunotherapy: Targeting the Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Delia Nelson

    2014-01-01

    Full Text Available Most anticancer therapies including immunotherapies are given systemically; yet therapies given directly into tumors may be more effective, particularly those that overcome natural suppressive factors in the tumor microenvironment. The “Trojan Horse” approach of intratumoural delivery aims to promote immune-mediated destruction by inducing microenvironmental changes within the tumour at the same time as avoiding the systemic toxicity that is often associated with more “full frontal” treatments such as transfer of large numbers of laboratory-expanded tumor-specific cytotoxic T lymphocytes or large intravenous doses of cytokine. Numerous studies have demonstrated that intratumoural therapy has the capacity to minimizing local suppression, inducing sufficient “dangerous” tumor cell death to cross-prime strong immune responses, and rending tumor blood vessels amenable to immune cell traffic to induce effector cell changes in secondary lymphoid organs. However, the key to its success is the design of a sound rational approach based on evidence. There is compelling preclinical data for local immunotherapy approaches in tumor immunology. This review summarises how immune events within a tumour can be modified by local approaches, how this can affect systemic antitumor immunity such that distal sites are attacked, and what approaches have been proven most successful so far in animals and patients.

  17. A Proteogenomic Approach to Understanding MYC Function in Metastatic Medulloblastoma Tumors

    Directory of Open Access Journals (Sweden)

    Jerome A. Staal

    2016-10-01

    Full Text Available Brain tumors are the leading cause of cancer-related deaths in children, and medulloblastoma is the most prevalent malignant childhood/pediatric brain tumor. Providing effective treatment for these cancers, with minimal damage to the still-developing brain, remains one of the greatest challenges faced by clinicians. Understanding the diverse events driving tumor formation, maintenance, progression, and recurrence is necessary for identifying novel targeted therapeutics and improving survival of patients with this disease. Genomic copy number alteration data, together with clinical studies, identifies c-MYC amplification as an important risk factor associated with the most aggressive forms of medulloblastoma with marked metastatic potential. Yet despite this, very little is known regarding the impact of such genomic abnormalities upon the functional biology of the tumor cell. We discuss here how recent advances in quantitative proteomic techniques are now providing new insights into the functional biology of these aggressive tumors, as illustrated by the use of proteomics to bridge the gap between the genotype and phenotype in the case of c-MYC-amplified/associated medulloblastoma. These integrated proteogenomic approaches now provide a new platform for understanding cancer biology by providing a functional context to frame genomic abnormalities.

  18. Value-Based Medicine and Integration of Tumor Biology.

    Science.gov (United States)

    Brooks, Gabriel A; Bosserman, Linda D; Mambetsariev, Isa; Salgia, Ravi

    2017-01-01

    Clinical oncology is in the midst of a genomic revolution, as molecular insights redefine our understanding of cancer biology. Greater awareness of the distinct aberrations that drive carcinogenesis is also contributing to a growing armamentarium of genomically targeted therapies. Although much work remains to better understand how to combine and sequence these therapies, improved outcomes for patients are becoming manifest. As we welcome this genomic revolution in cancer care, oncologists also must grapple with a number of practical problems. Costs of cancer care continue to grow, with targeted therapies responsible for an increasing proportion of spending. Rising costs are bringing the concept of value into sharper focus and challenging the oncology community with implementation of value-based cancer care. This article explores the ways that the genomic revolution is transforming cancer care, describes various frameworks for considering the value of genomically targeted therapies, and outlines key challenges for delivering on the promise of personalized cancer care. It highlights practical solutions for the implementation of value-based care, including investment in biomarker development and clinical trials to improve the efficacy of targeted therapy, the use of evidence-based clinical pathways, team-based care, computerized clinical decision support, and value-based payment approaches.

  19. Phosphotyrosine-based-phosphoproteomics scaled-down to biopsy level for analysis of individual tumor biology and treatment selection.

    Science.gov (United States)

    Labots, Mariette; van der Mijn, Johannes C; Beekhof, Robin; Piersma, Sander R; de Goeij-de Haas, Richard R; Pham, Thang V; Knol, Jaco C; Dekker, Henk; van Grieken, Nicole C T; Verheul, Henk M W; Jiménez, Connie R

    2017-06-06

    Mass spectrometry-based phosphoproteomics of cancer cell and tissue lysates provides insight in aberrantly activated signaling pathways and potential drug targets. For improved understanding of individual patient's tumor biology and to allow selection of tyrosine kinase inhibitors in individual patients, phosphoproteomics of small clinical samples should be feasible and reproducible. We aimed to scale down a pTyr-phosphopeptide enrichment protocol to biopsy-level protein input and assess reproducibility and applicability to tumor needle biopsies. To this end, phosphopeptide immunoprecipitation using anti-phosphotyrosine beads was performed using 10, 5 and 1mg protein input from lysates of colorectal cancer (CRC) cell line HCT116. Multiple needle biopsies from 7 human CRC resection specimens were analyzed at the 1mg-level. The total number of phosphopeptides captured and detected by LC-MS/MS ranged from 681 at 10mg input to 471 at 1mg HCT116 protein. ID-reproducibility ranged from 60.5% at 10mg to 43.9% at 1mg. Per 1mg-level biopsy sample, >200 phosphopeptides were identified with 57% ID-reproducibility between paired tumor biopsies. Unsupervised analysis clustered biopsies from individual patients together and revealed known and potential therapeutic targets. This study demonstrates the feasibility of label-free pTyr-phosphoproteomics at the tumor biopsy level based on reproducible analyses using 1mg of protein input. The considerable number of identified phosphopeptides at this level is attributed to an effective down-scaled immuno-affinity protocol as well as to the application of ID propagation in the data processing and analysis steps. Unsupervised cluster analysis reveals patient-specific profiles. Together, these findings pave the way for clinical trials in which pTyr-phosphoproteomics will be performed on pre- and on-treatment biopsies. Such studies will improve our understanding of individual tumor biology and may enable future pTyr-phosphoproteomics-based

  20. Biological mechanisms of gallium-67 tumor deposition

    International Nuclear Information System (INIS)

    Okuyama, Shinichi; Takeda, Shumpei; Sato, Tachio; Takusagawa, Kimihiko; Awano, Takayuki.

    1979-01-01

    This investigation was undertaken in order to clarify the tumor deposition mechanisms of 67 Ga citrate, a ''universal tumor labeler''. An interspecies comparison of various tumors in the rat and mouse indicated that its highest deposition was in the undifferentiated cell type. Amongst the siblings of experimental tumors, cellular membrane negative charge is greater in the free-cell types than the island-formers: a short-term labeling study revealed a greater 67 Ga deposition in the free-cell types. A subcellar fractionation showed an initial association of 67 Ga with the nuclear and membrane fractions, and a later transition to the lysosomal. Hypotonic lysis revealed a paralleled release of 67 Ga and lysosomal key enzymes. Morphological abnormality of the cancer lysosomes was thought to agree with their Ga retention. This property was clinically confirmed by a scintiscoring technique. Treatment with cold gallium of tumors modified the biological parameters of tumor growth: in vitro it suppressed cell proliferation, reduced saturation density; and produced cellular pleomorphism. In vivo it increased tumor consistency by reducing central necrosis and increasing the viable cell layer thickness. Thus, 67 Ga deposition is closely related to various biological parameters of malignancy including the cellular membrane negative charge as cancer is a membrane disorder, and the lysosomal morphology and function. (author)

  1. Endoscopic transnasal approach for removing pituitary tumors

    Directory of Open Access Journals (Sweden)

    Mirian Cabral Moreira de Castro

    2014-05-01

    Full Text Available To describe a series of 129 consecutive patients submitted to the resection of pituitary tumors using the endoscopic transsphenoidal approach in a public medical center. Method: Retrospective analysis based on the records of patients submitted to the resection of a pituitary tumor through the endoscopic transsphenoidal approach between 2004 and 2009. Results: One hundred and twenty-nine records were analyzed. The tumor was non-secreting in 96 (74.42% and secreting in 33 patients (22.58%. Out of the secretory tumors, the most prevalent was the growth hormone producer (7.65%, followed by the prolactinoma, (6.98%. Eleven patients developed cerebral spinal fluid (CSF fistulas, and four of them developed meningitis. One patient died due to intracerebral hemorrhage in the postoperative period. Conclusion: The endoscopic transsphenoidal approach to sellar tumors proved to be safe when the majority of the tumors were non-secreting. The most frequent complication was CSF. This technique can be done even in a public hospital with financial limits, since the health professionals are integrated.

  2. Tumor Microenvironment In Experimental Models Of Human Cancer: Morphological Investigational Approaches

    Directory of Open Access Journals (Sweden)

    Lucia Minoli

    2017-05-01

    Discussion and conclusions. Due to the microenvironmental heterogeneity which influence tumor development and biological behavior, a sole quantification is unreliable for characterizing the TME. Considering that, morphological techniques proved to be a valuable approach, allowing the evaluation of the spatial distribution and mutual interaction between the different elements. Additional studies are needed for further investigate the biological significance of spatial distribution of the components of the TME.

  3. Tumor Biology and Immunology | Center for Cancer Research

    Science.gov (United States)

    Tumor Biology and Immunology The Comparative Brain Tumor Consortium is collaborating with National Center for Advanced Translational Sciences to complete whole exome sequencing on canine meningioma samples. Results will be published and made publicly available.

  4. Histological image classification using biologically interpretable shape-based features

    International Nuclear Information System (INIS)

    Kothari, Sonal; Phan, John H; Young, Andrew N; Wang, May D

    2013-01-01

    Automatic cancer diagnostic systems based on histological image classification are important for improving therapeutic decisions. Previous studies propose textural and morphological features for such systems. These features capture patterns in histological images that are useful for both cancer grading and subtyping. However, because many of these features lack a clear biological interpretation, pathologists may be reluctant to adopt these features for clinical diagnosis. We examine the utility of biologically interpretable shape-based features for classification of histological renal tumor images. Using Fourier shape descriptors, we extract shape-based features that capture the distribution of stain-enhanced cellular and tissue structures in each image and evaluate these features using a multi-class prediction model. We compare the predictive performance of the shape-based diagnostic model to that of traditional models, i.e., using textural, morphological and topological features. The shape-based model, with an average accuracy of 77%, outperforms or complements traditional models. We identify the most informative shapes for each renal tumor subtype from the top-selected features. Results suggest that these shapes are not only accurate diagnostic features, but also correlate with known biological characteristics of renal tumors. Shape-based analysis of histological renal tumor images accurately classifies disease subtypes and reveals biologically insightful discriminatory features. This method for shape-based analysis can be extended to other histological datasets to aid pathologists in diagnostic and therapeutic decisions

  5. [Maxillary swing approach in the management of tumors in the central and lateral cranial base].

    Science.gov (United States)

    Liao, Hua; Hua, Qing-quan; Wu, Zhan-yuan

    2006-04-01

    A retrospective review of seventeen patients who were operated through the maxillary swing approach was carried out to assess the efficacy of this approach in the management of tumors of the central and lateral cranial base. From May 2000 to January 2005, 17 patients with primary or recurrent neoplasms involving the central cranial or lateral base underwent surgical resection via maxillary swing approach. Ten patients were male, and other seven patients were female, and age range was 7 to 58 years, with a mean age of 42. 6 years. Eight patients had tumors originally involving lateral cranial base, and nine patients had tumors originated from central cranial base. The pathology spectrum was very wide. Among them, five suffered from chordoma, two had rhabdomyosarcoma, two had squamous cell carcinoma, one had malignant fibrous histiocytoma, one had malignant melanoma, one had esthesioneuroblastoma, one had invaded hypophysoma, two had schwannoma, one had pleomorphic adenoma, and one had angiofibroma. Three patients had received previous surgery, two patients had previous radiation therapy and nine patients received postoperative radiotherapy. Sixteen of all seventeen patients had oncologically complete resection, one had near-total resection. This group patients was followed up from 10 to 60 months, with a median follow-up time of 28 months. Two patients died 14 and 26 months after surgery respectively, as a result of local recurrence and metastasis. One patient defaulted follow-up at 12 months after operation, and the other 14 patients were alive at the time of analysis. Of the 12 malignant tumors, the 1-and 2-year survival rate were 91.67% and 72.92%, respectively. The facial wounds of all patients healed primarily, and there were no necrosis of the maxilla, damage of the temporal branch of the facial nerve, lower-lid ectropion, and facial deformity. Epiphora and facial hypoesthesia were detected in all patients. Four patients (23.5%) developed palatal fistula, ten

  6. Modeling protective anti-tumor immunity via preventative cancer vaccines using a hybrid agent-based and delay differential equation approach.

    Science.gov (United States)

    Kim, Peter S; Lee, Peter P

    2012-01-01

    A next generation approach to cancer envisions developing preventative vaccinations to stimulate a person's immune cells, particularly cytotoxic T lymphocytes (CTLs), to eliminate incipient tumors before clinical detection. The purpose of our study is to quantitatively assess whether such an approach would be feasible, and if so, how many anti-cancer CTLs would have to be primed against tumor antigen to provide significant protection. To understand the relevant dynamics, we develop a two-compartment model of tumor-immune interactions at the tumor site and the draining lymph node. We model interactions at the tumor site using an agent-based model (ABM) and dynamics in the lymph node using a system of delay differential equations (DDEs). We combine the models into a hybrid ABM-DDE system and investigate dynamics over a wide range of parameters, including cell proliferation rates, tumor antigenicity, CTL recruitment times, and initial memory CTL populations. Our results indicate that an anti-cancer memory CTL pool of 3% or less can successfully eradicate a tumor population over a wide range of model parameters, implying that a vaccination approach is feasible. In addition, sensitivity analysis of our model reveals conditions that will result in rapid tumor destruction, oscillation, and polynomial rather than exponential decline in the tumor population due to tumor geometry.

  7. Clinical relevance and biology of circulating tumor cells

    Science.gov (United States)

    2011-01-01

    Most breast cancer patients die due to metastases, and the early onset of this multistep process is usually missed by current tumor staging modalities. Therefore, ultrasensitive techniques have been developed to enable the enrichment, detection, isolation and characterization of disseminated tumor cells in bone marrow and circulating tumor cells in the peripheral blood of cancer patients. There is increasing evidence that the presence of these cells is associated with an unfavorable prognosis related to metastatic progression in the bone and other organs. This review focuses on investigations regarding the biology and clinical relevance of circulating tumor cells in breast cancer. PMID:22114869

  8. Ultrasound-based tumor movement compensation during navigated laparoscopic liver interventions.

    Science.gov (United States)

    Shahin, Osama; Beširević, Armin; Kleemann, Markus; Schlaefer, Alexander

    2014-05-01

    Image-guided navigation aims to provide better orientation and accuracy in laparoscopic interventions. However, the ability of the navigation system to reflect anatomical changes and maintain high accuracy during the procedure is crucial. This is particularly challenging in soft organs such as the liver, where surgical manipulation causes significant tumor movements. We propose a fast approach to obtain an accurate estimation of the tumor position throughout the procedure. Initially, a three-dimensional (3D) ultrasound image is reconstructed and the tumor is segmented. During surgery, the position of the tumor is updated based on newly acquired tracked ultrasound images. The initial segmentation of the tumor is used to automatically detect the tumor and update its position in the navigation system. Two experiments were conducted. First, a controlled phantom motion using a robot was performed to validate the tracking accuracy. Second, a needle navigation scenario based on pseudotumors injected into ex vivo porcine liver was studied. In the robot-based evaluation, the approach estimated the target location with an accuracy of 0.4 ± 0.3 mm. The mean navigation error in the needle experiment was 1.2 ± 0.6 mm, and the algorithm compensated for tumor shifts up to 38 mm in an average time of 1 s. We demonstrated a navigation approach based on tracked laparoscopic ultrasound (LUS), and focused on the neighborhood of the tumor. Our experimental results indicate that this approach can be used to quickly and accurately compensate for tumor movements caused by surgical manipulation during laparoscopic interventions. The proposed approach has the advantage of being based on the routinely used LUS; however, it upgrades its functionality to estimate the tumor position in 3D. Hence, the approach is repeatable throughout surgery, and enables high navigation accuracy to be maintained.

  9. Spherical Cancer Models in Tumor Biology

    Directory of Open Access Journals (Sweden)

    Louis-Bastien Weiswald

    2015-01-01

    Full Text Available Three-dimensional (3D in vitro models have been used in cancer research as an intermediate model between in vitro cancer cell line cultures and in vivo tumor. Spherical cancer models represent major 3D in vitro models that have been described over the past 4 decades. These models have gained popularity in cancer stem cell research using tumorospheres. Thus, it is crucial to define and clarify the different spherical cancer models thus far described. Here, we focus on in vitro multicellular spheres used in cancer research. All these spherelike structures are characterized by their well-rounded shape, the presence of cancer cells, and their capacity to be maintained as free-floating cultures. We propose a rational classification of the four most commonly used spherical cancer models in cancer research based on culture methods for obtaining them and on subsequent differences in sphere biology: the multicellular tumor spheroid model, first described in the early 70s and obtained by culture of cancer cell lines under nonadherent conditions; tumorospheres, a model of cancer stem cell expansion established in a serum-free medium supplemented with growth factors; tissue-derived tumor spheres and organotypic multicellular spheroids, obtained by tumor tissue mechanical dissociation and cutting. In addition, we describe their applications to and interest in cancer research; in particular, we describe their contribution to chemoresistance, radioresistance, tumorigenicity, and invasion and migration studies. Although these models share a common 3D conformation, each displays its own intrinsic properties. Therefore, the most relevant spherical cancer model must be carefully selected, as a function of the study aim and cancer type.

  10. Advances in Wilms Tumor Treatment and Biology: Progress Through International Collaboration.

    Science.gov (United States)

    Dome, Jeffrey S; Graf, Norbert; Geller, James I; Fernandez, Conrad V; Mullen, Elizabeth A; Spreafico, Filippo; Van den Heuvel-Eibrink, Marry; Pritchard-Jones, Kathy

    2015-09-20

    Clinical trials in Wilms tumor (WT) have resulted in overall survival rates of greater than 90%. This achievement is especially remarkable because improvements in disease-specific survival have occurred concurrently with a reduction of therapy for large patient subgroups. However, the outcomes for certain patient subgroups, including those with unfavorable histologic and molecular features, bilateral disease, and recurrent disease, remain well below the benchmark survival rate of 90%. Therapy for WT has been advanced in part by an increasingly complex risk-stratification system based on patient age; tumor stage, histology, and volume; response to chemotherapy; and loss of heterozygosity at chromosomes 1p and 16q. A consequence of this system has been the apportionment of patients into such small subgroups that only collaboration between large international WT study groups will support clinical trials that are sufficiently powered to answer challenging questions that move the field forward. This article gives an overview of the Children's Oncology Group and International Society of Pediatric Oncology approaches to WT and focuses on four subgroups (stage IV, initially inoperable, bilateral, and relapsed WT) for which international collaboration is pressing. In addition, biologic insights resulting from collaborative laboratory research are discussed. A coordinated expansion of international collaboration in both clinical trials and laboratory science will provide real opportunity to improve the treatment and outcomes for children with renal tumors on a global level. © 2015 by American Society of Clinical Oncology.

  11. A logic-based dynamic modeling approach to explicate the evolution of the central dogma of molecular biology.

    Science.gov (United States)

    Jafari, Mohieddin; Ansari-Pour, Naser; Azimzadeh, Sadegh; Mirzaie, Mehdi

    It is nearly half a century past the age of the introduction of the Central Dogma (CD) of molecular biology. This biological axiom has been developed and currently appears to be all the more complex. In this study, we modified CD by adding further species to the CD information flow and mathematically expressed CD within a dynamic framework by using Boolean network based on its present-day and 1965 editions. We show that the enhancement of the Dogma not only now entails a higher level of complexity, but it also shows a higher level of robustness, thus far more consistent with the nature of biological systems. Using this mathematical modeling approach, we put forward a logic-based expression of our conceptual view of molecular biology. Finally, we show that such biological concepts can be converted into dynamic mathematical models using a logic-based approach and thus may be useful as a framework for improving static conceptual models in biology.

  12. A logic-based dynamic modeling approach to explicate the evolution of the central dogma of molecular biology.

    Directory of Open Access Journals (Sweden)

    Mohieddin Jafari

    Full Text Available It is nearly half a century past the age of the introduction of the Central Dogma (CD of molecular biology. This biological axiom has been developed and currently appears to be all the more complex. In this study, we modified CD by adding further species to the CD information flow and mathematically expressed CD within a dynamic framework by using Boolean network based on its present-day and 1965 editions. We show that the enhancement of the Dogma not only now entails a higher level of complexity, but it also shows a higher level of robustness, thus far more consistent with the nature of biological systems. Using this mathematical modeling approach, we put forward a logic-based expression of our conceptual view of molecular biology. Finally, we show that such biological concepts can be converted into dynamic mathematical models using a logic-based approach and thus may be useful as a framework for improving static conceptual models in biology.

  13. Preauricular infratemporal fossa approach for advanced malignant parotid tumors.

    Science.gov (United States)

    Leonetti, John P; Benscoter, Brent J; Marzo, Sam J; Borrowdale, Richard W; Pontikis, George C

    2012-09-01

    The aims of this study were to demonstrate the surgical technique involved in the preauricular infratemporal fossa (ITF) approach, outline the clinical indications for use of this technique, and present the results in using this approach in 159 patients with malignant parotid tumors. At the conclusion of this article, the reader should be able to understand the utility of the preauricular infratemporal fossa approach in the management of patients with advanced malignant parotid tumors. This was a retrospective chart review of 159 patients treated at a tertiary care academic medical center following institutional review board approval. A comprehensive medical records review was performed for all patients with malignant parotid tumors who underwent a preauricular ITF approach between July 1988 and July 2010. The most common presenting symptoms were pain and trismus, whereas the presence of a parotid mass and facial paralysis were the most common clinical signs. Mucoepidermoid and adenoid cystic carcinoma accounted for 63% of the tumors, and perineural invasion was found in nearly 71% of the patients. Despite negative surgical margins in 92% of the patients, local or regional tumor recurrence was found in 17% of the cases. The mean follow-up time was 12.8 years. The preauricular ITF approach should be used in the surgical extirpation of advanced malignant parotid neoplasms. This technique provides proximal facial nerve identification, internal carotid artery protection, and negative tumor margins at the skull base. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  14. submitter Biologically optimized helium ion plans: calculation approach and its in vitro validation

    CERN Document Server

    Mairani, A; Magro, G; Tessonnier, T; Kamp, F; Carlson, D J; Ciocca, M; Cerutti, F; Sala, P R; Ferrari, A; Böhlen, T T; Jäkel, O; Parodi, K; Debus, J; Abdollahi, A; Haberer, T

    2016-01-01

    Treatment planning studies on the biological effect of raster-scanned helium ion beams should be performed, together with their experimental verification, before their clinical application at the Heidelberg Ion Beam Therapy Center (HIT). For this purpose, we introduce a novel calculation approach based on integrating data-driven biological models in our Monte Carlo treatment planning (MCTP) tool. Dealing with a mixed radiation field, the biological effect of the primary $^4$He ion beams, of the secondary $^3$He and $^4$He (Z  =  2) fragments and of the produced protons, deuterons and tritons (Z  =  1) has to be taken into account. A spread-out Bragg peak (SOBP) in water, representative of a clinically-relevant scenario, has been biologically optimized with the MCTP and then delivered at HIT. Predictions of cell survival and RBE for a tumor cell line, characterized by ${{(\\alpha /\\beta )}_{\\text{ph}}}=5.4$ Gy, have been successfully compared against measured clonogenic survival data. The mean ...

  15. Approaches to chemical synthetic biology.

    Science.gov (United States)

    Chiarabelli, Cristiano; Stano, Pasquale; Anella, Fabrizio; Carrara, Paolo; Luisi, Pier Luigi

    2012-07-16

    Synthetic biology is first represented in terms of two complementary aspects, the bio-engineering one, based on the genetic manipulation of extant microbial forms in order to obtain forms of life which do not exist in nature; and the chemical synthetic biology, an approach mostly based on chemical manipulation for the laboratory synthesis of biological structures that do not exist in nature. The paper is mostly devoted to shortly review chemical synthetic biology projects currently carried out in our laboratory. In particular, we describe: the minimal cell project, then the "Never Born Proteins" and lastly the Never Born RNAs. We describe and critically analyze the main results, emphasizing the possible relevance of chemical synthetic biology for the progress in basic science and biotechnology. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  16. Summary of the primer on tumor immunology and the biological therapy of cancer

    Directory of Open Access Journals (Sweden)

    Margolin Kim

    2009-01-01

    Full Text Available Abstract The International Society for Biological Therapy of Cancer (iSBTc is one of the "premier destinations for interaction and innovation in the cancer biologics community". It provides a primer course each year during the annual meeting to address the most important areas of tumor immunology and immunotherapy. The course has been given by prominent investigators in the area of interest, covering the core principles of cancer immunology and immunotherapy. The target audience for this program includes investigators from academic, regulatory, and biopharmaceutical venues. The program goal is to enable the attendees to learn the current status and the most recent advances in biologic therapies, and to leverage this knowledge towards the improvement of cancer therapy. The 2008 immunologic primer course was held on October 30 at the 23rd Annual meeting of iSBTc in San Diego, CA. Nine internationally renowned investigators gave excellent presentations on different topics. The topics covered in this primer included: (1 cytokines in cancer immunology; (2 anti-angiogenic therapy; (3 end stage: immune killing of tumors; (4 blocking T cell checkpoints; (5 approach to identification and therapeutic exploitation of tumor antigens; (6 T regulatory cells; (7 adoptive T cell therapy; (8 immune monitoring of cancer immunotherapy; and (9 immune adjuvants. We summarized the topics in this primer for public education. The related topic slides and schedule can be accessed online http://www.isbtc.org/meetings/am08/primer08.

  17. Hierarchical structure of biological systems: a bioengineering approach.

    Science.gov (United States)

    Alcocer-Cuarón, Carlos; Rivera, Ana L; Castaño, Victor M

    2014-01-01

    A general theory of biological systems, based on few fundamental propositions, allows a generalization of both Wierner and Berthalanffy approaches to theoretical biology. Here, a biological system is defined as a set of self-organized, differentiated elements that interact pair-wise through various networks and media, isolated from other sets by boundaries. Their relation to other systems can be described as a closed loop in a steady-state, which leads to a hierarchical structure and functioning of the biological system. Our thermodynamical approach of hierarchical character can be applied to biological systems of varying sizes through some general principles, based on the exchange of energy information and/or mass from and within the systems.

  18. A systems approach for tumor pharmacokinetics.

    Directory of Open Access Journals (Sweden)

    Greg Michael Thurber

    Full Text Available Recent advances in genome inspired target discovery, small molecule screens, development of biological and nanotechnology have led to the introduction of a myriad of new differently sized agents into the clinic. The differences in small and large molecule delivery are becoming increasingly important in combination therapies as well as the use of drugs that modify the physiology of tumors such as anti-angiogenic treatment. The complexity of targeting has led to the development of mathematical models to facilitate understanding, but unfortunately, these studies are often only applicable to a particular molecule, making pharmacokinetic comparisons difficult. Here we develop and describe a framework for categorizing primary pharmacokinetics of drugs in tumors. For modeling purposes, we define drugs not by their mechanism of action but rather their rate-limiting step of delivery. Our simulations account for variations in perfusion, vascularization, interstitial transport, and non-linear local binding and metabolism. Based on a comparison of the fundamental rates determining uptake, drugs were classified into four categories depending on whether uptake is limited by blood flow, extravasation, interstitial diffusion, or local binding and metabolism. Simulations comparing small molecule versus macromolecular drugs show a sharp difference in distribution, which has implications for multi-drug therapies. The tissue-level distribution differs widely in tumors for small molecules versus macromolecular biologic drugs, and this should be considered in the design of agents and treatments. An example using antibodies in mouse xenografts illustrates the different in vivo behavior. This type of transport analysis can be used to aid in model development, experimental data analysis, and imaging and therapeutic agent design.

  19. Coupling biomechanics to a cellular level model: an approach to patient-specific image driven multi-scale and multi-physics tumor simulation.

    Science.gov (United States)

    May, Christian P; Kolokotroni, Eleni; Stamatakos, Georgios S; Büchler, Philippe

    2011-10-01

    Modeling of tumor growth has been performed according to various approaches addressing different biocomplexity levels and spatiotemporal scales. Mathematical treatments range from partial differential equation based diffusion models to rule-based cellular level simulators, aiming at both improving our quantitative understanding of the underlying biological processes and, in the mid- and long term, constructing reliable multi-scale predictive platforms to support patient-individualized treatment planning and optimization. The aim of this paper is to establish a multi-scale and multi-physics approach to tumor modeling taking into account both the cellular and the macroscopic mechanical level. Therefore, an already developed biomodel of clinical tumor growth and response to treatment is self-consistently coupled with a biomechanical model. Results are presented for the free growth case of the imageable component of an initially point-like glioblastoma multiforme tumor. The composite model leads to significant tumor shape corrections that are achieved through the utilization of environmental pressure information and the application of biomechanical principles. Using the ratio of smallest to largest moment of inertia of the tumor material to quantify the effect of our coupled approach, we have found a tumor shape correction of 20% by coupling biomechanics to the cellular simulator as compared to a cellular simulation without preferred growth directions. We conclude that the integration of the two models provides additional morphological insight into realistic tumor growth behavior. Therefore, it might be used for the development of an advanced oncosimulator focusing on tumor types for which morphology plays an important role in surgical and/or radio-therapeutic treatment planning. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Systems Biology-an interdisciplinary approach.

    Science.gov (United States)

    Friboulet, Alain; Thomas, Daniel

    2005-06-15

    System-level approaches in biology are not new but foundations of "Systems Biology" are achieved only now at the beginning of the 21st century [Kitano, H., 2001. Foundations of Systems Biology. MIT Press, Cambridge, MA]. The renewed interest for a system-level approach is linked to the progress in collecting experimental data and to the limits of the "reductionist" approach. System-level understanding of native biological and pathological systems is needed to provide potential therapeutic targets. Examples of interdisciplinary approach in Systems Biology are described in U.S., Japan and Europe. Robustness in biology, metabolic engineering and idiotypic networks are discussed in the framework of Systems Biology.

  1. Tissue Elasticity Bridges Cancer Stem Cells to the Tumor Microenvironment Through microRNAs: Implications for a “Watch-and-Wait” Approach to Cancer

    Science.gov (United States)

    Li, Shengwen Calvin; Vu, Long T.; Luo, Jane Jianying; Zhong, Jiang F.; Li, Zhongjun; Dethlefs, Brent A; Loudon, William G.; Kabeer, Mustafa H.

    2017-01-01

    Targeting the tumor microenvironment (TME) through which cancer stem cells (CSCs) crosstalk for cancer initiation and progression, may open up new treatments different from those centered on the original hallmarks of cancer genetics thereby implying a new approach for suppression of TME-driven activation of CSCs. Cancer is dynamic, heterogeneous, evolving with the TME and can be influenced by tissue-specific elasticity. One of the mediators and modulators of the crosstalk between CSCs and mechanical forces is miRNA, which can be developmentally regulated, in a tissue- and cell-specific manner. Here, based on our previous data, we provide a framework through which such gene expression changes in response to external mechanical forces can be understood during cancer progression. Recognizing the ways mechanical forces regulate and affect intracellular signals with applications in cancer stem cell biology. Such TME-targeted pathways shed new light on strategies for attacking cancer stem cells with fewer side effects than traditional gene-based treatments for cancer, requiring a “watch-and-wait” approach. We attempt to address both normal brain microenvironment and tumor microenvironment as both works together, intertwining in pathology and physiology – a balance that needs to be maintained for the “watch-and-wait” approach to cancer. Thus, this review connected the subjects of tissue elasticity, tumor microenvironment, epigenetic of miRNAs, and stem-cell biology that are very relevant in cancer research and therapy. It attempts to unify apparently separate entities in a complex biological web, network, and system in a realistic and practical manner, i.e., to bridge basic research with clinical application. PMID:28270089

  2. Cancer stem cells in hepatocellular carcinoma: Therapeutic implications based on stem cell biology.

    Science.gov (United States)

    Chiba, Tetsuhiro; Iwama, Atsushi; Yokosuka, Osamu

    2016-01-01

    Hepatocellular carcinoma (HCC) is the sixth most common cancer and the third most frequent cause of cancer-related death worldwide. Despite advances in its diagnosis and treatment, the prognosis of patients with advanced HCC remains unfavorable. Recent advances in stem cell biology and associated technologies have enabled the identification of minor components of tumorigenic cells, termed cancer stem cells (CSC) or tumor-initiating cells, in cancers such as HCC. Furthermore, because CSC play a central role in tumor development, metastasis and recurrence, they are considered to be a therapeutic target in cancer treatment. Hepatic CSC have been successfully identified using functional and cell surface markers. The analysis of purified hepatic CSC has revealed the molecular machinery and signaling pathways involved in their maintenance. In addition, epigenetic transcriptional regulation has been shown to be important in the development and maintenance of CSC. Although inhibitors of CSC show promise as CSC-targeting drugs, novel therapeutic approaches for the eradication of CSC are yet to be established. In this review, we describe recent progress in hepatic CSC research and provide a perspective on the available therapeutic approaches based on stem cell biology. © 2015 The Japan Society of Hepatology.

  3. Synthesis and Biological Evaluation of Novel Furozan-Based Nitric Oxide-Releasing Derivatives of Oridonin as Potential Anti-Tumor Agents

    Directory of Open Access Journals (Sweden)

    Hao Cai

    2012-06-01

    Full Text Available To search for novel nitric oxide (NO releasing anti-tumor agents, a series of novel furoxan/oridonin hybrids were designed and synthesized. Firstly, the nitrate/nitrite levels in the cell lysates were tested by a Griess assay and the results showed that these furoxan-based NO-releasing derivatives could produce high levels of NO in vitro. Then the anti-proliferative activity of these hybrids against four human cancer cell lines was also determined, among which, 9h exhibited the most potential anti-tumor activity with IC50 values of 1.82 µM against K562, 1.81 µM against MGC-803 and 0.86 µM against Bel-7402, respectively. Preliminary structure-activity relationship was concluded based on the experimental data obtained. These results suggested that NO-donor/natural product hybrids may provide a promising approach for the discovery of novel anti-tumor agents.

  4. A panoramic view of the skull base: systematic review of open and endoscopic endonasal approaches to four tumors.

    Science.gov (United States)

    Graffeo, Christopher S; Dietrich, August R; Grobelny, Bartosz; Zhang, Meng; Goldberg, Judith D; Golfinos, John G; Lebowitz, Richard; Kleinberg, David; Placantonakis, Dimitris G

    2014-08-01

    Endoscopic endonasal surgery has been established as the safest approach to pituitary tumors, yet its role in other common skull base lesions has not been established. To answer this question, we carried out a systematic review of reported series of open and endoscopic endonasal approaches to four major skull base tumors: olfactory groove meningiomas (OGM), tuberculum sellae meningiomas (TSM), craniopharyngiomas (CRA), and clival chordomas (CHO). Data from 162 studies containing 5,701 patients were combined and compared for differences in perioperative mortality, gross total resection (GTR), cerebrospinal fluid (CSF) leak, neurological morbidity, post-operative visual function, post-operative anosmia, post-operative diabetes insipidus (DI), and post-operative obesity/hyperphagia. Weighted average rates for each outcome were calculated using relative study size. Our findings indicate similar rates of GTR and perioperative mortality between open and endoscopic approaches for all tumor types. CSF leak was increased after endoscopic surgery. Visual function symptoms were more likely to improve after endoscopic surgery for TSM, CRA, and CHO. Post-operative DI and obesity/hyperphagia were significantly increased after open resection in CRA. Recurrence rates per 1,000 patient-years of follow-up were higher in endoscopy for OGM, TSM, and CHO. Trends for open and endoscopic surgery suggested modest improvement in all outcomes over time. Our observations suggest that endonasal endoscopy is a safe alternative to craniotomy and may be preferred for certain tumor types. However, endoscopic surgery is associated with higher rates of CSF leak, and possibly increased recurrence rates. Prospective study with long-term follow-up is required to verify these preliminary observations.

  5. An allometric approach of tumor-angiogenesis.

    Science.gov (United States)

    Szasz, Oliver; Vincze, Gyula; Szigeti, Gyula Peter; Benyo, Zoltan; Szasz, Andras

    2018-07-01

    Angiogenesis is one of the main supporting factors of tumor-progression. It is a complex set of interactions together with hypoxia and inflammation, regulating tumor growth. The objective of this study is to examine the effect of angiogenesis with an allometric approach applied to angiogenesis and the regulating factors. The results show that allometry has the potential to describe this aspect, including the sigmoid-like transport function. There are particular conditions under which the complex control maximizes the relative tumor mass. Linear growth of malignancy diameter with an allometric approach was proven. Copyright © 2018. Published by Elsevier Ltd.

  6. Statistical approach for selection of biologically informative genes.

    Science.gov (United States)

    Das, Samarendra; Rai, Anil; Mishra, D C; Rai, Shesh N

    2018-05-20

    Selection of informative genes from high dimensional gene expression data has emerged as an important research area in genomics. Many gene selection techniques have been proposed so far are either based on relevancy or redundancy measure. Further, the performance of these techniques has been adjudged through post selection classification accuracy computed through a classifier using the selected genes. This performance metric may be statistically sound but may not be biologically relevant. A statistical approach, i.e. Boot-MRMR, was proposed based on a composite measure of maximum relevance and minimum redundancy, which is both statistically sound and biologically relevant for informative gene selection. For comparative evaluation of the proposed approach, we developed two biological sufficient criteria, i.e. Gene Set Enrichment with QTL (GSEQ) and biological similarity score based on Gene Ontology (GO). Further, a systematic and rigorous evaluation of the proposed technique with 12 existing gene selection techniques was carried out using five gene expression datasets. This evaluation was based on a broad spectrum of statistically sound (e.g. subject classification) and biological relevant (based on QTL and GO) criteria under a multiple criteria decision-making framework. The performance analysis showed that the proposed technique selects informative genes which are more biologically relevant. The proposed technique is also found to be quite competitive with the existing techniques with respect to subject classification and computational time. Our results also showed that under the multiple criteria decision-making setup, the proposed technique is best for informative gene selection over the available alternatives. Based on the proposed approach, an R Package, i.e. BootMRMR has been developed and available at https://cran.r-project.org/web/packages/BootMRMR. This study will provide a practical guide to select statistical techniques for selecting informative genes

  7. The anti-tumor effect and biological activities of the extract JMM6 ...

    African Journals Online (AJOL)

    Juglans mandshurica Maxim is a traditional herbal medicines in China, and its anti-tumor bioactivities are of research interest. Bioassay-guided fractionation method was employed to isolate anti-tumor compounds from the stem barks of the Juglans mandshurica Maxim. The anti-tumor effect and biological activities of the ...

  8. Emerging systems biology approaches in nanotoxicology: Towards a mechanism-based understanding of nanomaterial hazard and risk

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Pedro M.; Fadeel, Bengt, E-mail: Bengt.Fadeel@ki.se

    2016-05-15

    Engineered nanomaterials are being developed for a variety of technological applications. However, the increasing use of nanomaterials in society has led to concerns about their potential adverse effects on human health and the environment. During the first decade of nanotoxicological research, the realization has emerged that effective risk assessment of the multitudes of new nanomaterials would benefit from a comprehensive understanding of their toxicological mechanisms, which is difficult to achieve with traditional, low-throughput, single end-point oriented approaches. Therefore, systems biology approaches are being progressively applied within the nano(eco)toxicological sciences. This novel paradigm implies that the study of biological systems should be integrative resulting in quantitative and predictive models of nanomaterial behaviour in a biological system. To this end, global ‘omics’ approaches with which to assess changes in genes, proteins, metabolites, etc. are deployed allowing for computational modelling of the biological effects of nanomaterials. Here, we highlight omics and systems biology studies in nanotoxicology, aiming towards the implementation of a systems nanotoxicology and mechanism-based risk assessment of nanomaterials. - Highlights: • Systems nanotoxicology is a multi-disciplinary approach to quantitative modelling. • Transcriptomics, proteomics and metabolomics remain the most common methods. • Global “omics” techniques should be coupled to computational modelling approaches. • The discovery of nano-specific toxicity pathways and biomarkers is a prioritized goal. • Overall, experimental nanosafety research must endeavour reproducibility and relevance.

  9. Emerging systems biology approaches in nanotoxicology: Towards a mechanism-based understanding of nanomaterial hazard and risk

    International Nuclear Information System (INIS)

    Costa, Pedro M.; Fadeel, Bengt

    2016-01-01

    Engineered nanomaterials are being developed for a variety of technological applications. However, the increasing use of nanomaterials in society has led to concerns about their potential adverse effects on human health and the environment. During the first decade of nanotoxicological research, the realization has emerged that effective risk assessment of the multitudes of new nanomaterials would benefit from a comprehensive understanding of their toxicological mechanisms, which is difficult to achieve with traditional, low-throughput, single end-point oriented approaches. Therefore, systems biology approaches are being progressively applied within the nano(eco)toxicological sciences. This novel paradigm implies that the study of biological systems should be integrative resulting in quantitative and predictive models of nanomaterial behaviour in a biological system. To this end, global ‘omics’ approaches with which to assess changes in genes, proteins, metabolites, etc. are deployed allowing for computational modelling of the biological effects of nanomaterials. Here, we highlight omics and systems biology studies in nanotoxicology, aiming towards the implementation of a systems nanotoxicology and mechanism-based risk assessment of nanomaterials. - Highlights: • Systems nanotoxicology is a multi-disciplinary approach to quantitative modelling. • Transcriptomics, proteomics and metabolomics remain the most common methods. • Global “omics” techniques should be coupled to computational modelling approaches. • The discovery of nano-specific toxicity pathways and biomarkers is a prioritized goal. • Overall, experimental nanosafety research must endeavour reproducibility and relevance.

  10. Flow cytometric applications of tumor biology: prospects and pitfalls

    International Nuclear Information System (INIS)

    Raju, M.R.; Johnson, T.S.; Tokita, N.; Gillette, E.L.

    1979-01-01

    A brief review of cytometry instrumentation and its potential applications in tumor biology is presented using our recent data. Age-distribution measurements of cells from spontaneous dog tumors and cultured cells after exposure to x rays, alpha particles, or adriamycin are shown. The data show that DNA fluorescence measurements have application in the study of cell kinetics after either radiation or drug treatment. Extensive and careful experimentation is needed to utilize the sophisticated developments in flow cytometry instrumentation

  11. Skull base tumor model.

    Science.gov (United States)

    Gragnaniello, Cristian; Nader, Remi; van Doormaal, Tristan; Kamel, Mahmoud; Voormolen, Eduard H J; Lasio, Giovanni; Aboud, Emad; Regli, Luca; Tulleken, Cornelius A F; Al-Mefty, Ossama

    2010-11-01

    Resident duty-hours restrictions have now been instituted in many countries worldwide. Shortened training times and increased public scrutiny of surgical competency have led to a move away from the traditional apprenticeship model of training. The development of educational models for brain anatomy is a fascinating innovation allowing neurosurgeons to train without the need to practice on real patients and it may be a solution to achieve competency within a shortened training period. The authors describe the use of Stratathane resin ST-504 polymer (SRSP), which is inserted at different intracranial locations to closely mimic meningiomas and other pathological entities of the skull base, in a cadaveric model, for use in neurosurgical training. Silicone-injected and pressurized cadaveric heads were used for studying the SRSP model. The SRSP presents unique intrinsic metamorphic characteristics: liquid at first, it expands and foams when injected into the desired area of the brain, forming a solid tumorlike structure. The authors injected SRSP via different passages that did not influence routes used for the surgical approach for resection of the simulated lesion. For example, SRSP injection routes included endonasal transsphenoidal or transoral approaches if lesions were to be removed through standard skull base approach, or, alternatively, SRSP was injected via a cranial approach if the removal was planned to be via the transsphenoidal or transoral route. The model was set in place in 3 countries (US, Italy, and The Netherlands), and a pool of 13 physicians from 4 different institutions (all surgeons and surgeons in training) participated in evaluating it and provided feedback. All 13 evaluating physicians had overall positive impressions of the model. The overall score on 9 components evaluated--including comparison between the tumor model and real tumor cases, perioperative requirements, general impression, and applicability--was 88% (100% being the best possible

  12. An Interactive Tool for Animating Biology, and Its Use in Spatial and Temporal Modeling of a Cancerous Tumor and Its Microenvironment.

    Directory of Open Access Journals (Sweden)

    Naamah Bloch

    Full Text Available The ability to visualize the ongoing events of a computational model of biology is critical, both in order to see the dynamics of the biological system in action and to enable interaction with the model from which one can observe the resulting behavior. To this end, we have built a new interactive animation tool, SimuLife, for visualizing reactive models of cellular biology. SimuLife is web-based, and is freely accessible at http://simulife.weizmann.ac.il/. We have used SimuLife to animate a model that describes the development of a cancerous tumor, based on the individual components of the system and its environment. This has helped in understanding the dynamics of the tumor and its surrounding blood vessels, and in verifying the behavior, fine-tuning the model accordingly, and learning in which way different factors affect the tumor.

  13. Tumor biology and cancer therapy – an evolving relationship

    Directory of Open Access Journals (Sweden)

    Lother Ulrike

    2009-08-01

    Full Text Available Abstract The aim of palliative chemotherapy is to increase survival whilst maintaining maximum quality of life for the individual concerned. Although we are still continuing to explore the optimum use of traditional chemotherapy agents, the introduction of targeted therapies has significantly broadened the therapeutic options. Interestingly, the results from current trials put the underlying biological concept often into a new, less favorable perspective. Recent data suggested that altered pathways underlie cancer, and not just altered genes. Thus, an effective therapeutic agent will sometimes have to target downstream parts of a signaling pathway or physiological effects rather than individual genes. In addition, over the past few years increasing evidence has suggested that solid tumors represent a very heterogeneous group of cells with different susceptibility to cancer therapy. Thus, since therapeutic concepts and pathophysiological understanding are continuously evolving a combination of current concepts in tumor therapy and tumor biology is needed. This review aims to present current problems of cancer therapy by highlighting exemplary results from recent clinical trials with colorectal and pancreatic cancer patients and to discuss the current understanding of the underlying reasons.

  14. Heterotypic mouse models of canine osteosarcoma recapitulate tumor heterogeneity and biological behavior

    Directory of Open Access Journals (Sweden)

    Milcah C. Scott

    2016-12-01

    Full Text Available Osteosarcoma (OS is a heterogeneous and rare disease with a disproportionate impact because it mainly affects children and adolescents. Lamentably, more than half of patients with OS succumb to metastatic disease. Clarification of the etiology of the disease, development of better strategies to manage progression, and methods to guide personalized treatments are among the unmet health needs for OS patients. Progress in managing the disease has been hindered by the extreme heterogeneity of OS; thus, better models that accurately recapitulate the natural heterogeneity of the disease are needed. For this study, we used cell lines derived from two spontaneous canine OS tumors with distinctly different biological behavior (OS-1 and OS-2 for heterotypic in vivo modeling that recapitulates the heterogeneous biology and behavior of this disease. Both cell lines demonstrated stability of the transcriptome when grown as orthotopic xenografts in athymic nude mice. Consistent with the behavior of the original tumors, OS-2 xenografts grew more rapidly at the primary site and had greater propensity to disseminate to lung and establish microscopic metastasis. Moreover, OS-2 promoted formation of a different tumor-associated stromal environment than OS-1 xenografts. OS-2-derived tumors comprised a larger percentage of the xenograft tumors than OS-1-derived tumors. In addition, a robust pro-inflammatory population dominated the stromal cell infiltrates in OS-2 xenografts, whereas a mesenchymal population with a gene signature reflecting myogenic signaling dominated those in the OS-1 xenografts. Our studies show that canine OS cell lines maintain intrinsic features of the tumors from which they were derived and recapitulate the heterogeneous biology and behavior of bone cancer in mouse models. This system provides a resource to understand essential interactions between tumor cells and the stromal environment that drive the progression and metastatic propensity of

  15. Heterotypic mouse models of canine osteosarcoma recapitulate tumor heterogeneity and biological behavior.

    Science.gov (United States)

    Scott, Milcah C; Tomiyasu, Hirotaka; Garbe, John R; Cornax, Ingrid; Amaya, Clarissa; O'Sullivan, M Gerard; Subramanian, Subbaya; Bryan, Brad A; Modiano, Jaime F

    2016-12-01

    Osteosarcoma (OS) is a heterogeneous and rare disease with a disproportionate impact because it mainly affects children and adolescents. Lamentably, more than half of patients with OS succumb to metastatic disease. Clarification of the etiology of the disease, development of better strategies to manage progression, and methods to guide personalized treatments are among the unmet health needs for OS patients. Progress in managing the disease has been hindered by the extreme heterogeneity of OS; thus, better models that accurately recapitulate the natural heterogeneity of the disease are needed. For this study, we used cell lines derived from two spontaneous canine OS tumors with distinctly different biological behavior (OS-1 and OS-2) for heterotypic in vivo modeling that recapitulates the heterogeneous biology and behavior of this disease. Both cell lines demonstrated stability of the transcriptome when grown as orthotopic xenografts in athymic nude mice. Consistent with the behavior of the original tumors, OS-2 xenografts grew more rapidly at the primary site and had greater propensity to disseminate to lung and establish microscopic metastasis. Moreover, OS-2 promoted formation of a different tumor-associated stromal environment than OS-1 xenografts. OS-2-derived tumors comprised a larger percentage of the xenograft tumors than OS-1-derived tumors. In addition, a robust pro-inflammatory population dominated the stromal cell infiltrates in OS-2 xenografts, whereas a mesenchymal population with a gene signature reflecting myogenic signaling dominated those in the OS-1 xenografts. Our studies show that canine OS cell lines maintain intrinsic features of the tumors from which they were derived and recapitulate the heterogeneous biology and behavior of bone cancer in mouse models. This system provides a resource to understand essential interactions between tumor cells and the stromal environment that drive the progression and metastatic propensity of OS. © 2016

  16. Pimonidazole: a novel hypoxia marker for complementary study of tumor hypoxia and tumor biology

    International Nuclear Information System (INIS)

    Varia, Mahesh A.; Kennedy, Andrew S.; Calkins-Adams, Dennise P.; Rinker, Lillian; Novotny, Debra; Fowler, Wesley C.; Raleigh, James A.

    1997-01-01

    Purpose/Objectives: Tumor hypoxia appears to be associated with treatment resistance and with gene expression that may lead to hypoxia-mediated selection of tumor cells as a source for cell growth and metastases. The objective of this study was to develop complementary techniques of hypoxia detection with molecular markers of cell proliferation and metastases in order to investigate the role of tumor hypoxia in tumor biology. Materials and Methods: Pimonidazole is a 2-nitroimidazole which is reductively-activated and becomes covalently bound to thiol-containing proteins only in hypoxic cells. These adducts can be detected using immunohistochemistry, enzyme linked immunosorbent assay or flow cytometry as a measure of hypoxia in tumors. Quantitative immunohistochemical analysis has been completed for five patients with squamous cell carcinoma of the cervix who were given pimonidazole hydrochloride (0.5 g/m 2 intravenously) followed by cervical biopsies 24 hours later. Informed consent was obtained according to a protocol approved by the Institutional Review Board. A minimum of 3 random biopsies were obtained from the tumors and at least four sections examined from each biopsy site. Formalin fixed, paraffin embedded tissue sections were immunostained for pimonidazole binding using a mouse monoclonal antibody. Commercially available monoclonal antibodies were used to detect cell proliferation markers MIB-1 (Ki-67) and to detect vascular endothelial growth factor (VEGF) in tumor cells in contiguous sections. The extent of immunostaining was expressed as the percent of immunostained to total tumor cells as determined by Chalkley point counting. Results: No clinical toxicities were associated with pimonidazole infusion. Immunostaining with pimonidazole antibody was observed in all patients indicating the presence of tumor hypoxia. Qualitatively there is little or no overlap between the areas of hypoxia and proliferation. Quantitative data tabulated below show the

  17. Theranostic GO-based nanohybrid for tumor induced imaging and potential combinational tumor therapy.

    Science.gov (United States)

    Qin, Si-Yong; Feng, Jun; Rong, Lei; Jia, Hui-Zhen; Chen, Si; Liu, Xiang-Ji; Luo, Guo-Feng; Zhuo, Ren-Xi; Zhang, Xian-Zheng

    2014-02-12

    Graphene oxide (GO)-based theranostic nanohybrid is designed for tumor induced imaging and potential combinational tumor therapy. The anti-tumor drug, Doxorubicin (DOX) is chemically conjugated to the poly(ethylenimine)-co-poly(ethylene glycol) (PEI-PEG) grafted GO via a MMP2-cleavable PLGLAG peptide linkage. The therapeutic efficacy of DOX is chemically locked and its intrinsic fluorescence is quenched by GO under normal physiological condition. Once stimulated by the MMP2 enzyme over-expressed in tumor tissues, the resulting peptide cleavage permits the unloading of DOX for tumor therapy and concurrent fluorescence recovery of DOX for in situ tumor cell imaging. Attractively, this PEI-bearing nanohybrid can mediate efficient DNA transfection and shows great potential for combinational drug/gene therapy. This tumor induced imaging and potential combinational therapy will open a window for tumor treatment by offering a unique theranostic approach through merging the diagnostic capability and pathology-responsive therapeutic function. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Central nervous system tumors: Radiologic pathologic correlation and diagnostic approach

    Directory of Open Access Journals (Sweden)

    Ishita Pant

    2015-01-01

    Full Text Available Objective: This study was conducted to formulate location-wise radiologic diagnostic algorithms and assess their concordance with the final histopathological diagnosis so as to evaluate their utility in a rural setting where only basic facilities are available. Materials and Methods: A retrospective analysis to assess the concordance of radiology (primarily MRI with final histopathology report was done. Based on the most common incidence of tumor location and basic radiology findings, diagnostic algorithms were prepared. Results: For supratentorial intraaxial parenchymal location concordance was seen in all high-grade astrocytomas, low- and high-grade oligodendrogliomas, metastatic tumors, primitive neuroectodermal tumors, high-grade ependymomas, neuronal and mixed neuro-glial tumors and tumors of hematopoietic system. Lowest concordance was seen in low-grade astrocytomas. In the supratentorial intraaxial ventricular location, agreement was observed in choroid plexus tumors, ependymomas, low-grade astrocytomas and meningiomas; in the supratentorial extraaxial location, except for the lack of concordance in the only case of metastatic tumor, concordance was observed in meningeal tumors, tumors of the sellar region, tumors of cranial and paraspinal nerves; the infratentorial intraaxial parenchymal location showed agreement in low- as well as high-grade astrocytomas, metastatic tumors, high-grade ependymoma, embryonal tumors and hematopoietic tumors; in the infratentorial intraaxial ventricular location, except for the lack of concordance in one case of low-grade astrocytoma and two cases of medulloblastomas, agreement was observed in low- and high-grade ependymoma; infratentorial extraaxial tumors showed complete agreement in all tumors of cranial and paraspinal nerves, meningiomas, and hematopoietic tumors. Conclusion: A location-based approach to central nervous system (CNS tumors is helpful in establishing an appropriate differential diagnosis.

  19. The anterior interhemispheric approach: a safe and effective approach to anterior skull base lesions.

    Science.gov (United States)

    Mielke, Dorothee; Mayfrank, Lothar; Psychogios, Marios Nikos; Rohde, Veit

    2014-04-01

    Many approaches to the anterior skull base have been reported. Frequently used are the pterional, the unilateral or bilateral frontobasal, the supraorbital and the frontolateral approach. Recently, endoscopic transnasal approaches have become more popular. The benefits of each approach has to be weighted against its complications and limitations. The aim of this study was to investigate if the anterior interhemispheric approach (AIA) could be a safe and effective alternative approach to tumorous and non-tumorous lesions of the anterior skull base. We screened the operative records of all patients with an anterior skull base lesion undergoing transcranial surgery. We have used the AIA in 61 patients. These were exclusively patients with either olfactory groove meningioma (OGM) (n = 43), ethmoidal dural arteriovenous fistula (dAVF) ( n = 6) or frontobasal fractures of the anterior midline with cerebrospinal fluid (CSF) leakage ( n = 12). Patient records were evaluated concerning accessibility of the lesion, realization of surgical aims (complete tumor removal, dAVF obliteration, closure of the dural tear), and approach related complications. The use of the AIA exclusively in OGMs, ethmoidal dAVFs and midline frontobasal fractures indicated that we considered lateralized frontobasal lesions not suitable to be treated successfully. If restricted to these three pathologies, the AIA is highly effective and safe. The surgical aim (complete tumor removal, complete dAVF occlusion, no rhinorrhea) was achieved in all patients. The complication rate was 11.5 % (wound infection (n = 2; 3.2 %), contusion of the genu of the corpus callosum, subdural hygroma, epileptic seizure, anosmia and asymptomatic bleed into the tumor cavity (n = 1 each). Only the contusion of the corpus callosum was directly related to the approach (1.6 %). Olfaction, if present before surgery, was preserved in all patients, except one (1.6 %). The AIA is an effective and a safe approach

  20. Biological markers as predictors of radiosensitivity in syngeneic murine tumors

    International Nuclear Information System (INIS)

    Chang, Sei Kyung; Shin, Hyun Soo; Seong, Jin Sil; Kim, Sung Hee

    2006-01-01

    We investigated whether a relationship exists between tumor control dose 50 (TCD 50 ) or tumor growth delay (TGD) and radiation induced apoptosis (RIA) in syngeneic murine tumors. Also we investigated the biological markers that can predict radiosensitivity in murine tumor system through analysis of relationship between TCD 50 , TGD, RIA and constitutive expression levels of the genetic products regulating RIA. Syngeneic murine tumors such as ovarian adenocarcinoma, mammary carcinoma, squamous cell carcinoma, fibrosarcoma, hepatocarcinoma were used in this study. C3H/HeJ mice were bred and maintained in our specific pathogen free mouse colony and were 8 ∼ 12 weeks old when used for the experiments. The tumors, growing in the right hind legs of mice, were analyzed for TCD 50 , TGD, and RIA at 8 mm in diameter. The tumors were also analyzed for the constitutive expression levels of p53, p21 WAF1/CIP1 , BAX, Bcl-2, Bcl-x L , Bcl-x S , and p34. Correlation analysis was performed whether the level of RIA were correlated with TCD 50 or TGD, and the constitutive expression levels of genetic products regulating RIA were correlated with TCD 50 , TGD, RIA. The level of RIA showed a significant positive correlation (R = 0.922, ρ = 0.026) with TGD, and showed a trend to correlation (R = -0.848), marginally significant correlation with TCD 50 (ρ = 0.070). It indicates that tumors that respond to radiation with high percentage of apoptosis were more radiosensitive. The constitutive expression levels of p21 WAF1/CIP1 and p34 showed a significant correlation either with TCD 50 (R = 0.893, ρ = 0.041 and R = 0.904, ρ = 0.035) or with TGD (R = -0.922, ρ 0.026 and R = -0.890, ρ = 0.043). The tumors with high constitutive expression levels of p21 WAF1/CIP1 or p34 were less radiosensitive than those with low expression. Radiosensitivity may be predicted with the level of RIA in murine tumors. The constitutive expression levels of p21 WAF1/CIP1 or p34 can be used as biological

  1. Biological markers as predictors of radiosensitivity in syngeneic murine tumors

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Sei Kyung; Shin, Hyun Soo [Bundang CHA General Hospital, Seongnam (Korea, Republic of); Seong, Jin Sil; Kim, Sung Hee [Yonsei Cancer Center, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2006-06-15

    We investigated whether a relationship exists between tumor control dose 50 (TCD{sub 50}) or tumor growth delay (TGD) and radiation induced apoptosis (RIA) in syngeneic murine tumors. Also we investigated the biological markers that can predict radiosensitivity in murine tumor system through analysis of relationship between TCD{sub 50}, TGD, RIA and constitutive expression levels of the genetic products regulating RIA. Syngeneic murine tumors such as ovarian adenocarcinoma, mammary carcinoma, squamous cell carcinoma, fibrosarcoma, hepatocarcinoma were used in this study. C3H/HeJ mice were bred and maintained in our specific pathogen free mouse colony and were 8 {approx} 12 weeks old when used for the experiments. The tumors, growing in the right hind legs of mice, were analyzed for TCD{sub 50}, TGD, and RIA at 8 mm in diameter. The tumors were also analyzed for the constitutive expression levels of p53, p21{sup WAF1/CIP1}, BAX, Bcl-2, Bcl-x{sub L}, Bcl-x{sub S}, and p34. Correlation analysis was performed whether the level of RIA were correlated with TCD{sub 50} or TGD, and the constitutive expression levels of genetic products regulating RIA were correlated with TCD{sub 50}, TGD, RIA. The level of RIA showed a significant positive correlation (R = 0.922, {rho} = 0.026) with TGD, and showed a trend to correlation (R = -0.848), marginally significant correlation with TCD{sub 50} ({rho} = 0.070). It indicates that tumors that respond to radiation with high percentage of apoptosis were more radiosensitive. The constitutive expression levels of p21{sup WAF1/CIP1} and p34 showed a significant correlation either with TCD{sub 50} (R = 0.893, {rho} = 0.041 and R = 0.904, {rho} = 0.035) or with TGD (R = -0.922, {rho} 0.026 and R = -0.890, {rho} = 0.043). The tumors with high constitutive expression levels of p21{sup WAF1/CIP1} or p34 were less radiosensitive than those with low expression. Radiosensitivity may be predicted with the level of RIA in murine tumors. The

  2. Center of cancer systems biology second annual workshop--tumor metronomics: timing and dose level dynamics.

    Science.gov (United States)

    Hahnfeldt, Philip; Hlatky, Lynn; Klement, Giannoula Lakka

    2013-05-15

    Metronomic chemotherapy, the delivery of doses in a low, regular manner so as to avoid toxic side effects, was introduced over 12 years ago in the face of substantial clinical and preclinical evidence supporting its tumor-suppressive capability. It constituted a marked departure from the classic maximum-tolerated dose (MTD) strategy, which, given its goal of rapid eradication, uses dosing sufficiently intense to require rest periods between cycles to limit toxicity. Even so, upfront tumor eradication is frequently not achieved with MTD, whereupon a de facto goal of longer-term tumor control is often pursued. As metronomic dosing has shown tumor control capability, even for cancers that have become resistant to the same drug delivered under MTD, the question arises whether it may be a preferable alternative dosing approach from the outset. To date, however, our knowledge of the coupled dynamics underlying metronomic dosing is neither sufficiently well developed nor widely enough disseminated to establish its actual potential. Meeting organizers thus felt the time was right, armed with new quantitative approaches, to call a workshop on "Tumor Metronomics: Timing and Dose Level Dynamics" to explore prospects for gaining a deeper, systems-level appreciation of the metronomics concept. The workshop proved to be a forum in which experts from the clinical, biologic, mathematical, and computational realms could work together to clarify the principles and underpinnings of metronomics. Among other things, the need for significant shifts in thinking regarding endpoints to be used as clinical standards of therapeutic progress was recognized. ©2013 AACR.

  3. Dorsal approaches to intradural extramedullary tumors of the craniovertebral junction

    Directory of Open Access Journals (Sweden)

    D Refai

    2010-01-01

    Full Text Available Tumors of the craniovertebral junction (CVJ pose significant challenges to cranial and spine surgeons. Familiarity with the complex anatomy and avoidance of injury to neurologic and vascular structures are essential to success. Multiple surgical approaches to address lesions at the CVJ have been promoted, including ventral and dorsal-based trajectories. However, optimal selection of the surgical vector to manage the pathology requires a firm understanding of the limitations and advantages of each approach. The selection of the best surgical trajectory must include several factors, such as obtaining the optimal exposure of the region of interest, avoiding injury to critical neurologic or vascular structures, identification of normal anatomical landmarks, the familiarity and comfort level of the surgeon to the approach, and the need for fixation. This review article focuses on dorsal approaches to the CVJ and the advantages and limitations in managing intradural extramedullary tumors.

  4. A competing risks approach to "biologic" interaction

    DEFF Research Database (Denmark)

    Andersen, Per Kragh; Skrondal, Anders

    2015-01-01

    framework using competing risks and argue that sufficient cause interaction between two factors can be evaluated via the parameters in a particular statistical model, the additive hazard rate model. We present empirical conditions for presence of sufficient cause interaction and an example based on data......In epidemiology, the concepts of "biologic" and "statistical" interactions have been the subject of extensive debate. We present a new approach to biologic interaction based on Rothman's original (Am J Epidemiol, 104:587-592, 1976) discussion of sufficient causes. We do this in a probabilistic...

  5. MicroRNAs in the Tumor Biology of Soft Tissue Sarcomas

    NARCIS (Netherlands)

    C.M.M. Gits (Caroline)

    2013-01-01

    markdownabstract__Abstract__ Soft tissue sarcomas represent a rare, heterogeneous group of mesenchymal tumors. In sarcomas, histological classification, prediction of clinical behaviour and prognosis, and targeted treatment is often a challenge. A better understanding of the biology of soft

  6. Quantitative diagnosis of breast tumors by morphometric classification of microenvironmental myoepithelial cells using a machine learning approach.

    Science.gov (United States)

    Yamamoto, Yoichiro; Saito, Akira; Tateishi, Ayako; Shimojo, Hisashi; Kanno, Hiroyuki; Tsuchiya, Shinichi; Ito, Ken-Ichi; Cosatto, Eric; Graf, Hans Peter; Moraleda, Rodrigo R; Eils, Roland; Grabe, Niels

    2017-04-25

    Machine learning systems have recently received increased attention for their broad applications in several fields. In this study, we show for the first time that histological types of breast tumors can be classified using subtle morphological differences of microenvironmental myoepithelial cell nuclei without any direct information about neoplastic tumor cells. We quantitatively measured 11661 nuclei on the four histological types: normal cases, usual ductal hyperplasia and low/high grade ductal carcinoma in situ (DCIS). Using a machine learning system, we succeeded in classifying the four histological types with 90.9% accuracy. Electron microscopy observations suggested that the activity of typical myoepithelial cells in DCIS was lowered. Through these observations as well as meta-analytic database analyses, we developed a paracrine cross-talk-based biological mechanism of DCIS progressing to invasive cancer. Our observations support novel approaches in clinical computational diagnostics as well as in therapy development against progression.

  7. A technique for measuring oxygen saturation in biological tissues based on diffuse optical spectroscopy

    Science.gov (United States)

    Kleshnin, Mikhail; Orlova, Anna; Kirillin, Mikhail; Golubiatnikov, German; Turchin, Ilya

    2017-07-01

    A new approach to optical measuring blood oxygen saturation was developed and implemented. This technique is based on an original three-stage algorithm for reconstructing the relative concentration of biological chromophores (hemoglobin, water, lipids) from the measured spectra of diffusely scattered light at different distances from the probing radiation source. The numerical experiments and approbation of the proposed technique on a biological phantom have shown the high reconstruction accuracy and the possibility of correct calculation of hemoglobin oxygenation in the presence of additive noise and calibration errors. The obtained results of animal studies have agreed with the previously published results of other research groups and demonstrated the possibility to apply the developed technique to monitor oxygen saturation in tumor tissue.

  8. Biological response modifiers

    Energy Technology Data Exchange (ETDEWEB)

    Weller, R.E.

    1991-10-01

    Much of what used to be called immunotherapy is now included in the term biological response modifiers. Biological response modifiers (BRMs) are defined as those agents or approaches that modify the relationship between the tumor and host by modifying the host's biological response to tumor cells with resultant therapeutic effects.'' Most of the early work with BRMs centered around observations of spontaneous tumor regression and the association of tumor regression with concurrent bacterial infections. The BRM can modify the host response in the following ways: Increase the host's antitumor responses through augmentation and/or restoration of effector mechanisms or mediators of the host's defense or decrease the deleterious component by the host's reaction; Increase the host's defenses by the administration of natural biologics (or the synthetic derivatives thereof) as effectors or mediators of an antitumor response; Augment the host's response to modified tumor cells or vaccines, which might stimulate a greater response by the host or increase tumor-cell sensitivity to an existing response; Decrease the transformation and/or increase differentiation (maturation) of tumor cells; or Increase the ability of the host to tolerate damage by cytotoxic modalities of cancer treatment.

  9. Integrative Chemical-Biological Read-Across Approach for Chemical Hazard Classification

    Science.gov (United States)

    Low, Yen; Sedykh, Alexander; Fourches, Denis; Golbraikh, Alexander; Whelan, Maurice; Rusyn, Ivan; Tropsha, Alexander

    2013-01-01

    Traditional read-across approaches typically rely on the chemical similarity principle to predict chemical toxicity; however, the accuracy of such predictions is often inadequate due to the underlying complex mechanisms of toxicity. Here we report on the development of a hazard classification and visualization method that draws upon both chemical structural similarity and comparisons of biological responses to chemicals measured in multiple short-term assays (”biological” similarity). The Chemical-Biological Read-Across (CBRA) approach infers each compound's toxicity from those of both chemical and biological analogs whose similarities are determined by the Tanimoto coefficient. Classification accuracy of CBRA was compared to that of classical RA and other methods using chemical descriptors alone, or in combination with biological data. Different types of adverse effects (hepatotoxicity, hepatocarcinogenicity, mutagenicity, and acute lethality) were classified using several biological data types (gene expression profiling and cytotoxicity screening). CBRA-based hazard classification exhibited consistently high external classification accuracy and applicability to diverse chemicals. Transparency of the CBRA approach is aided by the use of radial plots that show the relative contribution of analogous chemical and biological neighbors. Identification of both chemical and biological features that give rise to the high accuracy of CBRA-based toxicity prediction facilitates mechanistic interpretation of the models. PMID:23848138

  10. Relationship between α/β and radiosensitivity and biologic effect of fractional irradiation of tumor cells

    International Nuclear Information System (INIS)

    Guo Chuanling; Chinese Academy of Sciences, Beijing; Wang Jufang; Jin Xiaodong; Li Wenjian

    2006-01-01

    Five kinds of malignant human tumor cells, i.e. SMMC-7721, HeLa, A549, HT29 and PC3 cell lines, were irradiated by 60 Co γ-rays to 1-6 Gy in a single irradiation or two irradiations of half dose. The radiosensitivity was compared with the dose-survival curves and D 50 and D 10 values. Differences in the D 50 and D 10 between the single and fractional irradiation groups showed the effect of fractional irradiation. Except for PC3 cells, all the cell lines showed obvious relationship between radiosensitivity and biologic effect of fractional irradiation and the α/β value. A cell line with bigger α/β was more radiation sensitive, with less obvious effect of fractional irradiation. The results indicate that there were obvious differences in radiosensitivity, repair ability and biologic effect of fractional irradiation between tumor cells from different tissues. To some tumor cell lines, the relationship between radiosensitivity, biologic effect of fractional irradiation and repair ability was attested. The α/β value of single irradiation can be regarded as a parameter to investigate the radiosensitivity and biologic effect of fractional irradiation of tumor cells. (authors)

  11. Skull base tumors

    International Nuclear Information System (INIS)

    Kikinis, R.; Matsumae, M.; Jolesz, F.A.; Black, P.M.; Cline, H.E.; Lorenson, W.E.

    1991-01-01

    This paper reports on an image processing procedure for the planning of surgery of skull base tumors that can extract bone, vessels, tumor, and brain parenchyma and that permits resolution of cranial nerves. Three-dimensional (3D) reconstructions were generated from double-echo long TR interleaved conventional spin-echo and fast-spin-echo MR imaging data. Sixteen cases have been analyzed preoperatively. Image processing consisted of a multistep procedure combining a supervised multivariate analysis with neighborhood operations such as connectivity and erosion/dilation. 3D renderings of anatomic structures of interest were then generated. Cases were evaluated preoperatively and manipulated interactively with the computer-generated images by a team consisting of neuroradiologists, neurosurgeons, and craniofacial surgeons. The preparation of 3D reconstructions required only a few hours and was performed mostly by a research assistant. The preoperative analysis of the 3D reconstructions was found to be a valuable tool, providing information complementing the surgeon's understanding of a case as derived from conventional imaging. The interactive manipulation of data proved to be a powerful way to evaluate alternative surgical approaches

  12. Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy.

    Science.gov (United States)

    Parhi, Priyambada; Mohanty, Chandana; Sahoo, Sanjeeb Kumar

    2012-09-01

    Combination therapy for the treatment of cancer is becoming more popular because it generates synergistic anticancer effects, reduces individual drug-related toxicity and suppresses multi-drug resistance through different mechanisms of action. In recent years, nanotechnology-based combination drug delivery to tumor tissues has emerged as an effective strategy by overcoming many biological, biophysical and biomedical barriers that the body stages against successful delivery of anticancer drugs. The sustained, controlled and targeted delivery of chemotherapeutic drugs in a combination approach enhanced therapeutic anticancer effects with reduced drug-associated side effects. In this article, we have reviewed the scope of various nanotechnology-based combination drug delivery approaches and also summarized the current perspective and challenges facing the successful treatment of cancer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Current diagnostic approach of bone tumors in childhood

    International Nuclear Information System (INIS)

    Torre, Marcia Barbosa; Scatigno Neto, Andre

    1995-01-01

    The authors analyze the magnetic resonance imaging (MRI) as the imaging modality of choice for evaluation of patients with bone tumors or soft tissue tumors. The advent of such a sensitive imaging modality is fortuitous and coincides with a recent change in the therapeutic approach to primary bone tumors. MRI is extremely valuable in monitoring the tumor response to the initial chemotherapy and is accurate defining the margins of tumor, facilitating planning of limb salvage surgical procedures. (author). 5 refs., 8 figs

  14. A 3-D model of tumor progression based on complex automata driven by particle dynamics.

    Science.gov (United States)

    Wcisło, Rafał; Dzwinel, Witold; Yuen, David A; Dudek, Arkadiusz Z

    2009-12-01

    The dynamics of a growing tumor involving mechanical remodeling of healthy tissue and vasculature is neglected in most of the existing tumor models. This is due to the lack of efficient computational framework allowing for simulation of mechanical interactions. Meanwhile, just these interactions trigger critical changes in tumor growth dynamics and are responsible for its volumetric and directional progression. We describe here a novel 3-D model of tumor growth, which combines particle dynamics with cellular automata concept. The particles represent both tissue cells and fragments of the vascular network. They interact with their closest neighbors via semi-harmonic central forces simulating mechanical resistance of the cell walls. The particle dynamics is governed by both the Newtonian laws of motion and the cellular automata rules. These rules can represent cell life-cycle and other biological interactions involving smaller spatio-temporal scales. We show that our complex automata, particle based model can reproduce realistic 3-D dynamics of the entire system consisting of the tumor, normal tissue cells, blood vessels and blood flow. It can explain phenomena such as the inward cell motion in avascular tumor, stabilization of tumor growth by the external pressure, tumor vascularization due to the process of angiogenesis, trapping of healthy cells by invading tumor, and influence of external (boundary) conditions on the direction of tumor progression. We conclude that the particle model can serve as a general framework for designing advanced multiscale models of tumor dynamics and it is very competitive to the modeling approaches presented before.

  15. DEMARCATE: Density-based magnetic resonance image clustering for assessing tumor heterogeneity in cancer.

    Science.gov (United States)

    Saha, Abhijoy; Banerjee, Sayantan; Kurtek, Sebastian; Narang, Shivali; Lee, Joonsang; Rao, Ganesh; Martinez, Juan; Bharath, Karthik; Rao, Arvind U K; Baladandayuthapani, Veerabhadran

    2016-01-01

    Tumor heterogeneity is a crucial area of cancer research wherein inter- and intra-tumor differences are investigated to assess and monitor disease development and progression, especially in cancer. The proliferation of imaging and linked genomic data has enabled us to evaluate tumor heterogeneity on multiple levels. In this work, we examine magnetic resonance imaging (MRI) in patients with brain cancer to assess image-based tumor heterogeneity. Standard approaches to this problem use scalar summary measures (e.g., intensity-based histogram statistics) that do not adequately capture the complete and finer scale information in the voxel-level data. In this paper, we introduce a novel technique, DEMARCATE (DEnsity-based MAgnetic Resonance image Clustering for Assessing Tumor hEterogeneity) to explore the entire tumor heterogeneity density profiles (THDPs) obtained from the full tumor voxel space. THDPs are smoothed representations of the probability density function of the tumor images. We develop tools for analyzing such objects under the Fisher-Rao Riemannian framework that allows us to construct metrics for THDP comparisons across patients, which can be used in conjunction with standard clustering approaches. Our analyses of The Cancer Genome Atlas (TCGA) based Glioblastoma dataset reveal two significant clusters of patients with marked differences in tumor morphology, genomic characteristics and prognostic clinical outcomes. In addition, we see enrichment of image-based clusters with known molecular subtypes of glioblastoma multiforme, which further validates our representation of tumor heterogeneity and subsequent clustering techniques.

  16. Treatment Algorithms Based on Tumor Molecular Profiling: The Essence of Precision Medicine Trials.

    Science.gov (United States)

    Le Tourneau, Christophe; Kamal, Maud; Tsimberidou, Apostolia-Maria; Bedard, Philippe; Pierron, Gaëlle; Callens, Céline; Rouleau, Etienne; Vincent-Salomon, Anne; Servant, Nicolas; Alt, Marie; Rouzier, Roman; Paoletti, Xavier; Delattre, Olivier; Bièche, Ivan

    2016-04-01

    With the advent of high-throughput molecular technologies, several precision medicine (PM) studies are currently ongoing that include molecular screening programs and PM clinical trials. Molecular profiling programs establish the molecular profile of patients' tumors with the aim to guide therapy based on identified molecular alterations. The aim of prospective PM clinical trials is to assess the clinical utility of tumor molecular profiling and to determine whether treatment selection based on molecular alterations produces superior outcomes compared with unselected treatment. These trials use treatment algorithms to assign patients to specific targeted therapies based on tumor molecular alterations. These algorithms should be governed by fixed rules to ensure standardization and reproducibility. Here, we summarize key molecular, biological, and technical criteria that, in our view, should be addressed when establishing treatment algorithms based on tumor molecular profiling for PM trials. © The Author 2015. Published by Oxford University Press.

  17. The Mouse Tumor Biology Database: A Comprehensive Resource for Mouse Models of Human Cancer.

    Science.gov (United States)

    Krupke, Debra M; Begley, Dale A; Sundberg, John P; Richardson, Joel E; Neuhauser, Steven B; Bult, Carol J

    2017-11-01

    Research using laboratory mice has led to fundamental insights into the molecular genetic processes that govern cancer initiation, progression, and treatment response. Although thousands of scientific articles have been published about mouse models of human cancer, collating information and data for a specific model is hampered by the fact that many authors do not adhere to existing annotation standards when describing models. The interpretation of experimental results in mouse models can also be confounded when researchers do not factor in the effect of genetic background on tumor biology. The Mouse Tumor Biology (MTB) database is an expertly curated, comprehensive compendium of mouse models of human cancer. Through the enforcement of nomenclature and related annotation standards, MTB supports aggregation of data about a cancer model from diverse sources and assessment of how genetic background of a mouse strain influences the biological properties of a specific tumor type and model utility. Cancer Res; 77(21); e67-70. ©2017 AACR . ©2017 American Association for Cancer Research.

  18. Pediatric High Grade Glioma: a Review and Update on Tumor Clinical Characteristics and Biology

    Energy Technology Data Exchange (ETDEWEB)

    Fangusaro, Jason, E-mail: jfangusaro@luriechildrens.org [Pediatric Neuro-Oncology, The Ann & Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, IL (United States)

    2012-08-24

    High grade gliomas (HGG) are one of the most common central nervous system (CNS) tumors encountered in adults, but they only represent approximately 8–12% of all pediatric CNS tumors. Historically, pediatric HGG were thought to be similar to adult HGG since they appear histologically identical; however, molecular, genetic, and biologic data reveal that they are distinct. Similar to adults, pediatric HGG are very aggressive and malignant lesions with few patients achieving long-term survival despite a variety of therapies. Initial treatment strategies typically consist of a gross total resection (GTR) when feasible followed by focal radiotherapy combined with chemotherapy. Over the last few decades, a wealth of data has emerged from basic science and pre-clinical animal models helping to better define the common biologic, genetic, and molecular make-up of these tumors. These data have not only provided a better understanding of tumor biology, but they have also provided new areas of research targeting molecular and genetic pathways with the potential for novel treatment strategies and improved patient outcomes. Here we provide a review of pediatric non-brainstem HGG, including epidemiology, presentation, histology, imaging characteristics, treatments, survival outcomes, and an overview of both basic and translational research. An understanding of all relevant pre-clinical tumor models, including their strengths and pitfalls is essential in realizing improved patient outcomes in this population.

  19. Pediatric High Grade Glioma: a Review and Update on Tumor Clinical Characteristics and Biology

    International Nuclear Information System (INIS)

    Fangusaro, Jason

    2012-01-01

    High grade gliomas (HGG) are one of the most common central nervous system (CNS) tumors encountered in adults, but they only represent approximately 8–12% of all pediatric CNS tumors. Historically, pediatric HGG were thought to be similar to adult HGG since they appear histologically identical; however, molecular, genetic, and biologic data reveal that they are distinct. Similar to adults, pediatric HGG are very aggressive and malignant lesions with few patients achieving long-term survival despite a variety of therapies. Initial treatment strategies typically consist of a gross total resection (GTR) when feasible followed by focal radiotherapy combined with chemotherapy. Over the last few decades, a wealth of data has emerged from basic science and pre-clinical animal models helping to better define the common biologic, genetic, and molecular make-up of these tumors. These data have not only provided a better understanding of tumor biology, but they have also provided new areas of research targeting molecular and genetic pathways with the potential for novel treatment strategies and improved patient outcomes. Here we provide a review of pediatric non-brainstem HGG, including epidemiology, presentation, histology, imaging characteristics, treatments, survival outcomes, and an overview of both basic and translational research. An understanding of all relevant pre-clinical tumor models, including their strengths and pitfalls is essential in realizing improved patient outcomes in this population.

  20. Changing Histopathological Diagnostics by Genome-Based Tumor Classification

    Directory of Open Access Journals (Sweden)

    Michael Kloth

    2014-05-01

    Full Text Available Traditionally, tumors are classified by histopathological criteria, i.e., based on their specific morphological appearances. Consequently, current therapeutic decisions in oncology are strongly influenced by histology rather than underlying molecular or genomic aberrations. The increase of information on molecular changes however, enabled by the Human Genome Project and the International Cancer Genome Consortium as well as the manifold advances in molecular biology and high-throughput sequencing techniques, inaugurated the integration of genomic information into disease classification. Furthermore, in some cases it became evident that former classifications needed major revision and adaption. Such adaptations are often required by understanding the pathogenesis of a disease from a specific molecular alteration, using this molecular driver for targeted and highly effective therapies. Altogether, reclassifications should lead to higher information content of the underlying diagnoses, reflecting their molecular pathogenesis and resulting in optimized and individual therapeutic decisions. The objective of this article is to summarize some particularly important examples of genome-based classification approaches and associated therapeutic concepts. In addition to reviewing disease specific markers, we focus on potentially therapeutic or predictive markers and the relevance of molecular diagnostics in disease monitoring.

  1. The impact of tumor biology on cancer treatment and multidisciplinary strategies

    International Nuclear Information System (INIS)

    Molls, Michael; Vaupel, Peter; Nieder, Carsten; Anscher, Mitchell S.

    2009-01-01

    This book provides an overview of the fundamentals of tumor biology and the influence of various biologic factors, including inhomogeneity of cancer cells, microenvironment, and host factors, on the design of therapeutic strategies and the outcome of established and emerging treatments. Particular attention is devoted to multidisciplinary combined modality therapy. The topics reviewed include tumorigenesis, cell proliferation, angiogenesis, physiology of malignant tissues, adhesion and invasion, development of metastases, and the role of the immune system in cancer development. Subsequent chapters focus on cancer prevention, detection, and treatment. The principles of chemotherapy, radiotherapy, and molecularly targeted therapy are discussed, treatment resistance is explained, and strategies for rational combinations are provided, including the design of translational studies. Furthermore, the principles and clinical implications of new diagnostic and therapeutic approaches, such as gene expression profiling, gene transfer and silencing, proteomics, and molecular imaging, are presented. The chapters in this book have been written by an outstanding group of basic scientists, clinical researchers, and cancer professionals with long experience in the field. Their aim is to educate and inspire all those who devote most of their work to research into cancer and its treatment. (orig.)

  2. A voxel-based multiscale model to simulate the radiation response of hypoxic tumors.

    Science.gov (United States)

    Espinoza, I; Peschke, P; Karger, C P

    2015-01-01

    In radiotherapy, it is important to predict the response of tumors to irradiation prior to the treatment. This is especially important for hypoxic tumors, which are known to be highly radioresistant. Mathematical modeling based on the dose distribution, biological parameters, and medical images may help to improve this prediction and to optimize the treatment plan. A voxel-based multiscale tumor response model for simulating the radiation response of hypoxic tumors was developed. It considers viable and dead tumor cells, capillary and normal cells, as well as the most relevant biological processes such as (i) proliferation of tumor cells, (ii) hypoxia-induced angiogenesis, (iii) spatial exchange of cells leading to tumor growth, (iv) oxygen-dependent cell survival after irradiation, (v) resorption of dead cells, and (vi) spatial exchange of cells leading to tumor shrinkage. Oxygenation is described on a microscopic scale using a previously published tumor oxygenation model, which calculates the oxygen distribution for each voxel using the vascular fraction as the most important input parameter. To demonstrate the capabilities of the model, the dependence of the oxygen distribution on tumor growth and radiation-induced shrinkage is investigated. In addition, the impact of three different reoxygenation processes is compared and tumor control probability (TCP) curves for a squamous cells carcinoma of the head and neck (HNSSC) are simulated under normoxic and hypoxic conditions. The model describes the spatiotemporal behavior of the tumor on three different scales: (i) on the macroscopic scale, it describes tumor growth and shrinkage during radiation treatment, (ii) on a mesoscopic scale, it provides the cell density and vascular fraction for each voxel, and (iii) on the microscopic scale, the oxygen distribution may be obtained in terms of oxygen histograms. With increasing tumor size, the simulated tumors develop a hypoxic core. Within the model, tumor shrinkage was

  3. A voxel-based multiscale model to simulate the radiation response of hypoxic tumors

    International Nuclear Information System (INIS)

    Espinoza, I.; Peschke, P.; Karger, C. P.

    2015-01-01

    Purpose: In radiotherapy, it is important to predict the response of tumors to irradiation prior to the treatment. This is especially important for hypoxic tumors, which are known to be highly radioresistant. Mathematical modeling based on the dose distribution, biological parameters, and medical images may help to improve this prediction and to optimize the treatment plan. Methods: A voxel-based multiscale tumor response model for simulating the radiation response of hypoxic tumors was developed. It considers viable and dead tumor cells, capillary and normal cells, as well as the most relevant biological processes such as (i) proliferation of tumor cells, (ii) hypoxia-induced angiogenesis, (iii) spatial exchange of cells leading to tumor growth, (iv) oxygen-dependent cell survival after irradiation, (v) resorption of dead cells, and (vi) spatial exchange of cells leading to tumor shrinkage. Oxygenation is described on a microscopic scale using a previously published tumor oxygenation model, which calculates the oxygen distribution for each voxel using the vascular fraction as the most important input parameter. To demonstrate the capabilities of the model, the dependence of the oxygen distribution on tumor growth and radiation-induced shrinkage is investigated. In addition, the impact of three different reoxygenation processes is compared and tumor control probability (TCP) curves for a squamous cells carcinoma of the head and neck (HNSSC) are simulated under normoxic and hypoxic conditions. Results: The model describes the spatiotemporal behavior of the tumor on three different scales: (i) on the macroscopic scale, it describes tumor growth and shrinkage during radiation treatment, (ii) on a mesoscopic scale, it provides the cell density and vascular fraction for each voxel, and (iii) on the microscopic scale, the oxygen distribution may be obtained in terms of oxygen histograms. With increasing tumor size, the simulated tumors develop a hypoxic core. Within the

  4. Defining Survivorship Trajectories Across Patients With Solid Tumors: An Evidence-Based Approach.

    Science.gov (United States)

    Dood, Robert L; Zhao, Yang; Armbruster, Shannon D; Coleman, Robert L; Tworoger, Shelley; Sood, Anil K; Baggerly, Keith A

    2018-06-02

    Survivorship involves a multidisciplinary approach to surveillance and management of comorbidities and secondary cancers, overseen by oncologists, surgeons, and primary care physicians. Optimal timing and coordination of care, however, is unclear and often based on arbitrary 5-year cutoffs. To determine high- and low-risk periods for all tumor types that could define when survivorship care might best be overseen by oncologists and when to transition to primary care physicians. In this pan-cancer, longitudinal, observational study, excess mortality hazard, calculated as an annualized mortality risk above a baseline population, was plotted over time. The time this hazard took to stabilize defined a high-risk period. The percent morality elevation above age- and sex-matched controls in the latter low-risk period was reported as a mortality gap. The US population-based Surveillance, Epidemiology, and End Results database defined the cancer population, and the US Census life tables defined controls. Incident cases of patients with cancer were separated into tumor types based on International Classification of Diseases for Oncology definitions. Population-level data on incident cancer cases was compared with the general US population. Overall mortality and cause of death were reported on observed cancer cases. A total of 2 317 185 patients (median age, 63 years; 49.8% female) with 66 primary tumor types were evaluated. High-risk surveillance period durations ranged from less than 1 year (breast, prostate, lip, ocular, and parathyroid cancers) up to 19 years (unspecified gastrointestinal cancers). The annualized mortality gap, representing the excess mortality in the stable period, ranged from a median 0.26% to 9.33% excess annual mortality (thyroid and hypopharyngeal cancer populations, respectively). Cluster analysis produced 6 risk cluster groups: group 1, with median survival of 16.2 (5th to 95th percentile range [PR], 10.7-40.2) years and median high-risk period

  5. Top-down approach to biological therapy of Crohn's disease.

    Science.gov (United States)

    Hirschmann, Simon; Neurath, Markus F

    2017-03-01

    Crohn's disease (CD) is a chronic, immune-mediated condition with a potentially disabling and destructive course. Despite growing data on when to use a therapeutic 'top-down' strategy, clinical management of this complex disorder is still challenging. Currently, the discussion of 'top-down' strategy in CD mostly includes biological therapy alone or in combination. Areas covered: This article is based on a review of existing literature regarding the use of biological therapy in a 'top-down' approach for the treatment of Crohn's disease. The authors reviewed all the major databases including MEDLINE as well as DDW and ECCO abstracts, respectively. Expert opinion: A 'top-down' therapeutic approach in Crohn's disease is strongly supported by existing data in patients with several risk factors for a severe course of disease. Moreover, there is an increasing amount of published data recommending a more individualised therapeutic strategy to identify candidates for 'top-down' treatment, based on enhanced diagnostics using biomarkers. Emerging therapeutic approaches besides existing therapy concepts using biologicals may possibly redefine the 'top-down' therapeutic strategy for Crohn's disease in the future.

  6. Tumor-selective replication herpes simplex virus-based technology significantly improves clinical detection and prognostication of viable circulating tumor cells

    DEFF Research Database (Denmark)

    Zhang, Wen; Bao, Li; Yang, Shaoxing

    2016-01-01

    Detection of circulating tumor cells remains a significant challenge due to their vast physical and biological heterogeneity. We developed a cell-surface-marker-independent technology based on telomerase-specific, replication-selective oncolytic herpes-simplex-virus-1 that targets telomerase......-reverse-transcriptase-positive cancer cells and expresses green-fluorescent-protein that identifies viable CTCs from a broad spectrum of malignancies. Our method recovered 75.5-87.2% of tumor cells spiked into healthy donor blood, as validated by different methods, including single cell sequencing. CTCs were detected in 59-100% of 326...

  7. Targeted drug delivery and penetration into solid tumors.

    Science.gov (United States)

    Corti, Angelo; Pastorino, Fabio; Curnis, Flavio; Arap, Wadih; Ponzoni, Mirco; Pasqualini, Renata

    2012-09-01

    Delivery and penetration of chemotherapeutic drugs into tumors are limited by a number of factors related to abnormal vasculature and altered stroma composition in neoplastic tissues. Coupling of chemotherapeutic drugs with tumor vasculature-homing peptides or administration of drugs in combination with biological agents that affect the integrity of the endothelial lining of tumor vasculature is an appealing strategy to improve drug delivery to tumor cells. Promising approaches to achieve this goal are based on the use of Asn-Gly-Arg (NGR)-containing peptides as ligands for drug delivery and of NGR-TNF, a peptide-tumor necrosis factor-α fusion protein that selectively alters drug penetration barriers and that is currently tested in a randomized Phase III trial in patients with malignant pleural mesothelioma. © 2011 Wiley Periodicals, Inc.

  8. Dermal Squamomelanocytic Tumor: Neoplasm of Uncertain Biological Potential

    Directory of Open Access Journals (Sweden)

    Mirsad Dorić

    2008-05-01

    Full Text Available We report a case of exceedingly rare cutaneous neoplasm with histological features of malignancy and uncertain biological potential. The nodular, darkly pigmented facial tumor with central exulceration, size 12x10x7 mm, of the skin 61-year-old man preauricular left was completely exised.Histologically tumor consists of atypical squamous cells, which express signs of moderate to significant pleomorphism, mitotically active, with foci forming of parakeratotic horn cysts (“pearls”. Characteristically tumor also consists of large number of atypical melanocytes with multifocal pattern, inserted between atypical squamous cells, and which contain large amount of dark brown pigment melanin. Immunohistochemically, squamous cells stain positively with keratin (CK116, melanocytes were stained with S -100 protein, HMB 45, and vimentin, but failed to stain with CK 116.To our knowledge this is the sixth reported case in world literature. The follow-up time of four years no evidence of recurrence or metastasis, similar all reported cases, but it is too short period in estimation to guarantee a benign course. However, it appears that this group of neoplasm may have different prognosis from pure squamous carcinoma or malignant melanoma.

  9. Guiding Development Based Approach Practicum Vertebrates Taxonomy Scientific Study Program for Students of Biology Education

    Science.gov (United States)

    Arieska, M.; Syamsurizal, S.; Sumarmin, R.

    2018-04-01

    Students having difficulty in identifying and describing the vertebrate animals as well as less skilled in science process as practical. Increased expertise in scientific skills, one of which is through practical activities using practical guidance based on scientific approach. This study aims to produce practical guidance vertebrate taxonomy for biology education students PGRI STKIP West Sumatra valid. This study uses a model of Plomp development consisting of three phases: the initial investigation, floating or prototype stage, and the stage of assessment. Data collection instruments used in this study is a validation sheet guiding practicum. Data were analyzed descriptively based on data obtained from the field. The result of the development of practical guidance vertebrate taxonomic validity value of 3.22 is obtained with very valid category. Research and development has produced a practical guide based vertebrate taxonomic scientific approach very valid.

  10. The Relationships Between Epistemic Beliefs in Biology and Approaches to Learning Biology Among Biology-Major University Students in Taiwan

    Science.gov (United States)

    Lin, Yi-Chun; Liang, Jyh-Chong; Tsai, Chin-Chung

    2012-12-01

    The aim of this study was to investigate the relationships between students' epistemic beliefs in biology and their approaches to learning biology. To this end, two instruments, the epistemic beliefs in biology and the approaches to learning biology surveys, were developed and administered to 520 university biology students, respectively. By and large, it was found that the students reflected "mixed" motives in biology learning, while those who had more sophisticated epistemic beliefs tended to employ deep strategies. In addition, the results of paired t tests revealed that the female students were more likely to possess beliefs about biological knowledge residing in external authorities, to believe in a right answer, and to utilize rote learning as a learning strategy. Moreover, compared to juniors and seniors, freshmen and sophomores tended to hold less mature views on all factors of epistemic beliefs regarding biology. Another comparison indicated that theoretical biology students (e.g. students majoring in the Department of Biology) tended to have more mature beliefs in learning biology and more advanced strategies for biology learning than those students studying applied biology (e.g. in the Department of Biotechnology). Stepwise regression analysis, in general, indicated that students who valued the role of experiments and justify epistemic assumptions and knowledge claims based on evidence were more oriented towards having mixed motives and utilizing deep strategies to learn biology. In contrast, students who believed in the certainty of biological knowledge were more likely to adopt rote learning strategies and to aim to qualify in biology.

  11. Learning Cell Biology as a Team: A Project-Based Approach to Upper-Division Cell Biology

    Science.gov (United States)

    Wright, Robin; Boggs, James

    2002-01-01

    To help students develop successful strategies for learning how to learn and communicate complex information in cell biology, we developed a quarter-long cell biology class based on team projects. Each team researches a particular human disease and presents information about the cellular structure or process affected by the disease, the cellular…

  12. In silico model-based inference: a contemporary approach for hypothesis testing in network biology.

    Science.gov (United States)

    Klinke, David J

    2014-01-01

    Inductive inference plays a central role in the study of biological systems where one aims to increase their understanding of the system by reasoning backwards from uncertain observations to identify causal relationships among components of the system. These causal relationships are postulated from prior knowledge as a hypothesis or simply a model. Experiments are designed to test the model. Inferential statistics are used to establish a level of confidence in how well our postulated model explains the acquired data. This iterative process, commonly referred to as the scientific method, either improves our confidence in a model or suggests that we revisit our prior knowledge to develop a new model. Advances in technology impact how we use prior knowledge and data to formulate models of biological networks and how we observe cellular behavior. However, the approach for model-based inference has remained largely unchanged since Fisher, Neyman and Pearson developed the ideas in the early 1900s that gave rise to what is now known as classical statistical hypothesis (model) testing. Here, I will summarize conventional methods for model-based inference and suggest a contemporary approach to aid in our quest to discover how cells dynamically interpret and transmit information for therapeutic aims that integrates ideas drawn from high performance computing, Bayesian statistics, and chemical kinetics. © 2014 American Institute of Chemical Engineers.

  13. Iterative volume morphing and learning for mobile tumor based on 4DCT.

    Science.gov (United States)

    Mao, Songan; Wu, Huanmei; Sandison, George; Fang, Shiaofen

    2017-02-21

    During image-guided cancer radiation treatment, three-dimensional (3D) tumor volumetric information is important for treatment success. However, it is typically not feasible to image a patient's 3D tumor continuously in real time during treatment due to concern over excessive patient radiation dose. We present a new iterative morphing algorithm to predict the real-time 3D tumor volume based on time-resolved computed tomography (4DCT) acquired before treatment. An offline iterative learning process has been designed to derive a target volumetric deformation function from one breathing phase to another. Real-time volumetric prediction is performed to derive the target 3D volume during treatment delivery. The proposed iterative deformable approach for tumor volume morphing and prediction based on 4DCT is innovative because it makes three major contributions: (1) a novel approach to landmark selection on 3D tumor surfaces using a minimum bounding box; (2) an iterative morphing algorithm to generate the 3D tumor volume using mapped landmarks; and (3) an online tumor volume prediction strategy based on previously trained deformation functions utilizing 4DCT. The experimental performance showed that the maximum morphing deviations are 0.27% and 1.25% for original patient data and artificially generated data, which is promising. This newly developed algorithm and implementation will have important applications for treatment planning, dose calculation and treatment validation in cancer radiation treatment.

  14. Current Perspectives on Desmoid Tumors: The Mayo Clinic Approach

    International Nuclear Information System (INIS)

    Joglekar, Siddharth B.; Rose, Peter S.; Sim, Franklin; Okuno, Scott; Petersen, Ivy

    2011-01-01

    Desmoid tumors are a rare group of locally aggressive, non malignant tumors of fibroblastic origin that can lead to significant morbidity due to local invasion. Despite advances in the understanding of these tumors, their natural history is incompletely understood and the optimal treatment is still a matter of debate. Local control is the main goal of treatment and there has been a change in philosophy regarding the management of these tumors from aggressive surgical resection to function preservation. A multidisciplinary approach is essential to plan local control with acceptable morbidity. The current Mayo Clinic algorithm for the treatment of these tumors is based on institutional experience and the available evidence in the literature: asymptomatic/non progressive lesions away from vital structures are managed with observation and regular imaging; primary or recurrent desmoid tumors which are symptomatic or progressive or near vital structures are managed with wide surgical resection when wide surgical margins are possible with minimal functional and cosmetic loss. When positive or close surgical margins are likely, surgical resection with adjuvant radiotherapy or definitive radiotherapy is preferred. If likely functional or cosmetic deficit is unacceptable, radiotherapy is the treatment of choice. Unresectable lesions are considered for radiotherapy, chemotherapy or newer modalities however an unresectable lesion associated with a painful, functionless, infected extremity is managed with an amputation

  15. Current Perspectives on Desmoid Tumors: The Mayo Clinic Approach

    Directory of Open Access Journals (Sweden)

    Scott Okuno

    2011-08-01

    Full Text Available Desmoid tumors are a rare group of locally aggressive, non malignant tumors of fibroblastic origin that can lead to significant morbidity due to local invasion. Despite advances in the understanding of these tumors, their natural history is incompletely understood and the optimal treatment is still a matter of debate. Local control is the main goal of treatment and there has been a change in philosophy regarding the management of these tumors from aggressive surgical resection to function preservation. A multidisciplinary approach is essential to plan local control with acceptable morbidity. The current Mayo Clinic algorithm for the treatment of these tumors is based on institutional experience and the available evidence in the literature: asymptomatic/non progressive lesions away from vital structures are managed with observation and regular imaging; primary or recurrent desmoid tumors which are symptomatic or progressive or near vital structures are managed with wide surgical resection when wide surgical margins are possible with minimal functional and cosmetic loss. When positive or close surgical margins are likely, surgical resection with adjuvant radiotherapy or definitive radiotherapy is preferred. If likely functional or cosmetic deficit is unacceptable, radiotherapy is the treatment of choice. Unresectable lesions are considered for radiotherapy, chemotherapy or newer modalities however an unresectable lesion associated with a painful, functionless, infected extremity is managed with an amputation.

  16. Reconstruction of the cranial base in surgery for jugular foramen tumors.

    Science.gov (United States)

    Ramina, Ricardo; Maniglia, Joao J; Paschoal, Jorge R; Fernandes, Yvens B; Neto, Mauricio Coelho; Honorato, Donizeti C

    2005-04-01

    The surgical removal of a jugular foramen (JF) tumor presents the neurosurgeon with a complex management problem that requires an understanding of the natural history, diagnosis, surgical approaches, and postoperative complications. Cerebrospinal fluid (CSF) leakage is one of the most common complications of this surgery. Different surgical approaches and management concepts to avoid this complication have been described, mainly in the ear, nose, and throat literature. The purpose of this study was to review the results of CSF leakage prevention in a series of 66 patients with JF tumors operated on by a multidisciplinary cranial base team using a new technique for cranial base reconstruction. We retrospectively studied 66 patients who had JF tumors with intracranial extension and who underwent surgical treatment in our institutions from January 1987 to December 2001. Paragangliomas were the most frequent lesions, followed by schwannomas and meningiomas. All patients were operated on using the same multidisciplinary surgical approach (neurosurgeons and ear, nose, and throat surgeons). A surgical strategy for reconstruction of the cranial base using vascularized flaps was carried out. The closure of the surgical wound was performed in three layers. A specially developed myofascial flap (temporalis fascia, cervical fascia, and sternocleidomastoid muscle) associated to the inferior rotation of the posterior portion of the temporalis muscle was used to reconstruct the cranial base with vascularized flaps. In this series of 66 patients, postoperative CSF leakage developed in three cases. These patients presented with very large or recurrent tumors, and the postoperative CSF fistulae were surgically closed. The cosmetic result obtained with this reconstruction was classified as excellent or good in all patients. Our results compare favorably with those reported in the literature. The surgical strategy used for cranial base reconstruction presented in this article has

  17. Dose painting based on tumor uptake of Cu-ATSM and FDG

    DEFF Research Database (Denmark)

    Clausen, Malene Martini; Hansen, Anders Elias; Lundemann, Michael

    2014-01-01

    definitions based on FDG, 64Cu-ATSM 3 h and 24 h uptake in canine tumors had different localization of the regional dose escalation levels. This indicates that 64Cu-ATSM at two different time-points and FDG provide different biological information that has to be taken into account when using the dose painting...

  18. A Multimodal Imaging Approach for Longitudinal Evaluation of Bladder Tumor Development in an Orthotopic Murine Model.

    Directory of Open Access Journals (Sweden)

    Chantal Scheepbouwer

    Full Text Available Bladder cancer is the fourth most common malignancy amongst men in Western industrialized countries with an initial response rate of 70% for the non-muscle invasive type, and improving therapy efficacy is highly needed. For this, an appropriate, reliable animal model is essential to gain insight into mechanisms of tumor growth for use in response monitoring of (new agents. Several animal models have been described in previous studies, but so far success has been hampered due to the absence of imaging methods to follow tumor growth non-invasively over time. Recent developments of multimodal imaging methods for use in animal research have substantially strengthened these options of in vivo visualization of tumor growth. In the present study, a multimodal imaging approach was addressed to investigate bladder tumor proliferation longitudinally. The complementary abilities of Bioluminescence, High Resolution Ultrasound and Photo-acoustic Imaging permit a better understanding of bladder tumor development. Hybrid imaging modalities allow the integration of individual strengths to enable sensitive and improved quantification and understanding of tumor biology, and ultimately, can aid in the discovery and development of new therapeutics.

  19. In silico modeling for tumor growth visualization.

    Science.gov (United States)

    Jeanquartier, Fleur; Jean-Quartier, Claire; Cemernek, David; Holzinger, Andreas

    2016-08-08

    Cancer is a complex disease. Fundamental cellular based studies as well as modeling provides insight into cancer biology and strategies to treatment of the disease. In silico models complement in vivo models. Research on tumor growth involves a plethora of models each emphasizing isolated aspects of benign and malignant neoplasms. Biologists and clinical scientists are often overwhelmed by the mathematical background knowledge necessary to grasp and to apply a model to their own research. We aim to provide a comprehensive and expandable simulation tool to visualizing tumor growth. This novel Web-based application offers the advantage of a user-friendly graphical interface with several manipulable input variables to correlate different aspects of tumor growth. By refining model parameters we highlight the significance of heterogeneous intercellular interactions on tumor progression. Within this paper we present the implementation of the Cellular Potts Model graphically presented through Cytoscape.js within a Web application. The tool is available under the MIT license at https://github.com/davcem/cpm-cytoscape and http://styx.cgv.tugraz.at:8080/cpm-cytoscape/ . In-silico methods overcome the lack of wet experimental possibilities and as dry method succeed in terms of reduction, refinement and replacement of animal experimentation, also known as the 3R principles. Our visualization approach to simulation allows for more flexible usage and easy extension to facilitate understanding and gain novel insight. We believe that biomedical research in general and research on tumor growth in particular will benefit from the systems biology perspective.

  20. Biological models in vivo for boron neutronic capture studies as tumors therapy

    International Nuclear Information System (INIS)

    Kreimann, Erica L.; Dagrosa, Maria A.; Schwint, Amanda E.; Itoiz, Maria E.; Pisarev, Mario A.; Farias, Silvia S.; Garavaglia, Ricardo N.; Batistoni, Daniel A.

    1999-01-01

    The use of experimental models for Boron Neutronic Capture studies as Tumors Therapy have as two main objectives: 1) To contribute to the basic knowledge of the biological mechanisms involved to increase the method therapeutical advantage, and 2) To explore the possible application of this therapeutic method to other pathologies. In this frame it was studied the carcinogenesis model of hamster cheek pouch, a type of human buccal cancer. Biodistribution studies of boron compound were performed in tumor, blood and in different precancerous and normal tissues as well as BNCT studies. Results validated this method for BNCT studies and show the capacity of the oral mucosa tumors of selectively concentrate the boron compound, showing a deleterious clear effect on the tumor after 24 hours with BNCT treatment. (author)

  1. Sensitivity of Tumor Motion Simulation Accuracy to Lung Biomechanical Modeling Approaches and Parameters

    OpenAIRE

    Tehrani, Joubin Nasehi; Yang, Yin; Werner, Rene; Lu, Wei; Low, Daniel; Guo, Xiaohu; Wang, Jing

    2015-01-01

    Finite element analysis (FEA)-based biomechanical modeling can be used to predict lung respiratory motion. In this technique, elastic models and biomechanical parameters are two important factors that determine modeling accuracy. We systematically evaluated the effects of lung and lung tumor biomechanical modeling approaches and related parameters to improve the accuracy of motion simulation of lung tumor center of mass (TCM) displacements. Experiments were conducted with four-dimensional com...

  2. Identifying novel glioma associated pathways based on systems biology level meta-analysis.

    Science.gov (United States)

    Hu, Yangfan; Li, Jinquan; Yan, Wenying; Chen, Jiajia; Li, Yin; Hu, Guang; Shen, Bairong

    2013-01-01

    With recent advances in microarray technology, including genomics, proteomics, and metabolomics, it brings a great challenge for integrating this "-omics" data to analysis complex disease. Glioma is an extremely aggressive and lethal form of brain tumor, and thus the study of the molecule mechanism underlying glioma remains very important. To date, most studies focus on detecting the differentially expressed genes in glioma. However, the meta-analysis for pathway analysis based on multiple microarray datasets has not been systematically pursued. In this study, we therefore developed a systems biology based approach by integrating three types of omics data to identify common pathways in glioma. Firstly, the meta-analysis has been performed to study the overlapping of signatures at different levels based on the microarray gene expression data of glioma. Among these gene expression datasets, 12 pathways were found in GeneGO database that shared by four stages. Then, microRNA expression profiles and ChIP-seq data were integrated for the further pathway enrichment analysis. As a result, we suggest 5 of these pathways could be served as putative pathways in glioma. Among them, the pathway of TGF-beta-dependent induction of EMT via SMAD is of particular importance. Our results demonstrate that the meta-analysis based on systems biology level provide a more useful approach to study the molecule mechanism of complex disease. The integration of different types of omics data, including gene expression microarrays, microRNA and ChIP-seq data, suggest some common pathways correlated with glioma. These findings will offer useful potential candidates for targeted therapeutic intervention of glioma.

  3. Tumor immunology.

    Science.gov (United States)

    Mocellin, Simone; Lise, Mario; Nitti, Donato

    2007-01-01

    Advances in tumor immunology are supporting the clinical implementation of several immunological approaches to cancer in the clinical setting. However, the alternate success of current immunotherapeutic regimens underscores the fact that the molecular mechanisms underlying immune-mediated tumor rejection are still poorly understood. Given the complexity of the immune system network and the multidimensionality of tumor/host interactions, the comprehension of tumor immunology might greatly benefit from high-throughput microarray analysis, which can portrait the molecular kinetics of immune response on a genome-wide scale, thus accelerating the discovery pace and ultimately catalyzing the development of new hypotheses in cell biology. Although in its infancy, the implementation of microarray technology in tumor immunology studies has already provided investigators with novel data and intriguing new hypotheses on the molecular cascade leading to an effective immune response against cancer. Although the general principles of microarray-based gene profiling have rapidly spread in the scientific community, the need for mastering this technique to produce meaningful data and correctly interpret the enormous output of information generated by this technology is critical and represents a tremendous challenge for investigators, as outlined in the first section of this book. In the present Chapter, we report on some of the most significant results obtained with the application of DNA microarray in this oncology field.

  4. Current diagnostic approach of bone tumors in childhood; Abordagem diagnostica atual dos tumores osseos na infancia

    Energy Technology Data Exchange (ETDEWEB)

    Torre, Marcia Barbosa; Scatigno Neto, Andre [Sao Paulo Univ., SP (Brazil). Faculdade de Medicina. Hospital das Clinicas

    1995-09-01

    The authors analyze the magnetic resonance imaging (MRI) as the imaging modality of choice for evaluation of patients with bone tumors or soft tissue tumors. The advent of such a sensitive imaging modality is fortuitous and coincides with a recent change in the therapeutic approach to primary bone tumors. MRI is extremely valuable in monitoring the tumor response to the initial chemotherapy and is accurate defining the margins of tumor, facilitating planning of limb salvage surgical procedures. (author). 5 refs., 8 figs.

  5. A Percutaneous Transtubular Middle Fossa Approach for Intracanalicular Tumors.

    Science.gov (United States)

    Bernardo, Antonio; Evins, Alexander I; Tsiouris, Apostolos J; Stieg, Philip E

    2015-07-01

    In cases of small intracanalicular tumors (≤ 1.5 cm), the middle fossa approach (MFA) provides the ability for adequate tumor removal with preservation of existing auditory function. Application of a minimally invasive tubular retractor in this approach may help mitigate the risk of postoperative seizures, aphasia, and venous complications by minimizing intraoperative retraction of the temporal lobe. We propose a minimally invasive microscopic and/or endoscopic percutaneous transtubular MFA for the management of intracanalicular tumors. Subtemporal keyhole craniectomies were performed on 5 preserved cadaveric heads (10 sides), with 6 sides previously injected with a synthetic tumor model. A ViewSite Brain Access System tubular retractor (Vycor Medical, Inc., Boca Raton, Florida, USA) was used to provide minimal temporal retraction and protection of the surrounding anatomy. An extradural dissection of the internal auditory canal was performed under microscopic and endoscopic visualization with a minimally invasive surgical drill and tube shaft instruments, the intracanalicular tumors were removed, and degree of resection was assessed. All 10 approaches were completed successfully through the tubular retractor with minimal retraction of the temporal lobe. Excellent visualization of the structures within the internal auditory canal was achieved with both the microscope and 3-dimensional endoscope. On the 6 synthetic intracanalicular tumors resected, 5 gross total (Grade I) and 1 near total (Grade II) resections were achieved. A percutaneous transtubular MFA is a feasible minimally invasive option for resection of small intracanalicular tumors with potential preservation of auditory function, reduced temporal retraction, and enhanced protection of surrounding structures. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Cancer in silico drug discovery: a systems biology tool for identifying candidate drugs to target specific molecular tumor subtypes.

    Science.gov (United States)

    San Lucas, F Anthony; Fowler, Jerry; Chang, Kyle; Kopetz, Scott; Vilar, Eduardo; Scheet, Paul

    2014-12-01

    Large-scale cancer datasets such as The Cancer Genome Atlas (TCGA) allow researchers to profile tumors based on a wide range of clinical and molecular characteristics. Subsequently, TCGA-derived gene expression profiles can be analyzed with the Connectivity Map (CMap) to find candidate drugs to target tumors with specific clinical phenotypes or molecular characteristics. This represents a powerful computational approach for candidate drug identification, but due to the complexity of TCGA and technology differences between CMap and TCGA experiments, such analyses are challenging to conduct and reproduce. We present Cancer in silico Drug Discovery (CiDD; scheet.org/software), a computational drug discovery platform that addresses these challenges. CiDD integrates data from TCGA, CMap, and Cancer Cell Line Encyclopedia (CCLE) to perform computational drug discovery experiments, generating hypotheses for the following three general problems: (i) determining whether specific clinical phenotypes or molecular characteristics are associated with unique gene expression signatures; (ii) finding candidate drugs to repress these expression signatures; and (iii) identifying cell lines that resemble the tumors being studied for subsequent in vitro experiments. The primary input to CiDD is a clinical or molecular characteristic. The output is a biologically annotated list of candidate drugs and a list of cell lines for in vitro experimentation. We applied CiDD to identify candidate drugs to treat colorectal cancers harboring mutations in BRAF. CiDD identified EGFR and proteasome inhibitors, while proposing five cell lines for in vitro testing. CiDD facilitates phenotype-driven, systematic drug discovery based on clinical and molecular data from TCGA. ©2014 American Association for Cancer Research.

  7. Cystatin C and lactoferrin concentrations in biological fluids as possible prognostic factors in eye tumor development

    Directory of Open Access Journals (Sweden)

    Mariya A. Dikovskaya

    2013-08-01

    Full Text Available Objectives. To investigate the possible role of cystatin C in eye biological fluids locally and in serum and lactoferrin revealing anti-tumor activity in eye tumor development. Background. The increased number of eye tumors was registered recently not only in the countries with high insolation, but also in the northern countries including Russia (11 cases per million of population. Search for new biological markers is important for diagnosis and prognosis in eye tumors. Cystatin C, an endogenous inhibitor of cysteine proteases, plays an important protective role in several tumors. Lactoferrin was shown to express anti-tumor and antiviral activities. It was hypothesized that cystatin C and lactoferrin could serve as possible biomarkers in the diagnosis of malignant and benign eye tumors. Study design. A total of 54 patients with choroidal melanoma and benign eye tumors were examined (part of them undergoing surgical treatment. Serum, tear fluid and intraocular fluid samples obtained from the anterior chamber of eyes in patients with choroidal melanoma were studied. Methods. Cystatin C concentration in serum and eye biological fluids was measured by commercial ELISA kits for human (BioVendor, Czechia; lactoferrin concentration – by Lactoferrin-strip D 4106 ELISA test systems (Vector-BEST, Novosibirsk Region, Russia. Results. Cystatin C concentration in serum of healthy persons was significantly higher as compared to tear and intraocular fluids. In patients with choroidal melanoma, increased cystatin C concentration was similar in tear fluid of both the eyes. Lactoferrin level in tear fluid of healthy persons was significantly higher than its serum level. Significantly increased lactoferrin concentration in tear fluid was noted in patients with benign and malignant eye tumors. Conclusion. Increased level of cystatin C in tear fluid seems to be a possible diagnostic factor in the eye tumors studied. However, it does not allow us to differentiate

  8. Biological Reconstruction Following the Resection of Malignant Bone Tumors of the Pelvis

    Directory of Open Access Journals (Sweden)

    Frank Traub

    2013-01-01

    Full Text Available Background. Surgical treatment of malignant pelvic bone tumors can be very challenging. The objective of this retrospective study was to evaluate the oncological as well as the clinical and functional outcome after limb salvage surgery and biological reconstruction. Methods. The files of 27 patients with malignant pelvic bone tumors, who underwent surgical resection at our department between 2000 and 2011, were retrospectively analyzed (9 Ewing's sarcoma, 8 chondrosarcoma, 4 osteosarcoma, 1 synovial sarcoma, 1 malignant fibrous histiocytoma, and 4 carcinoma metastases. Results. After internal hemipelvectomy reconstruction was performed by hip transposition (, using autologous nonvascularised fibular graft ( or autologous iliac crest bone graft (. In one patient a proximal femor prothetis and in three patients a total hip prosthesis was implanted at the time of resection. The median follow-up was 33 months. Two- and five-year disease-specific survival rates of all patients were 86.1% and 57.7%, respectively. The mean functional MSTS score was 16.5 (~55% for all patients. Conclusion. On the basis of the oncological as well as the clinical and functional outcome, biological reconstruction after internal hemipelvectomy seems to be a reliable technique for treating patients with a malignant pelvic bone tumor.

  9. Tumor tissue slice cultures as a platform for analyzing tissue-penetration and biological activities of nanoparticles.

    Science.gov (United States)

    Merz, Lea; Höbel, Sabrina; Kallendrusch, Sonja; Ewe, Alexander; Bechmann, Ingo; Franke, Heike; Merz, Felicitas; Aigner, Achim

    2017-03-01

    The success of therapeutic nanoparticles depends, among others, on their ability to penetrate a tissue for actually reaching the target cells, and their efficient cellular uptake in the context of intact tissue and stroma. Various nanoparticle modifications have been implemented for altering physicochemical and biological properties. Their analysis, however, so far mainly relies on cell culture experiments which only poorly reflect the in vivo situation, or is based on in vivo experiments that are often complicated by whole-body pharmacokinetics and are rather tedious especially when analyzing larger nanoparticle sets. For the more precise analysis of nanoparticle properties at their desired site of action, efficient ex vivo systems closely mimicking in vivo tissue properties are needed. In this paper, we describe the setup of organotypic tumor tissue slice cultures for the analysis of tissue-penetrating properties and biological activities of nanoparticles. As a model system, we employ 350μm thick slice cultures from different tumor xenograft tissues, and analyze modified or non-modified polyethylenimine (PEI) complexes as well as their lipopolyplex derivatives for siRNA delivery. The described conditions for tissue slice preparation and culture ensure excellent tissue preservation for at least 14days, thus allowing for prolonged experimentation and analysis. When using fluorescently labeled siRNA for complex visualization, fluorescence microscopy of cryo-sectioned tissue slices reveals different degrees of nanoparticle tissue penetration, dependent on their surface charge. More importantly, the determination of siRNA-mediated knockdown efficacies of an endogenous target gene, the oncogenic survival factor Survivin, reveals the possibility to accurately assess biological nanoparticle activities in situ, i.e. in living cells in their original environment. Taken together, we establish tumor (xenograft) tissue slices for the accurate and facile ex vivo assessment of

  10. Complex diagnostic approaches in metastases of tumors in skeleton. VII

    International Nuclear Information System (INIS)

    Bek, V.; Stepan, J.; Hausner, P.; Vosecky, M.; Konopasek, B.; Novy, F.

    1987-01-01

    In addition to the current methods of imaging the skeleton and of histomorphological and cytomorphological examinations of the bone marrow and the bone tissue, an ever growing attention is devoted to humoral factors affecting the metabolism of the skeleton. Prostaglandins, or in a broader sense, eicosanoids are in the forefront of the attention. Their relations is studied to immune and endocrine mechanisms and to growth factors (TGF (transforming growth factor), EDF (epidermal growth factor), PDGF (platelet derived growth factor)). Specific monoclonal antibodies to the membrane and cytoplasma structures of malignant cells represent an important shift towards improved detection of disseminated tumor cells in the bone marrow. Computerized tomography and nuclear magnetic resonance contribute to improved definition in bone diagnosis. The condition of bone metabolism can be assessed by whole-body retention using technetium-labelled phosphate complexes. The methods offering information on the state of blood supply for the skeleton are also important. Common tests of bone marrow metastasis detection combine with the determination of the presence of tumor markers (CEA (carcinoembryonic antigen), TPA (tissue polypeptide antigen), plasminogen activator, polyamine, etc.). Upon heterogeneity of cell populations in the tumor, an urgent need arises for the clinician to penetrate down to the cellular and the subcellular levels of the malignant growth with the aim of identifying biological potency of the individual cell clones, including their capability of produce and proliferate metastases. We are approaching this desirable target through the flow cytometry method. (author). 30 refs

  11. Individualized Surgical Approach Planning for Petroclival Tumors Using a 3D Printer.

    Science.gov (United States)

    Muelleman, Thomas John; Peterson, Jeremy; Chowdhury, Naweed Iffat; Gorup, Jason; Camarata, Paul; Lin, James

    2016-06-01

    Objectives To determine the utility of three-dimensional (3D) printed models in individualized petroclival tumor resection planning by measuring the fidelity of printed anatomical structures and comparing tumor exposure afforded by different approaches. Design Case series and review of the literature. Setting Tertiary care center. Participants Three patients with petroclival lesions. Main Outcome Measures Subjective opinion of access by neuro-otologists and neurosurgeons as well as surface area of tumor exposure. Results Surgeons found the 3D models of each patient's skull and tumor useful for preoperative planning. Limitations of individual surgical approaches not identified through preoperative imaging were apparent after 3D models were evaluated. Significant variability in exposure was noted between models for similar or identical approaches. A notable drawback is that our printing process did not replicate mastoid air cells. Conclusions We found that 3D modeling is useful for individualized preoperative planning for approaching petroclival tumors. Our printing techniques did produce authentic replicas of the tumors in relation to bony structures.

  12. Deep Learning and Texture-Based Semantic Label Fusion for Brain Tumor Segmentation.

    Science.gov (United States)

    Vidyaratne, L; Alam, M; Shboul, Z; Iftekharuddin, K M

    2018-01-01

    Brain tumor segmentation is a fundamental step in surgical treatment and therapy. Many hand-crafted and learning based methods have been proposed for automatic brain tumor segmentation from MRI. Studies have shown that these approaches have their inherent advantages and limitations. This work proposes a semantic label fusion algorithm by combining two representative state-of-the-art segmentation algorithms: texture based hand-crafted, and deep learning based methods to obtain robust tumor segmentation. We evaluate the proposed method using publicly available BRATS 2017 brain tumor segmentation challenge dataset. The results show that the proposed method offers improved segmentation by alleviating inherent weaknesses: extensive false positives in texture based method, and the false tumor tissue classification problem in deep learning method, respectively. Furthermore, we investigate the effect of patient's gender on the segmentation performance using a subset of validation dataset. Note the substantial improvement in brain tumor segmentation performance proposed in this work has recently enabled us to secure the first place by our group in overall patient survival prediction task at the BRATS 2017 challenge.

  13. Deep learning and texture-based semantic label fusion for brain tumor segmentation

    Science.gov (United States)

    Vidyaratne, L.; Alam, M.; Shboul, Z.; Iftekharuddin, K. M.

    2018-02-01

    Brain tumor segmentation is a fundamental step in surgical treatment and therapy. Many hand-crafted and learning based methods have been proposed for automatic brain tumor segmentation from MRI. Studies have shown that these approaches have their inherent advantages and limitations. This work proposes a semantic label fusion algorithm by combining two representative state-of-the-art segmentation algorithms: texture based hand-crafted, and deep learning based methods to obtain robust tumor segmentation. We evaluate the proposed method using publicly available BRATS 2017 brain tumor segmentation challenge dataset. The results show that the proposed method offers improved segmentation by alleviating inherent weaknesses: extensive false positives in texture based method, and the false tumor tissue classification problem in deep learning method, respectively. Furthermore, we investigate the effect of patient's gender on the segmentation performance using a subset of validation dataset. Note the substantial improvement in brain tumor segmentation performance proposed in this work has recently enabled us to secure the first place by our group in overall patient survival prediction task at the BRATS 2017 challenge.

  14. The Relationships between Epistemic Beliefs in Biology and Approaches to Learning Biology among Biology-Major University Students in Taiwan

    Science.gov (United States)

    Lin, Yi-Chun; Liang, Jyh-Chong; Tsai, Chin-Chung

    2012-01-01

    The aim of this study was to investigate the relationships between students' epistemic beliefs in biology and their approaches to learning biology. To this end, two instruments, the epistemic beliefs in biology and the approaches to learning biology surveys, were developed and administered to 520 university biology students, respectively. By and…

  15. Modern classification of neoplasms: reconciling differences between morphologic and molecular approaches

    International Nuclear Information System (INIS)

    Berman, Jules

    2005-01-01

    For over 150 years, pathologists have relied on histomorphology to classify and diagnose neoplasms. Their success has been stunning, permitting the accurate diagnosis of thousands of different types of neoplasms using only a microscope and a trained eye. In the past two decades, cancer genomics has challenged the supremacy of histomorphology by identifying genetic alterations shared by morphologically diverse tumors and by finding genetic features that distinguish subgroups of morphologically homogeneous tumors. The Developmental Lineage Classification and Taxonomy of Neoplasms groups neoplasms by their embryologic origin. The putative value of this classification is based on the expectation that tumors of a common developmental lineage will share common metabolic pathways and common responses to drugs that target these pathways. The purpose of this manuscript is to show that grouping tumors according to their developmental lineage can reconcile certain fundamental discrepancies resulting from morphologic and molecular approaches to neoplasm classification. In this study, six issues in tumor classification are described that exemplify the growing rift between morphologic and molecular approaches to tumor classification: 1) the morphologic separation between epithelial and non-epithelial tumors; 2) the grouping of tumors based on shared cellular functions; 3) the distinction between germ cell tumors and pluripotent tumors of non-germ cell origin; 4) the distinction between tumors that have lost their differentiation and tumors that arise from uncommitted stem cells; 5) the molecular properties shared by morphologically disparate tumors that have a common developmental lineage, and 6) the problem of re-classifying morphologically identical but clinically distinct subsets of tumors. The discussion of these issues in the context of describing different methods of tumor classification is intended to underscore the clinical value of a robust tumor classification. A

  16. The exciting potential of nanotherapy in brain-tumor targeted drug delivery approaches

    Directory of Open Access Journals (Sweden)

    Vivek Agrahari

    2017-01-01

    Full Text Available Delivering therapeutics to the central nervous system (CNS and brain-tumor has been a major challenge. The current standard treatment approaches for the brain-tumor comprise of surgical resection followed by immunotherapy, radiotherapy, and chemotherapy. However, the current treatments are limited in providing significant benefits to the patients and despite recent technological advancements; brain-tumor is still challenging to treat. Brain-tumor therapy is limited by the lack of effective and targeted strategies to deliver chemotherapeutic agents across the blood-brain barrier (BBB. The BBB is the main obstacle that must be overcome to allow compounds to reach their targets in the brain. Recent advances have boosted the nanotherapeutic approaches in providing an attractive strategy in improving the drug delivery across the BBB and into the CNS. Compared to conventional formulations, nanoformulations offer significant advantages in CNS drug delivery approaches. Considering the above facts, in this review, the physiological/anatomical features of the brain-tumor and the BBB are briefly discussed. The drug transport mechanisms at the BBB are outlined. The approaches to deliver chemotherapeutic drugs across the CNS into the brain-tumor using nanocarriers are summarized. In addition, the challenges that need to be addressed in nanotherapeutic approaches for their enhanced clinical application in brain-tumor therapy are discussed.

  17. Biological-based optimization and volumetric modulated arc therapy delivery for stereotactic body radiation therapy

    International Nuclear Information System (INIS)

    Diot, Quentin; Kavanagh, Brian; Timmerman, Robert; Miften, Moyed

    2012-01-01

    Purpose: To describe biological-based optimization and Monte Carlo (MC) dose calculation-based treatment planning for volumetric modulated arc therapy (VMAT) delivery of stereotactic body radiation therapy (SBRT) in lung, liver, and prostate patients. Methods: Optimization strategies and VMAT planning parameters using a biological-based optimization MC planning system were analyzed for 24 SBRT patients. Patients received a median dose of 45 Gy [range, 34-54 Gy] for lung tumors in 1-5 fxs and a median dose of 52 Gy [range, 48-60 Gy] for liver tumors in 3-6 fxs. Prostate patients received a fractional dose of 10 Gy in 5 fxs. Biological-cost functions were used for plan optimization, and its dosimetric quality was evaluated using the conformity index (CI), the conformation number (CN), the ratio of the volume receiving 50% of the prescription dose over the planning target volume (Rx/PTV50). The quality and efficiency of the delivery were assessed according to measured quality assurance (QA) passing rates and delivery times. For each disease site, one patient was replanned using physical cost function and compared to the corresponding biological plan. Results: Median CI, CN, and Rx/PTV50 for all 24 patients were 1.13 (1.02-1.28), 0.79 (0.70-0.88), and 5.3 (3.1-10.8), respectively. The median delivery rate for all patients was 410 MU/min with a maximum possible rate of 480 MU/min (85%). Median QA passing rate was 96.7%, and it did not significantly vary with the tumor site. Conclusions: VMAT delivery of SBRT plans optimized using biological-motivated cost-functions result in highly conformal dose distributions. Plans offer shorter treatment-time benefits and provide efficient dose delivery without compromising the plan conformity for tumors in the prostate, lung, and liver, thereby improving patient comfort and clinical throughput. The short delivery times minimize the risk of patient setup and intrafraction motion errors often associated with long SBRT treatment

  18. Agent-based modelling in synthetic biology.

    Science.gov (United States)

    Gorochowski, Thomas E

    2016-11-30

    Biological systems exhibit complex behaviours that emerge at many different levels of organization. These span the regulation of gene expression within single cells to the use of quorum sensing to co-ordinate the action of entire bacterial colonies. Synthetic biology aims to make the engineering of biology easier, offering an opportunity to control natural systems and develop new synthetic systems with useful prescribed behaviours. However, in many cases, it is not understood how individual cells should be programmed to ensure the emergence of a required collective behaviour. Agent-based modelling aims to tackle this problem, offering a framework in which to simulate such systems and explore cellular design rules. In this article, I review the use of agent-based models in synthetic biology, outline the available computational tools, and provide details on recently engineered biological systems that are amenable to this approach. I further highlight the challenges facing this methodology and some of the potential future directions. © 2016 The Author(s).

  19. Tumor-Associated Antigens for Specific Immunotherapy of Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kiessling, Andrea [Biologics Safety and Disposition, Preclinical Safety, Translational Sciences, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Werk Klybeck, Klybeckstraße 141, Basel CH-4057 (Switzerland); Wehner, Rebekka [Institute of Immunology, Medical Faculty, University of Technology Dresden, Fetscherstraße 74, Dresden 01307 (Germany); Füssel, Susanne [Department of Urology, Medical Faculty, University of Technology Dresden, Fetscherstraße 74, Dresden 01307 (Germany); Bachmann, Michael [Institute of Immunology, Medical Faculty, University of Technology Dresden, Fetscherstraße 74, Dresden 01307 (Germany); Wirth, Manfred P. [Department of Urology, Medical Faculty, University of Technology Dresden, Fetscherstraße 74, Dresden 01307 (Germany); Schmitz, Marc, E-mail: marc.schmitz@tu-dresden.de [Institute of Immunology, Medical Faculty, University of Technology Dresden, Fetscherstraße 74, Dresden 01307 (Germany)

    2012-02-22

    Prostate cancer (PCa) is the most common noncutaneous cancer diagnosis and the second leading cause of cancer-related deaths among men in the United States. Effective treatment modalities for advanced metastatic PCa are limited. Immunotherapeutic strategies based on T cells and antibodies represent interesting approaches to prevent progression from localized to advanced PCa and to improve survival outcomes for patients with advanced disease. CD8{sup +} cytotoxic T lymphocytes (CTLs) efficiently recognize and destroy tumor cells. CD4{sup +} T cells augment the antigen-presenting capacity of dendritic cells and promote the expansion of tumor-reactive CTLs. Antibodies mediate their antitumor effects via antibody-dependent cellular cytotoxicity, activation of the complement system, improving the uptake of coated tumor cells by phagocytes, and the functional interference of biological pathways essential for tumor growth. Consequently, several tumor-associated antigens (TAAs) have been identified that represent promising targets for T cell- or antibody-based immunotherapy. These TAAs comprise proteins preferentially expressed in normal and malignant prostate tissues and molecules which are not predominantly restricted to the prostate, but are overexpressed in various tumor entities including PCa. Clinical trials provide evidence that specific immunotherapeutic strategies using such TAAs represent safe and feasible concepts for the induction of immunological and clinical responses in PCa patients. However, further improvement of the current approaches is required which may be achieved by combining T cell- and/or antibody-based strategies with radio-, hormone-, chemo- or antiangiogenic therapy.

  20. Mining Functional Modules in Heterogeneous Biological Networks Using Multiplex PageRank Approach.

    Science.gov (United States)

    Li, Jun; Zhao, Patrick X

    2016-01-01

    Identification of functional modules/sub-networks in large-scale biological networks is one of the important research challenges in current bioinformatics and systems biology. Approaches have been developed to identify functional modules in single-class biological networks; however, methods for systematically and interactively mining multiple classes of heterogeneous biological networks are lacking. In this paper, we present a novel algorithm (called mPageRank) that utilizes the Multiplex PageRank approach to mine functional modules from two classes of biological networks. We demonstrate the capabilities of our approach by successfully mining functional biological modules through integrating expression-based gene-gene association networks and protein-protein interaction networks. We first compared the performance of our method with that of other methods using simulated data. We then applied our method to identify the cell division cycle related functional module and plant signaling defense-related functional module in the model plant Arabidopsis thaliana. Our results demonstrated that the mPageRank method is effective for mining sub-networks in both expression-based gene-gene association networks and protein-protein interaction networks, and has the potential to be adapted for the discovery of functional modules/sub-networks in other heterogeneous biological networks. The mPageRank executable program, source code, the datasets and results of the presented two case studies are publicly and freely available at http://plantgrn.noble.org/MPageRank/.

  1. A survey of MRI-based medical image analysis for brain tumor studies

    Science.gov (United States)

    Bauer, Stefan; Wiest, Roland; Nolte, Lutz-P.; Reyes, Mauricio

    2013-07-01

    MRI-based medical image analysis for brain tumor studies is gaining attention in recent times due to an increased need for efficient and objective evaluation of large amounts of data. While the pioneering approaches applying automated methods for the analysis of brain tumor images date back almost two decades, the current methods are becoming more mature and coming closer to routine clinical application. This review aims to provide a comprehensive overview by giving a brief introduction to brain tumors and imaging of brain tumors first. Then, we review the state of the art in segmentation, registration and modeling related to tumor-bearing brain images with a focus on gliomas. The objective in the segmentation is outlining the tumor including its sub-compartments and surrounding tissues, while the main challenge in registration and modeling is the handling of morphological changes caused by the tumor. The qualities of different approaches are discussed with a focus on methods that can be applied on standard clinical imaging protocols. Finally, a critical assessment of the current state is performed and future developments and trends are addressed, giving special attention to recent developments in radiological tumor assessment guidelines.

  2. A survey of MRI-based medical image analysis for brain tumor studies

    International Nuclear Information System (INIS)

    Bauer, Stefan; Nolte, Lutz-P; Reyes, Mauricio; Wiest, Roland

    2013-01-01

    MRI-based medical image analysis for brain tumor studies is gaining attention in recent times due to an increased need for efficient and objective evaluation of large amounts of data. While the pioneering approaches applying automated methods for the analysis of brain tumor images date back almost two decades, the current methods are becoming more mature and coming closer to routine clinical application. This review aims to provide a comprehensive overview by giving a brief introduction to brain tumors and imaging of brain tumors first. Then, we review the state of the art in segmentation, registration and modeling related to tumor-bearing brain images with a focus on gliomas. The objective in the segmentation is outlining the tumor including its sub-compartments and surrounding tissues, while the main challenge in registration and modeling is the handling of morphological changes caused by the tumor. The qualities of different approaches are discussed with a focus on methods that can be applied on standard clinical imaging protocols. Finally, a critical assessment of the current state is performed and future developments and trends are addressed, giving special attention to recent developments in radiological tumor assessment guidelines. (topical review)

  3. Large Scale Proteomic Data and Network-Based Systems Biology Approaches to Explore the Plant World.

    Science.gov (United States)

    Di Silvestre, Dario; Bergamaschi, Andrea; Bellini, Edoardo; Mauri, PierLuigi

    2018-06-03

    The investigation of plant organisms by means of data-derived systems biology approaches based on network modeling is mainly characterized by genomic data, while the potential of proteomics is largely unexplored. This delay is mainly caused by the paucity of plant genomic/proteomic sequences and annotations which are fundamental to perform mass-spectrometry (MS) data interpretation. However, Next Generation Sequencing (NGS) techniques are contributing to filling this gap and an increasing number of studies are focusing on plant proteome profiling and protein-protein interactions (PPIs) identification. Interesting results were obtained by evaluating the topology of PPI networks in the context of organ-associated biological processes as well as plant-pathogen relationships. These examples foreshadow well the benefits that these approaches may provide to plant research. Thus, in addition to providing an overview of the main-omic technologies recently used on plant organisms, we will focus on studies that rely on concepts of module, hub and shortest path, and how they can contribute to the plant discovery processes. In this scenario, we will also consider gene co-expression networks, and some examples of integration with metabolomic data and genome-wide association studies (GWAS) to select candidate genes will be mentioned.

  4. Cell membrane-based nanoparticles: a new biomimetic platform for tumor diagnosis and treatment

    Directory of Open Access Journals (Sweden)

    Ruixiang Li

    2018-01-01

    Full Text Available Taking inspiration from nature, the biomimetic concept has been integrated into drug delivery systems in cancer therapy. Disguised with cell membranes, the nanoparticles can acquire various functions of natural cells. The cell membrane-coating technology has pushed the limits of common nano-systems (fast elimination in circulation to more effectively navigate within the body. Moreover, because of the various functional molecules on the surface, cell membrane-based nanoparticles (CMBNPs are capable of interacting with the complex biological microenvironment of the tumor. Various sources of cell membranes have been explored to camouflage CMBNPs and different tumor-targeting strategies have been developed to enhance the anti-tumor drug delivery therapy. In this review article we highlight the most recent advances in CMBNP-based cancer targeting systems and address the challenges and opportunities in this field.

  5. Hypoxia in tumors: pathogenesis-related classification, characterization of hypoxia subtypes, and associated biological and clinical implications.

    Science.gov (United States)

    Vaupel, Peter; Mayer, Arnulf

    2014-01-01

    Hypoxia is a hallmark of tumors leading to (mal-)adaptive processes, development of aggressive phenotypes and treatment resistance. Based on underlying mechanisms and their duration, two main types of hypoxia have been identified, coexisting with complex spatial and temporal heterogeneities. Chronic hypoxia is mainly caused by diffusion limitations due to enlarged diffusion distances and adverse diffusion geometries (e.g., concurrent vs. countercurrent microvessels, Krogh- vs. Hill-type diffusion geometry) and, to a lesser extent, by hypoxemia (e.g., in anemic patients, HbCO formation in heavy smokers), and a compromised perfusion or flow stop (e.g., due to disturbed Starling forces or intratumor solid stress). Acute hypoxia mainly results from transient disruptions in perfusion (e.g., vascular occlusion by cell aggregates), fluctuating red blood cell fluxes or short-term contractions of the interstitial matrix. In each of these hypoxia subtypes oxygen supply is critically reduced, but perfusion-dependent nutrient supply, waste removal, delivery of anticancer or diagnostic agents, and repair competence can be impaired or may not be affected. This detailed differentiation of tumor hypoxia may impact on our understanding of tumor biology and may aid in the development of novel treatment strategies, tumor detection by imaging and tumor targeting, and is thus of great clinical relevance.

  6. [Molecular biology of renal cancer: bases for genetic directed therapy in advanced disease].

    Science.gov (United States)

    Maroto Rey, José Pablo; Cillán Narvaez, Elena

    2013-06-01

    There has been expansion of therapeutic options in the management of metastatic renal cell carcinoma due to a better knowledge of the molecular biology of kidney cancers. There are different tumors grouped under the term renal cell carcinoma, being clear cell cancer the most frequent and accounting for 80% of kidney tumors. Mutations in the Von Hippel-Lindau gene can be identified in up to 80% of sporadic clear cell cancer, linking a genetically inheritable disease where vascular tumors are frequent, with renal cell cancer. Other histologic types present specific alterations in molecular pathways, like c-MET in papillary type I tumors, and Fumarase Hydratase in papillary type II tumors. Identification of the molecular alteration for a specific tumor may offer an opportunity for treatment selection based on biomarkers, and, in the future, for developing an engineering designed genetic treatment.

  7. Clinically Applicable Monte Carlo–based Biological Dose Optimization for the Treatment of Head and Neck Cancers With Spot-Scanning Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wan Chan Tseung, Hok Seum, E-mail: wanchantseung.hok@mayo.edu; Ma, Jiasen; Kreofsky, Cole R.; Ma, Daniel J.; Beltran, Chris

    2016-08-01

    Purpose: Our aim is to demonstrate the feasibility of fast Monte Carlo (MC)–based inverse biological planning for the treatment of head and neck tumors in spot-scanning proton therapy. Methods and Materials: Recently, a fast and accurate graphics processor unit (GPU)–based MC simulation of proton transport was developed and used as the dose-calculation engine in a GPU-accelerated intensity modulated proton therapy (IMPT) optimizer. Besides dose, the MC can simultaneously score the dose-averaged linear energy transfer (LET{sub d}), which makes biological dose (BD) optimization possible. To convert from LET{sub d} to BD, a simple linear relation was assumed. By use of this novel optimizer, inverse biological planning was applied to 4 patients, including 2 small and 1 large thyroid tumor targets, as well as 1 glioma case. To create these plans, constraints were placed to maintain the physical dose (PD) within 1.25 times the prescription while maximizing target BD. For comparison, conventional intensity modulated radiation therapy (IMRT) and IMPT plans were also created using Eclipse (Varian Medical Systems) in each case. The same critical-structure PD constraints were used for the IMRT, IMPT, and biologically optimized plans. The BD distributions for the IMPT plans were obtained through MC recalculations. Results: Compared with standard IMPT, the biologically optimal plans for patients with small tumor targets displayed a BD escalation that was around twice the PD increase. Dose sparing to critical structures was improved compared with both IMRT and IMPT. No significant BD increase could be achieved for the large thyroid tumor case and when the presence of critical structures mitigated the contribution of additional fields. The calculation of the biologically optimized plans can be completed in a clinically viable time (<30 minutes) on a small 24-GPU system. Conclusions: By exploiting GPU acceleration, MC-based, biologically optimized plans were created for

  8. A High-Resolution Tile-Based Approach for Classifying Biological Regions in Whole-Slide Histopathological Images.

    Science.gov (United States)

    Hoffman, R A; Kothari, S; Phan, J H; Wang, M D

    Computational analysis of histopathological whole slide images (WSIs) has emerged as a potential means for improving cancer diagnosis and prognosis. However, an open issue relating to the automated processing of WSIs is the identification of biological regions such as tumor, stroma, and necrotic tissue on the slide. We develop a method for classifying WSI portions (512x512-pixel tiles) into biological regions by (1) extracting a set of 461 image features from each WSI tile, (2) optimizing tile-level prediction models using nested cross-validation on a small (600 tile) manually annotated tile-level training set, and (3) validating the models against a much larger (1.7x10 6 tile) data set for which ground truth was available on the whole-slide level. We calculated the predicted prevalence of each tissue region and compared this prevalence to the ground truth prevalence for each image in an independent validation set. Results show significant correlation between the predicted (using automated system) and reported biological region prevalences with p < 0.001 for eight of nine cases considered.

  9. A minimally invasive multiple marker approach allows highly efficient detection of meningioma tumors

    Directory of Open Access Journals (Sweden)

    Meese Eckart

    2006-12-01

    Full Text Available Abstract Background The development of effective frameworks that permit an accurate diagnosis of tumors, especially in their early stages, remains a grand challenge in the field of bioinformatics. Our approach uses statistical learning techniques applied to multiple antigen tumor antigen markers utilizing the immune system as a very sensitive marker of molecular pathological processes. For validation purposes we choose the intracranial meningioma tumors as model system since they occur very frequently, are mostly benign, and are genetically stable. Results A total of 183 blood samples from 93 meningioma patients (WHO stages I-III and 90 healthy controls were screened for seroreactivity with a set of 57 meningioma-associated antigens. We tested several established statistical learning methods on the resulting reactivity patterns using 10-fold cross validation. The best performance was achieved by Naïve Bayes Classifiers. With this classification method, our framework, called Minimally Invasive Multiple Marker (MIMM approach, yielded a specificity of 96.2%, a sensitivity of 84.5%, and an accuracy of 90.3%, the respective area under the ROC curve was 0.957. Detailed analysis revealed that prediction performs particularly well on low-grade (WHO I tumors, consistent with our goal of early stage tumor detection. For these tumors the best classification result with a specificity of 97.5%, a sensitivity of 91.3%, an accuracy of 95.6%, and an area under the ROC curve of 0.971 was achieved using a set of 12 antigen markers only. This antigen set was detected by a subset selection method based on Mutual Information. Remarkably, our study proves that the inclusion of non-specific antigens, detected not only in tumor but also in normal sera, increases the performance significantly, since non-specific antigens contribute additional diagnostic information. Conclusion Our approach offers the possibility to screen members of risk groups as a matter of routine

  10. Biochemomechanical poroelastic theory of avascular tumor growth

    Science.gov (United States)

    Xue, Shi-Lei; Li, Bo; Feng, Xi-Qiao; Gao, Huajian

    2016-09-01

    Tumor growth is a complex process involving genetic mutations, biochemical regulations, and mechanical deformations. In this paper, a thermodynamics-based nonlinear poroelastic theory is established to model the coupling among the mechanical, chemical, and biological mechanisms governing avascular tumor growth. A volumetric growth law accounting for mechano-chemo-biological coupled effects is proposed to describe the development of solid tumors. The regulating roles of stresses and nutrient transport in the tumor growth are revealed under different environmental constraints. We show that the mechano-chemo-biological coupling triggers anisotropic and heterogeneous growth, leading to the formation of layered structures in a growing tumor. There exists a steady state in which tumor growth is balanced by resorption. The influence of external confinements on tumor growth is also examined. A phase diagram is constructed to illustrate how the elastic modulus and thickness of the confinements jointly dictate the steady state of tumor volume. Qualitative and quantitative agreements with experimental observations indicate the developed model is capable of capturing the essential features of avascular tumor growth in various environments.

  11. Sensitivity analysis approaches applied to systems biology models.

    Science.gov (United States)

    Zi, Z

    2011-11-01

    With the rising application of systems biology, sensitivity analysis methods have been widely applied to study the biological systems, including metabolic networks, signalling pathways and genetic circuits. Sensitivity analysis can provide valuable insights about how robust the biological responses are with respect to the changes of biological parameters and which model inputs are the key factors that affect the model outputs. In addition, sensitivity analysis is valuable for guiding experimental analysis, model reduction and parameter estimation. Local and global sensitivity analysis approaches are the two types of sensitivity analysis that are commonly applied in systems biology. Local sensitivity analysis is a classic method that studies the impact of small perturbations on the model outputs. On the other hand, global sensitivity analysis approaches have been applied to understand how the model outputs are affected by large variations of the model input parameters. In this review, the author introduces the basic concepts of sensitivity analysis approaches applied to systems biology models. Moreover, the author discusses the advantages and disadvantages of different sensitivity analysis methods, how to choose a proper sensitivity analysis approach, the available sensitivity analysis tools for systems biology models and the caveats in the interpretation of sensitivity analysis results.

  12. WE-B-304-02: Treatment Planning Evaluation and Optimization Should Be Biologically and Not Dose/volume Based

    International Nuclear Information System (INIS)

    Deasy, J.

    2015-01-01

    The ultimate goal of radiotherapy treatment planning is to find a treatment that will yield a high tumor control probability (TCP) with an acceptable normal tissue complication probability (NTCP). Yet most treatment planning today is not based upon optimization of TCPs and NTCPs, but rather upon meeting physical dose and volume constraints defined by the planner. It has been suggested that treatment planning evaluation and optimization would be more effective if they were biologically and not dose/volume based, and this is the claim debated in this month’s Point/Counterpoint. After a brief overview of biologically and DVH based treatment planning by the Moderator Colin Orton, Joseph Deasy (for biological planning) and Charles Mayo (against biological planning) will begin the debate. Some of the arguments in support of biological planning include: this will result in more effective dose distributions for many patients DVH-based measures of plan quality are known to have little predictive value there is little evidence that either D95 or D98 of the PTV is a good predictor of tumor control sufficient validated outcome prediction models are now becoming available and should be used to drive planning and optimization Some of the arguments against biological planning include: several decades of experience with DVH-based planning should not be discarded we do not know enough about the reliability and errors associated with biological models the radiotherapy community in general has little direct experience with side by side comparisons of DVH vs biological metrics and outcomes it is unlikely that a clinician would accept extremely cold regions in a CTV or hot regions in a PTV, despite having acceptable TCP values Learning Objectives: To understand dose/volume based treatment planning and its potential limitations To understand biological metrics such as EUD, TCP, and NTCP To understand biologically based treatment planning and its potential limitations

  13. Comparison of three approaches to delineate internal gross tumor volume based on four-dimensional CT simulation images of non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Li Fengxiang; Li Jianbin; Zhang Yingjie; Shang Dongping; Liu Tonghai; Tian Shiyu; Xu Min; Ma Changsheng

    2011-01-01

    Objective: To compare positional and volumetric differences of internal gross tumor volume (IGTV) delineated separately by three approaches based on four-dimensional CT (4DCT) for the primary tumor of non-small cell lung cancer (NLCLC). Methods: Twenty-one patients with NLCLC underwent big bore 4DCT simulation scan of the thorax. IGTVs of the primary tumor of NSCLC were delineated using three approaches as followed: (1) the gross tumor volume (GTV) on each of the ten the respiratory phases of the 4DCT image set were delineated and the ten GTV were fused to produce IGTV 10 ; (2) the GTV delineated separately based on 0% and 50% phase were fused to produce IGTV EI+EE ; (3) the visible tumor on the MIP images were delineated to produce IGTV MIP . The position of the target center, the volume of target, the degree of inclusion (DI) and the matching index (MI) were compared reciprocally between IGTV 10 , IGTV EI+EE and IGTV MIP . Results: Average differences between the position of the center of IGTVs on direction of x, y and z axes were less than 1 mm, with no statistically significant difference. The volume of IGTV 10 was larger than that of IGTV EI+EE , the difference was statistically significant (t=2.37, P=0.028); the volume of IGTV 10 was larger than that of IGTV MIP , but the difference was not statistically significant (t=1.95, P=0.065). The ratio of IGTV EI+EE with IGTV 10 , IGTV MIP with IGTV 10 were 0.85±0.08 and 0.92±0.11, respectively. DI of IGTV EI+EE in IGTV 10 , IGTV MIP in IGTV 10 were 84.78% ± 8. 95% and 88.47% ±9.04%. MI between IGTV 10 and IGTV EI+EE , IGTV 10 and IGTV MIP were 0.85 ±0.09, 0.86±0.09, respectively. Conclusions: The center displacement of the IGTVs delineated separately by the three different techniques based on 4DCT images are not obvious; IGTV EI+EE and IGTV MIP can not replace IGTV 10 , however, IGTV MIP is more close to IGTV 10 comparing to IGTV EI+EE . The ratio of GTV EI+EE with IGTV 10 is correlated to the tumor motion

  14. Systems biology approach to bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Romy; Wu, Cindy H.; Hazen, Terry C.

    2012-06-01

    Bioremediation has historically been approached as a ‘black box’ in terms of our fundamental understanding. Thus it succeeds and fails, seldom without a complete understanding of why. Systems biology is an integrated research approach to study complex biological systems, by investigating interactions and networks at the molecular, cellular, community, and ecosystem level. The knowledge of these interactions within individual components is fundamental to understanding the dynamics of the ecosystem under investigation. Finally, understanding and modeling functional microbial community structure and stress responses in environments at all levels have tremendous implications for our fundamental understanding of hydrobiogeochemical processes and the potential for making bioremediation breakthroughs and illuminating the ‘black box’.

  15. Molecular biology of breast tumors and prognosis [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Gustavo Baldassarre

    2016-04-01

    Full Text Available Breast cancer is the most common cancer among women worldwide. Great scientific, economical, and organizational efforts are in place to understand the causes of onset, identify the critical molecular players of progression, and define new lines of intervention providing more benefits and less toxicity. These efforts have certainly not been vain, since overall survival, especially in specific subsets of breast cancer, has greatly improved during the last decades. At present, breast cancer patients’ treatment and care have reached a high standard of quality, and currently one of the most urgent needs resides in the necessity to better distinguish the tumors that need to be more aggressively treated and identify the best therapeutic option tailored to each patient. This objective will be achievable only if the information clarifying the biology of breast cancer can be successfully transferred to the clinic. A common effort by scientists and clinicians toward this integration and toward the use of multidisciplinary approaches will be necessary to reach this important goal.

  16. Enhanced relative biological effectiveness of proton radiotherapy in tumor cells with internalized gold nanoparticles

    International Nuclear Information System (INIS)

    Polf, Jerimy C.; Gillin, Michael; Bronk, Lawrence F.; Driessen, Wouter H. P.; Arap, Wadih; Pasqualini, Renata

    2011-01-01

    The development and use of sensitizing agents to improve the effectiveness of radiotherapy have long been sought to improve our ability to treat cancer. In this letter, we have studied the relative biological effectiveness of proton beam radiotherapy on prostate tumor cells with and without internalized gold nanoparticles. The effectiveness of proton radiotherapy for the killing of prostate tumor cells was increased by approximately 15%-20% for those cells containing internalized gold nanoparticles.

  17. Radiotherapy of pineal tumors

    International Nuclear Information System (INIS)

    Danoff, B.; Sheline, G.E.

    1984-01-01

    Radiotherapy has universally been used in the treatment of pineal tumors and suprasellar germinomas. Recently however, major technical advances related to the use of the operating microscope and development of microsurgical techniques have prompted a renewed interest in the direct surgical approach for biopsy and/or excision. This interest has resulted in a controversy regarding the role of surgery prior to radiotherapy. Because of the heterogeneity of tumors occurring in the pineal region (i.e., germ cell tumors, pineal parenchymal tumors, glial tumors, and cysts) and their differing biological behavior, controversy also surrounds aspects of radiotherapy such as: the optimal radiation dose, the volume to be irradiated, and indications for prophylactic spinal irradiation. A review of the available data is presented in an attempt to answer these questions

  18. Skull base tumors: a kaleidoscope of challenge.

    Science.gov (United States)

    Khanna, J N; Natrajan, Srivalli; Galinde, Jyotsna

    2014-08-01

    Resection of skull base lesions has always been riddled with problems like inadequate access, proximity to major vessels, dural tears, cranial nerve damage, and infection. Understanding the modular concept of the facial skeleton has led to the development of transfacial swing osteotomies that facilitates resection in a difficult area with minimal morbidity and excellent cosmetic results. In spite of the current trend toward endonasal endoscopic management of skull base tumors, our series presents nine cases of diverse extensive skull base lesions, 33% of which were recurrent. These cases were approached through different transfacial swing osteotomies through the mandible, a midfacial swing, or a zygomaticotemporal osteotomy as dictated by the three-dimensional spatial location of the lesion, and its extent and proximity to vital structures. Access osteotomies ensured complete removal and good results through the most direct and safe route and good vascular control. This reiterated the fact that transfacial approaches still hold a special place in the management of extensive skull base lesions.

  19. An integrative approach to inferring biologically meaningful gene modules

    Directory of Open Access Journals (Sweden)

    Wang Kai

    2011-07-01

    Full Text Available Abstract Background The ability to construct biologically meaningful gene networks and modules is critical for contemporary systems biology. Though recent studies have demonstrated the power of using gene modules to shed light on the functioning of complex biological systems, most modules in these networks have shown little association with meaningful biological function. We have devised a method which directly incorporates gene ontology (GO annotation in construction of gene modules in order to gain better functional association. Results We have devised a method, Semantic Similarity-Integrated approach for Modularization (SSIM that integrates various gene-gene pairwise similarity values, including information obtained from gene expression, protein-protein interactions and GO annotations, in the construction of modules using affinity propagation clustering. We demonstrated the performance of the proposed method using data from two complex biological responses: 1. the osmotic shock response in Saccharomyces cerevisiae, and 2. the prion-induced pathogenic mouse model. In comparison with two previously reported algorithms, modules identified by SSIM showed significantly stronger association with biological functions. Conclusions The incorporation of semantic similarity based on GO annotation with gene expression and protein-protein interaction data can greatly enhance the functional relevance of inferred gene modules. In addition, the SSIM approach can also reveal the hierarchical structure of gene modules to gain a broader functional view of the biological system. Hence, the proposed method can facilitate comprehensive and in-depth analysis of high throughput experimental data at the gene network level.

  20. Biological stoichiometry in tumor micro-environments.

    Directory of Open Access Journals (Sweden)

    Irina Kareva

    Full Text Available Tumors can be viewed as evolving ecological systems, in which heterogeneous populations of cancer cells compete with each other and somatic cells for space and nutrients within the ecosystem of the human body. According to the growth rate hypothesis (GRH, increased phosphorus availability in an ecosystem, such as the tumor micro-environment, may promote selection within the tumor for a more proliferative and thus potentially more malignant phenotype. The applicability of the GRH to tumor growth is evaluated using a mathematical model, which suggests that limiting phosphorus availability might promote intercellular competition within a tumor, and thereby delay disease progression. It is also shown that a tumor can respond differently to changes in its micro-environment depending on the initial distribution of clones within the tumor, regardless of its initial size. This suggests that composition of the tumor as a whole needs to be evaluated in order to maximize the efficacy of therapy.

  1. Research toward the development of a biologically based dose response assessment for inorganic arsenic carcinogenicity: A progress report

    International Nuclear Information System (INIS)

    Clewell, Harvey J.; Thomas, Russell S.; Gentry, P. Robinan; Crump, Kenny S.; Kenyon, Elaina M.; El-Masri, Hisham A.; Yager, Janice W.

    2007-01-01

    Cancer risk assessments for inorganic arsenic have been based on human epidemiological data, assuming a linear dose response below the range of observation of tumors. Part of the reason for the continued use of the linear approach in arsenic risk assessments is the lack of an adequate biologically based dose response (BBDR) model that could provide a quantitative basis for an alternative nonlinear approach. This paper describes elements of an ongoing collaborative research effort between the CIIT Centers for Health Research, the U.S. Environmental Protection Agency, ENVIRON International, and EPRI to develop BBDR modeling approaches that could be used to inform a nonlinear cancer dose response assessment for inorganic arsenic. These efforts are focused on: (1) the refinement of physiologically based pharmacokinetic (PBPK) models of the kinetics of inorganic arsenic and its metabolites in the mouse and human; (2) the investigation of mathematical solutions for multi-stage cancer models involving multiple pathways of cell transformation; (3) the review and evaluation of the literature on the dose response for the genomic effects of arsenic; and (4) the collection of data on the dose response for genomic changes in the urinary bladder (a human target tissue for arsenic carcinogenesis) associated with in vivo drinking water exposures in the mouse as well as in vitro exposures of both mouse and human cells. An approach is proposed for conducting a biologically based margin of exposure risk assessment for inorganic arsenic using the in vitro dose response for the expression of genes associated with the obligatory precursor events for arsenic tumorigenesis

  2. Epidemiology and Molecular Biology of Head and Neck Cancer.

    Science.gov (United States)

    Jou, Adriana; Hess, Jochen

    2017-01-01

    Head and neck cancer is a common and aggressive malignancy with a high morbidity and mortality profile. Although the large majority of cases resemble head and neck squamous cell carcinoma (HNSCC), the current classification based on anatomic site and tumor stage fails to capture the high level of biologic heterogeneity, and appropriate clinical management remains a major challenge. Hence, a better understanding of the molecular biology of HNSCC is urgently needed to support biomarker development and personalized care for patients. This review focuses on recent findings based on integrative genomics analysis and multi-scale modeling approaches and how they are beginning to provide more sophisticated clues as to the biological and clinical diversity of HNSCC. © 2017 S. Karger GmbH, Freiburg.

  3. hTe exciting potential of nanotherapy in brain-tumor targeted drug delivery approaches

    Institute of Scientific and Technical Information of China (English)

    Vivek Agrahari

    2017-01-01

    Delivering therapeutics to the central nervous system (CNS) and brain-tumor has been a major challenge. hTe current standard treatment approaches for the brain-tumor comprise of surgical resection followed by immunotherapy, radiotherapy, and chemotherapy. However, the current treatments are limited in provid-ing signiifcant beneifts to the patients and despite recent technological advancements; brain-tumor is still challenging to treat. Brain-tumor therapy is limited by the lack of effective and targeted strategies to deliver chemotherapeutic agents across the blood-brain barrier (BBB). hTe BBB is the main obstacle that must be overcome to allow compounds to reach their targets in the brain. Recent advances have boosted the nan-otherapeutic approaches in providing an attractive strategy in improving the drug delivery across the BBB and into the CNS. Compared to conventional formulations, nanoformulations offer signiifcant ad vantages in CNS drug delivery approaches. Considering the above facts, in this review, the physiological/anatomical features of the brain-tumor and the BBB are brielfy discussed. hTe drug transport mechanisms at the BBB are outlined. hTe approaches to deliver chemotherapeutic drugs across the CNS into the brain-tumor using nanocarriers are summarized. In addition, the challenges that need to be addressed in nanotherapeutic ap-proaches for their enhanced clinical application in brain-tumor therapy are discussed.

  4. Enhanced relative biological effectiveness of proton radiotherapy in tumor cells with internalized gold nanoparticles

    Science.gov (United States)

    Polf, Jerimy C.; Bronk, Lawrence F.; Driessen, Wouter H. P.; Arap, Wadih; Pasqualini, Renata; Gillin, Michael

    2011-01-01

    The development and use of sensitizing agents to improve the effectiveness of radiotherapy have long been sought to improve our ability to treat cancer. In this letter, we have studied the relative biological effectiveness of proton beam radiotherapy on prostate tumor cells with and without internalized gold nanoparticles. The effectiveness of proton radiotherapy for the killing of prostate tumor cells was increased by approximately 15%–20% for those cells containing internalized gold nanoparticles. PMID:21915155

  5. Insights into the key roles of proteoglycans in breast cancer biology and translational medicine

    DEFF Research Database (Denmark)

    Theocharis, Achilleas D.; Skandalis, Spyros S.; Neill, Thomas

    2015-01-01

    of proteoglycans on tumor and stromal cell membranes affects cancer cell signaling, growth and survival, cell adhesion, migration and angiogenesis. Despite the high complexity and heterogeneity of breast cancer, the rapid evolution in our knowledge that proteoglycans are among the key players in the breast tumor...... in the proteoglycans that will be presented herein provides the potential for multiple layers of regulation of breast tumor behavior. This review summarizes recent developments concerning the biology of selected proteoglycans in breast cancer, and presents potential targeted therapeutic approaches based on their novel...

  6. An approach to malignant mammary phyllodes tumors detection

    Directory of Open Access Journals (Sweden)

    Ilić Ivan

    2009-01-01

    Full Text Available Background/Aim. Mammary phyllodes tumors (MPT are uncommon fibroepithelial (biphasic neoplasms whose clinical behavior is difficult to predict on the basis of histological criteria only. They are divided into benign, borderline malignant and malignant groups. Sometimes it appears difficult to distinguish these tumors from other types of soft tissue sarcomas. Because of the relatively scant data on the role of biological markers in MPT histogenesis, we have decided to undertake the following study, trying to shed more light on the issue by investigating the following elements that make up MPT: their histological patterns, biological behavior, enzymohistochemical, histochemical and immunohistochemical characteristics (ICH together with the mast cell analysis. Methods. We examined the biopsy material of 35 MPT in our laboratory. Enzymohistochemistry was performed on frozen sections (method of Crowford, Nachlas and Seligman. The used methods were classical hematoxylin-eosin (H&E; histochemical Massontrichrome, Alcian-blue, Periodic acid Schiff and immunohistochemical LSAB2 method (DacoCytomation. Ki-67, ckit, vimentin, estrogen receptor (ER, progesterone receptor (PR and Her-2 oncoprotein immunohistochemistry was performed on all tumors. Results. The patients were ranged per age from 30-62 years (mean 43.3 years, median 39 years. A total of 35 cases of MPT were included: 20 benign (57%, 6 borderline malignant (17% and 9 malignant (26%. Twenty-two patients (62.8 % underwent segmental mastectomy, while 13 (37.2% had total mastectomies. Twenty-eight patients had negative surgical margins at original resection. The mean size of malignant MPT (7.8 cm was larger than that of benign MPT (4.5 cm. Significant features of the malignant MPT were: stromal cellularity, stromal cellular atypism, high mitotic activity, atypic mitoses, stromal overgrowth, infiltrative tumor contour and heterologous stromal elements. Benign MPT showed strong enzymohistochemical

  7. Three-dimensional models of cancer for pharmacology and cancer cell biology: capturing tumor complexity in vitro/ex vivo.

    Science.gov (United States)

    Hickman, John A; Graeser, Ralph; de Hoogt, Ronald; Vidic, Suzana; Brito, Catarina; Gutekunst, Matthias; van der Kuip, Heiko

    2014-09-01

    Cancers are complex and heterogeneous pathological "organs" in a dynamic interplay with their host. Models of human cancer in vitro, used in cancer biology and drug discovery, are generally highly reductionist. These cancer models do not incorporate complexity or heterogeneity. This raises the question as to whether the cancer models' biochemical circuitry (not their genome) represents, with sufficient fidelity, a tumor in situ. Around 95% of new anticancer drugs eventually fail in clinical trial, despite robust indications of activity in existing in vitro pre-clinical models. Innovative models are required that better capture tumor biology. An important feature of all tissues, and tumors, is that cells grow in three dimensions. Advances in generating and characterizing simple and complex (with added stromal components) three-dimensional in vitro models (3D models) are reviewed in this article. The application of stirred bioreactors to permit both scale-up/scale-down of these cancer models and, importantly, methods to permit controlled changes in environment (pH, nutrients, and oxygen) are also described. The challenges of generating thin tumor slices, their utility, and potential advantages and disadvantages are discussed. These in vitro/ex vivo models represent a distinct move to capture the realities of tumor biology in situ, but significant characterization work still remains to be done in order to show that their biochemical circuitry accurately reflects that of a tumor. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Molecular Biology In Young Women With Breast Cancer: From Tumor Gene Expression To DNA Mutations.

    Science.gov (United States)

    Gómez-Flores-Ramos, Liliana; Castro-Sánchez, Andrea; Peña-Curiel, Omar; Mohar-Betancourt, Alejandro

    2017-01-01

    Young women with breast cancer (YWBC) represent roughly 15% of breast cancer (BC) cases in Latin America and other developing regions. Breast tumors occurring at an early age are more aggressive and have an overall worse prognosis compared to breast tumors in postmenopausal women. The expression of relevant proliferation biomarkers such as endocrine receptors and human epidermal growth factor receptor 2 appears to be unique in YWBC. Moreover, histopathological, molecular, genetic, and genomic studies have shown that YWBC exhibit a higher frequency of aggressive subtypes, differential tumor gene expression, increased genetic susceptibility, and specific genomic signatures, compared to older women with BC. This article reviews the current knowledge on tumor biology and genomic signatures in YWBC.

  9. A system for tumor heterogeneity evaluation and diagnosis based on tumor markers measured routinely in the laboratory.

    Science.gov (United States)

    Hui, Liu; Rixv, Liu; Xiuying, Zhou

    2015-12-01

    To develop an efficient and reliable approach to estimate tumor heterogeneity and improve tumor diagnosis using multiple tumor markers measured routinely in the clinical laboratory. A total of 161 patients with different cancers were recruited as the cancer group, and 91 patients with non-oncological conditions were required as the non-oncological disease group. The control group comprised 90 randomly selected healthy subjects. AFP, CEA, CYFRA, CA125, CA153, CA199, CA724, and NSE levels were measured in all these subjects with a chemiluminescent microparticle immunoassay. The tumor marker with the maximum S/CO value (sample test value:cutoff value for discriminating individuals with and without tumors) was considered as a specific tumor marker (STM) for an individual. Tumor heterogeneity index (THI)=N/P (N: number of STMs; P: percentage of individuals with STMs in a certain tumor population) was used to quantify tumor heterogeneity: high THI indicated high tumor heterogeneity. The tumor marker index (TMI), TMI = STM×(number of positive tumor markers+1), was used for diagnosis. The THIs of lung, gastric, and liver cancers were 8.33, 9.63, and 5.2, respectively, while the ROC-areas under the curve for TMI were 0.862, 0.809, and 0.966. In this study, we developed a novel index for tumor heterogeneity based on the expression of various routinely evaluated serum tumor markers. Development of an evaluation system for tumor heterogeneity on the basis of this index could provide an effective diagnostic tool for some cancers. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  10. Advancing Cancer Systems Biology: Introducing the Center for the Development of a Virtual Tumor, CViT

    Directory of Open Access Journals (Sweden)

    Sean Martin

    2007-01-01

    Full Text Available Integrative cancer biology research relies on a variety of data-driven computational modeling and simulation methods and techniques geared towards gaining new insights into the complexity of biological processes that are of critical importance for cancer research. These include the dynamics of gene-protein interaction networks, the percolation of subcellular perturbations across scales and the impact they may have on tumorigenesis in both experiments and clinics. Such innovative ‘systems’ research will greatly benefi t from enabling Information Technology that is currently under development, including an online collaborative environment, a Semantic Web based computing platform that hosts data and model repositories as well as high-performance computing access. Here, we present one of the National Cancer Institute’s recently established Integrative Cancer Biology Programs, i.e. the Center for the Development of a Virtual Tumor, CViT, which is charged with building a cancer modeling community, developing the aforementioned enabling technologies and fostering multi-scale cancer modeling and simulation.

  11. New Approaches in Cancer Biology Can Inform the Biology Curriculum.

    Science.gov (United States)

    Jones, Lynda; Gordon, Diana; Zelinski, Mary

    2018-03-01

    Students tend to be very interested in medical issues that affect them and their friends and family. Using cancer as a hook, the ART of Reproductive Medicine: Oncofertility curriculum (free, online, and NIH sponsored) has been developed to supplement the teaching of basic biological concepts and to connect biology and biomedical research. This approach allows integration of up-to-date information on cancer and cancer treatment, cell division, male and female reproductive anatomy and physiology, cryopreservation, fertility preservation, stem cells, ethics, and epigenetics into an existing biology curriculum. Many of the topics covered in the curriculum relate to other scientific disciplines, such as the latest developments in stem cell research including tissue bioengineering and gene therapy for inherited mitochondrial disease, how epigenetics occurs chemically to affect gene expression or suppression and how it can be passed down through the generations, and the variety of biomedical careers students could pursue. The labs are designed to be open-ended and inquiry-based, and extensions to the experiments are provided so that students can explore questions further. Case studies and ethical dilemmas are provided to encourage thoughtful discussion. In addition, each chapter of the curriculum includes links to scientific papers, additional resources on each topic, and NGSS alignment.

  12. In situ biomolecule production by bacteria; a synthetic biology approach to medicine.

    Science.gov (United States)

    Flores Bueso, Yensi; Lehouritis, Panos; Tangney, Mark

    2018-04-10

    The ability to modify existing microbiota at different sites presents enormous potential for local or indirect management of various diseases. Because bacteria can be maintained for lengthy periods in various regions of the body, they represent a platform with enormous potential for targeted production of biomolecules, which offer tremendous promise for therapeutic and diagnostic approaches for various diseases. While biological medicines are currently limited in the clinic to patient administration of exogenously produced biomolecules from engineered cells, in situ production of biomolecules presents enormous scope in medicine and beyond. The slow pace and high expense of traditional research approaches has particularly hampered the development of biological medicines. It may be argued that bacterial-based medicine has been "waiting" for the advent of enabling technology. We propose that this technology is Synthetic Biology, and that the wait is over. Synthetic Biology facilitates a systematic approach to programming living entities and/or their products, using an approach to Research and Development (R&D) that facilitates rapid, cheap, accessible, yet sophisticated product development. Full engagement with the Synthetic Biology approach to R&D can unlock the potential for bacteria as medicines for cancer and other indications. In this review, we describe how by employing Synthetic Biology, designer bugs can be used as drugs, drug-production factories or diagnostic devices, using oncology as an exemplar for the concept of in situ biomolecule production in medicine. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. A Systems’ Biology Approach to Study MicroRNA-Mediated Gene Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Xin Lai

    2013-01-01

    Full Text Available MicroRNAs (miRNAs are potent effectors in gene regulatory networks where aberrant miRNA expression can contribute to human diseases such as cancer. For a better understanding of the regulatory role of miRNAs in coordinating gene expression, we here present a systems biology approach combining data-driven modeling and model-driven experiments. Such an approach is characterized by an iterative process, including biological data acquisition and integration, network construction, mathematical modeling and experimental validation. To demonstrate the application of this approach, we adopt it to investigate mechanisms of collective repression on p21 by multiple miRNAs. We first construct a p21 regulatory network based on data from the literature and further expand it using algorithms that predict molecular interactions. Based on the network structure, a detailed mechanistic model is established and its parameter values are determined using data. Finally, the calibrated model is used to study the effect of different miRNA expression profiles and cooperative target regulation on p21 expression levels in different biological contexts.

  14. Modeling drug- and chemical- induced hepatotoxicity with systems biology approaches

    Directory of Open Access Journals (Sweden)

    Sudin eBhattacharya

    2012-12-01

    Full Text Available We provide an overview of computational systems biology approaches as applied to the study of chemical- and drug-induced toxicity. The concept of ‘toxicity pathways’ is described in the context of the 2007 US National Academies of Science report, Toxicity testing in the 21st Century: A Vision and A Strategy. Pathway mapping and modeling based on network biology concepts are a key component of the vision laid out in this report for a more biologically-based analysis of dose-response behavior and the safety of chemicals and drugs. We focus on toxicity of the liver (hepatotoxicity – a complex phenotypic response with contributions from a number of different cell types and biological processes. We describe three case studies of complementary multi-scale computational modeling approaches to understand perturbation of toxicity pathways in the human liver as a result of exposure to environmental contaminants and specific drugs. One approach involves development of a spatial, multicellular virtual tissue model of the liver lobule that combines molecular circuits in individual hepatocytes with cell-cell interactions and blood-mediated transport of toxicants through hepatic sinusoids, to enable quantitative, mechanistic prediction of hepatic dose-response for activation of the AhR toxicity pathway. Simultaneously, methods are being developing to extract quantitative maps of intracellular signaling and transcriptional regulatory networks perturbed by environmental contaminants, using a combination of gene expression and genome-wide protein-DNA interaction data. A predictive physiological model (DILIsymTM to understand drug-induced liver injury (DILI, the most common adverse event leading to termination of clinical development programs and regulatory actions on drugs, is also described. The model initially focuses on reactive metabolite-induced DILI in response to administration of acetaminophen, and spans multiple biological scales.

  15. Fatty acid synthase - Modern tumor cell biology insights into a classical oncology target.

    Science.gov (United States)

    Buckley, Douglas; Duke, Gregory; Heuer, Timothy S; O'Farrell, Marie; Wagman, Allan S; McCulloch, William; Kemble, George

    2017-09-01

    Decades of preclinical and natural history studies have highlighted the potential of fatty acid synthase (FASN) as a bona fide drug target for oncology. This review will highlight the foundational concepts upon which this perspective is built. Published studies have shown that high levels of FASN in patient tumor tissues are present at later stages of disease and this overexpression predicts poor prognosis. Preclinical studies have shown that experimental overexpression of FASN in previously normal cells leads to changes that are critical for establishing a tumor phenotype. Once the tumor phenotype is established, FASN elicits several changes to the tumor cell and becomes intertwined with its survival. The product of FASN, palmitate, changes the biophysical nature of the tumor cell membrane; membrane microdomains enable the efficient assembly of signaling complexes required for continued tumor cell proliferation and survival. Membranes densely packed with phospholipids containing saturated fatty acids become resistant to the action of other chemotherapeutic agents. Inhibiting FASN leads to tumor cell death while sparing normal cells, which do not have the dependence of this enzyme for normal functions, and restores membrane architecture to more normal properties thereby resensitizing tumors to killing by chemotherapies. One compound has recently reached clinical studies in solid tumor patients and highlights the need for continued evaluation of the role of FASN in tumor cell biology. Significant advances have been made and much remains to be done to optimally apply this class of pharmacological agents for the treatment of specific cancers. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. [Extensive tumor of the skull base: sphenoid sinus adenocarcinoma].

    Science.gov (United States)

    Kallel, Souha; Sellami, Moncef

    2017-01-01

    We report a rare case of adenocarcinoma of the sphenoid sinus manifesting as extended skull base tumor. The patient included in the study was a 42-year old woman presenting with unilateral right symptomatology consisting of nasal obstruction, diplopia and hemifacial neuralgias. Clinical examination showed paralysis of the cranial nerve pairs V and VI. Brain scanner showed voluminous heterogeneous sphenoid and clival mass reaching the right cavernous sinus, with a peripheral tissue component at the level of the sphenoid sinus. Biopsy was performed under general anesthesia, through endonasal sphenoidotomy approach. Histological examination showed non-intestinal adenocarcinoma. The patient died due to impaired general condition occurred during examinations. Skull base adenocarcinomas mainly occur in the ethmoid bone. Sphenoid origin is exceptional. Radiological appearance is not specific and suggests malignancy. Diagnosis should be suspected in patients with aggressive tumor, even when it occurs in the midline skull base.

  17. Three-Dimensional Patient-Derived In Vitro Sarcoma Models: Promising Tools for Improving Clinical Tumor Management

    Directory of Open Access Journals (Sweden)

    Manuela Gaebler

    2017-09-01

    Full Text Available Over the past decade, the development of new targeted therapeutics directed against specific molecular pathways involved in tumor cell proliferation and survival has allowed an essential improvement in carcinoma treatment. Unfortunately, the scenario is different for sarcomas, a group of malignant neoplasms originating from mesenchymal cells, for which the main therapeutic approach still consists in the combination of surgery, chemotherapy, and radiation therapy. The lack of innovative approaches in sarcoma treatment stems from the high degree of heterogeneity of this tumor type, with more that 70 different histopathological subtypes, and the limited knowledge of the molecular drivers of tumor development and progression. Currently, molecular therapies are available mainly for the treatment of gastrointestinal stromal tumor, a soft-tissue malignancy characterized by an activating mutation of the tyrosine kinase KIT. Since the first application of this approach, a strong effort has been made to understand sarcoma molecular alterations that can be potential targets for therapy. The low incidence combined with the high level of histopathological heterogeneity makes the development of clinical trials for sarcomas very challenging. For this reason, preclinical studies are needed to better understand tumor biology with the aim to develop new targeted therapeutics. Currently, these studies are mainly based on in vitro testing, since cell lines, and in particular patient-derived models, represent a reliable and easy to handle tool for investigation. In the present review, we summarize the most important models currently available in the field, focusing in particular on the three-dimensional spheroid/organoid model. This innovative approach for studying tumor biology better represents tissue architecture and cell–cell as well as cell–microenvironment crosstalk, which are fundamental steps for tumor cell proliferation and survival.

  18. A correlative optical microscopy and scanning electron microscopy approach to locating nanoparticles in brain tumors.

    Science.gov (United States)

    Kempen, Paul J; Kircher, Moritz F; de la Zerda, Adam; Zavaleta, Cristina L; Jokerst, Jesse V; Mellinghoff, Ingo K; Gambhir, Sanjiv S; Sinclair, Robert

    2015-01-01

    The growing use of nanoparticles in biomedical applications, including cancer diagnosis and treatment, demands the capability to exactly locate them within complex biological systems. In this work a correlative optical and scanning electron microscopy technique was developed to locate and observe multi-modal gold core nanoparticle accumulation in brain tumor models. Entire brain sections from mice containing orthotopic brain tumors injected intravenously with nanoparticles were imaged using both optical microscopy to identify the brain tumor, and scanning electron microscopy to identify the individual nanoparticles. Gold-based nanoparticles were readily identified in the scanning electron microscope using backscattered electron imaging as bright spots against a darker background. This information was then correlated to determine the exact location of the nanoparticles within the brain tissue. The nanoparticles were located only in areas that contained tumor cells, and not in the surrounding healthy brain tissue. This correlative technique provides a powerful method to relate the macro- and micro-scale features visible in light microscopy with the nanoscale features resolvable in scanning electron microscopy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. New trends in the use of biological response modifiers for treatment of malignant neoplasm

    International Nuclear Information System (INIS)

    Saad, Sherif Y.

    2002-01-01

    Biological response modifiers are critical controllers of cell division and hence tissue, growth, migration development and differentiation. The family of biological response modifiers includes interferons, tumor necrosis factor, interleukins, colony stimulating factors and hematopoietic growth factors as well as tumor vaccines and monoclonal antibodies. Biological response modifiers have important roles in cancer development and progression, control of cell replication and apoptosis and modulation of immune reactions such as sensitization. This article reviews the biology, pharmacology and clinical application of biological response modifiers in oncology. The antitumor activity of biological response modifiers may be augmented immune response including activation of natural killer lymphocytes and enhanced expression of cell surface antigens (MHC I and II). Combination of biological therapy with chemotherapy improves the response of those tumors refractory to conventional therapies. Colony stimulating factors are used for manipulating immune system to fight against cancer and to prevent chemotherapy-induced neutropenia. Recent advances in tumor immunology, most notably the identification of genes encoding for cancer regression antigens, have paved the way for the development of a variety of novel and specific vaccines and monoclonal antibody approaches. These approaches are discussed from a therapeutic perspective. (author)

  20. Biological approach, (1)

    International Nuclear Information System (INIS)

    Takakura, Kimitomo

    1981-01-01

    The effect of anticancer drugs on the cell cycle of in-vitro brain tumor cells is assessed. YM26 showed the greatest accumulation and synchronizing effect in the G2-M phase. In the in-vivo cell cycle of animal brain tumors, vincristine and ACNU accumulate and synchronize tumor cells in the G2-M phase, as in the in-vitro results. Clinically, tumor cells are accumulated with anticancer drugs in the highly radiosensitive G2-M phase. Radiotherapy in combination with these chemical compounds was given in 62 cases of malignant glioma and 19 of metastatic brain tumor. As a result, disappearance or marked regression of tumors on CT, accompanied by improvement of nervous symptoms, was observed in approx. 40%. Tumor regression on CT, or improvement of nervous symptoms was observed in 40%, but no effect was noted in 20%. The one-year survival rate was 78% and the two-year survival rate 38%. This method was much better than radiotherapy alone. (Chiba, N.)

  1. Independent component analysis reveals new and biologically significant structures in micro array data

    Directory of Open Access Journals (Sweden)

    Veerla Srinivas

    2006-06-01

    Full Text Available Abstract Background An alternative to standard approaches to uncover biologically meaningful structures in micro array data is to treat the data as a blind source separation (BSS problem. BSS attempts to separate a mixture of signals into their different sources and refers to the problem of recovering signals from several observed linear mixtures. In the context of micro array data, "sources" may correspond to specific cellular responses or to co-regulated genes. Results We applied independent component analysis (ICA to three different microarray data sets; two tumor data sets and one time series experiment. To obtain reliable components we used iterated ICA to estimate component centrotypes. We found that many of the low ranking components indeed may show a strong biological coherence and hence be of biological significance. Generally ICA achieved a higher resolution when compared with results based on correlated expression and a larger number of gene clusters with significantly enriched for gene ontology (GO categories. In addition, components characteristic for molecular subtypes and for tumors with specific chromosomal translocations were identified. ICA also identified more than one gene clusters significant for the same GO categories and hence disclosed a higher level of biological heterogeneity, even within coherent groups of genes. Conclusion Although the ICA approach primarily detects hidden variables, these surfaced as highly correlated genes in time series data and in one instance in the tumor data. This further strengthens the biological relevance of latent variables detected by ICA.

  2. Staging of gastroenteropancreatic neuroendocrine tumors: how we do it based on an evidence-based approach.

    LENUS (Irish Health Repository)

    McDermott, Shaunagh

    2013-01-01

    In contrast to other common types of malignant tumors, the vast majority of gastroenteropancreatic neuroendocrine tumors are well differentiated and slowly growing with only a minority showing aggressive behavior. It is important to accurately stage patients radiologically so the correct treatment can be implemented and to improve prognosis. In this article, we critically appraise the current literature in an effort to establish the current role of radiologic imaging in the staging of neuroendocrine tumors. We also discuss our protocol for staging neuroendocrine tumors.

  3. Integrating cell biology and proteomic approaches in plants.

    Science.gov (United States)

    Takáč, Tomáš; Šamajová, Olga; Šamaj, Jozef

    2017-10-03

    Significant improvements of protein extraction, separation, mass spectrometry and bioinformatics nurtured advancements of proteomics during the past years. The usefulness of proteomics in the investigation of biological problems can be enhanced by integration with other experimental methods from cell biology, genetics, biochemistry, pharmacology, molecular biology and other omics approaches including transcriptomics and metabolomics. This review aims to summarize current trends integrating cell biology and proteomics in plant science. Cell biology approaches are most frequently used in proteomic studies investigating subcellular and developmental proteomes, however, they were also employed in proteomic studies exploring abiotic and biotic stress responses, vesicular transport, cytoskeleton and protein posttranslational modifications. They are used either for detailed cellular or ultrastructural characterization of the object subjected to proteomic study, validation of proteomic results or to expand proteomic data. In this respect, a broad spectrum of methods is employed to support proteomic studies including ultrastructural electron microscopy studies, histochemical staining, immunochemical localization, in vivo imaging of fluorescently tagged proteins and visualization of protein-protein interactions. Thus, cell biological observations on fixed or living cell compartments, cells, tissues and organs are feasible, and in some cases fundamental for the validation and complementation of proteomic data. Validation of proteomic data by independent experimental methods requires development of new complementary approaches. Benefits of cell biology methods and techniques are not sufficiently highlighted in current proteomic studies. This encouraged us to review most popular cell biology methods used in proteomic studies and to evaluate their relevance and potential for proteomic data validation and enrichment of purely proteomic analyses. We also provide examples of

  4. Malignant mesothelioma: biology, diagnosis and therapeutic approaches

    Czech Academy of Sciences Publication Activity Database

    Tomasetti, M.; Amati, M.; Santarelli, L.; Alleva, R.; Neužil, Jiří

    2009-01-01

    Roč. 2, č. 2 (2009), s. 190-206 ISSN 1874-4672 Institutional research plan: CEZ:AV0Z50520514 Keywords : malignant mesothelioma * biology * diagnosis and therapeutic approaches Subject RIV: EB - Genetics ; Molecular Biology

  5. Mesenchymal stem cell 1 (MSC1-based therapy attenuates tumor growth whereas MSC2-treatment promotes tumor growth and metastasis.

    Directory of Open Access Journals (Sweden)

    Ruth S Waterman

    Full Text Available Currently, there are many promising clinical trials using mesenchymal stem cells (MSCs in cell-based therapies of numerous diseases. Increasingly, however, there is a concern over the use of MSCs because they home to tumors and can support tumor growth and metastasis. For instance, we established that MSCs in the ovarian tumor microenvironment promoted tumor growth and favored angiogenesis. In parallel studies, we also developed a new approach to induce the conventional mixed pool of MSCs into two uniform but distinct phenotypes we termed MSC1 and MSC2.Here we tested the in vitro and in vivo stability of MSC1 and MSC2 phenotypes as well as their effects on tumor growth and spread. In vitro co-culture of MSC1 with various cancer cells diminished growth in colony forming units and tumor spheroid assays, while conventional MSCs or MSC2 co-culture had the opposite effect in these assays. Co-culture of MSC1 and cancer cells also distinctly affected their migration and invasion potential when compared to MSCs or MSC2 treated samples. The expression of bioactive molecules also differed dramatically among these samples. MSC1-based treatment of established tumors in an immune competent model attenuated tumor growth and metastasis in contrast to MSCs- and MSC2-treated animals in which tumor growth and spread was increased. Also, in contrast to these groups, MSC1-therapy led to less ascites accumulation, increased CD45+leukocytes, decreased collagen deposition, and mast cell degranulation.These observations indicate that the MSC1 and MSC2 phenotypes may be convenient tools for the discovery of critical components of the tumor stroma. The continued investigation of these cells may help ensure that cell based-therapy is used safely and effectively in human disease.

  6. EUD-based biological optimization for carbon ion therapy

    International Nuclear Information System (INIS)

    Brüningk, Sarah C.; Kamp, Florian; Wilkens, Jan J.

    2015-01-01

    Purpose: Treatment planning for carbon ion therapy requires an accurate modeling of the biological response of each tissue to estimate the clinical outcome of a treatment. The relative biological effectiveness (RBE) accounts for this biological response on a cellular level but does not refer to the actual impact on the organ as a whole. For photon therapy, the concept of equivalent uniform dose (EUD) represents a simple model to take the organ response into account, yet so far no formulation of EUD has been reported that is suitable to carbon ion therapy. The authors introduce the concept of an equivalent uniform effect (EUE) that is directly applicable to both ion and photon therapies and exemplarily implemented it as a basis for biological treatment plan optimization for carbon ion therapy. Methods: In addition to a classical EUD concept, which calculates a generalized mean over the RBE-weighted dose distribution, the authors propose the EUE to simplify the optimization process of carbon ion therapy plans. The EUE is defined as the biologically equivalent uniform effect that yields the same probability of injury as the inhomogeneous effect distribution in an organ. Its mathematical formulation is based on the generalized mean effect using an effect-volume parameter to account for different organ architectures and is thus independent of a reference radiation. For both EUD concepts, quadratic and logistic objective functions are implemented into a research treatment planning system. A flexible implementation allows choosing for each structure between biological effect constraints per voxel and EUD constraints per structure. Exemplary treatment plans are calculated for a head-and-neck patient for multiple combinations of objective functions and optimization parameters. Results: Treatment plans optimized using an EUE-based objective function were comparable to those optimized with an RBE-weighted EUD-based approach. In agreement with previous results from photon

  7. Exposure to 3G mobile phone signals does not affect the biological features of brain tumor cells.

    Science.gov (United States)

    Liu, Yu-xiao; Li, Guo-qing; Fu, Xiang-ping; Xue, Jing-hui; Ji, Shou-ping; Zhang, Zhi-wen; Zhang, Yi; Li, An-ming

    2015-08-08

    The increase in mobile phone use has generated concerns about possible risks to human health, especially the development of brain tumors. Whether tumor patients should continue to use mobile telephones has remained unclear because of a paucity of information. Herein, we investigated whether electromagnetic fields from mobile phones could alter the biological features of human tumor cells and act as a tumor-promoting agent. Human glioblastoma cell lines, U251-MG and U87-MG, were exposed to 1950-MHz time division-synchronous code division multiple access (TD-SCDMA) at a specific absorption rate (maximum SAR = 5.0 W/kg) for 12, 24, and 48 h. Cell morphologies and ultra-structures were observed by microscopy and the rates of apoptosis and cell cycle progression were monitored by flow cytometry. Additionally, cell growth was determined using the CKK-8 assay, and the expression levels of tumor and apoptosis-related genes and proteins were analyzed by real-time PCR and western blotting, respectively. Tumor formation and invasiveness were measured using a tumorigenicity assay in vivo and migration assays in vitro. No significant differences in either biological features or tumor formation ability were observed between unexposed and exposed glioblastoma cells. Our data showed that exposure to 1950-MHz TD-SCDMA electromagnetic fields for up to 48 h did not act as a cytotoxic or tumor-promoting agent to affect the proliferation or gene expression profile of glioblastoma cells. Our findings implied that exposing brain tumor cells in vitro for up to 48 h to 1950-MHz continuous TD-SCDMA electromagnetic fields did not elicit a general cell stress response.

  8. Synthesis of nanoparticles and nanomaterials biological approaches

    CERN Document Server

    Abdullaeva, Zhypargul

    2017-01-01

    This book covers biological synthesis approaches for nanomaterials and nanoparticles, including introductory material on their structure, phase compositions and morphology, nanomaterials chemical, physical, and biological properties. The chapters of this book describe in sequence the synthesis of various nanoparticles by microorganisms, bacteria, yeast, algae, and actynomycetes; plant and plant extract-based synthesis; and green synthesis methods. Each chapter provides basic knowledge on the synthesis of nanomaterials, defines fundamental terms, and aims to build a solid foundation of knowledge, followed by explanations, examples, visual photographs, schemes, tables and illustrations. Each chapter also contains control questions, problem drills, as well as case studies that clarify theory and the explanations given in the text. This book is ideal for researchers and advanced graduate students in materials engineering, biotechnology, and nanotechnology fields. As a reference book this work is also appropriate ...

  9. Teaching Cell Biology to Dental Students with a Project-Based Learning Approach.

    Science.gov (United States)

    Costa-Silva, Daniela; Côrtes, Juliana A; Bachinski, Rober F; Spiegel, Carolina N; Alves, Gutemberg G

    2018-03-01

    Although the discipline of cell biology (CB) is part of the curricula of predoctoral dental schools, students often fail to recognize its practical relevance. The aim of this study was to assess the effectiveness of a practical-theoretical project-based course in closing the gaps among CB, scientific research, and dentistry for dental students. A project-based learning course was developed with nine sequential lessons to evaluate 108 undergraduate dental students enrolled in CB classes of a Brazilian school of dentistry during 2013-16. To highlight the relevance of in vitro studies in the preclinical evaluation of dental materials at the cellular level, the students were challenged to complete the process of drafting a protocol and performing a cytocompatibility assay for a bone substitute used in dentistry. Class activities included small group discussions, scientific database search and article presentations, protocol development, lab experimentation, and writing of a final scientific report. A control group of 31 students attended only one laboratory class on the same theme, and the final reports were compared between the two groups. The results showed that the project-based learning students had superior outcomes in acknowledging the relevance of in vitro methods during biocompatibility testing. Moreover, they produced scientifically sound reports with more content on methodological issues, the relationship with dentistry, and the scientific literature than the control group (p<0.05). The project-based learning students also recognized a higher relevance of scientific research and CB to dental practice. These results suggest that a project-based approach can help contextualize scientific research in dental curricula.

  10. A hybrid agent-based approach for modeling microbiological systems.

    Science.gov (United States)

    Guo, Zaiyi; Sloot, Peter M A; Tay, Joc Cing

    2008-11-21

    Models for systems biology commonly adopt Differential Equations or Agent-Based modeling approaches for simulating the processes as a whole. Models based on differential equations presuppose phenomenological intracellular behavioral mechanisms, while models based on Multi-Agent approach often use directly translated, and quantitatively less precise if-then logical rule constructs. We propose an extendible systems model based on a hybrid agent-based approach where biological cells are modeled as individuals (agents) while molecules are represented by quantities. This hybridization in entity representation entails a combined modeling strategy with agent-based behavioral rules and differential equations, thereby balancing the requirements of extendible model granularity with computational tractability. We demonstrate the efficacy of this approach with models of chemotaxis involving an assay of 10(3) cells and 1.2x10(6) molecules. The model produces cell migration patterns that are comparable to laboratory observations.

  11. Translating tumor biology into personalized treatment planning: analytical performance characteristics of the Oncotype DX Colon Cancer Assay.

    Science.gov (United States)

    Clark-Langone, Kim M; Sangli, Chithra; Krishnakumar, Jayadevi; Watson, Drew

    2010-12-23

    The Oncotype DX Colon Cancer Assay is a new diagnostic test for determining the likelihood of recurrence in stage II colon cancer patients after surgical resection using fixed paraffin embedded (FPE) primary colon tumor tissue. Like the Oncotype DX Breast Cancer Assay, this is a high complexity, multi-analyte, reverse transcription (RT) polymerase chain reaction (PCR) assay that measures the expression levels of specific cancer-related genes. By capturing the biology underlying each patient's tumor, the Oncotype DX Colon Cancer Assay provides a Recurrence Score (RS) that reflects an individualized risk of disease recurrence. Here we describe its analytical performance using pre-determined performance criteria, which is a critical component of molecular diagnostic test validation. All analytical measurements met pre-specified performance criteria. PCR amplification efficiency for all 12 assays was high, ranging from 96% to 107%, while linearity was demonstrated over an 11 log2 concentration range for all assays. Based on estimated components of variance for FPE RNA pools, analytical reproducibility and precision demonstrated low SDs for individual genes (0.16 to 0.32 CTs), gene groups (≤ 0.05 normalized/aggregate CTs) and RS (≤ 1.38 RS units). Analytical performance characteristics shown here for both individual genes and gene groups in the Oncotype DX Colon Cancer Assay demonstrate consistent translation of specific biology of individual tumors into clinically useful diagnostic information. The results of these studies illustrate how the analytical capability of the Oncotype DX Colon Cancer Assay has enabled clinical validation of a test to determine individualized recurrence risk after colon cancer surgery.

  12. Prospects and challenges of quantitative phase imaging in tumor cell biology

    Science.gov (United States)

    Kemper, Björn; Götte, Martin; Greve, Burkhard; Ketelhut, Steffi

    2016-03-01

    Quantitative phase imaging (QPI) techniques provide high resolution label-free quantitative live cell imaging. Here, prospects and challenges of QPI in tumor cell biology are presented, using the example of digital holographic microscopy (DHM). It is shown that the evaluation of quantitative DHM phase images allows the retrieval of different parameter sets for quantification of cellular motion changes in migration and motility assays that are caused by genetic modifications. Furthermore, we demonstrate simultaneously label-free imaging of cell growth and morphology properties.

  13. Oxygen distribution in tumors: A qualitative analysis and modeling study providing a novel Monte Carlo approach

    International Nuclear Information System (INIS)

    Lagerlöf, Jakob H.; Kindblom, Jon; Bernhardt, Peter

    2014-01-01

    end, due to anoxia, but smaller tumors showed undisturbed oxygen distributions. The six different models with correlated parameters generated three classes of oxygen distributions. The first was a hypothetical, negative covariance between vessel proximity and pO 2 (VPO-C scenario); the second was a hypothetical positive covariance between vessel proximity and pO 2 (VPO+C scenario); and the third was the hypothesis of no correlation between vessel proximity and pO 2 (UP scenario). The VPO-C scenario produced a distinctly different oxygen distribution than the two other scenarios. The shape of the VPO-C scenario was similar to that of the nonvariable DOC model, and the larger the tumor, the greater the similarity between the two models. For all simulations, the mean oxygen tension decreased and the hypoxic fraction increased with tumor size. The absorbed dose required for definitive tumor control was highest for the VPO+C scenario, followed by the UP and VPO-C scenarios. Conclusions: A novel MC algorithm was presented which simulated oxygen distributions and radiation response for various biological parameter values. The analysis showed that the VPO-C scenario generated a clearly different oxygen distribution from the VPO+C scenario; the former exhibited a lower hypoxic fraction and higher radiosensitivity. In future studies, this modeling approach might be valuable for qualitative analyses of factors that affect oxygen distribution as well as analyses of specific experimental and clinical situations

  14. Radiation for skull base meningiomas: review of the literature on the approach to radiotherapy.

    Science.gov (United States)

    Moraes, Fabio Y; Chung, Caroline

    2017-07-01

    Skull base meningiomas (SBM) pose unique challenges for radiotherapy as these tumors are often in close proximity to a number of critical structures and may not be surgically addressed in many cases, leaving the question about the tumor grade and expected biological behaviour. External beam radiotherapy and radiosurgery are longstanding treatments for meningioma that are typically used as upfront primary therapy, for recurrent tumors and as adjuvant therapy following surgical resection. There is controversy regarding the optimal timing and approach for radiation therapy in various clinical settings such as the role of adjuvant radiotherapy for completely resected grade 2 tumours. Despite the use of radiotherapy for many decades, the evidence to guide optimal radiation treatment is limited largely to single institution series of EBRT, SRS and particle therapy. In this article, we review the published data to clarify the role of external beam radiotherapy, proton radiotherapy and single and multi-fraction radiosurgery for SBM. We also highlight the areas of potential research and need for clinical improvement, including the growing awareness and effort to improve cognitive function in this patient population, who typically have long life expectancy following their meningioma diagnosis.

  15. Tiling array-CGH for the assessment of genomic similarities among synchronous unilateral and bilateral invasive breast cancer tumor pairs

    Directory of Open Access Journals (Sweden)

    Ringnér Markus

    2008-07-01

    Full Text Available Abstract Background Today, no objective criteria exist to differentiate between individual primary tumors and intra- or intermammary dissemination respectively, in patients diagnosed with two or more synchronous breast cancers. To elucidate whether these tumors most likely arise through clonal expansion, or whether they represent individual primary tumors is of tumor biological interest and may have clinical implications. In this respect, high resolution genomic profiling may provide a more reliable approach than conventional histopathological and tumor biological factors. Methods 32 K tiling microarray-based comparative genomic hybridization (aCGH was used to explore the genomic similarities among synchronous unilateral and bilateral invasive breast cancer tumor pairs, and was compared with histopathological and tumor biological parameters. Results Based on global copy number profiles and unsupervised hierarchical clustering, five of ten (p = 1.9 × 10-5 unilateral tumor pairs displayed similar genomic profiles within the pair, while only one of eight bilateral tumor pairs (p = 0.29 displayed pair-wise genomic similarities. DNA index, histological type and presence of vessel invasion correlated with the genomic analyses. Conclusion Synchronous unilateral tumor pairs are often genomically similar, while synchronous bilateral tumors most often represent individual primary tumors. However, two independent unilateral primary tumors can develop synchronously and contralateral tumor spread can occur. The presence of an intraductal component is not informative when establishing the independence of two tumors, while vessel invasion, the presence of which was found in clustering tumor pairs but not in tumor pairs that did not cluster together, supports the clustering outcome. Our data suggest that genomically similar unilateral tumor pairs may represent a more aggressive disease that requires the addition of more severe treatment modalities, and

  16. An Effective Approach for Immunotherapy Using Irradiated Tumor Cells

    International Nuclear Information System (INIS)

    Mostafa, D.M.B.

    2011-01-01

    This study has been aimed to investigate the effect of injection of Irradiated Ehrlich tumor cells alone or concurrent with immunomodulator in mice before and after challenge with viable Ehrlich tumor cells for enhancement of immune system. This study includes the estimation of survival, tumor size, lymphocyte count, LDH, MTT, granzyme B, and DNA fragmentation. In order to fulfill the target of this study, a total of 120 female swiss albino mice were used. They were divided into two classes vaccinated (injection of vaccine before challenge) and therapeutic class (injection of vaccine after challenge). Each class was divided into four groups, group (1) mice injected with viable Ehrlich tumor cells (G1), group (2) mice injected with irradiated tumor cells (G2), group (3) mice injected with immunomodulator (G3), and group (4) mice injected with irradiated tumor cells + immunomodulator (G4). Results obtained from this study demonstrated that, the lymphocyte count and granzyme B activity were increased in both the vaccinated and therapeutic classes compared with control group. LDH activity was decreased in all groups of vaccinated class and also in G2 and G4 groups of therapeutic class compared with control group. There was a significant increase in percent apoptosis of tumor cells cultured with spleenocytes of the groups of vaccinated class as compared with control group. Cellular DNA from Ehrlich tumor cell line cultured with spleenocytes of immunized groups was fragmented into discrete bands of approximate multiples of 200 bp. Revealing significant apoptosis in tumor cells due to vaccination. It is concluded that, vaccination with irradiated tumor cells is an effective approach in stimulation of immune system against viable tumor cells.

  17. Manipulatives-Based Laboratory for Majors Biology – a Hands-On Approach to Understanding Respiration and Photosynthesis

    Directory of Open Access Journals (Sweden)

    Sarah M. Boomer

    2011-09-01

    Full Text Available The first course in our year-long introductory series for Biology majors encompasses four learning units: biological molecules and cells, metabolism, genetics, and evolution. Of these, the metabolism unit, which includes respiration and photosynthesis, has shown the lowest student exam scores, least interest, and lowest laboratory ratings. Consequently, we hypothesized that modeling metabolic processes in the laboratory would improve student content learning during this course unit. Specifically, we developed manipulatives-based laboratory exercises that combined paper cutouts, movable blocks, and large diagrams of the cell. In particular, our novel use of connecting LEGO blocks allowed students to move model electrons and phosphates between molecules and within defined spaces of the cell. We assessed student learning using both formal (content indicators and attitude surveys and informal (the identification of misconceptions or discussions with students approaches. On the metabolism unit content exam, student performance improved by 46% over pretest scores and by the end of the course, the majority of students rated metabolism as their most-improved (43% and favorite (33% subject as compared with other unit topics. The majority of students rated manipulatives-based labs as very helpful, as compared to non-manipulatives-based labs. In this report, we will demonstrate that students made learning gains across all content areas, but most notably in the unit that covered respiration and photosynthesis.

  18. TissueCypher™: A systems biology approach to anatomic pathology

    Directory of Open Access Journals (Sweden)

    Jeffrey W Prichard

    2015-01-01

    Full Text Available Background: Current histologic methods for diagnosis are limited by intra- and inter-observer variability. Immunohistochemistry (IHC methods are frequently used to assess biomarkers to aid diagnoses, however, IHC staining is variable and nonlinear and the manual interpretation is subjective. Furthermore, the biomarkers assessed clinically are typically biomarkers of epithelial cell processes. Tumors and premalignant tissues are not composed only of epithelial cells but are interacting systems of multiple cell types, including various stromal cell types that are involved in cancer development. The complex network of the tissue system highlights the need for a systems biology approach to anatomic pathology, in which quantification of system processes is combined with informatics tools to produce actionable scores to aid clinical decision-making. Aims: Here, we describe a quantitative, multiplexed biomarker imaging approach termed TissueCypher™ that applies systems biology to anatomic pathology. Applications of TissueCypher™ in understanding the tissue system of Barrett's esophagus (BE and the potential use as an adjunctive tool in the diagnosis of BE are described. Patients and Methods: The TissueCypher™ Image Analysis Platform was used to assess 14 epithelial and stromal biomarkers with known diagnostic significance in BE in a set of BE biopsies with nondysplastic BE with reactive atypia (RA, n = 22 and Barrett's with high-grade dysplasia (HGD, n = 17. Biomarker and morphology features were extracted and evaluated in the confirmed BE HGD cases versus the nondysplastic BE cases with RA. Results: Multiple image analysis features derived from epithelial and stromal biomarkers, including immune biomarkers and morphology, showed significant differences between HGD and RA. Conclusions: The assessment of epithelial cell abnormalities combined with an assessment of cellular changes in the lamina propria may serve as an adjunct to conventional

  19. Advantages and Pitfalls of Mass Spectrometry Based Metabolome Profiling in Systems Biology

    Directory of Open Access Journals (Sweden)

    Ina Aretz

    2016-04-01

    Full Text Available Mass spectrometry-based metabolome profiling became the method of choice in systems biology approaches and aims to enhance biological understanding of complex biological systems. Genomics, transcriptomics, and proteomics are well established technologies and are commonly used by many scientists. In comparison, metabolomics is an emerging field and has not reached such high-throughput, routine and coverage than other omics technologies. Nevertheless, substantial improvements were achieved during the last years. Integrated data derived from multi-omics approaches will provide a deeper understanding of entire biological systems. Metabolome profiling is mainly hampered by its diversity, variation of metabolite concentration by several orders of magnitude and biological data interpretation. Thus, multiple approaches are required to cover most of the metabolites. No software tool is capable of comprehensively translating all the data into a biologically meaningful context yet. In this review, we discuss the advantages of metabolome profiling and main obstacles limiting progress in systems biology.

  20. Advantages and Pitfalls of Mass Spectrometry Based Metabolome Profiling in Systems Biology.

    Science.gov (United States)

    Aretz, Ina; Meierhofer, David

    2016-04-27

    Mass spectrometry-based metabolome profiling became the method of choice in systems biology approaches and aims to enhance biological understanding of complex biological systems. Genomics, transcriptomics, and proteomics are well established technologies and are commonly used by many scientists. In comparison, metabolomics is an emerging field and has not reached such high-throughput, routine and coverage than other omics technologies. Nevertheless, substantial improvements were achieved during the last years. Integrated data derived from multi-omics approaches will provide a deeper understanding of entire biological systems. Metabolome profiling is mainly hampered by its diversity, variation of metabolite concentration by several orders of magnitude and biological data interpretation. Thus, multiple approaches are required to cover most of the metabolites. No software tool is capable of comprehensively translating all the data into a biologically meaningful context yet. In this review, we discuss the advantages of metabolome profiling and main obstacles limiting progress in systems biology.

  1. On the limitations of standard statistical modeling in biological systems: a full Bayesian approach for biology.

    Science.gov (United States)

    Gomez-Ramirez, Jaime; Sanz, Ricardo

    2013-09-01

    One of the most important scientific challenges today is the quantitative and predictive understanding of biological function. Classical mathematical and computational approaches have been enormously successful in modeling inert matter, but they may be inadequate to address inherent features of biological systems. We address the conceptual and methodological obstacles that lie in the inverse problem in biological systems modeling. We introduce a full Bayesian approach (FBA), a theoretical framework to study biological function, in which probability distributions are conditional on biophysical information that physically resides in the biological system that is studied by the scientist. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Pathway Relevance Ranking for Tumor Samples through Network-Based Data Integration.

    Directory of Open Access Journals (Sweden)

    Lieven P C Verbeke

    Full Text Available The study of cancer, a highly heterogeneous disease with different causes and clinical outcomes, requires a multi-angle approach and the collection of large multi-omics datasets that, ideally, should be analyzed simultaneously. We present a new pathway relevance ranking method that is able to prioritize pathways according to the information contained in any combination of tumor related omics datasets. Key to the method is the conversion of all available data into a single comprehensive network representation containing not only genes but also individual patient samples. Additionally, all data are linked through a network of previously identified molecular interactions. We demonstrate the performance of the new method by applying it to breast and ovarian cancer datasets from The Cancer Genome Atlas. By integrating gene expression, copy number, mutation and methylation data, the method's potential to identify key pathways involved in breast cancer development shared by different molecular subtypes is illustrated. Interestingly, certain pathways were ranked equally important for different subtypes, even when the underlying (epi-genetic disturbances were diverse. Next to prioritizing universally high-scoring pathways, the pathway ranking method was able to identify subtype-specific pathways. Often the score of a pathway could not be motivated by a single mutation, copy number or methylation alteration, but rather by a combination of genetic and epi-genetic disturbances, stressing the need for a network-based data integration approach. The analysis of ovarian tumors, as a function of survival-based subtypes, demonstrated the method's ability to correctly identify key pathways, irrespective of tumor subtype. A differential analysis of survival-based subtypes revealed several pathways with higher importance for the bad-outcome patient group than for the good-outcome patient group. Many of the pathways exhibiting higher importance for the bad

  3. Integrated radiomic framework for breast cancer and tumor biology using advanced machine learning and multiparametric MRI.

    Science.gov (United States)

    Parekh, Vishwa S; Jacobs, Michael A

    2017-01-01

    Radiomics deals with the high throughput extraction of quantitative textural information from radiological images that not visually perceivable by radiologists. However, the biological correlation between radiomic features and different tissues of interest has not been established. To that end, we present the radiomic feature mapping framework to generate radiomic MRI texture image representations called the radiomic feature maps (RFM) and correlate the RFMs with quantitative texture values, breast tissue biology using quantitative MRI and classify benign from malignant tumors. We tested our radiomic feature mapping framework on a retrospective cohort of 124 patients (26 benign and 98 malignant) who underwent multiparametric breast MR imaging at 3 T. The MRI parameters used were T1-weighted imaging, T2-weighted imaging, dynamic contrast enhanced MRI (DCE-MRI) and diffusion weighted imaging (DWI). The RFMs were computed by convolving MRI images with statistical filters based on first order statistics and gray level co-occurrence matrix features. Malignant lesions demonstrated significantly higher entropy on both post contrast DCE-MRI (Benign-DCE entropy: 5.72 ± 0.12, Malignant-DCE entropy: 6.29 ± 0.06, p  = 0.0002) and apparent diffusion coefficient (ADC) maps as compared to benign lesions (Benign-ADC entropy: 5.65 ± 0.15, Malignant ADC entropy: 6.20 ± 0.07, p  = 0.002). There was no significant difference between glandular tissue entropy values in the two groups. Furthermore, the RFMs from DCE-MRI and DWI demonstrated significantly different RFM curves for benign and malignant lesions indicating their correlation to tumor vascular and cellular heterogeneity respectively. There were significant differences in the quantitative MRI metrics of ADC and perfusion. The multiview IsoSVM model classified benign and malignant breast tumors with sensitivity and specificity of 93 and 85%, respectively, with an AUC of 0.91.

  4. Hurdles of CAR-T cell-based cancer immunotherapy directed against solid tumors.

    Science.gov (United States)

    Zhang, Bing-Lan; Qin, Di-Yuan; Mo, Ze-Ming; Li, Yi; Wei, Wei; Wang, Yong-Sheng; Wang, Wei; Wei, Yu-Quan

    2016-04-01

    Recent reports on the impressive efficacy of chimeric antigen receptor (CAR)-modified T cells against hematologic malignancies have inspired oncologists to extend these efforts for the treatment of solid tumors. Clinical trials of CAR-T-based cancer immunotherapy for solid tumors showed that the efficacies are not as remarkable as in the case of hematologic malignancies. There are several challenges that researchers must face when treating solid cancers with CAR-T cells, these include choosing an ideal target, promoting efficient trafficking and infiltration, overcoming the immunosuppressive microenvironment, and avoiding associated toxicity. In this review, we discuss the obstacles imposed by solid tumors on CAR-T cell-based immunotherapy and strategies adopted to improve the therapeutic potential of this approach. Continued investigations are necessary to improve therapeutic outcomes and decrease the adverse effects of CAR-T cell therapy in patients with solid malignancies in the future.

  5. Translating tumor biology into personalized treatment planning: analytical performance characteristics of the Oncotype DX® Colon Cancer Assay

    International Nuclear Information System (INIS)

    Clark-Langone, Kim M; Sangli, Chithra; Krishnakumar, Jayadevi; Watson, Drew

    2010-01-01

    The Oncotype DX ® Colon Cancer Assay is a new diagnostic test for determining the likelihood of recurrence in stage II colon cancer patients after surgical resection using fixed paraffin embedded (FPE) primary colon tumor tissue. Like the Oncotype DX Breast Cancer Assay, this is a high complexity, multi-analyte, reverse transcription (RT) polymerase chain reaction (PCR) assay that measures the expression levels of specific cancer-related genes. By capturing the biology underlying each patient's tumor, the Oncotype DX Colon Cancer Assay provides a Recurrence Score (RS) that reflects an individualized risk of disease recurrence. Here we describe its analytical performance using pre-determined performance criteria, which is a critical component of molecular diagnostic test validation. All analytical measurements met pre-specified performance criteria. PCR amplification efficiency for all 12 assays was high, ranging from 96% to 107%, while linearity was demonstrated over an 11 log 2 concentration range for all assays. Based on estimated components of variance for FPE RNA pools, analytical reproducibility and precision demonstrated low SDs for individual genes (0.16 to 0.32 C T s), gene groups (≤0.05 normalized/aggregate C T s) and RS (≤1.38 RS units). Analytical performance characteristics shown here for both individual genes and gene groups in the Oncotype DX Colon Cancer Assay demonstrate consistent translation of specific biology of individual tumors into clinically useful diagnostic information. The results of these studies illustrate how the analytical capability of the Oncotype DX Colon Cancer Assay has enabled clinical validation of a test to determine individualized recurrence risk after colon cancer surgery

  6. Translating tumor biology into personalized treatment planning: analytical performance characteristics of the Oncotype DX® Colon Cancer Assay

    Directory of Open Access Journals (Sweden)

    Krishnakumar Jayadevi

    2010-12-01

    Full Text Available Abstract Background The Oncotype DX® Colon Cancer Assay is a new diagnostic test for determining the likelihood of recurrence in stage II colon cancer patients after surgical resection using fixed paraffin embedded (FPE primary colon tumor tissue. Like the Oncotype DX Breast Cancer Assay, this is a high complexity, multi-analyte, reverse transcription (RT polymerase chain reaction (PCR assay that measures the expression levels of specific cancer-related genes. By capturing the biology underlying each patient's tumor, the Oncotype DX Colon Cancer Assay provides a Recurrence Score (RS that reflects an individualized risk of disease recurrence. Here we describe its analytical performance using pre-determined performance criteria, which is a critical component of molecular diagnostic test validation. Results All analytical measurements met pre-specified performance criteria. PCR amplification efficiency for all 12 assays was high, ranging from 96% to 107%, while linearity was demonstrated over an 11 log2 concentration range for all assays. Based on estimated components of variance for FPE RNA pools, analytical reproducibility and precision demonstrated low SDs for individual genes (0.16 to 0.32 CTs, gene groups (≤0.05 normalized/aggregate CTs and RS (≤1.38 RS units. Conclusions Analytical performance characteristics shown here for both individual genes and gene groups in the Oncotype DX Colon Cancer Assay demonstrate consistent translation of specific biology of individual tumors into clinically useful diagnostic information. The results of these studies illustrate how the analytical capability of the Oncotype DX Colon Cancer Assay has enabled clinical validation of a test to determine individualized recurrence risk after colon cancer surgery.

  7. MIBG avidity correlates with clinical features, tumor biology, and outcomes in neuroblastoma: A report from the Children's Oncology Group.

    Science.gov (United States)

    DuBois, Steven G; Mody, Rajen; Naranjo, Arlene; Van Ryn, Collin; Russ, Douglas; Oldridge, Derek; Kreissman, Susan; Baker, David L; Parisi, Marguerite; Shulkin, Barry L; Bai, Harrison; Diskin, Sharon J; Batra, Vandana; Maris, John M; Park, Julie R; Matthay, Katherine K; Yanik, Gregory

    2017-11-01

    Prior studies suggest that neuroblastomas that do not accumulate metaiodobenzylguanidine (MIBG) on diagnostic imaging (MIBG non-avid) may have more favorable features compared with MIBG avid tumors. We compared clinical features, biologic features, and clinical outcomes between patients with MIBG nonavid and MIBG avid neuroblastoma. Patients had metastatic high- or intermediate-risk neuroblastoma and were treated on Children's Oncology Group protocols A3973 or A3961. Comparisons of clinical and biologic features according to MIBG avidity were made with chi-squared or Fisher exact tests. Event-free (EFS) and overall (OS) survival compared using log-rank tests and modeled using Cox models. Thirty of 343 patients (8.7%) had MIBG nonavid disease. Patients with nonavid tumors were less likely to have adrenal primary tumors (34.5 vs. 57.2%; P = 0.019), bone metastases (36.7 vs. 61.7%; P = 0.008), or positive urine catecholamines (66.7 vs. 91.0%; P neuroblastoma have lower rates of adrenal primary tumors, bone metastasis, and catecholamine secretion. Despite being more likely to have MYCN-amplified tumors, these patients have superior outcomes compared with patients with MIBG avid disease. © 2017 Wiley Periodicals, Inc.

  8. Insights into the role of components of the tumor microenvironment in oral carcinoma call for new therapeutic approaches

    International Nuclear Information System (INIS)

    Salo, Tuula; Vered, Marilena; Bello, Ibrahim O.; Nyberg, Pia; Bitu, Carolina Cavalcante; Zlotogorski Hurvitz, Ayelet; Dayan, Dan

    2014-01-01

    The research on oral cancer has focused mainly on the cancer cells, their genetic changes and consequent phenotypic modifications. However, it is increasingly clear that the tumor microenvironment (TME) has been shown to be in a dynamic state of inter-relations with the cancer cells. The TME contains a variety of components including the non-cancerous cells (i.e., immune cells, resident fibroblasts and angiogenic vascular cells) and the ECM milieu [including fibers (mainly collagen and fibronectin) and soluble factors (i.e., enzymes, growth factors, cytokines and chemokines)]. Thus, it is currently assumed that TME is considered a part of the cancerous tissue and the functionality of its key components constitutes the setting on which the hallmarks of the cancer cells can evolve. Therefore, in terms of controlling a malignancy, one should control the growth, invasion and spread of the cancer cells through modifications in the TME components. This mini review focuses on the TME as a diagnostic approach and reports the recent insights into the role of different TME key components [such as carcinoma-associated fibroblasts (CAFs) and inflammation (CAI) cells, angiogenesis, stromal matrix molecules and proteases] in the molecular biology of oral carcinoma. Furthermore, the impact of TME components on clinical outcomes and the concomitant need for development of new therapeutic approaches will be discussed. - Highlights: • Tumor depth and budding, hypoxia and TME cells associate with worse prognosis. • Pro-tumoral CAFs and CAI cells aid proliferation, invasion and spread hypoxia. • Some ECM-bound factors exert pro-angiogenic or pro-tumor activities. • Tumor spread is greatly dependent on ECM proteolysis, mediated by TME cells. • Direct targeting of TME components for treatment is still experimental

  9. Insights into the role of components of the tumor microenvironment in oral carcinoma call for new therapeutic approaches

    Energy Technology Data Exchange (ETDEWEB)

    Salo, Tuula, E-mail: Tuula.salo@oulu.fi [Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, and Medical Research Center, Oulu (Finland); Oulu University Central Hospital, Oulu (Finland); Institute of Dentistry, University of Helsinki, Helsinki (Finland); Vered, Marilena [Institute of Pathology, The Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan (Israel); Department of Oral Pathology and Oral Medicine, School of Dentistry, Tel Aviv University, Tel Aviv 69978 (Israel); Bello, Ibrahim O. [Department of Oral Medicine and Diagnostic Sciences, King Saud University, Riyadh (Saudi Arabia); Nyberg, Pia [Oulu University Central Hospital, Oulu (Finland); Bitu, Carolina Cavalcante [Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, and Medical Research Center, Oulu (Finland); Zlotogorski Hurvitz, Ayelet [Department of Oral Pathology and Oral Medicine, School of Dentistry, Tel Aviv University, Tel Aviv 69978 (Israel); Department of Oral and Maxillofacial Surgery, Rabin Medical Center, Beilinson Campus, Petah Tikva (Israel); Dayan, Dan [Department of Oral Pathology and Oral Medicine, School of Dentistry, Tel Aviv University, Tel Aviv 69978 (Israel)

    2014-07-15

    The research on oral cancer has focused mainly on the cancer cells, their genetic changes and consequent phenotypic modifications. However, it is increasingly clear that the tumor microenvironment (TME) has been shown to be in a dynamic state of inter-relations with the cancer cells. The TME contains a variety of components including the non-cancerous cells (i.e., immune cells, resident fibroblasts and angiogenic vascular cells) and the ECM milieu [including fibers (mainly collagen and fibronectin) and soluble factors (i.e., enzymes, growth factors, cytokines and chemokines)]. Thus, it is currently assumed that TME is considered a part of the cancerous tissue and the functionality of its key components constitutes the setting on which the hallmarks of the cancer cells can evolve. Therefore, in terms of controlling a malignancy, one should control the growth, invasion and spread of the cancer cells through modifications in the TME components. This mini review focuses on the TME as a diagnostic approach and reports the recent insights into the role of different TME key components [such as carcinoma-associated fibroblasts (CAFs) and inflammation (CAI) cells, angiogenesis, stromal matrix molecules and proteases] in the molecular biology of oral carcinoma. Furthermore, the impact of TME components on clinical outcomes and the concomitant need for development of new therapeutic approaches will be discussed. - Highlights: • Tumor depth and budding, hypoxia and TME cells associate with worse prognosis. • Pro-tumoral CAFs and CAI cells aid proliferation, invasion and spread hypoxia. • Some ECM-bound factors exert pro-angiogenic or pro-tumor activities. • Tumor spread is greatly dependent on ECM proteolysis, mediated by TME cells. • Direct targeting of TME components for treatment is still experimental.

  10. The prognostic role of tumor size in early breast cancer in the era of molecular biology.

    Directory of Open Access Journals (Sweden)

    Anaid Anna Kasangian

    Full Text Available The prognosis of early breast cancer (EBC depends on patient and tumor characteristics. The association between tumor size, the largest diameter in TNM staging, and prognosis is well recognized. According to TNM, tumors classified as T2, could have very different volumes; e.g. a tumor of 2.1 cm has a volume of 4500 mm3, while a tumor of 4.9 cm has a volume of 60.000 mm3 even belonging to the same class. The aim of the study is to establish if the prognostic role of tumor size, expressed as diameter and volume, has been overshadowed by other factors.The primary objective is to evaluate the association between tumor dimensions and overall survival (OS / disease free survival (DFS, in our institution from January 1st 2005 to September 30th 2013 in a surgical T1-T2 population. Volume was evaluated with the measurement of three half-diameters of the tumor (a, b and c, and calculated using the following formula: 4/3π x a x b x c.341 patients with T1-T2 EBC were included. 86.5% were treated with conservative surgery. 85.1% had a Luminal subtype, 9.1% were Triple negative and 7.4% were HER2 positive. Median volume was 942 mm3 (range 0.52-31.651.2. 44 patients (12.9% relapsed and 23 patients died. With a median follow-up of 6.5 years, the univariate analysis for DFS showed an association between age, tumor size, volume, histological grading and molecular subtype. The multivariate analysis confirmed the statistically significant association only for molecular subtype (p 0.005, with a worse prognosis for Triple negative and HER2 positive subtypes compared with Luminal (HR: 2.65; 95%CI: 1.34-5.22. Likewise for OS, an association was shown by the multivariate analysis solely for molecular subtype (HER2 and Triple negative vs. Luminal. HR: 2.83; 95% CI:1.46-5.49; p 0.002.In our study, the only parameter that strongly influences survival is molecular subtype. These findings encourage clinicians to choose adjuvant treatment not based on dimensional criteria

  11. The prognostic role of tumor size in early breast cancer in the era of molecular biology.

    Science.gov (United States)

    Kasangian, Anaid Anna; Gherardi, Giorgio; Biagioli, Elena; Torri, Valter; Moretti, Anna; Bernardin, Elena; Cordovana, Andrea; Farina, Gabriella; Bramati, Annalisa; Piva, Sheila; Dazzani, Maria Chiara; Paternò, Emanuela; La Verde, Nicla Maria

    2017-01-01

    The prognosis of early breast cancer (EBC) depends on patient and tumor characteristics. The association between tumor size, the largest diameter in TNM staging, and prognosis is well recognized. According to TNM, tumors classified as T2, could have very different volumes; e.g. a tumor of 2.1 cm has a volume of 4500 mm3, while a tumor of 4.9 cm has a volume of 60.000 mm3 even belonging to the same class. The aim of the study is to establish if the prognostic role of tumor size, expressed as diameter and volume, has been overshadowed by other factors. The primary objective is to evaluate the association between tumor dimensions and overall survival (OS) / disease free survival (DFS), in our institution from January 1st 2005 to September 30th 2013 in a surgical T1-T2 population. Volume was evaluated with the measurement of three half-diameters of the tumor (a, b and c), and calculated using the following formula: 4/3π x a x b x c. 341 patients with T1-T2 EBC were included. 86.5% were treated with conservative surgery. 85.1% had a Luminal subtype, 9.1% were Triple negative and 7.4% were HER2 positive. Median volume was 942 mm3 (range 0.52-31.651.2). 44 patients (12.9%) relapsed and 23 patients died. With a median follow-up of 6.5 years, the univariate analysis for DFS showed an association between age, tumor size, volume, histological grading and molecular subtype. The multivariate analysis confirmed the statistically significant association only for molecular subtype (p 0.005), with a worse prognosis for Triple negative and HER2 positive subtypes compared with Luminal (HR: 2.65; 95%CI: 1.34-5.22). Likewise for OS, an association was shown by the multivariate analysis solely for molecular subtype (HER2 and Triple negative vs. Luminal. HR: 2.83; 95% CI:1.46-5.49; p 0.002). In our study, the only parameter that strongly influences survival is molecular subtype. These findings encourage clinicians to choose adjuvant treatment not based on dimensional criteria but on

  12. A diatom-based biological condition gradient (BCG) approach for assessing impairment and developing nutrient criteria for streams.

    Science.gov (United States)

    Hausmann, Sonja; Charles, Donald F; Gerritsen, Jeroen; Belton, Thomas J

    2016-08-15

    Over-enrichment leading to excess algal growth is a major problem in rivers and streams. Regulations to protect streams typically incorporate nutrient criteria, concentrations of phosphorus and nitrogen that should not be exceeded in order to protect biological communities. A major challenge has been to develop an approach for both categorizing streams based on their biological conditions and determining scientifically defensible nutrient criteria to protect the biotic integrity of streams in those categories. To address this challenge, we applied the Biological Condition Gradient (BCG) approach to stream diatom assemblages to develop a system for categorizing sites by level of impairment, and then examined the related nutrient concentrations to identify potential nutrient criteria. The six levels of the BCG represent a range of ecological conditions from natural (1) to highly disturbed (6). A group of diatom experts developed a set of rules and a model to assign sites to these levels based on their diatom assemblages. To identify potential numeric nutrient criteria, we explored the relation of assigned BCG levels to nutrient concentrations, other anthropogenic stressors, and possible confounding variables using data for stream sites in New Jersey (n=42) and in surrounding Mid-Atlantic states, USA (n=1443). In both data sets, BCG levels correlated most strongly with total phosphorus and the percentage of forest in the watershed, but were independent of pH. We applied Threshold Indicator Taxa Analysis (TITAN) to determine change-points in the diatom assemblages along the BCG gradient. In both data sets, statistically significant diatom changes occurred between BCG levels 3 and 4. Sites with BCG levels 1 to 3 were dominated by species that grow attached to surfaces, while sites with BCG scores of 4 and above were characterized by motile diatoms. The diatom change-point corresponded with a total phosphorus concentration of about 50μg/L. Copyright © 2016 Elsevier B

  13. An Integrated Approach to Biology

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 8. An Integrated Approach to Biology. Aniket Bhattacharya. General Article Volume 16 Issue 8 August 2011 pp 742-753. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/016/08/0742-0753 ...

  14. CHONDROID SKULL BASE TUMORS (A REVIEW OF LITERATURE

    Directory of Open Access Journals (Sweden)

    T. G. Gasparyan

    2012-01-01

    Full Text Available Chondroid skull base tumors are a rare and little studied pathology; many problems of their classification, diagnosis and treatment remain to be solved. This group of neoplasms is referred to as bone tumors arising from the cartilaginous tissue of the skull base bones, particularly from the bones formed during chondral osteogenesis. The paper details the clinical picture, X-ray and morphological diagnosis of chondroid tumors. Particular attention is given to surgery and radiotherapy for this category of tumors.

  15. Molecular analysis of urothelial cancer cell lines for modeling tumor biology and drug response.

    Science.gov (United States)

    Nickerson, M L; Witte, N; Im, K M; Turan, S; Owens, C; Misner, K; Tsang, S X; Cai, Z; Wu, S; Dean, M; Costello, J C; Theodorescu, D

    2017-01-05

    The utility of tumor-derived cell lines is dependent on their ability to recapitulate underlying genomic aberrations and primary tumor biology. Here, we sequenced the exomes of 25 bladder cancer (BCa) cell lines and compared mutations, copy number alterations (CNAs), gene expression and drug response to BCa patient profiles in The Cancer Genome Atlas (TCGA). We observed a mutation pattern associated with altered CpGs and APOBEC-family cytosine deaminases similar to mutation signatures derived from somatic alterations in muscle-invasive (MI) primary tumors, highlighting a major mechanism(s) contributing to cancer-associated alterations in the BCa cell line exomes. Non-silent sequence alterations were confirmed in 76 cancer-associated genes, including mutations that likely activate oncogenes TERT and PIK3CA, and alter chromatin-associated proteins (MLL3, ARID1A, CHD6 and KDM6A) and established BCa genes (TP53, RB1, CDKN2A and TSC1). We identified alterations in signaling pathways and proteins with related functions, including the PI3K/mTOR pathway, altered in 60% of lines; BRCA DNA repair, 44%; and SYNE1-SYNE2, 60%. Homozygous deletions of chromosome 9p21 are known to target the cell cycle regulators CDKN2A and CDKN2B. This loci was commonly lost in BCa cell lines and we show the deletions extended to the polyamine enzyme methylthioadenosine (MTA) phosphorylase (MTAP) in 36% of lines, transcription factor DMRTA1 (27%) and antiviral interferon epsilon (IFNE, 19%). Overall, the BCa cell line genomic aberrations were concordant with those found in BCa patient tumors. We used gene expression and copy number data to infer pathway activities for cell lines, then used the inferred pathway activities to build a predictive model of cisplatin response. When applied to platinum-treated patients gathered from TCGA, the model predicted treatment-specific response. Together, these data and analysis represent a valuable community resource to model basic tumor biology and to study

  16. Deep learning for tumor classification in imaging mass spectrometry.

    Science.gov (United States)

    Behrmann, Jens; Etmann, Christian; Boskamp, Tobias; Casadonte, Rita; Kriegsmann, Jörg; Maaß, Peter

    2018-04-01

    Tumor classification using imaging mass spectrometry (IMS) data has a high potential for future applications in pathology. Due to the complexity and size of the data, automated feature extraction and classification steps are required to fully process the data. Since mass spectra exhibit certain structural similarities to image data, deep learning may offer a promising strategy for classification of IMS data as it has been successfully applied to image classification. Methodologically, we propose an adapted architecture based on deep convolutional networks to handle the characteristics of mass spectrometry data, as well as a strategy to interpret the learned model in the spectral domain based on a sensitivity analysis. The proposed methods are evaluated on two algorithmically challenging tumor classification tasks and compared to a baseline approach. Competitiveness of the proposed methods is shown on both tasks by studying the performance via cross-validation. Moreover, the learned models are analyzed by the proposed sensitivity analysis revealing biologically plausible effects as well as confounding factors of the considered tasks. Thus, this study may serve as a starting point for further development of deep learning approaches in IMS classification tasks. https://gitlab.informatik.uni-bremen.de/digipath/Deep_Learning_for_Tumor_Classification_in_IMS. jbehrmann@uni-bremen.de or christianetmann@uni-bremen.de. Supplementary data are available at Bioinformatics online.

  17. Targeting Nanomedicine to Brain Tumors: Latest Progress and Achievements.

    Science.gov (United States)

    Van't Root, Moniek; Lowik, Clemens; Mezzanotte, Laura

    2017-01-01

    Targeting nanomedicine to brain tumors is hampered by the heterogeneity of brain tumors and the blood brain barrier. These represent the main reasons of unsuccessful treatments. Nanomedicine based approaches hold promise for improved brain tissue distribution of drugs and delivery of combination therapies. In this review, we describe the recent advancements and latest achievements in the use of nanocarriers, virus and cell-derived nanoparticles for targeted therapy of brain tumors. We provide successful examples of nanomedicine based approaches for direct targeting of receptors expressed in brain tumor cells or modulation of pathways involved in cell survival as well as approaches for indirect targeting of cells in the tumor stroma and immunotherapies. Although the field is at its infancy, clinical trials involving nanomedicine based approaches for brain tumors are ongoing and many others will start in the near future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Dose painting based on tumor uptake of Cu-ATSM and FDG: a comparative study

    International Nuclear Information System (INIS)

    Clausen, Malene Martini; Hansen, Anders Elias; Lundemann, Michael; Hollensen, Christian; Pommer, Tobias; Munck af Rosenschöld, Per; Kristensen, Annemarie Thuri; Kjær, Andreas; McEvoy, Fintan J; Engelholm, Svend Aage

    2014-01-01

    Hypoxia and increased glycolytic activity of tumors are associated with poor prognosis. The purpose of this study was to investigate differences in radiotherapy (RT) dose painting based on the uptake of 2-deoxy-2-[ 18 F]-fluorodeoxyglucose (FDG) and the proposed hypoxia tracer, copper(II)diacetyl-bis(N 4 )-methylsemithiocarbazone (Cu-ATSM) using spontaneous clinical canine tumor models. Positron emission tomography/computed tomography scans of five spontaneous canine sarcomas and carcinomas were obtained; FDG on day 1 and 64 Cu-ATSM on day 2 and 3 (approx. 3 and 24 hours pi.). Sub-volumes for dose escalation were defined by a threshold-based method for both tracers and five dose escalation levels were formed in each sub-volume. Volumetric modulated arc therapy plans were optimized based on the dose escalation regions for each scan for a total of three dose plans for each dog. The prescription dose for the GTV was 45 Gy (100%) and it was linearly escalated to a maximum of 150%. The correlations between dose painting plans were analyzed with construction of dose distribution density maps and quality volume histograms (QVH). Correlation between high-dose regions was investigated with Dice correlation coefficients. Comparison of dose plans revealed varying degree of correlation between cases. Some cases displayed a separation of high-dose regions in the comparison of FDG vs. 64 Cu-ATSM dose plans at both time points. Among the Dice correlation coefficients, the high dose regions showed the lowest degree of agreement, indicating potential benefit of using multiple tracers for dose painting. QVH analysis revealed that FDG-based dose painting plans adequately covered approximately 50% of the hypoxic regions. Radiotherapy plans optimized with the current approach for cut-off values and dose region definitions based on FDG, 64 Cu-ATSM 3 h and 24 h uptake in canine tumors had different localization of the regional dose escalation levels. This indicates that 64 Cu-ATSM at two

  19. Circulating tumor cells: utopia or reality?

    Science.gov (United States)

    Conteduca, Vincenza; Zamarchi, Rita; Rossi, Elisabetta; Condelli, Valentina; Troiani, Laura; Aieta, Michele

    2013-09-01

    Circulating tumor cells (CTCs) could be considered a sign of tumor aggressiveness, but highly sensitive and specific methods of CTC detection are necessary owing to the rarity and heterogeneity of CTCs in peripheral blood. This review summarizes recent studies on tumor biology, with particular attention to the metastatic cascade, and the molecular characterization and clinical significance of CTCs. Recent technological approaches to enrich and detect these cells and challenges of CTCs for individualized cancer treatment are also discussed. This review also provides an insight into the positive and negative features of the future potential applications of CTC detection, which sometimes remains still a 'utopia', but its actual utility remains among the fastest growing research fields in oncology.

  20. Tumor Volume-Adapted Dosing in Stereotactic Ablative Radiotherapy of Lung Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Trakul, Nicholas; Chang, Christine N.; Harris, Jeremy [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); Chapman, Christopher [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); University of Michigan School of Medicine, Ann Arbor, MI (United States); Rao, Aarti [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); University of California, Davis, School of Medicine, Davis, CA (United States); Shen, John [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); University of California, Irvine, School of Medicine, Irvine, CA (United States); Quinlan-Davidson, Sean [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); Department of Radiation Oncology, McMaster University, Juravinski Cancer Centre, Hamilton, Ontario (Canada); Filion, Edith J. [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); Departement de Medecine, Service de Radio-Oncologie, Centre Hospitalier de l' Universite de Montreal, Montreal, Quebec (Canada); Wakelee, Heather A.; Colevas, A. Dimitrios [Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA (United States); Whyte, Richard I. [Department of Cardiothoracic Surgery, Division of General Thoracic Surgery, Stanford University School of Medicine, Stanford, CA (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA (United States); and others

    2012-09-01

    Purpose: Current stereotactic ablative radiotherapy (SABR) protocols for lung tumors prescribe a uniform dose regimen irrespective of tumor size. We report the outcomes of a lung tumor volume-adapted SABR dosing strategy. Methods and Materials: We retrospectively reviewed the outcomes in 111 patients with a total of 138 primary or metastatic lung tumors treated by SABR, including local control, regional control, distant metastasis, overall survival, and treatment toxicity. We also performed subset analysis on 83 patients with 97 tumors treated with a volume-adapted dosing strategy in which small tumors (gross tumor volume <12 mL) received single-fraction regimens with biologically effective doses (BED) <100 Gy (total dose, 18-25 Gy) (Group 1), and larger tumors (gross tumor volume {>=}12 mL) received multifraction regimens with BED {>=}100 Gy (total dose, 50-60 Gy in three to four fractions) (Group 2). Results: The median follow-up time was 13.5 months. Local control for Groups 1 and 2 was 91.4% and 92.5%, respectively (p = 0.24) at 12 months. For primary lung tumors only (excluding metastases), local control was 92.6% and 91.7%, respectively (p = 0.58). Regional control, freedom from distant metastasis, and overall survival did not differ significantly between Groups 1 and 2. Rates of radiation pneumonitis, chest wall toxicity, and esophagitis were low in both groups, but all Grade 3 toxicities developed in Group 2 (p = 0.02). Conclusion: A volume-adapted dosing approach for SABR of lung tumors seems to provide excellent local control for both small- and large-volume tumors and may reduce toxicity.

  1. Biology panel: coming to a clinic near you. Translational research in radiation biology

    International Nuclear Information System (INIS)

    Travis, Elizabeth L.; Thames, Howard D.

    1996-01-01

    The explosion of knowledge in molecular biology coupled with the rapid and continuing development of molecular techniques allow a new level of research in radiation biology aimed at understanding the processes that govern radiation damage and response in both tumors and normal tissues. The challenge to radiation biologists and radiation oncologists is to use this knowledge to improve the therapeutic ratio in the management of human tumors by rapidly translating these new findings into clinical practice. This panel will focus on both sides of the therapeutic ratio coin, the manipulation of tumor control by manipulating the processes that control cell cycle regulation and apoptosis, and the reduction of normal tissue morbidity by applying the emerging information on the genetic basis of radiosensitivity. Apoptosis is a form of cell death believed to represent a minor component of the clinical effects of radiation. However, if apoptosis is regulated by anti-apoptotic mechanisms, then it may be possible to produce a pro-apoptotic phenotype in the tumor cell population by modulating the balance between pro- and anti-apoptotic mechanisms by pharmacological intervention. Thus signaling-based apoptosis therapy, designed to overcome the relative resistance to radiation-induced apoptosis, may improve the therapeutic ratio in the management of human tumors. The explosion of information concerning cell cycle regulation in both normal and tumor cells has provided the opportunity for insights into the mechanism of action of chemotherapeutic agents that can act as radiosensitizers. The second talk will explore the hypothesis that the dysregulation of cell cycle checkpoints in some cancers can be exploited to improve the therapeutic index of radiation sensitizers, specifically the fluoropyrimidines which appear to act at the G1/S transition. Finally, efforts to increase tumor control will be translated into clinical practice only if such treatments do not increase the complication

  2. Classification of malignant and benign liver tumors using a radiomics approach

    Science.gov (United States)

    Starmans, Martijn P. A.; Miclea, Razvan L.; van der Voort, Sebastian R.; Niessen, Wiro J.; Thomeer, Maarten G.; Klein, Stefan

    2018-03-01

    Correct diagnosis of the liver tumor phenotype is crucial for treatment planning, especially the distinction between malignant and benign lesions. Clinical practice includes manual scoring of the tumors on Magnetic Resonance (MR) images by a radiologist. As this is challenging and subjective, it is often followed by a biopsy. In this study, we propose a radiomics approach as an objective and non-invasive alternative for distinguishing between malignant and benign phenotypes. T2-weighted (T2w) MR sequences of 119 patients from multiple centers were collected. We developed an efficient semi-automatic segmentation method, which was used by a radiologist to delineate the tumors. Within these regions, features quantifying tumor shape, intensity, texture, heterogeneity and orientation were extracted. Patient characteristics and semantic features were added for a total of 424 features. Classification was performed using Support Vector Machines (SVMs). The performance was evaluated using internal random-split cross-validation. On the training set within each iteration, feature selection and hyperparameter optimization were performed. To this end, another cross validation was performed by splitting the training sets in training and validation parts. The optimal settings were evaluated on the independent test sets. Manual scoring by a radiologist was also performed. The radiomics approach resulted in 95% confidence intervals of the AUC of [0.75, 0.92], specificity [0.76, 0.96] and sensitivity [0.52, 0.82]. These approach the performance of the radiologist, which were an AUC of 0.93, specificity 0.70 and sensitivity 0.93. Hence, radiomics has the potential to predict the liver tumor benignity in an objective and non-invasive manner.

  3. Tumor Suppressor Gene-Based Nanotherapy: From Test Tube to the Clinic

    Directory of Open Access Journals (Sweden)

    Manish Shanker

    2011-01-01

    Full Text Available Cancer is a major health problem in the world. Advances made in cancer therapy have improved the survival of patients in certain types of cancer. However, the overall five-year survival has not significantly improved in the majority of cancer types. Major challenges encountered in having effective cancer therapy are development of drug resistance by the tumor cells, nonspecific cytotoxicity, and inability to affect metastatic tumors by the chemodrugs. Overcoming these challenges requires development and testing of novel therapies. One attractive cancer therapeutic approach is cancer gene therapy. Several laboratories including the authors' laboratory have been investigating nonviral formulations for delivering therapeutic genes as a mode for effective cancer therapy. In this paper the authors will summarize their experience in the development and testing of a cationic lipid-based nanocarrier formulation and the results from their preclinical studies leading to a Phase I clinical trial for nonsmall cell lung cancer. Their nanocarrier formulation containing therapeutic genes such as tumor suppressor genes when administered intravenously effectively controls metastatic tumor growth. Additional Phase I clinical trials based on the results of their nanocarrier formulation have been initiated or proposed for treatment of cancer of the breast, ovary, pancreas, and metastatic melanoma, and will be discussed.

  4. Tumor suppressor gene-based nanotherapy: from test tube to the clinic.

    Science.gov (United States)

    Shanker, Manish; Jin, Jiankang; Branch, Cynthia D; Miyamoto, Shinya; Grimm, Elizabeth A; Roth, Jack A; Ramesh, Rajagopal

    2011-01-01

    Cancer is a major health problem in the world. Advances made in cancer therapy have improved the survival of patients in certain types of cancer. However, the overall five-year survival has not significantly improved in the majority of cancer types. Major challenges encountered in having effective cancer therapy are development of drug resistance by the tumor cells, nonspecific cytotoxicity, and inability to affect metastatic tumors by the chemodrugs. Overcoming these challenges requires development and testing of novel therapies. One attractive cancer therapeutic approach is cancer gene therapy. Several laboratories including the authors' laboratory have been investigating nonviral formulations for delivering therapeutic genes as a mode for effective cancer therapy. In this paper the authors will summarize their experience in the development and testing of a cationic lipid-based nanocarrier formulation and the results from their preclinical studies leading to a Phase I clinical trial for nonsmall cell lung cancer. Their nanocarrier formulation containing therapeutic genes such as tumor suppressor genes when administered intravenously effectively controls metastatic tumor growth. Additional Phase I clinical trials based on the results of their nanocarrier formulation have been initiated or proposed for treatment of cancer of the breast, ovary, pancreas, and metastatic melanoma, and will be discussed.

  5. A bispecific nanobody approach to leverage the potent and widely applicable tumor cytolytic capacity of Vγ9Vδ2-T cells.

    Science.gov (United States)

    de Bruin, Renée C G; Veluchamy, John P; Lougheed, Sinéad M; Schneiders, Famke L; Lopez-Lastra, Silvia; Lameris, Roeland; Stam, Anita G; Sebestyen, Zsolt; Kuball, Jürgen; Molthoff, Carla F M; Hooijberg, Erik; Roovers, Rob C; Santo, James P Di; van Bergen En Henegouwen, Paul M P; Verheul, Henk M W; de Gruijl, Tanja D; van der Vliet, Hans J

    2017-01-01

    Though Vγ9Vδ2-T cells constitute only a small fraction of the total T cell population in human peripheral blood, they play a vital role in tumor defense and are therefore of major interest to explore for cancer immunotherapy. Vγ9Vδ2-T cell-based cancer immunotherapeutic approaches developed so far have been generally well tolerated and were able to induce significant clinical responses. However, overall results were inconsistent, possibly due to the fact that these strategies induced systemic activation of Vγ9Vδ2-T cells without preferential accumulation and targeted activation in the tumor. Here we show that a novel bispecific nanobody-based construct targeting both Vγ9Vδ2-T cells and EGFR induced potent Vγ9Vδ2-T cell activation and subsequent tumor cell lysis both in vitro and in an in vivo mouse xenograft model. Tumor cell lysis was independent of KRAS and BRAF tumor mutation status and common Vγ9Vδ2-T cell receptor sequence variations. In combination with the conserved monomorphic nature of the Vγ9Vδ2-TCR and the facile replacement of the tumor-specific nanobody, this immunotherapeutic approach can be applied to a large group of cancer patients.

  6. The iSBTc/SITC primer on tumor immunology and biological therapy of cancer: a summary of the 2010 program

    Directory of Open Access Journals (Sweden)

    Urba Walter J

    2011-01-01

    Full Text Available Abstract The Society for Immunotherapy of Cancer, SITC (formerly the International Society for Biological Therapy of Cancer, iSBTc, aims to improve cancer patient outcomes by advancing the science, development and application of biological therapy and immunotherapy. The society and its educational programs have become premier destinations for interaction and innovation in the cancer biologics community. For over a decade, the society has offered the Primer on Tumor Immunology and Biological Therapy of Cancer™ in conjunction with its Annual Scientific Meeting. This report summarizes the 2010 Primer that took place October 1, 2010 in Washington, D.C. as part of the educational offerings associated with the society's 25th anniversary. The target audience was basic and clinical investigators from academia, industry and regulatory agencies, and included clinicians, post-doctoral fellows, students, and allied health professionals. Attendees were provided a review of basic immunology and educated on the current status and most recent advances in tumor immunology and clinical/translational caner immunology. Ten prominent investigators presented on the following topics: innate immunity and inflammation; an overview of adaptive immunity; dendritic cells; tumor microenvironment; regulatory immune cells; immune monitoring; cytokines in cancer immunotherapy; immune modulating antibodies; cancer vaccines; and adoptive T cell therapy. Presentation slides, a Primer webinar and additional program information are available online on the society's website.

  7. Drug scheduling of cancer chemotherapy based on natural actor-critic approach.

    Science.gov (United States)

    Ahn, Inkyung; Park, Jooyoung

    2011-11-01

    Recently, reinforcement learning methods have drawn significant interests in the area of artificial intelligence, and have been successfully applied to various decision-making problems. In this paper, we study the applicability of the NAC (natural actor-critic) approach, a state-of-the-art reinforcement learning method, to the drug scheduling of cancer chemotherapy for an ODE (ordinary differential equation)-based tumor growth model. ODE-based cancer dynamics modeling is an active research area, and many different mathematical models have been proposed. Among these, we use the model proposed by de Pillis and Radunskaya (2003), which considers the growth of tumor cells and their interaction with normal cells and immune cells. The NAC approach is applied to this ODE model with the goal of minimizing the tumor cell population and the drug amount while maintaining the adequate population levels of normal cells and immune cells. In the framework of the NAC approach, the drug dose is regarded as the control input, and the reward signal is defined as a function of the control input and the cell populations of tumor cells, normal cells, and immune cells. According to the control policy found by the NAC approach, effective drug scheduling in cancer chemotherapy for the considered scenarios has turned out to be close to the strategy of continuing drug injection from the beginning until an appropriate time. Also, simulation results showed that the NAC approach can yield better performance than conventional pulsed chemotherapy. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Tumor stem cells: A new approach for tumor therapy (Review)

    Science.gov (United States)

    MENG, MIN; ZHAO, XIN-HAN; NING, QIAN; HOU, LEI; XIN, GUO-HONG; LIU, LI-FENG

    2012-01-01

    Recent studies have demonstrated the existence of a minority of tumor cells possessing the stem cell properties of self-renewal and differentiation in leukemia and several solid tumors. However, these cells do not possess the normal regulatory mechanisms of stem cells. Following transplantation, they are capable of initiating tumorigenesis and are therefore known as ‘tumor stem cells’. Cellular origin analysis of tumor stem cells has resulted in three hypotheses: Embryonal rest hypothesis, anaplasia and maturation arrest. Several signaling pathways which are involved in carcinogenesis, including Wnt/β-catenin, Notch and Oct-4 signaling pathways are crucial in normal stem cell self-renewal decisions, suggesting that breakdown in the regulation of self-renewal may be a key event in the development of tumors. Thus, tumors can be regarded as an abnormal organ in which stem cells have escaped from the normal constraints on self-renewal, thus, leading to abnormally differentiated tumor cells that lose the ability to form tumors. This new model for maligancies has significance for clinical research and treatment. PMID:22844351

  9. Ligand Activation of TAM Family Receptors-Implications for Tumor Biology and Therapeutic Response.

    Science.gov (United States)

    Davra, Viralkumar; Kimani, Stanley G; Calianese, David; Birge, Raymond B

    2016-11-29

    The TAM family of receptors (i.e., Tyro3, Axl, and Mertk), and their ligands Growth arrest specific factor 6 (Gas6) and Protein S (Pros1) contribute to several oncogenic processes, such as cell survival, invasion, migration, chemo-resistance, and metastasis, whereby expression often correlates with poor clinical outcomes. In recent years, there has been great interest in the study of TAM receptors in cancer, stemming both from their roles as oncogenic signaling receptors, as well as their roles in tumor immunology. As a result, several classes of TAM inhibitors that include small molecule tyrosine kinase inhibitors, monoclonal antibodies, decoy receptors, as well as novel strategies to target TAM ligands are being developed. This paper will review the biology of TAM receptors and their ligands with a focus on cancer, as well as evidence-based data for the continued pursuit of TAM/Gas6 inhibitors in clinical practice.

  10. Information dynamics in carcinogenesis and tumor growth.

    Science.gov (United States)

    Gatenby, Robert A; Frieden, B Roy

    2004-12-21

    The storage and transmission of information is vital to the function of normal and transformed cells. We use methods from information theory and Monte Carlo theory to analyze the role of information in carcinogenesis. Our analysis demonstrates that, during somatic evolution of the malignant phenotype, the accumulation of genomic mutations degrades intracellular information. However, the degradation is constrained by the Darwinian somatic ecology in which mutant clones proliferate only when the mutation confers a selective growth advantage. In that environment, genes that normally decrease cellular proliferation, such as tumor suppressor or differentiation genes, suffer maximum information degradation. Conversely, those that increase proliferation, such as oncogenes, are conserved or exhibit only gain of function mutations. These constraints shield most cellular populations from catastrophic mutator-induced loss of the transmembrane entropy gradient and, therefore, cell death. The dynamics of constrained information degradation during carcinogenesis cause the tumor genome to asymptotically approach a minimum information state that is manifested clinically as dedifferentiation and unconstrained proliferation. Extreme physical information (EPI) theory demonstrates that altered information flow from cancer cells to their environment will manifest in-vivo as power law tumor growth with an exponent of size 1.62. This prediction is based only on the assumption that tumor cells are at an absolute information minimum and are capable of "free field" growth that is, they are unconstrained by external biological parameters. The prediction agrees remarkably well with several studies demonstrating power law growth in small human breast cancers with an exponent of 1.72+/-0.24. This successful derivation of an analytic expression for cancer growth from EPI alone supports the conceptual model that carcinogenesis is a process of constrained information degradation and that malignant

  11. Mathematical Biology Modules Based on Modern Molecular Biology and Modern Discrete Mathematics

    Science.gov (United States)

    Davies, Robin; Hodge, Terrell; Enyedi, Alexander

    2010-01-01

    We describe an ongoing collaborative curriculum materials development project between Sweet Briar College and Western Michigan University, with support from the National Science Foundation. We present a collection of modules under development that can be used in existing mathematics and biology courses, and we address a critical national need to introduce students to mathematical methods beyond the interface of biology with calculus. Based on ongoing research, and designed to use the project-based-learning approach, the modules highlight applications of modern discrete mathematics and algebraic statistics to pressing problems in molecular biology. For the majority of projects, calculus is not a required prerequisite and, due to the modest amount of mathematical background needed for some of the modules, the materials can be used for an early introduction to mathematical modeling. At the same time, most modules are connected with topics in linear and abstract algebra, algebraic geometry, and probability, and they can be used as meaningful applied introductions into the relevant advanced-level mathematics courses. Open-source software is used to facilitate the relevant computations. As a detailed example, we outline a module that focuses on Boolean models of the lac operon network. PMID:20810955

  12. Mathematical biology modules based on modern molecular biology and modern discrete mathematics.

    Science.gov (United States)

    Robeva, Raina; Davies, Robin; Hodge, Terrell; Enyedi, Alexander

    2010-01-01

    We describe an ongoing collaborative curriculum materials development project between Sweet Briar College and Western Michigan University, with support from the National Science Foundation. We present a collection of modules under development that can be used in existing mathematics and biology courses, and we address a critical national need to introduce students to mathematical methods beyond the interface of biology with calculus. Based on ongoing research, and designed to use the project-based-learning approach, the modules highlight applications of modern discrete mathematics and algebraic statistics to pressing problems in molecular biology. For the majority of projects, calculus is not a required prerequisite and, due to the modest amount of mathematical background needed for some of the modules, the materials can be used for an early introduction to mathematical modeling. At the same time, most modules are connected with topics in linear and abstract algebra, algebraic geometry, and probability, and they can be used as meaningful applied introductions into the relevant advanced-level mathematics courses. Open-source software is used to facilitate the relevant computations. As a detailed example, we outline a module that focuses on Boolean models of the lac operon network.

  13. SU-E-J-273: Simulation of the Radiation Response of Hypoxic Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza, I [Pontificia Universidad Catolica de Chile, Santiago (Chile); Peschke, P; Karger, C [German Cancer Research Center (DKFZ), Heidelberg (Germany)

    2014-06-01

    Purpose: In radiotherapy, it is important to predict the response of tumour to irradiation prior to the treatment. Mathematical modelling of tumour control probability (TCP) based on the dose distribution, medical imaging and other biological information may help to improve this prediction and to optimize the treatment plan. The aim of this work is to develop an image based 3D multiscale radiobiological model, which describes the growth and the response to radiotherapy of hypoxic tumors. Methods: The computer model is based on voxels, containing tumour, normal (including capillary) and dead cells. Killing of tumour cells due to irradiation is calculated by the Linear Quadratic Model (extended for hypoxia), and the proliferation and resorption of cells are modelled by exponential laws. The initial shape of the tumours is taken from CT images and the initial vascular and cell density information from PET and/or MR images. Including the fractionation regime and the physical dose distribution of the radiation treatment, the model simulates the spatial-temporal evolution of the tumor. Additionally, the dose distribution may be biologically optimized. Results: The model describes the appearance of hypoxia during tumour growth and the reoxygenation processes during radiotherapy. Among other parameters, the TCP is calculated for different dose distributions. The results are in accordance with published results. Conclusion: The simulation model may contribute to the understanding of the influence of biological parameters on tumor response during treatment, and specifically on TCP. It may be used to implement dose-painting approaches. Experimental and clinical validation is needed. This study is supported by a grant from the Ministry of Education of Chile, Programa Mece Educacion Superior (2)

  14. SU-E-J-273: Simulation of the Radiation Response of Hypoxic Tumors

    International Nuclear Information System (INIS)

    Espinoza, I; Peschke, P; Karger, C

    2014-01-01

    Purpose: In radiotherapy, it is important to predict the response of tumour to irradiation prior to the treatment. Mathematical modelling of tumour control probability (TCP) based on the dose distribution, medical imaging and other biological information may help to improve this prediction and to optimize the treatment plan. The aim of this work is to develop an image based 3D multiscale radiobiological model, which describes the growth and the response to radiotherapy of hypoxic tumors. Methods: The computer model is based on voxels, containing tumour, normal (including capillary) and dead cells. Killing of tumour cells due to irradiation is calculated by the Linear Quadratic Model (extended for hypoxia), and the proliferation and resorption of cells are modelled by exponential laws. The initial shape of the tumours is taken from CT images and the initial vascular and cell density information from PET and/or MR images. Including the fractionation regime and the physical dose distribution of the radiation treatment, the model simulates the spatial-temporal evolution of the tumor. Additionally, the dose distribution may be biologically optimized. Results: The model describes the appearance of hypoxia during tumour growth and the reoxygenation processes during radiotherapy. Among other parameters, the TCP is calculated for different dose distributions. The results are in accordance with published results. Conclusion: The simulation model may contribute to the understanding of the influence of biological parameters on tumor response during treatment, and specifically on TCP. It may be used to implement dose-painting approaches. Experimental and clinical validation is needed. This study is supported by a grant from the Ministry of Education of Chile, Programa Mece Educacion Superior (2)

  15. Do biological-based strategies hold promise to biofouling control in MBRs?

    KAUST Repository

    Malaeb, Lilian

    2013-10-01

    Biofouling in membrane bioreactors (MBRs) remains a primary challenge for their wider application, despite the growing acceptance of MBRs worldwide. Research studies on membrane fouling are extensive in the literature, with more than 200 publications on MBR fouling in the last 3 years; yet, improvements in practice on biofouling control and management have been remarkably slow. Commonly applied cleaning methods are only partially effective and membrane replacement often becomes frequent. The reason for the slow advancement in successful control of biofouling is largely attributed to the complex interactions of involved biological compounds and the lack of representative-for-practice experimental approaches to evaluate potential effective control strategies. Biofouling is driven by microorganisms and their associated extra-cellular polymeric substances (EPS) and microbial products. Microorganisms and their products convene together to form matrices that are commonly treated as a black box in conventional control approaches. Biological-based antifouling strategies seem to be a promising constituent of an effective integrated control approach since they target the essence of biofouling problems. However, biological-based strategies are in their developmental phase and several questions should be addressed to set a roadmap for translating existing and new information into sustainable and effective control techniques. This paper investigates membrane biofouling in MBRs from the microbiological perspective to evaluate the potential of biological-based strategies in offering viable control alternatives. Limitations of available control methods highlight the importance of an integrated anti-fouling approach including biological strategies. Successful development of these strategies requires detailed characterization of microorganisms and EPS through the proper selection of analytical tools and assembly of results. Existing microbiological/EPS studies reveal a number of

  16. A conceptual design of neutron tumor therapy reactor facility with a YAYOI based fast neutron source reactor

    International Nuclear Information System (INIS)

    Wakabayashi, Hiroaki; An, Shigehiro.

    1983-01-01

    Fast neutron is known as one of useful radiations for radiation therapy of tumors. Boron neutron capture therapy (BNCT) of tumors which makes use of 10 B(n, α) 7 Li reaction of 10 B compounds selectively attached to tumor cells with thermal and intermediate neutrons is another way of neutron based radiation therapy which is, above all, attractive enough to kill tumor cells selectively sparing normal tissue. In Japan, BNCT has already been applied and leaned to be effective. After more than a decade operational experiences and the specific experiments designed for therapeutical purposes, in this paper, a conceptual design of a special neutron therapy reactor facility based on YAYOI - fast neutron source reactor of Nuclear Engineering Research Laboratory, Faculty of Engineering, the University of Tokyo - modified to provide an upward beam of fast and intermediate neutrons is presented. Emphasis is placed on the in-house nature of facility and on the coordinating capability of biological and physical researches as well as maintenances of the facility. (author)

  17. Circulating Tumor Cells, Enumeration and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Jian-Mei [Clinical and Experimental Pharmacology Group, Paterson Institute for Cancer Research, Manchester M20 4BX (United Kingdom); Krebs, Matthew [Clinical and Experimental Pharmacology Group, Paterson Institute for Cancer Research, Manchester M20 4BX (United Kingdom); Christie Hospital Foundation NHS Trust, Manchester M20 4BX (United Kingdom); Ward, Tim; Morris, Karen; Sloane, Robert [Clinical and Experimental Pharmacology Group, Paterson Institute for Cancer Research, Manchester M20 4BX (United Kingdom); Blackhall, Fiona [Clinical and Experimental Pharmacology Group, Paterson Institute for Cancer Research, Manchester M20 4BX (United Kingdom); School of Cancer and Enabling Sciences, University of Manchester, Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, Manchester M20 4BX (United Kingdom); Christie Hospital Foundation NHS Trust, Manchester M20 4BX (United Kingdom); Dive, Caroline, E-mail: cdive@picr.man.ac.uk [Clinical and Experimental Pharmacology Group, Paterson Institute for Cancer Research, Manchester M20 4BX (United Kingdom); School of Cancer and Enabling Sciences, University of Manchester, Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, Manchester M20 4BX (United Kingdom)

    2010-06-09

    The detection and enumeration of circulating tumor cells (CTCs) has shown significant clinical utility with respect to prognosis in breast, colorectal and prostate cancers. Emerging studies show that CTCs can provide pharmacodynamic information to aid therapy decision making. CTCs as a ‘virtual and real-time biopsy’ have clear potential to facilitate exploration of tumor biology, and in particular, the process of metastasis. The challenge of profiling CTC molecular characteristics and generating CTC signatures using current technologies is that they enrich rather than purify CTCs from whole blood; we face the problem of looking for the proverbial ‘needle in the haystack’. This review summarizes the current methods for CTC detection and enumeration, focuses on molecular characterization of CTCs, unveils some aspects of CTC heterogeneity, describes attempts to purify CTCs and scans the horizon for approaches leading to comprehensive dissection of CTC biology.

  18. Circulating Tumor Cells, Enumeration and Beyond

    International Nuclear Information System (INIS)

    Hou, Jian-Mei; Krebs, Matthew; Ward, Tim; Morris, Karen; Sloane, Robert; Blackhall, Fiona; Dive, Caroline

    2010-01-01

    The detection and enumeration of circulating tumor cells (CTCs) has shown significant clinical utility with respect to prognosis in breast, colorectal and prostate cancers. Emerging studies show that CTCs can provide pharmacodynamic information to aid therapy decision making. CTCs as a ‘virtual and real-time biopsy’ have clear potential to facilitate exploration of tumor biology, and in particular, the process of metastasis. The challenge of profiling CTC molecular characteristics and generating CTC signatures using current technologies is that they enrich rather than purify CTCs from whole blood; we face the problem of looking for the proverbial ‘needle in the haystack’. This review summarizes the current methods for CTC detection and enumeration, focuses on molecular characterization of CTCs, unveils some aspects of CTC heterogeneity, describes attempts to purify CTCs and scans the horizon for approaches leading to comprehensive dissection of CTC biology

  19. A safe transoral surgical approach to parapharyngeal tumor arising from deep lobe of parotid gland

    Directory of Open Access Journals (Sweden)

    Manuele Casale

    2016-12-01

    Full Text Available The management of parapharyngeal tumor is surgical, but the approach remains a challenge. Attention should be paid to avoidance intra-operative bleeding or cranial nerves damage. We report a case of a 67-year-old male complaining of left-ear fullness. A submucosal mass arising from the lateral wall of oropharynx on the left side was observed. Magnetic resonance imaging detected a mass arising from the parotid gland, in particular from the deep lobe, and a fine needle biopsy was compatible with “Warthin tumor.” We performed a mini-invasive transoral approach under magnification, previous isolation of homolateral vessels. The decision on which surgical approach to be used is determined by site, size vascularity, and histology of the tumor. A literature review of the main surgical approaches was performed. We performed a combined transoral dissection under magnification with cervicotomic exposure of the neck vascular bundle allowing to dissect the tumor and manage any intra-operative complications.

  20. Molecular biology of testicular germ cell tumors.

    Science.gov (United States)

    Gonzalez-Exposito, R; Merino, M; Aguayo, C

    2016-06-01

    Testicular germ cell tumors (TGCTs) are the most common solid tumors in young adult men. They constitute a unique pathology because of their embryonic and germ origin and their special behavior. Genetic predisposition, environmental factors involved in their development and genetic aberrations have been under study in many works throughout the last years trying to explain the susceptibility and the transformation mechanism of TGCTs. Despite the high rate of cure in this type of tumors because its particular sensitivity to cisplatin, there are tumors resistant to chemotherapy for which it is needed to find new therapies. In the present work, it has been carried out a literature review on the most important molecular aspects involved in the onset and development of such tumors, as well as a review of the major developments regarding prognostic factors, new prognostic biomarkers and the possibility of new targeted therapies.

  1. Delay equations modeling the effects of phase-specific drugs and immunotherapy on proliferating tumor cells.

    Science.gov (United States)

    Barbarossa, Maria Vittoria; Kuttler, Christina; Zinsl, Jonathan

    2012-04-01

    In this work we present a mathematical model for tumor growth based on the biology of the cell cycle. For an appropriate description of the effects of phase-specific drugs, it is necessary to look at the cell cycle and its phases. Our model reproduces the dynamics of three different tumor cell populations: quiescent cells, cells during the interphase and mitotic cells. Starting from a partial differential equations (PDEs) setting, a delay differential equations (DDE) model is derived for an easier and more realistic approach. Our equations also include interactions of tumor cells with immune system effectors. We investigate the model both from the analytical and the numerical point of view, give conditions for positivity of solutions and focus on the stability of the cancer-free equilibrium. Different immunotherapeutic strategies and their effects on the tumor growth are considered, as well.

  2. Tumor Volume-Adapted Dosing in Stereotactic Ablative Radiotherapy of Lung Tumors

    International Nuclear Information System (INIS)

    Trakul, Nicholas; Chang, Christine N.; Harris, Jeremy; Chapman, Christopher; Rao, Aarti; Shen, John; Quinlan-Davidson, Sean; Filion, Edith J.; Wakelee, Heather A.; Colevas, A. Dimitrios; Whyte, Richard I.

    2012-01-01

    Purpose: Current stereotactic ablative radiotherapy (SABR) protocols for lung tumors prescribe a uniform dose regimen irrespective of tumor size. We report the outcomes of a lung tumor volume-adapted SABR dosing strategy. Methods and Materials: We retrospectively reviewed the outcomes in 111 patients with a total of 138 primary or metastatic lung tumors treated by SABR, including local control, regional control, distant metastasis, overall survival, and treatment toxicity. We also performed subset analysis on 83 patients with 97 tumors treated with a volume-adapted dosing strategy in which small tumors (gross tumor volume <12 mL) received single-fraction regimens with biologically effective doses (BED) <100 Gy (total dose, 18–25 Gy) (Group 1), and larger tumors (gross tumor volume ≥12 mL) received multifraction regimens with BED ≥100 Gy (total dose, 50–60 Gy in three to four fractions) (Group 2). Results: The median follow-up time was 13.5 months. Local control for Groups 1 and 2 was 91.4% and 92.5%, respectively (p = 0.24) at 12 months. For primary lung tumors only (excluding metastases), local control was 92.6% and 91.7%, respectively (p = 0.58). Regional control, freedom from distant metastasis, and overall survival did not differ significantly between Groups 1 and 2. Rates of radiation pneumonitis, chest wall toxicity, and esophagitis were low in both groups, but all Grade 3 toxicities developed in Group 2 (p = 0.02). Conclusion: A volume-adapted dosing approach for SABR of lung tumors seems to provide excellent local control for both small- and large-volume tumors and may reduce toxicity.

  3. An engineering design approach to systems biology.

    Science.gov (United States)

    Janes, Kevin A; Chandran, Preethi L; Ford, Roseanne M; Lazzara, Matthew J; Papin, Jason A; Peirce, Shayn M; Saucerman, Jeffrey J; Lauffenburger, Douglas A

    2017-07-17

    Measuring and modeling the integrated behavior of biomolecular-cellular networks is central to systems biology. Over several decades, systems biology has been shaped by quantitative biologists, physicists, mathematicians, and engineers in different ways. However, the basic and applied versions of systems biology are not typically distinguished, which blurs the separate aspirations of the field and its potential for real-world impact. Here, we articulate an engineering approach to systems biology, which applies educational philosophy, engineering design, and predictive models to solve contemporary problems in an age of biomedical Big Data. A concerted effort to train systems bioengineers will provide a versatile workforce capable of tackling the diverse challenges faced by the biotechnological and pharmaceutical sectors in a modern, information-dense economy.

  4. ENERGY CONCEPT ALIVE. NEW APPROACH IN THE FIGHT AGAINST CANCER

    Directory of Open Access Journals (Sweden)

    V. S. Shchukin

    2015-10-01

    Full Text Available New approach to the problem of struggle with malignant tumors based on the suggested by the authors energetic concept of living matter considering a human organism as an open non-self-organizing biological system that is the part of organism of a higher level of organization - Biosphere, and that is under full control of geophysical factors - first of all electromagnetic field of the Earth and composition of atmospheric air is set forth. The mentioned factors fatefully determine length of life - specific and individual - of any living organism, including human being. On the basis of the set forth approach a new means of prevention and removal from the human organism of malignant tumors was suggested.

  5. Assessing Probabilistic Risk Assessment Approaches for Insect Biological Control Introductions

    OpenAIRE

    Kaufman, Leyla V.; Wright, Mark G.

    2017-01-01

    The introduction of biological control agents to new environments requires host specificity tests to estimate potential non-target impacts of a prospective agent. Currently, the approach is conservative, and is based on physiological host ranges determined under captive rearing conditions, without consideration for ecological factors that may influence realized host range. We use historical data and current field data from introduced parasitoids that attack an endemic Lepidoptera species in H...

  6. The Confluence of Stereotactic Ablative Radiotherapy and Tumor Immunology

    Directory of Open Access Journals (Sweden)

    Steven Eric Finkelstein

    2011-01-01

    Full Text Available Stereotactic radiation approaches are gaining more popularity for the treatment of intracranial as well as extracranial tumors in organs such as the liver and lung. Technology, rather than biology, is driving the rapid adoption of stereotactic body radiation therapy (SBRT, also known as stereotactic ablative radiotherapy (SABR, in the clinic due to advances in precise positioning and targeting. Dramatic improvements in tumor control have been demonstrated; however, our knowledge of normal tissue biology response mechanisms to large fraction sizes is lacking. Herein, we will discuss how SABR can induce cellular expression of MHC I, adhesion molecules, costimulatory molecules, heat shock proteins, inflammatory mediators, immunomodulatory cytokines, and death receptors to enhance antitumor immune responses.

  7. An off-on fluorescence probe targeting mitochondria based on oxidation-reduction response for tumor cell and tissue imaging

    Science.gov (United States)

    Yao, Hanchun; Cao, Li; Zhao, Weiwei; Zhang, Suge; Zeng, Man; Du, Bin

    2017-10-01

    In this study, a tumor-targeting poly( d, l-lactic-co-glycolic acid) (PLGA) loaded "off-on" fluorescent probe nanoparticle (PFN) delivery system was developed to evaluate the region of tumor by off-on fluorescence. The biodegradability of the nanosize PFN delivery system readily released the probe under tumor acidic conditions. The probe with good biocompatibility was used to monitor the intracellular glutathione (GSH) of cancer cells and selectively localize to mitochondria for tumor imaging. The incorporated tumor-targeting probe was based on the molecular photoinduced electron transfer (PET) mechanism preventing fluorescence ("off" state) and could be easily released under tumor acidic conditions. However, the released tumor-targeting fluorescence probe molecule was selective towards GSH with high selectivity and an ultra-sensitivity for the mitochondria of cancer cells and tissues significantly increasing the probe molecule fluorescence signal ("on" state). The tumor-targeting fluorescence probe showed sensitivity to GSH avoiding interference from cysteine and homocysteine. The PFNs could enable fluorescence-guided cancer imaging during cancer therapy. This work may expand the biological applications of PFNs as a diagnostic reagent, which will be beneficial for fundamental research in tumor imaging. [Figure not available: see fulltext.

  8. A Biologically Based Chemo-Sensing UAV for Humanitarian Demining

    Directory of Open Access Journals (Sweden)

    Paul F.M.J. Verschure

    2008-11-01

    Full Text Available Antipersonnel mines, weapons of cheap manufacture but lethal effect, have a high impact on the population even decades after the conflicts have finished. Here we investigate the use of a chemo-sensing Unmanned Aerial Vehicle (cUAV for demining tasks. We developed a blimp based UAV that is equipped with a broadly tuned metal-thin oxide chemo-sensor. A number of chemical mapping strategies were investigated including two biologically based localization strategies derived from the moth chemical search that can optimize the efficiency of the detection and localization of explosives and therefore be used in the demining process. Additionally, we developed a control layer that allows for both fully autonomous and manual controlled flight, as well as for the scheduling of a fleet of cUAVs. Our results confirm the feasibility of this technology for demining in real-world scenarios and give further support to a biologically based approach where the understanding of biological systems is used to solve difficult engineering problems.

  9. A Biologically Based Chemo-Sensing UAV for Humanitarian Demining

    Directory of Open Access Journals (Sweden)

    Sergi Bermúdez i Badia

    2007-06-01

    Full Text Available Antipersonnel mines, weapons of cheap manufacture but lethal effect, have a high impact on the population even decades after the conflicts have finished. Here we investigate the use of a chemo-sensing Unmanned Aerial Vehicle (cUAV for demining tasks. We developed a blimp based UAV that is equipped with a broadly tuned metal-thin oxide chemo-sensor. A number of chemical mapping strategies were investigated including two biologically based localization strategies derived from the moth chemical search that can optimize the efficiency of the detection and localization of explosives and therefore be used in the demining process. Additionally, we developed a control layer that allows for both fully autonomous and manual controlled flight, as well as for the scheduling of a fleet of cUAVs. Our results confirm the feasibility of this technology for demining in real-world scenarios and give further support to a biologically based approach where the understanding of biological systems is used to solve difficult engineering problems.

  10. Experimental Systems-Biology Approaches for Clostridia-Based Bioenergy Production

    Energy Technology Data Exchange (ETDEWEB)

    Papoutsakis, Elefterios [Univ. of Delaware, Newark, DE (United States)

    2015-04-30

    This is the final project report for project "Experimental Systems-Biology Approaches for Clostridia-Based Bioenergy Production" for the funding period of 9/1/12 to 2/28/2015 (three years with a 6-month no-cost extension) OVERVIEW AND PROJECT GOALS The bottleneck of achieving higher rates and titers of toxic metabolites (such as solvents and carboxylic acids that can used as biofuels or biofuel precursors) can be overcome by engineering the stress response system. Thus, understanding and modeling the response of cells to toxic metabolites is a problem of great fundamental and practical significance. In this project, our goal is to dissect at the molecular systems level and build models (conceptual and quantitative) for the stress response of C. acetobutylicum (Cac) to its two toxic metabolites: butanol (BuOH) and butyrate (BA). Transcriptional (RNAseq and microarray based), proteomic and fluxomic data and their analysis are key requirements for this goal. Transcriptional data from mid-exponential cultures of Cac under 4 different levels of BuOH and BA stress was obtained using both microarrays (Papoutsakis group) and deep sequencing (RNAseq; Meyers and Papoutsakis groups). These two sets of data do not only serve to validate each other, but are also used for identification of stress-induced changes in transcript levels, small regulatory RNAs, & in transcriptional start sites. Quantitative proteomic data (Lee group), collected using the iTRAQ technology, are essential for understanding of protein levels and turnover under stress and the various protein-protein interactions that orchestrate the stress response. Metabolic flux changes (Antoniewicz group) of core pathways, which provide important information on the re-allocation of energy and carbon resources under metabolite stress, were examined using 13C-labelled chemicals. Omics data are integrated at different levels and scales. At the metabolic-pathway level, omics data are integrated into a 2nd generation genome

  11. [Neurophysiological identification of the cranial nerves in endoscopic endonasal surgery of skull base tumors].

    Science.gov (United States)

    Shkarubo, A N; Ogurtsova, A A; Moshchev, D A; Lubnin, A Yu; Andreev, D N; Koval', K V; Chernov, I V

    2016-01-01

    Intraoperative identification of the cranial nerves is a useful technique in removal of skull base tumors through the endoscopic endonasal approach. Searching through the scientific literature found one pilot study on the use of triggered electromyography (t-EMG) for identification of the VIth nerve in endonasal endoscopic surgery of skull base tumors (D. San-Juan, et al, 2014). The study objective was to prevent iatrogenic injuries to the cranial nerves without reducing the completeness of tumor tissue resection. In 2014, 5 patients were operated on using the endoscopic endonasal approach. Surgeries were performed for large skull base chordomas (2 cases) and trigeminal nerve neurinomas located in the cavernous sinus (3). Intraoperatively, identification of the cranial nerves was performed by triggered electromyography using a bipolar electrode (except 1 case of chordoma where a monopolar electrode was used). Evaluation of the functional activity of the cranial nerves was carried out both preoperatively and postoperatively. Tumor resection was total in 4 out of 5 cases and subtotal (chordoma) in 1 case. Intraoperatively, the IIIrd (2 patients), Vth (2), and VIth (4) cranial nerves were identified. No deterioration in the function of the intraoperatively identified nerves was observed in the postoperative period. In one case, no responses from the VIth nerve on the right (in the cavernous sinus region) were intraoperatively obtained, and deep paresis (up to plegia) of the nerve-innervated muscles developed in the postoperative period. The nerve function was not impaired before surgery. The t-EMG technique is promising and requires further research.

  12. Systems Biology-Based Platforms to Accelerate Research of Emerging Infectious Diseases.

    Science.gov (United States)

    Oh, Soo Jin; Choi, Young Ki; Shin, Ok Sarah

    2018-03-01

    Emerging infectious diseases (EIDs) pose a major threat to public health and security. Given the dynamic nature and significant impact of EIDs, the most effective way to prevent and protect against them is to develop vaccines in advance. Systems biology approaches provide an integrative way to understand the complex immune response to pathogens. They can lead to a greater understanding of EID pathogenesis and facilitate the evaluation of newly developed vaccine-induced immunity in a timely manner. In recent years, advances in high throughput technologies have enabled researchers to successfully apply systems biology methods to analyze immune responses to a variety of pathogens and vaccines. Despite recent advances, computational and biological challenges impede wider application of systems biology approaches. This review highlights recent advances in the fields of systems immunology and vaccinology, and presents ways that systems biology-based platforms can be applied to accelerate a deeper understanding of the molecular mechanisms of immunity against EIDs. © Copyright: Yonsei University College of Medicine 2018.

  13. Improving abdomen tumor low-dose CT images using a fast dictionary learning based processing

    International Nuclear Information System (INIS)

    Chen Yang; Shi Luyao; Shu Huazhong; Luo Limin; Coatrieux, Jean-Louis; Yin Xindao; Toumoulin, Christine

    2013-01-01

    In abdomen computed tomography (CT), repeated radiation exposures are often inevitable for cancer patients who receive surgery or radiotherapy guided by CT images. Low-dose scans should thus be considered in order to avoid the harm of accumulative x-ray radiation. This work is aimed at improving abdomen tumor CT images from low-dose scans by using a fast dictionary learning (DL) based processing. Stemming from sparse representation theory, the proposed patch-based DL approach allows effective suppression of both mottled noise and streak artifacts. The experiments carried out on clinical data show that the proposed method brings encouraging improvements in abdomen low-dose CT images with tumors. (paper)

  14. Biologic behavior and prognostic factors for mast cell tumors of the canine muzzle: 24 cases (1990-2001).

    Science.gov (United States)

    Gieger, Tracy L; Théon, Alain P; Werner, Jonathan A; McEntee, Margaret C; Rassnick, Kenneth M; DeCock, Hilde E V

    2003-01-01

    The medical records of 24 dogs with histologically confirmed mast cell tumors (MCT) of the muzzle were retrospectively evaluated to determine their biologic behavior and prognostic factors. Information on signalment, tumor grade and stage, treatment methods, and pattern of and time to failure and death was obtained from the medical record. Twenty-three dogs were treated with combinations of radiotherapy, surgery, and chemotherapy; 1 dog received no treatment. There were 2 Grade 1, 15 Grade 11, and 7 Grade III tumors. Tumors were stage 0 (n = 8), stage 1 (5), stage 2 (6), stage 3 (4), and stage 4 (1). Mean and median survival times of treated dogs were 36 and 30 months, respectively. Prognostic factors affecting survival time included tumor grade and presence of metastasis at diagnosis. Dogs with Grade I and II tumors survived longer than dogs with Grade III tumors. Variables, including sex, age, gross versus microscopic disease, and treatment type were not found to affect survival. Local control rate was 75% at 1 year and 50% at 3 years. Tumor grade was the only variable found to affect local control. Dogs with Grade I tumors had longer disease-free intervals than those with Grade II tumors, and dogs with Grade II tumors had longer disease-free intervals than dogs with Grade III tumors. Eight of 9 dogs dying of MCT had local or regional disease progression. Muzzle MCT a rebiologically aggressive tumors with higher regional metastatic rates than previously reported for MCT in other sites.

  15. Biological and psychological rhythms: an integrative approach to rhythm disturbances in autistic disorder.

    Science.gov (United States)

    Botbol, Michel; Cabon, Philippe; Kermarrec, Solenn; Tordjman, Sylvie

    2013-09-01

    Biological rhythms are crucial phenomena that are perfect examples of the adaptation of organisms to their environment. A considerable amount of work has described different types of biological rhythms (from circadian to ultradian), individual differences in their patterns and the complexity of their regulation. In particular, the regulation and maturation of the sleep-wake cycle have been thoroughly studied. Its desynchronization, both endogenous and exogenous, is now well understood, as are its consequences for cognitive impairments and health problems. From a completely different perspective, psychoanalysts have shown a growing interest in the rhythms of psychic life. This interest extends beyond the original focus of psychoanalysis on dreams and the sleep-wake cycle, incorporating central theoretical and practical psychoanalytic issues related to the core functioning of the psychic life: the rhythmic structures of drive dynamics, intersubjective developmental processes and psychic containment functions. Psychopathological and biological approaches to the study of infantile autism reveal the importance of specific biological and psychological rhythmic disturbances in this disorder. Considering data and hypotheses from both perspectives, this paper proposes an integrative approach to the study of these rhythmic disturbances and offers an etiopathogenic hypothesis based on this integrative approach. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Assessment of Canine Mast Cell Tumor Mortality Risk Based on Clinical, Histologic, Immunohistochemical, and Molecular Features.

    Science.gov (United States)

    Horta, Rodrigo S; Lavalle, Gleidice E; Monteiro, Lidianne N; Souza, Mayara C C; Cassali, Geovanni D; Araújo, Roberto B

    2018-03-01

    Mast cell tumor (MCT) is a frequent cutaneous neoplasm in dogs that is heterogeneous in clinical presentation and biological behavior, with a variable potential for recurrence and metastasis. Accurate prediction of clinical outcomes has been challenging. The study objective was to develop a system for classification of canine MCT according to the mortality risk based on individual assessment of clinical, histologic, immunohistochemical, and molecular features. The study included 149 dogs with a histologic diagnosis of cutaneous or subcutaneous MCT. By univariate analysis, MCT metastasis and related death was significantly associated with clinical stage ( P < .0001, r P = -0.610), history of tumor recurrence ( P < .0001, r P = -0.550), Patnaik ( P < .0001, r P = -0.380) and Kiupel grades ( P < .0001, r P = -0.500), predominant organization of neoplastic cells ( P < .0001, r P = -0.452), mitotic count ( P < .0001, r P = -0.325), Ki-67 labeling index ( P < .0001, r P = -0.414), KITr pattern ( P = .02, r P = 0.207), and c-KIT mutational status ( P < .0001, r P = -0.356). By multivariate analysis with Cox proportional hazard model, only 2 features were independent predictors of overall survival: an amendment of the World Health Organization clinical staging system (hazard ratio [95% CI]: 1.824 [1.210-4.481]; P = .01) and a history of tumor recurrence (hazard ratio [95% CI]: 9.250 [2.158-23.268]; P < .001]. From these results, we propose an amendment of the WHO staging system, a method of risk analysis, and a suggested approach to clinical and laboratory evaluation of dogs with cutaneous MCT.

  17. Towards biologically conformal radiation therapy (BCRT): Selective IMRT dose escalation under the guidance of spatial biology distribution

    International Nuclear Information System (INIS)

    Yang Yong; Xing Lei

    2005-01-01

    It is well known that the spatial biology distribution (e.g., clonogen density, radiosensitivity, tumor proliferation rate, functional importance) in most tumors and sensitive structures is heterogeneous. Recent progress in biological imaging is making the mapping of this distribution increasingly possible. The purpose of this work is to establish a theoretical framework to quantitatively incorporate the spatial biology data into intensity modulated radiation therapy (IMRT) inverse planning. In order to implement this, we first derive a general formula for determining the desired dose to each tumor voxel for a known biology distribution of the tumor based on a linear-quadratic model. The desired target dose distribution is then used as the prescription for inverse planning. An objective function with the voxel-dependent prescription is constructed with incorporation of the nonuniform dose prescription. The functional unit density distribution in a sensitive structure is also considered phenomenologically when constructing the objective function. Two cases with different hypothetical biology distributions are used to illustrate the new inverse planning formalism. For comparison, treatments with a few uniform dose prescriptions and a simultaneous integrated boost are also planned. The biological indices, tumor control probability (TCP) and normal tissue complication probability (NTCP), are calculated for both types of plans and the superiority of the proposed technique over the conventional dose escalation scheme is demonstrated. Our calculations revealed that it is technically feasible to produce deliberately nonuniform dose distributions with consideration of biological information. Compared with the conventional dose escalation schemes, the new technique is capable of generating biologically conformal IMRT plans that significantly improve the TCP while reducing or keeping the NTCPs at their current levels. Biologically conformal radiation therapy (BCRT

  18. Microenvironment acidity as a major determinant of tumor chemoresistance: Proton pump inhibitors (PPIs) as a novel therapeutic approach.

    Science.gov (United States)

    Taylor, Sophie; Spugnini, Enrico Pierluigi; Assaraf, Yehuda G; Azzarito, Tommaso; Rauch, Cyril; Fais, Stefano

    2015-11-01

    Despite the major progresses in biomedical research and the development of novel therapeutics and treatment strategies, cancer is still among the dominant causes of death worldwide. One of the crucial challenges in the clinical management of cancer is primary (intrinsic) and secondary (acquired) resistance to both conventional and targeted chemotherapeutics. Multiple mechanisms have been identifiedthat underlie intrinsic and acquired chemoresistance: these include impaired drug uptake, increased drug efflux, deletion of receptors, altered drug metabolism, quantitative and qualitative alterations in drug targets, increased DNA damage repair and various mechanisms of anti-apoptosis. The fast efflux of anticancer drugs mediated by multidrug efflux pumps and the partial or complete reversibility of chemoresistance combined with the absence of genetic mutations suggests a multifactorial process. However, a growing body of recent evidence suggests that chemoresistance is often triggered by the highly acidic microenvironment of tumors. The vast majority of drugs, including conventional chemotherapeutics and more recent biological agents, are weak bases that are quickly protonated and neutralized in acidic environments, such as the extracellular microenvironment and the acidic organelles of tumor cells. It is therefore essential to develop new strategies to overcome the entrapment and neutralization of weak base drugs. One such strategy is the use of proton pump inhibitors which can enhance tumor chemosensitivity by increasing the pH of the tumor microenvironment. Recent clinical trials in animals with spontaneous tumors have indicated that patient alkalization is capable of reversing acquired chemoresistance in a large percentage of tumors that are refractory to chemotherapy. Of particular interest was the benefit of alkalization for patients undergoing metronomic regimens which are becoming more widely used in veterinary medicine. Overall, these results provide

  19. Anterior Trans Cervicothoracic Approach for Complete Resection of Cervicothoracic Mediastinal Neurogenic Tumors

    Directory of Open Access Journals (Sweden)

    Reza Bagheri

    2013-10-01

    Full Text Available Introduction:Neurogenic mediastinal tumors comprise a wide range of benign and malignant diseases. A group of these tumors, located at thoracic apex, sometimes spread to cervical spaces causing numerous surgical difficulties. In thoracotomy approaches, due to proximity of the tumors to major blood vessels, complete removal of these tumors from cervical spaces is impossible or may cause intraoperative severe bleeding or other dangerous incidents Because of the adjacent major vessels  that are not visible.The aim of this study is to report cases of surgical treatment of such tumors using Anterior Trans Cervicothoracic Approach (ATCA. Materials and Methods:All patients with neurogenic tumors and cervicomediastinal (CM spread who underwent surgey with ATCA technique during 2005-2011 were included in our study. Then they were evaluated in terms of age, sex, clinical symptoms, radiological and pathological findings, technical success rate of the surgery, surgical complications and first-year relapse rate after the surgery. Results:Our study included 10 patients from whom 9 were female and 1 was male (M/F= 1/9 and the mean age was 27 years. The most common symptoms were pain and feeling of a lump. All patients were operated by this technique successfully. The most common pathological finding was neurofibroma (in 5 patients and surgical complications occurred in 2 patients (20% (Wound infection in 1 patient and brachial plexus injury in another patient. There was no mortality. Disease relapse was reported in 1 patient  ganglioneuroblastoma who underwent surgical resection for the second time. Conclusion: Considering the successful removal of the tumors and favorable exposure of major vessels in cervicomediastinal spaces, this technique is recommended to resect mediastinal tumors with spread to cervical spaces. However, a more definite conclusion requires further studies.

  20. Nanobody-Based Delivery Systems for Diagnosis and Targeted Tumor Therapy

    Directory of Open Access Journals (Sweden)

    Yaozhong Hu

    2017-11-01

    Full Text Available The development of innovative targeted therapeutic approaches are expected to surpass the efficacy of current forms of treatments and cause less damage to healthy cells surrounding the tumor site. Since the first development of targeting agents from hybridoma’s, monoclonal antibodies (mAbs have been employed to inhibit tumor growth and proliferation directly or to deliver effector molecules to tumor cells. However, the full potential of such a delivery strategy is hampered by the size of mAbs, which will obstruct the targeted delivery system to access the tumor tissue. By serendipity, a new kind of functional homodimeric antibody format was discovered in camelidae, known as heavy-chain antibodies (HCAbs. The cloning of the variable domain of HCAbs produces an attractive minimal-sized alternative for mAbs, referred to as VHH or nanobodies (Nbs. Apart from their dimensions in the single digit nanometer range, the unique characteristics of Nbs combine a high stability and solubility, low immunogenicity and excellent affinity and specificity against all possible targets including tumor markers. This stimulated the development of tumor-targeted therapeutic strategies. Some autonomous Nbs have been shown to act as antagonistic drugs, but more importantly, the targeting capacity of Nbs has been exploited to create drug delivery systems. Obviously, Nb-based targeted cancer therapy is mainly focused toward extracellular tumor markers, since the membrane barrier prevents antibodies to reach the most promising intracellular tumor markers. Potential strategies, such as lentiviral vectors and bacterial type 3 secretion system, are proposed to deliver target-specific Nbs into tumor cells and to block tumor markers intracellularly. Simultaneously, Nbs have also been employed for in vivo molecular imaging to diagnose diseased tissues and to monitor the treatment effects. Here, we review the state of the art and focus on recent developments with Nbs as

  1. What is a pediatric tumor?

    Directory of Open Access Journals (Sweden)

    Mora J

    2012-11-01

    Full Text Available Jaume Mora1,21Department of Oncology, 2Developmental Tumor Biology Laboratory, Hospital Sant Joan de Deu, Fundacio Sant Joan de Deu, Barcelona, SpainAbstract: Working together with medical oncologists, the question of whether a Ewing sarcoma in a 25-year-old is a pediatric tumor comes up repeatedly. Like Ewing's, some tumors present characteristically at ages that cross over what has been set as the definition of pediatrics (15 years, 18 years, or 21 years?. Pediatric oncology textbooks, surprisingly, do not address the subject of defining a pediatric tumor. They all begin with an epidemiology chapter defining the types of tumors appearing at distinct stages of childhood, adolescence, and young adulthood. Describing the epidemiology of tumors in relation to age, it becomes clear that the disease is related to the phenomenon of aging. The question, however, remains: is there a biological definition of what pediatric age is? And if so, will tumors occurring during this period of life have anything to do with such biological definition? With the aim of finding an objective definition, the fundamental concepts of what defines "pediatrics" was reviewed and then the major features of tumors arising during development were analyzed. The tumors were explored from the perspective of a host immersed in the normal process of growth and development. This physiological process, from pluripotential and undifferentiated cells, makes possible the differentiation, maturation, organization, and function of tissues, organs, and apparatus. A biological definition of pediatric tumors and the infancy–childhood–puberty classification of developmental tumors according to the infancy–childhood–puberty model of normal human development are proposed.Keywords: growth and development, pediatric tumor, infant, childhood and adolescence, pubertal tumors

  2. Circulating Tumor Cells, Enumeration and Beyond

    Directory of Open Access Journals (Sweden)

    Jian-Mei Hou

    2010-06-01

    Full Text Available The detection and enumeration of circulating tumor cells (CTCs has shown significant clinical utility with respect to prognosis in breast, colorectal and prostate cancers. Emerging studies show that CTCs can provide pharmacodynamic information to aid therapy decision making. CTCs as a ‘virtual and real-time biopsy’ have clear potential to facilitate exploration of tumor biology, and in particular, the process of metastasis. The challenge of profiling CTC molecular characteristics and generating CTC signatures using current technologies is that they enrich rather than purify CTCs from whole blood; we face the problem of looking for the proverbial ‘needle in the haystack’. This review summarizes the current methods for CTC detection and enumeration, focuses on molecular characterization of CTCs, unveils some aspects of CTC heterogeneity, describes attempts to purify CTCs and scans the horizon for approaches leading to comprehensive dissection of CTC biology.

  3. Systems and synthetic biology approaches to alter plant cell walls and reduce biomass recalcitrance.

    Science.gov (United States)

    Kalluri, Udaya C; Yin, Hengfu; Yang, Xiaohan; Davison, Brian H

    2014-12-01

    Fine-tuning plant cell wall properties to render plant biomass more amenable to biofuel conversion is a colossal challenge. A deep knowledge of the biosynthesis and regulation of plant cell wall and a high-precision genome engineering toolset are the two essential pillars of efforts to alter plant cell walls and reduce biomass recalcitrance. The past decade has seen a meteoric rise in use of transcriptomics and high-resolution imaging methods resulting in fresh insights into composition, structure, formation and deconstruction of plant cell walls. Subsequent gene manipulation approaches, however, commonly include ubiquitous mis-expression of a single candidate gene in a host that carries an intact copy of the native gene. The challenges posed by pleiotropic and unintended changes resulting from such an approach are moving the field towards synthetic biology approaches. Synthetic biology builds on a systems biology knowledge base and leverages high-precision tools for high-throughput assembly of multigene constructs and pathways, precision genome editing and site-specific gene stacking, silencing and/or removal. Here, we summarize the recent breakthroughs in biosynthesis and remodelling of major secondary cell wall components, assess the impediments in obtaining a systems-level understanding and explore the potential opportunities in leveraging synthetic biology approaches to reduce biomass recalcitrance. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  4. Pathobiology of germ cell tumors - applying the gossip test!

    Science.gov (United States)

    Looijenga, Leendert H J; Oosterhuis, J Wolter

    2013-01-01

    Residual mature teratoma, a frequent finding in clinical pathology since the introduction of cisplatin-based chemotherapy, put Wolter Oosterhuis on the track of germ cell tumors (GCTs). These neoplasms in the borderland between developmental biology and oncology have fascinated him ever since. He tells the story on how GCTs brought him in contact with leading investigators in the field like Ivan Damjanov, Peter Andrews, and Niels Skakkebaek. His fruitful line of research was made possible through a longstanding collaboration with Bauke de Jong and, to this day, Leendert Looijenga who joined his group as a student in 1988. Probably their most important contribution to the field of GCTs is an integrated approach to GCTs, combining epidemiology, pathology, (cyto)genetics and molecular biology, that has resulted in a pathobiology-based classification of GCTs in five types. It has clinical relevance and stimulates further research on these intriguing neoplasms and their corresponding animal models.

  5. Therapy of metastatic pancreatic neuroendocrine tumors (pNETs). Recent insights and advances

    International Nuclear Information System (INIS)

    Ito, Tetsuhide; Igarashi, Hisato; Jensen, R.T.

    2012-01-01

    Neuroendocrine tumors (NETs) [carcinoids, pancreatic neuroendocrine tumors (pNETs)] are becoming an increasing clinical problem because not only are they increasing in frequency, but they can frequently present with advanced disease that requires diagnostic and treatment approaches different from those used in the neoplasms that most physicians are used to seeing and treating. In the past few years there have been numerous advances in all aspects of NETs including: an understanding of their unique pathogenesis; specific classification systems developed which have prognostic value; novel methods of tumor localization developed; and novel treatment approaches described. In patients with advanced metastatic disease these include the use of newer chemotherapeutic approaches, an increased understanding of the role of surgery and cytoreductive methods, the development of methods for targeted delivery of cytotoxic agents, and the development of targeted medical therapies (everolimus, sunitinib) based on an increased understanding of the disease biology. Although pNETs and gastrointestinal NETs share many features, recent studies show they differ in pathogenesis and in many aspects of diagnosis and treatment, including their responsiveness to different therapies. Because of limited space, this review will be limited to the advances made in the management and treatment of patients with advanced metastatic pNETs over the past 5 years. (author)

  6. Adoptive T cell transfer for cancer immunotherapy in the era of synthetic biology.

    Science.gov (United States)

    Kalos, Michael; June, Carl H

    2013-07-25

    Adoptive T cell transfer for cancer and chronic infection is an emerging field that shows promise in recent trials. Synthetic-biology-based engineering of T lymphocytes to express high-affinity antigen receptors can overcome immune tolerance, which has been a major limitation of immunotherapy-based strategies. Advances in cell engineering and culture approaches to enable efficient gene transfer and ex vivo cell expansion have facilitated broader evaluation of this technology, moving adoptive transfer from a "boutique" application to the cusp of a mainstream technology. The major challenge currently facing the field is to increase the specificity of engineered T cells for tumors, because targeting shared antigens has the potential to lead to on-target off-tumor toxicities, as observed in recent trials. As the field of adoptive transfer technology matures, the major engineering challenge is the development of automated cell culture systems, so that the approach can extend beyond specialized academic centers and become widely available. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. How to Boost the Breast Tumor Bed? A Multidisciplinary Approach in Eight Steps

    International Nuclear Information System (INIS)

    Kirova, Youlia M.; Fournier-Bidoz, Nathalie; Servois, Vincent; Laki, Fatima; Pollet, Guillaume A.; Salmon, Remy; Thomas, Alexandra; Dendale, Remi; Bollet, Marc A.; Campana, Francois M.D.; Fourquet, Alain

    2008-01-01

    Purpose: To describe a new procedure for breast radiotherapy that will improve tumor bed localization and radiotherapy treatment using a multidisciplinary approach. Patients and Methods: This pilot study was conducted by departments of radiation oncology, surgery, and radiology. A new procedure has been implemented, summarized as eight steps: from pre-surgery contrast CT to surgery, tumor bed planning target volume (PTV) determination, and finally breast and tumor bed irradiation. Results: Twenty patients presenting with T1N0M0 tumors were enrolled in the study. All patients underwent lumpectomy with the placement of surgical clips in the tumor bed region. During surgery, 1 to 5 clips were placed in the lumpectomy cavity before the plastic procedure. All patients underwent pre- and postoperative CT scans in the treatment position. The two sets of images were registered with a match-point registration. All volumes were contoured and the results evaluated. The PTV included the clips region, the gross tumor volume, and the surgical scar, with an overall margin of 5-10 mm in all directions, corresponding to localization and setup uncertainties. For each patient the boost PTV was discussed and compared with our standard forward-planned PTV. Conclusions: We demonstrate the feasibility of a tumor bed localization and treatment procedure that seems adaptable to routine practice. Our study shows the advantages of a multidisciplinary approach for tumor bed localization and treatment. The use of more than 1 clip associated with pre- to postoperative CT image registration allows better definition of the PTV boost volume

  8. A versatile mathematical work-flow to explore how Cancer Stem Cell fate influences tumor progression.

    Science.gov (United States)

    Fornari, Chiara; Balbo, Gianfranco; Halawani, Sami M; Ba-Rukab, Omar; Ahmad, Ab Rahman; Calogero, Raffaele A; Cordero, Francesca; Beccuti, Marco

    2015-01-01

    Nowadays multidisciplinary approaches combining mathematical models with experimental assays are becoming relevant for the study of biological systems. Indeed, in cancer research multidisciplinary approaches are successfully used to understand the crucial aspects implicated in tumor growth. In particular, the Cancer Stem Cell (CSC) biology represents an area particularly suited to be studied through multidisciplinary approaches, and modeling has significantly contributed to pinpoint the crucial aspects implicated in this theory. More generally, to acquire new insights on a biological system it is necessary to have an accurate description of the phenomenon, such that making accurate predictions on its future behaviors becomes more likely. In this context, the identification of the parameters influencing model dynamics can be advantageous to increase model accuracy and to provide hints in designing wet experiments. Different techniques, ranging from statistical methods to analytical studies, have been developed. Their applications depend on case-specific aspects, such as the availability and quality of experimental data, and the dimension of the parameter space. The study of a new model on the CSC-based tumor progression has been the motivation to design a new work-flow that helps to characterize possible system dynamics and to identify those parameters influencing such behaviors. In detail, we extended our recent model on CSC-dynamics creating a new system capable of describing tumor growth during the different stages of cancer progression. Indeed, tumor cells appear to progress through lineage stages like those of normal tissues, being their division auto-regulated by internal feedback mechanisms. These new features have introduced some non-linearities in the model, making it more difficult to be studied by solely analytical techniques. Our new work-flow, based on statistical methods, was used to identify the parameters which influence the tumor growth. The

  9. Systemic Administration of Interleukin 2 Enhances the Therapeutic Efficacy of Dendritic Cell-Based Tumor Vaccines

    Science.gov (United States)

    Shimizu, K.; Fields, R. C.; Giedlin, M.; Mule, J. J.

    1999-03-01

    We have reported previously that murine bone marrow-derived dendritic cells (DC) pulsed with whole tumor lysates can mediate potent antitumor immune responses both in vitro and in vivo. Because successful therapy was dependent on host immune T cells, we have now evaluated whether the systemic administration of the T cell stimulatory/growth promoting cytokine interleukin-2 (IL-2) could enhance tumor lysate-pulsed DC-based immunizations to further promote protective immunity toward, and therapeutic rejection of, syngeneic murine tumors. In three separate approaches using a weakly immunogenic sarcoma (MCA-207), the systemic administration of non-toxic doses of recombinant IL-2 (20,000 and 40,000 IU/dose) was capable of mediating significant increases in the potency of DC-based immunizations. IL-2 could augment the efficacy of tumor lysate-pulsed DC to induce protective immunity to lethal tumor challenge as well as enhance splenic cytotoxic T lymphocyte activity and interferon-γ production in these treated mice. Moreover, treatment with the combination of tumor lysate-pulsed DC and IL-2 could also mediate regressions of established pulmonary 3-day micrometastases and 7-day macrometastases as well as established 14- and 28-day s.c. tumors, leading to either significant cure rates or prolongation in overall survival. Collectively, these findings show that nontoxic doses of recombinant IL-2 can potentiate the antitumor effects of tumor lysate-pulsed DC in vivo and provide preclinical rationale for the use of IL-2 in DC-based vaccine strategies in patients with advanced cancer.

  10. A Multi-targeted Approach to Suppress Tumor-Promoting Inflammation

    Science.gov (United States)

    Samadi, Abbas K.; Georgakilas, Alexandros G.; Amedei, Amedeo; Amin, Amr; Bishayee, Anupam; Lokeshwar, Bal L.; Grue, Brendan; Panis, Carolina; Boosani, Chandra S.; Poudyal, Deepak; Stafforini, Diana M.; Bhakta, Dipita; Niccolai, Elena; Guha, Gunjan; Rupasinghe, H.P. Vasantha; Fujii, Hiromasa; Honoki, Kanya; Mehta, Kapil; Aquilano, Katia; Lowe, Leroy; Hofseth, Lorne J.; Ricciardiello, Luigi; Ciriolo, Maria Rosa; Singh, Neetu; Whelan, Richard L.; Chaturvedi, Rupesh; Ashraf, S. Salman; Kumara, HMC Shantha; Nowsheen, Somaira; Mohammed, Sulma I.; Helferich, William G.; Yang, Xujuan

    2015-01-01

    Cancers harbor significant genetic heterogeneity and patterns of relapse following many therapies are due to evolved resistance to treatment. While efforts have been made to combine targeted therapies, significant levels of toxicity have stymied efforts to effectively treat cancer with multi-drug combinations using currently approved therapeutics. We discuss the relationship between tumor-promoting inflammation and cancer as part of a larger effort to develop a broad-spectrum therapeutic approach aimed at a wide range of targets to address this heterogeneity. Specifically, macrophage migration inhibitory factor, cyclooxygenase-2, transcription factor nuclear factor-kappaB, tumor necrosis factor alpha, inducible nitric oxide synthase, protein kinase B, and CXC chemokines are reviewed as important antiinflammatory targets while curcumin, resveratrol, epigallocatechin gallate, genistein, lycopene, and anthocyanins are reviewed as low-cost, low toxicity means by which these targets might all be reached simultaneously. Future translational work will need to assess the resulting synergies of rationally designed antiinflammatory mixtures (employing low-toxicity constituents), and then combine this with similar approaches targeting the most important pathways across the range of cancer hallmark phenotypes. PMID:25951989

  11. WE-B-304-03: Biological Treatment Planning

    International Nuclear Information System (INIS)

    Orton, C.

    2015-01-01

    The ultimate goal of radiotherapy treatment planning is to find a treatment that will yield a high tumor control probability (TCP) with an acceptable normal tissue complication probability (NTCP). Yet most treatment planning today is not based upon optimization of TCPs and NTCPs, but rather upon meeting physical dose and volume constraints defined by the planner. It has been suggested that treatment planning evaluation and optimization would be more effective if they were biologically and not dose/volume based, and this is the claim debated in this month’s Point/Counterpoint. After a brief overview of biologically and DVH based treatment planning by the Moderator Colin Orton, Joseph Deasy (for biological planning) and Charles Mayo (against biological planning) will begin the debate. Some of the arguments in support of biological planning include: this will result in more effective dose distributions for many patients DVH-based measures of plan quality are known to have little predictive value there is little evidence that either D95 or D98 of the PTV is a good predictor of tumor control sufficient validated outcome prediction models are now becoming available and should be used to drive planning and optimization Some of the arguments against biological planning include: several decades of experience with DVH-based planning should not be discarded we do not know enough about the reliability and errors associated with biological models the radiotherapy community in general has little direct experience with side by side comparisons of DVH vs biological metrics and outcomes it is unlikely that a clinician would accept extremely cold regions in a CTV or hot regions in a PTV, despite having acceptable TCP values Learning Objectives: To understand dose/volume based treatment planning and its potential limitations To understand biological metrics such as EUD, TCP, and NTCP To understand biologically based treatment planning and its potential limitations

  12. Sensitivity of tumor motion simulation accuracy to lung biomechanical modeling approaches and parameters.

    Science.gov (United States)

    Tehrani, Joubin Nasehi; Yang, Yin; Werner, Rene; Lu, Wei; Low, Daniel; Guo, Xiaohu; Wang, Jing

    2015-11-21

    Finite element analysis (FEA)-based biomechanical modeling can be used to predict lung respiratory motion. In this technique, elastic models and biomechanical parameters are two important factors that determine modeling accuracy. We systematically evaluated the effects of lung and lung tumor biomechanical modeling approaches and related parameters to improve the accuracy of motion simulation of lung tumor center of mass (TCM) displacements. Experiments were conducted with four-dimensional computed tomography (4D-CT). A Quasi-Newton FEA was performed to simulate lung and related tumor displacements between end-expiration (phase 50%) and other respiration phases (0%, 10%, 20%, 30%, and 40%). Both linear isotropic and non-linear hyperelastic materials, including the neo-Hookean compressible and uncoupled Mooney-Rivlin models, were used to create a finite element model (FEM) of lung and tumors. Lung surface displacement vector fields (SDVFs) were obtained by registering the 50% phase CT to other respiration phases, using the non-rigid demons registration algorithm. The obtained SDVFs were used as lung surface displacement boundary conditions in FEM. The sensitivity of TCM displacement to lung and tumor biomechanical parameters was assessed in eight patients for all three models. Patient-specific optimal parameters were estimated by minimizing the TCM motion simulation errors between phase 50% and phase 0%. The uncoupled Mooney-Rivlin material model showed the highest TCM motion simulation accuracy. The average TCM motion simulation absolute errors for the Mooney-Rivlin material model along left-right, anterior-posterior, and superior-inferior directions were 0.80 mm, 0.86 mm, and 1.51 mm, respectively. The proposed strategy provides a reliable method to estimate patient-specific biomechanical parameters in FEM for lung tumor motion simulation.

  13. Neurophysiological Identification of Cranial Nerves During Endoscopic Endonasal Surgery of Skull Base Tumors: Pilot Study Technical Report.

    Science.gov (United States)

    Shkarubo, Alexey Nikolaevich; Chernov, Ilia Valerievich; Ogurtsova, Anna Anatolievna; Moshchev, Dmitry Aleksandrovich; Lubnin, Andrew Jurievich; Andreev, Dmitry Nicolaevich; Koval, Konstantin Vladimirovich

    2017-02-01

    Intraoperative identification of cranial nerves is crucial for safe surgery of skull base tumors. Currently, only a small number of published papers describe the technique of trigger electromyography (t-EMG) in endoscopic endonasal removal of such tumors. To assess the effectiveness of t-EMG in preventing intraoperative cranial nerve damage in endoscopic endonasal surgery of skull base tumors. Nine patients were operated on using the endoscopic endonasal approach within a 1-year period. The tumors included large skull base chordomas and trigeminal neurinomas localized in the cavernous sinus. During the surgical process, cranial nerve identification was carried out using monopolar and bipolar t-EMG methods. Assessment of cranial nerve functional activity was conducted both before and after tumor removal. We mapped 17 nerves in 9 patients. Third, fifth, and sixth cranial nerves were identified intraoperatively. There were no cases of postoperative functional impairment of the mapped cranial nerves. In one case we were unable to get an intraoperative response from the fourth cranial nerve and observed its postoperative transient plegia (the function was normal before surgery). t-EMG allows surgeons to control the safety of cranial nerves both during and after skull base tumor removal. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. SINGLE MOLECULE APPROACHES TO BIOLOGY, 2010 GORDON RESEARCH CONFERENCE, JUNE 27-JULY 2, 2010, ITALY

    Energy Technology Data Exchange (ETDEWEB)

    Professor William Moerner

    2010-07-09

    The 2010 Gordon Conference on Single-Molecule Approaches to Biology focuses on cutting-edge research in single-molecule science. Tremendous technical developments have made it possible to detect, identify, track, and manipulate single biomolecules in an ambient environment or even in a live cell. Single-molecule approaches have changed the way many biological problems are addressed, and new knowledge derived from these approaches continues to emerge. The ability of single-molecule approaches to avoid ensemble averaging and to capture transient intermediates and heterogeneous behavior renders them particularly powerful in elucidating mechanisms of biomolecular machines: what they do, how they work individually, how they work together, and finally, how they work inside live cells. The burgeoning use of single-molecule methods to elucidate biological problems is a highly multidisciplinary pursuit, involving both force- and fluorescence-based methods, the most up-to-date advances in microscopy, innovative biological and chemical approaches, and nanotechnology tools. This conference seeks to bring together top experts in molecular and cell biology with innovators in the measurement and manipulation of single molecules, and will provide opportunities for junior scientists and graduate students to present their work in poster format and to exchange ideas with leaders in the field. A number of excellent poster presenters will be selected for short oral talks. Topics as diverse as single-molecule sequencing, DNA/RNA/protein interactions, folding machines, cellular biophysics, synthetic biology and bioengineering, force spectroscopy, new method developments, superresolution imaging in cells, and novel probes for single-molecule imaging will be on the program. Additionally, the collegial atmosphere of this Conference, with programmed discussion sessions as well as opportunities for informal gatherings in the afternoons and evenings in the beauty of the Il Ciocco site in

  15. Analysis of pairwise correlations in multi-parametric PET/MR data for biological tumor characterization and treatment individualization strategies

    Energy Technology Data Exchange (ETDEWEB)

    Leibfarth, Sara; Moennich, David; Thorwarth, Daniela [University Hospital Tuebingen, Section for Biomedical Physics, Department of Radiation Oncology, Tuebingen (Germany); Simoncic, Urban [University Hospital Tuebingen, Section for Biomedical Physics, Department of Radiation Oncology, Tuebingen (Germany); University of Ljubljana, Faculty of Mathematics and Physics, Ljubljana (Slovenia); Jozef Stefan Institute, Ljubljana (Slovenia); Welz, Stefan; Zips, Daniel [University Hospital Tuebingen, Department of Radiation Oncology, Tuebingen (Germany); Schmidt, Holger; Schwenzer, Nina [University Hospital Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany)

    2016-07-15

    The aim of this pilot study was to explore simultaneous functional PET/MR for biological characterization of tumors and potential future treatment adaptations. To investigate the extent of complementarity between different PET/MR-based functional datasets, a pairwise correlation analysis was performed. Functional datasets of N=15 head and neck (HN) cancer patients were evaluated. For patients of group A (N=7), combined PET/MR datasets including FDG-PET and ADC maps were available. Patients of group B (N=8) had FMISO-PET, DCE-MRI and ADC maps from combined PET/MRI, an additional dynamic FMISO-PET/CT acquired directly after FMISO tracer injection as well as an FDG-PET/CT acquired a few days earlier. From DCE-MR, parameter maps K{sup trans}, v{sub e} and v{sub p} were obtained with the extended Tofts model. Moreover, parameter maps of mean DCE enhancement, ΔS{sub DCE}, and mean FMISO signal 0-4 min p.i., anti A{sub FMISO}, were derived. Pairwise correlations were quantified using the Spearman correlation coefficient (r) on both a voxel and a regional level within the gross tumor volume. Between some pairs of functional imaging modalities moderate correlations were observed with respect to the median over all patient datasets, whereas distinct correlations were only present on an individual basis. Highest inter-modality median correlations on the voxel level were obtained for FDG/FMISO (r = 0.56), FDG/ anti A{sub FMISO} (r = 0.55), anti A{sub FMISO}/ΔS{sub DCE} (r = 0.46), and FDG/ADC (r = -0.39). Correlations on the regional level showed comparable results. The results of this study suggest that the examined functional datasets provide complementary information. However, only pairwise correlations were examined, and correlations could still exist between combinations of three or more datasets. These results might contribute to the future design of individually adapted treatment approaches based on multiparametric functional imaging.

  16. Texosome-based drug delivery system for cancer therapy: from past to present

    International Nuclear Information System (INIS)

    Mahmoodzadeh Hosseini, Hamideh; Halabian, Raheleh; Amin, Mohsen; Imani Fooladi, Abbas Ali

    2015-01-01

    Rising worldwide cancer incidence and resistance to current anti-cancer drugs necessitate the need for new pharmaceutical compounds and drug delivery system. Malfunction of the immune system, particularly in the tumor microenvironment, causes tumor growth and enhances tumor progression. Thus, cancer immunotherapy can be an appropriate approach to provoke the systemic immune system to combat tumor expansion. Texosomes, which are endogenous nanovesicles released by all tumor cells, contribute to cell-cell communication and modify the phenotypic features of recipient cells due to the texosomes’ ability to transport biological components. For this reason, texosome-based delivery system can be a valuable strategy for therapeutic purposes. To improve the pharmaceutical behavior of this system and to facilitate its use in medical applications, biotechnology approaches and mimetic techniques have been utilized. In this review, we present the development history of texosome-based delivery systems and discuss the advantages and disadvantages of each system

  17. Onto2Vec: joint vector-based representation of biological entities and their ontology-based annotations

    KAUST Repository

    Smaili, Fatima Z.; Gao, Xin; Hoehndorf, Robert

    2018-01-01

    We propose the Onto2Vec method, an approach to learn feature vectors for biological entities based on their annotations to biomedical ontologies. Our method can be applied to a wide range of bioinformatics research problems such as similarity-based prediction of interactions between proteins, classification of interaction types using supervised learning, or clustering.

  18. Onto2Vec: joint vector-based representation of biological entities and their ontology-based annotations

    KAUST Repository

    Smaili, Fatima Zohra

    2018-01-31

    We propose the Onto2Vec method, an approach to learn feature vectors for biological entities based on their annotations to biomedical ontologies. Our method can be applied to a wide range of bioinformatics research problems such as similarity-based prediction of interactions between proteins, classification of interaction types using supervised learning, or clustering.

  19. Proton therapy for tumors of the skull base

    Energy Technology Data Exchange (ETDEWEB)

    Munzenrider, J.E.; Liebsch, N.J. [Dept. of Radiation Oncology, Harvard Univ. Medical School, Boston, MA (United States)

    1999-06-01

    Charged particle beams are ideal for treating skull base and cervical spine tumors: dose can be focused in the target, while achieving significant sparing of the brain, brain stem, cervical cord, and optic nerves and chiasm. For skull base tumors, 10-year local control rates with combined proton-photon therapy are highest for chondrosarcomas, intermediate for male chordomas, and lowest for female chordomas (94%, 65%, and 42%, respectively). For cervical spine tumors, 10-year local control rates are not significantly different for chordomas and chondrosarcomas (54% and 48%, respectively), nor is there any difference in local control between males and females. Observed treatment-related morbidity has been judged acceptable, in view of the major morbidity and mortality which accompany uncontrolled tumor growth. (orig.)

  20. Proton therapy for tumors of the skull base

    International Nuclear Information System (INIS)

    Munzenrider, J.E.; Liebsch, N.J.

    1999-01-01

    Charged particle beams are ideal for treating skull base and cervical spine tumors: dose can be focused in the target, while achieving significant sparing of the brain, brain stem, cervical cord, and optic nerves and chiasm. For skull base tumors, 10-year local control rates with combined proton-photon therapy are highest for chondrosarcomas, intermediate for male chordomas, and lowest for female chordomas (94%, 65%, and 42%, respectively). For cervical spine tumors, 10-year local control rates are not significantly different for chordomas and chondrosarcomas (54% and 48%, respectively), nor is there any difference in local control between males and females. Observed treatment-related morbidity has been judged acceptable, in view of the major morbidity and mortality which accompany uncontrolled tumor growth. (orig.)

  1. Geometrical approach to tumor growth.

    Science.gov (United States)

    Escudero, Carlos

    2006-08-01

    Tumor growth has a number of features in common with a physical process known as molecular beam epitaxy. Both growth processes are characterized by the constraint of growth development to the body border, and surface diffusion of cells and particles at the growing edge. However, tumor growth implies an approximate spherical symmetry that makes necessary a geometrical treatment of the growth equations. The basic model was introduced in a former paper [C. Escudero, Phys. Rev. E 73, 020902(R) (2006)], and in the present work we extend our analysis and try to shed light on the possible geometrical principles that drive tumor growth. We present two-dimensional models that reproduce the experimental observations, and analyze the unexplored three-dimensional case, for which interesting conclusions on tumor growth are derived.

  2. Human microRNA oncogenes and tumor suppressors show significantly different biological patterns: from functions to targets.

    Directory of Open Access Journals (Sweden)

    Dong Wang

    Full Text Available MicroRNAs (miRNAs are small noncoding RNAs which play essential roles in many important biological processes. Therefore, their dysfunction is associated with a variety of human diseases, including cancer. Increasing evidence shows that miRNAs can act as oncogenes or tumor suppressors, and although there is great interest in research into these cancer-associated miRNAs, little is known about them. In this study, we performed a comprehensive analysis of putative human miRNA oncogenes and tumor suppressors. We found that miRNA oncogenes and tumor suppressors clearly show different patterns in function, evolutionary rate, expression, chromosome distribution, molecule size, free energy, transcription factors, and targets. For example, miRNA oncogenes are located mainly in the amplified regions in human cancers, whereas miRNA tumor suppressors are located mainly in the deleted regions. miRNA oncogenes tend to cleave target mRNAs more frequently than miRNA tumor suppressors. These results indicate that these two types of cancer-associated miRNAs play different roles in cancer formation and development. Moreover, the patterns identified here can discriminate novel miRNA oncogenes and tumor suppressors with a high degree of accuracy. This study represents the first large-scale bioinformatic analysis of human miRNA oncogenes and tumor suppressors. Our findings provide help for not only understanding of miRNAs in cancer but also for the specific identification of novel miRNAs as miRNA oncogenes and tumor suppressors. In addition, the data presented in this study will be valuable for the study of both miRNAs and cancer.

  3. Health approaches in a widely adopted Brazilian high school biology textbook

    Directory of Open Access Journals (Sweden)

    Liziane Martins

    2012-05-01

    Full Text Available Considering the long tradition of discussing health in the Brazilian school curriculum, it is important to investigate how this topic is addressed by the textbooks, the main resource used by most schools in the country. In particular, it is relevant to verify if this content is presented in a manner that contributes to the development of the students as active and critical members of the society. We analyze how health is treated in the textbook Biology, by Laurence (2005, which has been the high school Biology textbook most chosen by public school teachers among those certified by the National Program for High School Textbooks (PNLEM/2007, sponsored by the Brazilian Ministry of Education (MEC. We used categorical content analysis techniques, involving the decomposition of the texts into units of analysis, the categories, which were built in this work through analogical regroupings, by using semantic criteria. In order to investigate the treatment given to health, we applied an analytical table to the units of recording, which consist of sentences, paragraphs, and sections of the textbook that discuss contents related to health and disease. This table systematizes eight health indicators, seeking to identify three health approaches: biomedical, behavioral, and socioecological. We found 267 units of recording in the textbook and, based on their analysis, it was possible to categorize the textbook as one in which the biomedical approach prevails. Our findings are consistent with other works that indicate the prevalence of this approach in Brazilian education, and Brazilian and international textbooks. Another important finding of the work is that the behavioral approach does not hold, at least for the analyzed textbook, as a view of health different from the biomedical and socioecological approaches. After all, when the book mentions behaviors and habits of life associated with health, it generally emphasizes biological dimensions, aligning with a

  4. A computational systems biology software platform for multiscale modeling and simulation: Integrating whole-body physiology, disease biology, and molecular reaction networks

    Directory of Open Access Journals (Sweden)

    Thomas eEissing

    2011-02-01

    Full Text Available Today, in silico studies and trial simulations already complement experimental approaches in pharmaceutical R&D and have become indispensable tools for decision making and communication with regulatory agencies. While biology is multi-scale by nature, project work and software tools usually focus on isolated aspects of drug action, such as pharmacokinetics at the organism scale or pharmacodynamic interaction on the molecular level. We present a modeling and simulation software platform consisting of PK-Sim® and MoBi® capable of building and simulating models that integrate across biological scales. A prototypical multiscale model for the progression of a pancreatic tumor and its response to pharmacotherapy is constructed and virtual patients are treated with a prodrug activated by hepatic metabolization. Tumor growth is driven by signal transduction leading to cell cycle transition and proliferation. Free tumor concentrations of the active metabolite inhibit Raf kinase in the signaling cascade and thereby cell cycle progression. In a virtual clinical study, the individual therapeutic outcome of the chemotherapeutic intervention is simulated for a large population with heterogeneous genomic background. Thereby, the platform allows efficient model building and integration of biological knowledge and prior data from all biological scales. Experimental in vitro model systems can be linked with observations in animal experiments and clinical trials. The interplay between patients, diseases, and drugs and topics with high clinical relevance such as the role of pharmacogenomics, drug-drug or drug-metabolite interactions can be addressed using this mechanistic, insight driven multiscale modeling approach.

  5. Self-targeting of TNF-releasing cancer cells in preclinical models of primary and metastatic tumors.

    Science.gov (United States)

    Dondossola, Eleonora; Dobroff, Andrey S; Marchiò, Serena; Cardó-Vila, Marina; Hosoya, Hitomi; Libutti, Steven K; Corti, Angelo; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2016-02-23

    Circulating cancer cells can putatively colonize distant organs to form metastases or to reinfiltrate primary tumors themselves through a process termed "tumor self-seeding." Here we exploit this biological attribute to deliver tumor necrosis factor alpha (TNF), a potent antitumor cytokine, directly to primary and metastatic tumors in a mechanism that we have defined as "tumor self-targeting." For this purpose, we genetically engineered mouse mammary adenocarcinoma (TSA), melanoma (B16-F10), and Lewis lung carcinoma cells to produce and release murine TNF. In a series of intervention trials, systemic administration of TNF-expressing tumor cells was associated with reduced growth of both primary tumors and metastatic colonies in immunocompetent mice. We show that these malignant cells home to tumors, locally release TNF, damage neovascular endothelium, and induce massive cancer cell apoptosis. We also demonstrate that such tumor-cell-mediated delivery avoids or minimizes common side effects often associated with TNF-based therapy, such as acute inflammation and weight loss. Our study provides proof of concept that genetically modified circulating tumor cells may serve as targeted vectors to deliver anticancer agents. In a clinical context, this unique paradigm represents a personalized approach to be translated into applications potentially using patient-derived circulating tumor cells as self-targeted vectors for drug delivery.

  6. Intra-tumor heterogeneity in breast cancer has limited impact on transcriptomic-based molecular profiling.

    Science.gov (United States)

    Karthik, Govindasamy-Muralidharan; Rantalainen, Mattias; Stålhammar, Gustav; Lövrot, John; Ullah, Ikram; Alkodsi, Amjad; Ma, Ran; Wedlund, Lena; Lindberg, Johan; Frisell, Jan; Bergh, Jonas; Hartman, Johan

    2017-11-29

    Transcriptomic profiling of breast tumors provides opportunity for subtyping and molecular-based patient stratification. In diagnostic applications the specimen profiled should be representative of the expression profile of the whole tumor and ideally capture properties of the most aggressive part of the tumor. However, breast cancers commonly exhibit intra-tumor heterogeneity at molecular, genomic and in phenotypic level, which can arise during tumor evolution. Currently it is not established to what extent a random sampling approach may influence molecular breast cancer diagnostics. In this study we applied RNA-sequencing to quantify gene expression in 43 pieces (2-5 pieces per tumor) from 12 breast tumors (Cohort 1). We determined molecular subtype and transcriptomic grade for all tumor pieces and analysed to what extent pieces originating from the same tumors are concordant or discordant with each other. Additionally, we validated our finding in an independent cohort consisting of 19 pieces (2-6 pieces per tumor) from 6 breast tumors (Cohort 2) profiled using microarray technique. Exome sequencing was also performed on this cohort, to investigate the extent of intra-tumor genomic heterogeneity versus the intra-tumor molecular subtype classifications. Molecular subtyping was consistent in 11 out of 12 tumors and transcriptomic grade assignments were consistent in 11 out of 12 tumors as well. Molecular subtype predictions revealed consistent subtypes in four out of six patients in this cohort 2. Interestingly, we observed extensive intra-tumor genomic heterogeneity in these tumor pieces but not in their molecular subtype classifications. Our results suggest that macroscopic intra-tumoral transcriptomic heterogeneity is limited and unlikely to have an impact on molecular diagnostics for most patients.

  7. Towards a heterarchical approach to biology and cognition.

    Science.gov (United States)

    Bruni, Luis Emilio; Giorgi, Franco

    2015-12-01

    In this article we challenge the pervasive notion of hierarchy in biological and cognitive systems and delineate the basis for a complementary heterarchical approach starting from the seminal ideas of Warren McCullock and Gregory Bateson. We intend these considerations as a contribution to the different scientific disciplines working towards a multilevel integrative perspective of biological and cognitive processes, such as systems and integrative biology and neuroscience, social and cultural neuroscience, social signal transduction and psychoneuroimmunology, for instance. We argue that structures and substrates are by necessity organized hierarchically, while communication processes - and their embeddedness - are rather organized heterarchically. Before getting into the implications of the heterarchical approach and its congeniality with the semiotic perspective to biology and cognition, we introduce a set of notions and concepts in order to advance a framework that considers the heterarchical embeddedness of different layers of physiological, behavioral, affective, cognitive, technological and socio-cultural levels implicit in networks of interacting minds, considering the dynamic complementarity of bottom-up and top-down causal links. This should contribute to account for the integration, interpretation and response to complex aggregates of information at different levels of organization in a developmental context. We illustrate the dialectical nature of embedded heterarchical processes by addressing the simultaneity and circularity of cognition and volition, and how such dialectics can be present in primitive instances of proto-cognition and proto-volition, giving rise to our claim that subjectivity and semiotic freedom are scalar properties. We collate the framework with recent empirical systemic approaches to biology and integrative neuroscience, and conclude with a reflection on its implications to the understanding of the emergence of pathological

  8. Modulating the Tumor Microenvironment to Enhance Tumor Nanomedicine Delivery

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2017-12-01

    Full Text Available Nanomedicines including liposomes, micelles, and nanoparticles based on the enhanced permeability and retention (EPR effect have become the mainstream for tumor treatment owing to their superiority over conventional anticancer agents. Advanced design of nanomedicine including active targeting nanomedicine, tumor-responsive nanomedicine, and optimization of physicochemical properties to enable highly effective delivery of nanomedicine to tumors has further improved their therapeutic benefits. However, these strategies still could not conquer the delivery barriers of a tumor microenvironment such as heterogeneous blood flow, dense extracellular matrix, abundant stroma cells, and high interstitial fluid pressure, which severely impaired vascular transport of nanomedicines, hindered their effective extravasation, and impeded their interstitial transport to realize uniform distribution inside tumors. Therefore, modulation of tumor microenvironment has now emerged as an important strategy to improve nanomedicine delivery to tumors. Here, we review the existing strategies and approaches for tumor microenvironment modulation to improve tumor perfusion for helping more nanomedicines to reach the tumor site, to facilitate nanomedicine extravasation for enhancing transvascular transport, and to improve interstitial transport for optimizing the distribution of nanomedicines. These strategies may provide an avenue for the development of new combination chemotherapeutic regimens and reassessment of previously suboptimal agents.

  9. Modulating the Tumor Microenvironment to Enhance Tumor Nanomedicine Delivery

    Science.gov (United States)

    Zhang, Bo; Hu, Yu; Pang, Zhiqing

    2017-01-01

    Nanomedicines including liposomes, micelles, and nanoparticles based on the enhanced permeability and retention (EPR) effect have become the mainstream for tumor treatment owing to their superiority over conventional anticancer agents. Advanced design of nanomedicine including active targeting nanomedicine, tumor-responsive nanomedicine, and optimization of physicochemical properties to enable highly effective delivery of nanomedicine to tumors has further improved their therapeutic benefits. However, these strategies still could not conquer the delivery barriers of a tumor microenvironment such as heterogeneous blood flow, dense extracellular matrix, abundant stroma cells, and high interstitial fluid pressure, which severely impaired vascular transport of nanomedicines, hindered their effective extravasation, and impeded their interstitial transport to realize uniform distribution inside tumors. Therefore, modulation of tumor microenvironment has now emerged as an important strategy to improve nanomedicine delivery to tumors. Here, we review the existing strategies and approaches for tumor microenvironment modulation to improve tumor perfusion for helping more nanomedicines to reach the tumor site, to facilitate nanomedicine extravasation for enhancing transvascular transport, and to improve interstitial transport for optimizing the distribution of nanomedicines. These strategies may provide an avenue for the development of new combination chemotherapeutic regimens and reassessment of previously suboptimal agents. PMID:29311946

  10. The redox biology network in cancer pathophysiology and therapeutics

    Directory of Open Access Journals (Sweden)

    Gina Manda

    2015-08-01

    Full Text Available The review pinpoints operational concepts related to the redox biology network applied to the pathophysiology and therapeutics of solid tumors. A sophisticated network of intrinsic and extrinsic cues, integrated in the tumor niche, drives tumorigenesis and tumor progression. Critical mutations and distorted redox signaling pathways orchestrate pathologic events inside cancer cells, resulting in resistance to stress and death signals, aberrant proliferation and efficient repair mechanisms. Additionally, the complex inter-cellular crosstalk within the tumor niche, mediated by cytokines, redox-sensitive danger signals (HMGB1 and exosomes, under the pressure of multiple stresses (oxidative, inflammatory, metabolic, greatly contributes to the malignant phenotype. The tumor-associated inflammatory stress and its suppressive action on the anti-tumor immune response are highlighted. We further emphasize that ROS may act either as supporter or enemy of cancer cells, depending on the context. Oxidative stress-based therapies, such as radiotherapy and photodynamic therapy, take advantage of the cytotoxic face of ROS for killing tumor cells by a non-physiologically sudden, localized and intense oxidative burst. The type of tumor cell death elicited by these therapies is discussed. Therapy outcome depends on the differential sensitivity to oxidative stress of particular tumor cells, such as cancer stem cells, and therefore co-therapies that transiently down-regulate their intrinsic antioxidant system hold great promise. We draw attention on the consequences of the damage signals delivered by oxidative stress-injured cells to neighboring and distant cells, and emphasize the benefits of therapeutically triggered immunologic cell death in metastatic cancer. An integrative approach should be applied when designing therapeutic strategies in cancer, taking into consideration the mutational, metabolic, inflammatory and oxidative status of tumor cells, cellular

  11. XML-based approaches for the integration of heterogeneous bio-molecular data.

    Science.gov (United States)

    Mesiti, Marco; Jiménez-Ruiz, Ernesto; Sanz, Ismael; Berlanga-Llavori, Rafael; Perlasca, Paolo; Valentini, Giorgio; Manset, David

    2009-10-15

    The today's public database infrastructure spans a very large collection of heterogeneous biological data, opening new opportunities for molecular biology, bio-medical and bioinformatics research, but raising also new problems for their integration and computational processing. In this paper we survey the most interesting and novel approaches for the representation, integration and management of different kinds of biological data by exploiting XML and the related recommendations and approaches. Moreover, we present new and interesting cutting edge approaches for the appropriate management of heterogeneous biological data represented through XML. XML has succeeded in the integration of heterogeneous biomolecular information, and has established itself as the syntactic glue for biological data sources. Nevertheless, a large variety of XML-based data formats have been proposed, thus resulting in a difficult effective integration of bioinformatics data schemes. The adoption of a few semantic-rich standard formats is urgent to achieve a seamless integration of the current biological resources.

  12. Macroscopic sessile tumor architecture is a pathologic feature of biologically aggressive upper tract urothelial carcinoma.

    Science.gov (United States)

    Fritsche, Hans-Martin; Novara, Giacomo; Burger, Maximilian; Gupta, Amit; Matsumoto, Kazumasa; Kassouf, Wassim; Sircar, Kanishka; Zattoni, Filiberto; Walton, Tom; Tritschler, Stefan; Baba, Shiro; Bastian, Patrick J; Martínez-Salamanca, Juan I; Seitz, Christian; Otto, Wolfgang; Wieland, Wolf Ferdinand; Karakiewicz, Pierre I; Ficarra, Vincenzo; Hartmann, Arndt; Shariat, Shahrokh F

    2012-09-01

    Macroscopic sessile tumor architecture was associated with adverse outcomes after radical nephroureterectomy (RNU) for upper tract urothelial carcinoma (UTUC). Before inclusion in daily clinical decision-making, the prognostic value of tumor architecture needs to be validated in an independent, external dataset. We tested whether macroscopic tumor architecture improves outcome prediction in an international cohort of patients. We retrospectively studied 754 patients treated with RNU for UTUC without neoadjuvant chemotherapy at 9 centers located in Asia, Canada, and Europe. Tumor architecture was macroscopically categorized as either papillary or sessile. Univariable and multivariable Cox regression analyses were used to address recurrence-free (RFS) and cancer-specific survival (CSS) estimates. Macroscopic sessile architecture was present in 20% of the patients. Its prevalence increased with advancing pathologic stage and it was significantly associated with established features of biologically aggressive UTUC, such as tumor grade, lymph node metastasis, lymphovascular invasion, and concomitant CIS (all P values architecture were 85% and 90%, compared with 58% and 66% for those with macroscopic sessile architecture, respectively (P values architecture was an independent predictor of both RFS (hazard ratio {HR}: 1.5; P = 0.036) and CSS (HR: 1.5; P = 0.03). We confirmed the independent prognostic value of macroscopic tumor architecture in a large, independent, multicenter UTUC cohort. It should be reported in every pathology report and included in post-RNU predictive models in order to refine current clinical decision making regarding follow-up protocol and adjuvant therapy. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Sensitivity of tumor motion simulation accuracy to lung biomechanical modeling approaches and parameters

    International Nuclear Information System (INIS)

    Tehrani, Joubin Nasehi; Wang, Jing; Yang, Yin; Werner, Rene; Lu, Wei; Low, Daniel; Guo, Xiaohu

    2015-01-01

    Finite element analysis (FEA)-based biomechanical modeling can be used to predict lung respiratory motion. In this technique, elastic models and biomechanical parameters are two important factors that determine modeling accuracy. We systematically evaluated the effects of lung and lung tumor biomechanical modeling approaches and related parameters to improve the accuracy of motion simulation of lung tumor center of mass (TCM) displacements. Experiments were conducted with four-dimensional computed tomography (4D-CT). A Quasi-Newton FEA was performed to simulate lung and related tumor displacements between end-expiration (phase 50%) and other respiration phases (0%, 10%, 20%, 30%, and 40%). Both linear isotropic and non-linear hyperelastic materials, including the neo-Hookean compressible and uncoupled Mooney–Rivlin models, were used to create a finite element model (FEM) of lung and tumors. Lung surface displacement vector fields (SDVFs) were obtained by registering the 50% phase CT to other respiration phases, using the non-rigid demons registration algorithm. The obtained SDVFs were used as lung surface displacement boundary conditions in FEM. The sensitivity of TCM displacement to lung and tumor biomechanical parameters was assessed in eight patients for all three models. Patient-specific optimal parameters were estimated by minimizing the TCM motion simulation errors between phase 50% and phase 0%. The uncoupled Mooney–Rivlin material model showed the highest TCM motion simulation accuracy. The average TCM motion simulation absolute errors for the Mooney–Rivlin material model along left-right, anterior–posterior, and superior–inferior directions were 0.80 mm, 0.86 mm, and 1.51 mm, respectively. The proposed strategy provides a reliable method to estimate patient-specific biomechanical parameters in FEM for lung tumor motion simulation. (paper)

  14. A Network Biology Approach to Discover the Molecular Biomarker Associated with Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Liwei Zhuang

    2014-01-01

    Full Text Available In recent years, high throughput technologies such as microarray platform have provided a new avenue for hepatocellular carcinoma (HCC investigation. Traditionally, gene sets enrichment analysis of survival related genes is commonly used to reveal the underlying functional mechanisms. However, this approach usually produces too many candidate genes and cannot discover detailed signaling transduction cascades, which greatly limits their clinical application such as biomarker development. In this study, we have proposed a network biology approach to discover novel biomarkers from multidimensional omics data. This approach effectively combines clinical survival data with topological characteristics of human protein interaction networks and patients expression profiling data. It can produce novel network based biomarkers together with biological understanding of molecular mechanism. We have analyzed eighty HCC expression profiling arrays and identified that extracellular matrix and programmed cell death are the main themes related to HCC progression. Compared with traditional enrichment analysis, this approach can provide concrete and testable hypothesis on functional mechanism. Furthermore, the identified subnetworks can potentially be used as suitable targets for therapeutic intervention in HCC.

  15. A Practical Approach to Tumor Heterogeneity in Clinical Research and Diagnostics.

    Science.gov (United States)

    Stanta, Giorgio; Bonin, Serena

    2018-01-01

    This Pathobiology issue tries to better define the complex phenomenon of intratumor heterogeneity (ITH), mostly from a practical point of view. This topic has been chosen because ITH is a central issue in tumor development and has to be investigated directly in patient tissue and immediately applied in the treatment of the presenting patient. Different types of ITH should be considered: clonal genetic and epigenetic evolution, morphological heterogeneity, and tumor sampling, heterogeneity resulting from microenvironmental autocrine and paracrine interaction, and stochastic plasticity related to different functional cell efficiencies. For a higher level of reproducibility in clinical research and diagnostics, it is necessary to establish standardized analytical methods, including microdissection. In situ techniques can be pivotal to explore tumor microenvironment and can be improved with associated digital analysis. Liquid biopsies for plasma DNA analysis are at present the best method to study recurrent tumors with treatment adaptation, and widespread clinical use could be beneficial. The different types of tumor genomic instabilities could have pragmatic applications to rank ITH for clinical applications: treatment approaches differ in patients with a high nucleotide mutation rate and patients with high copy number alterations. © 2017 S. Karger AG, Basel.

  16. Pancreatic tumor detection using hypericin-based fluorescence spectroscopy and cytology

    Science.gov (United States)

    Lavu, Harish; Geary, Kevin; Fetterman, Harold R.; Saxton, Romaine E.

    2005-04-01

    Hypericin is a novel, highly fluorescent photosensitizer that exhibits selective tumor cell uptake properties and is particularly resistant to photobleaching. In this study, we have characterized hypericin uptake in human pancreatic tumor cells with relation to incubation time, cell number, and drug concentration. Ex vivo hypericin based fluorescence spectroscopy was performed to detect the presence of MIA PaCa-2 pancreatic tumor cells in the peritoneal cavity of BALB/c nude mice, as well as to quantify gross tumor burden. Hypericin based cytology of peritoneal lavage samples, using both one and two photon laser confocal microscopy, demonstrated more than a two-fold increase in fluorescence emission of pancreatic tumor cells as compared to control samples. In vitro treatment of pancreatic cancer cells with hypericin based photodynamic therapy showed tumor cell cytotoxicity in a drug dose, incident laser power, and time dependent manner. For these experiments, a continuous wavelength solid-state laser source (532 nm) was operated at power levels in the range of 100-400 mW. Potential applications of hypericin in tumor diagnosis, staging, and therapy will be presented.

  17. Development of Antibody-Based Vaccines Targeting the Tumor Vasculature.

    Science.gov (United States)

    Zhuang, Xiaodong; Bicknell, Roy

    2016-01-01

    A functional vasculature is essential for tumor progression and malignant cell metastasis. Endothelial cells lining blood vessels in the tumor are exposed to a unique microenvironment, which in turn induces expression of specific proteins designated as tumor endothelial markers (TEMs). TEMs either localized at the plasma membrane or secreted into the extracellular matrix are accessible for antibody targeting, which can be either infused or generated de novo via vaccination. Recent studies have demonstrated vaccines against several TEMs can induce a strong antibody response accompanied by a potent antitumor effect in animal models. These findings present an exciting field for novel anticancer therapy development. As most of the TEMs are self-antigens, breaking tolerance is necessary for a successful vaccine. This chapter describes approaches to efficiently induce a robust antibody response against the tumor vasculature.

  18. Proteomic-Based Approaches for the Study of Cytokines in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Ángela Marrugal

    2016-01-01

    Full Text Available Proteomic techniques are currently used to understand the biology of different human diseases, including studies of the cell signaling pathways implicated in cancer progression, which is important in knowing the roles of different proteins in tumor development. Due to its poor prognosis, proteomic approaches are focused on the identification of new biomarkers for the early diagnosis, prognosis, and targeted treatment of lung cancer. Cytokines are proteins involved in inflammatory processes and have been proposed as lung cancer biomarkers and therapeutic targets because it has been reported that some cytokines play important roles in tumor development, invasion, and metastasis. In this review, we aim to summarize the different proteomic techniques used to discover new lung cancer biomarkers and therapeutic targets. Several cytokines have been identified as important players in lung cancer using these techniques. We underline the most important cytokines that are useful as biomarkers and therapeutic targets. We also summarize some of the therapeutic strategies targeted for these cytokines in lung cancer.

  19. Lung cancer-associated tumor antigens and the present status of immunotherapy against non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Yasumoto, Kosei; Hanagiri, Takeshi; Takenoyama, Mitsuhiro

    2009-01-01

    Despite recent advances in surgery, irradiation, and chemotherapy, the prognosis of patients with lung cancer is still poor. Therefore, the development and application of new therapeutic strategies are essential for improving the prognosis of this disease. Significant progress in our understanding of tumor immunology and molecular biology has allowed us to identify the tumor-associated antigens recognized by cytotoxic T lymphocytes. Immune responses and tumor-associated antigens against not only malignant melanoma but also lung cancer have been elucidated at the molecular level. In a theoretical sense, tumor eradication is considered possible through antigen-based immunotherapy against such diseases. However, many clinical trials of cancer vaccination with defined tumor antigens have resulted in objective clinical responses in only a small number of patients. Tumor escape mechanisms from host immune surveillance remain a major obstacle for cancer immunotherapy. A better understanding of the immune escape mechanisms employed by tumor cells is necessary before we can develop a more effective immunotherapeutic approach to lung cancer. We review recent studies regarding the identification of tumor antigens in lung cancer, tumor immune escape mechanisms, and clinical vaccine trials in lung cancer. (author)

  20. Blocking Blood Flow to Solid Tumors by Destabilizing Tubulin: An Approach to Targeting Tumor Growth.

    Science.gov (United States)

    Pérez-Pérez, María-Jesús; Priego, Eva-María; Bueno, Oskía; Martins, Maria Solange; Canela, María-Dolores; Liekens, Sandra

    2016-10-13

    The unique characteristics of the tumor vasculature offer the possibility to selectively target tumor growth and vascularization using tubulin-destabilizing agents. Evidence accumulated with combretastatin A-4 (CA-4) and its prodrug CA-4P support the therapeutic value of compounds sharing this mechanism of action. However, the chemical instability and poor solubility of CA-4 demand alternative compounds that are able to surmount these limitations. This Perspective illustrates the different classes of compounds that behave similar to CA-4, analyzes their binding mode to αβ-tubulin according to recently available structural complexes, and includes described approaches to improve their delivery. In addition, dissecting the mechanism of action of CA-4 and analogues allows a closer insight into the advantages and drawbacks associated with these tubulin-destabilizing agents that behave as vascular disrupting agents (VDAs).

  1. Microarray-based cancer prediction using soft computing approach.

    Science.gov (United States)

    Wang, Xiaosheng; Gotoh, Osamu

    2009-05-26

    One of the difficulties in using gene expression profiles to predict cancer is how to effectively select a few informative genes to construct accurate prediction models from thousands or ten thousands of genes. We screen highly discriminative genes and gene pairs to create simple prediction models involved in single genes or gene pairs on the basis of soft computing approach and rough set theory. Accurate cancerous prediction is obtained when we apply the simple prediction models for four cancerous gene expression datasets: CNS tumor, colon tumor, lung cancer and DLBCL. Some genes closely correlated with the pathogenesis of specific or general cancers are identified. In contrast with other models, our models are simple, effective and robust. Meanwhile, our models are interpretable for they are based on decision rules. Our results demonstrate that very simple models may perform well on cancerous molecular prediction and important gene markers of cancer can be detected if the gene selection approach is chosen reasonably.

  2. Residual motion of lung tumors in end-of-inhale respiratory gated radiotherapy based on external surrogates

    International Nuclear Information System (INIS)

    Berbeco, Ross I.; Nishioka, Seiko; Shirato, Hiroki; Jiang, Steve B.

    2006-01-01

    It has been noted that some lung tumors exhibit large periodic motion due to respiration. To limit the amount of dose to healthy lung tissues, many clinics have begun gating radiotherapy treatment using externally placed surrogates. It has been observed by several institutions that the end-of-exhale (EOE) tumor position is more reproducible than other phases of the breathing cycle, so the gating window is often set there. From a treatment planning perspective, end-of-inhale (EOI) phase might be preferred for gating because the expanded lungs will further decrease the healthy tissue within the treatment field. We simulate gated treatment at the EOI phase, using a set of recently measured internal/external anatomy patient data. This paper attempts to answer three questions: (1) How much is the tumor residual motion when we use an external surrogate gating window at EOI? (2) How could we reduce the residual motion in the EOI gating window? (3) Is there a preference for amplitude- versus phase-based gating at EOI? We found that under free breathing conditions the residual motion of the tumors is much larger for EOI phase than for EOE phase. The mean values of residual motion at EOI were found to be 2.2 and 2.7 mm for amplitude- and phase-based gating, respectively, and, at EOE, 1.0 and 1.2 mm for amplitude- and phase-based gating, respectively. However, we note that the residual motion in the EOI gating window is correlated well with the reproducibility of the external surface position in the EOI phase. Using the results of a published breath-coaching study, we deduce that the residual motion of a lung tumor at EOI would approach that at EOE, with the same duty cycle (30%), under breath-coaching conditions. Additionally, we found that under these same conditions, phase-based gating approaches the same residual motion as amplitude-based gating, going from a 28% difference to 11%, for the patient with the largest difference between the two gating modalities. We conclude

  3. Integration of Principles of Systems Biology and Radiation Biology: Toward Development of in silico Models to Optimize IUdR-Mediated Radiosensitization of DNA Mismatch Repair Deficient (Damage Tolerant) Human Cancers

    International Nuclear Information System (INIS)

    Kinsella, Timothy J.; Gurkan-Cavusoglu, Evren; Du, Weinan; Loparo, Kenneth A.

    2011-01-01

    Over the last 7 years, we have focused our experimental and computational research efforts on improving our understanding of the biochemical, molecular, and cellular processing of iododeoxyuridine (IUdR) and ionizing radiation (IR) induced DNA base damage by DNA mismatch repair (MMR). These coordinated research efforts, sponsored by the National Cancer Institute Integrative Cancer Biology Program (ICBP), brought together system scientists with expertise in engineering, mathematics, and complex systems theory and translational cancer researchers with expertise in radiation biology. Our overall goal was to begin to develop computational models of IUdR- and/or IR-induced base damage processing by MMR that may provide new clinical strategies to optimize IUdR-mediated radiosensitization in MMR deficient (MMR − ) “damage tolerant” human cancers. Using multiple scales of experimental testing, ranging from purified protein systems to in vitro (cellular) and to in vivo (human tumor xenografts in athymic mice) models, we have begun to integrate and interpolate these experimental data with hybrid stochastic biochemical models of MMR damage processing and probabilistic cell cycle regulation models through a systems biology approach. In this article, we highlight the results and current status of our integration of radiation biology approaches and computational modeling to enhance IUdR-mediated radiosensitization in MMR − damage tolerant cancers.

  4. Multidisciplinary approach of early breast cancer: The biology applied to radiation oncology

    International Nuclear Information System (INIS)

    Bourgier, Céline; Ozsahin, Mahmut; Azria, David

    2010-01-01

    Early breast cancer treatment is based on a multimodality approach with the application of clinical and histological prognostic factors to determine locoregional and systemic treatments. The entire scientific community is strongly involved in the management of this disease: radiologists for screening and early diagnosis, gynecologists, surgical oncologists and radiation oncologists for locoregional treatment, pathologists and biologists for personalized characterization, genetic counselors for BRCA mutation history and medical oncologists for systemic therapies. Recently, new biological tools have established various prognostic subsets of breast cancer and developed predictive markers for miscellaneous treatments. The aim of this article is to highlight the contribution of biological tools in the locoregional management of early breast cancer

  5. A biology-driven approach identifies the hypoxia gene signature as a predictor of the outcome of neuroblastoma patients

    Directory of Open Access Journals (Sweden)

    Fardin Paolo

    2010-07-01

    Full Text Available Abstract Background Hypoxia is a condition of low oxygen tension occurring in the tumor microenvironment and it is related to poor prognosis in human cancer. To examine the relationship between hypoxia and neuroblastoma, we generated and tested an in vitro derived hypoxia gene signature for its ability to predict patients' outcome. Results We obtained the gene expression profile of 11 hypoxic neuroblastoma cell lines and we derived a robust 62 probesets signature (NB-hypo taking advantage of the strong discriminating power of the l1-l2 feature selection technique combined with the analysis of differential gene expression. We profiled gene expression of the tumors of 88 neuroblastoma patients and divided them according to the NB-hypo expression values by K-means clustering. The NB-hypo successfully stratifies the neuroblastoma patients into good and poor prognosis groups. Multivariate Cox analysis revealed that the NB-hypo is a significant independent predictor after controlling for commonly used risk factors including the amplification of MYCN oncogene. NB-hypo increases the resolution of the MYCN stratification by dividing patients with MYCN not amplified tumors in good and poor outcome suggesting that hypoxia is associated with the aggressiveness of neuroblastoma tumor independently from MYCN amplification. Conclusions Our results demonstrate that the NB-hypo is a novel and independent prognostic factor for neuroblastoma and support the view that hypoxia is negatively correlated with tumors' outcome. We show the power of the biology-driven approach in defining hypoxia as a critical molecular program in neuroblastoma and the potential for improvement in the current criteria for risk stratification.

  6. Deciphering cancer heterogeneity: the biological space

    Directory of Open Access Journals (Sweden)

    Stephanie eRoessler

    2014-04-01

    Full Text Available Most lethal solid tumors including hepatocellular carcinoma (HCC are considered incurable due to extensive heterogeneity in clinical presentation and tumor biology. Tumor heterogeneity may result from different cells of origin, patient ethnicity, etiology, underlying disease and diversity of genomic and epigenomic changes which drive tumor development. Cancer genomic heterogeneity thereby impedes treatment options and poses a significant challenge to cancer management. Studies of the HCC genome have revealed that although various genomic signatures identified in different HCC subgroups share a common prognosis, each carries unique molecular changes which are linked to different sets of cancer hallmarks whose misregulation has been proposed by Hanahan and Weinberg to be essential for tumorigenesis. We hypothesize that these specific sets of cancer hallmarks collectively occupy different tumor biological space representing the misregulation of different biological processes. In principle, a combination of different cancer hallmarks can result in new convergent molecular networks that are unique to each tumor subgroup and represent ideal druggable targets. Due to the ability of the tumor to adapt to external factors such as treatment or changes in the tumor microenvironment, the tumor biological space is elastic. Our ability to identify distinct groups of cancer patients with similar tumor biology who are most likely to respond to a specific therapy would have a significant impact on improving patient outcome. It is currently a challenge to identify a particular hallmark or a newly emerged convergent molecular network for a particular tumor. Thus, it is anticipated that the integration of multiple levels of data such as genomic mutations, somatic copy number aberration, gene expression, proteomics, and metabolomics, may help us grasp the tumor biological space occupied by each individual, leading to improved therapeutic intervention and outcome.

  7. Synthetic biology approaches in drug discovery and pharmaceutical biotechnology.

    Science.gov (United States)

    Neumann, Heinz; Neumann-Staubitz, Petra

    2010-06-01

    Synthetic biology is the attempt to apply the concepts of engineering to biological systems with the aim to create organisms with new emergent properties. These organisms might have desirable novel biosynthetic capabilities, act as biosensors or help us to understand the intricacies of living systems. This approach has the potential to assist the discovery and production of pharmaceutical compounds at various stages. New sources of bioactive compounds can be created in the form of genetically encoded small molecule libraries. The recombination of individual parts has been employed to design proteins that act as biosensors, which could be used to identify and quantify molecules of interest. New biosynthetic pathways may be designed by stitching together enzymes with desired activities, and genetic code expansion can be used to introduce new functionalities into peptides and proteins to increase their chemical scope and biological stability. This review aims to give an insight into recently developed individual components and modules that might serve as parts in a synthetic biology approach to pharmaceutical biotechnology.

  8. Molecular biology approaches in bioadhesion research

    Directory of Open Access Journals (Sweden)

    Marcelo Rodrigues

    2014-07-01

    Full Text Available The use of molecular biology tools in the field of bioadhesion is still in its infancy. For new research groups who are considering taking a molecular approach, the techniques presented here are essential to unravelling the sequence of a gene, its expression and its biological function. Here we provide an outline for addressing adhesion-related genes in diverse organisms. We show how to gradually narrow down the number of candidate transcripts that are involved in adhesion by (1 generating a transcriptome and a differentially expressed cDNA list enriched for adhesion-related transcripts, (2 setting up a BLAST search facility, (3 perform an in situ hybridization screen, and (4 functional analyses of selected genes by using RNA interference knock-down. Furthermore, latest developments in genome-editing are presented as new tools to study gene function. By using this iterative multi-technologies approach, the identification, isolation, expression and function of adhesion-related genes can be studied in most organisms. These tools will improve our understanding of the diversity of molecules used for adhesion in different organisms and these findings will help to develop innovative bio-inspired adhesives.

  9. Selected anti-tumor vaccines merit a place in multimodal tumor therapies

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Eva-Maria; Wunderlich, Roland [Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen (Germany); Ebel, Nina [Department of Process Technology and Machinery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen (Germany); Rubner, Yvonne [Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen (Germany); Schlücker, Eberhard [Department of Process Technology and Machinery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen (Germany); Meyer-Pittroff, Roland [Competence Pool Weihenstephan, Technische Universität München, Freising (Germany); Ott, Oliver J.; Fietkau, Rainer; Gaipl, Udo S.; Frey, Benjamin, E-mail: benjamin.frey@uk-erlangen.de [Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen (Germany)

    2012-10-09

    Multimodal approaches are nowadays successfully applied in cancer therapy. Primary locally acting therapies such as radiotherapy (RT) and surgery are combined with systemic administration of chemotherapeutics. Nevertheless, the therapy of cancer is still a big challenge in medicine. The treatments often fail to induce long-lasting anti-tumor responses. Tumor recurrences and metastases result. Immunotherapies are therefore ideal adjuncts to standard tumor therapies since they aim to activate the patient's immune system against malignant cells even outside the primary treatment areas (abscopal effects). Especially cancer vaccines may have the potential both to train the immune system against cancer cells and to generate an immunological memory, resulting in long-lasting anti-tumor effects. However, despite promising results in phase I and II studies, most of the concepts finally failed. There are some critical aspects in development and application of cancer vaccines that may decide on their efficiency. The time point and frequency of medication, usage of an adequate immune adjuvant, the vaccine's immunogenic potential, and the tumor burden of the patient are crucial. Whole tumor cell vaccines have advantages compared to peptide-based ones since a variety of tumor antigens (TAs) are present. The master requirements of cell-based, therapeutic tumor vaccines are the complete inactivation of the tumor cells and the increase of their immunogenicity. Since the latter is highly connected with the cell death modality, the inactivation procedure of the tumor cell material may significantly influence the vaccine's efficiency. We therefore also introduce high hydrostatic pressure (HHP) as an innovative inactivation technology for tumor cell-based vaccines and outline that HHP efficiently inactivates tumor cells by enhancing their immunogenicity. Finally studies are presented proving that anti-tumor immune responses can be triggered by combining RT with selected

  10. A robotic approach to 4D real-time tumor tracking for radiotherapy

    International Nuclear Information System (INIS)

    Buzurovic, I; Yu, Y; Huang, K; Podder, T K

    2011-01-01

    Respiratory and cardiac motions induce displacement and deformation of the tumor volumes in various internal organs. To accommodate this undesired movement and other errors, physicians incorporate a large margin around the tumor to delineate the planning target volume, so that the clinical target volume receives the prescribed radiation dose under any scenario. Consequently, a large volume of healthy tissue is irradiated and sometimes it is difficult to spare critical organs adjacent to the tumor. In this study we have proposed a novel approach to the 4D active tracking and dynamic delivery incorporating the tumor motion prediction technique. This method has been applied to the two commercially available robotic treatment couches. The proposed algorithm can predict the tumor position and the robotic systems are able to continuously track the tumor during radiation dose delivery. Therefore a precise dose is given to a moving target while the dose to the nearby critical organs is reduced to improve the patient treatment outcome. The efficacy of the proposed method has been investigated by extensive computer simulation. The tumor tracking method is simulated for two couches: HexaPOD robotic couch and ELEKTA Precise Table. The comparison results have been presented in this paper. In order to assess the clinical significance, dosimetric effects of the proposed method have been analyzed.

  11. BClass: A Bayesian Approach Based on Mixture Models for Clustering and Classification of Heterogeneous Biological Data

    Directory of Open Access Journals (Sweden)

    Arturo Medrano-Soto

    2004-12-01

    Full Text Available Based on mixture models, we present a Bayesian method (called BClass to classify biological entities (e.g. genes when variables of quite heterogeneous nature are analyzed. Various statistical distributions are used to model the continuous/categorical data commonly produced by genetic experiments and large-scale genomic projects. We calculate the posterior probability of each entry to belong to each element (group in the mixture. In this way, an original set of heterogeneous variables is transformed into a set of purely homogeneous characteristics represented by the probabilities of each entry to belong to the groups. The number of groups in the analysis is controlled dynamically by rendering the groups as 'alive' and 'dormant' depending upon the number of entities classified within them. Using standard Metropolis-Hastings and Gibbs sampling algorithms, we constructed a sampler to approximate posterior moments and grouping probabilities. Since this method does not require the definition of similarity measures, it is especially suitable for data mining and knowledge discovery in biological databases. We applied BClass to classify genes in RegulonDB, a database specialized in information about the transcriptional regulation of gene expression in the bacterium Escherichia coli. The classification obtained is consistent with current knowledge and allowed prediction of missing values for a number of genes. BClass is object-oriented and fully programmed in Lisp-Stat. The output grouping probabilities are analyzed and interpreted using graphical (dynamically linked plots and query-based approaches. We discuss the advantages of using Lisp-Stat as a programming language as well as the problems we faced when the data volume increased exponentially due to the ever-growing number of genomic projects.

  12. Neuropsychological assessment of individuals with brain tumor: Comparison of approaches used in the classification of impairment

    Directory of Open Access Journals (Sweden)

    Toni Maree Dwan

    2015-03-01

    Full Text Available Approaches to classifying neuropsychological impairment after brain tumor vary according to testing level (individual tests, domains or global index and source of reference (i.e., norms, controls and premorbid functioning. This study aimed to compare rates of impairment according to different classification approaches. Participants were 44 individuals (57% female with a primary brain tumor diagnosis (mean age = 45.6 years and 44 matched control participants (59% female, mean age = 44.5 years. All participants completed a test battery that assesses premorbid IQ (Wechsler Adult Reading Test, attention/processing speed (Digit Span, Trail Making Test A, memory (Hopkins Verbal Learning Test – Revised, Rey-Osterrieth Complex Figure-recall and executive function (Trail Making Test B, Rey-Osterrieth Complex Figure copy, Controlled Oral Word Association Test. Results indicated that across the different sources of reference, 86-93% of participants were classified as impaired at a test-specific level, 61-73% were classified as impaired at a domain-specific level, and 32-50% were classified as impaired at a global level. Rates of impairment did not significantly differ according to source of reference (p>.05; however, at the individual participant level, classification based on estimated premorbid IQ was often inconsistent with classification based on the norms or controls. Participants with brain tumor performed significantly poorer than matched controls on tests of neuropsychological functioning, including executive function (p=.001 and memory (p.05. These results highlight the need to examine individuals’ performance across a multi-faceted neuropsychological test battery to avoid over- or under-estimation of impairment.

  13. Tumor-Associated Macrophages and Neutrophils in Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Jaehong Kim

    2016-01-01

    Full Text Available Distinct tumor microenvironment forms in each progression step of cancer and has diverse capacities to induce both adverse and beneficial consequences for tumorigenesis. It is now known that immune cells can be activated to favor tumor growth and progression, most probably influenced by the tumor microenvironment. Tumor-associated macrophages and tumor-associated neutrophils can exert protumoral functions, enhancing tumor cell invasion and metastasis, angiogenesis, and extracellular matrix remodeling, while inhibiting the antitumoral immune surveillance. Considering that neutrophils in inflammatory environments recruit macrophages and that recruited macrophages affect neutrophil functions, there may be various degrees of interaction between tumor-associated macrophages and tumor-associated neutrophils. Platelets also play an important role in the recruitment and regulation of monocytic and granulocytic cells in the tumor tissues, suggesting that platelet function may be essential for generation of tumor-associated macrophages and tumor-associated neutrophils. In this review, we will explore the biology of tumor-associated macrophages and tumor-associated neutrophils and their possible interactions in the tumor microenvironment. Special attention will be given to the recruitment and activation of these tumor-associated cells and to the roles they play in maintenance of the tumor microenvironment and progression of tumors.

  14. Immunoconjugates against solid tumors: mind the gap.

    Science.gov (United States)

    Ricart, A D

    2011-04-01

    The objective of immunoconjugate development is to combine the specificity of immunoglobulins with the efficacy of cytotoxic molecules. This therapeutic approach has been validated in hematologic malignancies; however, several obstacles to achieving efficacy in treating solid tumors have been identified. These include insufficient specificity of targets and poor antibody delivery, most specifically to the tumor core. Heterogeneous antigen expression, imperfect vascular supply, and elevated interstitial fluid pressure have been suggested as the factors responsible for the poor delivery of antibodies. Promising immunoconjugates are in development: immunoconjugates targeting the prostate-specific membrane antigen, trastuzumab-DM1, lorvotuzumab mertansine, and SS1P. Advances in cancer biology and antibody engineering may overcome some of the challenges. New small antibody formats, such as single-chain Fv, Fab, and diabodies, may improve penetration within tumor masses. Nevertheless, the cost of treatment might require justification in terms of demonstrable improvement in quality of life in addition to efficacy; further economic evaluation might be necessary before this approach can replace the current standards of care in clinical practice.

  15. Insight into Biological Apatite: Physiochemical Properties and Preparation Approaches

    Directory of Open Access Journals (Sweden)

    Quan Liu

    2013-01-01

    Full Text Available Biological apatite is an inorganic calcium phosphate salt in apatite form and nano size with a biological derivation. It is also the main inorganic component of biological hard tissues such as bones and teeth of vertebrates. Consequently, biological apatite has a wide application in dentistry and orthopedics by using as dental fillers and bone substitutes for bone reconstruction and regeneration. Given this, it is of great significance to obtain a comprehensive understanding of its physiochemical and biological properties. However, upon the previous studies, inconsistent and inadequate data of such basic properties as the morphology, crystal size, chemical compositions, and solubility of biological apatite were reported. This may be ascribed to the differences in the source of raw materials that biological apatite are made from, as well as the effect of the preparation approaches. Hence, this paper is to provide some insights rather than a thorough review of the physiochemical properties as well as the advantages and drawbacks of various preparation methods of biological apatite.

  16. Whole tumor antigen vaccination using dendritic cells: Comparison of RNA electroporation and pulsing with UV-irradiated tumor cells

    Directory of Open Access Journals (Sweden)

    Benencia Fabian

    2008-04-01

    Full Text Available Abstract Because of the lack of full characterization of tumor associated antigens for solid tumors, whole antigen use is a convenient approach to tumor vaccination. Tumor RNA and apoptotic tumor cells have been used as a source of whole tumor antigen to prepare dendritic cell (DC based tumor vaccines, but their efficacy has not been directly compared. Here we compare directly RNA electroporation and pulsing of DCs with whole tumor cells killed by ultraviolet (UV B radiation using a convenient tumor model expressing human papilloma virus (HPV E6 and E7 oncogenes. Although both approaches led to DCs presenting tumor antigen, electroporation with tumor cell total RNA induced a significantly higher frequency of tumor-reactive IFN-gamma secreting T cells, and E7-specific CD8+ lymphocytes compared to pulsing with UV-irradiated tumor cells. DCs electroporated with tumor cell RNA induced a larger tumor infiltration by T cells and produced a significantly stronger delay in tumor growth compared to DCs pulsed with UV-irradiated tumor cells. We conclude that electroporation with whole tumor cell RNA and pulsing with UV-irradiated tumor cells are both effective in eliciting antitumor immune response, but RNA electroporation results in more potent tumor vaccination under the examined experimental conditions.

  17. Retromolar trigone--oropharynx junction maligns tumor surgery: transmandibular versus oral approach.

    Science.gov (United States)

    Cobzeanu, B M; Popescu, Eugenia; Costan, V V; Ungureanu, Didona; Cobzeanu, M D

    2015-01-01

    This study proposes a new approach to a borderline pathology between Otorhinolaryngology (E.N.T.) and Oral and Maxillofacial Surgery (O.M.F.), the malignant tumors of the oropharyngeal and retromolar trigone junction. 52 cases of retromolar trigone and oropharynx malign tumors were solved in the ENT department of "St. Spiridon" Universitary Hospital Iasi between 2012 and 2014. All patients were males, 35-64 years old, in different TNM stages. The novelty stands in the multidisciplinary approach, with an operating team consisting of both E.N.T. and O.M.F. surgeons, which joined their knowledge and expertise in order to offer a better treatment for the patient. Human Papilloma Virus (HPV) infection has been known as a trigger factor in head and neck cancers. The connection between HPV infection and malignant tumors of the oropharyngeal--retromolar trigone junction, together with the other traditional risk factors (smoking, alcohol, stress and sexual behavior) are involved in the therapeutic protocols, improving the life quality, the survival rate and reducing the treatment costs. Excision of the malignant tumors at the level of the junction between the oropharynx and retromolar trigone often requires repairing the tissular defects that remain using different flaps. Postsurgical mecanotherapy (physiotherapy) under the surveillance of an experienced physiotherapist is also needed for a complete recovery. This therapeutical protocol aims to assure a better life quality for the patients, with a faster postsurgical recovery and social reinsertion by reducing the healing time of the areas affected by inflammation and necrosis generated by the neoplastic process.

  18. Imaging Primary Lung Cancers in Mice to Study Radiation Biology

    International Nuclear Information System (INIS)

    Kirsch, David G.; Grimm, Jan; Guimaraes, Alexander R.; Wojtkiewicz, Gregory R.; Perez, Bradford A.; Santiago, Philip M.; Anthony, Nikolas K.; Forbes, Thomas; Doppke, Karen

    2010-01-01

    Purpose: To image a genetically engineered mouse model of non-small-cell lung cancer with micro-computed tomography (micro-CT) to measure tumor response to radiation therapy. Methods and Materials: The Cre-loxP system was used to generate primary lung cancers in mice with mutation in K-ras alone or in combination with p53 mutation. Mice were serially imaged by micro-CT, and tumor volumes were determined. A comparison of tumor volume by micro-CT and tumor histology was performed. Tumor response to radiation therapy (15.5 Gy) was assessed with micro-CT. Results: The tumor volume measured with free-breathing micro-CT scans was greater than the volume calculated by histology. Nevertheless, this imaging approach demonstrated that lung cancers with mutant p53 grew more rapidly than lung tumors with wild-type p53 and also showed that radiation therapy increased the doubling time of p53 mutant lung cancers fivefold. Conclusions: Micro-CT is an effective tool to noninvasively measure the growth of primary lung cancers in genetically engineered mice and assess tumor response to radiation therapy. This imaging approach will be useful to study the radiation biology of lung cancer.

  19. Agent-Based Modeling in Molecular Systems Biology.

    Science.gov (United States)

    Soheilypour, Mohammad; Mofrad, Mohammad R K

    2018-06-08

    Molecular systems orchestrating the biology of the cell typically involve a complex web of interactions among various components and span a vast range of spatial and temporal scales. Computational methods have advanced our understanding of the behavior of molecular systems by enabling us to test assumptions and hypotheses, explore the effect of different parameters on the outcome, and eventually guide experiments. While several different mathematical and computational methods are developed to study molecular systems at different spatiotemporal scales, there is still a need for methods that bridge the gap between spatially-detailed and computationally-efficient approaches. In this review, we summarize the capabilities of agent-based modeling (ABM) as an emerging molecular systems biology technique that provides researchers with a new tool in exploring the dynamics of molecular systems/pathways in health and disease. © 2018 WILEY Periodicals, Inc.

  20. Management of hemorrhage in gastrointestinal stromal tumors: a review.

    Science.gov (United States)

    Liu, Qi; Kong, Fanmin; Zhou, Jianping; Dong, Ming; Dong, Qi

    2018-01-01

    Gastrointestinal stromal tumors (GISTs) are relatively common mesenchymal tumors. They originate from the wall of hollow viscera and may be found in any part of the digestive tract. The prognosis of patients with stromal tumors depends on various risk factors, including size, location, presence of mitotic figures, and tumor rupture. Emergency surgery is often required for stromal tumors with hemorrhage. The current literature suggests that stromal tumor hemorrhage indicates poor prognosis. Although the optimal treatment options for hemorrhagic GISTs are based on surgical experience, there remains controversy with regard to optimum postoperative management as well as the classification of malignant potential. This article reviews the biological characteristics, diagnostic features, prognostic factors, treatment, and postoperative management of GISTs with hemorrhage.

  1. Geriatric neuro-oncology: from mythology to biology.

    Science.gov (United States)

    Weller, Michael; Platten, Michael; Roth, Patrick; Wick, Wolfgang

    2011-12-01

    Age has remained one of the most important determinants of risk for the development of certain brain tumors, of benefit from and tolerance of brain tumor treatment, and overall outcome. Regarding these three aspects, there are major differences across the spectrum of primary brain tumors depending on specific histology. Here, we review recent advances in understanding the biological basis of the prognostic marker 'age' in neuro-oncology. Contemporary population-based studies confirm the strong prognostic impact of age in many brain tumors. Elderly patients continue to be treated less aggressively than younger patients with the same tumors. However, biological factors may contribute to the negative prognostic impact of age. For instance, among gliomas, mutations of the isocitrate dehydrogenase genes, which are prognostically favorable, are much more common in younger patients. Moreover, complete responses defined by neuroimaging were much less durable in elderly as opposed to younger patients with primary central nervous system lymphoma in the German Primary Central Nervous System Lymphoma Study Group trial. A combination of age-adapted patterns of care and treatment-independent, tumor-intrinsic factors contributes to the poorer outcome of elderly patients with brain tumors. These factors need to be better distinguished and understood in order to improve outcome in elderly brain tumor patients.

  2. 3D tumor tissue analogs and their orthotopic implants for understanding tumor-targeting of microenvironment-responsive nanosized chemotherapy and radiation.

    Science.gov (United States)

    Sethi, Pallavi; Jyoti, Amar; Swindell, Elden P; Chan, Ryan; Langner, Ulrich W; Feddock, Jonathan M; Nagarajan, Radhakrishnan; O'Halloran, Thomas V; Upreti, Meenakshi

    2015-11-01

    An appropriate representation of the tumor microenvironment in tumor models can have a pronounced impact on directing combinatorial treatment strategies and cancer nanotherapeutics. The present study develops a novel 3D co-culture spheroid model (3D TNBC) incorporating tumor cells, endothelial cells and fibroblasts as color-coded murine tumor tissue analogs (TTA) to better represent the tumor milieu of triple negative breast cancer in vitro. Implantation of TTA orthotopically in nude mice, resulted in enhanced growth and aggressive metastasis to ectopic sites. Subsequently, the utility of the model is demonstrated for preferential targeting of irradiated tumor endothelial cells via radiation-induced stromal enrichment of galectin-1 using anginex conjugated nanoparticles (nanobins) carrying arsenic trioxide and cisplatin. Demonstration of a multimodal nanotherapeutic system and inclusion of the biological response to radiation using an in vitro/in vivo tumor model incorporating characteristics of tumor microenvironment presents an advance in preclinical evaluation of existing and novel cancer nanotherapies. Existing in-vivo tumor models are established by implanting tumor cells into nude mice. Here, the authors described their approach 3D spheres containing tumor cells, enodothelial cells and fibroblasts. This would mimic tumor micro-environment more realistically. This interesting 3D model should reflect more accurately tumor response to various drugs and would enable the design of new treatment modalities. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. [Methylation of selected tumor-supressor genes in benign and malignant ovarian tumors].

    Science.gov (United States)

    Cul'bová, M; Lasabová, Z; Stanclová, A; Tilandyová, P; Zúbor, P; Fiolka, R; Danko, J; Visnovský, J

    2011-09-01

    To evaluate the usefullness of examination of methylation status of selected tumor-supressor genes in early diagnosis of ovarian cancer. Prospective clinical study. Department of Gynecology and Obstetrics, Department of Molecular Biology, Jessenius Medical Faculty, Commenius University, Martin, Slovak Republic. In this study we analyzed hypermethylation of 5 genes RASSF1A, GSTP, E-cadherin, p16 and APC in ovarian tumor samples from 34 patients - 13 patients with epithelial ovarian cancer, 2 patients with border-line ovarian tumors, 12 patients with benign lesions of ovaries and 7 patients with healthy ovarian tissue. The methylation status of promoter region of tumor-supressor genes was determined by Methylation Specific Polymerase Chain Reaction (MSP) using a nested two-step approach with bisulfite modified DNA template and specific primers. Gene methylation analysis revealed hypermethylation of gene RASSF1A (46%) and GSTP (8%) only in malignant ovarian tissue samples. Ecad, p16 and APC genes were methylated both in maignant and benign tissue samples. Methylation positivity in observed genes was present independently to all clinical stages of ovarian cancer and to tumor grades. However, there was observed a trend of increased number and selective involvement of methylated genes with increasing disease stages. Furthermore, there was no association between positive methylation status and histological subtypes of ovarian carcinomas. RASSF1A and GSTP promoter methylation positivity is associated with ovarian cancer. The revealed gene-selective methylation positivity and the increased number of methylated genes with advancing disease stages could be considered as a useful molecular marker for early detection of ovarian cancer. However, there is need to find diagnostic approach of specifically and frequently methylated genes to determining a methylation phenotype for early detection of ovarian malignancies.

  4. A hybrid approach for fusing 4D-MRI temporal information with 3D-CT for the study of lung and lung tumor motion

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y. X.; Van Reeth, E.; Poh, C. L., E-mail: clpoh@ntu.edu.sg [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459 (Singapore); Teo, S.-K. [Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore 138632 (Singapore); Tan, C. H. [Department of Diagnostic Radiology, Tan Tock Seng Hospital, Singapore 308433 (Singapore); Tham, I. W. K. [Department of Radiation Oncology, National University Cancer Institute, Singapore 119082 (Singapore)

    2015-08-15

    Purpose: Accurate visualization of lung motion is important in many clinical applications, such as radiotherapy of lung cancer. Advancement in imaging modalities [e.g., computed tomography (CT) and MRI] has allowed dynamic imaging of lung and lung tumor motion. However, each imaging modality has its advantages and disadvantages. The study presented in this paper aims at generating synthetic 4D-CT dataset for lung cancer patients by combining both continuous three-dimensional (3D) motion captured by 4D-MRI and the high spatial resolution captured by CT using the authors’ proposed approach. Methods: A novel hybrid approach based on deformable image registration (DIR) and finite element method simulation was developed to fuse a static 3D-CT volume (acquired under breath-hold) and the 3D motion information extracted from 4D-MRI dataset, creating a synthetic 4D-CT dataset. Results: The study focuses on imaging of lung and lung tumor. Comparing the synthetic 4D-CT dataset with the acquired 4D-CT dataset of six lung cancer patients based on 420 landmarks, accurate results (average error <2 mm) were achieved using the authors’ proposed approach. Their hybrid approach achieved a 40% error reduction (based on landmarks assessment) over using only DIR techniques. Conclusions: The synthetic 4D-CT dataset generated has high spatial resolution, has excellent lung details, and is able to show movement of lung and lung tumor over multiple breathing cycles.

  5. Fluorescent biopsy of biological tissues in differentiation of benign and malignant tumors of prostate

    Science.gov (United States)

    Trifoniuk, L. I.; Ushenko, Yu. A.; Sidor, M. I.; Minzer, O. P.; Gritsyuk, M. V.; Novakovskaya, O. Y.

    2014-08-01

    The work consists of investigation results of diagnostic efficiency of a new azimuthally stable Mueller-matrix method of analysis of laser autofluorescence coordinate distributions of biological tissues histological sections. A new model of generalized optical anisotropy of biological tissues protein networks is proposed in order to define the processes of laser autofluorescence. The influence of complex mechanisms of both phase anisotropy (linear birefringence and optical activity) and linear (circular) dichroism is taken into account. The interconnections between the azimuthally stable Mueller-matrix elements characterizing laser autofluorescence and different mechanisms of optical anisotropy are determined. The statistic analysis of coordinate distributions of such Mueller-matrix rotation invariants is proposed. Thereupon the quantitative criteria (statistic moments of the 1st to the 4th order) of differentiation of histological sections of uterus wall tumor - group 1 (dysplasia) and group 2 (adenocarcinoma) are estimated.

  6. Microfluidic bead-based multienzyme-nanoparticle amplification for detection of circulating tumor cells in the blood using quantum dots labels

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, He, E-mail: mzhang_he@126.com; Fu, Xin; Hu, Jiayi; Zhu, Zhenjun

    2013-05-24

    Graphical abstract: A microfluidic beads-based nucleic acid sensor for sensitive detection of circulating tumor cells (CTCs) in the blood using multienzyme-nanoparticle amplification and quantum dots labels was developed. The chip-based CTCs analysis could detect reverse transcription-polymerase chain reaction (RT-PCR) products of tumor cell as low as 1 tumor cell (e.g. CEA expressing cell) in 1 mL blood sample. This microfluidic beads-based nucleic acid sensor is a promising platform for disease-related nucleic acid molecules at the lowest level at their earliest incidence. -- Highlights: •Combination of microfluidic bead-based platform and enzyme–probe–AuNPs is proposed. •The developed nucleic acid sensor could respond to 5 fM of tumor associated DNA. •Microfluidic platform and multienzyme-labeled AuNPs greatly enhanced sensitivity. •The developed nucleic acid sensor could respond to RT-PCR products of tumor cell as low as 1 tumor cell in 1 mL blood sample. •We report a sensitive nucleic acid sensor for detection of circulating tumor cells. -- Abstract: This study reports the development of a microfluidic bead-based nucleic acid sensor for sensitive detection of circulating tumor cells in blood samples using multienzyme-nanoparticle amplification and quantum dot labels. In this method, the microbeads functionalized with the capture probes and modified electron rich proteins were arrayed within a microfluidic channel as sensing elements, and the gold nanoparticles (AuNPs) functionalized with the horseradish peroxidases (HRP) and DNA probes were used as labels. Hence, two signal amplification approaches are integrated for enhancing the detection sensitivity of circulating tumor cells. First, the large surface area of Au nanoparticle carrier allows several binding events of HRP on each nanosphere. Second, enhanced mass transport capability inherent from microfluidics leads to higher capture efficiency of targets because continuous flow within micro

  7. On complexity and homogeneity measures in predicting biological aggressiveness of prostate cancer; Implication of the cellular automata model of tumor growth.

    Science.gov (United States)

    Tanase, Mihai; Waliszewski, Przemyslaw

    2015-12-01

    We propose a novel approach for the quantitative evaluation of aggressiveness in prostate carcinomas. The spatial distribution of cancer cell nuclei was characterized by the global spatial fractal dimensions D0, D1, and D2. Two hundred eighteen prostate carcinomas were stratified into the classes of equivalence using results of ROC analysis. A simulation of the cellular automata mix defined a theoretical frame for a specific geometric representation of the cell nuclei distribution called a local structure correlation diagram (LSCD). The LSCD and dispersion Hd were computed for each carcinoma. Data mining generated some quantitative criteria describing tumor aggressiveness. Alterations in tumor architecture along progression were associated with some changes in both shape and the quantitative characteristics of the LSCD consistent with those in the automata mix model. Low-grade prostate carcinomas with low complexity and very low biological aggressiveness are defined by the condition D0 1.764 and Hd < 38. The novel homogeneity measure Hd identifies carcinomas with very low aggressiveness within the class of complexity C1 or carcinomas with very high aggressiveness in the class C7. © 2015 Wiley Periodicals, Inc.

  8. Genetically engineered mouse models of craniopharyngioma: an opportunity for therapy development and understanding of tumor biology.

    Science.gov (United States)

    Apps, John Richard; Martinez-Barbera, Juan Pedro

    2017-05-01

    Adamantinomatous craniopharyngioma (ACP) is the commonest tumor of the sellar region in childhood. Two genetically engineered mouse models have been developed and are giving valuable insights into ACP biology. These models have identified novel pathways activated in tumors, revealed an important function of paracrine signalling and extended conventional theories about the role of organ-specific stem cells in tumorigenesis. In this review, we summarize these mouse models, what has been learnt, their limitations and open questions for future research. We then discussed how these mouse models may be used to test novel therapeutics against potentially targetable pathways recently identified in human ACP. © 2017 The Authors. Brain Pathology published by John Wiley & Sons Ltd on behalf of International Society of Neuropathology.

  9. Detection of T790M, the acquired resistance EGFR mutation, by tumor biopsy versus noninvasive blood-based analyses

    Science.gov (United States)

    Sundaresan, Tilak K.; Sequist, Lecia V.; Heymach, John V.; Riely, Gregory J.; Jänne, Pasi A.; Koch, Walter H.; Sullivan, James P.; Fox, Douglas B.; Maher, Robert; Muzikansky, Alona; Webb, Andrew; Tran, Hai T.; Giri, Uma; Fleisher, Martin; Yu, Helena A.; Wei, Wen; Johnson, Bruce E.; Barber, Thomas A.; Walsh, John R.; Engelman, Jeffrey A.; Stott, Shannon L.; Kapur, Ravi; Maheswaran, Shyamala; Toner, Mehmet

    2015-01-01

    Purpose The T790M gatekeeper mutation in the Epidermal Growth Factor Receptor (EGFR) is acquired by some EGFR-mutant non-small cell lung cancers (NSCLC) as they become resistant to selective tyrosine kinase inhibitors (TKIs). As third generation EGFR TKIs that overcome T790M-associated resistance become available, noninvasive approaches to T790M detection will become critical to guide management. Experimental Design As part of a multi-institutional Stand-Up-To-Cancer collaboration, we performed an exploratory analysis of 40 patients with EGFR-mutant tumors progressing on EGFR TKI therapy. We compared the T790M genotype from tumor biopsies with analysis of simultaneously collected circulating tumor cells (CTC) and circulating tumor DNA (ctDNA). Results T790M genotypes were successfully obtained in 30 (75%) tumor biopsies, 28 (70%) CTC samples and 32 (80%) ctDNA samples. The resistance-associated mutation was detected in 47–50% of patients using each of the genotyping assays, with concordance among them ranging from 57–74%. While CTC- and ctDNA-based genotyping were each unsuccessful in 20–30% of cases, the two assays together enabled genotyping in all patients with an available blood sample, and they identified the T790M mutation in 14 (35%) patients in whom the concurrent biopsy was negative or indeterminate. Conclusion Discordant genotypes between tumor biopsy and blood-based analyses may result from technological differences, as well as sampling different tumor cell populations. The use of complementary approaches may provide the most complete assessment of each patient’s cancer, which should be validated in predicting response to T790M-targeted inhibitors. PMID:26446944

  10. Radiosynthesis and biological evaluation of 5-(3-[18F]Fluoropropyloxy)-L-tryptophan for tumor PET imaging

    International Nuclear Information System (INIS)

    He, Shanzhen; Tang, Ganghua; Hu, Kongzhen; Wang, Hongliang; Wang, Shuxia; Huang, Tingting; Liang, Xiang; Tang, Xiaolan

    2013-01-01

    Introduction: [ 18 F]FDG PET has difficulty distinguishing tumor from inflammation in the clinic because of the same high uptake in nonmalignant and inflammatory tissue. In contrast, amino acid tracers do not accumulate in inflamed tissues and thus provide an excellent opportunity for their use in clinical cancer imaging. In this study, we developed a new amino acid tracer 5-(3-[ 18 F]Fluoropropyloxy)-L-tryptophan ([ 18 F]-L-FPTP) by two-step reactions and performed its biologic evaluation. Methods: [ 18 F]-L-FPTP was prepared by [ 18 F]fluoropropylation of 5-hydroxy-L-tryptophan disodium salt and purification on C18 cartridges. The biodistribution of [ 18 F]-L-FPTP was determined in normal mice and the incorporation of [ 18 F]-L-FPTP into tissue proteins was investigated. In vitro competitive inhibition experiments were performed with Hepa1-6 hepatoma cell lines. [ 18 F]-L-FPTP PET imaging was performed on tumor-bearing and inflammation mice and compared with [ 18 F]-L-FEHTP PET. Results: The overall uncorrected radiochemical yield of [ 18 F]-L-FPTP was 21.1 ± 4.4% with a synthesis time of 60 min, the radiochemical purity was more than 99%. Biodistribution studies demonstrate high uptake of [ 18 F]-L-FPTP in liver, kidney, pancreas, and blood at the early phase, and fast clearance in most tissues over the whole observed time. The uptake studies in Hepa1-6 cells suggest that [ 18 F]-L-FPTP is transported by the amino acid transport system B 0,+ , LAT2 and ASC. [ 18 F]-L-FPTP displays good stability and is not incorporated into proteins in vitro. PET imaging shows that [ 18 F]-L-FPTP can be a better potential PET tracer for differentiating tumor from inflammation than [ 18 F]FDG and 5-(3-[ 18 F]fluoroethyloxy)-L-tryptophan ([ 18 F]-L-FEHTP), with high [ 18 F]-L-FPTP uptake ratio (2.53) of tumor to inflammation at 60 min postinjection. Conclusions: Using [ 18 F]fluoropropyl derivatives as intermediates, the new tracer [ 18 F]-L-FPTP was achieved with good yield and

  11. WE-B-304-00: Point/Counterpoint: Biological Dose Optimization

    International Nuclear Information System (INIS)

    2015-01-01

    The ultimate goal of radiotherapy treatment planning is to find a treatment that will yield a high tumor control probability (TCP) with an acceptable normal tissue complication probability (NTCP). Yet most treatment planning today is not based upon optimization of TCPs and NTCPs, but rather upon meeting physical dose and volume constraints defined by the planner. It has been suggested that treatment planning evaluation and optimization would be more effective if they were biologically and not dose/volume based, and this is the claim debated in this month’s Point/Counterpoint. After a brief overview of biologically and DVH based treatment planning by the Moderator Colin Orton, Joseph Deasy (for biological planning) and Charles Mayo (against biological planning) will begin the debate. Some of the arguments in support of biological planning include: this will result in more effective dose distributions for many patients DVH-based measures of plan quality are known to have little predictive value there is little evidence that either D95 or D98 of the PTV is a good predictor of tumor control sufficient validated outcome prediction models are now becoming available and should be used to drive planning and optimization Some of the arguments against biological planning include: several decades of experience with DVH-based planning should not be discarded we do not know enough about the reliability and errors associated with biological models the radiotherapy community in general has little direct experience with side by side comparisons of DVH vs biological metrics and outcomes it is unlikely that a clinician would accept extremely cold regions in a CTV or hot regions in a PTV, despite having acceptable TCP values Learning Objectives: To understand dose/volume based treatment planning and its potential limitations To understand biological metrics such as EUD, TCP, and NTCP To understand biologically based treatment planning and its potential limitations

  12. Glycan Sulfation Modulates Dendritic Cell Biology and Tumor Growth

    Directory of Open Access Journals (Sweden)

    Roland El Ghazal

    2016-05-01

    Full Text Available In cancer, proteoglycans have been found to play roles in facilitating the actions of growth factors, and effecting matrix invasion and remodeling. However, little is known regarding the genetic and functional importance of glycan chains displayed by proteoglycans on dendritic cells (DCs in cancer immunity. In lung carcinoma, among other solid tumors, tumor-associated DCs play largely subversive/suppressive roles, promoting tumor growth and progression. Herein, we show that targeting of DC glycan sulfation through mutation in the heparan sulfate biosynthetic enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1 in mice increased DC maturation and inhibited trafficking of DCs to draining lymph nodes. Lymphatic-driven DC migration and chemokine (CCL21-dependent activation of a major signaling pathway required for DC migration (as measured by phospho-Akt were sensitive to Ndst1 mutation in DCs. Lewis lung carcinoma tumors in mice deficient in Ndst1 were reduced in size. Purified CD11c+ cells from the tumors, which contain the tumor-infiltrating DC population, showed a similar phenotype in mutant cells. These features were replicated in mice deficient in syndecan-4, the major heparan sulfate proteoglycan expressed on the DC surface: Tumors were growth-impaired in syndecan-4–deficient mice and were characterized by increased infiltration by mature DCs. Tumors on the mutant background also showed greater infiltration by NK cells and NKT cells. These findings indicate the genetic importance of DC heparan sulfate proteoglycans in tumor growth and may guide therapeutic development of novel strategies to target syndecan-4 and heparan sulfate in cancer.

  13. Networks as a Privileged Way to Develop Mesoscopic Level Approaches in Systems Biology

    OpenAIRE

    Alessandro Giuliani

    2014-01-01

    The methodologies advocated in computational biology are in many cases proper system-level approaches. These methodologies are variously connected to the notion of “mesosystem” and thus on the focus on relational structures that are at the basis of biological regulation. Here, I describe how the formalization of biological systems by means of graph theory constitutes an extremely fruitful approach to biology. I suggest the epistemological relevance of the notion of graph resides in its multil...

  14. Tumor immunology

    International Nuclear Information System (INIS)

    Otter, W. den

    1987-01-01

    Tumor immunology, the use of immunological techniques for tumor diagnosis and approaches to immunotherapy of cancer are topics covered in this multi-author volume. Part A, 'Tumor Immunology', deals with present views on tumor-associated antigens, the initiation of immune reactions of tumor cells, effector cell killing, tumor cells and suppression of antitumor immunity, and one chapter dealing with the application of mathematical models in tumor immunology. Part B, 'Tumor Diagnosis and Imaging', concerns the use of markers to locate the tumor in vivo, for the histological diagnosis, and for the monitoring of tumor growth. In Part C, 'Immunotherapy', various experimental approaches to immunotherapy are described, such as the use of monoclonal antibodies to target drugs, the use of interleukin-2 and the use of drugs inhibiting suppression. In the final section, the evaluation, a pathologist and a clinician evaluate the possibilities and limitations of tumor immunology and the extent to which it is useful for diagnosis and therapy. refs.; figs.; tabs

  15. Mitigating Errors in External Respiratory Surrogate-Based Models of Tumor Position

    Energy Technology Data Exchange (ETDEWEB)

    Malinowski, Kathleen T. [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD (United States); Fischell Department of Bioengineering, University of Maryland, College Park, MD (United States); McAvoy, Thomas J. [Fischell Department of Bioengineering, University of Maryland, College Park, MD (United States); Department of Chemical and Biomolecular Engineering and Institute of Systems Research, University of Maryland, College Park, MD (United States); George, Rohini [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD (United States); Dieterich, Sonja [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); D' Souza, Warren D., E-mail: wdsou001@umaryland.edu [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD (United States); Fischell Department of Bioengineering, University of Maryland, College Park, MD (United States)

    2012-04-01

    Purpose: To investigate the effect of tumor site, measurement precision, tumor-surrogate correlation, training data selection, model design, and interpatient and interfraction variations on the accuracy of external marker-based models of tumor position. Methods and Materials: Cyberknife Synchrony system log files comprising synchronously acquired positions of external markers and the tumor from 167 treatment fractions were analyzed. The accuracy of Synchrony, ordinary-least-squares regression, and partial-least-squares regression models for predicting the tumor position from the external markers was evaluated. The quantity and timing of the data used to build the predictive model were varied. The effects of tumor-surrogate correlation and the precision in both the tumor and the external surrogate position measurements were explored by adding noise to the data. Results: The tumor position prediction errors increased during the duration of a fraction. Increasing the training data quantities did not always lead to more accurate models. Adding uncorrelated noise to the external marker-based inputs degraded the tumor-surrogate correlation models by 16% for partial-least-squares and 57% for ordinary-least-squares. External marker and tumor position measurement errors led to tumor position prediction changes 0.3-3.6 times the magnitude of the measurement errors, varying widely with model algorithm. The tumor position prediction errors were significantly associated with the patient index but not with the fraction index or tumor site. Partial-least-squares was as accurate as Synchrony and more accurate than ordinary-least-squares. Conclusions: The accuracy of surrogate-based inferential models of tumor position was affected by all the investigated factors, except for the tumor site and fraction index.

  16. Molecular pathways undergoing dramatic transcriptomic changes during tumor development in the human colon

    Directory of Open Access Journals (Sweden)

    Maglietta Rosalia

    2012-12-01

    Full Text Available Abstract Background The malignant transformation of precancerous colorectal lesions involves progressive alterations at both the molecular and morphologic levels, the latter consisting of increases in size and in the degree of cellular atypia. Analyzing preinvasive tumors of different sizes can therefore shed light on the sequence of these alterations. Methods We used a molecular pathway-based approach to analyze transcriptomic profiles of 59 colorectal tumors representing early and late preinvasive stages and the invasive stage of tumorigenesis. Random set analysis was used to identify biological pathways enriched for genes differentially regulated in tumors (compared with 59 samples of normal mucosa. Results Of the 880 canonical pathways we investigated, 112 displayed significant tumor-related upregulation or downregulation at one or more stages of tumorigenesis. This allowed us to distinguish between pathways whose dysregulation is probably necessary throughout tumorigenesis and those whose involvement specifically drives progression from one stage to the next. We were also able to pinpoint specific changes within each gene set that seem to play key roles at each transition. The early preinvasive stage was characterized by cell-cycle checkpoint activation triggered by DNA replication stress and dramatic downregulation of basic transmembrane signaling processes that maintain epithelial/stromal homeostasis in the normal mucosa. In late preinvasive lesions, there was also downregulation of signal transduction pathways (e.g., those mediated by G proteins and nuclear hormone receptors involved in cell differentiation and upregulation of pathways governing nuclear envelope dynamics and the G2>M transition in the cell cycle. The main features of the invasive stage were activation of the G1>S transition in the cell cycle, upregulated expression of tumor-promoting microenvironmental factors, and profound dysregulation of metabolic pathways (e

  17. Building a high-resolution T2-weighted MR-based probabilistic model of tumor occurrence in the prostate.

    Science.gov (United States)

    Nagarajan, Mahesh B; Raman, Steven S; Lo, Pechin; Lin, Wei-Chan; Khoshnoodi, Pooria; Sayre, James W; Ramakrishna, Bharath; Ahuja, Preeti; Huang, Jiaoti; Margolis, Daniel J A; Lu, David S K; Reiter, Robert E; Goldin, Jonathan G; Brown, Matthew S; Enzmann, Dieter R

    2018-02-19

    We present a method for generating a T2 MR-based probabilistic model of tumor occurrence in the prostate to guide the selection of anatomical sites for targeted biopsies and serve as a diagnostic tool to aid radiological evaluation of prostate cancer. In our study, the prostate and any radiological findings within were segmented retrospectively on 3D T2-weighted MR images of 266 subjects who underwent radical prostatectomy. Subsequent histopathological analysis determined both the ground truth and the Gleason grade of the tumors. A randomly chosen subset of 19 subjects was used to generate a multi-subject-derived prostate template. Subsequently, a cascading registration algorithm involving both affine and non-rigid B-spline transforms was used to register the prostate of every subject to the template. Corresponding transformation of radiological findings yielded a population-based probabilistic model of tumor occurrence. The quality of our probabilistic model building approach was statistically evaluated by measuring the proportion of correct placements of tumors in the prostate template, i.e., the number of tumors that maintained their anatomical location within the prostate after their transformation into the prostate template space. Probabilistic model built with tumors deemed clinically significant demonstrated a heterogeneous distribution of tumors, with higher likelihood of tumor occurrence at the mid-gland anterior transition zone and the base-to-mid-gland posterior peripheral zones. Of 250 MR lesions analyzed, 248 maintained their original anatomical location with respect to the prostate zones after transformation to the prostate. We present a robust method for generating a probabilistic model of tumor occurrence in the prostate that could aid clinical decision making, such as selection of anatomical sites for MR-guided prostate biopsies.

  18. Synthetic biology: Novel approaches for microbiology.

    Science.gov (United States)

    Padilla-Vaca, Felipe; Anaya-Velázquez, Fernando; Franco, Bernardo

    2015-06-01

    In the past twenty years, molecular genetics has created powerful tools for genetic manipulation of living organisms. Whole genome sequencing has provided necessary information to assess knowledge on gene function and protein networks. In addition, new tools permit to modify organisms to perform desired tasks. Gene function analysis is speed up by novel approaches that couple both high throughput data generation and mining. Synthetic biology is an emerging field that uses tools for generating novel gene networks, whole genome synthesis and engineering. New applications in biotechnological, pharmaceutical and biomedical research are envisioned for synthetic biology. In recent years these new strategies have opened up the possibilities to study gene and genome editing, creation of novel tools for functional studies in virus, parasites and pathogenic bacteria. There is also the possibility to re-design organisms to generate vaccine subunits or produce new pharmaceuticals to combat multi-drug resistant pathogens. In this review we provide our opinion on the applicability of synthetic biology strategies for functional studies of pathogenic organisms and some applications such as genome editing and gene network studies to further comprehend virulence factors and determinants in pathogenic organisms. We also discuss what we consider important ethical issues for this field of molecular biology, especially for potential misuse of the new technologies. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  19. A brief overview of the tumor vaccines through the last decade

    International Nuclear Information System (INIS)

    Novakovic, S.; Jezersek Novakovic, B.

    2002-01-01

    How to destroy cancer cells without damaging the normal cells? How to make conventional methods of systemic cancer treatment that predominantly comprise cytotoxic drugs more selective and prevent the development of drug resistance? There is an abundance of such questions that do not have simple answers. If, a few years ago, unselective cytotoxic drugs were the method of choice for the treatment of cancer, in the last 25 years we are witnessing the rapid transition of immunotherapy from the laboratories to the clinics. Among the most attractive and promising immunotherapies for cancer, a special place is reserved for tumor vaccines. Exploiting the latest knowledge in immunology, tumor physiology, as well as in molecular biology, many outstanding approaches for the creation of tumor vaccines have been developed. With no intention to be comprehensive, in the present article some of those approaches are reviewed. (author)

  20. Automatización de un registro hospitalario de tumores Automatization of a hospital-based tumor registry

    Directory of Open Access Journals (Sweden)

    Josepa Ribes

    2005-06-01

    Full Text Available Introducción: El Instituto Catalán de Oncología automatizó los procedimientos manuales de captación de la información de las bases de datos del alta hospitalaria (AH y anatomía patológica (APA mediante una aplicación informática (ASEDAT con el objetivo de aumentar la fiabilidad de los datos y reducir los costes del Registro Hospitalario de Tumores (RHT. Material y Método: ASEDAT detecta los tumores incidentes del centro a partir de las bases de datos de APA y de las AH mediante la selección de la información básica para cada uno de ellos. Se resolvió el RHT para el período 1999-2000 mediante el procedimiento manual y automatizado, y se compararon entre sí los resultados. Resultados: Se detectaron 10.498 pacientes oncológicos. La resolución manual detectó 8.309 tumores incidentes y 2.374 tumores prevalentes. ASEDAT resolvió automáticamente 8.901 pacientes (84,8%, en los cuales se detectaron 8.367 tumores incidentes, 58 tumores más que con el procedimiento manual. La validación de la concordancia se realizó en los tumores incidentes detectados por ambos métodos (7.063 tumores. En 6.185 tumores (87,6%, la información coincidió en todas las variables. De los tumores discordantes, 692 (9,8% fueron generados por el personal del RHT en la resolución manual y el resto (n = 186; 2,6% por la aplicación (resolución automática. Conclusiones: La automatización de un registro de cáncer es posible siempre y cuando el centro disponga de las bases de datos de APA y AH codificadas e informatizadas.Introduction: To increase data reliability and reduce the costs associated with the HTR, the Catalan Institute of Oncology programmed the manual procedures of data collection from databases by means of a computer application (ASEDAT. Material and method: ASEDAT detects the incident tumors of the registry from the databases of the pathology records (PR and discharge records (DR and selects the basic information from both databases. Data

  1. Inflammatory myofibroblastic tumor

    Directory of Open Access Journals (Sweden)

    Sangeeta Palaskar

    2011-01-01

    Full Text Available Inflammatory myofibroblastic tumor is an uncommon lesion of unknown cause. It encompasses a spectrum of myofibroblastic proliferation along with varying amount of inflammatory infiltrate. A number of terms have been applied to the lesion, namely, inflammatory pseudotumor, fibrous xanthoma, plasma cell granuloma, pseudosarcoma, lymphoid hamartoma, myxoid hamartoma, inflammatory myofibrohistiocytic proliferation, benign myofibroblatoma, and most recently, inflammatory myofibroblastic tumor. The diverse nomenclature is mostly descriptive and reflects the uncertainty regarding true biologic nature of these lesions. Recently, the concept of this lesion being reactive has been challenged based on the clinical demonstration of recurrences and metastasis and cytogenetic evidence of acquired clonal chromosomal abnormalities. We hereby report a case of inflammatory pseudotumor and review its inflammatory versus neoplastic behavior.

  2. MiR-221 and -222-based therapeutic approach in melanoma and GIST (Gastrointestinal Stromal Tumor): in vitro and in vivo preclinical studies

    Energy Technology Data Exchange (ETDEWEB)

    Care, A; Bonci, D [Department of Haematology, Oncology and Molecular Medicine, Istituto Superiore di Sanita, Rome (Italy); Peschle, C [IRCCS MultiMedica, Milan (Italy)

    2009-07-01

    Micro RNAs (miRs) are small ({approx}22 nucleotides) non coding RNAs involved in gene expression, as negative regulators of specific mRNA targets. Growing evidences indicated miR functional roles in all the main biological processes, including cancer where they can act as oncogenes as well as tumor suppressor genes. Several studies reported the involvement of miR- 221 and -222 in the induction and/or progression of different neoplasias. We have analyzed miR-221/-222 functional role in a panel of differently staged melanoma cell lines and primary bioptic samples, showing their capabilities to regulate two distinct, but functionally convergent pathways of melanocyte transformation through the cell cycle inhibitor p27Kip and c-kit receptor. We also demonstrated the lack of the tumor suppressor gene PLZF as a direct cause of miR-221/-222 up regulation in melanoma cells. In vitro and, more important, in vivo studies confirmed that suppression of miR-221/-222 strongly reduced melanoma growth and dissemination.

  3. MiR-221 and -222-based therapeutic approach in melanoma and GIST (Gastrointestinal Stromal Tumor): in vitro and in vivo preclinical studies

    International Nuclear Information System (INIS)

    Care, A.; Bonci, D.; Peschle, C.

    2009-01-01

    Micro RNAs (miRs) are small (∼22 nucleotides) non coding RNAs involved in gene expression, as negative regulators of specific mRNA targets. Growing evidences indicated miR functional roles in all the main biological processes, including cancer where they can act as oncogenes as well as tumor suppressor genes. Several studies reported the involvement of miR- 221 and -222 in the induction and/or progression of different neoplasias. We have analyzed miR-221/-222 functional role in a panel of differently staged melanoma cell lines and primary bioptic samples, showing their capabilities to regulate two distinct, but functionally convergent pathways of melanocyte transformation through the cell cycle inhibitor p27Kip and c-kit receptor. We also demonstrated the lack of the tumor suppressor gene PLZF as a direct cause of miR-221/-222 up regulation in melanoma cells. In vitro and, more important, in vivo studies confirmed that suppression of miR-221/-222 strongly reduced melanoma growth and dissemination

  4. Dissecting functions of the retinoblastoma tumor suppressor and the related pocket proteins by integrating genetic, cell biology, and electrophoretic techniques

    DEFF Research Database (Denmark)

    Hansen, Klaus; Lukas, J; Holm, K

    1999-01-01

    The members of the 'pocket protein' family, comprising the retinoblastoma tumor suppressor (pRB) and its relatives, p107 and p130, negatively regulate cell proliferation and modulate fundamental biological processes including embryonic development, differentiation, homeostatic tissue renewal...

  5. Surgical resection of a huge cemento-ossifying fibroma in skull base by intraoral approach.

    Science.gov (United States)

    Cheng, Xiao-Bing; Li, Yun-Peng; Lei, De-Lin; Li, Xiao-Dong; Tian, Lei

    2011-03-01

    Cemento-ossifying fibroma, also known as ossifying fibroma, usually occurs in the mandible and less commonly in the maxilla. The huge example in the skull base is even rare. We present a case of a huge cemento-ossifying fibroma arising below the skull base of a 30-year-old woman patient. Radiologic investigations showed a giant, lobulated, heterogeneous calcified hard tissue mass, which is well circumscribed and is a mixture of radiolucent and radiopaque, situated at the rear of the right maxilla to the middle skull base. The tumor expands into the right maxillary sinus and the orbital cavity, fusing with the right maxilla at the maxillary tuberosity and blocking the bilateral choanas, which caused marked proptosis and blurred vision. The tumor was resected successfully by intraoral approach, and pathologic examination confirmed the lesion to be a cemento-ossifying fibroma. This case demonstrates that cemento-ossifying fibroma in the maxilla, not like in the mandible, may appear more aggressive because the extensive growth is unimpeded by anatomic obstacles and that the intraoral approach can be used to excise the tumor in the skull base.

  6. Segmentation of tumor ultrasound image in HIFU therapy based on texture and boundary encoding

    International Nuclear Information System (INIS)

    Zhang, Dong; Xu, Menglong; Quan, Long; Yang, Yan; Qin, Qianqing; Zhu, Wenbin

    2015-01-01

    It is crucial in high intensity focused ultrasound (HIFU) therapy to detect the tumor precisely with less manual intervention for enhancing the therapy efficiency. Ultrasound image segmentation becomes a difficult task due to signal attenuation, speckle effect and shadows. This paper presents an unsupervised approach based on texture and boundary encoding customized for ultrasound image segmentation in HIFU therapy. The approach oversegments the ultrasound image into some small regions, which are merged by using the principle of minimum description length (MDL) afterwards. Small regions belonging to the same tumor are clustered as they preserve similar texture features. The mergence is completed by obtaining the shortest coding length from encoding textures and boundaries of these regions in the clustering process. The tumor region is finally selected from merged regions by a proposed algorithm without manual interaction. The performance of the method is tested on 50 uterine fibroid ultrasound images from HIFU guiding transducers. The segmentations are compared with manual delineations to verify its feasibility. The quantitative evaluation with HIFU images shows that the mean true positive of the approach is 93.53%, the mean false positive is 4.06%, the mean similarity is 89.92%, the mean norm Hausdorff distance is 3.62% and the mean norm maximum average distance is 0.57%. The experiments validate that the proposed method can achieve favorable segmentation without manual initialization and effectively handle the poor quality of the ultrasound guidance image in HIFU therapy, which indicates that the approach is applicable in HIFU therapy. (paper)

  7. Mass Spectrometry Analyses of Multicellular Tumor Spheroids.

    Science.gov (United States)

    Acland, Mitchell; Mittal, Parul; Lokman, Noor A; Klingler-Hoffmann, Manuela; Oehler, Martin K; Hoffmann, Peter

    2018-05-01

    Multicellular tumor spheroids (MCTS) are a powerful biological in vitro model, which closely mimics the 3D structure of primary avascularized tumors. Mass spectrometry (MS) has established itself as a powerful analytical tool, not only to better understand and describe the complex structure of MCTS, but also to monitor their response to cancer therapeutics. The first part of this review focuses on traditional mass spectrometry approaches with an emphasis on elucidating the molecular characteristics of these structures. Then the mass spectrometry imaging (MSI) approaches used to obtain spatially defined information from MCTS is described. Finally the analysis of primary spheroids, such as those present in ovarian cancer, and the great potential that mass spectrometry analysis of these structures has for improved understanding of cancer progression and for personalized in vitro therapeutic testing is discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Geometric accuracy of a novel gimbals based radiation therapy tumor tracking system.

    Science.gov (United States)

    Depuydt, Tom; Verellen, Dirk; Haas, Olivier; Gevaert, Thierry; Linthout, Nadine; Duchateau, Michael; Tournel, Koen; Reynders, Truus; Leysen, Katrien; Hoogeman, Mischa; Storme, Guy; De Ridder, Mark

    2011-03-01

    VERO is a novel platform for image guided stereotactic body radiotherapy. Orthogonal gimbals hold the linac-MLC assembly allowing real-time moving tumor tracking. This study determines the geometric accuracy of the tracking. To determine the tracking error, an 1D moving phantom produced sinusoidal motion with frequencies up to 30 breaths per minute (bpm). Tumor trajectories of patients were reproduced using a 2D robot and pursued with the gimbals tracking system prototype. Using the moving beam light field and a digital-camera-based detection unit tracking errors, system lag and equivalence of pan/tilt performance were measured. The system lag was 47.7 ms for panning and 47.6 ms for tilting. Applying system lag compensation, sinusoidal motion tracking was accurate, with a tracking error 90% percentile E(90%)tracking errors were below 0.14 mm. The 2D tumor trajectories were tracked with an average E(90%) of 0.54 mm, and tracking error standard deviations of 0.20 mm for pan and 0.22 mm for tilt. In terms of dynamic behavior, the gimbaled linac of the VERO system showed to be an excellent approach for providing accurate real-time tumor tracking in radiation therapy. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. Tumor recognition in wireless capsule endoscopy images using textural features and SVM-based feature selection.

    Science.gov (United States)

    Li, Baopu; Meng, Max Q-H

    2012-05-01

    Tumor in digestive tract is a common disease and wireless capsule endoscopy (WCE) is a relatively new technology to examine diseases for digestive tract especially for small intestine. This paper addresses the problem of automatic recognition of tumor for WCE images. Candidate color texture feature that integrates uniform local binary pattern and wavelet is proposed to characterize WCE images. The proposed features are invariant to illumination change and describe multiresolution characteristics of WCE images. Two feature selection approaches based on support vector machine, sequential forward floating selection and recursive feature elimination, are further employed to refine the proposed features for improving the detection accuracy. Extensive experiments validate that the proposed computer-aided diagnosis system achieves a promising tumor recognition accuracy of 92.4% in WCE images on our collected data.

  10. Paper-Based MicroRNA Expression Profiling from Plasma and Circulating Tumor Cells.

    Science.gov (United States)

    Leong, Sai Mun; Tan, Karen Mei-Ling; Chua, Hui Wen; Huang, Mo-Chao; Cheong, Wai Chye; Li, Mo-Huang; Tucker, Steven; Koay, Evelyn Siew-Chuan

    2017-03-01

    Molecular characterization of circulating tumor cells (CTCs) holds great promise for monitoring metastatic progression and characterizing metastatic disease. However, leukocyte and red blood cell contamination of routinely isolated CTCs makes CTC-specific molecular characterization extremely challenging. Here we report the use of a paper-based medium for efficient extraction of microRNAs (miRNAs) from limited amounts of biological samples such as rare CTCs harvested from cancer patient blood. Specifically, we devised a workflow involving the use of Flinders Technology Associates (FTA) ® Elute Card with a digital PCR-inspired "partitioning" method to extract and purify miRNAs from plasma and CTCs. We demonstrated the sensitivity of this method to detect miRNA expression from as few as 3 cancer cells spiked into human blood. Using this method, background miRNA expression was excluded from contaminating blood cells, and CTC-specific miRNA expression profiles were derived from breast and colorectal cancer patients. Plasma separated out during purification of CTCs could likewise be processed using the same paper-based method for miRNA detection, thereby maximizing the amount of patient-specific information that can be derived from a single blood draw. Overall, this paper-based extraction method enables an efficient, cost-effective workflow for maximized recovery of small RNAs from limited biological samples for downstream molecular analyses. © 2016 American Association for Clinical Chemistry.

  11. Realistic biological approaches for improving thermoradiotherapy

    DEFF Research Database (Denmark)

    Horsman, Michael R

    2016-01-01

    There is now definitive clinical evidence that hyperthermia can successfully improve the response of certain human tumour types to radiation therapy, but, there is still the need for improvement. From a biological standpoint this can be achieved by either targeting the cellular or vascular...... or radiation in preclinical models and clear benefits in tumour response observed. But few of these methods have actually been combined with thermoradiotherapy. Furthermore, very few combinations have been tested in relevant normal tissue studies, despite the fact that it is the normal tissue response...... that controls the maximal heat or radiation treatment that can be applied. Here we review the most clinically relevant biological approaches that have been shown to enhance thermoradiotherapy, or have the potential to be applied in this context, and suggest how these should be moved forward into the clinic....

  12. Predicting Recurrence and Progression of Noninvasive Papillary Bladder Cancer at Initial Presentation Based on Quantitative Gene Expression Profiles

    DEFF Research Database (Denmark)

    Birkhahn, M.; Mitra, A.P.; Williams, Johan

    2010-01-01

    % specificity. Since this is a small retrospective study using medium-throughput profiling, larger confirmatory studies are needed. Conclusions: Gene expression profiling across relevant cancer pathways appears to be a promising approach for Ta bladder tumor outcome prediction at initial diagnosis......Background: Currently, tumor grade is the best predictor of outcome at first presentation of noninvasive papillary (Ta) bladder cancer. However, reliable predictors of Ta tumor recurrence and progression for individual patients, which could optimize treatment and follow-up schedules based...... on specific tumor biology, are yet to be identified. Objective: To identify genes predictive for recurrence and progression in Ta bladder cancer at first presentation using a quantitative, pathway-specific approach. Design, setting, and participants: Retrospective study of patients with Ta G2/3 bladder tumors...

  13. Risk-adaptive optimization: Selective boosting of high-risk tumor subvolumes

    International Nuclear Information System (INIS)

    Kim, Yusung; Tome, Wolfgang A.

    2006-01-01

    Background and Purpose: A tumor subvolume-based, risk-adaptive optimization strategy is presented. Methods and Materials: Risk-adaptive optimization employs a biologic objective function instead of an objective function based on physical dose constraints. Using this biologic objective function, tumor control probability (TCP) is maximized for different tumor risk regions while at the same time minimizing normal tissue complication probability (NTCP) for organs at risk. The feasibility of risk-adaptive optimization was investigated for a variety of tumor subvolume geometries, risk-levels, and slopes of the TCP curve. Furthermore, the impact of a correlation parameter, δ, between TCP and NTCP on risk-adaptive optimization was investigated. Results: Employing risk-adaptive optimization, it is possible in a prostate cancer model to increase the equivalent uniform dose (EUD) by up to 35.4 Gy in tumor subvolumes having the highest risk classification without increasing predicted normal tissue complications in organs at risk. For all tumor subvolume geometries investigated, we found that the EUD to high-risk tumor subvolumes could be increased significantly without increasing normal tissue complications above those expected from a treatment plan aiming for uniform dose coverage of the planning target volume. We furthermore found that the tumor subvolume with the highest risk classification had the largest influence on the design of the risk-adaptive dose distribution. The parameter δ had little effect on risk-adaptive optimization. However, the clinical parameters D 5 and γ 5 that represent the risk classification of tumor subvolumes had the largest impact on risk-adaptive optimization. Conclusions: On the whole, risk-adaptive optimization yields heterogeneous dose distributions that match the risk level distribution of different subvolumes within the tumor volume

  14. Studies into the transplantation biology of ultraviolet light-induced tumors

    International Nuclear Information System (INIS)

    Daynes, R.A.; Spellman, C.W.; Woodward, J.G.; Stewart, D.A.

    1977-01-01

    The majority of skin tumors induced in mice by ultraviolet (uv) light are rejected when implanted into normal syngeneic recipients. Subcarcinogenic levels of uv light exposure render the normally resistant mice susceptible to tumor challenge. The immunoregulatory effect of uv light appears to be additive, since the growth rate of a tumor transplant is dependent upon the length of uv exposure administered prior to implantation. This suppressive influence does not appear to be directly mediated by the uv light, because the amputation of uv-irradiated tail skin allows for a retention of tumor resistance in otherwise tumor-susceptible hosts. uv-irradiated mice could also be immunized against uv tumors, which suggests that immune recognition of tumor-specific transplantation antigens has not been inhibited. The ability of uv exposure to alter normal immunological reactivity to uv-induced tumors is possibly an integral factor in the mechanism underlying uv carcinogenesis

  15. Proton and carbon ion radiotherapy for primary brain tumors and tumors of the skull base

    Energy Technology Data Exchange (ETDEWEB)

    Combs, Stephanie E.; Kessel, Kerstin; Habermehl, Daniel; Debus, Jurgen [Univ. Hospital of Heidelberg, Dept. of Radiation Oncology, Heidelberg (Germany)], e-mail: Stephanie.Combs@med.uni-heidelberg.de; Haberer, Thomas [Heidelberger Ionenstrahl Therapiezentrum (HIT), Heidelberg (Germany); Jaekel, Oliver [Univ. Hospital of Heidelberg, Dept. of Radiation Oncology, Heidelberg (Germany); Heidelberger Ionenstrahl Therapiezentrum (HIT), Heidelberg (Germany)

    2013-10-15

    To analyze clinical concepts, toxicity and treatment outcome in patients with brain and skull base tumors treated with photons and particle therapy. Material and methods: In total 260 patients with brain tumors and tumors of the skull base were treated at the Heidelberg Ion Therapy Center (HIT). Patients enrolled in and randomized within prospective clinical trials as well as bony or soft tissue tumors are not included in this analysis. Treatment was delivered as protons, carbon ions, or combinations of photons and a carbon ion boost. All patients are included in a tight follow-up program. The median follow-up time is 12 months (range 2-39 months). Results: Main histologies included meningioma (n = 107) for skull base lesions, pituitary adenomas (n = 14), low-grade gliomas (n = 51) as well as high-grade gliomas (n = 55) for brain tumors. In all patients treatment could be completed without any unexpected severe toxicities. No side effects > CTC Grade III were observed. To date, no severe late toxicities were observed, however, for endpoints such as secondary malignancies or neuro cognitive side effects follow-up time still remains too short. Local recurrences were mainly seen in the group of high-grade gliomas or atypical meningiomas; for benign skull base meningiomas, to date, no recurrences were observed during follow-up. Conclusion: The specific benefit of particle therapy will potentially reduce the risk of secondary malignancies as well as improve neuro cognitive outcome and quality of life (QOL); thus, longer follow-up will be necessary to confirm these endpoints. Indication-specific trials on meningiomas and gliomas are underway to elucidate the role of protons and carbon ions in these indications.

  16. Proton and carbon ion radiotherapy for primary brain tumors and tumors of the skull base

    International Nuclear Information System (INIS)

    Combs, Stephanie E.; Kessel, Kerstin; Habermehl, Daniel; Debus, Jurgen; Haberer, Thomas; Jaekel, Oliver

    2013-01-01

    To analyze clinical concepts, toxicity and treatment outcome in patients with brain and skull base tumors treated with photons and particle therapy. Material and methods: In total 260 patients with brain tumors and tumors of the skull base were treated at the Heidelberg Ion Therapy Center (HIT). Patients enrolled in and randomized within prospective clinical trials as well as bony or soft tissue tumors are not included in this analysis. Treatment was delivered as protons, carbon ions, or combinations of photons and a carbon ion boost. All patients are included in a tight follow-up program. The median follow-up time is 12 months (range 2-39 months). Results: Main histologies included meningioma (n = 107) for skull base lesions, pituitary adenomas (n = 14), low-grade gliomas (n = 51) as well as high-grade gliomas (n = 55) for brain tumors. In all patients treatment could be completed without any unexpected severe toxicities. No side effects > CTC Grade III were observed. To date, no severe late toxicities were observed, however, for endpoints such as secondary malignancies or neuro cognitive side effects follow-up time still remains too short. Local recurrences were mainly seen in the group of high-grade gliomas or atypical meningiomas; for benign skull base meningiomas, to date, no recurrences were observed during follow-up. Conclusion: The specific benefit of particle therapy will potentially reduce the risk of secondary malignancies as well as improve neuro cognitive outcome and quality of life (QOL); thus, longer follow-up will be necessary to confirm these endpoints. Indication-specific trials on meningiomas and gliomas are underway to elucidate the role of protons and carbon ions in these indications

  17. Organ-Tumor-on-a-Chip for Chemosensitivity Assay: A Critical Review

    Directory of Open Access Journals (Sweden)

    Navid Kashaninejad

    2016-07-01

    Full Text Available With a mortality rate over 580,000 per year, cancer is still one of the leading causes of death worldwide. However, the emerging field of microfluidics can potentially shed light on this puzzling disease. Unique characteristics of microfluidic chips (also known as micro-total analysis system make them excellent candidates for biological applications. The ex vivo approach of tumor-on-a-chip is becoming an indispensable part of personalized medicine and can replace in vivo animal testing as well as conventional in vitro methods. In tumor-on-a-chip, the complex three-dimensional (3D nature of malignant tumor is co-cultured on a microfluidic chip and high throughput screening tools to evaluate the efficacy of anticancer drugs are integrated on the same chip. In this article, we critically review the cutting edge advances in this field and mainly categorize each tumor-on-a-chip work based on its primary organ. Specifically, design, fabrication and characterization of tumor microenvironment; cell culture technique; transferring mechanism of cultured cells into the microchip; concentration gradient generators for drug delivery; in vitro screening assays of drug efficacy; and pros and cons of each microfluidic platform used in the recent literature will be discussed separately for the tumor of following organs: (1 Lung; (2 Bone marrow; (3 Brain; (4 Breast; (5 Urinary system (kidney, bladder and prostate; (6 Intestine; and (7 Liver. By comparing these microchips, we intend to demonstrate the unique design considerations of each tumor-on-a-chip based on primary organ, e.g., how microfluidic platform of lung-tumor-on-a-chip may differ from liver-tumor-on-a-chip. In addition, the importance of heart–liver–intestine co-culture with microvasculature in tumor-on-a-chip devices for in vitro chemosensitivity assay will be discussed. Such system would be able to completely evaluate the absorption, distribution, metabolism, excretion and toxicity (ADMET of

  18. Approaching near real-time biosensing: microfluidic microsphere based biosensor for real-time analyte detection.

    Science.gov (United States)

    Cohen, Noa; Sabhachandani, Pooja; Golberg, Alexander; Konry, Tania

    2015-04-15

    In this study we describe a simple lab-on-a-chip (LOC) biosensor approach utilizing well mixed microfluidic device and a microsphere-based assay capable of performing near real-time diagnostics of clinically relevant analytes such cytokines and antibodies. We were able to overcome the adsorption kinetics reaction rate-limiting mechanism, which is diffusion-controlled in standard immunoassays, by introducing the microsphere-based assay into well-mixed yet simple microfluidic device with turbulent flow profiles in the reaction regions. The integrated microsphere-based LOC device performs dynamic detection of the analyte in minimal amount of biological specimen by continuously sampling micro-liter volumes of sample per minute to detect dynamic changes in target analyte concentration. Furthermore we developed a mathematical model for the well-mixed reaction to describe the near real time detection mechanism observed in the developed LOC method. To demonstrate the specificity and sensitivity of the developed real time monitoring LOC approach, we applied the device for clinically relevant analytes: Tumor Necrosis Factor (TNF)-α cytokine and its clinically used inhibitor, anti-TNF-α antibody. Based on the reported results herein, the developed LOC device provides continuous sensitive and specific near real-time monitoring method for analytes such as cytokines and antibodies, reduces reagent volumes by nearly three orders of magnitude as well as eliminates the washing steps required by standard immunoassays. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Towards a heterarchical approach to biology and cognition

    DEFF Research Database (Denmark)

    Bruni, Luis Emilio; Giorgi, Franco

    2015-01-01

    to the different scientific disciplines working towards a multilevel integrative perspective of biological and cognitive processes, such as systems and integrative biology and neuroscience, social and cultural neuroscience, social signal transduction and psychoneuroimmunology, for instance. We argue...... that structures and substrates are by necessity organized hierarchically, while communication processes – and their embeddedness – are rather organized heterarchically. Before getting into the implications of the heterarchical approach and its congeniality with the semiotic perspective to biology and cognition...... complementarity of bottom-up and top-down causal links. This should contribute to account for the integration, interpretation and response to complex aggregates of information at different levels of organization in a developmental context. We illustrate the dialectical nature of embedded heterarchical processes...

  20. A model of tumor architecture and spatial interactions with tumor microenvironment in breast carcinoma

    Science.gov (United States)

    Ben Cheikh, Bassem; Bor-Angelier, Catherine; Racoceanu, Daniel

    2017-03-01

    Breast carcinomas are cancers that arise from the epithelial cells of the breast, which are the cells that line the lobules and the lactiferous ducts. Breast carcinoma is the most common type of breast cancer and can be divided into different subtypes based on architectural features and growth patterns, recognized during a histopathological examination. Tumor microenvironment (TME) is the cellular environment in which tumor cells develop. Being composed of various cell types having different biological roles, TME is recognized as playing an important role in the progression of the disease. The architectural heterogeneity in breast carcinomas and the spatial interactions with TME are, to date, not well understood. Developing a spatial model of tumor architecture and spatial interactions with TME can advance our understanding of tumor heterogeneity. Furthermore, generating histological synthetic datasets can contribute to validating, and comparing analytical methods that are used in digital pathology. In this work, we propose a modeling method that applies to different breast carcinoma subtypes and TME spatial distributions based on mathematical morphology. The model is based on a few morphological parameters that give access to a large spectrum of breast tumor architectures and are able to differentiate in-situ ductal carcinomas (DCIS) and histological subtypes of invasive carcinomas such as ductal (IDC) and lobular carcinoma (ILC). In addition, a part of the parameters of the model controls the spatial distribution of TME relative to the tumor. The validation of the model has been performed by comparing morphological features between real and simulated images.

  1. Chemotherapy-Induced Macrophage Infiltration into Tumors Enhances Nanographene-Based Photodynamic Therapy.

    Science.gov (United States)

    Zhao, Yang; Zhang, Chenran; Gao, Liquan; Yu, Xinhe; Lai, Jianhao; Lu, Dehua; Bao, Rui; Wang, Yanpu; Jia, Bing; Wang, Fan; Liu, Zhaofei

    2017-11-01

    Increased recruitment of tumor-associated macrophages (TAM) to tumors following chemotherapy promotes tumor resistance and recurrence and correlates with poor prognosis. TAM depletion suppresses tumor growth, but is not highly effective due to the effects of tumorigenic mediators from other stromal sources. Here, we report that adoptive macrophage transfer led to a dramatically enhanced photodynamic therapy (PDT) effect of 2-(1-hexyloxyethyl)-2-devinyl pyropheophor-bide-alpha (HPPH)-coated polyethylene glycosylated nanographene oxide [GO(HPPH)-PEG] by increasing its tumor accumulation. Moreover, tumor treatment with commonly used chemotherapeutic drugs induced an increase in macrophage infiltration into tumors, which also enhanced tumor uptake and the PDT effects of GO(HPPH)-PEG, resulting in tumor eradication. Macrophage recruitment to tumors after chemotherapy was visualized noninvasively by near-infrared fluorescence and single-photon emission CT imaging using F4/80-specific imaging probes. Our results demonstrate that chemotherapy combined with GO(HPPH)-PEG PDT is a promising strategy for the treatment of tumors, especially those resistant to chemotherapy. Furthermore, TAM-targeted molecular imaging could potentially be used to predict the efficacy of combination therapy and select patients who would most benefit from this treatment approach. Cancer Res; 77(21); 6021-32. ©2017 AACR . ©2017 American Association for Cancer Research.

  2. Intensity-Curvature Measurement Approaches for the Diagnosis of Magnetic Resonance Imaging Brain Tumors

    Directory of Open Access Journals (Sweden)

    Carlo Ciulla

    2015-11-01

    Full Text Available This research presents signal-image post-processing techniques called Intensity-Curvature Measurement Approaches with application to the diagnosis of human brain tumors detected through Magnetic Resonance Imaging (MRI. Post-processing of the MRI of the human brain encompasses the following model functions: (i bivariate cubic polynomial, (ii bivariate cubic Lagrange polynomial, (iii monovariate sinc, and (iv bivariate linear. The following Intensity-Curvature Measurement Approaches were used: (i classic-curvature, (ii signal resilient to interpolation, (iii intensity-curvature measure and (iv intensity-curvature functional. The results revealed that the classic-curvature, the signal resilient to interpolation and the intensity-curvature functional are able to add additional information useful to the diagnosis carried out with MRI. The contribution to the MRI diagnosis of our study are: (i the enhanced gray level scale of the tumor mass and the well-behaved representation of the tumor provided through the signal resilient to interpolation, and (ii the visually perceptible third dimension perpendicular to the image plane provided through the classic-curvature and the intensity-curvature functional.

  3. III. Cellular ultrastructures in situ as key to understanding tumor energy metabolism: biological significance of the Warburg effect.

    Science.gov (United States)

    Witkiewicz, Halina; Oh, Phil; Schnitzer, Jan E

    2013-01-01

    cell cycle through mitosis, indicated that Warburg effect had a fundamental biological significance extending to non-malignant tissues. The approach used here could facilitate integration of accumulated cyber knowledge on cancer metabolism into predictive science.

  4. Endoscopic graduated multiangle, multicorridor resection of juvenile nasopharyngeal angiofibroma: an individualized, tailored, multicorridor skull base approach.

    Science.gov (United States)

    Liu, James K; Husain, Qasim; Kanumuri, Vivek; Khan, Mohemmed N; Mendelson, Zachary S; Eloy, Jean Anderson

    2016-05-01

    OBJECT Juvenile nasopharyngeal angiofibromas (JNAs) are formidable tumors because of their hypervascularity and difficult location in the skull base. Traditional transfacial procedures do not always afford optimal visualization and illumination, resulting in significant morbidity and poor cosmesis. The advent of endoscopic procedures has allowed for resection of JNAs with greater surgical freedom and decreased incidence of facial deformity and scarring. METHODS This report describes a graduated multiangle, multicorridor, endoscopic approach to JNAs that is illustrated in 4 patients, each with a different tumor location and extent. Four different surgical corridors in varying combinations were used to resect JNAs, based on tumor size and location, including an ipsilateral endonasal approach (uninostril); a contralateral, transseptal approach (binostril); a sublabial, transmaxillary Caldwell-Luc approach; and an orbitozygomatic, extradural, transcavernous, infratemporal fossa approach (transcranial). One patient underwent resection via an ipsilateral endonasal uninostril approach (Corridor 1) only. One patient underwent a binostril approach that included an additional contralateral transseptal approach (Corridors 1 and 2). One patient underwent a binostril approach with an additional sublabial Caldwell-Luc approach for lateral extension in the infratemporal fossa (Corridors 1-3). One patient underwent a combined transcranial and endoscopic endonasal/sublabial Caldwell-Luc approach (Corridors 1-4) for an extensive JNA involving both the lateral infratemporal fossa and cavernous sinus. RESULTS A graduated multiangle, multicorridor approach was used in a stepwise fashion to allow for maximal surgical exposure and maneuverability for resection of JNAs. Gross-total resection was achieved in all 4 patients. One patient had a postoperative CSF leak that was successfully repaired endoscopically. One patient had a delayed local recurrence that was successfully resected

  5. Critical appraisal of the role of everolimus in advanced neuroendocrine tumors of pancreatic origin

    Directory of Open Access Journals (Sweden)

    Mulet-Margalef N

    2012-09-01

    Full Text Available Núria Mulet-Margalef, Jaume CapdevilaMedical Oncology Department, Vall d'Hebron University Hospital, Barcelona, SpainAbstract: For many years, the treatment of advanced pancreatic neuroendocrine tumors (pNETs has been limited almost entirely to somatostatin analogs and streptozocin-based chemotherapy, with modest benefit. Increasing knowledge of the biologic features of pNETs has allowed the design of molecular-based clinical trials, which have taken a step forward in the management of these tumors. In this review, we discuss the molecular rationale for the development of everolimus for patients with advanced pNETs, critically review the clinical data obtained by the main studies in this setting, and discuss essential considerations based on recent findings in pNET biology for future drug development involving the phosphatidylinositol 3' kinase-AKT-mTOR pathway.Keywords: pancreatic neuroendocrine tumors, everolimus, targeted therapies

  6. Synthetic biology approaches in cancer immunotherapy, genetic network engineering, and genome editing.

    Science.gov (United States)

    Chakravarti, Deboki; Cho, Jang Hwan; Weinberg, Benjamin H; Wong, Nicole M; Wong, Wilson W

    2016-04-18

    Investigations into cells and their contents have provided evolving insight into the emergence of complex biological behaviors. Capitalizing on this knowledge, synthetic biology seeks to manipulate the cellular machinery towards novel purposes, extending discoveries from basic science to new applications. While these developments have demonstrated the potential of building with biological parts, the complexity of cells can pose numerous challenges. In this review, we will highlight the broad and vital role that the synthetic biology approach has played in applying fundamental biological discoveries in receptors, genetic circuits, and genome-editing systems towards translation in the fields of immunotherapy, biosensors, disease models and gene therapy. These examples are evidence of the strength of synthetic approaches, while also illustrating considerations that must be addressed when developing systems around living cells.

  7. Synthetic biology approaches to engineer T cells.

    Science.gov (United States)

    Wu, Chia-Yung; Rupp, Levi J; Roybal, Kole T; Lim, Wendell A

    2015-08-01

    There is rapidly growing interest in learning how to engineer immune cells, such as T lymphocytes, because of the potential of these engineered cells to be used for therapeutic applications such as the recognition and killing of cancer cells. At the same time, our knowhow and capability to logically engineer cellular behavior is growing rapidly with the development of synthetic biology. Here we describe how synthetic biology approaches are being used to rationally alter the behavior of T cells to optimize them for therapeutic functions. We also describe future developments that will be important in order to construct safe and precise T cell therapeutics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Geometrical approach to tumor growth

    OpenAIRE

    Escudero, Carlos

    2006-01-01

    Tumor growth has a number of features in common with a physical process known as molecular beam epitaxy. Both growth processes are characterized by the constraint of growth development to the body border, and surface diffusion of cells/particles at the growing edge. However, tumor growth implies an approximate spherical symmetry that makes necessary a geometrical treatment of the growth equations. The basic model was introduced in a former article [C. Escudero, Phys. Rev. E 73, 020902(R) (200...

  9. Brain Cancer Stem Cells in Adults and Children: Cell Biology and Therapeutic Implications.

    Science.gov (United States)

    Abou-Antoun, Tamara J; Hale, James S; Lathia, Justin D; Dombrowski, Stephen M

    2017-04-01

    Brain tumors represent some of the most malignant cancers in both children and adults. Current treatment options target the majority of tumor cells but do not adequately target self-renewing cancer stem cells (CSCs). CSCs have been reported to resist the most aggressive radiation and chemotherapies, and give rise to recurrent, treatment-resistant secondary malignancies. With advancing technologies, we now have a better understanding of the genetic, epigenetic and molecular signatures and microenvironmental influences which are useful in distinguishing between distinctly different tumor subtypes. As a result, efforts are now underway to identify and target CSCs within various tumor subtypes based on this foundation. This review discusses progress in CSC biology as it relates to targeted therapies which may be uniquely different between pediatric and adult brain tumors. Studies to date suggest that pediatric brain tumors may benefit more from genetic and epigenetic targeted therapies, while combination treatments aimed specifically at multiple molecular pathways may be more effective in treating adult brain tumors which seem to have a greater propensity towards microenvironmental interactions. Ultimately, CSC targeting approaches in combination with current clinical therapies have the potential to be more effective owing to their ability to compromise CSCs maintenance and the mechanisms which underlie their highly aggressive and deadly nature.

  10. Tumor phenotype and breast density in distinct categories of interval cancer: results of population-based mammography screening in Spain.

    Science.gov (United States)

    Domingo, Laia; Salas, Dolores; Zubizarreta, Raquel; Baré, Marisa; Sarriugarte, Garbiñe; Barata, Teresa; Ibáñez, Josefa; Blanch, Jordi; Puig-Vives, Montserrat; Fernández, Ana; Castells, Xavier; Sala, Maria

    2014-01-10

    Interval cancers are tumors arising after a negative screening episode and before the next screening invitation. They can be classified into true interval cancers, false-negatives, minimal-sign cancers, and occult tumors based on mammographic findings in screening and diagnostic mammograms. This study aimed to describe tumor-related characteristics and the association of breast density and tumor phenotype within four interval cancer categories. We included 2,245 invasive tumors (1,297 screening-detected and 948 interval cancers) diagnosed from 2000 to 2009 among 645,764 women aged 45 to 69 who underwent biennial screening in Spain. Interval cancers were classified by a semi-informed retrospective review into true interval cancers (n = 455), false-negatives (n = 224), minimal-sign (n = 166), and occult tumors (n = 103). Breast density was evaluated using Boyd's scale and was conflated into: 75%. Tumor-related information was obtained from cancer registries and clinical records. Tumor phenotype was defined as follows: luminal A: ER+/HER2- or PR+/HER2-; luminal B: ER+/HER2+ or PR+/HER2+; HER2: ER-/PR-/HER2+; triple-negative: ER-/PR-/HER2-. The association of tumor phenotype and breast density was assessed using a multinomial logistic regression model. Adjusted odds ratios (OR) and 95% confidence intervals (95% CI) were calculated. All statistical tests were two-sided. Forty-eight percent of interval cancers were true interval cancers and 23.6% false-negatives. True interval cancers were associated with HER2 and triple-negative phenotypes (OR = 1.91 (95% CI:1.22-2.96), OR = 2.07 (95% CI:1.42-3.01), respectively) and extremely dense breasts (>75%) (OR = 1.67 (95% CI:1.08-2.56)). However, among true interval cancers a higher proportion of triple-negative tumors was observed in predominantly fatty breasts (breasts (28.7%, 21.4%, 11.3% and 14.3%, respectively; cancers, extreme breast density being strongly associated with occult tumors (OR

  11. Brain tumor-targeted drug delivery strategies

    Directory of Open Access Journals (Sweden)

    Xiaoli Wei

    2014-06-01

    Full Text Available Despite the application of aggressive surgery, radiotherapy and chemotherapy in clinics, brain tumors are still a difficult health challenge due to their fast development and poor prognosis. Brain tumor-targeted drug delivery systems, which increase drug accumulation in the tumor region and reduce toxicity in normal brain and peripheral tissue, are a promising new approach to brain tumor treatments. Since brain tumors exhibit many distinctive characteristics relative to tumors growing in peripheral tissues, potential targets based on continuously changing vascular characteristics and the microenvironment can be utilized to facilitate effective brain tumor-targeted drug delivery. In this review, we briefly describe the physiological characteristics of brain tumors, including blood–brain/brain tumor barriers, the tumor microenvironment, and tumor stem cells. We also review targeted delivery strategies and introduce a systematic targeted drug delivery strategy to overcome the challenges.

  12. Mitigating Errors in External Respiratory Surrogate-Based Models of Tumor Position

    International Nuclear Information System (INIS)

    Malinowski, Kathleen T.; McAvoy, Thomas J.; George, Rohini; Dieterich, Sonja; D'Souza, Warren D.

    2012-01-01

    Purpose: To investigate the effect of tumor site, measurement precision, tumor–surrogate correlation, training data selection, model design, and interpatient and interfraction variations on the accuracy of external marker-based models of tumor position. Methods and Materials: Cyberknife Synchrony system log files comprising synchronously acquired positions of external markers and the tumor from 167 treatment fractions were analyzed. The accuracy of Synchrony, ordinary-least-squares regression, and partial-least-squares regression models for predicting the tumor position from the external markers was evaluated. The quantity and timing of the data used to build the predictive model were varied. The effects of tumor–surrogate correlation and the precision in both the tumor and the external surrogate position measurements were explored by adding noise to the data. Results: The tumor position prediction errors increased during the duration of a fraction. Increasing the training data quantities did not always lead to more accurate models. Adding uncorrelated noise to the external marker-based inputs degraded the tumor–surrogate correlation models by 16% for partial-least-squares and 57% for ordinary-least-squares. External marker and tumor position measurement errors led to tumor position prediction changes 0.3–3.6 times the magnitude of the measurement errors, varying widely with model algorithm. The tumor position prediction errors were significantly associated with the patient index but not with the fraction index or tumor site. Partial-least-squares was as accurate as Synchrony and more accurate than ordinary-least-squares. Conclusions: The accuracy of surrogate-based inferential models of tumor position was affected by all the investigated factors, except for the tumor site and fraction index.

  13. Transzygomatic approach with intraoperative neuromonitoring for resection of middle cranial fossa tumors.

    Science.gov (United States)

    Son, Byung Chul; Lee, Sang Won; Kim, Sup; Hong, Jae Taek; Sung, Jae Hoon; Yang, Seung-Ho

    2012-02-01

    The authors reviewed the surgical experience and operative technique in a series of 11 patients with middle fossa tumors who underwent surgery using the transzygomatic approach and intraoperative neuromonitoring (IOM) at a single institution. This approach was applied to trigeminal schwannomas (n = 3), cavernous angiomas (n = 3), sphenoid wing meningiomas (n = 3), a petroclival meningioma (n = 1), and a hemangiopericytoma (n = 1). An osteotomy of the zygoma, a low-positioned frontotemporal craniotomy, removal of the remaining squamous temporal bone, and extradural drilling of the sphenoid wing made a flat trajectory to the skull base. Total resection was achieved in 9 of 11 patients. Significant motor pathway damage can be avoided using a change in motor-evoked potentials as an early warning sign. Four patients experienced cranial nerve palsies postoperatively, even though free-running electromyography of cranial nerves showed normal responses during the surgical procedure. A simple transzygomatic approach provides a wide surgical corridor for accessing the cavernous sinus, petrous apex, and subtemporal regions. Knowledge of the middle fossa structures is essential for anatomic orientation and avoiding injuries to neurovascular structures, although a neuronavigation system and IOM helps orient neurosurgeons.

  14. Neuroendocrine tumors and smoking

    Directory of Open Access Journals (Sweden)

    Tanja Miličević

    2016-12-01

    Full Text Available Neuroendocrine cells are dispersed around the body and can be found within the gastrointestinal system, lungs, larynx, thymus, thyroid, adrenal, gonads, skin and other tissues. These cells form the so-called ''diffuse neuroendocrine system'' and tumors arising from them are defined as neuroendocrine tumors (NETs. The traditional classification of NETs based on their embryonic origin includes foregut tumors (lung, thymus, stomach, pancreas and duodenum, midgut tumors (beyond the ligament of Treitz of the duodenum to the proximal transverse colon and hindgut tumors (distal colon and rectum. NETs at each site are biologically and clinically distinct from their counterparts at other sites. Symptoms in patients with early disease are often insidious in onset, leading to a delay in diagnosis. The majority of these tumors are thus diagnosed at a stage at which the only curative treatment, radical surgical intervention, is no longer an option. Due to the increasing incidence and mortality, many studies have been conducted in order to identify risk factors for the development of NETs. Still, little is known especially when it comes to preventable risk factors such as smoking. This review will focus on smoking and its contribution to the development of different subtypes of NETs.

  15. Specific Visualization of Tumor Cells Using Upconversion Nanophosphors

    Science.gov (United States)

    Grebenik, E. A.; Generalova, A. N.; Nechaev, A. V.; Khaydukov, E.V.; Mironova, K. E.; Stremovskiy, O. A.; Lebedenko, E.N.; Zvyagin, A. V.; Deyev, S. M.

    2014-01-01

    The development of targeted constructs on the basis of photoluminescent nanoparticles with a high photo- and chemical stability and absorption/emission spectra in the “transparency window” of biological tissues is an important focus area of present-day medical diagnostics. In this work, a targeted two-component construct on the basis of upconversion nanophosphors (UCNPs) and anti-tumor 4D5 scFv was developed for selective labeling of tumor cells overexpressing the HER2 tumor marker characteristic of a number of human malignant tumors. A high affinity barnase : barstar (Bn : Bs) protein pair, which exhibits high stability in a wide range of pH and temperatures, was exploited as a molecular adapter providing self-assembly of the two-component construct. High selectivity for the binding of the two-component 4D5 scFv-Bn : UCNP-Bs construct to human breast adenocarcinoma SK-BR-3 cells overexpressing HER2 was demonstrated. This approach provides an opportunity to produce similar constructs for the visualization of different specific markers in pathogenic tissues, including malignant tumors. PMID:25558394

  16. A state-based probabilistic model for tumor respiratory motion prediction

    International Nuclear Information System (INIS)

    Kalet, Alan; Sandison, George; Schmitz, Ruth; Wu Huanmei

    2010-01-01

    This work proposes a new probabilistic mathematical model for predicting tumor motion and position based on a finite state representation using the natural breathing states of exhale, inhale and end of exhale. Tumor motion was broken down into linear breathing states and sequences of states. Breathing state sequences and the observables representing those sequences were analyzed using a hidden Markov model (HMM) to predict the future sequences and new observables. Velocities and other parameters were clustered using a k-means clustering algorithm to associate each state with a set of observables such that a prediction of state also enables a prediction of tumor velocity. A time average model with predictions based on average past state lengths was also computed. State sequences which are known a priori to fit the data were fed into the HMM algorithm to set a theoretical limit of the predictive power of the model. The effectiveness of the presented probabilistic model has been evaluated for gated radiation therapy based on previously tracked tumor motion in four lung cancer patients. Positional prediction accuracy is compared with actual position in terms of the overall RMS errors. Various system delays, ranging from 33 to 1000 ms, were tested. Previous studies have shown duty cycles for latencies of 33 and 200 ms at around 90% and 80%, respectively, for linear, no prediction, Kalman filter and ANN methods as averaged over multiple patients. At 1000 ms, the previously reported duty cycles range from approximately 62% (ANN) down to 34% (no prediction). Average duty cycle for the HMM method was found to be 100% and 91 ± 3% for 33 and 200 ms latency and around 40% for 1000 ms latency in three out of four breathing motion traces. RMS errors were found to be lower than linear and no prediction methods at latencies of 1000 ms. The results show that for system latencies longer than 400 ms, the time average HMM prediction outperforms linear, no prediction, and the more

  17. The current status of studies on mitochondrial DNA with tumor, radiation biological effects and aging

    International Nuclear Information System (INIS)

    Liu Qingjie; Sang Lu

    2004-01-01

    The mitochondrial plays a very important role in sustaining the normal physiological function, because it is the center of energy making and mitochondrial DNA (mtDNA) is the only genetic material outside the nuclear. The result of studies showed that many diseases have a close relationship with mtDNA mutation and deletion. This article reviewed the current status of research on mtDNA with tumor, radiation biological effects and aging, in order to initiate the application study of mtDNA in the circle of radiation medicine

  18. Real-time tumor motion estimation using respiratory surrogate via memory-based learning

    International Nuclear Information System (INIS)

    Li Ruijiang; Xing Lei; Lewis, John H; Berbeco, Ross I

    2012-01-01

    Respiratory tumor motion is a major challenge in radiation therapy for thoracic and abdominal cancers. Effective motion management requires an accurate knowledge of the real-time tumor motion. External respiration monitoring devices (optical, etc) provide a noninvasive, non-ionizing, low-cost and practical approach to obtain the respiratory signal. Due to the highly complex and nonlinear relations between tumor and surrogate motion, its ultimate success hinges on the ability to accurately infer the tumor motion from respiratory surrogates. Given their widespread use in the clinic, such a method is critically needed. We propose to use a powerful memory-based learning method to find the complex relations between tumor motion and respiratory surrogates. The method first stores the training data in memory and then finds relevant data to answer a particular query. Nearby data points are assigned high relevance (or weights) and conversely distant data are assigned low relevance. By fitting relatively simple models to local patches instead of fitting one single global model, it is able to capture highly nonlinear and complex relations between the internal tumor motion and external surrogates accurately. Due to the local nature of weighting functions, the method is inherently robust to outliers in the training data. Moreover, both training and adapting to new data are performed almost instantaneously with memory-based learning, making it suitable for dynamically following variable internal/external relations. We evaluated the method using respiratory motion data from 11 patients. The data set consists of simultaneous measurement of 3D tumor motion and 1D abdominal surface (used as the surrogate signal in this study). There are a total of 171 respiratory traces, with an average peak-to-peak amplitude of ∼15 mm and average duration of ∼115 s per trace. Given only 5 s (roughly one breath) pretreatment training data, the method achieved an average 3D error of 1.5 mm and 95

  19. Real-time tumor motion estimation using respiratory surrogate via memory-based learning

    Science.gov (United States)

    Li, Ruijiang; Lewis, John H.; Berbeco, Ross I.; Xing, Lei

    2012-08-01

    Respiratory tumor motion is a major challenge in radiation therapy for thoracic and abdominal cancers. Effective motion management requires an accurate knowledge of the real-time tumor motion. External respiration monitoring devices (optical, etc) provide a noninvasive, non-ionizing, low-cost and practical approach to obtain the respiratory signal. Due to the highly complex and nonlinear relations between tumor and surrogate motion, its ultimate success hinges on the ability to accurately infer the tumor motion from respiratory surrogates. Given their widespread use in the clinic, such a method is critically needed. We propose to use a powerful memory-based learning method to find the complex relations between tumor motion and respiratory surrogates. The method first stores the training data in memory and then finds relevant data to answer a particular query. Nearby data points are assigned high relevance (or weights) and conversely distant data are assigned low relevance. By fitting relatively simple models to local patches instead of fitting one single global model, it is able to capture highly nonlinear and complex relations between the internal tumor motion and external surrogates accurately. Due to the local nature of weighting functions, the method is inherently robust to outliers in the training data. Moreover, both training and adapting to new data are performed almost instantaneously with memory-based learning, making it suitable for dynamically following variable internal/external relations. We evaluated the method using respiratory motion data from 11 patients. The data set consists of simultaneous measurement of 3D tumor motion and 1D abdominal surface (used as the surrogate signal in this study). There are a total of 171 respiratory traces, with an average peak-to-peak amplitude of ∼15 mm and average duration of ∼115 s per trace. Given only 5 s (roughly one breath) pretreatment training data, the method achieved an average 3D error of 1.5 mm and 95

  20. A neuropathology-based approach to epilepsy surgery in brain tumors and proposal for a new terminology use for long-term epilepsy-associated brain tumors

    NARCIS (Netherlands)

    Blumcke, Ingmar; Aronica, Eleonora; Urbach, Horst; Alexopoulos, Andreas; Gonzalez-Martinez, Jorge A.

    2014-01-01

    Every fourth patient submitted to epilepsy surgery suffers from a brain tumor. Microscopically, these neoplasms present with a wide-ranging spectrum of glial or glio-neuronal tumor subtypes. Gangliogliomas (GG) and dysembryoplastic neuroepithelial tumors (DNTs) are the most frequently recognized

  1. Tumor-extrinsic discoidin domain receptor 1 promotes mammary tumor growth by regulating adipose stromal interleukin 6 production in mice.

    Science.gov (United States)

    Sun, Xiujie; Gupta, Kshama; Wu, Bogang; Zhang, Deyi; Yuan, Bin; Zhang, Xiaowen; Chiang, Huai-Chin; Zhang, Chi; Curiel, Tyler J; Bendeck, Michelle P; Hursting, Stephen; Hu, Yanfen; Li, Rong

    2018-02-23

    Discoidin domain receptor 1 (DDR1) is a collagen receptor that mediates cell communication with the extracellular matrix (ECM). Aberrant expression and activity of DDR1 in tumor cells are known to promote tumor growth. Although elevated DDR1 levels in the stroma of breast tumors are associated with poor patient outcome, a causal role for tumor-extrinsic DDR1 in cancer promotion remains unclear. Here we report that murine mammary tumor cells transplanted to syngeneic recipient mice in which Ddr1 has been knocked out (KO) grow less robustly than in WT mice. We also found that the tumor-associated stroma in Ddr1- KO mice exhibits reduced collagen deposition compared with the WT controls, supporting a role for stromal DDR1 in ECM remodeling of the tumor microenvironment. Furthermore, the stromal-vascular fraction (SVF) of Ddr1 knockout adipose tissue, which contains committed adipose stem/progenitor cells and preadipocytes, was impaired in its ability to stimulate tumor cell migration and invasion. Cytokine array-based screening identified interleukin 6 (IL-6) as a cytokine secreted by the SVF in a DDR1-dependent manner. SVF-produced IL-6 is important for SVF-stimulated tumor cell invasion in vitro , and, using antibody-based neutralization, we show that tumor promotion by IL-6 in vivo requires DDR1. In conclusion, our work demonstrates a previously unrecognized function of DDR1 in promoting tumor growth. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Metabolic adaptation of a human pathogen during chronic infections - a systems biology approach

    DEFF Research Database (Denmark)

    Thøgersen, Juliane Charlotte

    modeling to uncover how human pathogens adapt to the human host. Pseudomonas aeruginosa infections in cystic fibrosis patients are used as a model system for under-­‐ standing these adaptation processes. The exploratory systems biology approach facilitates identification of important phenotypes...... by classical molecular biology approaches where genes and reactions typically are investigated in a one to one relationship. This thesis is an example of how mathematical approaches and modeling can facilitate new biologi-­‐ cal understanding and provide new surprising ideas to important biological processes....... and metabolic pathways that are necessary or related to establishment of chronic infections. Archetypal analysis showed to be successful in extracting relevant phenotypes from global gene expression da-­‐ ta. Furthermore, genome-­‐scale metabolic modeling showed to be useful in connecting the genotype...

  3. Biology of radiation therapy

    International Nuclear Information System (INIS)

    Peters, L.J.

    1987-01-01

    A working knowledge of the biologic principles underlying radiotherapy for head and neck tumors is desirable for all the disciplines involved in the management of patients with these cancers. Clinical practice is certainly possible without this basic understanding, and historically most clinical advances have been made empirically. However, an understanding of the basic concepts permits a better appreciation of the strengths and weaknesses of various treatment strategies and offers a rational approach for future modifications of techniques so as to improve the outcome of treatment

  4. Liver Transplantation for Hepatocellular Carcinoma beyond Milan Criteria: Multidisciplinary Approach to Improve Outcome

    Science.gov (United States)

    Kornberg, A.

    2014-01-01

    The implementation of the Milan criteria (MC) in 1996 has dramatically improved prognosis after liver transplantation (LT) in patients with hepatocellular carcinoma (HCC). Liver transplantation has, thereby, become the standard therapy for patients with “early-stage” HCC on liver cirrhosis. The MC were consequently adopted by United Network of Organ Sharing (UNOS) and Eurotransplant for prioritization of patients with HCC. Recent advancements in the knowledge about tumor biology, radiographic imaging techniques, locoregional interventional treatments, and immunosuppressive medications have raised a critical discussion, if the MC might be too restrictive and unjustified keeping away many patients from potentially curative LT. Numerous transplant groups have, therefore, increasingly focussed on a stepwise expansion of selection criteria, mainly based on tumor macromorphology, such as size and number of HCC nodules. Against the background of a dramatic shortage of donor organs, however, simple expansion of tumor macromorphology may not be appropriate to create a safe extended criteria system. In contrast, rather the implementation of reliable prognostic parameters of tumor biology into selection process prior to LT is mandatory. Furthermore, a multidisciplinary approach of pre-, peri-, and posttransplant modulating of the tumor and/or the patient has to be established for improving prognosis in this special subset of patients. PMID:27335840

  5. En Bloc Resection of Primary Malignant Bone Tumor in the Cervical Spine Based on 3-Dimensional Printing Technology.

    Science.gov (United States)

    Xiao, Jian-Ru; Huang, Wen-Ding; Yang, Xing-Hai; Yan, Wang-Jun; Song, Dian-Wen; Wei, Hai-Feng; Liu, Tie-Long; Wu, Zhi-Peng; Yang, Cheng

    2016-05-01

    To investigate the feasibility and safety of en bloc resection of cervical primary malignant bone tumors by a combined anterior and posterior approach based on a three-dimensional (3-D) printing model. Five patients with primary malignant bone tumors of the cervical spine underwent en bloc resection via a one-stage combined anteroposterior approach in our hospital from March 2013 to June 2014. They comprised three men and two women of mean age 47.2 years (range, 26-67 years). Three of the tumors were chondrosarcomas and two chordomas. Preoperative 3-D printing models were created by 3-D printing technology. Sagittal en bloc resections were planned based on these models and successfully performed. A 360° reconstruction was performed by spinal instrumentation in all cases. Surgical margins, perioperative complications, local control rate and survival rate were assessed. All patients underwent en bloc excision via a combined posterior and anterior approach in one stage. Mean operative time and estimated blood loss were 465 minutes and 1290 mL, respectively. Mean follow-up was 21 months. Wide surgical margins were achieved in two patients and marginal resection in three; these three patients underwent postoperative adjuvant radiation therapy. One vertebral artery was ligated and sacrificed in each of three patients. Nerve root involved by tumor was sacrificed in three patients with preoperative upper extremity weakness. One patient (Case 3) had significant transient radiculopathy with paresis postoperatively. Another (Case 4) with C 4 and C 5 chordoma had respiratory difficulties and pneumonia after surgery postoperatively. He recovered completely after 2 weeks' management with a tracheotomy tube and antibiotics in the intensive care unit. No cerebrovascular complications and wound infection were observed. No local recurrence or instrumentation failure were detected during follow-up. Though technically challenging, it is feasible and safe to perform en

  6. Association of MYCN copy number with clinical features, tumor biology, and outcomes in neuroblastoma: A report from the Children's Oncology Group.

    Science.gov (United States)

    Campbell, Kevin; Gastier-Foster, Julie M; Mann, Meegan; Naranjo, Arlene H; Van Ryn, Collin; Bagatell, Rochelle; Matthay, Katherine K; London, Wendy B; Irwin, Meredith S; Shimada, Hiroyuki; Granger, M Meaghan; Hogarty, Michael D; Park, Julie R; DuBois, Steven G

    2017-11-01

    High-level MYCN amplification (MNA) is associated with poor outcome and unfavorable clinical and biological features in patients with neuroblastoma. To the authors' knowledge, less is known regarding these associations in patients with low-level MYCN copy number increases. In this retrospective study, the authors classified patients has having tumors with MYCN wild-type tumors, MYCN gain (2-4-fold increase in MYCN signal compared with the reference probe), or MNA (>4-fold increase). Tests of trend were used to investigate ordered associations between MYCN copy number category and features of interest. Log-rank tests and Cox models compared event-free survival and overall survival by subgroup. Among 4672 patients, 3694 (79.1%) had MYCN wild-type tumors, 133 (2.8%) had MYCN gain, and 845 (18.1%) had MNA. For each clinical/biological feature, the percentage of patients with an unfavorable feature was lowest in the MYCN wild-type category, intermediate in the MYCN gain category, and highest in the MNA category (PNeuroblastoma Staging System) and patients with non-high-risk disease with MYCN gain had a significantly increased risk for death, a finding confirmed on multivariable testing. Increasing MYCN copy number is associated with an increasingly higher rate of unfavorable clinical/biological features, with 11q aberration being an exception. Patients with MYCN gain appear to have inferior outcomes, especially in otherwise more favorable groups. Cancer 2017;123:4224-4235. © 2017 American Cancer Society. © 2017 American Cancer Society.

  7. Vesicular monoamine transporter protein expression correlates with clinical features, tumor biology, and MIBG avidity in neuroblastoma: a report from the Children's Oncology Group

    International Nuclear Information System (INIS)

    Temple, William; Mendelsohn, Lori; Nekritz, Erin; Gustafson, W.C.; Matthay, Katherine K.; Kim, Grace E.; Lin, Lawrence; Giacomini, Kathy; Naranjo, Arlene; Van Ryn, Collin; Yanik, Gregory A.; Kreissman, Susan G.; Hogarty, Michael; DuBois, Steven G.

    2016-01-01

    Vesicular monoamine transporters 1 and 2 (VMAT1 and VMAT2) are thought to mediate MIBG uptake in adult neuroendocrine tumors. In neuroblastoma, the norepinephrine transporter (NET) has been investigated as the principal MIBG uptake protein, though some tumors without NET expression concentrate MIBG. We investigated VMAT expression in neuroblastoma and correlated expression with MIBG uptake and clinical features. We evaluated VMAT1 and VMAT2 expression by immunohistochemistry (IHC) in neuroblastoma tumors from 76 patients with high-risk metastatic disease treated in a uniform cooperative group trial (COG A3973). All patients had baseline MIBG diagnostic scans centrally reviewed. IHC results were scored as the product of intensity grading (0 - 3+) and percent of tumor cells expressing the protein of interest. The association between VMAT1 and VMAT2 scores and clinical and biological features was tested using Wilcoxon rank-sum tests. Patient characteristics were typical of high-risk neuroblastoma, though the cohort was intentionally enriched in patients with MIBG-nonavid tumors (n = 20). VMAT1 and VMAT2 were expressed in 62 % and 75 % of neuroblastoma tumors, respectively. VMAT1 and VMAT2 scores were both significantly lower in MYCN amplified tumors and in tumors with high mitotic karyorrhectic index. MIBG-avid tumors had significantly higher VMAT2 scores than MIBG-nonavid tumors (median 216 vs. 45; p = 0.04). VMAT1 expression did not correlate with MIBG avidity. VMAT1 and VMAT2 are expressed in the majority of neuroblastomas. Expression correlates with other biological features. The expression level of VMAT2 but not that of VMAT1 correlates with avidity for MIBG. (orig.)

  8. Vesicular monoamine transporter protein expression correlates with clinical features, tumor biology, and MIBG avidity in neuroblastoma: a report from the Children's Oncology Group

    Energy Technology Data Exchange (ETDEWEB)

    Temple, William; Mendelsohn, Lori; Nekritz, Erin; Gustafson, W.C.; Matthay, Katherine K. [UCSF School of Medicine, Department of Pediatrics, San Francisco, CA (United States); UCSF Benioff Children' s Hospital, San Francisco, CA (United States); Kim, Grace E. [UCSF School of Medicine, Department of Pathology, San Francisco, CA (United States); Lin, Lawrence; Giacomini, Kathy [UCSF School of Pharmacy, Department of Bioengineering and Therapeutic Sciences, San Francisco, CA (United States); Naranjo, Arlene; Van Ryn, Collin [University of Florida, Children' s Oncology Group Statistics and Data Center, Gainesville, FL (United States); Yanik, Gregory A. [University of Michigan, CS Mott Children' s Hospital, Ann Arbor, MI (United States); Kreissman, Susan G. [Duke University Medical Center, Durham, NC (United States); Hogarty, Michael [University of Pennsylvania, Children' s Hospital of Philadelphia and Perelman School of Medicine, Philadelphia, PA (United States); DuBois, Steven G. [UCSF School of Medicine, Department of Pediatrics, San Francisco, CA (United States); UCSF Benioff Children' s Hospital, San Francisco, CA (United States); UCSF School of Medicine, San Francisco, CA (United States)

    2016-03-15

    Vesicular monoamine transporters 1 and 2 (VMAT1 and VMAT2) are thought to mediate MIBG uptake in adult neuroendocrine tumors. In neuroblastoma, the norepinephrine transporter (NET) has been investigated as the principal MIBG uptake protein, though some tumors without NET expression concentrate MIBG. We investigated VMAT expression in neuroblastoma and correlated expression with MIBG uptake and clinical features. We evaluated VMAT1 and VMAT2 expression by immunohistochemistry (IHC) in neuroblastoma tumors from 76 patients with high-risk metastatic disease treated in a uniform cooperative group trial (COG A3973). All patients had baseline MIBG diagnostic scans centrally reviewed. IHC results were scored as the product of intensity grading (0 - 3+) and percent of tumor cells expressing the protein of interest. The association between VMAT1 and VMAT2 scores and clinical and biological features was tested using Wilcoxon rank-sum tests. Patient characteristics were typical of high-risk neuroblastoma, though the cohort was intentionally enriched in patients with MIBG-nonavid tumors (n = 20). VMAT1 and VMAT2 were expressed in 62 % and 75 % of neuroblastoma tumors, respectively. VMAT1 and VMAT2 scores were both significantly lower in MYCN amplified tumors and in tumors with high mitotic karyorrhectic index. MIBG-avid tumors had significantly higher VMAT2 scores than MIBG-nonavid tumors (median 216 vs. 45; p = 0.04). VMAT1 expression did not correlate with MIBG avidity. VMAT1 and VMAT2 are expressed in the majority of neuroblastomas. Expression correlates with other biological features. The expression level of VMAT2 but not that of VMAT1 correlates with avidity for MIBG. (orig.)

  9. Seeing is believing: are cancer stem cells the Loch Ness monster of tumor biology?

    Science.gov (United States)

    Lathia, Justin D; Venere, Monica; Rao, Mahendra S; Rich, Jeremy N

    2011-06-01

    Tumors are complex systems with a diversity of cell phenotypes essential to tumor initiation and maintenance. With the heterogeneity present within the neoplastic compartment as its foundation, the cancer stem cell hypothesis posits that a fraction of tumor cells has the capacity to recapitulate the parental tumor upon transplantation. Over the last decade, the cancer stem cell hypothesis has gained support and shown to be relevant in many highly lethal solid tumors. However, the cancer stem cell hypothesis is not without its controversies and critics question the validity of this hypothesis based upon comparisons to normal somatic stem cells. Cancer stem cells may have direct therapeutic relevance due to resistance to current treatment paradigms, suggesting novel multimodal therapies targeting the cancer stem cells may improve patient outcomes. In this review, we will use the most common primary brain tumor, glioblastoma multiforme, as an example to illustrate why studying cancer stem cells holds great promise for more effective therapies to highly lethal tumors. In addition, we will discuss why the abilities of self-renewal and tumor propagation are the critical defining properties of cancer stem cells. Furthermore, we will examine recent progress in defining appropriate cell surface selection markers and mouse models which explore the potential cell(s) or origin for GBMs. What remains clear is that a population of cells is present in many tumors which are resistant to conventional therapies and must be considered in the design of the next generation of cancer treatments.

  10. Prognostic factors in breast phyllodes tumors: a nomogram based on a retrospective cohort study of 404 patients.

    Science.gov (United States)

    Zhou, Zhi-Rui; Wang, Chen-Chen; Sun, Xiang-Jie; Yang, Zhao-Zhi; Chen, Xing-Xing; Shao, Zhi-Ming; Yu, Xiao-Li; Guo, Xiao-Mao

    2018-04-01

    The aim of this study was to explore the independent prognostic factors related to postoperative recurrence-free survival (RFS) in patients with breast phyllodes tumors (PTBs). A retrospective analysis was conducted in Fudan University Shanghai Cancer Center. According to histological type, patients with benign PTBs were classified as a low-risk group, while borderline and malignant PTBs were classified as a high-risk group. The Cox regression model was adopted to identify factors affecting postoperative RFS in the two groups, and a nomogram was generated to predict recurrence-free survival at 1, 3, and 5 years. Among the 404 patients, 168 (41.6%) patients had benign PTB, 184 (45.5%) had borderline PTB, and 52 (12.9%) had malignant PTB. Fifty-five patients experienced postoperative local recurrence, including six benign cases, 26 borderline cases, and 22 malignant cases; the three histological types of PTB had local recurrence rates of 3.6%, 14.1%, and 42.3%, respectively. Stromal cell atypia was an independent prognostic factor for RFS in the low-risk group, while the surgical approach and tumor border were independent prognostic factors for RFS in the high-risk group, and patients receiving simple excision with an infiltrative tumor border had a higher recurrence rate. A nomogram developed based on clinicopathologic features and surgical approaches could predict recurrence-free survival at 1, 3, and 5 years. For high-risk patients, this predictive nomogram based on tumor border, tumor residue, mitotic activity, degree of stromal cell hyperplasia, and atypia can be applied for patient counseling and clinical management. The efficacy of adjuvant radiotherapy remains uncertain. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  11. A Bayesian network approach for modeling local failure in lung cancer

    International Nuclear Information System (INIS)

    Oh, Jung Hun; Craft, Jeffrey; Al Lozi, Rawan; Vaidya, Manushka; Meng, Yifan; Deasy, Joseph O; Bradley, Jeffrey D; El Naqa, Issam

    2011-01-01

    Locally advanced non-small cell lung cancer (NSCLC) patients suffer from a high local failure rate following radiotherapy. Despite many efforts to develop new dose-volume models for early detection of tumor local failure, there was no reported significant improvement in their application prospectively. Based on recent studies of biomarker proteins' role in hypoxia and inflammation in predicting tumor response to radiotherapy, we hypothesize that combining physical and biological factors with a suitable framework could improve the overall prediction. To test this hypothesis, we propose a graphical Bayesian network framework for predicting local failure in lung cancer. The proposed approach was tested using two different datasets of locally advanced NSCLC patients treated with radiotherapy. The first dataset was collected retrospectively, which comprises clinical and dosimetric variables only. The second dataset was collected prospectively in which in addition to clinical and dosimetric information, blood was drawn from the patients at various time points to extract candidate biomarkers as well. Our preliminary results show that the proposed method can be used as an efficient method to develop predictive models of local failure in these patients and to interpret relationships among the different variables in the models. We also demonstrate the potential use of heterogeneous physical and biological variables to improve the model prediction. With the first dataset, we achieved better performance compared with competing Bayesian-based classifiers. With the second dataset, the combined model had a slightly higher performance compared to individual physical and biological models, with the biological variables making the largest contribution. Our preliminary results highlight the potential of the proposed integrated approach for predicting post-radiotherapy local failure in NSCLC patients.

  12. Split and Splice Approach for Highly Selective Targeting of Human NSCLC Tumors

    Science.gov (United States)

    2014-10-01

    development and implementation of the “split-and- spice ” approach required optimization of many independent parameters, which were addressed in parallel...verify the feasibility of the “split and splice” approach for targeting human NSCLC tumor cell lines in culture and prepare the optimized toxins for...for cultured cells (months 2- 8). 2B. To test the efficiency of cell targeting by the toxin variants reconstituted in vitro (months 3-6). 2C. To

  13. Dendritic cell-based vaccines for the therapy of experimental tumors

    Czech Academy of Sciences Publication Activity Database

    Piasecka, E.P.; Indrová, Marie

    2010-01-01

    Roč. 2, č. 2 (2010), s. 257-268 ISSN 1750-743X R&D Projects: GA AV ČR IAA500520807; GA ČR GA301/09/1024; GA MZd NS10660 Grant - others:Polish Ministry of Science and Higher Education(PL) NN401235334 Institutional research plan: CEZ:AV0Z50520514 Keywords : dendritic cells * preparation of vaccines * experimental tumors Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.542, year: 2010

  14. Origins and molecular biology of testicular germ cell tumors.

    Science.gov (United States)

    Reuter, Victor E

    2005-02-01

    Testicular germ cell tumors can be divided into three groups (infantile/prepubertal, adolescent/young adult and spermatocytic seminoma), each with its own constellation of clinical histology, molecular and clinical features. They originate from germ cells at different stages of development. The most common testicular cancers arise in postpubertal men and are characterized genetically by having one or more copies of an isochromosome of the short arm of chromosome 12 [i(12p)] or other forms of 12p amplification and by aneuploidy. The consistent gain of genetic material from chromosome 12 seen in these tumors suggests that it has a crucial role in their development. Intratubular germ cell neoplasia, unclassified type (IGCNU) is the precursor to these invasive tumors. Several factors have been associated with their pathogenesis, including cryptorchidism, elevated estrogens in utero and gonadal dysgenesis. Tumors arising in prepubertal gonads are either teratomas or yolk sac tumors, tend to be diploid and are not associated with i(12p) or with IGCNU. Spermatocytic seminoma (SS) arises in older patients. These benign tumors may be either diploid or aneuploid and have losses of chromosome 9 rather than i(12p). Intratubular SS is commonly encountered but IGCNU is not. The pathogenesis of prepubertal GCT and SS is poorly understood.

  15. Comparison between two meshless methods based on collocation technique for the numerical solution of four-species tumor growth model

    Science.gov (United States)

    Dehghan, Mehdi; Mohammadi, Vahid

    2017-03-01

    As is said in [27], the tumor-growth model is the incorporation of nutrient within the mixture as opposed to being modeled with an auxiliary reaction-diffusion equation. The formulation involves systems of highly nonlinear partial differential equations of surface effects through diffuse-interface models [27]. Simulations of this practical model using numerical methods can be applied for evaluating it. The present paper investigates the solution of the tumor growth model with meshless techniques. Meshless methods are applied based on the collocation technique which employ multiquadrics (MQ) radial basis function (RBFs) and generalized moving least squares (GMLS) procedures. The main advantages of these choices come back to the natural behavior of meshless approaches. As well as, a method based on meshless approach can be applied easily for finding the solution of partial differential equations in high-dimension using any distributions of points on regular and irregular domains. The present paper involves a time-dependent system of partial differential equations that describes four-species tumor growth model. To overcome the time variable, two procedures will be used. One of them is a semi-implicit finite difference method based on Crank-Nicolson scheme and another one is based on explicit Runge-Kutta time integration. The first case gives a linear system of algebraic equations which will be solved at each time-step. The second case will be efficient but conditionally stable. The obtained numerical results are reported to confirm the ability of these techniques for solving the two and three-dimensional tumor-growth equations.

  16. TRAIL-induced programmed necrosis as a novel approach to eliminate tumor cells

    International Nuclear Information System (INIS)

    Voigt, Susann; Kalthoff, Holger; Adam, Dieter; Philipp, Stephan; Davarnia, Parvin; Winoto-Morbach, Supandi; Röder, Christian; Arenz, Christoph; Trauzold, Anna; Kabelitz, Dieter; Schütze, Stefan

    2014-01-01

    The cytokine TRAIL represents one of the most promising candidates for the apoptotic elimination of tumor cells, either alone or in combination therapies. However, its efficacy is often limited by intrinsic or acquired resistance of tumor cells to apoptosis. Programmed necrosis is an alternative, molecularly distinct mode of programmed cell death that is elicited by TRAIL under conditions when the classical apoptosis machinery fails or is actively inhibited. The potential of TRAIL-induced programmed necrosis in tumor therapy is, however, almost completely uncharacterized. We therefore investigated its impact on a panel of tumor cell lines of wide-ranging origin. Cell death/viability was measured by flow cytometry/determination of intracellular ATP levels/crystal violet staining. Cell surface expression of TRAIL receptors was detected by flow cytometry, expression of proteins by Western blot. Ceramide levels were quantified by high-performance thin layer chromatography and densitometric analysis, clonogenic survival of cells was determined by crystal violet staining or by soft agarose cloning. TRAIL-induced programmed necrosis killed eight out of 14 tumor cell lines. Clonogenic survival was reduced in all sensitive and even one resistant cell lines tested. TRAIL synergized with chemotherapeutics in killing tumor cell lines by programmed necrosis, enhancing their effect in eight out of 10 tested tumor cell lines and in 41 out of 80 chemotherapeutic/TRAIL combinations. Susceptibility/resistance of the investigated tumor cell lines to programmed necrosis seems to primarily depend on expression of the pro-necrotic kinase RIPK3 rather than the related kinase RIPK1 or cell surface expression of TRAIL receptors. Furthermore, interference with production of the lipid ceramide protected all tested tumor cell lines. Our study provides evidence that TRAIL-induced programmed necrosis represents a feasible approach for the elimination of tumor cells, and that this treatment may

  17. Transcriptome sequencing in prostate cancer identifies inter-tumor heterogeneity

    Directory of Open Access Journals (Sweden)

    Janet Mendonca

    2015-06-01

    Full Text Available Given the dearth of gene mutations in prostate cancer, [1] ,[2] it is likely that genomic rearrangements play a significant role in the evolution of prostate cancer. However, in the search for recurrent genomic alterations, "private alterations" have received less attention. Such alterations may provide insights into the evolution, behavior, and clinical outcome of an individual tumor. In a recent report in "Genome Biology" Wyatt et al. [3] defines unique alterations in a cohort of high-risk prostate cancer patient with a lethal phenotype. Utilizing a transcriptome sequencing approach they observe high inter-tumor heterogeneity; however, the genes altered distill into three distinct cancer-relevant pathways. Their analysis reveals the presence of several non-ETS fusions, which may contribute to the phenotype of individual tumors, and have significance for disease progression.

  18. Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality

    International Nuclear Information System (INIS)

    Ling, C. Clifton; Humm, John; Larson, Steven; Amols, Howard; Fuks, Zvi; Leibel, Steven; Koutcher, Jason A.

    2000-01-01

    Purpose: The goals of this study were to survey and summarize the advances in imaging that have potential applications in radiation oncology, and to explore the concept of integrating physical and biological conformality in multidimensional conformal radiotherapy (MD-CRT). Methods and Materials: The advances in three-dimensional conformal radiotherapy (3D-CRT) have greatly improved the physical conformality of treatment planning and delivery. The development of intensity-modulated radiotherapy (IMRT) has provided the 'dose painting' or 'dose sculpting' ability to further customize the delivered dose distribution. The improved capabilities of nuclear magnetic resonance imaging and spectroscopy, and of positron emission tomography, are beginning to provide physiological and functional information about the tumor and its surroundings. In addition, molecular imaging promises to reveal tumor biology at the genotype and phenotype level. These developments converge to provide significant opportunities for enhancing the success of radiotherapy. Results: The ability of IMRT to deliver nonuniform dose patterns by design brings to fore the question of how to 'dose paint' and 'dose sculpt', leading to the suggestion that 'biological' images may be of assistance. In contrast to the conventional radiological images that primarily provide anatomical information, biological images reveal metabolic, functional, physiological, genotypic, and phenotypic data. Important for radiotherapy, the new and noninvasive imaging methods may yield three-dimensional radiobiological information. Studies are urgently needed to identify genotypes and phenotypes that affect radiosensitivity, and to devise methods to image them noninvasively. Incremental to the concept of gross, clinical, and planning target volumes (GTV, CTV, and PTV), we propose the concept of 'biological target volume' (BTV) and hypothesize that BTV can be derived from biological images and that their use may incrementally improve

  19. The impact of breast cancer biological subtyping on tumor size assessment by ultrasound and mammography - a retrospective multicenter cohort study of 6543 primary breast cancer patients

    International Nuclear Information System (INIS)

    Stein, Roland Gregor; Wollschläger, Daniel; Kreienberg, Rolf; Janni, Wolfgang; Wischnewsky, Manfred; Diessner, Joachim; Stüber, Tanja; Bartmann, Catharina; Krockenberger, Mathias; Wischhusen, Jörg; Wöckel, Achim; Blettner, Maria; Schwentner, Lukas

    2016-01-01

    Mammography and ultrasound are the gold standard imaging techniques for preoperative assessment and for monitoring the efficacy of neoadjuvant chemotherapy in breast cancer. Maximum accuracy in predicting pathological tumor size non-invasively is critical for individualized therapy and surgical planning. We therefore aimed to assess the accuracy of tumor size measurement by ultrasound and mammography in a multicentered health services research study. We retrospectively analyzed data from 6543 patients with unifocal, unilateral primary breast cancer. The maximum tumor diameter was measured by ultrasound and/or mammographic imaging. All measurements were compared to final tumor diameter determined by postoperative histopathological examination. We compared the precision of each imaging method across different patient subgroups as well as the method-specific accuracy in each patient subgroup. Overall, the correlation with histology was 0.61 for mammography and 0.60 for ultrasound. Both correlations were higher in pT2 cancers than in pT1 and pT3. Ultrasound as well as mammography revealed a significantly higher correlation with histology in invasive ductal compared to lobular cancers (p < 0.01). For invasive lobular cancers, the mammography showed better correlation with histology than ultrasound (p = 0.01), whereas there was no such advantage for invasive ductal cancers. Ultrasound was significantly superior for HR negative cancers (p < 0.001). HER2/neu positive cancers were also more precisely assessed by ultrasound (p < 0.001). The size of HER2/neu negative cancers could be more accurately predicted by mammography (p < 0.001). This multicentered health services research approach demonstrates that predicting tumor size by mammography and ultrasound provides accurate results. Biological tumor features do, however, affect the diagnostic precision

  20. A microbiology-based multi-parametric approach towards assessing biological stability in drinking water distribution networks

    KAUST Repository

    Lautenschlä ger, Karin; Hwang, Chiachi; Liu, Wentso; Boon, Nico; Kö ster, Oliver; Vrouwenvelder, Johannes S.; Egli, Thomas; Hammes, Frederik A.

    2013-01-01

    Biological stability of drinking water implies that the concentration of bacterial cells and composition of the microbial community should not change during distribution. In this study, we used a multi-parametric approach that encompasses different aspects of microbial water quality including microbial growth potential, microbial abundance, and microbial community composition, to monitor biological stability in drinking water of the non-chlorinated distribution system of Zürich. Drinking water was collected directly after treatment from the reservoir and in the network at several locations with varied average hydraulic retention times (6-52h) over a period of four months, with a single repetition two years later. Total cell concentrations (TCC) measured with flow cytometry remained remarkably stable at 9.5 (±0.6)×104cells/ml from water in the reservoir throughout most of the distribution network, and during the whole time period. Conventional microbial methods like heterotrophic plate counts, the concentration of adenosine tri-phosphate, total organic carbon and assimilable organic carbon remained also constant. Samples taken two years apart showed more than 80% similarity for the microbial communities analysed with denaturing gradient gel electrophoresis and 454 pyrosequencing. Only the two sampling locations with the longest water retention times were the exceptions and, sofar for unknown reasons, recorded a slight but significantly higher TCC (1.3(±0.1)×105cells/ml) compared to the other locations. This small change in microbial abundance detected by flow cytometry was also clearly observed in a shift in the microbial community profiles to a higher abundance of members from the Comamonadaceae (60% vs. 2% at other locations). Conventional microbial detection methods were not able to detect changes as observed with flow cytometric cell counts and microbial community analysis. Our findings demonstrate that the multi-parametric approach used provides a powerful

  1. A microbiology-based multi-parametric approach towards assessing biological stability in drinking water distribution networks.

    Science.gov (United States)

    Lautenschlager, Karin; Hwang, Chiachi; Liu, Wen-Tso; Boon, Nico; Köster, Oliver; Vrouwenvelder, Hans; Egli, Thomas; Hammes, Frederik

    2013-06-01

    Biological stability of drinking water implies that the concentration of bacterial cells and composition of the microbial community should not change during distribution. In this study, we used a multi-parametric approach that encompasses different aspects of microbial water quality including microbial growth potential, microbial abundance, and microbial community composition, to monitor biological stability in drinking water of the non-chlorinated distribution system of Zürich. Drinking water was collected directly after treatment from the reservoir and in the network at several locations with varied average hydraulic retention times (6-52 h) over a period of four months, with a single repetition two years later. Total cell concentrations (TCC) measured with flow cytometry remained remarkably stable at 9.5 (± 0.6) × 10(4) cells/ml from water in the reservoir throughout most of the distribution network, and during the whole time period. Conventional microbial methods like heterotrophic plate counts, the concentration of adenosine tri-phosphate, total organic carbon and assimilable organic carbon remained also constant. Samples taken two years apart showed more than 80% similarity for the microbial communities analysed with denaturing gradient gel electrophoresis and 454 pyrosequencing. Only the two sampling locations with the longest water retention times were the exceptions and, so far for unknown reasons, recorded a slight but significantly higher TCC (1.3 (± 0.1) × 10(5) cells/ml) compared to the other locations. This small change in microbial abundance detected by flow cytometry was also clearly observed in a shift in the microbial community profiles to a higher abundance of members from the Comamonadaceae (60% vs. 2% at other locations). Conventional microbial detection methods were not able to detect changes as observed with flow cytometric cell counts and microbial community analysis. Our findings demonstrate that the multi-parametric approach used

  2. A microbiology-based multi-parametric approach towards assessing biological stability in drinking water distribution networks

    KAUST Repository

    Lautenschläger, Karin

    2013-06-01

    Biological stability of drinking water implies that the concentration of bacterial cells and composition of the microbial community should not change during distribution. In this study, we used a multi-parametric approach that encompasses different aspects of microbial water quality including microbial growth potential, microbial abundance, and microbial community composition, to monitor biological stability in drinking water of the non-chlorinated distribution system of Zürich. Drinking water was collected directly after treatment from the reservoir and in the network at several locations with varied average hydraulic retention times (6-52h) over a period of four months, with a single repetition two years later. Total cell concentrations (TCC) measured with flow cytometry remained remarkably stable at 9.5 (±0.6)×104cells/ml from water in the reservoir throughout most of the distribution network, and during the whole time period. Conventional microbial methods like heterotrophic plate counts, the concentration of adenosine tri-phosphate, total organic carbon and assimilable organic carbon remained also constant. Samples taken two years apart showed more than 80% similarity for the microbial communities analysed with denaturing gradient gel electrophoresis and 454 pyrosequencing. Only the two sampling locations with the longest water retention times were the exceptions and, sofar for unknown reasons, recorded a slight but significantly higher TCC (1.3(±0.1)×105cells/ml) compared to the other locations. This small change in microbial abundance detected by flow cytometry was also clearly observed in a shift in the microbial community profiles to a higher abundance of members from the Comamonadaceae (60% vs. 2% at other locations). Conventional microbial detection methods were not able to detect changes as observed with flow cytometric cell counts and microbial community analysis. Our findings demonstrate that the multi-parametric approach used provides a powerful

  3. Microsurgery Resection of Intrinsic Insular Tumors via Transsylvian Surgical Approach in 12 Cases

    International Nuclear Information System (INIS)

    Wang, Peng; Wu, Ming-can; Chen, Shi-jie; Xu, Xian-ping; Yang, Yong; Cai, Jie

    2012-01-01

    To investigate the clinical characteristics, operative methods, and diffusion tensor imaging (DTI) in the resection of intrinsic insular gliomas via transsylvian approach. From June 2008 to June 2010, 12 patients with intrinsic insular gliomas were treated via transsylvian microsurgical approach, with preoperative magnetic resonance imaging diffusion tensor imaging (MR DTI) evaluation. The data of these patients were retrospectively analyzed. All patients had astrocytoma, including 8 patients of Grades I to II, 2 patients of Grades III to IV, and 2 patients of mixed glial tumors. The insular tumors were completely removed in 9 patients, whereas they were only partially removed from 3 patients. No death was related to the operations. Two patients had transient aphasia, 2 experienced worsened hemiplegia on opposite sides of their bodies, and 2 had mild hemiplegia and language function disturbance. Most of the insular gliomas are of low grade. By evaluating the damage of the corticospinal tract through DTI and using ultrasonography to locate the tumors during operation, microsurgery treatment removes the lesions as much as possible, protects the surrounding areas, reduces the mobility rate, and improves the postoperative quality of life

  4. A novel gene therapy-based approach that selectively targets hypoxic regions within solid tumors

    International Nuclear Information System (INIS)

    Dougherty, S.T.; Dougherty, G.J.; Davis, P.D.

    2003-01-01

    There is compelling evidence that malignant cells present within the hypoxic regions that are commonly found within solid tumors contribute significantly to local recurrence following radiation therapy. We describe now a novel strategy designed to target such cells that exploits the differential production within hypoxic regions of the pro-angiogenic cytokine vascular endothelial cell growth factor (VEGF). Specifically, we have generated cDNA constructs that encode two distinct chimeric cell surface proteins that incorporate, respectively, the extracellular domains of the VEGF receptors Flk-1 or Flt-1, fused in frame to the membrane spanning and cytoplasmic domains of the pro-apoptotic protein Fas. Both chimeric proteins (Flk/Fas and Flt/Fas) appear stable and can be readily detected on the surface of transfected cells by Western blot and/or FACS analysis. Importantly, tumor cells expressing the chimeric proteins were rapidly killed in a dose-dependent fashion upon the addition of exogenous recombinant VEGF. Adenoviral vectors encoding Flk/Fas have been generated and shown to induce tumor cells to undergo apoptosis upon transfer to hypoxic conditions in vitro. This activity is dependent upon the endogenous production of VEGF. Studies are currently underway to test the ability of adenoviral Flk/Fas (Ad.Flk/Fas) to reduce tumor recurrence in vivo when used as an adjuvant therapy in conjunction with clinically relevant doses of ionizing radiation

  5. Biologically inspired control of humanoid robot arms robust and adaptive approaches

    CERN Document Server

    Spiers, Adam; Herrmann, Guido

    2016-01-01

    This book investigates a biologically inspired method of robot arm control, developed with the objective of synthesising human-like motion dynamically, using nonlinear, robust and adaptive control techniques in practical robot systems. The control method caters to a rising interest in humanoid robots and the need for appropriate control schemes to match these systems. Unlike the classic kinematic schemes used in industrial manipulators, the dynamic approaches proposed here promote human-like motion with better exploitation of the robot’s physical structure. This also benefits human-robot interaction. The control schemes proposed in this book are inspired by a wealth of human-motion literature that indicates the drivers of motion to be dynamic, model-based and optimal. Such considerations lend themselves nicely to achievement via nonlinear control techniques without the necessity for extensive and complex biological models. The operational-space method of robot control forms the basis of many of the techniqu...

  6. mRNA-based vaccines synergize with radiation therapy to eradicate established tumors

    International Nuclear Information System (INIS)

    Fotin-Mleczek, Mariola; Zanzinger, Kai; Heidenreich, Regina; Lorenz, Christina; Kowalczyk, Aleksandra; Kallen, Karl-Josef; Huber, Stephan M

    2014-01-01

    The eradication of large, established tumors by active immunotherapy is a major challenge because of the numerous cancer evasion mechanisms that exist. This study aimed to establish a novel combination therapy consisting of messenger RNA (mRNA)-based cancer vaccines and radiation, which would facilitate the effective treatment of established tumors with aggressive growth kinetics. The combination of a tumor-specific mRNA-based vaccination with radiation was tested in two syngeneic tumor models, a highly immunogenic E.G7-OVA and a low immunogenic Lewis lung cancer (LLC). The molecular mechanism induced by the combination therapy was evaluated via gene expression arrays as well as flow cytometry analyses of tumor infiltrating cells. In both tumor models we demonstrated that a combination of mRNA-based immunotherapy with radiation results in a strong synergistic anti-tumor effect. This was manifested as either complete tumor eradication or delay in tumor growth. Gene expression analysis of mouse tumors revealed a variety of substantial changes at the tumor site following radiation. Genes associated with antigen presentation, infiltration of immune cells, adhesion, and activation of the innate immune system were upregulated. A combination of radiation and immunotherapy induced significant downregulation of tumor associated factors and upregulation of tumor suppressors. Moreover, combination therapy significantly increased CD4 + , CD8 + and NKT cell infiltration of mouse tumors. Our data provide a scientific rationale for combining immunotherapy with radiation and provide a basis for the development of more potent anti-cancer therapies. The online version of this article (doi:10.1186/1748-717X-9-180) contains supplementary material, which is available to authorized users

  7. Comparison of continuous versus categorical tumor measurement-based metrics to predict overall survival in cancer treatment trials

    Science.gov (United States)

    An, Ming-Wen; Mandrekar, Sumithra J.; Branda, Megan E.; Hillman, Shauna L.; Adjei, Alex A.; Pitot, Henry; Goldberg, Richard M.; Sargent, Daniel J.

    2011-01-01

    Purpose The categorical definition of response assessed via the Response Evaluation Criteria in Solid Tumors has documented limitations. We sought to identify alternative metrics for tumor response that improve prediction of overall survival. Experimental Design Individual patient data from three North Central Cancer Treatment Group trials (N0026, n=117; N9741, n=1109; N9841, n=332) were used. Continuous metrics of tumor size based on longitudinal tumor measurements were considered in addition to a trichotomized response (TriTR: Response vs. Stable vs. Progression). Cox proportional hazards models, adjusted for treatment arm and baseline tumor burden, were used to assess the impact of the metrics on subsequent overall survival, using a landmark analysis approach at 12-, 16- and 24-weeks post baseline. Model discrimination was evaluated using the concordance (c) index. Results The overall best response rates for the three trials were 26%, 45%, and 25% respectively. While nearly all metrics were statistically significantly associated with overall survival at the different landmark time points, the c-indices for the traditional response metrics ranged from 0.59-0.65; for the continuous metrics from 0.60-0.66 and for the TriTR metrics from 0.64-0.69. The c-indices for TriTR at 12-weeks were comparable to those at 16- and 24-weeks. Conclusions Continuous tumor-measurement-based metrics provided no predictive improvement over traditional response based metrics or TriTR; TriTR had better predictive ability than best TriTR or confirmed response. If confirmed, TriTR represents a promising endpoint for future Phase II trials. PMID:21880789

  8. The results of gamma knife radiosurgery for malignant skull base tumors

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Takayuki; Kobayashi, Tatsuya; Kida, Yoshihisa; Oyama, Hirofumi; Niwa, Masahiro [Komaki City Hospital, Aichi (Japan)

    1996-03-01

    The results of gamma knife radiosurgery for malignant skull base tumors were analyzed using repeated magnetic resonance imagings and neurological examinations. Nineteen malignant skull base tumors were treated and followed up for 22.3 months (5-40 months) using MR imagings. The mean age was 54.4 years old (ranging from 16-85). Ten were male and 9 were female. Prior to the radiosurgery, removal of the tumors in 17 cases, conventional radiation therapy in 7, and chemotherapy in 4 etc. were performed. The pathological diagnoses were chordoma in 6 patients, metastatic tumors in 5, epipharyngeal carcinoma in 2, adenoid cystic carcinoma in 2, and others in 4. The locations of tumors were clivus in 8, parasellar region in 5, epipharynx in 2, paranasal sinus in 2, C-P angle in 1, and intraorbital region in 1 (14 intracranial and 5 extracranial). The mean diameter of the tumor was 33.5 mm. The mean maximum dose was 26.8 Gy and the mean marginal dose was 12.9 Gy during treatment. Repeated MR imagings revealed decrease of tumor size in 12 cases, showing no change in 1, and increase of tumor size in 5 (unknown in 1). Follow-up neurological examinations showed improvement in 3 patients, no change in 9, and deterioration in 7. There were 11 deaths during a mean follow-up period of 17.8 months (5-32 months) and another 8 cases are alive for a mean follow-up of 30.5 months (20-40 months) after the radiosurgery. Although the tumor size was large at the time of treatment, the results of gamma knife radiosurgery were promising. Considering the quality of life of patients with malignant skull base tumors, it is emphasized that gamma knife treatment is the method of choice compared with radical removal of the tumors. (author).

  9. Surgical experience with skull base approaches for foramen magnum meningioma.

    Science.gov (United States)

    Marin Sanabria, Elio Arnaldo; Ehara, Kazumasa; Tamaki, Norihiko

    2002-11-01

    The surgical treatment of patients with foramen magnum meningioma remains challenging. This study evaluated the outcome of this tumor according to the evolution of surgical approaches during the last 29 years. A retrospective analysis of medical records, operative notes, and neuroimages of 492 meningioma cases from 1972 to 2001 identified seven cases of foramen magnum meningioma (1.4%). All patients showed various neurological symptoms corresponding with foramen magnum syndrome. The tumor locations were anterior in five cases and posterior in two. Surgical removal was performed through a transoral approach in one patient, the suboccipital approach in three, and the transcondylar approach in two. Total removal was achieved in all patients, except for one who refused any surgical treatment. The major complications were tetraparesis and lower cranial nerve paresis for tumors in anterior locations, and minor complications for posterior locations. One patient died of atelectasis and pneumonia after a long hospitalization. The transcondylar approach is recommended for anterior locations, and the standard suboccipital approach for posterior locations.

  10. Improving the accuracy of brain tumor surgery via Raman-based technology.

    Science.gov (United States)

    Hollon, Todd; Lewis, Spencer; Freudiger, Christian W; Sunney Xie, X; Orringer, Daniel A

    2016-03-01

    Despite advances in the surgical management of brain tumors, achieving optimal surgical results and identification of tumor remains a challenge. Raman spectroscopy, a laser-based technique that can be used to nondestructively differentiate molecules based on the inelastic scattering of light, is being applied toward improving the accuracy of brain tumor surgery. Here, the authors systematically review the application of Raman spectroscopy for guidance during brain tumor surgery. Raman spectroscopy can differentiate normal brain from necrotic and vital glioma tissue in human specimens based on chemical differences, and has recently been shown to differentiate tumor-infiltrated tissues from noninfiltrated tissues during surgery. Raman spectroscopy also forms the basis for coherent Raman scattering (CRS) microscopy, a technique that amplifies spontaneous Raman signals by 10,000-fold, enabling real-time histological imaging without the need for tissue processing, sectioning, or staining. The authors review the relevant basic and translational studies on CRS microscopy as a means of providing real-time intraoperative guidance. Recent studies have demonstrated how CRS can be used to differentiate tumor-infiltrated tissues from noninfiltrated tissues and that it has excellent agreement with traditional histology. Under simulated operative conditions, CRS has been shown to identify tumor margins that would be undetectable using standard bright-field microscopy. In addition, CRS microscopy has been shown to detect tumor in human surgical specimens with near-perfect agreement to standard H & E microscopy. The authors suggest that as the intraoperative application and instrumentation for Raman spectroscopy and imaging matures, it will become an essential component in the neurosurgical armamentarium for identifying residual tumor and improving the surgical management of brain tumors.

  11. Synthesis and biological evaluation of ¹⁸F-labeled fluoropropyl tryptophan analogs as potential PET probes for tumor imaging.

    Science.gov (United States)

    Chiotellis, Aristeidis; Mu, Linjing; Müller, Adrienne; Selivanova, Svetlana V; Keller, Claudia; Schibli, Roger; Krämer, Stefanie D; Ametamey, Simon M

    2013-01-01

    In the search for an efficient, fluorine-18 labeled amino acid based radiotracer for tumor imaging with positron emission tomography (PET), two new tryptophan analogs were synthesized and characterized in vitro and in vivo. Both are tryptophan alkyl-derivatives, namely 2-(3-[(18)F]fluoropropyl)-DL-tryptophan ([(18)F]2-FPTRP) and 5-(3-[(18)F]fluoro-propyl)-DL-tryptophan ([(18)F]5-FPTRP). Standard reference compounds and precursors were prepared by multi step approaches. Radiosynthesis was achieved by no-carrier-added nucleophilic [(18)F]fluorination in 29-34% decay corrected yields with radiochemical purity over 99%. In vitro cell uptake assays showed that both compounds are substrates for amino acid transport and enter small cell lung cancer cells (NCI-H69) most probably almost exclusively via large neutral amino acids transporter(s) (LAT). Small animal PET imaging with xenograft bearing mice revealed high tumor/background ratios for [(18)F]2-FPTRP comparable to the well established tyrosine analog O-(2-[(18)F]fluroethyl)-L-tyrosine ([(18)F]FET). Radiometabolite studies showed no evidence of involvement of a biotransformation step in tumor accumulation. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  12. Percutaneous vertebroplasty via anterolateral approach for the treatment of C4 to C7 vertebral tumor

    International Nuclear Information System (INIS)

    Wu Chungen; Cheng Yongde; Gu Yifeng; Zhang Ji; Wang Tao; Li Minghua; Apitzsch, D.E.

    2009-01-01

    Objective To investigate the feasibility and clinical efficacy of percutaneous vertebroplasty via anterolateral approach in treating the middle and lower cervical (C4-C7) vertebral tumor. Methods: During the past four years, percutaneous vertebroplasty via anterolateral approach was performed in 16 patients with middle or lower cervical tumor, including metastases (n=12), myeloma (n=3) and eosinophilic granuloma (n=1). Under fluoroscopic guidance, needle puncture was operated via the anterolateral approach, bone cement was injected into the target cervical body when the needle was in place. A follow-up of three months was made. Results: Twenty-one cervical bodies in the range of C4 to C7 were successfully punctured and injected with bone cement. Marked pain relief was obtained in all 16 patients. The average score of visual analogue scale (VAS) was dramatically decreased from 7 before the procedure to 1.7 after the procedure. The cervical motor function returned to good condition. Conclusion: Percutaneous vertebroplasty via anterolateral approach is a safe, effective and minimally-invasive technique in treating the middle and lower cervical (C4-C7) vertebral tumor. (authors)

  13. Targeting Multiple Tumors Using T-Cells Engineered to Express a Natural Cytotoxicity Receptor 2-Based Chimeric Receptor

    Directory of Open Access Journals (Sweden)

    Vasyl Eisenberg

    2017-09-01

    Full Text Available Recent developments in cancer treatment are demonstrating the increasing and powerful potential of immunotherapeutic strategies. In this regard, the adoptive transfer of tumor-specific T-lymphocytes approaches can lead to tumor regression in cancer patients. More recently, the use of T-cells genetically engineered to express cancer-specific receptors such as the anti-CD19 chimeric antigen receptor (CAR continues to show promise for the treatment of hematological malignancies. Still, there is a crucial need to develop efficient CAR-T cell approaches for the treatment of solid tumors. It has been shown that other lymphocytes such as natural killer (NK cells can demonstrate potent antitumor function—nonetheless, their use in immunotherapy is rather limited due to difficulties in expanding these cells to therapeutically relevant numbers and to suppression by endogenous inhibitory mechanisms. Cancer recognition by NK cells is partly mediated by molecules termed natural cytotoxicity receptors (NCRs. In the present study, we hypothesize that it is possible to endow T-cells with an NK recognition pattern, providing them with a mean to recognize tumor cells, in a non-MHC restricted way. To test this, we genetically modified human T-cells with different chimeric receptors based on the human NCR2 molecule and then assessed their antitumor activity in vitro and in vivo. Our results show that expression in primary lymphocytes of an NCR2-derived CAR, termed s4428z, confers T-cells with the ability to specifically recognize heterogeneous tumors and to mediate tumor cytotoxicity in a mouse model. This study demonstrates the benefit of combining tumor recognition capability of NK cells with T cell effectiveness to improve cancer immunotherapy.

  14. Two Project-Based Strategies in an Interdisciplinary Mathematical Modeling in Biology Course

    Science.gov (United States)

    Ludwig, Patrice; Tongen, Anthony; Walton, Brian

    2018-01-01

    James Madison University faculty team-teach an interdisciplinary mathematical modeling course for mathematics and biology students. We have used two different project-based approaches to emphasize the mathematical concepts taught in class, while also exposing students to new areas of mathematics not formally covered in class. The first method…

  15. Promising novel therapeutic approaches in the management of gastrointestinal stromal tumors.

    Science.gov (United States)

    Szucs, Zoltan; Thway, Khin; Fisher, Cyril; Bulusu, Ramesh; Constantinidou, Anastasia; Benson, Charlotte; van der Graaf, Winette Ta; Jones, Robin L

    2017-01-01

    Primary and secondary resistance to currently available licensed tyrosine kinase inhibitors poses a real clinical challenge in the management of advanced gastrointestinal stromal tumors. Within the frame of early phase clinical trials novel systemic treatments are currently being evaluated to target both the well explored and novel emerging downstream effectors of KIT and PDGFRA signaling. Alternative therapeutic approaches also include exploring novel inhibitors of the KIT/PDGFRA receptors, immune checkpoint and cyclin-dependent kinase inhibitors. The final clinical trial outcome data for these agents are highly anticipated. Integration of new diagnostic techniques into routine clinical practice can potentially guide tailored delivery of agents in the treatment of a highly polyclonal, heterogeneous disease such as heavily pretreated advanced gastrointestinal stromal tumor.

  16. A hybrid approach for fusing 4D-MRI temporal information with 3D-CT for the study of lung and lung tumor motion.

    Science.gov (United States)

    Yang, Y X; Teo, S-K; Van Reeth, E; Tan, C H; Tham, I W K; Poh, C L

    2015-08-01

    Accurate visualization of lung motion is important in many clinical applications, such as radiotherapy of lung cancer. Advancement in imaging modalities [e.g., computed tomography (CT) and MRI] has allowed dynamic imaging of lung and lung tumor motion. However, each imaging modality has its advantages and disadvantages. The study presented in this paper aims at generating synthetic 4D-CT dataset for lung cancer patients by combining both continuous three-dimensional (3D) motion captured by 4D-MRI and the high spatial resolution captured by CT using the authors' proposed approach. A novel hybrid approach based on deformable image registration (DIR) and finite element method simulation was developed to fuse a static 3D-CT volume (acquired under breath-hold) and the 3D motion information extracted from 4D-MRI dataset, creating a synthetic 4D-CT dataset. The study focuses on imaging of lung and lung tumor. Comparing the synthetic 4D-CT dataset with the acquired 4D-CT dataset of six lung cancer patients based on 420 landmarks, accurate results (average error lung details, and is able to show movement of lung and lung tumor over multiple breathing cycles.

  17. Parallel evolution of tumor subclones mimics diversity between tumors

    DEFF Research Database (Denmark)

    Martinez, Pierre; Birkbak, Nicolai Juul; Gerlinger, Marco

    2013-01-01

    Intratumor heterogeneity (ITH) may foster tumor adaptation and compromise the efficacy of personalized medicines approaches. The scale of heterogeneity within a tumor (intratumor heterogeneity) relative to genetic differences between tumors (intertumor heterogeneity) is unknown. To address this, ...

  18. Isolation of Circulating Tumor Cells by Dielectrophoresis

    Directory of Open Access Journals (Sweden)

    Peter R. C. Gascoyne

    2014-03-01

    Full Text Available Dielectrophoresis (DEP is an electrokinetic method that allows intrinsic dielectric properties of suspended cells to be exploited for discrimination and separation. It has emerged as a promising method for isolating circulation tumor cells (CTCs from blood. DEP-isolation of CTCs is independent of cell surface markers. Furthermore, isolated CTCs are viable and can be maintained in culture, suggesting that DEP methods should be more generally applicable than antibody-based approaches. The aim of this article is to review and synthesize for both oncologists and biomedical engineers interested in CTC isolation the pertinent characteristics of DEP and CTCs. The aim is to promote an understanding of the factors involved in realizing DEP-based instruments having both sufficient discrimination and throughput to allow routine analysis of CTCs in clinical practice. The article brings together: (a the principles of DEP; (b the biological basis for the dielectric differences between CTCs and blood cells; (c why such differences are expected to be present for all types of tumors; and (d instrumentation requirements to process 10 mL blood specimens in less than 1 h to enable routine clinical analysis. The force equilibrium method of dielectrophoretic field-flow fractionation (DEP-FFF is shown to offer higher discrimination and throughput than earlier DEP trapping methods and to be applicable to clinical studies.

  19. Isolation of Circulating Tumor Cells by Dielectrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Gascoyne, Peter R. C., E-mail: pgascoyn@mdanderson.org [Department of Imaging Physics Research, The University of Texas M.D. Anderson Cancer Center Unit 951, 1515 Holcombe Boulevard, Houston, TX 77030 (United States); Shim, Sangjo [Department of Imaging Physics Research, The University of Texas M.D. Anderson Cancer Center Unit 951, 1515 Holcombe Boulevard, Houston, TX 77030 (United States); Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station, C0800, Austin, TX 78712 (United States); Present address: Micro & Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, 208 North Wright Street, Urbana, IL 61801 (United States)

    2014-03-12

    Dielectrophoresis (DEP) is an electrokinetic method that allows intrinsic dielectric properties of suspended cells to be exploited for discrimination and separation. It has emerged as a promising method for isolating circulation tumor cells (CTCs) from blood. DEP-isolation of CTCs is independent of cell surface markers. Furthermore, isolated CTCs are viable and can be maintained in culture, suggesting that DEP methods should be more generally applicable than antibody-based approaches. The aim of this article is to review and synthesize for both oncologists and biomedical engineers interested in CTC isolation the pertinent characteristics of DEP and CTCs. The aim is to promote an understanding of the factors involved in realizing DEP-based instruments having both sufficient discrimination and throughput to allow routine analysis of CTCs in clinical practice. The article brings together: (a) the principles of DEP; (b) the biological basis for the dielectric differences between CTCs and blood cells; (c) why such differences are expected to be present for all types of tumors; and (d) instrumentation requirements to process 10 mL blood specimens in less than 1 h to enable routine clinical analysis. The force equilibrium method of dielectrophoretic field-flow fractionation (DEP-FFF) is shown to offer higher discrimination and throughput than earlier DEP trapping methods and to be applicable to clinical studies.

  20. Isolation of Circulating Tumor Cells by Dielectrophoresis

    International Nuclear Information System (INIS)

    Gascoyne, Peter R. C.; Shim, Sangjo

    2014-01-01

    Dielectrophoresis (DEP) is an electrokinetic method that allows intrinsic dielectric properties of suspended cells to be exploited for discrimination and separation. It has emerged as a promising method for isolating circulation tumor cells (CTCs) from blood. DEP-isolation of CTCs is independent of cell surface markers. Furthermore, isolated CTCs are viable and can be maintained in culture, suggesting that DEP methods should be more generally applicable than antibody-based approaches. The aim of this article is to review and synthesize for both oncologists and biomedical engineers interested in CTC isolation the pertinent characteristics of DEP and CTCs. The aim is to promote an understanding of the factors involved in realizing DEP-based instruments having both sufficient discrimination and throughput to allow routine analysis of CTCs in clinical practice. The article brings together: (a) the principles of DEP; (b) the biological basis for the dielectric differences between CTCs and blood cells; (c) why such differences are expected to be present for all types of tumors; and (d) instrumentation requirements to process 10 mL blood specimens in less than 1 h to enable routine clinical analysis. The force equilibrium method of dielectrophoretic field-flow fractionation (DEP-FFF) is shown to offer higher discrimination and throughput than earlier DEP trapping methods and to be applicable to clinical studies

  1. A systems biology approach identified different regulatory networks targeted by KSHV miR-K12-11 in B cells and endothelial cells.

    Science.gov (United States)

    Yang, Yajie; Boss, Isaac W; McIntyre, Lauren M; Renne, Rolf

    2014-08-08

    Kaposi's sarcoma associated herpes virus (KSHV) is associated with tumors of endothelial and lymphoid origin. During latent infection, KSHV expresses miR-K12-11, an ortholog of the human tumor gene hsa-miR-155. Both gene products are microRNAs (miRNAs), which are important post-transcriptional regulators that contribute to tissue specific gene expression. Advances in target identification technologies and molecular interaction databases have allowed a systems biology approach to unravel the gene regulatory networks (GRNs) triggered by miR-K12-11 in endothelial and lymphoid cells. Understanding the tissue specific function of miR-K12-11 will help to elucidate underlying mechanisms of KSHV pathogenesis. Ectopic expression of miR-K12-11 differentially affected gene expression in BJAB cells of lymphoid origin and TIVE cells of endothelial origin. Direct miRNA targeting accounted for a small fraction of the observed transcriptome changes: only 29 genes were identified as putative direct targets of miR-K12-11 in both cell types. However, a number of commonly affected biological pathways, such as carbohydrate metabolism and interferon response related signaling, were revealed by gene ontology analysis. Integration of transcriptome profiling, bioinformatic algorithms, and databases of protein-protein interactome from the ENCODE project identified different nodes of GRNs utilized by miR-K12-11 in a tissue-specific fashion. These effector genes, including cancer associated transcription factors and signaling proteins, amplified the regulatory potential of a single miRNA, from a small set of putative direct targets to a larger set of genes. This is the first comparative analysis of miRNA-K12-11's effects in endothelial and B cells, from tissues infected with KSHV in vivo. MiR-K12-11 was able to broadly modulate gene expression in both cell types. Using a systems biology approach, we inferred that miR-K12-11 establishes its GRN by both repressing master TFs and influencing

  2. [Neuroendocrine tumors of gastrointestinal tract: the paradigm that lasts].

    Science.gov (United States)

    Bjelović, Milos M; Babić, Tamara D

    2013-01-01

    Historically, the tumors that were morphologically different and clinically less agressive than the more common gastrointestinal adenocarcinomas were clasified under carcinoid tumors. However, the development of molecular biology tehniques revealed the heterogeneity of these tumors on cellular and subcellular level and ther different biological behaviour. Neuroendocrine tumors of gastrointestinal tract originated from neuroendocrine cells scaterred across the gastrointestinal mucosa. As a result these tumors were capable of secreting many different neurotransmiters, which may or may not be biologically active. The incidence of gastrointestinal NETs has been incresing over the last 2 to 3 decades. Patients often presented with vague, nonspecific symptoms which resulted in delayed diagnosis and adequate treatment. In this article, we discuss the nature of gastrointestinal NETs, clinical presentation, treatment options and prognosis.

  3. Giant cell tumor of bone: Multimodal approach

    Directory of Open Access Journals (Sweden)

    Gupta A

    2007-01-01

    Full Text Available Background: The clinical behavior and treatment of giant cell tumor of bone is still perplexing. The aim of this study is to clarify the clinico-pathological correlation of tumor and its relevance in treatment and prognosis. Materials and Methods: Ninety -three cases of giant cell tumor were treated during 1980-1990 by different methods. The age of the patients varied from 18-58 yrs with male and female ratio as 5:4. The upper end of the tibia was most commonly involved (n=31, followed by the lower end of the femur(n=21, distal end of radius(n=14,upper end of fibula (n=9,proximal end of femur(n=5, upper end of the humerus(n=3, iliac bone(n=2,phalanx (n=2 and spine(n=1. The tumors were also encountered on uncommon sites like metacarpals (n=4 and metatarsal(n=1. Fifty four cases were treated by curettage and bone grafting. Wide excision and reconstruction was performed in twenty two cases . Nine cases were treated by wide excision while primary amputation was performed in four cases. One case required only curettage. Three inaccessible lesions of ilium and spine were treated by radiotherapy. Results: 19 of 54 treated by curettage and bone grafting showed a recurrence. The repeat curettage and bone grafting was performed in 18 cases while amputation was done in one. One each out of the cases treated by wide excision and reconstruction and wide excision alone recurred. In this study we observed that though curettage and bone grafting is still the most commonly adopted treatment, wide excision of tumor with reconstruction has shown lesser recurrence. Conclusion: For radiologically well-contained and histologically typical tumor, curettage and autogenous bone grafting is the treatment of choice . The typical tumors with radiologically deficient cortex, clinically aggressive tumors and tumors with histological Grade III should be treated by wide excision and reconstruction.

  4. Lung tumor tracking in fluoroscopic video based on optical flow

    International Nuclear Information System (INIS)

    Xu Qianyi; Hamilton, Russell J.; Schowengerdt, Robert A.; Alexander, Brian; Jiang, Steve B.

    2008-01-01

    Respiratory gating and tumor tracking for dynamic multileaf collimator delivery require accurate and real-time localization of the lung tumor position during treatment. Deriving tumor position from external surrogates such as abdominal surface motion may have large uncertainties due to the intra- and interfraction variations of the correlation between the external surrogates and internal tumor motion. Implanted fiducial markers can be used to track tumors fluoroscopically in real time with sufficient accuracy. However, it may not be a practical procedure when implanting fiducials bronchoscopically. In this work, a method is presented to track the lung tumor mass or relevant anatomic features projected in fluoroscopic images without implanted fiducial markers based on an optical flow algorithm. The algorithm generates the centroid position of the tracked target and ignores shape changes of the tumor mass shadow. The tracking starts with a segmented tumor projection in an initial image frame. Then, the optical flow between this and all incoming frames acquired during treatment delivery is computed as initial estimations of tumor centroid displacements. The tumor contour in the initial frame is transferred to the incoming frames based on the average of the motion vectors, and its positions in the incoming frames are determined by fine-tuning the contour positions using a template matching algorithm with a small search range. The tracking results were validated by comparing with clinician determined contours on each frame. The position difference in 95% of the frames was found to be less than 1.4 pixels (∼0.7 mm) in the best case and 2.8 pixels (∼1.4 mm) in the worst case for the five patients studied.

  5. Mathematical models of tumor growth: translating absorbed dose to tumor control probability

    International Nuclear Information System (INIS)

    Sgouros, G.

    1996-01-01

    Full text: The dose-rate in internal emitter therapy is low and time-dependent as compared to external beam radiotherapy. Once the total absorbed dose delivered to a target tissue is calculated, however, most dosimetric analyses of radiopharmaceuticals are considered complete. To translate absorbed dose estimates obtained for internal emitter therapy to biologic effect, the growth characteristics, repair capacity, and radiosensitivity of the tumor must be considered. Tumor growth may be represented by the Gompertz equation in which tumor cells increase at an exponential growth rate that is itself decreasing at an exponential rate; as the tumor increases in size, the growth rate diminishes. The empirical Gompertz expression for tumor growth may be derived from a mechanistic model in which growth is represented by a balance between tumor-cell birth and loss. The birth rate is assumed to be fixed, while the cell loss rate is time-dependent and increases with tumor size. The birth rate of the tumors may be related to their potential doubling time. Multiple biopsies of individual tumors have demonstrated a heterogeneity in the potential doubling time of tumors. By extending the mechanistic model described above to allow for sub-populations of tumor cells with different birth rates, the effect of kinetic heterogeneity within a tumor may be examined. Model simulations demonstrate that the cell kinetic parameters of a tumor are predicted to change over time and measurements obtained using a biopsy are unlikely to reflect the kinetics of the tumor throughout its growth history. A decrease in overall tumor mass, in which each sub-population is reduced in proportion to its cell number, i.e., the log-kill assumption, leads to re-growth of a tumor that has a greater proliferation rate. Therapy that is linked to the potential doubling time or to the effective proliferation rate of the tumor may lead to re-growth of a tumor that is kinetically unchanged. The simplest model of

  6. Age groups related glioblastoma study based on radiomics approach.

    Science.gov (United States)

    Li, Zeju; Wang, Yuanyuan; Yu, Jinhua; Guo, Yi; Zhang, Qi

    2017-12-01

    Glioblastoma is the most aggressive malignant brain tumor with poor prognosis. Radiomics is a newly emerging and promising technique to reveal the complex relationships between high-throughput medical image features and deep information of disease including pathology, biomarkers and genomics. An approach was developed to investigate the internal relationship between magnetic resonance imaging (MRI) features and the age-related origins of glioblastomas based on a quantitative radiomics method. A fully automatic image segmentation method was applied to segment the tumor regions from three dimensional MRI images. 555 features were then extracted from the image data. By analyzing large numbers of quantitative image features, some predictive and prognostic information could be obtained by the radiomics approach. 96 patients diagnosed with glioblastoma pathologically have been divided into two age groups (age groups (T test, p age difference (T test, p= .006). In conclusion, glioblastoma in different age groups present different radiomics-feature patterns with statistical significance, which indicates that glioblastoma in different age groups should have different pathologic, protein, or genic origins.

  7. Tumor vascular-targeted co-delivery of anti-angiogenesis and chemotherapeutic agents by mesoporous silica nanoparticle-based drug delivery system for synergetic therapy of tumor

    Directory of Open Access Journals (Sweden)

    Li X

    2015-12-01

    Full Text Available Xiaoyu Li, Meiying Wu, Limin Pan, Jianlin Shi State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People’s Republic of China Abstract: To overcome the drawback of drug non-selectivity in traditional chemotherapy, the construction of multifunctional targeting drug delivery systems is one of the most effective and prevailing approaches. The intratumoral anti-angiogenesis and the tumor cell-killing are two basic approaches in fighting tumors. Herein we report a novel tumor vascular-targeting multidrug delivery system using mesoporous silica nanoparticles as carrier to co-load an antiangiogenic agent (combretastatin A4 and a chemotherapeutic drug (doxorubicin and conjugate with targeting molecules (iRGD peptide for combined anti-angiogenesis and chemotherapy. Such a dual-loaded drug delivery system is capable of delivering the two agents at tumor vasculature and then within tumors through a differentiated drug release strategy, which consequently results in greatly improved antitumor efficacy at a very low doxorubicin dose of 1.5 mg/kg. The fast release of the antiangiogenic agent at tumor vasculatures led to the disruption of vascular structure and had a synergetic effect with the chemotherapeutic drug slowly released in the following delivery of chemotherapeutic drug into tumors. Keywords: mesoporous silica nanoparticles, drug delivery, tumor vasculatures targeting, antiangiogenic agent

  8. Translating tumor biology into personalized treatment planning: analytical performance characteristics of the Oncotype DX? Colon Cancer Assay

    OpenAIRE

    Clark-Langone, Kim M; Sangli, Chithra; Krishnakumar, Jayadevi; Watson, Drew

    2010-01-01

    Abstract Background The Oncotype DX® Colon Cancer Assay is a new diagnostic test for determining the likelihood of recurrence in stage II colon cancer patients after surgical resection using fixed paraffin embedded (FPE) primary colon tumor tissue. Like the Oncotype DX Breast Cancer Assay, this is a high complexity, multi-analyte, reverse transcription (RT) polymerase chain reaction (PCR) assay that measures the expression levels of specific cancer-related genes. By capturing the biology unde...

  9. A study for radiation-related tumor microenvironment

    International Nuclear Information System (INIS)

    Son, Young Sook; Hong, Seok Il; Kim, Young Soon; Jin Yong Jae; Lee, Tae Hee; Chung, Eun Kyung; Yi, Jae Yeun; Park, Myung Jin; Kim, Yun Young; Kang, Sin Keun

    1999-04-01

    In this study, we attempted to elucidate the mechanism involved in radiation-induced modification and changes of biological factors and physicochemical factors of tumor microenvironment and develop techniques and agents for the modification of tumor microenvironment which is favorable for efficient radio-cancer therapy based on our basic study. We established in vitro tumor invasion and angiogenesis model, elucidated the importance of MMPs activation and the MMPs/TIMPs complex in the invasive transition of tumor. Furthermore we showed the signaling pathway for MMPs induction through EGF receptor and TGF beta 1 stimulated E-M transition. We also established primary culture of human endothelial cells and tubule forming condition which is utilized for the detection of novel angiogenic factors. We also identified hypoxia induced signaling pathway and showed that GBE improved blood perfusion which may increase the effectiveness of radio-cancer therapy

  10. A study for radiation-related tumor microenvironment

    Energy Technology Data Exchange (ETDEWEB)

    Son, Young Sook; Hong, Seok Il; Kim, Young Soon; Jin Yong Jae; Lee, Tae Hee; Chung, Eun Kyung; Yi, Jae Yeun; Park, Myung Jin; Kim, Yun Young; Kang, Sin Keun

    1999-04-01

    In this study, we attempted to elucidate the mechanism involved in radiation-induced modification and changes of biological factors and physicochemical factors of tumor microenvironment and develop techniques and agents for the modification of tumor microenvironment which is favorable for efficient radio-cancer therapy based on our basic study. We established in vitro tumor invasion and angiogenesis model, elucidated the importance of MMPs activation and the MMPs/TIMPs complex in the invasive transition of tumor. Furthermore we showed the signaling pathway for MMPs induction through EGF receptor and TGF beta 1 stimulated E-M transition. We also established primary culture of human endothelial cells and tubule forming condition which is utilized for the detection of novel angiogenic factors. We also identified hypoxia induced signaling pathway and showed that GBE improved blood perfusion which may increase the effectiveness of radio-cancer therapy.

  11. Tumor phenotype and breast density in distinct categories of interval cancer: results of population-based mammography screening in Spain

    Science.gov (United States)

    2014-01-01

    Introduction Interval cancers are tumors arising after a negative screening episode and before the next screening invitation. They can be classified into true interval cancers, false-negatives, minimal-sign cancers, and occult tumors based on mammographic findings in screening and diagnostic mammograms. This study aimed to describe tumor-related characteristics and the association of breast density and tumor phenotype within four interval cancer categories. Methods We included 2,245 invasive tumors (1,297 screening-detected and 948 interval cancers) diagnosed from 2000 to 2009 among 645,764 women aged 45 to 69 who underwent biennial screening in Spain. Interval cancers were classified by a semi-informed retrospective review into true interval cancers (n = 455), false-negatives (n = 224), minimal-sign (n = 166), and occult tumors (n = 103). Breast density was evaluated using Boyd’s scale and was conflated into: 75%. Tumor-related information was obtained from cancer registries and clinical records. Tumor phenotype was defined as follows: luminal A: ER+/HER2- or PR+/HER2-; luminal B: ER+/HER2+ or PR+/HER2+; HER2: ER-/PR-/HER2+; triple-negative: ER-/PR-/HER2-. The association of tumor phenotype and breast density was assessed using a multinomial logistic regression model. Adjusted odds ratios (OR) and 95% confidence intervals (95% CI) were calculated. All statistical tests were two-sided. Results Forty-eight percent of interval cancers were true interval cancers and 23.6% false-negatives. True interval cancers were associated with HER2 and triple-negative phenotypes (OR = 1.91 (95% CI:1.22-2.96), OR = 2.07 (95% CI:1.42-3.01), respectively) and extremely dense breasts (>75%) (OR = 1.67 (95% CI:1.08-2.56)). However, among true interval cancers a higher proportion of triple-negative tumors was observed in predominantly fatty breasts (breasts (28.7%, 21.4%, 11.3% and 14.3%, respectively; screening-detected cancers, extreme breast density

  12. Assessing Probabilistic Risk Assessment Approaches for Insect Biological Control Introductions.

    Science.gov (United States)

    Kaufman, Leyla V; Wright, Mark G

    2017-07-07

    The introduction of biological control agents to new environments requires host specificity tests to estimate potential non-target impacts of a prospective agent. Currently, the approach is conservative, and is based on physiological host ranges determined under captive rearing conditions, without consideration for ecological factors that may influence realized host range. We use historical data and current field data from introduced parasitoids that attack an endemic Lepidoptera species in Hawaii to validate a probabilistic risk assessment (PRA) procedure for non-target impacts. We use data on known host range and habitat use in the place of origin of the parasitoids to determine whether contemporary levels of non-target parasitism could have been predicted using PRA. Our results show that reasonable predictions of potential non-target impacts may be made if comprehensive data are available from places of origin of biological control agents, but scant data produce poor predictions. Using apparent mortality data rather than marginal attack rate estimates in PRA resulted in over-estimates of predicted non-target impact. Incorporating ecological data into PRA models improved the predictive power of the risk assessments.

  13. Tumor Heterogeneity: Mechanisms and Bases for a Reliable Application of Molecular Marker Design

    Science.gov (United States)

    Diaz-Cano, Salvador J.

    2012-01-01

    Tumor heterogeneity is a confusing finding in the assessment of neoplasms, potentially resulting in inaccurate diagnostic, prognostic and predictive tests. This tumor heterogeneity is not always a random and unpredictable phenomenon, whose knowledge helps designing better tests. The biologic reasons for this intratumoral heterogeneity would then be important to understand both the natural history of neoplasms and the selection of test samples for reliable analysis. The main factors contributing to intratumoral heterogeneity inducing gene abnormalities or modifying its expression include: the gradient ischemic level within neoplasms, the action of tumor microenvironment (bidirectional interaction between tumor cells and stroma), mechanisms of intercellular transference of genetic information (exosomes), and differential mechanisms of sequence-independent modifications of genetic material and proteins. The intratumoral heterogeneity is at the origin of tumor progression and it is also the byproduct of the selection process during progression. Any analysis of heterogeneity mechanisms must be integrated within the process of segregation of genetic changes in tumor cells during the clonal expansion and progression of neoplasms. The evaluation of these mechanisms must also consider the redundancy and pleiotropism of molecular pathways, for which appropriate surrogate markers would support the presence or not of heterogeneous genetics and the main mechanisms responsible. This knowledge would constitute a solid scientific background for future therapeutic planning. PMID:22408433

  14. The establishment of transmissible venereal tumor lung cancer model in canine and the observation of its biological characteristics

    International Nuclear Information System (INIS)

    Sun Zhichao; Dong Weihua; Xiao Xiangsheng; Zhu Ruimin; Chen mofan; Wang Zhi

    2010-01-01

    Objective: To establish an allogeneic transplanted lung cancer model in canine by percutaneously injecting canine transmissible venereal tumor (CTVT) cell suspension and to observe its biological characteristics. Methods: Under CT guidance fresh CTVT cell suspension was inoculated into the middle or posterior lobe of lungs through percutaneous puncturing needle in 12 beagle dogs. Cyclosporin was administrated orally to obtain immunosuppression. Tumor growth and metastasis were judged by chest CT scanning at regular intervals (every 1-2 weeks). The daily mental and physical condition of the dogs was observed. Autopsy and pathological examination were performed when the animals died naturally or at the tenth week after the procedure when the animals were sacrificed. Results: A total of 15 sites were inoculated in 12 dogs. The formation of tumor was observed in 2 dogs at the fifth week and in 9 dogs at the sixth week. Ten weeks after the inoculation the formation of tumor was detected in 10 inoculated points in 9 dogs, the inoculation success rate was 66.67%. The mean largest diameter of the tumor at 6, 8 and 10 weeks after the inoculation was (1.059 ± 0.113)cm, (1.827 ± 0.084)cm and (2.189 ± 0.153)cm, respectively. The largest diameter of the tumor nodule was 3.5 cm. Moderate to severe pleural effusion and mediastinal lymph nodes metastasis were found in all the dogs that showed the formation of the tumor. Conclusion: Percutaneous CTVT cell suspension injection can establish an allogeneic canine lung cancer model, which is helpful for the experimental studies related to lung cancer. (authors)

  15. Numerical simulation of avascular tumor growth

    Energy Technology Data Exchange (ETDEWEB)

    Slezak, D Fernandez; Suarez, C; Soba, A; Risk, M; Marshall, G [Laboratorio de Sistemas Complejos, Departamento de Computacion, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (C1428EGA) Buenos Aires (Argentina)

    2007-11-15

    A mathematical and numerical model for the description of different aspects of microtumor development is presented. The model is based in the solution of a system of partial differential equations describing an avascular tumor growth. A detailed second-order numeric algorithm for solving this system is described. Parameters are swiped to cover a range of feasible physiological values. While previous published works used a single set of parameters values, here we present a wide range of feasible solutions for tumor growth, covering a more realistic scenario. The model is validated by experimental data obtained with a multicellular spheroid model, a specific type of in vitro biological model which is at present considered to be optimum for the study of complex aspects of avascular microtumor physiology. Moreover, a dynamical analysis and local behaviour of the system is presented, showing chaotic situations for particular sets of parameter values at some fixed points. Further biological experiments related to those specific points may give potentially interesting results.

  16. Inferring the Impact of Regulatory Mechanisms that Underpin CD8+ T Cell Control of B16 Tumor Growth In vivo Using Mechanistic Models and Simulation.

    Science.gov (United States)

    Klinke, David J; Wang, Qing

    2016-01-01

    A major barrier for broadening the efficacy of immunotherapies for cancer is identifying key mechanisms that limit the efficacy of tumor infiltrating lymphocytes. Yet, identifying these mechanisms using human samples and mouse models for cancer remains a challenge. While interactions between cancer and the immune system are dynamic and non-linear, identifying the relative roles that biological components play in regulating anti-tumor immunity commonly relies on human intuition alone, which can be limited by cognitive biases. To assist natural intuition, modeling and simulation play an emerging role in identifying therapeutic mechanisms. To illustrate the approach, we developed a multi-scale mechanistic model to describe the control of tumor growth by a primary response of CD8+ T cells against defined tumor antigens using the B16 C57Bl/6 mouse model for malignant melanoma. The mechanistic model was calibrated to data obtained following adenovirus-based immunization and validated to data obtained following adoptive transfer of transgenic CD8+ T cells. More importantly, we use simulation to test whether the postulated network topology, that is the modeled biological components and their associated interactions, is sufficient to capture the observed anti-tumor immune response. Given the available data, the simulation results also provided a statistical basis for quantifying the relative importance of different mechanisms that underpin CD8+ T cell control of B16F10 growth. By identifying conditions where the postulated network topology is incomplete, we illustrate how this approach can be used as part of an iterative design-build-test cycle to expand the predictive power of the model.

  17. Macromolecular contrast media. A new approach for characterising breast tumors with MR-mammography

    International Nuclear Information System (INIS)

    Daldrup, H.E.; Gossmann, A.; Koeln Univ.; Wendland, M.; Brasch, R.C.; Rosenau, W.

    1997-01-01

    The value of macromolecular contrast agents (MMCM) for the characterization of benign and malignant breast tumors will be demonstrated in this review. Animal studies suggest a high potential of MMCM to increase the specificity of MR-mammography. The concept of tumor differentiation is based on the pathological hyperpermeability of microvessels in malignant tumors. MMCM show a leak into the interstitium of carcinomas, whereas they are confined to the intravascular space in benign tumors. Capabilities and limitations of the MMCM-prototype. Albumin-Gd-DTPA, for breast tumor characterization will be summarized and compared to the standard low molecular weight contrast agent Gd-DTPA. Initial experience with new MMCM, such as Dendrimers, Gd-DTPA-Polylysine and MS-325 will be outlined. The potential of 'blood-pool'-iron oxides, such as AMI-227 for the evaluation of tumor microvascular permeabilities will be discussed. (orig.) [de

  18. Development and Deployment of Systems-Based Approaches for the Management of Soilborne Plant Pathogens.

    Science.gov (United States)

    Chellemi, D O; Gamliel, A; Katan, J; Subbarao, K V

    2016-03-01

    Biological suppression of soilborne diseases with minimal use of outside interventive actions has been difficult to achieve in high input conventional crop production systems due to the inherent risk of pest resurgence. This review examines previous approaches to the management of soilborne disease as precursors to the evolution of a systems-based approach, in which plant disease suppression through natural biological feedback mechanisms in soil is incorporated into the design and operation of cropping systems. Two case studies are provided as examples in which a systems-based approach is being developed and deployed in the production of high value crops: lettuce/strawberry production in the coastal valleys of central California (United States) and sweet basil and other herb crop production in Israel. Considerations for developing and deploying system-based approaches are discussed and operational frameworks and metrics to guide their development are presented with the goal of offering a credible alternative to conventional approaches to soilborne disease management.

  19. A transseptal approach in transsphenoidal surgery for pituitary (hypophyseal) tumors

    International Nuclear Information System (INIS)

    Gierek, T.; Galuszko-Ignasiak, B.; Krauze, J.; Rudnik, A.

    1994-01-01

    The authors described the direct transseptal approach in transsphenoidal surgery for hypophyseal tumors. This route gives a good insight into the area of the sella. The above mentioned method is also less destructive to nasal structures in the nasal cavity, because preserves the anterior nasal septum. It is uniformity of actually views of rhinological school. 20 patients were operated using this method and none of them noticed the changes of nasal airway and the sense of smell. (author)

  20. Molecular Pathogenesis of Pancreatic Neuroendocrine Tumors

    Directory of Open Access Journals (Sweden)

    Robert Grützmann

    2010-11-01

    Full Text Available Pancreatic neuroendocrine tumors (PNETs are rare primary neoplasms of the pancreas and arise sporadically or in the context of genetically determined syndromes. Depending on hormone production and sensing, PNETs clinically manifest due to a hormone-related syndrome (functional PNET or by symptoms related to tumor bulk effects (non-functional PNET. So far, radical surgical excision is the only therapy to cure the disease. Development of tailored non-surgical approaches has been impeded by the lack of experimental laboratory models and there is, therefore, a limited understanding of the complex cellular and molecular biology of this heterogeneous group of neoplasm. This review aims to summarize current knowledge of tumorigenesis of familial and sporadic PNETs on a cellular and molecular level. Open questions in the field of PNET research are discussed with specific emphasis on the relevance of disease management.

  1. Molecular Pathogenesis of Pancreatic Neuroendocrine Tumors

    International Nuclear Information System (INIS)

    Ehehalt, Florian; Franke, Ellen; Pilarsky, Christian; Grützmann, Robert

    2010-01-01

    Pancreatic neuroendocrine tumors (PNETs) are rare primary neoplasms of the pancreas and arise sporadically or in the context of genetically determined syndromes. Depending on hormone production and sensing, PNETs clinically manifest due to a hormone-related syndrome (functional PNET) or by symptoms related to tumor bulk effects (non-functional PNET). So far, radical surgical excision is the only therapy to cure the disease. Development of tailored non-surgical approaches has been impeded by the lack of experimental laboratory models and there is, therefore, a limited understanding of the complex cellular and molecular biology of this heterogeneous group of neoplasm. This review aims to summarize current knowledge of tumorigenesis of familial and sporadic PNETs on a cellular and molecular level. Open questions in the field of PNET research are discussed with specific emphasis on the relevance of disease management

  2. Numerical and experimental characterization of solid-state micropore-based cytometer for detection and enumeration of biological cells.

    Science.gov (United States)

    Guo, Jinhong; Chen, Liang; Ai, Ye; Cheng, Yuanbing; Li, Chang Ming; Kang, Yuejun; Wang, Zhiming

    2015-03-01

    Portable diagnostic devices have emerged as important tools in various biomedical applications since they can provide an effective solution for low-cost and rapid clinical diagnosis. In this paper, we present a micropore-based resistive cytometer for the detection and enumeration of biological cells. The proposed device was fabricated on a silicon wafer by a standard microelectromechanical system processing technology, which enables a mass production of the proposed chip. The working principle of this cytometer is based upon a bias potential modulated pulse, originating from the biological particle's physical blockage of the micropore. Polystyrene particles of different sizes (7, 10, and 16 μm) were used to test and calibrate the proposed device. A finite element simulation was developed to predict the bias potential modulated pulse (peak amplitude vs. pulse bandwidth), which can provide critical insight into the design of this microfluidic flow cytometer. Furthermore, HeLa cells (a type of tumor cell lines) spiked in a suspension of blood cells, including red blood cells and white blood cells, were used to assess the performance for detecting and counting tumor cells. The proposed microfluidic flow cytometer is able to provide a promising platform to address the current unmet need for point-of-care clinical diagnosis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Preoperative radiotherapy of renal adenocarcinomas from the point of view of tumor biology

    Energy Technology Data Exchange (ETDEWEB)

    Kob, D; Kriester, A; Hacker, I; Kloetzer, K H [Friedrich-Schiller-Universitaet, Jena (German Democratic Republic). Radiologische Klinik und Poliklinik

    1982-05-01

    26 patients with pulmonary metastases of renal adenocarcinomas were examined under the aspect of tumor biology. Growth functions were used to calculate the time at which the metastases began to grow, in relation to the time of operation and with the aim to get information on the indication for preoperative radiotherapy. In 3 patients (11.5%) there was an indication for preoperative irradiation. For comparative clinical tests as to the value of preoperative irradiation a minimum of 871 patients are needed in each group for comparison to evaluate the 3-year survival rate and 489 patients to evaluate the 5-year survival rate in order to be certain of the positive effect of preoperative irradiation with 1% statistical probability. The investigations are to be considered a model.

  4. Sensitive detection of viral transcripts in human tumor transcriptomes.

    Directory of Open Access Journals (Sweden)

    Sven-Eric Schelhorn

    Full Text Available In excess of 12% of human cancer incidents have a viral cofactor. Epidemiological studies of idiopathic human cancers indicate that additional tumor viruses remain to be discovered. Recent advances in sequencing technology have enabled systematic screenings of human tumor transcriptomes for viral transcripts. However, technical problems such as low abundances of viral transcripts in large volumes of sequencing data, viral sequence divergence, and homology between viral and human factors significantly confound identification of tumor viruses. We have developed a novel computational approach for detecting viral transcripts in human cancers that takes the aforementioned confounding factors into account and is applicable to a wide variety of viruses and tumors. We apply the approach to conducting the first systematic search for viruses in neuroblastoma, the most common cancer in infancy. The diverse clinical progression of this disease as well as related epidemiological and virological findings are highly suggestive of a pathogenic cofactor. However, a viral etiology of neuroblastoma is currently contested. We mapped 14 transcriptomes of neuroblastoma as well as positive and negative controls to the human and all known viral genomes in order to detect both known and unknown viruses. Analysis of controls, comparisons with related methods, and statistical estimates demonstrate the high sensitivity of our approach. Detailed investigation of putative viral transcripts within neuroblastoma samples did not provide evidence for the existence of any known human viruses. Likewise, de-novo assembly and analysis of chimeric transcripts did not result in expression signatures associated with novel human pathogens. While confounding factors such as sample dilution or viral clearance in progressed tumors may mask viral cofactors in the data, in principle, this is rendered less likely by the high sensitivity of our approach and the number of biological replicates

  5. Selection, calibration, and validation of models of tumor growth.

    Science.gov (United States)

    Lima, E A B F; Oden, J T; Hormuth, D A; Yankeelov, T E; Almeida, R C

    2016-11-01

    This paper presents general approaches for addressing some of the most important issues in predictive computational oncology concerned with developing classes of predictive models of tumor growth. First, the process of developing mathematical models of vascular tumors evolving in the complex, heterogeneous, macroenvironment of living tissue; second, the selection of the most plausible models among these classes, given relevant observational data; third, the statistical calibration and validation of models in these classes, and finally, the prediction of key Quantities of Interest (QOIs) relevant to patient survival and the effect of various therapies. The most challenging aspects of this endeavor is that all of these issues often involve confounding uncertainties: in observational data, in model parameters, in model selection, and in the features targeted in the prediction. Our approach can be referred to as "model agnostic" in that no single model is advocated; rather, a general approach that explores powerful mixture-theory representations of tissue behavior while accounting for a range of relevant biological factors is presented, which leads to many potentially predictive models. Then representative classes are identified which provide a starting point for the implementation of OPAL, the Occam Plausibility Algorithm (OPAL) which enables the modeler to select the most plausible models (for given data) and to determine if the model is a valid tool for predicting tumor growth and morphology ( in vivo ). All of these approaches account for uncertainties in the model, the observational data, the model parameters, and the target QOI. We demonstrate these processes by comparing a list of models for tumor growth, including reaction-diffusion models, phase-fields models, and models with and without mechanical deformation effects, for glioma growth measured in murine experiments. Examples are provided that exhibit quite acceptable predictions of tumor growth in laboratory

  6. A bispecific nanobody approach to leverage the potent and widely applicable tumor cytolytic capacity of Vγ9Vδ2-T cells

    NARCIS (Netherlands)

    de Bruin, Renée C G; Veluchamy, John P.; Lougheed, Sinéad M; Schneiders, Famke L.; Lopez-Lastra, Silvia; Lameris, Roeland; Stam, Anita G M; Sebestyen, Zsolt; Kuball, Jürgen; Molthoff, Carla F M; Hooijberg, Erik; Roovers, Rob C.; Santo, James P.Di; van Bergen En Henegouwen, Paul M P; Verheul, Henk M. W.; de Gruijl, Tanja D; van Vliet, Hans J

    2017-01-01

    Though Vγ9Vδ2-T cells constitute only a small fraction of the total T cell population in human peripheral blood, they play a vital role in tumor defense and are therefore of major interest to explore for cancer immunotherapy. Vγ9Vδ2-T cell-based cancer immunotherapeutic approaches developed so far

  7. Parameter estimation of brain tumors using intraoperative thermal imaging based on artificial tactile sensing in conjunction with artificial neural network

    International Nuclear Information System (INIS)

    Sadeghi-Goughari, M; Mojra, A; Sadeghi, S

    2016-01-01

    Intraoperative Thermal Imaging (ITI) is a new minimally invasive diagnosis technique that can potentially locate margins of brain tumor in order to achieve maximum tumor resection with least morbidity. This study introduces a new approach to ITI based on artificial tactile sensing (ATS) technology in conjunction with artificial neural networks (ANN) and feasibility and applicability of this method in diagnosis and localization of brain tumors is investigated. In order to analyze validity and reliability of the proposed method, two simulations were performed. (i) An in vitro experimental setup was designed and fabricated using a resistance heater embedded in agar tissue phantom in order to simulate heat generation by a tumor in the brain tissue; and (ii) A case report patient with parafalcine meningioma was presented to simulate ITI in the neurosurgical procedure. In the case report, both brain and tumor geometries were constructed from MRI data and tumor temperature and depth of location were estimated. For experimental tests, a novel assisted surgery robot was developed to palpate the tissue phantom surface to measure temperature variations and ANN was trained to estimate the simulated tumor’s power and depth. Results affirm that ITI based ATS is a non-invasive method which can be useful to detect, localize and characterize brain tumors. (paper)

  8. Synthetic biology approaches for protein production optimization in bacterial cell factories

    DEFF Research Database (Denmark)

    Rennig, Maja; Andersen, Mikael Rørdam

    devices and their fusion to antibiotic selection markers enables subsequent selection of high-expressing constructs. The approach is a simple and inexpensive alternative to advanced screening techniques. In addition, a second synthetic biology approach provides the means for fast and efficient plasmid...

  9. A target based approach identifies genomic predictors of breast cancer patient response to chemotherapy

    Directory of Open Access Journals (Sweden)

    Hallett Robin M

    2012-05-01

    Full Text Available Abstract Background The efficacy of chemotherapy regimens in breast cancer patients is variable and unpredictable. Whether individual patients either achieve long-term remission or suffer recurrence after therapy may be dictated by intrinsic properties of their breast tumors including genetic lesions and consequent aberrant transcriptional programs. Global gene expression profiling provides a powerful tool to identify such tumor-intrinsic transcriptional programs, whose analyses provide insight into the underlying biology of individual patient tumors. For example, multi-gene expression signatures have been identified that can predict the likelihood of disease reccurrence, and thus guide patient prognosis. Whereas such prognostic signatures are being introduced in the clinical setting, similar signatures that predict sensitivity or resistance to chemotherapy are not currently clinically available. Methods We used gene expression profiling to identify genes that were co-expressed with genes whose transcripts encode the protein targets of commonly used chemotherapeutic agents. Results Here, we present target based expression indices that predict breast tumor response to anthracycline and taxane based chemotherapy. Indeed, these signatures were independently predictive of chemotherapy response after adjusting for standard clinic-pathological variables such as age, grade, and estrogen receptor status in a cohort of 488 breast cancer patients treated with adriamycin and taxotere/taxol. Conclusions Importantly, our findings suggest the practicality of developing target based indices that predict response to therapeutics, as well as highlight the possibility of using gene signatures to guide the use of chemotherapy during treatment of breast cancer patients.

  10. Gastrointestinal Stromal Tumor: Diagnosis and Prognosis; Tumor estromal gastrointestinal: diagnostico y pronostico

    Energy Technology Data Exchange (ETDEWEB)

    Martin, M. T.; Olmedilla, P.; Gonzalez, S.; Oliver, J. M. [Fundacion Hospital de Alcorcon. Madrid (Spain)

    2003-07-01

    Gastrointestinal stromal tumors (GIST) are mesenquimal tumors derived from cell precursors. They have the capacity for myogenic and neurogenic differentiation and are characterized by expression of KIT protein (tyrosine kinase growth factor). Clinically, they exhibit various biological behaviors. We present 8 cases of GIST, describing both their radiological manifestation through computerized tomography (CT) and most accepted criteria for benignity and malignancy. We also describe the response of one meta statically diagnosed tumor to tyrosine kinase inhibitor. (Author) 9 refs.

  11. Specific aspects of radiotherapy of malignant tumors in childhood

    International Nuclear Information System (INIS)

    Bek, V.; Abrahamova, J.

    1987-01-01

    Based on the experience with radiotherapy of malignant tumors in 1839 children treated at the Oncological Clinic in Prague from 1946 to 1985, the conclusion is arrived at that some specific aspects of radiotherapy of tumors in children, such as kinetics and biological features are so important that it can be considered a special sub-discipline of clinical radiotherapy. An opinion is expressed about the application of irradiation in non-malignant affections in children. (author). 2 figs., 4 tabs., 25 refs

  12. Investigating cholesterol metabolism and ageing using a systems biology approach.

    Science.gov (United States)

    Morgan, A E; Mooney, K M; Wilkinson, S J; Pickles, N A; Mc Auley, M T

    2017-08-01

    CVD accounted for 27 % of all deaths in the UK in 2014, and was responsible for 1·7 million hospital admissions in 2013/2014. This condition becomes increasingly prevalent with age, affecting 34·1 and 29·8 % of males and females over 75 years of age respectively in 2011. The dysregulation of cholesterol metabolism with age, often observed as a rise in LDL-cholesterol, has been associated with the pathogenesis of CVD. To compound this problem, it is estimated by 2050, 22 % of the world's population will be over 60 years of age, in culmination with a growing resistance and intolerance to pre-existing cholesterol regulating drugs such as statins. Therefore, it is apparent research into additional therapies for hypercholesterolaemia and CVD prevention is a growing necessity. However, it is also imperative to recognise this complex biological system cannot be studied using a reductionist approach; rather its biological uniqueness necessitates a more integrated methodology, such as that offered by systems biology. In this review, we firstly discuss cholesterol metabolism and how it is affected by diet and the ageing process. Next, we describe therapeutic strategies for hypercholesterolaemia, and finally how the systems biology paradigm can be utilised to investigate how ageing interacts with complex systems such as cholesterol metabolism. We conclude by emphasising the need for nutritionists to work in parallel with the systems biology community, to develop novel approaches to studying cholesterol metabolism and its interaction with ageing.

  13. TUMORES DE LA FOSA POSTERIOR EN PEDIATRÍA

    Directory of Open Access Journals (Sweden)

    Dr. Felipe Otayza

    2017-05-01

    En esta revisión se analizarán aspectos epidemiológicos, patogenia y biología molecular clínicos y neuroradiológicos en general de los tumores de fosa posterior y en particular se revisarán los avances en biología molecular y tratamiento de los tumores más frecuentes de la zona; méduloblastoma, ependimoma, astrocitoma de bajo grado y los tumores de tronco cerebral.

  14. Imaging-genomics reveals driving pathways of MRI derived volumetric tumor phenotype features in Glioblastoma

    International Nuclear Information System (INIS)

    Grossmann, Patrick; Gutman, David A.; Dunn, William D. Jr; Holder, Chad A.; Aerts, Hugo J. W. L.

    2016-01-01

    Glioblastoma (GBM) tumors exhibit strong phenotypic differences that can be quantified using magnetic resonance imaging (MRI), but the underlying biological drivers of these imaging phenotypes remain largely unknown. An Imaging-Genomics analysis was performed to reveal the mechanistic associations between MRI derived quantitative volumetric tumor phenotype features and molecular pathways. One hundred fourty one patients with presurgery MRI and survival data were included in our analysis. Volumetric features were defined, including the necrotic core (NE), contrast-enhancement (CE), abnormal tumor volume assessed by post-contrast T1w (tumor bulk or TB), tumor-associated edema based on T2-FLAIR (ED), and total tumor volume (TV), as well as ratios of these tumor components. Based on gene expression where available (n = 91), pathway associations were assessed using a preranked gene set enrichment analysis. These results were put into context of molecular subtypes in GBM and prognostication. Volumetric features were significantly associated with diverse sets of biological processes (FDR < 0.05). While NE and TB were enriched for immune response pathways and apoptosis, CE was associated with signal transduction and protein folding processes. ED was mainly enriched for homeostasis and cell cycling pathways. ED was also the strongest predictor of molecular GBM subtypes (AUC = 0.61). CE was the strongest predictor of overall survival (C-index = 0.6; Noether test, p = 4x10 −4 ). GBM volumetric features extracted from MRI are significantly enriched for information about the biological state of a tumor that impacts patient outcomes. Clinical decision-support systems could exploit this information to develop personalized treatment strategies on the basis of noninvasive imaging. The online version of this article (doi:10.1186/s12885-016-2659-5) contains supplementary material, which is available to authorized users

  15. A new ODE tumor growth modeling based on tumor population dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Oroji, Amin; Omar, Mohd bin [Institute of Mathematical Sciences, Faculty of Science University of Malaya, 50603 Kuala Lumpur, Malaysia amin.oroji@siswa.um.edu.my, mohd@um.edu.my (Malaysia); Yarahmadian, Shantia [Mathematics Department Mississippi State University, USA Syarahmadian@math.msstate.edu (United States)

    2015-10-22

    In this paper a new mathematical model for the population of tumor growth treated by radiation is proposed. The cells dynamics population in each state and the dynamics of whole tumor population are studied. Furthermore, a new definition of tumor lifespan is presented. Finally, the effects of two main parameters, treatment parameter (q), and repair mechanism parameter (r) on tumor lifespan are probed, and it is showed that the change in treatment parameter (q) highly affects the tumor lifespan.

  16. A new ODE tumor growth modeling based on tumor population dynamics

    International Nuclear Information System (INIS)

    Oroji, Amin; Omar, Mohd bin; Yarahmadian, Shantia

    2015-01-01

    In this paper a new mathematical model for the population of tumor growth treated by radiation is proposed. The cells dynamics population in each state and the dynamics of whole tumor population are studied. Furthermore, a new definition of tumor lifespan is presented. Finally, the effects of two main parameters, treatment parameter (q), and repair mechanism parameter (r) on tumor lifespan are probed, and it is showed that the change in treatment parameter (q) highly affects the tumor lifespan

  17. The future of cytotoxic therapy: selective cytotoxicity based on biology is the key

    International Nuclear Information System (INIS)

    Bono, Johann S de; Tolcher, Anthony W; Rowinsky, Eric K

    2003-01-01

    Although mortality from breast cancer is decreasing, 15% or more of all patients ultimately develop incurable metastatic disease. It is hoped that new classes of target-based cytotoxic therapeutics will significantly improve the outcome for these patients. Many of these novel agents have displayed cytotoxic activity in preclinical and clinical evaluations, with little toxicity. Such preferential cytotoxicity against malignant tissues will remain tantamount to the Holy Grail in oncologic therapeutics because this portends improved patient tolerance and overall quality of life, and the capacity to deliver combination therapy. Combinations of such rationally designed target-based therapies are likely to be increasingly important in treating patients with breast carcinoma. The anticancer efficacy of these agents will, however, remain dependent on the involvement of the targets of these agents in the biology of the individual patient's disease. Results of DNA microarray analyses have raised high hopes that the analyses of RNA expression levels can successfully predict patient prognosis, and indicate that the ability to rapidly 'fingerprint' the oncogenic profile of a patient's tumor is now possible. It is hoped that these studies will support the identification of the molecules driving a tumor's growth, and the selection of the appropriate combination of targeted agents in the near future

  18. Three-dimensional printing of human skeletal muscle cells: An interdisciplinary approach for studying biological systems.

    Science.gov (United States)

    Bagley, James R; Galpin, Andrew J

    2015-01-01

    Interdisciplinary exploration is vital to education in the 21st century. This manuscript outlines an innovative laboratory-based teaching method that combines elements of biochemistry/molecular biology, kinesiology/health science, computer science, and manufacturing engineering to give students the ability to better conceptualize complex biological systems. Here, we utilize technology available at most universities to print three-dimensional (3D) scale models of actual human muscle cells (myofibers) out of bioplastic materials. The same methodological approach could be applied to nearly any cell type or molecular structure. This advancement is significant because historically, two-dimensional (2D) myocellular images have proven insufficient for detailed analysis of organelle organization and morphology. 3D imaging fills this void by providing accurate and quantifiable myofiber structural data. Manipulating tangible 3D models combats 2D limitation and gives students new perspectives and alternative learning experiences that may assist their understanding. This approach also exposes learners to 1) human muscle cell extraction and isolation, 2) targeted fluorescence labeling, 3) confocal microscopy, 4) image processing (via open-source software), and 5) 3D printing bioplastic scale-models (×500 larger than the actual cells). Creating these physical models may further student's interest in the invisible world of molecular and cellular biology. Furthermore, this interdisciplinary laboratory project gives instructors of all biological disciplines a new teaching tool to foster integrative thinking. © 2015 The International Union of Biochemistry and Molecular Biology.

  19. BOWiki: an ontology-based wiki for annotation of data and integration of knowledge in biology

    Directory of Open Access Journals (Sweden)

    Gregorio Sergio E

    2009-05-01

    Full Text Available Abstract Motivation Ontology development and the annotation of biological data using ontologies are time-consuming exercises that currently require input from expert curators. Open, collaborative platforms for biological data annotation enable the wider scientific community to become involved in developing and maintaining such resources. However, this openness raises concerns regarding the quality and correctness of the information added to these knowledge bases. The combination of a collaborative web-based platform with logic-based approaches and Semantic Web technology can be used to address some of these challenges and concerns. Results We have developed the BOWiki, a web-based system that includes a biological core ontology. The core ontology provides background knowledge about biological types and relations. Against this background, an automated reasoner assesses the consistency of new information added to the knowledge base. The system provides a platform for research communities to integrate information and annotate data collaboratively. Availability The BOWiki and supplementary material is available at http://www.bowiki.net/. The source code is available under the GNU GPL from http://onto.eva.mpg.de/trac/BoWiki.

  20. A systems biology approach to study systemic inflammation.

    Science.gov (United States)

    Chen, Bor-Sen; Wu, Chia-Chou

    2014-01-01

    Systemic inflammation needs a precise control on the sequence and magnitude of occurring events. The high throughput data on the host-pathogen interactions gives us an opportunity to have a glimpse on the systemic inflammation. In this article, a dynamic Candida albicans-zebrafish interactive infectious network is built as an example to demonstrate how systems biology approach can be used to study systematic inflammation. In particular, based on microarray data of C. albicans and zebrafish during infection, the hyphal growth, zebrafish, and host-pathogen intercellular PPI networks were combined to form an integrated infectious PPI network that helps us understand the systematic mechanisms underlying the pathogenicity of C. albicans and the immune response of the host. The signaling pathways for morphogenesis and hyphal growth of C. albicans were 2 significant interactions found in the intercellular PPI network. Two cellular networks were also developed corresponding to the different infection stages (adhesion and invasion), and then compared with each other to identify proteins to gain more insight into the pathogenic role of hyphal development in the C. albicans infection process. Important defense-related proteins in zebrafish were predicted using the same approach. This integrated network consisting of intercellular invasion and cellular defense processes during infection can improve medical therapies and facilitate development of new antifungal drugs.

  1. Animal tumors

    International Nuclear Information System (INIS)

    Gillette, E.L.

    1983-01-01

    There are few trained veterinary radiation oncologists and the expense of facilities has limited the extent to which this modality is used. In recent years, a few cobalt teletherapy units and megavoltage x-ray units have been employed in larger veterinary institutions. In addition, some radiation oncologists of human medical institutions are interested and willing to cooperate with veterinarians in the treatment of animal tumors. Carefully designed studies of the response of animal tumors to new modalities serve two valuable purposes. First, these studies may lead to improved tumor control in companion animals. Second, these studies may have important implications to the improvement of therapy of human tumors. Much remains to be learned of animal tumor biology so that appropriate model systems can be described for such studies. Many of the latter studies can be sponsored by agencies interested in the improvement of cancer management

  2. Endoscopic Endonasal Approach in Skull Base Chondrosarcoma Associated with Maffucci Syndrome: Case Series and Literature Review.

    Science.gov (United States)

    Beer-Furlan, André; Balsalobre, Leonardo; Vellutini, Eduardo A S; Stamm, Aldo C

    2016-01-01

    Maffucci syndrome is a nonhereditary disorder in which patients develop multiple enchondromas and cutaneous, visceral, or soft tissue hemangiomas. The potential malignant progression of enchondroma into a secondary chondrosarcoma is a well-known fact. Nevertheless, chondrosarcoma located at the skull base in patients with Maffuci syndrome is a very rare condition, with only 18 cases reported in the literature. We report 2 other cases successfully treated through an expanded endoscopic endonasal approach and discuss the condition based on the literature review. Skull base chondrosarcoma associated with Maffucci syndrome is a rare condition. The disease cannot be cured, therefore surgical treatment should be performed in symptomatic patients aiming for maximal tumor resection with function preservation. The endoscopic endonasal approach is a safe and reliable alternative for the management of these tumors. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Biological materials: a materials science approach.

    Science.gov (United States)

    Meyers, Marc A; Chen, Po-Yu; Lopez, Maria I; Seki, Yasuaki; Lin, Albert Y M

    2011-07-01

    The approach used by Materials Science and Engineering is revealing new aspects in the structure and properties of biological materials. The integration of advanced characterization, mechanical testing, and modeling methods can rationalize heretofore unexplained aspects of these structures. As an illustration of the power of this methodology, we apply it to biomineralized shells, avian beaks and feathers, and fish scales. We also present a few selected bioinspired applications: Velcro, an Al2O3-PMMA composite inspired by the abalone shell, and synthetic attachment devices inspired by gecko. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Tumor Engineering: The Other Face of Tissue Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Ghajar, Cyrus M; Bissell, Mina J

    2010-03-09

    Advances in tissue engineering have been accomplished for years by employing biomimetic strategies to provide cells with aspects of their original microenvironment necessary to reconstitute a unit of both form and function for a given tissue.We believe that the most critical hallmark of cancer is loss of integration of architecture and function; thus, it stands to reason that similar strategies could be employed to understand tumor biology. In this commentary, we discuss work contributed by Fischbach-Teschl and colleagues to this special issue of Tissue Engineering in the context of 'tumor engineering', that is, the construction of complex cell culture models that recapitulate aspects of the in vivo tumor microenvironment to study the dynamics of tumor development, progression, and therapy on multiple scales. We provide examples of fundamental questions that could be answered by developing such models, and encourage the continued collaboration between physical scientists and life scientists not only for regenerative purposes, but also to unravel the complexity that is the tumor microenvironment. In 1993, Vacanti and Langer cast a spotlight on the growing gap between patients in need of organ transplants and the amount of available donor organs; they reaffirmed that tissue engineering could eventually address this problem by 'applying principles of engineering and the life sciences toward the development of biological substitutes. Mortality figures and direct health care costs for cancer patients rival those of patients who experience organ failure. Cancer is the second leading cause of death in the United States (Source: American Cancer Society) and it is estimated that direct medical costs for cancer patients approach $100B yearly in the United States alone (Source: National Cancer Institute). In addition, any promising therapy that emerges from the laboratory costs roughly $1.7B to take from bench to bedside. Whereas we have indeed waged war on

  5. Bioinformatics approaches to single-cell analysis in developmental biology.

    Science.gov (United States)

    Yalcin, Dicle; Hakguder, Zeynep M; Otu, Hasan H

    2016-03-01

    Individual cells within the same population show various degrees of heterogeneity, which may be better handled with single-cell analysis to address biological and clinical questions. Single-cell analysis is especially important in developmental biology as subtle spatial and temporal differences in cells have significant associations with cell fate decisions during differentiation and with the description of a particular state of a cell exhibiting an aberrant phenotype. Biotechnological advances, especially in the area of microfluidics, have led to a robust, massively parallel and multi-dimensional capturing, sorting, and lysis of single-cells and amplification of related macromolecules, which have enabled the use of imaging and omics techniques on single cells. There have been improvements in computational single-cell image analysis in developmental biology regarding feature extraction, segmentation, image enhancement and machine learning, handling limitations of optical resolution to gain new perspectives from the raw microscopy images. Omics approaches, such as transcriptomics, genomics and epigenomics, targeting gene and small RNA expression, single nucleotide and structural variations and methylation and histone modifications, rely heavily on high-throughput sequencing technologies. Although there are well-established bioinformatics methods for analysis of sequence data, there are limited bioinformatics approaches which address experimental design, sample size considerations, amplification bias, normalization, differential expression, coverage, clustering and classification issues, specifically applied at the single-cell level. In this review, we summarize biological and technological advancements, discuss challenges faced in the aforementioned data acquisition and analysis issues and present future prospects for application of single-cell analyses to developmental biology. © The Author 2015. Published by Oxford University Press on behalf of the European

  6. Tumor targeted gene therapy

    International Nuclear Information System (INIS)

    Kang, Joo Hyun

    2006-01-01

    Knowledge of molecular mechanisms governing malignant transformation brings new opportunities for therapeutic intervention against cancer using novel approaches. One of them is gene therapy based on the transfer of genetic material to an organism with the aim of correcting a disease. The application of gene therapy to the cancer treatment had led to the development of new experimental approaches such as suicidal gene therapy, inhibition of oncogenes and restoration of tumor-suppressor genes. Suicidal gene therapy is based on the expression in tumor cells of a gene encoding an enzyme that converts a prodrug into a toxic product. Representative suicidal genes are Herpes simplex virus type 1 thymidine kinase (HSV1-tk) and cytosine deaminase (CD). Especially, physicians and scientists of nuclear medicine field take an interest in suicidal gene therapy because they can monitor the location and magnitude, and duration of expression of HSV1-tk and CD by PET scanner

  7. The Pleiotropic Role of L1CAM in Tumor Vasculature

    Directory of Open Access Journals (Sweden)

    Francesca Angiolini

    2017-01-01

    Full Text Available Angiogenesis, the formation of new vessels, is a key step in the development, invasion, and dissemination of solid tumors and, therefore, represents a viable target in the context of antitumor therapy. Indeed, antiangiogenic approaches have given promising results in preclinical models and entered the clinical practice. However, in patients, the results obtained so far with antiangiogenic drugs have not completely fulfilled expectations, especially because their effect has been transient with tumors developing resistance and evasion mechanisms. A better understanding of the mechanisms that underlie tumor vascularization and the functional regulation of cancer vessels is a prerequisite for the development of novel and alternative antiangiogenic treatments. The L1 cell adhesion molecule (L1CAM, a cell surface glycoprotein previously implicated in the development and plasticity of the nervous system, is aberrantly expressed in the vasculature of various cancer types. L1CAM plays multiple pro-angiogenic roles in the endothelial cells of tumor-associated vessels, thus emerging as a potential therapeutic target. In addition, L1CAM prevents the maturation of cancer vasculature and its inhibition promotes vessel normalization, a process that is thought to improve the therapeutic response of tumors to cytotoxic drugs. We here provide an overview on tumor angiogenesis and antiangiogenic therapies and summarize the current knowledge on the biological role of L1CAM in cancer vasculature. Finally, we highlight the clinical implications of targeting L1CAM as a novel antiangiogenic and vessel-normalizing approach.

  8. Synthetic biology approaches to fluorinated polyketides.

    Science.gov (United States)

    Thuronyi, Benjamin W; Chang, Michelle C Y

    2015-03-17

    The catalytic diversity of living systems offers a broad range of opportunities for developing new methods to produce small molecule targets such as fuels, materials, and pharmaceuticals. In addition to providing cost-effective and renewable methods for large-scale commercial processes, the exploration of the unusual chemical phenotypes found in living organisms can also enable the expansion of chemical space for discovery of novel function by combining orthogonal attributes from both synthetic and biological chemistry. In this context, we have focused on the development of new fluorine chemistry using synthetic biology approaches. While fluorine has become an important feature in compounds of synthetic origin, the scope of biological fluorine chemistry in living systems is limited, with fewer than 20 organofluorine natural products identified to date. In order to expand the diversity of biosynthetically accessible organofluorines, we have begun to develop methods for the site-selective introduction of fluorine into complex natural products by engineering biosynthetic machinery to incorporate fluorinated building blocks. To gain insight into how both enzyme active sites and metabolic pathways can be evolved to manage and select for fluorinated compounds, we have studied one of the only characterized natural hosts for organofluorine biosynthesis, the soil microbe Streptomyces cattleya. This information provides a template for designing engineered organofluorine enzymes, pathways, and hosts and has allowed us to initiate construction of enzymatic and cellular pathways for the production of fluorinated polyketides.

  9. The role of imaging for translational research in bone tumors

    International Nuclear Information System (INIS)

    Benassi, Maria Serena; Rimondi, Eugenio; Balladelli, Alba; Ghinelli, Cristina; Magagnoli, Giovanna; Vanel, Daniel

    2013-01-01

    Sarcomas are a heterogeneous group of rare connective tissue tumors, representing 1% of adult and 15% of childhood cancers for which biological and pathological information is still incomplete. In bone tumors patients with metastatic disease at onset, those who relapse and those with post-surgical secondary lesions still have a dismal outcome because of poor response to current therapies. Different molecular biology approaches have identified activated cell signalling pathways or specific molecular endpoints that may be considered potential drug targets or markers useful for diagnosis/prognosis in musculoskeletal pathology. Recently, advances in the field of molecular imaging allow visualization of cell and metabolic functions with the use of targets that include cell membrane receptors, enzymes of intracellular transport. Moreover advanced non-invasive newer imaging techniques like 18-FDG PET, quantitative dynamic-contrast MR imaging, diffusion weighted imaging have all shown a potential in distinguish malignant from benign lesions, in revealing the efficacy of therapy in tumors, the onset of recurrence and a good reliability in reckoning the percentage of necrosis in Ewing sarcoma and osteosarcoma. Thus, in vivo detection of imaging cancer biomarkers may be useful to better characterize those complex pathologic processes, such as apoptosis, proliferation and angiogenesis that determine tumor aggressiveness, providing not only complementary information of prognostic metabolic indicators, but also data in real-time on the efficacy of the treatment through the modulation of the cell metabolism

  10. The role of imaging for translational research in bone tumors

    Energy Technology Data Exchange (ETDEWEB)

    Benassi, Maria Serena, E-mail: mariaserena.benassi@ior.it [Laboratory of Experimental Oncology, Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna (Italy); Rimondi, Eugenio, E-mail: eugenio.rimondi@ior.it [Radiology, Istituto Ortopedico Rizzoli, Bologna (Italy); Balladelli, Alba, E-mail: alba.balladelli@ior.it [Laboratory of Experimental Oncology, Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna (Italy); Ghinelli, Cristina, E-mail: cristina.ghinelli@ior.it [Laboratory of Experimental Oncology, Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna (Italy); Magagnoli, Giovanna, E-mail: giovanna.magagnoli@ior.it [Laboratory of Experimental Oncology, Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna (Italy); Vanel, Daniel, E-mail: daniel.vanel@ior.it [Bone Tumor Center, Istituto Ortopedico Rizzoli, Bologna (Italy)

    2013-12-01

    Sarcomas are a heterogeneous group of rare connective tissue tumors, representing 1% of adult and 15% of childhood cancers for which biological and pathological information is still incomplete. In bone tumors patients with metastatic disease at onset, those who relapse and those with post-surgical secondary lesions still have a dismal outcome because of poor response to current therapies. Different molecular biology approaches have identified activated cell signalling pathways or specific molecular endpoints that may be considered potential drug targets or markers useful for diagnosis/prognosis in musculoskeletal pathology. Recently, advances in the field of molecular imaging allow visualization of cell and metabolic functions with the use of targets that include cell membrane receptors, enzymes of intracellular transport. Moreover advanced non-invasive newer imaging techniques like 18-FDG PET, quantitative dynamic-contrast MR imaging, diffusion weighted imaging have all shown a potential in distinguish malignant from benign lesions, in revealing the efficacy of therapy in tumors, the onset of recurrence and a good reliability in reckoning the percentage of necrosis in Ewing sarcoma and osteosarcoma. Thus, in vivo detection of imaging cancer biomarkers may be useful to better characterize those complex pathologic processes, such as apoptosis, proliferation and angiogenesis that determine tumor aggressiveness, providing not only complementary information of prognostic metabolic indicators, but also data in real-time on the efficacy of the treatment through the modulation of the cell metabolism.

  11. Systems biology approach to developing S2RM-based "systemstherapeutics" and naturally induced pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The degree to, and the mechanisms through, whichstem cells are able to build, maintain, and heal the bodyhave only recently begun to be understood. Much of thestem cell's power resides in the release of a multitudeof molecules, called stem cell released molecules (SRM).A fundamentally new type of therapeutic, namely"systems therapeutic", can be realized by reverseengineering the mechanisms of the SRM processes.Recent data demonstrates that the composition of theSRM is different for each type of stem cell, as well asfor different states of each cell type. Although systemsbiology has been successfully used to analyze multiplepathways, the approach is often used to develop a smallmolecule interacting at only one pathway in the system.A new model is emerging in biology where systemsbiology is used to develop a new technology actingat multiple pathways called "systems therapeutics". Anatural set of healing pathways in the human that usesSRM is instructive and of practical use in developingsystems therapeutics. Endogenous SRM processes inthe human body use a combination of SRM from twoor more stem cell types, designated as S2RM, doing sounder various state dependent conditions for each celltype. Here we describe our approach in using statedependentSRM from two or more stem cell types,S2RM technology, to develop a new class of therapeuticscalled "systems therapeutics." Given the ubiquitous andpowerful nature of innate S2RM-based healing in thehuman body, this "systems therapeutic" approach usingS2RM technology will be important for the developmentof anti-cancer therapeutics, antimicrobials, woundcare products and procedures, and a number of othertherapeutics for many indications.

  12. A comparison of physically and radiobiologically based optimization for IMRT

    International Nuclear Information System (INIS)

    Jones, Lois; Hoban, Peter

    2002-01-01

    Many optimization techniques for intensity modulated radiotherapy have now been developed. The majority of these techniques including all the commercial systems that are available are based on physical dose methods of assessment. Some techniques have also been based on radiobiological models. None of the radiobiological optimization techniques however have assessed the clinically realistic situation of considering both tumor and normal cells within the target volume. This study considers a ratio-based fluence optimizing technique to compare a dose-based optimization method described previously and two biologically based models. The biologically based methods use the values of equivalent uniform dose calculated for the tumor cells and integral biological effective dose for normal cells. The first biologically based method includes only tumor cells in the target volume while the second considers both tumor and normal cells in the target volume. All three methods achieve good conformation to the target volume. The biologically based optimization without the normal tissue in the target volume shows a high dose region in the center of the target volume while this is reduced when the normal tissues are also considered in the target volume. This effect occurs because the normal tissues in the target volume require the optimization to reduce the dose and therefore limit the maximum dose to that volume

  13. A new anti-tumor strategy based on in vivo tumstatin overexpression after plasmid electrotransfer in muscle

    Energy Technology Data Exchange (ETDEWEB)

    Thevenard, Jessica, E-mail: jessica.thevenard@univ-reims.fr [FRE CNRS/URCA 3481, University of Reims Champagne-Ardenne, 51 rue Cognacq Jay, F-51095 Reims (France); Ramont, Laurent, E-mail: lramont@chu-reims.fr [FRE CNRS/URCA 3481, University of Reims Champagne-Ardenne, 51 rue Cognacq Jay, F-51095 Reims (France); CHU de Reims, Avenue du Général Koenig, F-51092 Reims (France); Mir, Lluis M., E-mail: luis.mir@igr.fr [CNRS, UMR 8203, Institut Gustave Roussy, 114, Rue Edouard Vaillant, F-94805 Villejuif Cedex (France); Université Paris-Sud, UMR 8203, Institut Gustave Roussy, 114, Rue Edouard Vaillant, F-94405 Orsay Cedex (France); Dupont-Deshorgue, Aurélie, E-mail: aurelie.dupont@univ-reims.fr [FRE CNRS/URCA 3481, University of Reims Champagne-Ardenne, 51 rue Cognacq Jay, F-51095 Reims (France); Maquart, François-Xavier, E-mail: fmaquart@chu-reims.fr [FRE CNRS/URCA 3481, University of Reims Champagne-Ardenne, 51 rue Cognacq Jay, F-51095 Reims (France); CHU de Reims, Avenue du Général Koenig, F-51092 Reims (France); Monboisse, Jean-Claude, E-mail: jc.monboisse@univ-reims.fr [FRE CNRS/URCA 3481, University of Reims Champagne-Ardenne, 51 rue Cognacq Jay, F-51095 Reims (France); CHU de Reims, Avenue du Général Koenig, F-51092 Reims (France); Brassart-Pasco, Sylvie, E-mail: sylvie.brassart-pasco@univ-reims.fr [FRE CNRS/URCA 3481, University of Reims Champagne-Ardenne, 51 rue Cognacq Jay, F-51095 Reims (France)

    2013-03-22

    Highlights: ► A new therapeutic strategy based on tumstatin in vivo overexpression is proposed. ► pVAX1©–tumstatin electrotransfer in muscle mediates protein expression in muscle. ► A substantial expression of tumstatin is detected in the serum of electrotransfected mice. ► Tumstatin overexpression decreases tumor growth and increases mouse survival. -- Abstract: The NC1 domains from the different α(IV) collagen chains were found to exert anti-tumorigenic and/or anti-angiogenic activities. A limitation to the therapeutic use of these matrikines is the large amount of purified recombinant proteins, in the milligram range in mice that should be administered daily throughout the experimental procedures. In the current study, we developed a new therapeutic approach based on tumstatin (NC1α3(IV)) overexpression in vivo in a mouse melanoma model. Gene electrotransfer of naked plasmid DNA (pDNA) is particularly attractive because of its simplicity, its lack of immune responsiveness and its safety. The pDNA electrotransfer in muscle mediates a substantial gene expression that lasts several months. A pVAX1© vector containing the tumstatin cDNA was injected into the legs of C57BL/6 mice and submitted to electrotranfer. Sera were collected at different times and tumstatin was quantified by ELISA. Tumstatin secretion reached a plateau at day 21 with an expression level of 12 μg/mL. For testing the effects of tumstatin expression on tumor growth in vivo, B16F1 melanoma cells were subcutaneously injected in mice 7 days after empty pVAX1© (Mock) or pVAX1©–tumstatin electrotransfer. Tumstatin expression triggered a large decrease in tumor growth and an increase in mouse survival. This new therapeutic approach seems promising to inhibit tumor progression in vivo.

  14. A new anti-tumor strategy based on in vivo tumstatin overexpression after plasmid electrotransfer in muscle

    International Nuclear Information System (INIS)

    Thevenard, Jessica; Ramont, Laurent; Mir, Lluis M.; Dupont-Deshorgue, Aurélie; Maquart, François-Xavier; Monboisse, Jean-Claude; Brassart-Pasco, Sylvie

    2013-01-01

    Highlights: ► A new therapeutic strategy based on tumstatin in vivo overexpression is proposed. ► pVAX1©–tumstatin electrotransfer in muscle mediates protein expression in muscle. ► A substantial expression of tumstatin is detected in the serum of electrotransfected mice. ► Tumstatin overexpression decreases tumor growth and increases mouse survival. -- Abstract: The NC1 domains from the different α(IV) collagen chains were found to exert anti-tumorigenic and/or anti-angiogenic activities. A limitation to the therapeutic use of these matrikines is the large amount of purified recombinant proteins, in the milligram range in mice that should be administered daily throughout the experimental procedures. In the current study, we developed a new therapeutic approach based on tumstatin (NC1α3(IV)) overexpression in vivo in a mouse melanoma model. Gene electrotransfer of naked plasmid DNA (pDNA) is particularly attractive because of its simplicity, its lack of immune responsiveness and its safety. The pDNA electrotransfer in muscle mediates a substantial gene expression that lasts several months. A pVAX1© vector containing the tumstatin cDNA was injected into the legs of C57BL/6 mice and submitted to electrotranfer. Sera were collected at different times and tumstatin was quantified by ELISA. Tumstatin secretion reached a plateau at day 21 with an expression level of 12 μg/mL. For testing the effects of tumstatin expression on tumor growth in vivo, B16F1 melanoma cells were subcutaneously injected in mice 7 days after empty pVAX1© (Mock) or pVAX1©–tumstatin electrotransfer. Tumstatin expression triggered a large decrease in tumor growth and an increase in mouse survival. This new therapeutic approach seems promising to inhibit tumor progression in vivo

  15. Tumor tracking and motion compensation with an adaptive tumor tracking system (ATTS): System description and prototype testing

    International Nuclear Information System (INIS)

    Wilbert, Juergen; Meyer, Juergen; Baier, Kurt; Guckenberger, Matthias; Herrmann, Christian; Hess, Robin; Janka, Christian; Ma Lei; Mersebach, Torben; Richter, Anne; Roth, Michael; Schilling, Klaus; Flentje, Michael

    2008-01-01

    A novel system for real-time tumor tracking and motion compensation with a robotic HexaPOD treatment couch is described. The approach is based on continuous tracking of the tumor motion in portal images without implanted fiducial markers, using the therapeutic megavoltage beam, and tracking of abdominal breathing motion with optical markers. Based on the two independently acquired data sets the table movements for motion compensation are calculated. The principle of operation of the entire prototype system is detailed first. In the second part the performance of the HexaPOD couch was investigated with a robotic four-dimensional-phantom capable of simulating real patient tumor trajectories in three-dimensional space. The performance and limitations of the HexaPOD table and the control system were characterized in terms of its dynamic behavior. The maximum speed and acceleration of the HexaPOD were 8 mm/s and 34.5 mm/s 2 in the lateral direction, and 9.5 mm/s and 29.5 mm/s 2 in longitudinal and anterior-posterior direction, respectively. Base line drifts of the mean tumor position of realistic lung tumor trajectories could be fully compensated. For continuous tumor tracking and motion compensation a reduction of tumor motion up to 68% of the original amplitude was achieved. In conclusion, this study demonstrated that it is technically feasible to compensate breathing induced tumor motion in the lung with the adaptive tumor tracking system

  16. Nutritional Systems Biology

    DEFF Research Database (Denmark)

    Jensen, Kasper

    and network biology has the potential to increase our understanding of how small molecules affect metabolic pathways and homeostasis, how this perturbation changes at the disease state, and to what extent individual genotypes contribute to this. A fruitful strategy in approaching and exploring the field...... biology research. The paper also shows as a proof-of-concept that a systems biology approach to diet is meaningful and demonstrates some basic principles on how to work with diet systematic. The second chapter of this thesis we developed the resource NutriChem v1.0. A foodchemical database linking...... sites of diet on the disease pathway. We propose a framework for interrogating the critical targets in colon cancer process and identifying plant-based dietary interventions as important modifiers using a systems chemical biology approach. The fifth chapter of the thesis is on discovering of novel anti...

  17. Lapatinib Plasma and Tumor Concentrations and Effects on HER Receptor Phosphorylation in Tumor.

    Directory of Open Access Journals (Sweden)

    Neil L Spector

    Full Text Available The paradigm shift in cancer treatment from cytotoxic drugs to tumor targeted therapies poses new challenges, including optimization of dose and schedule based on a biologically effective dose, rather than the historical maximum tolerated dose. Optimal dosing is currently determined using concentrations of tyrosine kinase inhibitors in plasma as a surrogate for tumor concentrations. To examine this plasma-tumor relationship, we explored the association between lapatinib levels in tumor and plasma in mice and humans, and those effects on phosphorylation of human epidermal growth factor receptors (HER in human tumors.Mice bearing BT474 HER2+ human breast cancer xenografts were dosed once or twice daily (BID with lapatinib. Drug concentrations were measured in blood, tumor, liver, and kidney. In a randomized phase I clinical trial, 28 treatment-naïve female patients with early stage HER2+ breast cancer received lapatinib 1000 or 1500 mg once daily (QD or 500 mg BID before evaluating steady-state lapatinib levels in plasma and tumor.In mice, lapatinib levels were 4-fold higher in tumor than blood with a 4-fold longer half-life. Tumor concentrations exceeded the in vitro IC90 (~ 900 nM or 500 ng/mL for inhibition of HER2 phosphorylation throughout the 12-hour dosing interval. In patients, tumor levels were 6- and 10-fold higher with QD and BID dosing, respectively, compared to plasma trough levels. The relationship between tumor and plasma concentration was complex, indicating multiple determinants. HER receptor phosphorylation varied depending upon lapatinib tumor concentrations, suggestive of changes in the repertoire of HER homo- and heterodimers.Plasma lapatinib concentrations underestimated tumor drug levels, suggesting that optimal dosing should be focused on the site of action to avoid to inappropriate dose escalation. Larger clinical trials are required to determine optimal dose and schedule to achieve tumor concentrations that maximally

  18. Endoscopic endonasal approach for the treatment of a large clival giant cell tumor complicated by an intraoperative internal carotid artery rupture

    Directory of Open Access Journals (Sweden)

    Iacoangeli M

    2013-01-01

    Full Text Available Maurizio Iacoangeli,1 Alessandro Di Rienzo,1 Massimo Re,2 Lorenzo Alvaro,1 Niccolò Nocchi,1 Maurizio Gladi,1 Maurizio De Nicola,3 Massimo Scerrati11Department of Neurosurgery, Università Politecnica delle Marche, Umberto I General Hospital, Ancona, Italy; 2Department of Ear, Nose, and Throat Surgery, Università Politecnica delle Marche, Umberto I General Hospital, Ancona, Italy; 3Department of Radiology, Interventional Radiology Section, Università Politecnica delle Marche, Umberto I General Hospital, Ancona, ItalyAbstract: Giant cell tumors (GCTs are primary bone neoplasms that rarely involve the skull base. These lesions are usually locally aggressive and require complete removal, including the surrounding apparently healthy bone, to provide the best chance of cure. GCTs, as well as other lesions located in the clivus, can nowadays be treated by a minimally invasive fully endoscopic extended endonasal approach. This approach ensures a more direct route to the craniovertebral junction than other possible approaches (transfacial, extended lateral, and posterolateral approaches. The case reported is a clival GCT operated on by an extended endonasal approach that provides another contribution on how to address one of the most feared complications attributed to this approach: a massive bleed due to an internal carotid artery injury.Keywords: clival giant cell tumor, endoscopic endonasal approach, internal carotid artery injury, minimally invasive surgery

  19. Tumor-induced Osteomalacia: A Sherlock Holmes Approach to Diagnosis and Management.

    Science.gov (United States)

    Chanukya, G V; Mengade, Manoj; Goud, Jagadishwar; Rao, I Satish; Jain, Anuj

    2017-01-01

    Tumor-induced osteomalacia (TIO) is a subtype of paraneoplastic syndrome associated with hypophosphatemia due to renal phosphate wasting in adults. The humoral factor responsible for clinical picture known as fibroblast growth factor 23 (FGF23) is most often secreted by benign yet elusive mesenchymal tumors, difficult to localize, access, and excise completely; rarely, they are multiple and malignant. Paradoxical inappropriately normal or low levels of 1,25-dihydroxyvitamin D in the setting of hypophosphatemia is due to suppressive effect of FGF23. The following case report describes a 31-year-old male with symptoms of multiple fractures and severe muscle weakness, hypophosphatemia with elevated tubular maximum reabsorption of phosphate/glomerular filtration rate with low active Vitamin D, prompted assay for C-terminal FGF23, which was elevated multifold. The tumor was localized with whole body 68-Gadolinium DOTANOC positron emission tomography-computed tomography fusion scan in the left nasal cavity with ipsilateral maxillary antrum. It was excised through transnasal approach and found to be mesenchymal tumor on histopathology. At 1 week of follow-up, serum phosphate became normalized without supplementation. The patient is in follow-up for further measurement of FGF23 level and signs of recurrence. Because the occurrence of such a condition is rare and most often misdiagnosed or mismanaged for years, it is important to recognize this condition in differential diagnosis as potential curative surgical option is a reality.

  20. Tumor Heterogeneity: Mechanisms and Bases for a Reliable Application of Molecular Marker Design

    Directory of Open Access Journals (Sweden)

    Salvador J. Diaz-Cano

    2012-02-01

    Full Text Available Tumor heterogeneity is a confusing finding in the assessment of neoplasms, potentially resulting in inaccurate diagnostic, prognostic and predictive tests. This tumor heterogeneity is not always a random and unpredictable phenomenon, whose knowledge helps designing better tests. The biologic reasons for this intratumoral heterogeneity would then be important to understand both the natural history of neoplasms and the selection of test samples for reliable analysis. The main factors contributing to intratumoral heterogeneity inducing gene abnormalities or modifying its expression include: the gradient ischemic level within neoplasms, the action of tumor microenvironment (bidirectional interaction between tumor cells and stroma, mechanisms of intercellular transference of genetic information (exosomes, and differential mechanisms of sequence-independent modifications of genetic material and proteins. The intratumoral heterogeneity is at the origin of tumor progression and it is also the byproduct of the selection process during progression. Any analysis of heterogeneity mechanisms must be integrated within the process of segregation of genetic changes in tumor cells during the clonal expansion and progression of neoplasms. The evaluation of these mechanisms must also consider the redundancy and pleiotropism of molecular pathways, for which appropriate surrogate markers would support the presence or not of heterogeneous genetics and the main mechanisms responsible. This knowledge would constitute a solid scientific background for future therapeutic planning.

  1. Nanobody-based cancer therapy of solid tumors

    NARCIS (Netherlands)

    Kijanka, Marta|info:eu-repo/dai/nl/328212792; Dorresteijn, Bram|info:eu-repo/dai/nl/31401635X; Oliveira, Sabrina; van Bergen en Henegouwen, Paul M P|info:eu-repo/dai/nl/071919481

    The development of tumor-targeted therapies using monoclonal antibodies has been successful during the last 30 years. Nevertheless, the efficacy of antibody-based therapy is still limited and further improvements are eagerly awaited. One of the promising novel developments that may overcome the

  2. SU-F-207-06: CT-Based Assessment of Tumor Volume in Malignant Pleural Mesothelioma

    International Nuclear Information System (INIS)

    Qayyum, F; Armato, S; Straus, C; Husain, A; Vigneswaran, W; Kindler, H

    2015-01-01

    Purpose: To determine the potential utility of computed tomography (CT) scans in the assessment of physical tumor bulk in malignant pleural mesothelioma patients. Methods: Twenty-eight patients with malignant pleural mesothelioma were used for this study. A CT scan was acquired for each patient prior to surgical resection of the tumor (median time between scan and surgery: 27 days). After surgery, the ex-vivo tumor volume was measured by a pathologist using a water displacement method. Separately, a radiologist identified and outlined the tumor boundary on each CT section that demonstrated tumor. These outlines then were analyzed to determine the total volume of disease present, the number of sections with outlines, and the mean volume of disease per outlined section. Subsets of the initial patient cohort were defined based on these parameters, i.e. cases with at least 30 sections of disease with a mean disease volume of at least 3mL per section. For each subset, the R- squared correlation between CT-based tumor volume and physical ex-vivo tumor volume was calculated. Results: The full cohort of 28 patients yielded a modest correlation between CT-based tumor volume and the ex-vivo tumor volume with an R-squared value of 0.66. In general, as the mean tumor volume per section increased, the correlation of CT-based volume with the physical tumor volume improved substantially. For example, when cases with at least 40 CT sections presenting a mean of at least 2mL of disease per section were evaluated (n=20) the R-squared correlation increased to 0.79. Conclusion: While image-based volumetry for mesothelioma may not generally capture physical tumor volume as accurately as one might expect, there exists a set of conditions in which CT-based volume is highly correlated with the physical tumor volume. SGA receives royalties and licensing fees through the University of Chicago for computer-aided diagnosis technology

  3. SU-F-207-06: CT-Based Assessment of Tumor Volume in Malignant Pleural Mesothelioma

    Energy Technology Data Exchange (ETDEWEB)

    Qayyum, F; Armato, S; Straus, C; Husain, A; Vigneswaran, W; Kindler, H [The University of Chicago, Chicago, IL (United States)

    2015-06-15

    Purpose: To determine the potential utility of computed tomography (CT) scans in the assessment of physical tumor bulk in malignant pleural mesothelioma patients. Methods: Twenty-eight patients with malignant pleural mesothelioma were used for this study. A CT scan was acquired for each patient prior to surgical resection of the tumor (median time between scan and surgery: 27 days). After surgery, the ex-vivo tumor volume was measured by a pathologist using a water displacement method. Separately, a radiologist identified and outlined the tumor boundary on each CT section that demonstrated tumor. These outlines then were analyzed to determine the total volume of disease present, the number of sections with outlines, and the mean volume of disease per outlined section. Subsets of the initial patient cohort were defined based on these parameters, i.e. cases with at least 30 sections of disease with a mean disease volume of at least 3mL per section. For each subset, the R- squared correlation between CT-based tumor volume and physical ex-vivo tumor volume was calculated. Results: The full cohort of 28 patients yielded a modest correlation between CT-based tumor volume and the ex-vivo tumor volume with an R-squared value of 0.66. In general, as the mean tumor volume per section increased, the correlation of CT-based volume with the physical tumor volume improved substantially. For example, when cases with at least 40 CT sections presenting a mean of at least 2mL of disease per section were evaluated (n=20) the R-squared correlation increased to 0.79. Conclusion: While image-based volumetry for mesothelioma may not generally capture physical tumor volume as accurately as one might expect, there exists a set of conditions in which CT-based volume is highly correlated with the physical tumor volume. SGA receives royalties and licensing fees through the University of Chicago for computer-aided diagnosis technology.

  4. Biologically based neural network for mobile robot navigation

    Science.gov (United States)

    Torres Muniz, Raul E.

    1999-01-01

    The new tendency in mobile robots is to crete non-Cartesian system based on reactions to their environment. This emerging technology is known as Evolutionary Robotics, which is combined with the Biorobotic field. This new approach brings cost-effective solutions, flexibility, robustness, and dynamism into the design of mobile robots. It also provides fast reactions to the sensory inputs, and new interpretation of the environment or surroundings of the mobile robot. The Subsumption Architecture (SA) and the action selection dynamics developed by Brooks and Maes, respectively, have successfully obtained autonomous mobile robots initiating this new trend of the Evolutionary Robotics. Their design keeps the mobile robot control simple. This work present a biologically inspired modification of these schemes. The hippocampal-CA3-based neural network developed by Williams Levy is used to implement the SA, while the action selection dynamics emerge from iterations of the levels of competence implemented with the HCA3. This replacement by the HCA3 results in a closer biological model than the SA, combining the Behavior-based intelligence theory with neuroscience. The design is kept simple, and it is implemented in the Khepera Miniature Mobile Robot. The used control scheme obtains an autonomous mobile robot that can be used to execute a mail delivery system and surveillance task inside a building floor.

  5. Biological therapies for spondyloarthritis.

    Science.gov (United States)

    Bruner, Vincenzo; Atteno, Mariangela; Spanò, Angelo; Scarpa, Raffaele; Peluso, Rosario

    2014-06-01

    Biological therapies and new imaging techniques have changed the therapeutic and diagnostic approach to spondyloarthritis. In patients with axial spondyloarthritis, tumor necrosis factor α (TNFα) inhibitor treatment is currently the only effective therapy in patients for whom conventional therapy with nonsteroidal anti-inflammatory drugs (NSAIDs) has failed. TNFα inhibitor treatment is more effective in preventing articular damage in peripheral joints than in axial ones. It is important to treat patients at an early stage of disease to reduce disease progression; moreover it is necessary to identify causes of therapy inefficacy in preventing joint damage in the axial subset.

  6. Approaches to modernize the combination drug development paradigm

    Directory of Open Access Journals (Sweden)

    Daphne Day

    2016-10-01

    Full Text Available Abstract Recent advances in genomic sequencing and omics-based capabilities are uncovering tremendous therapeutic opportunities and rapidly transforming the field of cancer medicine. Molecularly targeted agents aim to exploit key tumor-specific vulnerabilities such as oncogenic or non-oncogenic addiction and synthetic lethality. Additionally, immunotherapies targeting the host immune system are proving to be another promising and complementary approach. Owing to substantial tumor genomic and immunologic complexities, combination strategies are likely to be required to adequately disrupt intricate molecular interactions and provide meaningful long-term benefit to patients. To optimize the therapeutic success and application of combination therapies, systematic scientific discovery will need to be coupled with novel and efficient clinical trial approaches. Indeed, a paradigm shift is required to drive precision medicine forward, from the traditional “drug-centric” model of clinical development in pursuit of small incremental benefits in large heterogeneous groups of patients, to a “strategy-centric” model to provide customized transformative treatments in molecularly stratified subsets of patients or even in individual patients. Crucially, to combat the numerous challenges facing combination drug development—including our growing but incomplete understanding of tumor biology, technical and informatics limitations, and escalating financial costs—aligned goals and multidisciplinary collaboration are imperative to collectively harness knowledge and fuel continual innovation.

  7. Immunological considerations of modern animal models of malignant primary brain tumors

    Directory of Open Access Journals (Sweden)

    James C David

    2009-10-01

    Full Text Available Abstract Recent advances in animal models of glioma have facilitated a better understanding of biological mechanisms underlying gliomagenesis and glioma progression. The limitations of existing therapy, including surgery, chemotherapy, and radiotherapy, have prompted numerous investigators to search for new therapeutic approaches to improve quantity and quality of survival from these aggressive lesions. One of these approaches involves triggering a tumor specific immune response. However, a difficulty in this approach is the the scarcity of animal models of primary CNS neoplasms which faithfully recapitulate these tumors and their interaction with the host's immune system. In this article, we review the existing methods utilized to date for modeling gliomas in rodents, with a focus on the known as well as potential immunological aspects of these models. As this review demonstrates, many of these models have inherent immune system limitations, and the impact of these limitations on studies on the influence of pre-clinical therapeutics testing warrants further attention.

  8. Electromagnetic energy as a bridge between atomic and cellular levels in the genetics approach to cancer treatment.

    Science.gov (United States)

    Tofani, Santi

    2015-01-01

    Literature on magnetic fields (MF) and gene expression, as well as on DNA damage, supports the hypothesis that electromagnetic energy may act at atomic level influencing genetic stability. According to quantum physics, MF act on the interconversion of singlet and triplet spin states, and therefore on genetic instability, activating oxidative processes connected to biological free radicals formation, particularly ROS. In the above frame, the results of in vitro and in vivo laboratory trials have been analyzed. The use of a static MF amplitude modulated by 50 Hz MF, with a time average total intensity of 5.5 mT, has been shown to influence tumor cell functions such as cell proliferation, apoptosis, p53 expression, inhibition of tumor growth and prolongation of survival in animals, evidence that MF can be more effective than chemotherapy (cyclophosphamide) in inhibiting metastatic spread and growth, having synergistic activity with chemotherapy (Cis-platin), and no observable side effects or toxicity in animals or in humans. The beneficial biological/clinical effects observed, without any adverse effects, have been confirmed by various authors and augur well for the potentiality of this new approach to treat genetically based diseases like cancer. Further studies are needed to develop a quantum physics approach to biology, allowing a stable bridge to be built between atomic and cellular levels, therefore developing quantum biology.

  9. The 2017 World Health Organization classification of tumors of the pituitary gland: a summary.

    Science.gov (United States)

    Lopes, M Beatriz S

    2017-10-01

    The 4th edition of the World Health Organization (WHO) classification of endocrine tumors has been recently released. In this new edition, major changes are recommended in several areas of the classification of tumors of the anterior pituitary gland (adenophypophysis). The scope of the present manuscript is to summarize these recommended changes, emphasizing a few significant topics. These changes include the following: (1) a novel approach for classifying pituitary neuroendocrine tumors according to pituitary adenohypophyseal cell lineages; (2) changes to the histological grading of pituitary neuroendocrine tumors with the elimination of the term "atypical adenoma;" and (3) introduction of new entities like the pituitary blastoma and re-definition of old entities like the null-cell adenoma. This new classification is very practical and mostly based on immunohistochemistry for pituitary hormones, pituitary-specific transcription factors, and other immunohistochemical markers commonly used in pathology practice, not requiring routine ultrastructural analysis of the tumors. Evaluation of tumor proliferation potential, by mitotic count and Ki-67 labeling index, and tumor invasion is strongly recommended on individual case basis to identify clinically aggressive adenomas. In addition, the classification offers the treating clinical team information on tumor prognosis by identifying specific variants of adenomas associated with an elevated risk for recurrence. Changes in the classification of non-neuroendocrine tumors are also proposed, in particular those tumors arising in the posterior pituitary including pituicytoma, granular cell tumor of the posterior pituitary, and spindle cell oncocytoma. These changes endorse those previously published in the 2016 WHO classification of CNS tumors. Other tumors arising in the sellar region are also reviewed in detail including craniopharyngiomas, mesenchymal and stromal tumors, germ cell tumors, and hematopoietic tumors. It is

  10. Biological behavior of oral and perioral mast cell tumors in dogs: 44 cases (1996-2006).

    Science.gov (United States)

    Hillman, Lorin A; Garrett, Laura D; de Lorimier, Louis-Philippe; Charney, Sarah C; Borst, Luke B; Fan, Timothy M

    2010-10-15

    To describe clinical outcome of dogs with mast cell tumors (MCTs) arising from the oral mucosa, oral mucocutaneous junction, or perioral region of the muzzle and evaluate the potential role of the chemokine receptor type 7 (CCR7) in the biological behavior of these tumors. Retrospective case series. 44 dogs with MCTs of the oral mucosa (n=14), oral mucocutaneous junction (19), or perioral region of the muzzle (11). Medical records were reviewed for information on signalment, regional metastasis, treatments, cause of death, and survival time. Twenty of the 44 cases had stored histologic samples available for immunohistochemical staining for CCR7 For all dogs, median survival time was 52 months. Twenty-six (59%) dogs had regional lymph node metastasis on admission. Median survival time for dogs with lymph node metastasis was 14 months, whereas median survival time was not reached for dogs without lymph node metastasis. Intensity of staining for CCR7 was not significantly associated with the presence of regional lymph node metastasis or survival time. Results suggested that in dogs with MCTs arising from the oral mucosa, oral mucocutaneous junction, or perioral region of the muzzle, the presence of regional lymph node metastasis at the time of diagnosis was a negative prognostic factor. However, prolonged survival times could be achieved with treatment. In addition, CCR7 expression in the primary tumor was not significantly associated with the presence of regional lymph node metastasis or survival time.

  11. Assessing Probabilistic Risk Assessment Approaches for Insect Biological Control Introductions

    Directory of Open Access Journals (Sweden)

    Leyla V. Kaufman

    2017-07-01

    Full Text Available The introduction of biological control agents to new environments requires host specificity tests to estimate potential non-target impacts of a prospective agent. Currently, the approach is conservative, and is based on physiological host ranges determined under captive rearing conditions, without consideration for ecological factors that may influence realized host range. We use historical data and current field data from introduced parasitoids that attack an endemic Lepidoptera species in Hawaii to validate a probabilistic risk assessment (PRA procedure for non-target impacts. We use data on known host range and habitat use in the place of origin of the parasitoids to determine whether contemporary levels of non-target parasitism could have been predicted using PRA. Our results show that reasonable predictions of potential non-target impacts may be made if comprehensive data are available from places of origin of biological control agents, but scant data produce poor predictions. Using apparent mortality data rather than marginal attack rate estimates in PRA resulted in over-estimates of predicted non-target impact. Incorporating ecological data into PRA models improved the predictive power of the risk assessments.

  12. Robotic Approach in Benign and Malignant Esophageal Tumors; A Preliminary Seven Case Series.

    Science.gov (United States)

    Tomulescu, Victor; Stanescu, Codrut; Blajut, Cristian; Barbulescu, Loredana; Droc, Gabriela; Herlea, Vlad; Popescu, Irinel

    2018-01-01

    Esophageal surgery has been recognized as very challenging for surgeons and risky for patients. Thoracoscopic approach have proved its benefit in esophageal surgery but has some drawbacks as tremor and limited degrees of freedom, contra-intuitive movements and fulcrum effect of the surgical tools. Robotic technology has been developed with the intent to overcome these limitations of the standard laparoscopy or thoracoscopy. These benefits of robotic procedure are most advantageous when operating in remote areas difficult to reach as in esophageal surgery. The aim of this paper is to present our small experience related with robotic approach in benign and malignant esophageal tumors and critically revise the evidence available about the use of the robotic technology for the treatment of these pathology. Methods: From January 2008 to September 2016 robotic surgery interventions related with benign or malignant esophageal tumors were performed in "Dan Setlacec" Center for General Surgery and Liver Transplantation of Fundeni Clinical Institute in seven patients. This consisted of dissection of the entire esophagus as part of an abdomino-thoracic-cervical procedure for esophageal cancer in 3 patients and the extirpation of an esophageal leiomyoma in 3 cases and a foregut esophageal cyst in one case. Results: All procedures except one were completed entirely using the da Vinci robotic system. The exception was the first case - a 3 cm leiomyoma of the inferior esophagus with ulceration of the superjacent esophageal mucosa. Pathology reports revealed three esophageal leiomyoma, one foregut cyst and three squamous cell carcinomas with free of tumor resection margins. The mean number of retrieved mediastinal nodes was 24 (22 - 27). The postoperative course was uneventful in four cases, in the other three a esophageal fistula occurred in the converted leiomyoma case (closed in the 14th postoperative day), a prolonged drainage in one esophageal cancer case and a temporary

  13. Accurate and reproducible invasive breast cancer detection in whole-slide images: A Deep Learning approach for quantifying tumor extent

    Science.gov (United States)

    Cruz-Roa, Angel; Gilmore, Hannah; Basavanhally, Ajay; Feldman, Michael; Ganesan, Shridar; Shih, Natalie N. C.; Tomaszewski, John; González, Fabio A.; Madabhushi, Anant

    2017-04-01

    With the increasing ability to routinely and rapidly digitize whole slide images with slide scanners, there has been interest in developing computerized image analysis algorithms for automated detection of disease extent from digital pathology images. The manual identification of presence and extent of breast cancer by a pathologist is critical for patient management for tumor staging and assessing treatment response. However, this process is tedious and subject to inter- and intra-reader variability. For computerized methods to be useful as decision support tools, they need to be resilient to data acquired from different sources, different staining and cutting protocols and different scanners. The objective of this study was to evaluate the accuracy and robustness of a deep learning-based method to automatically identify the extent of invasive tumor on digitized images. Here, we present a new method that employs a convolutional neural network for detecting presence of invasive tumor on whole slide images. Our approach involves training the classifier on nearly 400 exemplars from multiple different sites, and scanners, and then independently validating on almost 200 cases from The Cancer Genome Atlas. Our approach yielded a Dice coefficient of 75.86%, a positive predictive value of 71.62% and a negative predictive value of 96.77% in terms of pixel-by-pixel evaluation compared to manually annotated regions of invasive ductal carcinoma.

  14. Tumor initiating cells in malignant gliomas: biology and implications for therapy.

    Science.gov (United States)

    Hadjipanayis, Costas G; Van Meir, Erwin G

    2009-04-01

    A rare subpopulation of cells within malignant gliomas, which shares canonical properties with neural stem cells (NSCs), may be integral to glial tumor development and perpetuation. These cells, also known as tumor initiating cells (TICs), have the ability to self-renew, develop into any cell in the overall tumor population (multipotency), and proliferate. A defining property of TICs is their ability to initiate new tumors in immunocompromised mice with high efficiency. Mounting evidence suggests that TICs originate from the transformation of NSCs and their progenitors. New findings show that TICs may be more resistant to chemotherapy and radiation than the bulk of tumor cells, thereby permitting recurrent tumor formation and accounting for the failure of conventional therapies. The development of new therapeutic strategies selectively targeting TICs while sparing NSCs may provide for more effective treatment of malignant gliomas.

  15. Imaging of brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Gaensler, E H.L. [California Univ., San Francisco, CA (United States). Dept. of Radiology

    1996-12-31

    The contents are diagnostic approaches, general features of tumors -hydrocephalus, edema, attenuation and/or intensity value, hemorrhage, fat, contrast enhancement, intra-axial supratentorial tumors - tumors of glial origin, oligodendrogliomas, ependymomas, subependymomas, subependymal giant cell astrocytomas, choroid plexus papilloma; midline tumors - colloid cysts, craniopharyngiomas; pineal region tumors and miscellaneous tumors i.e. primary intracerebral lymphoma, primitive neuroectodermal tumors, hemangioblastomas; extraaxial tumors - meningiomas; nerve sheath tumors -schwannomas, epidermoids, dermoids, lipomas, arachnoid cysts; metastatic tumors (8 refs.).

  16. Imaging of brain tumors

    International Nuclear Information System (INIS)

    Gaensler, E.H.L.

    1995-01-01

    The contents are diagnostic approaches, general features of tumors -hydrocephalus, edema, attenuation and/or intensity value, hemorrhage, fat, contrast enhancement, intra-axial supratentorial tumors - tumors of glial origin, oligodendrogliomas, ependymomas, subependymomas, subependymal giant cell astrocytomas, choroid plexus papilloma; midline tumors - colloid cysts, craniopharyngiomas; pineal region tumors and miscellaneous tumors i.e. primary intracerebral lymphoma, primitive neuroectodermal tumors, hemangioblastomas; extraaxial tumors - meningiomas; nerve sheath tumors -schwannomas, epidermoids, dermoids, lipomas, arachnoid cysts; metastatic tumors (8 refs.)

  17. Medical Treatment of Gastroenteropancreatic Neuroendocrine Tumors

    Directory of Open Access Journals (Sweden)

    Thomas Gress

    2012-02-01

    Full Text Available Treatment of the clinically and prognostically heterogeneous neuroendocrine neoplasms (NEN should be based on a multidisciplinary approach, including surgical, interventional, medical and nuclear medicine-based therapeutic options. Medical therapies include somatostatin analogues, interferon-a, mTOR inhibitors, multikinase inhibitors and systemic chemotherapy. For the selection of the appropriate medical treatment the hormonal activity, primary tumor localization, tumor grading and growth behaviour as well as the extent of the disease must be considered. Somatostatin analogues are mainly indicated in hormonally active tumors for symptomatic relief, but antiproliferative effects have also been demonstrated, especially in well-differentiated intestinal NET. The efficacy of everolimus and sunitinib in patients with pancreatic neuroendocrine tumors (pNET has been demonstrated in large placebo-controlled clinical trials. pNETs are also chemosensitive. Streptozocin-based chemotherapeutic regimens are regarded as current standard of care. Temozolomide in combination with capecitabine is an alternative that has shown promising results that need to be confirmed in larger trials. Currently, no comparative studies and no molecular markers are established that predict the response to medical treatment. Therefore the choice of treatment for each pNET patient is based on individual parameters taking into account the patient’s preference, expected side effects and established response criteria such as proliferation rate and tumor load. Platin-based chemotherapy is still the standard treatment for poorly differentiated neuroendocrine carcinomas. Clearly, there is an unmet need for new systemic treatment options in patients with extrapancreatic neuroendocrine tumors.

  18. Development of a center for light ion therapy and accurate tumor diagnostics at karolinska institutet and hospital

    Science.gov (United States)

    Brahme, Anders; Lind, Bengt K.

    2002-04-01

    Radiation therapy is today in a state of very rapid development with new intensity modulated treatment techniques continuously being developed. This has made intensity modulated electron and photon beams almost as powerful as conventional uniform beam proton therapy. To be able to cure also the most advanced hypoxic and radiation resistant tumors of complex local spread, intensity modulated light ion beams are really the ultimate tool and only slightly more expensive than proton therapy. The aim of the new center for ion therapy and tumor diagnostics in Stockholm is to develop radiobiologically optimized 3-dimensional pencil beam scanning techniques. Beside the "classical" approaches using low ionization density hydrogen ions (protons, but also deuterons and tritium nuclei) and high ionization density carbon ions, two new approaches will be developed. In the first one lithium or beryllium ions, that induce the least detrimental biological effect to normal tissues for a given biological effect in a small volume of the tumor, will be key particles. In the second approach, referred patients will be given a high-dose high-precision "boost" treatment with carbon or oxygen ions during one week preceding the final treatment with conventional radiations in the referring hospital. The rationale behind these approaches is to reduce the high ionization density dose to the normal tissue stroma inside the tumor and to ensure a microscopically uniform dose delivery. The principal idea of the center is to closely integrate ion therapy into the clinical routine and research of a large radiotherapy department. The light ion therapy center will therefore be combined with advanced tumor diagnostics including MR and PET-CT imaging to facilitate efficient high-precision high-dose boost treatment of remitted patients. The possibility to do 3D tumor diagnostics and 3D dose delivery verification with the same PET camera will be the ultimate step in high quality adaptive radiation therapy

  19. Information fluency for undergraduate biology majors: applications of inquiry-based learning in a developmental biology course.

    Science.gov (United States)

    Gehring, Kathleen M; Eastman, Deborah A

    2008-01-01

    Many initiatives for the improvement of undergraduate science education call for inquiry-based learning that emphasizes investigative projects and reading of the primary literature. These approaches give students an understanding of science as a process and help them integrate content presented in courses. At the same time, general initiatives to promote information fluency are being promoted on many college and university campuses. Information fluency refers to discipline-specific processing of information, and it involves integration of gathered information with specific ideas to form logical conclusions. We have implemented the use of inquiry-based learning to enhance and study discipline-specific information fluency skills in an upper-level undergraduate Developmental Biology course. In this study, an information literacy tutorial and a set of linked assignments using primary literature analysis were integrated with two inquiry-based laboratory research projects. Quantitative analysis of student responses suggests that the abilities of students to identify and apply valid sources of information were enhanced. Qualitative assessment revealed a set of patterns by which students gather and apply information. Self-assessment responses indicated that students recognized the impact of the assignments on their abilities to gather and apply information and that they were more confident about these abilities for future biology courses and beyond.

  20. Vulvar field resection: novel approach to the surgical treatment of vulvar cancer based on ontogenetic anatomy.

    Science.gov (United States)

    Höckel, Michael; Schmidt, Katja; Bornmann, Karoline; Horn, Lars-Christian; Dornhöfer, Nadja

    2010-10-01

    Current local treatment of vulvar cancer is wide tumor excision and radical vulvectomy based on functional anatomy established from the adult and on the view of radial progressive tumor permeation. Standard surgery is associated with a considerable local failure rate and severe disturbance of the patients' body image. Vulvar field resection (VFR) is based on ontogenetic anatomy and on the concept of local tumor spread within permissive compartments. VFR combined with anatomical reconstruction (AR) is proposed as a new surgical approach to the treatment of vulvar cancer. A prospective trial was launched to test the compartment theory for vulvar cancer and to assess safety and effectiveness of the new therapy. In 54 consecutive patients 46 tumors were locally confined to the tissue compartment differentiated from the vulvar anlage. The 8 tumors having transgressed into adjacent tissue compartments of different embryonic origins exhibited signs of advanced malignant progression. 38 patients with vulvar cancer, stages T1-3 were treated with VFR and AR. The perioperative complication rate was low. At 19 (3-50) months follow-up no patient failed locally. 33 patients estimated their body image as undisturbed. Vulvar cancer permeates within ontogenetic tissue compartments and surgical treatment with VFR and AR appears to be safe and effective. Patients should benefit from the new approach as local tumor control is high and the preserved tissue can be successfully used for restoration of vulvar form and function. Confirmatory trials with more patients and longer follow-up are suggested. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Macrophage biology plays a central role during ionizing radiation-elicited tumor response

    Directory of Open Access Journals (Sweden)

    Qiuji Wu

    2017-08-01

    Full Text Available Radiation therapy is one of the major therapeutic modalities for most solid tumors. The anti-tumor effect of radiation therapy consists of the direct tumor cell killing, as well as the modulation of tumor microenvironment and the activation of immune response against tumors. Radiation therapy has been shown to promote immunogenic cells death, activate dendritic cells and enhance tumor antigen presentation and anti-tumor T cell activation. Radiation therapy also programs innate immune cells such as macrophages that leads to either radiosensitization or radioresistance, according to different tumors and different radiation regimen studied. The mechanisms underlying radiation-induced macrophage activation remain largely elusive. Various molecular players such as NF-κB, MAPKs, p53, reactive oxygen species, inflammasomes have been involved in these processes. The skewing to a pro-inflammatory phenotype thus results in the activation of anti-tumor immune response and enhanced radiotherapy effect. Therefore, a comprehensive understanding of the mechanism of radiation-induced macrophage activation and its role in tumor response to radiation therapy is crucial for the development of new therapeutic strategies to enhance radiation therapy efficacy.

  2. SSAT State-of-the-Art Conference: Current Surgical Management of Gastric Tumors.

    Science.gov (United States)

    Norton, Jeffrey A; Kim, Teresa; Kim, Joseph; McCarter, Martin D; Kelly, Kaitlyn J; Wong, Joyce; Sicklick, Jason K

    2018-01-01

    The current era of gastric surgery is marked by low morbidity and mortality rates, innovative strategies to approach resections with a minimally invasive fashion or hyperthermic intraperitoneal chemotherapy (HIPEC), as well as improved understanding of the biology of sporadic and hereditary stromal, neuroendocrine, and epithelial malignancies. In 2017, the Society for Surgery of the Alimentary Tract convened a State-of-the-Art Conference on Current Surgical Management of Gastric Tumors with both international experts and emerging leaders in the field of gastric surgery. Martin D. McCarter, MD of the University of Colorado discussed the current management of gastric gastrointestinal stromal tumors (GIST). Kaitlyn J. Kelly, MD of the University of California, San Diego discussed the management of gastric carcinoid tumors. Jeffrey A. Norton of Stanford University discussed recent advances in the management of gastric adenocarcinoma including a focus on hereditary diffuse gastric cancer (HDGC). Joseph Kim, MD of Stony Brook University discussed a systematic approach to minimally invasive gastrectomy for cancer. Joyce Wong, MD of Pennsylvania State University discussed the role for cytoreductive surgery (CRS) and HIPEC for gastric adenocarcinoma. This review provides gastrointestinal surgeons with a concise update on the current surgical management of gastric tumors.

  3. Application of Biologically-Based Lumping To Investigate the ...

    Science.gov (United States)

    People are often exposed to complex mixtures of environmental chemicals such as gasoline, tobacco smoke, water contaminants, or food additives. However, investigators have often considered complex mixtures as one lumped entity. Valuable information can be obtained from these experiments, though this simplification provides little insight into the impact of a mixture's chemical composition on toxicologically-relevant metabolic interactions that may occur among its constituents. We developed an approach that applies chemical lumping methods to complex mixtures, in this case gasoline, based on biologically relevant parameters used in physiologically-based pharmacokinetic (PBPK) modeling. Inhalation exposures were performed with rats to evaluate performance of our PBPK model. There were 109 chemicals identified and quantified in the vapor in the chamber. The time-course kinetic profiles of 10 target chemicals were also determined from blood samples collected during and following the in vivo experiments. A general PBPK model was used to compare the experimental data to the simulated values of blood concentration for the 10 target chemicals with various numbers of lumps, iteratively increasing from 0 to 99. Large reductions in simulation error were gained by incorporating enzymatic chemical interactions, in comparison to simulating the individual chemicals separately. The error was further reduced by lumping the 99 non-target chemicals. Application of this biologic

  4. Applications of intelligent optimization in biology and medicine current trends and open problems

    CERN Document Server

    Grosan, Crina; Tolba, Mohamed

    2016-01-01

    This volume provides updated, in-depth material on the application of intelligent optimization in biology and medicine. The aim of the book is to present solutions to the challenges and problems facing biology and medicine applications. This Volume comprises of 13 chapters, including an overview chapter, providing an up-to-date and state-of-the research on the application of intelligent optimization for bioinformatics applications, DNA based Steganography, a modified Particle Swarm Optimization Algorithm for Solving Capacitated Maximal Covering Location Problem in Healthcare Systems, Optimization Methods for Medical Image Super Resolution Reconstruction and breast cancer classification. Moreover, some chapters that describe several bio-inspired approaches in MEDLINE Text Mining, DNA-Binding Proteins and Classes, Optimized Tumor Breast Cancer Classification using Combining Random Subspace and Static Classifiers Selection Paradigms, and Dental Image Registration. The book will be a useful compendium for a broad...

  5. Bifurcation-based approach reveals synergism and optimal combinatorial perturbation.

    Science.gov (United States)

    Liu, Yanwei; Li, Shanshan; Liu, Zengrong; Wang, Ruiqi

    2016-06-01

    Cells accomplish the process of fate decisions and form terminal lineages through a series of binary choices in which cells switch stable states from one branch to another as the interacting strengths of regulatory factors continuously vary. Various combinatorial effects may occur because almost all regulatory processes are managed in a combinatorial fashion. Combinatorial regulation is crucial for cell fate decisions because it may effectively integrate many different signaling pathways to meet the higher regulation demand during cell development. However, whether the contribution of combinatorial regulation to the state transition is better than that of a single one and if so, what the optimal combination strategy is, seem to be significant issue from the point of view of both biology and mathematics. Using the approaches of combinatorial perturbations and bifurcation analysis, we provide a general framework for the quantitative analysis of synergism in molecular networks. Different from the known methods, the bifurcation-based approach depends only on stable state responses to stimuli because the state transition induced by combinatorial perturbations occurs between stable states. More importantly, an optimal combinatorial perturbation strategy can be determined by investigating the relationship between the bifurcation curve of a synergistic perturbation pair and the level set of a specific objective function. The approach is applied to two models, i.e., a theoretical multistable decision model and a biologically realistic CREB model, to show its validity, although the approach holds for a general class of biological systems.

  6. Temporalis Myofascial Flap for Primary Cranial Base Reconstruction after Tumor Resection

    OpenAIRE

    Eldaly, Ahmed; Magdy, Emad A.; Nour, Yasser A.; Gaafar, Alaa H.

    2008-01-01

    Objective: To evaluate the use of the temporalis myofascial flap in primary cranial base reconstruction following surgical tumor ablation and to explain technical issues, potential complications, and donor site consequences along with their management. Design: Retrospective case series. Setting: Tertiary referral center. Participants: Forty-one consecutive patients receiving primary temporalis myofascial flap reconstructions following cranial base tumor resections in a 4-year period. Main Out...

  7. Virtual Reality Tumor Resection: The Force Pyramid Approach.

    Science.gov (United States)

    Sawaya, Robin; Bugdadi, Abdulgadir; Azarnoush, Hamed; Winkler-Schwartz, Alexander; Alotaibi, Fahad E; Bajunaid, Khalid; AlZhrani, Gmaan A; Alsideiri, Ghusn; Sabbagh, Abdulrahman J; Del Maestro, Rolando F

    2017-09-05

    The force pyramid is a novel visual representation allowing spatial delineation of instrument force application during surgical procedures. In this study, the force pyramid concept is employed to create and quantify dominant hand, nondominant hand, and bimanual force pyramids during resection of virtual reality brain tumors. To address 4 questions: Do ergonomics and handedness influence force pyramid structure? What are the differences between dominant and nondominant force pyramids? What is the spatial distribution of forces applied in specific tumor quadrants? What differentiates "expert" and "novice" groups regarding their force pyramids? Using a simulated aspirator in the dominant hand and a simulated sucker in the nondominant hand, 6 neurosurgeons and 14 residents resected 8 different tumors using the CAE NeuroVR virtual reality neurosurgical simulation platform (CAE Healthcare, Montréal, Québec and the National Research Council Canada, Boucherville, Québec). Position and force data were used to create force pyramids and quantify tumor quadrant force distribution. Force distribution quantification demonstrates the critical role that handedness and ergonomics play on psychomotor performance during simulated brain tumor resections. Neurosurgeons concentrate their dominant hand forces in a defined crescent in the lower right tumor quadrant. Nondominant force pyramids showed a central peak force application in all groups. Bimanual force pyramids outlined the combined impact of each hand. Distinct force pyramid patterns were seen when tumor stiffness, border complexity, and color were altered. Force pyramids allow delineation of specific tumor regions requiring greater psychomotor ability to resect. This information can focus and improve resident technical skills training. Copyright © 2017 by the Congress of Neurological Surgeons

  8. Predicting survival in patients with metastatic kidney cancer by gene-expression profiling in the primary tumor.

    Science.gov (United States)

    Vasselli, James R; Shih, Joanna H; Iyengar, Shuba R; Maranchie, Jodi; Riss, Joseph; Worrell, Robert; Torres-Cabala, Carlos; Tabios, Ray; Mariotti, Andra; Stearman, Robert; Merino, Maria; Walther, McClellan M; Simon, Richard; Klausner, Richard D; Linehan, W Marston

    2003-06-10

    To identify potential molecular determinants of tumor biology and possible clinical outcomes, global gene-expression patterns were analyzed in the primary tumors of patients with metastatic renal cell cancer by using cDNA microarrays. We used grossly dissected tumor masses that included tumor, blood vessels, connective tissue, and infiltrating immune cells to obtain a gene-expression "profile" from each primary tumor. Two patterns of gene expression were found within this uniformly staged patient population, which correlated with a significant difference in overall survival between the two patient groups. Subsets of genes most significantly associated with survival were defined, and vascular cell adhesion molecule-1 (VCAM-1) was the gene most predictive for survival. Therefore, despite the complex biological nature of metastatic cancer, basic clinical behavior as defined by survival may be determined by the gene-expression patterns expressed within the compilation of primary gross tumor cells. We conclude that survival in patients with metastatic renal cell cancer can be correlated with the expression of various genes based solely on the expression profile in the primary kidney tumor.

  9. Gene Expression Ratios Lead to Accurate and Translatable Predictors of DR5 Agonism across Multiple Tumor Lineages.

    Directory of Open Access Journals (Sweden)

    Anupama Reddy

    Full Text Available Death Receptor 5 (DR5 agonists demonstrate anti-tumor activity in preclinical models but have yet to demonstrate robust clinical responses. A key limitation may be the lack of patient selection strategies to identify those most likely to respond to treatment. To overcome this limitation, we screened a DR5 agonist Nanobody across >600 cell lines representing 21 tumor lineages and assessed molecular features associated with response. High expression of DR5 and Casp8 were significantly associated with sensitivity, but their expression thresholds were difficult to translate due to low dynamic ranges. To address the translational challenge of establishing thresholds of gene expression, we developed a classifier based on ratios of genes that predicted response across lineages. The ratio classifier outperformed the DR5+Casp8 classifier, as well as standard approaches for feature selection and classification using genes, instead of ratios. This classifier was independently validated using 11 primary patient-derived pancreatic xenograft models showing perfect predictions as well as a striking linearity between prediction probability and anti-tumor response. A network analysis of the genes in the ratio classifier captured important biological relationships mediating drug response, specifically identifying key positive and negative regulators of DR5 mediated apoptosis, including DR5, CASP8, BID, cFLIP, XIAP and PEA15. Importantly, the ratio classifier shows translatability across gene expression platforms (from Affymetrix microarrays to RNA-seq and across model systems (in vitro to in vivo. Our approach of using gene expression ratios presents a robust and novel method for constructing translatable biomarkers of compound response, which can also probe the underlying biology of treatment response.

  10. Gene Expression Ratios Lead to Accurate and Translatable Predictors of DR5 Agonism across Multiple Tumor Lineages.

    Science.gov (United States)

    Reddy, Anupama; Growney, Joseph D; Wilson, Nick S; Emery, Caroline M; Johnson, Jennifer A; Ward, Rebecca; Monaco, Kelli A; Korn, Joshua; Monahan, John E; Stump, Mark D; Mapa, Felipa A; Wilson, Christopher J; Steiger, Janine; Ledell, Jebediah; Rickles, Richard J; Myer, Vic E; Ettenberg, Seth A; Schlegel, Robert; Sellers, William R; Huet, Heather A; Lehár, Joseph

    2015-01-01

    Death Receptor 5 (DR5) agonists demonstrate anti-tumor activity in preclinical models but have yet to demonstrate robust clinical responses. A key limitation may be the lack of patient selection strategies to identify those most likely to respond to treatment. To overcome this limitation, we screened a DR5 agonist Nanobody across >600 cell lines representing 21 tumor lineages and assessed molecular features associated with response. High expression of DR5 and Casp8 were significantly associated with sensitivity, but their expression thresholds were difficult to translate due to low dynamic ranges. To address the translational challenge of establishing thresholds of gene expression, we developed a classifier based on ratios of genes that predicted response across lineages. The ratio classifier outperformed the DR5+Casp8 classifier, as well as standard approaches for feature selection and classification using genes, instead of ratios. This classifier was independently validated using 11 primary patient-derived pancreatic xenograft models showing perfect predictions as well as a striking linearity between prediction probability and anti-tumor response. A network analysis of the genes in the ratio classifier captured important biological relationships mediating drug response, specifically identifying key positive and negative regulators of DR5 mediated apoptosis, including DR5, CASP8, BID, cFLIP, XIAP and PEA15. Importantly, the ratio classifier shows translatability across gene expression platforms (from Affymetrix microarrays to RNA-seq) and across model systems (in vitro to in vivo). Our approach of using gene expression ratios presents a robust and novel method for constructing translatable biomarkers of compound response, which can also probe the underlying biology of treatment response.

  11. PENERAPAN BLENDED-PROBLEM BASED LEARNING DALAM PEMBELAJARAN BIOLOGI

    Directory of Open Access Journals (Sweden)

    Samuel Agus Triyanto

    2016-07-01

    Biologi abad 21 merupakan integrasi dan mengintegrasikan kembali sub disiplin ilmu biologi, serta integrasi biologi dengan disiplin ilmu lain untuk mengatasi permasalahan sosial. Penelitian ini bertujuan untuk mengetahui penerapan Blended-Problem Based Learning, aktivitas belajar, dan respon siswa dalam pembelajaran biologi. Penelitian ini merupakan penelitian survei dengan pendekatan deskriptif kualitatif. Data hasil penelitian menunjukkan bahwa aktivitas positif siswa dalam pembelajaran memuaskan, sedangkan respon siswa baik terhadap pembelajaran. Berdasarkan hasil penelitian, disimpulkan bahwa Blended-Problem Based Learning dapat diterapkan dan diterima sebagai model dalam pembelajaran.

  12. Skin tumor area extraction using an improved dynamic programming approach.

    Science.gov (United States)

    Abbas, Qaisar; Celebi, M E; Fondón García, Irene

    2012-05-01

    Border (B) description of melanoma and other pigmented skin lesions is one of the most important tasks for the clinical diagnosis of dermoscopy images using the ABCD rule. For an accurate description of the border, there must be an effective skin tumor area extraction (STAE) method. However, this task is complicated due to uneven illumination, artifacts present in the lesions and smooth areas or fuzzy borders of the desired regions. In this paper, a novel STAE algorithm based on improved dynamic programming (IDP) is presented. The STAE technique consists of the following four steps: color space transform, pre-processing, rough tumor area detection and refinement of the segmented area. The procedure is performed in the CIE L(*) a(*) b(*) color space, which is approximately uniform and is therefore related to dermatologist's perception. After pre-processing the skin lesions to reduce artifacts, the DP algorithm is improved by introducing a local cost function, which is based on color and texture weights. The STAE method is tested on a total of 100 dermoscopic images. In order to compare the performance of STAE with other state-of-the-art algorithms, various statistical measures based on dermatologist-drawn borders are utilized as a ground truth. The proposed method outperforms the others with a sensitivity of 96.64%, a specificity of 98.14% and an error probability of 5.23%. The results demonstrate that this STAE method by IDP is an effective solution when compared with other state-of-the-art segmentation techniques. The proposed method can accurately extract tumor borders in dermoscopy images. © 2011 John Wiley & Sons A/S.

  13. Innovations in the management of Wilms' tumor.

    Science.gov (United States)

    Gleason, Joseph M; Lorenzo, Armando J; Bowlin, Paul R; Koyle, Martin A

    2014-08-01

    Advances in the management of Wilms' tumor have been dramatic over the past half century, not in small part due to the institution of multimodal therapy and the formation of collaborative study groups. While different opinions exist in the management of Wilms' tumors depending on where one lives and practices, survival rates have surpassed 90% across the board in Western societies. With more children surviving into adulthood, the concerns about morbidity have reached the forefront and now represent as much a consideration as oncologic outcomes these days. Innovations in treatment are on the horizon in the form of potential tumor markers, molecular biological means of testing for chemotherapeutic responsiveness, and advances in the delivery of chemotherapy for recurrent or recalcitrant tumors. Other technological innovations are being applied to childhood renal tumors, such as minimally invasive and nephron-sparing approaches. Risk stratification also allows for children to forego potentially unnecessary treatments and their associated morbidities. Wilms' tumor stands as a great example of the gains that can be made through protocol-driven therapy with strenuous outcomes analyses. These gains continue to spark interest in minimization of morbidity, while avoiding any compromise in oncologic efficacy. While excitement and innovation are important in the advancement of treatment delivery, we must continue to temper this enthusiasm and carefully evaluate options in order to continue to provide the highest standard of care in the management of this now highly curable disease.

  14. Tuneable resolution as a systems biology approach for multi-scale, multi-compartment computational models.

    Science.gov (United States)

    Kirschner, Denise E; Hunt, C Anthony; Marino, Simeone; Fallahi-Sichani, Mohammad; Linderman, Jennifer J

    2014-01-01

    The use of multi-scale mathematical and computational models to study complex biological processes is becoming increasingly productive. Multi-scale models span a range of spatial and/or temporal scales and can encompass multi-compartment (e.g., multi-organ) models. Modeling advances are enabling virtual experiments to explore and answer questions that are problematic to address in the wet-lab. Wet-lab experimental technologies now allow scientists to observe, measure, record, and analyze experiments focusing on different system aspects at a variety of biological scales. We need the technical ability to mirror that same flexibility in virtual experiments using multi-scale models. Here we present a new approach, tuneable resolution, which can begin providing that flexibility. Tuneable resolution involves fine- or coarse-graining existing multi-scale models at the user's discretion, allowing adjustment of the level of resolution specific to a question, an experiment, or a scale of interest. Tuneable resolution expands options for revising and validating mechanistic multi-scale models, can extend the longevity of multi-scale models, and may increase computational efficiency. The tuneable resolution approach can be applied to many model types, including differential equation, agent-based, and hybrid models. We demonstrate our tuneable resolution ideas with examples relevant to infectious disease modeling, illustrating key principles at work. © 2014 The Authors. WIREs Systems Biology and Medicine published by Wiley Periodicals, Inc.

  15. The Promise of Systems Biology Approaches for Revealing Host Pathogen Interactions in Malaria

    Directory of Open Access Journals (Sweden)

    Meghan Zuck

    2017-11-01

    Full Text Available Despite global eradication efforts over the past century, malaria remains a devastating public health burden, causing almost half a million deaths annually (WHO, 2016. A detailed understanding of the mechanisms that control malaria infection has been hindered by technical challenges of studying a complex parasite life cycle in multiple hosts. While many interventions targeting the parasite have been implemented, the complex biology of Plasmodium poses a major challenge, and must be addressed to enable eradication. New approaches for elucidating key host-parasite interactions, and predicting how the parasite will respond in a variety of biological settings, could dramatically enhance the efficacy and longevity of intervention strategies. The field of systems biology has developed methodologies and principles that are well poised to meet these challenges. In this review, we focus our attention on the Liver Stage of the Plasmodium lifecycle and issue a “call to arms” for using systems biology approaches to forge a new era in malaria research. These approaches will reveal insights into the complex interplay between host and pathogen, and could ultimately lead to novel intervention strategies that contribute to malaria eradication.

  16. Biologic role of activated leukocyte cell adhesion molecule overexpression in breast cancer cell lines and clinical tumor tissue.

    Science.gov (United States)

    Hein, Sibyll; Müller, Volkmar; Köhler, Nadine; Wikman, Harriet; Krenkel, Sylke; Streichert, Thomas; Schweizer, Michaela; Riethdorf, Sabine; Assmann, Volker; Ihnen, Maike; Beck, Katrin; Issa, Rana; Jänicke, Fritz; Pantel, Klaus; Milde-Langosch, Karin

    2011-09-01

    The activated leukocyte cell adhesion molecule (ALCAM) is overexpressed in many mammary tumors, but controversial results about its role and prognostic impact in breast cancer have been reported. Therefore, we evaluated the biologic effects of ALCAM expression in two breast cancer cell lines and a larger cohort of mammary carcinomas. By stable transfections, MCF7 cells with ALCAM overexpression and MDA-MB231 cells with reduced ALCAM levels were generated and analyzed in functional assays and cDNA microarrays. In addition, an immunohistochemical study on 347 patients with breast cancer with long-term follow-up and analysis of disseminated tumor cells (DTCs) was performed. In both cell lines, high ALCAM expression was associated with reduced cell motility. In addition, ALCAM silencing in MDA-MB231 cells resulted in lower invasive potential, whereas high ALCAM expression was associated with increased apoptosis in both cell lines. Among genes which were differentially expressed in clones with altered ALCAM expression, there was an overlap of 15 genes between both cell lines, among them cathepsin D, keratin 7, gelsolin, and ets2 whose deregulation was validated by western blot analysis. In MDA-MB231 cells, we observed a correlation with VEGF expression which was validated by enzyme-linked immuno sorbent assay (ELISA). Our IHC results on primary breast carcinomas showed that ALCAM expression was associated with an estrogen receptor-positive phenotype. In addition, strong ALCAM immunostaining correlated with nodal involvement and the presence of tumor cells in bone marrow. By Kaplan-Meier analysis, strong ALCAM expression in ductal carcinomas correlated with shorter recurrence-free intervals (P=0.048) and overall survival (OAS, P=0.003). Our results indicate that the biologic role of ALCAM in breast cancer is complex, but overexpression might be relevant for outcome in ductal carcinomas.

  17. Endo-laparoscopic rendezvous approach for pericardia with gastric posterior wall of gastrointestinal stromal tumor: analysis of 52 consecutive cases.

    Science.gov (United States)

    Ding, Po; Zhao, Yongjie

    2014-12-01

    Gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor in the gastrointestinal tract and most frequently developed in the stomach, and surgical therapy is limited on removal of the tumor lesion. The aim of this study was to investigate the clinical values of endo-laparoscopic rendezvous approach for pericardial GISTs within gastric posterior wall. Surgical outcome and clinical data of 52 patients with pericardial GISTs within gastric posterior wall treated at Tianjin Peoples' Hospital from January 2004 to October 2013 were analyzed. Endo-laparoscopic rendezvous approach was used as an operative procedure for tumor resection ranged from 10 to 50 mm. Endoscopic ultrasound, computed tomography and microscopic findings all certified the gastric spindle type GIST locating in the submucosa to muscle proper. Endo-laparoscopic rendezvous approach was attempted in 52 patients (male/female: 31/21) with median age of 51 years (25-71 years). The median operating time was 80 min (range: 40-120 min) and median intra-operative blood loss was 26 ml (range: 10-50 ml). The median hospital stay was 5 days (range: 4-6 days), while the median tumor size was 25 mm (range: 7-50 mm). All operative margins were clear. There were no recurrences or metastases of all patients in a median follow-up of 24 months (range: 6-36 months). Endo-laparoscopic rendezvous approach is considered to represent the next revolution in surgery. The new technique is reliable and effective in clinical application, due to the advantages of accurate and quick localization for pericardial GIST within gastric posterior wall.

  18. A distributed approach for parameters estimation in System Biology models

    International Nuclear Information System (INIS)

    Mosca, E.; Merelli, I.; Alfieri, R.; Milanesi, L.

    2009-01-01

    Due to the lack of experimental measurements, biological variability and experimental errors, the value of many parameters of the systems biology mathematical models is yet unknown or uncertain. A possible computational solution is the parameter estimation, that is the identification of the parameter values that determine the best model fitting respect to experimental data. We have developed an environment to distribute each run of the parameter estimation algorithm on a different computational resource. The key feature of the implementation is a relational database that allows the user to swap the candidate solutions among the working nodes during the computations. The comparison of the distributed implementation with the parallel one showed that the presented approach enables a faster and better parameter estimation of systems biology models.

  19. Lipid nanocarriers based on natural oils with high activity against oxygen free radicals and tumor cell proliferation

    International Nuclear Information System (INIS)

    Lacatusu, I.; Badea, N.; Badea, G.; Oprea, O.; Mihaila, M.A.; Kaya, D.A.; Stan, R.; Meghea, A.

    2015-01-01

    The development of nano-dosage forms of phytochemicals represents a significant progress of the scientific approach in the biomedical research. The aim of this study was to assess the effectiveness of lipid nanocarriers based on natural oils (grape seed oil, fish oil and laurel leaf oil) in counteracting free radicals and combating certain tumor cells. No drug was encapsulated in the nanocarriers. The cytotoxic effect exerted by bioactive nanocarriers against two tumor cells, MDA-MB 231 and HeLa cell lines, and two normal cells, L929 and B16 cell lines, was measured using the MTT assay, while oxidative damage was assessed by measuring the total antioxidant activity using chemiluminescence analysis. The best performance was obtained for nanocarriers based on an association of grape seed and laurel leaf oils, with a capacity to scavenge about 98% oxygen free radicals. A dose of nanocarriers of 5 mg·mL −1 has led to a drastic decrease in tumor cell proliferation even in the absence of an antitumor drug (e.g. about 50% viability for MDA-MB 231 cell line and 60% viability for HeLa cell line). A comparative survival profile of normal and tumor cells, which were exposed to an effective dose of 2.5 mg·mL −1 lipid nanocarriers, has revealed a death rate of 20% for normal B16 cells and of 40% death rate for MDA-MB 231 and HeLa tumor cells. The results in this study imply that lipid nanocarriers based on grape seed oil in association with laurel leaf oil could be a candidate to reduce the delivery system toxicity and may significantly improve the therapeutic efficacy of antitumor drugs in clinical applications. - Highlights: • Functional lipid nanocarriers with unique features and broad spectrum effectiveness • Lipid nanocarriers based on laureal leaf oil (LLO) and grape seed oil (GSO) • Antioxidant activity has reached 98% for nanocarriers containing 25% GSO and 2% LLO. • LLO exerts a significant cytotoxic effect against HeLa and MDA-MB 231 tumor cells. • 50

  20. Lipid nanocarriers based on natural oils with high activity against oxygen free radicals and tumor cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Lacatusu, I.; Badea, N.; Badea, G.; Oprea, O. [University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Polizu Street No 1, 011061 Bucharest (Romania); Mihaila, M.A. [Institute of Virusology “Stefan S. Nicolau”, Center of Immunology, Bravu Road, No. 285, 030304 Bucharest (Romania); Kaya, D.A. [Department of Field Crops, Faculty of Agriculture, Mustafa Kemal University, 31030 Antakya, Hatay (Turkey); Stan, R., E-mail: rl_stan2000@yahoo.com [University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Polizu Street No 1, 011061 Bucharest (Romania); Meghea, A. [University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Polizu Street No 1, 011061 Bucharest (Romania)

    2015-11-01

    The development of nano-dosage forms of phytochemicals represents a significant progress of the scientific approach in the biomedical research. The aim of this study was to assess the effectiveness of lipid nanocarriers based on natural oils (grape seed oil, fish oil and laurel leaf oil) in counteracting free radicals and combating certain tumor cells. No drug was encapsulated in the nanocarriers. The cytotoxic effect exerted by bioactive nanocarriers against two tumor cells, MDA-MB 231 and HeLa cell lines, and two normal cells, L929 and B16 cell lines, was measured using the MTT assay, while oxidative damage was assessed by measuring the total antioxidant activity using chemiluminescence analysis. The best performance was obtained for nanocarriers based on an association of grape seed and laurel leaf oils, with a capacity to scavenge about 98% oxygen free radicals. A dose of nanocarriers of 5 mg·mL{sup −1} has led to a drastic decrease in tumor cell proliferation even in the absence of an antitumor drug (e.g. about 50% viability for MDA-MB 231 cell line and 60% viability for HeLa cell line). A comparative survival profile of normal and tumor cells, which were exposed to an effective dose of 2.5 mg·mL{sup −1} lipid nanocarriers, has revealed a death rate of 20% for normal B16 cells and of 40% death rate for MDA-MB 231 and HeLa tumor cells. The results in this study imply that lipid nanocarriers based on grape seed oil in association with laurel leaf oil could be a candidate to reduce the delivery system toxicity and may significantly improve the therapeutic efficacy of antitumor drugs in clinical applications. - Highlights: • Functional lipid nanocarriers with unique features and broad spectrum effectiveness • Lipid nanocarriers based on laureal leaf oil (LLO) and grape seed oil (GSO) • Antioxidant activity has reached 98% for nanocarriers containing 25% GSO and 2% LLO. • LLO exerts a significant cytotoxic effect against HeLa and MDA-MB 231 tumor