WorldWideScience

Sample records for tubular solute transport

  1. Fractal solutions of recirculation tubular chemical reactors

    International Nuclear Information System (INIS)

    Berezowski, Marek

    2003-01-01

    Three kinds of fractal solutions of model of recirculation non-adiabatic tubular chemical reactors are presented. The first kind concerns the structure of Feigenbaum's diagram on the limit of chaos. The second kind and the third one concern the effect of initial conditions on the dynamic solutions of models. In the course of computations two types of recirculation were considered, viz. the recirculation of mass (return of a part of products' stream) and recirculation of heat (heat exchange in the external heat exchanger)

  2. Luminal nucleotides are tonic inhibitors of renal tubular transport

    DEFF Research Database (Denmark)

    Leipziger, Jens Georg

    2011-01-01

    PURPOSE OF REVIEW: Extracellular ATP is an essential local signaling molecule in all organ systems. In the kidney, purinergic signaling is involved in an array of functions and this review highlights those of relevance for renal tubular transport. RECENT FINDINGS: Purinergic receptors are expressed...... in all renal tubular segments and their stimulation generally leads to transport inhibition. Recent evidence has identified the tubular lumen as a restricted space for purinergic signaling. The concentrations of ATP in the luminal fluids are sufficiently high to inflict a tonic inhibition of renal...... tubular absorption via P2 receptors. The apical P2Y2 receptor plays a crucial role in this process. ATP is released continuously into the tubular lumen. The release is augmented in response to an increase of tubular flow and after stimulation of G-protein-coupled receptors. The primary cilium appears...

  3. Mechanical reliability of geometrically imperfect tubular oxygen transport membranes

    DEFF Research Database (Denmark)

    Kwok, Kawai; Frandsen, Henrik Lund; Søgaard, Martin

    2014-01-01

    operation. This paper investigates numerically the failure risk of tubular oxygen transport membranes under industrial operating conditions using finite element modeling and Weibull strength analysis. The effects of component manufacturing defects on fracture probability are elucidated by explicit modeling...... of imperfections in the tubular membrane geometry. A supported membrane made of dense and porous Zr-doped-BSCF is studied as an illustrative example. It is shown that stresses induced by oxygen stoichiometry gradients relax over time due to creep and external pressure is the dominating source of stress in the long...... quality (in terms of specification of tolerable deviation from perfect tubular shape) that allows fail-safe operation are deduced....

  4. Mathematical rationalization for the renal tubular transport: revised concepts.

    Science.gov (United States)

    Mioni, Roberto; Marega, Alessandra; Romano, Giulio; Montanaro, Domenico

    2017-09-01

    The current emphasis on kinetics and in situ control of molecular exchanges, across the tubular membrane, has not been paralleled by corresponding improvements in our understanding of tubular behaviour at the macroscopic level of classical physiology. In this paper, we propose a mathematical rationalization of macroscopic tubular transport by means of a principal transport equation, originating from the law of mass action between substrate and carrier. The other equations, derived from the main one, demonstrate the possibility of distinguishing between transporters with low affinity and high capacity and transporters with high affinity and low capacity. Moreover, our model formalizes both tubular reabsorption and tubular secretion. Regarding the renal calcium handling, our model confirms the two-compartment system proposed by Mioni in 1971, with some important variants, which are in agreement with the fractional reabsorptions of this cation along the tubule, as verified by micro-puncture technique. To obtain the frequency distribution of saturated tubules, we have utilized the infinitesimal analysis method, starting from the equations proposed by Smith in 1943, concluding that all titration curves result from the combined effect of enzymatic approach and anatomical heterogeneity of the nephrons. The theoretical equations included in our manuscript reflect substantial and palpable physiological mechanisms able to suggest diagnosis and therapy of some electrolyte and hormonal disorders. At the end of this paper, we highlight advantages and disadvantages detectable by comparing our mathematical approach with Marshall's and Bijvoet's methods, proposed, respectively, in 1976 and 1984.

  5. Tubular transport and metabolism of cimetidine in chicken kidneys

    Energy Technology Data Exchange (ETDEWEB)

    Rennick, B.; Ziemniak, J.; Smith, I.; Taylor, M.; Acara, M.

    1984-02-01

    Renal tubular transport and renal metabolism of (/sup 14/C)cimetidine (CIM) were investigated by unilateral infusion into the renal portal circulation in chickens (Sperber technique). (/sup 14/C)CIM was actively transported at a rate 88% that of simultaneously infused p-aminohippuric acid, and its transport was saturable. The following organic cations competitively inhibited the tubular transport of (/sup 14/C)CIM with decreasing potency: CIM, ranitidine, thiamine, procainamide, guanidine and choline. CIM inhibited the transport of (/sup 14/C)thiamine, (/sup 14/C)amiloride and (/sup 14/C)tetraethylammonium. During CIM infusion, two renal metabolites, CIM sulfoxide and hydroxymethylcimetidine, were found in urine. When CIM sulfoxide was infused, its transport efficiency was 32% and not saturable. CIM sulfoxide did ot inhibit the simultaneous renal tubular transport of p-aminohippuric acid or tetraethylammonium. CIM is transported by the organic cation transport system and the kidney metabolizes CIM. Transport of CIM and other cationic drugs could produce a drug interaction to alter drug excretion.

  6. Tubular Unimolecular Transmembrane Channels: Construction Strategy and Transport Activities.

    Science.gov (United States)

    Si, Wen; Xin, Pengyang; Li, Zhan-Ting; Hou, Jun-Li

    2015-06-16

    Lipid bilayer membranes separate living cells from their environment. Membrane proteins are responsible for the processing of ion and molecular inputs and exports, sensing stimuli and signals across the bilayers, which may operate in a channel or carrier mechanism. Inspired by these wide-ranging functions of membrane proteins, chemists have made great efforts in constructing synthetic mimics in order to understand the transport mechanisms, create materials for separation, and develop therapeutic agents. Since the report of an alkylated cyclodextrin for transporting Cu(2+) and Co(2+) by Tabushi and co-workers in 1982, chemists have constructed a variety of artificial transmembrane channels by making use of either the multimolecular self-assembly or unimolecular strategy. In the context of the design of unimolecular channels, important advances have been made, including, among others, the tethering of natural gramicidin A or alamethicin and the modification of various macrocycles such as crown ethers, cyclodextrins, calixarenes, and cucurbiturils. Many of these unimolecular channels exhibit high transport ability for metal ions, particularly K(+) and Na(+). Concerning the development of artificial channels based on macrocyclic frameworks, one straightforward and efficient approach is to introduce discrete chains to reinforce their capability to insert into bilayers. Currently, this approach has found the widest applications in the systems of crown ethers and calixarenes. We envisioned that for macrocycle-based unimolecular channels, control of the arrangement of the appended chains in the upward and/or downward direction would favor the insertion of the molecular systems into bilayers, while the introduction of additional interactions among the chains would further stabilize a tubular conformation. Both factors should be helpful for the formation of new efficient channels. In this Account, we discuss our efforts in designing new unimolecular artificial channels from

  7. Multimodal transport and dispersion of organelles in narrow tubular cells

    Science.gov (United States)

    Mogre, Saurabh S.; Koslover, Elena F.

    2018-04-01

    Intracellular components explore the cytoplasm via active motor-driven transport in conjunction with passive diffusion. We model the motion of organelles in narrow tubular cells using analytical techniques and numerical simulations to study the efficiency of different transport modes in achieving various cellular objectives. Our model describes length and time scales over which each transport mode dominates organelle motion, along with various metrics to quantify exploration of intracellular space. For organelles that search for a specific target, we obtain the average capture time for given transport parameters and show that diffusion and active motion contribute to target capture in the biologically relevant regime. Because many organelles have been found to tether to microtubules when not engaged in active motion, we study the interplay between immobilization due to tethering and increased probability of active transport. We derive parameter-dependent conditions under which tethering enhances long-range transport and improves the target capture time. These results shed light on the optimization of intracellular transport machinery and provide experimentally testable predictions for the effects of transport regulation mechanisms such as tethering.

  8. Intrarenal purinergic signaling in the control of renal tubular transport

    DEFF Research Database (Denmark)

    Prætorius, Helle; Leipziger, Jens Georg

    2010-01-01

    -reaching advances indicate that ATP is often used as a local transmitter for classical sensory transduction. This transmission apparently also applies to sensory functions in the kidney. Locally released ATP is involved in sensing of renal tubular flow or in detecting the distal tubular load of NaCl at the macula...

  9. Upscaling nonreactive solute transport

    OpenAIRE

    LLERAR MEZA, GERÓNIMO

    2011-01-01

    This thesis focuses on solute transport upscaling. Upscaling of solute transport is usually required to obtain computationally efficient numerical models in many field applications such as, remediation of aquifers, environmental risk to groundwater resources or the design of underground repositories of nuclear waste. The non-Fickian behavior observed in the field, and manifested by peaked concentration profiles with pronounced tailing, has questioned the use of the classical advection-dispers...

  10. Experimental extrusion of tubular multilayer materials for Oxygen Transport Membranes

    DEFF Research Database (Denmark)

    Kothanda Ramachandran, Dhavanesan

    membrane based on gadolinia doped ceria oxide, (Ce0.9Gd0.1O1.95−δ), (CGO) was developed on a tubular, porous support structure based on cost-efficient magnesium oxide (MgO). The porous support structure was prepared by thermoplastic extrusion using MgO powder, thermoplastic binders and graphite pore former....... The results revealed sufficiently high bending strength values of 60 MPa for the MgO support at an operation temperature of 850 °C, whereas the strength at room temperature was 77 MPa. The oxygen permeation flux on an asymmetric tubular CGO membrane, consisting of an MgO support (porous), catalytic layer...

  11. Solute carrier transporters: Pharmacogenomics research ...

    African Journals Online (AJOL)

    Aghogho

    2010-12-27

    -binding cassette) transporters, which include MDR1, a protein that pumps xenobiotics from cells, and the SLC (solute carrier) trans- porters, which take up neurotransmitters, nutrients, heavy metals, and other substrates into ...

  12. Atrial Natriuretic Peptide Stimulates Dopamine Tubular Transport by Organic Cation Transporters: A Novel Mechanism to Enhance Renal Sodium Excretion

    Science.gov (United States)

    Kouyoumdzian, Nicolás M.; Rukavina Mikusic, Natalia L.; Kravetz, María C.; Lee, Brenda M.; Carranza, Andrea; Del Mauro, Julieta S.; Pandolfo, Marcela; Gironacci, Mariela M.; Gorzalczany, Susana; Toblli, Jorge E.; Fernández, Belisario E.

    2016-01-01

    The aim of this study was to demonstrate the effects of atrial natriuretic peptide (ANP) on organic cation transporters (OCTs) expression and activity, and its consequences on dopamine urinary levels, Na+, K+-ATPase activity and renal function. Male Sprague Dawley rats were infused with isotonic saline solution during 120 minutes and randomized in nine different groups: control, pargyline plus tolcapone (P+T), ANP, dopamine (DA), D-22, DA+D-22, ANP+D-22, ANP+DA and ANP+DA+D-22. Renal functional parameters were determined and urinary dopamine concentration was quantified by HPLC. Expression of OCTs and D1-receptor in membrane preparations from renal cortex tissues were determined by western blot and Na+, K+-ATPase activity was determined using in vitro enzyme assay. 3H-DA renal uptake was determined in vitro. Compared to P+T group, ANP and dopamine infusion increased diuresis, urinary sodium and dopamine excretion significantly. These effects were more pronounced in ANP+DA group and reversed by OCTs blockade by D-22, demonstrating that OCTs are implied in ANP stimulated-DA uptake and transport in renal tissues. The activity of Na+, K+-ATPase exhibited a similar fashion when it was measured in the same experimental groups. Although OCTs and D1-receptor protein expression were not modified by ANP, OCTs-dependent-dopamine tubular uptake was increased by ANP through activation of NPR-A receptor and protein kinase G as signaling pathway. This effect was reflected by an increase in urinary dopamine excretion, natriuresis, diuresis and decreased Na+, K+-ATPase activity. OCTs represent a novel target that links the activity of ANP and dopamine together in a common mechanism to enhance their natriuretic and diuretic effects. PMID:27392042

  13. Atrial Natriuretic Peptide Stimulates Dopamine Tubular Transport by Organic Cation Transporters: A Novel Mechanism to Enhance Renal Sodium Excretion.

    Directory of Open Access Journals (Sweden)

    Nicolás M Kouyoumdzian

    Full Text Available The aim of this study was to demonstrate the effects of atrial natriuretic peptide (ANP on organic cation transporters (OCTs expression and activity, and its consequences on dopamine urinary levels, Na+, K+-ATPase activity and renal function. Male Sprague Dawley rats were infused with isotonic saline solution during 120 minutes and randomized in nine different groups: control, pargyline plus tolcapone (P+T, ANP, dopamine (DA, D-22, DA+D-22, ANP+D-22, ANP+DA and ANP+DA+D-22. Renal functional parameters were determined and urinary dopamine concentration was quantified by HPLC. Expression of OCTs and D1-receptor in membrane preparations from renal cortex tissues were determined by western blot and Na+, K+-ATPase activity was determined using in vitro enzyme assay. 3H-DA renal uptake was determined in vitro. Compared to P+T group, ANP and dopamine infusion increased diuresis, urinary sodium and dopamine excretion significantly. These effects were more pronounced in ANP+DA group and reversed by OCTs blockade by D-22, demonstrating that OCTs are implied in ANP stimulated-DA uptake and transport in renal tissues. The activity of Na+, K+-ATPase exhibited a similar fashion when it was measured in the same experimental groups. Although OCTs and D1-receptor protein expression were not modified by ANP, OCTs-dependent-dopamine tubular uptake was increased by ANP through activation of NPR-A receptor and protein kinase G as signaling pathway. This effect was reflected by an increase in urinary dopamine excretion, natriuresis, diuresis and decreased Na+, K+-ATPase activity. OCTs represent a novel target that links the activity of ANP and dopamine together in a common mechanism to enhance their natriuretic and diuretic effects.

  14. Classification of Five Uremic Solutes according to Their Effects on Renal Tubular Cells

    Directory of Open Access Journals (Sweden)

    Takeo Edamatsu

    2014-01-01

    Full Text Available Background/Aims. Uremic solutes, which are known to be retained in patients with chronic kidney disease, are considered to have deleterious effects on disease progression. Among these uremic solutes, indoxyl sulfate (IS has been extensively studied, while other solutes have been studied less to state. We conducted a comparative study to examine the similarities and differences between IS, p-cresyl sulfate (PCS, phenyl sulfate (PhS, hippuric acid (HA, and indoleacetic acid (IAA. Methods. We used LLC-PK1 cells to evaluate the effects of these solutes on viable cell number, cell cycle progression, and cell death. Results. All the solutes reduced viable cell number after 48-hour incubation. N-Acetyl-L-cysteine inhibited this effect induced by all solutes except HA. At the concentration that reduced the cell number to almost 50% of vehicle control, IAA induced apoptosis but not cell cycle delay, whereas other solutes induced delay in cell cycle progression with marginal impact on apoptosis. Phosphorylation of p53 and Chk1 and expression of ATF4 and CHOP genes were detected in IS-, PCS-, and PhS-treated cells, but not in IAA-treated cells. Conclusions. Taken together, the adverse effects of PCS and PhS on renal tubular cells are similar to those of IS, while those of HA and IAA differ.

  15. Roles of Akt and SGK1 in the Regulation of Renal Tubular Transport

    Directory of Open Access Journals (Sweden)

    Nobuhiko Satoh

    2015-01-01

    Full Text Available A serine/threonine kinase Akt is a key mediator in various signaling pathways including regulation of renal tubular transport. In proximal tubules, Akt mediates insulin signaling via insulin receptor substrate 2 (IRS2 and stimulates sodium-bicarbonate cotransporter (NBCe1, resulting in increased sodium reabsorption. In insulin resistance, the IRS2 in kidney cortex is exceptionally preserved and may mediate the stimulatory effect of insulin on NBCe1 to cause hypertension in diabetes via sodium retention. Likewise, in distal convoluted tubules and cortical collecting ducts, insulin-induced Akt phosphorylation mediates several hormonal signals to enhance sodium-chloride cotransporter (NCC and epithelial sodium channel (ENaC activities, resulting in increased sodium reabsorption. Serum- and glucocorticoid-inducible kinase 1 (SGK1 mediates aldosterone signaling. Insulin can stimulate SGK1 to exert various effects on renal transporters. In renal cortical collecting ducts, SGK1 regulates the expression level of ENaC through inhibition of its degradation. In addition, SGK1 and Akt cooperatively regulate potassium secretion by renal outer medullary potassium channel (ROMK. Moreover, sodium-proton exchanger 3 (NHE3 in proximal tubules is possibly activated by SGK1. This review focuses on recent advances in understanding of the roles of Akt and SGK1 in the regulation of renal tubular transport.

  16. Solute carrier transporters: Pharmacogenomics research ...

    African Journals Online (AJOL)

    This paper reviews the solute carrier transporters and highlights the fact that there is much to be learnt from characterizing human genomic variation in South Africa and sub-Saharan Africa, especially with regards to health applications. Genomic diversity in this region is indeed relatively under-studied despite being home to ...

  17. Uraemic toxins induce proximal tubular injury via organic anion transporter 1-mediated uptake

    Science.gov (United States)

    Motojima, Masaru; Hosokawa, Atsuko; Yamato, Hideyuki; Muraki, Takamura; Yoshioka, Toshimasa

    2002-01-01

    A direct effect of uraemic toxins in promoting progression of chronic renal disease has not been established. In this study, we investigated the toxic effects of organic anions which characteristically appeared in the patients with progressive renal disease on renal proximal tubular cells expressing human organic anion transporter (hOAT) 1. A renal proximal tubular cell line, opossum kidney (OK) cells, was transformed with hOAT1. Among the organic anions examined, hippuric acid, para-hydroxyhippuric acid, ortho-hydroxyhippuric acid, indoxyl sulphate and indoleacetic acid showed a high affinity for hOAT1 expressed in the OK cells. Indoxyl sulphate and indoleacetic acid concentration-dependently inhibited proliferation of the hOAT1-transformed cells. The h.p.l.c. analysis demonstrated that cellular uptake of these organic anions was significantly elevated in hOAT1-transformed cells. These organic anions also concentration-dependently stimulated cellular free radical production. The degrees of inhibition of cell proliferation and the stimulation of free radical production induced by the organic anions were significantly higher in the hOAT1-transformed cells than vector-transformed cells. The stimulatory effect of indoxyl sulphate on free radical production was abolished by anti-oxidants and probenecid. Less free radical production was observed in the hOAT1-transformed cells treated with p-hydroxyhippuric acid, o-hydroxyhippuric acid compared with indoxyl sulphate and indoleacetic acid. Hippuric acid had little effect on free radical production. Organic anions present in the serum of patients with progressive renal disease may cause proximal tubular injury via hOAT1-mediated uptake. The mechanism of cellular toxicity by these uraemic toxins involves free radical production. Thus, some uraemic toxins may directly promote progression of chronic renal disease. PMID:11815391

  18. Effect of diuretics on renal tubular transport of calcium and magnesium.

    Science.gov (United States)

    Alexander, R Todd; Dimke, Henrik

    2017-06-01

    Calcium (Ca 2+ ) and Magnesium (Mg 2+ ) reabsorption along the renal tubule is dependent on distinct trans- and paracellular pathways. Our understanding of the molecular machinery involved is increasing. Ca 2+ and Mg 2+ reclamation in kidney is dependent on a diverse array of proteins, which are important for both forming divalent cation-permeable pores and channels, but also for generating the necessary driving forces for Ca 2+ and Mg 2+ transport. Alterations in these molecular constituents can have profound effects on tubular Ca 2+ and Mg 2+ handling. Diuretics are used to treat a large range of clinical conditions, but most commonly for the management of blood pressure and fluid balance. The pharmacological targets of diuretics generally directly facilitate sodium (Na + ) transport, but also indirectly affect renal Ca 2+ and Mg 2+ handling, i.e., by establishing a prerequisite electrochemical gradient. It is therefore not surprising that substantial alterations in divalent cation handling can be observed following diuretic treatment. The effects of diuretics on renal Ca 2+ and Mg 2+ handling are reviewed in the context of the present understanding of basal molecular mechanisms of Ca 2+ and Mg 2+ transport. Acetazolamide, osmotic diuretics, Na + /H + exchanger (NHE3) inhibitors, and antidiabetic Na + /glucose cotransporter type 2 (SGLT) blocking compounds, target the proximal tubule, where paracellular Ca 2+ transport predominates. Loop diuretics and renal outer medullary K + (ROMK) inhibitors block thick ascending limb transport, a segment with significant paracellular Ca 2+ and Mg 2+ transport. Thiazides target the distal convoluted tubule; however, their effect on divalent cation transport is not limited to that segment. Finally, potassium-sparing diuretics, which inhibit electrogenic Na + transport at distal sites, can also affect divalent cation transport. Copyright © 2017 the American Physiological Society.

  19. Transient solute transport with sorption in Poiseuille flow

    Science.gov (United States)

    Hesse, M. A.; Zhang, L.; Wang, M.

    2016-12-01

    Sorption onto the wall has been observed to both increase [Lungu and Moffatt, 1982] and decrease the average solute transport velocity [Golay, 1958], relative to the mean flow velocity. Similarly, opposite conclusion have been reached for the effect of sorption on dispersion. In this work, we study transient solute transport in Poiseuille flow with sorptive boundary and initial transversely uniform distribution (linear release) to reconcile the two different views on solute transport (figure 1) with sorption. Two-dimensional simulations in figure 2 show that there is a transition from fast transport dominated by a fast-moving pulse in the middle of the channel at early times, to slow transport at late times once desorption from the walls becomes important. A set of series solutions for zeroth, first and second longitudinal moment have been derived and we show that the zeroth-order term in the solution corresponds to the slow transport in the late regime, while the first-order term corresponds to the fast transport in the early regime (figure 3). Based on the analytical solution, the time scales for early regime and late regimes of both the velocity and the dispersion coefficient have been determined for an equilibrium sorption model and a kinetic linear sorption model. Furthermore, we give approximated analytical solution when both adsorption and desorption are slow. References M.J.E. Golay. Theory of chromatography in open and coated tubular columns iwth round and rectangular cross-sections. In D.H.Desty, editor, Gas Chromatography, pages 36-53, New York, 1958. Academic Press Inc. E.M. Lungu and H.K. Moffatt. the effect of wall conductance on heat diffusion in duct flow. Journal of Engineering Mathematics, 1692 ;121-136, 1982.

  20. A CFD analysis of transport phenomena and electrochemical reactions in a tubular-shaped PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, Maher A.R. [Fuel Cell Research Center, International Energy and Environment Foundation, Al-Najaf, P.O.Box 39 (Iraq)

    2013-07-01

    A fuel cell is most interesting new power source because it solves not only the environment problem but also natural resource exhaustion problem. CFD modeling and simulation for heat and mass transport in PEM fuel cells are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize fuel cell designs before building a prototype for engineering application. In this research, full three-dimensional, non-isothermal computational fluid dynamics model of a tubular-shaped proton exchange membrane (PEM) fuel cell has been developed. This comprehensive model accounts for the major transport phenomena such as convective and diffusive heat and mass transfer, electrode kinetics, transport and phase-change mechanism of water, and potential fields in a tubular-shaped PEM fuel cell. The model explains many interacting, complex electrochemical, and transport phenomena that cannot be studied experimentally. Three-dimensional results of the species profiles, temperature distribution, potential distribution, and local current density distribution are presented and analysed, with the focus on the physical insight and fundamental understanding.

  1. Laplace transform solutions for solute transport in fissured aquifers

    Science.gov (United States)

    Barker, J. A.

    The main processes affecting the migration of a solute in a fissured aquifer will be advection and dispersion in the fissures, diffusion into the porous matrix; and adsorption. This paper considers solute transport in an idealized fissured aquifer consisting of slabs of saturated rock-matrix separated by equally spaced, planar fissures. The solution of the transport equations is developed as far as Laplace transforms of the solute concentrations in the fissure and matrix water. Numerical inversion of the transforms is used to investigate characteristic behaviour of the model for a number of special cases.

  2. A micropuncture study of proximal tubular transport of lithium during osmotic diuresis

    DEFF Research Database (Denmark)

    Leyssac, P P; Holstein-Rathlou, N H; Skøtt, P

    1990-01-01

    Lithium and sodium are normally reabsorbed in parallel with water by the renal proximal tubule whereby their tubular fluid-to-plasma concentration ratios (TF/P) remain close to unity throughout the proximal convoluted segment. During osmotic diuresis, the late proximal (TF/P)Na is known to decrease...

  3. Urban Transportation: Issue and Solution

    Directory of Open Access Journals (Sweden)

    Haryati Shafii

    2011-10-01

    Full Text Available Generally, quality of life of urban population is heavily dependent on social facilities provided within the environment. One of the most important facilities is transportations. Study on transportation mode in an urban area is especially very important because for almost every individual living in a large and densely populated area, mobility is one of the most crucial issues in everyday life. Enhance mobility, faster journey to work and less pollution from petrol-propelled vehicles can increase the quality of life, which in turn lead to a sustainable urban living. The study present transportation mode usage issues faced by community related to quality of life in an urban area. This study identifies several issues of transportation mode in urban areas and its impact on the quality of life. The study areas are Putrajaya, Kuala Lumpur and Bandar Kajang, Selangor. The methodology used in this research is secondary and primary data. The questionnaires for the survey were distributed from May 2008 to Jun 2008. These researches were conducted on 144 respondents for to evaluate their perception of transportation mode correlated to the quality of life. The collected data were then analyzed using “Statistical Packages for the Social Science” (SPSS. The respondents comprise of 61 males and 84 females from the age group of 18 to 57 years. This study identifies the percentage of public transportation mode usage in urban area, such as buses (16.7%, train (ERL, monorail and commuter-6.4%; which is very low compared to owning personal car (45.8% and motorcycle (25.4%.The result shows owning personal car is the highest (45.8% in three study areas and monorail and taxi are the lowest (1.4%. The Chi Square Test shows that among the mode transportation with traffic jam is quite difference in Kuala Lumpur, Putrajaya and Kajang. Analysis of the Chi Square Test shows the result is 0.000 (two sides to respondent answering “yes” and analysis of Spearman

  4. Toxicological significance of renal Bcrp: Another potential transporter in the elimination of mercuric ions from proximal tubular cells

    Energy Technology Data Exchange (ETDEWEB)

    Bridges, Christy C., E-mail: bridges_cc@mercer.edu; Zalups, Rudolfs K.; Joshee, Lucy

    2015-06-01

    Secretion of inorganic mercury (Hg{sup 2+}) from proximal tubular cells into the tubular lumen has been shown to involve the multidrug resistance-associated protein 2 (Mrp2). Considering similarities in localization and substrate specificity between Mrp2 and the breast cancer resistance protein (Bcrp), we hypothesize that Bcrp may also play a role in the proximal tubular secretion of mercuric species. In order to test this hypothesis, the uptake of Hg{sup 2+} was examined initially using inside-out membrane vesicles containing Bcrp. The results of these studies suggest that Bcrp may be capable of transporting certain conjugates of Hg{sup 2+}. To further characterize the role of Bcrp in the handling of mercuric ions and in the induction of Hg{sup 2+}-induced nephropathy, Sprague–Dawley and Bcrp knockout (bcrp{sup −/−}) rats were exposed intravenously to a non-nephrotoxic (0.5 μmol·kg{sup −1}), a moderately nephrotoxic (1.5 μmol·kg{sup −1}) or a significantly nephrotoxic (2.0 μmol·kg{sup −1}) dose of HgCl{sub 2}. In general, the accumulation of Hg{sup 2+} was greater in organs of bcrp{sup −/−} rats than in Sprague–Dawley rats, suggesting that Bcrp may play a role in the export of Hg{sup 2+} from target cells. Within the kidney, cellular injury and necrosis was more severe in bcrp{sup −/−} rats than in controls. The pattern of necrosis, which was localized in the inner cortex and the outer stripe of the outer medulla, was significantly different from that observed in Mrp2-deficient animals. These findings suggest that Bcrp may be involved in the cellular export of select mercuric species and that its role in this export may differ from that of Mrp2. - Highlights: • Bcrp may mediate transport of mercury out of proximal tubular cells. • Hg-induced nephropathy was more severe in Bcrp knockout rats. • Bcrp and Mrp2 may differ in their ability to transport Hg.

  5. Performance Analysis of Solution Transportation Absorption Chiller

    Science.gov (United States)

    Kiani, Behdad; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao

    Thermally activated advanced absorption cycles are considered promising candidates to replace CFCs, HCFCs and HFCs for residential and commercial applications. In such absorption systems, it is desirable to utilize the waste heat from industries for heating and cooling applications in commercial and residential sectors. For this purpose, it is necessary to transport energy over some distance because the waste heat source and demand are generally located apart from each other. Transportation of steam, hot water or chilled water requires high construction costs for insulation. There is an efficient method of energy transportation using absorption system called “ Solution Transportation Absorption System (STA)”. The solution is transported at an ambient temperature so that tube-insulations not required. This paper shows the simulation of the abovementioned system and the optimal result, using mathematical optimization. The optimum system with industry‧s waste heat utilization is obtained. At the end, the effect on the pollution emission and energy conservation is obtained.

  6. Development of Tubular Type Underwater Discharge Reactor to decompose Fe-EDTA from aqueous solution

    International Nuclear Information System (INIS)

    Kang, Duck-Won; Kim, Seok-Tae; Kim, Jin Kil; Ki, Hyung-Dong

    2007-01-01

    In case of a nuclear industry, the wastewater is hardly generated in normal operating conditions aside from laundry rooms, particularly for wastewater contaminated by radioactive materials. However if the steam generator (SG) chemical cleaning works are carrying out, it is another story. In this case we have to predict wastewater production at least from several tons to several hundreds tons during the works. Actually Kori Unit 4 in Korea is preparing the advanced sludge conditioning agents (ASCAs) project at the next overhaul period, June-2007, to remove the tube sheet scale, and we are predicting that the 200 . 250 tons waste solutions are going to produce during this works. SG chemical cleaning waste solution containing chelating agents such as EDTA is hardly easy to purify and radioactive materials included in this solution make much harder. Therefore we must have technologies to purify this chemical cleaning waste solution. The best wastewater treatment system should have great adaptability, low environmental impact, low amount of hazardous waste, and low capital and operating costs. In this study we developed the underwater spark discharge system (USDS) to decompose Fe-EDTA from aqueous solution which is contaminated with radioactive materials

  7. Effects of Reactive Oxygen Species on Tubular Transport along the Nephron.

    Science.gov (United States)

    Gonzalez-Vicente, Agustin; Garvin, Jeffrey L

    2017-03-23

    Reactive oxygen species (ROS) are oxygen-containing molecules naturally occurring in both inorganic and biological chemical systems. Due to their high reactivity and potentially damaging effects to biomolecules, cells express a battery of enzymes to rapidly metabolize them to innocuous intermediaries. Initially, ROS were considered by biologists as dangerous byproducts of respiration capable of causing oxidative stress, a condition in which overproduction of ROS leads to a reduction in protective molecules and enzymes and consequent damage to lipids, proteins, and DNA. In fact, ROS are used by immune systems to kill virus and bacteria, causing inflammation and local tissue damage. Today, we know that the functions of ROS are not so limited, and that they also act as signaling molecules mediating processes as diverse as gene expression, mechanosensation, and epithelial transport. In the kidney, ROS such as nitric oxide (NO), superoxide (O₂ - ), and their derivative molecules hydrogen peroxide (H₂O₂) and peroxynitrite (ONO₂ - ) regulate solute and water reabsorption, which is vital to maintain electrolyte homeostasis and extracellular fluid volume. This article reviews the effects of NO, O₂ - , ONO₂ - , and H₂O₂ on water and electrolyte reabsorption in proximal tubules, thick ascending limbs, and collecting ducts, and the effects of NO and O₂ - in the macula densa on tubuloglomerular feedback.

  8. Effect of Diuretics on Renal Tubular Transport of Calcium and Magnesium

    DEFF Research Database (Denmark)

    Alexander, R Todd; Dimke, Henrik

    2017-01-01

    of clinical conditions, but most commonly for the management of blood pressure and fluid balance. The pharmacological targets of diuretics generally directly facilitate sodium (Na+) transport, but also indirectly affect renal Ca2+ and Mg2+ handling, i.e. by establishing a prerequisite electrochemical gradient....... Acetazolamide, osmotic diuretics, NHE3 inhibitors and antidiabetic SGLT blocking compounds, target the proximal tubule, where paracellular Ca2+ transport predominates. Loop-diuretics and ROMK inhibitors block thick ascending limb transport, a segment with significant paracellular Ca2+ and Mg2+ transport...

  9. Tubular combustion

    CERN Document Server

    Ishizuka, Satoru

    2014-01-01

    Tubular combustors are cylindrical tubes where flame ignition and propagation occur in a spatially confined, highly controlled environment, in a nearly flat, elongated geometry. This allows for some unique advantages where extremely even heat dispersion is required over a large surface while still maintaining fuel efficiency. Tubular combustors also allow for easy flexibility in type of fuel source, allowing for quick changeover to meet various needs and changing fuel pricing. This new addition to the MP sustainable energy series will provide the most up-to-date research on tubular combustion--some of it only now coming out of private proprietary protection. Plentiful examples of current applications along with a good explanation of background theory will offer readers an invaluable guide on this promising energy technology. Highlights include: * An introduction to the theory of tubular flames * The "how to" of maintaining stability of tubular flames through continuous combustion * Examples of both small-scal...

  10. Reexamining ultrafiltration and solute transport in groundwater

    Science.gov (United States)

    Neuzil, C. E.; Person, Mark

    2017-06-01

    Geologic ultrafiltration—slowing of solutes with respect to flowing groundwater—poses a conundrum: it is consistently observed experimentally in clay-rich lithologies, but has been difficult to identify in subsurface data. Resolving this could be important for clarifying clay and shale transport properties at large scales as well as interpreting solute and isotope patterns for applications ranging from nuclear waste repository siting to understanding fluid transport in tectonically active environments. Simulations of one-dimensional NaCl transport across ultrafiltering clay membrane strata constrained by emerging data on geologic membrane properties showed different ultrafiltration effects than have often been envisioned. In relatively high-permeability advection-dominated regimes, salinity increases occurred mostly within membrane units while their effluent salinity initially fell and then rose to match solute delivery. In relatively low-permeability diffusion-dominated regimes, salinity peaked at the membrane upstream boundary and effluent salinity remained low. In both scenarios, however, only modest salinity changes (up to ˜3 g L-1) occurred because of self-limiting tendencies; membrane efficiency declines as salinity rises, and although sediment compaction increases efficiency, it is also decreases permeability and allows diffusive transport to dominate. It appears difficult for ultrafiltration to generate brines as speculated, but widespread and less extreme ultrafiltration effects in the subsurface could be unrecognized. Conditions needed for ultrafiltration are present in settings that include topographically-driven flow systems, confined aquifer systems subjected to injection or withdrawal, compacting basins, and accretionary complexes.

  11. A Collaborative GIS Solution for Public Transport

    Directory of Open Access Journals (Sweden)

    Liviu Adrian COTFAS

    2009-01-01

    Full Text Available The recent years brought forward a large number of solutions for automating route finding given the increased availability of geographical data. However, such solutions rarely focus on mass transit or involve the user in submitting information in a collaborative manner to further improve the available dataset and provide additional services. The system presented here intends to fully address these issues by providing a modular, extensible collaborative one-stop-shop for public transport needs based on multi-source collaborative data inputs from both official and user-submitted sources with the usage of a flexible, genetic-algorithms based route-finding application. Implementation wise, the solution is based on an open-ended system of collaborative web-services with front-ends available on mobile, desktop and web platforms. The proposed solution will not only provide users with a powerful technical solution, but will address the theoretical concern by which the increase of available GIS data is solely used for last-mile, map-like solutions

  12. Pathogen transport in groundwater systems: contrasts with traditional solute transport

    Science.gov (United States)

    Hunt, Randall J.; Johnson, William P.

    2017-06-01

    Water quality affects many aspects of water availability, from precluding use to societal perceptions of fit-for-purpose. Pathogen source and transport processes are drivers of water quality because they have been responsible for numerous outbreaks resulting in large economic losses due to illness and, in some cases, loss of life. Outbreaks result from very small exposure (e.g., less than 20 viruses) from very strong sources (e.g., trillions of viruses shed by a single infected individual). Thus, unlike solute contaminants, an acute exposure to a very small amount of contaminated water can cause immediate adverse health effects. Similarly, pathogens are larger than solutes. Thus, interactions with surfaces and settling become important even as processes important for solutes such as diffusion become less important. These differences are articulated in "Colloid Filtration Theory", a separate branch of pore-scale transport. Consequently, understanding pathogen processes requires changes in how groundwater systems are typically characterized, where the focus is on the leading edges of plumes and preferential flow paths, even if such features move only a very small fraction of the aquifer flow. Moreover, the relatively short survival times of pathogens in the subsurface require greater attention to very fast (<10 year) flow paths. By better understanding the differences between pathogen and solute transport mechanisms discussed here, a more encompassing view of water quality and source water protection is attained. With this more holistic view and theoretical understanding, better evaluations can be made regarding drinking water vulnerability and the relation between groundwater and human health.

  13. Effect of tubular chiralities of single-walled ZnO nanotubes on electronic transport

    Science.gov (United States)

    Han, Qin; Liu, Zhenghui; Zhou, Liping; Yu, Yiqing; Wu, Xuemei

    2017-04-01

    The electronic transport properties of single-walled ZnO nanotubes with different chiralities are investigated by nonequilibrium Green's function combined with density functional theory. In this paper we consider three representative ZnO nanotubes, namely (3, 3) armchair, (5, 0) zigzag, and (4, 2) chiral, with a similar diameter of about 5.4 Å. Short nanotubes exhibit good conductance behavior. As the tube length increases, the conductance decreases at low bias and the nanotubes indicate semiconducting behavior. The current-voltage characteristics of the nanotubes longer than 3 nm depend weakly on the length of the tubes. The armchair and chiral ZnO nanotubes with the same length and diameter have almost overlapped current-voltage curves. The electron transport behaviors are analyzed in terms of the transmission spectra, density of states and charge population of these nanotubes. The results indicate that the resonant peaks above the Fermi level are responsible for electric currents. However, the zigzag ZnO nanotubes exhibit asymmetric current-voltage curves attributed to the built-in polarization field and give larger current than the armchair and chiral nanotubes at the same bias. The features explored here strongly suggest that the ZnO nanotubes are stable, flexible structures, which are valuable in Nano-Electromechanical System.

  14. Characterisation and validation of drug transport and GLP-1R function in primary porcine proximal tubular cells

    OpenAIRE

    Schlatter, Philipp

    2006-01-01

    Overview kidney: Kidney is, beside the liver, one of the most important organs for the elimination of waste products, toxins, drugs and their metabolites. Due to the anatomy of the kidney, ultra filtrate leaving the glomerulus passes first the proximal tubular cells. Therefore, these cells are exposed to high concentrations of xenobiotics which explains their high metabolic activity. This circumstance results sometimes in proximal tubular nephrotoxicity. In addition, various transmembrane...

  15. Transport of reactive and nonreactive solutes

    International Nuclear Information System (INIS)

    Garabedian, S.P.; Leblanc, D.R.

    1990-01-01

    A natural-gradient tracer test was conducted on Cape Cod, Massachusetts, to examine the transport and dispersion of solutes in a sand and gravel aquifer. A nonreactive tracer, bromide, and two reactive tracers, lithium and molybdate, were injected as a pulse in July 1985 and monitored in three dimensions for 3 years as they moved 280 meters downgradient through an array of multilevel samplers. The tracer transport was quantified using spatial moments. The calculated total mass of bromide for each sampling date varied from 86 to 105 percent of the injected mass, and the center of mass moved at a nearly constant horizontal velocity of 0.42 meters per day. The bromide cloud also moved downward about 4 meters, probably because of density-induced sinking and accretion of areal recharge from precipitation. After 200 meters of transport, the bromide cloud was more than 80 meters long but only 14 meters wide and 6 meters thick. The change in longitudinal dispersivity had reached a constant value (0.96 meters). The transverse horizontal and transverse vertical dispersivities were much smaller (1.8 centimeters and 1.5 millimeters, respectively) than the longitudinal value. The lithium and molybdate clouds followed the same path as the bromide cloud, but a significant amount of their mass was adsorbed onto the aquifer sediments, and their rates of movement were retarded about 50 percent relative to the bromide movement. (Author) (5 figs., 23 refs.)

  16. Significance of downregulation of renal organic cation transporter (SLC47A1 in cisplatin-induced proximal tubular injury

    Directory of Open Access Journals (Sweden)

    Mizuno T

    2015-07-01

    Full Text Available Tomohiro Mizuno,1–3 Waichi Sato,2,3 Kazuhiro Ishikawa,4 Yuki Terao,1 Kazuo Takahashi,2 Yukihiro Noda,5 Yukio Yuzawa,2 Tadashi Nagamatsu1 1Department of Analytical Pharmacology, Meijo University Faculty of Pharmacy, Nagoya, 2Department of Nephrology, School of Medicine, Fujita Health University, Toyoake, 3Department of Nephrology, Nagoya University School of Medicine, Nagoya, 4Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, 5Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty of Pharmacy, Nagoya, Japan Background/aim: To elucidate the mechanism responsible for developing acute kidney injury in patients with diabetes mellitus, we also evaluated the issue of whether advanced glycation endproducts (AGEs influence the expressions of multi antimicrobial extrusion protein (MATE1/SLC47A1 in tubular cells. Materials and methods: To detect changing expression of MATE1/SLC47A1 in dose- and time-dependent manners, human proximal tubular epithelial cells were incubated with AGE-aggregated-human serum albumin. As a function assay for MATE1/SLC47A1, human proximal tubular epithelial cells were incubated with cisplatin or carboplatin. Results: On incubation with AGEs, the expressions of MATE1/SLC47A1 were decreased in tubular cells. In addition, the toxicities of cisplatin were increased in tubular cells that had been pretreated with AGEs. However, the toxicities of carboplatin were smaller than that of cisplatin in proximal tubular epithelial cells. Conclusion: The expression of the MATE1/SLC47A1 is decreased by AGEs, which increases the risk for proximal tubular injury. Keywords: advanced glycation endproducts, cisplatin, SLC47A1, diabetes mellitus, acute kidney injury

  17. Contribution of the organic anion transporter OAT2 to the renal active tubular secretion of creatinine and mechanism for serum creatinine elevations caused by cobicistat

    Science.gov (United States)

    Lepist, Eve-Irene; Zhang, Xuexiang; Hao, Jia; Huang, Jane; Kosaka, Alan; Birkus, Gabriel; Murray, Bernard P; Bannister, Roy; Cihlar, Tomas; Huang, Yong; Ray, Adrian S

    2014-01-01

    Many xenobiotics including the pharmacoenhancer cobicistat increase serum creatinine by inhibiting its renal active tubular secretion without affecting the glomerular filtration rate. This study aimed to define the transporters involved in creatinine secretion, applying that knowledge to establish the mechanism for xenobiotic-induced effects. The basolateral uptake transporters organic anion transporter OAT2 and organic cation transporters OCT2 and OCT3 were found to transport creatinine. At physiologic creatinine concentrations, the specific activity of OAT2 transport was over twofold higher than OCT2 or OCT3, establishing OAT2 as a likely relevant creatinine transporter and further challenging the traditional view that creatinine is solely transported by a cationic pathway. The apical multidrug and toxin extrusion transporters MATE1 and MATE2-K demonstrated low-affinity and high-capacity transport. All drugs known to affect creatinine inhibited OCT2 and MATE1. Similar to cimetidine and ritonavir, cobicistat had the greatest effect on MATE1 with a 50% inhibition constant of 0.99 μM for creatinine transport. Trimethoprim potently inhibited MATE2-K, whereas dolutegravir preferentially inhibited OCT2. Cimetidine was unique, inhibiting all transporters that interact with creatinine. Thus, the clinical observation of elevated serum creatinine in patients taking cobicistat is likely a result of OCT2 transport, facilitating intracellular accumulation, and MATE1 inhibition. PMID:24646860

  18. Solute transport modelling with the variable temporally dependent ...

    Indian Academy of Sciences (India)

    Pintu Das

    2018-02-07

    Feb 7, 2018 ... In this present study, analytical and numerical solutions are obtained for solute transport modelling in homogeneous ..... Clay (0.40). Analytical solution. Numerical solution. Figure 3. Comparison of concentration distribution for sinu- soidal velocity pattern for boundary condition c0. 2 1 ю sec wt р. Ю.

  19. A quasilinear model for solute transport under unsaturated flow

    International Nuclear Information System (INIS)

    Houseworth, J.E.; Leem, J.

    2009-01-01

    We developed an analytical solution for solute transport under steady-state, two-dimensional, unsaturated flow and transport conditions for the investigation of high-level radioactive waste disposal. The two-dimensional, unsaturated flow problem is treated using the quasilinear flow method for a system with homogeneous material properties. Dispersion is modeled as isotropic and is proportional to the effective hydraulic conductivity. This leads to a quasilinear form for the transport problem in terms of a scalar potential that is analogous to the Kirchhoff potential for quasilinear flow. The solutions for both flow and transport scalar potentials take the form of Fourier series. The particular solution given here is for two sources of flow, with one source containing a dissolved solute. The solution method may easily be extended, however, for any combination of flow and solute sources under steady-state conditions. The analytical results for multidimensional solute transport problems, which previously could only be solved numerically, also offer an additional way to benchmark numerical solutions. An analytical solution for two-dimensional, steady-state solute transport under unsaturated flow conditions is presented. A specific case with two sources is solved but may be generalized to any combination of sources. The analytical results complement numerical solutions, which were previously required to solve this class of problems.

  20. Transport phenomena during nanofiltration of concentrated solutions

    NARCIS (Netherlands)

    Bargeman, Gerrald

    2016-01-01

    In most scientific studies on nanofiltration either the development of new membrane materials or the characterization of membranes is reported. In the latter case most studies use single solute salt or sugar solutions and/or investigate nanofiltration of solutions with mixtures of ions at low

  1. Temporal moment analysis of solute transport in a coupled fracture ...

    Indian Academy of Sciences (India)

    Study on fluid flow and transport of solute through fractures has been an area of great interest among hydro-geologists during past few ... affect the solute transport through fracture are advection, dispersion, matrix diffusion, sorption and degradation. Among the ...... α0 = Local fracture dispersivity, [L]; ρs = Bulk density of the ...

  2. Simultaneous transport of water and solutes under transient ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 117; Issue 4. Simultaneous transport of water and solutes under transient unsaturated flow conditions – A case study ... Keywords. Hydraulic conductivity; infiltration; leaching; Malaprabha; modeling; permeability; salinity; solute transport; SWIM model; water flow.

  3. Stochastic dynamics modeling solute transport in porous media modeling solute transport in porous media

    CERN Document Server

    Kulasiri, Don

    2002-01-01

    Most of the natural and biological phenomena such as solute transport in porous media exhibit variability which can not be modeled by using deterministic approaches. There is evidence in natural phenomena to suggest that some of the observations can not be explained by using the models which give deterministic solutions. Stochastic processes have a rich repository of objects which can be used to express the randomness inherent in the system and the evolution of the system over time. The attractiveness of the stochastic differential equations (SDE) and stochastic partial differential equations (SPDE) come from the fact that we can integrate the variability of the system along with the scientific knowledge pertaining to the system. One of the aims of this book is to explaim some useufl concepts in stochastic dynamics so that the scientists and engineers with a background in undergraduate differential calculus could appreciate the applicability and appropriateness of these developments in mathematics. The ideas ...

  4. Solute transport through porous media using asymptotic dispersivity

    Indian Academy of Sciences (India)

    In this paper, multiprocess non-equilibrium transport equation has been used, which accounts for both physical and chemical non-equilibrium for reactive transport through porous media. An asymptotic distance dependent dispersivity is used to embrace the concept of scale-dependent dispersion for solute transport in ...

  5. Modelling multicomponent solute transport in structured soils

    NARCIS (Netherlands)

    Beinum, van G.W.

    2007-01-01

    The mobility of contaminants in soil is an important factor in determining their ability to spread into the wider environment. For non-volatile substances, transport within the soil is generally dominated by transport of dissolved fractions in the soil water phase, via either diffusion or

  6. Role of H2O2 on the kinetics of low-affinity high-capacity Na+-dependent alanine transport in SHR proximal tubular epithelial cells

    International Nuclear Information System (INIS)

    Pinto, Vanda; Pinho, Maria Joao; Jose, Pedro A.; Soares-da-Silva, Patricio

    2010-01-01

    Research highlights: → H 2 O 2 in excess is required for the presence of a low-affinity high-capacity component for the Na + -dependent [ 14 C]-L-alanine uptake in SHR PTE cells only. → It is suggested that Na + binding in renal ASCT2 may be regulated by ROS in SHR PTE cells. -- Abstract: The presence of high and low sodium affinity states for the Na + -dependent [ 14 C]-L-alanine uptake in immortalized renal proximal tubular epithelial (PTE) cells was previously reported (Am. J. Physiol. 293 (2007) R538-R547). This study evaluated the role of H 2 O 2 on the Na + -dependent [ 14 C]-L-alanine uptake of ASCT2 in immortalized renal PTE cells from Wistar Kyoto rat (WKY) and spontaneously hypertensive rat (SHR). Na + dependence of [ 14 C]-L-alanine uptake was investigated replacing NaCl with an equimolar concentration of choline chloride in vehicle- and apocynin-treated cells. Na + removal from the uptake solution abolished transport activity in both WKY and SHR PTE cells. Decreases in H 2 O 2 levels in the extracellular medium significantly reduced Na + -K m and V max values of the low-affinity high-capacity component in SHR PTE cells, with no effect on the high-affinity low-capacity state of the Na + -dependent [ 14 C]-L-alanine uptake. After removal of apocynin from the culture medium, H 2 O 2 levels returned to basal values within 1 to 3 h in both WKY and SHR PTE cells and these were found stable for the next 24 h. Under these experimental conditions, the Na + -K m and V max of the high-affinity low-capacity state were unaffected and the low-affinity high-capacity component remained significantly decreased 1 day but not 4 days after apocynin removal. In conclusion, H 2 O 2 in excess is required for the presence of a low-affinity high-capacity component for the Na + -dependent [ 14 C]-L-alanine uptake in SHR PTE cells only. It is suggested that Na + binding in renal ASCT2 may be regulated by ROS in SHR PTE cells.

  7. A Mathematical Model of Solute Coupled Water Transport in Toad Intestine Incorporating Recirculation of the Actively Transported Solute

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Sørensen, Jakob Balslev; Sørensen, Jens Nørkær

    2000-01-01

    A mathematical model of an absorbing leaky epithelium is developed for analysis of solute coupled water transport. The non-charged driving solute diffuses into cells and is pumped from cells into the lateral intercellular space (lis). All membranes contain water channels with the solute passing...... increases with hydraulic conductance of the pathway carrying water from mucosal solution into lis. Uphill water transport is accomplished, but with high hydraulic conductance of cell membranes strength of transport is obscured by water flow through cells. Anomalous solvent drag occurs when back flux...

  8. Performance and mechanisms for the removal of phthalates and pharmaceuticals from aqueous solution by graphene-containing ceramic composite tubular membrane coupled with the simultaneous electrocoagulation and electrofiltration process.

    Science.gov (United States)

    Yang, Gordon C C; Chen, Ying-Chun; Yang, Hao-Xuan; Yen, Chia-Heng

    2016-07-01

    In this study, commonly detected emerging contaminants (ECs) in water, including di-n-butyl phthalate (DnBP), di(2-ethylhexyl) phthalate (DEHP), cephalexin (CLX), sulfamethoxazole (SMX) and caffeine (CAF), were selected as the target contaminants. A lab-prepared graphene-containing ceramic composite tubular membrane (TGCCM) coupled with the simultaneous electrocoagulation and electrofiltration process (EC/EF) in crossflow filtration mode was used to remove target contaminants in model solution. Meanwhile, a comparison of the removal efficiency was made among various tubular composite membranes reported, including carbon fibers/carbon/alumina composite tubular membrane (TCCACM), titania/alumina composite tubular membrane (TTACM) and alumina tubular membrane (TAM). The results of this study showed that the removal efficiencies for DnBP and DEHP were 99%, whereas 32-97% for cephalexin (CLX), sulfamethoxazole (SMX) and caffeine (CAF). In this work the mechanisms involved in removing target ECs were proposed and their roles in removing various ECs were also discussed. Further, two actual municipal wastewaters were treated to evaluate the applicability of the aforementioned treatment technology (i.e., TGCCM coupled with EC/EF) to various aqueous solutions in the real world. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Using PHREEQC to simulate solute transport in fractured bedrock.

    Science.gov (United States)

    Lipson, David S; McCray, John E; Thyne, Geoffrey D

    2007-01-01

    The geochemical computer model PHREEQC can simulate solute transport in fractured bedrock aquifers that can be conceptualized as dual-porosity flow systems subject to one-dimensional advective-dispersive transport in the bedrock fractures and diffusive transport in the bedrock matrix. This article demonstrates how the physical characteristics of such flow systems can be parameterized for use in PHREEQC, it provides a method for minimizing numerical dispersion in PHREEQC simulations, and it compares PHREEQC simulations with results of an analytical solution. The simulations assumed a dual-porosity conceptual model involving advective-reactive-dispersive transport in the mobile zone (bedrock fracture) and diffusive-reactive transport in the immobile zone (bedrock matrix). The results from the PHREEQC dual-porosity transport model that uses a finite-difference approach showed excellent agreement compared with an analytical solution.

  10. Solute transport across a contact interface in deformable porous media.

    Science.gov (United States)

    Ateshian, Gerard A; Maas, Steve; Weiss, Jeffrey A

    2012-04-05

    A finite element formulation of neutral solute transport across a contact interface between deformable porous media is implemented and validated against analytical solutions. By reducing the integral statements of external virtual work on the two contacting surfaces into a single contact integral, the algorithm automatically enforces continuity of solute molar flux across the contact interface, whereas continuity of the effective solute concentration (a measure of the solute mechano-chemical potential) is achieved using a penalty method. This novel formulation facilitates the analysis of problems in biomechanics where the transport of metabolites across contact interfaces of deformable tissues may be of interest. This contact algorithm is the first to address solute transport across deformable interfaces, and is made available in the public domain, open-source finite element code FEBio (http://www.febio.org). Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Mathematical modeling of fluid and solute transport in peritoneal dialysis

    OpenAIRE

    Waniewski, Jacek

    2001-01-01

    Optimization of peritoneal dialysis schedule and dialysis fluid composition needs, among others, methods for quantitative assessment of fluid and solute transport. Furthermore, an integrative quantitative description of physiological processes within the tissue, which contribute to the net transfer of fluid and solutes, is necessary for interpretation of the data and for predictions of the outcome of possible intervention into the peritoneal transport system. The current pro...

  12. Solute transport through porous media using asymptotic dispersivity

    Indian Academy of Sciences (India)

    ber of processes and porous media properties including convective transport with flowing water, molecular ... focus of experimental and theoretical research on solute transport through porous media. The essence of ...... Moench M 1991 Social issues in Western U.S. groundwater management: An overview. Oakland: Pacific.

  13. Solute transport through porous media using asymptotic dispersivity

    Indian Academy of Sciences (India)

    Abstract. In this paper, multiprocess non-equilibrium transport equation has been used, which accounts for both physical and chemical non-equilibrium for reactive transport through porous media. An asymptotic distance dependent dispersivity is used to embrace the concept of scale-dependent dispersion for solute ...

  14. One-dimensional spatially dependent solute transport in semi ...

    African Journals Online (AJOL)

    The present study is an attempt to describe analytical solution of spatially dependent solute transport in one-dimensional semiinfinite homogeneous porous domain. In this mathematical model the dispersion coefficient is considered spatially dependent while seepage velocity is considered exponentially decreasing function ...

  15. One-dimensional spatially dependent solute transport in semi ...

    African Journals Online (AJOL)

    The present study is an attempt to describe analytical solution of spatially dependent solute transport in one-dimensional semi- infinite homogeneous porous domain. In this mathematical model the dispersion coefficient is considered spatially dependent while seepage velocity is considered exponentially decreasing ...

  16. One-dimensional unsteady solute transport along unsteady flow ...

    Indian Academy of Sciences (India)

    The one-dimensional linear advection–diffusion equation is solved analytically by using the Laplace integral transform. The solute transport as well as the flow field is considered to be unsteady, both of independent patterns. The solute dispersion occurs through an inhomogeneous semi-infinite medium. Hence, velocity is ...

  17. Solute transport modelling with the variable temporally dependent ...

    Indian Academy of Sciences (India)

    Pintu Das

    2018-02-07

    Feb 7, 2018 ... Abstract. In this present study, analytical and numerical solutions are obtained for solute transport modelling in homogeneous semi-infinite porous medium. The dispersion coefficient is assumed to be initial dispersion and velocity is assumed to be temporally dependent with initial seepage velocity. Also ...

  18. Analytic solution of a five-direction radiation transport model

    International Nuclear Information System (INIS)

    Cramer, S.N.

    1988-01-01

    In order to test certain spatial and angular dependent Monte Carlo biasing techniques, a one-dimensional, one energy, two-media, five-direction radiation transport model has been devised for which an analytic solution exists. Although this solution is too long to be conveniently expressed in an explicit form, it can be easily evaluated on the smallest of computers. This solution is discussed in this paper. 1 ref

  19. Sustainable freight transport in South Africa:Domestic intermodal solutions

    Directory of Open Access Journals (Sweden)

    Jan H. Havenga

    2011-11-01

    Full Text Available Due to the rapid deregulation of freight transport in South Africa two decades ago, and low historical investment in rail (with resultant poor service delivery, an integrated alternative to road and rail competition was never developed. High national freight logistics costs, significant road infrastructure challenges and environmental impact concerns of a road-dominated freight transport market have, however, fuelled renewed interest in intermodal transport solutions. In this article, a high-level business case for domestic intermodal solutions in South Africa is presented. The results demonstrate that building three intermodal terminals to connect the three major industrial hubs (i.e. Gauteng, Durban and Cape Town through an intermodal solution could reduce transport costs (including externalities for the identified 11.5 million tons of intermodalfriendly freight flows on the Cape and Natal corridors by 42% (including externalities.

  20. End-Member Formulation of Solid Solutions and Reactive Transport

    Energy Technology Data Exchange (ETDEWEB)

    Lichtner, Peter C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    A model for incorporating solid solutions into reactive transport equations is presented based on an end-member representation. Reactive transport equations are solved directly for the composition and bulk concentration of the solid solution. Reactions of a solid solution with an aqueous solution are formulated in terms of an overall stoichiometric reaction corresponding to a time-varying composition and exchange reactions, equivalent to reaction end-members. Reaction rates are treated kinetically using a transition state rate law for the overall reaction and a pseudo-kinetic rate law for exchange reactions. The composition of the solid solution at the onset of precipitation is assumed to correspond to the least soluble composition, equivalent to the composition at equilibrium. The stoichiometric saturation determines if the solid solution is super-saturated with respect to the aqueous solution. The method is implemented for a simple prototype batch reactor using Mathematica for a binary solid solution. Finally, the sensitivity of the results on the kinetic rate constant for a binary solid solution is investigated for reaction of an initially stoichiometric solid phase with an undersaturated aqueous solution.

  1. Fluid transport with time on peritoneal dialysis: the contribution of free water transport and solute coupled water transport

    NARCIS (Netherlands)

    Coester, Annemieke M.; Smit, Watske; Struijk, Dirk G.; Krediet, Raymond T.

    2009-01-01

    Ultrafiltration in peritoneal dialysis occurs through endothelial water channels (free water transport) and together with solutes across small pores: solute coupled water transport. A review is given of cross-sectional studies and on the results of longitudinal follow-up

  2. A Mathematical Model of Solute Coupled Water Transport in Toad Intestine Incorporating Recirculation of the Actively Transported Solute

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Sørensen, Jakob Balslev; Sørensen, Jens Nørkær

    2000-01-01

    those of tight junction and interspace basement membrane by convection-diffusion. With solute permeability of paracellular pathway large relative to paracellular water flow, the paracellular flux ratio of the solute (influx/outflux) is small (2-4) in agreement with experiments. The virtual solute...... concentration of fluid emerging from lis is then significantly larger than the concentration in lis. Thus, in absence of external driving forces the model generates isotonic transport provided a component of the solute flux emerging downstream lis is taken up by cells through the serosal membrane and pumped...

  3. Composite Transport Model and Water and Solute Transport across Plant Roots: An Update

    Directory of Open Access Journals (Sweden)

    Yangmin X. Kim

    2018-02-01

    Full Text Available The present review examines recent experimental findings in root transport phenomena in terms of the composite transport model (CTM. It has been a well-accepted conceptual model to explain the complex water and solute flows across the root that has been related to the composite anatomical structure. There are three parallel pathways involved in the transport of water and solutes in roots – apoplast, symplast, and transcellular paths. The role of aquaporins (AQPs, which facilitate water flows through the transcellular path, and root apoplast is examined in terms of the CTM. The contribution of the plasma membrane bound AQPs for the overall water transport in the whole plant level was varying depending on the plant species, age of roots with varying developmental stages of apoplastic barriers, and driving forces (hydrostatic vs. osmotic. Many studies have demonstrated that the apoplastic barriers, such as Casparian bands in the primary anticlinal walls and suberin lamellae in the secondary cell walls, in the endo- and exodermis are not perfect barriers and unable to completely block the transport of water and some solute transport into the stele. Recent research on water and solute transport of roots with and without exodermis triggered the importance of the extension of conventional CTM adding resistances that arrange in series (epidermis, exodermis, mid-cortex, endodermis, and pericycle. The extension of the model may answer current questions about the applicability of CTM for composite water and solute transport of roots that contain complex anatomical structures with heterogeneous cell layers.

  4. New numerical method for solving the solute transport equation

    International Nuclear Information System (INIS)

    Ross, B.; Koplik, C.M.

    1978-01-01

    The solute transport equation can be solved numerically by approximating the water flow field by a network of stream tubes and using a Green's function solution within each stream tube. Compared to previous methods, this approach permits greater computational efficiency and easier representation of small discontinuities, and the results are easier to interpret physically. The method has been used to study hypothetical sites for disposal of high-level radioactive waste

  5. Nonrelativistic grey Sn-transport radiative-shock solutions

    Science.gov (United States)

    Ferguson, J. M.; Morel, J. E.; Lowrie, R. B.

    2017-06-01

    We present semi-analytic radiative-shock solutions in which grey Sn-transport is used to model the radiation, and we include both constant cross sections and cross sections that depend on temperature and density. These new solutions solve for a variable Eddington factor (VEF) across the shock domain, which allows for interesting physics not seen before in radiative-shock solutions. Comparisons are made with the grey nonequilibrium-diffusion radiative-shock solutions of Lowrie and Edwards [1], which assumed that the Eddington factor is constant across the shock domain. It is our experience that the local Mach number is monotonic when producing nonequilibrium-diffusion solutions, but that this monotonicity may disappear while integrating the precursor region to produce Sn-transport solutions. For temperature- and density-dependent cross sections we show evidence of a spike in the VEF in the far upstream portion of the radiative-shock precursor. We show evidence of an adaptation zone in the precursor region, adjacent to the embedded hydrodynamic shock, as conjectured by Drake [2,3], and also confirm his expectation that the precursor temperatures adjacent to the Zel'dovich spike take values that are greater than the downstream post-shock equilibrium temperature. We also show evidence that the radiation energy density can be nonmonotonic under the Zel'dovich spike, which is indicative of anti-diffusive radiation flow as predicted by McClarren and Drake [4]. We compare the angle dependence of the radiation flow for the Sn-transport and nonequilibrium-diffusion radiation solutions, and show that there are considerable differences in the radiation flow between these models across the shock structure. Finally, we analyze the radiation flow to understand the cause of the adaptation zone, as well as the structure of the Sn-transport radiation-intensity solutions across the shock structure.

  6. Transport-constrained extensions of collision and track length estimators for solutions of radiative transport problems

    International Nuclear Information System (INIS)

    Kong, Rong; Spanier, Jerome

    2013-01-01

    In this paper we develop novel extensions of collision and track length estimators for the complete space-angle solutions of radiative transport problems. We derive the relevant equations, prove that our new estimators are unbiased, and compare their performance with that of more conventional estimators. Such comparisons based on numerical solutions of simple one dimensional slab problems indicate the the potential superiority of the new estimators for a wide variety of more general transport problems

  7. Transport-Constrained Extensions of Collision and Track Length Estimators for Solutions of Radiative Transport Problems.

    Science.gov (United States)

    Kong, Rong; Spanier, Jerome

    2013-06-01

    In this paper we develop novel extensions of collision and track lengh estimators for the complete space-angle solutions of radiative transport problems. We derive the relevant equations, prove that our new estimators are unbiased, and compare their performance with that of more conventional ) estimators. Such comparisons based on numerical solutions of simple one dimensional slab problems indicate the the potential superiority of the new estimators for a wide variety of more general transport problems.

  8. One-dimensional unsteady solute transport along unsteady flow ...

    Indian Academy of Sciences (India)

    face water pollution and groundwater pollution. Its source may be natural or anthropogenic. One type of source ... Groundwater pollution occurs due to infiltra- tion of wastes through rainwater, from garbage dis- ...... of upscaling methods for solute transport in heteroge- neous porous media; J. Hydrol. 362 150–176. Golz W J ...

  9. dispersion equation parameters of solute transport in agricultural ...

    African Journals Online (AJOL)

    Jane

    2011-08-31

    Aug 31, 2011 ... 1School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055,. China. ... In this paper, a simple method was proposed to estimate both D and R, and the validity was verified by ... One-dimensional transient solute transport through a homogeneous ...

  10. Scaling and predicting solute transport processes in streams

    Science.gov (United States)

    R. González-Pinzón; R. Haggerty; M. Dentz

    2013-01-01

    We investigated scaling of conservative solute transport using temporal moment analysis of 98 tracer experiments (384 breakthrough curves) conducted in 44 streams located on five continents. The experiments span 7 orders of magnitude in discharge (10-3 to 103 m3/s), span 5 orders of magnitude in...

  11. Simultaneous transport of water and solutes under transient ...

    Indian Academy of Sciences (India)

    Simultaneous transport of water and solutes under transient unsaturated flow conditions – A case study. B K Purandara. ∗. , N Varadarajan and B Venkatesh. National Institute of Hydrology, Hard Rock Regional Center, Belgaum 590 001, Karnataka, India. ∗ e-mail: purandarabk@yahoo.com. The imbalance between ...

  12. Solute carrier transporters: potential targets for digestive system neoplasms

    Directory of Open Access Journals (Sweden)

    Xie J

    2018-01-01

    Full Text Available Jing Xie,1,2 Xiao Yan Zhu,1,2 Lu Ming Liu,1,2 Zhi Qiang Meng1,2 1Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People’s Republic of China Abstract: Digestive system neoplasms are the leading causes of cancer-related death all over the world. Solute carrier (SLC superfamily is composed of a series of transporters that are ubiquitously expressed in organs and tissues of digestive systems and mediate specific uptake of small molecule substrates in facilitative manner. Given the important role of SLC proteins in maintaining normal functions of digestive system, dysregulation of these protein in digestive system neoplasms may deliver biological and clinical significance that deserves systemic studies. In this review, we critically summarized the recent advances in understanding the role of SLC proteins in digestive system neoplasms. We highlighted that several SLC subfamilies, including metal ion transporters, transporters of glucose and other sugars, transporters of urea, neurotransmitters and biogenic amines, ammonium and choline, inorganic cation/anion transporters, transporters of nucleotide, amino acid and oligopeptide organic anion transporters, transporters of vitamins and cofactors and mitochondrial carrier, may play important roles in mediating the initiation, progression, metastasis, and chemoresistance of digestive system neoplasms. Proteins in these SLC subfamilies may also have diagnostic and prognostic values to particular cancer types. Differential expression of SLC proteins in tumors of digestive system was analyzed by extracting data from human cancer database, which revealed that the roles of SLC proteins may either be dependent on the substrates they transport or be tissue specific. In addition, small molecule modulators that pharmacologically regulate the functions of SLC proteins were discussed for their possible

  13. A CFD analysis of transport phenomena and electrochemical reactions in a tubular-shaped PEM fuel cell

    OpenAIRE

    Maher A.R. Sadiq Al-Baghdadi

    2013-01-01

    A fuel cell is most interesting new power source because it solves not only the environment problem but also natural resource exhaustion problem. CFD modeling and simulation for heat and mass transport in PEM fuel cells are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize fuel cell designs before building a prototype for engineering application. In this research, full three-dimensional, non-isothermal co...

  14. Simulation of transportation of low enriched uranium solutions

    International Nuclear Information System (INIS)

    Hope, E.P.; Ades, M.J.

    1996-01-01

    A simulation of the transportation by truck of low enriched uranium solutions has been completed for NEPA purposes at the Savannah River Site. The analysis involves three distinct source terms, and establishes the radiological risks of shipment to three possible destinations. Additionally, loading accidents were analyzed to determine the radiological consequences of mishaps during handling and delivery. Source terms were developed from laboratory measurements of chemical samples from low enriched uranium feed materials being stored at SRS facilities, and from manufacturer data on transport containers. The transportation simulations were accomplished over the INTERNET using the DOE TRANSNET system at Sandia National Laboratory. The HIGHWAY 3.3 code was used to analyze routing scenarios, and the RADTRAN 4 code was used to analyze incident free and accident risks of transporting radiological materials. Loading accidents were assessed using the Savannah River Site AXAIR89Q and RELEASE 2 codes

  15. Stochastic analysis of transport of conservative solutes in caisson experiments

    International Nuclear Information System (INIS)

    Dagan, G.

    1995-01-01

    The Los Alamos National Laboratory has conducted in the past a series of experiments of transport of conservative and reactive solutes. The experimental setup and the experimental results are presented in a series of reports. The main aim of the experiments was to validate models of transport of solutes in unsaturated flow at the caisson intermediate scale, which is much larger than the one pertaining to laboratory columns. First attempts to analyze the experimental results were by one-dimensional convective-dispersion models. These models could not explain the observed solute breakthrough curves and particularly the large solute dispersion in the caisson effluent Since there were some question marks about the uniformity of water distribution at the caisson top, the transport experiments were repeated under conditions of saturated flow. In these experiments constant heads were applied at the top and the bottom of the caisson and the number of concentration monitoring stations was quadrupled. The analysis of the measurements by the same one-dimensional model indicated clearly that the fitted dispersivity is much larger than the pore-sole dispersivity and that it grows with the distance in an approximately linear fashion. This led to the conclusion, raised before, that transport in the caisson is dominated by heterogeneity effects, i.e. by spatial variability of the material Such effects cannot be captured by traditional one-dimensional models. In order to account for the effect of heterogeneity, the saturated flow experiments have been analyzed by using stochastic transport modeling. The apparent linear growth of dispersivity with distance suggested that the system behaves like a stratified one. Consequently, the model of Dagan and Bresier has been adopted in order to interpret concentration measurements. In this simple model the caisson is viewed as a bundle of columns of different permeabilities, which are characterized by a p.d.f. (probability denasity function)

  16. An experimental study of solute transport in mudstones

    International Nuclear Information System (INIS)

    Gilling, D.; Jefferies, N.L.; Lineham, T.R.

    1987-12-01

    Aqueous phase mass transport is considered to be the most likely means by which radionuclides released from an underground radioactive waste repository may return to man and to the environment. One of the options that has been considered by UK Nirex Ltd. for the disposal of radioactive waste is burial in clay-rich sedimentary formations. This report describes experimental techniques developed for the measurement of diffusivity, hydraulic conductivity and solute-accessible porosity in mudstones. In addition, these parameters have been determined for London Clay and the relative importance of diffusive and convective transport in this formation is discussed. (author)

  17. Transport processes in space physics and astrophysics problems and solutions

    CERN Document Server

    Dosch, Alexander

    2016-01-01

     This is the problems and solution manual for the graduate text with the same title and published as Lecture Notes in Physics Vol 877 which provides the necessary mathematical and physics background to understand the transport of gases, charged particle gases, energetic charged particles, turbulence, and radiation in an astrophysical and space physics context. The very detailed and self-contained problems and solutions will be an essential part of the training of any graduate student wishing to enter and pursuing research in this field. .

  18. Solute carrier transporters: potential targets for digestive system neoplasms.

    Science.gov (United States)

    Xie, Jing; Zhu, Xiao Yan; Liu, Lu Ming; Meng, Zhi Qiang

    2018-01-01

    Digestive system neoplasms are the leading causes of cancer-related death all over the world. Solute carrier (SLC) superfamily is composed of a series of transporters that are ubiquitously expressed in organs and tissues of digestive systems and mediate specific uptake of small molecule substrates in facilitative manner. Given the important role of SLC proteins in maintaining normal functions of digestive system, dysregulation of these protein in digestive system neoplasms may deliver biological and clinical significance that deserves systemic studies. In this review, we critically summarized the recent advances in understanding the role of SLC proteins in digestive system neoplasms. We highlighted that several SLC subfamilies, including metal ion transporters, transporters of glucose and other sugars, transporters of urea, neurotransmitters and biogenic amines, ammonium and choline, inorganic cation/anion transporters, transporters of nucleotide, amino acid and oligopeptide organic anion transporters, transporters of vitamins and cofactors and mitochondrial carrier, may play important roles in mediating the initiation, progression, metastasis, and chemoresistance of digestive system neoplasms. Proteins in these SLC subfamilies may also have diagnostic and prognostic values to particular cancer types. Differential expression of SLC proteins in tumors of digestive system was analyzed by extracting data from human cancer database, which revealed that the roles of SLC proteins may either be dependent on the substrates they transport or be tissue specific. In addition, small molecule modulators that pharmacologically regulate the functions of SLC proteins were discussed for their possible application in the treatment of digestive system neoplasms. This review highlighted the potential of SLC family proteins as drug target for the treatment of digestive system neoplasms.

  19. Scaling of geochemical reaction rates via advective solute transport.

    Science.gov (United States)

    Hunt, A G; Ghanbarian, B; Skinner, T E; Ewing, R P

    2015-07-01

    Transport in porous media is quite complex, and still yields occasional surprises. In geological porous media, the rate at which chemical reactions (e.g., weathering and dissolution) occur is found to diminish by orders of magnitude with increasing time or distance. The temporal rates of laboratory experiments and field observations differ, and extrapolating from laboratory experiments (in months) to field rates (in millions of years) can lead to order-of-magnitude errors. The reactions are transport-limited, but characterizing them using standard solute transport expressions can yield results in agreement with experiment only if spurious assumptions and parameters are introduced. We previously developed a theory of non-reactive solute transport based on applying critical path analysis to the cluster statistics of percolation. The fractal structure of the clusters can be used to generate solute distributions in both time and space. Solute velocities calculated from the temporal evolution of that distribution have the same time dependence as reaction-rate scaling in a wide range of field studies and laboratory experiments, covering some 10 decades in time. The present theory thus both explains a wide range of experiments, and also predicts changes in the scaling behavior in individual systems with increasing time and/or length scales. No other theory captures these variations in scaling by invoking a single physical mechanism. Because the successfully predicted chemical reactions include known results for silicate weathering rates, our theory provides a framework for understanding changes in the global carbon cycle, including its effects on extinctions, climate change, soil production, and denudation rates. It further provides a basis for understanding the fundamental time scales of hydrology and shallow geochemistry, as well as the basis of industrial agriculture.

  20. Geological entropy and solute transport in heterogeneous porous media

    Science.gov (United States)

    Bianchi, Marco; Pedretti, Daniele

    2017-06-01

    We propose a novel approach to link solute transport behavior to the physical heterogeneity of the aquifer, which we fully characterize with two measurable parameters: the variance of the log K values (σY2), and a new indicator (HR) that integrates multiple properties of the K field into a global measure of spatial disorder or geological entropy. From the results of a detailed numerical experiment considering solute transport in K fields representing realistic distributions of hydrofacies in alluvial aquifers, we identify empirical relationship between the two parameters and the first three central moments of the distributions of arrival times of solute particles at a selected control plane. The analysis of experimental data indicates that the mean and the variance of the solutes arrival times tend to increase with spatial disorder (i.e., HR increasing), while highly skewed distributions are observed in more orderly structures (i.e., HR decreasing) or at higher σY2. We found that simple closed-form empirical expressions of the bivariate dependency of skewness on HR and σY2 can be used to predict the emergence of non-Fickian transport in K fields considering a range of structures and heterogeneity levels, some of which based on documented real aquifers. The accuracy of these predictions and in general the results from this study indicate that a description of the global variability and structure of the K field in terms of variance and geological entropy offers a valid and broadly applicable approach for the interpretation and prediction of transport in heterogeneous porous media.

  1. Scaling of geochemical reaction rates via advective solute transport

    Science.gov (United States)

    Hunt, A. G.; Ghanbarian, B.; Skinner, T. E.; Ewing, R. P.

    2015-07-01

    Transport in porous media is quite complex, and still yields occasional surprises. In geological porous media, the rate at which chemical reactions (e.g., weathering and dissolution) occur is found to diminish by orders of magnitude with increasing time or distance. The temporal rates of laboratory experiments and field observations differ, and extrapolating from laboratory experiments (in months) to field rates (in millions of years) can lead to order-of-magnitude errors. The reactions are transport-limited, but characterizing them using standard solute transport expressions can yield results in agreement with experiment only if spurious assumptions and parameters are introduced. We previously developed a theory of non-reactive solute transport based on applying critical path analysis to the cluster statistics of percolation. The fractal structure of the clusters can be used to generate solute distributions in both time and space. Solute velocities calculated from the temporal evolution of that distribution have the same time dependence as reaction-rate scaling in a wide range of field studies and laboratory experiments, covering some 10 decades in time. The present theory thus both explains a wide range of experiments, and also predicts changes in the scaling behavior in individual systems with increasing time and/or length scales. No other theory captures these variations in scaling by invoking a single physical mechanism. Because the successfully predicted chemical reactions include known results for silicate weathering rates, our theory provides a framework for understanding changes in the global carbon cycle, including its effects on extinctions, climate change, soil production, and denudation rates. It further provides a basis for understanding the fundamental time scales of hydrology and shallow geochemistry, as well as the basis of industrial agriculture.

  2. Eolian transport, saline lake basins, and groundwater solutes

    Science.gov (United States)

    Wood, Warren W.; Sanford, Ward E.

    1995-01-01

    Eolian processes associated with saline lakes are shown to be important in determining solute concentration in groundwater in arid and semiarid areas. Steady state mass balance analyses of chloride in the groundwater at Double Lakes, a saline lake basin in the southern High Plains of Texas, United States, suggest that approximately 4.5 × 105 kg of chloride is removed from the relatively small (4.7 km2) basin floor each year by deflation. This mass enters the groundwater down the wind gradient from the lake, degrading the water quality. The estimates of mass transport were independently determined by evaluation of solutes in the unsaturated zone and by solute mass balance calculations of groundwater flux. Transport of salts from the lake was confirmed over a short term (2 years) by strategically placed dust collectors. Results consistent with those at Double Lake were obtained from dune surfaces collected upwind and downwind from a sabkha near the city of Abu Dhabi in the United Arab Emirates. The eolian transport process provides an explanation of the degraded groundwater quality associated with the 30–40 saline lake basins on the southern half of the southern High Plains of Texas and New Mexico and in many other arid and semiarid areas.

  3. A stochastic solution of the advective transport equation with uncertainty

    International Nuclear Information System (INIS)

    Williams, M.M.R.

    1991-01-01

    A model has been developed for calculating the transport of water-borne radionuclides through layers of porous materials, such as rock or clay. The model is based upon a purely advective transport equation, in which the fluid velocity is a random variable, thereby simulating dispersion in a more realistic manner than the ad hoc introduction of a dispersivity. In addition to a random velocity field, which is an observable physical phenomenon, allowance is made for uncertainty in our knowledge of the parameters which enter the equation, e.g. the retardation coefficient. This too, is assumed to be a random variable and contributes to the stochasticity of the resulting partial differential equation of transport. The stochastic differential equation can be solved analytically and then ensemble averages taken over the associated probability distribution of velocity and retardation coefficient. A method based upon a novel form of the central limit theorem of statistics is employed to obtain tractable solutions of a system consisting of many serial legs of varying properties. One interesting conclusion is that the total flux out of a medium is significantly underestimated by using the deterministic solution with an average transit time compared with that from the stochastically averaged solution. The theory is illustrated numerically for a number of physically relevant cases. (author) 8 figs., 4 tabs., 7 refs

  4. Hydrophilic solute transport across the rat blood-brain barrier

    International Nuclear Information System (INIS)

    Lucchesi, K.J.

    1987-01-01

    Brain capillary permeability-surface area products (PS) of hydrophilic solutes ranging in size from 180 to 5,500 Daltons were measured in rats according to the method of Ohno, Pettigrew and Rapoport. The distribution volume of 70 KD dextran at 10 minutes after i.v. injection was also measured to determine the residual volume of blood in brain tissue at the time of sacrifice. Small test solutes were injected in pairs in order to elucidate whether their transfer into the brain proceeds by diffusion through water- or lipid-filled channels or by vesicular transport. This issue was examined in rats whose blood-brain barrier (BBB) was presumed to be intact (untreated) and in rats that received intracarotid infusions to open the BBB (isosmotic salt (ISS) and hyperosmolar arabinose). Ohno PS values of 3 H-inulin and 14 C-L-glucose in untreated rats were found to decrease as the labelling time was lengthened. This was evidence that a rapidly equilibrating compartment exists between blood and brain that renders the Ohno two-compartment model inadequate for computing true transfer rate constants. When the data were reanalyzed using a multi-compartment graphical analysis, solutes with different molecular radii were found to enter the brain at approximately equal rates. Furthermore, unidirectional transport is likely to be initiated by solute adsorption to a glycocalyx coat on the luminal surface of brain capillary endothelium. Apparently, more inulin than L-glucose was adsorbed, which may account for its slightly faster transfer across the BBB. After rats were treated with intracarotid infusions of ISS or hyperosmolar arabinose, solute PS values were significantly increased, but the ratio of PS for each of the solute pairs approached that of their free-diffusion coefficients

  5. Assessment of applications of transport models on regional scale solute transport

    Science.gov (United States)

    Guo, Z.; Fogg, G. E.; Henri, C.; Pauloo, R.

    2017-12-01

    Regional scale transport models are needed to support the long-term evaluation of groundwater quality and to develop management strategies aiming to prevent serious groundwater degradation. The purpose of this study is to evaluate the capacity of previously-developed upscaling approaches to accurately describe main solute transport processes including the capture of late-time tails under changing boundary conditions. Advective-dispersive contaminant transport in a 3D heterogeneous domain was simulated and used as a reference solution. Equivalent transport under homogeneous flow conditions were then evaluated applying the Multi-Rate Mass Transfer (MRMT) model. The random walk particle tracking method was used for both heterogeneous and homogeneous-MRMT scenarios under steady state and transient conditions. The results indicate that the MRMT model can capture the tails satisfactorily for plume transported with ambient steady-state flow field. However, when boundary conditions change, the mass transfer model calibrated for transport under steady-state conditions cannot accurately reproduce the tailing effect observed for the heterogeneous scenario. The deteriorating impact of transient boundary conditions on the upscaled model is more significant for regions where flow fields are dramatically affected, highlighting the poor applicability of the MRMT approach for complex field settings. Accurately simulating mass in both mobile and immobile zones is critical to represent the transport process under transient flow conditions and will be the future focus of our study.

  6. JOVIAN STRATOSPHERE AS A CHEMICAL TRANSPORT SYSTEM: BENCHMARK ANALYTICAL SOLUTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xi; Shia Runlie; Yung, Yuk L., E-mail: xiz@gps.caltech.edu [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States)

    2013-04-20

    We systematically investigated the solvable analytical benchmark cases in both one- and two-dimensional (1D and 2D) chemical-advective-diffusive systems. We use the stratosphere of Jupiter as an example but the results can be applied to other planetary atmospheres and exoplanetary atmospheres. In the 1D system, we show that CH{sub 4} and C{sub 2}H{sub 6} are mainly in diffusive equilibrium, and the C{sub 2}H{sub 2} profile can be approximated by modified Bessel functions. In the 2D system in the meridional plane, analytical solutions for two typical circulation patterns are derived. Simple tracer transport modeling demonstrates that the distribution of a short-lived species (such as C{sub 2}H{sub 2}) is dominated by the local chemical sources and sinks, while that of a long-lived species (such as C{sub 2}H{sub 6}) is significantly influenced by the circulation pattern. We find that an equator-to-pole circulation could qualitatively explain the Cassini observations, but a pure diffusive transport process could not. For slowly rotating planets like the close-in extrasolar planets, the interaction between the advection by the zonal wind and chemistry might cause a phase lag between the final tracer distribution and the original source distribution. The numerical simulation results from the 2D Caltech/JPL chemistry-transport model agree well with the analytical solutions for various cases.

  7. Monte Carlo methods for flux expansion solutions of transport problems

    International Nuclear Information System (INIS)

    Spanier, J.

    1999-01-01

    Adaptive Monte Carlo methods, based on the use of either correlated sampling or importance sampling, to obtain global solutions to certain transport problems have recently been described. The resulting learning algorithms are capable of achieving geometric convergence when applied to the estimation of a finite number of coefficients in a flux expansion representation of the global solution. However, because of the nonphysical nature of the random walk simulations needed to perform importance sampling, conventional transport estimators and source sampling techniques require modification to be used successfully in conjunction with such flux expansion methods. It is shown how these problems can be overcome. First, the traditional path length estimators in wide use in particle transport simulations are generalized to include rather general detector functions (which, in this application, are the individual basis functions chosen for the flus expansion). Second, it is shown how to sample from the signed probabilities that arise as source density functions in these applications, without destroying the zero variance property needed to ensure geometric convergence to zero error

  8. Quantifying solute transport processes: are chemically "conservative" tracers electrically conservative?

    Science.gov (United States)

    Singha, Kamini; Li, Li; Day-Lewis, Frederick D.; Regberg, Aaron B.

    2012-01-01

    The concept of a nonreactive or conservative tracer, commonly invoked in investigations of solute transport, requires additional study in the context of electrical geophysical monitoring. Tracers that are commonly considered conservative may undergo reactive processes, such as ion exchange, thus changing the aqueous composition of the system. As a result, the measured electrical conductivity may reflect not only solute transport but also reactive processes. We have evaluated the impacts of ion exchange reactions, rate-limited mass transfer, and surface conduction on quantifying tracer mass, mean arrival time, and temporal variance in laboratory-scale column experiments. Numerical examples showed that (1) ion exchange can lead to resistivity-estimated tracer mass, velocity, and dispersivity that may be inaccurate; (2) mass transfer leads to an overestimate in the mobile tracer mass and an underestimate in velocity when using electrical methods; and (3) surface conductance does not notably affect estimated moments when high-concentration tracers are used, although this phenomenon may be important at low concentrations or in sediments with high and/or spatially variable cation-exchange capacity. In all cases, colocated groundwater concentration measurements are of high importance for interpreting geophysical data with respect to the controlling transport processes of interest.

  9. A Finite-Difference Solution of Solute Transport through a Membrane Bioreactor

    Directory of Open Access Journals (Sweden)

    B. Godongwana

    2015-01-01

    Full Text Available The current paper presents a theoretical analysis of the transport of solutes through a fixed-film membrane bioreactor (MBR, immobilised with an active biocatalyst. The dimensionless convection-diffusion equation with variable coefficients was solved analytically and numerically for concentration profiles of the solutes through the MBR. The analytical solution makes use of regular perturbation and accounts for radial convective flow as well as axial diffusion of the substrate species. The Michaelis-Menten (or Monod rate equation was assumed for the sink term, and the perturbation was extended up to second-order. In the analytical solution only the first-order limit of the Michaelis-Menten equation was considered; hence the linearized equation was solved. In the numerical solution, however, this restriction was lifted. The solution of the nonlinear, elliptic, partial differential equation was based on an implicit finite-difference method (FDM. An upwind scheme was employed for numerical stability. The resulting algebraic equations were solved simultaneously using the multivariate Newton-Raphson iteration method. The solution allows for the evaluation of the effect on the concentration profiles of (i the radial and axial convective velocity, (ii the convective mass transfer rates, (iii the reaction rates, (iv the fraction retentate, and (v the aspect ratio.

  10. A solution of the neutron transport equation using spherical harmonics

    International Nuclear Information System (INIS)

    Fletcher, J.K.

    1983-01-01

    A solution of the neutron transport equation is obtained by expanding the flux as a series. Preliminary investigations in one dimension indicated that the first-order differential equations resulting for the unknown coefficients or moments could be solved by eliminating terms with odd L (L = order of Legendre polynomial) to give a second-order system. FORTRAN subroutines have been written to calculate the necessary coefficients and specify the relevant differentials. A finite-difference or finite-element approximation can then be used. (U.K.)

  11. QCD effective actions from the solutions of the transport equations

    CERN Document Server

    Manuel, C; Manuel, Cristina; Mrowczynski, Stanislaw

    2003-01-01

    We solve the collisionless transport equations of a quark-gluon plasma interacting through mean chromodynamic fields. The system is assumed to be translation invariant in one or more space-time directions. We present exact solutions that hold if the vector gauge fields in the direction of the translation invariance commute with their covariant derivatives. We also solve the equations perturbatively when the commutation condition is relaxed. Further, we derive the color current and the associated effective action. For the static quasi-equilibrium system, our results reproduce the full one-loop effective action of QCD in the presence of constant background fields, where the above mentioned commutation condition is satisfied.

  12. Analysis of solute transport in plants using positron emission tomography

    International Nuclear Information System (INIS)

    Partelova, D.

    2016-01-01

    In the first part of the work, geometrically and radiochemically characterized standards (phantoms) imitating the plant tissues and allowing the exact quantification of visualised radioindicator in plant tissues were designed and prepared within the study of visual and analytical characteristics of used positron emission tomograph (microPET system) commercially developed for animal objects at visualization of thin objects. Individual experiments carried out by exposure of excised leaves of tobacco (Nicotiana tabacum L.) or radish (Raphanus sativus L.) in solutions of 2-deoxy-2-fluoro-D-glucose labelled with positron emitter 18 F (2-[ 18 F]FDG) containing 10-, 100-, or 1000-times higher concentrations of D-glucose (c glu ) in comparison with the original 2-[ 18 F]FDG solution showed that the significant changes in visualisation of 2-[ 18 F]FDG distribution as well as in chemical portion of 2-[ 18 F]FDG within the leaf blade were observed as result of increased c glu . In the experiments with the whole plants of tobacco or radish exposed in 2-[ 18 F]FDG solution through the root system, only minimal translocation of 18 F radioactivity into the above-ground parts of plants, also in the case of increased c glu , was observed, which suggest the role of root system as a selective barrier of 2-[ 18 F]FDG transport from roots to the above-ground parts. On the basis of mentioned knowledge and analytical approaches (application of prepared phantoms), the dynamic study of 2-[ 18 F]FDG uptake and transport within the excised leaf of tobacco or whole radish plant was carried out. The description of these processes was realized through the 3D PET images and through the quantification of 2-[ 18 F]FDG distribution within the chosen regions of interest from the point of view of accumulated 18 F radioactivity (in Bq) or amount of D-glucose (in μg) as well. Application of methods of multivariate analysis allows to found the similarities between studied objects mainly from the point

  13. Transport Visualization for Studying Mass Transfer and Solute Transport in Permeable Media

    International Nuclear Information System (INIS)

    Roy Haggerty

    2004-01-01

    Understanding and predicting mass transfer coupled with solute transport in permeable media is central to several energy-related programs at the US Department of Energy (e.g., CO 2 sequestration, nuclear waste disposal, hydrocarbon extraction, and groundwater remediation). Mass transfer is the set of processes that control movement of a chemical between mobile (advection-dominated) domains and immobile (diffusion- or sorption-dominated) domains within a permeable medium. Consequences of mass transfer on solute transport are numerous and may include (1) increased sequestration time within geologic formations; (2) reduction in average solute transport velocity by as much as several orders of magnitude; (3) long ''tails'' in concentration histories during removal of a solute from a permeable medium; (4) poor predictions of solute behavior over long time scales; and (5) changes in reaction rates due to mass transfer influences on pore-scale mixing of solutes. Our work produced four principle contributions: (1) the first comprehensive visualization of solute transport and mass transfer in heterogeneous porous media; (2) the beginnings of a theoretical framework that encompasses both macrodispersion and mass transfer within a single set of equations; (3) experimental and analytical tools necessary for understanding mixing and aqueous reaction in heterogeneous, granular porous media; (4) a clear experimental demonstration that reactive transport is often not accurately described by a simple coupling of the convection-dispersion equation with chemical reaction equations. The work shows that solute transport in heterogeneous media can be divided into 3 regimes--macrodispersion, advective mass transfer, and diffusive mass transfer--and that these regimes can be predicted quantitatively in binary media. We successfully predicted mass transfer in each of these regimes and verified the prediction by completing quantitative visualization experiments in each of the regimes, the

  14. In vivo evidence of impaired solute transport by the thick ascending limb in potassium-depleted rats.

    OpenAIRE

    Gutsche, H U; Peterson, L N; Levine, D Z

    1984-01-01

    The objective of this investigation was to determine if thick ascending limb (TAL) solute removal is impaired in potassium-depleted rats, in vivo. We estimated TAL NaCl concentration by measuring in situ conductivity of tubular fluid presented to the early distal site after stop-flow periods of 10-60 s, during which a proximal equilibrium solution remained in contact with the reabsorbing epithelium. This allowed us to calculate the rate constant of the decrease in tubular fluid NaCl concentra...

  15. Solutions to Improve Person Transport System in the Pitesti City by Analyzing Public Transport vs. Private Transport

    Science.gov (United States)

    Mihaela, Istrate; Alexandru, Boroiu; Viorel, Nicolae; Ionel, Vieru

    2017-10-01

    One of the major problems facing the Pitesti city is the road congestion that occurs in the central area of the city during the peak hours. With all the measures taken in recent years - the widening of road arteries, increasing the number of parking spaces, the creation of overground road passages - it is obvious that the problem can only be solved by a new philosophy regarding urban mobility: it is no longer possible to continue through solutions to increase the accessibility of the central area of the city, but it is necessary, on the contrary, to promote a policy of discouraging the penetration of vehicles in the city center, coupled with a policy of improving the connection between urban public transport and county public transport. This new approach is also proposed in the new Urban Mobility Plan of Pitesti city, under development. The most convincing argument for the necessity of this new orientation in the Pitesti city mobility plan is based on the analysis of the current situation of passenger transport on the territory of Pitesti city: the analysis of “public transport versus private transport” reveals a very low occupancy rate for cars and the fact that the road surface required for a passenger (the dynamic area) is much higher in the case of private transport than in the case of public transport. Measurements of passenger flows and vehicle flows on the 6 penetration ways in the city have been made and the calculations clearly demonstrate the benefits of an urban public transport system connected by “transshipment buses” to be made at the edge of the city, to the county public transport system. In terms of inter-county transport, it will continue to be connected to the urban public transport system by existing bus Station, within the city: South Bus Station and North Bus Station. The usefulness of the paper is that it identifies the solutions for sustainable mobility in Pitesti city and proposes concrete solutions for the development of the

  16. Proximal renal tubular acidosis

    Science.gov (United States)

    ... glands that produce tears and saliva are destroyed Wilson disease , an inherited disorder in which there is too much copper in the body's tissues Vitamin D deficiency Symptoms Symptoms of proximal renal tubular acidosis include any ...

  17. Effect of viscoelastic relaxation on moisture transport in foods. Part I: solution of general transport equation.

    Science.gov (United States)

    Singh, Pawan P; Maier, Dirk E; Cushman, John H; Haghighi, Kamyar; Corvalan, Carlos

    2004-07-01

    Within the framework of continuum mechanics, Singh et al. developed an integro-differential equation, which applies to both Darcian (Fickian) and non-Darcian (non-Fickian) modes of fluid transport in swelling biological systems. A dimensionless form of the equation was obtained and transformed from moving Eulerian to the stationary Lagrangian coordinates. Here a solution scheme for the transport equation is developed to predict moisture transport and viscoelastic stresses in spheroidal biopolymeric materials. The equation was solved numerically and results used for predicting drying and sorption curves, moisture profiles, and viscoelastic stresses in soybeans. The Lagrangian solution was obtained by assembling together several schemes: the finite element method was used to discretize the equation in space; non-linearity was addressed using the Newton-Raphson method; the Volterra term was handled via a time integration scheme of Patlashenko et al. and the Galerkin rule was used to solve the time-differential term. The solution obtained in Lagrangian coordinates was transformed back to the Eulerian coordinates. In part II of this sequence we present the numerical results.

  18. Effects of isotope selection on solution convergence in HZE transport

    Science.gov (United States)

    Kim, Myung-Hee Y.; Wilson, John W.; Kiefer, Richard L.; Thibeault, Sheila A.

    1994-01-01

    A fragmenting iron ion produces hundreds of isotopes during nuclear reactions. These isotopes are represented in the solution of the transport problem. A reduced set of isotopes is selected to minimize the computational burden but introduces error in the final result. A minimum list of 122 isotopes is required for adequate representation of the mass and charge distributions of the secondary radiation fields. A reduced set of 80 isotopes is sufficient to represent the charge distribution alone and represents reasonably well the linear energy transfer properties of the iron beam. Because iron fragmentation produces nearly every isotope lighter than iron, the resulting 122-isotope list should be adequate for ion beams with charges equal to or less than 26.

  19. The quasi-diffusive approximation in transport theory: Local solutions

    International Nuclear Information System (INIS)

    Celaschi, M.; Montagnini, B.

    1995-01-01

    The one velocity, plane geometry integral neutron transport equation is transformed into a system of two equations, one of them being the equation of continuity and the other a generalized Fick's law, in which the usual diffusion coefficient is replaced by a self-adjoint integral operator. As the kernel of this operator is very close to the Green function of a diffusion equation, an approximate inversion by means of a second order differential operator allows to transform these equations into a purely differential system which is shown to be equivalent, in the simplest case, to a diffusion-like equation. The method, the principles of which have been exposed in a previous paper, is here extended and applied to a variety of problems. If the inversion is properly performed, the quasi-diffusive solutions turn out to be quite accurate, even in the vicinity of the interface between different material regions, where elementary diffusion theory usually fails. 16 refs., 3 tabs

  20. Hierarchical Adaptive Solution of Radiation Transport Problems on Unstructured Grids

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Cassiano R. E de Oliveira

    2008-06-30

    Computational radiation transport has steadily gained acceptance in the last decade as a viable modeling tool due to the rapid advancements in computer software and hardware technologies. It can be applied for the analysis of a wide range of problems which arise in nuclear reactor physics, medical physics, atmospheric physics, astrophysics and other areas of engineering physics. However, radiation transport is an extremely chanllenging computational problem since the governing equation is seven-deimensional (3 in space, 2 in direction, 1 in energy, and 1 in time) with a high degree of coupleing betwen these variables. If not careful, this relatively large number of independent variables when discretized can potentially lead to sets of linear equations of intractable size. Though parallel computing has allowed the solution of very large problems, avaliable computational resources will always be finite due to the fact that every more sophisticated multiphysics models are being demanded by industry. There is thus the pressing requirement to optimize the discretizations so as to minimize the effort and maximize the accuracy.

  1. Fluid and solute transport in a network of channels

    International Nuclear Information System (INIS)

    Moreno, L.; Neretnieks, I.

    1991-09-01

    A three-dimensional channel network model is presented. The fluid flow and solute transport are assumed to take place through a network of connected channels. The channels are generated assuming that the conductances are lognormally distributed. The flow is calculated resolving the pressure distribution and the sole transport is calculated by using a particle tracking technique. The model includes diffusion into the rock matrix and sorption within the matrix in addition to advection along the channel network. Different approaches are used to describe the channel volume and its relation to the conductivity. To quantify the diffusion into the rock matrix the size of the flow wetted surface (contact surface between the channel and the rock) is needed in addition to the diffusion properties and the sorption capacity of the rock. Two different geometries were simulated: regional parallel flow and convergent flow toward a tunnel. In the generation of the channel network, it is found that its connectivity is reduced when the standard deviation in conductances is increased. For large standard deviations, the water conducting channels are found to be few. Standard deviations for the distribution of the effluent channel flowrates were calculated. Comparisons were made with experimental data from drifts and tunnels as well as boreholes as a means to validate the model. (au) (31 refs.)

  2. Improved parallel solution techniques for the integral transport matrix method

    International Nuclear Information System (INIS)

    Zerr, R. Joseph; Azmy, Yousry Y.

    2011-01-01

    Alternative solution strategies to the parallel block Jacobi (PBJ) method for the solution of the global problem with the integral transport matrix method operators have been designed and tested. The most straightforward improvement to the Jacobi iterative method is the Gauss-Seidel alternative. The parallel red-black Gauss-Seidel (PGS) algorithm can improve on the number of iterations and reduce work per iteration by applying an alternating red-black color-set to the subdomains and assigning multiple sub-domains per processor. A parallel GMRES(m) method was implemented as an alternative to stationary iterations. Computational results show that the PGS method can improve on the PBJ method execution time by up to 10´ when eight sub-domains per processor are used. However, compared to traditional source iterations with diffusion synthetic acceleration, it is still approximately an order of magnitude slower. The best-performing cases are optically thick because sub-domains decouple, yielding faster convergence. Further tests revealed that 64 sub-domains per processor was the best performing level of sub-domain division. An acceleration technique that improves the convergence rate would greatly improve the ITMM. The GMRES(m) method with a diagonal block pre conditioner consumes approximately the same time as the PBJ solver but could be improved by an as yet undeveloped, more efficient pre conditioner. (author)

  3. Copper recovery in a bench-scale carrier facilitated tubular supported liquid membrane system

    Directory of Open Access Journals (Sweden)

    Makaka S.

    2010-01-01

    Full Text Available The extraction of copper ions in a tubular supported liquid membrane using LIX 984NC as a mobile carrier was studied, evaluating the effect of the feed characteristics (flowrate, density, viscosity on the feedside laminar layer of the membrane. A vertical countercurrent, double pipe perspex benchscale reactor consisting of a single hydrophobic PVDF tubular membrane mounted inside was used in all test work. The membrane was impregnated with LIX 984NC and became the support for this organic transport medium. Dilute Copper solution passed through the centre pipe and sulphuric acid as strippant passed through the shell side. Copper was successfully transported from the feedside to the stripside and from the data obtained, a relationship between Schmidt, Reynolds and Sherwood number was achieved of.

  4. Renal tubular acidosis.

    Science.gov (United States)

    Santos, Fernando; Gil-Peña, Helena; Alvarez-Alvarez, Silvia

    2017-04-01

    To facilitate the understanding and knowledge of renal tubular acidosis by providing a summarized information on the known clinical and biochemical characteristics of this group of diseases, by updating the genetic and molecular bases of the primary forms renal tubular acidosis and by examining some issues regarding the diagnosis of distal renal tubular acidosis (RTA) in the daily clinical practice. The manuscript presents recent findings on the potential of next-generation sequencing to disclose new pathogenic variants in patients with a clinical diagnosis of primary RTA and negative Sanger sequencing of known genes. The current review emphasizes the importance of measuring urinary ammonium for a correct clinical approach to the patients with metabolic acidosis and discusses the diagnosis of incomplete distal RTA. We briefly update the current information on RTA, put forward the need of additional studies in children to validate urinary indexes used in the diagnosis of RTA and offer a perspective on diagnostic genetic tests.

  5. Product Lifecycle Management and the Quest for Sustainable Space Transportation Solutions

    Science.gov (United States)

    Caruso, Pamela W.

    2009-01-01

    This viewgraph presentation reviews NASA Marshall's effort to sustain space transportation solutions through product lines that include: 1) Propulsion and Transportation Systems; 2) Life Support Systems; and 3) and Earth and Space Science Spacecraft Systems, and Operations.

  6. Prediction of the overall renal tubular secretion and hepatic clearance of anionic drugs and a renal drug-drug interaction involving organic anion transporter 3 in humans by in vitro uptake experiments.

    Science.gov (United States)

    Watanabe, Takao; Kusuhara, Hiroyuki; Watanabe, Tomoko; Debori, Yasuyuki; Maeda, Kazuya; Kondo, Tsunenori; Nakayama, Hideki; Horita, Shigeru; Ogilvie, Brian W; Parkinson, Andrew; Hu, Zhuohan; Sugiyama, Yuichi

    2011-06-01

    The present study investigated prediction of the overall renal tubular secretion and hepatic clearances of anionic drugs based on in vitro transport studies. The saturable uptake of eight drugs, most of which were OAT3 substrates (rosuvastatin, pravastatin, pitavastatin, valsartan, olmesartan, trichlormethiazide, p-aminohippurate, and benzylpenicillin) by freshly prepared human kidney slices underestimated the overall intrinsic clearance of the tubular secretion; therefore, a scaling factor of 10 was required for in vitro-in vivo extrapolation. We examined the effect of gemfibrozil and its metabolites, gemfibrozil glucuronide and the carboxylic metabolite, gemfibrozil M3, on pravastatin uptake by human kidney slices. The inhibition study using human kidney slices suggests that OAT3 plays a predominant role in the renal uptake of pravastatin. Comparison of unbound concentrations and K(i) values (1.5, 9.1, and 4.0 μM, for gemfibrozil, gemfibrozil glucuronide, and gemfibrozil M3, respectively) suggests that the mechanism of the interaction is due mainly to inhibition by gemfibrozil and gemfibrozil glucuronide. Furthermore, extrapolation of saturable uptake by cryopreserved human hepatocytes predicts clearance comparable with the observed hepatic clearance although fluvastatin and rosuvastatin required a scaling factor of 11 and 6.9, respectively. This study suggests that in vitro uptake assays using human kidney slices and hepatocytes provide a good prediction of the overall tubular secretion and hepatic clearances of anionic drugs and renal drug-drug interactions. It is also recommended that in vitro-in vivo extrapolation be performed in animals to obtain more reliable prediction.

  7. New constructive solutions for building of transport construction facilities

    Directory of Open Access Journals (Sweden)

    Babayev Vladimir

    2017-01-01

    Full Text Available New structural systems for civil and transport engineering were examined. The basis for the formation of the proposed reinforced concrete structures is the ideology of reducing its dead weight, with a given bearing capacity, the realization of which is accomplished by burial during concreting large-sized liners of a given shape and manufactured from lightweight, inexpensive composite materials. The process of erecting these systems is presented in two forms: for flat structures - using self-tightening concrete, and for curvilinear ones - by using shotcrete technologies. The second direction is presented by steel-reinforced concrete structures. These structural systems were created on the basis of innovative component and methods of rationalization of parameters. The basis of the above methods is a compiler which includes the finite element method, adaptive evolution method and special iterative procedures. Experimental verification of structural solutions and formation procedures for suggested systems was performed. Comparison between theoretical and experimental data is given. Suggested systems were implemented in a number of building companies.

  8. Technology in rural transportation. Simple solution #5, traveler information using fax machines

    Science.gov (United States)

    1997-01-01

    This application was identified as a promising rural Intelligent Transportation Systems (ITS) solution under a project sponsored by the Federal Highway Administration (FHWA) and the ENTERPRISE program. This summary describes the solution as well as o...

  9. Technology in rural transportation. Simple solution #14, public service weather radio

    Science.gov (United States)

    1997-01-01

    This application was identified as a promising rural Intelligent Transportation Systems (ITS) solution under a project sponsored by the Federal Highway Administration (FHWA) and the ENTERPRISE program. This summary describes the solution as well as o...

  10. Mathematical description of adsorption and transport of reactive solutes in soil: a review of selected literature

    International Nuclear Information System (INIS)

    Travis, C.C.

    1978-10-01

    This report reviews selected literature related to the mathematical description of the transport of reactive solutes through soil. The primary areas of the literature reviewed are (1) mathematical models in current use for description of the adsorption-desorption interaction between the soil solution and the soil matrix and (2) analytic solutions of the differential equations describing the convective-dispersive transport of reactive solutes through soil

  11. Distal renal tubular acidosis

    Science.gov (United States)

    ... the body's immune system mistakenly attacks healthy tissue Wilson disease , an inherited disorder in which there is too much copper in the body's tissues Use of certain medicines, such as amphotericin B, lithium, and analgesics Symptoms Symptoms of distal renal tubular acidosis include any ...

  12. Reliability of Tubular Joints

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    In this paper the preliminary results obtained by tests on tubular joints are presented. The joints are T-joints and the loading is static. It is the intention in continuation of these tests to perform tests on other types of joints (e.g. Y-joints) and also with dynamic loading. The purpose of th...

  13. Hydrogeochemistry and simulated solute transport, Piceance Basin, northwestern Colorado

    Science.gov (United States)

    Robson, S.G.; Saulnier, G.J.

    1981-01-01

    Oil-shale mining activities in Piceance basin in northwestern Colorado could adversely affect the ground- and surface-water quality in the basin. This study of the hydrology and geochemistry of the area used ground-water solute-transport-modeling techniques to investigate the possible impact of the mines on water quality. Maps of the extent and structure of the aquifer were prepared and show that a saturated thickness of 2,000 feet occurs in the northeast part of the basin. Ground-water recharge in the upland areas in the east, south, and west parts of the basin moves down into deeper zones in the aquifer and laterally to the discharge areas along Piceance and Yellow Creeks. The saline zone and the unsaturated zone provide the majority of the dissolved solids found in the ground water. Precipitation, ion-exchange, and oxidation-reduction reactions are also occuring in the aquifer. Model simulations of ground-water pumpage in tracts C-a and C-b indicate that the altered direction of ground-water movement near the pumped mines will cause an improvement in ground-water quality near the mines and a degradation of water quality downgradient from the tracts. Model simulations of mine leaching in tract C-a and C-b indicate that equal rates of mine leaching in the tracts will produce much different effects on the water quality in the basin. Tract C-a, by virtue of its remote location from perennial streams, will primarily degrade the ground-water quality over a large area to the northeast of the tract. Tract C-b, by contrast, will primarily degrade the surface-water quality in Piceance Creek, with only localized effects on the ground-water quality. (USGS)

  14. Development of solute transport models in YMPYRÄ framework to simulate solute migration in military shooting and training areas

    Science.gov (United States)

    Warsta, L.; Karvonen, T.

    2017-12-01

    There are currently 25 shooting and training areas in Finland managed by The Finnish Defence Forces (FDF), where military activities can cause contamination of open waters and groundwater reservoirs. In the YMPYRÄ project, a computer software framework is being developed that combines existing open environmental data and proprietary information collected by FDF with computational models to investigate current and prevent future environmental problems. A data centric philosophy is followed in the development of the system, i.e. the models are updated and extended to handle available data from different areas. The results generated by the models are summarized as easily understandable flow and risk maps that can be opened in GIS programs and used in environmental assessments by experts. Substances investigated with the system include explosives and metals such as lead, and both surface and groundwater dominated areas can be simulated. The YMPYRÄ framework is composed of a three dimensional soil and groundwater flow model, several solute transport models and an uncertainty assessment system. Solute transport models in the framework include particle based, stream tube and finite volume based approaches. The models can be used to simulate solute dissolution from source area, transport in the unsaturated layers to groundwater and finally migration in groundwater to water extraction wells and springs. The models can be used to simulate advection, dispersion, equilibrium adsorption on soil particles, solubility and dissolution from solute phase and dendritic solute decay chains. Correct numerical solutions were confirmed by comparing results to analytical 1D and 2D solutions and by comparing the numerical solutions to each other. The particle based and stream tube type solute transport models were useful as they could complement the traditional finite volume based approach which in certain circumstances produced numerical dispersion due to piecewise solution of the

  15. New method for the determination of the maximum tubular transport (Tm PAH) of p-amino hippuric acid without urine analysis in children with renal transplants

    International Nuclear Information System (INIS)

    Devaux, S.; Gellert, S.; Streichan, F.

    1984-01-01

    For clearance studies in children with renal grafts methods without indwelling catheters in the urinary bladder are necessary. The determination of the glomerular filtration rate (GFR) and effective renal plasma flow (ERPF) takes place by means of single injection of radioactively labelled clearance substances. The maximum tubular secretory function may be established by means of the Tm PAH. Up to now for this purpose the quantitative determination of PAH in the urine was necessary. By means of a basically other method by determination of 125 I-hippuran clearance under infusion of PAH the Tm PAH may be indirectly calculated without investigation of the urine. In 9 children with renal diseases the parallel determination was performed with classical methods as well as with the new method, in order to prove the good correspondence of the two methods. The Tm PAH in 7 children with renal grafts was at first relatively decreased, after several years relatively increased compared to ERPF. (author)

  16. New methods For Modeling Transport Of Water And Solutes In Soils

    DEFF Research Database (Denmark)

    Møldrup, Per

    Recent models for water and solute transport in unsaturated soils have been mechanistically based but numerically very involved. This dissertation concerns the development of mechanistically-based but numerically simple models for calculating and analyzing transport of water and solutes in soil s...

  17. Solute transport by groundwater flow to wetland ecosystems : the environmental impact of human activities

    NARCIS (Netherlands)

    Schot, P.P.

    1991-01-01

    This thesis deals with solute transport by groundwater flow and the way in which solute transport is affected by human activities. This in relation to wetland ecosystems. Wetlands in the eastern part of the Vecht river plain in The Netherlands are historically renown for their great variety of

  18. Analysis of an active tubular liquid-feed direct methanol fuel cell

    Science.gov (United States)

    Xu, Chao; Faghri, Amir

    2011-08-01

    A two-dimensional, two-phase, non-isothermal model was developed for an active, tubular, liquid-feed direct methanol fuel cell (DMFC). The liquid-gas, two-phase mass transport in the porous anode and cathode was formulated based on the multi-fluid approach in the porous media. The two-phase mass transport in the anode and cathode channels was modeled using the drift-flux and the homogeneous mist-flow models, respectively. Water and methanol crossovers through the membrane were considered due to the effects of diffusion, electro-osmotic drag, and convection. The model enabled a numerical investigation of the effects of various operating parameters, such as current density, methanol flow rate, and oxygen flow rate, on the mass and heat transport characteristics in the tubular DMFC. It was shown that by choosing a proper tube radius and distance between the adjacent cells, a tubular DMFC stack can achieve a much higher energy density compared to its planar counterpart. The results also showed that a large anode flow rate is needed in order to avoid severe blockage of liquid methanol to the anode electrode due to the gas accumulation in the channel. Besides, lowering the flow rate of either the methanol solution or air can lead to a temperature increase along the flow channel. The methanol and water crossovers are nearly independent of the methanol flow rate and the air flow rate.

  19. Numerical solution of time dependent neutron transport equation. An application

    International Nuclear Information System (INIS)

    Barroso, Dalton Ellery Girao

    2000-01-01

    In this work we show a simple method to solve numerically the time-dependent neutron transport equation which is a simple extension of the numerical methods used to solve the time-independent static transport equation. This is possible because the time-discretized transport equation has the same form as the time-independent transport equation, with only some additional terms. A general outline of the method is given and used to evaluate the neutron flux in a microexplosion calculation of a highly compressed micro fissile system composed by DT-Pu-Be microsphere. (author)

  20. Affordable Freight Logistics Transport Information Management Optimisation and Asset Tracking Solution Using Smartphone GPS Capabilities

    Science.gov (United States)

    Muna, Joseph T.; Prescott, Kevin

    2011-08-01

    Traditionally, freight transport and telematics solutions that exploit the GPS capabilities of in- vehicle devices to provide innovative Location Based Services (LBS) including track and trace transport systems have been the preserve of a select cluster of transport operators and organisations with the financial resources to develop the requisite custom software and hardware on which they are deployed. The average cost of outfitting a typical transport vehicle or truck with the latest Intelligent Transport System (ITS) increases the cost of the vehicle by anything from a couple to several thousand Euros, depending on the complexity and completeness of the solution. Though this does not generally deter large fleet transport owners since they typically get Return on Investment (ROI) based on economies of scale, it presents a barrier for the smaller independent entities that constitute the majority of freight transport operators [1].The North Sea Freight Intelligent Transport Solution (NS FRITS), a project co-funded by the European Commission Interreg IVB North Sea Region Programme, aims to make acquisition of such transport solutions easier for those organisations that cannot afford the expensive, bespoke systems used by their larger competitors.The project addresses transport security threats by developing a system capable of informing major actors along the freight logistics supply chain, of changing circumstances within the region's major transport corridors and between transport modes. The project also addresses issues of freight volumes, inter-modality, congestion and eco-mobility [2].

  1. Water flow and solute transport in floating fen root mats

    Science.gov (United States)

    Stofberg, Sija F.; EATM van der Zee, Sjoerd

    2015-04-01

    be very similar and likely functionally related. Our experimental field data were used for modelling water flow and solute transport in floating fens, using HYDRUS 2D. Fluctuations of surface water and root mat, as well as geometry and unsaturated zone parameters can have a major influence on groundwater fluctuations and the exchange between rain and surface water and the water in the root mats. In combination with the duration of salt pulses in surface water, and sensitivity of fen plants to salinity (Stofberg et al. 2014, submitted), risks for rare plants can be anticipated.

  2. Electric transport properties of alkali polymethacrylates in alkali bromide solutions

    NARCIS (Netherlands)

    Drift, W.P.J.T. van der; Overbeek, J.Th.G.

    Electric mobilities of polyions, bromide ions, and alkali ions have been determined in solutions of Li, Na, and K salts of polymethacrylic acid (PMA) in aqueous solutions of the corresponding bromide of concentrations varying from 0.001 to 0.1 M. The Hittorf method was used for the determination of

  3. CFD modeling of fluid flow and solute transport in a µXCT scanned natural fracture: Impact of fracture geometry on solute transport

    Science.gov (United States)

    Huber, F. M.; Enzmann, F.; Wenka, A.; Dentz, M.; Schaefer, T.

    2010-12-01

    Fluid flow and solute transport through fractures are a key process in both industrial and scientific issues ranging from e.g. geothermal energy production to the disposal of nuclear waste in deep geologic formations. Therefore, a fundamental understanding of the various interdependent processes governing fluid flow and solute transport in fractures over a broad range of length and time scales is of utmost importance. Numerous studies have shown the importance of fracture geometry on flow and solute transport. More recently, significance of so called recirculation zones which are accessible for solutes and colloids through hydrodynamic dispersion and molecular diffusion have been identified [1,2] which can be responsible for pronounced late time solute breakthrough (tailing). Unfortunately, these studies are mostly focused on 2D. Thus, the intention of the prevailing study is to investigate the influence of fracture geometry on solute transport under a broad range of flow conditions (Pe number from 0.1 up to 1000) and as a function of flow direction (that is, reversed flow direction) both in 2D and 3D. We present µXCT measurements with a spatial resolution of 80 µm of a natural single fracture in a diorite drill core from Äspö, Sweden, which serves as direct input for computational mesh generation in order to obtain a realistic 3D model. Besides, a 2D model was produced by projecting the 3D mesh into the x-y-plane to completely exclude the fracture aperture information. Computational fluid dynamic simulations in 2D and 3D have been conducted to study fluid flow and conservative tracer (HTO) transport by means of the finite volume code FLUENT. The natural fracture exhibits a very complex geometry with asperities, rough side walls and a heterogenous aperture distribution. Furthermore, the µXCT data clearly shows that the fracture is not filled with fault gauge material. Simulation results confirm the impact of fracture geometry/roughness on fluid flow causing

  4. Green transportation logistics: the quest for win-win solutions

    DEFF Research Database (Denmark)

    -down, pop-up”, where in a change in one aspect of a problem can cause another troubling aspect to arise. For example, speed reduction in maritime transportation can reduce emissions and fuel costs, but could require additional ships and could raise in-transit inventory costs. Or, regulations to reduce......This book examines the state of the art in green transportation logistics from the perspective of balancing environmental performance in the transportation supply chain while also satisfying traditional economic performance criteria. Part of the book is drawn from the recently completed European...... Union project Super Green, a three-year project intended to promote the development of European freight corridors in an environmentally friendly manner. Additional chapters cover both the methodological base and the application context of green transportation logistics. Individual chapters look...

  5. Application of PHREEQC on solute transport in groundwater

    OpenAIRE

    Mao, X.-M.; Liu, X.; Barry, D. A.

    2004-01-01

    With increasing groundwater contamination, the study of contaminant transport is becoming more and more important. Since chemical reactions occur simultaneously with contaminant transfer, these two aspects should be coupled in one model. PHREEQC is a simulation software package for modeling chemically reactive transport processes in natural and underground water bodies. PHREEQC was applied to simulate the processes of cation exchange and kinetic redox transformations with 1D gro...

  6. Analytical solutions for solute transport in groundwater and riverine flow using Green's Function Method and pertinent coordinate transformation method

    Science.gov (United States)

    Sanskrityayn, Abhishek; Suk, Heejun; Kumar, Naveen

    2017-04-01

    In this study, analytical solutions of one-dimensional pollutant transport originating from instantaneous and continuous point sources were developed in groundwater and riverine flow using both Green's Function Method (GFM) and pertinent coordinate transformation method. Dispersion coefficient and flow velocity are considered spatially and temporally dependent. The spatial dependence of the velocity is linear, non-homogeneous and that of dispersion coefficient is square of that of velocity, while the temporal dependence is considered linear, exponentially and asymptotically decelerating and accelerating. Our proposed analytical solutions are derived for three different situations depending on variations of dispersion coefficient and velocity, respectively which can represent real physical processes occurring in groundwater and riverine systems. First case refers to steady solute transport situation in steady flow in which dispersion coefficient and velocity are only spatially dependent. The second case represents transient solute transport in steady flow in which dispersion coefficient is spatially and temporally dependent while the velocity is spatially dependent. Finally, the third case indicates transient solute transport in unsteady flow in which both dispersion coefficient and velocity are spatially and temporally dependent. The present paper demonstrates the concentration distribution behavior from a point source in realistically occurring flow domains of hydrological systems including groundwater and riverine water in which the dispersivity of pollutant's mass is affected by heterogeneity of the medium as well as by other factors like velocity fluctuations, while velocity is influenced by water table slope and recharge rate. Such capabilities give the proposed method's superiority about application of various hydrological problems to be solved over other previously existing analytical solutions. Especially, to author's knowledge, any other solution doesn

  7. Ensuring sustainability of the city transportation system: problems and solutions (ICSC

    Directory of Open Access Journals (Sweden)

    Makarova Irina

    2016-01-01

    Full Text Available Ways to increase sustainability of the city transportation system and, particularly, measures to promote safe public transport and non-motorized means of transport are considered in the article. Analysis of the existing positive experience shows that complex decisions for a sustainable development of the city transportation system are necessary. Technical and organizational ways to increase the transportation system’s sustainability and safety are studied. The results of solution of separate tasks, aimed at completing the goal, are presented: defining transport preferences of the citizens of Naberezhnye Chelny, perspective model of bus route network, a model of an adaptive smart-bicycle. It is shown that the proposed solutions for strategic and operational management will help to enhance efficiency and safety of transportation system.

  8. Brine transport in porous media self-similar solutions

    NARCIS (Netherlands)

    C.J. van Duijn (Hans); L.A. Peletier (Bert); R.J. Schotting (Ruud)

    1996-01-01

    textabstractIn this paper we analyze a model for brine transport in porous media, which includes a mass balance for the fluid, a mass balance for salt, Darcy's law and an equation of state, which relates the fluid density to the salt mass fraction. This model incorporates the effect of local volume

  9. UrbanTransport Solution An Experience From Prague | Jeremiah ...

    African Journals Online (AJOL)

    This paper examines the urban transport problems in Prague in Czech Republic. Based on the result of the research conducted, it was found that with the collapsed of Communism in Czech Republic, there was an upsurge in the use of private cars which was not possible during communism because the law does not ...

  10. Reactive solute transport in an asymmetrical fracture-rock matrix system

    Science.gov (United States)

    Zhou, Renjie; Zhan, Hongbin

    2018-02-01

    The understanding of reactive solute transport in a single fracture-rock matrix system is the foundation of studying transport behavior in the complex fractured porous media. When transport properties are asymmetrically distributed in the adjacent rock matrixes, reactive solute transport has to be considered as a coupled three-domain problem, which is more complex than the symmetric case with identical transport properties in the adjacent rock matrixes. This study deals with the transport problem in a single fracture-rock matrix system with asymmetrical distribution of transport properties in the rock matrixes. Mathematical models are developed for such a problem under the first-type and the third-type boundary conditions to analyze the spatio-temporal concentration and mass distribution in the fracture and rock matrix with the help of Laplace transform technique and de Hoog numerical inverse Laplace algorithm. The newly acquired solutions are then tested extensively against previous analytical and numerical solutions and are proven to be robust and accurate. Furthermore, a water flushing phase is imposed on the left boundary of system after a certain time. The diffusive mass exchange along the fracture/rock matrixes interfaces and the relative masses stored in each of three domains (fracture, upper rock matrix, and lower rock matrix) after the water flushing provide great insights of transport with asymmetric distribution of transport properties. This study has the following findings: 1) Asymmetric distribution of transport properties imposes greater controls on solute transport in the rock matrixes. However, transport in the fracture is mildly influenced. 2) The mass stored in the fracture responses quickly to water flushing, while the mass stored in the rock matrix is much less sensitive to the water flushing. 3) The diffusive mass exchange during the water flushing phase has similar patterns under symmetric and asymmetric cases. 4) The characteristic distance

  11. Exact and Numerical Solutions of a Spatially-Distributed Mathematical Model for Fluid and Solute Transport in Peritoneal Dialysis

    Directory of Open Access Journals (Sweden)

    Roman Cherniha

    2016-06-01

    Full Text Available The nonlinear mathematical model for solute and fluid transport induced by the osmotic pressure of glucose and albumin with the dependence of several parameters on the hydrostatic pressure is described. In particular, the fractional space available for macromolecules (albumin was used as a typical example and fractional fluid void volume were assumed to be different functions of hydrostatic pressure. In order to find non-uniform steady-state solutions analytically, some mathematical restrictions on the model parameters were applied. Exact formulae (involving hypergeometric functions for the density of fluid flux from blood to tissue and the fluid flux across tissues were constructed. In order to justify the applicability of the analytical results obtained, a wide range of numerical simulations were performed. It was found that the analytical formulae can describe with good approximation the fluid and solute transport (especially the rate of ultrafiltration for a wide range of values of the model parameters.

  12. TLC scheme for numerical solution of the transport equation on equilateral triangular meshes

    International Nuclear Information System (INIS)

    Walters, W.F.

    1983-01-01

    A new triangular linear characteristic TLC scheme for numerically solving the transport equation on equilateral triangular meshes has been developed. This scheme uses the analytic solution of the transport equation in the triangle as its basis. The data on edges of the triangle are assumed linear as is the source representation. A characteristic approach or nodal approach is used to obtain the analytic solution. Test problems indicate that the new TLC is superior to the widely used DITRI scheme for accuracy

  13. Water flow and solute transport through fractured rock

    International Nuclear Information System (INIS)

    Bolt, J.E.; Bourke, P.J.; Pascoe, D.M.; Watkins, V.M.B.; Kingdon, R.D.

    1990-09-01

    In densely fractured slate at the Nirex research site in Cornwall, the positions, orientations and hydraulic conductivities of the 380 fractures intersecting a drill hole between 9 and 50 m depth have been individually measured. These data have been used: to determine the dimensions of statistically representative volumes of the network of fractures and to predict, using discrete flow path modelling and the NAPSAC code, the total flows into the fractures when large numbers are simultaneously pressurised along various lengths of the hole. Corresponding measurements, which validated the NAPSAC code to factor of two accuracy for the Cornish site, are reported. Possibilities accounting for this factor are noted for experimental investigation, and continuing, more extensive, inter hole flow and transport measurements are outlined. The application of this experimental and theoretical approach for calculating radionuclide transport in less densely fractured rock suitable for waste disposal is discussed. (Author)

  14. A transportronic solution to the problem of interorbital transportation

    Science.gov (United States)

    Brown, William C.

    1992-01-01

    An all-electronic transportation system described by the term 'transportronics' is examined as a means of solving the current problem of the high cost of transporting material from low-Earth orbit (LEO) to geostationary orbit (GEO). In this transportation system, low cost electric energy at the surface of the Earth is efficiently converted into microwave power which is then efficiently formed into a narrow beam which is kept incident upon the orbital transfer vehicles (OTV's) by electronic tracking. The incident beam is efficiently captured and converted into DC power by a device which has a very high ratio of DC power output to its mass. Because the mass of the electric thruster is also low, the resulting acceleration is unprecedented for electric-propelled vehicles. However, the performance of the system in terms of transit times from LEO to GEO is penalized by the short time of contact between the beam and the vehicle in low-Earth orbits. This makes it necessary to place the Earth based transmitters and the vehicles in the equatorial plane thus introducing many geopolitical factors. Technically, however, such a system as described in the report may out-perform any other approach to transportation in the LEO to GEO regime. The report describes and analyzes all portions of the beamed microwave power transmission system in considerable detail. An economic analysis of the operating and capital costs is made with the aid of a reference system capable of placing about 130,000 kilograms of payload into GEO each year. More mature states of the system are then examined, to a level in which 60,000 metric tons per year could be placed into GEO.

  15. One-dimensional analytical solution for hydraulic head and numerical solution for solute transport through a horizontal fracture for submarine groundwater discharge.

    Science.gov (United States)

    He, Cairong; Wang, Tongke; Zhao, Zhixue; Hao, Yonghong; Yeh, Tian-Chyi J; Zhan, Hongbin

    2017-11-01

    Submarine groundwater discharge (SGD) has been recognized as a major pathway of groundwater flow to coastal oceanic environments. It could affect water quality and marine ecosystems due to pollutants and trace elements transported through groundwater. Relations between different characteristics of aquifers and SGD have been investigated extensively before, but the role of fractures in SGD still remains unknown. In order to better understand the mechanism of groundwater flow and solute transport through fractures in SGD, one-dimensional analytical solutions of groundwater hydraulic head and velocity through a synthetic horizontal fracture with periodic boundary conditions were derived using a Laplace transform technique. Then, numerical solutions of solute transport associated with the given groundwater velocity were developed using a finite-difference method. The results indicated that SGD associated with groundwater flow and solute transport was mainly controlled by sea level periodic fluctuations, which altered the hydraulic head and the hydraulic head gradient in the fracture. As a result, the velocity of groundwater flow associated with SGD also fluctuated periodically. We found that the pollutant concentration associated with SGD oscillated around a constant value, and could not reach a steady state. This was particularly true at locations close to the seashore. This finding of the role of fracture in SGD will assist pollution remediation and marine conservation in coastal regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. One-dimensional analytical solution for hydraulic head and numerical solution for solute transport through a horizontal fracture for submarine groundwater discharge

    Science.gov (United States)

    He, Cairong; Wang, Tongke; Zhao, Zhixue; Hao, Yonghong; Yeh, Tian-Chyi J.; Zhan, Hongbin

    2017-11-01

    Submarine groundwater discharge (SGD) has been recognized as a major pathway of groundwater flow to coastal oceanic environments. It could affect water quality and marine ecosystems due to pollutants and trace elements transported through groundwater. Relations between different characteristics of aquifers and SGD have been investigated extensively before, but the role of fractures in SGD still remains unknown. In order to better understand the mechanism of groundwater flow and solute transport through fractures in SGD, one-dimensional analytical solutions of groundwater hydraulic head and velocity through a synthetic horizontal fracture with periodic boundary conditions were derived using a Laplace transform technique. Then, numerical solutions of solute transport associated with the given groundwater velocity were developed using a finite-difference method. The results indicated that SGD associated with groundwater flow and solute transport was mainly controlled by sea level periodic fluctuations, which altered the hydraulic head and the hydraulic head gradient in the fracture. As a result, the velocity of groundwater flow associated with SGD also fluctuated periodically. We found that the pollutant concentration associated with SGD oscillated around a constant value, and could not reach a steady state. This was particularly true at locations close to the seashore. This finding of the role of fracture in SGD will assist pollution remediation and marine conservation in coastal regions.

  17. Equilibrium shapes of tubular lipid membranes.

    Science.gov (United States)

    Jelerčič, Urška

    2017-04-19

    Tubular vesicles represent abundant structural motifs which are observed both in experiments and in nature. We analyse them within the theory of bending elasticity and determine the equilibrium solutions at fixed volume, surface area, and segment length without imposing any specific symmetry or periodicity. We identify four different non-periodic equilibrium shapes. Depending on the precise value of the constraints or the corresponding Lagrange multipliers, these four shapes include: (i) snake-like and (ii) helical structures, (iii) tubes with a spherical body, and (iv) tubes with a discoidal body. However different in the details, all of the shapes have the same general cylindrical morphology which is either globally modulated or is a superposition of an additional structural motif and the cylinder. These results point to a great significance of the circular cylindrical shape and offer a comprehensive and general analysis of the shape of tubular vesicles.

  18. Tubular closure mechanism

    International Nuclear Information System (INIS)

    Kalen, D.D.; Mitchem, J.W.

    1981-01-01

    An apparatus is provided for closing the bore of a tube and releasably securing articles within the tube under longitudinal load. A latching member has a cylindrical section and several circumferentially-spaced elongated latches hanging down from one end of the cylinder. An elongated actuator has integral cam and spline and is partly located within the latch with the cam radially contacting the latches and the spline projecting into the circumferential spaces between the latches. The actuator is axially movable between a position in which the latches are locked to the tube walls and a position in which the latches are secured from contact with the tube walls. Means are provided for axially moving the actuator such that the cam positions the latches; and means are also provided for engaging the articles within the tube. The closure is particularly applicable to tubular irradiation surveillance specimen assembly holders used in reactors

  19. Prolonged river water pollution due to variable-density flow and solute transport in the riverbed

    Science.gov (United States)

    Jin, Guangqiu; Tang, Hongwu; Li, Ling; Barry, D. A.

    2015-04-01

    A laboratory experiment and numerical modeling were used to examine effects of density gradients on hyporheic flow and solute transport under the condition of a solute pulse input to a river with regular bed forms. Relatively low-density gradients due to an initial salt pulse concentration of 1.55 kg m-3 applied in the experiment were found to modulate significantly the pore-water flow and solute transport in the riverbed. Such density gradients increased downward flow and solute transport in the riverbed by factors up to 1.6. This resulted in a 12.2% increase in the total salt transfer from the water column to the riverbed over the salt pulse period. As the solute pulse passed, the effect of the density gradients reversed, slowing down the release of the solute back to the river water by a factor of 3.7. Numerical modeling indicated that these density effects intensified as salt concentrations in the water column increased. Simulations further showed that the density gradients might even lead to unstable flow and result in solute fingers in the bed of large bed forms. The slow release of solute from the bed back to the river led to a long tail of solute concentration in the river water. These findings have implications for assessment of impact of pollution events on river systems, in particular, long-term effects on both the river water and riverbed due to the hyporheic exchange.

  20. Integrated compartmental model for describing the transport of solute in a fractured porous medium. [FRACPORT

    Energy Technology Data Exchange (ETDEWEB)

    DeAngelis, D.L.; Yeh, G.T.; Huff, D.D.

    1984-10-01

    This report documents a model, FRACPORT, that simulates the transport of a solute through a fractured porous matrix. The model should be useful in analyzing the possible transport of radionuclides from shallow-land burial sites in humid environments. The use of the model is restricted to transport through saturated zones. The report first discusses the general modeling approach used, which is based on the Integrated Compartmental Method. The basic equations of solute transport are then presented. The model, which assumes a known water velocity field, solves these equations on two different time scales; one related to rapid transport of solute along fractures and the other related to slower transport through the porous matrix. FRACPORT is validated by application to a simple example of fractured porous medium transport that has previously been analyzed by other methods. Then its utility is demonstrated in analyzing more complex cases of pulses of solute into a fractured matrix. The report serves as a user's guide to FRACPORT. A detailed description of data input, along with a listing of input for a sample problem, is provided. 16 references, 18 figures, 3 tables.

  1. Mass transfer processes and field-scale transport of organic solutes

    International Nuclear Information System (INIS)

    Brusseau, M.L.

    1990-01-01

    The influence of mass transfer processes, such as sorption/desorption and mass transfer between immiscible liquids and water, on the transport of organic solutes is discussed. Rate-limited sorption of organic solutes caused by a diffusion-constrained mechanism is shown to be significant under laboratory conditions. The significance of the impact of nonequilibrium sorption on field-scale transport is scale dependent. The impact of organic liquids on mass transfer and transport of organic solutes depends upon the nature of the solute and the nature and form of the organic liquid. For example, while retardation of nonionic solutes is decreased in mixed-solvent systems, (i.e. systems comprised of water and a miscible organic liquid or an immiscible liquid present in concentrations below phase separation), the retardation of organic acids may, in some cases, increase with addition of a cosolvent. While the presence of an immiscible liquid existing as a mobile phase will reduce retention of organic solutes, the presence of residual saturation of an immiscible liquid can significantly increase retention. A model is presented that incorporates the effects of retention resulting from residual saturation, as well as nonequilibrium sorption, on the transport of organic solutes. (Author) (70 refs., 3 figs.)

  2. VS2DRTI: Simulating Heat and Reactive Solute Transport in Variably Saturated Porous Media.

    Science.gov (United States)

    Healy, Richard W; Haile, Sosina S; Parkhurst, David L; Charlton, Scott R

    2018-01-29

    Variably saturated groundwater flow, heat transport, and solute transport are important processes in environmental phenomena, such as the natural evolution of water chemistry of aquifers and streams, the storage of radioactive waste in a geologic repository, the contamination of water resources from acid-rock drainage, and the geologic sequestration of carbon dioxide. Up to now, our ability to simulate these processes simultaneously with fully coupled reactive transport models has been limited to complex and often difficult-to-use models. To address the need for a simple and easy-to-use model, the VS2DRTI software package has been developed for simulating water flow, heat transport, and reactive solute transport through variably saturated porous media. The underlying numerical model, VS2DRT, was created by coupling the flow and transport capabilities of the VS2DT and VS2DH models with the equilibrium and kinetic reaction capabilities of PhreeqcRM. Flow capabilities include two-dimensional, constant-density, variably saturated flow; transport capabilities include both heat and multicomponent solute transport; and the reaction capabilities are a complete implementation of geochemical reactions of PHREEQC. The graphical user interface includes a preprocessor for building simulations and a postprocessor for visual display of simulation results. To demonstrate the simulation of multiple processes, the model is applied to a hypothetical example of injection of heated waste water to an aquifer with temperature-dependent cation exchange. VS2DRTI is freely available public domain software. © 2018, National Ground Water Association.

  3. The separation of radionuclide migration by solution and particle transport in LLRW repository buffer material

    International Nuclear Information System (INIS)

    Torok, J.; Buckley, L.P.; Woods, B.L.

    1989-01-01

    Laboratory-scale lysimeter experiments were performed with simulated waste forms placed in candidate buffer materials which have been chosen for a low-level radioactive waste repository. Radionuclide releases into the effluent water and radionuclide capture by the buffer material were determined. The results could not be explained by traditional solution transport mechanisms, and transport by particles released from the waste form and/or transport by buffer particles were suspected as the dominant mechanism for radionuclide release from the lysimeters. To elucidate the relative contribution of particle and solution transport, the waste forms were replaced by a wafer of neutron-activated buffer soaked with selected soluble isotopes. Particle transport was determined by the movement of gamma-emitting neutron-activation products through the lysimeter. Solution transport was quantified by comparing the migration of soluble radionuclides relative to the transport of neutron activation products. The new approach for monitoring radionuclide migration in soil is presented. It facilitates the determination of most of the fundamental coefficients required to model the transport process

  4. Semi-analytical solution of land-derived solute transport under tidal fluctuation in a confined aquifer

    Science.gov (United States)

    Suk, Heejun

    2017-11-01

    A one-dimensional semi-analytical solution of land-derived solute transport, subject to tidal fluctuation in a coastal confined aquifer, was derived using the generalized integral-transform technique (GITT). To investigate the plume migration of land-derived contaminants within a tidally influenced aquifer, both spatially and temporally varying expressions of the Darcy velocity and dispersion coefficients obtained from the analytical solution of the groundwater head response, which were subject to sinusoidal boundary conditions due to tidal fluctuation, were considered. This new semi-analytical solution was verified against a numerical solution, as well as the peak location trajectory obtained using the Predictor-Corrector method. Sensitivity analyses of tidal amplitude, hydraulic conductivity, and storage coefficient using the proposed solution were performed to understand plume behavior with regard to plume shape, plume spatial moments, and macrodispersion coefficients to gain a better understanding of the transport mechanisms. As the tidal amplitude, hydraulic conductivity, and storage coefficient were increased, the peaks were travelled faster, and peak concentrations were decreased. In addition, an increase in tidal amplitude, hydraulic conductivity, and storage coefficient caused an increase in variance as well as the macrodispersion coefficient. It was observed that negative macrodispersion appeared when the storage coefficient was largest, as well as when the difference between landward-directed advective velocity at the leading and trailing edges of the plume was greatest. This newly developed semi-analytical solution provides a useful mathematical tool for validating numerical models and understanding the physical mechanism of the migration of plume discharge to the sea or estuaries within a tidally influenced aquifer.

  5. SOLUTIONS AND MEANS OF ALTERNATIVE TRANSPORT IN THE CONCEPT OF SUSTAINABLE DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    CATALIN POPESCU

    2017-12-01

    Full Text Available The paper aims to achieve an overview of innovative initiatives on alternative transport in recent years in the context of increasing emissions of greenhouse gases. In this context are presented the main problems caused by motorized traffic in the urban agglomerations. Also, there are mentioned measures that could be implemented in busy urban areas. On this occasion are mentioned both new technical solutions and new means of alternative transport type. Additional, specific projects and programs are highlighted using bicycle transportation. There are mentioned initiatives regarding urban transportation completed in European projects such as: CIVITAS, EFFECTS etc. The examples and figures are mainly focused on Romania.

  6. Flow dynamics and solute transport in unsaturated rock fractures

    Energy Technology Data Exchange (ETDEWEB)

    Su, Grace Woan-chee [Univ. of California, Berkeley, CA (United States)

    1999-10-01

    Rock fractures play an important role in flow and contaminant transport in fractured aquifers, production of oil from petroleum reservoirs, and steam generation from geothermal reservoirs. In this dissertation, phenomenological aspects of flow in unsaturated fractures were studied in visualization experiments conducted on a transparent replica of a natural, rough-walled rock fracture for inlet conditions of constant pressure and flow rate over a range of angles of inclination. The experiments demonstrated that infiltrating liquid proceeds through unsaturated rock fractures along non-uniform, localized preferential flow paths. Even in the presence of constant boundary conditions, intermittent flow was a persistent flow feature observed, where portions of the flow channel underwent cycles of snapping and reforming. Two modes of intermittent flow were observed, the pulsating blob mode and the rivulet snapping mode. A conceptual model for the rivulet snapping mode was proposed and examined using idealized, variable-aperture fractures. The frequency of intermittent flow events was measured in several experiments and related to the capillary and Bond numbers to characterize this flow behavior.

  7. Stochastic models of solute transport in highly heterogeneous geologic media

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, V.N.; Korotkin, I.A.; Pruess, K.; Goloviznin, V.M.; Sorokovikova, O.S.

    2009-09-15

    A stochastic model of anomalous diffusion was developed in which transport occurs by random motion of Brownian particles, described by distribution functions of random displacements with heavy (power-law) tails. One variant of an effective algorithm for random function generation with a power-law asymptotic and arbitrary factor of asymmetry is proposed that is based on the Gnedenko-Levy limit theorem and makes it possible to reproduce all known Levy {alpha}-stable fractal processes. A two-dimensional stochastic random walk algorithm has been developed that approximates anomalous diffusion with streamline-dependent and space-dependent parameters. The motivation for introducing such a type of dispersion model is the observed fact that tracers in natural aquifers spread at different super-Fickian rates in different directions. For this and other important cases, stochastic random walk models are the only known way to solve the so-called multiscaling fractional order diffusion equation with space-dependent parameters. Some comparisons of model results and field experiments are presented.

  8. ORGANIZATIONAL STRESS SOURCES AND SOLUTION PROPOSALS IN PUBLIC TRANSPORT

    Directory of Open Access Journals (Sweden)

    Mehmet Zennur GÜRBÜZ

    2017-09-01

    Full Text Available Organizational stress is a concept which can have negative effects for both the workers and the organizations. The purpose of this study is to determine and classify the organizational stress sources that public transportation are exposed to, and to provide suggestions for managing these stress factors. A comprehensive literature survey is made in organizational stress factors and the following classes are identified: work structure, organizational structure, organizational policy, within-company relations and physical conditions. A questionnaire is developed forAnkara EGO General Directorate; applied to 2.137 drivers in Ankara in 2016 with a meaningful return of 1.554 data sets, representing 72% of the population and results are statistically analysed. Descriptive statistics, factor analysis and related validity and regional variance analyses are performed by SPSS (22.0 software. The study revealed that: drivers are exposed to mid-level stess; and most critical stress causes are “injustice and/or insufficiency of salaries”, “aggresive, violent behavior and verbal abuse of passengers towards drivers”, “fear of losing jobs or renewal of the contract”. A significant level of variation in stres levels are identified with respect to different regions of Ankara where drivers are assigned.  Suggestions are made in relation to different stres causes to lower the stress levels exposed.

  9. Parallel computing solution of Boltzmann neutron transport equation

    International Nuclear Information System (INIS)

    Ansah-Narh, T.

    2010-01-01

    The focus of the research was on developing parallel computing algorithm for solving Eigen-values of the Boltzmam Neutron Transport Equation (BNTE) in a slab geometry using multi-grid approach. In response to the problem of slow execution of serial computing when solving large problems, such as BNTE, the study was focused on the design of parallel computing systems which was an evolution of serial computing that used multiple processing elements simultaneously to solve complex physical and mathematical problems. Finite element method (FEM) was used for the spatial discretization scheme, while angular discretization was accomplished by expanding the angular dependence in terms of Legendre polynomials. The eigenvalues representing the multiplication factors in the BNTE were determined by the power method. MATLAB Compiler Version 4.1 (R2009a) was used to compile the MATLAB codes of BNTE. The implemented parallel algorithms were enabled with matlabpool, a Parallel Computing Toolbox function. The option UseParallel was set to 'always' and the default value of the option was 'never'. When those conditions held, the solvers computed estimated gradients in parallel. The parallel computing system was used to handle all the bottlenecks in the matrix generated from the finite element scheme and each domain of the power method generated. The parallel algorithm was implemented on a Symmetric Multi Processor (SMP) cluster machine, which had Intel 32 bit quad-core x 86 processors. Convergence rates and timings for the algorithm on the SMP cluster machine were obtained. Numerical experiments indicated the designed parallel algorithm could reach perfect speedup and had good stability and scalability. (au)

  10. Colloid transport with wetting fronts: interactive effects of solution surface tension and ionic strength.

    Science.gov (United States)

    Zhuang, Jie; Goeppert, Nadine; Tu, Ching; McCarthy, John; Perfect, Edmund; McKay, Larry

    2010-02-01

    Transport of colloids with transient wetting fronts represents an important mechanism of contaminant migration in the vadose zone. The work presented here used steady-state saturated and transient unsaturated flow columns to evaluate the transport of a fluorescent latex microsphere (980 nm in diameter) with capillary wetting fronts of different solution surface tensions and ionic strengths. The saturated transport experiments demonstrated that decreasing solution surface tension and ionic strength decreased colloid deposition at the solid-liquid interface and increased colloid recovery in the column effluent. The effect of solution surface tension on colloid transport and deposition was greater at lower ionic strength, suggesting an interaction between these two factors. Under transient unsaturated flow conditions, the number of colloids retained in sand decreased exponentially with travel distance through the porous media. However, lowering the solution surface tension and ionic strength resulted in a more even distribution of colloids along the column. The measured zeta potentials of colloids in different solutions suggest that both lowering surface tension and ionic strength would enhance the electrostatic repulsion between colloid and sand. The experimental results revealed that the effects are nonlinear, implying the possible existence of critical threshold values, beyond which the effects were not significant. In addition, colloid migration slowed down as solution surface tension decreased due to reduction of capillary forces that drove liquid movement. Copyright 2009 Elsevier Ltd. All rights reserved.

  11. Continuous time random walk analysis of solute transport in fractured porous media

    Energy Technology Data Exchange (ETDEWEB)

    Cortis, Andrea; Cortis, Andrea; Birkholzer, Jens

    2008-06-01

    The objective of this work is to discuss solute transport phenomena in fractured porous media, where the macroscopic transport of contaminants in the highly permeable interconnected fractures can be strongly affected by solute exchange with the porous rock matrix. We are interested in a wide range of rock types, with matrix hydraulic conductivities varying from almost impermeable (e.g., granites) to somewhat permeable (e.g., porous sandstones). In the first case, molecular diffusion is the only transport process causing the transfer of contaminants between the fractures and the matrix blocks. In the second case, additional solute transfer occurs as a result of a combination of advective and dispersive transport mechanisms, with considerable impact on the macroscopic transport behavior. We start our study by conducting numerical tracer experiments employing a discrete (microscopic) representation of fractures and matrix. Using the discrete simulations as a surrogate for the 'correct' transport behavior, we then evaluate the accuracy of macroscopic (continuum) approaches in comparison with the discrete results. However, instead of using dual-continuum models, which are quite often used to account for this type of heterogeneity, we develop a macroscopic model based on the Continuous Time Random Walk (CTRW) framework, which characterizes the interaction between the fractured and porous rock domains by using a probability distribution function of residence times. A parametric study of how CTRW parameters evolve is presented, describing transport as a function of the hydraulic conductivity ratio between fractured and porous domains.

  12. Numerical study of wave effects on groundwater flow and solute transport in a laboratory beach.

    Science.gov (United States)

    Geng, Xiaolong; Boufadel, Michel C; Xia, Yuqiang; Li, Hailong; Zhao, Lin; Jackson, Nancy L; Miller, Richard S

    2014-09-01

    A numerical study was undertaken to investigate the effects of waves on groundwater flow and associated inland-released solute transport based on tracer experiments in a laboratory beach. The MARUN model was used to simulate the density-dependent groundwater flow and subsurface solute transport in the saturated and unsaturated regions of the beach subjected to waves. The Computational Fluid Dynamics (CFD) software, Fluent, was used to simulate waves, which were the seaward boundary condition for MARUN. A no-wave case was also simulated for comparison. Simulation results matched the observed water table and concentration at numerous locations. The results revealed that waves generated seawater-groundwater circulations in the swash and surf zones of the beach, which induced a large seawater-groundwater exchange across the beach face. In comparison to the no-wave case, waves significantly increased the residence time and spreading of inland-applied solutes in the beach. Waves also altered solute pathways and shifted the solute discharge zone further seaward. Residence Time Maps (RTM) revealed that the wave-induced residence time of the inland-applied solutes was largest near the solute exit zone to the sea. Sensitivity analyses suggested that the change in the permeability in the beach altered solute transport properties in a nonlinear way. Due to the slow movement of solutes in the unsaturated zone, the mass of the solute in the unsaturated zone, which reached up to 10% of the total mass in some cases, constituted a continuous slow release of solutes to the saturated zone of the beach. This means of control was not addressed in prior studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. A Control Volume Model of Solute Transport in a Single Fracture

    Science.gov (United States)

    Kennedy, Christopher A.; Lennox, William C.

    1995-02-01

    A control volume model of solute transport through a single fracture in a porous matrix is developed. Application to problems of contaminant transport through fractured clay demonstrates several strong features of the method. The control volume approach inherently conserves mass and treats dispersivity at interfaces in a physically correct manner. By employing an upstream weighting scheme, based on the exact solution to the one-dimensional steady state advection-dispersion equation, the model proves to be more efficient than previous single-fracture models. The significance of matrix diffusion in the direction parallel to the fracture axis is investigated. For the transport of a nonreactive tracer through a 20-micrometer-wide fracture in clay material, analytical solutions based on one-dimensional matrix diffusion are erroneous for flow velocities of less than 1 m/day. The influence of boundary conditions on two-dimensional matrix diffusion is considered, and the clean-up of a contaminated fracture is simulated.

  14. Analysis of the sodium recirculation theory of solute-coupled water transport in small intestine

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Sørensen, Jakob Balslev; Sørensen, Jens Nørkaer

    2002-01-01

    Our previous mathematical model of solute-coupled water transport through the intestinal epithelium is extended for dealing with electrolytes rather than electroneutral solutes. A 3Na+-2K+ pump in the lateral membranes provides the energy-requiring step for driving transjunctional and translateral...... permeabilities and pump constants of fluxes of water and electrolytes, volumes and ion concentrations of cell and lateral intercellular space (lis), and membrane potentials and conductances. Simulating physiological bioelectrical features together with cellular and paracellular fluxes of the sodium ion......, computations predict that the concentration differences between lis and bathing solutions are small for all three ions. Nevertheless, the diffusion fluxes of the ions out of lis significantly exceed their mass transports. It is concluded that isotonic transport requires recirculation of all three ions...

  15. Simulation of unsaturated flow and nonreactive solute transport in a heterogeneous soil at the field scale

    International Nuclear Information System (INIS)

    Rockhold, M.L.

    1993-02-01

    A field-scale, unsaturated flow and solute transport experiment at the Las Cruces trench site in New Mexico was simulated as part of a ''blind'' modeling exercise to demonstrate the ability or inability of uncalibrated models to predict unsaturated flow and solute transport in spatially variable porous media. Simulations were conducted using a recently developed multiphase flow and transport simulator. Uniform and heterogeneous soil models were tested, and data from a previous experiment at the site were used with an inverse procedure to estimate water retention parameters. A spatial moment analysis was used to provide a quantitative basis for comparing the mean observed and simulated flow and transport behavior. The results of this study suggest that defensible predictions of waste migration and fate at low-level waste sites will ultimately require site-specific data for model calibration

  16. Modeling of water and solute transport under variably saturated conditions: state of the art

    International Nuclear Information System (INIS)

    Lappala, E.G.

    1980-01-01

    This paper reviews the equations used in deterministic models of mass and energy transport in variably saturated porous media. Analytic, quasi-analytic, and numerical solution methods to the nonlinear forms of transport equations are discussed with respect to their advantages and limitations. The factors that influence the selection of a modeling method are discussed in this paper; they include the following: (1) the degree of coupling required among the equations describing the transport of liquids, gases, solutes, and energy; (2) the inclusion of an advection term in the equations; (3) the existence of sharp fronts; (4) the degree of nonlinearity and hysteresis in the transport coefficients and boundary conditions; (5) the existence of complex boundaries; and (6) the availability and reliability of data required by the models

  17. Identification of key target markets for intermodal freight transport solutions in South Africa

    Directory of Open Access Journals (Sweden)

    Joubert van Eeden

    2010-11-01

    Full Text Available The Accelerated and Shared Growth Initiative for South Africa (AsgiSA identified South Africa's freight logistics challenges as among the key binding constraints on the country's growth aspirations. The research presented here points to the structural imbalance between road and rail freight transport as one of the key contributors to this state of affairs. Most long-distance corridor transport has been captured by road. However, long-distance transport is a market segment that is very suitable for intermodal transportation : rail is utilised for the high-density, long-distance component and road for the feeder and distribution services at the corridor end points. A market segmentation approach is developed to identify the corridors and industries that are natural candidates for such solutions, thereby paving the way for role-players and stakeholders to initiate a dialogue on the development of appropriate solutions.

  18. TRACKING AND TRACING SOLUTION FOR DANGEROUS GOODS CARRIED BY INTERMODAL TRANSPORT

    Directory of Open Access Journals (Sweden)

    Marek Kvet

    2014-03-01

    Full Text Available This paper deals with the problem of designing a complex tracking and tracing solution for dangerous goods transportation with the support of modern information technologies. This research activity presents a part of the “ChemLogTT” [2] project solved at the University of Žilina. The main goal of our contribution is to present basic conception of a complex developed software tool for monitoring and analyzing mentioned dangerous goods transportation.

  19. Influence of pore structure on solute transport in degraded and undegraded fen peat soils

    Directory of Open Access Journals (Sweden)

    C. Kleimeier

    2017-10-01

    Full Text Available In peat soils, decomposition and degradation reduce the proportion of large pores by breaking down plant debris into smaller fragments and infilling inter-particle pore spaces. This affects water flow and solute migration which, in turn, influence reactive transport processes and biogeochemical functions. In this study we conducted flow-through reactor experiments to investigate the interplay between pore structure and solute transport in samples of undegraded and degraded peat collected in Canada and Germany, respectively. The pore size distributions and transport parameters were characterised using the breakthrough curve and two-region non-equilibrium transport model analyses for a non-reactive solute. The results of transport characterisation showed a higher fraction of immobile pores in the degraded peat with higher diffusive exchanges of solutes between the mobile and immobile pores associated with the dual-porosity structure. The rates of steady-state potential nitrate reduction were compared with pore fractions and exchange coefficients to investigate the influence of pore structure on the rates of nitrate reduction. The results indicated that the degraded peat has potential to provide the necessary boundary conditions to support nitrate removal and serves as a favourable substrate for denitrification, due to the nature of its pore structure and its lower organic carbon content compared to undegraded peat.

  20. Kinetic theory the Chapman-Enskog solution of the transport equation for moderately dense gases

    CERN Document Server

    Brush, S G

    1972-01-01

    Kinetic Theory, Volume 3: The Chapman-Enskog Solution of the Transport Equation for Moderately Dense Gases describes the Chapman-Enskog solution of the transport equation for moderately dense gases. Topics covered range from the propagation of sound in monatomic gases to the kinetic theory of simple and composite monatomic gases and generalizations of the theory to higher densities. The application of kinetic theory to the determination of intermolecular forces is also discussed. This volume is divided into two sections and begins with an introduction to the work of Hilbert, Chapman, and Ensko

  1. S4 solution of the transport equation for eigenvalues using Legendre polynomials

    Directory of Open Access Journals (Sweden)

    Öztürk Hakan

    2017-01-01

    Full Text Available Numerical solution of the transport equation for monoenergetic neutrons scattered isotropically through the medium of a finite homogeneous slab is studied for the determination of the eigenvalues. After obtaining the discrete ordinates form of the transport equation, separated homogeneous and particular solutions are formed and then the eigenvalues are calculated using the Gauss-Legendre quadrature set. Then, the calculated eigenvalues for various values of the c0, the mean number of secondary neutrons per collision, are given in the tables.

  2. Preliminary modeling for solute transport in a fractured zone at the Korea underground research tunnel (KURT)

    International Nuclear Information System (INIS)

    Park, Chung Kyun; Lee, Jaek Wang; Baik, Min Hoon; Jeong, Jong Tae

    2012-01-01

    Migration tests were performed with conservative tracers in a fractured zone that had a single fracture of about 2.5 m distance at the KURT. To interpret the migration of the tracers in the fractured rock, a solute transport model was developed. A two dimensional variable aperture channel model was adopted to describe the fractured path and hydrology, and a particle tracking method was used for solute transport. The simulation tried not only to develop a migration model of solutes for open flow environments but also to produce ideas for a better understanding of solute behaviours in indefinable fracture zones by comparing them to experimental results. The results of our simulations and experiments are described as elution and breakthrough curves, and are quantified by momentum analysis. The main retardation mechanism of nonsorbing tracers, including matrixdiffusion, was investigated.

  3. On equiconvergence of ultraspherical polynomials solution of one-speed neutron transport equation

    International Nuclear Information System (INIS)

    Yilmazer, Ayhan; Tombakoglu, Mehmet

    2006-01-01

    Ultraspherical polynomial approximation is used in slab criticality calculations for strongly anisotropic scattering. A unique and general formulation is developed for slab criticality condition whose sub-cases are spherical harmonics approximation, Chebyshev polynomial approximation of first and second kind. Since Legendre polynomials, Chebyshev Polynomials of first and second kinds are special cases of ultraspherical polynomials; our formulation inherently covers all these approximations and lets one to employ any other ultraspherical polynomial approximation in the solution of one-speed neutron transport equation. Our calculations showed that solution of one-speed neutron transport equation for various degrees of anisotropy and cross-section parameters is almost insensitive to the choice of ultraspherical polynomial with the present days' computing capabilities. In other words, as much as high order ultraspherical polynomial approximation is used the solution converges to the same value for a specified problem regardless the type of the ultraspherical polynomial assigned in the solution as equiconvergence theorem of Jacobi polynomials states

  4. Analytical solutions for transport processes fluid mechanics, heat and mass transfer

    CERN Document Server

    Brenn, Günter

    2017-01-01

    This book provides analytical solutions to a number of classical problems in transport processes, i.e. in fluid mechanics, heat and mass transfer. Expanding computing power and more efficient numerical methods have increased the importance of computational tools. However, the interpretation of these results is often difficult and the computational results need to be tested against the analytical results, making analytical solutions a valuable commodity. Furthermore, analytical solutions for transport processes provide a much deeper understanding of the physical phenomena involved in a given process than do corresponding numerical solutions. Though this book primarily addresses the needs of researchers and practitioners, it may also be beneficial for graduate students just entering the field. .

  5. Analytical solution of electrohydrodynamic flow and transport in rectangular channels: inclusion of double layer effects

    KAUST Repository

    Joekar-Niasar, V.

    2013-01-25

    Upscaling electroosmosis in porous media is a challenge due to the complexity and scale-dependent nonlinearities of this coupled phenomenon. "Pore-network modeling" for upscaling electroosmosis from pore scale to Darcy scale can be considered as a promising approach. However, this method requires analytical solutions for flow and transport at pore scale. This study concentrates on the development of analytical solutions of flow and transport in a single rectangular channel under combined effects of electrohydrodynamic forces. These relations will be used in future works for pore-network modeling. The analytical solutions are valid for all regimes of overlapping electrical double layers and have the potential to be extended to nonlinear Boltzmann distribution. The innovative aspects of this study are (a) contribution of overlapping of electrical double layers to the Stokes flow as well as Nernst-Planck transport has been carefully included in the analytical solutions. (b) All important transport mechanisms including advection, diffusion, and electromigration have been included in the analytical solutions. (c) Fully algebraic relations developed in this study can be easily employed to upscale electroosmosis to Darcy scale using pore-network modeling. © 2013 Springer Science+Business Media Dordrecht.

  6. Used Fuel Logistics: Decades of Experience with transportation and Interim storage solutions

    Energy Technology Data Exchange (ETDEWEB)

    Orban, G.; Shelton, C.

    2015-07-01

    Used fuel inventories are growing worldwide. While some countries have opted for a closed cycle with recycling, numerous countries must expand their interim storage solutions as implementation of permanent repositories is taking more time than foreseen. In both cases transportation capabilities will have to be developed. AREVA TN has an unparalleled expertise with transportation of used fuel. For more than 50 years AREVA TN has safely shipped more than 7,000 used fuel transport casks. The transportation model that was initially developed in the 1970s has been adapted and enhanced over the years to meet more restrictive regulatory requirements and evolving customer needs, and to address public concerns. The numerous “lessons learned” have offered data and guidance that have allowed for also efficient and consistent improvement over the decades. AREVA TN has also an extensive experience with interim dry storage solutions in many countries on-site but also is working with partners to developed consolidated interim storage facility. Both expertise with storage and transportation contribute to safe, secure and smooth continuity of the operations. This paper will describe decades of experience with a very successful transportation program as well as interim storage solutions. (Author)

  7. Modeling of Solute transport in a fractured rock zone at KURT

    International Nuclear Information System (INIS)

    Park, Chung Kyun; Lee, Jae Kwang; Baik, Min Hoon; Jeong, Jong Tae

    2010-01-01

    A solute transport model has developed to simulate migration of tracers which has tested in KURT. KAERI built an underground research laboratory so called KURT, which stands for Korea Underground Research Tunnel. Dipole tests has performed with some nonradioactive conservative tracers in a fractured zone which having a single fracture at KURT. The objectives of this study are not only developing a migration model of solutes for in-situ open environments but also validating the model by comparing and estimating experimental results

  8. A stochastic model of reactive solute transport with time-varying velocity in a heterogeneous aquifer

    Science.gov (United States)

    Kabala, Z. J.; Sposito, Garrison

    1991-03-01

    The cumulant expansion method, used previously by Sposito and Barry (1987) to derive an ensemble average transport equation for a tracer moving in a heterogeneous aquifer, is generalized to the case of a reactive solute that can adsorb linearly and undergo first-order decay. In the process we also generalize the Van Kampen (1987) result for the cumulant expansion of a multiplicative stochastic differential equation containing a time-dependent sure matrix. The resulting partial differential equation exhibits terms with field-scale coefficients that are analogous to those in the corresponding nonstochastic local-scale transport equation. There are also new terms in the third- and fourth-order spatial derivatives of the ensemble average concentration. It is demonstrated that the effective solute velocity for the aqueous concentration, not that for the total concentration (aqueous plus sorbed), is relevant for a field-scale description of solute transport. The field-scale effective solute velocity, dispersion coefficient, retardation factor, and first-order decay parameters, unlike their local-scale counterparts, are time-dependent because of autocorrelations and cross correlations among the random local solute velocity, retardation factor, and first-order decay constant. It is shown also that negative cross correlations between the random tracer solute velocity and the inverse of the local retardation factor may produce both enhanced dispersion and a temporal growth in the field-scale retardation factor. These effects are possible in any heterogeneous aquifer for which a stochastic description of aquifer spatial variability is appropriate.

  9. Anomalous solute transport in saturated porous media: Relating transport model parameters to electrical and nuclear magnetic resonance properties

    Science.gov (United States)

    Swanson, Ryan D; Binley, Andrew; Keating, Kristina; France, Samantha; Osterman, Gordon; Day-Lewis, Frederick D.; Singha, Kamini

    2015-01-01

    The advection-dispersion equation (ADE) fails to describe commonly observed non-Fickian solute transport in saturated porous media, necessitating the use of other models such as the dual-domain mass-transfer (DDMT) model. DDMT model parameters are commonly calibrated via curve fitting, providing little insight into the relation between effective parameters and physical properties of the medium. There is a clear need for material characterization techniques that can provide insight into the geometry and connectedness of pore spaces related to transport model parameters. Here, we consider proton nuclear magnetic resonance (NMR), direct-current (DC) resistivity, and complex conductivity (CC) measurements for this purpose, and assess these methods using glass beads as a control and two different samples of the zeolite clinoptilolite, a material that demonstrates non-Fickian transport due to intragranular porosity. We estimate DDMT parameters via calibration of a transport model to column-scale solute tracer tests, and compare NMR, DC resistivity, CC results, which reveal that grain size alone does not control transport properties and measured geophysical parameters; rather, volume and arrangement of the pore space play important roles. NMR cannot provide estimates of more-mobile and less-mobile pore volumes in the absence of tracer tests because these estimates depend critically on the selection of a material-dependent and flow-dependent cutoff time. Increased electrical connectedness from DC resistivity measurements are associated with greater mobile pore space determined from transport model calibration. CC was hypothesized to be related to length scales of mass transfer, but the CC response is unrelated to DDMT.

  10. The single-sink fixed-charge transportation problem: Applications and solution methods

    DEFF Research Database (Denmark)

    Goertz, Simon; Klose, Andreas

    2007-01-01

    The single-sink fixed-charge transportation problem (SSFCTP) consists in finding a minimum cost flow from a number of supplier nodes to a single demand node. Shipping costs comprise costs proportional to the amount shipped as well as a fixed-charge. Although the SSFCTP is an important special case...... of the well-known fixed-charge transportation problem, just a few methods for solving this problem have been proposed in the literature. After summarising some applications of this problem arising in manufacturing and transportation, we give an overview on approximation algorithms and worst-case results....... Finally, we briefly compare some exact solution algorithms for this problem....

  11. An Experimental Study on Solute Transport in One-Dimensional Clay Soil Columns

    Directory of Open Access Journals (Sweden)

    Muhammad Zaheer

    2017-01-01

    Full Text Available Solute transport in low-permeability media such as clay has not been studied carefully up to present, and we are often unclear what the proper governing law is for describing the transport process in such media. In this study, we composed and analyzed the breakthrough curve (BTC data and the development of leaching in one-dimensional solute transport experiments in low-permeability homogeneous and saturated media at small scale, to identify key parameters controlling the transport process. Sodium chloride (NaCl was chosen to be the tracer. A number of tracer tests were conducted to inspect the transport process under different conditions. The observed velocity-time behavior for different columns indicated the decline of soil permeability when switching from tracer introducing to tracer flushing. The modeling approaches considered were the Advection-Dispersion Equation (ADE, Two-Region Model (TRM, Continuous Time Random Walk (CTRW, and Fractional Advection-Dispersion Equation (FADE. It was found that all the models can fit the transport process very well; however, ADE and TRM were somewhat unable to characterize the transport behavior in leaching. The CTRW and FADE models were better in capturing the full evaluation of tracer-breakthrough curve and late-time tailing in leaching.

  12. Solution of the neutron transport problem with anisotropic scattering in cylindrical geometry by the decomposition method

    International Nuclear Information System (INIS)

    Goncalves, G.A.; Bogado Leite, S.Q.; Vilhena, M.T. de

    2009-01-01

    An analytical solution has been obtained for the one-speed stationary neutron transport problem, in an infinitely long cylinder with anisotropic scattering by the decomposition method. Series expansions of the angular flux distribution are proposed in terms of suitably constructed functions, recursively obtainable from the isotropic solution, to take into account anisotropy. As for the isotropic problem, an accurate closed-form solution was chosen for the problem with internal source and constant incident radiation, obtained from an integral transformation technique and the F N method

  13. Numerical Solution of the Electron Transport Equation in the Upper Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Mark Christopher [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Holmes, Mark [Rensselaer Polytechnic Inst., Troy, NY (United States); Sailor, William C [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    A new approach for solving the electron transport equation in the upper atmosphere is derived. The problem is a very stiff boundary value problem, and to obtain an accurate numerical solution, matrix factorizations are used to decouple the fast and slow modes. A stable finite difference method is applied to each mode. This solver is applied to a simplifieed problem for which an exact solution exists using various versions of the boundary conditions that might arise in a natural auroral display. The numerical and exact solutions are found to agree with each other to at least two significant digits.

  14. On the Boltzmann Equation with Stochastic Kinetic Transport: Global Existence of Renormalized Martingale Solutions

    Science.gov (United States)

    Punshon-Smith, Samuel; Smith, Scott

    2018-02-01

    This article studies the Cauchy problem for the Boltzmann equation with stochastic kinetic transport. Under a cut-off assumption on the collision kernel and a coloring hypothesis for the noise coefficients, we prove the global existence of renormalized (in the sense of DiPerna/Lions) martingale solutions to the Boltzmann equation for large initial data with finite mass, energy, and entropy. Our analysis includes a detailed study of weak martingale solutions to a class of linear stochastic kinetic equations. This study includes a criterion for renormalization, the weak closedness of the solution set, and tightness of velocity averages in {{L}1}.

  15. Enhancements and limits in drug membrane transport using supersaturated solutions of poorly water soluble drugs.

    Science.gov (United States)

    Raina, Shweta A; Zhang, Geoff G Z; Alonzo, David E; Wu, Jianwei; Zhu, Donghua; Catron, Nathaniel D; Gao, Yi; Taylor, Lynne S

    2014-09-01

    Amorphous solid dispersions (ASDs) give rise to supersaturated solutions (solution concentration greater than equilibrium crystalline solubility). We have recently found that supersaturating dosage forms can exhibit the phenomenon of liquid-liquid phase separation (LLPS). Thus, the high supersaturation generated by dissolving ASDs can lead to a two-phase system wherein one phase is an initially nanodimensioned and drug-rich phase and the other is a drug-lean continuous aqueous phase. Herein, the membrane transport of supersaturated solutions, at concentrations above and below the LLPS concentration has been evaluated using a side-by-side diffusion cell. Measurements of solution concentration with time in the receiver cell yield the flux, which reflects the solute thermodynamic activity in the donor cell. As the nominal concentration of solute in the donor cell increases, a linear increase in flux was observed up to the concentration where LLPS occurred. Thereafter, the flux remained essentially constant. Both nifedipine and felodipine solutions exhibit such behavior as long as crystallization is absent. This suggests that there is an upper limit in passive membrane transport that is dictated by the LLPS concentration. These results have several important implications for drug delivery, especially for poorly soluble compounds requiring enabling formulation technologies. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  16. Efflux of drugs and solutes from brain: the interactive roles of diffusional transcapillary transport, bulk flow and capillary transporters.

    Science.gov (United States)

    Groothuis, Dennis R; Vavra, Michael W; Schlageter, Kurt E; Kang, Eric W-Y; Itskovich, Andrea C; Hertzler, Shannon; Allen, Cathleen V; Lipton, Howard L

    2007-01-01

    We examined the roles of diffusion, convection and capillary transporters in solute removal from extracellular space (ECS) of the brain. Radiolabeled solutes (eight with passive distribution and four with capillary or cell transporters) were injected into the brains of rats (n=497) and multiple-time point experiments measured the amount remaining in brain as a function of time. For passively distributed compounds, there was a relationship between lipid:water solubility and total brain efflux:diffusional efflux, which dominated when k(p), the transcapillary efflux rate constant, was >10(0) h(-1); when 10(-1)transporters. The total efflux rate constant, k(eff), was the sum of a passive component (k(p)=0.0018 h(-1)), a convective component (k(csf)=0.2 h(-1)), and a variable, concentration-dependent component (k(x)=0 to 0.45 h(-1)). Compounds with cell membrane transporters had longer clearance half times as did an oligonucleotide, which interacted with cell surface receptors. Manipulation of physiologic state (n=35) did not affect efflux, but sucrose efflux half time was longer with pentobarbital anesthesia (24 h) than with no anesthesia or ketamine-xylazine anesthesia (2 to 3 h). These results show that solute clearance from normal brain ECS may involve multiple physiologic pathways, may be affected by anesthesia, and suggests that convection-mediated efflux may be manipulated to increase or decrease drug clearance from brain.

  17. Pore-network modeling of solute transport and biofilm growth in porous media

    NARCIS (Netherlands)

    Qin, Chao Zhong; Hassanizadeh, S. Majid

    2015-01-01

    In this work, a pore-network (PN) model for solute transport and biofilm growth in porous media was developed. Compared to previous studies of biofilm growth, it has two new features. First, the constructed pore network gives a better representation of a porous medium. Second, instead of using a

  18. Relationship between application scale and maximum time latency in intelligent transport solutions

    NARCIS (Netherlands)

    Knoop, V.; Lint, J. van; Vries, J.; Kester, L.J.H.M.; Passchier, I.

    2013-01-01

    Congestion is a major problem in large, urbanized areas. Intelligent transport solutions aim to reduce this problem. In general, traffic is monitored with the use of sensors, the resulting data are processed, a traffic state is estimated, and a control measure is computed and implemented. The

  19. Ground-water solute transport modeling using a three-dimensional scaled model

    International Nuclear Information System (INIS)

    Crider, S.S.

    1987-01-01

    Scaled models are used extensively in current hydraulic research on sediment transport and solute dispersion in free surface flows (rivers, estuaries), but are neglected in current ground-water model research. Thus, an investigation was conducted to test the efficacy of a three-dimensional scaled model of solute transport in ground water. No previous results from such a model have been reported. Experiments performed on uniform scaled models indicated that some historical problems (e.g., construction and scaling difficulties; disproportionate capillary rise in model) were partly overcome by using simple model materials (sand, cement and water), by restricting model application to selective classes of problems, and by physically controlling the effect of the model capillary zone. Results from these tests were compared with mathematical models. Model scaling laws were derived for ground-water solute transport and used to build a three-dimensional scaled model of a ground-water tritium plume in a prototype aquifer on the Savannah River Plant near Aiken, South Carolina. Model results compared favorably with field data and with a numerical model. Scaled models are recommended as a useful additional tool for prediction of ground-water solute transport

  20. Reactionary - electrodiffusion equations of transport processes of electrolyte solutions of radioelements through porous clayey structures

    Directory of Open Access Journals (Sweden)

    T.V.Shymchuk

    2007-01-01

    Full Text Available The statistical model of the water solution of radioactive elements and the porous clayey matrix is proposed. The generalized transport equations for the description of diffusion, sorption,radiative processes and chemical reactions are obtained taking into account the electromagnetic processes.

  1. Positive solution of a time and energy dependent neutron transport problem

    International Nuclear Information System (INIS)

    Pao, C.V.

    1975-01-01

    A constructive method is given for the determination of a solution and an existence--uniqueness theorem for some nonlinear time and energy dependent neutron transport problems, including the linear transport system. The geometry of the medium under consideration is allowed to be either bounded or unbounded which includes the geometry of a finite or infinite cylinder, a half-space and the whole space R/subm/ (m=1,2,center-dotcenter-dotcenter-dot). Our approach to the problem is by successive approximation which leads to various recursion formulas for the approximations in terms of explicit integrations. It is shown under some Lipschitz conditions on the nonlinear functions, which describe the process of neutrons absorption, fission, and scattering, that the sequence of approximations converges to a unique positive solution. Since these conditions are satisfied by the linear transport equation, all the results for the nonlinear system are valid for the linear transport problem. In the general nonlinear problem, the existence of both local and global solutions are discussed, and an iterative process for the construction of the solution is given

  2. Analytic solutions for colloid transport with time- or depth-dependent retention in porous media

    Science.gov (United States)

    Elucidating and quantifying the transport of industrial nanoparticles (e.g. silver, carbon nanotubes, and graphene oxide) and other colloid-size particles such as viruses and bacteria is important to safeguard and manage the quality of the subsurface environment. Analytic solutions were derived for...

  3. Semianalytical Solutions for Transport in Aquifer and Fractured Clay Matrix System

    Science.gov (United States)

    A three-dimensional mathematical model that describes transport of contaminant in a horizontal aquifer with simultaneous diffusion into a fractured clay formation is proposed. A group of analytical solutions is derived based on specific initial and boundary conditions as well as ...

  4. Determination of a closed-form solution for the multidimensional transport equation using a fractional derivative

    Energy Technology Data Exchange (ETDEWEB)

    Zabadal, J. E-mail: jorge.zabadal@ufrgs.br; Vilhena, M.T. E-mail: vilhena@mat.ufrgs.br; Segatto, C.F. E-mail: cynthia@mat.ufrgs.br; Pazos, R.P.Ruben Panta. E-mail: rpp@mat.pucrgs.br

    2002-07-01

    In this work we construct a closed-form solution for the multidimensional transport equation rewritten in integral form which is expressed in terms of a fractional derivative of the angular flux. We determine the unknown order of the fractional derivative comparing the kernel of the integral equation with the one of the Riemann-Liouville definition of fractional derivative. We report numerical simulations.

  5. Simulation of solute transport in a mountain pool-and-riffle stream: A transient storage model

    Science.gov (United States)

    Bencala, Kenneth E.; Walters, Roy A.

    1983-01-01

    The physical characteristics of mountain streams differ from the uniform and conceptually well- defined open channels for which the analysis of solute transport has been oriented in the past and is now well understood. These physical conditions significantly influence solute transport behavior, as demonstrated by a transient storage model simulation of solute transport in a very small (0.0125 m3s−1) mountain pool-and-riffle stream. The application is to a carefully controlled and intensively monitored chloride injection experiment. The data from the experiment are not explained by the standard convection-dispersion mechanisms alone. A transient storage model, which couples dead zones with the one-dimensional convection-dispersion equation, simulates the general characteristics of the solute transport behavior and a set of simulation parameters were determined that yield an adequate fit to the data. However, considerable uncertainty remains in determining physically realistic values of these parameters. The values of the simulation parameters used are compared to values used by other authors for other streams. The comparison supports, at least qualitatively, the determined parameter values.

  6. Field-scale water flow and solute transport : SWAP model concepts, parameter estimation and case studies = [Waterstroming en transport van opgeloste stoffen op veldschaal

    NARCIS (Netherlands)

    Dam, van J.C.

    2000-01-01

    Water flow and solute transport in top soils are important elements in many environmental studies. The agro- and ecohydrological model SWAP (Soil-Water-Plant-Atmosphere) has been developed to simulate simultaneously water flow, solute transport, heat flow and crop growth at field scale

  7. Analysis of the sodium recirculation theory of solute-coupled water transport in small intestine.

    Science.gov (United States)

    Larsen, Erik Hviid; Sørensen, Jakob Balslev; Sørensen, Jens Nørkaer

    2002-07-01

    Our previous mathematical model of solute-coupled water transport through the intestinal epithelium is extended for dealing with electrolytes rather than electroneutral solutes. A 3Na+-2K+ pump in the lateral membranes provides the energy-requiring step for driving transjunctional and translateral flows of water across the epithelium with recirculation of the diffusible ions maintained by a 1Na+-1K+-2Cl- cotransporter in the plasma membrane facing the serosal compartment. With intracellular non-diffusible anions and compliant plasma membranes, the model describes the dependence on membrane permeabilities and pump constants of fluxes of water and electrolytes, volumes and ion concentrations of cell and lateral intercellular space (lis), and membrane potentials and conductances. Simulating physiological bioelectrical features together with cellular and paracellular fluxes of the sodium ion, computations predict that the concentration differences between lis and bathing solutions are small for all three ions. Nevertheless, the diffusion fluxes of the ions out of lis significantly exceed their mass transports. It is concluded that isotonic transport requires recirculation of all three ions. The computed sodium recirculation flux that is required for isotonic transport corresponds to that estimated in experiments on toad small intestine. This result is shown to be robust and independent of whether the apical entrance mechanism for the sodium ion is a channel, a SGLT1 transporter driving inward uphill water flux, or an electroneutral Na+-K+-2Cl- cotransporter.

  8. Theoretical development and analytical solutions for transport of volatile organic compounds in dual-porosity soils

    Science.gov (United States)

    Hantush, Mohamed M.; Govindaraju, Rao S.

    2003-08-01

    Predicting the behavior of volatile organic compounds in soils or sediments is necessary for managing their use and designing appropriate remedial systems to eliminate potential threats to the environment, particularly the air and groundwater resources. In this effort, based on continuity of mass flux, we derive a mass flux boundary condition of the third type in terms of physically based mass transfer rate coefficients, describing the resistance to mass inflow of the soil-air interface, and obtain one-dimensional analytical solutions for transport and degradation of volatile organic compounds in semi-infinite structured soils under steady, unsaturated flow conditions. The advective-dispersive mass balance formulation allows for mobile-immobile liquid phase and vapor diffusive mass transfer, with linear equilibrium adsorption and liquid-vapor phase partitioning in the dynamic and stagnant soil regions. The mass transfer rate coefficients of volatile organic chemicals across the soil-air interface are expressed in terms of solute properties and hydrodynamic characteristics of resistive soil and air-boundary layers. The solutions estimate solute vapor flux from soil surface and describe mobile-phase solute concentration as a function of depth in the soil and time. In particular, solutions were derived for: (1) zero-initial concentration in the soil profile subject to a continuous and pulsed source at the soil surface; and (2) depletion from the soil following an initially contaminated soil profile. Sensitivity analysis with respect to different dimensionless parameters is conducted and the effect on solute concentration and vapor flux of such parameters as volatilization mass transfer velocity relative to infiltration, soil Peclet number, biochemical decay, and diffusive mass transfer into the immobile phase, is plotted and the results are discussed. The mass transfer rate coefficients and the analytical solutions are applied to simulate transport of an example

  9. Review and Application of Time Nonlocal Transport Models to Capture Solute Retention

    Science.gov (United States)

    LU, B.; Zhang, Y.; Sun, H.; Green, C. T.; Wei, S.; Qian, J.

    2016-12-01

    Multiple time nonlocal transport models had long been used to capture solute retention in natural geologic media with intrinsic physical and chemical heterogeneity, but systematical comparison of these models was rather rare. This presentation reviewed four major time nonlocal transport models, which are the matrix diffusion (MD) model, the continuous time random walk (CTRW) framework, the multi-rate mass transfer (MRMT) model, and the time fractional advection-dispersion (fADE) model, by focusing on the physical description and parameter correlation The four models were then applied to quantify solute transport observed in laboratory sand columns to further evaluate their data needs and ability to represent real-world non-Fickian dispersion due to retention process.

  10. Electrochemical gate-controlled charge transport in graphene in ionic liquid and aqueous solution.

    Science.gov (United States)

    Chen, Fang; Qing, Quan; Xia, Jilin; Li, Jinghong; Tao, Nongjian

    2009-07-29

    We have studied the electron transport behavior of electrochemically gated graphene transistors in different solutions. In an ionic liquid, we have determined the electron and hole carrier densities and estimated the concentration of charged impurities to be (1-10) x 10(12) cm(-2). The minimum conductivity displays an exponential decrease with the density of charged impurities, which is attributed to the impurity scattering of the carriers. In aqueous solutions, the position of minimum conductivity shifts negatively as the ionic concentration increases. The dependence of the transport properties on ionic concentration is important for biosensor applications, and the observation is modeled in terms of screening for impurity charges by the ions in solutions.

  11. Modeling water flow and solute transport in unsaturated zone inside NSRAWD project

    International Nuclear Information System (INIS)

    Constantin, A.; Diaconu, D.; Bucur, C.; Genty, A.

    2015-01-01

    The NSRAWD project (2010-2013) - Numerical Simulations for Radioactive Waste Disposal was initiated under a collaboration agreement between the Institute for Nuclear Research and the French Alternative Energies and Atomic Energy Commission (CEA). The context of the project was favorable to combine the modeling activities with an experimental part in order to improve and validate the numerical models used so far to simulate water flow and solute transport at Saligny site, Romania. The numerical models developed in the project were refined and validated on new hydrological data gathered between 2010-2012 by a monitoring station existent on site which performs automatic determination of soil water content and matrix potential, as well as several climate parameters (wind, temperature and precipitations). Water flow and solute transport was modeled in transient conditions, by taking into consideration, as well as neglecting the evapotranspiration phenomenon, on the basis of a tracer test launched on site. The determination of dispersivities for solute transport was targeted from the solute plume. The paper presents the main results achieved in the NSRAWD project related to water flow and solute transport in the unsaturated area of the Saligny site. The results indicated satisfactory predictions for the simulation of water flow in the unsaturated area, in steady state and transient conditions. In the case of tracer transport modeling, dispersivity coefficients could not be finally well fitted for the data measured on site and in order to obtain a realistic preview over the values of these parameters, further investigations are recommended. The article is followed by the slides of the presentation

  12. Analytical solution and simplified analysis of coupled parent-daughter steady-state transport with multirate mass transfer

    Science.gov (United States)

    R. Haggerty

    2013-01-01

    In this technical note, a steady-state analytical solution of concentrations of a parent solute reacting to a daughter solute, both of which are undergoing transport and multirate mass transfer, is presented. Although the governing equations are complicated, the resulting solution can be expressed in simple terms. A function of the ratio of concentrations, In (daughter...

  13. Control and optimization of solute transport in a thin porous tube

    KAUST Repository

    Griffiths, I. M.

    2013-03-01

    Predicting the distribution of solutes or particles in flows within porous-walled tubes is essential to inform the design of devices that rely on cross-flow filtration, such as those used in water purification, irrigation devices, field-flow fractionation, and hollow-fibre bioreactors for tissue-engineering applications. Motivated by these applications, a radially averaged model for fluid and solute transport in a tube with thin porous walls is derived by developing the classical ideas of Taylor dispersion. The model includes solute diffusion and advection via both radial and axial flow components, and the advection, diffusion, and uptake coefficients in the averaged equation are explicitly derived. The effect of wall permeability, slip, and pressure differentials upon the dispersive solute behaviour are investigated. The model is used to explore the control of solute transport across the membrane walls via the membrane permeability, and a parametric expression for the permeability required to generate a given solute distribution is derived. The theory is applied to the specific example of a hollow-fibre membrane bioreactor, where a uniform delivery of nutrient across the membrane walls to the extra-capillary space is required to promote spatially uniform cell growth. © 2013 American Institute of Physics.

  14. Solute transport modelling in a coupled water and heat flow system applied to cold regions hydrogeology

    Science.gov (United States)

    Frampton, Andrew; Destouni, Georgia

    2016-04-01

    In cold regions, flow in the unsaturated zone is highly dynamic with seasonal variability and changes in temperature, moisture, and heat and water fluxes, all of which affect ground freeze-thaw processes and influence transport of inert and reactive waterborne substances. In arctic permafrost environments, near-surface groundwater flow is further restricted to a relatively shallow and seasonally variable active layer, confined by perennially frozen ground below. The active layer is typically partially saturated with ice, liquid water and air, and is strongly dependent on seasonal temperature fluctuations, thermal forcing and infiltration patterns. Here there is a need for improved understanding of the mechanisms controlling subsurface solute transport in the partially saturated active layer zone. Studying solute transport in cold regions is relevant to improve the understanding of how natural and anthropogenic pollution may change as activities in arctic and sub-arctic regions increase. It is also particularly relevant for understanding how dissolved carbon is transported in coupled surface and subsurface hydrological systems under climate change, in order to better understand the permafrost-hydrological-carbon climate feedback. In this contribution subsurface solute transport under surface warming and degrading permafrost conditions is studied using a physically based model of coupled cryotic and hydrogeological flow processes combined with a particle tracking method. Changes in subsurface water flows and solute transport travel times are analysed for different modelled geological configurations during a 100-year warming period. Results show that for all simulated cases, the minimum and mean travel times increase non-linearly with warming irrespective of geological configuration and heterogeneity structure. The travel time changes are shown to depend on combined warming effects of increase in pathway length due to deepening of the active layer, reduced transport

  15. Combined physical and chemical nonequilibrium transport model: analytical solution, moments, and application to colloids.

    Science.gov (United States)

    Leij, Feike J; Bradford, Scott A

    2009-11-20

    The transport of solutes and colloids in porous media is influenced by a variety of physical and chemical nonequilibrium processes. A combined physical-chemical nonequilibrium (PCNE) model was therefore used to describe general mass transport. The model partitions the pore space into "mobile" and "immobile" flow regions with first-order mass transfer between these two regions (i.e, "physical" nonequilibrium or PNE). Partitioning between the aqueous and solid phases can either proceed as an equilibrium or a first-order process (i.e, "chemical" nonequilibrium or CNE) for both the mobile and immobile regions. An analytical solution for the PCNE model is obtained using iterated Laplace transforms. This solution complements earlier semi-analytical and numerical approaches to model solute transport with the PCNE model. The impact of selected model parameters on solute breakthrough curves is illustrated. As is well known, nonequilibrium results in earlier solute breakthrough with increased tailing. The PCNE model allows greater flexibility to describe this trend; for example, a closer resemblance between solute input and effluent pulse. Expressions for moments and transfer functions are presented to facilitate the analytical use of the PCNE model. Contours of mean breakthrough time, variance, and spread of the colloid breakthrough curves as a function of PNE and CNE parameters demonstrate the utility of a model that accounts for both physical and chemical nonequilibrium processes. The model is applied to describe representative colloid breakthrough curves in Ottawa sands reported by Bradford et al. (2002). An equilibrium model provided a good description of breakthrough curves for the bromide tracer but could not adequately describe the colloid data. A considerably better description was provide by the simple CNE model but the best description, especially for the larger 3.2-microm colloids, was provided by the PCNE model.

  16. A comparison of solute-transport solution techniques and their effect on sensitivity analysis and inverse modeling results

    Science.gov (United States)

    Mehl, S.; Hill, M.C.

    2001-01-01

    Five common numerical techniques for solving the advection-dispersion equation (finite difference, predictor corrector, total variation diminishing, method of characteristics, and modified method of characteristics) were tested using simulations of a controlled conservative tracer-test experiment through a heterogeneous, two-dimensional sand tank. The experimental facility was constructed using discrete, randomly distributed, homogeneous blocks of five sand types. This experimental model provides an opportunity to compare the solution techniques: the heterogeneous hydraulic-conductivity distribution of known structure can be accurately represented by a numerical model, and detailed measurements can be compared with simulated concentrations and total flow through the tank. The present work uses this opportunity to investigate how three common types of results - simulated breakthrough curves, sensitivity analysis, and calibrated parameter values - change in this heterogeneous situation given the different methods of simulating solute transport. The breakthrough curves show that simulated peak concentrations, even at very fine grid spacings, varied between the techniques because of different amounts of numerical dispersion. Sensitivity-analysis results revealed: (1) a high correlation between hydraulic conductivity and porosity given the concentration and flow observations used, so that both could not be estimated; and (2) that the breakthrough curve data did not provide enough information to estimate individual values of dispersivity for the five sands. This study demonstrates that the choice of assigned dispersivity and the amount of numerical dispersion present in the solution technique influence estimated hydraulic conductivity values to a surprising degree.

  17. Numerical solution of the neutron transport equation using cellular neural networks

    International Nuclear Information System (INIS)

    Boroushaki, Mehrdad

    2009-01-01

    Various methods have been used for solving the neutron transport equation in the past, and a number of computer codes have been developed based on these solution methods. This paper describes a novel method for the solution of the steady-state and time-dependent neutron transport equation using the duality between neutronic parameters in the method of characteristic (MOC) and the electrical parameters in the cellular neural networks (CNN). The relevant electrical circuit can be simulated by professional electrical circuit simulator software, HSPICE. This software is used for numerical solution of the transport equation only by preparation of appropriate inputs. This method does not need inner and outer iterations, which is a necessary step in the other deterministic methods. One of the main applications of the proposed method may be the development of a new hardware by VLSI technology for online spatio-temporal calculations of the transport equation for nuclear reactor core. The accuracy and capability of this method are examined in a 2D steady-state problem for a BWR fuel assembly, and a 2D time-dependent TWIGL seed/blanket problem

  18. Interpretation and nonuniqueness of CTRW transition distributions: Insights from an alternative solute transport formulation

    Science.gov (United States)

    Hansen, Scott K.; Berkowitz, Brian

    2014-12-01

    The continuous time random walk (CTRW) has both an elegant mathematical theory and a successful record at modeling solute transport in the subsurface. However, there are some interpretation ambiguities relating to the relationship between the discrete CTRW transition distributions and the underlying continuous movement of solute that have not been addressed in existing literature. These include the exact definition of ;transition;, and the extent to which transition probability distributions are unique/quantifiable from data. Here, we present some theoretical results which address these uncertainties in systems with an advective bias. Simultaneously, we present an alternative, reduced parameter CTRW formulation for general advective transport in heterogeneous porous media, which models early- and late-time transport by use of random transition times between sparse, imaginary planes normal to flow. We show that even in the context of this reduced-parameter formulation there is nonuniqueness in the definitions of both transition lengths and waiting time distributions, and that neither may be uniquely determined from experimental data. For practical use of this formulation, we suggest Pareto transition time distributions, leading to a two-degree-of-freedom modeling approach. We then demonstrate the power of this approach in fitting two sets of existing experimental data. While the primary focus is the presentation of new results, the discussion is designed to be pedagogical and to provide a good entry point into practical modeling of solute transport with the CTRW.

  19. Continuous Crystallization of Proteins in a Tubular Plug-Flow Crystallizer.

    Science.gov (United States)

    Neugebauer, Peter; Khinast, Johannes G

    2015-03-04

    Protein crystals have many important applications in many fields, including pharmaceutics. Being more stable than other formulations, and having a high degree of purity and bioavailability, they are especially promising in the area of drug delivery. In this contribution, the development of a continuously operated tubular crystallizer for the production of protein crystals has been described. Using the model enzyme lysozyme, we successfully generated product particles ranging between 15 and 40 μm in size. At the reactor inlet, a protein solution was mixed with a crystallization agent solution to create high supersaturations required for nucleation. Along the tube, supersaturation was controlled using water baths that divided the crystallizer into a nucleation zone and a growth zone. Low flow rates minimized the effect of shear forces that may impede crystal growth. Simultaneously, a slug flow was implemented to ensure crystal transport through the reactor and to reduce the residence time distribution.

  20. Angiotensin II and Renal Tubular Ion Transport

    Directory of Open Access Journals (Sweden)

    Patricia Valles

    2005-01-01

    Evidence for the regulation of H+-ATPase activity in vivo and in vitro by trafficking/exocytosis has been provided. An additional level of H+-ATPase regulation via protein synthesis may be important as well. Recently, we have shown that both aldosterone and angiotensin II provide such a mechanism of regulation in vivo at the level of the medullary collecting tubule. Interestingly, in this part of the nephron, the effects of aldosterone and angiotensin II are not sodium dependent, whereas in the cortical collecting duct, both aldosterone and angiotensin II, by contrast, affect H+ secretion by sodium-dependent mechanisms.

  1. THE IMPORTANCE OF LIMIT SOLUTIONS & TEMPORAL AND SPATIAL SCALES IN THE TEACHING OF TRANSPORT PHENOMENA

    Directory of Open Access Journals (Sweden)

    SÁVIO LEANDRO BERTOLI

    2016-07-01

    Full Text Available In the engineering courses the field of Transport Phenomena is of significant importance and it is in several disciplines relating to Fluid Mechanics, Heat and Mass Transfer. In these disciplines, problems involving these phenomena are mathematically formulated and analytical solutions are obtained whenever possible. The aim of this paper is to emphasize the possibility of extending aspects of the teaching-learning in this area by a method based on time scales and limit solutions. Thus, aspects relative to the phenomenology naturally arise during the definition of the scales and / or by determining the limit solutions. Aspects concerning the phenomenology of the limit problems are easily incorporated into the proposed development, which contributes significantly to the understanding of physics inherent in the mathematical modeling of each limiting case studied. Finally the study aims to disseminate the use of the limit solutions and of the time scales in the general fields of engineering.

  2. Multiscale Roughness Influencing on Transport Behavior of Passive Solute through a Single Self-affine Fracture

    Science.gov (United States)

    Dou, Z.

    2017-12-01

    In this study, the influence of multi-scale roughness on transport behavior of the passive solute through the self-affine fracture was investigated. The single self-affine fracture was constructed by the successive random additions (SRA) and the fracture roughness was decomposed into two different scales (i.e. large-scale primary roughness and small-scale secondary roughness) by the Wavelet analysis technique. The fluid flow in fractures, which was characterized by the Forchheimer's law, showed the non-linear flow behaviors such as eddies and tortuous streamlines. The results indicated that the small-scale secondary roughness was primarily responsible for the non-linear flow behaviors. The direct simulations of asymptotic passive solute transport represented the Non-Fickian transport characteristics (i.e. early arrivals and long tails) in breakthrough curves (BTCs) and residence time distributions (RTDs) with and without consideration of the secondary roughness. Analysis of multiscale BTCs and RTDs showed that the small-scale secondary roughness played a significant role in enhancing the Non-Fickian transport characteristics. We found that removing small-scale secondary roughness led to the lengthening arrival and shortening tail. The peak concentration in BTCs decreased as the secondary roughness was removed, implying that the secondary could also enhance the solute dilution. The estimated BTCs by the Fickian advection-dispersion equation (ADE) yielded errors which decreased with the small-scale secondary roughness being removed. The mobile-immobile model (MIM) was alternatively implemented to characterize the Non-Fickian transport. We found that the MIM was more capable of estimating Non-Fickian BTCs. The small-scale secondary roughness resulted in the decreasing mobile domain fraction and the increasing mass exchange rate between immobile and mobile domains. The estimated parameters from the MIM could provide insight into the inherent mechanism of roughness

  3. Water and Solute Transport in Arid Vadose Zones: Innovations in Measurement and Analysis

    International Nuclear Information System (INIS)

    Tyler, S W.; Scanlon, Bridget R.; Gee, Glendon W.; Allison, G B.; Parlange, M. B.; Hopmans, J. W.

    1999-01-01

    Understanding the physics of flow and transport through the vadose zone has advanced significantly in the last three decades. These advances have been made primarily in humid regions or in irrigated agricultural settings. While some of the techniques are useful, many are not suited to arid regions. The fluxes of water and solutes typically found in arid regions are often orders of magnitude smaller than those found in agricultural settings, while the time scales for transport can be orders of magnitude larger. The depth over which transport must be characterized is also often much greater than in humid regions. Rather than relying on advances in applied tracers, arid-zone researchers have developed natural tracer techniques that are capable of quantifying transport over tens to thousands of years. Techniques have been developed to measure the hydraulic properties of sediments at all water contents, including the very dry range and at far greater depths. As arid and semiarid regions come under increased development pressures for such activities as hazardous- and radioactive-waste disposal, the development of techniques and the understanding of water and solute transport have become crucial components in defining the environmental impacts of activities at the landsurface

  4. Implementation of Solute Transport in the Vadose Zone into the `HYDRUS Package for MODFLOW'

    Science.gov (United States)

    Simunek, J.; Beegum, S.; Szymkiewicz, A.; Sudheer, K. P.

    2017-12-01

    The 'HYDRUS package for MODFLOW' was developed by Seo et al. (2007) and Twarakavi et al. (2008) to simultaneously evaluate transient water flow in both unsaturated and saturated zones. The package, which is based on the HYDRUS-1D model (Šimůnek et al., 2016) simulating unsaturated water flow in the vadose zone, was incorporated into MODFLOW (Harbaugh et al., 2000) simulating saturated groundwater flow. The HYDRUS package in the coupled model can be used to represent the effects of various unsaturated zone processes, including infiltration, evaporation, root water uptake, capillary rise, and recharge in homogeneous or layered soil profiles. The coupled model is effective in addressing spatially-variable saturated-unsaturated hydrological processes at the regional scale, allowing for complex layering in the unsaturated zone, spatially and temporarily variable water fluxes at the soil surface and in the root zone, and with alternating recharge and discharge fluxes (Twarakavi et al., 2008). One of the major limitations of the coupled model was that it could not be used to simulate at the same time solute transport. However, solute transport is highly dependent on water table fluctuations due to temporal and spatial variations in groundwater recharge. This is an important concern when the coupled model is used for analyzing groundwater contamination due to transport through the unsaturated zone. The objective of this study is to integrate the solute transport model (the solute transport part of HYDRUS-1D for the unsaturated zone and MT3DMS (Zheng and Wang, 1999; Zheng, 2009) for the saturated zone) into an existing coupled water flow model. The unsaturated zone component of the coupled model can consider solute transport involving many biogeochemical processes and reactions, including first-order degradation, volatilization, linear or nonlinear sorption, one-site kinetic sorption, two-site sorption, and two-kinetic sites sorption (Šimůnek and van Genuchten, 2008

  5. MODELING OF TUBULAR ELECTROCHEMICAL REACTOR FOR DYE REMOVAL

    Directory of Open Access Journals (Sweden)

    V. VIJAYAKUMAR

    2017-06-01

    Full Text Available The aim of the present investigation is to model a tubular electrochemical reactor for the treatment of synthetic dye wastewater. The tubular reactor was modeled and solved by finite difference method. For the model solution, the column was divided into 11 nodes in the axial direction and the variation in the radial direction has been neglected. An initial dye concentration of 200 mg L-1was taken in the reservoir. The reactor was operated in a batch with recirculation operation. Based on preliminary experiments all parameters have been optimized. The model simulation is compared with the experimental value and it is observed that the model fairly matches well with the experiment. The modeling of tubular electrochemical reactors for dye waste water treatment could be useful in the design and scale up of electrochemical process.

  6. Effects of "in vivo" administration of baclofen on rat renal tubular function.

    Science.gov (United States)

    Donato, Verónica; Pisani, Gerardo Bruno; Trumper, Laura; Monasterolo, Liliana Alicia

    2013-09-05

    The effects of the in vivo administration of baclofen on renal tubular transport and aquaporin-2 (AQP2) expression were evaluated. In conscious animals kept in metabolic cages, baclofen (0.01-1mg/kg, s.c.) induced a dose-dependent increment in the urine flow rate (UFR) and in sodium and potassium excretion, associated with an increased osmolal clearance (Closm), a diminished urine to plasma osmolality ratio (Uosm/Posm) and a decrease in AQP2 expression. The above mentioned baclofen effects on functional parameters were corroborated by using conventional renal clearance techniques. Additionally, this model allowed the detection of a diminution in glucose reabsorption. Some experiments were performed with water-deprived or desmopressin-treated rats kept in metabolic cages. Either water deprivation or desmopressin treatment decreased the UFR and increased the Uosm/Posm. Baclofen did not change the Uosm/Posm or AQP2 expression in desmopressin-treated rats; but it increased the UFR and diminished the Uosm/Posm and AQP2 expression in water-deprived animals. These results indicate that in vivo administration of baclofen promotes alterations in proximal tubular transport, since glucose reabsorption was decreased. The distal tubular function was also affected. The increased Closm indicates an alteration in solute reabsorption at the ascending limb of the Henle's loop. The decreased Uosm/Posm and AQP2 expression in controls and in water-deprived, but not in desmopressin-treated rats, lead us to speculate that some effect of baclofen on endogenous vasopressin availability could be responsible for the impaired urine concentrating ability, more than any disturbance in the responsiveness of the renal cells to the hormone. © 2013 Elsevier B.V. All rights reserved.

  7. Spatially distributed characterization of hyporheic solute transport during baseflow recession in a headwater mountain stream using electrical geophysical imaging

    Science.gov (United States)

    Adam S. Ward; Michael N. Gooseff; Michael Fitzgerald; Thomas J. Voltz; Kamini Singha

    2014-01-01

    The transport of solutes along hyporheic flowpaths is recognized as central to numerous biogeochemical cycles, yet our understanding of how this transport changes with baseflow recession, particularly in a spatially distributed manner, is limited. We conducted four steady-state solute tracer injections and collected electrical resistivity data to characterize hyporheic...

  8. The use of non-dimensional representation of the solute transport equations

    International Nuclear Information System (INIS)

    Laurens, J.-M.

    1988-07-01

    This report presents the results obtained in a pilot investigation into the use of non-dimensional representations of the solute transport equations, so as to improve the efficiency of the PRA codes used by the DoE and its contractors. A reduced set of parameters was obtained for a single layer transport model. As expected, the response was shown to be highly sensitive on the new parameters. A faster convergence of the system was observed when the sampling technique used was changed to take into account the properties of the new parameters, such that uniform coverage of the reduced parameter hyperspace was achieved. (author)

  9. Modeling particle-facilitated solute transport using the C-Ride module of HYDRUS

    Science.gov (United States)

    Simunek, Jiri; Bradford, Scott A.

    2017-04-01

    Strongly sorbing chemicals (e.g., heavy metals, radionuclides, pharmaceuticals, and/or explosives) in soils are associated predominantly with the solid phase, which is commonly assumed to be stationary. However, recent field- and laboratory-scale observations have shown that, in the presence of mobile colloidal particles (e.g., microbes, humic substances, clays and metal oxides), the colloids could act as pollutant carriers and thus provide a rapid transport pathway for strongly sorbing contaminants. Such transport can be further accelerated since these colloidal particles may travel through interconnected larger pores where the water velocity is relatively high. Additionally, colloidal particles have a considerable adsorption capacity for other species present in water because of their large specific surface areas and their high concentrations in soil-water and groundwater. As a result, the transport of contaminants can be significantly, sometimes dramatically, enhanced when they are adsorbed to mobile colloids. To address this problem, we have developed the C-Ride module for HYDRUS-1D. This one-dimensional numerical module is based on the HYDRUS-1D software package and incorporates mechanisms associated with colloid and colloid-facilitated solute transport in variably saturated porous media. This numerical model accounts for both colloid and solute movement due to convection, diffusion, and dispersion in variably-saturated soils, as well as for solute movement facilitated by colloid transport. The colloids transport module additionally considers processes of attachment/detachment to/from the solid phase, straining, and/or size exclusion. Various blocking and depth dependent functions can be used to modify the attachment and straining coefficients. The module additionally considers the effects of changes in the water content on colloid/bacteria transport and attachment/detachment to/from solid-water and air-water interfaces. For example, when the air

  10. Continuous time random walks for non-local radial solute transport

    Science.gov (United States)

    Dentz, Marco; Kang, Peter K.; Le Borgne, Tanguy

    2015-08-01

    This study formulates and analyzes continuous time random walk (CTRW) models in radial flow geometries for the quantification of non-local solute transport induced by heterogeneous flow distributions and by mobile-immobile mass transfer processes. To this end we derive a general CTRW framework in radial coordinates starting from the random walk equations for radial particle positions and times. The particle density, or solute concentration is governed by a non-local radial advection-dispersion equation (ADE). Unlike in CTRWs for uniform flow scenarios, particle transition times here depend on the radial particle position, which renders the CTRW non-stationary. As a consequence, the memory kernel characterizing the non-local ADE, is radially dependent. Based on this general formulation, we derive radial CTRW implementations that (i) emulate non-local radial transport due to heterogeneous advection, (ii) model multirate mass transfer (MRMT) between mobile and immobile continua, and (iii) quantify both heterogeneous advection in a mobile region and mass transfer between mobile and immobile regions. The expected solute breakthrough behavior is studied using numerical random walk particle tracking simulations. This behavior is analyzed by explicit analytical expressions for the asymptotic solute breakthrough curves. We observe clear power-law tails of the solute breakthrough for broad (power-law) distributions of particle transit times (heterogeneous advection) and particle trapping times (MRMT model). The combined model displays two distinct time regimes. An intermediate regime, in which the solute breakthrough is dominated by the particle transit times in the mobile zones, and a late time regime that is governed by the distribution of particle trapping times in immobile zones. These radial CTRW formulations allow for the identification of heterogeneous advection and mobile-immobile processes as drivers of anomalous transport, under conditions relevant for field tracer

  11. A multi scale approximation solution for the time dependent Boltzmann-transport equation

    International Nuclear Information System (INIS)

    Merk, B.

    2004-03-01

    The basis of all transient simulations for nuclear reactor cores is the reliable calculation of the power production. The local power distribution is generally calculated by solving the space, time, energy and angle dependent neutron transport equation known as Boltzmann equation. The computation of exact solutions of the Boltzmann equation is very time consuming. For practical numerical simulations approximated solutions are usually unavoidable. The objective of this work is development of an effective multi scale approximation solution for the Boltzmann equation. Most of the existing methods are based on separation of space and time. The new suggested method is performed without space-time separation. This effective approximation solution is developed on the basis of an expansion for the time derivative of different approximations to the Boltzmann equation. The method of multiple scale expansion is used for the expansion of the time derivative, because the problem of the stiff time behaviour can't be expressed by standard expansion methods. This multiple scale expansion is used in this work to develop approximation solutions for different approximations of the Boltzmann equation, starting from the expansion of the point kinetics equations. The resulting analytic functions are used for testing the applicability and accuracy of the multiple scale expansion method for an approximation solution with 2 delayed neutron groups. The results are tested versus the exact analytical results for the point kinetics equations. Very good agreement between both solutions is obtained. The validity of the solution with 2 delayed neutron groups to approximate the behaviour of the system with 6 delayed neutron groups is demonstrated in an additional analysis. A strategy for a solution with 4 delayed neutron groups is described. A multiple scale expansion is performed for the space-time dependent diffusion equation for one homogenized cell with 2 delayed neutron groups. The result is

  12. Constructing Soliton and Kink Solutions of PDE Models in Transport and Biology

    Directory of Open Access Journals (Sweden)

    Vsevolod A. Vladimirov

    2006-06-01

    Full Text Available We present a review of our recent works directed towards discovery of a periodic, kink-like and soliton-like travelling wave solutions within the models of transport phenomena and the mathematical biology. Analytical description of these wave patterns is carried out by means of our modification of the direct algebraic balance method. In the case when the analytical description fails, we propose to approximate invariant travelling wave solutions by means of an infinite series of exponential functions. The effectiveness of the method of approximation is demonstrated on a hyperbolic modification of Burgers equation.

  13. Note on the Solution of Transport Equation by Tau Method and Walsh Functions

    Directory of Open Access Journals (Sweden)

    Abdelouahab Kadem

    2010-01-01

    Full Text Available We consider the combined Walsh function for the three-dimensional case. A method for the solution of the neutron transport equation in three-dimensional case by using the Walsh function, Chebyshev polynomials, and the Legendre polynomials are considered. We also present Tau method, and it was proved that it is a good approximate to exact solutions. This method is based on expansion of the angular flux in a truncated series of Walsh function in the angular variable. The main characteristic of this technique is that it reduces the problems to those of solving a system of algebraic equations; thus, it is greatly simplifying the problem.

  14. Chain segmentation for the Monte Carlo solution of particle transport problems

    International Nuclear Information System (INIS)

    Ragheb, M.M.H.

    1984-01-01

    A Monte Carlo approach is proposed where the random walk chains generated in particle transport simulations are segmented. Forward and adjoint-mode estimators are then used in conjunction with the firstevent source density on the segmented chains to obtain multiple estimates of the individual terms of the Neumann series solution at each collision point. The solution is then constructed by summation of the series. The approach is compared to the exact analytical and to the Monte Carlo nonabsorption weighting method results for two representative slowing down and deep penetration problems. Application of the proposed approach leads to unbiased estimates for limited numbers of particle simulations and is useful in suppressing an effective bias problem observed in some cases of deep penetration particle transport problems

  15. Three-dimensional transport theory: An analytical solution of an internal beam searchlight problem-I

    International Nuclear Information System (INIS)

    Williams, M.M.R.

    2009-01-01

    We describe a number of methods for obtaining analytical solutions and numerical results for three-dimensional one-speed neutron transport problems in a half-space containing a variety of source shapes which emit neutrons mono-directionally. For example, we consider an off-centre point source, a ring source and a disk source, or any combination of these, and calculate the surface scalar flux as a function of the radial and angular co-ordinates. Fourier transforms in the transverse directions are used and a Laplace transform in the axial direction. This enables the Wiener-Hopf method to be employed, followed by an inverse Fourier-Hankel transform. Some additional transformations are introduced which enable the inverse Hankel transforms involving Bessel functions to be evaluated numerically more efficiently. A hybrid diffusion theory method is also described which is shown to be a useful guide to the general behaviour of the solutions of the transport equation.

  16. Solution of stochastic media transport problems using a numerical quadrature-based method

    International Nuclear Information System (INIS)

    Pautz, S. D.; Franke, B. C.; Prinja, A. K.; Olson, A. J.

    2013-01-01

    We present a new conceptual framework for analyzing transport problems in random media. We decompose such problems into stratified subproblems according to the number of material pseudo-interfaces within realizations. For a given subproblem we assign pseudo-interface locations in each realization according to product quadrature rules, which allows us to deterministically generate a fixed number of realizations. Quadrature integration of the solutions of these realizations thus approximately solves each subproblem; the weighted superposition of solutions of the subproblems approximately solves the general stochastic media transport problem. We revisit some benchmark problems to determine the accuracy and efficiency of this approach in comparison to randomly generated realizations. We find that this method is very accurate and fast when the number of pseudo-interfaces in a problem is generally low, but that these advantages quickly degrade as the number of pseudo-interfaces increases. (authors)

  17. Compilation of field-scale caisson data on solute transport in the unsaturated zone

    International Nuclear Information System (INIS)

    Polzer, W.L.; Essington, E.H.; Fuentes, H.R.; Nyhan, J.W.

    1986-11-01

    Los Alamos National Laboratory has conducted technical support studies to assess siting requirements mandated by Nuclear Regulatory Commission in 10 CFR Part 61. Field-scale transport studies were conducted under unsaturated moisture conditions and under steady and unsteady flow conditions in large caissons located and operated in a natural (field) environment. Moisture content, temperature, flow rate, base-line chemical, tracer influent, and tracer breakthrough data collected during tracer migration studies in the caisson are compiled in tables and graphs. Data suggest that the imposition of a period of drainage (influent solution flow was stopped) may cause an increase in tracer concentration in the soil solution at various sampling points in the caisson. Evaporation during drainage and diffusion of the tracers from immobile to mobile water are two phenomena that could explain the increase. Data also suggest that heterogeneity of sorption sites may increase the variability in transport of sorbing tracers compared with nonsorbing tracers

  18. Presentation of some methods for the solution of the monoenergetic neutrons transport equation

    International Nuclear Information System (INIS)

    Valle G, E. del.

    1978-01-01

    The neutrons transport theory problems whose solution has been reached were collected in order to show that the transport equation is so complicated that different techniques were developed so as to give approximative numerical solutions to problems concerning the practical application. Such a technique, which had not been investigated in the literature dealing with these problems, is described here. The results which were obtained through this technique in undimensional problems of criticity are satisfactory and speaking in a conceptual way this method is extremely simple because it times. There is no limitation to deal with problems related neutrons sources with an arbitrary distribution and in principle the application of this technique can be extended to unhomogeneous environments. (author)

  19. Pore-scale analysis on the effects of compound-specific dilution on transient transport and solute breakthrough

    DEFF Research Database (Denmark)

    Rolle, Massimo; Kitanidis, Peter

    , a transient flux-related dilution index that allows quantifying the evolution of solute dilution at a given position along the main flow direction. For the different solute transport scenarios we obtained dilution breakthrough curves that complement and add important information to traditional solute......Compound-specific diffusivities significantly impact solute transport and mixing at different scales. Although diffusive processes occur at the small pore scale, their effects propagate and remain important at larger macroscopic scales [1]. In this pore-scale modeling study in saturated porous...... media we show that compound-specific effects are important not only at steady-state and for the lateral displacement of solutes with different diffusivities but also for transient transport and solute breakthrough [2]. We performed flow and transport simulations in two-dimensional pore-scale domains...

  20. Solute transport in shale and shale-derived soils at the Shale Hills CZO

    Science.gov (United States)

    Kuntz, B. W.; Singha, K.

    2009-12-01

    Interpreting the operation of parameters controlling solute transport is challenging in shales and shale-derived soils because of complex chemical and physical heterogeneity. Quantifying solute transport processes in the weathered shale and soils of the Shale Hills Critical Zone Observatory (SH-CZO) is important in interpreting the residence times of ions in the groundwater system, and consequently weathering rates and age of groundwater. In three 10-cm diameter undisturbed soil columns from the SH-CZO (spanning the intervals from 0-15, 20-35, and 40-50 cm) as well as consolidated shale cores, we are evaluating physical heterogeneity, as well as solute transport parameters such as (1) mobile/immobile porosity, (2) mass-transfer rate between domains, and (3) the behavior of exchangeable ions within the system as material properties shift from soil to consolidated rock. Soil samples change with respect to color and biogenic fabric or structure with depth, and the frequency of shale bedrock fragments within in the soil increases with depth. Constant flow experiments in the soil provide a hydraulic conductivity of 10-6 m/s at 0-15 cm depth. Field-scale hydraulic conductivities from slug and pumping tests of the fractured shale at depth are approximately the same: 10-5 to 10-6 m/s. A hydraulic test in a triaxial compression chamber places the hydraulic conductivity of the shale matrix, however, at less than 10-15 m/s, indicating that fractures control permeable pathways within the shale bedrock. Taken collectively, such observations indicate high physical heterogeneity within the subsurface material that could be controlling flow and transport behavior. Concentration histories from a conservative sodium bromide tracer test carried out on the uppermost soil column exhibit long tailing behavior, indicative of non-equilibrium transport. Numerical modeling with Comsol indicates that a mobile porosity of 0.3 and an immobile porosity of 0.35 coupled by a mass-transfer rate of

  1. Study of reactive solutes transport and PAH migration in unsaturated soils

    International Nuclear Information System (INIS)

    Gujisaite, V.; Simonnot, M.O.; Gujisaite, V.; Morel, J.L.; Ouvrard, S.; Simonnot, M.O.; Gaudet, J.P.

    2005-01-01

    Experimental studies about solute transport in soil have most of the time been conducted under saturated conditions, whereas studies with unsaturated media are usually limited to hydrodynamic analysis. Those are mainly concerning the prediction of water flow, which is the main vector for the transport of contaminants in soil. Only a few studies have made the link between unsaturated flow and physical, chemical and biological interactions, which are controlling the availability of pollutants. However, the presence of a gaseous phase in soil can modify not only the movement of soil solution, but also chemical interactions and exchanges between soil aggregates and solution. Study of reactive solute transport in the vadose zone seems thus to be a necessary stage to predict contaminant fate in natural soils, for risk assessment as well as for the design of effective processes for the remediation of contaminated soils. This question is the main objective of the present work developed in the frame of our French Scientific Interest Group Industrial Wastelands called 'GISFI' (www.gisfi.prd.fr), based around a scientific and technological project dedicated to acquisition of knowledge for sustainable requalification of degraded sites polluted by past industrial activities. We will focus here on Polycyclic Aromatic Hydrocarbons (PAH), which are among the most widely discussed environmental contaminants because of their toxicity for human health and ecosystems. They are present in large quantities in soils polluted by former industrial activities, especially in relation to the coal extraction, exploitation and treatment. An experimental system has been specifically designed at the laboratory scale to carry out experiments under controlled conditions, with an unsaturated steady-state flow. The first experiments are performed on model soils, in order to investigate unsaturated steady-state flow in relation to interactions mechanisms. We have thus chosen to use a sandy

  2. Hydro-dynamic Solute Transport under Two-Phase Flow Conditions.

    Science.gov (United States)

    Karadimitriou, Nikolaos K; Joekar-Niasar, Vahid; Brizuela, Omar Godinez

    2017-07-26

    There are abundant examples of natural, engineering and industrial applications, in which "solute transport" and "mixing" in porous media occur under multiphase flow conditions. Current state-of-the-art understanding and modelling of such processes are established based on flawed and non-representative models. Moreover, there is no direct experimental result to show the true hydrodynamics of transport and mixing under multiphase flow conditions while the saturation topology is being kept constant for a number of flow rates. With the use of a custom-made microscope, and under well-controlled flow boundary conditions, we visualized directly the transport of a tracer in a Reservoir-on-Chip (RoC) micromodel filled with two immiscible fluids. This study provides novel insights into the saturation-dependency of transport and mixing in porous media. To our knowledge, this is the first reported pore-scale experiment in which the saturation topology, relative permeability, and tortuosity were kept constant and transport was studied under different dynamic conditions in a wide range of saturation. The critical role of two-phase hydrodynamic properties on non-Fickian transport and saturation-dependency of dispersion are discussed, which highlight the major flaws in parametrization of existing models.

  3. Magnetic Modulation of the Transport of Organophilic Solutes through Supported Magnetic Ionic Liquid Membranes.

    Czech Academy of Sciences Publication Activity Database

    Daniel, C.L.; Rubio, A.M.; Sebastião, P.J.; Afonso, C.A.M.; Storch, Jan; Izák, Pavel; Portugal, C.A.M.; Crespo, J.G.

    2016-01-01

    Roč. 505, MAY 1 (2016), s. 36-43 ISSN 0376-7388 R&D Projects: GA ČR(CZ) GAP106/12/0569 Grant - others:ERANET(PT) ERA-CHEM/0001/2008; EUI(ES) 2008- 03857; FCT-MCTES(PT) SFRH/BD/81552/2011 Institutional support: RVO:67985858 Keywords : magnetic ionic liquids (MILs) * solute transport modulation * magnetic field Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 6.035, year: 2016

  4. Evaluation of bacteria-facilitated cadmium transport in gravel columns using the HYDRUS colloid-facilitated solute transport model

    Science.gov (United States)

    Pang, Liping; Å Imå¯Nek, Jirka

    2006-12-01

    The colloid-facilitated solute transport model, based on HYDRUS-1D, was evaluated using the column experimental data of Pang et al. (2005) for cadmium (Cd) transport facilitated by B. subtilis spores or E. coli in saturated coarse alluvial gravels. We simulated Cd transport involving convection, dispersion, kinetic adsorption/desorption to/from the aquifer media and to/from mobile/immobile bacteria, and kinetic attachment/detachment of the bacteria to/from the aquifer media. To reduce the number of parameters to be optimized, we independently estimated Cd sorption/desorption rates to mobile bacteria from a batch study. The model described the collected experimental data reasonably well. Extensive sensitivity analysis to various reaction parameters was carried out to obtain an understanding of the relative importance of individual model parameters on model predictions. Our modeling results suggest that the rates of Cd sorption or desorption differ not only between different bacterial species but also between unattached and deposited bacteria. The results of the sensitivity analysis indicated that the Cd sorption rate to unattached bacteria had a significantly greater impact on the model results than its sorption rate to deposited bacteria. For the experimental system investigated here, model results were most sensitive to parameters describing interactions between Cd-aquifer media, bacteria-aquifer media, and Cd-mobile bacteria, and they were less sensitive to interactions between Cd-immobile bacteria and desorption rate from mobile bacteria.

  5. Dual-permeability model for water flow and solute transport in shrinking soils

    Science.gov (United States)

    Coppola, Antonio; Gerke, Horst; Comegna, Alessandro; Basile, Angelo

    2014-05-01

    A dual-permeability approach was extended to describe preferential water flow and solute transport in shrinking soils. In the approach, the soil is treated as a dual-permeability bulk porous medium consisting of dynamic interacting matrix and fractures pore domains. Water flow and solute transport in both the domains are described by the Richards' equation and advection-dispersion equation, respectively. In the model the contributions of the two regions to water flow and solute transport is changed dynamically according to the shrinkage characteristic exhibited under soil drying. Aggregate deformation during wetting/drying cycles is assumed to change only the relative proportions of voids in the fractures and in the aggregates, while the total volume of pores (and thus the layer thickness) remains unchanged. Thus, the partial contributions of the fracture and aggregate domains, are now a function of the water content (or the pressure head h), while their sum, the bulk porosity, is assumed to be constant. Any change in the aggregate contribution to total porosity is directly converted into a proportional change in the fracture porosity. This means that bulk volume change during shrinkage is mainly determined by change in crack volume rather than by change in layer thickness. This simplified approach allows dealing with an expansive soil as with a macroscopically rigid soil. The model was already tested by investigating whether and how well hydraulic characteristics obtained under the assumption of "dynamic" dual-permeability hydraulic parameterizations, or, alternatively, assuming the rigidity of the porous medium, reproduced measured soil water contents in a shrinking soil. Here we will discuss theoretical implications of the model in terms of relative importance of the parameters involved. The relative importance will be evaluated for different flow and transport processes and for different initial and top boundary conditions. Key words: Preferential flow and

  6. Transport of titanium dioxide nanoparticles in saturated porous media under various solution chemistry conditions

    International Nuclear Information System (INIS)

    Wang Yu; Gao Bin; Morales, Verónica L.; Tian Yuan; Wu Lei; Gao Jie; Bai Wei; Yang Liuyan

    2012-01-01

    Because of its wide applications, nanosized titanium dioxide may become a potential environmental risk to soil and groundwater system. It is therefore important to improve current understanding of the environmental fate and transport of titanium oxides nanoparticles (TONPs). In this work, the effect of solution chemistry (i.e., pH, ionic strength, and natural organic matter (NOM) concentration) on the deposition and transport of TONPs in saturated porous media was examined in detail. Laboratory columns packed with acid-cleaned quartz sand were used in the experiment as porous media. Transport experiments were conducted with various chemistry combinations, including four ionic strengths, three pH levels, and two NOM concentrations. The results showed that TONP mobility increased with increasing solution pH, but decreased with increasing solution ionic strength. It is also found that the presence of NOM in the system enhanced the mobility of TONPs in the saturated porous media. The Derjaguin–Landau–Verwey–Overbeek (DLVO) theory was used to justify the mobility trends observed in the experimental data. Predictions from the theory agreed excellently with the experimental data.

  7. Regional flow and solute transport modeling for site suitability. Part I

    International Nuclear Information System (INIS)

    Rowe, J.; Miller, I.

    1979-12-01

    The nature of regional flow systems in large sedimentary basins will largely determine the effectiveness of regional flow as a barrier to radionuclide escape from deep geologic repositories. The purpose of the work reported herein and the proposed future work is to develop a methodology for evaluating regional flow barriers by using numerical models. The Williston Basin was chosen as an archetype case for the regional modeling study. However, due to the simplified nature of the study, the results are not meant to represent the behavior of a repository actually placed within the Williston Basin. The major components of this Phase I study are: (1) assembly and reduction of available data; (2) formulation of a simplified geohydrologic model; (3) computer simulation of fluid flow; and (4) computer simulation of solute transport. As of this report, the first two items are essentially completed. Computer simulation of fluid flow will require some revision and further study, which will be done in the second phase of this study. Computer simulation of solute transport has been considered only on a very preliminary basis. Important conclusions of this Phase I study are as follows. Assembly and reduction of data require an extensive work effort. Generally, the parameters describing fluid flow are poorly known on a regional basis and those describing solute transport are unknown

  8. Solutes transport in unsaturated double-porosity medium. Modelling by homogenization and applications

    International Nuclear Information System (INIS)

    Tran Ngoc, T.D.

    2008-07-01

    This Ph.D thesis presents the development of the solute transport models in unsaturated double-porosity medium, by using the asymptotic homogenization method. The obtained macroscopic models concern diffusion, diffusion-convection and dispersion-convection, according to the transport regime which is characterized by the non-dimensional numbers. The models consist of two coupled equations that show the local non-equilibrium of concentrations. The double-porosity transport models were numerically implemented using the code COMSOL Multiphysics (finite elements method), and compared with the solution of the same problem at the fine scale. The implementation allows solving the coupled equations in the macro- and micro-porosity domains (two-scale computations). The calculations of the dispersion tensor as a solution of the local boundary value problems, were also conducted. It was shown that the dispersivity depends on the saturation, the physical properties of the macro-porosity domain and the internal structure of the double-porosity medium. Finally, two series of experiments were performed on a physical model of double-porosity that is composed of a periodic assemblage of sintered clay spheres in Hostun sand HN38. The first experiment was a drainage experiment, which was conducted in order to validate the unsaturated flow model. The second series was a dispersion experiment in permanent unsaturated water flow condition (water content measured by gamma ray attenuation technique). A good agreement between the numerical simulations and the experimental observations allows the validation of the developed models. (author)

  9. Upscaling solute transport in naturally fractured porous media with the continuous time random walk method

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, S.; Cortis, A.; Birkholzer, J.T.

    2010-04-01

    Solute transport in fractured porous media is typically 'non-Fickian'; that is, it is characterized by early breakthrough and long tailing and by nonlinear growth of the Green function-centered second moment. This behavior is due to the effects of (1) multirate diffusion occurring between the highly permeable fracture network and the low-permeability rock matrix, (2) a wide range of advection rates in the fractures and, possibly, the matrix as well, and (3) a range of path lengths. As a consequence, prediction of solute transport processes at the macroscale represents a formidable challenge. Classical dual-porosity (or mobile-immobile) approaches in conjunction with an advection-dispersion equation and macroscopic dispersivity commonly fail to predict breakthrough of fractured porous media accurately. It was recently demonstrated that the continuous time random walk (CTRW) method can be used as a generalized upscaling approach. Here we extend this work and use results from high-resolution finite element-finite volume-based simulations of solute transport in an outcrop analogue of a naturally fractured reservoir to calibrate the CTRW method by extracting a distribution of retention times. This procedure allows us to predict breakthrough at other model locations accurately and to gain significant insight into the nature of the fracture-matrix interaction in naturally fractured porous reservoirs with geologically realistic fracture geometries.

  10. Solution and study of nodal neutron transport equation applying the LTSN-DiagExp method

    International Nuclear Information System (INIS)

    Hauser, Eliete Biasotto; Pazos, Ruben Panta; Vilhena, Marco Tullio de; Barros, Ricardo Carvalho de

    2003-01-01

    In this paper we report advances about the three-dimensional nodal discrete-ordinates approximations of neutron transport equation for Cartesian geometry. We use the combined collocation method of the angular variables and nodal approach for the spatial variables. By nodal approach we mean the iterated transverse integration of the S N equations. This procedure leads to the set of one-dimensional averages angular fluxes in each spatial variable. The resulting system of equations is solved with the LTS N method, first applying the Laplace transform to the set of the nodal S N equations and then obtained the solution by symbolic computation. We include the LTS N method by diagonalization to solve the nodal neutron transport equation and then we outline the convergence of these nodal-LTS N approximations with the help of a norm associated to the quadrature formula used to approximate the integral term of the neutron transport equation. (author)

  11. Modeling reactive transport in non-ideal aqueous-solid solution system

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Haibing, E-mail: haibing.shao@ufz.de [UFZ-Helmholtz Centre for Environmental Research, Department Environmental Informatics, Permoserstrasse 15, 04318 Leipzig (Germany)] [Applied Environmental System Analysis, TU Dresden, Helmholtzstrasse 10, 01069 Dresden (Germany); Dmytrieva, Svitlana V. [SSC Technocentre, Nauky Prosp. 46, 03650 Kyiv (Ukraine)] [Laboratory for Waste Management, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Kolditz, Olaf [UFZ-Helmholtz Centre for Environmental Research, Department Environmental Informatics, Permoserstrasse 15, 04318 Leipzig (Germany)] [Applied Environmental System Analysis, TU Dresden, Helmholtzstrasse 10, 01069 Dresden (Germany); Kulik, Dmitrii A.; Pfingsten, Wilfried; Kosakowski, Georg [Laboratory for Waste Management, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland)

    2009-07-15

    The numerical simulation of reactive mass transport processes in complex geochemical environments is an important tool for the performance assessment of future waste repositories. A new combination of the multi-component mass transport code GeoSys/RockFlow and the Gibbs Energy Minimization (GEM) equilibrium solver GEM-Selektor is used to calculate the accurate equilibrium of multiple non-ideal solid solutions which are important for the immobilization of radionuclides such as Ra. The coupled code is verified by a widely used benchmark of dissolution-precipitation in a calcite-dolomite system. A more complex application shown in this paper is the transport of Ra in the near-field of a nuclear waste repository. Depending on the initial inventories of Sr, Ba and sulfate, non-ideal sulfate and carbonate solid solutions can fix mobile Ra cations. Due to the complex geochemical interactions, the reactive transport simulations can describe the migration of Ra in a much more realistic way than using the traditional linear K{sub D} approach only.

  12. Finite element simulation of moisture movement and solute transport in a large caisson

    International Nuclear Information System (INIS)

    Huyakorn, P.S.; Jones, B.G.; Parker, J.C.; Wadsworth, T.D.; White, H.O. Jr.

    1987-01-01

    The results of the solute transport experiments performed on compacted, crushed Bandelier Tuff in caisson B of the experimental cluster described by DePoorter (1981) are simulated. Both one- and three-dimensional simulations of solute transport have been performed using two selected finite element codes. Results of bromide and iodide tracer experiments conducted during near-steady flow conditions have been analyzed for pulse additions made on December 6, 1984, and followed over a period of up to 60 days. In addition, a pulse addition of nonconservative strontium tracer on September 28, 1984, during questionably steady flow conditions has been analyzed over a period of 240 days. One-dimensional finite element flow and transport simulations were carried out assuming the porous medium to be homogeneous and the injection source uniformly distributed. To evaluate effects of the nonuniform source distribution and also to investigate effects of inhomogeneous porous medium properties, three dimensional finite element analyses of transport were carried out. Implications of the three-dimensional effects for the design and analysis of future tracer studies are discussed

  13. Analytic solutions for colloid transport with time- and depth-dependent retention in porous media.

    Science.gov (United States)

    Leij, Feike J; Bradford, Scott A; Sciortino, Antonella

    2016-12-01

    Elucidating and quantifying the transport of industrial nanoparticles (e.g. silver, carbon nanotubes, and graphene oxide) and other colloid-size particles such as viruses and bacteria is important to safeguard and manage the quality of the subsurface environment. Analytic solutions were derived for aqueous and solid phase colloid concentrations in a porous medium where colloids were subject to advective transport and reversible time and/or depth-dependent retention. Time-dependent blocking and ripening retention were described using a Langmuir-type equation with a rate coefficient that respectively decreased and increased linearly with the retained concentration. Depth-dependent retention was described using a rate coefficient that is a power-law function of distance. The stream tube modeling concept was employed to extend these analytic solutions to transport scenarios with two different partitioning processes (i.e., two types of retention sites). The sensitivity of concentrations was illustrated for the various time- and/or depth-dependent retention model parameters. The developed analytical models were subsequently used to describe breakthrough curves and, in some cases, retention profiles from several published column studies that employed nanoparticle or pathogenic microorganisms. Simulations results provided valuable insights on causes for many observed complexities associated with colloid transport and retention, including: increasing or decreasing effluent concentrations with continued colloid application, delayed breakthrough, low concentration tailing, and retention profiles that are hyper-exponential, exponential, linear, or non-monotonic with distance. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Analytic solutions for colloid transport with time- and depth-dependent retention in porous media

    Science.gov (United States)

    Leij, Feike J.; Bradford, Scott A.; Sciortino, Antonella

    2016-12-01

    Elucidating and quantifying the transport of industrial nanoparticles (e.g. silver, carbon nanotubes, and graphene oxide) and other colloid-size particles such as viruses and bacteria is important to safeguard and manage the quality of the subsurface environment. Analytic solutions were derived for aqueous and solid phase colloid concentrations in a porous medium where colloids were subject to advective transport and reversible time and/or depth-dependent retention. Time-dependent blocking and ripening retention were described using a Langmuir-type equation with a rate coefficient that respectively decreased and increased linearly with the retained concentration. Depth-dependent retention was described using a rate coefficient that is a power-law function of distance. The stream tube modeling concept was employed to extend these analytic solutions to transport scenarios with two different partitioning processes (i.e., two types of retention sites). The sensitivity of concentrations was illustrated for the various time- and/or depth-dependent retention model parameters. The developed analytical models were subsequently used to describe breakthrough curves and, in some cases, retention profiles from several published column studies that employed nanoparticle or pathogenic microorganisms. Simulations results provided valuable insights on causes for many observed complexities associated with colloid transport and retention, including: increasing or decreasing effluent concentrations with continued colloid application, delayed breakthrough, low concentration tailing, and retention profiles that are hyper-exponential, exponential, linear, or non-monotonic with distance.

  15. Impact of biomolecule solute size on the transport and performance characteristics of analytical porous polymer monoliths.

    Science.gov (United States)

    Nischang, Ivo

    2014-08-08

    Porous monolithic poly(styrene-co-divinylbenzene) stationary phases in 4.6mm ID analytical format have been investigated with respect to their transport properties probed by solutes of biological origin varying vastly in size. Elucidation of several properties of these benchmark and robust materials gave complementary insight. These are: (i) the porous polymers' apparent dry-state microscopic appearance, (ii) the columns porosity probed by the biomolecules and modulated by mobile phase solvent composition, (iii) the impact of probe solute size on apparent retention at varying mobile phase solvent compositions, and (iv) the elution performance under both nonretained and retained elution conditions. By varying the volume percentage of acetonitrile in the mobile phase, it is demonstrated that the monolithic scaffold shows a variable porosity experienced in particular by the larger sized solutes, while the smaller solutes are gradually less affected. The nanoscale swelling and solvation of porous monolithic adsorbents resulting in gel porosity varied with mobile phase solvent composition was, therefore, indicated. The plate height curves for the solutes under nonretained conditions show a moderate increase at increased flow velocity while approaching plateau values. These plateau values were in conjunction with a trend of a decreased performance at an increased molecular weight of the solute. The systematic shape of the plate height curves at increased flow velocity indicates pre-asymptotic dispersion. This is because the column bed aspect ratio of length-to-diameter is equal or smaller than 10. Imposing retention on the solutes at a constant flow velocity deteriorates isocratic elution performance, more pronouncedly for the larger sized solutes at even weak retention. This is explained with slow pore fluid-gel interface diffusion. Additionally, the apparent retention factor for elution of the probe solutes becomes a function of flow rate, consequently a function of

  16. Representing solute transport through the multi-barrier disposal system by simplified concepts

    Energy Technology Data Exchange (ETDEWEB)

    Poteri, A.; Nordman, H.; Pulkkanen, V-M. [VTT Technical Research Centre of Finland, Espoo (Finland); Kekaelaeinen, P. [Jyvaeskylae Univ. (Finland). Dept. pf Physics; Hautojaervi, A.

    2012-02-15

    The repository system chosen in Finland for spent nuclear fuel is composed of multiple successive transport barriers. If a waste canister is leaking, this multi-barrier system retards and limits the release rates of radionuclides into the biosphere. Analysis of radionuclide migration in the previous performance assessments has largely been based on numerical modelling of the repository system. The simplified analytical approach introduced here provides a tool to analyse the performance of the whole system using simplified representations of the individual transport barriers. This approach is based on the main characteristics of the individual barriers and on the generic nature of the coupling between successive barriers. In the case of underground repository the mass transfer between successive transport barriers is strongly restricted by the interfaces between barriers leading to well-mixed conditions in these barriers. The approach here simplifies the barrier system so that it can be described with a very simple compartment model, where each barrier is represented by a single, or in the case of buffer, by not more than two compartments. This system of compartments could be solved in analogy with a radioactive decay chain. The model of well mixed compartments lends itself to a very descriptive way to represent and analyse the barrier system because the relative efficiency of the different barriers in hindering transport of solutes can be parameterised by the solutes half-times in the corresponding compartments. In a real repository system there will also be a delay between the start of the inflow and the start of the outflow from the barrier. This delay can be important for the release rates of the short lived and sorbing radionuclides, and it was also included in the simplified representation of the barrier system. In a geological multi-barrier system, spreading of the outflowing release pulse is often governed by the typical behaviour of one transport barrier

  17. A lattice Boltzmann model for solute transport in open channel flow

    Science.gov (United States)

    Wang, Hongda; Cater, John; Liu, Haifei; Ding, Xiangyi; Huang, Wei

    2018-01-01

    A lattice Boltzmann model of advection-dispersion problems in one-dimensional (1D) open channel flows is developed for simulation of solute transport and pollutant concentration. The hydrodynamics are calculated based on a previous lattice Boltzmann approach to solving the 1D Saint-Venant equations (LABSVE). The advection-dispersion model is coupled with the LABSVE using the lattice Boltzmann method. Our research recovers the advection-dispersion equations through the Chapman-Enskog expansion of the lattice Boltzmann equation. The model differs from the existing schemes in two points: (1) the lattice Boltzmann numerical method is adopted to solve the advection-dispersion problem by meso-scopic particle distribution; (2) and the model describes the relation between discharge, cross section area and solute concentration, which increases the applicability of the water quality model in practical engineering. The model is verified using three benchmark tests: (1) instantaneous solute transport within a short distance; (2) 1D point source pollution with constant velocity; (3) 1D point source pollution in a dam break flow. The model is then applied to a 50-year flood point source pollution accident on the Yongding River, which showed good agreement with a MIKE 11 solution and gauging data.

  18. Thermal transport properties of halide solid solutions: Experiments vs equilibrium molecular dynamics.

    Science.gov (United States)

    Gheribi, Aïmen E; Salanne, Mathieu; Chartrand, Patrice

    2015-03-28

    The composition dependence of thermal transport properties of the (Na,K)Cl rocksalt solid solution is investigated through equilibrium molecular dynamics (EMD) simulations in the entire range of composition and the results are compared with experiments published in recent work [Gheribi et al., J. Chem. phys. 141, 104508 (2014)]. The thermal diffusivity of the (Na,K)Cl solid solution has been measured from 473 K to 823 K using the laser flash technique, and the thermal conductivity was deduced from critically assessed data of heat capacity and density. The thermal conductivity was also predicted at 900 K in the entire range of composition by a series of EMD simulations in both NPT and NVT statistical ensembles using the Green-Kubo theory. The aim of the present paper is to provide an objective analysis of the capability of EMD simulations in predicting the composition dependence of the thermal transport properties of halide solid solutions. According to the Klemens-Callaway [P. G. Klemens, Phys. Rev. 119, 507 (1960) and J. Callaway and H. C. von Bayer, Phys. Rev. 120, 1149 (1960)] theory, the thermal conductivity degradation of the solid solution is explained by mass and strain field fluctuations upon the phonon scattering cross section. A rigorous analysis of the consistency between the theoretical approach and the EMD simulations is discussed in detail.

  19. Analytical solution of neutron transport equation in an annular reactor with a rotating pulsed source

    International Nuclear Information System (INIS)

    Teixeira, Paulo Cleber Mendonca

    2002-12-01

    In this study, an analytical solution of the neutron transport equation in an annular reactor is presented with a short and rotating neutron source of the type S(x) δ (x- Vt), where V is the speed of annular pulsed reactor. The study is an extension of a previous study by Williams [12] carried out with a pulsed source of the type S(x) δ (t). In the new concept of annular pulsed reactor designed to produce continuous high flux, the core consists of a subcritical annular geometry pulsed by a rotating modulator, producing local super prompt critical condition, thereby giving origin to a rotating neutron pulse. An analytical solution is obtained by opening up of the annular geometry and applying one energy group transport theory in one dimension using applied mathematical techniques of Laplace transform and Complex Variables. The general solution for the flux consists of a fundamental mode, a finite number of harmonics and a transient integral. A condition which limits the number of harmonics depending upon the circumference of the annular geometry has been obtained. Inverse Laplace transform technique is used to analyse instability condition in annular reactor core. A regenerator parameter in conjunction with perimeter of the ring and nuclear properties is used to obtain stable and unstable harmonics and to verify if these exist. It is found that the solution does not present instability in the conditions stated in the new concept of annular pulsed reactor. (author)

  20. Benchmarking the invariant embedding method against analytical solutions in model transport problems

    International Nuclear Information System (INIS)

    Malin, Wahlberg; Imre, Pazsit

    2005-01-01

    The purpose of this paper is to demonstrate the use of the invariant embedding method in a series of model transport problems, for which it is also possible to obtain an analytical solution. Due to the non-linear character of the embedding equations, their solution can only be obtained numerically. However, this can be done via a robust and effective iteration scheme. In return, the domain of applicability is far wider than the model problems investigated in this paper. The use of the invariant embedding method is demonstrated in three different areas. The first is the calculation of the energy spectrum of reflected (sputtered) particles from a multiplying medium, where the multiplication arises from recoil production. Both constant and energy dependent cross sections with a power law dependence were used in the calculations. The second application concerns the calculation of the path length distribution of reflected particles from a medium without multiplication. This is a relatively novel and unexpected application, since the embedding equations do not resolve the depth variable. The third application concerns the demonstration that solutions in an infinite medium and a half-space are interrelated through embedding-like integral equations, by the solution of which the reflected flux from a half-space can be reconstructed from solutions in an infinite medium or vice versa. In all cases the invariant embedding method proved to be robust, fast and monotonically converging to the exact solutions. (authors)

  1. On the spectral analysis of iterative solutions of the discretized one-group transport equation

    International Nuclear Information System (INIS)

    Sanchez, Richard

    2004-01-01

    We analyze the Fourier-mode technique used for the spectral analysis of iterative solutions of the one-group discretized transport equation. We introduce a direct spectral analysis for the iterative solution of finite difference approximations for finite slabs composed of identical layers, providing thus a complementary analysis that is more appropriate for reactor applications. Numerical calculations for the method of characteristics and with the diamond difference approximation show the appearance of antisymmetric modes generated by the iteration on boundary data. We have also utilized the discrete Fourier transform to compute the spectrum for a periodic slab containing N identical layers and shown that at the limit N → ∞ one obtains the familiar Fourier-mode solution

  2. Effects of reservoir heterogeneity on scaling of effective mass transfer coefficient for solute transport

    Science.gov (United States)

    Leung, Juliana Y.; Srinivasan, Sanjay

    2016-09-01

    Modeling transport process at large scale requires proper scale-up of subsurface heterogeneity and an understanding of its interaction with the underlying transport mechanisms. A technique based on volume averaging is applied to quantitatively assess the scaling characteristics of effective mass transfer coefficient in heterogeneous reservoir models. The effective mass transfer coefficient represents the combined contribution from diffusion and dispersion to the transport of non-reactive solute particles within a fluid phase. Although treatment of transport problems with the volume averaging technique has been published in the past, application to geological systems exhibiting realistic spatial variability remains a challenge. Previously, the authors developed a new procedure where results from a fine-scale numerical flow simulation reflecting the full physics of the transport process albeit over a sub-volume of the reservoir are integrated with the volume averaging technique to provide effective description of transport properties. The procedure is extended such that spatial averaging is performed at the local-heterogeneity scale. In this paper, the transport of a passive (non-reactive) solute is simulated on multiple reservoir models exhibiting different patterns of heterogeneities, and the scaling behavior of effective mass transfer coefficient (Keff) is examined and compared. One such set of models exhibit power-law (fractal) characteristics, and the variability of dispersion and Keff with scale is in good agreement with analytical expressions described in the literature. This work offers an insight into the impacts of heterogeneity on the scaling of effective transport parameters. A key finding is that spatial heterogeneity models with similar univariate and bivariate statistics may exhibit different scaling characteristics because of the influence of higher order statistics. More mixing is observed in the channelized models with higher-order continuity. It

  3. Colloid transport in porous media: impact of hyper-saline solutions.

    Science.gov (United States)

    Magal, Einat; Weisbrod, Noam; Yechieli, Yoseph; Walker, Sharon L; Yakirevich, Alexander

    2011-05-01

    The transport of colloids suspended in natural saline solutions with a wide range of ionic strengths, up to that of Dead Sea brines (10(0.9) M) was explored. Migration of microspheres through saturated sand columns of different sizes was studied in laboratory experiments and simulated with mathematical models. Colloid transport was found to be related to the solution salinity as expected. The relative concentration of colloids at the columns outlet decreased (after 2-3 pore volumes) as the solution ionic strength increased until a critical value was reached (ionic strength > 10(-1.8) M) and then remained constant above this level of salinity. The colloids were found to be mobile even in the extremely saline brines of the Dead Sea. At such high ionic strength no energetic barrier to colloid attachment was presumed to exist and colloid deposition was expected to be a favorable process. However, even at these salinity levels, colloid attachment was not complete and the transport of ∼ 30% of the colloids through the 30-cm long columns was detected. To further explore the deposition of colloids on sand surfaces in Dead Sea brines, transport was studied using 7-cm long columns through which hundreds of pore volumes were introduced. The resulting breakthrough curves exhibited a bimodal shape whereby the relative concentration (C/C(0)) of colloids at the outlet rose to a value of 0.8, and it remained relatively constant (for the ∼ 18 pore volumes during which the colloid suspension was flushed through the column) and then the relative concentration increased to a value of one. The bimodal nature of the breakthrough suggests different rates of colloid attachment. Colloid transport processes were successfully modeled using the limited entrapment model, which assumes that the colloid attachment rate is dependent on the concentration of the attached colloids. Application of this model provided confirmation of the colloid aggregation and their accelerated attachment during

  4. On the Dagan Model of Solute Transport in Groundwater: Foundational Aspects

    Science.gov (United States)

    Sposito, Garrison; Barry, D. A.

    1987-10-01

    The convection-dispersion equation (CDE) developed by Dagan [1984] to predict the ensemble-average concentration of a conservative solute in groundwater has been used successfully to interpret recent tracer experiments in a sand aquifer at the Borden site in Canada. This successful application encouraged further investigation of the Dagan model in respect to its physical basis and predictive characteristics. It is shown in the present paper, which deals with the first topic, that the Dagan model CDE can be derived through an extension of the cumulant expansion technique applied previously by Chu and Sposito [1980] to develop a mean CDE for solute transport in homogeneous porous media. This technique also leads directly to the mean CDE developed by Gelhar and Axness [1983] as an asymptotic (large time) limit and to model dispersion coefficients derived by Mather on and de Marsily [1980] and Güven and MoIz [1986]. The Dagan CDE then is considered in detail in respect to which conceptualization of the solute concentration, resident or flux, the model may utilize in predictive applications. General mathematical expressions relating the two conceptualizations are derived for an arbitrary solute transport problem and then are applied to the Dagan model for point and prism source inputs. Finally, the Dagan model is interpreted physically using data from the recent tracer experiments of Roberts and Mackay [1986] at the Borden site. It is shown that model predictions of resident and flux concentrations are numerically indistinguishable on any time scale over which field solute concentration measurements typically are made. The model prediction of dispersion coefficients, on the other hand, leads to dramatic differences in predicted plume behavior depending on whether finite time expressions or their asymptotic limits are used. According to the Dagan model, the asymptotic transverse dispersion coefficient cannot replace the time-dependent coefficient on any realistic time

  5. Expansion of Tubular with Elastomers in Multilateral Wells

    Directory of Open Access Journals (Sweden)

    Md Velden

    2013-06-01

    Full Text Available The use of solid expandable tubular technology during the last decade has focused on solving many challenges in well drilling and delivery including zonal isolation, deep drilling, conservation of hole sizes, etc. not only as pioneered solution but also providing cost effective and long lasting solutions. Concurrently, the technology was extended for construction of multilateral in typical wells. The process of horizontal tubular expansion is similar to the vertical expansion of expandable tubular in down-hole environment with the addition of uniformly distributed force due to its weight. The expansion is targeted to increase its diameter such that post expansion characteristics remain within allowable limits. In this study a typical expandable tubular of 57.15 mm outer diameter and 6.35 mm wall thickness was used with two different elastomer seals of 5 and 7 mm thickness placed at equal spacing of 200 mm. The developed stress contours during expansion process clearly showed the high stress areas in the vicinity of expansion region which lies around the mandrel. These high stresses may result in excessive wear of the mandrel. It was also found out that the drawing force increases as the mandrel angle, expansion ratio, and friction coefficient increases. A mandrel angle of 20o  requires minimum expansion force and can be considered as an optimum geometrical parameter to lower the power required for expansion.

  6. A novel sputum transport solution eliminates cold chain and supports routine tuberculosis testing in Nepal

    Directory of Open Access Journals (Sweden)

    Bhagwan Maharjan

    2016-12-01

    Full Text Available This preliminary study evaluated the transport reagent OMNIgene SPUTUM (OMS in a real-world, resource-limited setting: a zonal hospital and national tuberculosis (TB reference laboratory, Nepal. The objectives were to: (1 assess the performance of OMS for transporting sputum from peripheral sites without cold chain stabilization; and (2 compare with Nepal’s standard of care (SOC for Mycobacterium tuberculosis smear and culture diagnostics. Sixty sputa were manually split into a SOC sample (airline-couriered to the laboratory, conventional processing and an OMS sample (OMS added at collection, no cold chain transport or processing. Smear microscopy and solid culture were performed. Transport was 0–8 days. Forty-one samples (68% were smear-positive using both methods. Of the OMS cultures, 37 (62% were positive, 22 (36% were negative, and one (2% was contaminated. Corresponding SOC results were 32 (53%, 21 (35%, and seven (12%. OMS “rescued” six (i.e., missed using SOC compared with one rescue using SOC. Of smear-positives, six SOC samples produced contaminated cultures whereas only one OMS sample was contaminated. OMS reduced culture contamination from 12% to 2%, and improved TB detection by 9%. The results suggest that OMS could perform well as a no cold chain, long-term transport solution for smear and culture testing. The findings provide a basis for larger feasibility studies.

  7. Influence of anisotropy, anion sorption, and degree of decomposition on solute transport in peat

    Science.gov (United States)

    McCarter, C. P. R.; Rezanezhad, F.; Gharedaghloo, B.; Price, J. S.; Van Cappellen, P.

    2017-12-01

    Many permafrost regions are covered by peat dominated wetlands that govern the flow of water, nutrients, and contaminants in these landscapes. However, due to the non-linear decrease in active pore distribution, hydraulic conductivity, and anisotropy with depth from surface, solute transport processes in peat and peatlands are complex and generally poorly understood. Historically, the majority of solute transport studies in peat and peatlands rely on non-reactive chemical tracers (e.g., chloride or bromide) but the high organic content of peat creates the potential for anion sorption. Where anion sorption is possible, the conservative nature of non-reactive anion tracers may be questionable; however, conservative isotopic tracers, such as deuterated water, present the opportunity to determine whether "non-reactive" anions are truly conservative in highly organic peat soils. Given these critical gaps in our understanding, this study aims to characterize the influence of pore structure, anisotropy, and diffusion on the transport of chloride and deuterium tracers at two depths below the surface (-20 and -70 cm); representing two distinct levels of peat decomposition. The results indicate that the chloride sorption partitioning coefficient decreased with degree of decomposition, yet all levels of decomposition showed limited sorption at low concentrations (< 165 mg/L); suggesting a partial conservative behaviour of chloride in peat. However, chloride was sorbed at higher concentrations; thus, limiting its effectiveness as a conservative tracer. Horizontal dispersivity was higher than vertical at both -20 and -70 cm depths and, on average, dispersivity increased with depth suggesting a more tortuous flow path at lower depths. These results highlight that unlike hydraulic conductivity, which is typically larger horizontally than vertically, the majority of solute transport may occur in a subset of pores the hydraulically active pores.

  8. Hyporheic less-mobile porosity and solute transport in porous media

    Science.gov (United States)

    MahmoodPoorDehkordy, F.; Briggs, M. A.; Day-Lewis, F. D.; Scruggs, C.; Singha, K.; Zarnetske, J. P.; Lane, J. W., Jr.; Bagtzoglou, A. C.

    2017-12-01

    Solute transport and reactive processes are strongly influenced by hydrodynamic exchange with the hyporheic zone. Contaminant transport and redox zonation in the hyporheic zone and near-stream aquifer can be impacted by the exchange between mobile and less-mobile porosity zones in heterogeneous porous media. Less-mobile porosity zones can be created by fine materials with tight pore throats (e.g. clay, organics) and in larger, well-connected pores down gradient of flow obstructions (e.g. sand behind cobbles). Whereas fluid sampling is primarily responsive to the more-mobile domain, tracking solute tracer dynamics by geoelectrical methods provides direct information about both more- and less-mobile zones. During tracer injection through porous media of varied pore connectivity, a lag between fluid and bulk electrical conductivity is observed, creating a hysteresis loop when plotted in conductivity space. Thus, the combination of simultaneous fluid and bulk electrical conductivity measurements enables a much improved quantification of less-mobile solute dynamics compared to traditional fluid-only sampling approaches. We have demonstrated the less-mobile porosity exchange in laboratory-scale column experiments verified by simulation models. The experimental approach has also been applied to streambed sediments in column and reach-scale field experiments and verified using numerical simulation. Properties of the resultant hysteresis loops can be used to estimate exchange parameters of less-mobile porosity. Our integrated approach combining field experiments, laboratory experiments, and numerical modeling provides new insights into the effect of less-mobile porosity on solute transport in the hyporheic zone.

  9. Anisotropic surface hole-transport property of triphenylamine-derivative single crystal prepared by solution method

    Energy Technology Data Exchange (ETDEWEB)

    Umeda, Minoru, E-mail: mumeda@vos.nagaokaut.ac.jp [Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Katagiri, Mitsuhiko; Shironita, Sayoko [Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Nagayama, Norio [Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Ricoh Company, Ltd., Nishisawada, Numazu, Shizuoka 410-0007 (Japan)

    2016-12-01

    Highlights: • A hole transport molecule was investigated based on its electrochemical redox characteristics. • The solubility and supersolubility curves of the molecule were measured in order to prepare a large crystal. • The polarization micrograph and XRD results revealed that a single crystal was obtained. • An anisotropic surface conduction, in which the long-axis direction exceeds that of the amorphous layer, was observed. • The anisotropic surface conduction was well explained by the molecular stacked structure. - Abstract: This paper reports the anisotropic hole transport at the triphenylamine-derivative single crystal surface prepared by a solution method. Triphenylamine derivatives are commonly used in a hole-transport material for organic photoconductors of laser-beam printers, in which the materials are used as an amorphous form. For developing organic photovoltaics using the photoconductor’s technology, preparation of a single crystal seems to be a specific way by realizing the high mobility of an organic semiconductor. In this study, a single crystal of 4-(2,2-diphenylethenyl)-N,N-bis(4-methylphenyl)-benzenamine (TPA) was prepared and its anisotropic hole-transport property measured. First, the hole-transport property of the TPA was investigated based on its chemical structure and electrochemical redox characteristics. Next, a large-scale single crystal formation at a high rate was developed by employing a solution method based on its solubility and supersolubility curves. The grown TPA was found to be a single crystal based on the polarization micrograph observation and crystallographic analysis. For the TPA single crystal, an anisotropic surface conduction was found, which was well explained by its molecular stack structure. The measured current in the long-axis direction is one order of magnitude greater than that of amorphous TPA.

  10. Indirect estimation of the Convective Lognormal Transfer function model parameters for describing solute transport in unsaturated and undisturbed soil.

    Science.gov (United States)

    Mohammadi, Mohammad Hossein; Vanclooster, Marnik

    2012-05-01

    Solute transport in partially saturated soils is largely affected by fluid velocity distribution and pore size distribution within the solute transport domain. Hence, it is possible to describe the solute transport process in terms of the pore size distribution of the soil, and indirectly in terms of the soil hydraulic properties. In this paper, we present a conceptual approach that allows predicting the parameters of the Convective Lognormal Transfer model from knowledge of soil moisture and the Soil Moisture Characteristic (SMC), parameterized by means of the closed-form model of Kosugi (1996). It is assumed that in partially saturated conditions, the air filled pore volume act as an inert solid phase, allowing the use of the Arya et al. (1999) pragmatic approach to estimate solute travel time statistics from the saturation degree and SMC parameters. The approach is evaluated using a set of partially saturated transport experiments as presented by Mohammadi and Vanclooster (2011). Experimental results showed that the mean solute travel time, μ(t), increases proportionally with the depth (travel distance) and decreases with flow rate. The variance of solute travel time σ²(t) first decreases with flow rate up to 0.4-0.6 Ks and subsequently increases. For all tested BTCs predicted solute transport with μ(t) estimated from the conceptual model performed much better as compared to predictions with μ(t) and σ²(t) estimated from calibration of solute transport at shallow soil depths. The use of μ(t) estimated from the conceptual model therefore increases the robustness of the CLT model in predicting solute transport in heterogeneous soils at larger depths. In view of the fact that reasonable indirect estimates of the SMC can be made from basic soil properties using pedotransfer functions, the presented approach may be useful for predicting solute transport at field or watershed scales. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Benchmarking the invariant embedding method against analytical solutions in model transport problems

    Directory of Open Access Journals (Sweden)

    Wahlberg Malin

    2006-01-01

    Full Text Available The purpose of this paper is to demonstrate the use of the invariant embedding method in a few model transport problems for which it is also possible to obtain an analytical solution. The use of the method is demonstrated in three different areas. The first is the calculation of the energy spectrum of sputtered particles from a scattering medium without absorption, where the multiplication (particle cascade is generated by recoil production. Both constant and energy dependent cross-sections with a power law dependence were treated. The second application concerns the calculation of the path length distribution of reflected particles from a medium without multiplication. This is a relatively novel application, since the embedding equations do not resolve the depth variable. The third application concerns the demonstration that solutions in an infinite medium and in a half-space are interrelated through embedding-like integral equations, by the solution of which the flux reflected from a half-space can be reconstructed from solutions in an infinite medium or vice versa. In all cases, the invariant embedding method proved to be robust, fast, and monotonically converging to the exact solutions.

  12. On the Dagan Model of solute transport in groundwater: Application to the Borden Site

    Science.gov (United States)

    Barry, D. A.; Coves, J.; Sposito, Garrison

    1988-10-01

    In the first part of this study, Sposito and Barry (1987) derived an ensemble-mean convection-dispersion equation (CDE) for tracer solute transport subject to a random velocity field. It was shown that the model dispersion coefficients originally presented by Dagan (1984) could be derived from the general expression for the dispersion coefficients in this mean CDE. Under the assumption of ergodicity, the Dagan model is used in this paper to predict chloride and bromide concentrations in the well-documented Borden aquifer experiment reported by Roberts and Mackay (1986). Because of a possible influence on the solute from the upper aquifer boundary, it was appropriate to apply the two-dimensional form of the model. A number of steps was necessary to reduce the three-dimensional raw data to a two-dimensional form, the main ones being integration over the vertical axis and the use of a gridding algorithm to form a two-dimensional solute concentration surface. Incomplete sampling of the solute plume during the early sampling sessions, as well as the assumptions made with respect to the data analysis, produce a rather large degree of uncertainty in the specification of the initial solute plume. These factors hinder a thorough experimental evaluation of the Dagan model. Data from some of the later sampling sessions were more complete, however, and the model predictions appeared to agree well with the field concentration data, especially in the preasymptotic region for the longitudinal dispersion coefficient.

  13. Heterogeneous nucleation promotes carrier transport in solution-processed organic field-effect transistors

    KAUST Repository

    Li, Ruipeng

    2012-09-04

    A new way to investigate and control the growth of solution-cast thin films is presented. The combination of in situ quartz crystal microbalance measurements with dissipation capabilities (QCM-D) and in situ grazing-incidence wide-angle X-ray scattering (GIWAXS) in an environmental chamber provides unique quantitative insights into the time-evolution of the concentration of the solution, the onset of nucleation, and the mode of growth of the organic semiconductor under varied drying conditions. It is demonstrated that careful control over the kinetics of solution drying enhances carrier transport significantly by promoting phase transformation predominantly via heterogeneous nucleation and sustained surface growth of a highly lamellar structure at the solid-liquid interface at the expense of homogeneous nucleation. A new way to investigate and control the growth of drop-cast thin films is presented. The solution-processing of small-molecule thin films of TIPS-pentacene is investigated using time-resolved techniques to reveal the mechanisms of nucleation and growth leading to solid film formation. By tuning the drying speed of the solution, the balance between surface and bulk growth modes is altered, thereby controlling the lamellar formation and tuning the carrier mobility in organic field-effect transistors Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A cell transportation solution that preserves live circulating tumor cells in patient blood samples.

    Science.gov (United States)

    Stefansson, Steingrimur; Adams, Daniel L; Ershler, William B; Le, Huyen; Ho, David H

    2016-05-06

    Circulating tumor cells (CTCs) are typically collected into CellSave fixative tubes, which kills the cells, but preserves their morphology. Currently, the clinical utility of CTCs is mostly limited to their enumeration. More detailed investigation of CTC biology can be performed on live cells, but obtaining live CTCs is technically challenging, requiring blood collection into biocompatible solutions and rapid isolation which limits transportation options. To overcome the instability of CTCs, we formulated a sugar based cell transportation solution (SBTS) that stabilizes cell viability at ambient temperature. In this study we examined the long term viability of human cancer cell lines, primary cells and CTCs in human blood samples in the SBTS for transportation purposes. Four cell lines, 5 primary human cells and purified human PBMCs were tested to determine the viability of cells stored in the transportation solution at ambient temperature for up to 7 days. We then demonstrated viability of MCF-7 cells spiked into normal blood with SBTS and stored for up to 7 days. A pilot study was then run on blood samples from 3 patients with metastatic malignancies stored with or without SBTS for 6 days. CTCs were then purified by Ficoll separation/microfilter isolation and identified using CTC markers. Cell viability was assessed using trypan blue or CellTracker™ live cell stain. Our results suggest that primary/immortalized cell lines stored in SBTS remain ~90% viable for > 72 h. Further, MCF-7 cells spiked into whole blood remain viable when stored with SBTS for up to 7 days. Finally, live CTCs were isolated from cancer patient blood samples kept in SBTS at ambient temperature for 6 days. No CTCs were isolated from blood samples stored without SBTS. In this proof of principle pilot study we show that viability of cell lines is preserved for days using SBTS. Further, this solution can be used to store patient derived blood samples for eventual isolation of viable CTCs after

  15. PHAST--a program for simulating ground-water flow, solute transport, and multicomponent geochemical reactions

    Science.gov (United States)

    Parkhurst, David L.; Kipp, Kenneth L.; Engesgaard, Peter; Charlton, Scott R.

    2004-01-01

    The computer program PHAST simulates multi-component, reactive solute transport in three-dimensional saturated ground-water flow systems. PHAST is a versatile ground-water flow and solute-transport simulator with capabilities to model a wide range of equilibrium and kinetic geochemical reactions. The flow and transport calculations are based on a modified version of HST3D that is restricted to constant fluid density and constant temperature. The geochemical reactions are simulated with the geochemical model PHREEQC, which is embedded in PHAST. PHAST is applicable to the study of natural and contaminated ground-water systems at a variety of scales ranging from laboratory experiments to local and regional field scales. PHAST can be used in studies of migration of nutrients, inorganic and organic contaminants, and radionuclides; in projects such as aquifer storage and recovery or engineered remediation; and in investigations of the natural rock-water interactions in aquifers. PHAST is not appropriate for unsaturated-zone flow, multiphase flow, density-dependent flow, or waters with high ionic strengths. A variety of boundary conditions are available in PHAST to simulate flow and transport, including specified-head, flux, and leaky conditions, as well as the special cases of rivers and wells. Chemical reactions in PHAST include (1) homogeneous equilibria using an ion-association thermodynamic model; (2) heterogeneous equilibria between the aqueous solution and minerals, gases, surface complexation sites, ion exchange sites, and solid solutions; and (3) kinetic reactions with rates that are a function of solution composition. The aqueous model (elements, chemical reactions, and equilibrium constants), minerals, gases, exchangers, surfaces, and rate expressions may be defined or modified by the user. A number of options are available to save results of simulations to output files. The data may be saved in three formats: a format suitable for viewing with a text editor; a

  16. PHAST Version 2-A Program for Simulating Groundwater Flow, Solute Transport, and Multicomponent Geochemical Reactions

    Science.gov (United States)

    Parkhurst, David L.; Kipp, Kenneth L.; Charlton, Scott R.

    2010-01-01

    The computer program PHAST (PHREEQC And HST3D) simulates multicomponent, reactive solute transport in three-dimensional saturated groundwater flow systems. PHAST is a versatile groundwater flow and solute-transport simulator with capabilities to model a wide range of equilibrium and kinetic geochemical reactions. The flow and transport calculations are based on a modified version of HST3D that is restricted to constant fluid density and constant temperature. The geochemical reactions are simulated with the geochemical model PHREEQC, which is embedded in PHAST. Major enhancements in PHAST Version 2 allow spatial data to be defined in a combination of map and grid coordinate systems, independent of a specific model grid (without node-by-node input). At run time, aquifer properties are interpolated from the spatial data to the model grid; regridding requires only redefinition of the grid without modification of the spatial data. PHAST is applicable to the study of natural and contaminated groundwater systems at a variety of scales ranging from laboratory experiments to local and regional field scales. PHAST can be used in studies of migration of nutrients, inorganic and organic contaminants, and radionuclides; in projects such as aquifer storage and recovery or engineered remediation; and in investigations of the natural rock/water interactions in aquifers. PHAST is not appropriate for unsaturated-zone flow, multiphase flow, or density-dependent flow. A variety of boundary conditions are available in PHAST to simulate flow and transport, including specified-head, flux (specified-flux), and leaky (head-dependent) conditions, as well as the special cases of rivers, drains, and wells. Chemical reactions in PHAST include (1) homogeneous equilibria using an ion-association or Pitzer specific interaction thermodynamic model; (2) heterogeneous equilibria between the aqueous solution and minerals, ion exchange sites, surface complexation sites, solid solutions, and gases; and

  17. Solute transport in coupled inland-coastal water systems. General conceptualisation and application to Forsmark

    International Nuclear Information System (INIS)

    Jarsjoe, Jerker; Destouni, Georgia; Persson, Klas; Prieto, Carmen

    2007-12-01

    We formulate a general theoretical conceptualisation of solute transport from inland sources to downstream recipients, considering main recipient load contributions from all different nutrient and pollutant sources that may exist within any catchment. Since the conceptualisation is model independent, its main hydrological factors and mass delivery factors can be quantified on the basis of inputs to and outputs from any considered analytical or numerical model. Some of the conceptually considered source contribution and transport pathway combinations are however commonly neglected in catchment-scale solute transport and attenuation modelling, in particular those related to subsurface sources, diffuse sources at the land surface and direct groundwater transport into the recipient. The conceptual framework provides a possible tool for clarification of underlying and often implicit model assumptions, which can be useful for e.g. inter-model comparisons. In order to further clarify and explain research questions that may be of particular importance for transport pathways from deep groundwater surrounding a repository, we concretise and interpret some selected transport scenarios for model conditions in the Forsmark area. Possible uncertainties in coastal discharge predictions, related to uncertain spatial variation of evapotranspiration within the catchment, were shown to be small for the relatively large, focused surface water discharges from land to sea, because local differences were averaged out along the length of the main water flow paths. In contrast, local flux values within the diffuse groundwater flow field from land to sea are more uncertain, although estimates of mean values and total sums of submarine groundwater discharge (SGD) along some considerable coastline length may be robust. The present results show that 80% to 90% of the total coastal discharge of Forsmark occurred through focused flows in visible streams, whereas the remaining 10% to 20% was

  18. Miopatias associadas a agregados tubulares

    Directory of Open Access Journals (Sweden)

    Mary Souza Carvalho

    1993-09-01

    Full Text Available Os autores relatam a caso de paciente de 58 anos de idade do sexo masculino, com quadro de características miastênicas tanto clínica como eletromiograficamente, no qual a biópsia muscular com histoquímica e microscopia eletrônica permitiu fazer o diagnostico de miopatia associada a agregados tubulares. É chamada a atenção para o fato de que as alterações anátomo-patológicas encontradas podem estar presentes em um grupo heterogêneo de pacientes com grande variedade de sintomas, não havendo portanto motivo para considerar-se a existência de uma miopatia com agregados tubulares, já que os achados anátomo-patológicos são inespecíficos e não configuram moléstia específica.

  19. Assessment of assembly homogenized two-steps core dynamic calculations using direct whole core transport solutions

    International Nuclear Information System (INIS)

    Hursin, Mathieu; Downar, Thomas J.; Yoon, Joo Il; Joo, Han Gyu

    2016-01-01

    Highlights: • Reactivity initiated accident analysis with direct whole core transient transport code. • Comparison with usual “two steps” procedure. • Effect of effective delayed neutron fraction definition on energy deposition in the fuel. • Effect of homogenized few-group cross sections generation at the assembly level on energy deposition in the fuel. • Effect of effective fuel temperature definition on energy deposition in the fuel. - Abstract: The impact of the approximations in the “two-steps” procedure used in the current generation of nodal simulators for core transient calculations is assessed by using a higher order solution obtained from a direct, whole core, transient transport calculation. A control rod ejection accident in an idealized minicore is analyzed with PARCS, which uses the two-steps procedure and DeCART which provides the higher order solution. DeCART is used as lattice code to provide the homogenized cross sections and kinetics parameters to PARCS. The approximations made by using (1) the homogenized few-group cross sections and kinetic parameters generated at the assembly level, (2) an effective delayed neutrons fraction, (3) an effective fuel temperature and (4) the few-group formulation are investigated in terms of global and local core power behavior. The results presented in the paper show that the current two-steps procedure produces sufficiently accurate transient results with respect to the direct whole core calculation solution, provided that its parameters are carefully generated using the prescriptions described in the present article.

  20. Electrical transport properties of graphene nanoribbons produced from sonicating graphite in solution.

    Science.gov (United States)

    Ling, Cheng; Setzler, Gabriel; Lin, Ming-Wei; Dhindsa, Kulwinder Singh; Jin, Jin; Yoon, Hyeun Joong; Kim, Seung Soo; Ming-Cheng Cheng, Mark; Widjaja, Noppi; Zhou, Zhixian

    2011-08-12

    A simple one-stage solution-based method was developed to produce graphene nanoribbons by sonicating graphite powder in organic solutions with polymer surfactant. The graphene nanoribbons were deposited on a silicon substrate, and characterized by Raman spectroscopy and atomic force microscopy. Single-layer and few-layer graphene nanoribbons with a width ranging from sub-10 nm to tens of nanometers and lengths ranging from hundreds of nanometers to 1 µm were routinely observed. The electrical transport properties of individual graphene nanoribbons were measured in both the back-gate and polymer-electrolyte top-gate configurations. The mobility of the graphene nanoribbons was found to be over an order of magnitude higher when measured in the latter than in the former configuration (without the polymer-electrolyte), which can be attributed to the screening of the charged impurities by the counter ions in the polymer-electrolyte. This finding suggests that the charge transport in these solution produced graphene nanoribbons is largely limited by charge impurity scattering.

  1. Solution-Processed Metal Oxides as Efficient Carrier Transport Layers for Organic Photovoltaics.

    Science.gov (United States)

    Choy, Wallace C H; Zhang, Di

    2016-01-27

    Carrier (electron and hole) transport layers (CTLs) are essential components for boosting the performance of various organic optoelectronic devices such as organic solar cells and organic light-emitting diodes. Considering the drawbacks of conventional CTLs (easily oxidized/unstable, demanding/costly fabrication, etc.), transition metal oxides with good carrier transport/extraction and superior stability have drawn extensive research interest as CTLs for next-generation devices. In recent years, many research efforts have been made toward the development of solution-based metal oxide CTLs with the focus on low- or even room-temperature processes, which can potentially be compatible with the deposition processes of organic materials and can significantly contribute to the low-cost and scale-up of organic devices. Here, the recent progress of different types of solution-processed metal oxide CTLs are systematically reviewed in the context of organic photovoltaics, from synthesis approaches to device performance. Different approaches for further enhancing the performance of solution-based metal oxide CTLs are also discussed, which may push the future development of this exciting field. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Novel conditionally immortalized human proximal tubule cell line expressing functional influx and efflux transporters.

    NARCIS (Netherlands)

    Wilmer, M.J.G.; Saleem, M.A.; Masereeuw, R.; Ni, L.; Velden, T.J.A.M. van der; Russel, F.G.M.; Mathieson, P.W.; Monnens, L.A.H.; Heuvel, L.P.W.J. van den; Levtchenko, E.N.

    2010-01-01

    Reabsorption of filtered solutes from the glomerular filtrate and excretion of waste products and xenobiotics are the main functions of the renal proximal tubular (PT) epithelium. A human PT cell line expressing a range of functional transporters would help to augment current knowledge in renal

  3. FASTREACT – An efficient numerical framework for the solution of reactive transport problems

    International Nuclear Information System (INIS)

    Trinchero, Paolo; Molinero, Jorge; Román-Ross, Gabriela; Berglund, Sten; Selroos, Jan-Olof

    2014-01-01

    Highlights: • We present a tool for the efficient solution of reactive transport problems. • The tool is used to simulate radionuclide transport in a two-dimensional medium. • The results are successfully compared with those obtained using an Eulerian approach. • A large-scale application example is also solved. • The results show that the proposed tool can efficiently solve large-scale models. - Abstract: In the framework of safety assessment studies for geological disposal, large scale reactive transport models are powerful inter-disciplinary tools aiming at supporting regulatory decision making as well as providing input to repository engineering activities. Important aspects of these kinds of models are their often very large temporal and spatial modelling scales and the need to integrate different non-linear processes (e.g., mineral dissolution and precipitation, adsorption and desorption, microbial reactions and redox transformations). It turns out that these types of models may be computationally highly demanding. In this work, we present a Lagrangian-based framework, denoted as FASTREACT, that aims at solving multi-component-reactive transport problems with a computationally efficient approach allowing complex modelling problems to be solved in large spatial and temporal scales. The tool has been applied to simulate radionuclide migration in a synthetic heterogeneous transmissivity field and the results have been successfully compared with those obtained using a standard Eulerian approach. Finally, the same geochemical model has been coupled to an ensemble of realistic three-dimensional transport pathways to simulate the migration of a set of radionuclides from a hypothetical repository for spent nuclear fuel to the surface. The results of this modelling exercise, which includes key processes such as the exchange of mass between the conductive fractures and the matrix, show that FASTREACT can efficiently solve large-scale reactive transport models

  4. Application of preconditioned GMRES to the numerical solution of the neutron transport equation

    International Nuclear Information System (INIS)

    Patton, B.W.; Holloway, J.P.

    2002-01-01

    The generalized minimal residual (GMRES) method with right preconditioning is examined as an alternative to both standard and accelerated transport sweeps for the iterative solution of the diamond differenced discrete ordinates neutron transport equation. Incomplete factorization (ILU) type preconditioners are used to determine their effectiveness in accelerating GMRES for this application. ILU(τ), which requires the specification of a dropping criteria τ, proves to be a good choice for the types of problems examined in this paper. The combination of ILU(τ) and GMRES is compared with both DSA and unaccelerated transport sweeps for several model problems. It is found that the computational workload of the ILU(τ)-GMRES combination scales nonlinearly with the number of energy groups and quadrature order, making this technique most effective for problems with a small number of groups and discrete ordinates. However, the cost of preconditioner construction can be amortized over several calculations with different source and/or boundary values. Preconditioners built upon standard transport sweep algorithms are also evaluated as to their effectiveness in accelerating the convergence of GMRES. These preconditioners show better scaling with such problem parameters as the scattering ratio, the number of discrete ordinates, and the number of spatial meshes. These sweeps based preconditioners can also be cast in a matrix free form that greatly reduces storage requirements

  5. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers

    Science.gov (United States)

    You, Jingbi; Meng, Lei; Song, Tze-Bin; Guo, Tzung-Fang; Yang, Yang (Michael); Chang, Wei-Hsuan; Hong, Ziruo; Chen, Huajun; Zhou, Huanping; Chen, Qi; Liu, Yongsheng; De Marco, Nicholas; Yang, Yang

    2016-01-01

    Lead halide perovskite solar cells have recently attracted tremendous attention because of their excellent photovoltaic efficiencies. However, the poor stability of both the perovskite material and the charge transport layers has so far prevented the fabrication of devices that can withstand sustained operation under normal conditions. Here, we report a solution-processed lead halide perovskite solar cell that has p-type NiOx and n-type ZnO nanoparticles as hole and electron transport layers, respectively, and shows improved stability against water and oxygen degradation when compared with devices with organic charge transport layers. Our cells have a p-i-n structure (glass/indium tin oxide/NiOx/perovskite/ZnO/Al), in which the ZnO layer isolates the perovskite and Al layers, thus preventing degradation. After 60 days storage in air at room temperature, our all-metal-oxide devices retain about 90% of their original efficiency, unlike control devices made with organic transport layers, which undergo a complete degradation after just 5 days. The initial power conversion efficiency of our devices is 14.6 ± 1.5%, with an uncertified maximum value of 16.1%.

  6. Solute transport in a well under slow-purge and no-purge conditions

    Science.gov (United States)

    Plummer, M. A.; Britt, S. L.; Martin-Hayden, J. M.

    2010-12-01

    Non-purge sampling techniques, such as diffusion bags and in-situ sealed samplers, offer reliable and cost-effective groundwater monitoring methods that are a step closer to the goal of real-time monitoring without pumping or sample collection. Non-purge methods are, however, not yet completely accepted because questions remain about how solute concentrations in an unpurged well relate to concentrations in the adjacent formation. To answer questions about how undisturbed well water samples compare to formation concentrations, and to provide the information necessary to interpret results from non-purge monitoring systems, we have conducted a variety of physical experiments and numerical simulations of flow and transport in and through monitoring wells under low-flow and ambient flow conditions. Previous studies of flow and transport in wells used a Darcy’s law - based continuity equation for flow, which is often justified under the strong, forced-convection flow caused by pumping or large vertical hydraulic potential gradients. In our study, we focus on systems with weakly forced convection, where density-driven free convection may be of similar strength. We therefore solved Darcy’s law for porous media domains and the Navier Stokes equations for flow in the well, and coupled solution of the flow equations to that of solute transport. To illustrate expected in-well transport behavior under low-flow conditions, we present results of three particular studies: (1) time-dependent effluent concentrations from a well purged at low-flow pumping rates, (2) solute-driven density effects in a well under ambient horizontal flow and (3) temperature-driven mixing in a shallow well subject to seasonal temperature variations. Results of the first study illustrate that assumptions about the nature of in-well flow have a significant impact on effluent concentration curves even during pumping, with Poiseuille-type flow producing more rapid removal of concentration differences

  7. The Bicycle – Future’s Solution for an Eco-friendly Urban Transport

    Directory of Open Access Journals (Sweden)

    Cristina Ciovică

    2012-05-01

    Full Text Available Even though more and more cities across the globe impose restrictive measures regarding theuse of cars and offer instead incentives in order to choose alternative means of transport, they do not slowdown their economic growth, but on the contrary they prove their skills towards providing citizens a betterlife. Under these circumstances, the bicycle appears as a viable solution for most of us, and the publicprograms that support its use have started to develop globally, at European level, and in Romania as well.The current paper wishes to point out the stimulating perspectives brought by the slight increase in thenumber of bicycles sold in our country in recent years towards the future of urban transport.

  8. An analytic solution to the critical problem of neutron transport in plane geometry

    International Nuclear Information System (INIS)

    Coppa, G.; Ravetto, P.; Sumini, M.

    1987-01-01

    The linear transport equation in slab geometry is given an analytic solution by means of a series expansion of the unknown, using Helmholtz eigenfunctions, and suitably introducing a space independent term which can account for vacuum boundary conditions. A second-order form of the transport equation is taken into consideration. Only materially homogeneous systems showing isotropic scattering properties are investigated and the absence of external sources is supposed. An exact infinite system of equations for the coefficients of the expansion is derived. The truncation of the series leads to approximations, some numerical results of which are presented. The total neutron current and its relationship to the total flux, together with the presence of a zero-gradient current, will also be discussed. (orig.) [de

  9. PARTRACK - A particle tracking algorithm for transport and dispersion of solutes in a sparsely fractured rock

    International Nuclear Information System (INIS)

    Svensson, Urban

    2001-04-01

    A particle tracking algorithm, PARTRACK, that simulates transport and dispersion in a sparsely fractured rock is described. The main novel feature of the algorithm is the introduction of multiple particle states. It is demonstrated that the introduction of this feature allows for the simultaneous simulation of Taylor dispersion, sorption and matrix diffusion. A number of test cases are used to verify and demonstrate the features of PARTRACK. It is shown that PARTRACK can simulate the following processes, believed to be important for the problem addressed: the split up of a tracer cloud at a fracture intersection, channeling in a fracture plane, Taylor dispersion and matrix diffusion and sorption. From the results of the test cases, it is concluded that PARTRACK is an adequate framework for simulation of transport and dispersion of a solute in a sparsely fractured rock

  10. Modeling study of solute transport in the unsaturated zone: Workshop proceedings

    International Nuclear Information System (INIS)

    Springer, E.P.; Fuentes, H.R.

    1987-04-01

    Issues addressed were the adequacy of the data for the various models, effectiveness of the models to represent the data, particular information provided by the models, the role of caisson experiments in providing fundamental knowledge of porous-media water flow and solute transport, and the importance of geochemistry to the transport of nonconservative tracers. These proceedings include the presentations made by each of the modelers; the summary document written by the panel; and a transcript of the discussions, both the discussions that followed individual presentations and the general discussion held on the second day. This publication completes the series on the workshop. Volume I in the series (NUREG/CR-4615, Vol. I) contains background information and the data sets provided each modeler

  11. Transport and dosimetric solutions for the ELIMED laser-driven beam line

    International Nuclear Information System (INIS)

    Cirrone, G.A.P.; Romano, F.; Scuderi, V.; Amato, A.; Candiano, G.; Cuttone, G.; Giove, D.; Korn, G.; Krasa, J.; Leanza, R.; Manna, R.; Maggiore, M.; Marchese, V.; Margarone, D.; Milluzzo, G.; Petringa, G.; Sabini, M.G.; Schillaci, F.

    2015-01-01

    Within 2017, the ELIMED (ELI-Beamlines MEDical applications) transport beam-line and dosimetric systems for laser-generated beams will be installed at the ELI-Beamlines facility in Prague (CZ), inside the ELIMAIA (ELI Multidisciplinary Applications of laser–Ion Acceleration) interaction room. The beam-line will be composed of two sections: one in vacuum, devoted to the collecting, focusing and energy selection of the primary beam and the second in air, where the ELIMED beam-line dosimetric devices will be located. This paper briefly describes the transport solutions that will be adopted together with the main dosimetric approaches. In particular, the description of an innovative Faraday Cup detector with its preliminary experimental tests will be reported

  12. The urinary excretion of metformin, ceftizoxime and ofloxacin in high serum creatinine rats: Can creatinine predict renal tubular elimination?

    Science.gov (United States)

    Ma, Yan-Rong; Zhou, Yan; Huang, Jing; Qin, Hong-Yan; Wang, Pei; Wu, Xin-An

    2018-03-01

    The renal excretion of creatinine and most drugs are the net result of glomerular filtration and tubular secretion, and their tubular secretions are mediated by individual transporters. Thus, we hypothesized that the increase of serum creatinine (SCr) levels attributing to inhibiting tubular transporters but not glomerular filtration rate (GFR) could be used to evaluate the tubular excretion of drugs mediated by identical or partial overlap transporter with creatinine. In this work, we firstly developed the creatinine excretion inhibition model with normal GFR by competitively inhibiting tubular transporters, and investigated the renal excretion of metformin, ceftizoxime and ofloxacin in vivo and in vitro. The results showed that the 24-hour urinary excretion of metformin and ceftizoxime in model rats were decreased by 25% and 17% compared to that in control rats, respectively. The uptake amount and urinary excretion of metformin and ceftizoxime could be inhibited by creatinine in renal cortical slices and isolated kidney perfusion. However, the urinary excretion of ofloxacin was not affected by high SCr. These results showed that the inhibition of tubular creatinine transporters by high SCr resulted to the decrease of urinary excretion of metformin and ceftizoxime, but not ofloxacin, which implied that the increase of SCr could also be used to evaluate the tubular excretion of drugs mediated by identical or partial overlap transporter with creatinine in normal GFR rats. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Magnetic Modulation of the Transport of Organophilic Solutes through Supported Magnetic Ionic Liquid Membranes.

    Czech Academy of Sciences Publication Activity Database

    Daniel, C.L.; Rubio, A.M.; Sebastião, P.J.; Afonso, C.A.M.; Storch, Jan; Izák, Pavel; Portugal, C.A.M.; Crespo, J.G.

    2016-01-01

    Roč. 505, MAY 1 (2016), s. 36-43 ISSN 0376-7388 R&D Projects: GA ČR(CZ) GAP106/12/0569 Grant - others:ERANET(PT) ERA-CHEM/0001/2008; EUI(ES) 2008- 03857; FCT-MCTES(PT) SFRH/BD/81552/2011 Institutional support: RVO:67985858 Keywords : magnetic ionic liquid s (MILs) * solute transport modulation * magnetic field Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 6.035, year: 2016

  14. Point defect and transport parameters in the CsI-TlI solid solution

    International Nuclear Information System (INIS)

    Schiraldi, A.; Pezzati, E.; Rossi, P.

    1980-01-01

    Transport and point defect parameters of the solid solution CsI-TlI have been obtained through the already reported semiempirical approach. However in this case preliminary calculations concerning pure cubic TlI have been necessary: ionic migration and point defect formation energies in this salt have been attained by working out experimental data and by applying a simplified Boswara-Lidiard approach, respectively. As well as in the analogous systems, CsBr-TlBr and CsCl-TlCl, the role of the point defect concentration seems more relevant than that of the ionic mobility in determining the trend of the conductivity vs composition. (orig.) [de

  15. Global existence of weak solutions to dissipative transport equations with nonlocal velocity

    Science.gov (United States)

    Bae, Hantaek; Granero-Belinchón, Rafael; Lazar, Omar

    2018-04-01

    We consider 1D dissipative transport equations with nonlocal velocity field: where is a nonlocal operator given by a Fourier multiplier. We especially consider two types of nonlocal operators: (1) , the Hilbert transform, (2) . In this paper, we show several global existence of weak solutions depending on the range of γ, δ and α. When , we take initial data having finite energy, while we take initial data in weighted function spaces (in the real variables or in the Fourier variables), which have infinite energy, when .

  16. Mixing-cell boundary conditions and apparent mass balance errors for advective dispersive solute transport

    Science.gov (United States)

    Gimmi, Thomas; Flühler, Hannes

    1998-09-01

    In many field or laboratory situations, well-mixed reservoirs like, for instance, injection or detection wells and gas distribution or sampling chambers define boundaries of transport domains. Exchange of solutes or gases across such boundaries can occur through advective or diffusive processes. First we analyzed situations, where the inlet region consists of a well-mixed reservoir, in a systematic way by interpreting them in terms of injection type. Second, we discussed the mass balance errors that seem to appear in case of resident injections. Mixing cells (MC) can be coupled mathematically in different ways to a domain where advective-dispersive transport occurs: by assuming a continuous solute flux at the interface (flux injection, MC-FI), or by assuming a continuous resident concentration (resident injection). In the latter case, the flux leaving the mixing cell can be defined in two ways: either as the value when the interface is approached from the mixing-cell side (MC-RI-), or as the value when it is approached from the column side (MC-RI+). Solutions of these injection types with constant or—in one case—distance-dependent transport parameters were compared to each other as well as to a solution of a two-layer system, where the first layer was characterized by a large dispersion coefficient. These solutions differ mainly at small Péclet numbers. For most real situations, the model for resident injection MC-RI+ is considered to be relevant. This type of injection was modeled with a constant or with an exponentially varying dispersion coefficient within the porous medium. A constant dispersion coefficient will be appropriate for gases because of the Eulerian nature of the usually dominating gaseous diffusion coefficient, whereas the asymptotically growing dispersion coefficient will be more appropriate for solutes due to the Lagrangian nature of mechanical dispersion, which evolves only with the fluid flow. Assuming a continuous resident concentration at

  17. The solution of the multigroup neutron transport equation using spherical harmonics

    International Nuclear Information System (INIS)

    Fletcher, K.

    1981-01-01

    A solution of the multi-group neutron transport equation in up to three space dimensions is presented. The flux is expanded in a series of unnormalised spherical harmonics. Using the various recurrence formulae a linked set of first order differential equations is obtained for the moments psisup(g)sub(lm)(r), γsup(g)sub(lm)(r). Terms with odd l are eliminated resulting in a second order system which is solved by two methods. The first is a finite difference formulation using an iterative procedure, secondly, in XYZ and XY geometry a finite element solution is given. Results for a test problem using both methods are exhibited and compared. (orig./RW) [de

  18. Hemodynamic and tubular changes induced by contrast media.

    Science.gov (United States)

    Caiazza, Antonella; Russo, Luigi; Sabbatini, Massimo; Russo, Domenico

    2014-01-01

    The incidence of acute kidney injury induced by contrast media (CI-AKI) is the third cause of AKI in hospitalized patients. Contrast media cause relevant alterations both in renal hemodynamics and in renal tubular cell function that lead to CI-AKI. The vasoconstriction of intrarenal vasculature is the main hemodynamic change induced by contrast media; the vasoconstriction is accompanied by a cascade of events leading to ischemia and reduction of glomerular filtration rate. Cytotoxicity of contrast media causes apoptosis of tubular cells with consequent formation of casts and worsening of ischemia. There is an interplay between the negative effects of contrast media on renal hemodynamics and on tubular cell function that leads to activation of renin-angiotensin system and increased production of reactive oxygen species (ROS) within the kidney. Production of ROS intensifies cellular hypoxia through endothelial dysfunction and alteration of mechanisms regulating tubular cells transport. The physiochemical characteristics of contrast media play a critical role in the incidence of CI-AKI. Guidelines suggest the use of either isoosmolar or low-osmolar contrast media rather than high-osmolar contrast media particularly in patients at increased risk of CI-AKI. Older age, presence of atherosclerosis, congestive heart failure, chronic renal disease, nephrotoxic drugs, and diuretics may multiply the risk of CI-AKI.

  19. Water, solute and heat transport in the soil: the Australian connection

    Science.gov (United States)

    Knight, John

    2016-04-01

    The interest of Peter Raats in water, solute and heat transport in the soil has led to scientific and/or personal interactions with several Australian scientists such as John Philip, David Smiles, Greg Davis and John Knight. Along with John Philip and Robin Wooding, Peter was an early user of the Gardner (1958) linearised model of soil water flow, which brought him into competition with John Philip. I will discuss some of Peter's solutions relevant to infiltration from line and point sources, cavities and basins. A visit to Canberra, Australia in the early 1980s led to joint work on soil water flow, and on combined water and solute movement with David Smiles and others. In 1983 Peter was on the PhD committee for Greg Davis at the University of Wollongong, and some of the methods in his thesis 'Mathematical modelling of rate-limiting mechanisms of pyritic oxidation in overburden dumps' were later used by Peter's student Sjoerd van der Zee. David Smiles and Peter wrote a survey article 'Hydrology of swelling clay soils' in 2005. In the last decade Peter has been investigating the history of groundwater and vadose zone hydrology, and recently he and I have been bringing to light the largely forgotten work of Lewis Fry Richardson on finite difference solution of the heat equation, drainage theory, soil physics, and the soil-plant-atmosphere continuum.

  20. Solute transport in coupled inland-coastal water systems. General conceptualisation and application to Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Jarsjoe, Jerker; Destouni, Georgia; Persson, Klas; Prieto, Carmen (Dept. of Physical Geography, Quaternary Geology, Stockholm Univ., Stockholm (Sweden))

    2007-12-15

    We formulate a general theoretical conceptualisation of solute transport from inland sources to downstream recipients, considering main recipient load contributions from all different nutrient and pollutant sources that may exist within any catchment. Since the conceptualisation is model independent, its main hydrological factors and mass delivery factors can be quantified on the basis of inputs to and outputs from any considered analytical or numerical model. Some of the conceptually considered source contribution and transport pathway combinations are however commonly neglected in catchment-scale solute transport and attenuation modelling, in particular those related to subsurface sources, diffuse sources at the land surface and direct groundwater transport into the recipient. The conceptual framework provides a possible tool for clarification of underlying and often implicit model assumptions, which can be useful for e.g. inter-model comparisons. In order to further clarify and explain research questions that may be of particular importance for transport pathways from deep groundwater surrounding a repository, we concretise and interpret some selected transport scenarios for model conditions in the Forsmark area. Possible uncertainties in coastal discharge predictions, related to uncertain spatial variation of evapotranspiration within the catchment, were shown to be small for the relatively large, focused surface water discharges from land to sea, because local differences were averaged out along the length of the main water flow paths. In contrast, local flux values within the diffuse groundwater flow field from land to sea are more uncertain, although estimates of mean values and total sums of submarine groundwater discharge (SGD) along some considerable coastline length may be robust. The present results show that 80% to 90% of the total coastal discharge of Forsmark occurred through focused flows in visible streams, whereas the remaining 10% to 20% was

  1. Generalized semi-analytical solutions to multispecies transport equation coupled with sequential first-order reaction network with spatially or temporally variable transport and decay coefficients

    Science.gov (United States)

    Suk, Heejun

    2016-08-01

    This paper presents a semi-analytical procedure for solving coupled the multispecies reactive solute transport equations, with a sequential first-order reaction network on spatially or temporally varying flow velocities and dispersion coefficients involving distinct retardation factors. This proposed approach was developed to overcome the limitation reported by Suk (2013) regarding the identical retardation values for all reactive species, while maintaining the extensive capability of the previous Suk method involving spatially variable or temporally variable coefficients of transport, general initial conditions, and arbitrary temporal variable inlet concentration. The proposed approach sequentially calculates the concentration distributions of each species by employing only the generalized integral transform technique (GITT). Because the proposed solutions for each species' concentration distributions have separable forms in space and time, the solution for subsequent species (daughter species) can be obtained using only the GITT without the decomposition by change-of-variables method imposing the limitation of identical retardation values for all the reactive species by directly substituting solutions for the preceding species (parent species) into the transport equation of subsequent species (daughter species). The proposed solutions were compared with previously published analytical solutions or numerical solutions of the numerical code of the Two-Dimensional Subsurface Flow, Fate and Transport of Microbes and Chemicals (2DFATMIC) in three verification examples. In these examples, the proposed solutions were well matched with previous analytical solutions and the numerical solutions obtained by 2DFATMIC model. A hypothetical single-well push-pull test example and a scale-dependent dispersion example were designed to demonstrate the practical application of the proposed solution to a real field problem.

  2. Tubular separate first wall for ITER-EDA

    International Nuclear Information System (INIS)

    Pizzuto, A.; Riccardi, B.; Salpietro, E.; Malavasi, G.

    1994-01-01

    The tubular solution first wall is the most suitable one to cope with the thermal stresses, the use of double wall reduces the risk of leaks inside the vacuum vessel by avoiding the growth of a crack through both walls: the soft brazing in between wall stops the growth of a crack from one tube to the other. The eddy currents induced in the tubes are low and the Halo current flowing poloidally in the tubes exert a radial pressure which is supported by the blanket box via ad hoc supporting points provided in between first wall and blanket. The tubes can be made of steel to resist a heat flux of up to 1 MW/m 2 . For higher heat loads copper or vanadium can be used. The tubular first wall can be replaced independently from the blanket. The thermo-hydraulic electro-magnetic and dynamic analysis confirm the viability of the solution proposed

  3. Template Synthesis of Tubular Nanostructures for Loading Biologically Active Molecules.

    Science.gov (United States)

    Karatas, Aysegul; Algan, Aslıhan Hilal

    2017-01-01

    The template synthesis is a low cost, simple and versatile nanofabrication method to produce cylindrical/tubular nanostructures with controllable dimensions such as length, diameter and aspect ratio. This method utilizes nanoporous membranes such as anodized aluminum oxide (AAO) or polycarbonate (PC) as templates which have nanosized specific, cylindrical and uniform inner pores to be coated with the desired material. Template synthesized nanotubular structures have been produced from variety of materials including ceramics, polymers and proteins for loading biologically active molecules. Available procedures of material deposition into the template nanopores consist of several techniques like wetting (melt or solution wetting), layer-by-layer (LbL) assembly and sol-gel chemistry. Template synthesis enables not only control of the geometry of the resulting nanostructures but also provides nanovehicles having separated inner and outer surfaces which can be variously functionalized. Tubular nanostructures fabricated by this method have numerous potential applications including delivery of biologically active molecules such as drugs, gene, enzymes and proteins. In this review we aimed to present up-to-date works on the template based synthesis which has greatly facilitated the fabrication of polymer and protein tubular nanostructures, principally. The strategies regarding the synthesis and designing of these promising tubular nanostructures together with recent approaches relevant of drug delivery was also presented. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Flow and solute transport in backfilled tunnel and collapsed backfill - possible extension of Comp32

    International Nuclear Information System (INIS)

    Neretnieks, Ivars

    2006-09-01

    In the Swedish deep geological final repository for spent fuel the tunnels will be filled with a backfill with low permeability. However, some flow may take place in the backfill. Nuclides released from a leaking canister could diffuse up to the flowing water in the backfill and be transported downstream in the tunnel. At an intersection of the tunnel with a fracture zone the contaminated water might flow out into the zone.This report addresses the transport mechanisms and rate of transport from a leaking canister up through the buffer and backfill in the deposition hole, further into the backfill in the tunnel and the transport along the tunnel. Spreading by diffusion in the buffer and backfill as well as retardation of sorbing nuclides is accounted for.The transport mechanisms and rates of transport are described and some simple models with analytical solutions are used to quantify the processes. These simple solutions are used to gain insights into when different transport mechanisms are important. The simple solutions are used to simulate a base case example where a non-sorbing nuclide (iodide) and a sorbing nuclide (radium) move in the backfill by diffusion and by advective flow. The simple sample calculations show that it would take thousands of years for iodide to move 20 m along the tunnel and that a release pulse would spread out considerably over time. The sorbing nuclide 226 Ra with a half life of 1,600 years would be strongly retarded by sorption and would decay to insignificance during its migration along the tunnel. The consequences of a collapse of backfill leaving a channel above the backfill is also studied by a simple analytical model that accounts for water flowing in the collapsed part of the backfill at the ceiling of the tunnel. A nuclide that diffuses up to the flowing channel will flow with the ('rapidly' flowing) water but will be retarded by diffusion down into the backfill again. This down diffusion retards the nuclide migration

  5. Finite medium Green's function solutions to nuclide transport in porous media

    International Nuclear Information System (INIS)

    Oston, S.G.

    1979-01-01

    Current analytical techniques for predicting the transport of nuclides in porous materials center on the Green's function approach - i.e., determining the response characteristics of a geologic pathway to an impulse function input. To data, the analyses all have set the boundary conditions needed to solve the 1-D transport equation as though each pathway were infinite in length. The purpose of this work is to critically examine the effect that this infinite pathway assumption has on Green's function models of nuclide transport in porous media. The work described herein has directly attacked the more difficult problem of obtaining suitable Green's functions for finite pathways whose dimensions, in fact, may not be much greater than the diffusion length. Two different finite media Green's functions describing the nuclide mass flux have been determined, depending on whether the pathway is terminated by a high or a low flow resistance at the outlet end. Pulse shapes and peak amplitudes have been computed for each Green's function over a wide range of geohydrologic parameters. These results have been compared to both infinite and semi-infinite medium solutions. It was found that predicted pulse shapes are quite sensitive to selection of a Green's function model for short pathways only. For long pathways all models tend toward a symmetric Gaussian flux-time history at the outlet. Thus, the results of our previous waste transport studies using the infinite pathway assumption are still generally valid because they always included at least one long pathway. It was also found that finite medium models offer some unique computational advantages for evaluating nuclide transport in a series of connecting pathways

  6. Transportation Problems in Special Education Programs in Rural Areas - A Specific Solution and Some Suggestions for Delivery System Development.

    Science.gov (United States)

    Brody, Z. H.

    The paper describes transportation problems encountered and solutions employed in delivering systems of comprehensive services to handicapped children in Anderson County, Tennessee, a predominantly rural area with considerable mountain area. Detailed are methods of transportation utilized in the four different program areas of the county special…

  7. Coupled Fluid, Energy, and Solute Transport (CFEST) model: Formulation and user's manual

    International Nuclear Information System (INIS)

    Gupta, S.K.; Cole, C.R.; Kincaid, C.T.; Monti, A.M.

    1987-10-01

    The CFEST (Coupled Fluid, Energy, and Solute Transport) code has been developed to analyze coupled hydrologic, thermal, and solute transport processes. It treats single-pahse Darcy ground-water flow in a horizontal or vertical plane, or in fully three-dimensional space under nonisothermal conditions. The code has the capability to model discontinuous and continuous layering, time-dependent and constant sources/sinks, and transient as well as steady-stae ground-water flow. The code offers a wide choice of boundary conditions such as precsribed heads, nodal injection or withdrawal, constant or spatially varying infiltration rates, and welemental source/sink. Initial conditions for the flow analysis can be prescribed pressure or hydraulic head. The heterogeneity in aquifer permeability and porosity can be described by geologic unit or explicity for given elements. Three-dimensional elelments are generated from user-defined well logs at each surface node. To facilitate interaction between disciplines, support programs are provided to plot the finite element grid, well logs, contour maps of input and output parameters, and vertical cross sections. Ground-water travel paths and times and volumetric rates from a specified point can be determined from support programs. This report includes governing partial differential equations, finite element formulation, a use's manual, verification test examples, sample problems, and source listings. 36 refs., 121 figs., 36 tabs

  8. An Integrated Numerical Hydrodynamic Shallow Flow-Solute Transport Model for Urban Area

    Science.gov (United States)

    Alias, N. A.; Mohd Sidek, L.

    2016-03-01

    The rapidly changing on land profiles in the some urban areas in Malaysia led to the increasing of flood risk. Extensive developments on densely populated area and urbanization worsen the flood scenario. An early warning system is really important and the popular method is by numerically simulating the river and flood flows. There are lots of two-dimensional (2D) flood model predicting the flood level but in some circumstances, still it is difficult to resolve the river reach in a 2D manner. A systematic early warning system requires a precisely prediction of flow depth. Hence a reliable one-dimensional (1D) model that provides accurate description of the flow is essential. Research also aims to resolve some of raised issues such as the fate of pollutant in river reach by developing the integrated hydrodynamic shallow flow-solute transport model. Presented in this paper are results on flow prediction for Sungai Penchala and the convection-diffusion of solute transports simulated by the developed model.

  9. Arbitrary quadrature: its application in the solution of one-dimensional, planar neutron transport problems

    International Nuclear Information System (INIS)

    Sanchez, J.

    2010-10-01

    A standard numerical procedure for the solution of singular integral equations is applied to the one-dimensional transport equation for monoenergetic neutrons. As is usual in quadrature methods, the procedure yields an Eigen system whose solution provide, for the critical slab, both the eigenvalue which is proportional to the number of secondary neutrons per collision, and the density as a function of position. The results obtained with two versions of the procedure, differing only in the extent of the basic region to which they are applied, are compared with analytically derived results available for benchmarking. The procedures considered yield consistent results for the calculated neutron densities and eigenvalues. Since the one-dimensional transport kernel and its spatial moments are integrable and their integrals can be put in terms of exponential integral functions, the resulting approximations to the neutron density yield somewhat lengthy but closed, forms. These approximate expressions of the neutron density can be used to render, after they are operated on, closed-form formulas for build-up factors, extrapolation distances or angular densities or employed for other purposes that require an analytical expression of the neutron density. As an example of this latter capability, the results of the calculation of the angular density at the surface of the slab are provided. (Author)

  10. Generic Procedure for Coupling the PHREEQC Geochemical Modeling Framework with Flow and Solute Transport Simulators

    Science.gov (United States)

    Wissmeier, L. C.; Barry, D. A.

    2009-12-01

    Computer simulations of water availability and quality play an important role in state-of-the-art water resources management. However, many of the most utilized software programs focus either on physical flow and transport phenomena (e.g., MODFLOW, MT3DMS, FEFLOW, HYDRUS) or on geochemical reactions (e.g., MINTEQ, PHREEQC, CHESS, ORCHESTRA). In recent years, several couplings between both genres of programs evolved in order to consider interactions between flow and biogeochemical reactivity (e.g., HP1, PHWAT). Software coupling procedures can be categorized as ‘close couplings’, where programs pass information via the memory stack at runtime, and ‘remote couplings’, where the information is exchanged at each time step via input/output files. The former generally involves modifications of software codes and therefore expert programming skills are required. We present a generic recipe for remotely coupling the PHREEQC geochemical modeling framework and flow and solute transport (FST) simulators. The iterative scheme relies on operator splitting with continuous re-initialization of PHREEQC and the FST of choice at each time step. Since PHREEQC calculates the geochemistry of aqueous solutions in contact with soil minerals, the procedure is primarily designed for couplings to FST’s for liquid phase flow in natural environments. It requires the accessibility of initial conditions and numerical parameters such as time and space discretization in the input text file for the FST and control of the FST via commands to the operating system (batch on Windows; bash/shell on Unix/Linux). The coupling procedure is based on PHREEQC’s capability to save the state of a simulation with all solid, liquid and gaseous species as a PHREEQC input file by making use of the dump file option in the TRANSPORT keyword. The output from one reaction calculation step is therefore reused as input for the following reaction step where changes in element amounts due to advection

  11. How ISCO Can Interfere in Soil Pore Distribution and Solute Transport

    Science.gov (United States)

    Favero, M.; Freitas, J. G.; Furquim, S. A. C.; Thomson, N. R.; Cooper, M.

    2016-12-01

    Recently in situ chemical oxidation (ISCO) has been a remedy of choice for sites contaminated with organic compounds. However, the impact of the chemical oxidant on soil properties and, therefore, on solute transport and remediation efficiency still lacks understanding. This research effort sought to evaluate the changes in soil physical properties and solute transport behavior in a typical tropical soil (Oxisol) resulting from exposure to persulfate. The Oxisol used had a microaggregate structure, resulting in a relatively high hydraulic conductivity despite the high clay content (67%). One-dimensional laboratory experiments were performed using a saturated undisturbed column. The injection of an ideal tracer (bromide), a reactive tracer (phenol) and persulfate (12 ± 1 gL-1 for 30 d) were performed consecutively. The tracer tests were repeated following persulfate injection. Transport parameters (longitudinal dispersivity: αL and retardation factor: R) and the effective porosity (ne) were obtained by fitting the breakthrough curves with an analytical solution for one-dimensional transport. Micromorphological analyses of porosity were conducted on impregnated soil blocks from control and oxidized systems. The bromide and phenol tracer test data yielded αL of 2.431 ± 0.002 cm, ne of 41.99 ± 1.52 %, R of 1.10, and a first-order decay rate coefficient of 6.5x10-5 min-1 prior to persulfate exposure. The effluent persulfate concentration stabilized at C/Co of 0.8 after 4 d of injection and the breakthrough was delayed relative to bromide. Concurrent with the breakthrough of persulfate, the pH decreased and a progressive release of Al (III) over the first 4 d with subsequent stabilization were observed. Following persulfate exposures the hydraulic conductivity increased about one-order of magnitude. Micromorphological analysis showed that persulfate produced alterations in poroids types, with an increase of complex packing voids. It was verified that persulfate

  12. A study on the adsorption and subsurface transport of radioactive solutes in the presence of chelating agents

    International Nuclear Information System (INIS)

    Baik, Min Hoon

    1994-02-01

    In this study, adsorption and transport models were developed to analyze the effect of chelating agents on the adsorption and subsurface transport of radioactive solutes. The effect of chelating agents on the adsorption of radioactive solutes was analyzed by developing an adsorption model based upon the extended concept of distribution coefficient reflecting the presence of chelating agents. Also, a batch adsorption experiment was conducted in order to validate the developed adsorption model and to investigate the effect of chelating agent on the adsorption of radioactive metal solutes. In this experiment, a Cobalt(II)/EDTA/Bentonite system was considered as a representative chelation/adsorption system. It was found from the results that the presence of chelating agents significantly reduced the adsorbing capacity of geologic media such as clay minerals and soils. Thus it was concluded that the presence of chelating agents even in a small amount could contribute to the mobilization of radioactive solutes from radioactive waste burial sites by reducing the adsorbing capacity of geologic media. The effect of chelating agents on the transport of radioactive solutes in subsurface porous media was analyzed by formulating an advective-dispersive transport model which incorporated chelate formation, adsorption, decay, and degradations and by introducing the concept of a tenad. Particularly the governing equation for the tenad of radioactive solutes, M, was presented as a linear partial differential form by introducing the extended distribution coefficient, K D . The calculated results from the model showed that the transport rate of the chelated radionuclides was much greater than that of the free ionic radionuclides. This much faster transport of the chelated radionuclides was found to be due to the lower retardation factor of the chelated radionuclides than the free ionic radionuclides. The effect of parameters on the transport of radioactive solutes was also analyzed

  13. Solution approach for a large scale personnel transport system for a large company in Latin America

    Directory of Open Access Journals (Sweden)

    Eduardo-Arturo Garzón-Garnica

    2017-10-01

    Full Text Available Purpose: The present paper focuses on the modelling and solution of a large-scale personnel transportation system in Mexico where many routes and vehicles are currently used to service 525 points. The routing system proposed can be applied to many cities in the Latin-American region. Design/methodology/approach: This system was modelled as a VRP model considering the use of real-world transit times, and the fact that routes start at the farthest point from the destination center. Experiments were performed on different sized sets of service points. As the size of the instances was increased, the performance of the heuristic method was assessed in comparison with the results of an exact algorithm, the results remaining very close between both.  When the size of the instance was full-scale and the exact algorithm took too much time to solve the problem, then the heuristic algorithm provided a feasible solution. Supported by the validation with smaller scale instances, where the difference between both solutions was close to a 6%, the full –scale solution obtained with the heuristic algorithm was considered to be within that same range. Findings: The proposed modelling and solving method provided a solution that would produce significant savings in the daily operation of the routes. Originality/value: The urban distribution of the cities in Latin America is unique to other regions in the world. The general layout of the large cities in this region includes a small town center, usually antique, and a somewhat disordered outer region. The lack of a vehicle-centered urban planning poses distinct challenges for vehicle routing problems in the region. The use of a heuristic VRP combined with the results of an exact VRP, allowed the obtention of an improved routing plan specific to the requirements of the region.

  14. Solution approach for a large scale personnel transport system for a large company in Latin America

    Energy Technology Data Exchange (ETDEWEB)

    Garzón-Garnica, Eduardo-Arturo; Caballero-Morales, Santiago-Omar; Martínez-Flores, José-Luis

    2017-07-01

    The present paper focuses on the modelling and solution of a large-scale personnel transportation system in Mexico where many routes and vehicles are currently used to service 525 points. The routing system proposed can be applied to many cities in the Latin-American region. Design/methodology/approach: This system was modelled as a VRP model considering the use of real-world transit times, and the fact that routes start at the farthest point from the destination center. Experiments were performed on different sized sets of service points. As the size of the instances was increased, the performance of the heuristic method was assessed in comparison with the results of an exact algorithm, the results remaining very close between both. When the size of the instance was full-scale and the exact algorithm took too much time to solve the problem, then the heuristic algorithm provided a feasible solution. Supported by the validation with smaller scale instances, where the difference between both solutions was close to a 6%, the full –scale solution obtained with the heuristic algorithm was considered to be within that same range. Findings: The proposed modelling and solving method provided a solution that would produce significant savings in the daily operation of the routes. Originality/value: The urban distribution of the cities in Latin America is unique to other regions in the world. The general layout of the large cities in this region includes a small town center, usually antique, and a somewhat disordered outer region. The lack of a vehicle-centered urban planning poses distinct challenges for vehicle routing problems in the region. The use of a heuristic VRP combined with the results of an exact VRP, allowed the obtention of an improved routing plan specific to the requirements of the region.

  15. Solution approach for a large scale personnel transport system for a large company in Latin America

    International Nuclear Information System (INIS)

    Garzón-Garnica, Eduardo-Arturo; Caballero-Morales, Santiago-Omar; Martínez-Flores, José-Luis

    2017-01-01

    The present paper focuses on the modelling and solution of a large-scale personnel transportation system in Mexico where many routes and vehicles are currently used to service 525 points. The routing system proposed can be applied to many cities in the Latin-American region. Design/methodology/approach: This system was modelled as a VRP model considering the use of real-world transit times, and the fact that routes start at the farthest point from the destination center. Experiments were performed on different sized sets of service points. As the size of the instances was increased, the performance of the heuristic method was assessed in comparison with the results of an exact algorithm, the results remaining very close between both. When the size of the instance was full-scale and the exact algorithm took too much time to solve the problem, then the heuristic algorithm provided a feasible solution. Supported by the validation with smaller scale instances, where the difference between both solutions was close to a 6%, the full –scale solution obtained with the heuristic algorithm was considered to be within that same range. Findings: The proposed modelling and solving method provided a solution that would produce significant savings in the daily operation of the routes. Originality/value: The urban distribution of the cities in Latin America is unique to other regions in the world. The general layout of the large cities in this region includes a small town center, usually antique, and a somewhat disordered outer region. The lack of a vehicle-centered urban planning poses distinct challenges for vehicle routing problems in the region. The use of a heuristic VRP combined with the results of an exact VRP, allowed the obtention of an improved routing plan specific to the requirements of the region.

  16. KCNQ1, KCNE2, and Na+-coupled solute transporters form reciprocally regulating complexes that affect neuronal excitability.

    Science.gov (United States)

    Abbott, Geoffrey W; Tai, Kwok-Keung; Neverisky, Daniel L; Hansler, Alex; Hu, Zhaoyang; Roepke, Torsten K; Lerner, Daniel J; Chen, Qiuying; Liu, Li; Zupan, Bojana; Toth, Miklos; Haynes, Robin; Huang, Xiaoping; Demirbas, Didem; Buccafusca, Roberto; Gross, Steven S; Kanda, Vikram A; Berry, Gerard T

    2014-03-04

    Na(+)-coupled solute transport is crucial for the uptake of nutrients and metabolic precursors, such as myo-inositol, an important osmolyte and precursor for various cell signaling molecules. We found that various solute transporters and potassium channel subunits formed complexes and reciprocally regulated each other in vitro and in vivo. Global metabolite profiling revealed that mice lacking KCNE2, a K(+) channel β subunit, showed a reduction in myo-inositol concentration in cerebrospinal fluid (CSF) but not in serum. Increased behavioral responsiveness to stress and seizure susceptibility in Kcne2(-/-) mice were alleviated by injections of myo-inositol. Suspecting a defect in myo-inositol transport, we found that KCNE2 and KCNQ1, a voltage-gated potassium channel α subunit, colocalized and coimmunoprecipitated with SMIT1, a Na(+)-coupled myo-inositol transporter, in the choroid plexus epithelium. Heterologous coexpression demonstrated that myo-inositol transport by SMIT1 was augmented by coexpression of KCNQ1 but was inhibited by coexpression of both KCNQ1 and KCNE2, which form a constitutively active, heteromeric K(+) channel. SMIT1 and the related transporter SMIT2 were also inhibited by a constitutively active mutant form of KCNQ1. The activities of KCNQ1 and KCNQ1-KCNE2 were augmented by SMIT1 and the glucose transporter SGLT1 but were suppressed by SMIT2. Channel-transporter signaling complexes may be a widespread mechanism to facilitate solute transport and electrochemical crosstalk.

  17. Modelling The Transport Of Solutes And Colloids In The Grimsel Migration Shear Zone

    Energy Technology Data Exchange (ETDEWEB)

    Kosakowski, G.; Smith, P

    2005-02-01

    This report describes modelling of the transport of solutes and colloids in an experimental system comprising an artificial dipole flow field in a water-conducting shear zone at Nagra's Grimsel Test Site (GTS) in the central Swiss Alps. The modelling work forms part of the Colloid and Radionuclide Retardation Project (CRR), which includes a series of field transport experiments and a supporting laboratory programme, as well as modelling studies. Four independent groups representing different organisations or research institutes have conducted the modelling, with each group employing its own modelling approach or approaches. Only the work conducted at the Paul Scherrer Institute (PSI) is described in the present report. The modelling approaches used in the present study may not be directly applicable to safety assessment problems and the direct implications of the results of this study for safety assessment are limited. It can, however, be said that the study has demonstrated the high degree of mobility of bentonite and other colloids in a system that is at least in some ways comparable to those of interest in safety assessment, and has shown that bentonite colloids can at least potentially affect the transport of some safety relevant radionuclides over longer temporal and spatial scales than those addressed here. (author)

  18. All-solution-processed inverted organic solar cell with a stacked hole-transporting layer

    Science.gov (United States)

    Lin, Wen-Kai; Su, Shui-Hsiang; Liu, Che-Chun; Yokoyama, Meiso

    2014-11-01

    In this study, inverted organic solar cells (IOSCs) have been fabricated and characterized. A sol-gel zinc oxide (ZnO) film is used as a hole-blocking layer (HBL). Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and copper phthalocyanine (CuPc) are used as a hole-transporting layer (HTL). The HBL, active layer, and HTL films are fabricated by spin-coating technique. The anode is fabricated from Ag nanoparticles by drop titration using a Pasteur burette. Experimental results show that the PEDOT:PSS/CuPc stacked HTL provides a stepwise hole-transporting energy diagram configuration, which subsequently increases the charge carrier transporting capability and extracts holes from the active layer to the anode. The characteristics of the IOSCs were optimized and exhibited an open-circuit voltage (Voc), short-circuit current density (Jsc), fill factor (FF), and power conversion efficiency (PCE) of 0.53 V, 6.13 mA/cm2, 37.53%, and 1.24%, respectively, under simulated AM1.5G illumination of 100 mW/cm2. Hence, a solution process is feasible for fabricating low-cost and large-area solar energy devices.

  19. Geomorphic and substrate controls on spatial variability in river solute transport and biogeochemical cycling

    Science.gov (United States)

    Blaen, Phillip; Kurz, Marie; Knapp, Julia; Mendoza-Lera, Clara; Lee-Cullin, Joe; Klaar, Megan; Drummond, Jen; Jaeger, Anna; Zarnetske, Jay; Lewandowski, Joerg; Marti, Eugenia; Ward, Adam; Fleckenstein, Jan; Datry, Thibault; Larned, Scott; Krause, Stefan

    2016-04-01

    Nutrient concentrations in surface waters and groundwaters are increasing in many agricultural catchments worldwide as a result of anthropogenic activities. Increasing geomorphological heterogeneity in river channels may help to attenuate nutrient pollution by facilitating water exchange fluxes with the hyporheic zone; a site of intense microbial activity where biogeochemical transformation rates (e.g. denitrification) can be high. However, the controls on spatial variability in biogeochemical cycling, particularly at scales relevant for river managers, are not well understood. Here, we aimed to assess: 1) how differences in geomorphological heterogeneity control river solute transport and rates of biogeochemical cycling at sub-reach scales (102 m); and 2) the relative magnitude of these differences versus those relating to reach scale substrate variability (103 m). We used the reactive 'smart' tracer resazurin (Raz), a weakly fluorescent dye that transforms to highly fluorescent resorufin (Rru) under mildly reducing conditions, as a proxy to assess rates of biogeochemical cycling in a lowland river in southern England. Solute tracer tests were conducted in two reaches with contrasting substrates: one sand-dominated and the other gravel-dominated. Each reach was divided into sub-reaches that varied in geomorphic complexity (e.g. by the presence of pool-riffle sequences or the abundance of large woody debris). Slug injections of Raz and the conservative tracer fluorescein were conducted in each reach during baseflow conditions (Q ≈ 80 L/s) and breakthrough curves monitored using in-situ fluorometers. Preliminary results indicate overall Raz:Rru transformation rates in the gravel-dominated reach were more than 50% higher than those in the sand-dominated reach. However, high sub-reach variability in Raz:Rru transformation rates and conservative solute transport parameters suggests small-scale targeted management interventions to alter geomorphic heterogeneity may be

  20. Dopamine transporter SPECT imaging of the peroral addicts of compound codeine phosphate solution

    International Nuclear Information System (INIS)

    Sun Taotao; Hu Shu; Jia Shaowei; Chen Qing; Fan Rong

    2010-01-01

    Objective: To study the damage to striatum in patients perorally addicted to compound codeine phosphate solution by using the brain dopamine transporter SPECT imaging. Methods: Patients perorally addicted to compound codeine phosphate solution (n = 29) and addicted to heroin (n = 27), as well as healthy volunteers (n = 31) were included in the study. Each of them underwent dopamine transporter (DAT) SPECT imaging with 99 Tc m -2β-[N, N'-bis-( 2- mercaptoethyl ) ethylenediamino] methyl, 3β-(4-chlorophenyl)tropane ( 99 Tc m -TRODAT-1). The striatum volume (V, cm 3 ), mass (m, g) and radioactivity ratio (Ra) of striatum to whole brain were calculated using physio-mathematical modeling method. Results: Bilateral striatum of healthy volunteers showed typical 'panda eyes' pattern and the distribution of DAT was uniform and symmetrical. Bilateral striatum of patients addicted to compound codeine phosphate showed impaired tracer uptake, similar to those addicted to heroin. The V, m and Ra of bilateral striatum of patients addicted to compound codeine phosphate were (23.68±4.94) cm 3 , (24.87±5.19) g and (5.01±0.88) %, respectively, which were significantly lower than those of healthy controls: (35.39 ±4.42) cm 3 ,(37.16±4.64) g and (7.93±0.86)% (t =-9.69, -9.69, - 13.01, all P =0.000), but significantly higher than those addicted to heroin: (18.87±4.66) cm 3 , (19.81±4.90) g and (4.26±1.02) % (t =3.74, 3.74, 2.96, P = 0.000, 0.000, 0.005). Conclusion: Long-term peroral intake of compound codeine phosphate solution may damage the function of cerebral striatum, which is someway similar to though less severe than, the impairment caused by heroin. (authors)

  1. Water flow and multicomponent solute transport in drip-irrigated lysimeters

    Science.gov (United States)

    Raij, Iael; Šimůnek, Jiří; Ben-Gal, Alon; Lazarovitch, Naftali

    2016-08-01

    Controlled experiments and modeling are crucial components in the evaluation of the fate of water and solutes in environmental and agricultural research. Lysimeters are commonly used to determine water and solute balances and assist in making sustainable decisions with respect to soil reclamation, fertilization, or irrigation with low-quality water. While models are cost-effective tools for estimating and preventing environmental damage by agricultural activities, their value is highly dependent on the accuracy of their parameterization, often determined by calibration. The main objective of this study was to use measured major ion concentrations collected from drip-irrigated lysimeters to calibrate the variably saturated water flow model HYDRUS (2D/3D) coupled with the reactive transport model UNSATCHEM. Irrigation alternated between desalinated and brackish waters. Lysimeter drainage and soil solution samples were collected for chemical analysis and used to calibrate the model. A second objective was to demonstrate the potential use of the calibrated model to evaluate lower boundary design options of lysimeters with respect to leaching fractions determined using drainage water fluxes, chloride concentrations, and overall salinity of drainage water, and exchangeable sodium percentage (ESP) in the profile. The model showed that, in the long term, leaching fractions calculated with electrical conductivity values would be affected by the lower boundary condition pressure head, while those calculated with chloride concentrations and water fluxes would not be affected. In addition, clear dissimilarities in ESP profiles were found between lysimeters with different lower boundary conditions, suggesting a potential influence on hydraulic conductivities and flow patterns.

  2. The next generation in optical transport semiconductors: IC solutions at the system level

    Science.gov (United States)

    Gomatam, Badri N.

    2005-02-01

    In this tutorial overview, we survey some of the challenging problems facing Optical Transport and their solutions using new semiconductor-based technologies. Advances in 0.13um CMOS, SiGe/HBT and InP/HBT IC process technologies and mixed-signal design strategies are the fundamental breakthroughs that have made these solutions possible. In combination with innovative packaging and transponder/transceiver architectures IC approaches have clearly demonstrated enhanced optical link budgets with simultaneously lower (perhaps the lowest to date) cost and manufacturability tradeoffs. This paper will describe: *Electronic Dispersion Compensation broadly viewed as the overcoming of dispersion based limits to OC-192 links and extending link budgets, *Error Control/Coding also known as Forward Error Correction (FEC), *Adaptive Receivers for signal quality monitoring for real-time estimation of Q/OSNR, eye-pattern, signal BER and related temporal statistics (such as jitter). We will discuss the theoretical underpinnings of these receiver and transmitter architectures, provide examples of system performance and conclude with general market trends. These Physical layer IC solutions represent a fundamental new toolbox of options for equipment designers in addressing systems level problems. With unmatched cost and yield/performance tradeoffs, it is expected that IC approaches will provide significant flexibility in turn, for carriers and service providers who must ultimately manage the network and assure acceptable quality of service under stringent cost constraints.

  3. A Solution Methodology and Computer Program to Efficiently Model Thermodynamic and Transport Coefficients of Mixtures

    Science.gov (United States)

    Ferlemann, Paul G.

    2000-01-01

    A solution methodology has been developed to efficiently model multi-specie, chemically frozen, thermally perfect gas mixtures. The method relies on the ability to generate a single (composite) set of thermodynamic and transport coefficients prior to beginning a CFD solution. While not fundamentally a new concept, many applied CFD users are not aware of this capability nor have a mechanism to easily and confidently generate new coefficients. A database of individual specie property coefficients has been created for 48 species. The seven coefficient form of the thermodynamic functions is currently used rather then the ten coefficient form due to the similarity of the calculated properties, low temperature behavior and reduced CPU requirements. Sutherland laminar viscosity and thermal conductivity coefficients were computed in a consistent manner from available reference curves. A computer program has been written to provide CFD users with a convenient method to generate composite specie coefficients for any mixture. Mach 7 forebody/inlet calculations demonstrated nearly equivalent results and significant CPU time savings compared to a multi-specie solution approach. Results from high-speed combustor analysis also illustrate the ability to model inert test gas contaminants without additional computational expense.

  4. Solute and colloid transport in karst conduits under low- and high-flow conditions.

    Science.gov (United States)

    Göppert, Nadine; Goldscheider, Nico

    2008-01-01

    Solute and colloid transport in karst aquifers under low and high flows was investigated by tracer tests using fluorescent dyes (uranine) and microspheres of the size of pathogenic bacteria (1 microm) and Cryptosporidium cysts (5 microm), which were injected into a cave stream and sampled at a spring 2.5 km away. The two types of microspheres were analyzed using an epifluorescence microscope or a novel fluorescence particle counter, respectively. Uranine breakthrough curves (BTCs) were regular shaped and recovery approached 100%. Microsphere recoveries ranged between 27% and 75%. During low flow, the 1-microm spheres displayed an irregular BTC preceding the uranine peak. Only a very few 5-microm spheres were recovered. During high flow, the 1-microm-sphere BTC was regular and more similar to the uranine curve. BTCs were modeled analytically with CXTFIT using a conventional advection dispersion model (ADM) and a two-region nonequilibrium model (2RNE). The results show that (1) colloids travel at higher velocities than solutes during low flow; (2) colloids and solutes travel at similar velocities during high flow; (3) higher maximum concentrations occur during high flow; and (4) the 2RNE achieves a better fit, while the ADM is more robust, as it requires less parameters.

  5. Reactive transport in a partially molten system with binary solid solution

    Science.gov (United States)

    Jordan, J.; Hesse, M. A.

    2017-12-01

    Melt extraction from the Earth's mantle through high-porosity channels is required to explain the composition of the oceanic crust. Feedbacks from reactive melt transport are thought to localize melt into a network of high-porosity channels. Recent studies invoke lithological heterogeneities in the Earth's mantle to seed the localization of partial melts. Therefore, it is necessary to understand the reaction fronts that form as melt flows across the lithological interface of a heterogeneity and the background mantle. Simplified melting models of such systems aide in the interpretation and formulation of larger scale mantle models. Motivated by the aforementioned facts, we present a chromatographic analysis of reactive melt transport across lithological boundaries, using theory for hyperbolic conservation laws. This is an extension of well-known linear trace element chromatography to the coupling of major elements and energy transport. Our analysis allows the prediction of the feedbacks that arise in reactive melt transport due to melting, freezing, dissolution and precipitation for frontal reactions. This study considers the simplified case of a rigid, partially molten porous medium with binary solid solution. As melt traverses a lithological contact-modeled as a Riemann problem-a rich set of features arise, including a reacted zone between an advancing reaction front and partial chemical preservation of the initial contact. Reactive instabilities observed in this study originate at the lithological interface rather than along a chemical gradient as in most studies of mantle dynamics. We present a regime diagram that predicts where reaction fronts become unstable, thereby allowing melt localization into high-porosity channels through reactive instabilities. After constructing the regime diagram, we test the one-dimensional hyperbolic theory against two-dimensional numerical experiments. The one-dimensional hyperbolic theory is sufficient for predicting the

  6. Numerical solution of neutron transport equations in discrete ordinates and slab geometry

    International Nuclear Information System (INIS)

    Serrano Pedraza, F.

    1985-01-01

    An unified formalism to solve numerically, between other equation, the neutron transport in discrete ordinates, slab geometry, several energy groups and independents of time, has been developed recently. Such a formalism cover some of the conventional schemes as diamond difference, (WDD) characteristic step (SC) lineal characteristic (LC), quadratic characteristic (QC) and lineal discontinuous. Unified formation gives before hand the convergence order of the previously selected scheme. In fact it allows besides to generate a big amount of numerical schemes, with which is also possible to solve numerical equations as soon as neutron transport. The essential purpose of this work was to solve the neutron transport equations in slab geometry and discrete ordinates considering several energy groups without to take under advisement time dependence based in the above mentioned unified formalism. To reach this purpose it was necesary to design a computer code with the name TNOD1 (Neutron transport in discrete ordinates and 1 dimension) which includes each one of the schemes already pointed out. there exist two numerical schemes, also recently developed, quadratic continuous (QC) and cubic continuous (CN), although covered by unified formalism, it has been possible to include them inside this computer code without make substantial changes in its structure. In chapter I, derivative of neutron transport equation independent of time is taken, for angular flux, including boundary conditions and discontinuity. In chapter II the neutron transport equations are obtained in multigroups, independents of time, for approximation of discrete ordinates. Description of theory related with unified formalism and its relationship with mentioned discretization schemes is presented in chapter III. Chapter IV describes the computer code developed and finally, in chapter V different numerical results obtained with TNOD1 program are shown. In Appendix A theorems and mathematical arguments used

  7. Solution of the linearly anisotropic neutron transport problem in a infinite cylinder combining the decomposition and HTSN methods

    International Nuclear Information System (INIS)

    Goncalves, Glenio A.; Bodmann, Bardo; Bogado, Sergio; Vilhena, Marco T.

    2008-01-01

    Analytical solutions for neutron transport in cylindrical geometry is available for isotropic problems, but to the best of our knowledge for anisotropic problems are not available, yet. In this work, an analytical solution for the neutron transport equation in an infinite cylinder assuming anisotropic scattering is reported. Here we specialize the solution, without loss of generality, for the linearly anisotropic problem using the combined decomposition and HTS N methods. The key feature of this method consists in the application of the decomposition method to the anisotropic problem by virtue of the fact that the inverse of the operator associated to isotropic problem is well know and determined by the HTS N approach. So far, following the idea of the decomposition method, we apply this operator to the integral term, assuming that the angular flux appearing in the integrand is considered to be equal to the HTS N solution interpolated by polynomial considering only even powers. This leads to the first approximation for an anisotropic solution. Proceeding further, we replace this solution for the angular flux in the integral and apply again the inverse operator for the isotropic problem in the integral term and obtain a new approximation for the angular flux. This iterative procedure yields a closed form solution for the angular flux. This methodology can be generalized, in a straightforward manner, for transport problems with any degree of anisotropy. For the sake of illustration, we report numerical simulations for linearly anisotropic transport problems. (author)

  8. Modified tubularized incised plate urethroplasty

    Directory of Open Access Journals (Sweden)

    Shivaji Mane

    2013-01-01

    Full Text Available Aim: To share our experience of doing tubularized incised plate urethroplasty with modifications. Materials and Methods: This is a single surgeon personal series from 2004 to 2009. One hundred patients of distal hypospadias were subjected for Snodgrass urethroplasty with preputioplasty. The age range was 1 to 5 year with mean age of 2.7 years. Selection criteria were good urethral plate, without chordee and torsion needing complete degloving. Main technical modification from original Snodgrass procedure was spongioplasty, preputioplasty, and dorsal slit when inability to retract prepuce during surgery. Results: Average follow-up period is 23 months. Seven (7% patients developed fistula and one patient had complete preputial dehiscence. Phimosis developed in three (3% patients and required circumcision. Dorsal slit was required in seven patients. One patient developed meatal stenosis in postoperative period. All other patients are passing single urinary stream and have cosmesis that is acceptable. Conclusions: Modified tubularized incised plate urethroplasty with preputioplasty effectively gives cosmetically normal looking penis with low complications.

  9. Coupling Solute and Fine Particle Transport with Sand Bed Morphodynamics within a Field Experiment

    Science.gov (United States)

    Phillips, C. B.; Ortiz, C. P.; Schumer, R.; Jerolmack, D. J.; Packman, A. I.

    2017-12-01

    Fine suspended particles are typically considered to pass through streams and rivers as wash load without interacting with the bed, however experiments have demonstrated that hyporheic flow causes advective exchange of fine particles with the stream bed, yielding accumulation of fine particle deposits within the bed. Ultimately, understanding river morphodynamics and ecosystem dynamics requires coupling both fine particle and solute transport with bed morphodynamics. To better understand the coupling between these processes we analyze a novel dataset from a controlled field experiment conducted on Clear Run, a 2nd order sand bed stream located within the North Carolina coastal plain. Data include concentrations of continuously injected conservative solutes and fine particulate tracers measured at various depths within the stream bed, overhead time lapse images of bed forms, stream discharge, and geomorphological surveys of the stream. We use image analysis of bed morphodynamics to assess exchange, retention, and remobilization of solutes and fine particles during constant discharge and a short duration experimental flood. From the images, we extract a time series of bedform elevations and scour depths for the duration of the experiment. The high-resolution timeseries of bed elevation enables us to assess coupling of bed morphodynamics with both the solute and fine particle flux during steady state mobile bedforms prior to the flood and to changing bedforms during the flood. These data allow the application of a stochastic modeling framework relating bed elevation fluctuations to fine particle residence times. This combined experimental and modeling approach ultimately informs our ability to predict not only the fate of fine particulate matter but also associated nutrient and carbon dynamics within streams and rivers.

  10. Luminous effectiveness of tubular light-guides in tropics

    Energy Technology Data Exchange (ETDEWEB)

    Darula, Stanislav; Kittler, Richard; Kocifaj, Miroslav [ICA, Slovak Academy of Sciences, 9, Dubravska Road, 845 03 Bratislava (Slovakia)

    2010-11-15

    Novel tubular light-guides with a transparent hemispherical cupola placed on an unobstructed flat roof collect all sunlight and skylight available at ground level year round. This advantage is heightened in the dry and sunny tropical regions where the sun rises to very high altitudes and often the hours of sunshine last throughout the whole day. Hollow light-guides with very high inner specular reflectances can transport sunbeams downward into the windowless building core very effectively. Due to the tube's diameter and length and multiple reflections, complex illuminance patterns are produced on the underside of the tube, i.e. on top of the glazed ceiling aperture that illuminates the interior space or its working plane. This paper discusses several daylight conditions in tropical interiors illuminated by tubular light-guides. The recently published HOLIGILM calculation program and the user-friendly tool HOLIGILM 4.2 have facilitated the production of this paper. (author)

  11. Smart Energy Systems for coherent 100% renewable energy and transport solutions

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik; Conolly, David

    2015-01-01

    , significant focus is put on the electricity sector alone to solve the renewable energy integration puzzle. Smart grid research traditionally focuses on ICT, smart meters, electricity storage technologies, and local (electric) smart grids. In contrast, the Smart Energy System focuses on merging the electricity......The hypothesis of this paper is that in order to identify least cost solutions of the integration of fluctuating renewable energy sources into current or future 100% renewable energy supplies one has to take a Smart Energy Systems approach. This paper outline why and how to do so. Traditionally......, heating and transport sectors, in combination with various intra-hour, hourly, daily, seasonal and biannual storage options, to create the flexibility necessary to integrate large penetrations of fluctuating renewable energy. However, in this paper we present the development and design of coherent Smart...

  12. Cumulant solution of the elastic Boltzmann transport equation in an infinite uniform medium

    International Nuclear Information System (INIS)

    Cai, W.; Lax, M.; Alfano, R. R.

    2000-01-01

    We consider an analytical solution of the time-dependent elastic Boltzmann transport equation in an infinite uniform isotropic medium with an arbitrary phase function. We obtain (1) the exact distribution in angle, (2) the exact first and second spatial cumulants at any angle, and (3) an approximate combined distribution in position and angle and a spatial distribution whose central position and half-width of spread are always exact. The resulting Gaussian distribution has a center that advances in time, and an ellipsoidal contour that grows and changes shape providing a clear picture of the time evolution of the particle migration from near ballistic, through snakelike and into the final diffusive regime. (c) 2000 The American Physical Society

  13. Quadrature with arbitrary weight for the numerical solution of the critical slab Neutron Transport Equation

    International Nuclear Information System (INIS)

    Sanchez G, J.

    2007-01-01

    A standard procedure for the solution of singular integral equations is applied to the one-dimensional transport equation for monoenergetic neutrons. The results obtained with two versions of the procedure, differing only in the extent of the basic region to which they are applied, are compared with analytically derived results available for benchmarking. The procedures considered yield consistent results for the calculated neutron densities and eigenvalues. Several approximate expressions of the neutron density are used to render closed-form formulas for the densities which can then be analytically operated on to obtain expressions for extrapolation distances or angular densities or serve other purposes that require an analytical expression of the neutron density. (Author)

  14. One-dimensional transport: A simple and exact solution for phase disorder

    Science.gov (United States)

    Ng, Hui Khoon; Englert, Berthold-Georg

    2013-08-01

    Disordered systems have grown in importance in the past decades, with similar phenomena manifesting themselves in many different physical systems. Because of the difficulty of the topic, theoretical progress has mostly emerged from numerical studies or analytical approximations. Here, we provide an exact, analytical solution to the problem of uniform phase disorder in a system of identical scatterers arranged with varying separations along a line. Relying on a relationship with Legendre functions, we demonstrate a simple approach to computing statistics of the transmission probability (or the conductance, in the language of electronic transport) and its reciprocal (or the resistance). Our formalism also gives the probability distribution of the conductance, which reveals features missing from previous approaches to the problem.

  15. Corrosion in systems for storage and transportation of petroleum products and biofuels identification, monitoring and solutions

    CERN Document Server

    Groysman, Alec

    2014-01-01

    This book treats corrosion as it occurs and affects processes in real-world situations, and thus points the way to practical solutions. Topics described include the conditions in which petroleum products are corrosive to metals; corrosion mechanisms of petroleum products; which parts of storage tanks containing crude oils and petroleum products undergo corrosion; dependence of corrosion in tanks on type of petroleum products; aggressiveness of petroleum products to polymeric material; how microorganisms take part in corrosion of tanks and pipes containing petroleum products; which corrosion monitoring methods are used in systems for storage and transportation of petroleum products; what corrosion control measures should be chosen; how to choose coatings for inner and outer surfaces of tanks containing petroleum products; and how different additives (oxygenates, aromatic solvents) to petroleum products and biofuels influence metallic and polymeric materials. The book is of interest to corrosion engineers, mat...

  16. Convergent radial tracing of viral and solute transport in gneiss saprolite.

    Science.gov (United States)

    Taylor, Richard; Tindimugaya, Callist; Barker, John; Macdonald, David; Kulabako, Robinah

    2010-01-01

    Deeply weathered crystalline rock aquifer systems comprising unconsolidated saprolite and underlying fractured bedrock (saprock) underlie 40% of sub-Saharan Africa. The vulnerability of this aquifer system to contamination, particularly in rapidly urbanizing areas, remains poorly understood. In order to assess solute and viral transport in saprolite derived from Precambrian gneiss, forced-gradient tracer experiments using chloride and Escherichia coli phage PhiX174 were conducted in southeastern Uganda. The bacteriophage tracer was largely unrecovered; adsorption to the weathered crystalline rock matrix is inferred and enabled by the low pH (5.7) of site ground water and the bacteriophage's relatively high isoelectric point (pI = 6.6). Detection of the applied PhiX174 phage in the pumping well discharge at early times during the experiment traces showed, however, that average ground water flow velocities exceed that of the inert solute tracer, chloride. This latter finding is consistent with observations in other hydrogeological environments where statistically extreme sets of microscopic flow velocities are considered to transport low numbers of fecal pathogens and their proxies along a selected range of linked ground water pathways. Application of a radial advection-dispersion model with an exponentially decaying source term to the recovered chloride tracer estimates a dispersivity (alpha) of 0.8 +/- 0.1 m over a distance of 4.15 m. Specific yield (S(y)) is estimated to be 0.02 from volume balance calculations based on tracer experiments. As single-site observations, our estimates of saprolite S(y) and alpha are tentative but provide a starting point for assessing the vulnerability of saprolite aquifers in sub-Saharan Africa to contamination and estimating quantitatively the impact of climate and abstraction on ground water storage.

  17. Mechanistic analysis of solute transport in an in vitro physiological two-phase dissolution apparatus.

    Science.gov (United States)

    Mudie, Deanna M; Shi, Yi; Ping, Haili; Gao, Ping; Amidon, Gordon L; Amidon, Gregory E

    2012-10-01

    In vitro dissolution methodologies that adequately capture the oral bioperformance of solid dosage forms are critical tools needed to aid formulation development. Such methodologies must encompass important physiological parameters and be designed with drug properties in mind. Two-phase dissolution apparatuses, which contain an aqueous phase in which the drug dissolves (representing the dissolution/solubility component) and an organic phase into which the drug partitions (representing the absorption component), have the potential to provide meaningful predictions of in vivo oral bioperformance for some BCS II, and possibly some BCS IV drug products. Before such an apparatus can be evaluated properly, it is important to understand the kinetics of drug substance partitioning from the aqueous to the organic medium. A mass transport analysis was performed of the kinetics of partitioning of drug substance solutions from the aqueous to the organic phase of a two-phase dissolution apparatus. Major assumptions include pseudo-steady-state conditions, a dilute aqueous solution and diffusion-controlled transport. Input parameters can be measured or estimated a priori. This paper presents the theory and derivation of our analysis, compares it with a recent kinetic approach, and demonstrates its effectiveness in predicting in vitro partitioning profiles of three BCS II weak acids in four different in vitro two-phase dissolution apparatuses. Very importantly, the paper discusses how a two-phase apparatus can be scaled to reflect in vivo absorption kinetics and for which drug substances the two-phase dissolution systems may be appropriate tools for measuring oral bioperformance. Copyright © 2012 John Wiley & Sons, Ltd.

  18. Tubular lining material for pipelines having bends

    Energy Technology Data Exchange (ETDEWEB)

    Moringa, A.; Sakaguchi, Y.; Hyodo, M.; Yagi, I.

    1987-03-24

    A tubular lining material for pipelines having bends or curved portions comprises a tubular textile jacket made of warps and wefts woven in a tubular form overlaid with a coating of a flexible synthetic resin. It is applicable onto the inner surface of a pipeline having bends or curved portions in such manner that the tubular lining material with a binder onto the inner surface thereof is inserted into the pipeline and allowed to advance within the pipeline, with or without the aid of a leading rope-like elongated element, while turning the tubular lining material inside out under fluid pressure. In this manner the tubular lining material is applied onto the inner surface of the pipeline with the binder being interposed between the pipeline and the tubular lining material. The lining material is characterized in that a part of all of the warps are comprised of an elastic yarn around which, over the full length thereof, a synthetic fiber yarn or yarns have been left-and/or right-handedly coiled. This tubular lining material is particularly suitable for lining a pipeline having an inner diameter of 25-200 mm and a plurality of bends, such as gas service pipelines or house pipelines, without occurrence of wrinkles in the lining material in a bend.

  19. The use of laboratory experiments for the study of conservative solute transport in heterogeneous porous media

    Science.gov (United States)

    Silliman, S. E.; Zheng, L.; Conwell, P.

    Laboratory experiments on heterogeneous porous media (otherwise known as intermediate scale experiments, or ISEs) have been increasingly relied upon by hydrogeologists for the study of saturated and unsaturated groundwater systems. Among the many ongoing applications of ISEs is the study of fluid flow and the transport of conservative solutes in correlated permeability fields. Recent advances in ISE design have provided the capability of creating correlated permeability fields in the laboratory. This capability is important in the application of ISEs for the assessment of recent stochastic theories. In addition, pressure-transducer technology and visualization methods have provided the potential for ISEs to be used in characterizing the spatial distributions of both hydraulic head and local water velocity within correlated permeability fields. Finally, various methods are available for characterizing temporal variations in the spatial distribution (and, thereby, the spatial moments) of solute concentrations within ISEs. It is concluded, therefore, that recent developments in experimental techniques have provided an opportunity to use ISEs as important tools in the continuing study of fluid flow and the transport of conservative solutes in heterogeneous, saturated porous media. Résumé Les hydrogéologues se sont progressivement appuyés sur des expériences de laboratoire sur des milieux poreux hétérogènes (connus aussi par l'expression "Expériences àéchelle intermédiaire", ISE) pour étudier les zones saturées et non saturées des aquifères. Parmi les nombreuses applications en cours des ISE, il faut noter l'étude de l'écoulement de fluide et le transport de solutés conservatifs dans des champs aux perméabilités corrélées. Les récents progrès du protocole des ISE ont donné la possibilité de créer des champs de perméabilités corrélées au laboratoire. Cette possibilité est importante dans l'application des ISE pour l'évaluation des th

  20. Investigation of interactive effects on water flow and solute transport in sandy loam soil using time domain reflectometry.

    Science.gov (United States)

    Merdun, Hasan

    2012-01-01

    Surface-applied chemicals move through the unsaturated zone with complex flow and transport processes due to soil heterogeneity and reach the saturated zone, resulting in groundwater contamination. Such complex processes need to be studied by advanced measurement and modeling techniques to protect soil and water resources from contamination. In this study, the interactive effects of factors like soil structure, initial soil water content (SWC), and application rate on preferential flow and transport were studied in a sandy loam field soil using measurement (by time domain reflectometry (TDR)) and modeling (by MACRO and VS2DTI) techniques. In addition, statistical analyses were performed to compare the means of the measured and modeled SWC and EC, and solute transport parameters (pore water velocity and dispersion coefficient) in 12 treatments. Research results showed that even though the effects of soil structural conditions on water and solute transport were not so clear, the applied solution moved lower depths in the profiles of wet versus dry initial SWC and high application rate versus low application rates. The effects of soil structure and initial SWC on water and solute movement could be differentiated under the interactive conditions, but the effects of the application rates were difficult to differentiate under different soil structural and initial SWC conditions. Modeling results showed that MACRO had somewhat better performance than VS2DTI in the estimation of SWC and EC with space and time, but overall both models had relatively low performances. The means of SWC, EC, and solute transport parameters of the 12 treatments were divided into some groups based on the statistical analyses, indicating different flow and transport characteristics or a certain degree nonuniform or preferential flow and transport in the soil. Conducting field experiments with more interactive factors and applying the models with different approaches may allow better understanding

  1. Retention and Solute Transport Properties in Disturbed and Undisturbed Soil Samples

    Directory of Open Access Journals (Sweden)

    Lívia Previatello da Silva

    Full Text Available ABSTRACT Solute transport parameters can be determined in miscible displacement experiments, usually performed in columns with disturbed (sieved soil samples. Experiments with undisturbed samples are uncommon, due to the difficulty of taking undisturbed samples at the size required for these experiments. Structural alteration of the disturbed material implies modifications in the pore geometry that determines hydraulic properties, including hydraulic conductivity and retention and properties related to miscible displacement. An existing model for prediction of breakthrough curves based on retention properties was tested using material from a medium-textured Ferralsol, and alterations caused by sample disturbance were investigated. Soil water retention curves and miscible displacement parameters were determined in breakthrough experiments with nitrate salts in columns filled with undisturbed and disturbed soil samples. Data obtained from the undisturbed samples showed a higher dispersion, suggesting homogenization of pore geometry and a reduction in the representative elementary volume by the disaggregation and sieving of the soil material. The transport parameters for nitrate determined in disturbed and undisturbed samples were significantly different and the model was able to simulate the observed breakthrough curves after fitting the pore connectivity parameter.

  2. Soil heterogeneity effects on water and solute transport. Methodological comparison in different climates

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Hiroshi

    1996-11-01

    Spatial heterogeneity of soils is important to consider for soil water and solute transport. The results of the present work indicated that spatial heterogeneity affects all investigated soils and for widely varying climates. Both soil water content and temperature patterns for a bare and vegetated transect in a typical sand dune area in China indicated preferential transport of soil water after rainfall. Infiltrating soil water appeared to follow paths that had high water content before the rainfall. The effect of rainfall was therefore not a larger uniformity of soil water, but rather increasing variability. Preferential flow was observed by tracer and dye in Tunisia. The experimental data indicated a high degree of bypass or preferential flow within small plots and non-sigmoid breakthrough curves suggesting tailing phenomena and immobile fractions of soil water. The groundwater tracer concentration increased up to twice the concentration of the water in the unsaturated zone withdrawn from different depths. This consequently shows that bypass directly to the groundwater occurred also for unsaturated conditions. Soil layering appeared to be a significant cause for preferential flow for both sand and clay soils. The results also showed great variability for hydraulic properties in terms of van Genuchten parameters for a small plot in a temperate climate. The present work supports the dual-porosity hypothesis. But findings also indicate that the observation scale is important to consider when averaging the process in time and space. 95 refs, 7 figs, 1 tab

  3. Carrier Transport Enhancement in Conjugated Polymers through Interfacial Self-Assembly of Solution-State Aggregates

    KAUST Repository

    Zhao, Kui

    2016-07-13

    We demonstrate that local and long range orders of poly(3-hexylthiophene) (P3HT) semicrystalline films can be synergistically improved by combining chemical functionalization of the dielectric surface with solution-state disentanglement and pre-aggregation of P3HT in a theta solvent, leading to a very significant enhancement of the field effect carrier mobility. The pre-aggregation and surface functionalization effects combine to enhance the carrier mobility nearly 100-fold as compared with standard film preparation by spin-coating, and nearly 10-fold increase over the benefits of pre-aggregation alone. In situ quartz crystal microbalance with dissipation (QCM-D) experiments reveal enhanced deposition of pre-aggregates on surfaces modified with an alkyl-terminated self-assembled monolayer (SAM) in comparison to un-aggregated polymer chains. Additional investigations reveal the combined pre-aggregation and surface functionalization significantly enhances local order of the conjugated polymer through planarization and extension of the conjugated backbone of the polymer which clearly translate to significant improvements of carrier transport at the semiconductor-dielectric interface in organic thin film transistors. This study points to opportunities in combining complementary routes, such as well-known pre-aggregation with substrate chemical functionalization, to enhance the polymer self-assembly and improve its interfacial order with benefits for transport properties.

  4. First evidence on phloem transport of nanoscale calcium oxide in groundnut using solution culture technique

    Science.gov (United States)

    Deepa, Manchala; Sudhakar, Palagiri; Nagamadhuri, Kandula Venkata; Balakrishna Reddy, Kota; Giridhara Krishna, Thimmavajjula; Prasad, Tollamadugu Naga Venkata Krishna Vara

    2015-06-01

    Nanoscale materials, whose size typically falls below 100 nm, exhibit novel chemical, physical and biological properties which are different from their bulk counterparts. In the present investigation, we demonstrated that nanoscale calcium oxide particles (n-CaO) could transport through phloem tissue of groundnut unlike the corresponding bulk materials. n-CaO particles are prepared using sol-gel method. The size of the as prepared n-CaO measured (69.9 nm) using transmission electron microscopic technique (TEM). Results of the hydroponics experiment using solution culture technique revealed that foliar application of n-CaO at different concentrations (10, 50, 100, 500, 1,000 ppm) on groundnut plants confirmed the entry of calcium into leaves and stems through phloem compared to bulk source of calcium sprayed (CaO and CaNO3). After spraying of n-CaO, calcium content in roots, shoots and leaves significantly increased. Based on visual scoring of calcium deficiency correction and calcium content in plant parts, we may establish the fact that nanoscale calcium oxide particles (size 69.9 nm) could move through phloem tissue in groundnut. This is the first report on phloem transport of nanoscale calcium oxide particles in plants and this result points to the use of nanoscale calcium oxide particles as calcium source to the plants through foliar application, agricultural crops in particular, as bulk calcium application through foliar nutrition is restricted due to its non-mobility in phloem.

  5. Estimating the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm

    Science.gov (United States)

    Mehdinejadiani, Behrouz

    2017-08-01

    This study represents the first attempt to estimate the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm. The numerical studies as well as the experimental studies were performed to certify the integrity of Bees Algorithm. The experimental ones were conducted in a sandbox for homogeneous and heterogeneous soils. A detailed comparative study was carried out between the results obtained from Bees Algorithm and those from Genetic Algorithm and LSQNONLIN routines in FracFit toolbox. The results indicated that, in general, the Bees Algorithm much more accurately appraised the sFADE parameters in comparison with Genetic Algorithm and LSQNONLIN, especially in the heterogeneous soil and for α values near to 1 in the numerical study. Also, the results obtained from Bees Algorithm were more reliable than those from Genetic Algorithm. The Bees Algorithm showed the relative similar performances for all cases, while the Genetic Algorithm and the LSQNONLIN yielded different performances for various cases. The performance of LSQNONLIN strongly depends on the initial guess values so that, compared to the Genetic Algorithm, it can more accurately estimate the sFADE parameters by taking into consideration the suitable initial guess values. To sum up, the Bees Algorithm was found to be very simple, robust and accurate approach to estimate the transport parameters of the spatial fractional advection-dispersion equation.

  6. Structural basis for solute transport, nucleotide regulation, and immunological recognition of Neisseria meningitidis PorB

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, Mikio; Nimigean, Crina M.; Iverson, T.M. (Weill-Med); (Vanderbilt)

    2010-06-25

    PorB is the second most prevalent outer membrane protein in Neisseria meningitidis. PorB is required for neisserial pathogenesis and can elicit a Toll-like receptor mediated host immune response. Here, the x-ray crystal structure of PorB has been determined to 2.3 {angstrom} resolution. Structural analysis and cocrystallization studies identify three putative solute translocation pathways through the channel pore: One pathway transports anions nonselectively, one transports cations nonselectively, and one facilitates the specific uptake of sugars. During infection, PorB likely binds host mitochondrial ATP, and cocrystallization with the ATP analog AMP-PNP suggests that binding of nucleotides regulates these translocation pathways both by partial occlusion of the pore and by restricting the motion of a putative voltage gating loop. PorB is located on the surface of N. meningitidis and can be recognized by receptors of the host innate immune system. Features of PorB suggest that Toll-like receptor mediated recognition outer membrane proteins may be initiated with a nonspecific electrostatic attraction.

  7. Thermodynamic Paradigm for Solution Demixing Inspired by Nuclear Transport in Living Cells.

    Science.gov (United States)

    Wang, Ching-Hao; Mehta, Pankaj; Elbaum, Michael

    2017-04-14

    Living cells display a remarkable capacity to compartmentalize their functional biochemistry. A particularly fascinating example is the cell nucleus. Exchange of macromolecules between the nucleus and the surrounding cytoplasm does not involve traversing a lipid bilayer membrane. Instead, large protein channels known as nuclear pores cross the nuclear envelope and regulate the passage of other proteins and RNA molecules. Beyond simply gating diffusion, the system of nuclear pores and associated transport receptors is able to generate substantial concentration gradients, at the energetic expense of guanosine triphosphate hydrolysis. In contrast to conventional approaches to demixing such as reverse osmosis and dialysis, the biological system operates continuously, without application of cyclic changes in pressure or solvent exchange. Abstracting the biological paradigm, we examine this transport system as a thermodynamic machine of solution demixing. Building on the construct of free energy transduction and biochemical kinetics, we find conditions for the stable operation and optimization of the concentration gradients as a function of dissipation in the form of entropy production.

  8. Simultaneous transport of synthetic colloids and a nonsorbing solute through single saturated natural fractures

    International Nuclear Information System (INIS)

    Reimus, P.W.; Robinson, B.A.; Nuttall, H.E.; Kale, R.

    1994-01-01

    Tracer transport experiments involving colloids that showed little tendency to attach to rock surfaces and a nonsorbing solute (iodide) -were conducted in three different well-characterized natural fractures in tuff. The colloids always arrived earlier in the effluent than the iodide, which we believe is evidence of (1) hydrodynamic chromatography and/or (2) the fact that the colloids experience a smaller effective volume in the fracture because they diffuse too slowly to enter low-velocity regions (dead zones) along the rough fracture walls. The iodide also approached the inlet concentration in the effluent more slowly than the colloids, with the concentration at a given elution volume being greater at higher flow rates. By contrast, the rate of approach of the colloid concentration to the inlet concentration did not vary with flow rate. We attribute this behavior to matrix diffusion of the iodide, with the colloids being too large/nondiffusive to experience this phenomenon. Dispersion of all tracers was greatest in the fracture of widest average aperture and least in the fracture of narrowest aperture, which is consistent with Taylor dispersion theory. The tracer experiments were modeled/interpreted using a three-step approach that involved (1) estimating the aperture distribution in each fracture using surface profiling techniques, (2) predicting the flow field in the fractures using a localized parallel-plate approximation, and (3) predicting tracer transport in the fractures using particle-tracking techniques. Although considered preliminary at this time, the model results were in qualitative agreement with the experiments

  9. Finite-bias electronic transport of molecules in a water solution

    KAUST Repository

    Rungger, Ivan

    2010-06-04

    The effects of water wetting conditions on the transport properties of molecular nanojunctions are investigated theoretically by using a combination of empirical-potential molecular-dynamics and first-principles electronic-transport calculations. These are at the level of the nonequilibrium Green’s-function method implemented for self-interaction corrected density-functional theory. We find that water effectively produces electrostatic gating to the molecular junction with a gating potential determined by the time-averaged water dipole field. Such a field is large for the polar benzene-dithiol molecule, resulting in a transmission spectrum shifted by about 0.6 eV with respect to that of the dry junction. The situation is drastically different for carbon nanotubes (CNTs). In fact, because of their hydrophobic nature the gating is almost negligible so that the average transmission spectrum of wet Au/CNT/Au junctions is essentially the same as that in dry conditions. This suggests that CNTs can be used as molecular interconnects also in water-wet situations, for instance, as tips for scanning tunnel microscopy in solution or in biological sensors.

  10. Numerical solution of the Neutron Transport Equation using discontinuous nodal methods at X-Y geometry

    International Nuclear Information System (INIS)

    Delfin L, A.

    1996-01-01

    The purpose of this work is to solve the neutron transport equation in discrete-ordinates and X-Y geometry by developing and using the strong discontinuous and strong modified discontinuous nodal finite element schemes. The strong discontinuous and modified strong discontinuous nodal finite element schemes go from two to ten interpolation parameters per cell. They are describing giving a set D c and polynomial space S c corresponding for each scheme BDMO, RTO, BL, BDM1, HdV, BDFM1, RT1, BQ and BDM2. The solution is obtained solving the neutron transport equation moments for each nodal scheme by developing the basis functions defined by Pascal triangle and the Legendre moments giving in the polynomial space S c and, finally, looking for the non singularity of the resulting linear system. The linear system is numerically solved using a computer program for each scheme mentioned . It uses the LU method and forward and backward substitution and makes a partition of the domain in cells. The source terms and angular flux are calculated, using the directions and weights associated to the S N approximation and solving the angular flux moments to find the effective multiplication constant. The programs are written in Fortran language, using the dynamic allocation of memory to increase efficiently the available memory of the computing equipment. (Author)

  11. Qualitatively Modeling solute fate and transport across scales in an agricultural catchment with diverse lithology

    Science.gov (United States)

    Wayman, C. R.; Russo, T. A.; Li, L.; Forsythe, B.; Hoagland, B.

    2017-12-01

    As part of the Susquehanna Shale Hills Critical Zone Observatory (SSHCZO) project, we have collected geochemical and hydrological data from several subcatchments and four monitoring sites on the main stem of Shaver's Creek, in Huntingon county, Pennsylvania. One subcatchment (0.43 km2) is under agricultural land use, and the monitoring locations on the larger Shaver's Creek (up to 163 km2) drain watersheds with 0 to 25% agricultural area. These two scales of investigation, coupled with advances made across the SSHCZO on multiple lithologies allow us to extrapolate from the subcatchment to the larger watershed. We use geochemical surface and groundwater data to estimate the solute and water transport regimes within the catchment, and to show how lithology and land use are major controls on ground and surface water quality. One area of investigation includes the transport of nutrients between interflow and regional groundwater, and how that connectivity may be reflected in local surface waters. Water and nutrient (Nitrogen) isotopes, will be used to better understand the relative contributions of local and regional groundwater and interflow fluxes into nearby streams. Following initial qualitative modeling, multiple hydrologic and nutrient transport models (e.g. SWAT and CYCLES/PIHM) will be evaluated from the subcatchment to large watershed scales. We will evaluate the ability to simulate the contributions of regional groundwater versus local groundwater, and also impacts of agricultural land management on surface water quality. Improving estimations of groundwater contributions to stream discharge will provide insight into how much agricultural development can impact stream quality and nutrient loading.

  12. Effects of chlorpromazine on Na+-K+-ATPase pumping and solute transport in rat hepatocytes

    International Nuclear Information System (INIS)

    Van Dyke, R.W.; Scharschmidt, B.F.

    1987-01-01

    Inhibition of Na+-K+-ATPase and sodium-dependent bile acid transport has been suggested as a mechanism for the cholestasis produced by certain drugs such as chlorpromazine. We examined the effects of chlorpromazine (and in selected studies, two of its metabolites) on Na+-K+-ATPase cation pumping (ouabain-suppressible 86 Rb uptake), exchangeable intracellular sodium content, membrane potential (assessed by 36 Cl- distribution), and sodium-dependent transport of taurocholate and alanine in primary cultures of rat hepatocytes. Chlorpromazine (10-300 microM), 7,8-dihydroxychlorpromazine (10-300 microM), and ouabain (0.1-2 mM), but not chlorpromazine sulfoxide, produced a concentration-dependent decrease in Na+-K+-ATPase cation pumping and an increase in intracellular sodium content. Chlorpromazine (100 microM) and ouabain (0.75 mM) also modestly decreased hepatocyte membrane potential. In further studies, chlorpromazine (75 and 100 microM) and ouabain (0.1, 0.5, and 0.75 mM) decreased initial sodium-dependent uptake rates of taurocholate and alanine by 18-63%. Although the steady-state intracellular content of alanine was decreased 25-53% by both agents, chlorpromazine increased the steady-state content of taurocholate by 171% and decreased taurocholate efflux, apparently related to partitioning of taurocholate into a large, slowly turning over intracellular pool. These studies provide direct evidence that chlorpromazine inhibits Na+-K+-ATPase cation pumping in intact cells and that partial inhibition of Na+-K+-ATPase cation pumping is associated with a reduction of both the electrochemical sodium gradient and sodium-dependent solute transport. These effects of chlorpromazine may contribute to chlorpromazine-induced cholestasis in animals and humans

  13. Effects of chlorpromazine on Na+-K+-ATPase pumping and solute transport in rat hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Van Dyke, R.W.; Scharschmidt, B.F.

    1987-11-01

    Inhibition of Na+-K+-ATPase and sodium-dependent bile acid transport has been suggested as a mechanism for the cholestasis produced by certain drugs such as chlorpromazine. We examined the effects of chlorpromazine (and in selected studies, two of its metabolites) on Na+-K+-ATPase cation pumping (ouabain-suppressible /sup 86/Rb uptake), exchangeable intracellular sodium content, membrane potential (assessed by /sup 36/Cl- distribution), and sodium-dependent transport of taurocholate and alanine in primary cultures of rat hepatocytes. Chlorpromazine (10-300 microM), 7,8-dihydroxychlorpromazine (10-300 microM), and ouabain (0.1-2 mM), but not chlorpromazine sulfoxide, produced a concentration-dependent decrease in Na+-K+-ATPase cation pumping and an increase in intracellular sodium content. Chlorpromazine (100 microM) and ouabain (0.75 mM) also modestly decreased hepatocyte membrane potential. In further studies, chlorpromazine (75 and 100 microM) and ouabain (0.1, 0.5, and 0.75 mM) decreased initial sodium-dependent uptake rates of taurocholate and alanine by 18-63%. Although the steady-state intracellular content of alanine was decreased 25-53% by both agents, chlorpromazine increased the steady-state content of taurocholate by 171% and decreased taurocholate efflux, apparently related to partitioning of taurocholate into a large, slowly turning over intracellular pool. These studies provide direct evidence that chlorpromazine inhibits Na+-K+-ATPase cation pumping in intact cells and that partial inhibition of Na+-K+-ATPase cation pumping is associated with a reduction of both the electrochemical sodium gradient and sodium-dependent solute transport. These effects of chlorpromazine may contribute to chlorpromazine-induced cholestasis in animals and humans.

  14. Numerical modeling of solute transport in deformable unsaturated layered soil

    Directory of Open Access Journals (Sweden)

    Sheng Wu

    2017-07-01

    Full Text Available The effect of soil stratification was studied through numerical investigation based on the coupled model of solute transport in deformable unsaturated soil. The theoretical model implied two-way coupled excess pore pressure and soil deformation based on Biot's consolidation theory as well as a one-way coupled volatile pollutant concentration field developed from the advection-diffusion theory. Embedded in the model, the degree of saturation, fluid compressibility, self-weight of the soil matrix, porosity variance, longitudinal dispersion, and linear sorption were computed. Based on simulation results of a proposed three-layer landfill model using the finite element method, the multi-layer effects are discussed with regard to the hydraulic conductivity, shear modulus, degree of saturation, molecular diffusion coefficient, and thickness of each layer. Generally speaking, contaminants spread faster in a stratified field with a soft and highly permeable top layer; soil parameters of the top layer are more critical than the lower layers but controlling soil thicknesses will alter the results. This numerical investigation showed noticeable impacts of stratified soil properties on solute migration results, demonstrating the importance of correctly modeling layered soil instead of simply assuming the averaged properties across the soil profile.

  15. Comparison of some popular Monte Carlo solution for proton transportation within pCT problem

    International Nuclear Information System (INIS)

    Evseev, Ivan; Assis, Joaquim T. de; Yevseyeva, Olga; Hormaza, Joel M.

    2007-01-01

    The proton transport in matter is described by the Boltzmann kinetic equation for the proton flux density. This equation, however, does not have a general analytical solution. Some approximate analytical solutions have been developed within a number of significant simplifications. Alternatively, the Monte Carlo simulations are widely used. Current work is devoted to the discussion of the proton energy spectra obtained by simulation with SRIM2006, GEANT4 and MCNPX packages. The simulations have been performed considering some further applications of the obtained results in computed tomography with proton beam (pCT). Thus the initial and outgoing proton energies (3 / 300 MeV) as well as the thickness of irradiated target (water and aluminum phantoms within 90% of the full range for a given proton beam energy) were considered in the interval of values typical for pCT applications. One from the most interesting results of this comparison is that while the MCNPX spectra are in a good agreement with analytical description within Fokker-Plank approximation and the GEANT4 simulated spectra are slightly shifted from them the SRIM2006 simulations predict a notably higher mean energy loss for protons. (author)

  16. Solution-printed organic semiconductor blends exhibiting transport properties on par with single crystals

    KAUST Repository

    Niazi, Muhammad Rizwan

    2015-11-23

    Solution-printed organic semiconductors have emerged in recent years as promising contenders for roll-to-roll manufacturing of electronic and optoelectronic circuits. The stringent performance requirements for organic thin-film transistors (OTFTs) in terms of carrier mobility, switching speed, turn-on voltage and uniformity over large areas require performance currently achieved by organic single-crystal devices, but these suffer from scale-up challenges. Here we present a new method based on blade coating of a blend of conjugated small molecules and amorphous insulating polymers to produce OTFTs with consistently excellent performance characteristics (carrier mobility as high as 6.7 cm2 V−1 s−1, low threshold voltages of<1 V and low subthreshold swings <0.5 V dec−1). Our findings demonstrate that careful control over phase separation and crystallization can yield solution-printed polycrystalline organic semiconductor films with transport properties and other figures of merit on par with their single-crystal counterparts.

  17. Ground Vibration Isolation of Multiple Scattering by Using Rows of Tubular Piles as Barriers

    Directory of Open Access Journals (Sweden)

    Miao-miao Sun

    2014-01-01

    Full Text Available A new formal solution for the multiple scattering of plane harmonic waves by a group of arbitrary configuration tubular piles in an elastic total space is derived. Each order of scattering satisfies prescribed boundary conditions at the interface of tubular piles, which is delivered as the sum of incident and scattering waves. The first order performs the scattering wave by each scattered pile and the subsequent orders resulted from the excitation of each pile of first order of scattering from the remaining tubular piles. Advanced scattering orders can be regarded as the same manners. Several series of scattering coefficients are figured out with the aids of addition theorem so that the exact steady-state solution for the scattered displacement and stress is obtained. Particularly, when internal diameter of tubular piles tends to be infinitely small, it degenerates to a solid pile problem. By imposing the normalized displacement amplitudes and transmissibility indices, the influences of specific parameters such as scattering orders, internal and external diameter ratio of piles, pile material rigidity, position and distances between tubular pile and pile rows, and pile numbers are discussed. Certain recommended conclusions have been drawn as the guidelines of practical engineering design for discontinuous barrier of tubular piles.

  18. An approximate analytical solution for describing surface runoff and sediment transport over hillslope

    Science.gov (United States)

    Tao, Wanghai; Wang, Quanjiu; Lin, Henry

    2018-03-01

    Soil and water loss from farmland causes land degradation and water pollution, thus continued efforts are needed to establish mathematical model for quantitative analysis of relevant processes and mechanisms. In this study, an approximate analytical solution has been developed for overland flow model and sediment transport model, offering a simple and effective means to predict overland flow and erosion under natural rainfall conditions. In the overland flow model, the flow regime was considered to be transitional with the value of parameter β (in the kinematic wave model) approximately two. The change rate of unit discharge with distance was assumed to be constant and equal to the runoff rate at the outlet of the plane. The excess rainfall was considered to be constant under uniform rainfall conditions. The overland flow model developed can be further applied to natural rainfall conditions by treating excess rainfall intensity as constant over a small time interval. For the sediment model, the recommended values of the runoff erosion calibration constant (cr) and the splash erosion calibration constant (cf) have been given in this study so that it is easier to use the model. These recommended values are 0.15 and 0.12, respectively. Comparisons with observed results were carried out to validate the proposed analytical solution. The results showed that the approximate analytical solution developed in this paper closely matches the observed data, thus providing an alternative method of predicting runoff generation and sediment yield, and offering a more convenient method of analyzing the quantitative relationships between variables. Furthermore, the model developed in this study can be used as a theoretical basis for developing runoff and erosion control methods.

  19. Analyzing the effects of instillation volume on intravesical delivery using biphasic solute transport in a deformable geometry.

    Science.gov (United States)

    Smith, Sean G; Griffith, Boyce E; Zaharoff, David A

    2018-04-05

    Ailments of the bladder are often treated via intravesical delivery-direct application of therapeutic into the bladder through a catheter. This technique is employed hundreds of thousands of times every year, but protocol development has largely been limited to empirical determination. Furthermore, the numerical analyses of intravesical delivery performed to date have been restricted to static geometries and have not accounted for bladder deformation. This study uses a finite element analysis approach with biphasic solute transport to investigate several parameters pertinent to intravesical delivery including solute concentration, solute transport properties and instillation volume. The volume of instillation was found to have a substantial impact on the exposure of solute to the deeper muscle layers of the bladder, which are typically more difficult to reach. Indeed, increasing the instillation volume from 50-100 ml raised the muscle solute exposure as a percentage of overall bladder exposure from 60-70% with higher levels achieved for larger instillation volumes. Similar increases were not seen for changes in solute concentration or solute transport properties. These results indicate the role that instillation volume may play in targeting particular layers of the bladder during an intravesical delivery.

  20. Evidence for a role of claudin 2 as a proximal tubular stress responsive paracellular water channel

    Energy Technology Data Exchange (ETDEWEB)

    Wilmes, Anja, E-mail: Anja.Wilmes@i-med.ac.at; Aschauer, Lydia; Limonciel, Alice; Pfaller, Walter; Jennings, Paul

    2014-09-01

    Claudins are the major proteins of the tight junctions and the composition of claudin subtypes is decisive for the selective permeability of the paracellular route and thus tissue specific function. Their regulation is complex and subject to interference by several factors, including oxidative stress. Here we show that exposure of cultured human proximal tubule cells (RPTEC/TERT1) to the immunosuppressive drug cyclosporine A (CsA) induces an increase in transepithelial electrical resistance (TEER), a decrease in dome formation (on solid growth supports) and a decrease in water transport (on microporous growth supports). In addition, CsA induced a dramatic decrease in the mRNA for the pore forming claudins -2 and -10, and the main subunits of the Na{sup +}/K{sup +} ATPase. Knock down of claudin 2 by shRNA had no discernable effect on TEER or dome formation but severely attenuated apical to basolateral water reabsorption when cultured on microporous filters. Generation of an osmotic gradient in the basolateral compartment rescued water transport in claudin 2 knock down cells. Inhibition of Na{sup +}/K{sup +} ATPase with ouabain prevented dome formation in both cell types. Taken together these results provide strong evidence that dome formation is primarily due to transcellular water transport following a solute osmotic gradient. However, in RPTEC/TERT1 cells cultured on filters under iso-osmotic conditions, water transport is primarily paracellular, most likely due to local increases in osmolarity in the intercellular space. In conclusion, this study provides strong evidence that claudin 2 is involved in paracellular water transport and that claudin 2 expression is sensitive to compound induced cellular stress. - Highlights: • Cyclosporine A increased TEER and decreased water transport in RPTEC/TERT1 cells. • Claudins 2 and 10 were decreased in response to cyclosporine A. • Knock down of claudin 2 inhibited water transport in proximal tubular cells. • We

  1. Links between soil properties and steady-state solute transport through cultivated topsoil at the field scale

    DEFF Research Database (Denmark)

    Koestel, J. K.; Norgaard, T.; Minh, Luong Nhat

    2013-01-01

    to larger water saturation and the activation of larger macropores. Our study provides further evidence that it should be possible to estimate solute transport properties from soil properties such as soil texture or bulk density. We also demonstrated that estimation approaches established for the column......It is known that solute transport through soil is heterogeneous at all spatial scales. However, little data are available to allow quantification of these heterogeneities at the field scale or larger. In this study, we investigated the spatial patterns of soil properties, hydrologic state variables......, and tracer breakthrough curves (BTCs) at the field scale for the inert solute transport under a steady-state irrigation rate which produced near-saturated conditions. Sixty-five undisturbed soil columns approximately 20 cm in height and diameter were sampled from the loamy topsoil of an agricultural field...

  2. Bayesian estimation of the hydraulic and solute transport properties of a small-scale unsaturated soil column

    Directory of Open Access Journals (Sweden)

    Moreira Paulo H. S.

    2016-03-01

    Full Text Available In this study the hydraulic and solute transport properties of an unsaturated soil were estimated simultaneously from a relatively simple small-scale laboratory column infiltration/outflow experiment. As governing equations we used the Richards equation for variably saturated flow and a physical non-equilibrium dual-porosity type formulation for solute transport. A Bayesian parameter estimation approach was used in which the unknown parameters were estimated with the Markov Chain Monte Carlo (MCMC method through implementation of the Metropolis-Hastings algorithm. Sensitivity coefficients were examined in order to determine the most meaningful measurements for identifying the unknown hydraulic and transport parameters. Results obtained using the measured pressure head and solute concentration data collected during the unsaturated soil column experiment revealed the robustness of the proposed approach.

  3. Influence of macroporosity on preferential solute and colloid transport in unsaturated field soils.

    Science.gov (United States)

    Cey, Edwin E; Rudolph, David L; Passmore, Joanna

    2009-06-26

    Transport of solutes and colloids in soils, particularly those subject to preferential flow along macropores, is important for assessing the vulnerability of shallow groundwater to contamination. The objective of this study was to investigate flow and transport phenomena for dissolved and colloid tracers during large infiltration events in partially saturated, macroporous soils. Controlled tracer infiltration tests were completed at two field sites in southern Ontario. A tension infiltrometer (TI) was used to infiltrate water with dissolved Brilliant Blue FCF dye simultaneously with 3.7 microm and 0.53 microm diameter fluorescent microspheres. Infiltration was conducted under maximum infiltration pressure heads ranging from -5.2 to -0.4 cm. All infiltration test sites were excavated to examine and photograph dye-stained flow patterns, map soil features, and collect samples for microsphere enumeration. Results indicated that preferential transport of dye and microspheres via macropores occurred when maximum pressure heads were greater than -3.0 cm, and the corresponding infiltration rates exceeded 2.0 cm h(-1). Dye and microspheres were detected at depths greater than 70 cm under the highest infiltration rates from both sites. Microsphere concentrations in the top 5-10 cm of soil decreased by more than two orders of magnitude relative to input concentrations, yet remained relatively constant with depth thereafter. There was some evidence for increased retention of the 3.7 microm microspheres relative to the 0.53 microm microspheres, particularly at lower infiltration pressures where straining and attachment mechanisms are most prevalent. Microspheres were observed within dye stained soil matrix surrounding individual macropores, illustrating the significance of capillary pressures in controlling the vertical migration of both tracers in the vicinity of the macropores. Overall, microsphere distributions closely followed the dye patterns, with microsphere

  4. Colloidal metal oxide nanocrystals as charge transporting layers for solution-processed light-emitting diodes and solar cells.

    Science.gov (United States)

    Liang, Xiaoyong; Bai, Sai; Wang, Xin; Dai, Xingliang; Gao, Feng; Sun, Baoquan; Ning, Zhijun; Ye, Zhizhen; Jin, Yizheng

    2017-03-21

    Colloidal metal oxide nanocrystals offer a unique combination of excellent low-temperature solution processability, rich and tuneable optoelectronic properties and intrinsic stability, which makes them an ideal class of materials as charge transporting layers in solution-processed light-emitting diodes and solar cells. Developing new material chemistry and custom-tailoring processing and properties of charge transporting layers based on oxide nanocrystals hold the key to boosting the efficiency and lifetime of all-solution-processed light-emitting diodes and solar cells, and thereby realizing an unprecedented generation of high-performance, low-cost, large-area and flexible optoelectronic devices. This review aims to bridge two research fields, chemistry of colloidal oxide nanocrystals and interfacial engineering of optoelectronic devices, focusing on the relationship between chemistry of colloidal oxide nanocrystals, processing and properties of charge transporting layers and device performance. Synthetic chemistry of colloidal oxide nanocrystals, ligand chemistry that may be applied to colloidal oxide nanocrystals and chemistry associated with post-deposition treatments are discussed to highlight the ability of optimizing processing and optoelectronic properties of charge transporting layers. Selected examples of solution-processed solar cells and light-emitting diodes with oxide-nanocrystal charge transporting layers are examined. The emphasis is placed on the correlation between the properties of oxide-nanocrystal charge transporting layers and device performance. Finally, three major challenges that need to be addressed in the future are outlined. We anticipate that this review will spur new material design and simulate new chemistry for colloidal oxide nanocrystals, leading to charge transporting layers and solution-processed optoelectronic devices beyond the state-of-the-art.

  5. Radial Continuous Time Random Walks for Non-Fickian Solute Transport under Forced Flow Conditions and Different Heterogeneity Scenarios

    Science.gov (United States)

    Dentz, Marco; Kang, Peter K.; Le Borgne, Tanguy

    2015-04-01

    Solute transport in heterogeneous porous media is characterized by features that do not conform to advection-dispersion models characterized by equivalent transport parameters. This has been observed in tracer experiments under forced and natural flow conditions. Key questions are (i) how non-Fickian solute transport can be quantified under radial flow conditions, and (ii) how different heterogeneity sources of non-Fickian behavior manifest in non-Fickian radial transport models. In order to approach these questions, we develop a radial continuous time random walk (CTRW) formulation for the quantification and interpretation of non-Fickian solute transport under forced flow conditions and different heterogeneity scenarios. The derived radial CTRW approaches model anomalous behavior induced by heterogeneous flow distributions and mobile-immobile mass transfer processes (matrix diffusion). We start by establishing a general CTRW framework in radial coordinates on the basis of the random walk equations for radial particle positions and times. The evolution of solute concentration is governed by a non-local radial advection-dispersion equation. Unlike in CTRWs for uniform flow scenarios, particle transition times here depend on the radial particle position, which renders the CTRW non-stationary. We then derive radial CTRW implementations that (i) emulate non-local radial transport due to heterogeneous advection, (ii) model multirate mass transfer (MRMT) between mobile and immobile continua, and (iii) quantify both heterogeneous advection in a mobile and mass transfer between mobile and immobile regions. We analyze the transport signatures for the distinct CTRW models in terms of solute breakthrough curves and their dependence on the heterogeneity scenarios.

  6. Geochemical and numerical modelling of interactions between solid solutions and an aqueous solution. Extension of a reactive transport computer code called Archimede and application to reservoirs diagenesis; Modelisation geochimique et numerique des interactions entre des solutions solides et une solution aqueuse: extension du logiciel de reaction-transport archimede et application a la diagenese des reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Nourtier-Mazauric, E.

    2003-03-15

    This thesis presents a thermodynamic and kinetic model of interactions between a fluid and ideal solid solutions represented by several end-members. The reaction between a solid solution and the aqueous solution results from the competition between the stoichiometric dissolution of the initial solid solution and the co-precipitation of the least soluble solid solution in the fluid at considered time. This model was implemented in ARCHIMEDE, a computer code of reactive transport in porous media, then applied to various examples. In the case of binary solid solutions, a graphical method allowed to determine the compositions of the precipitating solid solutions, with the aid of the end-member chemical potentials. The obtained program could be used to notably model the diagenesis of clayey or carbonated oil reservoirs, or the ground pollutant dispersion. (author)

  7. Bringing home the apples: examining the impacts, causes, and potential policy solutions to long-distance agricultural transport

    OpenAIRE

    Toomey, Peter

    2004-01-01

    Over the past few decades, many governments have begun to recognize the environmental problems associated with agricultural production. They have responded by developing agricultural policies to combat these problems. The same attention, however, has not been paid to another ecologically detrimental component of the agricultural system - transport. This thesis explores the existence, environmental concerns, and potential policy solutions relating to the issue of agricultural transport distanc...

  8. X-ray CT-derived soil characteristics explain varying air, water, and solute transport properties across a loamy field

    DEFF Research Database (Denmark)

    Paradelo Pérez, Marcos; Katuwal, Sheela; Møldrup, Per

    2016-01-01

    to explain water, air, and solute transport through soil. Forty-five soil columns (20 by 20 cm) were collected from an agricultural field in Estrup, Denmark, and subsequently scanned using a medical CT scanner. Nonreactive tracer leaching experiments were performed in the laboratory along with measurements...... when the limiting macroporosity (the minimum macroporosity for every 0.6-mm layer along the soil column) was used, suggesting that soil layers with the narrowest macropore section restricted the flow through the whole soil column. Water, air, and solute transport were related with the CT...

  9. Characterization of Solute Transport in Subsurface Using Permeable Pavement and Artificial Precipitation

    Science.gov (United States)

    HAN, K.; Hong, U.; Yeum, Y.; Yoon, J.; Lee, J.; Song, K.; Kwon, S.; Kim, Y.

    2016-12-01

    Permeable block as low impact development (LID) management can reduce storm water runoff, improve surface water quality and increase groundwater recharge. Recently, in Korea, application of the permeable block has growing trend for urban planning. However, few studies have evaluated how infiltrated rainfall through permeable block affect groundwater quality. Therefore, we conducted monitoring and evaluating of contaminants transport from permeable block surface to aquifer at LID installed three test-bed site. Pollutant materials as total nitrogen (T-N), nitrate (NO3-), ammonium (NH4+), total phosphorus (T-P), phosphate (PO42-), total organic carbon (TOC), sodium (Na+) and bromide (Br-) such as nonreactive tracer were sprinkled under permeable block and sprayed artificial precipitation of 100 mm/hr intensity during a 4 hours by rainfall simulator. All the test-bed area is 2 m x 2 m and monitoring wells were drilled a maximum depth of 10 m. Test-bed 1,2 and 3 groundwater level was approximately 1.9 m, 3.6 m and 4.6 m below ground surface, respectively. Test-bed 1 and 2, time to maximum concentration of Br- as tracer were 0.15 day and 1.71 day after simulated rainfall. In the test-bed 1, average normalized concentration (C* = Cmonitoring/C0, C0 is mass of sprinkled pollutant divide by sprayed water volume) of Br-, T-N, NO3-, NH4+, T-P, PO42-, TOC and Na+ were observed 0.26, 0.08, 0.14, N.D(not detected), 0.05, 0.05, 0.13 and 0.11, respectively. C* of tracer and other solutes on test-bed 2 were 0.52, 0.15, 0.25, N.D, 0.02, 0.02, 0.16 and 0.15, respectively. These phenomena that distinctions between C* of Br-and other solutes indicate to occur retardation by physical/chemical and biological process while pollutant containing water permeate from unsaturated soil to saturated aquifer. However, at the test-bed 3 distinct concentration of all solutes were not detected until 40 days. In this study evaluated the effects of groundwater quality by rainfall leachate from

  10. Application of synthetic diffusion method in the numerical solution of the equations of neutron transport in slab geometry

    International Nuclear Information System (INIS)

    Valdes Parra, J.J.

    1986-01-01

    One of the main problems in reactor physics is to determine the neutron distribution in reactor core, since knowing that, it is possible to calculate the rapidity of occurrence of different nuclear reaction inside the reactor core. Within different theories existing in nuclear reactor physics, is neutron transport the one in which equation who govern the exact behavior of neutronic distribution are developed even inside the proper neutron transport theory, there exist different methods of solution which are approximations to exact solution; still more, with the purpose to reach a more precise solution, the majority of methods have been approached to the obtention of solutions in numerical form with the aim of take the advantages of modern computers, and for this reason a great deal of effort is dedicated to numerical solution of the equations of neutron transport. In agreement with the above mentioned, in this work has been developed a computer program which uses a relatively new techniques known as 'acceleration of synthetic diffusion' which has been applied to solve the neutron transport equation with 'classical schemes of spatial integration' obtaining results with a smaller quantity of interactions, if they compare to done without using such equation (Author)

  11. Quasi 3D modeling of water flow and solute transport in vadose zone and groundwater

    Science.gov (United States)

    Yakirevich, A.; Kuznetsov, M.; Weisbrod, N.; Pachepsky, Y. A.

    2013-12-01

    The complexity of subsurface flow systems calls for a variety of concepts leading to the multiplicity of simplified flow models. One commonly used simplification is based on the assumption that lateral flow and transport in unsaturated zone is insignificant unless the capillary fringe is involved. In such cases the flow and transport in the unsaturated zone above groundwater level can be simulated as a 1D phenomenon, whereas through groundwater they are viewed as 2D or 3D phenomena. A new approach for a numerical scheme for 3D variably saturated flow and transport is presented. A Quasi-3D approach allows representing flow in the 'vadose zone - aquifer' system by a series of 1D Richards' equations solved in variably-saturated zone and by 3D-saturated flow equation in groundwater (modified MODFLOW code). The 1D and 3D equations are coupled at the phreatic surface in a way that aquifer replenishment is calculated using the Richards' equation, and solving for the moving water table does not require definition of the specific yield parameter. The 3D advection-dispersion equation is solved in the entire domain by the MT3D code. Using implicit finite differences approximation to couple processes in the vadose zone and groundwater provides mass conservation and increase of computational efficiency. The above model was applied to simulate the impact of irrigation on groundwater salinity in the Alto Piura aquifer (Northern Peru). Studies on changing groundwater quality in arid and semi-arid lands show that irrigation return flow is one of the major factors contributing to aquifer salinization. Existing mathematical models do not account explicitly for the solute recycling during irrigation on a daily scale. Recycling occurs throughout the unsaturated and saturated zones, as function of the solute mass extracted from pumping wells. Salt concentration in irrigation water is calculated at each time step as a function of concentration of both surface water and groundwater

  12. Specific transport and storage solutions: Waste management facing current and future stakes of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Deniau, Helene; Gagner, Laurent; Gendreau, Francoise; Presta, Anne

    2006-01-01

    With major projects ongoing or being planned, and also with the daily management of radioactive waste from nuclear facilities, the role of transport and/or storage packaging has been often overlooked. Indeed, the packaging development process and transport solutions implemented are a key part of the waste management challenge: protection of people and environment. During over four decades, the AREVA Group has developed a complete and coherent system for the transport of waste produced by nuclear industries. The transport solutions integrate the factors to consider, as industrial transportation needs, various waste forms, associated hazards and current regulations. Thus, COGEMA LOGISTICS has designed, licensed and manufactured a large number of different transport, storage and dual purpose cask models for residues and all kinds of radioactive wastes. The present paper proposes to illustrate how a company acting both as a cask designer and a carrier is key to the waste management issue and how it can support the waste management policy of nuclear producers through their operational choices. We will focus on the COGEMA LOGISTICS technical solutions implemented to guarantee safe and secure transportation and storage solutions. We will describe different aspects of the cask design process, insisting on how it enables to fulfill both customer needs and regulation requirements. We will also mention the associated services developed by the AREVA Business Unit Logistics (COGEMA LOGISTICS, TRANSNUCLEAR, MAINCO, and LEMARECHAL CELESTIN) in order to manage transportation of liquid and solid waste towards interim or final storage sites. The paper has the following contents: About radioactive waste; - Radioactive waste classification; - High level activity waste and long-lived intermediate level waste; - Long-lived low level waste; - Short-lived low- and intermediate level waste; - Very low level waste; - The radioactive waste in nuclear fuel cycle; - Packaging design and

  13. Colloid mobilization and heavy metal transport in the sampling of soil solution from Duckum soil in South Korea.

    Science.gov (United States)

    Lee, Seyong; Ko, Il-Won; Yoon, In-Ho; Kim, Dong-Wook; Kim, Kyoung-Woong

    2018-03-24

    Colloid mobilization is a significant process governing colloid-associated transport of heavy metals in subsurface environments. It has been studied for the last three decades to understand this process. However, colloid mobilization and heavy metal transport in soil solutions have rarely been studied using soils in South Korea. We investigated the colloid mobilization in a variety of flow rates during sampling soil solutions in sand columns. The colloid concentrations were increased at low flow rates and in saturated regimes. Colloid concentrations increased 1000-fold higher at pH 9.2 than at pH 7.3 in the absence of 10 mM NaCl solution. In addition, those were fourfold higher in the absence than in the presence of the NaCl solution at pH 9.2. It was suggested that the mobility of colloids should be enhanced in porous media under the basic conditions and the low ionic strength. In real field soils, the concentrations of As, Cr, and Pb in soil solutions increased with the increase in colloid concentrations at initial momentarily changed soil water pressure, whereas the concentrations of Cd, Cu, Fe, Ni, Al, and Co lagged behind the colloid release. Therefore, physicochemical changes and heavy metal characteristics have important implications for colloid-facilitated transport during sampling soil solutions.

  14. Np(V) transport in clayey porous medium: study of solution chemistry, sorption and flow coupling

    International Nuclear Information System (INIS)

    Andre, Christine

    1997-01-01

    To assess the safety of radioactive waste disposal, the behaviour of radionuclides in porous media has to be known. The solute transport is controlled by hydrodynamics, physicochemical interactions and aqueous chemistry. When each main term is known independently, their coupling can be predicted. The aim is to study the migration of Np(V). Experiments are carried out on chromatography columns packed with a mixture of sand and Fo-Ca-7 clay. Column hydrodynamics is characterised with RTD measurements and is modelled thanks to a cell network model. Sorption properties of the clay are determined thanks to sodium/calcium and sodium/caesium exchange experiments. The sorption is modelled with ion exchange on three sites. The Na + /H + , Na + /Ca 2+ and Na + /Cs + exchange constants have been determined. Transport experiments of Np(V) have been carried out in IM Na + bicarbonate/carbonate media and is interpreted with H + /NpO 2+ /Na + cationic exchanges on the third site of the clay, and NpO 2 CO 3- , NpO 2 (CO 3 ) 2 3- and NpO 2 (CO 3 ) 3 5- formation. This mechanism has been validated by varying pH and carbonate concentration. An anion exchange site of low exchange capacity has been found through 14 C experiments. A selective elimination of goethite contained in Fo-Ca-7 shows that this iron oxide is not responsible for the anions retention. As expected, temperature influence on calcium and neptunium migration is quite small. It is used to estimate entropy and enthalpy changes for the corresponding ionic exchange reactions. (author) [fr

  15. A fully coupled Monte Carlo/discrete ordinates solution to the neutron transport equation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Randal Scott [Univ. of Arizona, Tucson, AZ (United States)

    1990-01-01

    The neutron transport equation is solved by a hybrid method that iteratively couples regions where deterministic (SN) and stochastic (Monte Carlo) methods are applied. Unlike previous hybrid methods, the Monte Carlo and SN regions are fully coupled in the sense that no assumption is made about geometrical separation or decoupling. The hybrid method provides a new means of solving problems involving both optically thick and optically thin regions that neither Monte Carlo nor SN is well suited for by themselves. The fully coupled Monte Carlo/SN technique consists of defining spatial and/or energy regions of a problem in which either a Monte Carlo calculation or an SN calculation is to be performed. The Monte Carlo region may comprise the entire spatial region for selected energy groups, or may consist of a rectangular area that is either completely or partially embedded in an arbitrary SN region. The Monte Carlo and SN regions are then connected through the common angular boundary fluxes, which are determined iteratively using the response matrix technique, and volumetric sources. The hybrid method has been implemented in the SN code TWODANT by adding special-purpose Monte Carlo subroutines to calculate the response matrices and volumetric sources, and linkage subrountines to carry out the interface flux iterations. The common angular boundary fluxes are included in the SN code as interior boundary sources, leaving the logic for the solution of the transport flux unchanged, while, with minor modifications, the diffusion synthetic accelerator remains effective in accelerating SN calculations. The special-purpose Monte Carlo routines used are essentially analog, with few variance reduction techniques employed. However, the routines have been successfully vectorized, with approximately a factor of five increase in speed over the non-vectorized version.

  16. Tubular bioreactor and its application; Tubular bioreactor to sono tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Endo, I.; Nagamune, T. [The University of Tokyo, Tokyo (Japan). Faculty of Engineering; Yuki, K. [Nikka Whisky Distilling Co. Ltd. Tokyo (Japan); Inaba, H. [Sumitomo Heavy Industries, Ltd., Tokyo (Japan)

    1994-09-05

    The loop type tubular bioreactor (TBR) was developed where biocatalysts are trapped in the reactor by membrane module. A UF membrane or MF membrane and crossflow filtration were adopted for the membrane module, and the reactor loop was composed of four membrane modules. The reactor was operated at 2-4 m/s in membrane surface velocity and 300-400 kPa in filtration pressure. As the result of the high-density culture of lactic acid bacteria and yeast, a biomass concentration was more than 10 times that in batch culture, suggesting the remarkable enhancement of a production efficiency. As the result of the continuous fermentation of cider, the fast fermentation more than 60 times that in conventional ones was obtained together with the same quality as conventional ones. Such a fast fermentation was probably achieved by yeast suspended in the fermenter of TBR, by yeast hardly affected physico-chemically as compared with immobilized reactors, and by small effect of mass transfer on reaction systems. 4 refs., 6 figs.

  17. The effect of solution nonideality on modeling transmembrane water transport and diffusion-limited intracellular ice formation during cryopreservation

    Science.gov (United States)

    Zhao, Gang; Takamatsu, Hiroshi; He, Xiaoming

    2014-04-01

    A new model was developed to predict transmembrane water transport and diffusion-limited ice formation in cells during freezing without the ideal-solution assumption that has been used in previous models. The model was applied to predict cell dehydration and intracellular ice formation (IIF) during cryopreservation of mouse oocytes and bovine carotid artery endothelial cells in aqueous sodium chloride (NaCl) solution with glycerol as the cryoprotectant or cryoprotective agent. A comparison of the predictions between the present model and the previously reported models indicated that the ideal-solution assumption results in under-prediction of the amount of intracellular ice at slow cooling rates (cryopreservation for practical applications.

  18. Numerical modelling of solute transport at Forsmark with MIKE SHE. Site descriptive modelling SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Lars-Goeran; Sassner, Mona (DHI Sverige AB, Stockholm (Sweden)); Bosson, Emma (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2008-12-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is performing site investigations at two different locations in Sweden, referred to as the Forsmark and Laxemar areas, with the objective of siting a final repository for high-level radioactive waste. Data from the site investigations are used in a variety of modelling activities. This report presents model development and results of numerical transport modelling based on the numerical flow modelling of surface water and near-surface groundwater at the Forsmark site. The numerical modelling was performed using the modelling tool MIKE SHE and is based on the site data and conceptual model of the Forsmark areas. This report presents solute transport applications based on both particle tracking simulations and advection-dispersion calculations. The MIKE SHE model is the basis for the transport modelling presented in this report. Simulation cases relevant for the transport from a deep geological repository have been studied, but also the pattern of near surface recharge and discharge areas. When the main part of the modelling work presented in this report was carried out, the flow modelling of the Forsmark site was not finalised. Thus, the focus of this work is to describe the sensitivity to different transport parameters, and not to point out specific areas as discharge areas from a future repository (this is to be done later, within the framework of the safety assessment). In the last chapter, however, results based on simulations with the re-calibrated MIKE SHE flow model are presented. The results from the MIKE SHE water movement calculations were used by cycling the calculated transient flow field for a selected one-year period as many times as needed to achieve the desired simulation period. The solute source was located either in the bedrock or on top of the model. In total, 15 different transport simulation cases were studied. Five of the simulations were particle tracking simulations, whereas the rest

  19. The problem of complex eigensystems in the semianalytical solution for advancement of time in solute transport simulations: a new method using real arithmetic

    Science.gov (United States)

    Umari, Amjad M.J.; Gorelick, Steven M.

    1986-01-01

    In the numerical modeling of groundwater solute transport, explicit solutions may be obtained for the concentration field at any future time without computing concentrations at intermediate times. The spatial variables are discretized and time is left continuous in the governing differential equation. These semianalytical solutions have been presented in the literature and involve the eigensystem of a coefficient matrix. This eigensystem may be complex (i.e., have imaginary components) due to the asymmetry created by the advection term in the governing advection-dispersion equation. Previous investigators have either used complex arithmetic to represent a complex eigensystem or chosen large dispersivity values for which the imaginary components of the complex eigenvalues may be ignored without significant error. It is shown here that the error due to ignoring the imaginary components of complex eigenvalues is large for small dispersivity values. A new algorithm that represents the complex eigensystem by converting it to a real eigensystem is presented. The method requires only real arithmetic.

  20. Flow and Reactive Transport of Miscible and Immiscible Solutions in Fractured & Porous Media

    Science.gov (United States)

    Ryerson, F. J.; Ezzedine, S. M.; Antoun, T.

    2012-12-01

    Miscible and immiscible flows are important phenomena encountered in many industrial and engineering applications such as hydrothermal systems, oil and gas reservoirs, salt/water intrusion, geological carbon sequestration etc… Under the influence of gravity, the flow of fluids with sufficiently large density ratios may become unstable leading to instabilities, mixing and in some instances reactions at the interfacial contact between fluids. Flow is governed by a combination of momentum and mass conservation equations that describe the flow of the fluid phase and a convection-diffusion equation describing the change of concentration in the fluid phase. When hydrodynamic instabilities develop it may be difficult to use standard grid-based methods to model miscible/immiscible flow because the domains occupied by fluids evolve constantly with time. In the current study, adaptive mesh refinement finite elements method has been used to solve for flow and transport equations. Furthermore, a particle tracking scheme has also been implemented to track the kinematics of swarm of particles injected into the porous fractured media to quantify surface area, sweeping zones, and their impact on porosity changes. Spatial and temporal moments of the fingering instabilities and the development of reaction zones and the impact of kinetic reaction at the fluid/solution interfaces have also been analyzed. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. Dynamics and mass transport of solutal convection in a closed porous media system

    Science.gov (United States)

    Wen, Baole; Akhbari, Daria; Hesse, Marc

    2016-11-01

    Most of the recent studies of CO2 sequestration are performed in open systems where the constant partial pressure of CO2 in the vapor phase results in a time-invariant saturated concentration of CO2 in the brine (Cs). However, in some closed natural CO2 reservoirs, e.g., Bravo Dome in New Mexico, the continuous dissolution of CO2 leads to a pressure drop in the gas that is accompanied by a reduction of Cs and thereby affects the dynamics and mass transport of convection in the brine. In this talk, I discuss the characteristics of convective CO2 dissolution in a closed system. The gas is assumed to be ideal and its solubility given by Henry's law. An analytical solution shows that the diffusive base state is no longer self-similar and that diffusive mass transfer declines rapidly. Scaling analysis reveals that the volume ratio of brine and gas η determines the behavior of the system. DNS show that no constant flux regime exists for η > 0 nevertheless, the quantity F /Cs2 remains constant, where F is the dissolution flux. The onset time is only affected by η when the Rayleigh number Ra is small. In this case, the drop in Cs during the initial diffusive regime significantly reduces the effective Ra and therefore delays the onset.

  2. Measuring the combinatorial expression of solute transporters and metalloproteinases transcripts in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Cosgrove Leah

    2009-08-01

    Full Text Available Abstract Background It was hypothesised that colorectal cancer (CRC could be diagnosed in biopsies by measuring the combined expression of a small set of well known genes. Genes were chosen based on their role in either the breakdown of the extracellular matrix or with changes in cellular metabolism both of which are associated with CRC progression Findings Gene expression data derived from quantitative real-time PCR for the solute transporter carriers (SLCs and the invasion-mediating matrix metalloproteinases (MMPs were examined using a Linear Descriminant Analysis (LDA. The combination of MMP-7 and SLC5A8 was found to be the most predictive of CRC. Conclusion A combinatorial analysis technique is an effective method for both furthering our understanding on the molecular basis of some aspects of CRC, as well as for leveraging well defined cancer-related gene sets to identify cancer. In this instance, the combination of MMP-7 and SLC5A8 were optimal for identifying CRC.

  3. Evaluation of unsaturated-zone solute-transport models for studies of agricultural chemicals

    Science.gov (United States)

    Nolan, Bernard T.; Bayless, E. Randall; Green, Christopher T.; Garg, Sheena; Voss, Frank D.; Lampe, David C.; Barbash, Jack E.; Capel, Paul D.; Bekins, Barbara A.

    2005-01-01

    Seven unsaturated-zone solute-transport models were tested with two data sets to select models for use by the Agricultural Chemical Team of the U.S. Geological Survey's National Water-Quality Assessment Program. The data sets were from a bromide tracer test near Merced, California, and an atrazine study in the White River Basin, Indiana. In this study the models are designated either as complex or simple based on the water flux algorithm. The complex models, HYDRUS2D, LEACHP, RZWQM, and VS2DT, use Richards' equation to simulate water flux and are well suited to process understanding. The simple models, CALF, GLEAMS, and PRZM, use a tipping-bucket algorithm and are more amenable to extrapolation because they require fewer input parameters. The purpose of this report is not to endorse a particular model, but to describe useful features, potential capabilities, and possible limitations that emerged from working with the model input data sets. More rigorous assessment of model applicability involves proper calibration, which was beyond the scope of this study.

  4. Approximate solutions of the two-dimensional integral transport equation by collision probability methods

    International Nuclear Information System (INIS)

    Sanchez, Richard

    1977-01-01

    A set of approximate solutions for the isotropic two-dimensional neutron transport problem has been developed using the Interface Current formalism. The method has been applied to regular lattices of rectangular cells containing a fuel pin, cladding and water, or homogenized structural material. The cells are divided into zones which are homogeneous. A zone-wise flux expansion is used to formulate a direct collision probability problem within a cell. The coupling of the cells is made by making extra assumptions on the currents entering and leaving the interfaces. Two codes have been written: the first uses a cylindrical cell model and one or three terms for the flux expansion; the second uses a two-dimensional flux representation and does a truly two-dimensional calculation inside each cell. In both codes one or three terms can be used to make a space-independent expansion of the angular fluxes entering and leaving each side of the cell. The accuracies and computing times achieved with the different approximations are illustrated by numerical studies on two benchmark pr

  5. Bayesian estimation of the hydraulic and solute transport properties of a small-scale unsaturated soil column

    NARCIS (Netherlands)

    Moreira, Paulo H S; Van Genuchten, Martinus Th; Orlande, Helcio R B; Cotta, Renato M.

    2016-01-01

    In this study the hydraulic and solute transport properties of an unsaturated soil were estimated simultaneously from a relatively simple small-scale laboratory column infiltration/outflow experiment. As governing equations we used the Richards equation for variably saturated flow and a physical

  6. Coupled effects of solution chemistry and hydrodynamics on the mobility and transport of quantum dot nanomaterials in the Vadose Zone

    Science.gov (United States)

    To investigate the coupled effects of solution chemistry and vadose zone processes on the mobility of quantum dot (QD) nanoparticles, laboratory scale transport experiments were performed. The complex coupled effects of ionic strength, size of QD aggregates, surface tension, contact angle, infiltrat...

  7. Facilitated transport of Cu with hydroxyapatite nanoparticles in saturated sand: Effects of solution ionic strength and composition

    Science.gov (United States)

    Column experiments were conducted to investigate the facilitated transport of Cu in association with hydroxyapatite nanoparticles (nHAP) in water-saturated quartz sand at different solution concentrations of NaCl (0 to 100 mM) or CaCl2 (0.1 to 1.0 mM). The experimental breakthrough curves and retent...

  8. Proximal tubular hypertrophy and enlarged glomerular and proximal tubular urinary space in obese subjects with proteinuria.

    Directory of Open Access Journals (Sweden)

    Ana Tobar

    Full Text Available BACKGROUND: Obesity is associated with glomerular hyperfiltration, increased proximal tubular sodium reabsorption, glomerular enlargement and renal hypertrophy. A single experimental study reported an increased glomerular urinary space in obese dogs. Whether proximal tubular volume is increased in obese subjects and whether their glomerular and tubular urinary spaces are enlarged is unknown. OBJECTIVE: To determine whether proximal tubules and glomerular and tubular urinary space are enlarged in obese subjects with proteinuria and glomerular hyperfiltration. METHODS: Kidney biopsies from 11 non-diabetic obese with proteinuria and 14 non-diabetic lean patients with a creatinine clearance above 50 ml/min and with mild or no interstitial fibrosis were retrospectively analyzed using morphometric methods. The cross-sectional area of the proximal tubular epithelium and lumen, the volume of the glomerular tuft and of Bowman's space and the nuclei number per tubular profile were estimated. RESULTS: Creatinine clearance was higher in the obese than in the lean group (P=0.03. Proteinuria was similarly increased in both groups. Compared to the lean group, the obese group displayed a 104% higher glomerular tuft volume (P=0.001, a 94% higher Bowman's space volume (P=0.003, a 33% higher cross-sectional area of the proximal tubular epithelium (P=0.02 and a 54% higher cross-sectional area of the proximal tubular lumen (P=0.01. The nuclei number per proximal tubular profile was similar in both groups, suggesting that the increase in tubular volume is due to hypertrophy and not to hyperplasia. CONCLUSIONS: Obesity-related glomerular hyperfiltration is associated with proximal tubular epithelial hypertrophy and increased glomerular and tubular urinary space volume in subjects with proteinuria. The expanded glomerular and urinary space is probably a direct consequence of glomerular hyperfiltration. These effects may be involved in the pathogenesis of obesity

  9. Iatrogenic Digital Compromise with Tubular Dressings

    Directory of Open Access Journals (Sweden)

    Corre, Kenneth A

    2009-08-01

    Full Text Available Objective: This case report describes a digit amputation resulting from an improperly applied tubular dressing. The safe application of digital tubular dressings, and the rationale behind it, is detailed to raise emergency physician (EP awareness.Methods: We present a case report of a recent iatrogenic-induced digit ischemia caused by improperly applied tube gauze. We review the literature on the subject and the likely sources of poor outcomes presented. The proper application of tubular gauze dressings is then outlined.Conclusion: EPs and emergency department personnel must be educated on the safe application of tubular gauze dressings to avoid dire outcomes associated with improper applications.[WestJEM. 2009;10:190-192.

  10. Entanglements in Marginal Solutions: A Means of Tuning Pre-Aggregation of Conjugated Polymers with Positive Implications for Charge Transport

    KAUST Repository

    Hu, Hanlin

    2015-06-17

    The solution-processing of conjugated polymers, just like commodity polymers, is subject to solvent and molecular weight-dependent solubility, interactions and chain entanglements within the polymer, all of which can influence the crystallization and microstructure development in semi-crystalline polymers and consequently affect charge transport and optoelectronic properties. Disentanglement of polymer chains in marginal solvents was reported to work via ultrasonication, facilitating the formation of photophysically ordered polymer aggregates. In this contribution, we explore how a wide range of technologically relevant solvents and formulations commonly used in organic electronics influence chain entanglement and the aggregation behaviour of P3HT using a combination of rheological and spectrophotometric measurements. The specific viscosity of the solution offers an excellent indication of the degree of entanglements in the solution, which is found to be related to the solubility of P3HT in a given solvent. Moreover, deliberately disentangling the solution in the presence of solvophobic driving forces, leads consistently to formation of photophysically visible aggregates which is indicative of local and perhaps long range order in the solute. We show for a broad range of solvents and molecular weights that disentanglement ultimately leads to significant ordering of the polymer in the solid state and a commensurate increase in charge transport properties. In doing so we demonstrate a remarkable ability to tune the microstructure which has important implications for transport properties. We discuss its potential implications in the context of organic photovoltaics.

  11. A neglected case of Renal Tubular Acidosis

    International Nuclear Information System (INIS)

    Derakhshan, A.; Basiratnia, M.; Fallahzadeh, M.H.; Al-Hashemi, G.H.

    2007-01-01

    In this report, we present a case of a child with distal renal tubular acidosis, severe failure to thrive and profound rickets, who was only 7.8 Kg when presented at 6 years of age. His response to treatment and his follow up for four years is discussed. Although failure to thrive is a common finding in renal tubular acidosis but the physical and x-ray findings in our case were unique. (author)

  12. An inexact Newton method for fully-coupled solution of the Navier-Stokes equations with heat and mass transport

    Energy Technology Data Exchange (ETDEWEB)

    Shadid, J.N.; Tuminaro, R.S. [Sandia National Labs., Albuquerque, NM (United States); Walker, H.F. [Utah State Univ., Logan, UT (United States). Dept. of Mathematics and Statistics

    1997-02-01

    The solution of the governing steady transport equations for momentum, heat and mass transfer in flowing fluids can be very difficult. These difficulties arise from the nonlinear, coupled, nonsymmetric nature of the system of algebraic equations that results from spatial discretization of the PDEs. In this manuscript the authors focus on evaluating a proposed nonlinear solution method based on an inexact Newton method with backtracking. In this context they use a particular spatial discretization based on a pressure stabilized Petrov-Galerkin finite element formulation of the low Mach number Navier-Stokes equations with heat and mass transport. The discussion considers computational efficiency, robustness and some implementation issues related to the proposed nonlinear solution scheme. Computational results are presented for several challenging CFD benchmark problems as well as two large scale 3D flow simulations.

  13. Effects of Monovalent and Divalent Salt Solutions on the Transport of Toxoplasma gondii in Saturated Porous Media

    Science.gov (United States)

    Darnault, C. J. G.; Pullano, C. P.; Mutty, T.; L'Ollivier, C.; Dubey, J. P.; Dumetre, A.

    2017-12-01

    The pathogenic microorganism Toxoplasma gondii is a current public health threat. Knowledge of the fate and transport of T. gondii in the environment, especially the subsurface, is critical to evaluate the risk of soil and groundwater contaminations. The physico-chemcial properties of groundwater systems, i.e. solution chemistry and aquifer materials, play a key role in the interaction of biocolloids with surfaces and therefore their mobility. This research examines how different salt solutions alter the mobility of T. gondii through saturated porous media. Salt solutions containing varying ionic strengths and concentrations of sodium chloride, calcium chloride, and magnesium chloride were used to test the transport of the T. gondii oocysts. These tests were performed using quartz silica sand columns fed by a peristaltic pump in order to generate flow and transport of the biocolloids. The salt solution was pumped though the column followed by a pulse of the T. gondii oocysts, then a pulse of salt solution without oocysts, and then lastly a pulse of distilled water. Sampling of the solution exiting the columns was tested for T. gondii oocysts using qPCR in order to quantify the oocysts present. The breakthough curve results were then compared to a conservative bromide tracer test in order to determine the factors associated with the movement of these biocolloids through the sand columns. A model of the flow of the toxoplasma colloids through the sand matrix was made in order to characterize the parameters affecting the transport and retention of T. gondii occysts though saturated porous media.

  14. Elucidation of the transport pathway in hairless rat skin enhanced by low-frequency sonophoresis based on the solute-water transport relationship and confocal microscopy.

    Science.gov (United States)

    Morimoto, Yasunori; Mutoh, Mizue; Ueda, Hideo; Fang, Liang; Hirayama, Kotaro; Atobe, Mahito; Kobayashi, Daisuke

    2005-04-18

    In this study, we examined a relationship between hydrophilic solute and water (vehicle) transports in the excised hairless rat skin in the presence of ultrasound (41 kHz, 60-300 mW/cm2) irradiation and also conducted skin surface observation using confocal microscopy. When the applied intensity was increased stepwise over the rage of 60-300 mW/cm2, the transport of tritiated water (3H2O) was increased 140-fold in an intensity-dependent manner and this returned to normal on stopping the ultrasound application. The skin permeation clearance (mul/h) of model hydrophilic solutes, calcein (MW 623) and FITC-labeled dextrans [MW 4400 (FD-4) and MW 38000 (FD-40)], across the skin under the influence of ultrasound was plotted against the corresponding 3H2O flux (microl/h) to estimate the potential contribution of convective solvent flow, induced by the ultrasound application, to the solute transport. Good correlations were observed between the 3H2O flux and solute clearances and, unexpectedly, the slope values obtained from linear regression of the plots were consistent for all solutes examined (1.04+/-0.29 for calcein, 1.07+/-0.17 for FD-4, and 1.08+/-0.23 for FD-40, respectively). Transport of intact FD-4 and FD-40 was confirmed by gel permeation chromatography. When the skin surface and deeper regions of the skin after sonophoresis of FD-40 were observed using a confocal microscope, the fluorescence of FD-40 was uniformly distributed in the area under the ultrasound horn and also evident in crack-like structures in the boundary of the horn. On the other hand, a hexagonal structure of horny cells in the stratum corneum (SC) observed by post-staining with rhodamine B was fully conserved in the area under the horn. These findings suggest that 41 kHz ultrasound can increase the transdermal transport of hydrophilic solutes by inducing convective solvent flow probably via both corneocytes and SC lipids as well as newly developed routes. Our observation also suggests that 41 k

  15. The transport phenomena during the growth of ZnTe crystal by the temperature gradient solution growth technique

    Science.gov (United States)

    Yin, Liying; Jie, Wanqi; Wang, Tao; Zhou, Boru; Yang, Fan

    2017-03-01

    A numerical model is developed to simulate the temperature field, the thermosolutal convection, the solute segregation and the growth interface morphology during the growth of ZnTe crystal from Te rich solution by the temperature gradient solution growth (TGSG) technique. Effects of the temperature gradient on the transport phenomena, the growth interface morphology and the growth rate are examined. The influences of the latent heat and the thermal conductivity of ZnTe crystal on the transport phenomena and the growth interface are also discussed. We find that the mass transfer of ZnTe in the solution is very slow because of the low diffusion coefficient and the lack of mixing in the lower part of the solution. During the growth, dilute solution with high density and low growth temperature accumulates in the central region of the growth interface, making the growth interface change into two distinct parts. The inner part is very concave, while the outer part is relatively flat. Growth conditions in front of the two parts of the growth interface are different. The crystalline quality of the inner part of the ingot is predicted to be worse than that of the outer part. High temperature gradient can significantly increase the growth rate, and avoid the diffusion controlled growth to some extent.

  16. Live Cell Imaging During Germination Reveals Dynamic Tubular Structures Derived from Protein Storage Vacuoles of Barley Aleurone Cells

    Directory of Open Access Journals (Sweden)

    Verena Ibl

    2014-09-01

    Full Text Available The germination of cereal seeds is a rapid developmental process in which the endomembrane system undergoes a series of dynamic morphological changes to mobilize storage compounds. The changing ultrastructure of protein storage vacuoles (PSVs in the cells of the aleurone layer has been investigated in the past, but generally this involved inferences drawn from static pictures representing different developmental stages. We used live cell imaging in transgenic barley plants expressing a TIP3-GFP fusion protein as a fluorescent PSV marker to follow in real time the spatially and temporally regulated remodeling and reshaping of PSVs during germination. During late-stage germination, we observed thin, tubular structures extending from PSVs in an actin-dependent manner. No extensions were detected following the disruption of actin microfilaments, while microtubules did not appear to be involved in the process. The previously-undetected tubular PSV structures were characterized by complex movements, fusion events and a dynamic morphology. Their function during germination remains unknown, but might be related to the transport of solutes and metabolites.

  17. Core2D. A code for non-isothermal water flow and reactive solute transport. Users manual version 2

    International Nuclear Information System (INIS)

    Samper, J.; Juncosa, R.; Delgado, J.; Montenegro, L.

    2000-01-01

    Understanding natural groundwater quality patterns, quantifying groundwater pollution and assessing the effects of waste disposal, require modeling tools accounting for water flow, and transport of heat and dissolved species as well as their complex interactions with solid and gases phases. This report contains the users manual of CORE ''2D Version V.2.0, a COde for modeling water flow (saturated and unsaturated), heat transport and multicomponent Reactive solute transport under both local chemical equilibrium and kinetic conditions. it is an updated and improved version of CORE-LE-2D V0 (Samper et al., 1988) which in turns is an extended version of TRANQUI, a previous reactive transport code (ENRESA, 1995). All these codes were developed within the context of Research Projects funded by ENRESA and the European Commission. (Author)

  18. Core 2D. A code for non-isothermal water flow and reactive solute transport. Users manual version 2

    Energy Technology Data Exchange (ETDEWEB)

    Samper, J.; Juncosa, R.; Delgado, J.; Montenegro, L. [Universidad de A Coruna (Spain)

    2000-07-01

    Understanding natural groundwater quality patterns, quantifying groundwater pollution and assessing the effects of waste disposal, require modeling tools accounting for water flow, and transport of heat and dissolved species as well as their complex interactions with solid and gases phases. This report contains the users manual of CORE ''2D Version V.2.0, a COde for modeling water flow (saturated and unsaturated), heat transport and multicomponent Reactive solute transport under both local chemical equilibrium and kinetic conditions. it is an updated and improved version of CORE-LE-2D V0 (Samper et al., 1988) which in turns is an extended version of TRANQUI, a previous reactive transport code (ENRESA, 1995). All these codes were developed within the context of Research Projects funded by ENRESA and the European Commission. (Author)

  19. Future car transport, Evaluating optimal solutions for future transport in the Netherlands focussing on the electric and hydrogen car

    NARCIS (Netherlands)

    Pierie, Frank

    2010-01-01

    The modern world we are living in today, consumes fasts amounts of fossil fuels in many sectors. One of these sectors is transport which is almost completely dependent on oil derivatives. This heavy dependency on oil and other types of fossil fuel makes i

  20. Solute transport along a single fracture in a porous rock: a simple analytical solution and its extension for modeling velocity dispersion

    Science.gov (United States)

    Liu, Longcheng; Neretnieks, Ivars; Shahkarami, Pirouz; Meng, Shuo; Moreno, Luis

    2018-02-01

    A simple and robust solution is developed for the problem of solute transport along a single fracture in a porous rock. The solution is referred to as the solution to the single-flow-path model and takes the form of a convolution of two functions. The first function is the probability density function of residence-time distribution of a conservative solute in the fracture-only system as if the rock matrix is impermeable. The second function is the response of the fracture-matrix system to the input source when Fickian-type dispersion is completely neglected; thus, the effects of Fickian-type dispersion and matrix diffusion have been decoupled. It is also found that the solution can be understood in a way in line with the concept of velocity dispersion in fractured rocks. The solution is therefore extended into more general cases to also account for velocity variation between the channels. This leads to a development of the multi-channel model followed by detailed statistical descriptions of channel properties and sensitivity analysis of the model upon changes in the model key parameters. The simulation results obtained by the multi-channel model in this study fairly well agree with what is often observed in field experiments—i.e. the unchanged Peclet number with distance, which cannot be predicted by the classical advection-dispersion equation. In light of the findings from the aforementioned analysis, it is suggested that forced-gradient experiments can result in considerably different estimates of dispersivity compared to what can be found in natural-gradient systems for typical channel widths.

  1. Solute transport in low-heterogeneity sandboxes: The role of correlation length and permeability variance

    Science.gov (United States)

    Heidari, Peyman; Li, Li

    2014-10-01

    This work examines how heterogeneity structure, in particular correlation length, controls flow and solute transport. We used two-dimensional (2D) sandboxes (21.9 cm × 20.6 cm) and four modeling approaches, including 2D Advection-Dispersion Equation (ADE) with explicit heterogeneity structure, 1D ADE with average properties, and nonlocal Continuous Time Random Walk (CTRW) and fractional ADE (fADE). The goal is to answer two questions: (1) how and to what extent does correlation length control effective permeability and breakthrough curves (BTC)? (2) Which model can best reproduce data under what conditions? Sandboxes were packed with the same 20% (v/v) fine and 80% (v/v) coarse sands in three patterns that differ in correlation length. The Mixed cases contain uniformly distributed fine and coarse grains. The Four-zone and One-zone cases have four and one square fine zones, respectively. A total of seven experiments were carried out with permeability variance of 0.10 (LC), 0.22 (MC), and 0.43 (HC). Experimental data show that the BTC curves depend strongly on correlation length, especially in the HC cases. The HC One-zone (HCO) case shows distinct breakthrough steps arising from fast advection in the coarse zone, slow advection in the fine zone, and slow diffusion, while the LCO and MCO BTCs do not exhibit such behavior. With explicit representation of heterogeneity structure, 2D ADE reproduces BTCs well in all cases. CTRW reproduces temporal moments with smaller deviation from data than fADE in all cases except HCO, where fADE has the lowest deviation.

  2. Competitive Inhibition of Renal Tubular Secretion of Gemifloxacin by Probenecid▿

    Science.gov (United States)

    Landersdorfer, Cornelia B.; Kirkpatrick, Carl M. J.; Kinzig, Martina; Bulitta, Jürgen B.; Holzgrabe, Ulrike; Drusano, George L.; Sörgel, Fritz

    2009-01-01

    Probenecid interacts with transport processes of drugs at several sites in the body. For most quinolones, renal clearance is reduced by concomitant administration of probenecid. The interaction between gemifloxacin and probenecid has not yet been studied. We studied the extent, time course, site(s), and mechanism of this interaction. Seventeen healthy volunteers participated in a randomized, two-way crossover study. Subjects received 320 mg gemifloxacin as an oral tablet without and with 4.5 g probenecid divided in eight oral doses. Drug concentrations in plasma and urine were analyzed by liquid chromatography-tandem mass spectrometry. WinNonlin was used for noncompartmental analysis, compartmental modeling, and statistics, and NONMEM was used for visual predictive checks. Concomitant administration of probenecid increased plasma gemifloxacin concentrations and amounts excreted in urine compared to baseline amounts. Data are average estimates (percent coefficients of variation). Modeling showed a competitive inhibition of the renal tubular secretion of gemifloxacin by probenecid as the most likely mechanism of the interaction. The estimated Km and Vmax for the saturable part of renal elimination were 9.16 mg/liter (20%) and 113 mg/h (21%), respectively. Based on the molar ratio, the affinity for the renal transporter was 10-fold higher for gemifloxacin than for probenecid. Since probenecid reached an ∼200-times-higher area under the molar concentration-time curve from 0 to 24 h than gemifloxacin, probenecid inhibited the active tubular secretion of gemifloxacin. Probenecid also reduced the nonrenal clearance of gemifloxacin from 25.2 (26%) to 21.0 (23%) liters/h. Probenecid inhibited the renal tubular secretion of gemifloxacin, most likely by a competitive mechanism, and slightly decreased nonrenal clearance of gemifloxacin. PMID:19564368

  3. Competitive inhibition of renal tubular secretion of gemifloxacin by probenecid.

    Science.gov (United States)

    Landersdorfer, Cornelia B; Kirkpatrick, Carl M J; Kinzig, Martina; Bulitta, Jürgen B; Holzgrabe, Ulrike; Drusano, George L; Sörgel, Fritz

    2009-09-01

    Probenecid interacts with transport processes of drugs at several sites in the body. For most quinolones, renal clearance is reduced by concomitant administration of probenecid. The interaction between gemifloxacin and probenecid has not yet been studied. We studied the extent, time course, site(s), and mechanism of this interaction. Seventeen healthy volunteers participated in a randomized, two-way crossover study. Subjects received 320 mg gemifloxacin as an oral tablet without and with 4.5 g probenecid divided in eight oral doses. Drug concentrations in plasma and urine were analyzed by liquid chromatography-tandem mass spectrometry. WinNonlin was used for noncompartmental analysis, compartmental modeling, and statistics, and NONMEM was used for visual predictive checks. Concomitant administration of probenecid increased plasma gemifloxacin concentrations and amounts excreted in urine compared to baseline amounts. Data are average estimates (percent coefficients of variation). Modeling showed a competitive inhibition of the renal tubular secretion of gemifloxacin by probenecid as the most likely mechanism of the interaction. The estimated K(m) and Vmax for the saturable part of renal elimination were 9.16 mg/liter (20%) and 113 mg/h (21%), respectively. Based on the molar ratio, the affinity for the renal transporter was 10-fold higher for gemifloxacin than for probenecid. Since probenecid reached an approximately 200-times-higher area under the molar concentration-time curve from 0 to 24 h than gemifloxacin, probenecid inhibited the active tubular secretion of gemifloxacin. Probenecid also reduced the nonrenal clearance of gemifloxacin from 25.2 (26%) to 21.0 (23%) liters/h. Probenecid inhibited the renal tubular secretion of gemifloxacin, most likely by a competitive mechanism, and slightly decreased nonrenal clearance of gemifloxacin.

  4. Two-dimensional Haar wavelet Collocation Method for the solution of Stationary Neutron Transport Equation in a homogeneous isotropic medium

    International Nuclear Information System (INIS)

    Patra, A.; Saha Ray, S.

    2014-01-01

    Highlights: • A stationary transport equation has been solved using the technique of Haar wavelet Collocation Method. • This paper intends to provide the great utility of Haar wavelets to nuclear science problem. • In the present paper, two-dimensional Haar wavelets are applied. • The proposed method is mathematically very simple, easy and fast. - Abstract: This paper emphasizes on finding the solution for a stationary transport equation using the technique of Haar wavelet Collocation Method (HWCM). Haar wavelet Collocation Method is efficient and powerful in solving wide class of linear and nonlinear differential equations. Recently Haar wavelet transform has gained the reputation of being a very effective tool for many practical applications. This paper intends to provide the great utility of Haar wavelets to nuclear science problem. In the present paper, two-dimensional Haar wavelets are applied for solution of the stationary Neutron Transport Equation in homogeneous isotropic medium. The proposed method is mathematically very simple, easy and fast. To demonstrate about the efficiency of the method, one test problem is discussed. It can be observed from the computational simulation that the numerical approximate solution is much closer to the exact solution

  5. Non-Equilibrium Thermodynamic Analysis of Transport Properties in the Nanofiltration of Ionic Liquid-Water Solutions

    Directory of Open Access Journals (Sweden)

    Hua P. Wang

    2009-05-01

    Full Text Available Thenanofiltration of aqueous solutions of the ionic liquids (ILs 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF4, and 1-butyl-3-methylimidazolium bromide ([Bmim]Br with a polyamide nanofiltration membrane was investigated. The practical transport coefficients, including hydrodynamic permeability (Lp, reflection (σ and solute permeability (ω were calculated in terms of a non-equilibrium thermodynamics approach. It was found that Lp and σ diminished as the concentration of the IL solutions increased. These characteristics are similar to those observed in inorganic electrolyte-water systems. In addition, it was shown that the rejection and volume flux for both ionic liquid solutions rose with feed pressure, while it decreased with feed concentration. The maximum rejection efficiencies for [Bmim]Br and [Bmim]BF4 are 67 % and 60 %, respectively, on our experimental scale. All the data suggests that a highly efficient process for IL separation could be developed when the operating conditions are optimized further.

  6. Tissue kallikrein-deficient mice display a defect in renal tubular calcium absorption.

    NARCIS (Netherlands)

    Picard, N.; Abel, M. van; Campone, C.; Seiler, M.; Bloch-Faure, M.; Hoenderop, J.G.J.; Loffing, J.; Meneton, P.; Bindels, R.J.M.; Paillard, M.; Alhenc-Gelas, F.; Houillier, P.

    2005-01-01

    Renal tubular calcium (RTCa) transport is one of the main factors that determine serum Ca concentration and urinary Ca excretion. The distal convoluted and connecting tubules reabsorb a significant fraction (10%) of filtered Ca. These tubule segments also synthesize in large abundance tissue

  7. An energy-optimal solution for transportation control of cranes with double pendulum dynamics: Design and experiments

    Science.gov (United States)

    Sun, Ning; Wu, Yiming; Chen, He; Fang, Yongchun

    2018-03-01

    Underactuated cranes play an important role in modern industry. Specifically, in most situations of practical applications, crane systems exhibit significant double pendulum characteristics, which makes the control problem quite challenging. Moreover, most existing planners/controllers obtained with standard methods/techniques for double pendulum cranes cannot minimize the energy consumption when fulfilling the transportation tasks. Therefore, from a practical perspective, this paper proposes an energy-optimal solution for transportation control of double pendulum cranes. By applying the presented approach, the transportation objective, including fast trolley positioning and swing elimination, is achieved with minimized energy consumption, and the residual oscillations are suppressed effectively with all the state constrains being satisfied during the entire transportation process. As far as we know, this is the first energy-optimal solution for transportation control of underactuated double pendulum cranes with various state and control constraints. Hardware experimental results are included to verify the effectiveness of the proposed approach, whose superior performance is reflected by being experimentally compared with some comparative controllers.

  8. Experimental quantification of solute transport through the vadose zone under dynamic boundary conditions with dye tracers and optical methods.

    Science.gov (United States)

    Cremer, Clemens; Neuweiler, Insa

    2017-04-01

    Knowledge of subsurface solute transport processes is vital to investigate e.g. groundwater contamination, nutrient uptake by plant roots and to implement remediation strategies. Beside field measurements and numerical simulations, physical laboratory experiments represent a way to establish process understanding and furthermore validate numerical schemes. Atmospheric forcings, such as erratically varying infiltration and evaporation cycles, subject the shallow subsurface to local and temporal variations in water content and associated hydraulic conductivity of the prevailing porous media. Those variations in material properties can cause flow paths to differ between upward and downward flow periods. Thereby, the unsaturated subsurface presents a highly complicated, dynamic system. Following an extensive systematical numerical investigation of flow and transport through bimodal, unsaturated porous media under dynamic boundary conditions (Cremer et al., 2016), we conduct physical laboratory experiments in a 22 cm x 8 cm x 1 cm flow cell where we introduce structural heterogeneity in the form sharp material interfaces between different porous media. In all experiments, a constant pressure head is implemented at the lower boundary, while cyclic infiltration-evaporation phases are applied at the soil surface. As a reference case a stationary infiltration with a rate corresponding to the cycle-averaged infiltration rate is applied. By initial application of dye tracers, solute transport within the domain is visualized such that transport paths and redistribution processes can be observed in a qualitative manner. Solute leaching is quantified at the bottom outlet, where breakthrough curves are obtained via spectroscopy. Liquid and vapor flow in and out of the domain is obtained from multiple balances. Thereby, the interplay of material structural heterogeneity and alternating flow (transport) directions and flow (transport) paths is investigated. Results show lateral

  9. Hybrid graphene-metal oxide solution processed electron transport layers for large area high-performance organic photovoltaics.

    Science.gov (United States)

    Beliatis, Michail J; Gandhi, Keyur K; Rozanski, Lynn J; Rhodes, Rhys; McCafferty, Liam; Alenezi, Mohammad R; Alshammari, Abdullah S; Mills, Christopher A; Jayawardena, K D G Imalka; Henley, Simon J; Silva, S Ravi P

    2014-04-02

    Solution processed core-shell nano-structures of metal oxide-reduced graphene oxide (RGO) are used as improved electron transport layers (ETL), leading to an enhancement in photocurrent charge transport in PCDTBT:PC70 BM for both single cell and module photovoltaic devices. As a result, the power conversion efficiency for the devices with RGO-metal oxides for ETL increases 8% in single cells and 20% in module devices. © 2014 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Method of solution of the neutron transport equation in multidimensional cartesian geometries using spherical harmonics and spatially orthogonal polynomials

    International Nuclear Information System (INIS)

    Fenstermacher, T.E.

    1981-01-01

    The solution of the neutron transport equation has long been a subject of intense interest to nuclear engineers. Present computer codes for the solution of this equation, however, are expensive to run for large, multidimensional problems, and also suffer from computational problems such as the ray effect. A method has been developed which eliminates many of these problems. It consists of transforming the transport equation into a set of linear partial differential equations by the use of spherical harmonics. The problem volume is divided into mesh boxes, and the flux components are approximated within each mesh box by spatially orthogonal quadratic polynomials, which need not be continuous at mesh box interfaces. A variational principle is developed, and used to solve for the unknown coefficients of these polynomials. Both one dimensional and two dimensional computer codes using this method have been written. The codes have each been tested on several test cases, and the solutions checked against solutions obtained by other methods. While the codes have some difficulty in modeling sharp transients, they produce excellent results on problems where the characteristic lengths are many mean free paths. On one test case, the two dimensional code, SHOP/2D, required only one-fourth the computer time required by the finite difference, discrete ordinates code TWOTRAN to produce a solution. In addition, SHOP/2D converged much better than TWOTRAN and produced more physical-appearing results

  11. Contaminant transport in fractured porous media: analytical solution for a two-member decay chain in a single fracture

    International Nuclear Information System (INIS)

    Sudicky, E.A.; Frind, E.O.

    1984-01-01

    An analytical solution is presented for the problem of radionuclide chain decay during transport through a discrete fracture situated in a porous rock matrix. The solution takes into account advection along the fracture, molecular diffusion from the fracture to the porous matrix, adsorption on the fracture face, adsorption in the rock matrix, and radioactive decay. The solution for the daughter product is in the form of a double integral which is evaluated by Gauss-Legendre quadrature. Results show that the daughter product tends to advance ahead of the parent nuclide even when the half-life of the parent is larger. This is attributed to the effect of chain decay in the matrix, which tends to reduce the diffusive loss of the daughter along the fracture. The examples also demonstrate that neglecting the parent nuclide and modeling its daughter as a single species can result in significant overestimation of arrival times at some point along the fracture. Although the analytical solution is restricted to a two-member chain for practical reasons, it represents a more realistic description of nuclide transport along a fracture than available single-species models. The solution may be of use for application to other contaminants undergoing different types of first-order transformation reactions

  12. Energy and sustainable urban transport development in China: Challenges and solutions

    International Nuclear Information System (INIS)

    Zhang, Xilang; Hu, Xiaojun

    2002-01-01

    This paper presents an overview of urban road transport development and challenges in energy consumption in China. It relates sustainable urban road transport development with energy consumption and environmental management. It analyzes the main challenges related to urban road transport development: energy security, low efficiency in energy utilization, and unsustainable environmental management. It also discusses necessary technological and policy initiatives to deal with these challenges: e.g., promoting the development and dissemination of cleaner vehicle technologies, substitution of LPG, CNG, LNG and bio fuels for gasoline and diesel, strengthening regulations on vehicle emissions, expediting public transport development, and the effective management of the soaring private cars. (author)

  13. Energy and sustainable urban transport development in China: Challenges and solutions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xilang; Hu, Xiaojun

    2002-07-01

    This paper presents an overview of urban road transport development and challenges in energy consumption in China. It relates sustainable urban road transport development with energy consumption and environmental management. It analyzes the main challenges related to urban road transport development: energy security, low efficiency in energy utilization, and unsustainable environmental management. It also discusses necessary technological and policy initiatives to deal with these challenges: e.g., promoting the development and dissemination of cleaner vehicle technologies, substitution of LPG, CNG, LNG and bio fuels for gasoline and diesel, strengthening regulations on vehicle emissions, expediting public transport development, and the effective management of the soaring private cars. (author)

  14. Strength characterization of tubular ceramic materials by flexure of semi-cylindrical specimens

    DEFF Research Database (Denmark)

    Kwok, Kawai; Kiesel, Lutz; Frandsen, Henrik Lund

    2014-01-01

    Mechanical strength at elevated temperatures and operating atmospheres needs to be characterized during development of tubular ceramic components for advanced energy technologies. Typical procedures are time-consuming because a large number of tests are required for a reliable statistical strength...... characterization and every specimen has to be subjected to the process conditions individually. This paper presents an efficient strength characterization methodology for tubular ceramics. The methodology employs flexure of semi-cylindrical specimens as the strength test and implements the tests within a facility...... conducted on oxygen transport membrane materials at room temperature and 850°C....

  15. An analytical discrete-ordinates solution for an improved one-dimensional model of three-dimensional transport in ducts

    International Nuclear Information System (INIS)

    Garcia, R.D.M.

    2015-01-01

    Highlights: • An improved 1-D model of 3-D particle transport in ducts is studied. • The cases of isotropic and directional incidence are treated with the ADO method. • Accurate numerical results are reported for ducts of circular cross section. • A comparison with results of other authors is included. • The ADO method is found to be very efficient. - Abstract: An analytical discrete-ordinates solution is developed for the problem of particle transport in ducts, as described by a one-dimensional model constructed with two basis functions. Two types of particle incidence are considered: isotropic incidence and incidence described by the Dirac delta distribution. Accurate numerical results are tabulated for the reflection probabilities of semi-infinite ducts and the reflection and transmission probabilities of finite ducts. It is concluded that the developed solution is more efficient than commonly used numerical implementations of the discrete-ordinates method.

  16. An examination of the proposition to use membrane transport in an aqueous solution absorption heat pump cycle

    Science.gov (United States)

    Yu, J. S.; Haskin, W. L.; Chang, W. S.

    1990-06-01

    A thermal transfer cycle utilizing membrane osmotic transport of water against a pressure rise is investigated from the viewpoint of the operation of a conventional absorption heat pump using an aqueous solution as the working fluid. Physical sorption, similar or equivalent to condensation, of water vapor in the membrane material is considered to be an essential step in the overall process of water transport. The thermal nature of this step during which the heat of sorption similar in amount to the heat of condensation for water vapor must evolve at the evaporator temperature or lower disqualifies the system in performance as a heat pump. Simple flow relations for the aqueous sugar solution are derived under simplifying assumptions. A set of numerical calculations is given as an illustration to show that the inferred steps are well within the limits of thermodynamics.

  17. Application of radioanalytical methods in the quantification of solute transport in plants

    International Nuclear Information System (INIS)

    Hornik, M.

    2016-01-01

    The present habilitation thesis is elaborated as a compilation of published scientific papers supplemented with a commentary. The primary objective of the work was to bring the results and knowledge applicable to the further development of application possibilities of nuclear analytical chemistry, especially in the field of radioindication methods and application of positron emitters in connection with the positron emission tomography (PET) as well. In the work, these methods and techniques are developed mainly in the context of the solution of environmental issues related to the analysis and remediation of contaminated or degraded environment (water and soil), but also partially in the field of plant production or plant research. In terms of the achieved results and knowledge, the work is divided into three separated sections. The first part is dedicated to the application of radioindication methods, as well as others, non-radioanalytical methods and approaches in the characterization of plant biomass (biomass of terrestrial and aquatic mosses, and waste plant biomass) as alternative sorbents served to the separation and removal of (radio)toxic metals from contaminated or waste waters, as well as in the quantification and description of the sorption processes proceed under conditions of batch or continuous flow systems. The second part describes the results concerning on the quantification and visual description of the processes of (radio)toxic metals and microelements uptake and translocation in plant tissues using radioisotopes (β- and γ-emitters) of these metals and application of the methods of direct gamma spectrometry and autoradiography as well. The main aim of these experiments was to evaluate the possibilities of utilization of selected plant species in phytoremediation of contaminated soils and waters, as well as the possibilities affecting the effectiveness of uptake and translocation of these metals in the plant tissues mainly in dependence on their

  18. Evaluation of Front Morphological Development of Reactive Solute Transport Using Behavior Diagrams

    Directory of Open Access Journals (Sweden)

    Jui-Sheng Chen

    2009-01-01

    -uniformity strength ratio and reaction rate constant are identified as two important factors that govern the interaction of dissolution and solute transport in groundwater systems.

  19. A study of solute transport of radiolysis products in crud and its effects on crud growth on PWR fuel pin

    International Nuclear Information System (INIS)

    Joe, Justin H.; Kim, Seung Jun; Jones, Barclay G.

    2016-01-01

    Highlights: • We model a 3-D numerical solute transport within crud deposit on PWR fuel pin. • Source term effect from radiolysis yield and recombination is minimal. • Lower crud porosity leads substantially higher concentration of solutes. • Thicker crud deposit generates substantially higher concentration of solutes. • High concentration of radiolysis species (H 2 , O 2 , and H 2 O 2 ) can be directly related to corrosion issues on fuel cladding. - Abstract: This research examines the concentration of radiolysis species (H 2 , O 2 , and H 2 O 2 ) over the porous crud layer using a three dimensional time dependent solute transport model. A Monte Carlo random walk technique is adopted to simulate the transport behavior of the different species with various parametric studies of source term, crud thickness, and crud porosity. Particularly, this model employs a system of coupled mass transport and chemical interactions as the source term, which makes the problem non-linear. It is demonstrated that a negligible effect on radiolysis species concentrations change due to the consideration of source term. The crud thickness and porosity effect on the concentration distributions are notably observed. In general, higher concentration starts from the intersection of the heating surface with the chimney wall from the beginning and it reaches the equilibrium state within tens of seconds. The concentration profiles of the radiolysis species H 2 , O 2 , and H 2 O 2 can be directly related to corrosion issues. The direct application of this study to nuclear engineering research is to aid in the design of reactors with higher performance without experiencing an Axial Offset Anomaly (AOA), an unexpected measured shift in axial power distribution from predicted values.

  20. Observing solute transport in the capillary fringe using image analysis and electrical resistivity tomography in laboratory experiments

    OpenAIRE

    Persson, Magnus; Dahlin, Torleif; Günther, Thomas

    2015-01-01

    Five laboratory experiments were conducted to study solute transport in the capillary fringe in a sand filled glass tank containing an artificial groundwater zone, an unsaturated zone, and a capillary fringe in between. Dye stained water, applied at the soil surface, moved downwards through the unsaturated zone and then horizontally in the capillary fringe. The horizontal velocity of the dye plume front was calculated using optical image analysis and Electrical Resistivity Tomography (ERT) me...

  1. A faculty-led solution to transport-related stress among South African ...

    African Journals Online (AJOL)

    Background. In many parts of the developing world the lack of consistent and affordable transport may be a serious obstacle to education and a unique sociocultural cause of stress among undergraduate students. Objective. To determine the student-perceived benefits of a faculty-led, grassroots student transport service for ...

  2. Proton transport in a binary biomimetic solution revealed by molecular dynamics simulation

    NARCIS (Netherlands)

    Liang, Chungwen; Jansen, Thomas L. C.

    2011-01-01

    We report the simulation results of the proton transport in a binary mixture of amphiphilic tetramethylurea (TMU) molecules and water. We identify different mechanisms that either facilitate or retard the proton transport. The efficiency of these mechanisms depends on the TMU concentration. The

  3. EOS9nT: A TOUGH2 module for the simulation of flow and solute/colloid transport

    International Nuclear Information System (INIS)

    Moridis, G.J.; Wu, Y.S.; Pruess, K.

    1998-04-01

    EOS9nT is a new TOUGH2 module for the simulation of flow and transport of an arbitrary number n of tracers (solutes and/or colloids) in the subsurface. The module first solves the flow-related equations, which are comprised of (a) the Richards equation and, depending on conditions, may also include (b) the flow equation of a dense brine or aqueous suspension and/or (c) the heat equation. A second set of transport equations, corresponding to the n tracers, are then solved sequentially. The low concentrations of the n tracers are considered to have no effect on the liquid phase, thus making possible the decoupling of their equations. The first set of equations in EOS9nT provides the flow regime and account for fluid density variations due to thermal and/or solute concentration effects. The n tracer transport equations account for sorption, radioactive decay, advection, hydrodynamic dispersion, molecular diffusion, as well as filtration (for colloids only). EOS9nT can handle gridblocks or irregular geometry in three-dimensional domains. Preliminary results from four 1-D verification problems show an excellent agreement between the numerical predictions and the known analytical solutions

  4. Volume-weighted particle-tracking method for solute-transport modeling; Implementation in MODFLOW–GWT

    Science.gov (United States)

    Winston, Richard B.; Konikow, Leonard F.; Hornberger, George Z.

    2018-02-16

    In the traditional method of characteristics for groundwater solute-transport models, advective transport is represented by moving particles that track concentration. This approach can lead to global mass-balance problems because in models of aquifers having complex boundary conditions and heterogeneous properties, particles can originate in cells having different pore volumes and (or) be introduced (or removed) at cells representing fluid sources (or sinks) of varying strengths. Use of volume-weighted particles means that each particle tracks solute mass. In source or sink cells, the changes in particle weights will match the volume of water added or removed through external fluxes. This enables the new method to conserve mass in source or sink cells as well as globally. This approach also leads to potential efficiencies by allowing the number of particles per cell to vary spatially—using more particles where concentration gradients are high and fewer where gradients are low. The approach also eliminates the need for the model user to have to distinguish between “weak” and “strong” fluid source (or sink) cells. The new model determines whether solute mass added by fluid sources in a cell should be represented by (1) new particles having weights representing appropriate fractions of the volume of water added by the source, or (2) distributing the solute mass added over all particles already in the source cell. The first option is more appropriate for the condition of a strong source; the latter option is more appropriate for a weak source. At sinks, decisions whether or not to remove a particle are replaced by a reduction in particle weight in proportion to the volume of water removed. A number of test cases demonstrate that the new method works well and conserves mass. The method is incorporated into a new version of the U.S. Geological Survey’s MODFLOW–GWT solute-transport model.

  5. Earliest Results in the Use of Activated Composite Membranes for the Transport of Silver Ions from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Yucundo Mendoza-Tolentino

    2014-01-01

    Full Text Available This paper presents the results concerning the first use of activated composite membranes (ACMs for the facilitated transport of silver ions containing di-(2-ethylhexyl-dithiophosphoric acid (DTPA as the carrier. DTPA was immobilized by interfacial polymerization in a dense layer that was deposited in a porous layer, which was prepared on a nonwoven fabric support by phase inversion. The influence of fundamental parameters affecting the transport of silver ion as the carrier concentration in the membrane phase and stripping agent variation of the stripping solution have been studied. In the optimal conditions, the amount of silver transported across the ACMs was greater than 50%, whereas if the content of the carrier is modified, more than the 90% of the initial silver is removed from the feed phase.

  6. Modeling solute transport through saturated zone ground water at 10 km scale: Example from the Yucca Mountain license application

    Science.gov (United States)

    Kelkar, Sharad; Ding, Mei; Chu, Shaoping; Robinson, Bruce A.; Arnold, Bill; Meijer, Arend; Eddebbarh, Al-Aziz

    2010-09-01

    This paper presents a study of solute transport through ground water in the saturated zone and the resulting breakthrough curves (BTCs), using a field-scale numerical model that incorporates the processes of advection, dispersion, matrix diffusion in fractured volcanic formations, sorption, and colloid-facilitated transport. Such BTCs at compliance boundaries are often used as performance measures for a site. The example considered here is that of the saturated zone study prepared for the Yucca Mountain license application. The saturated zone at this site occurs partly in volcanic, fractured rock formations and partly in alluvial formations. This paper presents a description of the site and the ground water flow model, the development of the conceptual model of transport, model uncertainties, model validation, and the influence of uncertainty in input parameters on the downstream BTCs at the Yucca Mountain site.

  7. Reevaluation of the case, de Hoffman, and Placzek one-group neutron transport benchmark solution in plane geometry

    International Nuclear Information System (INIS)

    Ganapol, B.D.

    1986-01-01

    In a course on neutron transport theory and also in the analytical neutron transport theory literature, the pioneering work of Case et al. (CdHP) is often referenced. This work was truly a monumental effort in that it treated the fundamental mathematical properties of the one-group neutron Boltzmann equation in detail as well as the numerical evaluation of most of the resulting solutions. Many mathematically and numerically oriented dissertations were based on this classic monograph. In light of the considerable advances made both in numerical methods and computer technology since 1953, when the historic CdHP monograph first appeared, it seems appropriate to reevaluate the numerical benchmark solutions found therein with present-day computational technology. In most transport theory courses, the subject of proper benchmarking of numerical algorithms and transport codes is seldom addressed at any great length. This may be the reason that the benchmarking procedure is so rarely practiced in the nuclear community and when practiced is improperly applied. In this presentation, the development of a new benchmark for the one-group neutron flux in an infinite medium will be detailed with emphasis placed on the educational aspects of the benchmarking activity

  8. Final report on LDRD project: A phenomenological model for multicomponent transport with simultaneous electrochemical reactions in concentrated solutions

    Energy Technology Data Exchange (ETDEWEB)

    CHEN,KEN S.; EVANS,GREGORY H.; LARSON,RICHARD S.; NOBLE,DAVID R.; HOUF,WILLIAM G.

    2000-01-01

    A phenomenological model was developed for multicomponent transport of charged species with simultaneous electrochemical reactions in concentrated solutions, and was applied to model processes in a thermal battery cell. A new general framework was formulated and implemented in GOMA (a multidimensional, multiphysics, finite-element computer code developed and being enhanced at Sandia) for modeling multidimensional, multicomponent transport of neutral and charged species in concentrated solutions. The new framework utilizes the Stefan-Maxwell equations that describe multicomponent diffusion of interacting species using composition-insensitive binary diffusion coefficients. The new GOMA capability for modeling multicomponent transport of neutral species was verified and validated using the model problem of ternary gaseous diffusion in a Stefan tube. The new GOMA-based thermal battery computer model was verified using an idealized battery cell in which concentration gradients are absent; the full model was verified by comparing with that of Bernardi and Newman (1987) and validated using limited thermal battery discharge-performance data from the open literature (Dunning 1981) and from Sandia (Guidotti 1996). Moreover, a new Liquid Chemkin Software Package was developed, which allows the user to handle manly aspects of liquid-phase kinetics, thermodynamics, and transport (particularly in terms of computing properties). Lastly, a Lattice-Boltzmann-based capability was developed for modeling pore- or micro-scale phenomena involving convection, diffusion, and simplified chemistry; this capability was demonstrated by modeling phenomena in the cathode region of a thermal battery cell.

  9. Transition piece for joining together tubular pieces

    International Nuclear Information System (INIS)

    Holko, K.H.

    1981-01-01

    A transition piece for joining together tubular pieces formed respectively from a low alloy or carbon steel and a high temperature alloy containing at least 16% chromium includes a plurality of tubular parts welded together and formed from materials of selected composition with a maximum chromium content difference of 5% between adjacent parts when the chromium content of each part is below 10% and a maximum chromium difference of 7% between adjacent parts when the chromium content of either part is above 10%. The transition parts are also graded as to such characteristics as thermal expansion coefficient. The transition parts at opposite ends of the transition joint have chromium percentages similar to the tubular pieces to which they are to be joined. The parts may be joined by fusion and/or friction welding and parts may be formed by fusion weld deposition. (author)

  10. Platform technologies for tubular organ regeneration.

    Science.gov (United States)

    Basu, Joydeep; Ludlow, John W

    2010-10-01

    As a result of recent successes in regenerative medicine approaches to engineering multiple disparate tubular organs, methodology commonalities are emerging. Principal themes include the importance of a biodegradable scaffold seeded with a population of smooth muscle cells. Such composites trigger a regenerative response following in vivo implantation, resulting in de novo organogenesis. In this review, we examine bladder regeneration as a foundational platform technology to highlight key principles applicable to the regeneration of any tubular organ, and illustrate how these general concepts underlie current strategies to regenerate components of gastrointestinal, vascular, pulmonary and genitourinary systems. We focus on identifying the elements of this platform that have facilitated the transition of tubular organ regeneration from academic proof-of-concept to commercial viability. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. SOLUTIONING

    Directory of Open Access Journals (Sweden)

    Maria de Hoyos Guajardo, Ph.D. Candidate, M.Sc., B.Eng.

    2004-11-01

    Full Text Available The theory that is presented below aims to conceptualise how a group of undergraduate students tackle non-routine mathematical problems during a problem-solving course. The aim of the course is to allow students to experience mathematics as a creative process and to reflect on their own experience. During the course, students are required to produce a written ‘rubric’ of their work, i.e., to document their thoughts as they occur as well as their emotionsduring the process. These ‘rubrics’ were used as the main source of data.Students’ problem-solving processes can be explained as a three-stage process that has been called ‘solutioning’. This process is presented in the six sections below. The first three refer to a common area of concern that can be called‘generating knowledge’. In this way, generating knowledge also includes issues related to ‘key ideas’ and ‘gaining understanding’. The third and the fourth sections refer to ‘generating’ and ‘validating a solution’, respectively. Finally, once solutions are generated and validated, students usually try to improve them further before presenting them as final results. Thus, the last section deals with‘improving a solution’. Although not all students go through all of the stages, it may be said that ‘solutioning’ considers students’ main concerns as they tackle non-routine mathematical problems.

  12. Development and applications of the channel network model for simulations of flow and solute transport in fractured rock

    International Nuclear Information System (INIS)

    Gylling, B.

    1997-01-01

    The Channel Network model and its computer implementation, the code CHAN3D, for simulations of fluid flow and transport of solutes have been developed. The tool may be used for performance and safety assessments of deep lying repositories in fractured rocks for nuclear and other hazardous wastes, e.g. chemical wastes. It may also be used to simulate and interpret field experiments of flow and transport in large or small scale. Fluid flow and solute transport in fractured media are of interest in the performance assessment of a repository for hazardous waste, located at depth in crystalline rock, with potential release of solutes. Fluid flow in fractured rock is found to be very unevenly distributed due to the heterogeneity of the medium. The water will seek the easiest path, channels, under a prevailing pressure gradient. Solutes in the flowing water may be transported through preferential paths and migrate from the water in the fractures into the stagnant water in the rock matrix. There, sorbing solutes may be sorbed on the micro surfaces within the matrix. The diffusion into the matrix and the sorption process may significantly retard the transport of species and increase the time available for radionuclide decay. Channelling and matrix diffusion contribute to the dispersion of solutes in the water. Important for performance assessment is that channeling may cause a portion of the solutes to arrive much faster than the rest of the solutes. Simulations of field experiments at the Aespoe Hard Rock Laboratory using the Channel Network model have been performed. The application of the model to the site and the simulation results of the pumping and tracer tests are presented. The results show that the model is capable of describing the hydraulic gradient and of predicting flow rates and tracer transport obtained in the experiments. The data requirements for the Channel Network model have been investigated to determine which data are the most important for predictions

  13. Development and applications of the channel network model for simulations of flow and solute transport in fractured rock

    Energy Technology Data Exchange (ETDEWEB)

    Gylling, B

    1997-12-31

    The Channel Network model and its computer implementation, the code CHAN3D, for simulations of fluid flow and transport of solutes have been developed. The tool may be used for performance and safety assessments of deep lying repositories in fractured rocks for nuclear and other hazardous wastes, e.g. chemical wastes. It may also be used to simulate and interpret field experiments of flow and transport in large or small scale. Fluid flow and solute transport in fractured media are of interest in the performance assessment of a repository for hazardous waste, located at depth in crystalline rock, with potential release of solutes. Fluid flow in fractured rock is found to be very unevenly distributed due to the heterogeneity of the medium. The water will seek the easiest path, channels, under a prevailing pressure gradient. Solutes in the flowing water may be transported through preferential paths and migrate from the water in the fractures into the stagnant water in the rock matrix. There, sorbing solutes may be sorbed on the micro surfaces within the matrix. The diffusion into the matrix and the sorption process may significantly retard the transport of species and increase the time available for radionuclide decay. Channelling and matrix diffusion contribute to the dispersion of solutes in the water. Important for performance assessment is that channeling may cause a portion of the solutes to arrive much faster than the rest of the solutes. Simulations of field experiments at the Aespoe Hard Rock Laboratory using the Channel Network model have been performed. The application of the model to the site and the simulation results of the pumping and tracer tests are presented. The results show that the model is capable of describing the hydraulic gradient and of predicting flow rates and tracer transport obtained in the experiments. The data requirements for the Channel Network model have been investigated to determine which data are the most important for predictions

  14. The Shortlist Method for fast computation of the Earth Mover's Distance and finding optimal solutions to transportation problems.

    Science.gov (United States)

    Gottschlich, Carsten; Schuhmacher, Dominic

    2014-01-01

    Finding solutions to the classical transportation problem is of great importance, since this optimization problem arises in many engineering and computer science applications. Especially the Earth Mover's Distance is used in a plethora of applications ranging from content-based image retrieval, shape matching, fingerprint recognition, object tracking and phishing web page detection to computing color differences in linguistics and biology. Our starting point is the well-known revised simplex algorithm, which iteratively improves a feasible solution to optimality. The Shortlist Method that we propose substantially reduces the number of candidates inspected for improving the solution, while at the same time balancing the number of pivots required. Tests on simulated benchmarks demonstrate a considerable reduction in computation time for the new method as compared to the usual revised simplex algorithm implemented with state-of-the-art initialization and pivot strategies. As a consequence, the Shortlist Method facilitates the computation of large scale transportation problems in viable time. In addition we describe a novel method for finding an initial feasible solution which we coin Modified Russell's Method.

  15. The Shortlist Method for fast computation of the Earth Mover's Distance and finding optimal solutions to transportation problems.

    Directory of Open Access Journals (Sweden)

    Carsten Gottschlich

    Full Text Available Finding solutions to the classical transportation problem is of great importance, since this optimization problem arises in many engineering and computer science applications. Especially the Earth Mover's Distance is used in a plethora of applications ranging from content-based image retrieval, shape matching, fingerprint recognition, object tracking and phishing web page detection to computing color differences in linguistics and biology. Our starting point is the well-known revised simplex algorithm, which iteratively improves a feasible solution to optimality. The Shortlist Method that we propose substantially reduces the number of candidates inspected for improving the solution, while at the same time balancing the number of pivots required. Tests on simulated benchmarks demonstrate a considerable reduction in computation time for the new method as compared to the usual revised simplex algorithm implemented with state-of-the-art initialization and pivot strategies. As a consequence, the Shortlist Method facilitates the computation of large scale transportation problems in viable time. In addition we describe a novel method for finding an initial feasible solution which we coin Modified Russell's Method.

  16. Tubular membrane bioreactors for biotechnological processes.

    Science.gov (United States)

    Wolff, Christoph; Beutel, Sascha; Scheper, Thomas

    2013-02-01

    This article is an overview of bioreactors using tubular membranes such as hollow fibers or ceramic capillaries for cultivation processes. This diverse group of bioreactor is described here in regard to the membrane materials used, operational modes, and configurations. The typical advantages of this kind of system such as environments with low shear stress together with high cell densities and also disadvantages like poor oxygen supply are summed up. As the usage of tubular membrane bioreactors is not restricted to a certain organism, a brief overview of various applications covering nearly all types of cells from prokaryotic to eukaryotic cells is also given here.

  17. Concepts and dimensionality in modeling unsaturated water flow and solute transport

    NARCIS (Netherlands)

    Dam, van J.C.; Rooij, de G.H.; Heinen, M.; Stagnitti, F.

    2004-01-01

    Many environmental studies require accurate simulation of waterand solute fluxes in the unsaturated zone. This paper evaluatesone- and multi-dimensional approaches for soil water flow as wellas different spreading mechanisms to model solute behavior atdifferent scales. For quantification of soil

  18. Polydopamine-coated open tubular column for the separation of proteins by capillary electrochromatography.

    Science.gov (United States)

    Xiao, Xing; Wang, Wentao; Chen, Jia; Jia, Li

    2015-08-01

    The separation and determination of proteins in food is an important aspect in food industry. Inspired by the self-polymerization of dopamine under alkaline conditions and the natural adhesive properties of polydopamine, in this paper, a simple and economical method was developed for the preparation of polydopamine-coated open tubular column, in which ammonium persulfate was used as the source of oxygen to induce and facilitate the polymerization of dopamine to form polydopamine. In comparison with a naked fused-silica capillary, the direction and magnitude of the electro-osmotic flow of the as-prepared polydopamine-coated open tubular column could be manipulated by varying the pH values of background solutions due to the existence of amine and phenolic hydroxyl groups on polydopamine coating. The surface morphology of the polydopamine-coated open tubular column was studied by scanning electron microscopy, and the thickness of polydopamine coating was 106 nm. The performance of the polydopamine-coated open tubular column was validated by analysis of proteins. The relative standard deviations of migration times of proteins representing run-to-run, day-to-day, and column-to-column were less than 3.5%. In addition, the feasibility of the polydopamine-coated open tubular column for real samples was verified by the separation of proteins in chicken egg white and pure milk. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Integrating U.S. climate, energy, and transportation policies : RAND workshops address challenges and potential solutions

    Science.gov (United States)

    2009-01-01

    There is growing consensus among policymakers that bold government action is needed : to mitigate climate change, particularly through integrated climate, energy, and transportation : policy initiatives. In an effort to share different perspectives o...

  20. TNTM85 and TNTM81 transports / storage flasks: An optimized solution for vitrified residues

    International Nuclear Information System (INIS)

    Sicard, D.; Verdier, A.; Dyck, P.

    2006-01-01

    By analyzing the evolution of burnup of spent fuel to be reprocessed, the high activity vitrified residues would not be transported in the existing flask designs. Therefore COGEMA LOGISTICS decided in the late nineties to develop a design with optimized capacity able to store and transport the most active and hottest canisters. The TN TM 85 flask shall permit in the near future in Germany the storage and the transport of the highest vitrified residues defining a thermal power of 56 kW. The challenge for the TN TM 85 flask design was that the geometry entry data were very restrictive and were combined with a fairly wide range set by COGEMA Specification 300AQ16 relative to vitrified residue canister. In addition, the cask had to fit as much as possible in the existing procedures for the TN TM 28 cask and TS 28 V cask, all along the logistics chain of loading, unloading, transport and maintenance. (authors)

  1. Effect of the background solution and material composition on the transport of silver nanoparticles in saturated aquifer materials

    Science.gov (United States)

    Adrian, Yorck; Schneidewind, Uwe; Fernandez-Steeger, Tomas; Azzam, Rafig

    2016-04-01

    Engineered silver nanoparticles (AgNP) are used in various consumer products such as cloth or personal care products due to their antimicrobial properties (Benn et al., 2010). Their transport behavior in the environment is still under investigation. Previous studies have been focusing on the transport of AgNP in simple test systems with glass beads or soil materials (Braun et al., 2015), but studies investigating aquifer material are rare. However, the protection of fresh water resources in the subsurface is an important part in the protection of human health and the assurance of future economic activities. Therefore, expert knowledge regarding the transport and fate of engineered nanoparticles as potential contaminants in aquifers is essential. Within the scope of the research project NanoMobil funded by German Federal Ministry of Education and Research, the transport and retention behavior of AgNP in aquifer material was investigated under saturated conditions in laboratory columns for different flow velocities, ionic strengths (IS) and background solutions. The used aquifer material consisted mainly of quartz and albite. The quartz grains were partially coated with iron hydroxides and oxides. Furthermore, 1% hematite was present in the silicate dominated aquifer material. The experiments were conducted using NaNO3 and Ca(NO3)2 background solutions to examine the effects of monovalent and divalent cations on the transport of AgNP. Flow velocities in the columns were chosen to represent typical flow velocities of groundwater in the subsurface. For the experiments two mean grain sizes of 0.3 and 0.7 mm were used to investigate the effect of the grain size on the transport behavior. Particle concentration was measured using ICP-MS and particle size was determined using flow field-flow fractionation (FlFFF). HYDRUS-1D (Šimůnek et al., 2013) was used to elucidate the transport and retention processes of the AgNP in the aquifer material. The obtained results show

  2. Closed-flow column experiments—Insights into solute transport provided by a damped oscillating breakthrough behavior

    Science.gov (United States)

    Ritschel, Thomas; Totsche, Kai Uwe

    2016-03-01

    Transport studies that employ column experiments in closed-flow mode complement classical approaches by providing new characteristic features observed in the solute breakthrough and equilibrium between liquid and solid phase. Specific to the closed-flow mode is the recirculation of the effluent to the inflow via a mixing vessel. Depending on the ratio of volumes of mixing vessel and water-filled pore space, a damped oscillating solute concentration emerges in the effluent and mixing vessel. The oscillation characteristics, e.g., frequency, amplitude, and damping, allow for the investigation of solute transport in a similar fashion as known for classical open-flow column experiments. However, the closed loop conserves substances released during transport within the system. In this way, solute and porous medium can equilibrate with respect to physicochemical conditions. With this paper, the features emerging in the breakthrough curves of saturated column experiments run in closed-flow mode and methods of evaluation are illustrated under experimental boundary conditions forcing the appearance of oscillations. We demonstrate that the effective pore water volume and the pumping rate can be determined from a conservative tracer breakthrough curve uniquely. In this way, external preconditioning of the material, e.g., drying, can be avoided. A reactive breakthrough experiment revealed a significant increase in the pore water pH value as a consequence of the closed loop. These results highlight the specific impact of the closed mass balance. Furthermore, the basis for the modeling of closed-flow experiments is given by the derivation of constitutive equations and numerical implementation, validated with the presented experiments.

  3. Investigation of cross-linking characteristics of novel hole-transporting materials for solution-processed phosphorescent OLEDs

    Science.gov (United States)

    Lee, Jaemin; Ameen, Shahid; Lee, Changjin

    2016-04-01

    After the success of commercialization of the vacuum-evaporated organic light-emitting diodes (OLEDs), solutionprocessing or printing of OLEDs are currently attracting much research interests. However, contrary to various kinds of readily available vacuum-evaporable OLED materials, the solution-processable OLED materials are still relatively rare. Hole-transporting layer (HTL) materials for solution-processed OLEDs are especially limited, because they need additional characteristics such as cross-linking to realize multilayer structures in solution-processed OLEDs, as well as their own electrically hole-transporting characteristics. The presence of such cross-linking characteristics of solutionprocessable HTL materials therefore makes them more challenging in the development stage, and also makes them essence of solution-processable OLED materials. In this work, the structure-property relationships of thermally crosslinkable HTL materials were systematically investigated by changing styrene-based cross-linking functionalities and modifying the carbazole-based hole-transporting core structures. The temperature dependency of the cross-linking characteristics of the HTL materials was systematically investigated by the UV-vis. absorption spectroscopy. The new HTL materials were also applied to green phosphorescent OLEDs, and their device characteristics were also investigated based on the chemical structures of the HTL materials. The device configuration was [ITO / PEDOT:PSS / HTL / EML / ETL / CsF / Al]. We found out that the chemical structures of the cross-linking functionalities greatly affect not only the cross-linking characteristics of the resultant HTL materials, but also the resultant OLED device characteristics. The increase of the maximum luminance and efficiency of OLEDs was evident as the cross-linking temperature decreases from higher than 200°C to at around 150°C.

  4. Numerical modeling of solute transport in a sand tank physical model under varying hydraulic gradient and hydrological stresses

    Science.gov (United States)

    Atlabachew, Abunu; Shu, Longcang; Wu, Peipeng; Zhang, Yongjie; Xu, Yang

    2018-03-01

    This laboratory study improves the understanding of the impacts of horizontal hydraulic gradient, artificial recharge, and groundwater pumping on solute transport through aquifers. Nine experiments and numerical simulations were carried out using a sand tank. The variable-density groundwater flow and sodium chloride transport were simulated using the three-dimensional numerical model SEAWAT. Numerical modelling results successfully reproduced heads and concentrations observed in the sand tank. A higher horizontal hydraulic gradient enhanced the migration of sodium chloride, particularly in the groundwater flow direction. The application of constant artificial recharge increased the spread of the sodium chloride plume in both the longitudinal and lateral directions. In addition, groundwater pumping accelerated spreading of the sodium chloride plume towards the pumping well. Both higher hydraulic gradient and pumping rate generated oval-shaped plumes in the horizontal plane. However, the artificial recharge process produced stretched plumes. These effects of artificial recharge and groundwater pumping were greater under higher hydraulic gradient. The concentration breakthrough curves indicated that emerging solutions never attained the concentration of the originally injected solution. This is probably because of sorption of sodium chloride onto the silica sand and/or the exchange of sodium chloride between the mobile and immobile liquid domains. The fingering and protruding plume shapes in the numerical models constitute instability zones produced by buoyancy-driven flow. Overall, the results have substantiated the influences of hydraulic gradient, boundary condition, artificial recharge, pumping rate and density differences on solute transport through a homogeneous unconfined aquifer. The implications of these findings are important for managing liquid wastes.

  5. Ranitidine has no influence on tubular creatinine secretion

    NARCIS (Netherlands)

    van den Berg, J. G.; Koopman, M. G.; Arisz, L.

    1996-01-01

    Oral cimetidine competitively inhibits tubular secretion of creatinine. We investigated the potential of oral ranitidine, a comparable H2-receptor antagonist, to block tubular creatinine secretion. In 10 healthy subjects, clearances of inulin and endogenous creatinine were simultaneously measured

  6. COLLOID RELEASE AND TRANSPORT IN AGRICULTURAL SOIL AS IMPACTED BY SOLUTION CHEMISTRY

    OpenAIRE

    Sandip Patil; Kamal Tawfiq; Gang Chen

    2011-01-01

    Colloid release from the agricultural soil under unsaturated conditions was controlled by the hydrodynamic force, capillary force and electrostatic force that were determined by the solution chemistry in terms of solution ionic strength and pH. In this research, colloid release from the agricultural soil was investigated using an intact soil column collected from an agricultural site in Gadsden County of Florida. Colloid release was monitored and the colloid release curve was simulated using ...

  7. Analytical reconstruction schemes for coarse-mesh spectral nodal solution of slab-geometry SN transport problems

    International Nuclear Information System (INIS)

    Barros, R. C.; Filho, H. A.; Platt, G. M.; Oliveira, F. B. S.; Militao, D. S.

    2009-01-01

    Coarse-mesh numerical methods are very efficient in the sense that they generate accurate results in short computational time, as the number of floating point operations generally decrease, as a result of the reduced number of mesh points. On the other hand, they generate numerical solutions that do not give detailed information on the problem solution profile, as the grid points can be located considerably away from each other. In this paper we describe two analytical reconstruction schemes for the coarse-mesh solution generated by the spectral nodal method for neutral particle discrete ordinates (S N ) transport model in slab geometry. The first scheme we describe is based on the analytical reconstruction of the coarse-mesh solution within each discretization cell of the spatial grid set up on the slab. The second scheme is based on the angular reconstruction of the discrete ordinates solution between two contiguous ordinates of the angular quadrature set used in the S N model. Numerical results are given so we can illustrate the accuracy of the two reconstruction schemes, as described in this paper. (authors)

  8. Iteration and extrapolation methods for the approximate solution of the even-parity transport equation for systems with voids

    International Nuclear Information System (INIS)

    Ackroyd, R.T.; Riyait, N.S.

    1989-01-01

    Conventional finite-element solutions of the even-parity transport equation for systems with voids treat the void as a region of low absorption. This treatment tends to give physically-unacceptable solutions to void problems as the void cross-section tends to zero. An explanation for the effect is proposed. Biased finite elements are used in two ways to obtain physically-acceptable solutions for the void regions. Two new methods are described and tested. The iterative method synthesizes finite-element solution using a sequence of problems with constant absorptions in the void regions. The sequence is terminated when the fluxes in the void regions become steady. The extrapolation method obtains a best approximation to the void solution by combining two or more independent biased trial functions in an optimum way. The extrapolation method is further subdivided into elementary and nodal or multiparameter extrapolation. The relevant theory of both the iteration and extrapolation methods is given. Several 2-D test problems using the above methods have been investigated. Results are compared with those obtained with other numerical methods and almost analytical results of the point kernel method for voids surrounded by purely absorbing media. (author)

  9. DOES TUBULARIZED INCISED PLATE URETHROPLASTY FIT ...

    African Journals Online (AJOL)

    Objective To evaluate prospectively our experience using tubularized incised plate (TIP) urethroplasty in primary and repeat penile shaft hypospadias. Patients and Methods Thirty-two boys with penile shaft hypospadias were selected to undergo TIP procedure. Their age ranged from 22 months to 9 years. Twenty-two cases ...

  10. Work tool in a tubular element

    International Nuclear Information System (INIS)

    Griffaton, J.

    1991-01-01

    The stand, which is positioned in relation with the tubular element, has clutch disengagement means for a working rod in rotation, with at least two positioning regions on the rod. Application for laser welding a sleeve into PWR steam generator tubes [fr

  11. Renal Tubular Function in Systemic Lupus Erythematosus*

    African Journals Online (AJOL)

    Creatinine clearance (Ccr), tubular reabsorption of phosphate (TRP) and maximum urinary osmolality. (OSM) 8 hours after injection of pitressin. Shaded are3.§ represent mean ± 2 SD of control values. was reduced in 2 patients, neither of whom showed evidence of hyperparathyroidism. Three patients were unable to ...

  12. Central Diabetes Insipidus, Central Hypothyroidism, Renal Tubular ...

    African Journals Online (AJOL)

    diseases, primary hypothyroidism, and other disorders of the central nervous, gastrointestinal, genitourinary, and orthopedic systems. In this report, we describe a 3‑month‑old Saudi boy with the rare association of DWS with central diabetes insipidus, congenital central hypothyroidism, and type‑2 renal tubular acidosis.

  13. TUBULAR DYSFUNCTION IN PROLIFERATIVE LUPUS NEPHRITIS

    NARCIS (Netherlands)

    TERBORG, E.J.; DEJONG, P.E.; MEIJER, S.S.; Kallenberg, Cees

    1991-01-01

    We prospectively studied renal tubular function during 11 consecutive exacerbations of proliferative glomerulonephritis in 8 patients with systemic lupus erythematosus (SLE). We found a rise in the fractional excretion of beta-2-microglobulin (p less-than-or-equal-to 0.05) and dimercaptosuccinic

  14. An overview of the Boltzmann transport equation solution for neutrons, photons and electrons in cartesian geometry

    International Nuclear Information System (INIS)

    Rodriguez, Barbara D. do Amaral; Vilhena, Marco Tullio

    2009-01-01

    Questions regarding accuracy and efficiency of deterministic transport methods are still on our mind today, even with modern supercomputers. The most versatile and widely used deterministic methods are the P N approximation, the S N method (discrete ordinates method) and their variants. In the discrete ordinates (S N ) formulations of the transport equation, it is assumed that the linearized Boltzmann equation only holds for a set of distinct numerical values of the direction-of-motion variables. In this work, looking forward to confirm the capabilities of deterministic methods in obtaining accurate results, we present a general overview of deterministic methods to solve the Boltzmann transport equation for neutral and charged particles. First, we describe a review in the Laplace transform technique applied to S N two dimensional transport equation in a rectangular domain considering Compton scattering. Next, we solved the Fokker-Planck (FP) equation, an alternative approach for the Boltzmann transport equation, assuming a monoenergetic electron beam in a rectangular domain. The main idea relies on applying the P N approximation, a recent advance in the class of deterministic methods, in the angular variable, to the two dimensional Fokker-Planck equation and then applying the Laplace Transform in the spatial x-variable. Numerical results are given to illustrate the accuracy of deterministic methods presented. (author)

  15. Numerical Investigation of the FSI Characteristics in a Tubular Pump

    Directory of Open Access Journals (Sweden)

    Shuo Wang

    2017-01-01

    Full Text Available Flow condition was simulated in a shaft tubular pump by using the Shear-Stress Transport (SST k-ω turbulence model with high quality structured grids in design condition. Corresponding structural vibration characteristics were then analyzed based on two-way coupled Fluid-Structure Interaction (FSI method. Fluid results showed that flow in the outlet flow passage was a combination of the axial flow and circumferential rotation motion. Time and frequency domain analysis of pressure pulsation of typical measure points indicated that larger pulsation amplitudes appeared in the tip of the blades and the main vibration source was the pressure pulsation induced by rotation of the blades. The fluid pulsation amplitudes decreased gradually along the flow direction, which can be ascribed to the function of fixed guide vane. Structural analysis of the blades in both pressure and suction side indicated that significant stress concentration was formed at the blade and hub connection near the leading edge. Maximum effective stress of the blades varied periodically, so prevention measures of the fatigue of blades should be taken. This research can provide important reference for the design of the tubular pump.

  16. Effect of pore water velocities and solute input methods on chloride transport in the undisturbed soil columns of Loess Plateau

    Science.gov (United States)

    Zhou, BeiBei; Wang, QuanJiu

    2017-09-01

    Studies on solute transport under different pore water velocity and solute input methods in undisturbed soil could play instructive roles for crop production. Based on the experiments in the laboratory, the effect of solute input methods with small pulse input and large pulse input, as well as four pore water velocities, on chloride transport in the undisturbed soil columns obtained from the Loess Plateau under controlled condition was studied. Chloride breakthrough curves (BTCs) were generated using the miscible displacement method under water-saturated, steady flow conditions. Using the 0.15 mol L-1 CaCl2 solution as a tracer, a small pulse (0.1 pore volumes) was first induced, and then, after all the solution was wash off, a large pulse (0.5 pore volumes) was conducted. The convection-dispersion equation (CDE) and the two-region model (T-R) were used to describe the BTCs, and their prediction accuracies and fitted parameters were compared as well. All the BTCs obtained for the different input methods and the four pore water velocities were all smooth. However, the shapes of the BTCs varied greatly; small pulse inputs resulted in more rapid attainment of peak values that appeared earlier with increases in pore water velocity, whereas large pulse inputs resulted in an opposite trend. Both models could fit the experimental data well, but the prediction accuracy of the T-R was better. The values of the dispersivity, λ, calculated from the dispersion coefficient obtained from the CDE were about one order of magnitude larger than those calculated from the dispersion coefficient given by the T-R, but the calculated Peclet number, Pe, was lower. The mobile-immobile partition coefficient, β, decreased, while the mass exchange coefficient increased with increases in pore water velocity.

  17. A non-linear optimal Discontinuous Petrov-Galerkin method for stabilising the solution of the transport equation

    International Nuclear Information System (INIS)

    Merton, S. R.; Smedley-Stevenson, R. P.; Pain, C. C.; Buchan, A. G.; Eaton, M. D.

    2009-01-01

    This paper describes a new Non-Linear Discontinuous Petrov-Galerkin (NDPG) method and application to the one-speed Boltzmann Transport Equation (BTE) for space-time problems. The purpose of the method is to remove unwanted oscillations in the transport solution which occur in the vicinity of sharp flux gradients, while improving computational efficiency and numerical accuracy. This is achieved by applying artificial dissipation in the solution gradient direction, internal to an element using a novel finite element (FE) Riemann approach. The amount of dissipation added acts internal to each element. This is done using a gradient-informed scaling of the advection velocities in the stabilisation term. This makes the method in its most general form non-linear. The method is designed to be independent of angular expansion framework. This is demonstrated for the both discrete ordinates (S N ) and spherical harmonics (P N ) descriptions of the angular variable. Results show the scheme performs consistently well in demanding time dependent and multi-dimensional radiation transport problems. (authors)

  18. A solute-binding protein for iron transport in Streptococcus iniae

    Directory of Open Access Journals (Sweden)

    Li Anxing

    2010-12-01

    Full Text Available Abstract Background Streptococcus iniae (S. iniae is a major pathogen that causes considerable morbidity and mortality in cultured fish worldwide. The pathogen's ability to adapt to the host affects the extent of infection, hence understanding the mechanisms by which S. iniae overcomes physiological stresses during infection will help to identify potential virulence determinants of streptococcal infection. Grow S. iniae under iron-restricted conditions is one approach for identifying host-specific protein expression. Iron plays an important role in many biological processes but it has low solubility under physiological condition. Many microorganisms have been shown to be able to circumvent this nutritional limitation by forming direct contacts with iron-containing proteins through ATP-binding cassette (ABC transporters. The ABC transporter superfamilies constitute many different systems that are widespread among living organisms with different functions, such as ligands translocation, mRNA translation, and DNA repair. Results An ABC transporter system, named as mtsABC (metal transport system was cloned from S. iniae HD-1, and was found to be involved in heme utilization. mtsABC is cotranscribed by three downstream genes, i.e., mtsA, mtsB, and mtsC. In this study, we cloned the first gene of the mtsABC transporter system (mtsA, and purified the corresponding recombinant protein MtsA. The analysis indicated that MtsA is a putative lipoprotein which binds to heme that can serve as an iron source for the microorganism, and is expressed in vivo during Kunming mice infection by S. iniae HD-1. Conclusions This is believed to be the first report on the cloning the ABC transporter lipoprotein from S. iniae genomic DNA. Together, our data suggested that MtsA is associated with heme, and is expressed in vivo during Kunming mice infection by S. iniae HD-1 which indicated that it can be a potential candidate for S. iniae subunit vaccine.

  19. Reliability Analysis of Tubular Joints in Offshore Structures

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Sørensen, John Dalsgaard

    1987-01-01

    Reliability analysis of single tubular joints and offshore platforms with tubular joints is" presented. The failure modes considered are yielding, punching, buckling and fatigue failure. Element reliability as well as systems reliability approaches are used and illustrated by several examples....... Finally, optimal design of tubular.joints with reliability constraints is discussed and illustrated by an example....

  20. Twisted tubular photobioreactor fluid dynamics evaluation for energy consumption minimization

    NARCIS (Netherlands)

    Gómez-Pérez, C.A.; Espinosa Oviedo, J.J.; Montenegro Ruiz, L.C.; Boxtel, van A.J.B.

    2017-01-01

    This paper discusses a new tubular PhotoBioReactor (PBR) called twisted tubular PBR. The geometry of a twisted tubular PBR induces swirl mixing to guarantee good exposure of microalgae to Light-Dark (LD) cycles and to the nutrients and dissolved CO 2 . The paper analyses the energy uptake for fluid

  1. Infiltration and solute transport experiments in unsaturated sand and gravel, Cape Cod, Massachusetts: Experimental design and overview of results

    Science.gov (United States)

    Rudolph, David L.; Kachanoski , R. Gary; Celia, Michael A.; LeBlanc, Denis R.; Stevens, Jonathon H.

    1996-01-01

    A series of infiltration and tracer experiments was conducted in unsaturated sand and gravel deposits on Cape Cod, Massachusetts. A network of 112 porous cup lysimeters and 168 time domain reflectometry (TDR) probes was deployed at depths from 0.25 to 2.0 m below ground surface along the centerline of a 2-m by 10-m test plot. The test plot was irrigated at rates ranging from 7.9 to 37.0 cm h−1 through a sprinkler system. Transient and steady state water content distributions were monitored with the TDR probes and spatial properties of water content distributions were determined from the TDR data. The spatial variance of the water content tended to increase as the average water content increased. In addition, estimated horizontal correlation length scales for water content were significantly smaller than those estimated by previous investigators for saturated hydraulic conductivity. Under steady state flow conditions at each irrigation rate, a sodium chloride solution was released as a tracer at ground surface and tracked with both the lysimeter and TDR networks. Transect-averaged breakthrough curves at each monitoring depth were constructed both from solute concentrations measured in the water samples and flux concentrations inferred from the TDR measurements. Transport properties, including apparent solute velocities, dispersion coefficients, and total mass balances, were determined independently from both sets of breakthrough curves. The dispersion coefficients tended to increase with depth, reaching a constant value with the lysimeter data and appearing to increase continually with the TDR data. The variations with depth of the solute transport parameters, along with observations of water and solute mass balance and spatial distributions of water content, provide evidence of significant three-dimensional flow during the irrigation experiments. The TDR methods are shown to efficiently provide dense spatial and temporal data sets for both flow and solute

  2. Modeling of Flow, Transport and Controlled Sedimentation Phenomena during Mixing of Salt Solutions in Complex Porous Formations

    Science.gov (United States)

    Skouras, Eugene D.; Jaho, Sofia; Pavlakou, Efstathia I.; Sygouni, Varvara; Petsi, Anastasia; Paraskeva, Christakis A.

    2015-04-01

    The deposition of salts in porous media is a major engineering phenomenon encountered in a plethora of industrial and environmental applications where in some cases is desirable and in other not (oil production, geothermal systems, soil stabilization etc). Systematic approach of these problems requires knowledge of the key mechanisms of precipitating salts within the porous structures, in order to develop new methods to control the process. In this work, the development and the solution of spatiotemporally variable mass balances during salt solution mixing along specific pores were performed. Both analytical models and finite differences CFD models were applied for the study of flow and transport with simultaneous homogeneous and heterogeneous nucleation (by crystal growth on the surface of the pores) in simple geometries, while unstructured finite elements and meshless methods were developed and implemented for spatial discretization, reconstruction, and solution of transport equations and homogeneous / heterogeneous reactions in more complex geometries. At initial stages of this work, critical problem parameters were identified, such as the characteristics of the porosity, the number of dissolved components, etc. The parameters were then used for solving problems which correspond to available experimental data. For each combination of ions and materials, specific data and process characteristics were included: (a) crystal kinetics (nucleation, growth rates or reaction surface rates of crystals, critical suspension concentrations), (b) physico-chemical properties (bulk density, dimensions of generated crystals, ion diffusion coefficients in the solution), (c) operating parameters (macroscopic velocity, flow, or pressure gradient of the solution, ion concentration) (d) microfluidic data (geometry, flow area), (e) porosity data in Darcy description (initial porosity, specific surface area, tortuosity). During the modeling of flow and transport in three

  3. Novel transport delay problem solutions for gas plant inlet pressure control

    Directory of Open Access Journals (Sweden)

    Mahmoud A.R. AboShady

    2014-09-01

    Full Text Available The process of transferring the natural gas from the gas well to the gas separation plant encountered some delay time depending on the distance between this well and the factory, the cross section of the transport line, the geometry of this transport line, the well pressure and others. To control the factory inlet pressure by controlling the choke valve existing at the well head, the delay time makes the traditional control systems to fail. In this framework we aim to solve this problem by presenting a novel controller design and delay modeling technique. The presented technique is compared to the previous control system design and delay approximation techniques.

  4. Nano-tubular cellulose for bioprocess technology development.

    Science.gov (United States)

    Koutinas, Athanasios A; Sypsas, Vasilios; Kandylis, Panagiotis; Michelis, Andreas; Bekatorou, Argyro; Kourkoutas, Yiannis; Kordulis, Christos; Lycourghiotis, Alexis; Banat, Ibrahim M; Nigam, Poonam; Marchant, Roger; Giannouli, Myrsini; Yianoulis, Panagiotis

    2012-01-01

    Delignified cellulosic material has shown a significant promotional effect on the alcoholic fermentation as yeast immobilization support. However, its potential for further biotechnological development is unexploited. This study reports the characterization of this tubular/porous cellulosic material, which was done by SEM, porosimetry and X-ray powder diffractometry. The results showed that the structure of nano-tubular cellulose (NC) justifies its suitability for use in "cold pasteurization" processes and its promoting activity in bioprocessing (fermentation). The last was explained by a glucose pump theory. Also, it was demonstrated that crystallization of viscous invert sugar solutions during freeze drying could not be otherwise achieved unless NC was present. This effect as well as the feasibility of extremely low temperature fermentation are due to reduction of the activation energy, and have facilitated the development of technologies such as wine fermentations at home scale (in a domestic refrigerator). Moreover, NC may lead to new perspectives in research such as the development of new composites, templates for cylindrical nano-particles, etc.

  5. Nano-tubular cellulose for bioprocess technology development.

    Directory of Open Access Journals (Sweden)

    Athanasios A Koutinas

    Full Text Available Delignified cellulosic material has shown a significant promotional effect on the alcoholic fermentation as yeast immobilization support. However, its potential for further biotechnological development is unexploited. This study reports the characterization of this tubular/porous cellulosic material, which was done by SEM, porosimetry and X-ray powder diffractometry. The results showed that the structure of nano-tubular cellulose (NC justifies its suitability for use in "cold pasteurization" processes and its promoting activity in bioprocessing (fermentation. The last was explained by a glucose pump theory. Also, it was demonstrated that crystallization of viscous invert sugar solutions during freeze drying could not be otherwise achieved unless NC was present. This effect as well as the feasibility of extremely low temperature fermentation are due to reduction of the activation energy, and have facilitated the development of technologies such as wine fermentations at home scale (in a domestic refrigerator. Moreover, NC may lead to new perspectives in research such as the development of new composites, templates for cylindrical nano-particles, etc.

  6. COLLOID RELEASE AND TRANSPORT IN AGRICULTURAL SOIL AS IMPACTED BY SOLUTION CHEMISTRY

    Directory of Open Access Journals (Sweden)

    Sandip Patil

    2011-12-01

    Full Text Available Colloid release from the agricultural soil under unsaturated conditions was controlled by the hydrodynamic force, capillary force and electrostatic force that were determined by the solution chemistry in terms of solution ionic strength and pH. In this research, colloid release from the agricultural soil was investigated using an intact soil column collected from an agricultural site in Gadsden County of Florida. Colloid release was monitored and the colloid release curve was simulated using an implicit, finite-difference scheme to obtain the colloid release coefficient. It was found that the hydrodynamic force and electrostatic force overcame the capillary force under the experimental conditions of this research and consequently, colloids were released. For the colloid release, solution chemistry played a key role by controlling the colloid repulsive electrostatic force within the pore system. Colloid release exponentially decreased with the increase of solution ionic strength and increased with the increase of solution pH. Colloid release was finally found to be correlated to the colloid repulsive electrostatic force within the pore system, i.e., the greater the repulsive electrostatic force, the more colloids released.

  7. COLLOID RELEASE AND TRANSPORT IN AGRICULTURAL SOIL AS IMPACTED BY SOLUTION CHEMISTRY

    Directory of Open Access Journals (Sweden)

    Sandip Patil

    2011-01-01

    Full Text Available Colloid release from the agricultural soil under unsaturated conditions was controlled by the hydrodynamic force, capillary force and electrostatic force that were determined by the solution chemistry in terms of solution ionic strength and pH. In this research, colloid release from the agricultural soil was investigated using an intact soil column collected from an agricultural site in Gadsden County of Florida. Colloid release was monitored and the colloid release curve was simulated using an implicit, finite-difference scheme to obtain the colloid release coefficient. It was found that the hydrodynamic force and electrostatic force overcame the capillary force under the experimental conditions of this research and consequently, colloids were released. For the colloid release, solution chemistry played a key role by controlling the colloid repulsive electrostatic force within the pore system. Colloid release exponentially decreased with the increase of solution ionic strength and increased with the increase of solution pH. Colloid release was finally found to be correlated to the colloid repulsive electrostatic force within the pore system, i.e., the greater the repulsive electrostatic force, the more colloids released.

  8. Lattice Boltzmann simulation of solute transport in heterogeneous porous media with conduits to estimate macroscopic continuous time random walk model parameters

    Energy Technology Data Exchange (ETDEWEB)

    Anwar, S.; Cortis, A.; Sukop, M.

    2008-10-20

    Lattice Boltzmann models simulate solute transport in porous media traversed by conduits. Resulting solute breakthrough curves are fitted with Continuous Time Random Walk models. Porous media are simulated by damping flow inertia and, when the damping is large enough, a Darcy's Law solution instead of the Navier-Stokes solution normally provided by the lattice Boltzmann model is obtained. Anisotropic dispersion is incorporated using a direction-dependent relaxation time. Our particular interest is to simulate transport processes outside the applicability of the standard Advection-Dispersion Equation (ADE) including eddy mixing in conduits. The ADE fails to adequately fit any of these breakthrough curves.

  9. Coupled processes of fluid flow, solute transport, and geochemical reactions in reactive barriers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeongkon; Schwartz, Franklin W.; Xu, Tianfu; Choi, Heechul, and Kim, In S.

    2004-01-02

    A complex pattern of coupling between fluid flow and mass transport develops when heterogeneous reactions occur. For instance, dissolution and precipitation reactions can change a porous medium's physical properties, such as pore geometry and thus permeability. These changes influence fluid flow, which in turn impacts the composition of dissolved constituents and the solid phases, and the rate and direction of advective transport. Two-dimensional modeling studies using TOUGHREACT were conducted to investigate the coupling between flow and transport developed as a consequence of differences in density, dissolution precipitation, and medium heterogeneity. The model includes equilibrium reactions for aqueous species, kinetic reactions between the solid phases and aqueous constituents, and full coupling of porosity and permeability changes resulting from precipitation and dissolution reactions in porous media. In addition, a new permeability relationship is implemented in TOUGHREACT to examine the effects of geochemical reactions and density difference on plume migration in porous media. Generally, the evolutions in the concentrations of the aqueous phase are intimately related to the reaction-front dynamics. Plugging of the medium contributed to significant transients in patterns of flow and mass transport.

  10. Exploring challenges and solutions for container transportation using rail: A modelling and simulation gaming study

    NARCIS (Netherlands)

    Kurapati, S.; Kourounioti, I.; Lukosch, H.; Tavaszzy, L.; Verbraeck, A.; Veen, L. van; Nuland, B. van; Smit, T.

    2017-01-01

    Rail is a cost-effective and environment friendly freight transport modality when used efficiently. Stakeholders around Dutch ports are discouraged to choose rail due to uncertain train schedules and the dispersed nature of freight flows across terminals in the port. To understand the challenges and

  11. Molecular Engineering of Non-Halogenated Solution-Processable Bithiazole based Electron Transport Polymeric Semiconductors

    KAUST Repository

    Fu, Boyi

    2015-04-01

    The electron deficiency and trans planar conformation of bithiazole is potentially beneficial for the electron transport performance of organic semiconductors. However, the incorporation of bithiazole into polymers through a facile synthetic strategy remains a challenge. Herein, 2,2’-bithiazole was synthesized in one step and copolymerized with dithienyldiketopyrrolopyrrole to afford poly(dithienyldiketopyrrolopyrrole-bithiazole), PDBTz. PDBTz exhibited electron mobility reaching 0.3 cm2V-1s-1 in organic field-effect transistor (OFET) configuration; this contrasts with a recently discussed isoelectronic conjugated polymer comprising an electron rich bithiophene and dithienyldiketopyrrolopyrrole, which displays merely hole transport characteristics. This inversion of charge carrier transport characteristics confirms the significant potential for bithiazole in the development of electron transport semiconducting materials. Branched 5-decylheptacyl side chains were incorporated into PDBTz to enhance polymer solubility, particularly in non-halogenated, more environmentally compatible solvents. PDBTz cast from a range of non-halogenated solvents exhibited film morphologies and field-effect electron mobility similar to those cast from halogenated solvents.

  12. Identifying transportation solutions that promote healthy aging for Texas : final report.

    Science.gov (United States)

    2017-09-01

    As the population of Texans who are aging continues to grow, the role that transportation plays in the promotion of healthy aging is useful information for policy makers to plan and provide for the safe and healthy aging of Texass population. Tran...

  13. Molecular-dynamics of water transport through membranes - water from solvent to solute

    NARCIS (Netherlands)

    BERENDSEN, HJC; MARRINK, SJ

    1993-01-01

    An application of Molecular Dynamics computer simulation (MD) to the process of transport of water through a lipid bilayer membrane is described. The permeation process is far too slow to be modeled by straightforward MD. In stead the inverse of the permeability coefficient is expressed as an

  14. Minimizing driving times and greenhouse gas emissions in timber transport with a near-exact solution approach

    DEFF Research Database (Denmark)

    Oberscheider, Marco; Zazgornik, Jan; Henriksen, Christian Bugge

    2013-01-01

    Efficient transport of timber for supplying industrial conversion and biomass power plants is a crucial factor for competitiveness in the forest industry. Throughout the recent years minimizing driving times has been the main focus of optimizations in this field. In addition to this aim the objec......Efficient transport of timber for supplying industrial conversion and biomass power plants is a crucial factor for competitiveness in the forest industry. Throughout the recent years minimizing driving times has been the main focus of optimizations in this field. In addition to this aim...... the objective of reducing environmental impacts, represented by carbon dioxide equivalent (CO(2)e) emissions, is discussed. The underlying problem is formulated as a multi-depot vehicle routing problem with pickup and delivery and time windows (MDVRPPDTW) and a new iterative solution method is proposed...

  15. A compartment model for solute transport in the near field of a repository for radioactive waste (calculations for Pu-239)

    International Nuclear Information System (INIS)

    Romero, L.; Moreno, L.; Neretnieks, I.

    1991-10-01

    Radionuclides released from a damaged canister for spent fuel will leak through a damage in the canister wall and spread into the surrounding backfill. They will further migrate into water bearing fractures in the rock, through the backfill into the damaged zone around the drift and into the drift itself. Some substances may also diffuse through the rock to adjacent fracture zones. The nuclides will sorb on the materials along the transport paths. This very complex and variable transport geometry has been modelled using a compartment model which is based on simplifying a full three dimensional integrated finite difference model. The simplifications are supplemented by introducing analytical and semianalytical solutions at sensitive locations such as entrances and exits from holes and fractures and in the flowing water. (au)

  16. Solar energised transport solution and customer preferences and opinions about alternative fuel Vehicles – the case of slovenia

    Directory of Open Access Journals (Sweden)

    Matjaž KNEZ

    2015-09-01

    Full Text Available Authorities in Slovenia and other EU member states are confronted with problems of city transportation. Fossil-fuel based transport poses two chief problems – local and global pollution, and dwindling supplies and ever increasing costs. An elegant solution is to gradually replace the present automobile fleet with low emission vehicles. This article first explores the economics and practical viability of the provision of solar electricity for the charging of electric vehicles by installation of economical available PV modules and secondly the customer preferences and opinions about alternative low emission vehicles. Present estimates indicate that for the prevailing solar climate of Celje – a medium-sized Slovenian town – the cost would be only 2.11€ cents/kWh of generated solar electricity. Other results have also revealed that the most relevant factor for purchasing low emission vehicle is total vehicle price.

  17. Comparison of the performance of traditional advection-dispersion equation and mobile-immobile model for simulating solute transport in heterogeneous soils

    Directory of Open Access Journals (Sweden)

    Haizhu HU,Xiaomin MAO

    2016-09-01

    Full Text Available The traditional advection-dispersion equation (ADE and the mobile-immobile model (MIM are widely used to describe solute transport in heterogeneous porous media. However, the fitness of the two models is case-dependent. In this paper, the transport of conservative, adsorbing and degradable solutes through a 1 m heterogeneous soil column under steady flow condition was simulated by ADE and MIM, and sensitivity analysis was conducted. Results show that MIM tends to prolong the breakthrough process and decrease peak concentration for all three solutes, and tailing and skewness are more pronounced with increasing dispersivity. Breakthrough curves of the adsorbing solute simulated by MIM are less sensitive to the retardation factor compared with the results simulated by ADE. The breakthrough curves of degradable solute obtained by MIM and ADE nearly overlap with a high degradation rate coefficient, indicating that MIM and ADE perform similarly for simulating degradable solute transport when biochemical degradation prevails over the mass exchange between mobile and immobile zones. The results suggest that the physical significance of dispersivity should be carefully considered when MIM is applied to simulate the degradable solute transport and/or ADE is applied to simulate the adsorbing solute transport in highly dispersive soils.

  18. A new Eulerian-Lagrangian finite element simulator for solute transport in discrete fracture-matrix systems

    Energy Technology Data Exchange (ETDEWEB)

    Birkholzer, J.; Karasaki, K. [Lawrence Berkeley National Lab., CA (United States). Earth Sciences Div.

    1996-07-01

    Fracture network simulators have extensively been used in the past for obtaining a better understanding of flow and transport processes in fractured rock. However, most of these models do not account for fluid or solute exchange between the fractures and the porous matrix, although diffusion into the matrix pores can have a major impact on the spreading of contaminants. In the present paper a new finite element code TRIPOLY is introduced which combines a powerful fracture network simulator with an efficient method to account for the diffusive interaction between the fractures and the adjacent matrix blocks. The fracture network simulator used in TRIPOLY features a mixed Lagrangian-Eulerian solution scheme for the transport in fractures, combined with an adaptive gridding technique to account for sharp concentration fronts. The fracture-matrix interaction is calculated with an efficient method which has been successfully used in the past for dual-porosity models. Discrete fractures and matrix blocks are treated as two different systems, and the interaction is modeled by introducing sink/source terms in both systems. It is assumed that diffusive transport in the matrix can be approximated as a one-dimensional process, perpendicular to the adjacent fracture surfaces. A direct solution scheme is employed to solve the coupled fracture and matrix equations. The newly developed combination of the fracture network simulator and the fracture-matrix interaction module allows for detailed studies of spreading processes in fractured porous rock. The authors present a sample application which demonstrate the codes ability of handling large-scale fracture-matrix systems comprising individual fractures and matrix blocks of arbitrary size and shape.

  19. Self-similar solutions for multi-species plasma mixing by gradient driven transport

    Science.gov (United States)

    Vold, E.; Kagan, G.; Simakov, A. N.; Molvig, K.; Yin, L.

    2018-05-01

    Multi-species transport of plasma ions across an initial interface between DT and CH is shown to exhibit self-similar species density profiles under 1D isobaric conditions. Results using transport theory from recent studies and using a Maxwell–Stephan multi-species approximation are found to be in good agreement for the self-similar mix profiles of the four ions under isothermal and isobaric conditions. The individual ion species mass flux and molar flux profile results through the mixing layer are examined using transport theory. The sum over species mass flux is confirmed to be zero as required, and the sum over species molar flux is related to a local velocity divergence needed to maintain pressure equilibrium during the transport process. The light ion species mass fluxes are dominated by the diagonal coefficients of the diffusion transport matrix, while for the heaviest ion species (C in this case), the ion flux with only the diagonal term is reduced by about a factor two from that using the full diffusion matrix, implying the heavy species moves more by frictional collisions with the lighter species than by its own gradient force. Temperature gradient forces were examined by comparing profile results with and without imposing constant temperature gradients chosen to be of realistic magnitude for ICF experimental conditions at a fuel-capsule interface (10 μm scale length or greater). The temperature gradients clearly modify the relative concentrations of the ions, for example near the fuel center, however the mixing across the fuel-capsule interface appears to be minimally influenced by the temperature gradient forces within the expected compression and burn time. Discussion considers the application of the self-similar profiles to specific conditions in ICF.

  20. The air transportation hub-and-spoke design problem: comparison between a continuous and a discrete solution method

    Directory of Open Access Journals (Sweden)

    Guina Sotomayor Alzamora

    2013-12-01

    Full Text Available The hub-and-spoke network design problem, also known as the hub location problem, aims to find the concentration points in a given network flow so that the sum of the distances of the linkages is minimized. In this work, we compare discrete solutions of this problem, given by the branch-and-cut method applied to the p-hub median model, with continuous solutions, given by the hyperbolic smoothing technique applied to a min-sum-min model. Computational experiments for particular instances of the Brazilian air transportation system, with the number of hubs varying from 2 to 8, are conducted with the support of a discretization heuristic and the Voronoi diagram.

  1. Calculations of reactivity based in the solution of the Neutron transport equation in X Y geometry and Lineal perturbation theory

    International Nuclear Information System (INIS)

    Valle G, E. del; Mugica R, C.A.

    2005-01-01

    In our country, in last congresses, Gomez et al carried out reactivity calculations based on the solution of the diffusion equation for an energy group using nodal methods in one dimension and the TPL approach (Lineal Perturbation Theory). Later on, Mugica extended the application to the case of multigroup so much so much in one as in two dimensions (X Y geometry) with excellent results. Presently work is carried out similar calculations but this time based on the solution of the neutron transport equation in X Y geometry using nodal methods and again the TPL approximation. The idea is to provide a calculation method that allows to obtain in quick form the reactivity solving the direct problem as well as the enclosed problem of the not perturbed problem. A test problem for the one that results are provided for the effective multiplication factor is described and its are offered some conclusions. (Author)

  2. Mass transfer in fuel cells. [electron microscopy of components, thermal decomposition of Teflon, water transport, and surface tension of KOH solutions

    Science.gov (United States)

    Walker, R. D., Jr.

    1973-01-01

    Results of experiments on electron microscopy of fuel cell components, thermal decomposition of Teflon by thermogravimetry, surface area and pore size distribution measurements, water transport in fuel cells, and surface tension of KOH solutions are described.

  3. Electric two wheelers, zero emission solution for urban door to door transportation

    DEFF Research Database (Denmark)

    Fasil, Muhammed; Jensen, Bogi Bech

    The noise and exhaust pollution coupled with increasing congestion faced by urban centres demands new personal mobility solution for faster door to door connectivity. The advancement in electric power train and lowering cost of Li-ion battery is made it possible to develop light weight fully elec...

  4. States and transport of hydrogen in the corrosion process of an AZ91 magnesium alloy in aqueous solution

    International Nuclear Information System (INIS)

    Chen Jian; Wang Jianqiu; Han Enhou; Dong Junhua; Ke Wei

    2008-01-01

    Mott-Schottky measurement and secondary ion mass spectroscopy (SIMS) were used to investigate the states and transport of hydrogen during the corrosion behavior of an AZ91 magnesium alloy in 0.1 M sodium sulfate solution. The results showed that when samples were immersed or charged in solution, hydrogen atoms diffused into the film and reacted with vacancy to cause the increases of the carrier concentration (excess electron or hole carrier) and diffusion rate of hydrogen. Some hydrogen atoms diffused to interior of matrix and enriched in β phase while others resorted in the corrosive film. With the increase of immersion or charging time, magnesium hydride would be brittle fractured when the inner stress caused by hydrogen pressure and expansion stress of formation of magnesium hydride was above the fracture strength, which provided the direct experimental evidence of the hydrogen embrittlement (HE) mechanism of magnesium and its alloys. After immersion in solution, the transfer of excess electrons to the interfaces of corrosion film and solution would destroy the charge equilibrium in the film and stimulate the adsorption of SO 4 2- , which resulted in the initiation of localized corrosion; after cathodic charging and then immersion, the enrichment of hydrogen atoms at interior of corrosion film would combine into hydrogen gas to form high pressure and result in the rupture of corrosion film, and localized corrosion initiated and developed at surface. Therefore, localized corrosion nucleated earlier on the charged samples than on the uncharged samples. Hydrogen invasion accelerated the corrosion of matrix

  5. Distal renal tubular acidosis in recurrent renal stone formers

    DEFF Research Database (Denmark)

    Osther, P J; Hansen, A B; Røhl, H F

    1989-01-01

    (1.1%) had complete distal renal tubular acidosis and 14 (15.5%) incomplete distal renal tubular acidosis. Our results confirm that distal renal tubular acidification defects are associated with a more severe form of stone disease and make distal renal tubular acidosis one of the most frequent...... metabolic disturbances in renal stone formers. Distal renal tubular acidosis (dRTA) was relatively more common in female stone formers and most often found in patients with bilateral stone disease (36%). Since prophylactic treatment in renal stone formers with renal acidification defects is available...

  6. State-of-the-art in modeling solute and sediment transport in rivers

    International Nuclear Information System (INIS)

    Sayre, W.W.

    1980-01-01

    This overview is structured around a comprehensive general model based on the conservation of mass principle as applied to dissolved and particulate constituents in rivers, with a few restricted but more specific examples that illustrate the state-of-the-art in modeling typical physical, chemical, and biological processes undergone by selected constituents in rivers. These examples include: simplified one- and two-dimensional formulations focusing on the hydrodynamic advection and dispersion mechanisms; a two-dimensional biochemial oxygen demand-dissolved oxygen model; a one-dimensional polychlorinated biphenyl model that includes uptake and release of constituent by suspended sediment, and deposition and erosion of contaminated particles; and a one-dimensional sediment transport model that accounts for interactions between the flow and the bed, and is capable of tracking dispersing slugs of sediment through cycles of erosion, entrainment, transport in suspension and as bed load, and burial and storage in the bed

  7. Analytical synthetic methods of solution of neutron transport equation with diffusion theory approaches energy multigroup

    International Nuclear Information System (INIS)

    Moraes, Pedro Gabriel B.; Leite, Michel C.A.; Barros, Ricardo C.

    2013-01-01

    In this work we developed a software to model and generate results in tables and graphs of one-dimensional neutron transport problems in multi-group formulation of energy. The numerical method we use to solve the problem of neutron diffusion is analytic, thus eliminating the truncation errors that appear in classical numerical methods, e.g., the method of finite differences. This numerical analytical method increases the computational efficiency, since they are not refined spatial discretization necessary because for any spatial discretization grids used, the numerical result generated for the same point of the domain remains unchanged unless the rounding errors of computational finite arithmetic. We chose to develop a computational application in MatLab platform for numerical computation and program interface is simple and easy with knobs. We consider important to model this neutron transport problem with a fixed source in the context of shielding calculations of radiation that protects the biosphere, and could be sensitive to ionizing radiation

  8. A proposed strategy for the validation of ground-water flow and solute transport models

    International Nuclear Information System (INIS)

    Davis, P.A.; Goodrich, M.T.

    1991-01-01

    Ground-water flow and transport models can be thought of as a combination of conceptual and mathematical models and the data that characterize a given system. The judgment of the validity or invalidity of a model depends both on the adequacy of the data and the model structure (i.e., the conceptual and mathematical model). This report proposes a validation strategy for testing both components independently. The strategy is based on the philosophy that a model cannot be proven valid, only invalid or not invalid. In addition, the authors believe that a model should not be judged in absence of its intended purpose. Hence, a flow and transport model may be invalid for one purpose but not invalid for another. 9 refs

  9. Solution of the Boltzmann-Fokker-Planck transport equation using exponential nodal schemes

    International Nuclear Information System (INIS)

    Ortega J, R.; Valle G, E. del

    2003-01-01

    There are carried out charge and energy calculations deposited due to the interaction of electrons with a plate of a certain material, solving numerically the electron transport equation for the Boltzmann-Fokker-Planck approach of first order in plate geometry with a computer program denominated TEOD-NodExp (Transport of Electrons in Discreet Ordinates, Nodal Exponentials), using the proposed method by the Dr. J. E. Morel to carry out the discretization of the variable energy and several spatial discretization schemes, denominated exponentials nodal. It is used the Fokker-Planck equation since it represents an approach of the Boltzmann transport equation that is been worth whenever it is predominant the dispersion of small angles, that is to say, resulting dispersion in small dispersion angles and small losses of energy in the transport of charged particles. Such electrons could be those that they face with a braking plate in a device of thermonuclear fusion. In the present work its are considered electrons of 1 MeV that impact isotropically on an aluminum plate. They were considered three different thickness of plate that its were designated as problems 1, 2 and 3. In the calculations it was used the discrete ordinate method S 4 with expansions of the dispersion cross sections until P 3 order. They were considered 25 energy groups of uniform size between the minimum energy of 0.1 MeV and the maximum of 1.0 MeV; the one spatial intervals number it was considered variable and it was assigned the values of 10, 20 and 30. (Author)

  10. Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes

    International Nuclear Information System (INIS)

    Larsen, E.W.; Morel, J.E.; Miller, W.F. Jr.

    1987-01-01

    We present an asymptotic analysis of spatial differencing schemes for the discrete-ordinates equations, for diffusive media with spatial cells that are not optically thin. Our theoretical tool is an asymptotic expansion that has previously been used to describe the transform from analytic transport to analytic diffusion theory for such media. To introduce this expansion and its physical rationale, we first describe it for the analytic discrete-ordinates equations. Then, we apply the expansion to the spatially discretized discrete-ordinates equations, with the spatial mesh scaled in either of two physically relevant ways such that the optical thickness of the spatial cells is not small. If the result of either expansion is a legitimate diffusion description for either the cell-averaged or cell-edge fluxes, then we say that the approximate flux has the appropriate diffusion limit; otherwise, we say it does not. We consider several transport differencing schemes that are applicable in neutron transport and thermal radiation applications. We also include numerical results which demonstrate the validity of our theory and show that differencing schemes that do have a particular diffusion limit are substantially more accurate, in the regime described by the limit, than those that do not. copyright 1987 Academic Press, Inc

  11. Transport and retention of biochar nanoparticles in a paddy soil under environmentally-relevant solution chemistry conditions.

    Science.gov (United States)

    Chen, Ming; Wang, Dengjun; Yang, Fan; Xu, Xiaoyun; Xu, Nan; Cao, Xinde

    2017-11-01

    Land application of biochar has been increasingly recommended as a powerful strategy for carbon sequestration and soil remediation. However, the biochar particles, especially those in the nanoscale range, may migrate or carry the inherent contaminants along the soil profile, posing a potential risk to the groundwater. This study investigated the transport and retention of wood chip-derived biochar nanoparticles (NPs) in water-saturated columns packed with a paddy soil. The environmentally-relevant soil solution chemistry including ionic strength (0.10-50 mM), electrolyte type (NaCl and CaCl 2 ), and natural organic matter (0-10 mg L -1 humic acid) were tested to elucidate their effects on the biochar NPs transport. Higher mobility of biochar NPs was observed in the soil at lower ionic strengths, with CaCl 2 electrolyte being more effective than NaCl in decreasing biochar NPs transport. The retained biochar NPs in NaCl was re-entrained (∼57.7%) upon lowering transient pore-water ionic strength, indicating that biochar NPs were reversibly retained in the secondary minimum. In contrast, negligible re-entrainment of biochar NPs occurred in CaCl 2 due to the primary minimum and/or particle aggregation. Humic acid increased the mobility of biochar NPs, likely due to enhanced electrosteric repulsive interactions. The transport behaviors of biochar NPs can be well interpreted by a two-site kinetic retention model that assumes reversible retention for one site, and irreversible retention for the other site. Our findings indicated that the transport of wood chip biochar NPs is significant in the paddy soil, highlighting the importance of understanding the mobility of biochar NPs in natural soils for accurately assessing their environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Solute transport through fractured rock: Radial diffusion into the rock matrix with several geological layers for an arbitrary length decay chain

    Science.gov (United States)

    Mahmoudzadeh, Batoul; Liu, Longcheng; Moreno, Luis; Neretnieks, Ivars

    2016-05-01

    The paper presents a model development to derive a semi-analytical solution to describe reactive solute transport through a single channel in a fracture with cylindrical geometry. The model accounts for advection through the channel, radial diffusion into the adjacent heterogeneous rock matrix comprising different geological layers, adsorption on both the channel surface, and the geological layers of the rock matrix and radioactive decay chain. Not only an arbitrary-length decay chain, but also as many number of the rock matrix layers with different properties as observed in the field can be handled. The solution, which is analytical in the Laplace domain, is transformed back to the time domain numerically e.g. by use of de Hoog algorithm. The solution is verified against experimental data and analytical solutions of limiting cases of solute transport through porous media. More importantly, the relative importance and contribution of different processes on solute transport retardation in fractured rocks are investigated by simulating several cases of varying complexity. The simulation results are compared with those obtained from rectangular model with linear matrix diffusion. It is found that the impact of channel geometry on breakthrough curves increases markedly as the transport distance along the flow channel and away into the rock matrix increase. The effect of geometry is more pronounced for transport of a decay chain when the rock matrix consists of a porous altered layer.

  13. Electrodriven selective transport of Cs+ using chlorinated cobalt dicarbollide in polymer inclusion membrane: a novel approach for cesium removal from simulated nuclear waste solution.

    Science.gov (United States)

    Chaudhury, Sanhita; Bhattacharyya, Arunasis; Goswami, Asok

    2014-11-04

    The work describes a novel and cleaner approach of electrodriven selective transport of Cs from simulated nuclear waste solutions through cellulose tri acetate (CTA)/poly vinyl chloride (PVC) based polymer inclusion membrane. The electrodriven cation transport together with the use of highly Cs+ selective hexachlorinated derivative of cobalt bis dicarbollide, allows to achieve selective separation of Cs+ from high concentration of Na+ and other fission products in nuclear waste solutions. The transport selectivity has been studied using radiotracer technique as well as atomic emission spectroscopic technique. Transport studies using CTA based membrane have been carried out from neutral solution as well as 0.4 M HNO3, while that with PVC based membrane has been carried out from 3 M HNO3. High decontamination factor for Cs+ over Na+ has been obtained in all the cases. Experiment with simulated high level waste solution shows selective transport of Cs+ from most of other fission products also. Significantly fast Cs+ transport rate along with high selectivity is an interesting feature observed in this membrane. The current efficiency for Cs+ transport has been found to be ∼100%. The promising results show the possibility of using this kind of electrodriven membrane transport methods for nuclear waste treatment.

  14. Fast Solutions of Maxwell's Equation for High Resolution Electromagnetic Imaging of Transport Pathways

    Energy Technology Data Exchange (ETDEWEB)

    DAY,DAVID M.; NEWMAN,GREGORY A.

    1999-10-01

    A fast precondition technique has been developed which accelerates the finite difference solutions of the 3D Maxwell's equations for geophysical modeling. The technique splits the electric field into its curl free and divergence free projections, and allows for the construction of an inverse operator. Test examples show an order of magnitude speed up compared with a simple Jacobi preconditioner. Using this preconditioner a low frequency Neumann series expansion is developed and used to compute responses at multiple frequencies very efficiently. Simulations requiring responses at multiple frequencies, show that the Neumann series is faster than the preconditioned solution, which must compute solutions at each discrete frequency. A Neumann series expansion has also been developed in the high frequency limit along with spectral Lanczos methods in both the high and low frequency cases for simulating multiple frequency responses with maximum efficiency. The research described in this report was to have been carried out over a two-year period. Because of communication difficulties, the project was funded for first year only. Thus the contents of this report are incomplete with respect to the original project objectives.

  15. Unified solution of the Boltzmann equation for electron and ion velocity distribution functions and transport coefficients in weakly ionized plasmas

    Science.gov (United States)

    Konovalov, Dmitry A.; Cocks, Daniel G.; White, Ronald D.

    2017-10-01

    The velocity distribution function and transport coefficients for charged particles in weakly ionized plasmas are calculated via a multi-term solution of Boltzmann's equation and benchmarked using a Monte-Carlo simulation. A unified framework for the solution of the original full Boltzmann's equation is presented which is valid for ions and electrons, avoiding any recourse to approximate forms of the collision operator in various limiting mass ratio cases. This direct method using Lebedev quadratures over the velocity and scattering angles avoids the need to represent the ion mass dependence in the collision operator through an expansion in terms of the charged particle to neutral mass ratio. For the two-temperature Burnett function method considered in this study, this amounts to avoiding the need for the complex Talmi-transformation methods and associated mass-ratio expansions. More generally, we highlight the deficiencies in the two-temperature Burnett function method for heavy ions at high electric fields to calculate the ion velocity distribution function, even though the transport coefficients have converged. Contribution to the Topical Issue "Physics of Ionized Gases (SPIG 2016)", edited by Goran Poparic, Bratislav Obradovic, Dragana Maric and Aleksandar Milosavljevic.

  16. Solute transport in a single fracture involving an arbitrary length decay chain with rock matrix comprising different geological layers.

    Science.gov (United States)

    Mahmoudzadeh, Batoul; Liu, Longcheng; Moreno, Luis; Neretnieks, Ivars

    2014-08-01

    A model is developed to describe solute transport and retention in fractured rocks. It accounts for advection along the fracture, molecular diffusion from the fracture to the rock matrix composed of several geological layers, adsorption on the fracture surface, adsorption in the rock matrix layers and radioactive decay-chains. The analytical solution, obtained for the Laplace-transformed concentration at the outlet of the flowing channel, can conveniently be transformed back to the time domain by the use of the de Hoog algorithm. This allows one to readily include it into a fracture network model or a channel network model to predict nuclide transport through channels in heterogeneous fractured media consisting of an arbitrary number of rock units with piecewise constant properties. More importantly, the simulations made in this study recommend that it is necessary to account for decay-chains and also rock matrix comprising at least two different geological layers, if justified, in safety and performance assessment of the repositories for spent nuclear fuel. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Study of hydrodynamic characteristics in tubular photobioreactors.

    Science.gov (United States)

    Zhang, Qinghua; Wu, Xia; Xue, Shengzhang; Liang, Kehong; Cong, Wei

    2013-02-01

    In this work, the hydrodynamic characteristics in tubular photobioreactors with a series of helical static mixers built-in were numerically investigated using computational fluid dynamics (CFD). The influences of height and screw pitch of the helical static mixer and fluid inlet velocity on the cell trajectories, swirl numbers and energy consumption were examined. In order to verify the actual results for cultivation of microalgae, cultivation experiments of freshwater Chlorella sp. were carried out in photobioreactor with and without helical static mixer built-in at the same time. It was shown that with built-in helical static mixer, the mixing of fluid could be intensified, and the light/dark cycle could also be achieved which is of benefit for the growth of microalgae. The biomass productivity of Chlorella sp. in tubular photobioreactor with helical static mixer built-in was 37.26 % higher than that in the photobioreactor without helical static mixer.

  18. SOFC mini-tubulares basadas en YSZ

    Directory of Open Access Journals (Sweden)

    Campana, R.

    2008-08-01

    Full Text Available Tubular SOFC have the advantage over planar SOFC of the low temperature sealing and more resistance to thermal shock. On the other hand the volumetric power density of tubular Fuel Cells goes with the inverse of the tube diameter which added to the faster warm-up kinetics makes low diameter tubular SOFC favorable for low power applications. Anode supported tubular SOFC of 3mm diameter and 150 mm length with YSZ electrolyte were fabricated and tested by V-I measurements using H2-Ar (5, 10, 100 vol% as fuel and air for the cathode. The NiO-YSZ tubes of about 400 μm thickness were produced by hydrostatic pressure and then coated with an YSZ film of 15-20 μm. The electrolyte was deposited using a manual aerograph. After sintering either Pt paste or LSF (with YSZ or SDC coatings of about 20-50 μm thickness were deposited for the cathode. The OCV of the cells were excellent, very close to the expected Nernst law prediction indicating that there were not gas leaks. The maximun electrical power of the cell was near to 500mW/cm2 at 850ºC operation temperature. Complex impedance measurements of the cells were performed in order to determine the resistance of the different cell components.

    La principal ventaja de las SOFC tubulares frente a las planares es el sellado de la cámara anódica y catódica a bajas temperaturas. Además la densidad de energía volumétrica de las pilas tubulares es inversamente proporcional al diámetro del tubo, que añadido a los tiempos cortos de encendido y apagado hacen que las mini-tubulares sean interesantes para usos de baja potencia. Se han fabricado y caracterizado SOFC tubulares soportadas en ánodo de 3mm de diámetro y de 150 mm de longitud, 400μm de espesor, con electrolito de YSZ depositado por spray de 15-20 μm. Los tubos de NiO-YSZ son producidos por prensado isostático. La caracterización eléctrica se ha realizado empleando H2-Ar como combustible an

  19. Cytoplasmic electric fields and electroosmosis: possible solution for the paradoxes of the intracellular transport of biomolecules.

    Directory of Open Access Journals (Sweden)

    Victor P Andreev

    Full Text Available The objective of the paper is to show that electroosmotic flow might play an important role in the intracellular transport of biomolecules. The paper presents two mathematical models describing the role of electroosmosis in the transport of the negatively charged messenger proteins to the negatively charged nucleus and in the recovery of the fluorescence after photobleaching. The parameters of the models were derived from the extensive review of the literature data. Computer simulations were performed within the COMSOL 4.2a software environment. The first model demonstrated that the presence of electroosmosis might intensify the flux of messenger proteins to the nucleus and allow the efficient transport of the negatively charged phosphorylated messenger proteins against the electrostatic repulsion of the negatively charged nucleus. The second model revealed that the presence of the electroosmotic flow made the time of fluorescence recovery dependent on the position of the bleaching spot relative to cellular membrane. The magnitude of the electroosmotic flow effect was shown to be quite substantial, i.e. increasing the flux of the messengers onto the nucleus up to 4-fold relative to pure diffusion and resulting in the up to 3-fold change in the values of fluorescence recovery time, and therefore the apparent diffusion coefficient determined from the fluorescence recovery after photobleaching experiments. Based on the results of the modeling and on the universal nature of the electroosmotic flow, the potential wider implications of electroosmotic flow in the intracellular and extracellular biological processes are discussed. Both models are available for download at ModelDB.

  20. Solution-Grown Monocrystalline Hybrid Perovskite Films for Hole-Transporter-Free Solar Cells

    KAUST Repository

    Peng, Wei

    2016-03-02

    High-quality perovskite monocrystalline films are successfully grown through cavitation-triggered asymmetric crystallization. These films enable a simple cell structure, ITO/CH3NH3PbBr3/Au, with near 100% internal quantum efficiency, promising power conversion efficiencies (PCEs) >5%, and superior stability for prototype cells. Furthermore, the monocrystalline devices using a hole-transporter-free structure yield PCEs ≈6.5%, the highest among other similar-structured CH3NH3PbBr3 solar cells to date.

  1. Forming of Polymeric Tubular Micro-components

    DEFF Research Database (Denmark)

    Qin, Yi; Zhao, Jie; Anyasodor, Gerald

    2015-01-01

    platform for the production of functional polymeric tubular micro-components. The chapter gives background on the current market and process development trends, followed by description of materials, process configuration, tool design and machine development for each processing technology as well...... as strategy for integration of the technologies and equipment into a common platform. Finally, potential applications of the technologies and facilities developed are highlighted....

  2. Getting the tail to wag the dog: Incorporating groundwater transport into catchment solute transport models using rank StorAge Selection (rSAS) functions

    Science.gov (United States)

    Harman, C. J.

    2015-12-01

    Surface water hydrologic models are increasingly used to analyze the transport of solutes through the landscape, such as nitrate. However, many of these models cannot adequately capture the effect of groundwater flow paths, which can have long travel times and accumulate legacy contaminants, releasing them to streams over decades. If these long lag times are not accounted for, the short-term efficacy of management activities to reduce nitrogen loads may be overestimated. Models that adopt a simple 'well-mixed' assumption, leading to an exponential transit time distribution at steady state, cannot adequately capture the broadly skewed nature of groundwater transit times in typical watersheds. Here I will demonstrate how StorAge Selection functions can be used to capture the long lag times of groundwater in a typical subwatershed-based hydrologic model framework typical of models like SWAT, HSPF, HBV, PRMS and others. These functions can be selected and calibrated to reproduce historical data where available, but can also be fitted to the results of a steady-state groundwater transport model like MODFLOW/MODPATH, allowing those results to directly inform the parameterization of an unsteady surface water model. The long tails of the transit time distribution predicted by the groundwater model can then be completely captured by the surface water model. Examples of this application in the Chesapeake Bay watersheds and elsewhere will be given.

  3. Climatic drivers for multidecadal shifts in solute transport and methane production zones within a large peat basin

    Science.gov (United States)

    Glaser, Paul H.; Siegel, Donald I.; Chanton, Jeffrey P.; Reeve, Andrew S.; Rosenberry, Donald O.; Corbett, J. Elizabeth; Dasgupta, Soumitri; Levy, Zeno

    2016-01-01

    Northern peatlands are an important source for greenhouse gases, but their capacity to produce methane remains uncertain under changing climatic conditions. We therefore analyzed a 43 year time series of the pore-water chemistry to determine if long-term shifts in precipitation altered the vertical transport of solutes within a large peat basin in northern Minnesota. These data suggest that rates of methane production can be finely tuned to multidecadal shifts in precipitation that drive the vertical penetration of labile carbon substrates within the Glacial Lake Agassiz Peatlands. Tritium and cation profiles demonstrate that only the upper meter of these peat deposits was flushed by downwardly moving recharge from 1965 to 1983 during a Transitional Dry-to-Moist Period. However, a shift to a moister climate after 1984 drove surface waters much deeper, largely flushing the pore waters of all bogs and fens to depths of 2 m. Labile carbon compounds were transported downward from the rhizosphere to the basal peat at this time producing a substantial enrichment of methane in Δ14C with respect to the solid-phase peat from 1991 to 2008. These data indicate that labile carbon substrates can fuel deep production zones of methanogenesis that more than doubled in thickness across this large peat basin after 1984. Moreover, the entire peat profile apparently has the capacity to produce methane from labile carbon substrates depending on climate-driven modes of solute transport. Future changes in precipitation may therefore play a central role in determining the source strength of peatlands in the global methane cycle.

  4. Organic Solute Transporter-beta (SLC51B) Deficiency in Two Brothers with Congenital Diarrhea and Features of Cholestasis.

    Science.gov (United States)

    Sultan, Mutaz; Rao, Anuradha; Elpeleg, Orly; Vaz, Frédéric M; Abu Libdeh, Bassam Y; Karpen, Saul J; Dawson, Paul A

    2017-09-12

    Primary bile acid malabsorption (PBAM) is associated with congenital diarrhea, steatorrhea, and a block in the intestinal return of bile acids in the enterohepatic circulation. Mutations in the ileal Na + -dependent bile acid transporter (ASBT; SLC10A2) can cause PBAM, but do not appear to account for most familial cases. Another major transporter involved in the intestinal reclamation of bile acids is the heteromeric Organic Solute Transporter alpha-beta (OSTα-OSTβ; SLC51A-SLC51B), which exports bile acid across the basolateral membrane. Here we report the first patients with OSTβ deficiency, clinically characterized by chronic diarrhea, severe fat soluble vitamin deficiency, and features of cholestatic liver disease including elevated serum gamma-glutamyltransferase activity. Whole exome sequencing revealed a homozygous single nucleotide deletion in codon 27 of SLC51B, resulting in a frameshift and premature termination at codon 50. Functional studies in transfected cells showed that the SLC51B mutation resulted in markedly reduced taurocholic acid uptake activity and reduced expression of the OSTα partner protein. The findings identify OSTβ deficiency as a new cause of congenital chronic diarrhea with features of cholestatic liver disease. These studies underscore OSTα-OSTβ's key role in the enterohepatic circulation of bile acids in humans. This article is protected by copyright. All rights reserved. © 2017 by the American Association for the Study of Liver Diseases.

  5. Experimental Study and Numerical Solution of Poly Acrylic Acid Supported Magnetite Nanoparticles Transport in a One-Dimensional Porous Media

    Directory of Open Access Journals (Sweden)

    M. Golzar

    2014-01-01

    Full Text Available Recently, iron nanoparticles have attracted more attention for groundwater remediation due to its potential to reduce subsurface contaminants such as PCBs, chlorinated solvents, and heavy metals. The magnetic properties of iron nanoparticles cause to attach to each other and form bigger colloid particles of iron nanoparticles with more rapid sedimentation rate in aqueous environment. Using the surfactants such as poly acrylic acid (PAA prevents iron nanoparticles from forming large flocs that may cause sedimentation and so increases transport distance of the nanoparticles. In this study, the transport of iron oxide nanoparticles (Fe3O4 stabilized with PAA in a one-dimensional porous media (column was investigated. The slurries with concentrations of 20,100 and 500 (mg/L were injected into the bottom of the column under hydraulic gradients of 0.125, 0.375, and 0.625. The results obtained from experiments were compared with the results obtained from numerical solution of advection-dispersion equation based on the classical colloid filtration theory (CFT. The experimental and simulated breakthrough curves showed that CFT is able to predict the transport and fate of iron oxide nanoparticles stabilized with PAA (up to concentration 500 ppm in a porous media.

  6. Solution and study of nodal neutron transport equation applying the LTS{sub N}-DiagExp method

    Energy Technology Data Exchange (ETDEWEB)

    Hauser, Eliete Biasotto; Pazos, Ruben Panta [Pontificia Univ. Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil). Faculdade de Matematica]. E-mail: eliete@pucrs.br; rpp@mat.pucrs.br; Vilhena, Marco Tullio de [Pontificia Univ. Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil). Instituto de Matematica]. E-mail: vilhena@mat.ufrgs.br; Barros, Ricardo Carvalho de [Universidade do Estado, Nova Friburgo, RJ (Brazil). Instituto Politecnico]. E-mail: ricardo@iprj.uerj.br

    2003-07-01

    In this paper we report advances about the three-dimensional nodal discrete-ordinates approximations of neutron transport equation for Cartesian geometry. We use the combined collocation method of the angular variables and nodal approach for the spatial variables. By nodal approach we mean the iterated transverse integration of the S{sub N} equations. This procedure leads to the set of one-dimensional averages angular fluxes in each spatial variable. The resulting system of equations is solved with the LTS{sub N} method, first applying the Laplace transform to the set of the nodal S{sub N} equations and then obtained the solution by symbolic computation. We include the LTS{sub N} method by diagonalization to solve the nodal neutron transport equation and then we outline the convergence of these nodal-LTS{sub N} approximations with the help of a norm associated to the quadrature formula used to approximate the integral term of the neutron transport equation. (author)

  7. Tubular Scaffold with Shape Recovery Effect for Cell Guide Applications

    Directory of Open Access Journals (Sweden)

    Kazi M. Zakir Hossain

    2015-07-01

    Full Text Available Tubular scaffolds with aligned polylactic acid (PLA fibres were fabricated for cell guide applications by immersing rolled PLA fibre mats into a polyvinyl acetate (PVAc solution to bind the mats. The PVAc solution was also mixed with up to 30 wt % β-tricalcium phosphate (β-TCP content. Cross-sectional images of the scaffold materials obtained via scanning electron microscopy (SEM revealed the aligned fibre morphology along with a significant number of voids in between the bundles of fibres. The addition of β-TCP into the scaffolds played an important role in increasing the void content from 17.1% to 25.3% for the 30 wt % β-TCP loading, which was measured via micro-CT (µCT analysis. Furthermore, µCT analyses revealed the distribution of aggregated β-TCP particles in between the various PLA fibre layers of the scaffold. The compressive modulus properties of the scaffolds increased from 66 MPa to 83 MPa and the compressive strength properties decreased from 67 MPa to 41 MPa for the 30 wt % β-TCP content scaffold. The scaffolds produced were observed to change into a soft and flexible form which demonstrated shape recovery properties after immersion in phosphate buffered saline (PBS media at 37 °C for 24 h. The cytocompatibility studies (using MG-63 human osteosarcoma cell line revealed preferential cell proliferation along the longitudinal direction of the fibres as compared to the control tissue culture plastic. The manufacturing process highlighted above reveals a simple process for inducing controlled cell alignment and varying porosity features within tubular scaffolds for potential tissue engineering applications.

  8. Renal Tubular Toxicity Associated With Rosuvastatin Therapy.

    Science.gov (United States)

    Ward, Frank L; John, Rohan; Bargman, Joanne M; McQuillan, Rory F

    2017-03-01

    Preapproval clinical trials examining the safety and efficacy of rosuvastatin demonstrated an increased incidence of proteinuria, hematuria, rhabdomyolysis, and other acute kidney injury of unknown cause at high doses. The latter cases manifested with urine sediment findings and in some cases, renal histology, indicating renal tubular injury in the absence of rhabdomyolysis. Despite these provocative findings, there have been very few reports in the literature regarding non-rhabdomyolysis-mediated acute kidney injury associated with high-dose rosuvastatin since its widespread introduction more than a decade ago, suggesting that it is either a rare entity or systematically underdiagnosed and under-reported. We present a case of renal tubular toxicity attributable to the initiation of rosuvastatin treatment at a dose of 40mg in a patient with no prior evidence of kidney disease. Tubular toxicity should be considered in cases of unexplained kidney injury in the setting of exposure to a potent statin such as rosuvastatin, particularly at high dose. The limited evidence suggests a good kidney prognosis following withdrawal of the agent in these cases. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  9. Solution of the Neutron transport equation in hexagonal geometry using strongly discontinuous nodal schemes

    International Nuclear Information System (INIS)

    Mugica R, C.A.; Valle G, E. del

    2005-01-01

    In 2002, E. del Valle and Ernest H. Mund developed a technique to solve numerically the Neutron transport equations in discrete ordinates and hexagonal geometry using two nodal schemes type finite element weakly discontinuous denominated WD 5,3 and WD 12,8 (of their initials in english Weakly Discontinuous). The technique consists on representing each hexagon in the union of three rhombuses each one of which it is transformed in a square in the one that the methods WD 5,3 and WD 12,8 were applied. In this work they are solved the mentioned equations of transport using the same discretization technique by hexagon but using two nodal schemes type finite element strongly discontinuous denominated SD 3 and SD 8 (of their initials in english Strongly Discontinuous). The application in each case as well as a reference problem for those that results are provided for the effective multiplication factor is described. It is carried out a comparison with the obtained results by del Valle and Mund for different discretization meshes so much angular as spatial. (Author)

  10. Uncollided Flux Techniques for Discrete-Ordinate Radiation Transport Solutions in Rattlesnake

    Energy Technology Data Exchange (ETDEWEB)

    Ragusa, Jean C. [Texas A & M Univ., College Station, TX (United States); DeHart, Mark D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    One of the only real-time-resolved measurement tools used at the Transient Test Reactor (TREAT) is the fast-neutron hodoscope. The hodoscope was used for monitoring and measuring fuel motion during a transient pulse. The hodoscope is a line of sight detection and imaging system that provides both temporal and spatial resolution of fuel motion during transients, and in-place measurement of fuel distribution during and after transient experiments. However, the hodoscope relies on fast neutron streaming out of the reactor core, which provides a challenge to transient modeling and simulation. However, use of a first collision source approach can be used to overcome this shortcoming. Hence, the TREAT modeling and simulation team has initiated research to implement such capabilities in the neutron transport code Rattlesnake. This report reviews uncollided flux techniques (first and last collision methods) to be implemented in the Rattlesnake SN code in order to mitigate ray effects in modeling the TREAT reactor+hodoscope system. Angular discretization techniques (SN and PN) for the transport equation are notoriously poor at capturing effectively streaming effects.

  11. Experimental investigation of the impact of compound-specific dispersion and electrostatic interactions on transient transport and solute breakthrough

    Science.gov (United States)

    Muniruzzaman, Muhammad; Rolle, Massimo

    2017-02-01

    This study investigates the effects of compound-specific diffusion/dispersion and electrochemical migration on transient solute transport in saturated porous media. We conducted laboratory bench-scale experiments, under advection-dominated regimes (seepage velocity: 0.5, 5, 25 m/d), in a quasi two-dimensional flow-through setup using pulse injection of multiple tracers (both uncharged and ionic species). Extensive sampling and measurement of solutes' concentrations (˜1500 samples; >3000 measurements) were performed at the outlet of the flow-through setup, at high spatial and temporal resolution. The experimental results show that compound-specific effects and charge-induced Coulombic interactions are important not only at low velocities and/or for steady state plumes but also for transient transport under high flow velocities. Such effects can lead to a remarkably different behavior of measured breakthrough curves also at very high Péclet numbers. To quantitatively interpret the experimental results, we used four modeling approaches: classical advection-dispersion equation (ADE), continuous time random walk (CTRW), dual-domain mass transfer model (DDMT), and a multicomponent ionic dispersion model. The latter is based on the multicomponent formulation of coupled diffusive/dispersive fluxes and was used to describe and explain the electrostatic effects of charged species. Furthermore, we determined experimentally the temporal profiles of the flux-related dilution index. This metric of mixing, used in connection with the traditional solute breakthrough curves, proved to be useful to correctly distinguish between plume spreading and mixing, particularly for the cases in which the sole analysis of integrated concentration breakthrough curves may lead to erroneous interpretation of plume dilution.

  12. Solution-Processed Planar Perovskite Solar Cell Without a Hole Transport Layer.

    Science.gov (United States)

    Jin, Yi; Chumanov, George

    2015-06-10

    Solar cells with a structure of ITO/ZnO/CH3NH3PbI3/graphite/carbon black electrode were fabricated by spin coating at ambient conditions. PbI2 thin films were converted into CH3NH3PbI3 perovskite by reacting with CH3NH3I in solution. The incorporation of electrochemically exfoliated graphite improved the fill factor, open circuit potential and short circuit current density. The best device yielded 10.2% power conversion efficiency.

  13. Evaluating Hydrologic Transience in Watershed Delineation, Numerical Modeling and Solute Transport in the Great Basin. Clayton Valley, Nevada

    Science.gov (United States)

    Underdown, C. G.; Boutt, D. F.; Hynek, S. A.; Munk, L. A.

    2017-12-01

    Importance of transience in managed groundwater systems is generally determined by timeframe of management decisions. Watersheds with management times shorter than the aquifer (watershed) response time, or the time it takes a watershed to recover from a change in hydrologic state, would not include the new state and are treated as steady-state. However, these watersheds will experience transient response between hydrologic states. Watershed response time is a function of length. Therefore flat, regional watersheds characteristic of the Great Basin have long response times. Defining watershed extents as the area in which the water budget is balanced means inputs equal outputs. Steady-state budgets in the Great Basin have been balanced by extending watershed boundaries to include more area for recharge; however, the length and age of requisite flow paths are poorly constrained and often unrealistic. Inclusion of stored water in hydrologic budget calculations permits water balance within smaller contributing areas. As groundwater flow path lengths, depths, and locations differ between steady-state and transient systems, so do solute transport mechanisms. To observe how transience affects response time and solute tra